1986 PRODUCTS

AEROSPACE/AVIATION
AUTOMOTIVE/MOTOR VEHICLE
ARCHITECTURAL/CONSTRUCTION
ARTIFICIAL INTELLIGENCE
BUSINESS
BIOMEDICAL
COMPUTER AIDED DESIGN
CHEMICAL
COMMUNICATIONS
DESIGN/DEVELOPMENT ENGINEERING
EDUCATION
ELECTRONIC COMPONENTS
ELECTRICAL EQUIPMENT
ENGINEERING
GOVERNMENT/DEFENSE
LIGHT TECHNOLOGY
MECHANICAL MEASUREMENTS
MANUFACTURING/TEST
MEDICAL/HEALTH
PETROLEUM/ENERGY/NUCLEAR
PUBLISHING
QUALITY CONTROL/STANDARDS
RESEARCH \& DEVELOPMENT
RADIO/MICROWAVE
SCIENCE
SERVICE
TELEVISION/BROADCASTING

Front Cover

Tektronix' customer base has expanded substantially since we delivered our first oscilloscope to the University of Oregon Medical School in 1947. Our expanded markets are indicated on the cover. We've combined some markets and listed others in their broadest sense. As you might imagine, a complete application listing could fill the entire catalog, not just the cover.

First 40 Years

February 2, 1986, marks the 40th anniversary of our corporate certification. The first oscilloscope, Type 511 was delivered the following May. You can review the highlights of these forty years, including many "firsts" on pages 460 and 461 . But we're not resting on past performance. We're moving ahead in a number of areas. We are committed to maintaining and expanding our leadership.

A Hint at the Future

There are more than 60 NEW hardware and software products in this catalog. They're identified by a bold color thumb tab on the upper page corner. You'll find a summary of our expanding software offerings on pages 25-26.
Tektronix has, through the years, invested a significant portion of our profits in product engineering. You'll see the results of innovative design in our new product offerings, all planned to make you more productive.

Productivity

This is a key word at Tektronix.
We've prioritized productivity within our own plants and organizations. You benefit in increased value in Tek products (discussed further on pages 46, 85, 136 and 175). Your design and/or manufacturing organizations can now access our state-of-the-art components and custom design resources directly (see page 27).
You will also note an increased number of systems and systemcompatible products in this catalog. A convenient "GPIB" thumb tab marks those pages listing products designed to work together over the IEEE-488 bus. The synergism of these products allows you to increase productivity, consistency and accuracy.

This catalog belongs to

My Tektronix Contact
Business Card

Each Tek sales engineer specializes in the products and applications for a major area of customer activity: computer graphics, digital design and test, communications, and general test and measurement.

You can receive additional product information by calling your nearest Tektronix Sales Office listed on pages 462-465, or by returning the reply card in this catalog.

Many products listed in this catalog are available through the National Marketing CenteI by calling toll free 1-800-426-2200. In addition to being able to give you direct order entry the NMC Sales Enginers are available to offer you immediate technical assistance about product specifications, capabilities and applications. They car send you literature, discuss available accessories, tell you abou' payment terms and options, or help you contact your local sales and service office.

Automatic Risetime/Falltime

BNC, BSM, Accessories
C
Cabinets, Plug-In Storage .. 450
Cable Input Adaptors ... 448
Cable Testing, Fault Locating
Fiber Optic Bandwidth Test Set ... 151
Fiber Optic TDR TestersPortable 150
Metallic TDR TestersPortable 153
Cables
BNC, BSM, GR, N, SMA (3 mm) ... 448
CAD/CAM Workstations 6000 Series 54
CAE System .. 44
Calibration GeneratorsTM 500 Series 385-387
Calibration, OscilloscopeTM 500 Series 385-387
Calibration and Other Services .. 455
Camera Carrying Cases .. 415
Camera, Hand-Held
Camera, Motorized Back
Camera Mor $\quad 410$
Camera Writing Speed Enhancer
Cameras, Scope/CRT Display ... 404-416
Capacitors
Capacitors, Coupling .. 449
Cards
Programmable A/D Converter .. 351
Programmable D/A Converter ... 351
Programmable Development .. 353
Programmable Digital Input/Output ... 351
Programmable Memory
Programmable Relay Scanner
353
352
Carryi
Carts, Lab/Portable Instruments ..422
Carts, Workstation 84
CATV Preamp .. 167
Chassis, Blank Panel Plug-In .. 392
Circuit Boards
Printed .. 28
Flexible ... 29
Teflon .. 29
Color Digital Analysis Mainframe ...DAS 9100 Series 104-113
Color Graphics Copiers 4600 Series 75
Color Graphics Terminals 4100, 4110, 4120 Series 58
Color Storage Oscilloscope 5000 Series 246
Color Television Picture Monitors .. 650 Series 149
Communications Test Equipment
Analyzers
Data .. 103,127
Sideband
173
Spectrum .. 7000 Series 154
Automatic Video Measurement Set 1980 ANSWER 147
Cable Fault-Locators ... 152
Demodulators 1450 Series 146
Frequency Counters 7000 Series 228
TM 5000 Series 339
TM 500 Series 358
Generators, Audio SweepTM 500 Series 378
Noise Measurement Set
148

TV Os
144
288,

Digital Multimeters	
Autoranging .	.Portables 264
Oscilloscope Coupled w/Temperature .	. 7000 Series 225
	Portables 264,288
DMM Oscilloscope	. 7000 Series 225
	TM 5000 Series 344
	TM 500 Series 363-365
	Portables 259,268,
	272,283,
	285,288
Digital Photometer/Radiometer	417
Digital Prescaler	..TM 500 Series 343,361
Digital Readout Oscilloscope	. 7000 Series 193-211,
	7000 Series, Digitizers 318
	5000 Series 241,246
	Portables 259-277,
	283,288,
	313
Digital Servicing Aids	127
Digital Service Instrument	127
Digital Storage OscilloscopesD	..Digitizers 254,307,
	310,313,
	318,328
Digital Storage Spectrum Analyzers 7	7000 Series 168
Digital Tester 80	800 Series 150
Digital Voltmeters	.TM 5000 Series 344
	TM 500 Series 363-365
Digitizers	247 ,
	306-329
Digitizer Time Bases 7000	. 7000 Series 325,329
Digitizing OscilloscopesD	..Digitizers 306-329
Disk Drive Unit	301
Display MonitorsGMA, 600 Series 81,82
Displays (CRT)	
Bistable StorageG	.GMA, 600 Series 81,82
Color Television Picture	149
Color Display 4000	. 4000 Series 57-66
High Brightness	82
High Resolution	81
Large Screen	81
Liquid Crystal Shutter	38
Nonstorage	82
OEM	81-82
Raster Scan, Video	82
Storage Display	81
Television Waveform	142
Vector Display	142,143
X-Y	82
Distortion AnalyzersT	..TM 5000 Series 348
	TM 500 Series 376
DMM Oscilloscopes	. 7000 Series 225
	Portables 259,268,
	272,283,
	285,288
Drafting Systems	55,61
Dual Beam Oscilloscopes	7000 Series 203
	5000 Series 244
Dual Beam Storage Oscilloscopes Dual Time Base (Mixed Sweep)	5000 Series 244
	. 7000 Series 222,225
	5000 Series 251
Dual Trace Amplifiers 700	.. 7000 Series 215
	5000 Series 243,248
	232
Dual Trace Differential Amplifiers Dual Trace Digital Storage	. 5000 Series 250
OscilloscopePortables 313
Dual Trace Oscilloscopes	.. 7000 Series 193-211
	7000 Series, Digitizers 318
	5000 Series 238
	TM 500 Series 382-384
	Portables 256-279,

[^0]| F | | |
| :---: | :---: | :---: |
| F Adaptors | | 449 |
| Fast Rise Pulse Generator | 7000 Series | 237 |
| | TM 500 Series | 367-369 |
| Fast Transfer Storage | | |
| Oscilloscopes | .Portables | 288 |
| Fault Locating Cable Testing | | 150 |
| FET Probes | | 425,435 |
| Fiber Optic Adaptors | | 151 |
| Fiber Optic Bandwidth Test Set | | 151 |
| Fiber Optic Cable Testers | | 150 |
| Fiber Optic Electrical/Optical | | |
| Optical/Electrical Converters | | 151,390 |
| Filters | | |
| Bandpass/AmplifierTM 500 Series | | 380 |
| CRT Light, CRT Mesh | | 451 |
| Floating Measurements (Isolated) | | 436-438 |
| Four Trace Amplifiers | . 5000 Series | 248 |
| Four Channel OscilloscopesPortables | | 259 |
| Frequency Counters | . 7000 Series | 228 |
| | TM 5000 Series | 339 |
| | TM 500 Series | 358 |
| Frequency Measurements, | | |
| AutomaticPortables | | 259 |
| Full Custom WorkSystemSoftware | | 48 |
| Function Cards | .TM 5000 Series | 351 |
| Function Generators | TM 5000 Series | 345 |
| | TM 500 Series | 370-373 |
| Furniture, Workstation | | 83,84 |
| G | | |
| Gate Array Layout WorkSystemSoftwareGenerators, Signal | | 48 |
| | | |
| Audio Sweep | TM 5000 Series | 348 |
| | TM 500 Series | 378 |
| \qquad | | 385-387 |
| | | 139 |
| Constant AmplitudeTM 500 Series | | 387 |
| Fast Rise Pulse | . 7000 Series | 237 |
| | TM 500 Series | 367-369 |
| Function | TM 5000 Series | 345 |
| | TM 500 Series | 367-369 |
| | | 368 |
| | | 145 |
| PAL and PAL-M | | 145 |
| Pulse | . 7000 Series | 237 |
| | TM 500 Series | 367-369 |
| Ramp | TM 500 Series | 367-369 |
| Rate/Ramp | TM 500 Series | 367-369 |
| RC Oscillator | .TM 500 Series | 388 |
| Sinewave | .TM 500 Series | 370-373, |
| | | 388 |
| Squarewave | TM 500 Series | 372 |
| Television Sync | . 1400 Series | 145 |
| Television Test | | 139, |
| | | 144-148 |
| Time-Mark | .TM 500 Series | 387 |
| Tracking | TM 500 Series | 172 |
| Triangle | TM 500 Series | 372 |
| Video Noise
 GPIB Products | | |
| | | |
| A to D Converter 7000 Series | | 227 |
| | | 351 |
| Acquisition/Processing SystemsMP/MS Systems | | 330 |
| Audio Test System | .TM 5000 Series | 348 |
| Cables | | 24 |
| Calibration GeneratorTM 500 Series | | 385 |
| Controller-Based Acquisition/ | | |
| Processing Measurement Syste | .MS Systems | 330 |
| Controllers | | 298 |
| Counter/TimersTM 5000 Series | | 339 |
| D to A Converter | .TM 5000 Series ... | 351 |
| Desktop Controller-Based Acquisition/ | | |
| Processing Measurement PackagesMP Systems 330 | | |
| Digital MultimeterTM 5000 Series 344 | | |
| Digital Storage OscilloscopeDigitizers | | 254,307, |
| | | 310,313, |
| | | 318,328 |

TEK FUNCTIONAL INDEX

Mixed Swep (Calibrated) 277

	5000 Series	238-252
	TM 500 Series	
Portable		

Programmable ... 3000 Series $315-320$
Rackmount ... 7000 Series 194-198,

201-204,

208-211
5000 Series 241,244
Portables 258,267
271,276
TM 5000 Series 385 385
TM 500 Series 384,
389
268,274,
277
Sampling Plug-in 7000 Series 230-237
Storage
Bistable .. 7000 Series 205-211
5000 Series 241,245
Portables 288-293
TM 500 Series 383

Digital ... | 254, |
| ---: |
| $307-313$, |
| 318320 |

Dual Beam	. 7000 Series	318,328 203
	5000 Series	244
Fast Transfer	.Portables	288
Multimode	. 7000 Series	182
		205-209
	Portables	288
Reference Information ... 205		
Variable Persistence 7000 Series 205-211		
	5000 Series	241
	Portables	288

Ramp GeneratorsTM 500 Series 370

Rasterizer		75
Rate/Ramp Generators	TM 500 Series	373
RC Oscillator	TM 500 Series	388
Readout Oscilloscopes, CRT	7000 Series	193-211
	7000 Series, Digitizers	318
	5000 Series	241,246
	Portables	259,313
Readout Oscilloscopes, Digital	7000 Series	193-211
	7000 Series, Digitizers	318
	5000 Series	241,246
	Portables	259-277,
		283,288
	Portables, Digitizers	313
Receivers, Optical/Electrical		151

CRT Phosphors ... 180

General Purpose Interface Bus ... 13-24
Modular and Integrated Oscilloscopes .. 176
Oscilloscope Specifications .. 176
Probe Recommendations
426-428
Sales, Ordering, Customer Support .. 452-459
Sampling Applications .. 186,230
Storage Displays .. 182
Waveform Digitizers
Reflectometer Cable Testing,
Reflectometer Cable Testing,
Time Domain ... 152
$\begin{array}{ll}\text { Relational Data Base Management } 6000 \text { Series } 54 \\ \text { RF Probe } & 566441\end{array}$

S
Safety (Isolators)

Type	Instrument Description Page	Type	Instrument Description	Page	Type
AA 501	Distortion Analyzer 376	FA-3	Fiber Adaptors	152	OF235
AA 5001	Programmmable Distortion	FA-4	Fiber Adaptors	152	OR501
	Analyzer 348	FA-5	Fiber Adaptors	152	OR502
ACEDIT	ACE Screen Editor 98	FA-6	Fiber Adaptors	152	OT501
AnthroCart	Workstation Cart 83	FA-7	Fiber Adaptors	152	OT502
AnthroCart	PC Cart 83	FG 501A	2 MHz Function Generator	372	OT503
AnthroArm	Shelf Arm 84	FG 5010	Programmable 20 MHz		PG 501
AM 501	Operational Amplifier 380		Function Generator	345	PG 502
AM 502	Differential Amplifier 380	FG 502	11 MHz Function Generator	372	PG 506
AM 503	Current-Probe Amplifier .. 379,443	FG 503	3 MHz Function Generator	372	PG
AN/USM-488	100 MHz Dual Trace Portable Oscilloscope 274,277	$\begin{aligned} & \text { FG } 504 \\ & \text { FG } 504 \mathrm{~T} \end{aligned}$	40 MHz Function Generator 40 MHz Function Generator		
A6302	Current Probe 379,443	FG 507	2 MHz Sweeping Function		$\text { PG } 508 \mathrm{~T}$
A6303	Current Probe 379,443		Generator	373	PLOT 10
A6741	RS-499 Interface 150	Franz LISP	Software		PS 5004
A6742	2-Wire Direct Interface 150	GMA201	Computer Display Module 81	PS 5010
A6743	Tri-State Break-Out Box 150	GRASP	Software	158	
A6744	Interface Adaptor 150	GURU	Software	305	PS 501-1
A6901	Ground Isolation Monitor 438	ICOM40	Interface Software	98	PS 503A
A6902B	Isolator 437	J16	Digital Photometer/		P6006
BP1	Battery Pack 141		Radiometer	417	P6007
CAE	44	J6501	Illuminance Probe	419	P6008
CG 5001	Programmable Oscilloscope	J6502	Irradiance Probe	419	P6009
	Calibration Generator 385	J6503	8° Luminance Probe ..	419	P6010
CG 551AP	Programmable Oscilloscope	J6504	Uncorrected Probe	420	P6015
	Calibration Generator 38	J6505	LED Probe	419	P6021
ColorKey	Interface Software 93	J6511	Illuminance Probe		P6022
Common LISP	Software 73	J6512	Irradiance Probe	419	P028
CT-1	Current Transformer 445	J6523	1° Luminance Probe	420	P6046
CT-2	Current Transformer 445	K117	Instrument Shuttle		P6048
CT-3	Signal Pickoff 445	K212	Portable Instrument		P60
CT-5	Current Transformer 445	K213	Lab Inst		P6055
C-30B	Camera 412		Rack instrument Cart ...		P6056
C-31B	Camera 412		Language Development Systems		P6057
C-4	Camera 408	Lo Pro	Software		B
C-5C	Camera 416	MERLYN-G	Automated Layout System 48	
C-51	Camera 413	MERLYN-PC	Printed Circuit Board Design		
C-53	Camera 413		System		2A
C-59A	Camera 415	MI 5010	Programmable Multifunction		P6104A
C-7	Camera 410		Interface		P6105A
CX4106A	Computer Display Terminal 60	MProlog	Software	72	P6106A
CX4107A	Computer Display Terminal 60	MP 1101	Programmable Digitizer		P6
CX4109A	Computer Display Terminal 60		Measurement Package	332	P6108A
DAS 91XX	Digital Analysis Systems 111	MP 1201	Programmable Digitizer Measurement Package		P6121
DAS 9109	Digital Analysis Mainframe 111	MP 2101			P6122
DAS 9119	Digital Analysis Mainframe (ATE Version) \qquad 111	MP 2201	Measurement Package		P6130
DAS 9129	Color Digital Analysis Mainframe \qquad	MP 2201	Measurement Package Acquisition/Processing		P6131
DC 5009	Programmable 135 MHz		Measurement Package	332	P6149A
	Universal Counter/Timer	MP 2501	Acquisition/Processing		P6201
DC 5010	Programmable 350 MHz Universal Counter/Timer 340	MP 2601	Measurement Package Portable Measurement	334	P6202A
DC 503A	125 MHz Universal Counter .. 360		Package	334	P6302
DC 504A	100 MHz Counter/Timer 362	MP 2901	Inspection Test Station		P6303
DC 509	135 MHz Universal Counter/Timer 359	MP 2902	Audio Measurements Package	335	P6401
DC 510	350 MHz Universal Counter/Timer \qquad 359	MP 2903	Oscilloscope Measurement Package	336	P6406
DDL	Digital Design Lab Support 98	MS 3101	Acquisition/Processing		P6430
DD 501	Digital Delay 374		Measurement System	337	P6451
DM 44	Digital Multimeter 289	MS 3201	Acquisition/Processing		P6452
DM 501A	Digital Multimeter 364		Measurement System	337	P6453
DM 5010	Programmable Digital	MX 5010	Interface Extender		
	Multimeter 344	M2	Sample/Hold Module		P6454
DM 502A	Autoranging Digital Multimeter 364	OF150	Fiber Optic TDR	150	P6455
DP 501	Digital Prescaler 343,361	OF151	Fiber Optic TDR	150	
EZ-TEST	Software 304	OF152	Fiber Optic TDR	150	6456
FA-1	Fiber Adaptors 152	OF192	Fiber Optic TDR		P6457
FA-2	Fiber Adaptors 152		Bandwidth Test Set		P6460

Fiber Optic TDR 50Reciver151
Transmitters151
Transmitters 151
550 MHz Puse Generato369
Calibration Generator
50 MHz Pulse Generator 368
Graphics Software Library 68
able Triple PowerPower Supply376
10X Prob429
10X Prob441
10X Probe 429
Current Probe 444
1X Probe 429
10X Probe 431
10X Probe 439
100X Probe 432
10X or 1X Probe 432
10X Probe ,430
10X Probe 430
10X Probe 430
10X Probe 431431
10X Probe433
10X Probe 43
FET Probe 435
10X Probe 434
Current Probe (See A6303) 443
Word Recognizer Probe 128
Temperature Probe 128
Data Acquisition Probe 128Probe128
Probe 128P6460

Type	Instrument Description Page
P6462	Data Acquisition Probe 128
P6601	Temperature Probe 366
P6602	Temperature Probe 442
SC 501	5 MHz Oscilloscope 381
SC 502	15 MHz Dual Trace Oscilloscope 384
SC 503	10 MHz Storage Oscilloscope
SC 504	80 MHz Oscilloscope 382
SG 502	RC Oscillator 388
SG 503	Leveled Sinewave Generator . 388
SG 504	Leveled Sinewave Generator . 388
SG 505	Oscillator 388
SG 5010	Programmable Oscillator 348
SI 5010	Programmable Scanner 354
SPG12	TV Sync Generator 145
SPG2	TV Sync Generator 145
SPG22	TV Sync Generator 145
STRUCTA	Structured Analysis Tool 88
S-1	Sampling Head 235
S-2	Sampling Head 235
S26RF00	Software 158
S-3A	Sampling Head 235
S-3220	LSI Test System 135
S-3225	Test System 133
S-3270	LSI Test System 135
S-3280	ECL Test System 135
S-3295	VLSI Test System 134
S-4	Sampling Head 236
S-5	Sampling Head 236
S-6	Sampling Head 236
S-51	Trigger Countdown Head 236
S-52	Pulse Generator Head 237
S-53	Trigger Recognizer Head 237
S-54	Pulse Generator Head 237
TDC	TV Down Converter 147
TDC-1	TV Down Converter 147
TDC-2	TV Down Converter 147
TekMate	Software 94
TekSPANS	Software 158
TG 501	Time Mark Generator 387
TM 5003	Three-Wide Mainframe 355
TM 5006	Six-Wide Mainframe 355
TM 501	One-Wide Mainframe 389
TM 503	Three-Wide Mainframe 389
TM 504	Four-Wide Mainframe 389
$\begin{aligned} & \text { TM } 506 \\ & \text { RTM } 506 \end{aligned}$	Six-Wide Mainframe 389 Six-Wide Mainframe 389
TM 515	Five-Wide Mainframe 389
TR 502	Tracking Generator 172
TR 503	Tracking Generator 172
TSG11	TV Test Signal Generator 145
TSG12	TV Test Signal Generator 145
TSG13	TV Test Signal Generator 145
TSG15	TV Test Signal Generator 145
TSG16	TV Test Signal Generator 145
TSG170A	TV Test Signal Generator 139
TSG2	TV Test Signal Generator 145
TSG21	TV Test Signal Generator 145
TSG23	TV Test Signal Generator 145
TSG25	TV Test Signal Generator 145
TSG26	TV Test Signal Generator 145
TSG3	TV Test Signal Generator 145
TSG300	Component TV Generator 139
TSG5	TV Test Signal Generator 145
TSG6	TV Test Signal Generator 145
TSG7	TV Test Signal Generator 145
TSP1	TV Signal Processor 145
TSP11	TV Signal Processor 145

Type	Instrument Description Page	Type	Instrument Description Page
TSP21	TV Signal Processor 145	2213A	60 MHz Dual
V-Systems	Emulation Support 98		Portable Oscilloscope 278
XY1	Output Module 152	2215A	60 MHz Dual Trace
110-RC	Remote Control Unit 144		Portable Oscilloscope 278
110-S	Synchronizer 144	2220	60 MHz Single Time Base Portable Digital Storage Oscilloscope 310
1101A	Probe Power Supply 435	2230	崖
1105	Battery Power Supply 281,390		Digital Storage Oscilloscope .. 310
1106	Battery Pack 281	2235	100 MHz Dual Trace
1107	Dc Inverter 282		Portable Oscilloscope 274
118AS	Audio Synchronizer 144	2235L	100 MHz Dual Trace
118F01	Audio Channel Kit 144		Portable Oscilloscope 274
118F02	Video Interface Kit 144	2235 Opt 01	100 MHz Dual Trace 274
118-RC	Remote Control Unit 144		
$12 \mathrm{R01}$	Performance Analysis Module 117	2236	100 MHz Dual Trace $\quad . . .$.
1240	Logic Analyzer Mainframe 114	2335	100 MHz Dual Trace
1241	Color Logic Analyzer Mainframe 114	2336	Portable Oscilloscope \qquad 268 100 MHz Dual Trace
134	Current Probe Amplifier 444		Portable Oscilloscope \qquad 268
1360P	Programmable Switch Controller 355	2337	100 MHz Dual Trace Portable Oscilloscope \qquad 268
1360S	Switch Matrix 355	2430	150 MHz Dual Trace Po
1405	TV Sideband Adaptor 173		Digtal Storage Oscilloscope ... 307
1410R	NTSC Mainframe 145	2445	150 MHz Four Channel
1411R	PAL Mainframe 145		Portable Oscilloscope 259
1412R	PAL-M Mainframe 145	2465	300 MHz Four Channel
420	TV Vectorscope 143	2465CTS	
1421	TV Vectorscope 143	2465CT	Portable Oscilloscope \qquad
1422	TV Vectorscope 143	2465DMS	300 MHz Four Channel
1430	TV Noise Measurement Set 148		Portable Oscilloscope 259
1434	Video Noise Generator 148	2465DVS	300 MHz Four Channel
1440	Automatic Video Corrector 148		Portable Oscilloscope 259
1450-1	TV Demodulator Mainframe 146	284	Pulse Generator 374
1450-2	TV Demodulator Mainframe 146	305	5 MHz Dual Trace Portable
1450-3	TV Demodulator Mainframe 146		Oscilloscope/DMM 283
1470	TV Test Signal Generator 148	308	Data Analyzer 127
1474	TV Sync Generator 148	314	10 MHz Dual Trace Portable
R148	PAL TV Test Signal Generator 148	318	Storage Oscilloscope 291
R148-M	PAL-M Test Signal Generator . 148 TV Waveform Monitor $\ldots \ldots . .142$	336	50 MHz Dual Trace Portable
1480R	TV Waveform Monitor 142		
1481C	TV Waveform Monitor 142	390AD	Programmable Wav
1481R	TV Waveform Monitor 142		Digitizer \qquad 326
1482C	TV Waveform Monitor 142	4041	System Controller 298
1482R	TV Waveform Monitor 142	4041DDU	Disk Drive Unit 301
1485C	TV Waveform Monitor 142	4104A	Computer Display Terminal 58
1485R	TV Waveform Monitor 142	4105A	Computer Display Terminal 58
1502, 1503	TDR Cable Testers 153	4106A	Computer Display Terminal 58
172	Programmable Test Fixture 396	4107A	Computer Display Terminal 59
1710B	NTSC Wvfm Monitor 138	4109A	Computer Display Terminal 59
1711B	PAL Wvfm Monitor 138	4111	Computer Display Terminal 62
1740	NTSC Wvfm/Vector Monitor ... 141	4114B	Computer Display Terminal 63
1741	PAL Wvfm/Vector Monitor 141	4114830	Computer Display Terminal
1742	PAL-M Wvfm/Vector Monitor .. 141		Workstation 63
1750	NTSC Wvfm/Vector Monitor ... 140	4125	2D Color Graphics Workstation 65
1751	PAL Wvfm/Vector Monitor 140	4125P	2D Color Graphics Workstation 65
176	Pulsed High Current Fixture 397	4128	3D Color Graphics Workstation 66
177	Standard Test Fixture 398	4129	3D Color Graphics Workstation 66
178	Linear IC Test Fixture 400	4170	Local Graphics Processing Unit 61
1910	Digital Generator 145	4170S3	Drafting System 61
1980	ANSWER (Automatic	417054	Drafting System 61
	Video Measurement Set) 147	417055	TekniCAP Presentation System .. 61
206, 206D	SCOPE-MOBILE® Carts 423	4404	Artificial Intelligence System 70
212	500 kHz Dual Trace	4405	Artificial Intelligence System 70
	Portable Oscilloscope 287	4406	Artificial Intelligence System 70
213	1 MHz Portable Oscilloscope/DMM 285	4510A	Rasterizer 76
214	500 kHz Dual Trace Portable	4612	Video Hard Copy Unit 78
	Storage Oscilloscope 292	4631	Hard Copy Unit 78
221	5 MHz Portable Oscilloscope . 284	4632	Video Hard Copy Unit 78
		4634	Image Forming Module 79

Type	Instrument Description Page
608	High Brightness Display Monitor \qquad 82
6130	Intelligent Graphics Workstation. 50
6130 S11	Single User Drafting System 55
6130512	Two User Drafting System 55
6130571	Technical Data Analysis System \square 56
6130573	Technical Data Analysis/ Presentation System
6130562	UNIX Software Development System \qquad 54
620	General Purpose Waveform Monitor \qquad 82
634	High Resolution Video Monitor . 82
$\begin{aligned} & 650 \mathrm{HR} \\ & 650 \mathrm{HR}-1 \end{aligned}$	TV Picture Monitor 149 TV Picture Monitor 149
$\begin{aligned} & \text { 651HR } \\ & 651 H R-1 \end{aligned}$	TV Picture Monitor 149 TV Picture Monitor 149
652HR-1	TV Picture Monitor 149
655HR-1	TV Picture Monitor 149
656HR-1	TV Picture Monitor 149
7A13	Differential Comparator Amplifier 218
7A15A	Single Trace Amplifier 214
7A16A	Single Trace Amplifier 213
7A16P	Programmable Amplifier .. 323,325
7A17	Single Trace Amplifier 214
7A18A	Dual Trace Amplifier 215
7A19	Single Trace Amplifier 213
7 A22	Differential Amplifier 219
7A24	Dual Trace Amplifier 215
7A26	Dual Trace Amplifier 215
7 729	Dual Trace Amplifier 213
7442	Logic Triggered Vertical Amplifier \qquad

| 7B10 Time Base | 223 |
| :--- | :--- | :--- |
| 7B15 | 223 |

7B15 $\quad \Delta$ Delaying Time Base 223
7B50A Time Base 224
7B53A Dual Time Base 224
7B80 Time Base 220
7B85 \quad Delaying Time Base २20

Time Base w/Pretrigger
Acquire Clock 220
7B90P Programmable Time Base 325
7B92A Dual Time Base 322
7CT1N Curve Tracer Plug-in 219,402
7D11 Digital Delay 226

7D12 A/D Converter 227
7D13A Digital Multimeter 225
7D15 Universal Counter/Timer 228

7D20, 7D20TProgrammable Digitizers 315
7K11 CATV Preamplifier 167,169
7L12 Spectrum Analyzer 168,229

7L14 Spectrum Analyzer 166,229
7L5 Spectrum Analyzer 170,229
7M11 Dual 50Ω Delay Line 235
7S11 Sampling Unit 234
7S12 TDR/Sampler 233
7S14 $\begin{array}{ll}\text { Dual Trace Delayed } \\ \text { Sweep Sampler } 232\end{array}$
7T11A Sampling Sweep Unit 234
7104, R7103 1 GHz Real Time
Oscilloscopes 194
7603, R7603 100 MHz Oscilloscopes 201
7612D $\quad 200 \mathrm{MHz}$ Programmable \quad Waveform Digitizer 321

7613, R7613 Variable Persistence Storage
7623A MAloscopes...................... 20
R7623A Oscilloscopes 208

pe	Instrument Description
$\begin{gathered} 7633 \\ R 7633 \end{gathered}$	Multimode Storage Oscilloscopes
7704A	250 MHz Oscilloscope 19
7834	Fast Storage Oscilloscope
7844, R78	400 MHz Dual-Beam Oscilloscopes
7854	400 MHz Waveform Processing Oscilloscope
$\begin{gathered} \text { 7904A } \\ \text { R7903 } \end{gathered}$	$\begin{aligned} & 500 \mathrm{MHz} \text { Oscilloscope } 197 \\ & 500 \mathrm{MHz} \text { Oscilloscope } 197 \end{aligned}$
7912AD	Programmable Transient Waveform Digitizer
830L01	Two Bank Library Pack
830L02	Four Bank Library Pack
$830 \mathrm{L03}$	Eight Bank Library Pack
$830 \mathrm{M01}$	Memory Pack
830M02	Memory Pack
$830 \mathrm{M03}$	Memory Pack
830M04	Memory Pack
30M05	Memory Pack
830M06	Memory Pack
$830 \mathrm{M07}$	Memory Pack
830M08	Memory Pack
830M09	Memory Pack
830RDA	ROM Pack Developme
830 R 01	General Purpose ROM Pack
830R03A	Link Test ROM Pack
$830 \mathrm{RO7}$	PARS/IPARS ROM Pack
830R10	SDLC/SNA ROM Pack
830 R 13	SDLC/SNA ROM Pack
834	Programmable Data Comm Tester
835	Programmable Data Comm Tester
836	Programmable Data Comm Tester
834RDA	ROM Pack Development Aid
834R01	General Purpose ROM Pack
834R02A	Bisynchronous ROM Pack 15
834R03A	Link Test ROM Pack
834R04	HDLC/X-25 ROM Pack
834R05	Extended Instruction Set ROM Pack
834R06	Bisynchronous ROM Pack 150
834 R 07	PARS/IPARS ROM Pack 150
$834 R 10$	SDLC/SNA ROM Pack
$834 R 11$	Extended Monitor ROM Pk
834 R 13	SDLC/SNA ROM Pack
8540A	Microcomputer Integration Unit
8550	Microcomputer Development Lab
8560	Multiuser Microcomputer Development Lab
8561	Multiuser Software Development Unit
8562	Multiuser Development System
91AE04A	Data Acquisition Module
91A04A	Data Acquisition Module
91A08	Data Acquisition Module
91A24	Data Acquisition Module
91AE24	Data Acquisition Module
91 A32	Data Acquisition Module
91 DVV	Digital Analysis Software
91P16	Pattern Generator Module
91P32	Pattern Generator Module
$91 \mathrm{S16}$	Pattern Generation Module
91532	Pattern Generation Module
91HS8	Data Acquisition Module
91HSE8	Data Acquisition Module

Tektronix Means . . . Measurement Capability, GPIB Compatibility

Tektronix' Systems Experience

Long before publication of the IEEE Standard 488-1975, Tektronix had entered the test and measurement systems business. The measurement speed and capabilities of the Tektronix automated oscilloscope and Tektronix semiconductor test systems quickly highlighted the benefits to be gained from measurement automation. And just as quickly came the realization that a system interfacing standard was needed. But what standard?

The possibilities of the proposed IEEE Standard 488 were recognized. And, when the IEEE Standard 488 became reality, GPIB compatibility was already an integral part of Tektronix product planning and engineering. The result is that Tektronix is now a recognized major supplier of a full line of GPIB system components-a supplier that puts more than a decade of systems planning, design, and implementation experience into each product.

In 1978 the standard was further refined (IEEE Standard 488-1978) defining an interfacing system that has become a widely accepted instrument industry standard. The major areas it specifies are:

1. Mechanical-the interface connector and cable. See Table 1.
2. Electrical-the logic signal levels and how the signals are sent and received.
3. Functional-the tasks an instrument's interface may perform-such as sending data, receiving data, triggering the instrument, etc.-and the protocols to be used. See Table 2.
Today, a wide variety of instruments include interfaces conforming to this mechanical, electrical, and functional standard. These GPIB-compatible instruments and instrument controllers make it possible to achieve the benefits of automated test systems without paying the previous price of custom system design. With GPIB compatibility, measurement capability can be chosen off-the-shelf and simply cabled with standard bus cables in either a linear or star configuration.

TABLE 1

GPIB HARDWARE CHARACTERISTICS

 SUMMARY- Cable lengths up to and not exceeding 20 meters (approximately 66 feet) with a device load required for every 2 meters of cable.
- Up to 15 devices (1 controller and 14 instruments) may be connected in linear or star configurations.
- Voltages are generally TTL-compatible.
- GPIB signal and data lines are asserted (or true) when pulled low ($\leqslant+0.8 \mathrm{~V}$) and released (or false) when high ($\geqslant+2.0 \mathrm{~V}$).
- Maximum data rate of up to 250 kilobytes/second over a distance of 20 meters, with 2 meters per device, or faster with some special restrictions (refer to IEEE Standard 488-1978 for details).

INTERFACE FUNCTIONS	
DEFINED BY IEEE STANDARD 488-1978	
Function Hource Handshake (SH)	Description Synchronizes message transmission
Acceptor Handshake (AH)	Synchronizes message reception
Talker	Allows instrument to send data
(T)	

An automated test and measurement system usually consists of the following components:

- Multiple instruments: these are either stimulus instruments, such as function generators, pulse generators, and power supplies; or measurement instruments, such as counters, waveform digitizers, and multimeters.
- Controller with software: this tells the instruments what to do, collects the results, and processes them. The system controller is generally a small computer. The software or firmware operating system must have a powerful, flexible I/O structure to handle GPIB bus traffic. It must also have processing power for waveform manipulation and graphics power for display.
- Computer peripherals: these are devices such as tape drives, printers, and plotters that store or display the results of the tests.
- A keyboard: this enables the user to send commands or information to the system.
- A display: the display allows the user to review intermediate results and to monitor system operation.

GPIB System Components

For smaller systems, one or more of these last three components are often incorporated in the system controller. Larger, more powerful systems, however, may be mini-computer-based, augmented by one or more high-speed mass storage devices, a graphic display terminal, and run under specialized instrument control and signal processing software such as TEK SPS BASIC or the 6000 Family Tek (proposed) ANSI BASIC.

All these components can be easily interconnected if the GPIB interface has been built in and appropriate functions made programmable. Before GPIB, most measurement systems were operated by controllers that required a separate connector (port) for each instrument. With the GPIB this is no longer a requirement. Users can directly link up to 14 instruments with the controller via the bus, and set up the systems in linear or star configurations. Additionally, some controllers can drive more than one GPIB port. The Tektronix 4041 has an option for a second port, allowing control of up to 28 instruments. Or, if you need more, TEK SPS BASIC operated with a properly optioned DEC PDP-11 minicomputer can drive up to four GPIB ports, providing a total system potential of 56 instruments. The 6130 has the capability to accommodate up to seven GPIB ports for the most demanding applications.

Linear Configuration

All these devices (the controller, measurement instruments, and peripherals) comprise the hardware. The system cannot operate, however, unless it is driven by software.

There are two levels of software necessary: the operating system software and user written application programs. The operating system software provides a set of commands and functions that the user combines into a program that delineates the measurement and processing task to be performed. The software, guided by the user program, works through the controller to tell the instruments what signals to generate, what measurements to make, and tells the controller what to do with the results.

The software and the program in the controller make the system do what the user wants. The GPIB interface allows users to plug system components together, but without software, the system can do nothing.
In programmable instrument systems, the "language" of the software or program has several meanings:

1. The controller has its own language, such as BASIC or C, and users must express their intentions in this language.
2. Within the context of the controller's language, the instrument's commands (or "language") have to be sent over the GPIB.
3. The actual control of the GPIB interface is transparent to the user with Tektronix instrument controllers and software.
In order to make the system operate, the user has to:
4. Know what tasks the system is to per-form-the system can do nothing by itself.
5. Know the controller's language.
6. Know the kind of data or language the instruments are designed to exchange.

To make these tasks easier for you, Tektronix has taken several steps beyond simple IEEE Standard 488-1978 compatibility. Consistency has been designed into each system component for the greatest degree of compatibility. Intelligence has been designed in to relieve you from interfacing details. And firmware and software have been designed and written to provide the maximum in programming ease and measurement capability.

Consistency Makes a Big Difference

Tektronix GPIB products are designed and thoroughly evaluated for compliance with IEEE Standard 488-1978 and for compatibil-
ity with one another. Because these products are designed to be compatible (i.e., meet the same standards), users usually won't need to make hardware and software modifications for each new addition or deletion to the configuration. Many software routines need to be written only once, after which only minor modifications are needed with the addition of new instruments.

A status check routine, for instance, will work on all Tektronix GPIB instruments. A message terminator common to all Tektronix GPIB instruments is a further benefit. But, since the IEEE Standard 488-1978 allows several optional message terminators, Tektronix instruments go an extra step by providing a switch for selecting optional terminators. These features provide users with the capability of quickly configuring and reconfiguring interactive and automated measurement systems.
The result is a line of products that are not only GPIB compatible-but are capable GPIB instruments. They have the features that make them useful and the compatibility that makes them work together.

Tektronix Standard Codes and Formats Means Programming Ease

 IEEE Standard 488-1978 specifies the hardware interface and its basic functional protocol. It also specifies a set of codes called interface messages that control interface functions. However, the IEEE Standard 4881978 does not specify the syntax or coding of device-dependent messages-the messages that control the programmable features of the instrument.Since the device-dependent messages are not specified, instruments that conform to the IEEE Standard 488-1978 may use inconvenient or even incompatible message formats. It's much like a telephone systemthe hardware link is well defined, but unless both parties speak the same language, communication is impossible. That's why Tektronix developed a codes and formats standard that specifies the syntax and coding of device dependent messages, while retaining full IEEE Standard 488-1978

GPIB ADDRESS

Each GPIB instrument or peripheral, called a device, must be assigned a different system address; this can be done simply by setting switches, usually located on the back panel of the device.
compatibility. The Tektronix Standard Codes and Formats specifies message coding to:

- Be simple and unambiguous.
- Use commands that are common among similar devices.
- Use simple, easy-to-remember mnemonics.
The benefits of the Tektronix Standard Codes and Formats, a major feature of the Tektronix GPIB communications protocol, are numerous. Because of their natural En-glish-like structure, instrument control commands and messages are easy to use. The result is a GPIB implementation that is specifically designed to overcome the programming rigidity and cumbersome procedures of other GPIB systems.

ASCII Data Standard

Since most controllers accept ASCll data directly, Tektronix GPIB instrument commands are coded in ASCII. This eliminates the need for error-prone data conversions or byte-by-byte encoding. For example, to set the center frequency of the 492P Spectrum Analyzer to 1.75 MHz , the command is simply written FREQ 1.75 MHz -no more calculated percentages of full-scale or BCD equivalents. Settings for Tektronix GPIB instruments are sent as ASCll data in human readable form.

Flexible Formats

Many minor format items that are aggravations in other systems are also taken care of by Tektronix Standard Codes and Formats. For example, Tektronix GPIB instruments accept negative zeros and leading and trailing spaces; they also overlook inconsistent use of upper and lower case letters. And, since truncated numbers can drastically affect measurements, Tektronix GPIB instruments round off rather than truncate: e.g., a value of 2.49 becomes 2.5 rather than 2.4. In short, the built-in intelligence is used to make intelligent decisions. That makes your programming job much less rigid and substantially easier.

Common Messages

To make things even easier, Tektronix Stardard Codes and Formats also specifies messages that are to be common to all Tektronix programmable instruments. For example, you can program your system to learn the current settings of any Tektronix GPIB instrument by sending the instrument the SET? message. Any GPIB compatible instrument from Tektronix-whether it is a waveform digitizer, a programmable power supply, or a function generator-interprets SET? the same way. The instrument firmware gathers the instrument's settings together and assembles them into a human readable message to be sent over the bus to the controlling software. If you know how to operate a function generator, then you already know how to read a settings message from a Tektronix GPIB compatible function generator.

BASIC Languages

Because users are increasingly interacting with GPIB systems at the controller keyboard rather than at instrument panels, GPIB systems must be as friendly as possible. This means, too, that the controller languages should be simple, logical, and easy to interpret and implement. That's why BASIC, the established language for Tektronix' instrument controllers, is the preferred language of Tektronix Standard Codes and Formats.

BASIC is an established language with wide use and familiarity. It is also an En-glish-like language that is easy to learn and understand. So, combined with the Englishlike messages used with Tektronix GPIB instruments, it becomes a consistent and familiar means of communicating with your system. And your program listings are easy to read and follow, with very little interpretation required. (For more details on Tektronix Standard Codes and Formats, ask your Tektronix sales engineer or representative.)

Controllers and Software to Match Your Needs

Tektronix offers controller-software packages to meet varying GPIB system needs.

Controllers/Software packages:

- The 4041 System Controller, optimized for instrument control in a variety of situations, including test and measurement and spectrum analysis.
- The 6130 intelligent workstations, with 32bit processor capabilities and excellent GPIB control.
-TEK SPS BASIC software with the DEC PDP-11 Series and DEC MICRO/ PDP-11 minicomputers, optimized for systems with full waveform acquisition, processing, and graphics.

Software Packages

- "GURU" software, an interface package for the IBM PC (or IBM-compatible PC), using National's GPIB card. This package contains a TEST PROGRAM GENERATOR, programming examples and an excellent manual to help the novice user get started or the familiar user be more productive.
- The TekMAP (Tektronix Measurement Applications Programs) library of software products supports the Tektronix 7000 Se ries GPIB programmable digitizers and extends their versatility by integrating them with Tektronix controllers, IBM personal computers or HP-Series 200 technical computers.

The 4041 System Controller

The 4041 System Controller is a compact, modular controller designed for rackmount, bench-top, or portable use. Its operating system language is an extended BASIC designed for use by both the casual and the sophisticated programmer.

The 4041 controller contains three microprocessors, with the CPU being the powerful 16 -bit 68000. Standard memory is 32 kilobytes with optional expansion to a maximum of 512 kilobytes. A 20 -character alphanumeric LED display, a 20 -character thermal printer, a DC 100 magnetic tape cartridge drive, 18 function keys, a GPIB port, an RS-232 port, and a real-time clock and calendar capability are all standard. An additional GPIB/RS-232 port pair is optional, with the second GPIB port having Direct Memory Access capability. With 14 GPIB instruments per GPIB port, the 4041 System Controller offers the capability of controlling up to 28 GPIB instruments. Other options include an 8-bit parallel TTL interface (Op-

Tektronix 4041 System Controller
tion 02); SCSI (Small Computer System Interface, Option 03, for external disk mass storage and a second RS-232 port) to support interfacing to floppy and hard disks for greater file and data storage; and a detachable program development/debug keyboard.
The capabilities of standard 4041 BASIC can be expanded by installing ROM (ReadOnly Memory) packs to extend operational features of the 4041 into a broad range of systems applications, with functions running faster than equivalent BASIC routines.
The program development ROMs (with keyboard, or an RS-232 terminal), give the engineer or production test programmer access to the system language. Its English-like commands, simple syntax, and line-by-line interpreter implementation combine for a friendly and interactive system. A variety of other features are also included to increase friendliness. For example, viable names may be up to eight characters long, allowing meaningful names such as RISETIME, VOLTAGE1, or DELAY. And as another example, subprograms and program lines can be named-e.g., 1000 SRQPOLL: or 200 RMS VOLTS-for quick and easy access.
Beyond enhancements for simplicity, 4041 BASIC also has enhancements that make it a powerful tool for sophisticated programmers. It includes capabilities for FORTRANlike subprograms, variable passing from main program to subprograms, declaration of local and global variables, and many other features.

Yet, for all its sophistication, the 4041 is still particularly desirable for use by lower-skill operators in a production environment. Instrument control programs can be designed and written to print user prompts on the 4041 display and the programs can be assigned to any of the ten user-definable keys on the 4041 front panel. Then the 4041 program development ROM and keyboard can be removed from the controller. This puts the 4041 into an execute-only mode with its programs protected. The lower-skill user need only follow the front-panel display prompts and press the designated keys to execute programs.
To return to the engineering or program development mode, simply plug the program development ROMs (with keyboard or an RS232 terminal) back into the 4041. You again have access to all of the ease and power of 4041 BASIC programming.
The 4041R01 Graphics ROM pack gives the 4041 the capability to generate graphic commands to interact with peripheral devices using Tektronix compatible graphic codes. These high-level and primitive commands allow you to construct and incorporate graphic images, symbols, charts and diagrams into your system applications, greatly enhancing system usability.
The 4041R02 Plotting ROM Pack gives the 4041 the capability to generate graphs and to plot data. Designed as an easy-to-use tool to automatically generate scientific graphics, the plotting ROM pack requires the presence of the 4041R01 Graphics ROM Pack in order to operate. Graphs can be generated and displayed on any graphic peripheral device supported by the 4041R01. The automatic plotting commands are the heart of the 4041R02. These commands, given your data, draw axes with appropriate tic marks and plot the desired data. You need little experience to program graphics or plotting routines. All you need to do is supply the data to be graphed.
The 4041R03 Signal Processing ROM Pack gives the 4041 the ability to support instrumentation system applications requiring waveform processing. Coupled with our programmable digitizers and oscilloscopes, it will produce broader system configurations and effective solutions for signal analysis. The functions contained in the 4041R03 provide a high level approach to deal with signal processing applications normally solved by lengthy programs requiring extensive knowledge of waveform processing and computer fundamentals. Combined with the graphics and plotting ROM packs, the 4041R03 allows you to produce, analyze and display waveforms semiautomatically.
The 4041R04 Utility ROM Pack adds still more general purpose capabilities to your 4041. These range from such convenience items as one line descriptions of error codes to capabilities for building PROM files for programming your own EPROMS.

6130 Intelligent Graphics Workstations

The 6130 workstation combines state-of-theart microprocessor technology, advanced architectures, and flexible system software. They are designed to meet a wide range of computing system applications.

GPIB Interface

An important 6130 feature is a standard GPIB interface that supports programmable instruments such as oscilloscopes, digitizers, audio test systems, multimeters, function generators, spectrum analyzers, and logic analyzers. As with other Tek GPIB based products, the 6130 conforms to the IEEE-488 standards and to Tektronix' own Standard Codes and Formats that specifies the syntax and coding of device-dependent messages.
The standard GPIB interface is capable of transferring data and messages at speeds up to 25 kilobytes per second and of supporting up to 14 GPIB-compatible instruments, in addition to the 6130 interface itself. The instruments are classified as either controllers, talkers or listeners. The controller supervises the GPIB, determining which instruments send and receive data over the bus. A talker sends messages and data over the bus, and a listener receives messages and data. The 6130 programmable interface allows the user to specify device-dependent parameters, such as primary and secondary addresses, end-of-message and end-of-header delimiters.
In addition to the standard GPIB, each 6130 workstation can support up to six additional high-speed GPIB ports. These high-speed ports use direct memory access (DMA) to transfer block data into a cache memory at rates up to 250 kbytes per second.
The primary language used for GPIB communication is Tek's own version of the (proposed) ANSI BASIC. This version includes

39GPIB-related routines and has the capability of detecting seven different GPIB conditions. Because it is a compiled rather than an interpreted version, program execution is extremely quick. In addition to having all the standard features of the proposed ANSI BASIC, Tek's version adds GPIB functionality, extended I/O, array slices (which facilitates matrix manipulation), I/O enhancements, and an easy-to-use programming environment and compiler. A 4050 sifter program provides a utility for converting 4050 programs into Tek ANSI BASIC format.
Among the I/O enhancements of Tek's ANSI BASIC is the ability to handle synchronous or asynchronous communications automatically, eliminating complicated addressing and control commands. Another is the ability to perform byte level transfers while retaining full control of all GPIB conditions. Tek's ANSI BASIC can communicate with the bus itself or with any instrument on the bus.

TEK SPS BASIC Software with DEC PDP-11 Minicomputers

When equipped with Tektronix supplied GPIB interfaces, DEC PDP-11 Series minicomputers can be operated with TEK SPS BASIC software to provide the most powerful big-system instrument control and signal processing. A wide variety of peripherals can be handled, including plotters, line printers, graphic terminals, magnetic tapes, and single or multiple disk storage systems. Additionally, with the proper options, up to four GPIB interface ports can be supported. This means control of and data collection from up to 56 GPIB instruments.

Tektronix MS 3201 Acquisition/Processing Measurement System using TEK SPS BASIC and a DEC PDP-11 Minicomputer.

Two versions of TEK SPS BASIC are available, the standard version and the extended memory version. The extended memory version permits processing of very large arrays in computers having up to 128 kilowords of memory with memory management.
Other than memory differences, both versions of TEK SPS BASIC software have the same major features. These include a modular architecture consisting of a resident monitor and an expandable library of over 100 nonresident commands. This unique design lets you configure a software system to meet your specific needs yet leaves the system open for adding new commands and processing modules.

Measurement data can be stored and accessed in a variety of ways. Information can be read or written in either ASCll or binary. Named files can be accessed on hard or flexible disks, magnetic tape, or cassettes. Information can be read from files either sequentially or randomly. TEK SPS BASIC commands give you complete file management capability.
Comprehensive graphics permit waveform plots and $X-Y$ plots between waveforms. Either can be done with single commands. The output is complete with scaled and labeled axes and can be hard-copied to paper.

There's also data logging capability for automated waveform capture. And the software's better than 7 -digit precision means much higher resolution than possible in conventional oscilloscope measurements. Plus, there are special data structures to retain both numeric and literal information (scale factors and units) associated with a given waveform. This wave-
form data structure, as well as numeric arrays or portions of numeric arrays, can be operated on arithmetically as easily as can simple numeric variables.

Beyond extending the standard mathematical operations and functions to include waveform processing, TEK SPS BASIC also provides special waveform processing functions. Waveforms can be integrated, differentiated, convolved, correlated, and fast Fourier transformed-all with single commands. Polar conversions can also be performed with a single command to present results such as magnitude and phase.

With its large array size capabilities (limited only by memory in most cases), advanced signal processing, and program and instrument tasking capabilities (including error control for independent operation), TEK SPS BASIC offers all of the flexibility and power necessary to control anything from the simplest to the most sophisticated test and measurement system.

GURU Software

GURU is a simple but powerful package that provides control of GPIB (IEEE Standard 488) electronic instruments from an IBMPC (or compatible). It offers menu-driven Test Procedure Generator to speed applications programming.
GURU's Test Procedure Generator (TPG.BAS), written in BASIC, is a self-explanatory menu-driven program. It is the right tool for instrument system users who want fast results or who don't want to learn to program their system in BASIC. It allows users to generate a program that runs a specific test sequence-without writing a single line of code. Users need to know only the details of the test to be performed and the equipment used.
The TPG is most suited to non-digitizer applications where testing of devices is required using programmable power supplies, digital voltmeters, signal sources, and counters.
For users who want to write their own application programs, GURU provides SUBS.BAS, a set of canned subroutines. These subroutines perform functions common to many test and measurement applications, complementing the IBM PC compatible MICROSOFT BASICA language (an advanced form of BASIC).

TekMAP Software

The Tektronix Measurement Application Programs (TekMAP) library of software products supports the Tektronix 7000 Series GPIB programmable digitizers in automated engineering or research environments. It extends the versatility of Tektronix digitizers by integrating them with Tektronix controllers, IBM personal computers or HP-Series 200 technical computers.
Basic communication utilities, accessible through friendly menu-driven user interfaces, are available through Communication and Control Utility Software.

Extended measurement capabilities (such as automated pulse parameter analysis, Fast Fourier transformation and propagation delay measurements) are provided by the Time and Amplitude Measurement Software products.

Tektronix Support for Your GPIB System

With GPIB products and signal processing systems from Tektronix, you're not left on your own after the product is purchased. Tektronix offers complete support and training for the operation and maintenance of its GPIB products and systems.
Every product is shipped with a complete and comprehensive operating manual. Additionally, a variety of training services are available. Training classes are available both at our home office and at selected sites around the world
As part of the long-term support for GPIB products and systems, Tektronix offers a variety of application literature and support.
HANDSHAKE is an applications newsletter from Tektronix published quarterly, and contains application and technical articles covering the broad spectrum of instrument control and signal processing.

The Tektronix Instrumentation Software Library provides software and application information for Tektronix programmable measurement instruments and systems. There are three types of software currently available: Measurement Software, Instrument Utility Software, and User-Exchange Software. The Tektronix Instrumentation Software Library catalog provides program abstracts and ordering information.
An extensive collection of application notes and magazine article reprints is another source of information offered by Tektronix. Our sales offices and sales representatives maintain a list of current literature and will be glad to supply you with items in your areas of interest.
Warranties and service are another part of the support you get from Tektronix. Tektronix maintains a network of service centers for your maintenance needs at strategic locations throughout the world.

Guide for Selecting GPIB
 Instruments

When selecting GPIB instruments for a specific application, be sure to check several key specifications for suitability in the configuration.
First, make sure that the instrument can make the desired measurements. Next, determine that the interface functions are compatible with the proposed usage and with other instruments in the GPIB configuration. The following items should be used as a checklist with your sales representative when considering instruments to be used in GPIB configurations:

1. Is the instrument intended for interactive measurement analysis or automated measurement; i.e., are all necessary instrument functions remotely programmable, or will an operator be available to adjust settings?
2. Does the instrument's GPIB interface have the necessary set of functions implemented at the desired level? (For example, AH1 is needed
for any useful interaction, SH 1 is required for instruments supplying measurements to the controller.)
3. Are diagnostics available to check out the instrument from the front panel or over the GPIB interface?
4. Does the instrument use standard codes and formats conventions for terminators, numeric
formats, etc.?
5. Can the instrument's front-panel setting be read from the controller and saved for later automated set up?
6. Can the front panel be. "locked out" via the GPIB?

DATA ACQUISITION PROGRAMMABLE OSCILLOSCOPES

2465/2445 oscilloscopes can be easily programmed to assist the scope operator in performing a complete sequence of measurements. Front panel settings can be remotely set or changed with display prompting of messages, providing guidance for the operator. The results of voltage, time, frequency, phase, and ratio can be both displayed on the CRT and read back over the bus. The 2465 CTS is ideal for automatic frequency, period, pulse width and time between events measurements; the 2465 DMS for automatic test and measurements; and the 2465 DVS for high resolution video applications. See page 257.

The NEW 2430 brings the best features of our industry standard 2400 Series into the digital world. It features 150 MHz bandwidth, dual channel simultaneous acquisition, 5 ns maximum sweep speed, 8 -bit vertical resolution. The new Tek-patented feature, "Save-on-Delta", makes pass/fail decisions. The 2430 is fully programmable over the GPIB. It sends and receives waveforms, front panel settings, custom menus, and operator prompts. Outputs include an analog plotter output. It is compatible with the P6407 Word Recognizer probe. See page 308.

WAVEFORM ACQUISITION PRODUCTS

NEW 2230/2220 Digital Storage Oscilloscopes
$100 \mathrm{MHz} / 60 \mathrm{MHz}$ Bandwidth
4 k Record Length
Time and Voltage Measurement Cursors (2230)
Save Reference Memory
336 Option 01 Digital Storage Oscilloscope
140 kHz Storage Bandwidth
Time and Voltage Measurement Cursors
50 MHz Nonstorage Bandwidth
CRT Readout, Only $5 \mathrm{kgs} \mathrm{(11} \mathrm{lbs)}$
Signal Averaging

7D20/7D20T Programmable Digitizers*1*2
70 MHz Equivalent Time Bandwidth
40 MHz Sample Rate
8 -Bit Vertical Resolution
Pretrigger and Posttrigger
Simultaneous Acquisition on 2 Channels

These portable, high-value oscilloscopes feature both digital storage and nonstorage capability to $100 \mathrm{MHz}(2230)$ and 60 MHz (२२२०). 100 ns glitch capture is accomplished with the Peak Detect mode (envelope), which digitizes and stores, in acquisition memory as a data pair, the minimum and maximum levels of the input signal. The 2230 and 2220 also feature unlimited storage time; expandable, compressible, repositionable stored traces; save reference memory; pre-/posttrigger viewing; roll and scan modes; standard $X-Y$ plotter output; and optional interfaces. See page 310.

This compact oscilloscope can simultaneously display analog and digital waveforms, and can store up to 16 digitized waveforms for recall and display. Vertical and horizontal scale factors, delay time position, and voltage and time readouts of cursor positions are displayed on the CRT, as is a menu of many of the features and modes. An Auto mode for both vertical volts/division and horizontal time/division allows "hands-off" operation in many applications. See page 311 .

The 7D20 plug-in converts any 7000 Series mainframe into fully programmable, digital oscilloscopes. Operating modes include: Envelope, Average, and Roll. Optimized for interactive and automated applications, from biomedical research to radio modulation. Remotely controllable over the GPIB. Shown with R7603 mainframe.
The 7D20T provides the same digitizer capabilities in a compact stand-alone package. Supported by TekMAP 7D20 Time and Amplitude Measurement software. See page 315.

[^1]
WAVEFORM ACQUISITION PRODUCTS

This 10 MHz digital storage oscilloscope provides a digitized display that will never fade or bloom. Selecting Roll mode yields a continually updated display of memory contents by providing a strip-chart-like view of signals at slow sweep rates. Applications range from measuring mechanical displacement transducer signals to biomedical activities. Option 10 GPIB Interface provides I/O of stored waveforms and control of 5223 digital storage functions (except vertical and horizontal expansion and position controls). Waveform output format is selectable through this interface for either BINARY or ASCII. Plug-in functions not remotely controllable. See page 328.

A two-channel, waveform processing, digital storage oscilloscope. Keystroke programming of local keyboard and remote Waveform Calculator allows user-designed waveform measurement routines for tests or experiments. Signal averaging capability can recover signals buried in noise and improve measurement accuracy. All mainframe keystroke functions and operating modes can be remotely controlled via the GPIB. (Plug-in functions controllable only with custom interface. Contact your local sales engineer.) Supported by TekMAP 7854/IBM PC Communication software. See page 318.

This two-channel, 10 -bit digitizer achieves excellent dynamic accuracy with a two-stage flash-conversion process. Single-channel operation can provide 60 megasamples per second. Built-in self-calibration and self-test features. Remotely controllable over the GPIB. Applications vary from ultrasonic testing to video. See page 326.

The 7912AD is designed for interactive and automated applications. It digitizes and stores singleshot or repetitive signals from millisecond to subnanosecond duration. Waveform data is stored in a 4096 word memory. See page 324.

Two independent waveform digitizers in one compact instrument, the 7612 D is ideal for use with Automatic Test Equipment or anywhere highly accurate, time-domain measurements are required. Memory partitioning helps capture fast, successive, randomly occuring events. Multiple sample rate switching is available during waveform acquisition. Remotely controllable over GPIB. See page 321 .

MS 3101
Acquisition to 200 MHz w/Program Control
Acquisition to 1 GHz via Direct Access Plug-in
Program and Data Storage on Disk
Waveform and Array Processing
100 GHz Equivalent Sampling Rate
High Resolution Color Graphic Display

The MS 3101 is a complete acquisition, processing, storage, and display system for high-speed signals and transients. It is based on the Tektronix 7912AD Programmable Digitizer operating with a controller, a Tektronix 4105A Color Graphics Display Terminal and other peripheral equipment. TEK SPS BASIC software includes operational packages and system checkout routines. The controller will accommodate four GPIB Interfaces and features 128 kilowords of memory and floating-point hardware. See page 337.

The MS 3201 is a complete acquisition, processing, and storage system for high-speed signals and transients. It is based on the 7612D Programmable Digitizer operating with a controller, a Tektronix 4105A Color Graphics Display Terminal and other peripheral equipment. TEK SPS BASIC Software includes operational packages and system checkout software. The controller will accommodate four GPIB Interfaces and features 128 kilo words of memory and floating-point hardware. See page 337.

[^2]

AUDIO MEASUREMENTS PACKAGE

NEW MP 2902

Test Program Generation by Nonprogrammers
Rapid, Error-Free Test Program Generation
Supports Custom Test Requirements
State-of-the-Art Performance
The Audio Test Program Generation software allows rapid development of an automated audio

Based on the Tektronix 7854 Oscilloscope and the 4105A Color Graphics Display Terminal/4041 System Controller equipped with ROM packs, this system can acquire, process, store, and display electrical signals. 4041 BASIC routines from the Utility Software permit system operation with limited programming experience. The 7854 is remotely controllable over the GPIB. See page 334.
Based on the Tektronix 7912AD Programmable Digitizer, the MP 2101 is a high-speed, signal acquisition and transient digitizing system. The 7912AD is remotely controllable over the GPIB. Utilizes the 4041. See page 333.

Based on the Tektronix 7612D Programmable Digitizer, the MP 2201 is a complete signal acquisition, waveform processing, storage, and display system. The 7612D is remotely controllable over the GPIB. Utilizes the 4041. See page 333.

Based on the 7D20T Programmable Digitizer, the MP 2401 provides an ideal general purpose signal analysis configuration. Packages dual-channel configuration with enveloping, averaging, cursor measurements, and comparison to prestored waveforms. Utilizes the 4041. See page 333.

Based on the Tektronix 7912AD Programmable Digitizer. This compatible signal acquisition and display package can be front-panel controlled or completely programmed via the GPIB Interface from any suitable controller. See page 332.
Based on the Tektronix 7612D Programmable Digitizer. This compatible signal acquisition and display package can be front-panel controlled or completely programmed via the GPIB Interface from any suitable controller. See page 332.
measurement system, even by nonprogrammers. Tests supported include: total harmonic distortion vs frequency, total harmonic distortion vs output level, intermodulation distortion vs level (SMPTE \& CCIF), CCIF intermodulation distortion vs frequency, frequency response, signal-to-noise, level (voltage and power), linearity, external stimulus, and others. See page 335 .

OSCILLOSCOPE MEASUREMENT PACKAGES

NEW MP 2601

Two Channels Simultaneous Acquisition
150 MHz Bandwidth for Repetitive Signals
Ease of Use via Menu-Driven Control
2430 Oscilloscope

NEW MP 2903
Test Program Generation by Nonprogrammers
Error-Free Test Program Generation
2465DVS Oscilloscope
Counter/Timer/Word Recognizer

The MP2903 couples the 4041 Controller and 2430 Oscilloscope. This portable measurement package provides extensive signal acquisition capabilities with signal analysis to form a system directed at measurement solutions. See page 334 .

The MP2903 couples TEK EZ-TEST program development software with the 2465DVS programmable oscilloscope. With the software development time dramatically reduced by TEK EZ-TEST and the flexible measurement performance of the 2465DVS oscilloscope, achieving the cost savings and quality improvement of automation is within easy reach. See page 336.

MP 2901

Flexible, Modular TM5000 Instrumentation
TEK EZ-TEST Software
Rapid, Error-Free Software Development
The MP2901 addresses two of the most difficult aspects of automating an operation-software development and interfacing to the device-under-
test. The multifunction interface (M15010) allows easy data acquisition and/or control of the de-vice-under-test by the 4041 System Controller. The task of software development is made rapid and easy. TEK EZ-TEST leads nonprogrammers (via a set of menus) to translate manual procedures into error-free, structured BASIC code. See page 335 .

GENERAL PURPOSE INSTRUMENTS

AA 5001/SG 5010
 Programmable Audio Test System*1
 Fast, Accurate, Repeatable Measurements
 Automatic, Low-Cost Documentation of Test Results

Automatically performs such industry-standard tests as harmonic distortion to IHF A202, intermodulation distortion to SMPTE TH 22.51,

DIN 45403, IEC 268.3, and IHF A202, frequency response to IHF A202, and noise or signal-to-noise ratio to IHF A202 ("A" weighting filter complies with ANSI specification S1.4 and IEC specification 179 for sound level meters). With the Option 02 capability of the AA 5001, noise measurements may be made to CCIR 468 -2 and DIN 45405 standards. The SG 5010 also generates the burst signal for dynamic headroom tests. See page 348.

A microprocessor-based TM 5000 Series plug-in designed to be an integral part of a controllerbased system for calibrating and verifying major oscilloscope parameters. Learn mode allows front panel control settings to be assimilated as program data by controller. All front panel settings are remotely controllable via the GPIB. Contains built-in self test routine. See page 385.

TM 5000 Series plug-in provides frequency and period measurement to 135 MHz and features push-button automatic trigger-level setting and eight measurement functions. An arming input permits measurement of selected events within complex waveforms. Option 01 provides an ovencontrolled 10 MHz crystal oscillator. All front panel settings and features are remotely controllable over the GPIB. See page 342.

A dual-channel TM 5000 Series plug-in that provides measurement of frequency to 350 MHz , period, ratio, and event B during A, using a reciprocal technique. Trigger levels automatically set to optimum. Trigger voltage setting is displayable. Automatic self-test feature. Remotely controllable over and fully programmable via GPIB. See page 340 .
measures dc and true RMS ac voltages and resistance. A diode-test function tests semiconductor junctions while a low voltage/ohms function allows in-circuit measurements without turning on diode or transistor junctions. Math functions include: Averaging (up to 19,999 readings), dB (ref to 1 mW or to user-supplied constant). Comparison (user-supplied upper/lower limits). Offset and Scaling (user supplied constants), or any combination of these functions. See page 344 .

This TM 5000 plug-in outputs Sine, Square and Triangle waveforms. Pulses and Ramps are provided with variable symmetry in 1% steps. Phaselock mode automatically locks to any input signal, 20 Hz to 20 MHz . Dc offset voltage is programmable from 20 mV to 7.5 V . Can store ten front panel setups to reduce programming time. Fully programmable via GPIB. See page 346 .

[^3]| | MI 5010
 Programmable Multifunction Interface*1 | This TM 5000 Series plug-in interface module accommodates three front-panel plug-in cards. The MX 5010 Multifunction Interface Extender provides space for three additional cards. A total of six function cards can be remotely controlled via the GPIB. Each of the seven types of function cards includes its own ROM and specific func-tion-related firmware. See page 350. |
| :---: | :---: | :---: |
| | User Development Card | |
| | 16 Relay Scanner, 10 Low Level Relay Scanner | |
| | 16-Bit and 16 kb Digital I/O | |
| | 12-Bit D/A and A/D Converter | |
| | PS 5004
 Programmable Precision Power Supply*1 | resolution voltages and currents necessary in the characterization of transistor, IC, and other semiconductor and hybrid circuits and in the operation of high-performance strain gages and other transducer systems. Its entire 0 V to 20 V output is covered with a coarse and fine adjustment to provide rapid setability and $\pm 0.5 \mathrm{mV}$ resolution without the necessity of changing ranges. The supply output is available at the rear interface as well as from the front panel terminals. Overall accuracy is $\pm 0.01 \% \pm 2 \mathrm{mV}$. See page 347 . |
| | 0 V to 20 V Floating Output | |
| | $0.5 \mathrm{mV} / 0.1 \mathrm{~mA}$ Resolution | |
| | Constant Voltage or Constant Current with Autocrossover | |
| | Voltage and/or Current Monitoring Display | |
| | This TM 5000 Series plug-in provides the high- | |
| -15.031.95.1! | $\begin{aligned} & \text { PS } 5010 \\ & \text { Programmable Triple Power Supply*1 } \\ & \hline \end{aligned}$ | outputs; two floating at 0 V to +32 V and 0 V to -32 V dc and a logic level supply at 4.5 V to 5.5 V dc. Operation includes auto-crossover with bus interrupt on continuous-voltage or continu-ous-current mode change. All three supplies may be remotely controlled over the GPIB while front panel settings are locked out. Overall accuracy is $\pm(0.5 \%+20 \mathrm{mV})$. See page 348 . |
| | Triple Output, Triple Display | |
| | Programmable Voltage and Current Limit | |
| | Front/Rear Outputs, Remote Sense | |
| | This TM 5000 plug-in provides three concurrent | |
| $\begin{array}{\|rcccc} \hline \div & 0 & 9 & 0 & 9 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \div & 0 & 0 & 0 \\ \hline 0 & 6 & 0 & 0 \\ \hline \end{array}$ | SI 5010 Programmable RF Scanner*1 | This TM 5000 Series plug-in uses 16 RF reed relays to interconnect 20 front-panel BNC connectors in three possible combinations; four groups of four channels, two groups of eight, or one group of 16 . Risetime for groups of four channels is approximately one nanosecond. Used for scanning and channel switching, this device is remotely controllable over the GPIB. See page 354. |
| | Software Configurable | |
| | Sixteen 50-Ohm Signal Channels | |
| | Real Time Clock, 350 MHz Bandwidth | |
| | Stores 80 to 300 Commands | |
| | | |

LOGIC ANALYZERS

DAS 9100 Series Digital Analysis System*1
Up to 104 Channels of Data Acquisition Acquisition Speeds to 2 GHz (500 ps)
Up to 192 Channels of Pattern Generation at 50 MHz
Color CRT Enhanced User Interface Easy-to-Use Menu-Driven Interface
A general purpose, configurable, and user-up-

1240/ NEW 1241 Logic Analyzer

Up to 72 Acquisition Channels
Acquisition Speeds to 100 MHz Async, 50 MHz Sync
Dual Time Base Acquisition and Display
Simple Menu Operation with On-Screen
Soft Keys
The 1240/1241 support all aspects of the design task, including hardware analysis, software analy-
gradable digital analysis system. Available with black and white display (9109 Option 06 mainframe), without display (9119 ATE mainframe) or with color display (9129 Option 06 mainframe). All of the functions that can be accessed from the DAS 9100 Series keyboard may be controlled via GPIB. The I/O Option 06 supports GPIB data rates up to 200 kbytes per second as well as RS-232, serial line printers, hard copy units and master/slave operation. For list of Data Acquisition and Pattern Generation Modules, accessories and probes see page 103.
sis, and integration. For hardware analysis, they offer up to 36 channels of 100 MHz acquisition with 6 ns glitch detection. Software analysis is supported by up to 72 data channels at sampling rates of 50 MHz synchronous/asynchronous. A flexible clocking scheme includes data demultiplexing on each acquisition probe. Acquisition, triggering and display of two independent time bases are tied together, so you can fully monitor the interaction between hardware and software. See page 114.

[^4]
SYSTEM CONTROLLERS

4041 System Controller
16-Bit CPU Based on 68000
32 k RAM, Expandable to 512 k
48-File Mag Tape Drive
Full Duplex, Asynchronous, RS-232 Interface
Modular Design, Rackmount or Portable
A powerful and expandable, systems controller
intended principally for execute-only environments such as production-line testing. Operating parameters include Interrupt and Error Handling modes. Options and peripherals equip it for interactive flexibility in research lab applications. Programming language is BASIC with English-like commands, extensions, simple syntax, and line-by-line interpreter. A 1.8 lines/second thermal printer is built-in. See page 298.

SPECTRUM ANALYZERS

492P Programmable Spectrum Analyzer*1 Digital Storage and Signal Processing 80 dB Dynamic Range
Amplitude Comparison in 0.25 dB Steps 100 Hz Resolution Bandwidth

A portable, 50 kHz to 220 GHz , lab quality ana-
494P Programmable Spectrum Analyzer*1 Microwave Frequency Counter Nonvolatile Memory
Synthesizer Tuning Accuracy
30 Hz Resolution Bandwidth
HELP Manual in ROM
lyzer that provides CRT readout of all important front panel settings and is fully calibrated in amplitude and frequency. Front panel adjustments can be remotely controlled over the GPIB for automated spectrum analysis via GPIB. Features microprocessor-aided, three-knob operation and flicker-free display even at the slowest sweep speeds. See page 162.

This 10 kHz to 325 GHz portable spectrum analyzer provides lab precision measurement capability in hostile field environments. Full control of the front panel, waveform processing, and storages are accessible via the GPIB. Features keypad data entry, nonvolatile storage of nine CRT displays and ten instrument set-ups, direct plot capability and a built-in 325 GHz frequency counter. See page 155.

Providing a CRT display of all important control settings, this 1800 MHz analyzer features micro-processor-aided, three-knob operation and automatic mode selection. Unit is fully calibrated in frequency and amplitude. Front panel settings can be remotely controlled. Digital storage eliminates time consuming display adjustments. See page 159.

INTELLIGENT GRAPHICS WORKSTATIONS

6130 Graphics Workstation
UTek Operating System
FORTRAN, C, Pascal, ANSI BASIC
Compatible with 4100 Series Displays
General Purpose Application Software LAN, GPIB, RS232, SCSI Interfaces

The 6130 combines the power of the 32016 micro-
processor and the UTek operating system with a wide variety of utilities, languages and application programs. Both standard GPIB and optional highspeed DMA GPIB interfaces are supported as well as RS232, Sync/Async (RS422) serial interfaces. IEEE 802.3 Ethernet with TCP/IP protocol is standard. It is compatible with a wide range of Unix application programs and utilities including software development, document preparation and spreadsheets.

PERIPHERALS FOR IEEE STANDARD 488 SYSTEMS

1360P/1360S
Programmable Signal Multiplexer*1
3 ms Maximum Switching Time
Dc to 250 MHz Bandwidth (1 Switch)
Input Levels up to 250 V dc or 250 mA
Expandability up to 4 Switch Modules
496P Programmable Spectrum Analyzer*1
Digital Storage and Signal Processing
1 kHz to 1800 MHz Input Frequency 80 dB Dynamic Range
Amplitude Comparison in 0.25 dB Steps 30 Hz Resolution Bandwidth
${ }^{* 1}$ Remotely controllable.

RECOMMENDED GPIB CABLES

Part Number	Description	Part Number	Description
$012-1015-00$	0.5 meter, single shield	$012-0991-00$	2 meters, double shield, low EMI
$012-0991-01$	1 meter, double shield, low EMI	$012-0991-02$	4 meters, double shield, low EMI

SOFTWARE SUMMARY

APPLICATION	FUNCTION/PRODUCT	LANGUAGE	RUNS ON/WITH	PAGE
Artificial Intelligence Systems	$R \& D$ applications in expert systems, natural languages, intelligent robotics, auto programming	Smalltalk-80 LISP option Prolog option	4400 Al System	72
CAD conversion of existing drawings	Produces lines, arcs, text, symbols, \& layers for insertion into popular CAD systems	FORTRAN IV	4991S1 Workstation	74
CAD	PLOT 10 TekniCAD TCS (Terminal Control System) GKS (Graphical Kernel System) IGL (Interactive Graphics Library)	FORTRAN/object FORTRAN '77 FORTRAN/object	4100 Series 6130 Family Workstations DEC VAX w/VMS	68
CAE Systems Design \& analyze Complex electronic Circuits	Designers WorkSystem		TekStation AT, Apollo work stations, Digital's VAX family, 6130 Workstation	47
VLSI verification and analysis	Gate Array WorkStation			48
Full custom chip design	Full Custom WorkSystem			48
Structured Custom Chip design	Structured Custom WorkSystem			48
Standard Cell design	Standard Cell WorkSystem			49
Printed Circuit Board Design	PCB WorkSystem			49
Compares real/prototype hardware	Test \& Measurement WorkSystem			49
Development \& Debug of Microprocessor Code	Software Development WorkSystem			49
Scientific Data Analysis		Proposed ANSI Basic Optional: C, 150 PASCAL, Enhanced FORTRAN 77	6130 Workstation	45
Engineering Data Analysis/CAE		Optional: Proposed ANSI Basic, C, 150 PASCAL, Enhanced FORTRAN 77	6130 Workstation	45
Structured Analysis (SA) Tools	Graphically specifies system conceptual requirements		856X, VAX/UNIX, VAX/VMS	89
Structured Design (SD) Tools	Graphically specifies design requirements		856X, VAX/UNIX, VAX/VMS	89
Language Editors	C \& Pascal Oriented Editors		856X, VAX/UNIX, VAX/VMS	91
Cross Assemblers	Develop code for all major microprocessors		856X, VAX/UNIX, VAX/VMS, \& IBM PC	91
Cross C Compilers	C Compilers for major microprocessors		856X, VAX/UNIX, VAX/VMS \& IBM PC	91
Cross Pascal Compilers	Pascal Compilers for major microprocessors		856X, VAX/UNIX, VAXIVMS \& IBM PC	91
Emulation Systems	Real Time Emulation for all major $\mu \mathrm{ps}$		856X, VAX/UNIX, VAX/VMS \& IBM PC	94
Trigger Trace Analyzers	Captures real time software \& hardware events		856X, VAX/UNIX, VAX/VMS	91
High-Level Debug	Debug code at the C/Pascal source level		856X, VAX/UNIX, VAX/VMS	91
LANDS-Language Development Systems	Full C/Pascal Development Systems		856X, VAX/UNIX, VAX/VMS	91

SOFTWARE SUMMARY

APPLICATION	FUNCTION/PRODUCT	LANGUAGE	RUNS ON/WITH	PAGE
Logic Analysis VLSI Verification Software Package	Links DAS 9100 to host for device verification		VAX 7000 Series/UNIX, VMX \& IBM PC	113
Performance Analysis Mnemonic Disassemblers	Characterizes system performance Disassembles data acquired from microprocessor-based system		$\begin{aligned} & \text { 1240/1241 } \\ & \text { DAS } 9100 \\ & 1240 / 1241 \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \\ & 123 \\ & 122 \\ & \hline \end{aligned}$
Semiconductor Testing VLSI LSI	TEKTEST V TEKTEST	RSX-11M based	S-3295 Test System S-3220 Test System	$\begin{aligned} & 134 \\ & 135 \end{aligned}$
Automatic Video Measurement	Unattended monitoring of NTSC and/or PAL video signals	TEK ANSWER BASIC	1980 ANSWER System	147
Spectrum Analysis RF Microwave Millimeterwave	General Test: Measurements Filter Tests Signal Search Waveform Operation Utilities Remote Access	TEK 4041 BASIC HP BASIC 3.0 IBM Advanced BASIC 2.1	490P Spectrum Analyzers/Tek 4041 HP9826, 9836 IBM PC/AT	158
Measurement Software Communication Utilities	TekMAP: S42P 101-7854/IBM PC Communication and Control (COMMUTE)	IBM Compiled BASIC	IBM PC/XT/AT	318
Pulse Parameter Analysis	S42H201-7D20/HP Series 200 Time and Amplitude Measurement Software 067-7732-00 7D20/Tek 4041 Time and Amplitude Measurement Software	HP-BASIC 4041 BASIC	HP-216, 226, 236, or 236C and 4105 Terminal Tek 4041 and	315
Measurement Systems	Languages for Instrument Control, Signal Acquisition, Waveform Processing \& Graphics	SPS BASIC 4041 BASIC	$\begin{array}{\|l\|} \hline \text { Micro/PDP-11 } \\ 4041 \\ \hline \end{array}$	330-337
Single-Shot Acquisition to 500 MHz BW	MS 3101-Waveform Acquisition, Signal Analysis Support for 7912AD	SPS BASIC	Micro/PDP-11 with 7912AD	337
Single-Shot Acquisition to a 200 MHz Sample Rate	MS 3201-Waveform Acquisition, Signal Analysis Support for 7612D	SPS BASIC	Micro/PDP-11 with 7612D	337
Single-Shot Acquisition to 500 MHz BW	MP 2101-Waveform Acquisition, Signal Analysis Support for 7912AD	4041 BASIC	4041 Instrument Controller with 7912AD	332
Single-Shot Acquisition to a 200 MHz Sample Rate	MP 2201-Waveform Acquisition, Signal Analysis Support for 7612AD	4041 BASIC	4041 Instrument Controller with 7612D	332
Single-Shot Acquisition to a 40 MHz Sample Rate and to a 70 MHz BW for Repetitive Signals	MP 2401-Waveform Acquisition, Signal Analysis Support for 7D20	4041 BASIC	4041 Instrument Controller with 7D20	332
Acquisition to 14 GHz BW with Sampling Plug-Ins for Repetitive Signals	MP 2501-Waveform Acquisition, Signal Analysis Support for 7854 including Sampling Applications \& TDR	4041 BASIC	4041 Instrument Controller with 7854	334
Single-Shot Acquisition to 100 MHz Sample Rate and for Repetitive Signals to 150 MHz BW	MP 2601-Portable Measurement Package providing Waveform Acquisition, Signal Analysis for 2430	4041 BASIC	4041 Instrument Controller with 2430	334
General-Purpose Instrument Test Development Tool	Tek EZ-TEST	4041 BASIC	4041 Instrument Controller	304
Audio Test Development Tool	Tek Audio TPG	4041 BASIC	4041 Instrument Controller	348
GPIB Instrumentation Interface	GURU		IBM PC (or PC compatible)	305

CUSTOM COMPONENTS DESIGN \& PRODUCTION SERVICES

CONTENTS

Design \& Fabrication
Circuit Boards 28
Flexible Circuits 29
Plastic Products 30
Metal Products 31
Integrated Circuits 32
Hybrid Components 34
Cathode Ray Tubes 37
Components
Laser Diode 35
Coils 36
Toroids 36
Transformers 36
Capacitors 36
Magnetic Latch Relay 36
Avionics CRT 37
LCS Professional Color Graphics System 38

Tek's world class facilities and knowhow at your disposal.
We know that your systems can only be as reliable as the components that go into them. For that reason we place a premium on dependability. We produce products that will keep you and your customers satisfied and your service costs down.
We take your design (or assist you with design) and take the entire process through manufacturing and shipment. Quality control is assured, along with on-time delivery and customer satisfaction. We want to work with you and value you as our customer.

Tek's special application components now available for use in your latest product design.
Now you can increase the productivity of your design team by specifying custom components designed and manufactured by Tektronix. We've made them to our exacting specifications and quality standards. You can depend on it. Contact one of our plants directly.

Advanced Technology

Quality Service

Tektronix circuit board manufacturing offers you a competitive advantage in bringing your high-technology products to market and keeping them there

TECHNOLOGY

High Quality Multilayers - We specialize in high quality multilayers backed by a Tektronix warranty.
Fine-Line Circuits - Our tight tolerances and precise registration accuracy provide high quality fine-line circuits with track widths of $0.006^{\prime \prime}$ and greater.
Blind and Buried Vias - These interconnecting vias conserve circuit board real estate by allowing only necessary layers to be connected, which frees space on other layers to be used for circuitry.
Hot-Air Leveling — Our state-of-the-art horizontal hot-air leveling system eliminates process variability and ensures component solderability.

Laser Film Generation - We use customer supplied CAD and N.C. data bases to create tooling that provides ultimate feature and registration accuracy and maximum accuracy between laser generated artwork and N.C. drill programs.
Surface Mount - If you are ready to incorporate surface mount technology in your next product, we offer a wide range of technology and support services from design consultation to high quality fine-line or blind and buried via multilayers.

SERVICE

New Product Support - Design consultation, value engineering and prototype support are just some of the services provided by Tekronix circuit board manufacturing which can improve your time-to-market and the cost-effectiveness of your design.
Delivery - Our delivery performance is unequaled in the circuit board industry. Ours is the first Class "A" MRP certified circuit board plant in the world, an accomplishment which assures ontime delivery to our customers.

CAPABILITIES

Number of Layers - Two to ten plus
Standard Material — FR-4, CEM-3
Drilling - Minimum 0.0135"
Density - $0.006^{\prime \prime}$ conductor width, $0.006^{\prime \prime}$ spacing. Denser packaging negotiable on prototype basis.
Finishes - Bright-acid tin, gold, hot-air leveled solder.
Soldermasks - Screen printed, thermal-cured epoxy, photographic dry film.
Panel Size - Maximum $18^{\prime \prime} \times 24^{\prime \prime}$
Finished Board Thickness - Maximum $0.125^{\prime \prime}$. Minimum 0.025 ".
Tooling - Computer aided/laser generated film.
Testing and Analysis - Complete in-house electrical, metallurgical and chemical testing. Fabrication and testing of controlled impedance circuitry and consultation in proper layups and material selection for tightly-toleranced 50Ω and 75Ω circuitry.

Customer Support

Circuit Board Manufacturing
Product Marketing Manager or
Customer Representative
Tektronix, Inc.
1521 Poplar Lane, D.S. F1-487
Forest Grove, OR 97116
(503) 640-2288

UNIQUE INTERCONNECT SYSTEMS

Shown above is an emulator probe being used in Tektronix logic analyzer instruments. The circuit (PM 202) folds back onto itself, making a two-sided circuit out of a single-side one. This design allows SMDs to be added directly onto the probe.

Pliable

Versatile

Saves Space \& Weight

Flexible Circuits

Flexible circuits are answering needs in ways never imaginable with wire and cable technology. Generally, flexible circuits are
much like printed wiring boards. (PWBs), in that their basic function is to route electrical signals, but this is where the similarity ends! Because flex ciruits are pliable (that is, flexible) they are amazingly versatile. This versatility, plus new shielding materials and extreme circuit densities fit flex circuitry for applications that can't be solved with traditional cables and printed wiring boards.
A flexible interconnect is a composite of a metal conductor and a dielectric substrate bonded together by an adhesive. These interconnects can be freely formed without cracking the metal conductor. Flexible interconnects are used to provide an electrical connection between two termination points while saving space and weight. The circuit may serve as a hinge, demanding up to millions of cycles of flexibility.
Mounting SMDs directly on etched circuitry on copper-clad polymide is gaining in popularity due to space and weight savings.

TYPICAL SPECIFICATIONS
Front to back registration $- \pm 0.0005^{\prime \prime}$. Smallest line width and spacing - $0.004^{\prime \prime}$ Kapton cover sheet registered to circuit pattern $- \pm 0.004^{\prime \prime}$

Customer Support

Tektronix, Inc.
P.O. Box 500, D.S. 16-157

Beaverton, OR 97077
(503) 627-5314

All critical processes are done in a Clean Room environment.
Our routine production processes are:
Through Hole Plated Teflon Substrates
Laminated Multilayers registered to $\pm 0.004^{\prime \prime}$
Linewidths and spacing to $\pm 0.004^{\prime \prime}$
Linewidth tolerance to $\pm 0.0005^{\prime \prime}$
Front to back registration to $\pm 0.0005^{\prime \prime}$
TYPICAL SPECIFICATIONS
Operating frequencies $->10 \mathrm{GHz}$.
Dielectric constant - from 2.17 to 10.6 .
Standard dielectric thickness - $0.005^{\prime \prime}$ to 0.062 "; other thicknesses available.

Customer Support

Tektronix, Inc.
P.O. Box 500, D.S. 16-157

Beaverton, OR 97077
(503) 627-5314

Design Consultation
Prototyping and Mold-Making
Manufacturing
Customer Support
Tektronix Plastic Products (TPP) provides engineering services and high-quality components to enable high technology manufacturers to reduce the labor content, number of components, and cost of their products, in order to be competitive in worldwide markets.

Full-service capabilities support product design, mold design, prototyping, mold-building, and a complete range of manufacturing capabilities to meet the needs of high technology industries.

State-of-the-art injection molding technology uses thermoplastic resins, and employs multiple finishing and assembly technologies to produce a product of the highest value in terms of price, performance, and reliability.

PROTOTYPING AND
ADHESIVES CONSULTATION
Prototyping from models to polyurethane and epoxy components using silicone rubber molds.
Development assistance with jigs, fixtures, masks and protectors using silicone rubber and polyurethane. A typical application might be component masking for application of nickel-loaded acrylic paint for EMI/RFI shielding.
Selection of adhesives and solvents for bonding operations.

CAPABILITIES

Tool Design - TPP uses a full 3D mechanical design package (DDN) plus a graphics applications programming language (GRAPL) for design creation, analysis, and N.C. programming of injection molds. All designs are stored in an integrated data base, which provides easy access to all design data when changing or modifying existing mold designs, or when creating new mold designs. Mold flow analysis programs enable us to help you optimize part design for the required manufacturing process.
Electronic Data Exchange - Tektronix has IGES in/out capability for utilizing CAD-generated data from most systems. (Tooling process time is shortened if your data base is supplied in an electronic format.) We are connected to the Tek Engineering Network, allowing us access to most engineering departments via local area networks (LAN) or Hyperchannel. We can transfer data via phone modem or 1600/6250 BPI mag tape.
Numerically-Controlled Machining - Tektronix has the capability to machine virtually any part or mold cavity configuration including complex shapes and contoured surfaces. By utilizing our CAD data base, considerable savings are realized in N.C. programming time. Data is transmitted from the CAD system to the machining centers via DNC (Direct Numerical Control) or punched tape.

EQUIPMENT

TPP has three fully interactive CAD/CAM terminals linked via dedicated line to a company mainframe. We also have a C-size plotter, an N.C. tape punch, and DNC hardware.

EXPANSION PLANS

TPP intends to maintain a state-of-the-art CAD/ CAM development level. We will add additional graphics display terminals and plotting equipment as required.

MOLD TYPES
Molds meet standard DME specifications for any custom design you may require.
Some of the more frequent mold types are listed below.
High Volume Molds (Hardened Tool Steels) - Built to produce in excess of 1 million quality parts. We meet or exceed all Society of Plastic Industry mold classification guidelines.
Low Volume Molds (Aluminum) - Primarily built for short runs. Sizes range from 1 in . round to structural foam molds 32 in . $\times 40 \mathrm{in}$.
Prototype Molds, Prototype Model Lab Prototype tooling and model-making capabilities to aid in the development of our customers' products.
Carrier Systems - 3 in. $\times 4$ in., 6 in. $\times 8$ in., and 2 in. $x 4$ in. round carriers are available. Carrier systems are designed for quick setups, short runs, and cost savings on mold components and mold construction.

SPECIAL SERVICES

As a part of Tektronix, TPP offers specially-coordinated high technology services not normally available from a plastic parts manufacturer. We provide expert design and materials consultation plus processing capability in the following areas:

Laboratory Testing

- EMC attenuation of conductive or coated plastic systems.
- Corrosivity of flame-retardant resin systems.
- As-molded part stress analysis.
- Surface analysis (scanning electron
microscopy).
- U.L. approved molder C2160

Plastic-Metal Combinations

- Product enclosures.
- Functional devices.
- Outsert/insert molding operations.

Electroless and Electrolytic Plating

- EMC/RFI attenuation.
- Electrostatic discharge management.
- Corrosion-resistant finishing.
- Aesthetic finishing.

Conductive Paint

- EMC/RFI attenuation.
- ESD management.

Automated Painting

- Aesthetic finishing.

Customer Support

Plastic Products
Tektronix, Inc.
3000 Lewis and Clark Highway, D.S. 08-545
Vancouver, WA 98661
(206) 699-7391

CAD/CAM

Metal Products

Tool and Design
Manufacturing
Quality Control
Packaging/Shipping

Tektronix offers complete metal products capabilities from Tool and Design through manufacturing. Quality control is assured \& products shipped to customer satisfaction.

MANUFACTURING CAPABILITIES

Tool and Design - Full design and documentation capabilities, with a tool room equipped to build and maintain most types of tooling.
Machining - Screw machines, sawing, and CNC milling with machine-aligned cellular processes.
Sheet Metal - Sanding, blank, pierce, turret punching, shearing, forming, grinding and buffing. Material types include aluminum, copper alloys, brass, and stainless steel.
Programming - Full programming capabilities for sheet metal and machining.
Hardware Assembly - Riveting, hardware insertion, spotwelding, gluing and complete enclosure assemblies.
Finishing - Auto and hand paint; lab for color matching. Etch, lacquer, chromate, silk screening, and printing with full nomenclature capabilities.
Packaging and Shipping - All items packaged and shipped to customer satisfaction.
Quality Control - Fully equipped with latest state of the art equipment and technology.

Machining

Assembly

EQUIPMENT LIST

Quality Control - Programmable measuring system by Brown \& Sharpe (0.00025 obtainable measurements)
Programming - MEG 131 Graphic Terminals coupled to VAX 11/780 system.

Production Machining

- CNC screw machines
- CNC milling machines-horizontal/vertical
- CNC bar and chucker
- Automatic screw machines
- Belt sanders
- Vibratory finishers
- NC drillers
- Grinders
- Saws

Sheet Metal

- Shears

- Punch presses, 0-300 ton
- Power brakes, 12-55 ton, automatic back gauges
- Spotwelders, 30 KVA-250 KVA
- Heli-arc welders

Sheet Metal

Finishing

Hardware Assembly

- Presses, 2-8 ton
- Auto-press nut machines
- Eyelet machines
- Riveters
- Insertion machines
- Cabinet latch machines

Finishing

- Chromate coat, to MIL-C-5541 (clear \& yellow)
- Automated etch line
- Ultra-sonic clean
- Variety chemical baths
- Automated electrostatic paint line (Ransberg Disc)
- Automatic silk screen machines
- Automatic printing press

Tool/Die

- Jig bore
- EDM
- Grinding
- Lathes, mills and drills

Customer Support

Metal Products
Tektronix, Inc.
P.O. Box 500, D.S. 16-157

Beaverton, OR 97077
(503) 627-5314

Bipolar Foundry Services:
6.5 GHz Bipolar Analog Processes

QuickCustom ${ }^{\text {® }}$ ICs
Full Custom ICs
Microlithography:
Mask Design \& Fabrication
Charge-Coupled Devices:
Scientific Imagers
Custom Components
Tektronix Integrated Circuits Operation (ICO) is now marketing its formidable IC design and fabrication capabilities to those who have IC performance requirements but limited resources of their own.
Tek ICO has been supplying ICs with high performance, superior quality, and proven reliability to Tektronix' product divisions since 1967. Our integrated circuits continue to provide important technological and market advantages for many state-of-the-art products. Our foundry services for analog application-specific designs are now available. In addition, a limited number of specialty components for high-performance applications are being offered on a contract basis.

Since we've developed advanced imagers for high-resolution scientific imaging and high-speed signal processing, we can supply you with custom charge coupled devices (CCDs) for these applications. The development of Tektronix high performance components required development of very sophisticated microlithography, high resolution, fine quality, VLSI mask-making services which are also available.

BIPOLAR ANALOG

 INTEGRATED CIRCUITSTwo design methods are used for manufacturing custom analog ICs: "QuickCustom" and full custom.

QuickCustom ${ }^{\text {® }}$

The short cut design approach, "QuickCustom"® helps reduce your development time and cost. It consists of a series of "QuickChip" design formats and easy-to-un-
derstand, time-saving design tools. This abbreviated design method is becoming very popular with first-time IC designers and seasoned IC design engineers.
QuickChips begin with a prefabricated chip that has a basic "core" array of transistors, capacitors and resistors configured for interconnection. Given this impetus, the engineer simply determines the custom interconnections for those circuit elements required-including the specification of la-ser-trimmable resistors for precise analog applications. Once final designs are determined and approved, finished wafers can be delivered (typically) within three weeks or less.
This "designer-friendly" approach was developed by Tektronix engineers who have many years of analog expertise in IC design. Their mastery of integrated analog circuit design and demonstrated experience have
streamlined the design process. Today, ICO engineers are ready to provide you with as much or as little assistance as you require. The "tools" include a complete guide enabling the first-time user to complete a design with minimal one-on-one coaching. Rather than a bag full of kit parts, we provide you with a library of SPICE models for the "core" IC that will predict the performance of your design, and ensure that your QuickCustom circuit works the first time.
We also include a grid-based layout system that specifies precisely where the custom interconnects can be routed, and QuickKic, a graphic layout editor that makes it easy for even the first-time designer to digitize the layout.
Typical ICO-developed QuickChips are shown in the adjacent photographs (QuickChips 2, 2s and 3).

* ${ }^{1}$ PNP transistors are also included in QuickChips2, 2S and 3. The f_{T} of PNPs is approximately 30 MHz and the PNPS are optimized for use as current sources (i.e., low collector capacitance).
*2 Laser trimmable.

QuickChip 3

Full Custom

If higher performance or lower cost per chip are your requirements, ICO also offers a total custom design approach. One of our experienced applications engineers will be assigned to work with you or your team throughout the entire project. Tektronix-developed CAD/CAE software will be used to assist you through circuit analysis,
simulation via SPICE, and layout, greatly improving your confidence in meeting design specifications the first time. Because we are sensitive to your proprietary needs, this engineer will be the only one with access to the technical information. Typical delivery of finished wafers is less than eight weeks from approval of design layout.

MICROLITHOGRAPHY PRODUCTS AND DESIGN SERVICES

Mask design on a graphic workstation.
From minimally supported system time to full device design, our microlithography facilities are structured to meet your mask design needs. Working from menu-based design technology and grid-based layouts, we provide QuickChip and gate array designs plus full custom, application-specific analog and digital ICs. We use mask design tools to support development of non-standard products. Routine efforts include designs for: thick- and thin-film hybrid circuits, multi-layer ceramic parts, waveguides, precision mesh components, liquid crystal and electroluminescent panels, graticules, and small chemical milled parts. Also, we are used to accommodating unusual requirements; we can handle yours.

E-Beam pattern data being reviewed prior to generation of a photomask. Class 10 MEBES III write room is at left.

The same commitment to customers needs is evident in our support of mask tooling. Our state-of-the-art facility can meet all of your photomask needs. Class 10 clean room conditions are constantly maintained in critical manufacturing areas. Our technicians demonstrate the expertise and versatility to support the wide variety of work our Mask Design group creates-from 10X reticles to 1X VLSI wafer scale integration masks. This

TK2048M CCD Scientific Imager (actual size).
part of our facility includes both G.C.A./D.W. Mann optical systems and Perkin-Elmer Electron-Beam equipment. Our staff will work with you on an individual basis to determine which design approach will meet your requirements, and still be economical.

Our present capability provides tooling from $21 / 2$ by $21 / 2$ inch up to 7 by 7 inch glass substrates with a variety of thicknesses. We supply critical feature control from millimeter to submicron sizes, with position accuracy as small as 0.125 microns. Our claim of high quality products is backed by equipment such as Leitz MPV-DC and Nikon MPA-2A measurement systems. A Nikon CM-6 overlay comparator, Quantronix repair station, and KLA and Cambridge mask inspection systems, ensure that we deliver a superior product on time-every time.

CHARGE-COUPLED DEVICES

Charge-coupled devices (CCDs) are MOS integrated circuits that are essentially sampled data, analog delay lines. Used in such diverse applications as ultra-sensitive imaging detectors, transversal filters, tapped analog delay lines, and high-speed samplers/ memory buffers, these inherently simple devices have proven to be powerful yet compact signal processing components.
For more than three years the CCD group at Tektronix has been developing a specialized set of devices to incorporate signal processing efficiency into Tektronix instruments. In the process we have developed one of the most advanced CCD technologies in the industry. This technology is available through a line of CCD products and design services.

Our CCD imagers are fabricated using a buried channel, three-phase, three-level polysilicon gate process. This approach results in extremely high charge-transfer efficiency and low background charge due to dark current. Our wafer-scale integration technology has made large pixel, large imagers a reality. An example is the TK2048M imager, shown. This imager has approximately 4.2 million picture elements (pixels), each of which is 10 to 100 times more sensitive than conventional high speed photographic film.

Custom Devices

For custom designs our CALMA based, state-of-the-art CAD system, advanced microlithography capability-including wa-fer-scale E-beam mask making and three- or four-phase CCD processes-make it possible for you to design virtually any type of signal processing device. You can specify nearly any format of serial-parallel-serial CCD structures, optimized either for high speed or wide dynamic range, imaging or nonimaging. We also provide design and fabrication support for certain types of peripheral circuits including wide-band preamplifiers, high speed clock drivers, correlated-double-samplers, and timing/control logic.

If you've already completed a CCD design, Tektronix ICO provides a complete CCD foundry service to fabricate your device(s).

[^5]
TEK HYBRID COMPONENTS

Custom Hybrid Technologies

The Tektronix Hybrid Components Operation provides complete design, engineering, manufacturing, and reliability testing for a wide variety of hybrid circuits and component subsystems.
HCO has produced hybrid components for Tektronix' instrumentation products for fifteen years. These include wideband amplifiers, D/A converters, signal acquisition probes, digital memory arrays, and numerous other hybrid devices. As required, Tektronix hybrid components incorporate both Tektronix custom silicon and a full range of chips available from the semiconductor industry including LSI bipolar and CCD ICs, as well as high stability passive components. An experienced staff specializes in custom design and production of high-density, high-speed, wideband circuits supported by modern computer aided design and evaluation tools. These resultant circuit designs offer high reliability, great design flexibility, and relatively short development times.
HCO hybrid manufacturing facilities include automated screenprint and fire processes plus modern automated equipment for die placement and wire bonding. We also offer functional laser trim and scribe, and extensive computerized electrical in-line testing.

Thin-film plating operation at Tektronix.

Thin-Film Process Capabilities

Hybrid Components Operation has established a reputation as a quality producer of high-speed, high-complexity hybrid circuits. In many cases these sophisticated circuit designs utilize thick-film chip-and-wire technology on a multilayer substrate. For an increasing number of hybrid designs, where operating frequencies fall above 500 MHz , thin-film techonologies are appropriate and cost-effective.
Tektronix' Thin-Film Operation is a new facility with modern automated equipment. All thin film processes necessary for substrate fabrication, assembly, and test are located at a single site. The facility includes automated systems for testing complex thin-film resistors and substrates.

Hybrid Computer Aided Design from Tektronix.

Thick-Film Hybrid Technology

The HCO hybrid engineering and manufacturing staff at Tektronix provides extremely high-density thick-film chip-and-wire circuitry on mulitlayer substrates. High-density multichip multilayer substrates typically provide component densities of 25 devices per square inch.
For requirements of low-to-medium complexity with operating frequencies less than 500 MHz , standard thick film hybrid designs are the most cost effective. These Tektronix hybrid circuits have the fastest development cycle, the lowest development cost, and the lowest manufactured cost of any hybrid type.

Custom Ceramic Capabilities

The Tektronix ceramic operation has historically developed and manufactured high performance ceramic components for Tektronix' products. A number of product families have evolved over the years which include multilayer ceramics, SLAM packages, custom substrates, lids and covers, a wide variety of ceramic insulators, powdered metal parts, powdered metal sputtering targets, and custom ceramic CRT envelopes. Now, HCO is extending its can-do attitude and broad technological experience to supplying ceramic solutions to the outside market. The ceramic group offers a wide range of finishing and metallizing skills, material systems, and forming processes that can be utilized in overcoming design and manufacturing problems and assuring on-time deliveries to our customers.
Specialized analytical services are available within Tektronix to support Ceramic Operation's ability to maintain close and consistent control over its materials and processes.

HCO Electro Optic Capabilities

Tektronix Hybrid Components Operation is emerging as a leader in the development of electro optic packaging technologies. The HCO Electro Optic Group specializes in packaging components that perform in the multi-gigahertz range.
A laser diode module operating at 1300 nm (model LDM 1300) was recently introduced. This device is the first in a family of Tektronix
standard electro optic products. Currently under development are laser diode component subsystems and packages that will integrate laser diode sources, detectors, amplifiers, and some passive components.
The Electro Optic Group has experience in custom design and development for many Tektronix applications including large active area CCD imaging arrays sustaining high performance requirements over a wide temperature range.
The Tektronix electro optic manufacturing facilities currently include semi-automated production lines dedicated to the medium volume production of the LDM 1300 . These facilities include standard hybrid assembly systems capable of optical alignment to $1 / 10$ of a micron and better.

Quality and Reliability

The Hybrid Components Operation Quality and Reliability Department is a complete engineering and testing facility that provides a full range of mechanical, electrical, and environmental test capabilities. The group has expertise with standard reliability tests and with highly specialized reliability evaluation procedures. All hybrid components undergo reliability demonstration testing to assure conformance with customer specifications. There are a variety of test methods used that meet or exceed Military Standard 883C requirements. A unique set of tests and a testing sequence is generated for each hybrid type. The HCO Reliability Department has experience in testing a wide variety of hybrid circuit packages and processes.

Expertise

Tektronix' Hybrid Components Operation offers you hybrid and ceramic expertise in research and development, design, engineering, materials development, and processing in a series of custom building blocks that may be configured to fit your product requirements.

Customer Support

Hybrid Components Operation
Tektronix, Inc.
P.O. Box 500, D.S. $13-810$

Beaverton, OR 97077
(503) 627-4220

LDM 1300

 Laser Diode Module| Gbit Lightwave Transmission |
| :--- |
| Stable Fundamental Transverse Mode; |
| 1300 nm Emission Wavelength |
| High Reliability |
| True Hermetic Seal |
| Fast Pulse Response |
| Wide Operating Temperature Range |

TYPICAL APPLICATIONS

* Optical Fiber Communications

* Integrated Optics

* Fiber Optic Sensors

* Local Area Networks

* Research and Development

The Tektronix LDM 1300 Laser Diode Module is intended for high speed, long life, optical communications applications. The module includes a low threshold Double Channel Planar Buried Heterostructure (DC-PBH) laser, a photodiode to monitor back facet emission, and a calibrated platinum sensor which permits precise, linear control of the package temperature.
The module is supplied with a single-mode fiber pigtail. Installed connectors are optional. The LDM 1300 includes an external thermo-electric cooler.
Additional Tektronix instrument support for electro optic applications can be found in the communications product section of this catalog.

ELECTRICAL AND OPTICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameters	Symbol	Test Conditions	Limits			Units
			Min	Typ	Max	
Threshold Current	I_{TH}	CW	15	25	40	mA
Forward Current	I_{F}	$\mathrm{CW}_{1} \mathrm{P}_{\mathrm{F}}=1 \mathrm{~mW}$		40	60	mA
Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\text {TH }}$		0.8	1.0	V
Forward Voltage	V_{F}	$\mathrm{P}_{\mathrm{F}}=1 \mathrm{~mW}$		1.2		V
Fiber Output Power	P_{F}	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{TH}}+35 \mathrm{~mA}$	1.0			mW
Lasing Wavelength	λ_{L}	$\mathrm{CW}_{1} \mathrm{P}_{\mathrm{F}}=1 \mathrm{~mW}$	1280	1300	1320	nm
Spectral Width	$\Delta \lambda$	$\mathrm{CW}_{1} \mathrm{P}_{\mathrm{F}}=1 \mathrm{~mW}$		3		nm
Monitor Current	$I_{\text {m }}$	$\mathrm{P}_{\mathrm{F}}=1 \mathrm{~mW}$		50	$0 \mu \mathrm{~A}$	
Rise/Fall Time	$\mathrm{t}_{\mathrm{R}} \mathrm{t}_{\mathrm{F}}$			200		psec
Platinum Temp Sensor Resistance	$\mathrm{R}_{\text {TS }}$	$\mathrm{T}_{\mathrm{C}}=\mathrm{O}^{\circ} \mathrm{C}$		$\begin{gathered} 100 \pm \\ 0.2 \% \end{gathered}$		Ω
Temp Sensor Coefficient				37		$\Omega /{ }^{\circ} \mathrm{C}$
Characteristic Temp	T_{O}			85		${ }^{\circ} \mathrm{K}$

Customer Support

Hybrid Components Operation
Tektronix, Inc.
P.O. Box 500, D.S. $13-810$

Beaverton, OR 97077
(503) 627-4220

TEK $\begin{aligned} & \text { MAGNETIC SWITCHING, CAPACITOR, } \\ & \text { INDUCTOR \& TRANSFORMER COMPO }\end{aligned}$ INDUCTOR \& TRANSFORMER COMPONENTS

From the world leader in the development and production of cathode ray oscilloscopes and graphic computer terminals comes quality magnetic, switching and capacitor components. Now the components which have established a 40 year tradition of excellence are available for your products. Our pursuit for quality begins at the component level and extends through the full life of the finished product.

The manufacturing arm of Tektronix component designs is pleased to initiate and encourage the trend of sales to users of high quality components. Our leadership in instrument and component development is readily incorporated into your product designs. In our tradition of conservative specmanship, we have deliberately designed these components to enhance their fitness for wide ranges of design purposes.

Magnetic Components

Fast Prototyping
Wide Application Experience
Design Flexibility
Production Uniformity, Consistency
Performance Value
Indicated range is for existing designs only. Cus-
tom designs available upon request

	Value
Coil: Fixed Tubular	$14 \mathrm{nH}-600 \mathrm{mH}$
Coil: Variable	$60 \mathrm{nH}-600 \mu \mathrm{H}$
Toroids: Inductors	$225 \mathrm{nH}-12 \mathrm{mH}$
Toroids: Transformers, RF	Multi-winding (7 Max)
Transformers: Power,	Class A (105) Line Frequency Multi Secondaries - 600 V Insul Power - up to 1 KVA, 47-400 Hz Leads and/or Terminals, Var- ious UL recognized transformers

Mag Latch Relay

Maintains good impedance matching for signals up to 1 GHz in 50Ω Circuit
High Reliability (Bifurcated Gold Plated BeCu Contacts)

Space Saving Design
Single or Dual Coil Drive
Ceramic or Standard Circuit Boards

The Tektronix Magnetic Latching Relay is designed to offer highly reliable, low level switching without adding significant amounts of inductance, capacitance, and resistance to a circuit. It can be mounted directly on a hybrid circuit substrate or on a printed circuit board and consists of two 38Ω drive coils and a unique open arma-ture-contact system.
The Mag Latch Relay is suitable for input attenuator applications in portable and laboratory test equipment and provides an excellent method for remote low level switching in both manual and automatic instrumentation.

CHARACTERISTICS

Contact Life - (At typical loads) 10^{7} cycles dry circuit ($<10 \mathrm{~mA}$ and $<50 \mathrm{mV}$ dc); 10^{6} cycles at 250 mA and 30 V dc or peak ac; 10^{5} cycles at 250 mA and 250 V dc or ac RMS.
Contact Resistance - 0.1Ω maximum overlife (typically 10 to $30 \mathrm{~m} \Omega$), depending on substrate contact material.
Operating Time - 1.0 ms typical, 6.0 ms maximum.
Drive Voltage - Single Coil: $7 \mathrm{~V} \pm 1 \mathrm{~V}(5 \mathrm{~ms})$. Dual Coil: $11 \mathrm{~V} \pm 1 \mathrm{~V}$ (5 ms).
Coil Resistance (Each) - $38 \Omega \pm 10 \%$ at $25^{\circ} \mathrm{C}$. Coil Inductance (Typical) - Magnetic circuit closed, 11 mH .
Coil Operating Temperature $-95^{\circ} \mathrm{C}$ maximum.
Capacitance (Typical) - Pad-to-pad (contact open) 1.0 pF .
Contact Inductance (Typical) - Closed contact 2.5 pH .
Contact Bounce (Typical) - $200 \mu \mathrm{~s}$.

Capacitors

Close Tolerance, Stable
Low Dielectric Absorption
True Hermetically Sealed
High Insulation Resistance

Noninductive

For over thirty years Tektronix has manufactured special application capacitors for input coupling, timing, frequency determining, charge hold, vertical divider compensating, calibration and waveform shaping.
Mylar, Polycarbonate, Polystyrene and Polypropylene in foil/film and metalized configurations is used to ensure stable values over time and temperature excursions.

CHARACTERISTICS

Plastic dielectric, hermetically sealed extended foil film, and metalized construction.

TIMING AND WAVEFORM SHAPING

 CAPACITORS| | Polypropylene | Polystyrene | Polycarbonate | (Mylar) Polyester |
| :---: | :---: | :---: | :---: | :---: |
| Operating Temperature | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$ | $\begin{array}{\|c\|} \hline-55^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \\ \hline \end{array}$ | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \\ \hline \end{gathered}$ |
| Capacitance Value | $\begin{gathered} 300 \mathrm{pF} \text { to } \\ 0.5 \mu \mathrm{~F} \end{gathered}$ | $\begin{gathered} .001 \mu \mathrm{~F} \text { to } \\ 1.0 \mu \mathrm{~F} \end{gathered}$ | $\begin{gathered} 450 \mathrm{pF} \text { to } \\ 10.0 \mu \mathrm{~F} \end{gathered}$ | 001 uF to $1.0 \mu \mathrm{~F}$ |
| Capacitance Tolerance* ${ }^{* 1}$ | $\begin{gathered} \pm 1.5 \% \text { to } \\ \pm 2.0 \% \end{gathered}$ | $\begin{gathered} \pm 1.5 \% \text { to } \\ \pm 3.0 \% \end{gathered}$ | $\begin{array}{\|c} \pm 1.5 \% \text { to } \\ \pm 3.0 \% \end{array}$ | $\pm 3.5 \%$ |
| Dissipation Factor* ${ }^{1}$ | 0.1\% | 0.1\% | 0.3\% | 0.4\% |
| Voltage
 Ratings*2 | $\begin{aligned} & 25 \mathrm{~V} \text { to } \\ & 400 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 25 \mathrm{~V} \text { to } \\ & 400 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 25 \mathrm{~V} \text { to } \\ & 3,000 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 100 \mathrm{~V} \text { to } \\ & 400 \mathrm{~V} \end{aligned}$ |
| Set Matching Tolerance Band Initial End of Life | -- | $\begin{aligned} & 0.25 \% \\ & 0.75 \% \end{aligned}$ | $\begin{aligned} & 0.25 \% \\ & 0.75 \% \end{aligned}$ | $\begin{aligned} & 0.5 \% \\ & 1.0 \% \end{aligned}$ |
| Insulation Resistance*3 | $\begin{gathered} 5 \times 10^{6} \mathrm{M} \Omega \\ \times \mu \mathrm{F} \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 7 \times 10^{5} \mathrm{M} \Omega \\ \times \mu \mathrm{F} \\ \hline \end{array}$ | $\begin{array}{\|c} \hline 1 \times 10^{5} \mathrm{M} \Omega \\ \times \mu \mathrm{F} \\ \hline \end{array}$ | $\begin{gathered} 1 \times 10^{5} \mathrm{M} \Omega \\ \times \mu \mathrm{F} \\ \hline \end{gathered}$ |
| Temperature Coefficient Range | $\begin{aligned} & -310 \text { to } \\ & 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -150 \text { to } \\ & 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & -110 \text { to } \\ & +190 \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} 0 \text { to } \\ +150 \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Value Drift Through Life | -- | +0.30\% | + 0.40\% | +0.50\% |

${ }^{* 1} 1 \mathrm{kHz}, 25^{\circ} \mathrm{C}$.
${ }^{*} 2$ Dc working.
*3 1×10^{9} minimum. Typical value listed is at rated voltage, 1 minute charge time.

INPUT COUPLING CAPACITORS

Maximum Electrical Stress Noise - One change $<0.8 \mathrm{pF}$.
Capacitance Value Range - $0.019 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.
Operating Temperature Range $--55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Capacitance Tolerance - - 15% to 10%.
Set Pairing - 0.4% to 1.0%.
Voltage Rating - 400 V dc to 1000 V dc .
Dissipation Factor - 0.2\%.
Insulation Resistance $-3 \times 10^{5} \mathrm{M} \Omega \times \mu \mathrm{F}$.
Temperature Coefficient - -100 to
$-200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Customer Support

Tektronix, Inc.
P.O. Box 500, D.S. 19-013

Beaverton, OR 97077
(503) 627-3233

Built on 35 years of experience in the design and manufacturing of advanced technology magnetic and electrostatic CRTs.

For the first time Tektronix's proven quality, reliability and performance are available for your CUSTOM CRT needs.

Ultra High Resolution

Photographic Imaging
Medical/Diagnostics
Workstations

High Brightness

Avionic Color
Color Shutters
Air Traffic Control

Ruggedized

Mobile Military
Cockpit Displays
IR Viewers

Avionics Color Cathode Ray Tubes

High Resolution

Sunlight Readable
Breakthrough mechanical design has resulted in a family of high quality shadow-mask color display tubes equally adaptable to both raster-scan and stroke-written modes of operation.
These daylight-bright high resolution ruggedized tubes are intended for electronic flight instrumentation systems (EFIS). The tubes meet or exceed the emerging requirements for EFIS display systems, including MIL-STD-810C for shock and vibration.

The Tektronix Avionics Display organization will quote, upon request, design iterations involving phosphor composition, tube size and shape, and complete assemblies.

For further information call:
Avionic Displays
Tektronix, Inc.
P.O. Box 500, D.S. 48-255
(503) 627-6882

Telex: 151754
TWX (910) 467-8708

Monochrome Cathode Ray Tubes

High Brightness

Proprietary high beam current electron gun design and optimized phosphors provide a unique combination of brightness and resolution. A brightness of 3500 foot lamberts at 768 $x 1024$ resolution is achievable in a 9 inch display.
A clam shell yoke design and low grid drive capacitance gives low power consumption and high deflection sensitivity.

High Resolution Direct View

Our unique electron gun design, dynamic focus and astigmatism correction elements provide optimum resolution over the whole screen.
Resulting spot sizes, 2048×2730 addressable pixels, approach the resolving power of the human eye at a viewing distance of 24 inches. Our patented low-capacitance grid structures allow the display designer to utilize this resolution capability.

Ultra High Resolution

Tektronix state of the art capabilities in phosphor formulation and deposition provides the low blemish, high uniformity screens necessary for critical display appli-
cations. Spectral output can be optimized for photographic and other requirements.
Our gun designs are capable of achieving spot sizes of less than 0.001 inch in screen sizes up to 9 inches. Internal correction elements maintain a uniform, spot size over the entire screen.

Customer Support

Monochrome CRTs
Tektronix, Inc.
P.O. Box 500, D.S. 46-539
(503) 627-6868

Telex: 151754
TWX (910) 467-8708

LCS

Professional Color Graphics System
For IBM Personal Computer AT
Higher Resolution \& Contrast
Enhanced Edge Acuity
Large Usable Viewing Area
Very Fast Writing/Image Rendering Speed
High Level Graphics Support

Enhanced Text Generation

Liquid Crystal Shutter (LCS) technology developed at Tektronix has made possible an advanced color graphics display system for the IBM Personal Computer AT. Aimed at the CAE/CAD/CAM market, the LCS Professional Color Graphics System gives the IBM PC/AT advanced graphics capabilities for a wide range of technical applications. The LCS system also supports existing software written for the IBM machine.
The LCS Professional Color Graphics System comes complete with a high resolution 12-inch diagonal LCS/CRT display, a high performance color graphics controller card, and an IBM PC emulator card.

TECHNICAL DATA

TEK LCS 1220
COLOR GRAPHICS DISPLAY
The Tek LCS 1220 Color Graphics Display provides high resolution, high contrast graphics for the IBM Personal Computer AT.
CRT - 12-in. diagonal, $90^{\circ}, 0.013$ in spot size.
Input Signals - Analog input, positive video, 1 V p-p max.
Video Bandwidth - 51 MHz
Scan Frequencies - Horizontal: 61 KHz . Vertical: 120 Hz .
Display Size - 9.75 in. $\times 7.25$ in.
Display Resolution - 640 pixels $\times 480$ lines (non-interlaced).
Contrast Ratio - Greater than 15:1 in office environment.
Primary Colors - Red, green and any combination of red and green.
Input Connector - 9-pin (cable supplied).
Operating Temperature $-0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Power Source - 90 V ac to $136 \mathrm{~V} \mathrm{ac}, 48 \mathrm{~Hz}$ to 62 Hz (180 V ac to $250 \mathrm{Vac}, 48 \mathrm{~Hz}$ to 62 Hz optional.)
Power Consumption - Less than 100 W .
Power Cable - IEC connector to fit monitor power plug on IBM PC/AT (cable supplied).
Compatability - Tek LCS C480 Color Graphics Controller Card, Tek LCS E480 Emulator Card.
Prerequisites - IBM Personal Computer AT and Tek LCS C480 Color Graphics Controller Card and/or Tek LCS E480 Emulator Card.
Installation - By customer, using instructions provided.

TEK LCS C480

CONTROLLER CARD
The Tek LCS C480 Color Graphics Controller Card plugs directly into an IBM Personal Computer AT, providing advanced graphics capabilities for the Tek LCS 1220 Color Graphics Display.

Video Output (Bi-primary, Field-sequential) Color Frame Rate - 60 Hz square wave.
Horizontal Sync Rate -61 k Hz .
Vertical Sync Rate - 120 Hz .
Z-Axis Analog Video Output - 1V p-p into 75Ω.

Performance

Addressed Resolution - 640 pixels $\times 480$ lines (non-interlaced).
Pixel Rate -50 MHz .
Bits/pixel - 4 bits/pixel.
Z-Resolution - 8-bit color palette in each field.
Color Palette - 16 colors selectable from palette of 65,000 .
CRT Control - Drawing speed up to 8000 vectors/sec.
High Level Graphics Primitives - a complete set is supported in hardware and software.
Frame Buffer Size - 128 K words (512 K pixels) standard. [512 K words (2 M pixels) optional.] Mechanical - Standard IBM PC/AT card form factor.
Operating Temperature $-15.6^{\circ} \mathrm{C}$ to $32.2^{\circ} \mathrm{C}$.
Prerequisites - IBM Personal Computer AT and Tek LCS 1220 Color Graphics Display.
Installation - By customer, using instructions provided.

TEK LCS E480 EMULATOR CARD

The Tek LCS E480 Emulator Card converts 200 -line display software (e.g., Lotus $1-2-3$, dBase III, MultiMate, etc.) to a 400 -line display offering the following features:
Addressed Resolution - 640 pixels $\times 400$ lines (non-interlaced).

Color Palette - 16 colors.
Mechanical - Standard IBM PC card form factor. Operating Temperature $-15.6^{\circ} \mathrm{C}$ to $32.3^{\circ} \mathrm{C}$.
Prerequisites - IBM Personal Computer AT and Tek LCS 1220 Color Graphics Display.
Installation - By customer, using instructions provided.

IBM PC/AT is a registered trademark of International Business Machines Corp.
dBASE III is a registered trademark of Ashton-Tate.
MultiMate is a registered trademark of Multimate International Corp.
Lotus 1-2-3 is a registered trademark of Lotus Development Corp.

ORDERING INFORMATION

LCS Professional Color Graphics

System

\$3,500
Includes: Tek LCS 1220 Color Graphics Display, Tek LCS C480 Color Graphics Controller Card and Tek LCS E480 Emulator Card.

Tek LCS 1220 Color Graphics

Display
Option $01-180 \mathrm{~V}$ ac to 250 V ac, 48 Hz to
62 Hz Power Source
Tek LCS C480 Color Graphics
Controller Card
Option 02-512K Words (2 M Pixels) Frame Buffer Size.
Tek LCS E480 Emulator Card
OEM discounts are available.

Customer Support

Liquid Crystal Shutter Marketing
Tektronix, Inc.
P.O. Box 500, D.S. 46-556

Beaverton, OR 97077
(503) 627-5000

The 4120 Series Color Graphics Workstations provide 2D graphics, 3D wireframe and 3D shaded surface modeling systems.

TEK Means...Getting the Picture
with color enhancement, the power of intelligence, system integration, software and more . . .

Display Technology-an integral part of our business

For forty years decades, Tektronix has designed and manufactured advanced electronic products, starting with cathode-ray oscilloscopes. Our innovative design efforts developed features such as the flat-faced CRT, the direct-view storage tube (DVST), the high-resolution liquid crystal shutter display (shown above), and the microchannelplate CRT. The latter is incorporated in our 7104 "Gigahertz" oscilloscope, which remains unapproached in bandwidth and performance after eight years in the marketplace.

We're the leader

We placed affordable graphics in the hands of engineers and scientists in 1971, using our experience in DVST design, (in lieu of the then high-cost of computer memory). Our PLOT 10 software early on became the de facto standard. Today, Tek PLOT 10 is installed on more computers than any other graphics utility library in the world. Our up-to-date graphics line covers a broad spectrum of needs.
Color aids in differentiating dense graphics. Displays with default color tables (and color interfaces to modify colors to your specific application) eliminate viewability problems. Our Imaging Research Lab is developing standards based on human perception and reaction to color.

Meeting Expanding Customer Needs

Our products are developed to fill your needs. Tek continues as an industry leader for product line breadth, range of price/performance options, and service support. Tek innovation, reliability and flexibility are built into all our products, which continue to set standards around the world.

Our Products Have a Lot to Display

Computer graphics is no longer constrained to simply drawing pictures or plotting data, but is emerging as an effective, efficient human interface to computers.

General Electric CAE International Inc. SDRC I-DEAS

Tektronix PLOT 10° TekniCAD

The high quality graphic capabilities that were made available to an extensive line of host-based graphic terminals are now available in our powerful intelligent workstations (large photo). Tedious manual digitization of engineering drawings is eliminated with a Tek graphic input workstation. And, Tek color copiers produce hardcopy with resolutions that exceed terminal resolution. Our expanded line of artificial intelligence family increases productivity in many areas of Research and Development including expert systems, natural languages, and automatic programming. Our color terminals enhance operation in a number of areas, such as single key stroke access to the powerful TNIX operating system and Tek's microcomputer design tools. Here, softkeys simplify command entry and minimize keystrokes. A choice of color terminals is also offered for our acquisition/processing measurement systems. Our newest spectrum analyzer even provides a CRT display of operator "helps," in a choice of plain

English, plus optional French, German, or Spanish. This year, more than any other, we've got a lot to display.

Color Perception

The physiological fact behind color's continued success in displays is that the brain has two separate channels for processing visual information: one chromatic, the other achromatic. In many instances, data from both processing channels is used to interpret an image. An achromatic display deprives the operator of one entire visual data channel. Without this chromatic data flow, the brain's processing power is reduced, especially when interpreting complex visual information. The use of color substantially improves the readability of electronic instrument displays.
Color is particularly beneficial when viewing a complex display with high information density.
First, color can be used to organize information into logical groupings. High-priority items can be coded one color and low-priority items another.

Second, color can be used to locate information. This is especially useful when small but important items might be visually lost in a mass of other information.
Third, color can attract attention. Finding a single element in a complex array is easy when a color difference exists. A specific color can be associated with a particular class of events, such as red for warning or yellow for critical information. Color also allows a single instrument to function in different modes with a particular color unambiguously signaling the mode.
Fourth, color definitely has a high aesthetic appeal which reduces the monotony of prolonged display viewing. Although only subjective reports substantiate this aspect, color appears to enhance productivity by reducing boredom and fatigue.

Ergonomics of Color

Through technical improvements and cost reductions, color has now become a potentially powerful tool for improving the instrument/user interface. Yet, the misuse of color can make the interface more difficult instead of easier.
Color is a product of human perception, the result of the eye reacting to "visible" wavelengths of electromagnetic radiation. The optical and sensory mechanics of the eye give color its three basic qualities:
Hue, which identifies the color in relation to other colors in the spectrum, such as red, yellow, green, etc.
Saturation, which defines the "purity" of color. As spectral colors become less pure, they appear more gray or white.
Lightness, which refers to the relative strength of the light coming from the color, as perceived by the observer.
As the wavelengths of visible light change, the eye perceives a changing hue that produces the familiar spectral colors, ranging from deep red through yellow, green, and blue to purple. At any given wavelength, a "pure" color is produced that yields maximum saturation. Pure colors can be desaturated by increasing lightness until the color is "washed out."

MCS ANVIL-400 ${ }^{\circ}$

Color distribution and saturation play an important part in color perception. Colors widely separated in the spectrum, such as red and green, are much easier to discriminate than neighboring colors. Also, "grayish" colors of low saturation become difficult to separate. On the other hand, highly saturated colors that are also widely separated in hue require the eye to refocus, which can be a source of fatigue. Another important consideration is that the eye's foveal region, which yields maximum visual resolution, is essentially "blind" to the color blue, making it a poor choice for presenting detailed information.

Color Display Characteristics

Image quality and information handling capability are the two broad categories of characteristics that are important to users of color displays. Image quality includes optical characteristics like resolution, edge sharpness, brightness, contrast and color quality. Environmental "noise" can cause undesirable optical characteristics of displays, such as flicker, jaggies, and moire patterns. Information handling capability includes characteristics like display size, number of vectors or pixels, and number of colors.

Resolution

The quality of the image is strongly affected by the resolution of the display system. However, the term resolution is often used synonymously with the number of scan lines (addressability) in discussions of raster displays. Resolution refers to the display's ability to resolve or separate two closely spaced points, lines, or spatial fre-

Tektronix PLOT 10° TekniCAD

quencies. Resolution is the essential char acteristic that determines image sharpness. The resolution of a display comprises a combination of elements including spot size, spot profile, dot spacing, number of scan lines and bandwidth. Addressability, on the other hand, refers to the display's ability to position lines or pixels anywhere on the screen. A display may have
addressability that exceeds its resolution capability and so will not affect the resolution of the display. However, if the addressability is not high enough, it will affect the resolution of the display in complex images.

Color Display Technology

The CRT is the most important factor in determining characteristics of a color display. Tektronix color display technology produces three basic types of CRTs: the shad-ow-mask CRT, the liquid-crystal (LC) CRT System, and the Direct View Storage Tube. The choice of CRT and display system is determined by the user's needs and application. For any particular color display application, the user is concerned with image quality and information handling capability relative to that application.

Information Handling Characteristics

Size

The ultimate size of color displays using DVSTs and shadow-mask CRTs is about 636 mm (25 inches) diagonally. The DVST can also be made quite small (152 mm or 6 inches) and still provide a large number of vectors because the spot size can be scaled down accordingly. The number of vectors in the color refresh mode is not limited by the resolution, but by the deflection speed required to write the vectors at a flicker-free rate. To display a large number of vectors, the deflection system must have a very high bandwidth, usually at the expense of power. However, the DVST avoids the need for high power with large numbers of stored vectors, though it faces the same trade-off for the refreshed color vectors.

Number of Colors

The DVST with CWT has a maximum of three colors. Only the shadow-mask CRT offers a full range of colors. The color capabilities of a shadow-mask CRT are usually determined by the choice of phosphors for the three primary colors.
The DVST with CWT is very useful where complex images are to be displayed and color is needed only to highlight areas of the display. The shadow-mask raster display is by far the most prevalent type of color display in use today.
An attractive feature of a color terminal is its ability to display images in the desired colors. But how does one go about selecting a specific color and describing it to a terminal in meaningful, precise terms? Interactively, the user specifies a color and the terminal displays it. The user evaluates the displayed color and corrects it if necessary.

Direct-View Storage Tube

Both the DVST with CWT and shadow-mask types of color displays reflect and scatter about the same amount of room light, so display contrast is determined by trace brightness. Display contrast can be improved by placing a filter in front of the display screen that will attenuate the emitted light less than the reflected light, which must make a double pass through the filter. Selective filters are also used to absorb room light while transmitting the emitted light from the display. Antiglare screens, which have either a special coating on the front surface or a matte finish to prevent specular reflections, are also used to improve display contrast.

Shadow Mask CRT
The shadow-mask CRT is the most commonly used type of CRT for color displays. In fact, the shadow-mask CRT is the type used for home television and for studio television picture monitors. Usually, three electron guns are used to address three primary color phosphor dots or stripes. The dots are spaced close enough so they appear as one. Colors other than the three primary colors result from proportional mixtures of the individual dots. A shadow mask is used to make sure that each beam addresses only its assigned color dot. The beams from the red, green, and blue guns must pass through the mask openings at the proper angles to strike their corresponding phosphor dots.
The three beams are deflected together over the phosphor screen in a raster pattern.

The 4115B's patented AutoConvergence is accomplished by applying non-parallel indexing phosphers at precise angles and positions at the rear of the CRT shadow mask.

One of the most important factors in the recent evolution of computer graphics has been the emergence of high resolution, low cost raster displays. We've overcome the problem of CRT flicker with 60 Hz noninterlaced monitors. Raster technology is pushing the limits of human perception.

In other systems (e.g., home television), an interlaced raster is used. An interlaced display scans every other line in the first pass from top to bottom, then returns to the top and scans the intermediate lines in the next pass. A color image is drawn on the screen by the display system, which determines when each of the three electron guns receives current, and how much, and thereby how much of each color is produced at each point (pixel) on the screen.

When a shadow-mask CRT is used in graphics applications, a bit-map memory is used to store the image. The pixel information from the bit map is read out to the three electron guns in synchronism with the raster pattern of the beams. To produce an image on the CRT screen, the desired vectors and other shapes must first be converted into the proper pixels in the bit map using a scan conversion process. Algorithms are used to code the various shapes into several digital bits, representing the brightness desired at each pixel location on the screen.
Information in the bit map must be read out repeatedly to the CRT at a rate fast enough to avoid flicker. Therefore, the time required to change images on the screen is determined by how fast the scan conversion process can reload the bit map. The larger the bit map, the slower the reloading process; thus, raster images with a large number of pixels must trade off speed of interaction. As the number of pixels increases, so does the rate at which information is clocked out of the bit map. The deflection speed of the CRT beam and the bandwidth of the CRT video amplifier must increase accordingly. Deflection speed and video amplifier bandwidth ultimately limit the number of pixels possible.

Color Purity and Convergence

Color purity generally refers to the uniformity that a color has over a large area of the display screen. Purity is a measure of whether or not the primary colors selected by the individual beams are spectrally pure. If some electrons meant for the red dot impinge upon the green dot, then the primary color is not pure. Purity is not really much of a problem in shadow-mask CRT displays. Each of the three beams should excite the entire phosphor dot when the beams pass through the shadow-mask holes properly.

High resolution displays introduced another new problem: misconvergence. When the display is not properly converged, a line written as yellow, for example, comes up with a red and green fringe on either side. Misconvergence which was simply annoying on the previous new generation of high resolution displays has become a source of potential misinformation on the new generation of high resolution displays. In fact, the convergence specification over the entire active area of the display becomes the effective resolution limit. That is, a 1000 line display is not useable as such unless the convergence specification insures no detectable misconvergence anywhere on the screen.

AutoConvergence

The 4115B Computer Display Terminal contains a first-of-its-kind convergence feature that automatically corrects the natural drift occurring in the convergence of the color raster writing beams (shown above). Convergence is controlled to within 0.2 mm over the entire display area, resulting in sharper characters, lines, and colors. Technical skills are not required to maintain optimum convergence.

Dynamically Converged Display

Dynamic convergence correction adjusts as the electron beam scans, providing convergence accuracy of 0.3 mm over the entire display area.

Liquid-Crystal Color Display (The Color Shutter)

The 1241 Logic Analyzer uses the LC/CRT system to enhance the data display for easier readability and comprehension.

The color DAS 9129, the first logic analyzer with a color-coded CRT, is the undisputed leader in ease-of-use. Each menu is organized into color groups for faster interaction, better understanding, and fewer errors.

A method of producing color displays without shadow masks, color-dot phosphors, or any of the other usual techniques has been developed by Tektronix. Based on a combination of liquid-crystal and cathode-ray tube technologies, this LC/CRT system (see left) combines a black and white or "monochrome" CRT and a liquid-crystal "color shutter" to produce a very-high-resoIution, field-sequential color display. Functioning as a color shutter, this very fast switching device fits in front of the CRT face, thus making it practical to build highresolution color displays into oscilloscopes and other display instruments. Because no shadow mask or patterned phosphors are used, the resolution can be as high as any monochrome CRT. This is a particular advantage in small display sizes where highresolution color has not been practical before.

The "monochrome" CRT employed has a simple phosphor with two separate emission peaks that are orange and blue-green. The phosphor does not require any special process steps. However, the true "state-of-the-art" advance represented by the color shutter is the liquid-crystal shutter itself, which provides a three-color display (orange, blue-green, and neutral) of excellent crispness, detail, and color purity. On the 5116 color oscilloscope, the LC shutter is basically a sandwich consisting of a color polarizer, a variable-retardation liquid-crystal cell, and a linear polarizer. The LC shutter consists of two glass plates coated with indium tin oxide for the transparent conductor, a thin layer of silicon dioxide for an insulator, and a special "alignment" layer that causes the director (essentially the major axis of the liquid crystal) to tilt in the same direction on both surfaces.

Field-Sequential System

Previous efforts to produce a field-sequential system have suffered from the lack of a suitably fast color shutter. Earlier attempts at fabricating LC color shutters have used simple twisted nematic (liquid crystal) devices or dual-frequency nematic devices. The simple LC devices generally have relaxation times (essentially the time to switch from one polarization state to another) that are much longer than several milliseconds and are not suitable for fast switching applications. Flicker-free operation of a sequential two-primary-color display requires field rates of 120 Hz , for example, which in turn requires LC shutters capable of millisecond transition times for both the on and off states. Dual-frequency devices can have sufficiently fast response but require the use of drivers that must deliver a high-frequency signal into a large capacitive load.

The 1241 Logic Analyzer's color display allows rapid set-up and operation. Touch-screen soft keys provide highlevel commands at a keystroke.

Employing a field-sequential system with displays having cells switched at a single frequency overcomes the need for highvoltage switching, a drawback of the dualfrequency cell approach. Typical dual-frequency cells are turned on with a lowfrequency burst and turned off with a highfrequency signal, while the variable-retardation cell's elements are controlled by a single frequency. As a result the driving waveforms are simpler, and the driver's power requirements are less.
In any one field the information written on the screen appears only in the color selected by the LC shutter. The field-sequential system can provide all possible mixtures of the two primary colors contained in the phosphor. Each color or information field is displayed at a $60-\mathrm{Hz}$ repetition rate

The Pi Cell

The variable-retardation cell (called a pi cell) is sandwiched between a set of red and green color polarizers and a linear polarizer at the output, and its axis is tilted 45 degrees with respect to the polarizers. The color polarizer orthogonally polarizes the orange and blue-green components of the CRT's emission, and the pi cell is used
to sequentially rotate the polarized orange and blue-green information into the transmission axis of the linear polarizer. Rotation of the orange and blue-green information is performed in synchronization with the fields of the sequentially addressed CRT. Alternate fields, viewed through different colored polarizing filters, are integrated by the eye to give color images. By varying the z-axis modulation, the full range of colors that lie along the line connecting the orange and blue-green peaks of the phosphor's emission spectrum on the chromaticity diagram can be achieved.

The pi cell derives its name from the piradian amount of twist it assumes in its quiescent or undriven state. Its features are
achieved by speeding the relaxation time of an already fast untwisted birefringent variable-retardation cell, whose liquidcrystal elements are homogeneously aligned.
It is advantageous to keep the cell as thin as possible, since this results in a large angle of view, but narrowing the cell too much prevents achievement of the full halfwave retardation that is required. For LC shutters, such as used in our 5116 Oscilloscope and the 1241 Logic Analyzer, there is no perceptible color shift over the normal viewing angle.

Low Cost, High Resolution, Easily Discernable Multichannel Displays

The 5116 Color Oscilloscope with 5D10 Waveform Digitizer, and the 5A26 Dual Differential Amplifier. See page 246.

Control logic drives a liquid-crystal switch that, by twisting light coming through two filters, lets the linear polarizer filter out emissions from a monochrome CRT. The eye integrates them into orange, bluegreen, or an inbetween yellow where the traces overlap, as shown above.

High Resolution, High Contrast

Among the LC/CRT system's advantages are high resolution over a wider range of display sizes, good contrast in high ambient light, and ruggedness, due to the absence of special shadow-mask and phosphor arrangements or complex electron guns. The LC color shutter can be used in either vector or raster displays.

The combination of the color shutter and either a diffusing or an antireflection coated front surface can yield contrast ratios of better than 20:1 in the high ambient lighting normally found in today's offices. Since all screen writing is accomplished by a single
electron beam, rather than by three beams as in a shadow-mask display, the LC shutter does not have misconvergence problems. This enhances resolution and produces a very readable display of text and complex graphics.

INFORMATION DISPLAY PRODUCTS

CONTENTS

Intelligent Graphics Workstations 50
Computer Display Terminals 57
Artificial Intelligence System 70
Graphic Input Workstation 74
Color Graphics Copiers 75
Hard Copy Units .. 78
Software .. 67
Display Monitors .. 81
Computer Graphics Supplies 80

Tektronix sees itself as a company that defines itself not in terms of its products but in terms of its customers. As their needs have expanded - requirements for color, higher speed, local processing, more powerful processing, easier hardware/software integration, more comfortable ergonomic designs - Tek has kept pace by providing state-of-the-art engineering graphic display and computer products at affordable prices

Tek continues as an industry leader for its product line breadth, its family compatibility, its peripheral support, its use of industry standards and its range of price/performance options. Here are a few examples:

Computer Display Terminals

With expanded VT-100 compatible features, copier support and pixel operations standard, the 4100A Series replaces the existing 4100 Series. See page 57.

A noninterlaced raster display which utilizes a precision in-line (PIL) gun CRT with dynamic convergence, the 4120 Series allows crisp display of very fine detail. Choose from either two-dimensional, three-dimensional wireframe, or three-dimensional shaded surface capabilties.

Artificial Intelligence Systems

Building on the 4404 AI System, Tek now broadens its Al family to include the 4405 with increased processing power and the high speed 4406.

LAYOUT EDITOR－Tektronix＇s LEIA ${ }^{\text {miw }}$ Layout Editor，shown here on the 6130 based workstation networked to a VAX 11／780（one of the many hardware platforms supported by the company＇s electronic design software），provides an environment for engineers to create full custom and semicustom ICs．

The 1985 Design Automation Conference marked Tektronix＇s full－scale entry into the CAE marketplace．The level of commitment is demonstrated by the range of integrated products now available through the cooper－ ation of all of the Tektronix operating groups．The acquisition of CAE Systems， Inc．，and the recent formation of the CAE Systems Division complements traditional Tektronix strengths and underscores our in－ tention to be a leader in the CAE industry．

The Demand for Productivity

The most difficult problem faced by elec－ tronics manufacturers today is how to get better，more complex products to market more quickly．Computer－Aided Engineering （CAE）technology reduces development time．
Better tools improve the efficiency and ac－ curacy of designs and get a product to mar－ ket more quickly．The current demand for productivity，coupled with the opportunity offered by computer technology，has led to
a new era of engineering．Today，computer assistance is required not just to speed the design process，but，indeed，to make com－ plex projects possible．The state of the art has surpassed the engineer＇s ability to cope with design complexity without the aid of computers．
CAE workstations speed up the engineering process by allowing the designer to evalu－ ate ideas before committing to expensive prototype fabrication．Many of the detailed design tasks previously performed manually are now done by software．Design errors are eliminated by simulating and verifying the operation of a circuit on the workstation．

CAE Users Demand More

As CAE tools become available for larger and more complex projects，users are de－ veloping new requirements．For example， the need has emerged for an efficient facili－ ty for communication and administration of the total design data base．

In the past，emphasis has been on the per－ formance of individual tools．But systems that emphasize individual tools tend to be application－driven．The architecture as－ sumes a defined order in the use of tools and provides for communication only at predefined intersections．It is difficult to pro－ vide concurrent access．As products in－ crease in complexity，the need for such ac－ cess to a single design data base has become critical．
For this reason，the trend is toward＂data－ driven＂CAE tools that view data as the hub of a tool assortment，each with direct ac－ cess to the entire data base．Under this or－ ganization，the CAE environment is seen as a flexible set of compatible tools that may be used in the order and combination ap－ propriate to the specific design task．

The Next Phase

An important new development in CAE is the movement toward increased integration， better and more consistent user interfaces， and standardized data interfaces among tools．The focus is shifting from the perfor－ mance of individual workstations and appli－ cation programs to the effectiveness of the overall design process．Users are demand－ ing new CAE tools that are compatible with existing hardware and software resources and that provide links to existing design， manufacturing，and test tools．

Tektronix and CAE

Tektronix＇entry into the CAE market ex－ tends the company＇s commitment to provid－ ing the best available engineering tools．The broadened product line includes leading－ edge CAE tools．These products provide Tektronix with the ability to couple state－of－ the－art instrumentation to the CAE design process．
Tektronix，the long－standing leader in the verification and test areas of the product development cycle，expanded our technol－ ogy base to include front－end CAE design tools through CAE Systems Division，head－ quartered in Santa Clara，California．Devel－ opment and support centers are located in Boston，Massachusetts；Austin，Texas；Port－ land，Oregon；and London，England．Thus， Tektronix extends the utility of CAE by inte－ grating hardware design tools with software development，including integration tools，in－ strumentation，production test systems，and mechanical CAD capabilities．
Open Systems．Tektronix CAE Systems Di－ visions design and test solutions are based on an＂open systems＂philosophy that com－ bines a wide range of functionality with standard interfaces to fit into existing
design environments. To promote compatibility among tools, the Division actively supports industry-wide standards in the design of its products and through participation in industry standards efforts. Compatible interfaces allow users to configure the engineering environment, broaden equipment and applications software choices, and protect a substantial CAE investment against obsolescence.
Multiple Hardware Platforms. Tektronix' CAE tools are available on a variety of computer systems and workstations. Users have a broad choice of hardware platforms including the TekStation'm AT, Apollo workstations, and Digital's VAX family of products ranging from the MicroVAX ${ }^{\text {m }}$ IIbased workstations to the powerful 8600. The TekStation AT expands an IBM Personal Computer AT into a powerful engineering workstation that can run both PC-DOS and virtual Unix-based 4.2 BSD software.
The multiple-hardware-platforms approach is an integral part of the Tektronix long-term strategy and will remain an important advantage of Tektronix solutions. Such broad hardware support is critical to users with a large investment in computing equipment and also to users who need extra freedom to choose an optimum configuration. Evolving and improving CAE tools must be able to fit into an existing environment gracefully. Multiple hardware platforms complement the open-systems philosophy by providing the greatest number of options to CAE users.
Team Engineering. To work efficiently, engineering teams must be able to work in parallel, which requires good communications on all levels. Tektronix CAE tools are built around the distributed base concept, which gives every engineer instant access to the latest design information. With both hierarchical and relational capabilities, the data base manager allows distributed access to circuit design at several levels of abstraction and in multiple representations. The Tektronix design environment also provides facilities for networking and documentation, and will soon provide full project data management and project tracking capabilities.

Instrumentation. Tektronix instrumentation continues to lead the industry in performance and reliability, and we are firmly committed to the pursuit of advanced measurement technology. Many Tektronix instruments already possess the intelligence to perform either in stand-alone mode or as a subsystem in a larger CAE environment. A major Tektronix objective is to extend the available linkages among instruments and systems, allowing the user to select the level of integration appropriate for a particular task.

The Tektronix CAE Solution

Tektronix thus offers a comprehensive set of tools for electronic product design and test through integrating products from CAE Systems Division with traditional Tek test and measurement and software development products. To understand how the full complement of Tektronix CAE tools work together in the design engineering environment, consider what is required to implement a complex electronic product containing standard devices, special-purpose ICs, microprocessors, and custom firmware. The Tektronix CAE product line addresses each of the following points in the total design process.
System Definition. To aid in overall system definition and requirements specifications, Structured Analysis (SA) tools provide a structured, graphic approach to high-level architectural specifications, for both software and hardware, using data flow diagrams, data dictionaries, and minispecifications. SA tools allow the designer to specify and analyze what a system will do before dealing with implementation details, and provide a convenient, interactive graphics interface that automated most of the clerical chores associated with creating consistent specifications.
Software Development. The LANguage Development System (LANDS) provides a complete development tool kit for popular languages and target processors. LANDS automates the software development process with language-directed editors that check for syntax errors and eliminate many time consuming mistakes that would otherwise be present at compile time. Symbolic debuggers (CDB) allow the software engineer to follow program execution using high level symbolic names and control structures. The Integration Control System (ICS) automates the process of configuring software for a specific hardware environment. The 8540 Microcomputer Integration Unit provides a simulated execution environment with memory and I/O in addition to the target processor.

Electrical Hardware Design.

- A concurrent, multi-engineer design environment with a flexible, hierarchical, distributed data base.
- Multiple design representation at each level of the design hierarchy with user-defined block diagram, logic, and circuit descriptions.
- Interactive "what-if" analysis of designs.
- One-button interfaces to industry standard CAE tools running locally or on host computers.
- Capability for easy user interface with inhouse tools.
- A LAN with electronic mail to allow mul-ti-engineer communication and data transfer.

The MultiSim" ${ }^{\text {m }}$ family of simulator products includes an interactive, 12 -state, multi-level logic simulator. MultiSim provides function simulation, timing verification, and an interactive software logic analyzer for probing and waveform display during simulation.
The Functional Modeling Language (FML) option, a part of MultiSim, allows the user to build functional models of selected portions of a system to describe and simulate a design before all of the circuit details are known. The behavioral model can be incorporated as part of an overall simulation that also includes logic and circuit descriptions.
The Testability Measurement Analyzer (TMA) and Statistical Fault Analyzer (SFA) allow the designer to simulate faults, assess the testability of proposed PCBs or ICs, and measure the fault coverage of test patterns before the design leaves the workstation.
Tektronix electronic design system includes the DCALC engineering spreadsheet for "what-if" design analysis, and the LIDS library tools to accelerate the creation and maintenance of component libraries.
To speed analysis of complex designs, the Tektronix electronic design system interfaces to the Zycad hardware logic simulator to execute simulations at more than one million events per second. For simulation of complex components without software models, the TurboChip hardware modeling system allows an IC or PCB to be coupled with a simulation on the workstation to evaluate the combined system. Even software can be factored into the simulation. Code developed in the LANDS environment on a mainframe or an 8560 multi-user development system can be downloaded with MicroLink interface software to the TurboChip hardware modeler containing the target processor and memory. TurboChip then executes the prototype code and interacts with simulated specialpurpose hardware on the Designer's Data Base and Schematic Capture System. This allows the hardware engineer to drive the design with software code before the actual hardware is implemented.
Physical design is aided by the MERLYNPCB package for board layout or MERLYNG for gate array layout. Performing both interactive and automatic placement and routing, and design rule checking, CALMA GDS/Il files are automatically generated for IC mask fabrication.

For custom ICs，Tektronix offers its structured Custom WorkSystem，which includes：
－Module generation by the Tektronix CON－ CORDE Chip Compiler．
－Layout editing with the Tektronix custom layout editor（LEIA）．
－Layout verification by ECAD＇s Dracula II．
Tektronix electronic design system soft－ ware provides interfaces to other popular layout programs such as：
－MEDS，GARDS，CAL－MP，and BOLT for IC layout．
－SCICARDS，CALAY，and REDAC for PCB layout．
A comprehensive，up－to－date library system is essential for rapid design implementa－ tion．Through the CONNECTIONS joint mar－ keting program，Tektronix has partnerships with selected IC vendors to provide the widest possible range of foundry libraries．
Verification and Test．ICs and PCBs can be verified at the engineer＇s bench with the DAS 9100 Digital Analysis System，which provides test pattern excitation from dc to 50 MHz ．DASLink software allows auto－ matically generated test patterns to be downloaded to the DAS from a Designer＇s Data Base and Schematic Capture System． The acquired results are returned for direct comparison with simulation by displaying actual data through the virtual logic analyz－ er＂roving probe＂interface on the work－ station．
System Integration．One of the most diffi－ cult tasks in product development is inte－ grating individual subsystems into a com－ plete system，especially when hardware and software are brought together for the first time．The Digital Design Lab（DDL） combines the 8562 Software Development System or a VAX computer，the 8540 Emu－ lation Control Unit，and the DAS 9100 into a single，powerful integration tool．Using the DDL＇s high－level debugger，the software engineer can quickly locate trouble areas in the program execution sequence．The DDL can then focus on the area of interest，pro－ viding a single，time－aligned display of both instruction execution and hardware logic test points．The hardware logic timing and software execution are made explicit on a single display to locate difficult system inte－ gration bugs．
Mechanical Design．Tektronix CAE solu－ tions include software products that aid in the mechanical design of enclosures， chassis，card cages，PCBs，and other com－ ponent packaging．The TekniCAD comput－ er－aided drafting package aids the devel－ opment and maintenance of two dimen－
sional assembly drawings and general drafting chores．For more complex mechan－ ical tasks，the leading mechanical design and analysis applications programs are available through the Tektronix Solution Vendor program：
－ANVIL－4000 for CAD design，drafting，and manufacturing interface．
－ANSYS for finite element analysis and modeling．
－MCS／GRASP for interface to MCS／ NASTRAN．
－SRDC I－DEAS for 3D solids modeling and analysis．
－PATRAN for 3D solids modeling and finite element analysis．
Documentation．As products increase in complexity and development cycles become shorter，the need to properly document a de－ sign becomes acute．Documentation is a valuable resource that allows engineers to re－ use designs and also aids in manufacturing， value engineering，and product custom－ ization．The Tektronix CAE electronic design system incorporates the powerful，screen－ori－ ented TekWriter publications software for en－ gineering documentation．TekWriter allows descriptive text to be entered and formatted at the workstation and combined with wave－ form graphics and tabular information gener－ ated by other CAE tools．

The Tektronix Difference

Tektronix CAE tools span the product de－ velopment process from concept through production and provide both flexibility in design style and compatibility with the ex－ isting environment．A common design data base integrates these tools into an effec－ tive data－driven，team－oriented engineering environment．Since Tektronix offers proven test and measurement capability coupled with front－end design，users can incorpo－ rate state－of－the－art instrumentation while realizing the benefits of control and analy－ sis through the consistent CAE workstation interface．
Tektronix internal resources provide a large degree of vertical integration，which en－ ables cost reduction and performance ad－ vances．The Electronic and Mechanical Component Group maintains eight state－of－ the－art engineering and manufacturing facil－ ities for custom silicon and gallium arsenide integrated circuits，analog and analog／ digital hybrids，and high－density PCBs．Ma－ jor in－house software efforts often yield new software development tools to en－ hance the productivity of all Tektronix prod－ uct development groups．

Since Tektronix is a major component and system manufacturer，it is a model for eval－ uating the evolving CAE environment．Inter－ nal programs exist to make Tektronix CAE products available to all engineers and to promote rapid feedback to the product de－ velopment groups．Tektronix believes that the same process of internal evaluation that has made Tektronix oscilloscopes and other instrumentation unsurpassed in the industry can also be applied to CAE tools． Tektronix calls it the＂next bench effect＂－a product designed by one engineer is likely to be used by the engineer at the next bench．
Tektronix＇s large R\＆D resources will prove increasingly important as the frontiers of CAE move into areas such as artificial intel－ ligence，computer－aided software engineer－ ing，and high－speed signal processing．For example，instrumentation is currently reach－ ing the limits afforded by silicon technol－ ogy．Further advances in speed will require more exotic materials such as gallium arse－ nide（GaAs）－an eventuality anticipated by Tektronix in advanced research that has re－ sulted in state－of－the－art GaAs design and foundry capability．
Tektronix has a large base of traditional en－ gineering customers．This provides knowl－ edge of and direct contact with CAE users of the future．A worldwide sales and ser－ vice organization and a reputation for quali－ ty products and responsive support give Tektronix a credible presence in the evolv－ ing CAE market．

Summary

Computer－aided engineering is based on more than a single turnkey solution．It is a systems integration approach to maximiz－ ing engineering productivity by applying computer power．It is a set of flexible，evo－ lutionary solutions that will continue to ex－ pand in many dimensions．
Tektronix is one of the first Fortune 500 companies with a comprehensive set of CAE solutions．Users now have a large，reli－ able vendor source for a broad range of CAE products．Tektronix is establishing the trend toward an open－systems architecture， industry standards，and a flexible tool kit approach to CAE．
Data management is becoming a dominant issue for CAE users．Tektronix＇s electronic design environment will set the direction for future CAE data base systems．It provides a new level of system integration that in－ cludes hardware，software，test and mea－ surement，and project management cou－ pled through a global design data base．

The WorkSystems

The WorkSystems, designed by Tektronix CAE Systems Division, integrate a complete family of electronic design and test tools with a distributed designer's data base.
Each WorkSystem is a vertically integrated set of computer-aided engineering tools and addresses a specific area of a design cycle, or can be combined to do multiple tasks. The WorkSystem family is comprised of the following:
Designer's WorkSystem
Gate Array WorkSystem
Full Custom WorkSystem
Structured Custom WorkSystem
Standard Cell WorkSystem
PCB WorkSystem
Test and Measurement Worksystem Software Development WorkSystem
Together, the WorkSystems give you all the tools for your entire development process, including design capture, documentation, verification, test and measurement, PCB and IC layout, and production test.
All WorkSystems feature open architecture so that new tools may be added. Each WorkSystem also works with DEC VAXs", TekStation AT*, Apollo workstations, and the Tektronix 6000 Family of workstations.

The Designer's WorkSystem"'

Designer's Data Base Schematic Capture System (DDSC) - Complete Environment for Capturing and Managing Designs
MultiSim"' Family: IDEAL" Simulator, Functional Modeling Language (FML"'), Interactive Logic Analyzer (ILA'"), Statistical Fault Analyzer (SFA"'), Testability Measure Analyzer (TMA"), TurboChip" (Hardware Modeling)

SPICE Analog Simulator

Hilo" Software for Logic and Fault Simulation of Standard Parts, Microprocessors and Custom ICs
Libraries: Standard Parts
Librarian System for Modifying or Augmenting Existing Libraries
TekWriter" Engineering Documentation and Publication Software

Integrating design capture and verification tools with a data base, this WorkSystem is a complete environment for conceptual design and analysis.
The Designer's WorkSystem helps you find simple answers to difficult problems by integrating design capture and verification tools. You can even test ideas while they're still only ideas with the MultiSim" ${ }^{\prime \prime}$ simulator family.

* For full custom and structured custom WorkSystems.

MultiSim ${ }^{\text {iw }}$ AND ELECTRONIC DESIGN - Designed to support a variety of hardware platforms, Tektronix electronic design software is shown here on an Apollo 660 workstation networked to a VAX 11/780 super minicomputer. MultiSim, a family of logic simulator products and test analysis and verification tools, integrates the design environment with the test and measurement environments.

Designer's Data Base and Schematic Capture

The Designer's Data Base and Schematic Capture system offers a completely integrated, hierarchically structured software system for the design of complex electronic circuits. The software runs in a Unix ${ }^{\text {m" }}$ or UTek* environment.
Design information in the data base can be defined and accessed along two dimensions. Vertically, the user defines hierarchical levels from the most general and abstract (the functional level) to the most detailed (gate or transistor level). Horizontally, design at each level may appear as a behavioral description, in logical symbols, or as a circuit diagram. A one-button "push" command brings any level into view on the screen. The vertical hierarchy permits review and analysis to focus on details such as fanout and loading, when appropriate. Horizontally, the hierarchical structure encourages "what-if" and trade-off analysis.
The critical difference in the Tektronix designer's data base and schematic capture software lies in the nature and design of the data base. This proprietary, hierarchically organized data base allows the designer to work in his most comfortable style, at any level from top-down to bottom-up, or in any combination. In the same design, and engineer may define and display some blocks at the functional level, others at the logic level, and others at the circuit level. Since the user defines his own hierarchy, existing design practices need not be altered.

With the Tektronix WorkSystems, concurrent design is at your fingertips. Teams of engineers can work simultaneously on different levels. All team members have access to the entire design as it progresses. Because data entered at any design level instantly updates the data base, communication among team members is automatic. Analysis and simulation results are available to all team members. The project manager can view the progress of the entire team and check interfaces for compatibility and compliance with specifications. No copying of files or other special integration procedures are required - the design is always integrated. This total concurrent Team Engineering concept is unique to the Division. In addition, the networked data base is integrated with other tools within the WorkSystems to protect your design data investment.

TekWriter"'

TekWriter Publications Software is based on Interleaf's Workstation Publishing Software"' for engineering documentation.
Design graphics and text can be mixed within documents. TekWriter allows engineers to accelerate, improve and simplify the development of documentation associated with the design of integrated circuits and printed circuit boards.
TekWriter also enables the user to edit and format documents, as well as illustrate production quality technical publications. Users can select from various type faces and sizes.

VAXstation II－Using Tektronix＇s electronic design software，DEC＇s VAXstation＂II engineering workstation is one of the most powerful and flexible systems available．

MultiSim＊

ILA is used to create，compare and display waveform simulation data，as well as data derived from test and measurement equipment．
MultiSim is an integrated，modular family of design simulation and verification software tools．
The MultiSim family is composed of the following：
－A choice of different modeling methods：
functional（FML）
physical modeling（TurboChip＊）
C modeling
functional（gate and switch level modeling）
－IDEAL Logic Simulator（12－state，interac－ tive multilevel simulation kernel）．
－Statistical Fault Analyzer（SFA＂＇）－for fault simulation．Engineers doing combinatorial or sequential circuits can quickly analyze the accuracy of their test patterns．
－Interfaces to Tektronix＇s standard Micro－ computer Development Products （MicroLink＂＇）and Design Automation Sys－ tems（DASLink ${ }^{\prime \prime \prime}$ ）．

Logic Libraries

To reduce design time，Tektronix offers ac－ cess to a library of over 3000 standard parts，including those for TTL．FAST，CMOS，
ECL，and MICRP－P．
Systems and IC designers have a wide vari－ ety of state－of－the－art implementations for their electrical designs．The libraries provide primitive elements from simple gates to complex functions such as I／O buffers，mul－ tiplexers and memories．
＊${ }^{1}$ Test and Measurement WorkSystem

Gate Array
 WorkSystem

MERLYN－G＂Automatic Gate Array Place－ ment and Routing System
Libraries：Foundry，Logical，and Physical Gate Array Libraries

DDSC
MultiSim Family

Offering complete electrical and physical design system for gate array VLSI layout， verification and analysis，the Gate Array WorkSystem also provides 100 percent fully automated placement and routing，as well as access to extensive parts libraries．
The Gate Array WorkSystem from Tektronix brings all the power of the Designer＇s WorkSystem plus the proven Merlyn－G gate array layout tools．Modules are included within the WorkSystem to provide the user with automatic place and route．Logic Li－ braries are also part of the Gate Array WorkSystem．

Full Custom WorkSystem

LEIA＂Interactive Layout Editor for Custom ICs

Dracula II Layout Verifier
DDSC
MultiSim Family
This WorkSystem provides full custom chip design including design capture，simulation and an interactive full custom layout editor．
In addition to the full Designer＇s Work－ System features，the Tektronix Full Custom WorkSystem includes LEIA＊layout editor， which allows IC designers to create layouts for custom and semicustom ICs．LEIA is also Calma GDS II STREAM compatible，and in－ terfaces with the Dracula II layout software．

Dracula II，from ECAD，Inc．of Santa Clara， California，provides users with a tool to veri－ fy the accuracy of integrated circuit layout data．The program includes a design rule checker，electrical rule checker，layout pa－ rameter extractor（LPE），layout schematic and layout versus layout comparators，inter－ active post processor of LPE data base and a Versatec plotter interface．
＊For full custom and structured custom WorkSystems．

Structured Custom WorkSystem

Concorde Chip Compiler

DDSC

MultiSim Family

Coupled with Designer＇s WorkSystem，com－ plete electrical and physical design capture， verification and layout is provided for struc－ tured custom ICs．The Concorde＂${ }^{m}$ Chip Compiler is fully integrated with the data base and MultiSim family．

The Structured Custom WorkSystem com－ bines all the features of the Designer＇s WorkSystem along with the Concorde Chip Compiler．Logic Libraries complete the structured custom design system．

Concorde manages and simplifies digital design，geometry generation，placement， routing and packaging．This gives electrical engineers who are not IC design specialists the ability to develop their own application－ specific chips．

Standard Cell WorkSystem

MERLYN-S" Standard Cell Layout System

This WorkSystem offers complete design capture, simulation and layout, with foundry supported cell libraries for standard cell ICs.

PCB WorkSystem

MERLYN-PCB" Automatic PCB Design System

Foundry, Logical and Physical
Standard Parts Libraries

DDSC

MultiSim Family

Board-level design capture, verification and layout, as well as extensive parts libraries, are included in this WorkSystem.
The PCB WorkSystem combines the features of the Designer's WorkSystem along with the powerful features of the MerlynPCB automated printed circuit design system, and Parts Library.

Test and Measurement WorkSystem ${ }^{\text {m" }}$

DASLink" Interface to Tek DAS 9100

 Logic AnalyzersIn conjunction with Designer's WorkSystem, this WorkSystem compares real and prototype hardware with conceptual designs.

The Test and Measurement WorkSystem combines the features of Designer's WorkSystem along with the ILA (Interactive Logic Analyzer), DASLink interface to the Tektronix DAS 9100, and MicroLink interface to Software Development Products.

DASLink is a software module integrating the capabilities of the MultiSim logic simulator family with the Tektronix DAS 9100" Digital Analysis System. DASLink allows the DAS 9100 to stimulate a device with the same stimulus pattern data used with CAE Systems Division's IDEAL" logic simulator, part of the MultiSim family.

MicroLink FOR MICROCODE DEVELOPMENT - Tektronix's MicroLink provides an interface between the electronic design environment and the company's Microcomputer Development Systems. Using MicroLink, microcode can be developed on the TekStation" and then tested using the Tek 8540 emulator and associated IC probe shown here.

Software Development WorkSystem

MicroLink ${ }^{\text {w }}$ Interface to Software Development Tools for Microprocessor Development

With the Software Development WorkSystem, development and debug of microprocessor code can be done in parallel with hardware design.
The Software Development WorkSystem includes MicroLink, the Division's interface between SDP standard file format and the computer-aided engineering software. Also included with the WorkSystem is the Utek environment and compilers.

For further information about the WorkSystem products and configurations as they apply to your particular design needs, please contact:

Tektronix
CAE Systems Division
5302 Betsy Ross Drive
Santa Clara, CA 95050
Phone: (408) 727-1234
(800) 547-1512 or (800) 542-1877

Telex: 821378 CAESYSTEMS

WorkstationsThe Tek Approach

In the past, Tektronix has supported the needs of scientists and engineers by providing engineering instrumentation, computing controllers, software, and high-quality graphics terminals. Tek expands this support with the 6130-a 32-bit, high performance, multifunction workstation that delivers computing power, with a range of capabilities to handle a full spectrum of scientific and engineering applications.
The 6130 has the configurability and expandability to fit into your current environment and grow as your requirements change. It is designed to make it easy to add hardware capabilities and peripherals, and to develop and transport applications programs. As a result, you can put together exactly the system you need. Or, you can choose from several preconfigured Application Systems described at the right.

Flexible Interfacing

A workstation needs to fit into your existing environment. For maximum flexibility in interfacing, the 6130 provides RS-232, highspeed serial and parallel ports. Also supported is a Centronics-compatible hardcopy interface. IEEE Standard 488 General Purpose Interface Bus (GPIB), and high-speed buses. The 6130 also supports the Small Computer System Interface (SCSI), an auxiliary mass storage interface, and IBM PC compatible flexible disk format.
Terminal emulation is available as well, enabling the workstation to function as a termi-nal-to-host computer. Terminal emulation combines with the display's windowing capability, so that you can open a terminal emulation window to a host while simultaneously executing application programs through other windows.
Workstations can be interconnected to a Local Area Network (LAN) based on the IEEE-802.3 standard, using the TCP/IP protocol. The LAN can also be used for communications with VAX computers running compatible versions of UNIX or VMS. Supporting software handles communication services such as the ability to \log in to a remote workstation and transfer files between workstations. A distributed file system is also provided. In addition, the Tektronix operating system, based on UNIX, includes an electronic mail utility that provides user-to-user communications. An optional, fully relational database management system facilitates data sharing among workstations. The LAN also allows workstations to share the use of peripherals.

NEW Graphics Application Systems

Tektronix's NEW Family of Application Systems saves you configuration hassles. We identify the right hardware and software mix for the defined application areas. Then we integrate and test the equipment at the factory and ship you a preconfigured system tailored to your specific needs.
Our application systems are based on years of experience at providing graphics tools to technical and scientific users. They're selected from our broad product lines of computing and graphics hardware and software.
The Tektronix 6130 workstation with its UNIX-based operating system, standard interfaces, and multi-user environment provide the framework for these systems. Color graphics terminals are chosen from Tek's spectrum of price/performance options. A variety of graphics hard copy devices, including printers, plotters and color copiers, are also available. Finally, we've selected software that answers the needs of each individual application.
Since our family of Application Systems is based on Tek products, you can be assured that the hardware and software are designed to industry standards. When the products are compatible, the systems are expandable. They offer you a growth path. And your investment is backed by the best training and service organization in the industry.

Drafting Systems

Our Drafting Application Systems combine the processing power needed for responsive and demanding graphics, high-performance graphics terminals, a graphics tablet for input, a plotter for output and PLOT 10° TekniCAD, a versatile, drafting software tool. See page 61.

Technical Data Analysis and Presentation Systems

Technical Data Analysis (TDA) has another set of criteria. Computing and graphic requirements are less demanding. But there is a need for additional software to enable users to analyze data and prepare professional presentations.
Technical Data Analysis Systems meet your performance criteria. In addition, you can use the TBASIC language to run your existing Tek 4050 programs in this new environment with a minimum of changes. See page 56.

UNIX-Based Software
 Development System

Software developers require still more performance and memory for editing and compiling large programs. Special programming utilities, standard languages and the ability to easily port programs to other systems are their primary needs. Computer graphics here are used more frequently to interface with the system than to draw pictures. For software development, we've configured a powerful system that includes the development tools a programmer needs to do the job effectively. See page 54 .

6130Intelligent Graphics Workstation

The 6130 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

UNIX-Based Operating System
Integrated Local Area Network
4000 Family Terminal Support

The 6130 Intelligent Graphics Workstation is a powerful workstation designed around the UNIX-based UTek Operating System. The workstation supports color graphics, extended I/O and peripheral interface capabilities, extensive mass storage and networking functions. These expandable, low-cost 32 -bit workstations are designed for applications such as data analysis, software development, schematic entry, and computer-aided engineering.
The 6130 workstation features include up to 80 MB internal storage capacity, and compatibility with all 4000 Family terminals. The 6130 also features the UTek Operating System with C, FORTRAN, ISO Pascal and ANSI BASIC programming support. Interactive graphics are available through the PLOT 10 library of routines which include the Terminal Control System (TCS), Interactive Graphics Library (CORE standard) and the Software Terminal Interface.
A wide range of options and enhancements allow a user to configure the system. Display options include monochrome, color raster or DVST. A range of graphics processing power is also available. In addition, the 6130 is an integral part of our family of Application Systems, beginning on page 50.

NS32000-Based Compute Power

National Semiconductor's Series NS32000 microprocessors feature mainframe on a chip architecture, an instruction set designed for efficient execution of high-levellanguage programs, and a separate memory management unit for supporting virtual memory. The 6130 architecture is based on a single CPU and a local bus. The processor is the NS32016, with a 16 -bit data path and 32 -bit registers. The NS32016 supports UNIX and high-level language processing.
Additional processors for specialized functions, such as high-speed I/O, are attached to the local bus. Augmenting the 32016 CPU are a 32 -bit floating point processor and a 32-bit memory-management unit. These chip subsystems relieve the central CPU of specialized processing-intensive chores and ensure maximum system-wide throughput.

UNIX-Based Operating System

The 6130 Intelligent Graphics Workstation supports an extremely powerful version of the UNIX operating system (based on Berkeley 4.2, with many System V extension enhancements). Tektronix's implementation
of UNIX (UTek) has many useful features such as electronic mail, network support, line and screen editors and remote login. Also included are an expanded set of utilities and a high-performance virtual memory implementation.
A broad range of personal productivity software and high-level-language support for application development is available for the 6130 Intelligent Graphics Workstation.

A Computing Strategy

In selecting workstations, you look for systems that support a range of computing and display requirements, which allow you to utilize your existing investment in computing hardware and software, and can continue to grow as your requirements change. The 6130 Workstation meets those needs. As a value-added they have Tektronix' graphics experience and service/support organizations behind them. The 6130 gives you not just a workstation but the core of a computing strategy.

CHARACTERISTICS PERFORMANCE

Computer Engine/Memory

Processors - NS32016, NS32081 Floating Point Processor.
On-Board Memory - 1 MB (2, 4, or 6 additional MBs optional).
Access Method - Demand-paged virtual memory.

I/O SUBSYSTEM INTERFACE PORTS
Standard:
Dual RS-232-C
Data Rate - 110 baud to 19.2 kbaud with flagging
IEEE 488 GPIB
LAN 802.3
Protocol — TCP/IP

Optional:

High Speed GPIB
Dual, High Speed RS-232 (38.4 k band with flagging)
Dual Centronics
Small Computer Standard Interface
Sync/Async High Speed RS-232-C/RS-422
PHYSICAL CHARACTERISTICS SYSTEM CABINET

Dimensions	mm	in
Width	427.7	16.84
Height	154.9	6.1
Depth	607.0	23.9
Weight	$\mathbf{k g}$	lb
Net	9.1	20.0

OTHER CHARACTERISTICS

Line Voltage Ranges - 87 V ac to 132 V ac (115 V ac nom); 174 V ac to 264 V ac (230 V ac nom).
Line Frequency - 48 Hz to 66 Hz .
Power - 445 W max (including 200 W for accessory outlet).
Safety - Conforms to UL 478, CSA 154, IEC 435.

ORDERING INFORMATION

6130 Intelligent Graphics Workstation \$9,500

OPTIONS

Option 2A - 2 MB Memory Board.
Option 2B - 4 MB Memory Board.
Option 2C - 6 MB Memory Expansion.
Option 3A - Dual RS-232-C Data
Communications interface.
Option 3B — Dual Hardcopy Interface.
Option 3C - Sync/Async Data
Communications Interface.
Option 3D - High Speed IEEE 488 GPIB Interface.
Option 3E - Network Adapter, Ethernet.
Option 14 - Substitute 40 MB Hard Disk
Drive.
Option 15 - Substitute 80 MB Hard Disk Drive.
Option 40 - 40 MB Tape Cartridge
Expansion Unit.
Option 41 - 40 MB Mass Storage plus 40 MB Tape Expansion Unit.
Option 42 - 80 MB Mass Storage plus 40 MB Tape Expansion Unit.
Note: Price information available after November 1, 1985

WARRANTY-PLUS SERVICE PLANS

 SEE PAGE 457N1 - On-site Service Plan +9 months upon warranty expiration. (transferable).

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro 220V/16A.
Option A2 - UK 240V/13A.
Option A3 - Australian 240V/10A.
Option A4 - North American 240V/15A.
Option A5 - Switzerland 230V/16A.

LOCAL AREA NETWORK

The Tektronix Local Area Network (LAN) is a high-bandwidth communication facility used to interconnect a 6130 Workstation with various peripheral devices. The LAN is supported with UTek Operating System software. 6130-LAN features include: a distributed file system (virtual files), remote login and execution (virtual terminal), and highspeed bidirectional file transfer.

Because the LAN is a nonproprietary network, no system training or unique LAN programming is required to use it. The LAN's use of VLSI technology makes the 6130 Workstation cost effective and easy to maintain.
The LAN provides multi-layered services at all levels of the International Standards Organization/Open Systems Interconnection reference model. UTek based utilities provide remote commands allowing users to get work done on other 6130 Workstations on the LAN. UTek utilities also have the ability to copy files to and from remote nodes (rcp), to login to a remote node (rlogin), to execute a process on another node (rsh), and to send mail.

Higher level application services also include File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and Virtual Transfer (Telnet)-all compatible with the Department of Defense protocols.

Transmission Control Protocol/Internet Protocol (TCP/IP) handles communications between a user program and other processes executing at the same workstation, at a different workstation on the LAN or on a different network.

Configuration Flexibility

Networks may be composed of virtually limitless combinations of 6130s and compatible systems. For applications emphasizing communications and selective file transfer, workstations can be configured with peripherals and high-capacity disk or tape drives. In other applications, workstations can be configured with more basic, local resources. Workstations rely on the network for access to high-capacity print/file server nodes.
Data Transmission. Data is transmitted serially over the LAN at a maximum rate of 10 Mbit per second. Access to the network cable is through a Carrier Sense Multiple Access with Collision Detect (CSMA/CD) technique. If two nodes attempt to transmit data at the same time, the collision-detect circuitry senses the conflict, allowing the nodes to rebroadcast without collision. This results in an extremely low collision rate (statistically) even in high traffic environments.

LAN Administration. The LAN configuration utility permits fast, easy integration of a workstation into the network. Also standard are utilities to assist in monitoring/controlling the network, such as traffic indicators and commands to display the status of each network node (connections and protocols in use). For security, users can specify read, write, and execute permission over the LAN. Remote administrative functions handle file system maintenance and configuration management as well as user/node/group identifications.

PERIPHERALS

The 6130 Intelligent Graphics Workstation includes several peripheral support units that can be linked via Local Area Network (LAN). This interconnection gives all users on the LAN access to all peripherals. Mass storage devices, such as the 61TC01 Cartridge Tape Drive, expand the amount of on-line data storage available and provide for convenient archiving and back-up files. 6130 workstations support various types of peripheral access. Peripheral devices can be dedicated to a single workstation, shared among workstations on the LAN, or a workstation can be configured as a peripheral/file service node that can be accessed by all other workstations on the network.

The 6000 Family peripherals interact with the workstations through a variety of interfaces. Equipment interface ports for the 6130 include: RS-232-C, RS-422, GPIB, and SCSI.

61TC01 Cartridge Tape Drive

The 61TC01 is a removable, streaming media backup system for the 6130 Workstation. It features streaming or start/stop operation, quick data retrieval or backup, removable 45 MB or 60 MB tape cartridge, and standard SCSI interface. Data transfer rate is 86.7 kB per second at 90 ips . 61TC01 is part of Option 40, Option 41, and Option 42.

4644 Dot Matrix Printer

The 4644 provides high-speed draft printing at 160 characters per second or near-letterquality printing at 27 characters per second. It features dot addressable graphics and seven international character sets, in addition to U.S. ASCII. A 17 -inch wide platen is standard.

4695 Color Graphics Copier

The 4695 provides high-quality, color hard copies of workstation displays. It uses a unique drop-on-demand ink-jet technology to provide addressability of 120 dots per inch in both horizontal and vertical directions. Inks and paper are carefully matched to give excellent color saturation and brilliance. True black is provided by a separate black ink supply.

THE SOFTWARE STORY
The 6130 Workstation provides an integrated, state-of-the-art, user interface and a variety of general-purpose software tools that enhance professional productivity. In addition, the porting of software to the workstation is simplified by the extensive use of software standards and by specialized tools that support the tasks of developing applications programs. Software tools play a key role in enhancing professionals' productivity.
The Casual User Interface is a complete operating environment. The user can move within the CUI to use the conventional operating system interface. Application programs developed or acquired may also be added to the CUI.

UTek-An Enhanced UNIX

- Comprehensive set of reliable utilities
- Improved program development environment
- Systems Administration Interface
- Distributed File System simplifies network operations
- Hybrid utility set supports both System V and Berkeley 4.2 features
- Interactive tutorials
- Improved on line help
- Backed by Tektronix service and support

UTek, the universal system for Tektronix Intelligent Graphics Workstations, is a UNIXenhanced product that provides a consistent interface across the workstations. Along with the use of one family of processors (National's Series 32000), UTek helps ensure that programs developed on one workstation will run on any similarly configured workstation.

UTek provides all the capabilities that have led to UNIX's widespread popularity, including:

- A multi-user, multi-tasking environment
- Hierarchical file and directory organization
- A simple but powerful command language that includes looping and branching capabilities
- A great number of simple utilities that can be combined in a multitude of ways
- Excellent program development tools

In addition, UTek's enhancements provide added-value to programmers and end users alike. These enhancements include:

- A virtual memory implementation that allows the efficient execution of very large programs
- A command set, with extensive bug fixes and enhancements to system utilities
- A Multiple-Device Queueing System that provides sophisticated queueing capabilities not often found on UNIX-based systems.
Another key UTek enhancement is the Distributed File System, which helps you get the maximum possible benefit from being part of a network of workstations linked via LAN. The DFS means that you no longer have to use special commands such as remote login (rlogin) or remote copy (rcp) to access another network node. Instead, you can refer to a file on another network node by simply prefixing the file's regular path name with a double slash and the name of the network node on which the file resides. (The special "remote" commands are still available, for users who prefer them.)
Frequently, several organizations within a company will share the same LAN network; however, they may not want to share the same Distributed File System. With the 6000 Family DFS, multiple distributed file systems can coexist and even overlap.
UTek includes a number of features designed to give you the advantages of UNIX without the disadvantages. To start with, there's an interactive on line tutorial, developed expressly for the Tek Intelligent Graphics Workstation that introduces basic UNIX concepts
The on-line "manual pages" that describe each system command have been extensively revised, and can now be accessed through an interactive manual page browser. On-line explanations of system error messages are also available.
Even system administration is easier, thanks to an interactive, menu-based program called "sysadmin." Sysadmin provides help with system administration tasks, such as configuring ports, administering the network, creating user accounts, installing software, and maintaining the file system.
In addition, with the 4100 Series and 4115B Computer Display Terminals, and 4120 Se ries Color Graphics Workstations, the optional Casual User Interface (CUI) creates an alternate, window interface that provides the full power of UTek. With the CUI, you acces's
system functions by using a printing device to select menu items, thus minimizing the need to know about command names and syntax.
UTek is packaged to enable you to make maximum use of your available disk space:
-The core package, which comes standard on the 6130 workstation, contains most standard commands and utilities, including the Distributed File System.
- UTek/A, the Auxiliary Utilities package contains on line documentation, text-processing utilities, the C shell, and miscellaneous utilities.
- UTek/PS, the Programming Support package, contains programming-related libraries and utilities, such as archivers, debuggers, and profiling tools. If you use any of the workstation's compilers, you must also purchase UTek/PS.

Minitab Statistical Analysis

This interactive data analysis package for the UTek environment helps you make better decisions by turning data into useful information.

- Comprehensive, easy-to-use data analysis
- Versatile plotting capability
- Cross tabulation
- Fortran-formatted I/O
- Command file capability
- English-language commands, on-line help

Minitab is a general-purpose statistics package that helps you analyze data, then produce graphs and tabular views of the analyzed data.
Capabilities include: Regression analysis with diagnostics, residual analysis and stepwise procedures, Analysis of variance, Nonparametric methods, Times series analysis, and Matrix operations, including eigenanalysis.

Software Development

To lower the cost of developing and transporting application programs, the 6130 Family uses an open architecture approach and supports a number of software standards.

Standardization starts with an operating systems based on UNIX, which is becoming a standard among 16 -bit and 32 -bit systems. A large pool of existing UNIX applications programs can run on the workstations. The Tektronix implementation is based on Berkeley 4.2, with extensions such as demandpaged virtual memory for the efficient execution of very large programs. For languages, the 6130 has high-performance compilers for FORTRAN 77, C, and ISO Pascal. Also supported is the proposed ANSI BASIC, which integrates graphics, program segmentation, file processing and structured programming concepts.
Tektronix PLOT 10 software packages like Graphical Kernel System (GKS), a standard that brings the advantages of device-independent graphics to workstation applications while maintaining high performance. TekniCAD, TCS and IGL are supported on the 6130.

Relational Data Base Management

DaTek, a powerful, easy-to-use relational data base management system provides a vital tool for information management. No programming is required. To get information from the data base, you use the IBM-standard SQL query language. Applications programs can use DaTek through C, FORTRAN, and Pascal preprocessors. This system allows the user to keep information in independent files, instead of locking data into specific programs. These are displayed as simple, easy-to-read tables called relations. A collection of relations make up a data base. Because the data bases are maintained independent of any particular application, different programs can access the same data. This data independence also means you will be able to get answers to questions your programs aren't programmed to ask by using simple, English phrases (through the Query Language). It also allows data bases to be reorganized as changing requirements dictate.

Data Base Management System Features

- SQL Query Language-SQL, the IBM standard for Non-Procedural (i.e., not requiring programming) Query Languages, allows the user to ask questions of the data base.
- Report Writer-The Report Writer allows users to quickly define reports to be produced from data in data bases. These definitions can be edited to reflect changing requirements.
- Program Interface-All the facilities of the data base management system are available to any programming language: C, FORTRAN, Pascal, even proposed ANSI BASIC.
- Help Facilities-On-line interactive HELP facilities provide easy access to DaTek documentation.
The data base management system provides a tool for handling the extensive information management needs of today's professionals. It can also be a network resource, allowing users from varied disciplines and locations within a corporation to share data.

6130S62

UNIX Software Development System

GPIB
 LEEE-488

The 6130S62 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

The UNIX Software Development System is based on the 6130 Intelligent Graphics Workstation, a powerful 32-bit system with the UTek ${ }^{\star}$ Operating System based on UNIX.
The system comes standard with 2 MB of system RAM, a floating point processor, a 360 kB , $5 \frac{1}{4}$ inch flexible disk drive, and an 80 MB , $5 \frac{1}{4}$ inch Winchester disk. Also included are dual RS-232, GPIB and LAN interfaces.
We're offering the 4105A Computer Display Terminal (page 62), featuring a 13 -inch screen, 480×360 pixel resolution, and a selection of eight colors from a 64-color palette to provide the graphic user interface.
For a hard copy device, the 4644 Dot Matrix Printer handles the routine printing needs of a software development team. It offers a choice of draft printing at 160 cps and near letter quality printing at 27 cps . For graphics output, the 4644 offers high-density, 8 -pin, 9 -pin, or 16 -pin graphics, with six horizontal densities up to 240 dots per inch and three vertical densities up to 216 dots per inch.

We've also bundled development tools. The Auxiliary Utilities package contains the system's on-line documentation as well as test processing utilities, the C shell and other utilities.

The Programming Support package contains programming-related libraries and utilities including archivers, debuggers and profiling tools. Of course, high-performance compilers for C, FORTRAN 77 and ISO Pascal are provided for program development.
As with the rest of Tektronix's Application Systems, the software development workstation is designed to grow with your project. Add users, add processing power, and add software.

ORDERING INFORMATION
 6130 S62 UNIX Software Development
 System

$\mathbf{\$ 1 8 , 1 7 5}$
Complete system description, option listing and pricing are available through your local Tektronix sales office.

6130S11

Single-User Drafting System

The Single-User Drafting System is based on the 6130 Intelligent Graphics Workstation, a low-cost, but powerful 32 -bit system with the UTek Operating System based on UNIX. Specifically designed for applications such as drafting, this system comes standard with 1 MB of system RAM, a floating point processor, a $360 \mathrm{kB}, 51 / 4$ inch flexible disk drive, and a $40 \mathrm{MB}, 51 / 4$ inch Winchester disk. Also included are dual high-speed RS-232, GPIB and LAN interfaces.

Different types of drafting applications demand different levels of graphics performance, so we're offering several optional display terminals.
The 4107A Computer Display Terminal (page 59) features a 13 -inch screen, 640×480 pixel resolution, and a selection of 16 colors from a 64-color palette. The 4109A offers the same level of performance but has a 19 -inch display with 1280×1024 resolution. This terminal is also easily expandable to 4128 3D wire-frame and 4129 3D shaded surface graphics.
For the finest detail, the 4125 Color Graphics Workstation (page 66) has a color, 19inch display with 1280×1024 resolution. This terminal is also easily expandable to 4128 3D wire-frame and 4129 3D shaded surface graphics.

The menu-picking device is the 4957 Graphics Tablet (page 79) for use with the 4107A, 4109 A or 4125.

For your hard copy needs, we offer an optional Calcomp 1043 plotter with the capability to produce E-size drawings.
Drafters want the power of color graphics without spending hours learning the complexities of an operating system or a new command language to get a program to work. Our application software addresses those requirements.
For example, the Casual User Interface (CUI) lets the user access this powerful computer and the features of the operating system through menu selections instead of cryptic commands.
The drafting software is PLOT 10 TekniCAD, an easy-to-use, versatile program that works the way a drafter works. It also has a menudriven interface and uses English promptsagain, no foreign commands to learn.
TekniCAD lets you create drawings easily by combining stored images or with freeform input. Special functions let you edit and update your work quickly. You can, for instance, COPY drawings or segments, automatically CHECK the accuracy of your data, and even have the system archive your drawings.
$6130 S 12$ Two-User Drating System

Our Two-User Drafting System is also based on the 6130, but adds an optional 80 MB disk and 1 MB of system memory to accommodate an additional user. The same optional displays are available, but the configuration includes two terminals and two graphic tablets. The software offered is the same as for the single-user system.
These systems are designed to meet your requirements today. But we know how fast the picture changes, so we're committed to protecting your investment tomorrow. The Drafting Application systems are compatible with Tektronix 4100 and 4110 Computer Display Terminals and can fit easily into your existing computing environment. You can add additional processing power, peripherals or other application software as your needs dictate.

ORDERING INFORMATION

6130S11 Single-User Drafting System $\$ 13,100$ 6130S12 Two-User Drafting System \$18,650 Complete system descriptions, option listing and pricing are available through your local Tektronix Sales Office.

6130571
 Technical Data Analysis System

The 6130571 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

The Technical Data Analysis System is based on the 6130 Intelligent Graphics Workstation, a low-cost, powerful 32 -bit system with the UTek ${ }^{*}$ Operating System based on UNIX.
The system comes standard with 1 MB of system RAM, a floating point processor, a $360 \mathrm{kB}, 51 / 4$ inch flexible disk drive, and a $40 \mathrm{MB}, 51 / 4$ inch Winchester disk. Also included are dual RS-232, GPIB and LAN interfaces.
We're offering several optional display terminals to accommodate various graphing needs. The 4105A Computer Display Terminal (page 58) features a 13 -inch screen, 480×360 pixel resolution, and a selection of eight colors from a 64 -color palette. The 4109A offers 640×480 pixel resolution with a 19 -inch display that is more appropriate for dense graphics. It features 16 colors from a palette of 4096 for greater differentiation of data.

For archival purposes, we've selected the 4695 Color Graphics Copier (page 77), a low-cost, high-performance copier (120 dots per inch) with the capability to produce color copies and transparencies.
Software was chosen to make the analyst's job easier. For example, the Casual User Interface (CUI) lets the user access the features of the operating system through menu selections instead of computer commands.
For those users with 4050 Desktop Computers who want to expand their system capability, we are providing TBASIC. Based on the proposed ANSI standard, it allows you to recompile 4050 BASIC programs with a minimum of changes. TBASIC also offers excellent color graphics and GPIB support.

$6130 S 73$ Technical Data Analysis and Presentation System

The 6130S73 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Our Technical Data Analysis and Presentation System is also based on the 6130, but adds an optional 80 MB disk to accommodate running more application software. The same optional displays are featured.

Besides the 4695 low-cost color copier, the 4692 Color Graphics Copier (page 76) is also optionally available. With higher resolution (154 dots per inch), this copier produces graphics with precise registration and rich, saturated hues. It also produces transparencies as well as copies. The 4510A Color Graphics Rasterizer (page 76) can be used with the 4692 to further improve the resolution and to expand the color palette to over 274,000 selectable colors.
As with the 6130 S71 Technical Data Analysis System, this system also includes TBASIC which allows you to recompile 4050 BASIC programs with a minimum of changes. TBASIC also offers excellent color graphics and GPIB support.
Additional application software for this system includes enhancements to the UTek Operating System and a presentation graphics package.
Special enhancements of UTek let scientists and researchers get up to speed fast and take advantage of the powerful features of the UNIX-based operating system. The Auxiliary Utilities provide on-line documentation for the operating system, as well as text processing utilities.
Another important requirement of many TDA applications is the ability to present the results of the analysis. PLOT 10 TekniCAP software automates the creation and production of color presentation graphics. This menu-driven program lets users create pro-fessional-looking graphics quickly and easily.

Analyze the Results for Yourself

With either of these application solutions, you have the flexibility to expand your system and to add other application software to keep pace with your needs.

[^6]

4100A Series Family Terminals

4100A Series

Continuing Tek's commitment to increased value at lower cost, the Terminals Division introduces the complete " A " Series: a range of color graphics terminals, from the inexpensive 4104A to the cost effective 4109A, designed to meet today's market demands.
New A Series features are:
More and Improved Segments. The greatest improvements are in the area of segment support. With the new Segment Editing capability, users can modify existing segments without having to re-transmit the entire segment, thus saving CPU and transmission time and costs. Another new feature, Segment Subroutining, is similar to a software subroutine call. By defining an of-ten-used graphic primitive in a segment, it can then be called as often as needed, saving a significant amount of memory. This along with improved memory algorithims, allows a user to define more than three times as many segments as before, without adding any more memory.
One Megabyte of Memory. This new option gives the A Series a strong competitive advantage since no other graphics terminals in this price range offers 1 megabyte of memory.
Expanded Tablet Support. To meet customer demand, the larger Tek 4958 tablet has been added to the current Tek 4957 tablet support.
Circular Arcs. Now, arcs and circles can be drawn with one command and a few points, again saving valuable CPU and communication time.
Complete 2-Way PPI Support. Users needing to copy from RS-232 devices can now do so.
Expanded Copier Support. The new terminals not only support the full range of Tektronix color copiers, they also support the

Tek 4644 Dot Matrix Printer, as well as popular low cost printers such as the HP Thinkjet, Epson FX80, and others, in both graphics and dialog copies.
Software Compatibility. All the 4100A terminals accept programs written for Tek 4010 terminals and are upward compatible with applications used on the Tek 4110 and 4120 terminals. Some of the software supporting the 4100A line include Tektronix PLOT 10

Interactive Graphics Library, PLOT 10 Graphic Kernel System, PLOT 10 Terminal Control System, PLOT 10 TekniCAD and TekniCAP, DISSPLA and TELL-A-GRAPH, SAS/GRAPH, and a host of others. The 4100A line is VT-100 compatible with powerful editing and word processing abilitites designed to ANSI 3.64 standards. Each 4100A is designed to facilitate easy transition to higher performance terminals as needs change.

	4104A	4105A	$\begin{gathered} \text { 4106A/ } \\ \text { CX4106A } \end{gathered}$	$\begin{gathered} \text { 4107A/ } \\ \text { CX4107A } \end{gathered}$	$\begin{gathered} \text { 4109A/ } \\ \text { CX4109A } \\ \hline \end{gathered}$
Display Size	13-inch	13-inch	13-inch	13-inch	19-inch
Color Palette	64	64	64	64	4096
Displayable Colors: Graphics Alphanumeric	$\begin{aligned} & 4 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 8 \\ \hline \end{gathered}$
Pixel Resolution	480×360	480×360	640×480	640×480	640×480
VT-100 compatible commands	yes	yes	yes	yes	yes
Expanded segment support	no	no	yes	yes	yes
Arc curve commands	no	no	yes	yes	yes
Pixel operations	yes	yes	yes	yes	yes
Two-way peripheral port communications	no	no	yes	yes	yes
Enhanced color copier support	yes	yes	yes	yes	yes
Fast monochrome copier support	yes	yes	yes	yes	yes
4957/4958 Tablet support	no	no	yes	yes	yes
Megabyte of memory	no	no	no	yes	yes
4510 Support	no	no	yes	yes	yes
Page	58	58	58	59	60
Prices Begin At	\$2,995	\$3,495	\$5,995/6,995	\$6,995/7,995	\$8,995/9,995

Note: Each terminal supports the 4644, 4691, 4692 \& 4695

NEW 4104A
Computer Display Terminal
Lowest Cost Tektronix Color Graphics Terminal
Fully Compatible with 4010 Graphic
Applications
Includes VT-100 (ANSI 3.64) Alphanumeric Features
A low cost tilt/swivel stand which adjusts the display to the user's need is now available.

The 4104A brings color graphics within reach of every computer user. The 4104A shares the excellent display characteristics and versatility of the industry standard 4105A, and is fully upward compatible with the 4100 terminal line. The 4104A also shares the 4105A's unprecedented MTBF of 13,000 hours, making it the most reliable graphics terminal in its price range in the world today.
The 4104 A has a flicker-free, 60 Hz noninterlaced refresh rate, precision in-line gun with fixed convergence, and anti-glare etched 13 -inch (330 mm) display screen. This combination optimizes the 480×360 pixel resolution, rivaling more expensive, unbalanced 800×240 or 512×512 resolution terminals.
The four graphic and four dialog colors, from the palette of 64, can be displayed individually or simultaneously, making up to eight colors available to a user.

ORDERING INFORMATION

4104A Computer Display Terminal \$2,995 Includes: power cord ($161-0066-00$); RS-232 cable ($012-0911-00$); pkg of six keyboard overlays ($334-5164-00$); standard keyboard (119-1592-00); operator manual ($070-5789-00$); reference guide ($070-4528-02$).

OPTIONS

Option 4A - United Kingdom Keyboard.
NC
Option 4B — French Keyboard. NC
Option 4C — Swedish Keyboard.
Option 4F — Danish/Norwegian Keyboard.
Option 4G - German Keyboard.
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$

> WARRANTY-PLUS SERVICE PLANS SEE PAGE 457
Nの - Installation and Set-up
$+\$ 150$
N2 - Service Plan +2 Years Service $\quad+\$ 195$
N3 - OEM Service Plan +12 Months Service $+\mathbf{\$ 1 2 0}$
N4 - OEM On-Site Installation \& Set-up $\quad+\mathbf{\$ 1 5 0}$

4105A computer Display Terminal

Low Cost Color Graphics

VT-100 (ANSI 3.64) Compatible Alphanumerics
Compatible with 4010, 4100, 4110, and 4120 Graphic Terminals
A low cost tilt/swivel stand which adjusts the display to the user's need is now available.

For users with greater graphics demands, the 4105A supplies all the same features as the 4104A, and then some. The 4105A has eight graphic and eight dialog colors, all of which may be easily changed with the local Interactive Color Interface. Also added in the 4105A are an additional 133 predefined fill patterns for polygon fill and pixel operations. Coupled with communication speeds up to 38.4 kbaud , these features ensure easy creation and editing of color graphics and text.

Workstation Furniture for these products are

 shown on pages 83 and 84.For direct order of 4104A or 4105A, call 1-800-426-2200, Ext. 431. In Oregon, call collect: (503) 627-9000, Ext. 431.

The 4105A has the flicker-free, 60 Hz noninterlaced refresh rate precision in-line gun with fixed convergence, and anti-glare etched 13 -inch (330 mm) display screen. This combination optimizes the 480×360 pixel resolution, rivaling more expensive, unbalanced 800×240 or 512×512 resolution terminals.
In graphics mode, the 4105 A has eight graphics colors from a palette of 64, eight predefined line types, 11 marker types, and rapid polygon fill with one of the 149 predefined solid or dithered patterns. Graphic windowing enhances effective 4105A resolution to an addressable 4096×4096 points.

ORDERING INFORMATION
 4105A Computer Display Terminal $\mathbf{\$ 3 , 4 9 5}$ Includes: Same as 4104A except operator manual (070-4527-02); programmer reference manual (070-4526-03); reference guide (070-4528-03).
 OPTIONS
 Same as 4104A.
 INTERNATIONAL POWER PLUG OPTIONS Same as 4104A.
 WARRANTY-PLUS SERVICE PLANS SEE PAGE 457
 Same as 4104A.

4106A computer Display Terminal
Low Cost, Higher Resolution Color Graphics
VT-100 (ANSI 3.64) Compatible
Alphanumerics
Compatible with 4010, 4100, 4110, and 4120 Graphic Terminals
A low cost tiltswivel stand which adjusts the display to the user's need is now available.

The 4106A rivals costlier graphics displays in resolution, reliability, and alphanumeric capability. Excellent display quality with a 640×480 pixel resolution make creation and editing of graphics and text incredibly easy. The 4106A includes the advanced 4107A graphics features. These include multiple views, segment editing, true local zoom and pan, multiple surfaces, tablet support, peripheral port operations, and more. As users' needs grow, an easily installed upgrade expands the terminal memory from 32 kbytes to 288 kbytes.
A companion product for the IBM environment, the CX4106A is also available. See the CX terminals section for more details.

ORDERING INFORMATION

4106A Computer Display Terminal
\$5,995
Includes: Same as 4104A except operator manual (070-4981-02); reference guide (070-4528-02).

OPTIONS
Same as 4104A.
INTERNATIONAL POWER PLUG OPTIONS Same as 4104A.

WARRANTY-PLUS SERVICE PLANS SEE PAGE 457

Same as 4104A.

Flexible leasing programs available in the continental U.S.

4107AComputer Display Terminal

Low Cost, High Performance Color Graphics
VT-100 (ANSI 3.64) Compatible
Alphanumerics
Compatible with 4010, 4100, 4110, and 4120 Graphic Terminals
A low cost tilt/swivel stand which adjusts the display to the user's need is now available.

For advanced graphic applications, the sophisticated 4107A is the price/performance leader. With its advanced graphic abilities, such as segment editing and segment subroutining, advanced pick operations and 2-way peripheral port operations, the 4107A rivals more costly graphic terminals. The 640×480 pixel resolution is enhanced by the flicker-free, 60 Hz noninterlaced refresh rate precision in-line gun with fixed convergence, and anti-glare etched 13-inch $(330 \mathrm{~mm}$) display screen. Effective screen resolution is 4096×4096 points, with true local zoom and pan making effective use of this resolution.

The graphics area supports 16 colors from a palette of 64 . Other graphic features include multiple views, multiple surfaces, circular arcs, user definable cursors, tablet support, and up to 1 megabyte of RAM for segments. Also included are eight predefined line styles, 11 marker types, and 149 predefined solid or dithered patterns for polygon fill. Two styles of graphics text may be scaled, rotated, and adjusted in size.

The 4107A supports a wide variety of copiers and printers for both Graphic and Dialog copies. These include the popular Tektronix 4691, 4692 and 4695 Color Graphics Copiers, the Tektronix 4644 monochrome printer, the Hewlett-Packard Thinkjete, the Epson FX-80'", and many other Epson compatible printers.
A companion product for the IBM environment, the CX4107A is also available. See the CX terminals section for more details.

[^7]4109A Computer Display Terminal
Low Cost, High Performance 19 inch Color Graphics

VT-100 (ANSI 3.64) Compatible
Alphanumerics
Compatible with 4010, 4100, 4110, and 4120 Graphic Terminals
RGB Output for External Video Applications
For advanced graphic applications requiring a large screen and full 4107A compatibility, the cost effective 4109A is the solution. With its advanced graphic abilities, such as segment editing and segment subroutining, advanced pick operations and 2-way peripheral port operations, the 4109A rivals more costly graphic terminals. The 640×480 pixel resolution is enhanced by the flicker-free, 60 Hz noninterlaced refresh rate precision in-line gun with fixed convergence, and 19 inch (483 mm) shadow mask display screen. Effective screen resolution is 4096×4096 points, with true local zoom and pan making effective use of this resolution.
The graphics area supports 16 colors from a palette of 4096. Other graphic features include multiple views, multiple surfaces, circular arcs, user definable cursors, tablet support, and up to 1 megabyte of RAM for segments. Also included are eight predefined line styles, 11 marker types, and 149 predefined solid or dithered patterns for polygon fill. Two styles of Graphics text may be scaled, rotated, and adjusted in size.
The 4109A supports a wide variety of copiers and printers for both Graphic and Dialog copies. These include the popular Tektronix 4691, 4692 and 4695 Color Graphics Copiers, the Tektronix 4644 monochrome printer, the Hewlett-Packard Thinkjet, the Epson FX-80, and many other Epson compatible printers.
A companion product for the IBM environment, the CX4109A is also available. See the CX terminals section for more details.

ORDERING INFORMATION

4109A Computer Display Terminal $\$ 8,995$ Includes: 8 ft power cord (161-0066-00); 12 ft host port RS-232 cable (012-0911-00); pkg of six keyboard overlays (334-5164-00); standard keyboard (119-1592-00); operator manual (070-4981-02); reference guide (070-4892-02).

OPTIONS

Option 21 - 1MB of RAM memory. $\quad \mathbf{\$ 2 , 0 0 0}$
Option 4A - United Kingdom Keyboard. NC
Option 4B - French Keyboard.
NC
Option 4C - Swedish Keyboard.
NC
Option 4F - Danish/Norwegian Keyboard.
Option 4G - German Keyboard.
NC
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz .
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS
 \section*{SEE PAGE 457}

N0 - Installation and Set-up. $+\mathbf{+ 1 5 0}$
N2 - Service Plan +2 Years Service. $+\$ 445$
N3 - OEM Service Plan + 12 Months Ser-
vice.
$+\$ 325$
N4 - OEM On-Site Installation \& Set-up.

CX4106A/CX4107A/ CX4109A

A Direct Coaxial Interface to a 3274 Cluster Controller

32-Line 3278/3279 Alphanumeric Emulation
An IBM-Style Keyboard
Expandability Up to 1 MB Local Memory

Segment Subroutine and Editing Features

Drivers for a Full Range of Tektronix Color Graphics Copiers, the 4510 Color Graphics Rasterizer and Tek 4957 and 4958 Graphics Tablets

Drivers for Selected Monochrome Graphics Printers

The CX4100 Series has all the features of Tektronix's family of low-cost, high-performance 4100 Series terminals, making the benefits of Tektronix's PLOT 10 graphics command set available in IBM 3270 environments. All three terminals feature full plugcompatible IBM 3270 alphanumerics and a familiar IBM-style keyboard.

The CX4100 Series terminals are identical to the 4100 Series terminals in their sophisticated graphics capabilities. They have a 60 Hz noninterlaced display with $4096 \times$ 4096 addressability displayed in a $640 \times$ 480 matrix. This series has the ability to draw solid or dashed lines in up to 16 colors using eight line styles or 11 marker types. Also featured is a rapid area fill, with solid colors or patterns, scalable and rotatable text, true zoom and pan, and local picture segments for storing picture elements in

CX4100A Series fully supports IBM 3270 color alphanumerics.

CX4100A Series menu enables easy user color section.

RAM. These segments can be rotated, scaled, and transformed in two dimensions, and used to define the graphics cursor. The CX4100 Series terminals feature up to 64 definable views of the graphics information, multiple bit-planes for layering complex images, and extensive graphic input features such as user-defined cursor, inking, and rubberbanding.
The CX4100 IBM-style keyboard matches those on the 3278 and 3279 IBM terminals: the same arrangement of keys, and identical alphanumeric capability, plus added easy-to-use enhancements, such as individual key programmability, a user-selectable ten-key pad, and a joydisk for quick cursor movement and graphics input.

ORDERING INFORMATION

CX4106A Computer Display Terminal $\$ 6,995$
CX4107A Computer Display Terminal $\$ 7,995$ CX4109A Computer Display Terminal
\$9,995

4170 S Systems-Drafting and Presentation Graphics Applications
The 4170S3, 4170S4, and 4170S5 bundled systems provide the end-user a range of low-cost, powerful drafting and presentation systems. These systems feature significant cost savings over the price of components purchased separately and fast performance in a single-user, standalone application environment. Installation by Tektronix field personnel is available at no charge by ordering the NO installation option.
The display files developed on the 4170S3/4/5 systems can be translated into formats compatible with other Tektronix implementations of the software. And the 4170 configurations included in the S systems can be upgraded to a full set of programming tools for users who desire local, standalone programmability.

4170S3/4170S4 Drafting Systems

The 4170S3 and 4170S4 Drafting Systems feature 4100P30 TekniCAD ComputerAided Drafting, a high-performance 2D drafting software package. The system includes:

- 4170 Local Graphics Processing Unit, with additional 256 K RAM (total of 512 K RAM) and 10 MB hard disk and hard disk controller.
- The 4100P30 TekniCAD drafting software package.
- A color graphics terminal. The 417053 system includes a 4107A terminal; the 4170S4 system includes a 4109A terminal.
- A 4957 Graphics Tablet for graphics input and function selection.

417055 TekniCAP Presentation System

The 4170S5 TekniCAP Presentation System features the 4100P60 TekniCAP ComputerAided Presentation software package. This system offers a turnkey solution for persons who want to make transparencies for overhead presentations. The system includes:

- 4170 Local Graphics Processing Unit with 10 MB hard disk and hard disk controller.
- 4100P60 TekniCAP software package.
- Additional system software needed to run TekniCAP.
- A 4107A color graphics terminal.
- A 4695 color graphics copier, with a box of transparency sheets.

ORDERING INFORMATION	
4170 S3 Drafting System	\$10,675
417054 Drafting System	\$12,675
417055 TekniCAP Presentation	
System	\$10,995
OPTIONS	
Option A1-220 V Euro Plug.	NC
Option A2-240 V UK Plug.	NC
N 0 - Installation (No Charge).	NC
N1 - Warranty-Plus (One Year).	
(for 4170S3)	+\$385
(for 4170S4)	+\$385
(for 4170S5)	+\$770

4170 Local Graphics Processing Unit

The 4170 provides the $4104 \mathrm{~A}, 4105 \mathrm{~A}$, 4106A, 4107A, and 4109A Computer Display Terminals with standalone power specialized for graphics tasks. The 4170 offers all the elements necessary to locally write, edit, compile, link, debug and run programs.

CHARACTERISTICS

 PROCESSORSIntel 8086 MPU.
Intel 8087 Numeric Co-Processor. MEMORY
Port A $375 \mathrm{~ns} \leqslant$ memory cycle of Port B $<1.2 \mu \mathrm{~s}$. Standard - 256 K Error Checking and Correcting. Option 30 - 512 K Error Checking and Correcting.

DISK STORAGE

Standard - Two each $51 / 4 / 4$ in Floppy Disk Drives, 327 K formatted capacity per diskette, IBM PC compatible, $125 \mathrm{Kbits} / \mathrm{s}$ transfer rate.
Option $03-5 \frac{1}{4}$ in Winchester Disk Drive, 8 Mbytes formatted capacity, 5 Mbits/s transfer rate.

COMMUNICATIONS INTERFACE
Standard - Host Port RS-232C DTE, Terminal Port RS-232C DCE, two Peripheral Ports RS-232C DCE.

PARALLEL INTERFACE
Option 09 - Centronix-Style Parallel Interface.

ORDERING INFORMATION

4170 Local Graphics Processing Unit $\$ 5,500$ Includes: Cue card ($334-0083-00$); pkg of 10 blank diskettes (119-1583-01); one set system software diskettes ($016-0764-00$); 12 ft host port RS-232 cable ($012-0911-00$); self-test adaptor (067-1043-00); instruction manual.
Option 03*1 - Hard Disk. $\quad+\$ 3,000$
Option F44 — Disk Interface Flexible Disk. NC Option 45*1 - Disk Interface Hard and/or Flexible Disk.
$+\$ 1,100$
${ }^{\text {* }}$ Also available as a Field Upgrade.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY PLUS SERVICE PLANS SEE PAGE 457

N1 - Service Plan +9 Months Service. $\quad \mathbf{+ 3 4 0}$

OPTIONAL ACCESSORIES

Alignment Diskette Order 119-1692-00. $\mathbf{\$ 6 5}$ Extender Board Order 067-1005-00. \$350
OEM terms available on this product.

4111 Computer Display Terminal

Advanced Firmware Routines

Four Bit Planes for Multi-layer Graphics
The 4111 is a personalized, high-resolution computer display terminal that offers superior price/performance characteristics for 2D ME-CAD and drafting applications, EE-CAD (schematic capture, IC design), cartography, and Technical Data Analysis (TDA). The terminal operates in a 60 Hz , noninterlaced mode that minimizes both flicker and eye strain. An anti-reflection enhancement panel further minimizes user fatigue.
Four-bit planes are standard, allowing the simultaneous display of 16 colors for graphics, eight of which can be used in the dailog area. Each bit plane can be treated as a separate display surface permitting the manipulation of layers of data-a feature that is particularly useful with multi-layer drawings such as IC design and printed circuit board design. The 4111's 4096-color palette provides a broad range of shades from which to choose.
4100 Series compatibility is designed in. An extensive set of graphics functions is available, including windowing, multiple views, segments, surface support, and local zoom and pan. Also supported are such graphics input features as rubber-banding, gridding, inking, a user-definable cursor, and easy polygon-fill with any of 16 predefined patterns or a user defined pattern. The 256 kB local RAM is available to store picture elements for later use; 1 MB can be added optionally to bring the total RAM memory up to 1.2 MB.

Advanced firmware routines aid the applications programmer in developing graphics software with a very interactive operator interface and excellent performance. Included in the 4111's firmware are routines that handle segment editing, segment subroutines, pick operations, host window management, multiple scrolling dialog areas, and pop-up menus.

CHARACTERISTICS

 DISPLAYSize - 483 mm (19 in) diagonal.
Viewing Area $-356 \mathrm{~mm} \times 267 \mathrm{~mm}$
(14 in $\times 10.5 \mathrm{in}$).
Color Palette- 4096.
DISPLAYABLE COLORS
Graphics - 16.
Alphanumerics - Eight (chosen from a total of 16).

DIALOG AREA
132 characters $\times 48$ lines.

ADDRESSABILITY

1024×768 pixels (4 billion $\times 4$ billion addressable points).
GIN Devices - Thumbwheels standard; mouse, joystick, tablet optional.
Local Memory - 256 kbytes expandable to 1.2 MB.

COMMUNICATIONS

RS-232-C, RS-422 high-speed serial interface.
6130 - 230 kbaud.
RGB Video Out - 60 Hz noninterlaced RS-343 levels.
Maximum Baud Rate with Flagging - 38.4 k .
Copier Support - 4691, 4692, 4695.

ORDERING INFORMATION

4111 Computer Display Terminal $\quad \$ 12,950$ Includes: Power cord ($161-0066-00$); RS-232-C cable ($012-0911-00$); 4111 operator's manual ($070-5683-00$); 4110/4120 Series reference guide ($070-5142-01$); An Introduction to Computer Color Graphics ($070-523900$); function key overlays (package of six) ($334-3290-02$); standard keyboard ($119-2208-00$); IDD user's survey card (062-7235-01).

OPTIONS

Option 2C — Additional 1 Mbyte of RAM Memory.
+\$2,500
Option 4K - Katakana Keyboard. $\mathbf{+ \$ 1 2 0}$
Option 4M - Mouse. $\quad \mathbf{+ \$ 1 0 0}$
Option 49 - Rental Identification Tag.
NC

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
WARRANTY-PLUS SERVICE PLANS
SEE PAGE 457
$\mathrm{N} \varnothing$ — On-site installation and set-up. $\quad \mathbf{\$ 1 5 0}$
N1 - On-site service plan, +9 Months upon warranty expiration.
N3 - OEM On-site service plan, +12 Months (transferable).
$+\$ 800$
$\begin{array}{ll}\text { N4 - OEM On-site installation and set-up } \\ \text { (transferable). } & +\mathbf{\$ 1 5 0}\end{array}$

OPTIONAL ACCESSORIES

RS-232-C Loopback Connector -
Order 067-1043-00
RS-422 Loopback Connector -
Order 013-0218-00 $\$ 70$
Centronics Loopback Connector -
Order 067-1138-00
$\$ 50$
RS-422 Communication Cable -
Order 012-1136-00 $\$ 50$
Function Key Overlays - Package of six.
Order 334-3290-02
4110/4120 Series Command Reference
Manual - Order 070-5141-01 $\$ 200$
4110/4120 Series Host Programmers
Manual - Order 070-4664-03
4111 Service Manual -
Order 070-5644-00
GMA 302 19-in Color Raster Monitor
Service Manual - Order 070-5215-00 \$125
4120 Series Serial Keyboard Service
Manual - Order 070-5276-00
Joystick Connector EMI Filter -
Order 131-3371-00
\$26
Test Graticule — Order 067-1244-00 \$235
Extender Card - Order 067-1252-00

4111 Field Kits (F-Kits)

All F-kits come with appropriate documentation.
4111F2C 1 MB of RAM-Field Upgrade. Brings 4111 terminal RAM memory up to 1.2 MB by adding 1 MB of RAM to the standard 256 kB of RAM.
NØ - Please see WARRANTY-PLUS service option description.
N4 - Please see WARRANTY-PLUS service option description.
4100 F4M Mouse, Field Upgrade - allows the customer to plug the mouse into his keyboard.

4114B
Computer Display Terminal
The Best Fit for Very Dense Graphics and Fine Line Quality Graphics

Direct View Storage Tube with Local Picture Segments

2D Transforms, Fast Redraw, Enhanced Refresh

The 4114B sets new standards of fast graphics throughput and enhanced user interactivity. This terminal is designed to satisfy the evolving needs of graphics users for faster, more versatile throughput in high density graphics applications. Its local intelligence and expandable memory can significantly reduce the delays and costs associated with overdependence on a host computer.
Features include a direct view storage tube with local picture segments, 2D transforms, refresh support, fast redraw and compatibility with the Tektronix 4010 Series and 4110B Series. The 4114B is available in pedestal or desk (4114B30) configurations.

CHARACTERISTICS

 DISPLAYMedium - Direct view storage tube with Directed Beam Refresh
Size - $368.3 \mathrm{~mm} \times 276.9 \mathrm{~mm}$ ($14.5 \mathrm{in} \times 10.9 \mathrm{in}$)
Addressable Points - 4096×4096
Displayable Points - 4096×3072

KEYBOARD

Normal Keyboard - 72 typewriter-paired uppercase and lowercase, programmable and auto repeating (five lighted)
Function Keys - Eight (16 user-definable and programmable functions)

OTHER CONTROLS

Graphic cursor thumbwheel Audible bell alarm

ALPHANUMERIC MODE

Standard Character Set - 94 ASCII displayable or 128 displayable snoopy mode.

GRAPHICS MODE
Addressability - 4096×4096.
Graphic Command Syntax - PLOT 10 compatible.
Line Types - Solid, dashed, defocused.
Drawing Speed (Storage) - 134 meters/sec.
Drawing Speed (Refresh) - 537 meters/sec.

Graphic Primitives - Vectors, user-defined text, etc.
Interactive Graphics - Thumbwheels control graphic cursor; keys control scrolling and alpha cursor position
Computer Interfaces - Basic data communications interface: EIA RS-232C compatible (fullduplex or half-duplex)

AC POWER

Line Voltage Ranges - 90 V ac to 132 V ac at 11 A maximum or 180 V ac to 250 V ac at 5.5 A max.
Line Frequency - 48 Hz to 62 Hz .

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	597	23.5
Height	1290	51.0
Depth	813	32.0
Weight	$\mathbf{k g}$	lb
Net	107.5	237.0

ORDERING INFORMATION

4114B Computer Display Terminal $\$ 17,900$ 4114B30 Computer Display Terminal \$19,400 Includes: Power cord ($161-0123-00$); pedestal to display power cable ($161-0145-00$); RS-232 cable ($012-0911-00$); relegendable key caps (366-1882-00); function key overlays ($334-3290-01$); 4114B operator's manual ($070-4707-00$).

OPTIONS

Option 01 - Extended Communications. $+\$ 1000$
Option 2A - Additional 256 kbytes of RAM with ECC.
$+\$ 2,500$
Option 2B - Additional 512 kbytes of RAM
with ECC. $+\$ 5,000$
Option 10 - Three-Port Peripheral Interface. $+\$ 1,600$
Option 13 - 11 in $\times 11$ in Graphic Tablet with pen.

NC
Option 14 - 30 in $\times 40$ in Graphic Tablet with
pen.
$+\$ 4,950$
Option 31 — Color Enhanced Refresh. $\quad \mathbf{\$ 1 , 0 0 0}$
Option 32 - Table Module (4114B30 only). $+\$ 500$
Option 41 - Extra Capacity Fan ($90-110 \mathrm{~V}$ operation only).

NC
Option 42 - Single Flexible Disk and Disk Controller.
$+\$ 2,000$
Option 43 - Dual Flexible Disk and Disk
Controller. $+\$ 2,800$
Option 45 - Mass Storage Interface Bus. $\quad \mathbf{\$ 1 , 5 0 0}$
Option 52 - Specify voltage and Hz . NC
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16$ A.
Option A2 - UK 240 V/13 A.
Option A3 - Australian 240 V/10 A.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}$.
Option A5 - Switzerland $230 \mathrm{~V} / 16 \mathrm{~A}$.
All options and displays will be set for 50 Hz operation when these options specify 50 Hz .

WARRANTY-PLUS SERVICE PLANS
 SEE PAGE 457

N1 - Warranty-Plus Service Plan +9 Months Service.
+\$810
N3 - Warranty-Plus Service Plan +12
Months Service.
+\$1,080

4.120 Series
 CAD Graphics Workstations

A Natural Growth Path from 2D to 3D Wireframe to 3D Shaded Surfaces

Easy Integration into a Range of Computational Environments

Flicker-Free Display, Choice of Dynamic or Autoconvergence

The latest graphics products from Tektronix offer you a flexible, cost-effective way to integrate one CAD technology into the next. With their powerful new 80286/80287 processor sets and sharp, dynamically-converged screens, all three graphic systems are engineered to add performance and reduce project design time.
Compatible not only with each other, but with a 4115B and other members of the 4110 Series, the new 4120 graphic systems are a clear demonstration of Tek's commitment to updating, not outdating, your existing investment.

The 4120 Series adds new potential for return on your graphics investment. Compatibility with Tek 4110 products means there are no new user interfaces to learn, no data bases to reconstruct. Consequently, training time stays low. Productivity remains high.
Future upgrade paths within the 4120 Series are already defined. For example, Tek's 4125 2D terminal can be upgraded to 3D wireframe performance with the fieldinstallable 4115F58 Option 02, putting the powerful functions of the 4128 at your fingertips. Add the 4100F59 enhancement and take your capabilities all the way to the 4129 's shaded surface modeling.
For 4115B systems, users can evolve to 4125 capabilities via the 4115F55 and $4115 F 56$, or upgrade even further to 4128 capabilities with the 4115F58 Option 01.
User-knowledge and hardware are not obsoleted. The processors in Tek's new CAD systems and the 4110 Series share the same instruction set, so you continue to add new capabilities by utilizing powerful new commands.
What's more, if you're running 4115B PLOT 10 IGL or GKS applications, you can switch to the 4125 without modifying code. You can also run TekniCAD-Tek's own computeraided drafting package-as well as the packages of many major CAD software vendors.

Each member of the 4120 Series is driven by an Intel 8286/80287 processor set and features a display with Dynamic Convergence; firmware with embedded commands for segment editing, segment subroutines and pick operations; a user interactive keyboard; and 4110 Series compatibility.

4120 SELECTION GUIDE

	4125	4128	4129
3-D Wireframe	Optional	yes	yes
3-D Shaded Surface	Optional	Optional	yes
Display Size	19 inch	19 inch	19 inch
Viewing Area	13.5 inch $\times 10.8$ inch	13.5 inch $\times 10.8$ inch	13.5 inch $\times 10.8$ inch
Pixel Resolution	1280×1024	1280×1024	1280×1024
Convergence 0.3 mm with Dynamic (Standard) 0.25 mm with Auto (Optional)	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes yes	yes yes
Displayable Colors Standard Optional Dialog Areas	$\begin{gathered} 4 \\ 16 / 64 / 256 \\ 64 \\ \hline \end{gathered}$	$\begin{array}{r} 16 \\ 256 \\ 64 \\ \hline \end{array}$	$\begin{gathered} 256 \\ 4096 \text { (with dithering) } \\ 64 \end{gathered}$
Color Palette	16 million	16 million	16 million
Bit Planes Standard Optional	$\begin{gathered} 2 \\ 4 / 6 / 8 \end{gathered}$	$\begin{aligned} & 4 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$
Windowing Pan/Zoom	$\begin{gathered} \text { yes } \\ \text { yes 2-D } \\ \hline \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { yes 2-D/3-D } \\ \hline \end{gathered}$	$\begin{gathered} \text { yes } \\ \text { yes 2-D/3-D } \\ \hline \end{gathered}$
Segments/Subroutines	yes	yes	yes
Memory Standard Optional	$\begin{aligned} & 288 \mathrm{~K} \\ & 800 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 288 \mathrm{~K} \\ & 800 \mathrm{~K} \\ & \hline \end{aligned}$	$\begin{aligned} & 288 \mathrm{~K} \\ & 800 \mathrm{~K} \end{aligned}$
Communications Standard Optional	1 RS232C I/F Parallel \& serial I/Fs	1 RS232C I/F Parallel \& serial I/Fs	1 RS232C I/F Parallel \& serial I/Fs
$\begin{array}{\|l\|l\|} \hline \text { Coordinate Space } \\ 32 \text { Bit (2-D) } \\ 24 \text { Bit (3-D) } \\ \hline \end{array}$	yes	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
Configuration Pedestal Modular	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	yes	yes
4120 Peripheral Support 4695 Copier 4691/4692 Copier 4510 Rasterizer 4958 Graphic Tablet	yes Opt 19 yes yes yes Opt 10	yes Opt 19 yes yes yes Opt 10	yes Opt 19 yes yes yes Opt 10
Prices Begin At	\$19,950	\$25,000	\$35,000

Greater user interactivity results from ergonomically designed hardware. Users of Tek's new CAD graphics workstations will discover their own performance is greatly enhanced by the ergonomics built into each configuration. Tek's new advanced user-friendly keyboard in the 4120 Series features a numeric keypad, thumbwheels for graphic input, eight dedicated programmable function keys and ports for joystick and mouse and a complete, easy-to-use viewing system implemented from the keyboard.
By coupling this user interactivity with state-of-the-art graphics, you can speed development and execution of design. This results in increased productivity for CAD applications like structural analysis, finite element modeling, thermal and vibrational analysis, schematic capture, integrated circuit design and more.
Up to 64 scrollable dialog areas can be displayed simultaneously, providing valuable new capabilities for host window management. The user can edit one text file while referring to others on the screen at the same time. Since each dialog area has its own text buffer, it may be positioned to overlap others. And even though a dialog area may be partially obscured as a result, it may still be scrolled.
Pop-up menus are also supported. Small areas of screen text and graphics can be stored in local memory and then redisplayed as required. This transient information may be brought on and off the screen at the touch of a key without disturbing the main graphics under development.

Applications and Compatibility

The 4125 meets 2 D design engineering needs in both electrical and mechanical environments. The 3D capabilities of the 4128 and 4129 will find extensive use in the mechanical CAD environment, for such tasks as design, structural analysis, finite element modeling and interference modeling for piping layout. The shading capabilities of the 4129 make it well suited for cartography applications.
All three workstations are compatible with Tektronix' 4100 Series products and the 6130 Intelligent Graphics Workstations. Color hard copy can be obtained with Tektronix 4691, 4692, and 4695 Color Graphics Copiers. The 4120 Series also supports Tektronix Computer-Aided Drafting (TekniCAD) software.

2D Color Graphics Workstations
80286/80287 Processor Based
Dynamically Converged Display (Optional)
Fast Draw and Fill
The 4125 Color Graphics Workstation incorporates advanced graphics with local processing power and ultra sharp display qualities to provide CAD developers and users with increased utility and performance. The workstation speeds development and execution of the complex, high density graphics associated with mechanical and electrical engineering, cartography, and other graph-ics-oriented professions.

Advanced Display

The Tek 4125 employs a 19 -inch color raster display operating in a 60 Hz , noninterlaced mode for flicker-free performance. An addressable pixel matrix of 1280×1024 ensures crisp, precise resolution of the finest detail in graphics images.
A precision in-line gun CRT is employed for maximum convergence stability. This is supplemented by optional dynamic convergence correction that adjusts as the electron beam scans, providing convergence accuracy of 0.3 mm over the entire display area.

Segments and Local Picture Storage

Embedded in the firmware and microcode of the 4125 are convenient commands for segment editing, segment subroutines, and pick operations that greatly reduce development time and augment productivity.

ORDERING INFORMATION
4125 High Performance
2D Color Graphics Workstation
(Modular Configuration)
\$19,950
4125P High Performance
2D Color Graphics Workstation
(Pedestal Configuration)
\$19,950
OPTIONS
Option 01 - Extended Communications

Interface.	+\$1,000
Option 05 - IBM Coax I/F.	+\$1,995
Option 06 - Projector I/F.	+\$4,800
Option 2A - Additional 256 kbytes RAM with ECC.	+\$2,500
Option 2B — Additional 512 kbytes RAM with ECC.	+\$5,000
Option 3A - DMA Interface for DEC, PDP-11 VAX Computers.	+\$4,600
Option 3B - 30 ft Cable for Option 3A (must be ordered separately).	+\$250
Option 3C - RS422 I/F to 6130.	+\$1,500
Option 4K - Katakana Keyboard.	+\$175
Option 4M - Mouse.	+\$100

Option 10 - Three-Port Peripheral Interface. $+\$ 1,600$
Option 19 - 4690 Series Color Copier
Interface.
$+\$ 1,100$
Option 22 - Additional 2-Bit Planes Display Memory.
+\$3,000
Option 23 - Additional 4-Bit Planes Display Memory.
+\$6,000
Option 31 - Autoconverged Display. $\quad+\$ 2,000$
Option 42 - Single Flexible Disk and Controller.
+\$2,000
Option 43 - Dual Flexible Disk and Controller.
+\$2,800
Option 45 - Mass Storage Interface. $\quad+\$ 1,500$
Option 46 - 8 MB Winchester Disk
(4125 modular configuration only). $\quad+\$ 2,600$
Option 47 - Dual 8 MB Winchester Disk
(4125 modular configuration only). $\quad+\$ 4,100$
4125 modular configuration includes display module and keyboard; workstation table, display stand, and ergonomic chair are all optionally available.

4128/4129

3D Color Graphics Workstations
3D Wireframe/Shaded Surface Color Graphics

3D Matrix Transforms

Rapid Data Communication-to 38.4 kbaud

The 4128 and 4129 are members of a new family of compatible, high performance computer graphics systems. Both include the same 2D functionality of a 4125 , but offer varying levels of 3D performance. Available in modular configurations only, the 4128 and 4129 feature a new keyboard that includes a numeric keypad and ports for a joystick and mouse. Both the 4128 and 4129 have 3D wireframe capability built into their firmware and microcode in addition to the standard 4125 2D feature set.

ORDERING INFORMATION 8 3D Wireframe Color Graphics	
4129 3D Shaded Surfaces Color	
Graphics Workstation	\$35,000
OPTIONS	
Option 01 - Extended Communications Interface.	+\$1,000
Option 2A - Additional 256 kbytes RAM with ECC.	+\$2,500
Option 2B — Additional 512 kbytes RAM with ECC.	+\$5,000
Option 3A - DMA Interface for DEC PDP-11 VAX Computers.	+\$4,600
Option 3B - 30 ft Cable for Option 3A (must be ordered separately).	+\$250
Option 4K - Katakana Keyboard.	+\$175
Option 4M - Mouse.	+\$100
Option 10 - Three-Port Peripheral Interface.	+\$1,600
Option 19 - 4690 Series Color Copier Interface.	+\$1,100
Option 22 - Additional 2-Bit Planes Display Memory.	+\$3,000
Option 23 - Additional 4-Bit Planes Display Memory.	+\$6,000
Option 31 - Autoconverged Display.	+\$2,000
Option 42 - Single Flexible Disk and Controller.	+\$2,000
Option 43 - Dual Flexible Disk and Controller.	+\$2,800
Option 45 - Mass Storage Interface.	+\$1,500
Option 46 - 8 MB Winchester Disk (4125 modular configuration only).	+\$2,600

er with all the necessary tools for local shading, hidden line removal and hidden surface removal, and the manipulation of surfaceimage 3D objects.
Sectioning. A useful feature of the 4129 is the ability to section a 3D shaded object. An object may be sliced with two "cuts" or sectioning planes of user defined proportions. These sectioning planes are in addition to the six clipping planes used for viewing operations.

Shading. The 4129 offers three different methods of surface shading-constant, cosine, and Gouraud. The colors used to shade a surface are defined in a contiguous set of color map indices that represent a range of intensities.

An 80286/80287 processor set drives each unit and provides rapid data communi-cations-at rates up to 38.4 kbaud. Both units come with 288 kbytes of RAM, expandable to 800 k . The 4128 offers 4 -bit planes and the 4129 is equipped with 8 -bit planes as standard. Both share a new, highresolution 1280×1024 in-line display with dynamic convergence.
4129 Special Features. The 4129 also includes hardware enhancements for 3D shaded surfaces. Two additional circuit boards and a full 8 -bit planes (standard) provide the mechanical engineering design-

Local Programmability
 For 4120 Series Terminals

Powerful State-Of-The-Art Graphics Under User-Written Software Control

Local Access to Graphics Manipulation Capabilities

CP/M-86

ANSI FORTRAN 77
Core Graphics Package (PLOT 10 IGL)

Local Programmability Puts Graphics Computer Power in the Hands of the User The 4110B/410X Series Local Programmability gives terminals independence from host computers by equipping them with local intelligence and processing power. Local Programmability supplies the elements needed to locally develop and run programs; to access the graphics and alphanumeric features resident in the 4110B Series and 410X firmware; and to control peripherals connected to the terminal.
The package for $4110 B$ Series terminals consists of a disk-based CP/M-86 operating system, FORTRAN-86 compiler, ASM-86 or ASM86 macro assembler; utility programs; and a library of DTI (Direct Terminal Interface) subroutines that enable the FORTRAN programmer to exercise all 4100 Series terminal features. All package components are also available on the 4170 with 410X terminals. Optionally, a local version of Tektronix' PLOT 10 IGL is available.

Increased Productivity Through Distrib-

 uted ProcessingLocal Programmability gives the user the flexibility to run programs locally or through a host. By promoting more efficient use of the host system, Local Programmability cuts costly CPU time, frees the host to do the kinds of processing it does best, and allows the host to support more terminals. Many CAD/CAM, data analysis and graphing applications can be written and run entirely without host support.
Software Compatibility Across 4100 Line User-developed software using the Direct Terminal Interface is upward-compatible from 410X to 4110B terminals if common terminal firmware features are supported. This compatibility allows easy portability of applications from low to high-end terminals without loss of software investment.
With a local version of PLOT 10 IGL, existing IGL-based host programs can be run locally on 410X and 4110B terminals and easily moved to other Tektronix terminals (such as 4010 or 4020 Series). The user can thus choose where an application will run most efficiently-on the host, the terminal or a combination of the two.

Series-Wide Compatibility

Local Programmability runs on all 4110 B Se ries terminals and on the 4170 . The recommended system configuration includes a minimum of 256 kbytes of RAM. For program development the terminal needs two disk drives, although only one drive is needed to run programs locally.

CHARACTERISTICS GENERAL INFORMATION
Memory Requirements - 256 kbytes.
Equipment Requirements - 4110B Computer Display Terminal or 4170 Local Graphics Processing Unit supporting 410X Series Computer Display Terminals. Dual disk functionality provided by any of the following: dual floppy disk drives, floppy disk and Winchester drive. Requires at least one floppy for 4110B's. 4170 has two floppy disks standard. Program execution requires at least a single disk drive and sufficient memory to run the program.
ORDERING INFORMATION
4100P01 FORTRAN, CP/M-86 and
DTI (CP/M includes the Digital Re-
search ASM-86 Assembler
4100P02 Assemblers (Intel ASM86
and Digital Research ASM-86), CP/M-
86 and DTI
4100P11 Intel FORTRAN-86. Requires
4100P01 or 4100P02
4100P12 Intel ASM86. Requires
4100P01 or 4100P02
Tektronix offers user training on Local
Programmability. For further information
contact the Customer Training Registrar
at (503) $685-3808$ or your nearest Tek-
tronix sales office.

OEM terms available on this product.

ョuษML-OS SכIHdvצఅ

PLOT 10 GKS

PLOT 10 Graphics Software
For 4100 and $4110 / 4120$ Series Terminals
Tektronix has been setting graphics standards for over a decade. Our new products reflect the implementation of the evolving international standards and the concepts that underlie those standards-software portability and device independence. The goal is to protect your software investment and provide a hardware growth path, and Tek software is designed to meet your changing needs.
Tektronix offers PLOT 10 products to make that goal a reality. PLOT 10 software takes advantage of the graphic capabilities of the 4010, 4100, and 4110/20 Series computer display terminals together with our color copiers.
PLOT 10 includes applications software as well as powerful tools to build applications to suit your specific needs.

Software Support

When you buy Tektronix software, you are also investing in the people and services behind the product. A Software Update Agreement provides current releases of Tek licensed software products, updates to the documentation, along with additional information on applications and enhancements. The TAS (Technical Assistance Services) are designed to supplement your own resources and to provide training as well as short-term consulting during your software
implementation. These combined programs help you get maximum benefit from your Tektronix software products.

Peripheral Support for Device-Independent Graphics

PLOT 10 products are packaged with device drivers for graphics hardware products. Applications can be written without concern for the physical attributes of a device because the specifics reside in these devicedependent software modules. Many nonTektronix products are advertising PLOT 10 compatibility; a special driver may not even be needed. PLOT 10 GKS includes drivers for Tektronix terminals, plotters and digitizing tablets as well as selected DEC and IBM graphics terminals. In addition, a device driver model and its documentation are provided offering the professional programmer a tool to develop drivers for non-Tek devices. PLOT 10 IGL also includes a full complement of device drivers to support the entire 4100 and 4110/4120 lines, and selected DEC and IBM graphic terminals.

Software Portability

Portability has always been the ultimate goal of the graphics standards efforts. Now it is not only possible to transport applications to a variety of host computers, but it is also possible to move applications to workstations using local programmability. Implementations of PLOT 10 TCS (the Terminal Control System that provides the basic graphics building blocks) and PLOT 10 IGL are available locally on 4100 series units. Options add advanced capabilities to the local version of IGL including line smoothing
and 3-D graphics routines providing the power of mainframes computer graphics with the benefits of local programmability. An important feature of local programmability means enhanced interactivity at local processor speed rather than data communication line rates.

Existing applications on the host can be downloaded and run locally, thereby increasing interactivity and saving storage costs.
Product overviews and specification data follows. We invite you to ask your local Tektronix Sales Engineer for a demonstration.

PLOT 10 APPLICATIONS SOFTWARE

PLOT 10 application software has been built to take full advantage of the powerful features included in the 4100 and $4110 / 20$ terminals.

PLOT 10 TekniCAD (Computer-Aided Drafting)

PLOT 10 TekniCAD is a complete computeraided drafting system for producing and maintaining design documentation. It is an interactive system that enables you to construct geometry, create and store specialized symbols, and annotate and dimension drawings quickly, simply, and accurately.
TekniCAD performs standard drafting functions through a highly responsive user interface. This allows drafters, engineers, scientists and technical illustrators to create high quality drawings without extensive training or knowledge of complex command languages.
TekniCAD adheres to both ANSI Y14 and ISO drafting standards, and is still flexible enough to be easily adapted to individualized drafting standards.
Tektronix PLOT 10 CADDPORT, a related product, provides a link between TekniCAD and computer-aided design packages of other vendors. This allows TekniCAD to function as the drafting component of a complete CAD/CAM system.

PLOT 10 TekniCAP

(Computer-Aided Presentations)
PLOT 10 TekniCAP is designed especially for the production of high-quality graphics for business and technical presentations. TekniCAP makes it easy to show the results of data analysis programs, to prepare overheads and 35 mm slides, and to create illustrations and designs for color graphics applications.
The TekniCAP package includes a data graphing module that lets you create line graphs, bar graphs, and pie graphs, either from data entered at the keyboard or from an existing data file. But TekniCAP is much more than a graphing package. It includes eight separate modules, each designed for

PLOT 10 TekniCAP

PLOT 10 TekniCAD
a specific purpose. These modules help you design formatted lists with bulleted or numbered items, create standard data graphs, place multiple graphs or pictures on a single display, and even schedule a series of displays for automatic output to a color hard copy device. And the menu system and defaults built into all TekniCAP modules make it easy to learn and to use.
Color is a major part of presentation graphics, and TekniCAP makes it easy to select just the colors you want. There are 16 palettes defined and optimized for various hardware configurations and requirements. Or you can define your own colors, using any color from the terminal's color palette.
Since TekniCAP was designed specifically for Tektronix equipment, it takes full advantage of terminal features and hardware compatibility. TekniCAP runs on Tektronix CP/M-86 based products (the 4170 Local Graphics Processing Unit and 4110/4120 Series terminals) as well as the 6130 Workstations. It is also fully supported by the 4690 Series color hard copy units.

PLOT 10 STANDARD TOOLS

PLOT 10 consists of five software packages, each optimized for different graphics applications: Graphical Kernel System, Interactive Graphics Library, Terminal Control System, Software Terminal Interface, and Graphic Display Interface.
PLOT 10 Graphical Kernal System (GKS)
PLOT 10 GKS is a FORTRAN '77 subroutine library conforming to the GKS International Standard ISO/IS 7942, Level 2B and ANSI/ANS X3.124 1985. PLOT 10 GKS extensively supports the engineering and
scientific workstation environment for a variety of technical data analysis and CAD/CAM applications. Capabilities include 2D graphics, color control, workstation control, text manipulation and fonts, segments, and separate window-viewport control of interconnected devices. Full implementations exist for DEC and IBM environments.

PLOT 10 Interactive

Graphics Library (IGL)

PLOT 10 IGL is a library of FORTRAN '77 subroutines based on the SIGGRAPH Core proposal, designed for use in the development of application programs requiring 2D and 3D graphics output. The approach used is independent of display technology and provides full control of color displays, line smoothing and contouring algorithms, and high-resolution graphics text fonts. Both simple and intelligent terminals are supported, including emulation of many features for device independence as well as model input/output routines.

PLOT 10 Terminal Control System (TCS)

PLOT 10 TCS is a FORTRAN '66 subroutine library designed to aid the graphics application programmer. The system is designed specifically for the Tektronix 4010 Series terminals and the 4105 terminal. TCS modules include graphing routines, software character fonts, and graphics tablet support. TCS also provides preview routines for CalComp plotters, enabling on-line, high-speed previewing of plots for large-bed mechanical plotters.

PLOT 10 Software

Terminal Interface (STI)
PLOT 10 STI is a FORTRAN '77 subroutine library for device driver development designed for the Tektronix 4100, 4110, and 4120 Series terminals. Working at a low level and directly accessing terminal firmware features, STI is intended to be used by experienced graphics applications programmers and system programmers. Written in ANSI FORTRAN '77 source code, STI includes sample input/output routines for DEC VAX and IBM hosts, and for Tektronix 6130 Workstations.
PLOT 10 Graphic Display Interface (GDI) PLOT 10 GDI is a FORTRAN ' 77 program which allows graphics applications developed with IBM GDDM to display on Tektronix coax terminals. This is accomplished by translating GDF (Graphics Data Format) file primitives produced by GDDM into Tektronix 4100 display format. Existing GDDM applications, such as the Interactive Chart Utility, are easily displayed on Tektronix coax devices. This allows the user to enjoy the high performance and interactivity of the Tektronix terminals without sacrificing the ability to use existing GDDM applications.

[^8]

Artificial Intelligence:

A New Productivity Tool

Building on the 4404 Al System, Tek now broadens its Al family to include the 4405 with increased processing power and the 4406 with its high speed 16 MHz Motorola 68020 32-bit microprocessor and 68881 coprocessor. The Tek Al family offers a powerful range of capabilities for application developers, researchers, software engineers, and computer scientists at prices well below the industry norm.
The 4400's advanced languages make it an excellent exploratory programming and software prototyping tool.

All of the major Al lanaguages in use today are represented on the 4400 including Tek Common LISP, Smalltalk-80, MProlog and Franz LISP. This offers AI researchers and developers a clear choice of programming environments-all accessible from a single desktop device, all fully compatible with the entire 4400 Series Artificial Intelligence Systems.
A quick review of the specifications (see box) clearly shows the preformance of the new 4406 and 4405 is comparable to systems that cost significantly more. AlM expects these new Al systems, based on optimized architecture and powerful, lowcost, general-purpose components, to capture a major portion of emerging Al market because of their outstanding price/performance.

4400 SERIES SELECTION GUIDE

	4404	4405	4406
Architecture	68010 @ 10 MHz Floating point accelerator	68020 @ 16 MHz 68881 Floating point co-processor	68020 @ 16 MHz 68881 Floating point co-processor
Display Size Viewable Points Addressable Points Input Devices	13 inch monochrome $\begin{aligned} & 640 \times 480 \\ & 1024 \times 1024 \end{aligned}$ Joydisk, mouse	13 inch monochrome $\begin{aligned} & 640 \times 480 \\ & 1024 \times 1024 \end{aligned}$ Joydisk, mouse	19 inch monochrome $\begin{aligned} & 1280 \times 1024 \\ & 1024 \times 1024 \end{aligned}$ Joydisk, mouse
Software Operating System Languages Standard Optional	UNIX-like OS with 8 MB Virtual memory address space Smalltalk-80 Tek Common LISP Franz LISP MProlog	UNIX-like OS with 32 MB Virtual memory address space Smalltalk-80 Tek Common LISP Franz LISP MProlog	UNIX-like OS with 32 MB Virtual memory address space Smalltalk-80 Tek Common LISP Franz LISP MProlog
Memory Standard Optional	1 MB dynamic RAM Additional 3 MB	1 MB dynamic RAM Additional 4 MB	2 MB dynamic RAM Additional 4 MB
Communications Standard Optional	RS-232C Centronics parallel SCSI ANSI X3.64 emulation IEEE Ethernet	RS-232C Centronics parallel SCSI ANSI X3.64 emulation IEEE Ethernet	RS-232C Centronics parallel SCSI ANSI X3.64 emulation IEEE Ethernet
Mass Storage Standard Optional	45 MB hard disk $51 / 4$ inch, 320 KB flexible (1) streaming tape drive	45 MB hard disk $51 / 4$ inch, 320 KB flexible (1) 90 MB hard disk \& streaming tape drive	90 MB hard disk $51 / 4$ inch, 320 KB flexible (1) streaming tape drive
Prices Begin At	\$11,950	\$14,950	\$23,950

Smalltalk-80 Programming Environment

32-Bit CPU

Floating Point Co-Processor
Large Dynamic RAM
Multi-Tasking, Hierarchical File System
C Compiler with Std. I/O Library
Several Programming Language Options
Large Hard Disk, Floppy
High Resolution Display
Virtual Memory Operating System
Three-Button Mouse
Low Profile Detached Keyboard; 14-Key Numeric Keypad; Four Special, Eight Dedicated Programmable Function Keys; N Key Rollover and Joydisk
Programmable Sound Generator
Crystal-Controlled Clock/Calendar with Battery Backup

ROM/EPROM Expansion Sockets

4404 AI System

The Tektronix 4404 Artificial Intelligence System provides a powerful, highly interactive environment for Al research and development. A low-cost desktop system, the 4404 sets a new price/performance standard for Al applications such as expert systems, natural languages, vision systems, theorem proving, intelligent robotics and automatic programming.

The 4404 comes standard with a high-speed, proprietary implementation of Smalltalk-80, an extensible, object-oriented language which supports rapid prototyping and exploratory programming. Smalltalk-80, in conjunction with the 4404 display capabilities, offers the most sophisticated user interface available for Al program development.
A bit-mapped graphics display with mouse input is closely coupled to the processor for a state-of-the-art user-interface. The 13 -inch monochrome display has a 640×480 pixel resolution and operates at 60 Hz , noninterlaced. It functions as a window into a $1024 \times$ 1024 bit-map memory with smooth panning whenever the cursor reaches a physical display edge. The bit-mapped display facilitates advanced concepts such as overlapping windows, "pop-up" menus and pointing with the mouse. Graphics performance makes screen animation possible. The full keyboard provides programmable function keys and a joydisk.

NEW 4405 AI System

The Tektronix 4405 Artificial Intelligence System joins the Tek 4404 and 4406 to offer a complete family of AI application development toools and delivery systems. The Tek 4405 offers a complete, state-of-the-art, personal AI development system that rivals units costing much more.
Delivering significantly more processing power than the 4404, the 4405 is ideally suited for larger Al efforts. It provides all the software and hardware capabilities needed for developing major artificial intelligence programs.

As with the 4404, the Smalltalk-80 programming environment is included standard with the 4405 . This exploratory programming tool offers a highly integrated, object-oriented user interface and is ideal for quick prototyping of complex images. It includes text and graphics editors, incremental compiler, debugging tools and multiple-window management capabilities.

NEW 4406 Al System

The Tektronix 4406 Artificial Intelligence System is the highest performance member in the compatible 4400 Series AI Systems. The 4406 has the power and memory to handle even the most complex Al programs with speed and efficiency. The system includes a 32 Mbyte virtual memory address space, a full 2 Mbytes of dynamic RAM (expandable to 6 Mbytes) and a 90 Mbyte hard disk. The optional 4944 Mass Storage Unit further enhances 4406 performance by providing incremental 90 Mbyte hard disk backup.
The 4406 inherits the innovative design and advanced manufacturing techniques pioneered by the 4404. Employing VLSI architecture and 32 -bit data paths, the 4406 is nearly twice as powerful as the 4404. It is equally appropriate for Al research, application development, or as a cost effective delivery system.

AI Programming Environments

The 4406 supports all of the popular Al programming languages in use today. Small-talk-80, Tek Common LISP, MProlog, and Franz LISP all run on the 4406. Programs developed on the Tektronix 4404 and 4405 are upwardly compatible with the 4406.

CHARACTERISTICS
 DISPLAY

Size - 330 mm (13 in); [482.6 mm (19 in) 4406 only].
Viewing Area - $241 \mathrm{~mm} \times 178 \mathrm{~mm}$ ($9.5 \mathrm{in} \times 7 \mathrm{in}$); [$356 \mathrm{~mm} \times 267 \mathrm{~mm}$ ($14.0 \mathrm{in} \times 10.5 \mathrm{in}$) 4406 only].

MEMORY
CPU - Motorola 68020 (68010, 4404 only).
Floating Point Co-Processor - Motorola 68881 (National 32081 Semiconductor on 4404).
Dynamic RAM - 1 Mbyte (2 Mbyte, 4406 only).
Terminal Emulation - ANSI X3.64; 80 characters $\times 32$ lines.

Viewable Points $-640 \times 480(1280 \times 1024$,
4406 only).
Addressable Points - 1024×1024
($1280 \times 1024,4406$ only).
Max Baud Rate - 9600 baud.
Flexible Disk Capacity - 320 kB .
Hard Disk Capacity -
4404: 45.0 MB .
4405: 45.0 MB .
4406: 90.0 MB.
Communications Interfaces - SCSI, RS-232C,
Hard Copy.

AC POWER

Line Voltage Ranges - 87 V ac to 128 V ac, 174 V ac to 250 V ac.
Line Frequency - 48 Hz to 66 Hz .
Operating Power $-<200 \mathrm{~W}$
PHYSICAL CHARACTERISTICS 4400 CPU MODULES

						Mass Storage (All)	
4404, 4405	$\mathbf{4 4 0 6}$						
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in	$\mathbf{m m}$	in	
Width	419	16.5	553.7	21.8	368.3	14.50	
Height	353	13.9	429.3	16.9	127.6	5.03	
Depth	495	19.5	566.4	22.3	433.1	17.05	
Weight	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$	
Net	20.0	44.0	31.8	70.0	6.35	14.0	

ORDERING INFORMATION

4404 Artificial Intelligence System	\$11,950
4405 Artificial Intelligence System	\$14,950
4406 Artificial Intelligence System	\$23,950
HARDWARE OPTIONS Option 01-1 MB additional memory (4404 only).	+\$1,750
Option $02-2 \mathrm{MB}$ additional memory (4405, 4406 only).	+\$3,500
Option $03-3 \mathrm{MB}$ additional memory (4404 only).	+\$5,250
Option 04-4 MB additional memory (4405, 4406 only).	+\$7,000
Option 10 - Ethernet Interface.	+\$2,000
Option 21 - 90 MB Hard Disk	+\$2,500

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $230 \mathrm{~V} / 6 \mathrm{~A}, 50 \mathrm{~Hz}$.

SOFTWARE OPTIONS

4400P30 - Franz LISP Programming
Language
Option 04 - (4404 only).
Option 05 - (4405 only).
Option 06 - (4406 only).

4400P31 - MProlog Programming Language \$4,000
Option 04 - (4404 only).
Option 05 - (4405 only)
Option 06 - (4406 only).
4400P32 - EMACS Editor
Option 04 - (4404 only).
Option 05 - (4405 only)
Option 06 - (4406 only)
4400P33 - Tek Common LISP Programming Language
Option 04 - (4404 only).
Option 05 - (4405 only)
Option 06 - (4406 only).

Smalltalk-80

Extensible, Object-Oriented Programming
Bit-Mapped Graphics User Interface
Designed for Exploratory Programming
Smalltalk combines an object-oriented programming language with the most advanced user-interface available. Pioneered at Xerox PARC, Smalltalk permits exploratory programming through rapid prototyping and experimentation. Smalltalk provides an interactive approach to solving complex problems.

High Performance Implementation

Tektronix' method of implementing Small-talk-80 combined with the powerful hardware architecture of the 440 Series, provides graphic response fast enough to support screen animation under direct control of Smalltalk.
Smalltalk satisfies the needs of programmers in the Al field. It is ideal for Artificial Intelligence research and development. Smalltalk can be extended by defining new instances of an object class (each with its own internal state) or by defining an entirely new object class with a distinct set of rules and default behavior. The class structure of Smalltalk provides both multiple inheritance and hierarchical inheritance mechanisms. Over 200 predefined classes support the data and control abstractions most commonly used in AI applications development.

Original Windowing System

Bit-mapped graphics and window management were originally developed for Smalltalk. The Smalltalk "Model-View-Controller" window-based manager supports the creation of new window-based applications. Multiple processes are supported with a virtually unlimited number of overlapping windows.

Smalltalk supports primitive graphic functions such as scaling, translation, rotation, logical combination of pixels and text attribute modification through its integral "BitBIt" operator.
Virtually any activity-text editing, file manipulation, compilation, execution, de-bugging-can be performed at any time, re-
gardless of the current state. The user simply "opens" another window and proceeds with the new operation. Smalltalk allows immediate access to any of its subsystems, whether user-defined or predefined, for inspection or modification.

MPROLOG*

Configured for $\mathbf{4 4 0 0}$ Series AI Systems
Interactive Development Support

Modular Development Capability

MProlog, as implemented on the 4400 Series, is a unique language that allows programmers to solve problems by specifying what answers are needed rather than describing a detailed solution procedure. MProlog is non-procedural, based entirely on logical relationships or rules, among an assortment of facts.
MProlog operates on the principle of "controlled deduction." The programmer creates a network of facts and rules that describe the known relationships between the elements of a problem. Once the logical network is defined, MProlog makes logical inferences from the relationships when queried by the programmer. These characteristics make MProlog ideal for many AI applications including expert systems, natural language processing, data base query languages and automatic programming systems.

Performance for Complex Problems

MProlog makes complex problems easier to solve and reduces program development time. The inherent efficiency of MProlog is enhanced by the power of the 4400 Series hardware. The MProlog system is an ideal vehicle for both software development and end-user Al applications. PROLOG is one of the acknowledged languages in artificial intelligence technology. Now, Tektronix adds the programmer productivity and application development tools needed to move Al into the marketplace.

ORDERING INFORMATION	
4400P31 MPROLOG Programming	
Language	
$\$ 4,000$	
OPTIONS	
Option $04-4404$ Version.	
Option $05-4405$ Version.	
Option $06-4406$ Version.	

Option 04 - 4404 Version. NC

Option 06 - 4406 Version.
NC

TEK ${ }^{\circ}$ Common LISP

A Full Common LISP Implementation
Optimized for 4400 Systems
Rapid Prototyping of AI Concepts
Run-Time Compiler for Optimized Machine Code

Tek Common LISP has been specifically optimized and enhanced for performance on the Tektronix 4400 Series. It provides Al researchers and software developers with a personal LISP programming environment previously available only on dedicated LISP machines.

Common LISP was conceived by a large committee of academicians and Al researchers as a language that would incorporate the very best features of other LISP dialects. Tek Common LISP is a full implementation of this language (as specified in "Common LISP, The Language" by Guy Steele). It offers a much richer set of data types and more complex program structures than other LISP dialects currently in use.

A New Standard

Common LISP is considered by many artificial intelligence experts to be a new industry standard for Al programming environments. This consensus is reflected in the general parameters established for the language:
COMMONALITY: Common LISP focuses the features of several different implementations of LISP into a common dialect.

PORTABILITY: Applications written in Common LISP are easily ported to any Common LISP implementation.
EXPRESSIVENESS: Common LISP is a very rich language that employs the most valuable constructs from other LISP dialects.
EFFICIENCY: Common LISP has features designed to facilitate the production of fast, high-quality compiled code.
COMPATIBILITY: Since Common LISP is derived from a number of popular dialects, code from other LISP dialects should readily map into Common LISP.

Additional Tek Common LISP Features Include:

A powerful optimizing compiler with built-in debugging features; lexically scoped interpreter and compiler; full featured package system for symbol name differentiation; rich collection of numerical primitives and built-in functions; built-in garbage collector and dynamic storage management; complete implementation of arrays, vectors and strings;
flexible interactive user interface; flexible debugging aids; powerful facilities for structures and macros; lexical closures; user-extensible data type facility; and built-in userextensible data type facility; and built-in user-extensible parser and hash-table facility.

The rich set of primitives available in Common LISP makes the language an appropriate candidate for expert systems, natural language interfaces, and all types of symbolic programming. Tek Common LISP goes beyond the specifications of the language to provide on-line documentation; a user-definable error handler; powerful and robust foreign function interfaces to C and FORTRAN programs and a built-in Flavors system for object-oriented programming.

ORDERING INFORMATION
 4400P33 Tek Common LISP Programming Language
 \$6,000
 OPTIONS

Option 04 - (4404 only) NC
Option 05 - (4405 only)
Option 06 - (4406 only) NC

Customer Software Services

Tek Common LISP includes a one-year software update service which can be renewed annually.

FRANZ LISP

Configured for 4400 AI Systems

Full-Featured Development Language
Optimizing Compiler Generates 4400 Series Machine Code

A commercial derivative of the MacLISP language from MIT, FRANZ LISP is the longtime favorite for Al programming because of its uniqueness as a high-level machine language for symbolic processing. Many natural languages and expert systems have been built using the recursive programming facilities of LISP. Traditionally, LISP has resided only on expensive mainframe computers. Now, Franz LISP is available on the 4400 Series Artificial Intelligence Systems.

A Powerful Al Programming Environment

 4400 Series LISP is a programming environment that includes many tools to enhance research and development. Besides the popular language primitives, functions and data types, LISP contains a powerful macro facility, and allows programs written in other languages to be called. The system supports separately compiled functions, UNIXlike file accessing, and I/O redirection.Franz LISP supports a wide variety of data types, arithmetic and mapping functions.

The language provides dynamic storage allocation and garbage collection. It provides operators for creation, accessing, and manipulation of data types, data type determination, and structure comparison. Users may create their own data types out of vectors and specify how standard system functions, like print, should handle them.
Franz LISP provides simple arithmetic functions, arithmetic predicates, trigonometric functions, "bignum" functions and a host of conversion and special purpose arithmetic functions. It includes a set of operators to allow dynamic error indication and recovery, with nonstandard control flows, through the powerful catch, throw and errset functions.
Franz LISP in the 4404 environment provides many functions for communicating with I/O devices, including I/O redirection to and from files. It supports UNIX-like disk file operations such as direct file access with the fseek function, allowing reading or writing at random locations within a file.
Many system functions allow interaction with internal components of LISP and the operating system. These include new process generation from within a program with the process and signal functions.

ORDERING INFORMATION 30 FRANZ LISP Programming	
Language	\$3,000
OPTIONS	
Option $02-51 / 4 / 40 p p y$ Media	NC
Option 04 - (4404 only).	NC
Option 05 - (4405 only).	NC
Option 06 - (4406 only).	NC

NOIIVISYHOM IndNI JHdVYכ

4991 S 1 Graphic Input Workstation
A Complete Graphic Input Solution
Offers up to Ten-Fold Productivity Increase over Manual Digitizing or On-Screen Redesign
Transfers Data from Hard-Copy Documents into CAD Systems
Automatic Scanning and Vectorizing of Documents

Interactive Software Produces
Graphics Entities
The Tektronix 4991S1 quickly and accurately transforms existing documents into a useful data base for CAD systems. It supports many applications in mechanical engineering, architecture, mapping, and electrical engineering.
The 4991S1 supplies useful data with minimum impact on host CAD system resources. The 4991S1 interfaces directly to three leading CAD systems: ComputerVision, CADAM, and TekniCAD. The direct interface ensures rapid, accurate data transfer. Because scanning and structuring processes are performed locally, CAD system resources are not tied up with time consuming input tasks.
The interactive Graphic Structuring Software gives the user maximum flexibility and control in preparing the most usable data base for any given application. The structuring software supports a variety of entities (e.g., lines, arcs, text, symbols), standard attributes (e.g., line width, line style), and user-definable attributes.
A straightforward user interface simplifies scanning and structuring by allowing the operator to control most functions from onscreen menus, using the graphics tablet and
stylus. A clear, accurate, and complete documentation package, including an on-line tutorial, makes the workstation surprisingly easy to learn and use.

CHARACTERISTICS (4991 SYSTEM)

SYSTEM POWER REQUIREMENTS
Total Power Consumption - 1381 Watts. (4991: 275 W .4991 WS Electronics Module: 872 W. 4991WS Display Module: 230 W. 4957: 4 W.$)$
Line Voltage Ranges - $87 \mathrm{Vac}-128 \mathrm{~V} \mathrm{ac}$ or 174 V ac- 250 V ac.
Line Frequency - 50 Hz or 60 Hz nominal ($\pm 2 \mathrm{~Hz}$).

PHYSICAL CHARACTERISTICS

	4991		4991WS w/Display \& Table	
Dimensions	mm	in	mm	in
Width	1219	48.0	1505	59.3
Height	1283	50.5	118	44.0
Depth	787	31.0	914	36.0
Weight	kg	lb	kg	lb
Net	150.0	330.0	152.1	335.0
Shipping	225.0	495.0	258.1	546.0

PERFORMANCE

Scanning Technology - Precision drum scanner; halogen lamp illumination and Charge Coupled Device Array detector.
Maximum Scan Area - $885 \mathrm{~mm} \times 1200 \mathrm{~mm}$ (34.8 in $\times 47.2$ in).
Resolution - 12 samples $/ \mathrm{mm}$ (304.8 samples $/ \mathrm{in}$). Typical Media - Black graphite lead or black ink on vellum; black plastic lead or black ink on drafting film; photographic line art; bluelines.
Minimum Line Detected - (with contrast $>0.5) 0.254 \mathrm{~mm}(0.010 \mathrm{in})$.
Programmable Features - User-definable scan area; dot and void removal; edge smoothing, line fitting accuracy; digitizing threshold; document rotation; mirror image.
Output Capabilities - Hardware: RS-232C, 19.2 kbaud. Protocol: KERMIT-type communications protocol. Modes: Freeman code data, poly-
node data, interconnect data, combined data. User-selectable output data files: polylines, short vectors, and filled areas.

CHARACTERISTICS (4991WS)

Data Transmission - RS-232C, 19.2 kbaud.
Memory - 2.0 Mbytes RAM with ECC; 20 Mbytes internal hard disk.
Display - 483 mm (19 in) diagonal color raster; 60 Hz , noninterlaced.
Graphics - 1024×1280 pixels.

CHARACTERISTICS

(GRAPHIC STRUCTURING SOFTWARE)
Functional Structuring Capabilities
Graphics Entities Supported - Lines, polylines, arcs, circles, text, symbols, ellipses, arrows, dimensions, splines.
Attributes Supported - Layer number, pen number, color, line width, line style, text font, character slant, arrow style, user-definable attributes.
Transformation Operations - N -point alignment, snap-to-grid.
Viewing Capabilities - Zoom, pan, previous view, original view, nodes.
Local Calculations - Position, distance, userdefined units.
Host Control and Interfacing - KERMIT-type communications protocol.

PERFORMANCE

Capacity - 98,000 nodes (larger drawings are managed by structuring smaller sections of the original file).

Characteristics

(HOST INTERFACING SOFTWARE)
Data Communications - KERMIT-type protocol.
Data Conversion - 4991S1 to IBM CADAM Version 19.2.4 or later (MVS/TSO and CM/VMS). 4991S1 to Computervision CADDS 4X. 4991S1 to Tektronix PLOT 10 Computer-Aided Drafting (TekniCAD) Version 7.3 or later.
Data Checking - Unrecognized or illegal host system commands or data reported on the 4125 display for immediate correction.
Configuration - Host-system resident.
Language - FORTRAN IV (license required).

PHYSICAL CHARACTERISTICS

Media - Nine-track magnetic tape (1600 bpi).
Format - Block 80×10, standard label EBCDIC and unlabeled ASCII.

ORDERING INFORMATION

4991S1 Graphic Input Workstation 150,000 Includes: 4991WS (4125 Color Graphics Workstation); 4100 P 01 with Option 01 and Option 11: CP/M-86 + DTI: 4100H 01 Workstation table; 4957 Graphics tablet; 4991 Auto Vectorizer; 4991P 01 Graphic structuring software.

OPTIONS

Option 01 - 4991P02, CADAM HIS. $\quad+\mathbf{1 2 , 0 0 0}$
Option 02 - 4991P03, ComputerVision HIS. $+12,000$ Option 05 - Add Option 05 to 4991WS. +12,195

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLAN
 SEE PAGE 457

N1 - Service Plan +9 Months Service. $\quad+\$ 4,450$ N3 - OEM Service Plan +12 Months Service. $+\$ 5,930$

Initially available within the U.S. only. Contact your nearest sales office for availability in your area.

OEM terms available on this product.

The 4691, 4692 and 4695 Color Graphics Copiers offer high-quality transparency and plain paper copies.

A Family of Copiers

The 4690 Family of color graphics copiers consists of the 4695 high quality, personal color copier; the 4692 very high quality A-size color copier and the 4691 very high quality A and B size color copier.
The 4695 provides unprecedented image quality in its price range.

Where higher speeds, automatic media handling and standard A/A4 size output are required, the 4692 will be the preferred solution. Multiplexing lowers the cost per user.
Specially matched paper, transparency film and ink result in 4692 copies of the brightest, most highly saturated colors available outside of color photography. Business graphics, scientific data, maps or mechanical drawings may be copied from the terminal screen in rich, true colors.

For complex images such as geometric models or maps, the B-size copies of the 4691 provide the detail needed.
For full resolution graphics images, you will find the 4510A hardware rasterizer from Tektronix an invaluable companion to a Tektronix 4691, 4692 or 4695 Color Graphics Copier. Connecting the 4510A Color Graphics Rasterizer between a host or terminal and any of Tek's color copiers, you can copy a drawing, map, or graph at the full resolution of the copier in 256 solid and halftoned colors out of a palette of over 132,000.

COLOR COPIER/RASTERIZER SELECTION GUIDE

	4691 Copier		4692 Copier		4695 Copier		4510A Rasterizer	
Addressability Fixed Horiz/Vert Variable Preview Horiz/Vert	6 dots/mm(150 dots/in)		$\begin{gathered} 6 \text { dots } / \mathrm{mm} \\ (150 \text { dots } / \mathrm{in}) \\ 128 \text { to } 158 \text { dots/in } \end{gathered}$		4 dots/mm (120 dots/in)		32 bit	
Copy Time	2.0 min to 3.5 min		1.0 min to 3.0 min		2 min to $3.5 \min$ (4105) 3 min to 5.25 min 4106/7/9 6 min to 8.5 min (4113) 8.5 min to 17.5 min (4115B)		$\begin{gathered} 2 \text { min } \\ (4691,4692) \\ 3 \text { min to } 5 \text { min } \\ (4695) \end{gathered}$	
Printing Speed	-		-		20 characters/s		-	
Character Set	-		-		Full ASCII		-	
Printing Matrix	-		-		12×16 dot matrix		-	
Page and Image Format B A A3 A4 Landscape/Portrait Format Selectable	Yes Yes Optional Yes Yes		YesOptional		YesYes		Yes Yes Yes Yes Yes	
Colors	8		216 colors/shades		8		274,625 selectable*	
Media Types Paper Sheet Overhead Transparencies Paper Roll	Yes Yes		Yes Yes		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$		-	
Interface	8-Bit Parallel		8-Bit Parallel		8-Bit Parallel		$\begin{aligned} & \text { RS-232 in, 8-bit } \\ & \text { 8-Bit Parallel } \end{aligned}$	
Data Rate	Up to 400 kbytes		Up to 400 kbytes		$\begin{aligned} & \text { Yes } \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$		75 to 19,200 baud	
4104/5/A $4113 / 15 \mathrm{~B}$ $4125 / 8 / 9$ 4510 A 4691 4692 4695	Yes Yes Yes Yes -		Yes Yes Yes Yes -				Yes Yes Yes Yes Yes Yes	
Dimensions	mm	in	mm	in	mm	in	mm	in
Width Height Depth	$\begin{aligned} & 608 \\ & 346 \\ & 821 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 13.5 \\ & 32.3 \end{aligned}$	$\begin{aligned} & 610 \\ & 216 \\ & 610 \end{aligned}$	$\begin{array}{r} 24.0 \\ 8.5 \\ 24.0 \end{array}$	$\begin{aligned} & 500 \\ & 151 \\ & 336 \end{aligned}$	$\begin{gathered} 19.7 \\ 5.9 \\ 13.2 \end{gathered}$	$\begin{aligned} & 406 \\ & 135 \\ & 478 \end{aligned}$	$\begin{gathered} 16.0 \\ 5.3 \\ 18.8 \end{gathered}$
Weight	kg	lb	kg	lb	kg	lb	kg	lb
Net	60	132.0	32	70.0	11.0	24.2	7.0	15.5
Page	77		76		77		76	
Prices Begin At	\$10,950		\$7,995		\$1,595		\$4,495	

* 256 printable per image.

4692 Color Graphics Copier

Superior Image Quality and Excellent Color Saturation

Unique Ink Transient Suppressor for Reliable Operation

Adjustable for A and A4 Size
Horizontal and Vertical Formats
Four－Channel Multiplexer I／F Option
Variable Image Density and Copy Time
216 On－Board Colors
Complete Supplies Start－Up Kit
Auto－Handling of Paper and Transparencies
The Tek 4692 Color Graphics Copier Offers High－Quality A and A－4 Size Col－ or Copying from 4100， 4110 and 4120 Series Color Display Terminals or Host System．Both Connections Can be En－ hanced with the Tek 4510 Color Graph－ ics Rasterizer．
The 4692 represents a new standard in col－ or ink－jet reliability．The high performance drop－on－demand air flow technology pro－ vides addressability of up to 1536 by 1152 dots in an A－size image．Specially matched paper and transparency media and inks provide highly saturated colors（including vivid black due to a separate black ink supply．）
Each ink－jet head is backed by a unique Ink Transient Suppressor（patent pending）that effectively prevents the ink clogs and bub－ bles associated with some ink－jet printers．

CHARACTERISTICS

Addressability－Fixed Mode Vertical and Hori－ zontal： 6 dots／mm（ 154 dots／in）．Variable＂pre－ view＂mode vertical and horizontal 128 dots／in to 158 dots／in．
Copy Time－One minute to three minutes（de－ pending on image format，addressability mode， and the signal source）．
Page and Image Format－A and A4 output sizes．Landscape and portrait format selectable under program control．
Image Sizes－Variable depending on orienta－ tion and image source（for A－size output；A4－size output slighty smaller to maintain adequate margins）．
Color－ 216 on－board colors and shades．
Media Types－Paper sheet，overhead transparency．
Compatibility－4104A／5A／6A／7A／9A／CX， 4113B／15B Option 19，4125／8／9 Option 19 Com－ puter Display Terminals，4510A Color Graphics Rasterizer．
Interface－Eight－bit parallel．
Data Rate－Up to 400 kbytes（burst mode）．

ORDERING INFORMATION

4692＊Color Graphics Copier
\＄7，795

OPTIONS

Option 01 －Set－up for A4 Size Media．
NC
Option 02 －Four－Channel Multiplexer．
$+995$

INTERNATIONAL POWER PLUG OPTIONS

Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$
Option A5－Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．

WARRANTY－PLUS SERVICE PLANS

SEE PAGE 457

$\begin{array}{ll}\text { N0－Installation \＆Set－up } & \mathbf{+ \$ 2 0 0} \\ \text { N1－Service Plan＋} 9 \text { Months Service．} & \mathbf{+} \mathbf{\$ 6 4 0}\end{array}$ $\begin{array}{ll}\text { N1－Service Plan }+9 \text { Months Service．} & \mathbf{+ \$ 6 4 0} \\ \text { N3－OEM Service Plan }+12 \text { Months Service．} & \mathbf{+} \mathbf{\$ 3 0 0}\end{array}$ ＊The 4692 must be ordered with Installation Option No．

NEW 4510A
Color Graphics Rasterizer
Full Resolution Output to Tek 4691，4692， and 4695 Color Graphics Copiers
Compatible with Tek 4100，4110，and 4120 （2D Capability）Series Color Display Terminals
Shared System Resource
More than 274，000 Selectable Colors
Tek 4100 Series Command Set
The 4510A Color Graphics Rasterizer en－ hances the copy quality of the 4691， 4692 and 4695 Color Graphics Copiers by con－ verting vector images into raster format．
The result is hardcopy at the full resolution of the copier，rather than output limited to the resolution of the terminal．Blurred charcters become crisp，jagged lines be－ come smooth，even E－size engineering drawings can be legibly printed on B－size paper from the 4691．The 4510A also ex－ pands the color palette for the 4691， 4692 and 4695 to over 274,000 selectable colors．

ORDERING INFORMATION

4510A＊Color Graphics Rasterizer $\mathbf{\$ 3 , 5 0 0}$ OPTIONS
Option 30＊－ 128 kbytes total memory． （Capacity：Approximately 12,000 vectors）．$\quad+\$ 995$
Option 31＊-512 kbytes total memory．
（Capacity：Approximately 50,000 vectors）．$\quad+\$ 2,495$
Option $32^{*}-2$ Mbytes total memory．
（Capacity：Approximately 200,000 vectors）． $\mathbf{+} \mathbf{\$ 6 , 4 9 5}$

WARRANTY－PLUS SERVICE PLANS

 SEE PAGE 457NO－Installation \＆Set－up $\quad+\mathbf{\$ 1 2 0}$
N1－Service Plan +9 Months Service．$\quad+\$ 85$
N3－OEM Service Plan +12 Months Service．$\$ 115$
＊The 4510A must be ordered with a memory option．

4691 Color Graphics Copier

High Image Quality and Excellent Color Saturation
Adjustable for A and B Size
Landscape and Portrait Formats
Clear Transparency Capability
Four-Way Multiplexer Option
Compatible with Tek 4100, 4110, and 4120 Series Color Display Terminals
Full Resolution Hard Copies From R4510A Color Graphics Rasterizer

Color Match-To-Screen Via Option 19 on 4110 and 4120 Series Graphics Terminals

Copies can be made in A size (8.5 in $\times 11 \mathrm{in}$) or B size (11 in $\times 17$ in) and their metric equivalents, in as little as two to three and a half minutes. The high performance drop-on-demand ink-jet technology provides addressability of six dots per mm (150 dots per inch) in both horizontal and vertical directions. This allows up to 1560×2460 points in a B size image and up to $1560 \times$ 1200 points in an A size image. Full resolution B-size copies are particularly suited for complex engineering drawings. For best Bsize quality, it is recommended the 4691 be used with the NEW 4510A Color Graphics Rasterizer.

ORDERING INFORMATION

4691 Color Graphics Copier
\$10,950
Includes: 500 sheets (B size and A3 size when Opt 01 is ordered) ink-jet copy paper ($016-0711-00$); 200 ml capacity each ink-jet cartridges, cyan ($016-0713-00$); black ($016-0714-00$); yellow ($016-0715-00$); magenta ($016-0716-00$); 10 ft interconnecting cable 3 meters ($012-0518-00$); power cable ($161-0104-00$); " A " and "B" Size (Standard) paper tray ($118-2557-00$); "A3" and "A4" Size (if Option 01 is ordered) paper tray ($118-2556-00$); $3 /$ pkg drum adaptors ($118-2593-00$); operator manual ($070-4500-00$).

OPTIONS

Option 01 - Set-up for A3 Size Output. NC Option 02 - Four Channel Multiplexer. $\mathbf{+ \$ 1 , 2 0 0}$

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS SEE PAGE 458

N0 - Installation and Set-up.
N1 - Service Plan + 9 Months Service.
N3 - OEM Service Plan +12 Months Service.

4695 Color Graphics Copier

Unprecedented Image Quality in its Price Range
Clear Transparency Capability
Quiet, 20 Character/Second Printing
Small, Compact Package
Choice of Roll or Sheet Paper
Full Resolution Hard Copies From A4510A
Color Match-To-Screen Via Option 19 on 4110 and 4120 Series Graphics Terminals

The 4695 Color Graphics Copier Provides Low Cost, High Performance Color Copying from the 4100, 4110 and 4120 Series Color Display Terminals and Other Raster Data Sources
The 4695's unique implementation of drop-on-demand ink-jet technology provides addressability of 4.8 dots per mm (120 dots per inch) in both horizontal and vertical directions. This allows up to 1280 points $\times 960$ points per A size ($8 \frac{1}{2}$ in $\times 11 \mathrm{in}$) image.

ORDERING INFORMATION 4695 Color Graphics Copier \$1,595
 International power plug options
 Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
 Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
 WARRANTY-PLUS SERVICE PLANS SEE PAGE 458

N0 - Installation and Set-up. $\quad \mathbf{+ \$ 1 2 5}$
$\mathbf{N 1}$ - Service Plan +9 Months Service. $\mathbf{+ \$ 4 3 0}$
N3 - OEM Service Plan +12 Months Service. $\quad+\$ 570$
COLOR GRAPHICS COPIER

4612 Video Hard Copy Unit

Low Copy Cost

High Contrast, Black and White Images

Electrostatic Process

Video Source Compatibilities
Hard copy units such as the 4612 provide quick and convenient copies of complex information that has been displayed on a screen. These devices are essential to the use of graphic terminals, desktop computing systems, and video image processing systems. To fulfill a variety of user needs, graphic and alphanumeric information is permanently recorded on paper at the press of a button. These needs include quick preview copies before final plotting, copies of intermediate steps during interactive work sessions, and final output copies for reports, presentations, and file records.

CHARACTERISTICS

Warm-up Time - Two minutes.
Copy Time - 24 s .
Paper Type - Electrographic (dielectric).
Image Size - 7.5×5.8 std (525 line, 60 Hz signals).
Addressability — Horizontal: 256 dots/in.
Vertical: 171 dots/in.
Toner - Dry magnetic.

AC POWER

Voltage Range - 90 V ac to 128 V ac and 180 V ac to 250 V ac. (High range requires Options A1, A2, A3 or A4.)
Warm-up - 300 W nominal, 360 W maximum.
Copy Process - 215 W nominal, 290 W maximum.
Idle - 120 W nominal, 185 W maximum.

ORDERING INFORMATION

4612 Video Hard Copy Unit \$5,565
OPTIONS
$+\$ 990$
Option 02 - Four Channel Multiplexer.
Option 03 - Set-up for $625 / 50 \mathrm{~Hz}$ Scanning Std.
Option 08 - Set-up for DEC VT100 Series Terminals.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS

SEE PAGE 457

NO - Installation \& Service.
$+\$ 150$
N1 - Service Plan + 9 Months Service.
+\$515
N3 - OEM Service Plan +12 Months Service. $+\$ 685$

Copies in Seconds

Gray Scale Capability
Copies Many Color Display

Video Source Compatible

The 4632 provides very fast, photographic quality hard copies from color raster scan terminals such as the Tektronix 4109A and 4120 Series. First, copies are produced in $18 \mathrm{sec}-$ onds regardless of the complexity of the screen image. Copies feature a minimum of six continuous shades of gray.

CHARACTERISTICS

Copy Time - 18 s first copy; 9 s subsequent copies.
Gray Shades - Six minimum (8 w/Option 06).
Addressability - Incoming signal dependent.
Image Size - $203 \mathrm{~mm} \times 152 \mathrm{~mm}$ (8 in $\times 6 \mathrm{in}$).
Paper - Size: $216 \mathrm{~mm} \times 277 \mathrm{~mm}$ ($8.5 \mathrm{in} \times 11 \mathrm{in}$).
Type: Standard Dry Silver (500 ft roll).
Warm-up Time - 10 miriutes.

AC POWER

Voltage Range, Standard - 104 V ac to 126 V ac.
Strappable - Low Range: 90 V ac to 110 V ac . High Range: 108 V ac to 132 V ac .
Warm-up - 620 W nominal; 240 W maximum.
Copy Process - 200 W nonimal; 240 W maximum.
Idle - 120 W nominal, 185 W maximum.

ORDERING INFORMATION	
4632 Video Hard Copy Unit	\$6,80
OPTIONS	
ation 01 - Copy Coun	+\$200
Option 02 - Four Channel Multiplexer.	990
ption 03 - Set-up for 625 Line/50 Hz	NC
ption 04 - Set-up 1029 Line/60 Hz.	
Option 05 - Set-up for Tektronix 4023	
Terminal.	
ption 06 - Enhanced Gray Scale.	+\$970
ption 07 - Compatible with HP 2640 S	
rminals.	+\$150
ption 08 - Compatible with DEC MINC	
S	
Option 09 - Setup for AT\&T GEMIN1 100	
ste	
10 - Set-up for Tek 4109A.	
-0596-00 - RGB Mixer	$+\$ 425$

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS
 SEE PAGE 457

N0 - Installation \& Service.
N1 IService Plan +9 Months Service.
N3 - OEM Service Plan +12 .
$+\$ 175$

4631 Hard Copy Unit

High Image Quality, Copies in Seconds

Fiber Optic Process

Storage Tube Compatible

The 4631 Hard Copy Unit provides superior quality copies of any graphic and alphanumeric information displayed on a storage tube display. The 4631's fiber optic process uses Dry Silver paper for the fine detail and photographic quality image.

CHARACTERISTICS

Normal Scan - 18 s first copy; 9 s subsequent.
Slow Scan - 36 s first copy; 16 s subsequent.
Paper Size - $216 \mathrm{~mm} \times 277 \mathrm{~mm}$ ($8.5 \mathrm{in} \times 11 \mathrm{in}$).
Paper Type - Std Dry Silver (500 ft roll).
Addressability, Normal Scan - Vertical: 79 dots/cm (200/in). Horizontal: 67 dots/cm (170/in).
Slow Scan — Vertical: 118 dots/cm (300/in). Horizontal; 134 dots/cm (340/in).
Image Size - Vertical Format: $180 \mathrm{~mm} \times 137 \mathrm{~mm}$ (7.1 in $\times 5.4 \mathrm{in}$). Horizontal Format: $225 \mathrm{~mm} \times$ $170 \mathrm{~mm}(8.85 \mathrm{in} \times 6.7 \mathrm{in}$). Option 31: $163 \mathrm{~mm} \times$ $190 \mathrm{~mm}(6.4 \mathrm{in} \times 7.5 \mathrm{in})$.
Warm-up Time - Ten minutes.

AC POWER

Voltage Range, Standard - 104 V ac to 126 V ac.
Strappable Low Range - 90 v ac to 126 V ac .
Strappable High Range - 108 V ac to 132 V ac .
Power, Warm-up - 620 W nominal; 750 W on high range.
Power, Copy Process - 200 W nominal; 240 W on high range.
ORDERING INFORMATION4631 Hard Copy Unit\$7,150
Option 01 - Copy Counter. +\$200
+\$990
+\$990
Option 02 - Four Channel Multiplexer NC
and 4025A Terminal.
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
WARRANTY-PLUS SERVICE PLANS
N1 - Service Plan + 9 Months Service.

4634 Imaging Hard Copy Unit
Fast, High Resolution Copier for Tek and Other Terminals
Excellent Gray Scale
The 4634 provides fast, photographic quality hard copies from both Tektronix color graphics terminals and other TV video sources, both analog and digital. First copies are produced in 26 seconds, successive copies in 12 seconds, regardless of the complexity of the screen image. Hard copies feature a minimum of 12 continuous shades of gray when made with high performance paper. The 4634 is particularly suited for solids modeling and other CAD applications.

CHARACTERISTICS

Copy Time - 26 s first copy; 12 s subsequent copy.
Gray Shades - At least 12 w/high performance paper; at least 6 with standard paper.
Resolution - At least 4.92 lines $/ \mathrm{mm}$ (125 lines/in) with high performance (7772) paper; at least 3.94 lines/mm (100/lines/in) with standard (7770) paper.
Horizontal Image Size Range - 127 mm to 203 mm (5 in to 8 in) for 60 Hz field rate; 152 mm to 203 mm (6 in to 8 in) for 50 Hz field.
Vertical Image Size Range - Adjusts for correct aspect ratio.
Recording Medium - Dry Silver Paper; Tektronix' High Performance (7772) Paper or switch selectable to Tektronix' Standard (7770) Paper.
Paper Dimensions $-216 \mathrm{~mm} \times 152 \mathrm{~m}$ (8.5 in x 500 ft)
Warm-up Time - 20 minutes.
AC POWER

Line Voltage Range ($\pm \mathbf{1 0 \%}$) - Jumper selectable for $100 \mathrm{~V} \mathrm{ac}, 120 \mathrm{~V} \mathrm{ac}, 220 \mathrm{~V} \mathrm{ac}, 230 \mathrm{~V} \mathrm{ac}$, and 240 V ac
Line Frequency - 48 Hz to 62 Hz .

ORDERING INFORMATION

4634 Imaging Hard Copy Unit OPTIONS
Option 09 - Set-up for Tek 4109A.
Option 15 - Set-up for Tek 4120 Series.
Option 30 - Delete Rackmount Hardware
Option 45 - End-User Configuration. 016-0596-00 - RGB Mixer.

Option A1 - Unis
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$. Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS

 SEE PAGE 457N1 - Service Plan +9 Months Service. $\quad \mathbf{\$ 6 0 0}$
N3 - OEM Service Plan +12 Months Service. $\quad+\$ 800$

4957 Graphics Tablet

Graphic Input Capabilities for 4100 and 4110 Computer Display Terminals

RS-232C Compatible

Simple Four-Button Cursor Control

To use the 4957, merely touch the four-button cursor-puck to the tablet's active area. The tablet calculates the coordinates and relays them to the host computer for storage or manipulation.

Applications Fit

The 4957 can augment a terminal keyboard as a menu selection device, move a cursor around a display screen, or help transfer data from paper to a computerized data base.

Compatibility

The 4957 is compatible with the Tek 4106A, 4107A, 4109A and 4110A Family of computer display terminals.

CHARACTERISTICS

Size $-419 \mathrm{~mm} \times 394 \mathrm{~mm}$ ($16.5 \mathrm{in} \times 15.5 \mathrm{in}$).
Active Writing Area $-297 \mathrm{~mm} \times 297 \mathrm{~mm}$ (11.7 in $\times 11.7$ in)

Resolution*1 - User selectable up to 1000 points/inch.
Speed* 1 - User selectable up to 90 coordinates/second.
Accuracy $- \pm .625 \mathrm{~mm}$ (0.025 in).
Repeatability $- \pm .250 \mathrm{~mm}(0.010 \mathrm{in})$.
*' Maximum specs may not be accessible from various terminals.

ORDERING INFORMATION

4957 Graphics Tablet
 $\$ 955$

Includes: Power supply and cord (119-1748-00); four-button cursor (119-1775-00); operator manual (070-4784-00).

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$

WARRANTY-PLUS SERVICE PLANS SEE PAGE 457

N1 - Service Plan + 9 Months Service.
$+\$ 45$
N3 - OEM Service Plan +12 Months Service. $+\$ 55$

NEW 4958 Graphics Tablet

Highly Precise, Easy-to-Use Graphic Input Capabilities for the 411 X Series Computer Display Terminals, the 412 X Series Color Graphics Workstations and RS-232 Based Computers

Desktop or Pedestal Configurations

The 4958 is available in either 17×24 inch desktop, 36×48 inch pedestal-compatible, or 44×60 inch pedestal-compatible configurations.

Simple, Flexible Input

The 4958 reads graphic coordinate data via a multi-button cursor or a stylus. When either is touched to the tablet surface, the tablet calculates the coordinates and relays them to the host computer/terminal for further processing.

Programmability

The tablet cursor is available with either 4 or 16 buttons and has a fine cross-hair lens for accurate point selection. The cursor serves as a programmable hand-held keyboard from which the user can perform user-defined functions at the touch of a button.

High Resolution for Precision Duplication

To faithfully duplicate precision drawings the 4958 offers up to 1,000 -points-per-inch resolution with 0.010 inch accuracy.
ORDERING INFORMATION4958 Graphics Tablet (Option Re-
quired) $\$ 500$
Option $03-\left(17 \times 24^{\prime \prime}\right) . \quad+\$ 4,000$$\begin{array}{ll}\text { Option } 05 \text { - }\left(36 \times 48^{\prime \prime}\right) & \mathbf{+} \\ \text { Option } 06 \text { - }\left(44 \times 60^{\prime \prime}\right) . & \mathbf{+ \$ 8 , 7 5 0}\end{array}$
Includes: Power supply and cord (119-1748-00); four-
button cursor (119-1775-00); and user's manual.
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS

SEE PAGE 457

N1 - Service Plan + 9 Months Service. $+\mathbf{3 0 0}$
N3 - OEM Service Plan +12 Months Service. $\mathbf{+ \$ 4 0 0}$

Now you can rely on Tektronix as your single supply source for all media, pens and ink for your Tektronix copiers, plotters, printers and storage devices. By using Tektronix brand supplies, you can be assured of getting the best output quality of your Tek peripherals.
For further information, or to order any of the Tektronix brand supplies listed below, call your local Tektronix sales office.

INK JET SUPPLIES

4691 Ink Cartridges

200 ml Each

016-0713-00 016-0714-00
016-0715-00
016-0716-00
Magenta
4691 Ink Jet Copy Paper
500 Sheets Per Package
$216 \times 279 \mathrm{~mm}(8.5 \times 11 \mathrm{in})$ A Size $016-0712-00$
$279 \times 432 \mathrm{~mm}(11 \times 17 \mathrm{in})$ B Size 016-0711-00
$210 \times 297 \mathrm{~mm}$ (only for use with 4691 Option 01) A4 Size

016-0709-00
$297 \times 420 \mathrm{~mm}$ (only for use with 4691 Option 01)
A3 Size
016-0710-00
4691 Transparency Film
100 Sheets Per Package
A Size
A4 Size
4691 Drum Adaptors
Package of 3 for use with
A or A4 size
4692 Ink Cartridges
200 ml Each

Cyan	016-0713-01	\$85
Black	016-0714-01	\$85
Yellow	016-0715-01	\$85
Magenta	016-0716-02	\$85
4692 Ink Jet Copy Paper 500 Sheets Per Package		
$216 \times 279 \mathrm{~mm}$ ($8.5 \times 11 \mathrm{in}$) A Size	016-0793-00	\$35
$210 \times 297 \mathrm{~mm}$ A4 Size	016-0794-00	\$35
4692 Transparency Film 100 Sheets Per Package		
A Size	016-0765-02	\$90
A4 Size	016-0766-02	\$90
4692 Maintenance Cartridge $250 \mathrm{ml}$	016-0770-02	\$36
4695 Ink Cartridge Packages 2.5 cc Each, 16 Per Package		
Yellow	016-0734-00	\$27
Magenta	016-0735-00	\$27
Cyan	016-0736-00	\$27
Black	016-0737-00	\$27
4695 Ink Jet Copy Paper 50 m Each 6 Rolls Per Box Roll Paper	016-0743-00	\$70
4695 Ink Jet Copy Paper 500 Sheets Per Package		
A Size	016-0739-00	\$35
A4 Size	016-0740-00	\$35
4695 Transparency Film 100 Sheets Per Package	016-0480-00	\$85
4695 Liquids		
Maintenance Liquid (200 cc)	016-0732-00	\$10
Print Head Protect Liquid (10 cc)	016-0733-00	\$6.00

PLOTTER PENS

4663, 4662 Option 31 Paper Pens
Regular Width

Individual Colors Available in 3-Pen Packages.		
Black	$016-0414-00$	$\$ 8.00$
Brown	$016-0414-01$	$\$ 8.00$
Red	$016-0414-02$	$\$ 8.00$
Orange	$016-0414-03$	$\$ 8.00$
Yellow	$016-0414-04$	$\$ 8.00$
Green	$016-0414-05$	$\$ 8.00$
Blue	$016-0414-06$	$\$ 8.00$
Purple	$016-0414-07$	$\$ 8.00$
Magenta	$016-0414-08$	$\$ 8.00$
9-Pen Multicolor Pack	$016-0414-09$	$\$ 25$

9-Pen Multicolor Pack 016-0414-09
4663, 4662 Option 31 Paper Pens
Fine Line
Individual Colors Available in 3-Pen Packages.
Black 016-0725-00
Brown

016-0725-01
Red 016-0725-02
Orange $\quad 016-0725-03$
Yellow 016-0725-04

Green 016-0725-05
Blue 16-0725-05 016-0725-06
Purple 016-0725-07
Magenta 016-0725-08
4663, 4662 Option 31 Transparency Pens
Individual Colors Available in 3-Pen Packs
Black
016-0469-00
Br
Re
Orange
016-0469-01
016-0469-02
016-0469-03
016-0469-04
016-0469-05
016-0469-06
016-0469-07
016-0469-08 016-0469-09
0.5 mm (0.02 in) Dia Tip Pen Body 016-0442-01
0.8 mm (0.03 in) Dia Tip Pen Body 016-0443-01

Replacement Tips

$0.3 \mathrm{~mm}(0.01 \mathrm{in})$ Dia Tip 214-2706-00 $0.5 \mathrm{~mm}(0.02 \mathrm{in})$ Dia Tip 214-2706-01 $0.8 \mathrm{~mm}(0.03 \mathrm{in})$ Dia Tip 214-2706-02
4662 Paper Pens (Standard 1-Pen Unit) Individual Colors Available in 3-Pen Packages

Red	$016-0589-00$
Green	$016-0589-01$
Black	$016-0589-02$
Blue	$016-0589-03$

4662 Transparency Pens (Standard 1-Pen Unit)
Individual Colors Available in 3-Pen Packages
Black 016-0648-00

Re

\section*{Blu}

Orange 016-0648-02
Yellow 016-0648-04

Burple
016-0648-08
4662 Wet Ink Pens (Standard 1-Pen Unit)
0.4 mm (0.01 in) Dia Tip w/Pen Body 016-0448-00
$0.5 \mathrm{~mm}(0.02 \mathrm{in})$ Dia Tip w/Pen Body 016-0449-00 $0.6 \mathrm{~mm}(0.03 \mathrm{in})$ Dia Tip w/Pen Body 016-0450-00 Replacement Tips
$\begin{array}{ll}0.4 \mathrm{~mm}(0.01 \mathrm{in}) \text { Dia Tip } & 016-0445-00 \\ 0.5 \mathrm{~mm}(0.02 \mathrm{in}) \text { Dia Tip } & 016-0446-00 \\ 0.6 \mathrm{~mm}(0.03 \mathrm{in}) \text { Dia Tip } & 016-0447-00\end{array}$
Wet Ink Pen Accessories
Replaceable Wet Ink Pens Parts Kit 006-2968-01 \$11.00 Extra Ink Single Cartridge

016-0649-00
Inks for Polyester Film ($3 / 4$ oz Squeeze Bottle)
Brown 016-0423-00
Green 016-0424-00
Bed 016-0425-00
Black 016-0427-00
Inks for Paper ($3 / 4$ oz Squeeze Bottle)
Black 016-0428-00
Wet Ink Cleaning and Maintenance Systems
Ultrasonic Cleaning Tank 002-1555-00
Cleaning Fluid with Strainer 5.2 oz 002-0920-01
Pressure/Suction Cleaning Bulb 002-1560-00
Magnifying Instrument 002-1558-00
Pen Storage Humidifier 002-1559-00

PLOTTING MEDIA

4662 Plotter Paper

Blank White Paper
$280 \times 432 \mathrm{~mm}(11 \times 17 \mathrm{in}) 100$ Each
B-Size
006-2410-00
Printed Paper
10×10 grid per in $(11 \times 16.5$ in $) 100$ Each
Linear Paper 006-1698-00
10×10 grid per in $(11 \times 16.5 \mathrm{in}) 100$ Each
10×3 Cycle (11×16.5 in) 100 Each
10×3 Cycle (11×16.5 in) 100 Each
Semi-log Paper
006-1700-00
. 2 Cycle ($11 \times 16.5 \mathrm{in}$) 100 Each
Semi-log Paper 006-1701-00
$\$ 24$
$\$ 24$
$\$ 18 \quad 2 \times 3$ Cycle $(11 \times 16.5 \mathrm{in}) 100$ Each
$\begin{array}{ll}\$ 18 & \text { Full-log Paper } \\ \$ 18 & \mathbf{4 6 6 2} \text { A-Size Plotter Film }\end{array}$
4662 A-Size Plotter Film
Quick Dry Plotter Film
8.5×11 in 50 Sheet Package 006-5939-00 \$30
$\begin{array}{ll}\$ 18 & 8663 \\ \$ 18 & \text { C-Size Polyester Film }\end{array}$
Antistatic Polyester Film
17×22 in 100 Sheets
4663 C-Size Plotting Paper
\$10 Translucent Bond
\$10 18 in $\times 200 \mathrm{ft}$ (2 Each) C-Size After Tear Off
\$10 Blank Roll Paper
Translucent Bond
\$10 18 in $\times 200 \mathrm{ft}$ (2 Each)
$\$ 10$ Metric Size A2 After Tear Off
Blank Roll Paper
Translucent Bond
$\begin{array}{ll}\mathbf{\$ 1 0} & \text { Translucent Bond } \\ \mathbf{\$ 2 5} & 432 \times 559 \mathrm{~mm}(17 \times 22 \mathrm{in}), 100 \text { Each }\end{array}$
Blank Sheet
006-3150-00 \$16
Vellum, 100\% Rag Content
$432 \times 559 \mathrm{~mm}(17 \times 22 \mathrm{in}) 100$ Each
$\$ 23$ Blank Sheet
006-2836-00

4631, 4632 and 4635

Tektronix Standard Dry Silver Paper
$\$ 20216 \mathrm{~mm} \times 152 \mathrm{~m}(8.5 \mathrm{in} \times 500 \mathrm{ft})$
Single Roll
006-1603-00
4 Roll Carton 006-1603-01
\$320
4633A, 4634 and 4635
Tektronix High Performance Dry Silver Paper
$216 \mathrm{~mm} \times 152 \mathrm{~m}$ (8.5 in $\times 500 \mathrm{ft}$)
Single Roll 006-2432-00
4 Roll Carton 006-2432-01
$\$ 230$

4611/4612 Dielectric Hard Copy Paper
$216 \mathrm{~mm} \times 152 \mathrm{~m}$ ($8.5 \mathrm{in} \times 500 \mathrm{ft}$)
2 Roll Package 006-2838-00
4611/4612 Tektronix Dry Copy Toner
4.9 oz Bottle

006-2990-00
\$27

PRINTER PAPER AND RIBBONS

4641 Printer Ribbon
Box of 12
119-0820-00
$\$ 180$
4642 Printer
Paper-Tab Stock, Fan Fold,
$270 \mathrm{~mm} \times 279 \mathrm{~mm}$ ($10.6 \times 11 \mathrm{in}$)

2500 Sheets/Carton	$002-0262-01$	$\$ 65$
Paper Roll Box of 12	$002-1084-01$	$\$ 80$
Ribbons Package of 4	$002-1451-01$	$\$ 70$
4643 Printer Ribbon Cassette 4644 Printer Ribbon Box of 6	$118-1314-00$	$\mathbf{\$ 2 5}$

MAGNETIC MEDIA
4110 Series 8 inch Flexible Magnetic disk
512 kbytes Formatted Capacity
Box of 10
119-1376-01 \$110
4170, 4925 and 4926 Option 25 Flexible $51 / 4$ inch

Disk

650 kbytes Formatted Capacity
Box of 10 119-1583-01 \$55
4905 Options 31 \& 32 Flexible 8 inch Magnetic Disk
315 kbytes Formatted Capacity
Package of 10
119-0848-01 \$115
4907 Flexible 8 inch Magnetic Disk
630 kbytes Formatted Capacity
Package of 10
Hard Disk Pack Formatted Capacity
4909 Disk Cartridge
119-1011-01 \$150
4905 Options 33 and 34

13 Mbyte
Formatted Capacity 119-1462-00 \$360
4050 Series, 4923 and 4924
Certified Data Cartridge 300 ft
Each Cartridge
Package of 5
Certified Data Cartridge 450 ft

Cartridge	$119-1439-00$	$\$ 35$
Package of 5	$119-1439-01$	$\$ 175$

GMA201
Monochrome Raster Display Monitor
High-Resolution Video for the System Builder

Bright, Stable Noninterlaced 60 Hz Refresh
200 MHz Video Amplifier Bandwidth
ROM-Based Dynamic Focus
Modular Construction for Easy Field Service

Unparalleled raster scan video performance

The GMA201 is an OEM product that is wellsuited to system builders in the fields of gray-scale imaging, CAD/CAM, computeraided publishing, document retrieval, and related technical applications that require extremely high performance.
Key features of the GMA201 monochrome display include 1536 vertical by 2048 horizontal addressable pixels, digitally-adjusted focus and astigmatism correction provide a crisp, well-focused beam at all points on the screen over the entire range of gray-scale. A patented low-capacitance gun structure was developed to address the requirements for small uniform spot size, rugged construction and low power dissipation. The flicker-free 60 Hz noninterlaced refresh, high bandwidth 200 MHz amplifier and contrast enhancement panel affords maximum image fidelity. The GMA201 complies with worldwide safety and emissions standards.

We know that your systems can only be as reliable as the components that go into them. For that reason we place a premium on dependability. We produce products that will keep you and your customers satisfied and your service costs down.
Consider the advantages of working with Tektronix-built-in reliability, measureable value, extensive service and support. Your local Tektronix OEM representative will show you how to profit from a partnership with Tektronix.

CHARACTERISTICS
 dISPLAY

Addressable Area $-267 \mathrm{~mm} \times 356 \mathrm{~mm}$ (10.5 in $\times 14$ in).
Addressable Resolution - 1536 pixels \times 2048 pixels at 60 Hz noninterlaced.
Aspect Ratio - $3: 4$ nominal.
CRT Orientation - Long axis horizontal.
Brightness - $100 \mathrm{~cd} / \mathrm{m} 2(30 \mathrm{fL})$ with installed contrast enhancement filter.
Geometric Distortion - Incremental nonlinearity: $\pm 3 \%$ at $25^{\circ} \mathrm{C}$. Positional Accuracy: $\pm 1 \%$ of image height. Peak-To-Peak Line Variation: $\pm 5 \%$.
Spot Size -7.5 mils $(0.19 \mathrm{~mm})$ center screen (maximum). 9.0 mils (0.23 mm) corners (maximum).
Focus, Astigmatism - Dynamically controlled, digitally adjusted using ROM look-up table.
Phosphor Type - WW (P4).
Compliance - UL, FCC, VDE (with Option 23).

VIDEO AMPLIFIER

Bandwidth - Dc to $200 \mathrm{MHz}(-3 \mathrm{~dB})$
Pulse Response - $\mathrm{T}_{\mathrm{r}} \leqslant 1.75 \mathrm{~ns}$. $\mathrm{T}_{\mathrm{f}} \leqslant 1.75 \mathrm{~ns}$.

VIDEO INPUT
Interface - Linear, dc coupled.
Impedance - 50Ω.
Recommended Input Signal Rise and Fall Time $-\leqslant 1$ ns.
Level - Black $=0 \mathrm{~V}$, white $=+1.0 \mathrm{~V}$.
Maximum Nondestructive Input -+5 V , -2 V .

SYNC INPUTS
Interface - TTL Compatible, falling-edge triggered.
Horizontal Sync - $93.6 \mathrm{kHz}, \pm 2 \%$.
Vertical Sync -50 Hz or $60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$. Fac-tory-calibrated to 60 Hz .
Vertical Retrace Time - $\leqslant 250 \mu \mathrm{~s}$.
Horizontal Retrace Time $-\leqslant 2 \mu \mathrm{~S}$.
AC POWER
Range -87 V to $128 \mathrm{~V}, 174 \mathrm{~V}$ to 256 V , all at 48 Hz to 63 Hz .
Power Consumption - 150 W maximum. CONDITION INDICATORS
Scan fail, low-voltage power supply, high-voltage power supply.

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	447	17.6
Height	389	15.3
Depth	485	19.1
Weight	kg	lb
Net	25.0	55.0

ORDERING INFORMATION

GMA201 Monochrome Raster Display Monitor
\$3,675
Includes: Service manual ($010-5079-00$).
Option 23*1 - Cabinetry and CRT Bezel. $+\$ 870$

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

* Option 23 includes a standard North American 115 V power plug. Option 23 is required to order A1-A5 power plugs.

Option 23

Special pricing, terms and conditions are available to qualified OEMs. Contact your local Tektronix representative for complete information.

620 (With Option 23)

606B Monitor
Very High Resolution X-Y Display for Applications Requiring the Most Critically Sharp Photographs and Displays

The 606B offers image stability, gray-scale performance, and uniform brightness, critical to the quality of measurement or the accuracy of a medical diagnosis.

608 Monitor

High Resolution with Ambient-Light Viewing
Expansion-Mesh-Halo Suppression
Excellent Gray Scale. High Brightness Display

The 608 is Tektronix's finest directed-beam viewing monitor. It is extremely well suited for high-performance display applications such as medical and military imaging and electronic instrumentation. The 608's high usable brightness, small spot size, and large screen give excellent direct-viewing capability. It produces detailed displays that are easy to read in high ambient light and produce quality photographs.

620 Monitor

General Purpose, Economical,

X-Y Waveform Display

The 620 is a dependable, economical display, designed for electronic instrumentation, mechanical measurement instruments, and medical A-mode imaging applications.

634
 Monitor

High Resolution Video Display for Critical Applications (1400 Lines, Shrinking Raster)

The 634 raster scan monitor delivers extremely high quality video images for both viewing and photography.

SPECIAL PRICING, TERMS AND CONDITIONS ARE AVAILABLE TO QUALIFIED OEMs. CONTACT YOUR LOCAL TEKTRONIX REPRESENTATIVE FOR COMPLETE INFORMATION.

KEY SPECIFICATIONS FOR X-Y DISPLAYS

	606B	608	620		
Spot Size*1	0.08 mm (3.1 mils)	0.26 mm (10 mils)	<15 mil <25 mil at max drive		
Display Size	$8 \mathrm{~cm} \times 10 \mathrm{~cm}$	$9.8 \mathrm{~cm} \times 12.2 \mathrm{~cm}$	$10 \mathrm{~cm} \times 12 \mathrm{~cm}$		
Acceleration Potential	5.5 kV	22.5 kV	12.0 kV		
Bandwidth, $\mathrm{X}-\mathrm{Y}{ }^{* 2}$	$>3 \mathrm{MHz}$	$\geqslant 5 \mathrm{MHz}$	$\geqslant 2 \mathrm{MHz}$		
Bandwidth, $\mathrm{Z}^{* 2}$	5 MHz	$\geqslant 10 \mathrm{MHz}$	$\geqslant 5 \mathrm{MHz}$		
Risetime	$<35 \mathrm{~ns}$	$\leqslant 35 \mathrm{~ns}$			
Input R and C, X-Y*3	$1 \mathrm{M} \Omega \pm 1 \%$ or $50 \Omega \\|<47 \mathrm{pF}$	$1 \mathrm{M} \Omega \\| \leqslant 60 \mathrm{pF}$	$1 \mathrm{M} \Omega<47 \mathrm{pF}$		
Input R and C, $Z^{* 3}$	$1 \mathrm{M} \Omega$ or $5 \mathrm{M} \Omega$	$1 \mathrm{M} \Omega \leqslant 60 \mathrm{pF}$	$1 \mathrm{M} \Omega<47 \mathrm{pF}$		
X-Y Phase Difference	1° to $\geqslant 500 \mathrm{kHz}$	$\leqslant 1^{\circ}$ to 1.5 MHz	$\leqslant 1^{\circ} \mathrm{dc}$ to 500 kHz		
Recommended Source Impedance, $\mathrm{X}-\mathrm{Y}$ and Z	$<10 \Omega$ in 1Ω pos.	$\leqslant 10 \mathrm{k} \Omega$	$\leqslant 10 \mathrm{k} \Omega$		
Temperature Range	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
Power Requirements*4	75 W	61 W	See footnote*4		
Included Accessories		Lined external implosion shield (graticule) for adjustment purposes.	Lined external implosion shield (graticule) for adjustment purposes.		
Recommended Cameras	$\begin{aligned} & \text { C-30BP, C-5C Opt. } 01 \\ & \text { C-7 Opt. } 01 \end{aligned}$	$\begin{aligned} & \text { C-5C Opt. 01, C-7 Opt. } 01 \\ & \text { C-59A } \end{aligned}$	$\begin{aligned} & \text { C-5C, C-5C Opt. } 01 \\ & \text { C-7 Opt. } 01 \end{aligned}$		

${ }^{* 1}$ Measured at $0.5 \mu \mathrm{~A}$, except for the 606A, measured at $0.1 \mu \mathrm{~A}$.
*2 Fyll spec would read: "dc to ... " appropriate figure.
*3 " $\|<$ " means "paralleled by less than".
*4 Line voltage selector allows operation from $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, and 240 V ($\pm 10 \%$ on each range) 48 Hz to 440 Hz (except the 624 which excludes 220 V). Number given shows watt max at nominal line voltage. The 620 's power requirements are $90 \mathrm{~V} \mathrm{ac}-132 \mathrm{~V} \mathrm{ac} ; 48 \mathrm{~Hz}-440 \mathrm{~Hz}$ line frequency, 22 W max, 0.2 A at 120 V ac 60 Hz .

KEY SPECIFICATIONS

FOR 634 VIDEO DISPLAY

Video Display		634	634 Opt. 01
Display Size		$9 \mathrm{~cm} \times 12 \mathrm{~cm}$ (flat screen)	
Resolution*1	Worst Case	1100 line	650 line
	Nominal	1400 line	800 line
Position Accuracy/ Nonlinearity		$\leqslant 0.5 \%$ within 9 cm circle. $\leqslant 1 \%$ in corners. For Option 01: 1% within 9 cm circle, 2% at corners	
Brightness		$515 \mathrm{~cd} / \mathrm{m}^{2}(150 \mathrm{fL})$ max.	
Brightness Nonuniformity		Less than $\pm 10 \%$	
Bandwidth		$1 \mathrm{~Hz}-10 \mathrm{~Hz}$ std. 20 MHz Video bandwidth available as Option 14.	

${ }^{*}{ }^{1}$ Merged raster lines.
Note: Standard 634 accepts the line/field rate of 625/50. Discrete line rates of 675/60 through $1083 / 60$ can be ac commodated using option 15
Recommended Cameras: C-5C Opt. 01, C-7 Opt. 01, C-59A.

ORDERING INFORMATION
O60B Monitor (without handle, feet or covers) 608 Monitor (without handle, feet or covers)
620 Monitor (without handle, feet or covers) 634 Monitor (without handle, feet or covers)

	606B	608	620	634	Description	Price
Option 01		\checkmark	\checkmark		Internal Graticule	NC
Option 01				v	Resolution of 800 Line Nominal, 650 Worst Case	-\$150
Option 06			\checkmark		UL 544 (Includes Handles, Feet and Covers)	+\$100
Option 06				v		+\$105
Option 06	v					+\$125
Option 07	\checkmark				Screwdriver Front Panel Controls	+\$30
Option 09	\checkmark	\checkmark			UL 544 Component Recognized	NC
Option 10		\checkmark	\checkmark		25-Pin Remote Program Connector	+\$55
Option 13				ν	Reverse Video	+\$85
Option 14				\checkmark	20 MHz Video Amplifier	+\$145
Option 15				\checkmark	Variable Line Rates	+\$280
Option 16				ν	25-Pin Video Input	+\$55
Option 20			$\checkmark(6,31)^{* 1}$	\checkmark	Ac Delete	-\$20
Option 21		\checkmark			Full Differential Inputs	+\$60
Option 22		\checkmark			Extended Gain Range	+\$45
Option 23		$\checkmark(28){ }^{* 1}$	$\nu(6,28,31)^{\star 1}$		Handle, Feet and Covers	+\$110
Option 24		\checkmark			Linearized Z-axis	+\$75
Option 25		\checkmark			TTL Blanking	+\$75
Option 28	$\checkmark(6)^{* 1}$	$\checkmark(23) * 1$	$\checkmark(6,23,31)^{* 1}$		Covers Only	+\$90
Option 29		\checkmark			Metal Bezel	+\$70
Option 31			\checkmark		Delete all Rear BNC's, Dc Power Connector and Ac Power Supply and Switch	-\$25

[^9]

AnthroCart shown with slide out shelf option.

ADS05

The ADS05 mobile workstation provides optimum control and organization of your workspace. Its rugged construction and rollaround feature make it ideal for scientificengineering environments. Designed for Tek's 4100A Series computer display terminals and peripherals, the ADS05's shelves can be configured so your equipment is organized in the most efficient way for your application.
The ADS05 combines durability with functionality. Work surfaces are non-glare, high pressure laminate on 1 -inch particle board with rounded vinyl T-molded corners for safety. All wire components (document holder, basket, base grid) are heavy gauge steel with baked on finish. Castors are quiet, soft rubber, two of which are locking. All tubing is 16 gauge, seam welded, cold rolled steel with a durable baked finish to resist scuffs and scratches.
The ADS05 comes standard with one large shelf, two small shelves, two wire storage baskets, basket mounts and locks, wire base grid, document holder, cord management clips and assembly tools. The ADS05 has a slate gray work surface.

Anthro Features

Mobile

Stacks Vertically in a $51 / 2$ Square Foot Area
16 Gauge Rugged Steel Base
Supports up to $68 \mathrm{~kg}(150 \mathrm{lb})$ of Equipment
Shelves Adjustable in 25 mm (1 in) Steps
Swing Out Baskets Included for Storage
Five Year Warranty

PHYSICAL CHARACTERISTICS				
	ADS05		AnthroCart	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	635	25.0	635	25.0
Height	1092	43.0	889	35.0
Depth Keyboard Shelf Basket	914	36.0	762	30.0
Weight	102	4.0	102	4.0
Shipping*1	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	lb

${ }^{*}$ ' Product shipped flat, easily assembled using supplied tools.

ORDERING INFORMATION
 ADS05
 $\$ 595$
 Order from your local Tektronix sales office.
 AnthroCart
 $\$ 495$
 Order from Anthro Corporation, 3221 NW Yeon Street, Portland, OR 97210, (503) 241-7113
 See optional accessories on next page.

AnthroCart-

The AnthroCart gives Tekstation and PC users a solution to their technology furniture needs. As PCs impact the engineering workspace, space and mobility issues become increasingly important.

Because quality construction is combined with a flexible design, the AnthroCart will house virtually any desktop PC model. The shelves can be adjusted up and down to accommodate most hardware and can be positioned for a stand-up or sit-down application.
The AnthroCart is six inches less deep than the ADS05 cart, to maximize space savings. With the Anthro options listed on the next page, you can customize your cart exactly to your needs, and still maintain a small $51 / 2$ square foot footprint.
The AnthroCart's material make-up is addressed in the ADS05 description. Tested up to 600 pounds, the AnthroCart will hold up to 150 pounds of equipment.
The AnthroCart comes standard with one large shelf, one small shelf, one wire storage basket, basket mounts and lock, wire base grid, document holder, cord management clips, and assembly tools. The work surface is available in oak or slate gray color.

TEK/ANTHRO TEECHOLOGY FURNITURE

1. Extension Shelf Kit

Extension Shelf (18.7×23.75 inches) gives extra space for large printers, additional monitors, and other equipment. Same high pressure laminate surface as the basic AnthroCart shelves. Maximum height of the AnthroCart with extension shelf is 48 inches. Specify light oak or slate gray finish.
Order 121-010-00
$\$ 119.95$

2. Additional Basket

Four-inch deep swing out baskets accommodate storage, documentation and more. Plastic lock (included) secures basket in position. Specify right or left basket. Order 310-000-00

3. Additional Shelf

Can be used for hard disk, power supply, documentation, supplies and more. Measures 18.7×23.75 inches. Specify light oak or slate gray finish. Order 121-000-00
$\$ 59.95$

4. Book Ends

Perfect for organizing books, software manuals and more. Designed to fit into base grid. Set of two.
Order 370-000-00

5. Surge Protector

Series 9 conditioned six-outlet power strip with heavy duty transient voltage surge suppressor. Order 520-006-00

AnthroCart Optional Accessories

6. Paper Feed and Catch

Handles your printer paper flow. Sturdy steel frame holds both 132- and 80 -column printers. Holds up to 5 inches of paper. Sits easily and safely atop extension shelf kit.
Order 380-000-00
$\$ 79.95$
7. Slide Out Shelf

Attaches under the keyboard shelf and slides out to right of the keyboard shelf or to the left. Measures $11 \frac{1}{2} \times 11 \frac{1}{4}$ inches. Can be used for a mouse, digitizer pad or extra documentation. Available in slate gray color only.
Order 140-000-00
$\$ 89.95$

8. Printer Basket

Designed to hold 80 -column printers. Basket measures $18 \frac{1}{2}$ inches (depth) \times $181 / 2$ inches (width). Holds up to 20 pounds. Open side allows paper to feed into printer. Accommodates up to $31 / 2$ inches of paper, swings out for accessibility, plus includes lock to secure basket in closed position. Order 340-000-00 \$119.95

ORDERING INFORMATION

Order these and other options through Anthro Corporation, 3221 NW Yeon Street, Portland, OR 97210, (503) 241-7113.

AnthroArm.

The AnthroArm is designed to elevate a monitor above a desk to provide maximum work space. The AnthroArm makes it easy to store and move equipment. The arms and monitor shelf swivel 360° for accessibility and convenience. With the AnthroArm, you are able to swing the monitor out of the way when not in use, so you can make the most of your available work area. Made of solid aluminum construction, AnthroArm has a load capacity up to 200 pounds $(90 \mathrm{~kg})$. Ideal for heavy 19 " graphic monitors.

ORDERING INFORMATION

AnthroArm

$\$ 599$
For information pertaining to your application needs and installation specifications, call or write Anthro Corporation.

ANTHRO is a registered trademark of ANTHRO Corporation, a wholly owned subsidiary of Tektronix, Inc.

ANTHRO

AnthroArm is designed for engineers who use large Graphic Monitors.

DESIGN AUTOMATION PRODUCTS

CONTENTS

Software Development Products 86
Logic Analyzers 132
Semiconductor Test Systems 132

Tektronix Design Automation products provide a comprehensive array of tools intended for engineering, production, and service applications throughout the electronics industry. As the electronics industry demands ever-increasing front-end design automation via computer-aided processes, Tektronix' Design Automation tools respond with computer-aided software engineering systems and with test and measurement linkages to CAE and CASE Systems. In applications ranging from VLSI prototype verification and computer servicing, to microcomputer software development, to production semiconductor testing, products from the Design Automation Group have set the industry standard for versatility, innovativeness, and performance.

Software Development Products

The Software Development Products (SDP) Division provides its customers with a wide variety of quality software development "error prevention" tools and software/hardware integration products. These CASE (Computer-Aided Software Engineering) products and services which are used throughout the software development lifecycle "from concept to code". SDP's products and services facilitate software design, implementation, documentation, simulation, and debug in a known good environment-as well as the integration of software in a prototype hardware environment.

Logic Analyzers

The Logic Analyzer Division provides instrumentation for testing and measuring digital hardware and software throughout the entire cycle of design, manufacture, and service. This instrumentation includes data acquisition, pattern generation and data analysis capabilities.

The breadth and modularity of the Logic Analyzer product line insures powerful, cost-effective solutions for applications ranging from testing VLSI devices to troubleshooting failing equipment remotely over telephone lines.

Semiconductor Test Systems

The Semiconductor Test Systems (STS) Division furnishes integrated circuit manufacturers and users with computer-controlled automated IC test sytems ranging from compact production testers to full scale characterization machines.

Every STS system includes a complete package of the functional, AC parametric, and DC parametric test features required for thorough integrated circuit testing at any level. STS systems are often called upon to do device characterization during the first shift, to run high-volume production tests through the second shift, and to analyze results and generate reports during the third. STS products are designed to serve customers who demand precision and accuracy combined with cost-effectiveness.

SOFTWARE DEVELOPMENT PRODUCTS

INEWdOTEAヨO ヨuษML-OS

SDP Now Supports

MOTOROLA	INTEL	ZILOG	OTHER
68000	$8086 / 87$	Z80	1750A
68008	$8088 / 87$	Z80CMOS	F9450
68010	80186	Z8001/2	$9900 / 9989$
6809	80188		NSC800
$6809 E$	$8085 A$		$70108 / V 20$
6801	8051		$70116 / V 30$
	8048		$7809 / 08 / 07$
	8021		$7810 / 11 / 16$
	$8041 A$		$78 C 05 / 06$

INTEL
8086/87 8088,87 80188 8085A 8051 8048 8041A 8022

SDP Future Support
68020
80286 $68 \mathrm{HC11}$
and more to come. . .

CONTENTS

Introduction ... 86
Product Development Cycle ... 88
Product Definition .. 89
Structured Analysis
Structured Design
Language Development Systems .. 91
LANDS
Language-Directed Editors
Compilers
Integration Control System
High-Level Debug
Assemblers and Linkers
Design Environment
Host Environments
856X Series
Tek/DEC Software
ColorKey+ User Interface
IBM PC Software
ICOM40A Communications
Microprocessor Support Systems
TekMate
8540A
Real Time Emulation
Trigger Trace Analyzer
Three Modes of Emulation
16-Bit Microprocessor Support
Real Time Operating System
Digital Design Lab
Support Chart
Aerospace/Defense Applications .. 97
Services .. 98
Applications Engineering Services
Software Subscription Service
Customer Training
Ordering Information

Tektronix SDP (Software Development Products Division) offers a broad range of quality software development and software/ hardware integration products. SDP was formerly MDP (Microcomputer Developments Products Division). The name was changed to better reflect the type of products now being offered by this division to meet the needs of a rapidly changing market.

SDP Mission Statement

SDP provides CASE (Computer-Aided Software Engineering) products and services to be used throughout the software development life-cycle. These products and services facilitate software design, implementation, documentation, simulation, and debug in a known good environment as well as the integration of software in a prototype hardware environment.

Experience

After many years of experience gained by offering software development tools and hardware integration tools for over 35 different microprocessors, SDP has expanded its support from these traditional microprocessor specific development tools to non-microprocessor specific software development tools that address the system design portion of the design cycle. These products work together to offer a system of tools that address the whole product design cycle from concept to final test.

Referring to the following design cycle chart, SDP can offer you tools from product concept to final integration and test. The advantage of being able to get all of the tools needed for your design from one vendor means that your designers can spend their time DESIGNING THE PRODUCT, NOT INTEGRATING THE TOOLS NEEDED TO DESIGN THE PRODUCT.

Tektronix Software Development Products Division offers the broadest range of quality multiple microprocessor support available today. Tektronix won't lock you into one microprocessor family or vendor. Plus, every Tektronix SDP System is backed with nearly 40 years experience in meeting designer's needs. We test our Development Products thoroughly to ensure performance and reliability. Each one provides complete development capability and the Tektronix commitment that guarantees you'll keep abreast of the fast paced microprocessor technology.
Call your local specialist today to find out more about Tektronix SDP Systems.

PRODUCT DEVELOPMENT CYCLE

Used Throughout Entire Design Cycle:
ColorKey + User Interface
Documentation Tools
Electronic Mail

Tek Tools for the Whole Design Cycle

New Front End Tools for Error Prevention

SDP continues to expand support to meet the needs of today's market. Structured Design tools have been added to complement the Structured Analysis set of tools to take you from system specifications to system design. These two tools greatly enhance the productivity of both the software engineer and the hardware engineer.

New Low-Cost Tools

Another exciting NEW product is TekMate, a new system of high performance low cost 8 -bit emulation tools that pack all of the experience of Tektronix emulators into a small monolithic package that can connect to a variety of host computers. TekMate meets all of your needs for Z80, 8085, and 6809 development work. Available soon will be support for the 68 HC 11 microcomputer.

Support for Current Products

For those who need to eventually add 16-bit development capability, the 8540A is the system of choice. Supporting both 8 -bit and 16 -bit emulators, the modular 8540 A can be easily configured for the support you need.
NEW this year is support for the NEC 7800 Family, NEC V20/V30, and the F9450 microprocessors.
In addition to new hardware support, the Language Development System (LANDS) product line has been expanded to offer support for the C language in addition to Pascal for the Motorola 68000/08/10 and the Intel 8086/88/186/188 Families.

Advanced Microprocessor Support

Also available in the near future is support for popular 32-bit microprocessors, such as the Motorola 68020. Contact your local SDP sales representative for more information.

Multiple Hosts:*2

8560, 8561, 8562 TNIX
VAX/UNIX, ULTRIX
VAX/VMS
MicroVAX/ULTRIX
MicroVAX/VMS
IBM PC/XT/AT DOS

Software Connections Program

SDP has developed a program with key quality vendors to offer products that complement SDP's product line. The program includes IBM PC based language products from Microtec Research, real-time operating systems (VTRX) from Hunter-Ready, and specialized software execution environments from Mikros Corporation. SDP will continue to expand this relationship with other vendors to offer high quality solutions for your software development needs.

* ${ }^{1}$ Tek also offers a wide range of CAE tools for your hardware design task.
*2 VAX, VMS, ULTRIX, and MicroVAX are trademarks of Digital Equipment Corporation.
UNIX is a trademark of AT\&T Bell Laboratories.
IBM PC/XT/AT are trademarks of international Busi ness Machines Corporation.
TNIX is a trademark of Tektronix, Inc.

Structured Analysis Tools

Specify System Conceptual Requirements Graphically
Evaluate Specifications Automatically for Accuracy and Completeness

Improve Product Quality
Reduce Development Time and Costs
To address the System Definition portion of the product development cycle, Tektronix offers SA Tools. SA Tools is a set of "Error Prevention" front end design tools used to avoid errors before your design begins. These graphically oriented software development tools automate the Structured Analysis (SA) method of system modeling. SA Tools ensure that a system specification is complete, consistent, and well structured.
Tektronix SA Tools support the SA method described in Structured Analysis and System Specification, by Tom De Marco. SA is a systematic, graphic, top-down way to describe what a system does.
SA's graphic notation encourages team analysis and a thorough understanding of requirements. Using SA, designers develop a solid specification before design begins.
An SA specification is tedious to maintain manually. SA Tools automate the functions a computer can do best: drawing diagrams, organizing documents, checking details, preserving consistency, and making copies.
While SA Tools handle the routine details, the designer is free to concentrate on system analysis. Creating, evaluating, modifying, and copying a specification can be done quickly online. SA Tools allow designers to improve product quality, reduce development time and costs, and manage projects effectively.

SA TOOLS FUNCTIONS

SA Tools support the SA methodology by automating the routine tasks of specifying a system. They let designers create, analyze, modify, and display a graphical specification of the system to be developed.

Editing

A special-purpose interactive graphics editor lets designers create and modify DFDs (Data Flow Diagrams) online. With the editor, designers can create, label, move, change and delete each type of symbol in a DFD.
The graphics editor lets designers move through the SA specification creating child DFDs and MSs (Mini-Specifications). New DFDs are created with parent data flows automatically included (VMS feature). By taking advantage of their terminal's graphics capabilities, designers can also tailor the appearance of DFDs.
The DD and MSs are edited with any text editor, so designers can use the editors they prefer.

Evaluation

The evaluation tool verifies consistency, completeness, and structure in the SA specification. It identifies inconsistencies between documents and evaluates a documents for adherence to SA guidelines. For example, the evaluation tool checks the consistency of data flows, the complexity of DFDs, and the completeness of the DD.

Correction

The correction tool helps preserve consistency in the SA specification. For example, this tool maintains consistency of process names, and consistency between data flows and the DD.

Display

The display tool allows designers to show SA documents online or to produce DFD hard copies on Tektronix copiers. Copies can be full or half size, and in color or black and white.

Auxiliary Tools

Auxiliary Tools support system analysis by performing tasks such as sorting the DD, or listing the processes and data used in the SA documents.

Combined Tool Use

SA Tools can be combined with one another and with standard operating system commands to perform more complex tasks. For example, the SA commands to list data flows and to look at DDs can be used to show the DD definitions for all data flows in a DFD.

ColorKey + User Interface

The Tektronix Colorkey + user interface makes SA Tools easy to learn and use. Designers can use SA features by pressing function keys or by entering a command directly. With Colorkey + designers can select an SA document and perform a variety of tasks on that document. Refer to page 93 for more information on Colorkey +.

SA TOOLS FUNCTIONS
Tool Function*1 Main Edit Edits an SA document Evaluate Evaluates an SA document Fix Corrects an SA document Show Shows an SA document Auxiliary Add TBDs Adds new entries to the DD DFD plotter Converts a DFD to the UNIX plot format List data flows Lists data flow names from List processes SA documents Lists process numbers and names from SA documents Look Looks up an entry in the DD Monochrome Produces a monochrome copy of a DFD Varse Validates DD Syntax Sort DD Sorts DD entries alphabetically

Host Support

SA Tools run on VAX computers under the VMS, UNIX, and ULTRIX operating systems. The tools also run under TNIX ${ }^{\text {m }}$ on the Tektronix 856X Series Multi-User Software Development System requires floating-point option.

Configuration Requirements

SA Tools require a Tektronix graphics terminal; a color 410X Series computer display terminal. The 4107A, is recommended because it lets designers have several diagrams on the screen at the same time. Tektronix copiers, such as the 4692 Color Graphics Copier, can be connected to 410X terminals to copy screen contents.
A text editor is required to create and modify the DD and MSs. Tektronix offers various language-directed editors for the VAX and the 856X Series.

Structured Design Tools

Design Software Graphically

Evaluate the Design Automatically
Make Hard Copies of Structure Charts
After using SA Tools to develop a complete and consistent system specification, Tektronix expands its "Error Prevention" front end design tools with Structured Design Tools. Structured Design Tools are used in the design portion of the product development cycle. SD Tools is a set of graphically oriented software development tools that automate structured, graphical methods of software design.
The design phase of a project follows the analysis phase. A system specification such as that produced with Tektronix SA (Structured Analysis) Tools is developed in the analysis phase. Then SD Tools let the designer develop a software design that will achieve the specified functions.
Tektronix SD Tools support the Structured Design method as described in Practical Guide to Structured Systems Design by Meilir PageJones. Given the specification of system, Structured Design is a systematic, graphic, top-down method of describing the design for a software system. Using SD, designers can develop a complete, viable design before implementation starts.
The benefits of using SD come from the ability to create a well-organized representation of the software before starting to program. SD's graphic notation encourages designers to find the structure for the software system which will best meet its specification.
When maintained manually, the detailed aspects of a Structured Design are tedious and error-prone. SD solves this problem. SD Tools automate the tasks that a computer can do best-drawing and changing diagrams, evaluating the design structure, and displaying the design documents on screen and hard copy.
SD Tools allow designers to improve product quality, reduce development time and costs, and manage their project effectively.

SD TOOLS FUNCTIONS

SD Tools support the design phase by automating the routine tasks of software design which involve the creation, analysis, modification, and display of Structure Charts (SC).

Editing

A special-purpose interactive graphics editor lets designers create and modify SCs. With this editing tool, designers can create, label, move, change and delete each item in an SC.

The graphics editor has commands that let designers move through the Structure Charts. Designers can also tailor the appearance of SCs by automatically utilizing their terminal's graphics capabilities.

Evaluation

The evaluation tool checks for errors and inconsistencies among SCs. It also gives warnings for deviations from the guidelines of the SD methodology. In addition, the user may obtain measures of the system complexity at various levels within the SC hierarchy.

Display

The display tool can show SC on-line or produce a hard copy. Designers can produce SC hard copies quickly on Tektronix copiers.

Auxiliary Functions

To help designers improve the specification, SD Tools includes auxiliary commands. These commands perform tasks such as listing the module calling tree, and answering user queries about data item references, and parameter usage.

ColorKey+ User Interface

The Tektronix Colorkey + interface makes SD Tools easy to learn and use. Designers can access the various features by pressing function keys or by entering a command directly.
Designers can select an SD document and then perform a variety of tasks on that document without repeatedly identifying the document. Refer to page 93 for more information on Colorkey+.

SD TOOLS FUNCTIONS

Tool	Function
Main	Edits an SC
Edit	Evaluate
Evaluates an SC	
Show	Reports on complexity of an SC Displays an SC
Auxiliary	Provides descriptions of SC characteristics

Host Support

SD Tools run on VAX computers under the VMS, UNIX, and ULTRIX operating systems. The edit and show tools also run under TNIX on the Tektronix 856X Series multi-user software development system with the floating point option.

Configuration Requirements

SD Tools require a Tektronix graphics terminal; a color 410X Series computer display terminal (the 4107A, is recommended). Tektronix color graphic copiers, such as the 4692 Color Graphics Copier, can be connected to a 410X terminal to copy screen contents.

Contact your local SDP sales representative for more information.

Language Development Systems (LANDS)

Complete C/Pascal Code Generation Systems

Integrated Set of S/W Development Tools

Tightly Linked with Emulation Systems
After using SA Tools to develop your system specifications and SD Tools to design your software modules, you're now ready to develop and debug your code. Tektronix Language Development Systems (LANDS) offers you a comprehensive set of tools for the development, debug, and integration of your software modules.

LANDS

Using a high-level language to generate code for microprocessors has advantages over assembly language programming since programs are easier to understand and maintain and programmer productivity is higher. To support this, Tektronix SDP offers a language-oriented development system for Pascal or C called LANDS. The LANDS package is an integrated set of language development tools consisting of a languagedirected editor, a compiler (Pascal or C) with an Integration Control System (ICS), and a high-level language symbolic debug. These products allow the user to work through the software development and debug cycle in the same high level language from code entry through debugging. An assembler with a linker is also included with the LANDS package.

LANGUAGE DIRECTED EDITORS

The LDE (Language Directed Editor) included in the LANDS package is an editor that understands Pascal or C syntax. LDE flags any syntax errors in the source code you've entered while you are still in the editor. LDE issues an error message and moves the cursor to the error so that the error can be corrected immediately. The detecting of syntax errors while in the editor eliminates lengthy compilations to locate these errors. LDE is also an excellent general purpose screen-oriented editor.
An auto-indent feature in LDE simplifies the indenting task by remembering the previous indentation level. A GENERIC key reduces the need to type frequently used keywords. LDE provides quick location of languagespecific tokens and character strings for editing. LDE is compatible with several terminals.

COMPILERS—Pascal and C

For high-level language programming, the LANDS Pascal and C cross compilers, provide the benefits of structured languages
plus the ability to use microprocessor specific functions. The LANDS Pascal compiler contains many enhancements for microprocessor programming. These enhancements include interrupt handling, bit-level data manipulation, assignment of variables to specific hardware addresses, and direct access to I/O ports without having to resort to assembly language code. In addition, the Pascal compiler provides a separate optimizer pass that can significantly reduce code volumes and boost performance. The LANDS C compiler supports Kernighan and Ritchie's standard C and includes an implementation of the standard I/O libraries.

INTEGRATION CONTROL SYSTEM

One major task associated with microcomputer design is to correctly interface the software with the specifics of the prototype hardware. When the software has been generated in a high-level language like Pascal or C, this task can become quite complex and time consuming.
LANDS compilers include a unique tool for implementing the hardware/software interface, called the ICS (Integration Control System). The user fills in a brief source file with parameters defining the software modules and hardware configuration. From this source file, ICS automatically handles the details and generates the necessary code and command files to execute code in the target system.
ICS creates a linker command file that adheres to the specified memory parameters. Constants, instructions, and global variables are all automatically assigned to their correct locations within the prototype address space.
ICS generates any code needed to link lowlevel interrupt vectors to service routines. ICS also generates the object code needed to handle the initialization and reset operations. Normally interrupt, initialization and reset code would have to be manually programmed in assembly language and then linked with the high-level code.
In addition to automating the hardware/ software interface task, ICS also creates an emulator command file. This file allows you to download the linked object module and execute it in a single command. You save both time and effort in the debug stage of the design cycle.

HIGH-LEVEL DEBUG—PASCAL AND C

With most microcomputer software designs, when the program executes on the processor, trace information accumulated by the debug software is displayed in an assembly code format. Unfortunately, when programming in high-level language this debug code bears little or no resemblance to the original Pascal or C source code. A great deal of time and effort is spent figuring out the rela-
tionship betweeen assembly-level debug information and the original source code.
Tek's LANDS package solves this longstanding problem with our high level debug. While the program executes on the emulator, the high-level-language debug translates information back into its counterparts at the Pascal or C source code level. All debug operations can be performed at source code level. This completely eliminates the time-consuming requirements of translating assembly-level debug information into its high level counterpart.
With the high-level debug, all your debug commands can be entered using source code terminology. Breakpoints can be set on statement numbers, procedure and function names, or on variables to halt program execution. Values can be returned to calling functions.
The high-level debug also gives you the capability of displaying your program in highlevel source form, which speeds up the analysis. For instance, the user can trace function calls and obtain a listing of each time the procedure is entered or exited and the value of any parameters. Also, variables can be displayed, modified and evaluated in their original source code terms. There is no need for the time-consuming task of translating hexadecimal responses to the corresponding high-level language constructs.

ASSEMBLERS AND LINKERS

Microcomputer software design demands a highly sophisticated set of programming tools to maintain high productivity while permitting logic manipulations down to the hardware level. In response, Tek assembler/linker packages offer a feature set that streamlines the coding effort while retaining the power the user needs to implement machine-level operations.
Tek assembler packages consist of an assembler for a specific microprocessor, a sophisticated linker for locating code and a library generator for creating source code for object modules and reusing object modules previously created. Tektronix assemblers and linkers include many features that are normally only associated with high-level coding. The user can create sophisticated macro statements that provide high-level coding power within the assembly process.
The INCLUDE assembler directive can be used to include other files containing assembler source, data types, constants, and variables. Conditionals using Boolean expressions are available to help control the assembly process. In addition, Tek assemblers all share the same base, which means once users learn a Tek assembler they can move from one microprocessor to another with a minimum of learning time.

Design Environment

Multiple Hardware Platforms
UNIX/ULTRIX/VMS/PC DOS Support
Integrated Communications Packages
Common User Interface
To support your engineering environment, Tektronix has tailored tools to work in many different environments. By supporting the VAX line from MicroVAX through VAX 8600 on both VMS and ULTRIX, the IBM PC, and Tek's own 856X workstations, you can choose the environment that best fits your needs.

HOST ENVIRONMENTS

No matter what the size and scope of your engineering operations, Tek provides a solid hardware and software foundation for your microcomputer design tool set, supporting a wide range of 8 -bit and 16 -bit microprocessors. Tek SDP offers a variety of software design engineering environments:

- Tek code generation tools running on the 856X Multi-User Software Development Units and code execution on the 8540A or TekMate Microprocessor Support Systems.
- Tek code generation tools running on DEC VAX minicomputers, from the new MicroVAX II to powerful 8600, and code execution on the 8540 A or TekMate Microprocessor Support Systems.
- Code generation tools, including assemblers and compilers developed by Microtec Research, Inc. on the IBM PC/XT/AT with download and debug communication to the 8540A or TekMate Microprocessor Support Systems.
- Debug communication to the 8540 A from the Apollo workstation.

856X FAMILY

The 856X Multi-User Development Systems Series, consisting of the 8561, 8560 and 8562 , is designed to be 100% software compatible and hardware upgradable.
The TNIX Operating System present on all members of the 856X Series is derived from AT\&T Bell Laboratories UNIX Operating System Version 7. TNIX provides all the powerful features of UNIX, to support a teamoriented software design environment, including multi-tasking, hierarchical file system, electronic mail, MAKE for automated software creation, and SCCS for version control.
The 8561 is a powerful, entry-level software development system supporting one or two users. It offers an LSI-11/23 CPU, a 15 Mbyte hard disk, a 1 Mbyte flexible disk, 256 kbyte of RAM memory, two user ports, and two line printer ports. This basic system

can be easily upgraded within the same mainframe to an LSI-11/73 CPU, 55 Mbyte of hard disk, 512 kbyte or 1 Mbyte of RAM memory, a GPIB interface for disk backup, and four or eight user ports. Each 8561 user port can support either a standard CRT terminal, a Tektronix 410X Color Terminal, or a Tektronix 8540A or TekMate Microprocessor Support Systems designed specifically to handle hardware/software integration tasks through real time emulation.
The 8560 offers a medium cost/performance software development system for four users. The same software design tools offered for the 8561 are available on the 8560 and the 8560 is also upgradable. A standard 8560 offers an LSI-11/73 CPU, a 40 Mbyte hard disk, a 1 Mbyte flexible disk, 256 kbyte of RAM memory, four user ports, and two line printer ports. The 8560 can be easily upgraded within the same mainframe to 80 Mbyte of hard disk and 1 Mbyte of RAM memory.
The 8562 is a high performance software development system which supports up to eight users. Compatible with the 8561 and 8560, the 8562 offers an LSI-11/73 CPU, 40 Mbyte hard disk, a 1 Mbyte flexible disk, 1 Mbyte of RAM memory, eight user ports, and two line printer ports. The 8562 can be
upgraded with a GPIB interface for disk backup, or 80 Mbytes of disk storage within the same mainframe.

Tek/DEC SOFTWARE COMPATIBILITY

Tek offers powerful High Level Language tools, both Pascal and C LANDS packages, and many popular assemblers on Digital Equipment Corporation's VAX Series of computers using the VMS, UNIX or ULTRIX based operating systems. This Tek/DEC combination gives you a powerful series of options when configuring your design environment. You can run Tek software development tools on the VAX to produce executable object code, and easily download the code to a Tek 8540A or TekMate Microprocessor Support System to perform emulation/debug tasks. Tek supplies you with the software needed to make your VAX/8540A or VAX/TekMate combination function as a turn key system. In more advanced configurations, you can interface entire $856 \mathrm{X} / 8540 \mathrm{~A}$ or $856 \mathrm{X} /$ TekMate systems to the VAX to create a powerful distributed processing system with the VAX acting as the central manager.
Regardless if you start with the entry level 8561 or a VAX 8600, the Tek software tools will allow you to transport the programs you generate from one computer to another.

Colorkey + USER INTERFACE

Colorkey + and the Tek 410X Color Graphic Terminals work together to give simple single key stroke access to the TNIX (TEK 856X Series) and DEC VAX/VMS or UNIX/ULTRIX operating system and Tek's microcomputer design tools. ColorKey+, standard with the 856X Series, is offered as an optional package on the VAX.
The color coding and graphically defined soft keys guide the user through the system with a minimum of effort or knowledge.
The use of color and soft keys minimize the time it takes new users to learn the operating system and emulation/debugging system. Soft keys simplify command entry and minimize keystrokes.
Soft key labels appear on the bottom of the screen and change as different operations are performed. Functions are arranged in a hierarchical manner, from major tools down to specific options for a selected command.

Colorkey+ is an intelligent interface. Parameters entered by the user are remembered and can be displayed as soft key options later. Previous commands can also be recalled, modified, and reissued.
If a user requires more information about a soft key option, Colorkey + will offer a longer explanation. And, if users forget where they are in the soft key command tree, a Where-Am-I command graphically displays the command sequence and soft key levels.

As soft key commands are entered, Colorkey+ displays the actual commands required to perform the operation. Eventually, the user learns most of the system commands and can directly issue commands to the system instead of using the soft keys.

Colorkey + colors reduce user fatigue and increase productivity. Color maximizes readability of complex information and highlights different types of information.

IBM PC

The IBM PC/XT/AT can be integrated with the 8540A or TekMate to form a powerful Microprocessor Development System. Tek is distributing Microtec assemblers and high level language compilers for code generation on the PC. These assemblers support Z80, NSC800, 6800/01/02, 6809, 8080, 8085, 8048, 1802, 9900, 68000/08/10, 8086/88, 80186/188, and Z8002. High level language compilers are available in Pascal or C for 8080/85, Z80 and NSC800; and PL/M for 8086/186/286. The Microtec tools produce object code that can be downloaded to the emulator in the 8540A or TekMate Microprocessor Support System for execution and symbolic debug.

ICOM40A COMMUNICATIONS

The ICOM40A (Integrated Communications System) software package provides a means of communicating from the host to the 8540 A emulation system. Code developed on the host with code generation tools can then be verified and debugged with the powerful emulation tools. ICOM40A allows remote access to 8540A's connected to a host. Both the host and 8540A operating systems can be accessed from a terminal connected only to the host. Commands can be intermixed as entered or in command files and ICOM will send the command to the appropriate system. Binary or hexadecimal format files can be downloaded from the host to the 8540A. Standard with the 856X Series host, ICOM40A is also currently available for the VAX host, VMS, UNIX and ULTRIX operating systems, the IBM PC/XT/AT, and Apollo workstation family of minicomputers. ICOM40A functionality has been included as a standard feature with the TekMate Microprocessor Support System.

Microprocessor Support Systems

8-Bit and 16-Bit Quality Emulation

8540A Universal Systems

TekMate Low Cost 8-Bit Monolithic Systems

Tektronix expands an extensive line of high quality emulation tools with TekMate, a lowcost monolithic 8-bit Microprocessor Support System. TekMate complements the 8540A Microprocessor Support Systems. For those needing high-performance, lowcost 8-bit support, TekMate fills your need. For those who need to eventually add 16 -bit development capability, the 8540A is the system of choice. Supporting both 8 -bit and 16 -bit emulators, the modular 8540 A can be easily configured for the support you need.

TekMate ${ }^{\text {® }}$
 Microprocessor Support Systems

NON-STOP EMULATION to Allow the Full Use of the Emulation Analysis Tools During Emulation

HIGH PERFORMANCE to Provide the Analysis Tools Needed to get the Job Done Fast

LOW COST Monolithic 8-Bit System

EASE OF USE Designed in from the Start to Maximize Usability and Productivity

TekMate is a high performance, low cost emulation system with hardware and software analysis for 8 -bit microprocessors and microcontrollers. The Z80, 8085 and 6809 microprocessors are supported today. Contact your local SDP sales representative for future TekMate support such as the 68 HC 11.

CHARACTERISTICS

To assure the user of getting the best dollar performance available for 8 -bit microcontroller and microprocessor support, the TekMate Microprocessor Support System was designed with all desired emulation features standard including:

EMULATION ENVIRONMENT

Emulation Memory

- 64 kbyte emulation memory.
- Prototype/emulation memory mappable on 256 byte boundaries
- Examine, patch, fill, load, save memory functions.
- Full symbolic debug capability
- Disassemble memory.
- Support for Tek language tools as well as other vendors.

Register Trace

- 16 selectable address trace ranges or values.
- Instruction disassembly during register trace.
- Uninterrupted real-time execution between traced instructions.
- Display and set register content.

Real Time Trace

- Nonstop Emulation
- 1024 line bus transaction trace buffer.
- Buffer contents available without stopping emulator.
- Complex Buffer trigger qualification
- Buffer can capture pretrigger, posttrigger, or center trigger data.
- Trigger configuration set without stopping emulator.

Emulation Break Points

- 16 break points can be set for either ADDRESS RANGES OR VALUES
- Real Time Trace break point can be set to occur when the trace buffer acquisition is complete.
- External Trigger input.

Three Emulation Modes
See diagram on next page.

Symbolic Debug

- Full Symbolic capability.
- Virtual symbol table.
- User defined symbols can be created and stored during debug operation.

8540A Compatible

- Full service call support

8540A Load File Support

- Trigger In and Out.
- Trigger out on emulation breaks

Leading edge when break conditions are met.
Trailing edge when emulator is halted

- Maskable trigger input to halt emulation.

HOST SUPPORT

Using standard RS-232 communications, emulation control software and language support tools are provided for the following hosts:

IBM PC.
VAX.
Tektronix 856X Series.

8540A
Microprocessor Support System
8－Bit \＆16－Bit Real－Time Emulation
Modular Universal System

Expansion Capability

The 8540A supports both 8 －bit and 16 －bit microprocessors．Modularity and universali－ ty are key features of the 8540A．The 8540A can be configured to meet your needs． Modular options include：
－Full Range of Microprocessor Support
－Program Memory－ 64 kbytes to 768 kbytes
－Trigger Trace Analyzer
－Memory Allocation Controller
－PROM Programmer Support
－Communication Options

Real Time Emulation

Real－time emulation is accomplished by exe－ cuting code on a processor identical in func－ tion to the one targeted for the prototype hardware．The emulator processor is run un－ der the control of powerful debug software that allows control and tracing of the code＇s execution．This debug software does not need to be linked into your code or use any of your memory or interrupt lines．
Tek＇s superior emulators allow your code to execute in real－time，with no wait states insert－ ed or clock pulses stretched．This means the emulator is fully transparent to the user；there－ fore you do not spend time＂working around＂ the development system．

Trigger Trace Analyzer Captures Real－ Time Events

A powerful option to Tek emulators is the Trig－ ger Trace Analyzer，which uses a high－speed trace buffer to capture real－time software and hardware logic events，with the prototype run－ ning at the design＇s full specified operating speed．Multiple word recognizers allow you to define sophisticated triggers when tracing code execution．And data qualification allows you to capture only the data you wish to see．

Three Modes of Emulation

Both the 8540A and TekMate systems enable you to incrementally integrate your prototype software and hardware．Starting with mode 0， you can do a majority of your software design without a prototype．Using Service Calls （SVCs）to simulate I／O，mode 0 debug can be－ gin long before actual hardware is available．
Once prototype hardware is available，the de－ signers gradually move from using emulation system resources to using prototype re－ sources（mode 1）．The final step is to use all of the prototype resources（mode 2）to exe－ cute the program．Because of the transparent nature of Tektronix emulators，your prototype will reliably perform in mode 2 as it will in actu－ al operation with the emulator disconnected．

8540A／TekMate Modes of Emulation

FULL FEATURE
Phased Emulation－Mode 0

FULL FEATURE
Phased Emulation－Mode 1

FULL FEATURE
Phased Emulation－Mode 2

－Software Tested On Actual Microprocessor
－No Prototype Hardware Required
－Prototype I／O Interactions Are Simulated
－All Emulator Debug Functions Are Available
－Prototype Software \＆Hardware Tested Together
－All Clock，I／O \＆Interrupts Tested
－Real－Time Environment
－Memory Substitution
－No PROMs To Program
－Can Debug Without Working Memory System
－Program is Transferred To Prototype Memory In Steps
－All Emulator Debug Functions Are Available
－Final Test Of Hardware \＆Software
－All Prototype Memory Tested
－PROM，ROM，Etc．
－Dynamic Or Static RAM
－All Emulator Debug Features Available

16-Bit microprocessor Support

Tektronix SDP supports software development tools and emulation for the major 16bit microprocessors. Code generation tools, including Pascal and C LANDS packages, assemblers and compilers, are available on a variety of hosts with download capability and debug communication to the 8540A Integration Unit for code execution.
Full coverage, including assembler, Pascal and C LANDS, and emulation for the Motorola 68000 Family is available whether you use as a host the 856X Series, the VAX minicomputers or the IBM PC. SDP supports the Intel 8086/8088 with the 8087 floating point co-processor, as well as 80186/80188 chips with emulation and LANDS, both Pascal and C. New to the product line this year
is support for the NEC V20/70108 and V30/70116 chips. Emulation tools are available on the 8540A with an NEC mnemonic assembler, as well as code-compatible 8086 software tools.

RTOS Support

For Real-Time Operating System support, SDP also offers Hunter-Ready's Versatile Real Time Executive (VRTX) for both the 68000 Family and the 1750A. VRTX is a 6 k "silicon software" kernel noted for its speed, compactness, reliability, and versatility.

Digital Design Lab (DDL)

A greater number of microcomputer designs now involve either dual processors or a single processor closely coupled to other intelligent hardware within the prototype. Tek meets the challenge of these designs through the Digital Design Lab, which com-
bines the power of the Tektronix 856X/ 8540A Microcomputer Development System with the Tektronix DAS 9100 Digital Analysis System.
Through a single terminal interface, the user has complete control of both systems. An 8540A emulator controls one processor's execution while the DAS 9100 monitors the second intelligent chip. The real-time data flow from these two sources is state stamped as it is stored in memory. The data can then be correlated in a time-synchronized manner for display and analysis. This time correlation capability allows you to see the cause and effect relationships between the two circuit elements being debugged. The result is a powerful insight into separate, but related data flows within the same prototype system.

8-BIT AND 16 -BIT SUPPORT CHART

MICROPROCESSOR	HOST				EMULATION	
	856X	VAX/VMS	VAX/UNIX ULTRIX	IBM PC	TEKMATE	8540A
Z80/Z80 CMOS	ASM	ASM	ASM	ASM, PAS, C	EZ80	VZ80
6809	ASM	ASM	ASM	ASM	E6809	V6809
8085A	ASM	ASM	ASM	ASM, PAS, C	E8085	V8085
NSC800	ASM	ASM	ASM	ASM, PAS, C		VNSC800
68000	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM		V68000A
68008	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM		V68008
68010	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM		V68010
$\begin{aligned} & 8086 / 87 \\ & 8088 / 87 \end{aligned}$	ASM, PLANDS	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM, PL/M		$\begin{aligned} & \text { V8086 } \\ & \text { V8088 } \end{aligned}$
80186/80188	ASM, PLANDS	ASM, PLANDS, CLANDS	ASM, PLANDS, CLANDS	ASM, PL/M		$\begin{aligned} & \text { V80186 } \\ & \text { V80188 } \end{aligned}$
1750A, F9450	ASM	ASM				V1750, OP 30
Z8001/2	ASM, PLANDS			ASM		8300E20
9900/9989	ASM			ASM		8300E33
8048	ASM			ASM		8300E10
$\begin{aligned} & \hline 70116 / \mathrm{V} 30 \\ & \text { 70108/V20 } \end{aligned}$	ASM	ASM	ASM			8300E41
7800 Family	ASM					8300 E34

ASM-Assembler/Linker package
C-C Compiler
CLANDS-C LANDS package; includes C LDE, C Compiler, ICS, C Debug, Assembler/Linker package
PAS-Pascal Compiler
PLANDS - Pascal LANDS package; includes P LDE, Pascal Compiler, ICS, Pascal Debug, Assembler/Linker package
PL/M-PL/M Compiler

Support for
 Aerospace/Defense Applications

Real Time Software Testing in the Target System.

High Order Language Development
Systems; Pascal and Ada*1

856X/VAX Host Support

Worldwide Service and Support

* 'Ada is a registered trademark of the Department of Defense.

The use of microprocessors in military applications has mushroomed in the past few years. Military applications usually have strict reliability and environmental requirements that prevent the use of commercially popular microprocessors. Tektronix is addressing the need to support microprocessors used in military applications by offering support for the following processors; Z8000 including the Z8001 and Z8002, TMS 9900, SBP 9900, SBP 9989, SBR 9000 and Mil-Std 1750A processors including the F9450.

Mil-Std 1750A Background

In an effort to control the spiraling cost of developing software, the military community has instituted several standardization programs. One of these, Mil-Std 1750A was developed by the United States Air Force and defines the standard 16-bit processor to be used in all embedded weapons systems. Mil-Std 1750A standard specifies the ISA (Instruction Set Architecture) but not the physical, electrical or performance characteristics of the processor. This allows processors to be implemented as several boards, a single board or a microprocessor chip. Since the ISA is the same however, application software can be transported from one processor to another without modification.

Mil-Std 1750A Support System

The Tektronix 1750A support system includes tools for developing and debugging software for embedded applications. The package includes a Tektronix assembler/linker system for software development and a full function emulation system for testing the software with or without the target system.
The 1750 assembler/linker package provides all of the functions to support machine level program development. The assembler supports either the Mil-Std 1750 instruction mnemonics or the IEEE version. The package can be hosted on the Tektronix 856X Series, or the VAX Series with VMS.
For embedded applications requiring a realtime operating kernel, Tektronix is offering the VRTX/1750*2 and VMX/1750 R \& D packages. VRTX and VMX are off-the-shelf software components that can be used directly in the embedded system to coordinate real-time tasks. These systems are available in EPROM that can be used directly in the target environment, or on Tektronix 856X disk media.

Photos: Department of Defense and NASA

The Mil-Std 1750A emulator supports the unique requirements for integrating software into the target environment. The emulation system can be used to test software written in assembly, or in a high-order language such as Ada, JOVIAL or CMS-II. A series of probe adaptors are available for connection into the target processor environment including an incircuit probe for the F9450 microprocessor. These probe adaptors can be used to connect the emulator to a chip socket (F9450), a board, a bus or to the CPU's mechanical enclosure.
If the target processor isn't available, then the Mikros SEU (Software Execution Unit) can be used in its place. The Mikros SEU provides a Mil-Std 1750A compliant environment for testing and debugging software. Programs can be loaded and tested on the Mikros processor before they are transferred to the target environment. This frees the host from time consuming (and slow) simulations.

${ }^{* 2}$ VRTX is a registered trademark of Hunter-Ready Inc.

Mil-Std 1815A (Ada) Support

An Ada language system will be available to support Mil-Std 1750A applications. This system is being modeled after the Tektronix LANDS software development environment explained on page 91. Your Tektronix sales representative can give you the details.

Z8000 Support Systems

Z8000 processors are used in a wide variety of military applications, and are currently available to meet military reliability requirements like Mil-Std 883 screening.

Tektronix supports both the Z8001 segmented version, and the Z8002 non-segmented versions of the processor. An assembler/linker system is available to support machine language programming requirements, and a Pascal LANDS package for high-order language programming. Both of these software systems are supported on the Tektronix 856X Series hosts. The Pascal LANDS package is an integrated set of language tools consisting of a Pascal language directed editor, a Pascal compiler and high-level debugging system. See page 91 for more information.
The emulator supports in circuit probes for either the Z8001 or Z8002 microprocessors. The emulator system provides trace, breakpoint and memory substitution in the actual target environment. The emulator also interacts with the Pascal LANDS software system so Pascal programs can be debugged from the HLL (High Order Language) source.

9900 Support System

9900 Series processors are used in aerospace applications where radiation tolerance is a requirement. The Tektronix 9900 support package includes support for the TMS 9900, SBP 9900, SBP 9989 and software support for the SBR 9000.

The 9900 assembler/linker package supports machine level programming requirements. This system is hosted on the Tektronix 856X Series. Symbol tables are available to the emulation system to support fully symbolic control during the debugging process.

Services

Applications Engineering

Software Subscription Service

Customer Training

After purchasing SDP Tools, extensive support is available. Dedicated engineering resources are available for many custom applications, Software Subscription Service protects your software investment, and customer training helps you quickly become productive on Tektronix products.

APPLICATIONS ENGINEERING

Applications Engineering Services offers a variety of valuable services that supplement customer sources. This service helps customers attain maximum benefit from Tek SDP system components.

SDP application engineers are skilled professionals backed by Tektronix resources and experience.

Applications Engineering Services is only available for customers using Tektronix Software Development Products.
On-site consultive services are available to assist customers with development programs. This consultation is valuable for meeting critical program schedules. AES consultation optimizes the operation of Tek SDP software and hardware.
Application engineers can help trace and debug problems within a software/hardware system or problems encountered during software/hardware integration.

Tektronix can assist you with unusual interfacing challenges requiring in-depth knowledge of Tek software and hardware.

Applications engineers can also give you expert consultation in software/hardware design and integration using Tek Software Development Products. AES-01 price quotes are available by the hour, day or week.

SOFTWARE SUBSCRIPTION SERVICE

The Tektronix SSS (Software Subscription Service) automatically provides new releases of SDP licensed software products as well as associated updates to software documentation.

Product Updates

New software releases are sent out as product updates occur. This program allows customers to maintain their equipment at the latest software revision level.

Applications and Information

Subscribers to SSS receive User Group News, a publication with information on application ideas, new product announcements, and product support.
Support under SSS is provided free for the first three months from the date of shipment and can be extended after that for an annual fee. Customers must identify a person and/or department responsible for receiving software updates and for maintaining the software's integrity.
The SSS should be purchased for all SDP software because of product interaction.

CUSTOMER TRAINING

Tektronix customer training helps customers make full productive use of their development tools. Training modules are for individual self-training or can be conducted by an SDP representative. Training is done at customers' sites using their development tools.

Through training, customers will learn development tool capabilities and techniques; and will receive an overview of product documentation. Tektronix SDP specialists are available to conduct all training sessions.
Tektronix training sessions are tailored to address customers' specific development tools. Training means that new users will be productive in less time than they would be by trial and error. Experienced users will remain productive without disrupting their efforts with demands for training.

SDP customer training is available in most locations. Price quotes available upon request.

ORDERING INFORMATION
 V-SYSTEMS

The V-Systems from Tektronix are systems designed to provide complete hardware and software support for design engineers needing the highest quality design tools available. The V-Systems are configured to integrate with an existing host computer, an 856X Series, a VAX computer or IBM PC/AT/XT, and to include all the hardware and software required to do so.
Included with the V-Systems are Tektronix' 8540A Integration Unit, 16 -bit emulation support (emulator and probe) with 128 kbyte memory or 8 -bit emulation support with 64 kbyte memory, Trigger Trace Analyzer, and, as an option, Tektronix' unique LANDS for high-level language support. LANDS is available for 8086 and 68000 Families for Pascal or C and includes a Language-Directed Editor, Compiler, Integration Control System, High Level Debug, Assembler, Linker, and ICOM40A for supporting VAX computers.

V68000A Emulation Support	\$24,900
V68008 Emulation Support	\$24,900
V68010 Emulation Support	\$24,900
OPTIONS	
Option 02 - MAC Board.	+\$2,500
Option 03 - TTA 8-Bit External LA Probe.	+\$1,000
Option 04 - Comm I/F for 8540A.	+\$400
Option 1A - P-LANDS Support for 856X.	\$9,000
Option 1C - P-LANDS VAX UNIX Reel Mag Tape with ICOM40A.	+\$12,000
Option 1 F - P-LANDS VAX VMS Reel Mag Tape with ICOM40A.	+\$12,000
Option 2A - C-LANDS Support for 856X.	+\$9,000
Option 2C - C-LANDS VAX UNIX Reel Mag Tape.	+\$12,000
Option 2F - C-LANDS VAX VMS Reel Mag Tape with ICOM40A.	+\$12,000
V8086 Emulation Support	\$24,900
V8088 Emulation Support	\$24,900
V80186 Emulation Support	\$24,900
V80188 Emulation Support	\$24,900
OPTIONS	

Option 03 - TTA 8-Bit External LA Probe. $\quad \mathbf{+ \$ 1 , 0 0 0}$
Option 04 - COMM I/F for 8540A. $\quad+\$ 400$
Option 1A - P-LANDS Support for 856X. $+\mathbf{\$ 9 , 0 0 0}$
Option 1C - P-LANDS VAX UNIX Reel
Mag Tape with ICOM40A.
$+\$ 12,000$
Option 1F - P-LANDS VAX VMS Reel Mag Tape with ICOM40A.
$+\$ 12,000$
Option 2C - C-LANDS VAX UNIX Reel
Mag Tape.
$+\$ 12,000$
Option 2F - C-LANDS VAX VMS Reel
Mag Tape with ICOM40A.
$+\$ 12,000$

V1750A Emulation Support	\$33,500
OPTIONS	
Option 03 - TTA 8-Bit External LA Probe.	+\$1,000
Option 1A - Assembler, 856X.	+\$2,000
Option 1F - Assembler, VAX VMS Reel Mag Tape.	+\$4,000
Option 3A - PIA W/Flying Leads, Clips.	+\$750
Option 3B - PIA W/Flying Leads, Pigtail.	+\$650
Option 3C - PIA Euro-Card Connector.	+\$750
Option 3D - PIA, F9450.	\$1,500
85M1750 Software Execution Unit	\$13,000

VZ80 Emulation Support	$\$ 13,900$
V8085 Emulation Support	$\$ 13,900$
V6809 Emulation Support	$\$ 13,900$
VNSC800 Emulation Support	$\$ 13,900$
OPTIONS	
Option 03 - TTA Back Panel and Probe.	$+\$ 1,000$
Option 04 - Communications Interface for	$+\$ 400$
8540A.	$+\$ 1,700$
Option 1A - Assembler for 856X.	$+\$ 2,500$
Option 1C - Assembler for VAX UNIX Reel	
Mag Tape.	$+\$ 2,500$
Option 1F - Assembler for VAX VMS Reel	
Mag Tape.	

856140 SYSTEMS

856140A Systems include the assembler, emulator, probe and firmware, 856X Multi-user Software Development Unit, 4105A Color Graphics Terminal and an 8540A Integration Unit with 64 kbytes of memory.
856140A Z80 Development System \$29,700 Includes: Items listed above.
856140B 8085 Development System \$29,700 856140E 6809 Development System \$29,700 856140F NSC800 Development System
856140H 7809/8/7 Development System
856140J 7810/11/16 Development System
856140K 78C05/06 Development System

OPTIONS
Option 01 - Replace 8561 with 8560 . $+\$ 6,000$
Option $02-512$ kbyte Memory for $856 \mathrm{X} . \quad+\$ 2,000$
Option $03-1$ Mbyte Memory for 856X. $\quad+\$ 5,900$
Option 06 - Trigger Trace Analyzer with $+\$ 4,500$
F/W.
Option 08 - Option 06 without Interface $\$ \mathbf{\$ 3 , 5 0 0}$
Probe
Option 10 - LSI 11/73 CPU with Floating Point.
$+\$ 2,000$

MICROPROCESSOR SUPPORT SYSTEMS

TekMate Emulation Systems

The TekMate Emulation systems include mainframe, emulator and probe. TekMate Software is required.
EZ80 Z80 Emulation System
\$8,900
EZ6809 6809 Emulation System \$8,900
EZ8085 8085 Emulation System $\$ 8,900$ SZ80 Z80 TekMate Software $\$ 10$
S6809 6809 TekMate Software $\$ 10$
S8085 8085 TekMate Software $\$ 10$
OPTIONS
Option 1A - 856X Support. $+\$ 190$
Option 1F - VMS Reel Mag Tape. $\quad+\$ 440$
Option 1Y - IBM PC ($51 / 4$ Floppy). $\quad+\$ 85$

8540A EMULATION SYSTEM

8540A Emulation System $\$ 9,900$
Options Available

8540A EMULATORS AND PROBES

:

 \$2,8008300P04 Z80 Probe $\$ 1,500$
8300P49 Z80CMOS Probe $\$ \mathbf{1 , 5 0 0}$
8300E06 8085A Emulator $\$ \mathbf{2 , 8 0 0}$
8300P06 8085A Probe $\$ 1,500$
8300E10 MCS48 Emulator $\mathbf{\$ 2 , 8 0 0}$
8300P10 8048 Probe $\$ \mathbf{1 , 5 0 0}$
8300P11 8021 Probe $\$ 400$
8300P12 8041A Probe $\$ \mathbf{1 , 5 0 0}$
8300P13 8022 Probe $\$ \mathbf{1 , 5 0 0}$
8300E15 8086/8088 Emulator $\$ \mathbf{6 , 1 0 0}$
8300P17 8086/87 Probe $\$ 3,000$
8300P18 8088/87 Probe $\$ 3,000$
8300E20 Z8001/2 Emulator $\$ 4,400$
8300P20 Z8001 Probe $\$ \mathbf{2 , 3 0 0}$

8300P22 Z8002 Probe $\$ \mathbf{2 , 3 0 0}$
8300E28 68XX Emulator $\$ 3,900$
8300P28 6809 Probe $\$ 1,500$
8300P29 6801 Probe $\$ \mathbf{1 , 8 0 0}$
8300P30 68120 Probe $\$ 1,800$
8300P31 6809E Probe $\mathbf{\$ 1 , 8 0 0}$
8300E33 9900/9989 Emulator $\$ 4,400$

8300P33 SBP9900 Probe $\$ \mathbf{2 , 1 0 0}$
8300P34 SBP9989 Probe $\mathbf{\$ 2 , 1 0 0}$

OPTIONS (8300P53 ONLY)

Option 3A PIA W/Clips. $\quad+\$ 750$

Option 3B PIA W/O Clips. $\quad+\$ 650$
Option 3C PIA W/DIN Plug. $\quad+\$ 750$
Option 3D PIA F9450. $+\$ 1,500$

8300P46 80188 Probe 8300P50 80186A Probe 8300E42 1750A-1 Emulator 8300P53 1750A-1 Probe \$9,800
$+\$ 1,500$

MICROPROCESSOR DEVELOPMENT SYSTEMS	
8560 Multi-User Development System	\$19,900
8561 Multi-User Development System	\$13,900
OPTIONS	
Option 02 - Floating Point Option.	+\$500
Option $03-(8560$ only) 588 Ports.	+\$5,000
Option 04 - GPIB Interface.	+\$2,500
Option $07-1$ Mbyte Memory.	+\$4,900
Option 08 - (8561 Only) Four Total User Ports.	+\$2,500
Option 09 - (8560 only) 80 Mbyte Disk.	+\$6,000
Option 10 - LSI-11/73 CPU with Floating Point.	+\$2,000
Option 47 - Rackmount Option.	+\$125
8562 Multi-User Development System OPTIONS	\$24,900
Option 04 - GPIB Interface.	+\$2,500
Option $09-80 \mathrm{Mbyte}$ Total Disk Storage.	+\$6,000
LAB SUPPORT	
DDL Digital Design Lab Support	\$10
OPTIONS	
Option 1A - 856X Support.	+\$2,890
Option 1C - VAX UNIX Reel Mag Tape.	+\$3,490
SYSTEM DESIGN TOOLS	
STRUCTA Structured Analysis Tools	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$9,490
Option 1C - VAX UNIX Reel Mag Tape.	+\$16,490
Option 1F - VAX VMS Reel Mag Tape.	+\$16,490
LANGUAGE DEVELOPMENT SOFTWARELANDS	
CLAN86 C-Language Development	
System for 8086/88/186/188	\$10
OPTIONS	
Option 1C - VAX UNIX Reel Mag Tape.	+\$9,990
Option 1F - VAX VMS Reel Mag Tape.	+\$9,990
CLAN68K C-Language Development System for 68000/08/10	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$9,490
Option 1C - VAX UNIX Reel Mag Tape.	+\$11,990
Option 1F - VAX VMS Reel Mag Tape.	+\$11,990
PLAN86 Pascal Language Development System for 8086/186	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$8,990
Option 1C - VAX UNIX Reel Mag Tape.	+\$9,990
Option 1F - VAX VMS Reel Mag Tape.	+\$9,990
PLAN68K Pascal Language Development System for 68000/08/10	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$9,490
Option 1C - VAX UNIX Reel Mag Tape.	+\$11,990
Option 1F - VAX VMS Reel Mag Tape.	+\$11,990
PLANZ8K Pascal Language Development System for Z8001/2	\$10
OPTION	
Option 1A - Support for 856X.	+\$9,490
EDITORS	
CLDEDIT C-Language Directed Editor	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$1,490
Option 1C - VAX UNIX Reel Mag Tape.	+\$1,490
Option 1F - VAX VMS Reel Mag Tape	+\$1,490

PLDEDIT Editor	Pascal-Language Dir	
OPTIONS		
Option 1A	- Support for 856X.	+\$1,4
Option 1 C	- VAX UNIX Reel Mag Tape.	+\$1,490
Option 1F	- VAX VMS Reel Mag Tape.	+\$1,49
ASSEMBLERS		
AMZ80 Z	80/NSC800 Assembler	\$10
ASM68K	68000/08/10 Assembler	\$1
ASM6809	6809 Assembler	\$1
ASM8085	8085 Assembler	\$10
ASM8086	8086/88 Assembler	\$1
OPTIONS		
Option 1A	- Support for 856X.	+\$1,69
Option 1C	- VAX UNIX Reel Mag Tape.	+\$2,49
Option 1F	- VAX VMS Reel Mag Tape.	+\$2,490
Options 1A, 1C, and 1 F work with the five assemblers listed above.		
ASMZ8K	Z8001/2 Assembler	\$10
ASM6800	6800/01/02 Assembler	\$10
ASM78C	78C05/06 Assembler	\$10
ASM7809	7809/08/07 Assembler	\$10
ASM7811	7810/11/16 Assembler	\$1
ASM8048	8048 Assembler	\$1
ASM8051	8051 Assembler	\$10
ASM9900	9900/9989 Assembler	\$1
OPTION		
Option 1A	- Support for 856X.	+\$1,69
Option 1A works with the eight assemblers listed above		

ASM1750 1750 Assembler
\$10
Option 1A - Support for 856X. $\quad+\$ 2,990$
Option 1F — VAX VMS Reel Mag Tape. $\quad+\$ 4,990$

IBM PC Assemblers

8-Bit Assemblers for Z80, NSC800,
6800/1/2, 6809, 8080/8085, 8048,
1802, 9900
\$600-750
16-Bit Assemblers for 68000/08/10,
8086/88/186/188, Z8002 \$1,025
CCC68K 68000/08/10 C Compiler $\$ 10$
CDB68K 68000/08/10 C Debug $\$ 10$

OPTIONS
Option 1A - Support for 856X. $\quad+\$ 3,490$
Option 1C — VAX UNIX Reel Mag Tape. $\quad+\$ 4,990$
Option 1 F — VAX VMS Reel Mag Tape. $\quad+\$ 4,990$
Options 1A, 1C, and 1 F work with the Compiler and Debug listed above.
CCC8086 8086/88, 80186/188
C Compiler
CDB8086 8086/88, 80186/188
C Debug
\$10
Option 1 C - VAX UNIX Reel Mag Tape. $\quad+\$ 2,990$
Option 1 F - VAX VMS Reel Mag Tape. $\quad+\$ 2,990$

IBM PC Compilers

Each compiler comes with an assembler, a linker, an object module librarian, and an object code converter.
Pascal Compilers for
Z80/NSC800 and 8080/8085.
PL/M Compiler for 8086/186/286. \$1,950
PASZ8K Z8001/2 Pascal Compiler \$10 option
Option 1A - Support for 856X.
$+\$ 3,490$

PDBZ8K Z8001/2 Pascal DebugOPTION	
Option 1A - Support for 856X.	+\$2,990
PAS68K 68000/08/10 Pascal Compiler	10
DB68K 68000/08/10 Pascal Debu	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$3,490
Option 1C - VAX UNIX Reel Mag Tape.	+\$4,990
Option 1F - VAX VMS Reel Mag Tape	+\$4,990
Options 1A, 1C, and 1 F work with the Compiler and Debug listed above.	
PAS8086 8086/87/88/186/188 Pascal	
Compiler	0
PDB8086 8086/87/88/186/188 Pascal	
Debug	
OPTIONS	
Option 1A - Support for 856X.	+\$2,990
Option 1C - VAX UNIX Reel Mag Tape.	+\$2,990
Option 1F - VAX VMS Reel Mag Tape.	+\$2,990
Options 1A, 1C, and 1 F work with the Compiler and Debug	
INTEGRATED COMMUNICATIONS SYSTEMS	
ICOM40A Integrated Communications	
System for 8540A	
OPTIONS	
Option 1C - VAX UNIX Reel Mag Tape.	+\$1,990
Option 1F - VAX VMS Reel Mag Tape.	+\$1,990
Option 1Y - IBM PC ($5^{1 / 4} 4$ Hoppy).	+\$740
ICOMSRC ICOM40A Source OPTION	
Option 1C - VAX UNIX Reel Mag Tape.	+\$7,990
LORKY ColorKey+ User Interface	\$10
PTIONS	
Option 1C - VAX UNIX Reel Mag Tape.	+\$1,490
Option 1F - VAX VMS Reel Mag Tape.	+\$1,490
REAL TIME OPERATING SYSTEM (RTOS)	
PVRX68K PAS68K Interface to	
VRTX68K	\$10
OPTIONS	
Option 1A - Support for 856X.	+\$940
Option 1C - VAX UNIX Reel Mag Tape.	+\$94
Option 1F - VAX VMS Reel Mag Tape.	+\$940
VRTX68K H\&R's Custom R\&D RTOS for 68000	\$5,275
OPTIONS	
Option 01 - H\&R's RTOS Debugger	
Option 08 - For 68008.	NC
Option 10 - For 68010.	
Option 1A - Support for 856X	+
Option 1C - vaX UNIX Reel Mag Tape. $\quad \mathbf{\$ 2 5 0}$	
Option 1F - VAX VMS Reel Mag Tape.	
VRX1750, VRTX1750 R\&D Package \$25,000	
OPTION	
Option 1A - Support for 856X.	

WARRANTY-PLUS SERVICE PLANS

AVAILABLE ON MOST HARDWARE ITEMS

Software Subscription Service available on most software items.

This is a partial listing of available products. For information concerning other configurations, options, peripherals, and available software contact your local SDP sales engineer.

LOGIC ANALYZER PRODUCTS

The Tektronix Logic Analyzer Family includes the DAS 9100, the 1240/1241, the 338, and the 318 Logic Analyzers.

Tektronix offers a broad family of logic analyzers in three product lines:

DAS 9100

The Digital Analysis System 9100 Series of fers three mainframes, seven different data acquisition modules, four different pattern generation modules, tape cassette mass storage, systems interfaces, and microprocessor mnemonics. For high-speed applications, the DAS offers the fastest sample speed in the industry- 2 GHz , for timing resolution of 500 ps .

1200 Series

Easily portable and rugged, the 1240 and color 1241 mainframes offer two types of data acquisition modules, microprocessor mnemonics, performance analysis, RAM/ROM pack mass storage, modular COMM pack system interfaces, and the in dustry's first true dual-timebase capability.

300 Series

When weight and size are of utmost importance, the 300 Series offers ultra-portability. Weighing only 11 lbs , the 308,318, and 338 each offer state, timing, and serial analysis.

The 308 also offers signature analysis. These three analyzers offer an unprecedented combination of performance, portability, and low price.

Easy-to-Use

All Tektronix logic analyzers are easy to use, because we believe the logic analyzer should allow you to concentrate on solving problems rather than learning to operate the analyzer. Clear screen displays, menu formatted operator interfaces, straightforward keyboard layouts, and simple, reliable mass storage media all contribute to the overall friendliness of the Tektronix logic analyzer family. Ease-of-use is further enhanced by such industry firsts as the color display in the DAS and the touch-screen soft keys in the 1240.

Modular and Upgradable

The DAS 9100 and 1240/1241 modular mainframes allow you to customize your logic analyzer to meet your application needs. And if your needs change, you can easily upgrade your DAS or 1240/1241 to keep pace with your new requirements.

CONTENTS

DAS 9100 Series Logic Analyzers 104
1200 Series Logic Analyzers 114
Microprocessor Support 122
300 Series Logic Analyzers 124
Logic Analyzer Probes and Accessories 128
7A42 Logic Triggered Vertical Amplifier 216

To keep pace in the competitive world of digital design, you need tools that give you consistent support in all phases of the digital product development cycle.

Tektronix offers logic analyzers with the flexibility and power to meet all your engineering needs, no matter where you are in the design cycle. Tektronix logic analyzers help you get the job done in less time, for less money, and with better results.
The following paragraphs describe logic analyzer features that help you in different phases of the product development cycle. The selection guide on the next page will help you select the analyzer that best meets your needs. For more information on a specific model, refer to the description on the following pages, or contact your Tektronix sales engineer.

Clock Qualification

A digital bus often carries irrelevant data as well as data of interest. Clock qualification lets you filter out irrelevant data by combining the acquisition clock with one or more bus signals. For example, you could use clock qualifiers to ensure that the analyzer stores only DMA transactions.

Event Timing

Timing relationships between signals are often critical. You might need to know how long a specific state lasts on one channel or on a bus. Or, you might need to know the elapsed time between two handshake signals. If you have an intermittent timing problem, you might want to trigger the analyzer only when timing parameters are exceeded.

Glitch Triggering

When debugging prototypes, you often encounter signal glitches. To fully analyze the problem, you must be able to trigger on the glitch and isolate its occurrence.

Pattern Generation

The DAS 9100 is the first logic analyzer with both acquisition and pattern generation (stimulation) in the same instrument. Pattern generation makes it possible to start debugging hardware before the software, or all of the hardware, is available. You can also use it to test VLSI devices.
To exercise a circuit, you program the pattern generator to output data, clock, and strobe signals. These signals simulate bus activity or directly stimulate circuit elements in the prototype. The signals from these elements can then be acquired and analyzed.

Mnemonic Disassembly

To simplify the debugging of micro-processor-based systems, the DAS 9100 and the 1240/1241 feature a wide variety of single-plug probe connections and mnemonic disassembly software for popular processors and buses. Setup is easy: Programmed tapes or ROM packs automatically customize the analyzer to support the specific processor.
For nonstandard processor designs, the DAS 9100 lets you design your own unique disassembly. This feature supports disassembly for custom or proprietary processors while maintaining complete confidentiality.

Tracking Complex Program Flow

In microprocessor-based systems, more than a simple sequential trigger is often required. You need the ability to track a complex sequence of software events through various jumps, loops, and branches. To do this, you need powerful and flexible word recognition that can track program flow through multiple decision points.

Measuring Software Execution Time

Efficient software performance depends, in large part, on minimizing the execution times of various routines. The DAS 9100 and the 1240/1241 provide counter/timer functions that let you monitor the execution time of any portion of a program.

For example, in real-time operating systems, interrupt response time is critical. To check execution speed, you can start the timer when the interrupt signal is recognized and stop it when the last instruction in the routine is executed. This information lets you evaluate the performance of the routine and make necessary adjustments.

Performance Analysis

Performance analysis is an automated data collection, reduction, and processing technique available with the 1240/1241. Performance analysis sorts and processes data on system activity, then displays statistical data in the form of histograms. For example, you can see statistical data on how often selected software modules are accessed, or on how long those modules take to execute. With this information, you can see where the processor is spending most of its time, and spot software bottlenecks and inefficiencies.

Demultiplexing

Both the DAS 9100 and the 1240/1241 offer demultiplexing with single-probe connections for simple setup. In a demultiplexed display, different types of data are clearly separated and easy to follow.
For example, in order to verify read or write bus cycle timing in the 8086, you must use demultiplexing to separate the address, data, and bus cycle status signals.

Dual Time Bases

The 1240/1241 offer two independent, synchronous, time-aligned time bases. This feature lets you monitor the interaction of hardware and software, or track the interaction of multiple functional modules.
One example is a dual-processor system where the processors have different buses and run from unrelated clocks. A single timebase can be used to debug either of the modules separately, but you need dual synchronous time bases to monitor both processors and the interaction of the buses. The 1240/1241 data display shows you a time-aligned picture of the data flow from both modules.

Trigger Arming

The DAS 9100, 1240, and 1241 feature trigger arming. This technique lets you simultaneously acquire high-speed, asynchronous control signals and low-speed, synchronous bus signals. Data is displayed in a time-correlated fashion, with high-speed data displayed in correct reference to low-speed data. The advantage to this technique is that it allows you to use software flow to pinpoint problem areas in the control logic which might otherwise be difficult to locate.

Pattern Generation

Pattern generation combines with acquisition in the DAS 9100 to drive the test environment for your products or subassemblies. The DAS is also an effective tool for functional testing and verification of VLSI components.

Remote Control

Many testing applications call for your logic analyzer to interface with a larger computer system. Tektronix analyzers can be remotely operated over RS-232C or GPIB interfaces. This makes them ideally suited for automated test environments.

Mass Storage

The DAS 9100 and the 1240/1241 feature simple, rugged, mass storage media. You can store setups and memories for later use or for transport to another instrument. Storage is controlled from easy-to-use menus. You can easily name files to suit your needs, and save and restore them quickly.

Master/Slave

The DAS 9100 and the 1240/1241 both provide master/slave support. This capability lets one analyzer communicate with another analyzer at a remote location over telephone lines. Major computer companies have established master/slave as an effective service technique. Maintenance personnel can use master/slave to solve complex problems at remote sites without ever having to leave the office.

The 7A42 Logic Triggered Vertical Amplifier combines oscilloscope and logic analyzer functions. Refer to page 216 for more information.

SELECTION GUIDE

The right logic analyzer for you is the one that best meets the needs of your applications, present and future. To assist you in finding your optimum solution, the following selection guide compares some of the capabilities of the Tektronix logic analyzer family. For more information on a specific model, refer to the description on the following pages, or contact your Tektronix sales engineer.

APPLICATION/FEATURE	DAS 9100	1240/1241	318	338	308
Hardware Analysis	$\begin{gathered} 10,25 \\ 100,660 \\ 2 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 50, \\ 100 \end{gathered}$	50	20	20
Asynchronous acquisition rate, in MHz					
Trigger on simple program execution	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Measure event time/state count	v	\checkmark			
Trigger on event time/state count		\checkmark			
Clock qualification	\checkmark	\checkmark	\checkmark	v	\checkmark
Simultaneous state/timing acquisition	\checkmark	v			
Glitch capture	\checkmark	\checkmark	v	\checkmark	\checkmark
Glitch triggering	\checkmark	\checkmark	\checkmark	\checkmark	
Acquisition and reference memories	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Compare acquisition/reference memory	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Trigger input and output	\checkmark	ν	v	\checkmark	\checkmark
Pattern generation	\checkmark				
Software Analysis					
Synchronous acquisition rate, in MHz	100, 330	50	50	20	20
Trigger on complex program flow	\checkmark	ν	\checkmark	\checkmark	
Measure execution time/state count	\checkmark	ν			
Trigger on execution time/state count		v			
Data qualification	\checkmark	\checkmark			
Microprocessor mnemonics	\checkmark	\checkmark			
User-definable mnemonics	\checkmark				
Performance Analysis		v			
Analyze serial data to 9.6 kbaud			v	v	v
Analyze serial data to 19.2 kbaud			\checkmark	\checkmark	
Analyze GPIB transactions	v	v			
Hardware/Software Integration					
Dual synchronous time bases		\checkmark			
Trigger arming	v	v			
Time-aligned state and timing displays	\checkmark	\checkmark			
Demultiplexing	\checkmark	\checkmark			
VLSI Testing	\checkmark				
Manufacturing and Test					
Controller interface	GPIB	GPIB	RS-232	RS-232	
Pattern generation and acquisition	\checkmark				
Easily transportable storage media	Tape	Pack			
Programmable via RS-232C	\checkmark	v	v	v	
Programmable via GPIB	\checkmark	v			
Video out for hard copy or monitor	\checkmark	\checkmark	v	\checkmark	
Line printer output	v	v			
Service					
First line on-site		v	v	v	v
Permanent on-site	\checkmark	ν	ν	v	ν
Depot level	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Remote control via master/slave	\checkmark	v			
Remote control via host controller	\checkmark	ν	v	v	
Signature analysis					\checkmark
Page	104	114	124	124	127
Prices Begin At:	\$13,470	\$4,500/\$6,000	\$5,300	\$5,800	\$3,950

DAS 9100 series

Digital Analysis System
The DAS 9100 Series Option 06 com-

GPIB

IEEE-488 plies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Color Display Enhances Ease-of-Use and Increases Productivity

Ten Standard Application Configurations Available or Custom Design Your Own System

Acquisition Speeds to $2 \mathrm{GHz}(500 \mathrm{ps})$
Data Widths to 104 Channels
Pattern Generation
Up to 192 Channels at 50 MHz
DesignLink ${ }^{\circledR}$ Software Links DAS 9100 to a Host for Bench-Top VLSI Functional Testing

Disassembly Support for Over
30 Microprocessors and Buses
Memory Depths from 512 to 8032 Bits Per Channel

Patented EDM Disassembles Proprietary Processors and Buses

Select Triggering to 16 Levels

Patented Time Correlation of High-Speed and Low-Speed Data

Separate Glitch Memory

State-Table and Timing Diagrams Displayed for all Channels

Pattern Generation to Simulate Hardware or Software

Supports GPIB, RS-232, Hard-Copy Units and Serial Line Printers

Tape Drive Stores Patterns and Instrument Set-Ups for Future Use

The Industry Standard

The DAS 9100 Series Digital Analysis System has set the industry standard for virtually all aspects of logic analysis. Its modular mainframe accepts a wide assortment of both data acquisition and pattern generation modules to fit your application needs. You get performance combinations unavailable in any other logic analyzer, including data widths to 104 channels and acquisition speeds up to 2 GHz . Another DAS 9100 innovation is the inclusion of pattern generation modules, up to 192 channels, which can be used in concert with data acquisition modules to perform sophisticated test procedures, such as VLSI Functional Test.

The Leader in Ease-of-Use

The color DAS 9129, the first logic analyzer with a color-coded CRT, is the undisputed leader in ease-of-use. Each of the instrument's setup menus and data displays are organized into color groups which promote faster interaction, better understanding, reduce chance of error and minimize fatigue.
See the DAS in the Technology Section.
Both the color DAS and its monochrome counterpart have a menu-driven operating system which vastly simplifies all user interactions. Each particular function, such as trigger setup or pattern generation programming, has its own self-explanatory menu. The user simply moves the cursor to the appropriate video fields and supplies the required information. There is no need for lengthy manual references to master the instrument's operation. When a menu entry falls outside acceptable bounds, a message appears which explains the specific nature of the error, thus allowing simple recovery without the need for a separate help function.

World's Fastest Logic Analyzer

Responding to the need for testing highspeed digital designs, the NEW 91HS8 acquisition module provides up to 32 channels at a 2 GHz asynchronous sample rate (500 picosecond sample interval). The 91 HS8 combines the time resolution of an oscilloscope with the flexible triggering, glitch detection, memory depth, and channel width of a logic analyzer. In addition, the 91HS8 uses a new generation of high-performance probes with custom ICs in the probe tips. These probes provide a high degree of timing accuracy and signal fidelity.
See page 107 for details on the 91 HS 8 .
For moderately fast systems, the 91A04A/91AE04A acquisition modules deliver sample speeds up to 660 MHz asynchronously or 330 MHz synchronously.

8-Bit and 16-Bit Microprocessor Support at its Best

In response to the overwhelming need for good microprocessor support in logic analysis, the DAS 9100 Series offers a greater depth and range of microprocessor-based support than any other analyzer.
The key to this support is the DAS 9100's patented EDM (Extended Define Mnemonics), which allows the built-in DC 100 tape drive to act as a storage medium for mnemonic tables for 8 -bit, 16 -bit and even custom processors.

EDM is a powerful, table-driven program which is part of the DAS firmware. All address, data and control information is received by a master table and passed down through a hierarchy of tables which converts it into disassembled mnemonics.

For custom processors, you can use EDM to create your own set of disassembly tables. For commercial processors, Tek offers the following 8 -bit and 16 -bit EDM tapes.

8080	6801	68010	1805
8031	6802	Z80	NSC800
8039	6803	Z8001	F9450
8085	6805	Z8002	$1750 A$
8086	6808	Z8003	UNIBUS
8088	6809	Z8004	Q-BUS
80186	68121	6502	GPIB
80188	68000	$65 C 02$	ASCII
6800	68008	1802	EBCDIC

Each EDM disassembly tape includes disassembly tables and also a file containing all the setup parameters needed to have the 91A24 data acquisition modules acquire software transactions as executed on the system bus.

NOTE: For Ordering Information, consult the DAS 9100 Microprocessor Support section on page 123.

Only the DAS 9100 offers three distinct types of disassembly: Software, Hardware, and Absolute. Software disassembly displays your program flow in the form of an assembly listing. Hardware disassembly displays mnemonics associated with each bus cycle. Absolute disassembly augments the standard State Table display with labels for each bus cycle.
EDM also allows user-selectable color coding of displayed data and the addition of comments and labels. You can even use disassembly mnemonics when defining triggers with the 91A24 trigger menu.

Select Your Configuration

The DAS 9100 has eight different data acquisition modules and four different pattern generation modules. To obtain the data width and speed your application requires, simply select the appropriate combination of modules and add on later as your needs change. Refer to the performance summary, below, and to the module descriptions on pages 106 through 110.

Pattern Generation

The DAS 9100 is the first logic analyzer with both acquisition and pattern generation in the same instrument. Pattern generation makes it possible to start debugging hardware before the software, or all of the hardware, is available. You can also use pattern generation to test VLSI devices.
The NEW 91S16 and 91S32 modules, at 50 MHz , are the fastest pattern generators available on any logic analyzer. The 91S16 features algorithmic pattern generation, and the 91S32 has stored-pattern generation. These modules can be used separately, combined, or linked with acquisition modules to provide an integrated test system for debugging and verifying digital components, boards, and systems. Widths up to 192 channels are available.
Custom ICs in the 91S16/91S32 probe provide accurate 1 ns edge placement of individual data channels. Also, Tektronix' unique probe-tip technology reliably delivers 50 MHz performance at the device pins.

The 91P16 and 91P32 pattern generator modules feature 25 MHz operation. The 91P16 controller module offers 16 channels of algorithmic pattern generation. With the 91P32 expansion module, you can increase the total to 48 or 80 channels.

Flexible I/O

The DAS 9100 also offers you powerful I/O options, including a built-in magnetic tape cartridge drive (Option 01) to store instrument setups, pattern sequences, mnemonics and reference memory. The RS-232 and GPIB interface (Option 06) offers complete remote programmability and supports hard copy units, video displays and serial line printers.
The standard DAS mainframes come with a power supply for two slots. Options 03 and 04 allow you to add one or two additional modular power supplies (each supply powers two slots). You only pay for the capability you need.

DAS PERFORMANCE SUMMARY GUIDE

Module Name	Type	Channels	Maximum Channels	Memory Depth	Speed	Application
NEW 91HS8/91HSE8	Acquisition	8	32	8000	2 GHz	Ultra High-Speed Hardware Analysis
91A04A/91AE04A	Acquisition	$2 / 4$	16	$4096 / 2048$	$660 / 330 \mathrm{MHz}$	High-Speed Hardware Analysis
91A08	Acquisition	8	32	512	100 MHz	Hardware Analysis
91A32	Acquisition	32	96	512	25 MHz	Hardware/Software Analysis
$\mathbf{9 1 A 2 4 / 9 1 A E 2 4 ~}$	Acquisition	24	96	1024	10 MHz	Sophisticated Software Analysis
NEW 91S16	Pattern Generator (Algorithmic)	16	$176 \mathrm{~W} /$ five 91532	1024	50 MHz	High-Speed HW/SW Simulation
NEW 91S32	Pattern Generator (Stored-Pattern)	32	192	2048	50 MHz	High-Speed HW/SW Simulation
$\mathbf{9 1 P 1 6 / 9 1 P 3 2 ~}$	Pattern Generator (Algorithmic)	$16 / 32$	80	254	25 MHz	Hardware/Software Simulation

The Leader in Flexibility and Ease-ofUse Through Superior Human Engineering

Besides color, the DAS 9100 Series includes many other important human engineering features. Its menu-driven user interface is easy to learn and self-documenting. There is a color-coded keyboard organized specifically to enhance user programming. All keys are arranged into logical groups that correspond to the display elements.

POWER ON: The configuration menu lists all modules in the DAS by slot location. A self-test verification is performed on each module with pass/fail indication. Bottom of screen indicates next step.

PATTERN GENERATOR: This Timing menu lets you set up the 91S16/91S32 data channel timing relationships. Each channel may have a different delay. Use the INCR/ DECR keys to adjust the delay in 1 ns increments.

DEFINE MNEMONICS: EDM (Extended Define MnemoniCS) provides disassembly for the State Table display. Use it to disassemble any acquired data. EDM is controlled by three menus accessed via the DEFINE MNEMONICS key.

CHANNEL SPEC: Use CURSOR and DATA ENTRY keys to assign data acquisition channels to groups, select a group radix (hex, bin or oct), and assign probe thresholds and channel order.

START SYSTEM: Acquisition occurs, State Table is displayed with trigger word clearly marked. Start acquisition or pattern generator modules with START keys.

STATE TABLE: Display ACQ MEM, REF MEM or both. Load REF MEM by pressing STORE. REF MEM may be edited prior to ACQ MEM/REF MEM compare. SEARCH word may be entered and the search started by pressing SEARCH key.

TRIGGER SPEC: The SELECT key scrolls through all possi ble triggering combinations including "ARMS MODE". The 91A24's five word recognizers with 16 -level stack are shown. Address and control fields display symbolic labels.

TMING DIAGRAM: Displays all acquired data with trigger word clearly indicated. Use SCROLL keys to make DELTATME measurements. Magnify up to X10,000. Add labels for each channel using DATA ENTRY keys.

INPUT OUTPUT: The I/O menu lets you easily store or retrieve instrument setups, reference patterns and mnemonic files and to define parameters for GPIB, RS-232, Master/ Slave, and serial printer operation.

The 91HS8 combines the time resolution of an oscilloscope with the flexible triggering, glitch detection, memory depth, and channel width of a logic analyzer.

91HS8/91HSE8
 2 GHz Data Acquisition Modules

2 GHz Asynchronous Sampling Rate (500 Picosecond Sample Interval)

8 Data Channeis Per Module
Expandable to 32 Channels with up to Three 91HSE8s

8000 Bits/Channel Memory Depth
Durable, Lightweight Probes with Four-Meter Spread, Tip-to-Tip

Probe Input Capacitance $<1 \mathrm{pF}$
Two Word Recognizers, Plus Timeout and Duration Filter Capability
Level and Edge Triggering
Glitch Detection and Trigger-on-Glitch Capability

Self-Calibration Feature Minimizes
Channel-to-Channel Skew

World's Fastest Logic Analyzer

The NEW 91HS8/91HSE8 acquisition modules provide up to 32 channels at a 2 GHz (500 ps) asynchronous sample rate-the fastest acquisition available on any logic analyzer. The $91 \mathrm{HS} 8 / 91 \mathrm{HSE}$ consist of two major components: An interface card that plugs into the DAS 9100 mainframe, and a
self-contained acquisition cabinet that sits on top of the DAS. Nine probes are permanently attached to the back panel of the cabinet. These probes provide eight data channels plus an external trigger or arms input.
Channel width may be expanded to 32 channels by adding up to three 91HSE8 expander modules to a 91 HS 8 .
Memory depth is 8000 bits per channel. At slower speeds ($\geqslant 5$ ns sample interval), you can use half of the memory to store glitch information, leaving 4000 bits/channel for data storage.

Extensive Triggering Capabilities

The 91HS8 provides two word recognizers. Each word recognizer can be programmed to recognize glitches instead of data. A programmable trigger sequencer provides the following selections (where Events A and B are word recognizer values):
Trigger on - Event A
Event A or Event B
Event A followed by Event B Event A followed by Event B, reset on Timeout

- Event A followed by Timeout, reset on Event B
Both word recognizers can be programmed for edge or level sensitive event recognition. Timer and duration filter parameters permit additional triggering qualification.

Sample 91HS8 Trigger Menu

New Probe Technology Ensures Higher Resolution

The 91HS8 uses a new generation of highperformance probes with custom ICs in the probe tips. These probes provide a high degree of timing accuracy and signal fidelity. They can be placed directly on the circuit under test to minimize timing skews and increase accuracy. Leads sets and grabber tips can also be used.

The low input capacitance of 91 HS 8 probes (each probe $<1 \mathrm{pF}$) minimizes timing changes in high-speed circuits and reflections in transmission lines.

CHARACTERISTICS

Maximum Modules Per DAS - One 91HS8 max per DAS mainframe, three 91HSE8s max per DAS mainframe. For 16 or more channels, one module must be a 91 HS 8 . For eight channels, use either a 91 HS 8 or 91 HSE 8 .
Maximum Number of Inputs - Eight data channels expanding to 32 with one 91 HS8 and three 91HSE8s.
Maximum Sampling Rate -2 GHz internal asynchronous clock, 500 ps sample interval.
Memory Depth - 8000 bits/channel. If glitch capture is enabled (clock intervals $\geqslant 5 \mathrm{~ns}$), 4000 bits/channel of glitch information and 4016 bits/channel of data.
Minimum Pulse Width (with 500 ps Clock) 1.5 ns.

Triggering - Two independent word or glitch recognizers, programmable event timer, edge or level event recognition, event duration filter, trigger reset, external trigger/arm input, trigger positioning in acquisition memory. Armed by 91A32 acquisition module. In multiple-91HS8 configurations, any $91 \mathrm{HS} 8 / 91 \mathrm{HSE} 8$ module can be selected as the trigger source for the other modules.
Minimum Glitch Width -1.5 ns . Glitch detection is available only for sampling intervals $\geqslant 5 \mathrm{~ns}$. Probes - 9 per module: 8 data input and 1 external trigger/arm input, permanently attached.

ORDERING INFORMATION

91HS8 Data Acquisition Module
 $\$ 25,000$

Includes: Nine permanently-attached probes, nine each probe lead sets; 20 each probe grabber tips; operator manual, probe cable marker clips, clock cables kit, V1.11 to V1. 13 firmware upgrade kit.
91HSE8 Data Acquisition Module
\$25,000 Includes: In addition to the above, a trigger cable.

Software Analysis
Microprocessor \& Bus Support
$91 \mathrm{~A} 24 / 91 \mathrm{AE} 24$
Data Acquisition Modules
16 Level Sequential Trigger Tracing
Data Storage Qualification with up to 4 Word
Recognizers
32 Bit Counter/Timer with 100 ns Resolution
24 Data Channels with 1 k Memory Depth
3 External Clocks and 3 Qualifiers with Inde-
pendently Programmable Expressions
Single Probe Demultiplexing
Synchronous or Asynchronous Acquisitions
Down to 100 ns Data Cycles
Supports Over 30 Microprocessors and Bus-
es with 91TMXX Support Series (Page 118)

For software analysis, the 91A24 data acquisition module provides advanced triggering and clocking. It employs five independent word recognizers which include a 16 level stack that lets you build the complex triggers and data qualifiers necessary to debug involved software routines.

CHARACTERISTICS

Maximum Modules Per DAS - One 91A24 (required to operate), three 91AE24s per DAS mainframe.
Maximum Sampling Rate - 10 MHz internal or external clock, 100 ns cycle time.
Memory Depth - 1023 bits per channel.
Reference Memory - 1 k by 48 channels formattable to 512 by 96 channels, compare with acquisition, trigger on compare equal or not equal, column masking and programmable compare window.
Clock Qualifiers - Three available on 91A24 only, selectable polarity.
Clock - Selectable from one internal or three external sources.
Internal: 100 ns to $5 \mathrm{~ms} \pm 01 \% \pm 01$ ns.
External: Three clock inputs, 20 MHz maximum, selectable rising or falling edge. Demultiplex mode with 50 ns DEMUX interval minimum and 100 ns cycle minimum.
Triggering - Five independent word recognizers with selectable operating modes.
Trigger Arming - Arms 91A08 or 91A04A.
Event Counter - Counts from 1 to 4,096 events programmed on individual stack levels.
Probes - P6460 or P6462, three per module; mixing probes is not recommended.
Data Set Up Time - 25 ns minimum using P6460, 29 ns minimum using P6462.
Data Hold Time - 0 ns maximum using P6460, 3 ns maximum using P6462.

Software \& Hardware Analysis General Purpose 25 MHz Support

91A32

Data Acquisition Module

32 Channel Data Width

Synchronous or Asynchronous Sampling to 25 MHz

3 Word Recognizers with Occurrence Counter

2 Clock Qualifiers and Expandable Clocking
Arms 91A08, 91A04A, and 91HS8

In many instances, the engineer's goal is to monitor overall logic activity on the system bus. Here the 91A32 data acquisition module becomes an ideal choice. It combines a 32-channel data width with sample rates up to 25 MHz . To define and capture various types of bus transactions, each 91A32 module has three levels of triggering and two clock qualifiers.

CHARACTERISTICS

Maximum Modules Per DAS - Three 91A32 modules per DAS mainframe.
Maximum Sampling Rate -25 MHz internal or external clock, 40 ns cycle time.
Memory Depth - 512 bits per channel.
Reference Memory - 512 bits/channel, compare with acquisition, trigger on compare equal or not equal, column masking and programmable compare window.
Clock Qualifiers - Two per module, six maximum, selectable polarity.
Clock - Selectable from one internal or up to three external sources.
Internal: 40 ns to $5 \mathrm{~ms} \pm 01 \% \pm 01 \mathrm{~ns}$.
External: Selectable rising or falling edge, demultiplex split clock mode available with two or three 91A32 modules.
Triggering - Three word recognizers, two provide sequential or independent triggering with occurrence counter, one provides independent reset function. External trigger enable input and word recognizer output.
Trigger Arming - Arms 91A08, 91A04A, or 91HS8.
Event Counter - Counts from 1 to 32,767 word recognizer events.
Probes - P6452 or P6462, four per module; mixing probes is not recommended.
Data Setup Time - 29 ns minimum using P6452, 25 ns minimum using P6462.
Data Hold Time - 0 ns maximum using P6452, 7 ns maximum using P6462.

Hardware Analysis Geriera! Purpose 100 MHz Support
 91A08

Data Acquisition Module
8 Channel Data Width
Synchronous or Asynchronous Sampling to 100 MHz
5 ns Glitch Trigger and Storage
Separate Glitch Storage Memory
Trigger Arming From 91A24 or 91A32

Many applications call for asynchronous sampling to observe the status of control lines during bus transactions. For this purpose, the 91A08 data acquisition module serves as an ideal tool. Each 91A08 gives you eight data channels at sample speeds up to 100 MHz and independent glitch triggering.

CHARACTERISTICS

Maximum Modules Per DAS - Four 91A08 modules per DAS mainframe.
Maximum Sampling Rate - 100 MHz internal or external clock, 10 ns cycle time.
Memory Depth - 512 bits per channel with separate 512 bits per channel for glitch storage.
Reference Memory - 512 bits per channel, compare with acquisition, trigger on compare equal or not equal, column masking and programmable compare window.
Clock Qualifier - One per module, four maximum, selectable polarity.
Clock - Selectable from two internal or two external sources.
Internal: 10 ns to $50 \mathrm{~ms} \pm 01 \% \pm 01 \mathrm{~ns}$.
External: Selectable rising or falling edge.
Triggering - Single level word recognizer and glitch recognizer. External trigger enable using arms mode.
Trigger Arming - Armed by 91A24 or 91A32.
Probes - P6452, one per module.
Data Setup Time - $\leqslant 9 \mathrm{~ns}$ using one 91A08, $\leqslant 10$ ns using multiple 91A08 modules.
Data Hold Time - 0 ns maximum.
Glitch Storage -5 ns minimum glitch width.

Hardware Analysis
660 MHz or 330 MHz Support
$91 \mathrm{~A} 04 \mathrm{~A} / 91 \mathrm{AEO4A}$
Data Acquisition Module
Asynchronous Acquisition to 660 MHz on
2 Channels (1.5 ns Sample Interval)

Asynchronous Acquisition to 330 MHz on all 4 Channels (3.0 ns Sample Interval)

Synchronous Aquisition to $330 \mathbf{M H z}$
2048 Bits Per Channel in 4-Channel Mode 4096 Bits Per Channel in 2-Channel Mode

Trigger Arming From 91A24 or 91A32

Auto-Deskewing Minimizes
Channel-to-Channel Skew and
Ensures Optimum Setup and Hold Times

This 91A04A 660 MHz asynchronous sample rate gives you a timing resolution of 1.5 ns , fast enough to actually capture and display glitches in their true timing relationship to other signals. Now you can truly analyze where those errant pulses originated.

CHARACTERISTICS

Maximum Modules Per DAS - One 91A04A, three 91AE04As per DAS mainframe (requires 91A04A to operate).
Maximum Number of Inputs - Four data channels expandable to 16 channels with one 91A04A and three 91AE04A modules.
Maximum Sampling Rate - 660 MHz internal two channels only (1.5 ns sample interval), 330 MHz internal clock four channels (3 ns cycle time), 330 MHz external clock four channels (3.3 ns cycle time).
Memory Depth - 2048 bits per channel; 4096 bits per channel in two channel 1.5 ns mode only.
Reference Memory - 512 bits per channel, compare with acquisition, trigger on compare equal or not equal, column masking and programmable compare window.
Clock - Selectable from one internal or one ex ternal source. No qualifiers.
Internal: 1.5 ns to 5 ms .
External: Selectable rising or falling edge.
Triggering - Single level word recognizer. (In 1.5 ns mode only trigger word must be valid for one sample period +2.5 ns). External trigger enable using arms mode.
Trigger Arming — Armed by 91A24 or 91A32.
Probe - P6453, one per module included.
Data Setup Time - 3.0 ns worst case adjustable in 400 ps increments.
Data Hold Time - 0.3 ns worst case adjustable in 400 ps increments.
Channel to Channel Skew - 0.50 ns on rising edges typical, 0.90 ns on falling edges typical.
Minimum Detectable Pulse Width -3.5 ns worst case.

Pattern Generation
25 MHz Stimulus Support
$91 \mathrm{P} 16 / 91 \mathrm{P} 32$
Pattern Generator Modules
Stimulus Data and Clock Rates to 25 MHz
Data Widths of 16,48 or 80 Output Channels
Up to 10 Independently
Programmable Strobes
Programmable Tri-State Output Control
External Pause, Tri-State, and Interrupt Control Inputs
Vector Count, Hold, Repeat, and Looping Operations
Vector Sub Routine, Nested up to 16 Levels

CHARACTERISTICS

Maximum Modules Per DAS - One 91P16, two 91P32s per DAS mainframe (requires 91P16 to operate).
Maximum Number of Outputs - Expandable to 80 data channels and 10 strobes with one 91P16 and two 91P32s.
Number of Strobes - Two strobe outputs on 91P16, four strobe outputs on 91P32.
Maximum Stimulus Rate - 25 MHz internal or external clock, 40 ns cycle time.
Pattern Memory Depth - 254 words or instructions, able to output over 65,000 unique patterns single pass or continuous.
External Control Lines - Pause: Hold pattern output temporarily while asserted, selectable polarity. Inhibit: Tri-states all outputs while asserted, selectable polarity. Interrupt: Forces jump to subroutine after asserted, selectable rising or falling edge.
Clock - Selectable from one internal or one external source and single step operation. One clock line per probe, rising edge signifies beginning of cycle.
Internal: 40 ns to $5 \mathrm{~ms} \pm 01 \% \pm 01 \mathrm{~ns}$.
External: Selectable rising or falling edge.
Instruction Set - COUNT (n): Increment pattern n times, one per clock. HOLD (n): Hold pattern output and clock for n cycles. REPEAT (n): Hold pattern output for n cycles. GOTO (Label): Output patterns starting at label. CALL (Label): Call subroutine at label. RETURN: Return from subroutine. HALT: Halt pattern and clock.
Nested Subroutines - 16 maximum.
Strobe Pulse Polarity - Selectable positive or negative.
Strobe Delay Time - Selectable from 70 ns to $40.910 \mu \mathrm{~s}$ in 40 ns steps.
Strobe Pulse Width - Selectable from 40 ns to $40.880 \mu \mathrm{~s}$ in 40 ns steps.
Probes - P6455 for TTL/MOS, P6456 for ECL, or P6457 for TTL/MOS with individual bit Tri-State. Two per 91P16 module, four per 91P32 module.
Output Data Skew - $\leqslant 10 \mathrm{~ns}$.
Output Clock Skew - $\pm 5 \mathrm{~ns}$ between probes.

GPIB, RS-232, Tape Drive, Line Printer \& Hard Copy Support

Options 01/06

Communication Interface Options
High Speed GPIB (200 kbytes/second)
RS-232 Host Interface
RS-232 Line Printer Port
RS-232 Master/Slave Operation
Video Out/Hard Copy Support
DC 100 Tape Drive Local Storage

The DAS Option 06 external communications package provides a complete array of I/O capabilities to handle both computer and peripheral interfaces. It includes GPIB, RS-232 master/slave, RS-232 printer port and hard copy interfaces. In the GPIB mode, a host controller supplies all DAS menu setups and receives test results, with the DAS serving either as talker or listener. In the master/slave mode, one DAS acts as the master controller for a second DAS, which may be in a remote location and linked to the master DAS via modem. For stand-alone DAS installations, the RS-232 printer port and hard copy (video) output provide excellent documentation support.

Rear Communications Interface panel Option 06
DAS 91DVV VLSI Verification Software uses the host communications capability of Option 06 to transfer test vector patterns to the DAS and to upload actual VLSI functional test data for host analysis.
The Option 01 built-in DC 100 tape drive provides convenient, menu-operated local storage and retrieval. It accepts tape cartridges (each holding up to 32 separate files) to store reference data, pattern generation programs, mnemonics tables, or data acquisition setups.

91S16/91S32
50 MHz Pattern Generation Modules
Clocking Rates to 50 MHz
(20 ns Cycle Time)
Up to 192 Programmable Data Output
Channels
1 ns Edge Positioning
External Control Inputs
Algorithmic and Stored-Pattern Output Control
Tri-State Outputs and Control
Simplified Programming from DAS Keyboard

The NEW 91S16/91S32 modules, at 50 MHz , are the fastest pattern generators available on any logic analyzer. The 91S16 features algorithmic pattern generation, and the 91 S 32 has stored-pattern generation. These modules can be used separately, combined, or linked with acquisition modules to provide an integrated test system for debugging and verifying digital components, boards, and systems.
The 91S16 is an algorithmic pattern generator. It outputs vectors as a result of executing a user-written pattern generator program of up to 1024 instructions. Nine instructions types are available. External control inputs permit close interaction between the unit under test, the pattern generator, and the various acquisition modules of the DAS 9100.
The 91S32 outputs stored patterns in sequential order. A maximum of 2048 bits per channel may be entered by the user or downloaded from a simulator or host computer. Up to six 91 S32s can be operated simultaneously for 192 channels, or up to five 91S32s can be controlled by one 91S16 to allow a variety of flexible pattern-generation modes, including reloading memory on-the-fly.

Hybrid circuit in each probe tip (left) and custom gate array in P6464 (right) ensure excellent signal fidelity

The 91S16/91S32 Timing menu lets you adjust the timing relationships between output clocks, data channels, and strobes in 1 ns increments.

High-Quality Probing Technology

The 91S16/91S32 both use the NEW P6464 Pattern Generator Probe. A custom gate array in the P6464 and hybrid circuits in each probe tip provide accurate 1 ns edge placement of output signals and reliably deliver 50 MHz performance at the pins of the device under test. This performance makes the 91S16/91S32 the most precise pattern generators ever offered on a logic analyzer. The P6464 supports both TTL and ECL circuitry.

CHARACTERISTICS

Maximum Modules Per DAS - One 91516 max per DAS mainframe. Six 91 S32 modules max per DAS mainframe. When used with 91S16, max five 91S32 modules per DAS.
Maximum Number of Outputs - 91S16: 16 data channels, two clocks, two strobes; expandable to 176 data channels, 22 clocks, 22 strobes when combined with five 91 S32s. 91S32: 32 data channels, four clocks, four probes, expandable to 192 channels, 24 clocks, 24 strobes with six 91 S32s. If strobes are used as data channels, six 91 S32s provide 216 channels, and one 91S16 and five 91S32s provide 198 channels.
Maximum Stimulus Rate - $91 \mathrm{~S} 16: 50 \mathrm{MHz}$ internal or external clock (20 ns cycle time). 91S32: 50 MHz internal clock, 25 MHz external clock (40 ns cycle time).
Pattern Memory Depth - 91S16: 1024 patterns or instructions. 91S32: 2048 patterns.
External Controls - 91S16 Inputs (Using Optional P6460 External Control Probe): External Clock, Pause, Inhibit (tri-state), Jump, Interrupt, Interrupt Qualify. 91S16 External Start input uses optional phono connector. 91 S16 Output: Trigger Out. 91 S32 Inputs (using P6452 External Clock

Probe): External Clock, Inhibit, External Start, and Pause.
Master Clock - Selectable from one internal or one external source and single-step operation. Internal: 20 ns to 5 ms . External: Selectable rising or falling edge.
Clock Output - One clock line per probe. Rising edge may be adjusted ± 5 ns relative to selected edge (rising or falling) of master clock.
Data and Strobe Output - Eight data channels and one strobe per probe. Individual channels can be adjusted $\pm 10 \mathrm{~ns}$ relative to the master clock (up to $\pm 5 \mathrm{~ns}$ relative to the output clock for that probe). Timing adjustments can be made in 1 ns increments.

ACCESSORIES

91S16 Standard: Two P6464 pattern generator probes; keyboard overlay (334-6094-00); "External Control Probe" label for optional P6460 probe (334-6230-00); operator manual (070-5396-00); operator reference guide (070-5398-00).
91S16 Optional: P6460 external control probe; controlled-width probelet (020-1392-00); 2 m trigger out cable (175-8165-00); external start cable, 9 inch (175-9676-00); delay line adjustment tool (003-113400); service manual ($070-5397-00$).
91S32 Standard: Four P6464 pattern generator probes; interconnect cable (175-9700-00); keyboard overlay ($334-6094-00$); operator manual (070-539600); operator reference guide ($070-5398-00$).
91S32 Optional: Delay line adjustment tool (003-1134-00); controlled-width probelet (020-1392-00); extender interconnect cable (175-9782-00); service manual (070-5397-00).

ORDERING INFORMATION
 See Ordering Information on page 112.

Select the Performance and Price That Meets Your Application Need.
The DAS 9100 is a modular architecture system designed to keep you state-of-theart as your application needs change and grow. The modular DAS 9100 mainframe accepts up to six modules chosen from the selection of Data Acquisition and Pattern Generation modules listed on pages 107 through 110.

The standard DAS 9100 mainframes with their associated options are shown on page 112. These DAS 9100 mainframes come standard with two module slots already powered. Options 03 and 04 allow you to add one or two power supplies, with each power supply providing power for two additional module slots. You only pay for the capability you need.

The Standard Configurations shown below provide an easy way to order a DAS already configured for your application. Use the chart below to match your application with the appropriate standard configuration.
Microprocessor Support.
The widest selection of microprocessor support packages in the industry is listed on page 123.

DAS 9100 STANDARD CONFIGURATIONS ORDERING GUIDE

Standard Configuration Model Number		Recommended Application	Acquisition Modules	Pattern Generation Modules	Options Included	Performance Features
Color Display	Monochrome Display	General Purpose Hardware Analysis	Two 91A08			16 Channel 100 MHz Data Acquisition
$\begin{gathered} \hline \text { DAS } 9121 \\ \$ 16,370 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DAS } 9101 \\ \$ 13,470 \\ \hline \end{gathered}$					
$\begin{gathered} \hline \text { DAS } 9122 \\ \$ 17,380 \end{gathered}$	$\begin{aligned} & \hline \text { DAS } 9102 \\ & \$ 14,480 \end{aligned}$	General Purpose Acquisition With Stimulus	One 91A32	One 91P16		32 Channel 25 MHz Data Acquisition 16 Channel 25 MHz Pattern Generation
$\begin{gathered} \hline \text { DAS } 9123 \\ \$ 22,165 \end{gathered}$	$\begin{gathered} \hline \text { DAS } 9103 \\ \$ 19,265 \end{gathered}$	General Purpose Software/Hardware Integration	One 91A32 One 91A08	One 91P16	Opt 03 Power	32 Channel 25 MHz Data Acquisition 8 Channel 100 MHz Data Acquisition 16 Channel 25 MHz Pattern Generation
$\begin{gathered} \hline \text { DAS } 9124 \\ \$ 33,390 \end{gathered}$	$\begin{gathered} \hline \text { DAS } 9104 \\ \$ 30,490 \end{gathered}$	Expanded Software/Hardware Integration	$\begin{aligned} & \hline \text { Two 91A32 } \\ & \text { Two 91A08 } \end{aligned}$	One 91P16	Opt 01 Tape Opt 04 Power	64 Channel 25 MHz Data Acquisition 16 Channel 100 MHz Data Acquisition 16 Channel 25 MHz Pattern Generation DC 100 Tape Mass Storage
$\begin{gathered} \text { DAS } 9125 \\ \$ 19,540 \end{gathered}$	$\begin{gathered} \text { DAS } 9105 \\ \$ 16,640 \end{gathered}$	General Purpose Microprocessor Support	One 91A24 One 91AE24		Opt 01 Tape	48 Channel 10 MHz Data Acquisition DC 100 Tape Mass Storage
$\begin{gathered} \hline \text { DAS } 9126 \\ \$ 24,550 \end{gathered}$	$\begin{gathered} \hline \text { DAS } 9106 \\ \$ 21,650 \end{gathered}$	High Speed Hardware Analysis	One 91A04A. One 91AE04A		Opt 01 Tape Opt 03 Power	4 Channel 660 MHz or 8 Channel 330 MHz Data Acquisition DC 100 Tape Mass Storage
$\begin{gathered} \hline \text { DAS } 9127 \\ \$ 28,315 \end{gathered}$	$\begin{aligned} & \text { DAS } 9107 \\ & \$ 25,415 \end{aligned}$	Microprocessor Software/Hardware Integration	One 91A24 One 91AE24 One 91A08	One 91P16	Opt 01 Tape Opt 03 Power	48 Channel 10 MHz Data Acquisition 8 Channel 100 MHz Data Acquisition 16 Channel 25 MHz Pattern Generation DC 100 Tape Mass Storage
$\begin{gathered} \hline \text { DAS } 9128 \\ \$ 45,760 \end{gathered}$	$\begin{gathered} \hline \text { DAS } 9108 \\ \$ 42,860 \end{gathered}$	Interactive ATE: VLSI Verification	Three 91A32	One 91P16 Two 91P32	Opt 01 Tape Opt 04 Power Opt 06 Comm	96 Channel 25 MHz Data Acquisition 80 Channel 25 MHz Pattern Generation DC 100 Tape Mass Storage GPIB/RS-232 Communications Interface Serial Line Printer Port Display Video Output
$\begin{aligned} & \hline \text { DAS } 9130 \\ & \$ 108,000 \end{aligned}$		Ultra High-Speed Hardware Analysis	$\begin{aligned} & \text { One 91HS8 } \\ & \text { Three 91HSE8 } \end{aligned}$		Opt 01 Tape Opt 03 Power Opt 06 Comm	32 Channel 2 GHz Data Acquisition DC 100 Tape Mass Storage GPIB/RS-232 Communications Interface Serial Line Printer Port Display Video Out
$\begin{aligned} & \text { DA } \\ & \$ \\ & \text { with } \\ & \text { ATE } \end{aligned}$	9118 710 S 9119 inframe	Remote Only Operation; Display and Keyboard Not Included	Three 91A32	One 91P16 Two 91P32	Opt 04 Power Opt 06 Comm	96 Channel 25 MHz Data Acquisiton 80 Channel 25 MHz Pattern Generation CRT and Keyboard Deleted GPIB/RS-232 Communications Interface Serial Line Printer Port Display Video Output

DAS 9100 CHARACTERISTICS DATA FORMATTING

Group Designations - Up to 16 groups (1 to 32 channels per group).
Radix - Octal, Binary, or Hexadecimal.
Polarity — Positive or negative (complement).
Threshold - Select TTL or variable.

TRIGGERING

Trigger - Synchronous or Asynchronous.
Trigger Word Position - Begin, Center, End of
Memory, or Delay 1 to 32,767 clocks.
Trigger Word Display — Hex, Binary, Octal, or mixed radix; any bits allowed as don't care (X).
Trigger Modes (Word Recognition)
Up to five word recognizers with sixteen level stack (module dependent, see individual acquisition module specs)
External Trigger Enable (TTL)
Word Recognizer Output (TTL)
91A32 arms 91A08, 91A04A, or 91HS8
91 A24 arms 91A08 or 91A04A
91A32 and 91A08
Compare until equal or not equal

Glitch Recognizer (91A08 and 91HS8)

Enable by channel
91A08: OR'ed with trigger word
91HS8: Either word recognizer can be data or glitch
Clocks and Qualifiers - See individual module specs.

DATA ACQUISITION DISPLAY MODES

Timing Diagram Features

16 user-selectable channels
User definable six-character trace labels for each displayed channel
Data magnification factors from X 1 to X10,000
Cursor position and word readout in binary
Search word
Time aligned display for arming mode
Glitch display select (91A08 and 91HS8)
Horizontal data scrolling
Memory display window
Delta time measurement cursors
State Table Features
Hex, Binary, Octal, or mixed radix
Search word
Time-aligned display for arms mode
Vertical or block scrolling
Up to 1023 bits by 96 channels reference memory display, with or without data acquisition display
Reference memory editing
Programmable compare window
Reference memory mask word capability
Compare mode-highlighted and flagged for differences

I/O SUMMARY

DC 100 Tape Drive (Option 01)
Stores six instrument setups or 20 reference memory patterns. Directory space for 32 files.

RS-232 (Option 06)

Selectable rates to 9600 baud.
Master/Slave Operation: Full Duplex, Asynchronous

GPIB (Option 06)

Talker/Listener Only. Selectable Address. Selectable Controller Type, EOI or LF/EOI.
Line Printer Output (Option 06)
RS-232 serial printers supported.
Selectable baud rates to 9600 baud.
Supports CTRL/S and CTRL/Q handshaking (X-on/X-off).

Composite Video Output (Option 06)

Hardcopy interface. Video monitor interface.
OTHER CHARACTERISTICS
LO Line - 90 V to 132 V RMS.
HI Line - 180 V to 264 V RMS.
Line Frequency - 48 Hz to 63 Hz .
Power - 1000 VA, maximum.
Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$.
Altitude - Operating: 10,000 ft maximum. Nonoperating: $50,000 \mathrm{ft}$. maximum.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	432	17.0
Height	241	9.5
Depth	597	23.5
Weight	$\mathbf{k g}$	lb
Without Accessories	21.8	48.0

ORDERING INFORMATION*1

MAINFRAME ONLY

DAS 9109 Monochrome Mainframe $\mathbf{\$ 5 , 5 0 0}$
Includes: P6452 probe; P6454 external clock probe; ejector tool (214-3154-00); operators manual (062-5847-09); seminar workbook (062-7596-00).
DAS 9119 ATE Mainframe (Deletes CRT and Keyboard; Adds Option 06)
\$6,350 Includes: Same as above.
DAS 9129 Color Mainframe
Includes: Same as above.

MAINFRAME OPTIONS

Option 01 - DC 100 Tape Drive.
\$8,400

$$
+\$ 1,450
$$

Option 03 - One Additional Power Supply. $+\$ 800$
Option 04 - Two Additional Power Supplies. $+\$ 1,600$
Option 05 - Rackmount Hardware. $+\$ 200$
Option 06 — GPIB, RS232, Line Printer Port. $\quad+\$ 1,550$
Option 88 - Mainframe shipped with modules installed and checked out as part of the mainframe.

NC
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro, $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK, $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian, $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American, $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland, $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
mainframe field installable options
DAS 91F1 - Field Installed Option 01 (Includes Installation in Service Center). $\$ 1,700$
DAS 91F3 - Field Installed Additional Power Supply.
DAS $91 F 6$ - Field Installed Option 06 (For Mainframes Above S/N BO20100).
$\$ 1,700$
*' The DAS is also available in several models conveniently preconfigured with mainframe, options, and modules for your application. See page 110.

MAINFRAME MODULES

The following modules include probes. See probe selection guide at end of this order section for more information. Maximum of six modules per mainframe, 104 data acquisi tion channels, 80 pattern generator channels when using 91P16/91P32, or 192 pattern generator channels when using 91S16/91S32.
91AE04A - Data Acquisition. $\$ \mathbf{5 , 9 5 0}$
91AE24 - Data Acquisition. $\$ 4,700$
91A04A - Data Acquisition. \$7,950
91 A08 - Data Acquisition. $\$ 3,985$
91 A24 - Data Acquisition. $\$ 4,990$
91 A32 - Data Acquisition. $\$ 4,990$
91HS8 - Data Acquisition. $\$ \mathbf{2 5 , 0 0 0}$
91HSE8 - Data Acquisition. $\$ \mathbf{2 5 , 0 0 0}$
91P16 - Pattern Generator. \$3,990
91P32 - Pattern Generator. $\$ 6,900$
91 S16 - Pattern Generator. $\$ 6,900$
$91 \mathbf{3 3 2}$ - Pattern Generator. $\mathbf{\$ 1 0 , 4 0 0}$
Note: When adding modules, check that the correct number of power supplies are also selected. The mainframe includes sufficient power for two modules. One additional power supply (Option 03) is required for three or four modules. Two additional power supplies (Option 04) are required for a total of five or six modules.
Microprocessor/Bus support: For ordering information please see page 120.

PROBES

P6452 - 8-Channel Data Acquisition Probe. $\$ 730$
P6453 - 4-Channel Data Acquisition Probe. $\mathbf{\$ 1 , 5 6 0}$
P6454 - External Clock Probe For 91A08 Modules. (Only one required, included with each DAS 9100 Mainframe.)
P6455 - 8-Channel TTL/MOS Pattern Generator Probe.
P6456 - 8-Channel ECL Pattern Generator Probe.
P6457 - 4-Channel Tri-State Pattern Generator
Probe.
\$575
P6460 - 8-Channel Data Acquisition Probe. $\$ 700$
P6462 - 8-Channel TTL Only Data Acquisition
Probe.
\$340
P6464 - 8-Channel TTL/ECL Pattern Genera-
tor Probe.
\$1,350

PROBE SELECTION GUIDE			
DAS Module	No. Probes Required	Included As Standard	Optionally Available
91A04A	1	P6453	
91 AE04A	1	P6453	
91 A08	1	P6452	
91 A24	3	P6460	P6462
91 AE24	3	P6460	P6462
91 A32	4	P6452	P6462
$91 \mathrm{HS8}$	9	Probes permanently attached	
$91 \mathrm{HSE8}$	9	Probes permanently attached	
91 P 16	2	P6455	P6456,
91 P 32	4	P6455	P6456,
91 P16	2	P6464	
91 S32	4	P6464	

For optional accessories please see pages 128 through 131.

91DVV
 DesignLink DAS VLSI
 Verification Software Package

Links DAS 9100 to Host for Bench-Top VLSI and Circuit Board Testing
Uses Logic-Simulation Test Vectors for Prototype Test
Vector Compression Increases Effective DAS Pattern Generator Depth

Compares Predicted Outcomes to Actual Prototype Responses
Rapid Setup Changes for Different Users and Prototypes

Modular Software is Easily Installed and Portable

The 91DVV DesignLink DAS VLSI Verification Software provides communications capabilities between a host and the DAS 9100 Logic Analyzer for bench-top VLSI and circuit board testing applications. 91DVV is an easily set up and low-cost alternative to production test systems.
91DVV remotely controls pattern generation, data acquisition, and comparison between predicted and actual device responses. The 91DVV software converts test-vector tables into compressed DAS pattern generator programs, which it then downloads to the DAS for stimulation of the device. The prototype's resulting outputs are acquired by the DAS and uploaded to the host, where 91DVV compares the actual to predicted responses.

Easy to Use

The 91DVV software package is straightforward to use. Hardware setup consists of connecting DAS pattern generator and data acquisition probes to a powered test fixture, which holds the prototype device. The 91DVV software automatically queries the DAS to determine the current DAS hardware configuration, and uses the information to set up the prototype test and comparison. A prompting dialogue helps you set up clocking, tri-state control, and vector-topin mapping.

Modular Structure

91DVV software is composed of several modules (refer to the diagram above). TLOGS2PAT: Converts the output of the proprietary Tektronix TLOGS logic simulator into an easily processed intermediate format. For pattern conversion from other logic simulators, the user must create another conversion program. A sample program and a complete description of the intermediate format are supplied. DASXFER: Converts the intermediate vector file into a form the DAS can use in its specific configuration. DASPAC: Compresses the DASXFER output and compiles it into DAS binary pack

ets. PUTPAC: Downloads DAS binary packets from the host environment to the DAS. GETACQ: Uploads contents of the DAS acquisition memory (up to 104 channels) to the host. CMPACQ: Compares predicted device responses to the outputs acquired by the DAS

Tri-State Support

The 91DVV software supports use of P6457 tri-state pattern generator probes, and also supports two methods for controlling cus-tomer-supplied tri-state buffers.

Operating Environment

91DVV1P-Runs on the IBM PC and PC/XT. Requires the IBM PC-DOS operating system, version 2.0 or above.
91DVV1G/H—Runs on DEC VAX 11/700 Series mainframes. Requires the UNIX 4.1bsd operating system.
91DVV1K/L—Runs on DEC VAX 11/700 Series mainframes. Requires the VMS operating system, version 3.4 or above.
91DVV is customer installed.
Source code is provided with all versions of 91DVV for customer extension and local modification.

Compatibility

91DVV is compatible with all DAS mainframes. All DAS keyboard and menu functions remain operable when used with

91DVV. DAS modules supported are: 91A32 and 91A08 data acquisition modules; 91P16 and 91P32 pattern generator modules. DAS probes supported are: P6452 and P6454 data acquisition probes; P6455, P6456, and P6457 pattern generator probes. 91DVV supports DAS Option 06 I/O communications options through the RS-232 link.

ORDERING INFORMATION

91DVV1G DAS DesignLink Software Package for DEC VAX UNIX 4.1bsd, 9 -Track, $1 / 2$ inch tape, 800 bpi density, retention or use license supplied
91DVV1H DAS DesignLink Software Package for DEC VAX UNIX 4.1bsd, 9 -track, $1 / 2$ inch tape, 1600 bpi density, retention or use license supplied
91DVV1K DAS DesignLink Software Package for DEC VAX VMS 3.4+, 9track, $1 / 2$ inch tape, 1600 bpi density, retention or use license supplied
91DVV1L DAS DesignLink Software Package for DEC VAX VMS 3.4+, 9track, $1 / 2$ inch tape, 800 bpi density, retention or use license supplied
91DVV1P DAS DesignLink Software Package for IBM PC, PC-DOS $2.0+$, 9 -track, $5 \frac{1}{4}$ inch diskettes, retention or use license supplied
\$1,000

Ask about 91DVV versions for other computers and operating systems.
DesignLink is a trademark of Tektronix, Inc.

1240/NEW 1241

The 1240/1241 comply with IEEE Standard 488-1978, and with Tektronix Standard Code and Formats.

Total Design Support: Hardware, Software, and Integration

1241's Color Display Enhances User Interface See page 42B

Up to 72 Acquisition Channels
Acquisition Speeds to 100 MHz Async, 50 MHz Sync

14 Levels of Triggering with Conditional Branching

Dual Time Base Triggering,
Acquisition and Display
Simple Menu Operation with
On-Screen Soft Keys
Transfers Easily into Manufacturing and Service

TOTAL PERFORMANCE

With the 1240/1241 Logic Analyzers, the key phrase is total performance. These instruments provide complete support for all aspects of the design task, including hardware analysis, software analysis, and integration.

The NEW 1241 color mainframe and 1240 monochrome mainframe provide rapid setup and operation. Use of either instrument is made simple through a straightforward menu-oriented approach, combined with multi-level operation and touch-screen soft keys. Multi-level operation allows the user to select from one of four levels best matched to the user's skill level and the task at hand. Touch-screen soft keys provide high-level commands at a keystroke, keeping operator selections simple and well labeled.
For hardware analysis, the 1240/1241 offer 100 MHz sampling, glitch triggering and autorun mode. Software analysis is supported by up to 72 channels, sophisticated clocking and 14 level triggering. These capabilities can be tied together through the

Figure 1. Timing Diagram With Glitches.

unique dual time base feature to greatly speed hardware/software integration.
Both the 1241 with its LCCS (Liquid Crystal Color Shutter) display, and the 1240 have configurable architectures each with four card slots which accommodate any combination of 9 channel (1240D1) and 18 channel (1240D2) data acquisition cards, with a maximum of 72 channels. Data analysis and communications capabilities may be added through a series of plug-in ROM and COMM packs.

Hardware Analysis

For hardware analysis, the 1240/1241 offer up to 36 channels of acquisition at sampling rates of 100 MHz asynchronous and 50 MHz synchronous (see acquisition card descriptions). 6 ns glitch detection is also available.

Standard memory depth is 512 bits per channel, and this can be extended to a maximum of 2048 bits per channel by using a special memory chaining feature. This feature allows you to chain one card's memory to another, trading channel width for memory depth.

Figure 2. State Table Display

Superior hardware triggering capabilities include data and glitch triggering for isolating the problem area; clocked and unclocked triggering for capturing events that might not coincide with sample points; and counters, timers, and duration filters for triggering on the characteristics of a signal as well as its occurrence.
Auto-run capability is also provided. This feature allows you to track intermittents through continuous acquisitions. During the acquisitions, you can change parameters on the system under test and dynamically monitor their effects.

Software Analysis

Software analysis is supported by up to 72 data channels at sampling rates of 50 MHz synchronous/asynchronous (see acquisition card descriptions). A flexible clocking scheme includes data demultiplexing without double-probing.
Powerful software triggering capabilities are provided so you can track program flow. Included are 14 trigger levels, conditional branching, counters, timers, and both program flow and data flow qualification. These functions are implemented in two independent event recognizers.

Figure 3. Trigger Specification Menu.

Other features that assist in software analysis are flexible channel groupings for display, standard display radices (including ASCII and EBCDIC), and an eight-level pattern search and memory compare with highlighting.

Hardware/Software Integration

For integration, the 1240/1241 offer a dual time-base system that brings together all of the above hardware and software analysis capabilities. This dual time-base system greatly speeds the hardware/software integration process since the acquisition, triggering, and display of two independent time bases are tied together. You can fully monitor the interaction between hardware and software, or monitor the relationship of two interdependent systems. All data displays are time-aligned and completely correlated. The dual time base allows you to integrate functional modules, an increasingly important design task.

FLEXIBILITY NOW AND IN THE FUTURE

The power of the 1240/1241 stem from its configurable mainframe. This mainframe houses a selection of data acquisition cards and plug-in ROM and COMM Packs. You can select features that meet your current application needs, then later upgrade the mainframe to increased performance.

Selectable Acquisition Cards

The 1240/1241 mainframes provide four card slots that accommodate any combination of the following card types: 1240D1 and 1240D2

The 1240D1 is a 9 channel data acquisition card that can sample at rates up to 100 MHz asynchronous and 50 MHz synchronous. This card also provides glitch capture down to 6 ns , on all channels.

The 1240D2 card is an 18 channel data acquisition card that can sample at rates up to 50 MHz asynchronous/synchronous. Another feature of this card is single-probe demultiplexing.

ROM Packs for Data Processing

A ROM port on the side of the 1240/1241's mainframe supports the addition of special software ROM Packs. With the 1240/1241's acquisition capabilities, you have the capability to capture data which is very specific to your problem at hand. ROM Packs provide a means of helping you analyze that data, by processing it and presenting it to you in the most useful manner. Currently, there are ROM Packs supporting performance analysis, mnemonic disassembly of popular microprocessors, and special communications applications (see pages 116 to 118).

COMM Packs for External

Communications

Communication capabilities can be added to the 1240/1241 by inserting COMM Packs into a communications port on the rear of the instrument. These COMM Packs act as adaptors, allowing the 1240/1241 to function in different communication environments, including RS-232C and GPIB (see pages 117 and 118).

EASE OF USE

In line with Tek's goal of easy-to-use logic analyzers, the 1240/1241 human interface has been designed to facilitate the user's operation of the instrument.

Menu Operation and Soft Keys

Ease of use starts with the 1240/1241's menu operating system. Straightforward menu displays and on-screen soft keys allow you to make setup choices on the screen where your attention is already directed. You are not distracted by the need to look elsewhere on the instrument.

Multiple Operation Levels

Another major feature of the menu operating system is user-selected operation levels. The 1240/1241 provide four operation levels, ranging from basic operation for simple applications to full operation for complex applications. The sophistication of system features increases with the operation levels.

Configurable from the Front Panel

The 1240/1241 are completely configurable from the front panel, thus eliminating the need to switch boards and reconnect probes when changing from hardware to software applications. Probe connections are on the side of the instrument so they can be easily accessed. The keyboard has a simple layout, with single function keys. Also, a knob is included on the keyboard for data scrolling. This knob, along with the extreme smoothness of the data scrolling, make the 1240/1241 displays easier to read and manipulate.

Figure 4. Scroll Knob

Automatic Nonvolatile Storage

A battery-backed CMOS memory stores two complete instrument setups, including the last setup used before the 1240 and 1241 are powered down. This facilitates quick instrument start-up when returning to work, and eliminates the problem of losing a setup as a result of power system interruptions.

Figure 5. State Table Display with Dual Time-base Acquisition.

Figure 6. Operation Level Menu

Figure 7. Storage Memory Manager Menu.

IDEALLY SUITED FOR ENGINEERING，MANUFACTURING， AND SERVICE

In addition to its usefulness in the engineer－ ing environment，the 1240／1241 is well suit－ ed for manufacturing and service tasks．It transfers easily from one environment to another and helps facilitate communica－ tions between the different groups through its portability，remote control，mass storage and teleservicing capabilities．

Portability

The 1241 weighs $12.7 \mathrm{~kg}(28.0 \mathrm{lb})$ and meets environmental Class 5 specifications． The 1240 weighs $12.0 \mathrm{~kg}(26.5 \mathrm{lb})$ and meets environmental Class 3 specifications．

Remote Control

RS－232C and GPIB COMM Packs（see page 117），are ideally suited to automated test environments and remote control．

Mass Storage

Mass storage of setups，acquisition memo－ ries，and reference memories is achieved through RAM and EPROM Packs．This type of pack storage allows engineering to easi－ transfer knowledge to other groups．They can create the setups and memories need－ ed for design test in manufacturing，or they can create servicing procedures at the fac－ tory that can be sent out to field service sites．
Two types of pack storage are available． First，there is the 12RS01 8 k RAM Pack and the 12RSO2 64 k RAM Pack．Storage and retrieval of information from this RAM Pack is accomplished via menu soft keys （see Figure 7）．The 12RS11 32 k EPROM Pack（no EPROMs included）and the 12RS12 32 k EPROM Pack（EPROMs in－ cluded）provide a permanent storage medi－ um for setups and memories．To store files on these EPROM Packs，the setups and memories are uploaded from the 1240／ 1241 to a host computer via GPIB or RS－ 232C and then burned into EPROMs．

Teleservicing

Master－Slave capability allows one 1240／1241 to remotely control another over a telephone line（see page 119）．This great－ ly eases the higher levels of service trou－ bleshooting，as service specialists can get to the problem via the telephone rather than having to physically travel to the prob－ lem site．

12RMXX
 Series Microprocessor Support

Twenty-one Processors Supported

Single-Plug Connection for Ease of Use and Reliability

State Table Display in Four Formats: State, Absolute, Hardware and Software

Cursor Readout in Timing Diagram
Displayed in Disassembly Format

The 1240/1241 provide microprocessor support for major 8 -bit, 16 -bit and 32 -bit processors. This support includes a single-plug interface, data acquisition capability and mnemonic disassembly.

For simple 8 -bit and 16 -bit processors, the 1240/1241 use general purpose clocking and demultiplexing capabilities to acquire the data for disassembly by the 12RMXX. Two 1240D2 cards using standard data acquisition probes (P6460 or P6462) are attached to the processor via a probe interface. See page 121 for information on the Configured Probe Interface. Three 1240D2 cards are required for the simple 16-bit processors.

For more complex 8 -bit, 16 -bit and 32 -bit processors, the 1240/1241 use the PM200 Series of personality modules to interface to the processor and acquire the data for disassembly by the 12RMXX. These modules provide the special purpose hardware needed to properly acquire the instruction flow from a prefetch processor architecture and its associated internal queue. These modules plug directly into the 1240D2 cards, replacing the data acquisition probes and providing the interface to the processor. Three 1240D2 cards are required for these more complex processors. See page 121 for information on the PM 200 Series.

The microprocessor disassembly support for the 1240/1241 are in the form of Mnemonics ROM Packs (12RMXXs), with one ROM Pack for each microprocessor.

Figure 8. 80186 Software Format.

Four disassembly formats are available for viewing the data after disassembly: State, Absolute, Hardware, Software (only two display formats are available for the 68020: State and Absolute).
State format is exactly the same as standard State Table format.
Absolute format augments the State format with cycle operation labels (FETCH WRITE, etc.).
Hardware format provides disassembly information for all cycles occurring on the bus (instructions or cycle labels on all acquired cycles.)

Software format displays the executed instructions. It is similar to Hardware disassembly format with the display of instruction read cycles which are not opcode fetches suppressed. DMA's and flushed instructions are also suppressed.
The processors that are currently supported by the 1240/1241 are:

6800	8080	$6502 / 65 C 02$
6802	8085	
6808	8086	NSC 800
6809	8088	Z80
68000	80186	Z8001
68008	80188	Z8002
68010	80286	
68020		F9450

For ordering information, please refer to the Microprocessor Support section on page 121.

Figure 9. Z80 Hardware Format with dual timebase
acquisition.

12R01 Performance Analysis

Two Types of Analysis: State Overview and Event Measurements

Monitor Memory Use, Execution Cycles, Subroutine Calls

Measure Time or Occurrences
Compare Statistics on Four Events, Analyze Distribution of Single Event

Measure Events Using Two Independent Time Bases

Performance analysis is a tool that assists engineers in the development of micro-processor-based products. It can be used throughout the life cycle of a product to help the designer characterize, test, debug, and optimize software and system activity.
The real benefit of performance analysis over other types of development tools is that it provides nonintrusive overview measurements of system performance. In other words, it can be used to improve efficiency by providing measurements that characterize system performance without altering the performance.
The $12 R 01$ Performance Analysis ROM Pack provides two types of performance analysis, State Overview and Event Measurement, for the $1240 / 1241$. These two types of analysis provide overviews of the activity of the system under test, graphically displaying this activity in the form of histograms.

State Overview

With State Overview, the user can acquire data on a set of defined ranges. Each range has a lower-bound value and an upper-bound value, and is defined for a specific group from the Channel Grouping menu. After a data acquisition is made (using the standard 1240/1241 triggering) each cycle of the acquired data is searched to find any matches between the channel groups and the ranges defined for them. A match occurs any time the value of a group at a given cycle is greater than or equal to the lower-bound value and less than or equal to the upper-bound value of a range associated with that group.

Figure 10. View range histograms menu.

Figure 11. Performance Analysis Menu.
A cumulative count of the matches is kept for each range, and that count is displayed as a total count, a percentage of the total number of acquisition cycles on the associated channel group's given time base, and as a bar graph (histogram) proportional in length to that percentage. Up to eleven ranges can be defined.

Event Measurement

With Event Measurement, the user is able to delimit the events that are to be analyzed. A measurement in this type of analysis consists of a start measurement event, an optional target event and a stop measurement event. The data acquired in a single occurrence of the start measurement/stop measurement cycle is defined as a "sample". When sampling begins, the 1240/1241 repeatedly takes the same kind of measurement sample until the user stops the instrument. Within each sample, some type of measurement takes place, and this information is then processed for display.

The target event may be a single event that the user wishes to count occurrences of or time. It can also be two events, in which case the 1240/1241 will measure the time between them. If no target event is chosen, the duration of each sample can be timed, or the number of clock cycles that occur on a given time base during each sample can be counted. Up to four events can be defined.

Figure 13. View all events menu.

1200CXX, 12RCXX
 Communications Support

Line Printer Support for Most Printers
Master/Slave Support
Three Communication Interfaces

External communication capability is supported in the 1240/1241 by means of modular COMM Packs. These COMM Packs, which plug into a COMM port on the back provide flexibility in interfacing other equipment.

REMOTE CONTROL

Two COMM Packs are provided to interface the 1240/1241 to controllers, the 1200C01 RS-232C COMM Pack and the 1200C02 GPIB COMM Pack. You can remotely control all of the capabilities of the 1240/1241 using these COMM Packs.
The controller can start and stop data acquisitions and the auto-run function, write to the display, define custom soft keys, request 1240/1241 keystrokes, and initiate and request diagnostic results. Instrument setups, acquisition memories, reference memories and RAM Pack contents can be sent and received from the 1240/1241, also.

Requests from the 1240/1241 to upload and download setups and memories are initiated via soft keys (see figure 14).
The 1200C02 GPIB COMM Pack interface conforms to IEEE specification 488-1978, Standard Digital Interface for Programmable Instrumentation. The 1240/1241 operates via the GPIB COMM Pack with the Tek 4041 controller.

PRINTER SUPPORT

Through the use of a ROM Pack and COMM Pack combination the 1240/1241 are able to print hard copies of setup menus and data acquisition memories. Support will be provided for almost all commercially available low-cost printers (see figure 15).

Figure 14. COMM Port Control menu with a $1200 C 01$ RS-232C COMM Pack installed.

The printer interface consists of the combination of a ROM Pack and a COMM Pack. The 12RC01 Printer Support ROM Pack is used in combination with either the 1200C01 RS-232C COMM Pack (for printers with a serial interface) or the 1200C11 Parallel Printer COMM Pack (for printers with a parallel interface).
Nearly all screen displays can be printed including Operation Level, Time Base, Memory Configuration, Channel Grouping, Trigger Spec, Auto-Run Spec, State Table, and Timing Diagram. In addition, a special combined state and timing format is available.

Figure 12. Combined Format Print-out.
The Printer ROM Pack also has the ability to print a single display as it appears on the screen. Other functions available are the search pattern, user defined timing trace labels up to 45 characters long for timing diagram printouts, and a printer test to check connections and printer operation.

Figure 15. Printer Port sub-menu for setting up printer interface parameters.

TELESERVICING

Master-Slave capability allows one 1240/1241 to remotely control another over a telephone line. This greatly eases the higher levels of service troubleshooting, as service engineers can get to the problem via the telephone rather than having to physically travel to the problem site.
A phone link between the master 1240/1241 and the slave 1240/1241 can be used for sending both data and voice information. When in data mode, the master 1240/1241 has complete control over the slave, with the ability to: send and receive set-ups, acquisition memories and reference memories, start and stop acquisitions, start and stop auto-acquisition; receive information on whether the memories were equal or not equal after auto-acquiring; initialize the slave; get the slave's status; and have the slave call the master when an acquisition or auto-acquisition is over.
In voice mode, the service engineer at the master 1240/1241 can speak directly with the technician at the slave end and direct him to move probes or to swap boards. Switching between voice and data mode is accomplished through the master/slave menu when the Option 01 modem is used.

Also available with the Option 01 modem are auto-answer and auto-dial. With autoanswer, an unattended 1240/1241 will respond to a call from another 1240/1241. A master-slave connection can thus be set up without a service technician present at the slave end.
With auto-dial, a slave 1240/1241 can be set up to automatically call the master upon triggering. If troubleshooting an intermittent problem, the slave can be set to trigger on the problem, the service technician can leave the slave site, the line can be disconnected, and when the intermittent occurs, the slave will call the master, and the service engineer can analyze the data.

The 1240/1241 supports master/slave operation with the following configuration: A 12RC02 Master/Slave ROM Pack, a 1200 C01 RS-232C COMM Pack and a modem.
Each 1240/1241 must have at least one acquisition card (1240D1 or 1240D2) installed. Once the connection between the master and a slave is established, the master will assume the card configuration of the slave until it's power is turned off or until a connection is established with another slave.
The Option 01 Hayes Smartmodem 1200 is recommended for use with master/slave support in the United States, and other countries where it's licensed. With this modem, the user has access to the following features through the front panel: autodial of up to four phone numbers, auto-an
swer, and soft-key switching between voice and data communication modes. This modem is not licensed in all countries, however in these countries the 12RC02 and 1200C01 can be used with many full-duplex modems. With modems other than the Hayes Smartmodem 1200, the telephone connection must be made by hand, and auto-dial, auto-answer, and soft-key switching between voice and data modes do not function.

EXTERNAL COMMUNICATION SUPPORT

To equip the 1240/1241 for one of the three types of communications support shown across the top of this table, choose one of the combinations of ROM Pack and COMM Pack whose intersection is indicated by XXXX's. Performance varies depending on the combination of packs that you select for a particular kind of support.

	Remote Control	Printer Support	Master/ Slave Support
ROM Packs	None	12RC01	12RC02 Required Printer Support
Master/ Slave			
COMM Packs 1200C01 RS-232C 1200C02 GPIB 1200C11 Parallel Printer	XXXX	XXXX	XXX

Figure 16. Master/Slave Control Menu.

Figure 17. Comm Port Control Menu

CHARACTERISTICS

Characteristics are common to the 1240/1241 unless otherwise indicated.

OPERATING LEVELS

Level 0 - Basic Operation.
Level 1 - Advanced timing analysis (includes basic state analysis).
Level 2 - Advanced state analysis (includes basic timing analysis).
Level 3 - Full operation.
TIME BASES
Two Per Instrument - Assignable by probe. Time Base 1: Asynchronous or Synchronous. Time Base 2: Synchronous or Demultiplex.

INPUTS

Clocks - C1, C2, .. Cn. Where $n=$ number of probes $=$ number of channels/9. Minimum Pulse Width: 8 ns . Specifiable as rising, falling, or either edge.
Qualifiers - Q1, Q2, .. Qn. Where $n=$ number of probes $=$ number of channels $/ 9$. Setup Time, Hold Time: $=(\mathrm{P} 6460) 11 \mathrm{~ns}, 0 \mathrm{~ns} ;(\mathrm{P} 6462)$ $17 \mathrm{~ns}, 6 \mathrm{~ns}$. Specifiable as high or low level.
Asynchronous - Rate: 1240D1: 10 ns to 1 s , (1240D2: 20 ns to 1 s). Specification: ($1-2-5 \mathrm{se}-$ quence) • (Q1 • Q2 • . . • Qn). Accuracy: 0.01\%. Channel-to-Channel Skew: $\pm 3 \mathrm{~ns}$. Glitch Detection: (1240D1 only) 6 ns .
Synchronous - Rate: Dc to 50 MHz . Setup Time, Hold Time: On 1240D1 is (P6460) $7 \mathrm{~ns}, 2 \mathrm{~ns}$; (P6462) $12 \mathrm{~ns}, 7 \mathrm{~ns}$. On 1240D2 is (P6460) 12 ns , $0 \mathrm{~ns} ;(\mathrm{P} 6462) 17 \mathrm{~ns}, 5 \mathrm{~ns}$. Specification: (C1 + C2 $+\ldots+\mathrm{Cn}) \cdot(\mathrm{Q} 1 \cdot \mathrm{Q} 2 \bullet \ldots \cdot \mathrm{Qn})$. Minimum Delay After Previous Clock: 20 ns.
Demultiplex - Rate: Dc to 50 MHz . Setup Time, Hold Time: On 1240D1 is (P6460) $7 \mathrm{~ns}, 2 \mathrm{~ns}$; (P6462) $12 \mathrm{~ns}, 7 \mathrm{~ns}$. On 1240D2 is (P6460) 12 ns , 0 ns ; (P6462) $17 \mathrm{~ns}, 5 \mathrm{~ns}$. Specification: First Phase Clock (Latch Data) (C1 $+\mathrm{C} 2+\ldots+$ $\mathrm{Cn}) \cdot(\mathrm{Q} 1 \cdot \mathrm{Q} 2 \cdot \ldots \cdot \mathrm{Qn})$. Minimum Delay After Last Phase Clock: 20 ns. Last Phase Clock (Store Data): (C1 $+\mathrm{C} 2+\ldots+$ Cn) •(Q1•Q2•... Qn). Minimum Delay After First Phase Clock: 10 ns .

CONFIGURABILITY

Two types of acquisition cards: 1240D1, 1240D2. Maximum of four cards per 1240/1241, in any combination.

	1240D1	1240D2
Number of Channels	9	18
Asynchronous Rate with glitches	100 MHz	50 MHz
50 MHz	N / A	
Synchronous Rate	50 MHz	50 MHz
Memory Depth (Bits/Char Channel with Glitches	512	512
Max Via Chaining	256	$\mathrm{~N} / \mathrm{A}$

Depth vs Channels - Tradeoffs possible between data acquisition cards of same type. Maximum depth is 2048 (with four 1240 D 1 or four 1240D2).

DATA ACQUISITION
Two Types of Acquistion Probes: P6460, P6462. One probe required per 1240D1, two per 1240D2.

	P6460	P6462
Signal Input Data Channels Clock/ Clock Qualifier Lines	1	9
Impedence Nominal Threshold Range Increments Accuracy Threshold Assignment Polarity Assignment	$\begin{gathered} 1 \mathrm{M} \Omega, 5 \mathrm{pF} \\ -6.35 \mathrm{~V} \text { to }+6.35 \mathrm{~V} \\ 0.05 \mathrm{~V} \\ \pm 0.5 \% \\ \pm 0.065 \mathrm{~V} \\ \\ \text { By acquisi- } \\ \text { tion card } \\ \text { By channel } \end{gathered}$	$\begin{gathered} \approx 1 \mathrm{LTTL} \\ +1.4 \mathrm{~V} \\ - \\ \pm .25 \mathrm{~V} \\ +.055 \mathrm{~V} / \\ \left(0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\ \mathrm{N} / \mathrm{A} \\ \text { By channel } \end{gathered}$
Maximum Input Voltage Peak Channel to Channel	$\begin{aligned} & \pm 40 \mathrm{~V} \\ & \pm 60 \mathrm{~V} \end{aligned}$	$-2 \text { to }+7 \mathrm{~V}$ No restriction

NOTE: All system specifications are based upon P6460 probes, for specifications based upon P6462 probes, please refer to the 1240/1241 Data Sheet.

TRIGGER DEFINITION

(TWO EVENT RECOGNIZERS)

Global Event Recognizer (Event Recognizer \#1) - One level. Event Recognition specified by: Word recognizer-data (data or glitch on 1240D1). Duration filter-1 to 16 consecutive samples or 10 ns to 160 ns . Commands: Store On (Not), Trigger On (Not), Reset On (Not), Start Timer On (Not), Time While On (Not), Increment Counter On (Not), or Off. Counter/timer: Clock interval is 10 ns . Range is 0 to 99,999,999,999 (either counts or 10 ns increments) Counter/timer value may be used to cause trigger or reset.
Sequential Event Recognizer (Event Recognizer \#2) - 14 levels. Event Recognition on Each Level Specified By: Time Base: Which time base to monitor for event. Word Recognizer: Data (data or glitch on 1240D1). Iteration Counter: 1 to 9999 occurrences. Duration Filter: 1 to 16 consecutive samples. Selective Storage on Each Level Specifiable: With Storage On or with Storage Off. Commands on Each Level: Wait For (Not), Trigger If (Not), Reset If (Not), Jump If (Not) or Delay (up to 9999). Commands at End of Sequence: Trigger, Reset or Do Nothing.
External Trigger Out - TTL level output whenever trigger attempted.
External Trigger In - TTL level input can be required for enabling trigger.

> AUTORUN

Modes of Operation - Compare Acquisition Memory to Reference Memory: Specifiable which channels to compare, specifiable starting and ending memory locations of comparison. Result of Comparison Outcome: Specifiable display and reacquire, discard and reacquire, or display and stop. Specifiable Minimum Display Time: 0 s to 99 s.
Continuous Trigger Out - Data is not stored. 1240/1241 acts as trigger source.
Trigger $\mathbf{I n}$ — Requires trigger in signal to enable trigger. Enables two 1240/1241s to work in parallel.
Store After Trigger - Data at last trigger is available after stopping 1240/1241. Time between storages is minimum.

DISPLAY FORMATS

State Table - Acquisition or reference memory. Data displayed in binary, octal, hex, ASCII, EBCDIC. Glitch display can be turned on or off.
Timing Diagram - Acquisition or Reference Memory. Horizontal Expansion: *1, *2, *5, *10, *20. Vertical Expansion: (1241 only): *1, *2.
Distance Between Cursors - Value displayed as absolute time for unqualified asynchronous measurement, as number of memory locations for qualified or synchronous measurement.
Highlighting Modes - Memory comparison differences, glitches, search pattern occurrences, time base \#1 occurrences, time base \#2 occurrences.
Search Pattern - Length: 1 to 8 contiguous locations. Time Bases: Can restrict each location to occur only on T1, T2 or T1 and T2.

storage

Internal (Standard)

Nonvolatile Memory (NVM) - Size: Contains two set-ups, including status at power down, lithium iodide battery.
Volatile Memory (RAM) - Size: Contains two set-ups.

Memory Types

Set-Up - Stored in NVM, RAM, or Pack, contains all data pertinent to making an acquisition.
Reference Memory - Stored in Pack, reference memory is editable in Edit Reference Memory menu.

ENVIRONMENTAL CHARACTERISTICS

Temperature - Operating: (1240 only) $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; (1241 only) $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Altitude - Operating: To 4600 m ($15,000 \mathrm{ft}$). Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration -0.025 inch displacement. 10 Hz to 55 Hz frequency range.
Shock - 30 g .

OTHER CHARACTERISTICS

Diagnostics - At power-up, the 1240/1241 perform processor, ROM, RAM and board checks. A test pattern generator located on the side provides stimulus for verifying probes and acquisition system operation. Complete system verification and extended diagnostics are available with an optional ROM Pack.
Rear Panel Connections - Trigger In: TTL compatible. Trigger Out: TTL compatible. Video Out: (1240 only) Confroms with RS-170 (composite video).
Power - 90 V to 132 V or 180 V to $250 \mathrm{~V}, 48 \mathrm{~Hz}$ to 63 Hz .
NOTE: 48 Hz to 440 Hz operation with addition of safety ground strap.

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	368	14.5
Height	197	7.8
Depth	498	19.6
Weight	$\mathbf{k g}$	lb
Without Accessories	12.0	26.5

COMM Packs

1200 C 01 (RS-232C) - Baud Rate: 110 to 9600 Bits/Character: Eight, including parity bit. Protocol: Asynchronous full duplex. Compatability: Stand-alone with host for remote control, with 12RC01 for printers with serial interface, with 12RC02 and 12RC02 Option 01 for master/slave with 12RMXX for printers with serial interface.
$1200 \mathbf{C 0 2}$ (GPIB) - Full listener/talker capabilities. Meets IEEE Standard 488-1978. Compatability: Stand-alone with host for remote control.
1200C11 (Parallel Printer) - Compatability: With 12RC01 for printers with parallel interface, with 12RMXX for printers with parallel interface.

ROM Packs

Analysis

12R01 (Performance Analysis) - State Overview: 1 to 11 ranges. Ranges can be different groups and different timebases. Ability to halt and resume measurement. Display in count, percentage, and histogram. Event Measurement 1 to 11 distribution intervals. 1 to 4 events. 10 ns resolution. Five measurement types (measure total time, count cycles, count occurrences, time occurrence, accumulate time). Display in distribution, min, mean, max, and histogram.

Communication Support

12RC01 (Printer Support) - Requires: 1200 C 01 for serial interface or 1200C11 for parallel interface. Output: Menus, search pattern, acquisition and reference memory. Memory Format: State table, timing diagram, and combined.
12RC02 (Master/Slave) - Requires: 1200C01 and modem. With Option 01: Auto-answer, autodial, voice-data switching, non-volatile storage of four phone numbers, 300 baud and 1200 baud Diagnostics: Local 1240/1241 with COMM Pack and RS-232 cable, modem, and link between local and remote 1240/1241

External Storage (Optional)

12RS01 (8 k RAM Pack) - Size: Contains 8 kbytes with Lithium battery
12RS02 (64 k RAM Pack) - Size: Contains 64 kbytes with Lithium battery.
12RS11 (32 k EPROM Pack) - Size: Contains 32 kbytes (no EPROMs included). Requires four 68764s or 68766s.
12RS12 (32 k EPROM Pack) - Size: Contains 32 kbytes. Comes with four 68764s or 68766s.

Microprocessor Support

12RMXX (Mnemonic Disassembly) - Formats: State, Absolute, Hardware, Software.

ORDERING INFORMATION

1240 Logic Analyzer Mainframe
\$4,500
Includes: Accessory pouch (016-0707-00); front panel cover (200-2780-00); operator manual ($070-4340-01$); reference guides (070-4641-01).
1241 Color Logic Analyzer Mainframe $\$ 6,000$ Includes: Same as above.
Option 05 - Rackmount Adaptor. $+\$ 400$
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

STANDARD SYSTEM CONFIGURATIONS

 8-BIT1240N08 - 8-Bit Microprocessor Analysis System
Includes: 1240 Logic Analyzer with two 1240D2 modules with four P6460 probes $12 R S 02$ RAM Pack.
1241N08 - 8-Bit Microprocessor Analysis System
\$13,900
Includes: Same as above except the 1241 Logic Analyzer.

OPTIONS

Options 01 thru 09 - Microprocessor Specific Support (Includes: 12RMXX Microprocessor Disassembly ROM Pack, 12RMXX Option 01 Configured Probe Interface).
Option 01 - Specific Support for 8080.
$+\$ 600$
Option 02 - Specific Support for $8085 . \quad+\$ 600$
Option 03 - Specific Support for 6800.
$+\$ 600$
Option 04 - Specific Support for 6802.
Option 05 - Specific Support for 6808.
$+\$ 600$
$+\$ 600$
Option 06 - Specific Support for 6809.
Option 07 - Specific Support for Z80.
$+\$ 600$
Option 08 - Specific Support for 6502.
$+\$ 600$
Option 09 - Specific Support for NSC800.
$+\$ 600$
16-BIT
1240N16 - 16-Bit Microprocessor
Analysis System
\$12,600
Includes: 1240 Logic Analyzer with three 1240D2 Option 1D Modules without probes, P6460 Probe, 12RS02 RAM Pack.
1241N16 - 16-Bit Microprocessor
Analysis System
\$14,100
Includes: Same as above except the 1241 Logic Analyzer.

OPTIONS

Options 01 thru 09 - Microprocessor Specific Support (Includes: 12RMXX Microprocessor Disassembly ROM Pack, 12RMXX Option 02 or Option 04 Personality Module).
Option 01 - Specific Support for $8086 . \quad+\$ 2,500$
Option 02 - Specific Support for 8088 . $+\$ 2,500$
Option 03 - Specific Support for $80186 . \quad+\$ 2,500$
Option 04 - Specific Support for 80188 . $+\$ 2,500$
Option 05 - Specific Support for 68000 (DIP).
Option 06 - Specific Support for
68000. (PGA)
or 68008
Option 08 - Specific Support for 68010 (DIP).
Option 09 - Specific Support for 68010
$+\$ 2,500$
$+\$ 2,500$

GENERAL PURPOSE

1240NGP - General Purpose Analysis System
\$15,350
Includes: 1240 Logic Analyzer with 1240 D 1 module with P6460 probe, two 1240 D 2 modules with four P6460 probes, 12RSO2 RAM Pack
1241NGP - General Purpose Analy-
sis System
\$16,850
Includes: Same as above except the 1241 Logic Analyzer.

BUS ANALYSIS

1240NBA - Bus Analysis System \$19,800 Includes: 1240 Logic Analyzer with four 1240D2 mod ules with eight P6460 probes, 12RS02 RAM Pack.
1241NBA - Bus Analysis System $\mathbf{\$ 2 1 , 3 0 0}$ Includes: Same as above except the 1241 Logic Analyzer.

HIGH SPEED ANALYSIS

1240NHS - High Speed Analysis System
\$16,800
Includes: 1240 Logic Analyzer with four 1240D1 Modules with four P6460 probes, 12RS02 RAM Pack.
1241NHS - High Speed Analysis System
\$18,300
Includes: Same as above except the 1241 Logic Analyzer.

OPTIONAL ACCESSORIES ACQUISITION CARDS

1240D1 - 9-Channel Data Acquisition Card 100 MHz , includes one P6460 data acquisition probe.
\$2,950
Option 1D - Deletes one P6460 Data Acquisition Probe
$-\$ 700$
1240D2 - 18-Channel Data Acquisition Card
50 MHz , includes two P6460 data acquisition probes.
$\$ 3,700$
Option 1D - Deletes two P6460 Data Acqui-
sition Probes.
Option 2S - Substitutes two P6462 Data Ac quisition for two P6460 Data Acquisition Probes.
$-\$ 720$

DATA ACQUISITION PROBES

P6460 - 9-Channel Data Acquisiton Probe. \$700 P6462 - 9-Channel Data Acquisiton Probe, fixed threshold TTL

\$340

COMMUNICATION INTERFACES COMM PACKS
$1200 \mathrm{C01}$ - RS-232C COMM Pack
$1200 \mathrm{C02}$ - GPIB COMM Pack
\$750

1200C11 - Parallel Printer COMM Pack
Note: To order cables for these COMM Packs, see the Logic Analyzer Accessories Section.

ROM PACKS

Analysis

12R01 - Performance Analysis ROM Pack.
\$800
Communication Functions
12RC01 - Printer Support ROM Pack.
12RC02 - Master/Slave ROM Pack
Option 01 - Modem. $+\$ 600$

Storage
12RS01 - 8 k RAM Pack. \$300
12RS02 - 64k RAM Pack. \$500
12RS11 - 32K EPROM PACK (Empty). \$85
12RS12 - 32K EPROM PACK.
\$300
SERVICE ACCESSORIES
12RD01 - Diagnostic ROM Pack.
\$1,500
Diagnostic Lead Set — Order 012-0556-00 $\mathbf{\$ 5 0}$
Extender Card - Order 670-7539-02
$\$ 400$
Service Manual — Order 062-7124-02
\$150
Service Maintenance Kit - Includes the above service accessories. Order 067-1103-02
$\$ 2,000$

CARTS

Portable Instrument Cart - For on site portability. Order K212. See page 423 for complete description.
Instrument Shuttle - For site-to-site porta bility. Order K117. See page 423 for complete description.

Microprocessor and Bus Support

Standard Modules for Many Microprocessors

Single-Plug Connection for Ease of Use and Reliability

Ready-to-Use Mnemonics on Tape or ROM Pack

PM200 Personality Modules for Advanced Microprocessors

Tektronix logic analyzers offer wide-ranging microprocessor support with a selection of single-plug connectors and mnemonic disassembly packages.
For custom microprocessors, or microprocessors not listed below, Tektronix offers support through EDM (Extended Define Mnemonics) on the DAS 9100. Also, the Universal Probe Interface Kit (UPIK40) on page 131 is a general-purpose, single-plug connection.

TABLE A: 1200 SERIES ORDERING AND CONFIGURATION GUIDE

Microprocessor	For Mnemonics ROM Pack Order	For Probe Interface Order	For PM200 Support Order	Total No. 1240D2's Required	Total No. Probes*1 Required	$\begin{array}{\|l} \hline \text { Processor } \\ \text { Clock } \\ \text { Rate } \\ \text { Supported } \\ \hline \end{array}$
8080	12 RM 01	Opt 01		2	4	Max
8085	$12 \mathrm{RM02}$	Opt 01		2	4	Max
8086 (DIP)	12 RM 03		Opt 02	3	None	8 MHz
8088 (DIP)	12RM04		Opt 02	3	None	8 MHz
80186 (LCC)	12 RM 05		Opt 02	3	None	8 MHz
80188 (LCC)	12 RM 06		Opt 02	3	None	8 MHz
80286 (LCC)	12 RM 08		Opt 02	3	None	10 MHz
6800	12RM21	Opt 01		2	4	Max
6802	12 RM 22	Opt 01		2	4	Max
6808	12 RM 23	Opt 01		2	4	Max
6809	12RM24	Opt 01		2	4	Max
68000 (DIP)	12RM25		Opt 02	3	None	12.5 MHz
68000 (PGA)	12 RM 25		Opt 04	3	None	12.5 MHz
68008 (DIP)	12 RM 26		Opt 02	3	None	8 MHz
68010 (DIP)	12RM27		Opt 02	3	None	12.5 MHz
68010 (PGA)	12RM27		Opt 04	3	None	12.5 MHz
68020 (PGA)	12RM31		Opt 02	3	None	16.7 MHz
Z80	12RM41	Opt 01		2	4*3	Max
Z8001/Z8003	12 RM 42			3	4	Max
Z8002/Z8004	12RM43	Opt 01		3	3	Max
6502/65C02	12 RM 63	Opt 01		2	4*2	Max
F9450 (1750A MIL STD)	12RM62A			3	3	Max
NSC800	12RM71	Opt 01		2	$4 * 3$	Max

[^10]

The Option 01 probe interface works with the mnemonics files on tape or ROM pack to support disassembly on the DAS 9100 and the 1240.

In addition to microprocessors, Tektronix offers support for several popular bus implementations, including the UNIBUS, the Q-BUS, and the GPIB (IEEE Standard 488), and the ASCII and EBCDIC character codes.

Table A contains information about the microprocessor support available for the 1240/1241. Table B describes the microprocessor support on the DAS 9100, using 91A24 Data Acquisition Modules. Table C covers bus support on the DAS 9100, again using 91A24 modules.

ORDERING INFORMATION
For all items in Table A, prices are as follows: 12RMXX Mnemonics ROM Pack
\$400
options
Option 01 - Probe Interface. +\$200
Option 02 - PM200 Support. $+\$ 2,100$
Option 04 - PM200 Support. $+\$ 2,100$

DAS 9100 Microprocessor Support

Microprocessor disassembly requires a 91TM mnemonics tape along with a 91A24 and a 91AE24 acquisition module. An easy-to-use single-plug probe adaptor (Option 01) is available for most 8 -bit proces-
sors. Intel and Motorola 16-bit processors require PM200 Series Personality Modules (Options 02 or 04). The PM 200 s provide fetch indication, queue tracking and clock synthesis in addition to single-plug connection and built-in acquisition probes
(91A24/91AE24 modules are available without probes for dedicated PM200 use). Note that DAS 9100 Option 01 (DC 100 Tape Drive) is required to use these microprocessor support packages.

TABLE B: DAS 9100 SERIES ORDERING AND CONFIGURATION GUIDE

Microprocessor	REQUIRED	OPTIONAL	REQUIRED	Total No Probes*1 Required	Processor Clock Rate Supported
	For Disassembly Tape Order	For Probe Interface Order	For PM 200 Module Order		
8080	91TM01	Opt 01	N/A	4	Max
8031	91 TM07	Opt 01	N/A	4*5	Max
8039*2	91 MM10	Opt 01	N/A	3*5	Max
8085	91 TM02	Opt 01	N/A	4	Max
8086 (DIP)	91TM03	N/A	Opt 02	None	10 MHz
8088 (DIP)	91TM04	N/A	Opt 02	None	10 MHz
80186 (LCC)	91 TM05	N/A	Opt 02	None	10 MHz
80188 (LCC)	91TM06	N/A	Opt 02	None	10 MHz
6800	91TM21	Opt 01	N/A	4	Max
6801	91TM28	Opt 01	N/A	4	Max
6802	91 MM22	Opt 01	N/A	4	Max
6803	91TM29	Opt 01	N/A	4	Max
6805*3	91TM30	UPIK40	N/A	4*4	Max
6808	91TM23	Opt 01	N/A	4	Max
6809	91 MM24	Opt 01	N/A	4	Max
68121	91TM32	N/A	N/A	4	Max
68000 (DIP)	91TM25	N/A	Opt 02	None	12.5 MHz
68000 (PGA)	91TM25	N/A	Opt 04	None	12.5 MHz
68008 (DIP)	91 MM26	N/A	Opt 02	None	8 MHz
68010 (DIP)	91 MM27	N/A	Opt 02	None	12.5 MHz
68010 (PGA)	91 TM27	N/A	Opt 04	None	12.5 MHz
Z80	91TM41	Opt 01	N/A	4*5	Max
Z8001/03	91 TM42	N/A	N/A	4	Max
Z8002/04	91 M443	Opt 01	N/A	3	Max
6502/65C02	91TM63	Opt 01	N/A	4*4	Max
1802	91TM61	Opt 01	N/A	4*4	Max
1805	91TM65	Opt 01	N/A	4*4	Max
F9450	91 MM62	N/A	N/A	3	Max
1750A	91TM64	N/A	N/A	N/A	N/A
NSC 800	91TM71	Opt 01	N/A	4*5	Max
${ }^{* 1}$ For most of the above processors, either P6460 or P6462 data acquisition probes can be used. ${ }^{* 2}$ Requires only 91A24. *3 Supports the MC146805E2. ${ }^{* 4}$ P6460's are required if you're using a CMOS version of the processor. ${ }^{* 5}$ P6460's are always required.					

For items in Table B above, prices are as follows:
91TMXX Mnemonics Tape $+\$ 200$

ORDERING INFORMATION

Option 02 - PM200 Support.
Option 04 - PM200 Support.
UPIK40 - Universal Probe Interface Kit, 40 pin DIP
+\$175

For items in Table C below, prices are as follows: 91TM51 or 91TM52 Mnemonics Tape $\$ 350$ 91TM53 Mnemonics Tape $\$ 200$ Option 01 - Probe Adaptor $+\$ 180$

TABLE C: DAS 9100 SERIES BUS SUPPORT ORDERING AND CONFIGURATION GUIDE

Bus/Code	For Mnemonics Tape Order	For Probe Interface Order	 91AE24's Required	Total No. Probes Required	Bus Clock Rate Supported
UNIBUS	91 TM51		2	4	Max
Q-BUS	91 TM52		2	4	Max
GPIB/ASCII/EBCDIC	$91 T M 53$	Opt 01	1	3	Max

318/338 Logic Analyzers
Superior Performance/Price Ratio
Parallel and Serial Data Acquisition in a Single Instrument

Data Widths to $\mathbf{3 2}$ Channels and Acquisition Speeds to 50 MHz

Menu-Driven User Interface for Easy Operation

Powerful Multilevel Triggering
Separate Glitch Trigger and Memory
RS-232 Interiace Allows Remote Control
Nonvolatile Memory Retains Both Reference Data and Instrument Setups
Ultra-Lightweight for Maximum Portability
Weighs Only 5.2 kg (11.5 lbs)

The Sony/Tek 318 and 338 Logic Analyzers bring an unprecedented combination of performance, portability and low price to the field of digital test instrumentation.
Weighing only 5.2 kg (11.5 lb) each, these instruments incorporate proprietary LSI circuitry to provide an array of features usually associated with much larger logic analyzers. Both the 318 and 338 include parallel and serial data acquisition capabilities to cover the widest possible range of applications. For software work, there is powerful multilevel triggering to capture complex real-time code execution. Each instrument can also be remotely controlled through an RS-232 interface, an extremely useful feature in first-line service applications. Also, nonvolatile memory allows both setup information and reference data to be retained and transported from site to site.
The 318 and 338 Logic Analyzers are both built around the same basic feature set. The difference between the two instruments is in maximum data width and acquisition speed. The 338 , which is targeted more toward software applications, allows 32 channels of data acquisition at speeds up to 20 MHz . The 318, which is directed toward hardware applications, permits 16 channels of data acquisition at speeds up to 50 MHz .

Aside from these width/speed differences, the 318 and 338 pack the same powerful features into a highly portable instrument. The basic 318/338 includes parallel state and timing acquisition, with acquisition, reference and glitch memories.
The S1 configuration adds serial acquisition, an RS-232 remote control interface, and nonvolatile memory.

Parallel State Acquisition

For either software or timing applications, the 318/338 contains a powerful 3 -level trigger which allows the capture of complex event sequences as executed by the hardware under test.

A 3-level trigger lets you define up to three events (A, B, C) which are then combined by using various operators to form the trigger sequence.

This trigger allows definition of three separate logic events which can be combined through a series of operators to specify the actual trigger sequence. Up to 65,000 occurrences can be required for the first event to come true. The next two events can follow immediately (THEN) or later (FOLLOWED BY). Two or three events can be ORed together. The third event can also be used to reset the trigger sequence.
Once acquired, parallel state information can be displayed in binary, hex, octal or decimal radix. The data can be searched for each occurrence of a specified word, and can also be compared with data stored in the reference memory, with any differences highlighted on the display.

You can compare the data you have just acquired to a set of data in reference memory. All differences are displayed in reverse video.

Parallel Timing Acquisition

For timing applications data can be acquired either synchronously, using the clock of the system under test, or asynchronously, using the 318/338's own internal clock. Up to eight channels of timing data can be displayed at once, and each can be identified through a 2 -character label entered by the user. For increased accuracy, there is a "delta" measurement feature which counts and displays the number of sample intervals between two movable cursors. For data acquired asynchronously, the time difference is shown on the screen.

[^11]There is also full glitch capture capability. Glitch information is automatically acquired and separately stored any time parallel data is acquired. A separate glitch trigger allows glitch occurrences to be specified on a channel-by-channel basis, with each channel of the glitch trigger ORed with its counterpart in the main trigger.

Serial Data Acquisition

A major part of the S1 configuration package is serial data acquisition, which adds considerable breadth to the instruments' application range. Serial acquisition can take place in either synchronous or asynchronous modes at up to 19200 bits/ second, with either 5, 6, 7, 8 or 9 bits per character. For synchronous acquisition, the user can specify sync and hunt words as well as trigger words.

When defining a serial data acquisition trigger, you can specify sync and hunt words as well as trigger words.
Acquired serial data can be displayed in either state table or character formats. The state table format gives a wide range of radices, including hex, binary, octal, ASCII and EBCDIC. The character format provides 256 -character stream displays in either ASCII or EBCDIC. In addition, acquired serial data may be searched for occurrences of a specific word and compared with data stored in reference memory.

Captured serial data can be displayed in state or character format. Data can also be searched for occurrences of a specified word.

RS-232 Interface for Remote Control

The S1 configuration package includes an RS-232 interface. This allows complete control of the instrument by a remote processor or terminal which can be connected through either a modem or local lines. Consequently, a remote operator can define triggers, acquire data and analyze the results. In addition, the operator can input a reference pattern via a remote terminal. All aspects of the remote connection, such as baud rate, local/remote echo and bits/character, are easily set up through menu prompts supplied by the $318 / 338$.

Setting up the RS-232 interface is simplified by easy to use menu prompts.

Nonvolatile Memory

Also included in the S1 configuration is a nonvolatile memory for storage of instrument setups and data. This memory holds up to three setups (channel configurations, trigger values, and thresholds) and one set of memory data.

3 Setups and 1 memory (acquisition or reference) can be stored and protected in the nonvolatile memory.
The nonvolatile memory is useful for rapid restoration of setups and reference data under many conditions. It is especially helpful when using the instrument at a remote service location, where a less skilled technician can quickly configure the instrument to a stored setup with minimal operator intervention.

CHARACTERISTICS PARALLEL ANALYZER FUNCTION DATA INPUT

Channels - 318: 16 channels; glitch data is detected on all 16 channels. 338: 32 channels; glitch data is detected on 8 channels (POD A)
Minimum Logic Swing - 500 mV p-p; centered on threshold voltage.
Maximum Logic Swing - Threshold voltage plus 10 V to threshold voltage minus 15 V .
Glitch Data Width - 5 ns minimum with 350 mV overdrive from threshold.
Threshold Voltage - TTL: $+1.4 \mathrm{~V} . \mathrm{V} 1:-10 \mathrm{~V}$ to $+10 \mathrm{~V} . \mathrm{V} 2:-10 \mathrm{~V}$ to $+10 \mathrm{~V} . \mathrm{V} 3:=(\mathrm{V} 1$ +V 2)/2.

SAMPLING		
External Clock Mode	318	338
Data setup time	$13 \mathrm{~ns} \max$	$14 \mathrm{~ns} \max$
Data hold time	$0 \mathrm{~ns} \max$	$0 \mathrm{~ns} \max$
Clock period	$20 \mathrm{~ns} \min$	50 ns min

Clock Pulse Width — High-Logic level: 15 ns min. Low-Logic Level: 15 ns.
Clock Polarity -+ or -edge.

INTERNAL CLOCK MODE

Sample Interval - 318: 20 ns to $500 \mathrm{~ms} /$ sample in 1-2-5 sequence. 338 : 50 ns to $500 \mathrm{~ms} /$ sample in 1 -2-5 sequence.

Data Memory Depth	318	338
Acquisition Memory	16×256 bits	32×256 bits
Reference Memory	16×256 bits	32×256 bits
Glitch Memory	16×256 bits	8×256 bits

TRIGGERING

Internal Trigger
Word Recognizer - Three words: A, B, and C; selected channels are AND'd together.
Input - All data input channels from P6451 data acquisition probes.
Glitch Trigger - Selected channels are OR'ed together.
Trigger Position - Begin, Center, End, Delay up to 65,000 clock cycles.

External Trigger

Input - Mini-jack connector on side panel, TTL compatible.
Threshold - 1.4 V nominal (TTL level).

Polarity — + or -edge.
Pulse Width - 20 ns minimum.
Trigger Output - Initiated high when an internal trigger sequence, glitch trigger or external trigger is detected. Reset on next acquisition start.
Output Level — TTL.
Current Max — High-Logic Level: 1 mA
Low-Logic Level: 2 mA .

DATA DISPLAY

Timing Diagram Mode - Maximum of eight channels (one page) present on screen at one time. The 318 has two pages; the 338 has four pages. Glitch Display: Displays glitches on timing diagram as a bit width transition edge. Search: Searches for glitches or user defined word.
$\Delta \mathbf{T}$ - Movable cursor for calculating the number of clocks and temporal distance between two events.
State Table Mode - Hex, decimal, octal, or binary radix format. Search: Searches for glitches or user defined word.
Compare: Compares acquisition memory to reference memory and displays mismatched characters in reverse video.

SERIAL STATE ANALYZER FUNCTION DATA INPUT

Data Timing - Synchronous or asynchronous.
Bits/Character - 5, 6, 7, 8 or 9 bits (includes parity bit if parity is active).

SAMPLING

Internal Clock for Asynchronous Mode - 50, $75,110,134.5,150,200,300,600,1200,1800,2400$, 4800, 9600, and 19,200 bits/second.
External Clock for Both Synchronous and Asynchronous Modes - Up to 19,200 bits/second.
Parity Control — Odd, even, or none.
TRIGGER SOURCE
Internal or external.

DATA DISPLAY

State Table Mode - Hex, binary, octal, ASCII, EBCDIC radix. Search: Searches for parity errors or user defined word. Compare: Compares acquisition memory to reference memory and displays mismatched characters in reverse video.
Character Table Mode - All 256 bits of memory displayed in either ASCII or EBCDIC radix. Search: Searches for parity errors or user defined word.

300 SERIES COMPARISON SELECTION GUIDE

Characteristics	$\mathbf{3 0 8}$	$\mathbf{3 1 8}$	$\mathbf{3 1 8 S} 1$	$\mathbf{3 3 8}$	$338 \mathbf{S 1}$
No. Parallel Data Channels	8	16	16	32	32
Maximum Asynchronous Sample Rate	20 MHz	50 MHz	50 MHz	20 MHz	20 MHz
Maximum Synchronous Sample Rate	20 MHz	50 MHz	50 MHz	20 MHz	20 MHz
No Trigger Levels	1	3	3	3	3
Acquisition Memory Depth (Bits/Channel)	252	256	256	256	256
Reference Memory Depth (Bits/Channel)	252	256	256	256	256
Glitch Latch (Channels)	8				
Glitch Capture (Channels)	No	16	16	8	8
Glitch Trigger (Channels)	No	16	16	8	8
Signature Analysis	Yes	No	No	No	No
Serial Data Acquisition	Yes	No	Yes	No	Yes
RS-232 Remote Control Interface	No	No	Yes	No	Yes
Nonvolatile Memory	No	No	Yes	No	Yes
Video Output	No	Yes	Yes	Yes	Yes
Weight (without accessories)	8 lb	11.5 lb	11.5 lb	11.5 lb	11.5 lb
Price	$\$ 3,950$	$\$ 5,300$	$\$ 6,500$	$\$ 5,800$	$\$ 7,000$

Compare: Compares acquisition memory to reference memory and displays mismatched characters in reverse video.

RS-232 INTERFACE

Data Transmission Type - Asynchronous only.
Communication Mode - Full Duplex.
Bits/Character - Eight bits with parity.
Parity - Even.
Data Transfer Rate - 110, 150, 300, 600, 1200, 2400, 4800, 9600 BPS.
Signal Characteristics - Meets RS-232C standard.
I/O Connector - 25 pin standard connector.
NONVOLATILE MEMORY
Memory Size - Three setups (serial or parallel) and one memory acquisition or reference.
Nonvolatile Period - Approximately five years at room temperature.

POWER REQUIREMENTS
Line Voltage Range - 90 V to 132 V ac, 180 V to 250 V ac.
Line Frequency - 48 Hz to 440 Hz . PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width with handle	237	9.3
Height with accessory pouch	174	6.8
Height without accessory pouch	120	4.7
Depth, handle not extended	409	16.1
Depth, handle extended	492	19.4
Weight	kg	lb
Net without accessories	5.1	11.5
318S1 with accessories	6.7	14.7
338S1 with accessories	7.2	15.7

ORDERING INFORMATION

318 Logic Analyzer
\$5,300
Includes: Power cord (161-0104-00); accessory pouch (016-0697-00); P6107 Probe (1 additional with the S1 configuration) (010-6107-03); P6451 probe, two with the 318, four with the 338 ($010-6451-07$); workbook; reference guide; operator's manual.
318S1 Logic Analyzer with Serial Analy-
sis, RS-232 and Nonvolatile Memory
\$6,500
318F1 Field Installed Serial Analysis,
RS-232 and Nonvolatile Memory \$1,500
338 Logic Analyzer $\quad \$ 5,800$
338S1 Logic Analyzer with Serial Analy-
sis, RS-232 and Nonvolatile Memory $\mathbf{\$ 7 , 0 0 0}$
338F1 Field Installed Serial Analysis, RS-232 and Nonvolatile Memory $\$ 1,500$

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro 220 V/16 A, 50 Hz .
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

Service Manual

RS-232 Cable - Order 012-0757-00
Service Maintenance Kit -
Order 067-1159-01
Null Modem Cable - Order 012-0530-00
The SONY ${ }^{*}$ TEKTRONIX ${ }^{\circ} 300$ Series is manufactured and marketed in Japan by SonyTektronix Corporation, Tokyo Japan Outside of Japan the 300 Series is available from Tektronix, Inc. its marketing subsidiaries and distributors.

308
Data Analyzer
Four Analyzers in One
Up to 25 Channels of Word Recognition Triggering
Ultra-Portable
Easy to Use

Cost Effective

The 308 is a 20 MHz portable analyzer containing a unique combination of features. It provides timing, state, serial, and signature analysis in an extremely easy-to-use package.

CHARACTERISTICS

SIGNAL INPUTS

Timing and State - Multi-line probe-tip, eight data lines, one clock and one ground lead.
Maximum Number of Inputs: Eight.
Input Impedance: $1 \mathrm{M} \Omega, 5 \mathrm{pF}$.
Logic Swing - Minimum: $500 \mathrm{mV}+2 \%$ of threshold voltage, $p-p$, centered on threshold voltage.
Maximum: Threshold +10 V to Threshold -15 V .
Maximum Nondestruct Input Voltage: $\pm 40 \mathrm{~V}$.
Width of Data Input: 10 ns minimum with 400 mV overdrive from threshold voltage.
Threshold Voltage - TTL: $+1.4 \mathrm{~V} \pm 0.2 \mathrm{~V}$. Variable: -12 V to +12 V .
Input Mode: Selectable sample or latch (to 5 ns with 550 mV overdrive voltage).
Serial - Single Channel Probe Input: $10 \mathrm{M} \Omega$, 13 pF input impedance. 500 V maximum nondestructive input voltage at probe tip. 250 V peak at BNC input connector. Logic Swing: 500 mV minimum plus 2% of threshold voltage, $p-p$, centered about the threshold. $\pm 30 \mathrm{~V}$ maximum. Selectable Parity: ODD, EVEN or NONE. Selectable Bits Per Character: 5, 6, 7 or 8 bits (includes parity if active). Selectable Input Logic: Positive or negative (at probe tip). Synchronizing Word (Synchronous Mode Only): Programmable to require two equal words. If not programmed, defaults to ASCll word SYN. Hunt Word (Synchronous Mode Only): Programmable to require one word. If not programmed, defaults to "XXXXXXXX" (not defined). One Hunt word is equal to three hexadecimal "FF's" (line idles). Stop Bits (Asynchronous Mode Only): Responds to one or more bits.
Signature Analyzer - Single Channel Data Input Via Probe: $10 \mathrm{M} \Omega, 13 \mathrm{pF}$ clock start and stop inputs provided by data acquisition probe.

CLOCK

Timing and State - External Clock: 50 ns minimum period. 24.5 ns high-logic level minimum pulse width. 24.5 ns low-logic level minimum pulse width. 25 ns minimum data setup time. 0 ns minimum data hold time. Internal Clock: 20 MHz sample interval (50 ns minimum). Data pulse width of one sample interval +10 ns required to insure sampling minimum. Sample intervals of 50 ns to $200 \mathrm{~ms} /$ sample in 1, 2, 5 sequence. Qualifier In put: Selectable trigger or clock. $+1.4 \mathrm{~V} \pm 0.2 \mathrm{~V}$ TTL input threshold. -5 V to +10 V maximum input voltage.

Serial - Synchronous or Asynchronous. Internal Clock for Asynchronous Mode Selectable Via Keyboard: 50, 75, 110, 134.5, 150, 200, 300, 600, 1200, 1800, 2400, 4800, and 9600 bits/second (baud rate). Internal Clock Accuracy: $\pm 0.02 \%$. External Clock for Asynchronous Mode: Up to 9600 baud. External Clock for Synchronous Mode: Up to 9600 baud.

MEMORY

Data Acquisition Memory - 8×252 bits.
Reference Memory - 8×252 bits.
Triggering (State and Timing) - Synchronous or asynchronous. External qualifier. Data Word Recognizer: Eight channels, programmable in hex, binary, octal, or decimal. External Word Recognizer Probe: 16 channels, programmable in hex, binary, octal, or decimal. Input Threshold: $+1.4 \mathrm{~V} \pm 0.2 \mathrm{~V}$ TTL. Word Recognizer Out: $+1.4 \mathrm{~V} \pm 0.2 \mathrm{~V}$ TTL. Trigger Delay: Programmable from 0 to 65,535 clock cycles. Data Position: Pretrigger or posttrigger selectable. First trigger mode (internal select).
Triggering (Serial) - Data Word Recognizer: Programmable to require a sequence of two words (or characters). External Trigger: Programmable for one bit (0 or 1). Trigger Delay: Programmable from 0 to 65,535 by word count (character). Data Position: Pretrigger or posttrigger selectable. Framing Error Detection: Data acquisition is stopped when a valid stop bit is not detected.

DISPLAY

Status information of the 308 is always displayed at the top of the screen. The menu is displayed with all fields visible. In serial mode, an extended menu is provided for additional serial capabilities. Timing Diagram - Programmable memory window size. Cursor position pointer and word decode. Positive or negative logic display.
State Table - Simultaneous display of hex, binary, and octal. 12 word display table. Search Mode: Inverse video highlighting. Compare Mode: Inverse video highlighting of differences. Positive or negative logic display.
Serial - Simultaneous display of hex, binary, and ASCII. 12 word character display. Search Mode: Inverse video display of word. Compare Mode: Inverse video display of differences. Positive or negative logic display.

Signature - Displays the selects for clock, start, and stop. Displays each signature simultaneously. Displays a four digit signature. Displays Character: 0 to $9, A, C, F, H, P, U$.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	237	9.3
Height	117	4.6
Depth	359	13.9
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net without probes	3.7	8.0
Net with probes	4.5	10.0

POWER REQUIREMENTS

Line Voltage - 90 V to 132 V ac, 180 V to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Power - 40 W maximum.
Temperature Range $-0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, operating.

ORDERING INFORMATION

308 Data Analyzer
\$3,950
Includes: Power cord (161-0104-00); accessory pouch ($010-0654-00$); P6451 probe ($016-6451-05$); P6107 probe (010-6107-03); operator's manual, maintenance manual.

OPTIONS

Option 01 - P6406 Word Recognizer Probe.
$+\$ 420$
Option 03 - Extended Signature Analysis
Capability (Includes P6406 Word Recognizer Probe.)
1105 Battery Power Supply $\$ 1,650$
Option 01 - 230 V Operation.
NC

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK, $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian, $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

The Sony ${ }^{\bullet} /$ Tektronix* 300 Series is manufactured and marketed in Japan by Sony/Tektronix Corporation, Tokyo, Japan. Outside of Japan the 300 Series is available from Tektronix, Inc., its marketing subsidiaries and distributors.

A. P6451 8-Channel Data Acquisition Probe - For use with 7D01, 7D01F, 7D01F2 and 7D02 Option 01.
Order P6451 (010-6451-03)
P6451 - For use with 300 Series instruments (right-angle connector to analyzer). Order P6451 (010-6451-07)
B. P6452 8-Channel Data Acquisition Probe - For use with DAS 9100 mainframes, DAS 91A32 modules, and DAS 91A08 modules. Order P6452

A. P6453 4-Channel Data Acquisition Probe - High-speed probe for DAS 91A04A and DAS 91AE04A. Order P6453
B. P6455 TTL/MOS Pattern Generator Probe 8-Channels - For use with DAS 91P16 and DAS 91P32 modules. Order P6455
C. P6456 ECL Pattern Generator Probe 8-Channels - For use with DAS 91P16 and DAS 91P32 modules.Order P6456

F

C. P6460 8/9-Channel Data Acquisition Probe - For use with 1240D1, 1240D2, DAS 91A24 and 91AE24 modules. Order P6460
D. P6462 8/9-Channel TTL Only Data Acquisition Probe - For use with 1240D2, DAS 91A24 DAS 91AE24 and DAS 91A32 modules. Order P6462
E. P6406 16-Channel Word Recognizer Probe - Replacement for SONY $\odot /$ TEK-
F. P6464 50 MHz Pattern Generator Probe - For use with DAS 91S16 and 91S32 modules. Order P6464
G. Controlled-Width Probelet - Use with 91S16/91S32 to create programmable pulses. Requires two P6464 channels to create one programmable channel. Order 020-1392-00

Accessory Pouch - Convenient for carrying manuals, and other accessories for 1240/1241 and DAS 9100 logic analyzers.
Order 016-0707-00
PROBE APPLICATION MATRIX

PRODUCT	P6451	P6452	P6453	P6454	P6455	P6456	P6457	P6460	P6462	P6464
91A24, 91AE24								\checkmark	\checkmark	
91 A32		v							\checkmark	
91408		\checkmark		v						
$91 \mathrm{A04A}, 91 \mathrm{AE04A}$			\checkmark							
91P16, 91P32					ν	v	v			
91516, 91 S32										\checkmark
1240 D 1								\checkmark		
1240D2								\checkmark	\checkmark	
338, 318, 308	v									

OPTIONAL ACCESSORIES
A. Individual Hook Tip Lead Set 10 leads, 16 inch, color coded with E-Z Micro Hook Tips. Order 012-0670-00
B. Flying Lead Set - 10 wide comb, 10 inch, color coded, connects to 0.025 inch square pins, grabber tips not included. Order 012-0747-00

A

G. Individual Lead Set - 10 leads, 8 inch, color coded, connects to 0.025 inch square pins, grabber tips not included. Order 012-0655-02

* Individual Lead Set - 10 leads, 16 inch, color coded, connects to 0.025 inch square pins, grabber tips not included. Order 012-0655-01

H H. Flying Lead Set - 10 wide comb, 5 inch, color coded, connects to 0.025 inch square pins, grabber tips not included. Order 012-0987-00
I. Harmonica Lead Set - 10 wide comb to 10 position single row connector, for 0.025 inch square pins on 0.1 inch centers, 5 inch, color coded. Order 012-0968-00

J J. Diagnostic Lead Set, 1240/1241 10 wide comb with 2 wide ground to 12 position double row connector, for 0.025 inch square pins on 0.1 inch centers, 10 inch, color coded. Order 012-0556-00

K K. Pattern Generator Lead Set $10+6$ wide comb with VH and VLPomona Hook Tips, 9 inch, twisted pairs, color coded, connects to 0.025 inch square pins, grabber tips not included. Used with P6455, P6456, P6457 pattern generator probes. Order 012-1053-00

L L. GPIB Adaptor - Two 10 wide combs to IEEE Standard 488 Bus Connector, 10 inch. Order 103-0209-01
A. Low Profile Dip Clip - 40 pin dip to 40 position double row connector, for 0.025 inch square pins on 0.1 inch centers, 4 inch (requires male adaptor below). Order 015-0339-02

* Low Profile Dip Clip - 40 pin, same as above except 12 inch. Order 015-0339-00
B. 40 Pin Male Adaptor - 40 position double row header with 0.025 inch square pins on 0.1 inch centers, interfaces the PM 101 or flying lead sets to low profile dip clip above. Order 380-0560-05
C. 40 Pin Dip Socket Female Adaptor 40 position double row head with 0.025 inch square pins on 0.1 inch centers to 40 pin dip socket, for interfacing 40 pin low profile dip clips to PM 100 series probes. Order 380-0647-01
D. IC Clip - 16 pin dip, clothes pin style. Order 003-0709-00
* IC Clip - 24 pin dip, clothes pin style. Order 003-0823-00
* IC Clip - 40 pin dip, clothes pin style. Order 003-0801-00
E. Circuit Board Ejector Tool - for removing DAS 9100 module cards.
Order 214-3154-00
F. High Speed Grippers - Package of ten, 1.75 inch, for Dip packages with 0.1 inch lead spacing, use with P6453 or P6454. Order 195-2234-06
* High Speed Lead Connectors - Package of ten, gold plated contact pins that interface to podlet lead receptacles on P6453 or P6454. Order 131-2729-02
G. Sense Leads - Package of ten, 2 wide comb to Pomona Hook Tip, 5 inch, black for ground or VL. Order 012-0989-01
* Sense Leads - Package of ten, 2 wide comb to Pomona Hook Tip, 5 inch, green for ground or VH. Order 012-0990-01
* Not Shown

$\$ 190$
\$30

H H. Low Profile Dip Clip - 16 pin dip to 16 position double row header with 0.025 inch square pins on 0.1 inch centers, 12 inch. Order 015-0330-00
I. Flat Cable Mounts - Adhesive Back for securing and organizing probes with flat ribbon cables. Order 343-1048-00

J J. Sync Out Cable - Miniature Phone Plug to BNC, 79 inch, for 91A24 sync output. Order 175-8165-00

* 91AE24 Jumper Cable Replacements - Package of seven, twisted pair, 2 position connectors, 3 inch. Order 175-8167-00

K K. Probe Extender Cable - Male to Female 34 position double row connectors compatible with P6452, P6460, P6462, 6 feet. Not for use on 91A24 or 91AE24. Order 012-1012-01
L. High Speed Grippers - Package of ten, 1.75 inch, for flat packages with 0.05 inch lead spacing, use with P6453 or P6454. Order 195-1943-06

* 91AE04A Coaxial Jumper Cables Replacements - 3 inch, SMA connectors to connect 91A04A to 91AE04A. Order 175-6425-00
O. LCC (Leadless Chip Carrier) to PGA (Pin Grid Array) Adapter - 68 pin package, for adapting 80286 (LCC) packages to 80286 (PGA) package.
To Order 015-0494-00 contact your local sales office.
M. Grabber Tip - Package of 12, for general purpose probing with various lead sets. Order 020-0720-00
N. High Speed Clock Lead - With grabber tip, package of two, for use with P6453 or P6454. Order 195-3659-00

UPIK 40, Universal Probe Interface Kit For 40 pin dip packages. Allows user to configure interconnect from 6 probes or less to a clothes pin style 40 pin IC clip. Order UPIK 40

* RS-232 Cable - Male-to-female, 20 inch, wires: $1-1,2-2,3-3,4-4,5-5,6-6$, 7-7, 8-8, 11-11, 12-12, 15-15, 17-17, 19-19, 20-20, 22-22. Used with 1200C01 modem interface or DAS 9100 line printer and communications interface. Order 012-0911-00
* RS-232 Cable - Male-to-female, 2 meter, 25 wires: $1-1,2-2,3-3$, thru 25-25. General purpose. Order 012-0815-00
* Null Modem Cable - Female-to-female, 60 inch, wires: $1-1,2-3,3-2,4-5,5-4,7-7$, $8-20,11-11,12-12,19-19,20-8$. General purpose. Order 012-0820-00
* Null Modem Cable - Female-to-female, 60 inch, wires: $1-1,2-3,3-2,4-8,5-8,6-20$, $7-7,8-4,8-5,20-6$. Used with 1200C01 Serial Printer interface. Order 012-0530-00
* Parallel Interface Cable - Two meter, used with 1200C11 Parallel Printer COMM Pack for Centronix type printer interface. Order 012-0997-00
* GPIB Cable - Two meter. Order 012-0630-01
* 75Ω Coaxial Cable - BNC to BNC, 42 inch, used with video hard copy interface. Order 012-0074-00
* 75Ω Coaxial Cable - BNC to BNC, 120 inch, used with video hard copy interface. Order 175-2753-00

B

A. $\mathbf{8 k}$ RAM Pack - With lithium iodide battery back up, used with 1240/1241. Order 12RS01
C. 64 k RAM Pack - Lithium iodide battery backup, used with 1240/1241. Order 12RS02
D. 32 k EPROM Pack - Used with 1240/1241, four 68764 or 68766 EPROMs included. Order 12RS12

UPIK 40

E
E. Circuit Board Mounted Probe Connector Kit - $10+6$ wide comb to 0.025 inch square pins on 0.15 inch centers, with mounting tabs, for PC mounting, mounting hole dimensions 0.80 inch wide X0.95 inch long. Interfaces to the following probes: P6452, P6455, P6456, P6457, P6460, and P6462. Seven piece kit. Order 020-1027-00

* DAS 9100 Service Maintenance Kit Includes board and cable extenders for DAS modules, power supplies, CRT, and keyboard. Order 067-0980-01
* DAS 9100 Setup and Hold Time Test Fixture - Order 067-1037-00
* DAS 9100 High Speed Acquisition Test Fixture - For verification of DAS 91A04, DAS 91AE04, DAS 91A04A, and DAS 91AE04A modules.
Order 067-1139-00

F. Tape Cartridges, DC 100 Type Package of five used on DAS 9100 Option 01. Order 119-1350-01
* Mnemonic Conversion Tape, DAS 9100 - Converts mnemonic and all type files from DAS firmware versions 1.05 and 1.07 to compatability with DAS firmware versions 1.09 or 1.11 .
Order 062-6705-00

RECOMMENDED CARTS

 For 1240/1241 and DAS 9100* K117 Instrument Shuttle - See page 423 for complete description.
* K212 Cart - See page 423 for complete description.
* Tilt Bail - For DAS 9100 .

Order 348-0727-01

Order 016-0463-00

SEMICONDUCTOR TEST SYSTEMS

CONTENTS
S-3225 Advanced Logic Tester 133
S-3295 VLSI Test System 134
S-3220 LSI Test System 135
S-3270 LSI Test System 135
S-3280 ECL Test System 135

Tektronix semiconductor test systems are known throughout the electronics industry for their innovative solutions to the latest testing challenges. The S-3200 Series LSI and VLSI test systems have become a key element in engineering and production test facilities throughout the world. Each successive generation of semiconductor devices boasts higher speed, more pins, more functions per chip and more complex testing requirements. Tektronix S-3200 Series systems have met the advancing demands of semiconductor technology with corresponding advances in test capability-features like single-shot time measurement, variable risetime drivers, and powerful data reduction software packages.
Marking the beginning of Tektronix' state-of-the-art test technology development, our first generation automated semiconductor tester, the S-3260, was designed to characterize and test the largest LSI devices in use at the time (four and eight-bit microprocessors, 1 k memories, and peripheral chips). Subsequent systems provided improved device characterization and were designed for quality control in production test envi-

ronments. Then we tackled the challenge of testing high speed logic and solving the unique problems associated with subnanosecond technologies. Most recently, Tektronix has made the commitment to offer a full range of production-oriented throughput enhancements to its systems. Now, you can put Tek quality into production.
Tektronix provides the hardware, software, training, and applications support to solve today's testing problems, and tomorrow's as well. New and unusual device parameters are viewed as a challenge to our resources, not as insurmountable problems. The field-proven hardware and software in every S-3200 system provides the versatility to get the job done.

Every S-3200 system uses the same highly advanced software-TEKTEST®. So there's only one language to learn. Using TEKTEST, a test engineer can easily and quickly generate and debug programs for device testing or characterization and then transfer these programs from one system to another. And, using our foreground/background capability, up to four users can program or
compile data in the background while testing continues uninterrupted in the foreground. A powerful debugging tool, Terminal Control Mode, gives the test engineer interactive control of the test program.
All of the S-3200 systems feature highly sophisticated data reduction and graphics, which make the test results manageable and easy to understand.

We offer analog and digital capability to meet the unique test requirements presented by new and increasingly complex devices. In fact, most manufacturers of captive devices use Tektronix systems for just this reason. Tektronix is also a device manufacturer and has been testing its own ICs and hybrids for years. We have developed expertise and in-depth understanding of complex testing.

At Tektronix, we've built on our past experience and knowledge about device testing to create a total, compatible line of LSI/VLSI test systems that can help solve your test problems - today and in the future.

S-3225 Advanced Logic Tester

Specifically Designed for Advanced Schottky-TTL and HCMOS Technologies

High Speed Driver Features 1 V/ns Slew Rate

Seven-Phase Programmable Clock with 125 ps Edge Placement
External Fixturing Site Offers a High-Fidelity Interface Point for Handlers and Probers

The S-3225 Advanced Logic Tester is a production test system designed to provide the full range of capabilities required for thorough Advanced Schottky TTL and High Speed CMOS device testing. This versatile system encourages a test strategy based on accurate and exhaustive production testing, in the belief that superior accuracy produces higher yields. The S-3225 can perform thorough device tests that eliminate the risk of passing marginal parts while ensuring that all passing devices meet very tight guardband tolerances. Although the S-3225 is aimed at high-throughput applications, such as production QC and receiving inspection, its high performance meets the stringent demands of the engineering characterization lab.
The standard system package consists of a vertical test station mated to an integral rack bay that houses the system controller and stimulus equipment. The "carousel" within the test station accommodates up to 64 D25 Pin Electronics Cards, each supporting a single DUT I/O pin. The new D25 is the
"front end" of the S-३२25, since it interfaces directly to the DUT and provides the exacting electrical performance required by the emerging families of high-speed logic-ASTTL and HCMOS. The D25's high slew rate (greater than $1 \mathrm{~V} / \mathrm{ns}$) and its wide dynamic range (-2 V to +8 V programmable range) are capabilities essential to meaningful testing of high-speed devices.
The system's seven-phase (14 phases optional) timing generator has 125 ps edge placement programming increments, placing the S-3225 at the top of its class in timing accuracy. Other standard features yield not only accuracy, but also outstanding throughput performance. The Parallel Parametric Unit, for example, implements dc measurements on all DUT pins simultaneously. And the Single-Shot Time Measurement System allows ac measurements such as propagation delay, access time, and setup/hold time to be made in a single pass, saving timeconsuming "iterated-strobe" measurement steps while enhancing accuracy (the resolution of measurements made with the S-STMS is 50 ps).
Special provisions for efficient interfacing to automatic device handlers and wafer probers are fundamental to the S-3225's production test capability. The system has a pro-duction-optimized External Fixturing Site that allows fast and easy fixturing changeovers and preserves the integrity of the critical driver/comparator signal path. This is accomplished by extending the controlled-impedance portion of that path outside the system housing, so that it directly mates various automated device handlers. Interface ca-
bling to these external devices is minimized or eliminated. Conventional (horizontally-oriented) wafer probers that require a cable interface to the S-3225 also benefit from the systems' ability to provide full-spec driver/comparator performance into cable interfaces as long as 18 inches.
For those applications requiring full clock rate device testing at speeds up to 300 MHz , the Fmax Test Option furnishes a separate, high-quality 50 ohm path to route signals to and from external GPIB-controlled instrumentation. This path is used to connect chosen DUT pins to pulse generators, counters, and sampling equipment to allow those pins to be monitored at their full functional speed. The Fmax Test Option is another unique attribute that makes the S-3225 a superior production test system.
The S-3225 uses the familiar TEKTEST III Operating System/Test Language that provides self explanatory high-level test constructs, enabling users to come quickly "up to speed" with their device test programming skills. Of course, programs written in TEKTEST III can be transported easily between all Tektronix S-3200 Series systems, with only minor hardware-related modifications required for most application.
With speed and accuracy that meet the challenge of the fastest Advanced Schottky-TTL and High Speed CMOS devices, and high-throughput features for volume testing, the S-3225 has the right mix of features for a tough testing job. From any perspective, the S-3225 is a unique solution to high-performance production testing.

S-3295 vLsI Test System

State-of-the-Art Performance in VLSI Characterization and Production Testing
256 Channels, 128 I/O Pins
State-of-the-Art Driver/Receiver
Programmable Dynamic Loads
128 kbit Local Pattern Memory
Automatic Deskew
DEC PDP-11/44 CPU
Dynamic Time-Set Selection
Advanced Color Graphics and Data Reduction

High Precision Combined with High Throughput for Production Applications

TEKTEST V, an RSX-11M Based, Super Enhanced TEKTEST Language and User Interface

The S-3295 was designed to meet the needs of the user that demands precision, reliability, and efficiency in an automated test system. In applications ranging from the engineering lab to the production test floor, the S-3295 offers a package of features unequaled in the industry. Building on the proven architecture of the S-3200 Series, the S-3295 incorporates significant advances in the areas of real-time pattern generation, timing flexibility/accuracy, resolution, and functional test capability. This system supports up to 256 independent pins (128I, 128 O), giving it the capacity to
test the high pin-count devices that mark the next step forward in semiconductor technology.
Subsystems within the S-3295 include the Pattern Processor, a powerful dedicated pattern computer; the Multi-Set Timing Generator, which provides 16 sets of 16 timing phases, accurate 125 picosecond timing resolution, and split-cycle operation at all clock speeds; and the 1809 V Vertical Test Station that houses the D95 Pin Electronics Cards.

The critical "Device-Under-Test" environment is the foundation upon which an effective testing strategy is built. The S-3295 supports this environment with a pin electronics picture that offers unparalleled versatility and precision. Drawing upon Tektronix' traditional strength in analog design, we have furnished the S-3295 with signal drivers that feature programmable risetime, extremely low inhibit leakage, low aberrations, and wide bandwidth. These drivers are complemented by receivers of comparable performance. The driver/receiver ($/ / O$) pairs are backed up by 128 k of local memory, that can be used as a pattern memory or as an error buffer. The system's 16 clock phases are distributed such that each Dual Pin Electronics Card is fed by 11 phases, meeting the needs of even the most complex digital ICs. Automatic deskew of driver, comparator, and inhibit phases ensures that signal edges will appear in precisely the right relationship. Programmable dynamic output loads eliminate the need for complex external load boards, or alternatively, a 50 -ohm resistive load can connect to the DUT output under program control. For testing high-er-speed devices, the S-3295 uses a novel
multiplexing approach that doubles the effective cycle rate (to 40 MHz) without degrading the signals. A Digital Equipment Corporation PDP-11/44 acts as the system controller and provides up to 4 megabytes of main memory. The user interface to the system and its controller is a Tektronix 4100 Series color graphics terminal. The color display provides enhanced clarity for all types of data plots-bit maps, shmoo plots, yield analyses, etc.
The S-3295's unique features are integrated with several of the standard features of the S-3200 Series. Among these are the Single Shot Time Measurement Subsystem, the 50 -ohm analog switching matrix, the optional Waveform Digitizer, and a host of optional OEM stimulus and measurement equipment. In addition, the S-3295 runs the most powerful test software yet-TEKTEST V. This RSX-11M based test language provides an application-oriented instruction set for device testing, combined with the versatile data handling features of the RSX-11M Operating System.

Of particular interest to those testing devices in a production environment, the S-3295 is now available with a series of throughput-enhancing options that make it into a cost-effective production test system. The exceptional accuracy of the S-3295 permits the use of very tight test tolerances, which results in substantially increased yield figures. This yield improvement, combined with the increased volume of devices tested when using such options as the Quad Site Handler Interface, makes the S-3295 a valuable tool in a broad range of production applications.

S-3220
LSI Test System
Full Capability $\mathbf{2 0 ~ M H z}$ Test System
Cost-Effective for High-Throughput Production Applications

Enhanced 1 k Pattern RAM Supplements 4 k per Pin Stored Memory

Single-Shot Timing Measurement
Uses TEKTEST®, Allowing Device Characterization Programs to be Condensed and Used in Production Testing

Up to 128-Pin Test Capability

The S-32२० is offered as a production-oriented complement to the Tektronix S-3270 Test System. Since the S-3220 uses the TEKTEST control software used in all S-3200 systems, programs originally developed for engineering use can easily be condensed and employed in a high volume production or incoming inspection environment. The essential test related features of the larger systems are retained in the S-3220, allowing (with no loss in speed or accuracy) functional or pattern testing as well as dc parametric and single-pass ac parametric testing.
The S-3220 is configured with a vertical pinelectronics package that is integrated with the control/stimulus equipment rack. This feature eases prober/handler mechanical interface and reduces floor space requirements-an important consideration in most production areas.

S-3270

S-3270 Lsi test System
Uninterrupted Error Storage at 20 MHz
Multiple Pattern Sources
14 Programmable Channels of Timing Information

Test Devices with Up to 128 Pins
Single-Shot Timing

The S-3270 system tests LSI, microprocessors, analog and digital hybrids, peripheral interface circuits, RAMs, ROMs, and more. Designed to deliver test results on the devices you see everyday, it is also built to deliver results when new devices appear.
With the S-3270, you can perform functional tests at speeds up to 20 MHz . When you must test a microprocessor at its optimum speed, you need the S-3270.
When testing one of the new, fast devices with the S-3270, you will not have to stop the test to \log an error. The S-3270 keeps right on testing while it catches the error and records its location. Input/Output switching may also be performed at a clock rate of 20 MHz .
The system has 64 pin-electronic cards, each with input and output capability, so you can test a device with up to 128 pins. The 14 -phase clock gives you many programmable channels of timing information, to properly and effectively test devices.
For total flexibility, the S-3270 features independent control of logic level definition at each driver and receiver. You set the logic level on every input and output channel, so you are not bound by the limits of the system.
The unique Single-Shot Time Measurement technique allows you to make a measurement with 50 ps resolution in one iteration. Dynamic measurements can also be made by moving strobes (iteration) or by using the optional waveform digitizer.

S-3280

S-3280 ECL Test System
100 k ECL Testing
Precision Fixturing
Subnanosecond Measurements
High-Speed Drivers
Sampling for Waveform Analysis
CML Capability
The S-3280 was designed specifically to solve ECL testing problems. Featuring subnanosecond time measurement capability, the high-speed hardware gives the $\mathrm{S}-3280$ the ability to test ECL devices to their fullest.
One of the more important features of an ECL test system is its ability to make accurate timing measurements. The S-3280 features three methods of making dynamic measurements. First, Delta-T provides measurements with 50 ps resolution on any test vector, at 20 MHz data rate, in a single pass. Second, our Waveform Digitizing (sampling) capability provides 1 ps resolution to digitize and store any waveform for further analysis. Third, for functional testing, the system's strobed comparators will make tests on any or all test vectors at 20 MHz . The system features 1 mV programming resolution with dual-level comparators on every channel.
Because no multiplexing is necessary the system uses the shortest possible path to deliver clean, accurate signals to the device, thus minimizing waveform degradation.
The S-3280 will measure the parameters of today's ECL devices and will continue to be able to test the more advanced high-speed logic devices that are being developed. The $\mathrm{S}-3280$'s advanced, high-speed measurement characteristics make it a superior ECL testing solution.

COMMUNICATIONS PRODUCTS

CONTENTS

Television Products
Fiber Optic TDR Cable Testers 150
Communications Network Analyzers 152
Metallic TDR Cable Testers 153
Spectrum Analyzers .. 154

Communications Products are quality instruments designed to test, time, measure and monitor a variety of television, RF, fiber optic, and data communications network signals.

Electronic communications continue to impact mankind through newer and better equipment and applications. We are proud to be at the leading edge of these new technological opportunities. Here are a few examples:

Spectrum Analyzers

The communications industry demands high performance analysis both in the lab and in the field. To meet the demands of the industry we offer the 490 series programmable spectrum analyzers covering baseband frequencies through 325 GHz . See pages 155 to 164.

To meet the demands for system automation and remote site control we offer GRASP, the first in the TEKSPANS family of spectrum analyzer software. GRASP improves the accuracy, repeatability and speed of 490 series spectrum analyzer measurements and supports a variety of popular controllers.
Because of your need for measurement versatility, we offer the 7000 series family of spectrum analyzer plug-ins. These easy-to-use plug-in models cover 20 Hz to 2.5 GHz , with individual ranges appropriate for applications from audio/baseband to microwave measurement. A variety of features let you select the capability you need. They share the versatility that is basic to the Tektronix plug-in concept-there are over 30 other test and measurement plug-ins.
To meet your demand for high performance millimeter applications, we offer the WM 490 series of waveguide mixers. Calibrated amplitude and frequency measurements from 18 GHz to 325 GHz are made possible when coupled with the 490 series spectrum analyzer.

Television

Component technology is impacting the television industry. We're developing new products which address the needs in this area. The TSG-300 Component Analog Test Signal Generator is featured on page 139.
Many broadcasters are in the process of turning to multichannel sound. We're meeting some of their new stereo needs with our 1450-1. This high precision demodulator is updated and offers a new wide bandwidth audio section for multichannel sound. See page 146.
Answering the market's demands for more performance, less cost and user friendly operation, the 1710B Series Waveform Monitor is now available in NTSC and PAL formats. See page 138. In addition, the TSG170A NTSC Sync and Test Signal Generator offers easy to use front panel signal selection, test signal timing and separate sync output timing. See page 139.

Communication Network Analyzers

Two new portable data communications analyzers perform analysis at rates up to 19,200 bps in the 835 and 72,000 bps full duplex and 144,000 bps half duplex in the 836. Both products are also available as rackmount configurations. See page 150 .
A new fiber optical bandwidth test set automatically measures bandwidth to 1.45 GHz .

For a dual wavelength (switchable) time domain reflectometer, the OF235 performs repeatable, accurate distance and loss measurements on single mode optical fibers at 1300 nm and 1550 nm wavelengths.
Eleven new fiber adaptors built around the GTE elastomeric splice are available for Tektronix fiber optic test equipment.

The NEW 1434 VIDEO NOISE GENERATOR provides signals for evaluation of video equipment noise susceptibility.

Simultaneous display and dual filter modes now enhance the 1750 SERIES WAVEFORM/VEC TOR MONITOR.

Now in a single, compact package . . the TSG-170A NTSC SYNC AND TEST SIGNAL GEN ERATOR provides the test signals you need plus a full RS-170A genlock sync generator.
pertonix res.30

The TSG-300 COMPONENT TELEVISION GENERATOR provides direct signal generation in the commonly used component formats.

[^12]
TELEVISION PRODUCTS

CONTENTS

1710B Waveform/Vector Monitors 138
TSG-170A NTSC Television Generator 139
TSG-300 Component Television Generator 139
1750 Waveform/Vector Monitors 140
1740 Waveform/Vector Monitors 14
1480 Series Video Waveform Monitors 142
R520 Series Vectorscopes 142
528A Video Waveform Monitor 143
1420 Series Video Monitoring Vectorscopes 143
110S 144
118-AS Audio Synchronizer 144
1410/11R/12R Series Test
Signal Generators 145
1910 NTSC Digital Generator/Insertor 145
1450-1/-2/-3 Series Television Demodulator 146
1980 Automatic Video Measurement Set 147
1434 Video Noise Generator 148
1470/1474 NTSC Generators 148
R148/R148-M PAL Test Signal Generator 148
1440 Automatic Video Corrector 1430 148
650HR Series Color Picture Monitors 149

With one-of-a-kind capability, the 1710B Series WAVEFORM MONITOR is easy to use and afford.

1710B Waveform Monitor-Dual Filter Display
$1710 B$ Series Wavetorm Moritors
Cost Effective

Easy Operation
Burst Phase Indicator
Dual Filter Display
Half Rack Width
Bright CRT Display
Internal Graticule

Light Weight

Low Power Consumption
Dc Operation
Available in NTSC and PAL Standards

$1711 B$ Waveform Monitor Dual Filter Display

The 1710B Series waveform monitors provide all of the commonly used display modes. In addition, the 1710B Series adds relative burst phase indication and dual filter display. All of this in a cost effective package for the user who wants high quality at a low price. These new monitors are mechanically compatible and retrofit into an existing system that uses half rack width, $5^{1 / 4}$ inch waveform monitors.

Because of its extreme light weight, low power consumption, and dc operation (field installable kit) the 1710B Series is ideal for field production, mobile operations, and any other application where space, power consumption and/or portability are prime considerations.

Easy Operation

Designed for easy operation of this powerful tool, the controls are identified with clear nomenclature and positioned in a logical order.

Burst Phase Indication

The relative burst phase between inputs are displayed on the LED bar graph. The center green LEDs indicate the two signals are phase matched. The yellow ones warn the phase is slipping out of an acceptable range. Finally, the red LEDs flag an unacceptable amount of phasing error. This feature allows one instrument to do the complete job of timing and phasing in a basic television system.

Dual Filter Display

The dual filter display allows the user to view both the complete video signal and the luminance information at the same time using just one instrument. This eliminates the
need for switching back and forth betweeen filters and makes the instrument easier to operate. Ideal for camera setup.

Bright CRT Display

The bright CRT display permits use of the 1710B Series in high ambient light conditions. Brightness remains high in the magnified sweep modes enhancing the 1710B's use in system timing applications. The internal graticule is parallax-free to reduce errors and improve its monitoring and measuring capabilities.

NTSC and PAL Standards

The 1710B Series waveform monitors are available in both NTSC and PAL versions.

$$
\begin{array}{ll}
\text { 1710B } & \text { NTSC } \\
\text { 1711B } & \text { PAL }
\end{array}
$$

PHYSICAL CHARACTERISTICS

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	133	5.2
Height	214	8.4
Depth	429	16.9
Weight \approx	$\mathbf{k g}$	lb
Net	3.6	8.0

ORDERING INFORMATION

These instruments are configured for rackmounting and are shipped without cases or covers. Order appropriate optional accessories to configure for rack, bench or portable use.
1710B Waveform Monitor (NTSC System Applications)
\$1,890
1711B Waveform Monitor (PAL System Applications)
\$1,890

OPTIONAL ACCESSORIES

Cabinet - Plain. Order 1700F00 \$60
Cabinet - Portable. Order 1700F02 \$85
Cabinet - MPS Case. Order 1700F03
Side-By-Side Rack Mount - For mounting two half-racks (1750,528A, etc). In a standard 19 inch rack. Order 1700F05
Blank Panel Adaptor - For the side-by-side rack mount. Order 016-0116-00
Snap-On Front Cover - High impact plastic. Order 200-1566-00
Flip Stand Feet - For modular carrying case, stands extend normal feet for tilted viewing (two required).
Order 348-0618-01
Viewing Hood - For high ambient light environments. Order 016-0475-00
Dc Operation Kit - 12 VDC. Order 1700 F10
Camera - C-5C Option 02 (Regular).
\$465
C-7 Option 03 (Automatic).
Battery Pack - Requires 1700F03 case and 1700F10 DC operations kit. Order BP1

NTSC AND COMPONENT TELEVISION GENERATORS

TSG-170A NTSC Television Generator

NEW TSG-170A
 NTSC Television Generator

Simple, Effective Test Signal Complement
RS-170A Sync Pulse Generator with Digital Genlock

Separate Timing Controls for Sync and Test Signals

Separate SMPTE Bars Output with Programmable ID (Option 01)

Audio Tone Output (Option 01)

The Tektronix TSG-170A NTSC Television Generator offers you the test signals you need plus the advantages of master and genlock sync capability. It provides true 10-bit digital signal accuracy with a full complement of test signals and a stable RS-170A sync generator.
The rugged, compact TSG-170A is designed to support both operational and maintenance requirements. The TSG-170A Option 01 provides even more versatility by adding a separate SMPTE bar generator, programmable identification, and audio tone output.

- SMPTE Bars
- Convergence
- Pulse \& Bar with Window
- Multiburst
- 5-Step Luminance Staircase
- Luminance Ramp
- Modulated Ramp
- Selectable 10% or 90% APL
- Bounce
- 10 and 100 IRE Flat Fields
- Red Field
- Multibars
- NTC7 Composite
- System Test Matrix
- Monitor Setup Matrix
- 5 MHz Line Sweep
- Multipulse
- DAC Calibration Signals

ORDERING INFORMATION
TSG-170A NTSC Television Genera-
tor
Option 01 - Adds a separate SMPTE Bars
Output with 12 Character ID and Audio Tone
Output. $\quad \$ 1,000$

ORDERING INFORMATION TSG-170A NTSC Television Generator
+\$1,000

1750 Waveform/Vector Monitor-Dual Filter/Simultaneous Display

1750Series Waveform/Vector Monitors

Two Instruments in One

SCH Phase and Color Framing
R-Y (V-Axis) Mode
RGB/YRGB Mode
Remote Control Capability

The Tektronix 1750 Series offers comprehensive monitoring and measurement of television signals, including SCH phase and color framing, in one compact unit. While similar in appearance to the 1740 instruments, the 1750 has enhanced performance in each of its operating modes.

The unique SCH phase display presents horizontal sync timing relative to reference subcarrier (burst) for verification of signal format and color framing. This mode enables easy analysis and monitoring of these important characteristics of the television signal; a task which previously required complex techniques, highly skilled operators and/or additional instrumentation. The 1750's SCH phase and color frame displays are derived from the standard composite signals. No extra pulses or added signal details are required.
The 1750's SCH capability makes it particularly valuable in production and editing environments where maintenance of SCH phase and color frame are critical considerations. Applications include VTR bridges, camera control units, switcher consoles, master control, mobile and field production units, and in maintenance operations supporting any of these areas.
The 1750's half-rack package allows easy installation in environments where space and power requirements are important considerations. The 1750 is mechanically compatible with 528A, 1710B, 1420, and 1740 Series Tektronix instruments.

Waveform Mode

The waveform mode vertical response is controlled by selectable flat, chroma, and luminance (IRE) filters. A backporch slow
clamp is controllable from the front panel. An internal jumper reprograms the clamp timing for sync tip operation.
The 1750 has pushbutton selection of $\mathrm{H}, 2 \mathrm{H}$, V , and 2 V horizontal sweeps. A magnifier provides calibrated sweep speeds of $1 \mu \mathrm{~s} /$ div and $0.2 \mu \mathrm{~s} /$ div at the line display rates, and about 20X magnification of the vertical rate display. The faster sweep speeds are useful for determination of horizontal blanking, pulse widths, risetimes, and other timing details of the signal, while the magnified vertical sweep allows viewing of the vertical blanking interval.
The internal calibrator signal in the 1750 is useful for verification of both video amplitude and sweep timing calibration. Crystal control of the calibrator waveform provides an accurate 1 V p-p squarewave and $10 \mu \mathrm{~s}$ timing interval.
The sweeps may be locked to the selected signal (A or B input), or to a separate external reference input. The horizontal rate sweeps may be triggered by the selected source (which presents a stable display in the presence of sync jitter) or may be AFC controlled (which displays sync jitter for analysis). Use of the AFC sweep control can also reposition the H sweep for more convenient timing measurements.
The 1750 Series has front panel line and field selection, an LED readout of the selected line number, and a video output with a strobe pulse on the displayed line. The 1750 (NTSC) will display line 8 thru 23 of either monochrome field (color fields 1,3 or fields 2,4). The 1751 (PAL) will display lines 6 thru 21 or 319 thru 334. The line selection range may be extended to any line of the frame by the use of rear panel remote control input in conjunction with the front panel controls.
The line selection function is operational in waveform, R-Y, and vector modes. These features provide convenient in-service monitoring or measurement of field blanking interval test or data signals.

R-Y (V-Axis) Mode

In this mode the display is similar to a waveform display with the demodulated chrominance signal on the vertical axis and the selected sweep on the horizontal axis. Any demodulation axis may be set with the phase control; properly setting the display of burst in the vector mode will ensure $R-Y$ axis decoding when the $R-Y$ mode is selected.

There are differential phase markings on the graticule for use in this mode. Resolution of differential phase error is about twice that of vector measurement techniques, and the displayed errors may be correlated with time and luminance amplitude by using modulated staircase or modulated ramp test signals.

SCH Phase Mode

This display is a combination of the burst vectors of the vector display and a bright dot on the outer degree circle of the vector graticule. The position of this "sync dot" around the circle represents the timing (phase) of the horizontal sync edges relative to the reference subcarrier. An individual signal may be analyzed for proper format (for proper SCH phase) without any additional reference.

Since it is possible for two signals to be properly formatted but not properly timed to each other (i.e., a color framing error exists), the 1750 has provision for using an external reference input for its subcarrier phase reference. When the external reference mode is used, the display shows the burst phase and sync timing of the selected signal relative to the burst of the reference signal, simultaneously indicating the SCH phase of the selected input signal and its color frame relative to the external reference signal.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	216	8.5
Height	133	5.3
Depth	460	18.2
Weight	$\mathbf{k g}$	lb
Net	$\mathbf{8 . 0}$	$\mathbf{1 8 . 0}$

ORDERING INFORMATION

These instruments are configured for rackmounting and are shipped without cases or covers. Order appropriate optional accessories to configure for rack, bench or portable use.
1750 Waveform/Vector Monitor (NTSC Applications)
\$5,900
1751 Waveform/Vector Monitor (PAL Applications)
\$5,900

OPTIONAL ACCESSORIES

Cabinet - Plain. Order 1700F00 \$60
Cabinet — Portable. Order 1700F02 \$85
Cabinet - MPS Case. Order 1700F03
Side-By-Side Rack Mount - For mounting two half-racks (1750,528A, etc.) in a standard 19 inch rack. Order 1700F05
Blank Panel - For one half of the side-byside rack mount. Order 016-0116-00
Snap-On Front Cover - High impact plastic. Order 200-1566-00
Flip Stand Feet - For modular carrying case, stands extend normal feet for tilted viewing (two required). Order 348-0618-01
$\$ 7.25$
Viewing Hood — For high ambient light environments. Order 016-0475-00
Camera - Use C-30 Option 01 with adaptor 016-0269-03, or C-5C Option 02 or 04, or standard C-4. (See camera section of this catalog.)

For complete Television product information, check box on the business return card in this catalog.

1740 Waveform/Vector Monitors with optional carrying case and battery pack.

Optional Dc Power Capability

Two instrument options provide a dc input for powering the monitor from a 12 volt dc power source. Option 07 provides the dc capability. Option 11 provides the dc capability and includes a portable case and the BP1 Battery Pack as the power source. The BP1 quickly and securely mounts to the bottom of the portable case. Total package weight of the instrument with the BP1 mounted is approximately 13.6 kg (30 lb).

A 1740 Series instrument will operate from a BP1 for at least two hours before recharging is required. Spare BP1 Battery Packs are

1740Series Waveform/Vector Monitors

Two Instruments in One

Optional Dc Power Capability

Bright CRT Display

R-Y (V-Axis) Mode
VITS Monitoring
RGB/YRGB Display Capability
Remote Control Capability
Available in NTSC, PAL, and PAL-M

Similar to the 528A and 1420 Series products, the 1740 Series provides all the basic waveform monitoring and vectorscope functions, but in a single, compact package. In addition, the 1740 Series adds dc power operation (optionally), single line vertical interval display which is internally preset, an R-Y/sweep mode for differential phase measurements, and remote control of waveform/vector mode and most of the front panel sweep and vertical amplifier response functions.
The 1740's half rack width package allows easy installation where space and power requirements are important considerations. The 1740 is mechanically compatible with the 528A, 1710B, 1420 and 1750 Series instruments.

Typical applications include video signal monitoring in VTR bridges, camera control units, production switcher consoles, and in mobile vans and field productions.
available as optional accessories.

Bright CRT Display

The bright CRT display permits use of the 1740 Series in high ambient light conditions, such as those encountered in field production applications. Brightness remains high in the $1 \mu \mathrm{~S}$ and $0.5 \mu \mathrm{~S}$ magnified sweep speeds, thus enhancing the 1740's use in system phasing applications. The internal waveform graticule and the external vector graticule are independently illuminated. A parallax free composite internal graticule, including both the waveform and vector features, is available (Option 06).

R-Y (V-Axis) Mode

The demodulated chrominance may be displayed with a horizontal sweep using the R-Y mode for NTSC signals or the V-axis mode for PAL or PAL-M signals. When the burst is phased properly in the vector mode, the R-Y mode displays the chrominance demodulated on the R-Y axis (V-axis in PAL systems). There are differential phase markings on the right side of the vector graticule that are calibrated for use in this mode. Different sweep speeds may be used to examine differential phase as a function of time.

VITS Monitoring

VITS (Vertical Interval Test Signals) or ITS (Insertion Test Signals) can be monitored in all modes. Each instrument model is internally set for a particular line. The 1740 is set to display line 19 , usually occupied by the VIRS. The 1741 is set to line 17/330, and the 1742 to line $17 / 280$. The 1740 may be reset for any line from 6 through 36, the 1741 from line $3 / 316$ through $33 / 346$, and the 1742 from line $3 / 266$ through 33/296.

RGB/YRGB Display

Facilities for a parade display of camera RGB signals are included in all 1740 Series instruments. The monitor's REMOTE connector accepts the required enable and three-step staircase signals from the camera. An internal jumper change permits display of a YRGB parade signal.

Remote Control Capability

Remote control of input channel selection, mode, sweep speeds, and vertical amplifier filters is available through a rear panel connector. The remote function is useful for VTR applications.

PHYSICAL CHARACTERISTICS

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$
Width	216	8.5
Height	133	5.3
Depth	460	18.1
Weights	$\mathbf{k g}$	lb
Net	8.2	18.8
Battery Pack	13.6	30.0

ORDERING INFORMATION

These instruments are configured for rackmounting and are shipped without cases or covers. Order appropriate options or optional accessories to configure for bench or portable use. Option 06 is recommended.
1740 Option 01 Waveform/Vector Monitor (NTSC Applications)
\$4,000
1741 Option 01 Waveform/Vector Monitor (PAL Applications)
\$4,000
1742 Option 01 Waveform/Vector
Monitor (PAL-M Applications)

options

Option 06 - (Composite internal graticule, waveform and vector.)
waveform and vector.)

$$
+\$ 30
$$

Option 07 - (Adds dc power operation capability, must be installed during manufacture.)
Option 11 - (Portable carrying case, dc pow-
er operation, and a BP1 Battery Pack.)
$+\mathbf{6 5 0}$

OPTIONAL ACCESSORIES

Cabinet - Plain. Order 1700F00
$\$ 60$
Cabinet — Portable. Order 1700F02
\$85
Cabinet - MPS Case. Order 1700F03
Side-by-Side Rack Mount - For mounting two half-racks (1740,528A, etc) in a standard 19 inch rack. Order 1700F05
Blank Panel - For one half of the side-byside rack mount. Order 016-0116-00
Snap-On Front Cover - High impact plastic. Order 200-1566-00
Flip Stand Feet - For modular carrying case, stands extend normal feet for tilted viewing (two required).
Order 348-0618-01
Viewing Hood - For high ambient light environments. Order 016-0475-00
Camera - Use C-30 Option 01 with adaptor 016-026903, C-5C Option 02 or 04, or standard C-4. (See camera section of this catalog).
Battery Pack - Order BP1.
For complete Television product information, check box on the business return card in this catalog.

1485R Option 01 PAL／NTSC Dual Standard Waveform Monitor（Rackmount）

1480
Series Waveform Monitors
Bright CRT Especially Suitable for Vertical Interval Testing
Advanced Measurement Modes
Amplitude Measurement Accuracy
Approaching 0．2\％
Digital Selection of Line and Field
Probe Input Option
15－Line Display for VTR Applications
Full feature capability for demanding video measurements in a range of ap－ plications．The 1480 Series was designed to meet the monitoring needs of CCU，VTR， control room，transmission facilities，trans－ mitter and special systems with optimum accuracy，precision and performance．It fea－ tures a variety of advanced measurement modes，amplitude measurement accuracy approaching 0.2% ，plus an exceptionally
bright CRT that＇s especially suitable for ver－ tical interval testing ．．．bright enough for one vertical interval test signal selected out of four fields to be seen with ease even in a well lighted area．Digital selection of line and field assures positive identification of dis－ played information．
In addition to a 0.2% amplitude standard， the 1480 Series provides superior resolving power through calibrated five－times expan－ sion of the vertical display，plus offset com－ parison and fine CRT spot size for making highly accurate amplitude measurements．
A unique overlay mode makes it possible to superimpose portions of waveform displays for exact，side－by－side comparison of levels． Among many additional features are a probe input option，AFC sweep synchroni－ zation，selectable filters and 15 －line display for VTR applications．
The 1480 Series is available in NTSC，PAL， PAL－M and NTSC／PAL Dual Standard versions．

PHYSICAL CHARACTERISTICS				
	1480C		1480R	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	216	8.5	482	19.0
Height	210	8.3	133	5.3
Depth	430	16.9	457	18.0
Weights \approx	$\mathbf{k g}$	lb	$\mathbf{k g}$	lb
Net	9.8	21.5	11.2	24.6
Shipping	24.1	53.1	24.1	53.1

ORDERING INFORMATION

1480C NTSC Waveform Monitor $\$ 6,300$
1480R NTSC Waveform Monitor $\quad \$ 6,300$
1481C PAL Waveform Monitor＊1 $\quad \$ 5,865$
1481R PAL Waveform Monitor＊1 $\$ 5,865$
1482R PAL－M Waveform Monitor 1485C PAL／NTSC Dual Standard Waveform Monitor＊1 \＄6，790

1485R PAL／NTSC Dual Standard Waveform Monitor＊1
\＄6，300

OPTIONS

Option $01-1 \mathrm{M} \Omega, 20 \mathrm{pF}$ Probe Input（not available with Option 06，probe not included）． Suggested P6100A 10x Probe $\quad+\$ 300$ （010－6108 Probe．P6108A 10x Probe 2 m

Option 06 －（1480R only） 124Ω WECO Style Inputs．
$+\$ 2,075$
Option 07 －Slow Sweep＊2（Option 07 per－ formance included with Option 06．Do not or－ der with Option 06）
Option 08 －（1481C，1481R，1485C and 1485R only）SECAM Field Identification．
＊${ }^{1481 C / R, ~ 1485 C / R ~ m e e t s ~ E u r o p e a n ~ B r o a d c a s t ~ U n i o n ~}$ Tech．3221－E，Guiding Principles for design of Televi sion Waveform Monitors．
＊2 Option 07 satisfies EBA Tech 3321－E § 3．2．2．

R520A NTSC Vectorscope
R520A series vectorscopes
Luminance Amplitude
Chrominance Amplitude and Phase
Precision Differential Gain and Phase
Outstanding accuracy and versatility in a video measurement vectorscope．The 520A Series offers advanced capability that enables measurements of the chrominance signal and distortions thereof to be made with a high degree of precision．It effectively
complements the 1480 Series in applica－ tions requiring highly accurate measure－ ments of luminance amplitude，chrominance amplitude and phase，differential gain，dif－ ferential phase and other distortions．
The 520A Series provides polar coordinate displays with which to easily detect errors in color encoding，videotape recording and playback，or transmission processes that in－ terfere with phase and／or amplitude relation－ ships and lead to color errors in a television picture．Large phase shifts can be read from the parallax－free vector graticule，and
a precision calibrated phase shifter is pro－ vided for measuring small phase shifts．
Differential gain and differential phase mea－ surements can be made with accuracy to better than 1% or 1° ．Using a trace overlay provides excellent resolution for measuring very small phase errors．
Other features include a voltage step－up ter－ mination option，VITS observation from front panel selected lines and dual vector display． The 520A Series is available in NTSC，PAL and PAL－M versions．

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	483	19.0
Height	178	7.0
Depth	483	19.8
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net	15.0	33.0
Shipping \approx	27.7	61.0

ORDERING INFORMATION

R520A NTSC Vectorscope	$\$ 8,525$
R521A PAL Vectorscope	$\$ 8,050$
R522A PAL－M Vectorscope	$\$ 9,540$

For complete Television product information，check box on the business return card in this catalog．

528A Waveform Monitor mounted side-by-side with a 1420 Vectorscope.

528A/1420 Series

Parallax-Free Internal Graticule

Half Rack Width

Proven Performance
Available in NTSC, PAL, PAL-M Models

528A Waveform Monitor

The best of the basics in a waveform monitor that's easy to use. . .and has plenty of uses! The popular, highly-capable 528A provides proven performance in all television applications that require consistent quality, video waveform monitoring. Its half-rack width makes it possible to mount the 528A next to another monitor, the most common choice being a Tek 1420 Series vectorscope. A carrying case is also available for the 528A for field or bench applications.
An illuminated, internal graticule CRT ensures parallax-free viewing of bright, easy-to-read displays. With its simple front panel controls, the 528A enables you to monitor sync and video levels, display RGB or YRGB format, check and adjust system timing and perform many camera adjustment procedures with accuracy and ease. It also meets requirements of videotape recorder monitoring bridges for monitoring and set-up, limited differential gain measurements, line time tilt measurements, pulse response (K factor) measurements and more.
Features include two video inputs, variable sensitivity control, video output of displayed signal, four frequency response and four sweep selection positions.

1420 Series Vectorscopes

Chrominance signal monitoring in a compact, compatible package. The 1420 Series is an effective answer to vector monitoring requirements in the same applications which are well served by the 528A, including VTRs, camera control units, video production and postproduction monitoring. Its half-rack width makes a 1420 Vectorscope ideally suited for mounting side-by-side with a 528 A . Together they provide continuous displays of the luminance, sync and chrominance characteristics of a video signal.

The parallax-free internal graticule is designed especially for vector displays of color bars and burst. A special graticule feature that enables differential gain or phase errors to be determined to within 5% and 2° offers sufficient accuracy for many applications. (Higher resolution differential gain and phase measurements should be made with a 520A Series vectorscope.)
Additional 1420 Series features include two signal inputs, an external subcarrier reference input and continuous 360° phase rotation of a displayed signal.
The 1420 Series is available in NTSC, PAL and PAL-M versions.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	216	8.5
Height	133	5.3
Depth	470	18.5
Weights (528A)	$\mathbf{k g}$	$\mathbf{l b}$
Net (with accessories)	6.8	15.0
Shipping	10.4	23.0
Weights (1420 Series)	$\mathbf{k g}$	lb
Net (with cabinet)	7.0	15.5
Net (without cabinet)	5.9	13.0
Shipping	9.1	20.0

ORDERING INFORMATION

These instruments are configured for rackmounting and are shipped without cases or covers. Order appropriate options and optional accessories to configure for bench or portable use.
528A Option 01 Waveform Monitor (for use with 525 line systems)
\$2,300
Option 03 - (Modified for use with 625 line systems and for 230 V ac power, unless otherwise specified.)

NC
1420 Option 01 Vectorscope (NTSC, factory wired for 115 V ac power)
\$2,820
1421 Option 01 Vectorscope (PAL,
factory wired for 230 V ac power)
\$2,920
1422 Option 01 Vectorscope (PAL-M,
factory wired for 115 V ac power) $\$ 3,185$

OPTIONAL ACCESSORIES

Cabinet — Plain. Order 1700F00
Cabinet — Portable. Order 1700F02 \$85
Cabinet - MPS Case. Order 1700F03
Side-by-Side Rack Adaptor - For mounting two half-racks in a standard 19 inch rack. Order 1700F05
Blank Panel -For one half of the side-byside rack mount. Order 016-0116-00
$\$ 60$
Camera - Use standard C-59AP, C-4 Option 02, or standard C-5C. (See camera section of this catalog).

110-S
Video Synchronizer/TBC
True 10-Bit Accuracy and Resolution Tracks Signals into the Noise
Optional Four-Field Memory for the Highest Picture Quality
Adaptive Decoding-Minimizes Picture Shifts while Preserving Horizontal and Vertical Detail, Provides Exceptionally High Quality Picture Freeze
Adaptive Clamping-Minimizes Streaking on Noisy Signals
Digitally Precise RS-170A Sync and Burst Insertion
Passes the Vertical Interval
Processing Amplifier
Precalibrated Boards in Modular Design
Heterodyne Color Processing
Auto VTR Signal Recognition
Infinite Window Correction Range

The $110-\mathrm{S}$ is a high quality 10 -bit, 4 X fsc video synchronizer. The 10-bit architecture, adaptive decoding, and adaptive clamping combine to provide a synchronizer that performs well on noisy signals, minimizes horizontal picture shifts, and is virtually transparent to the processed signal.

10-Bit Precision

A Tektronix-designed 10-bit digitizer and a sampling rate of four times the subcarrier frequency result in negligible quantizing errors, low differential gain and phase, and a flat frequency response. Compared to 8-bit synchronizers, the 110-S has four times the accuracy and resolution. The resulting transparency to the video signal allows cascading of $110-\mathrm{S}$ synchronizers in the signal path with minimum signal degradation.

118-AS Audio Synchronizer
Automatic or Manual Control of Audio to Video Timing
Simple One-Wire Interface to 110-S Video Synchronizer
118-F02 Option Provides Interface to Other Video Synchronizers
Expandable to Three Channels for Stereo and Auxilliary Channel
Compensates for up to Ten Fields of Video Delay
93.75 kHz Sampling Provides Accurate Stereo Phasing and Flat Frequency Response
18-Bit Floating Point Code for Wide Dynamic Range
Built-In Diagnostics and Easy Module Access for Service

Tracking Into Noise

When noise from a fading ENG microwave feed or static interference degrades the S / N ratio, the 110-S will continue to track the signal. If the original sync and burst are clean, they may be passed with the original signal. Noisy sync and burst are replaced with precise, digitally-generated RS-170A sync and burst. The 110-S can be configured to track into the noise, freeze field, or go to black upon loss of the incoming signal. As noise increases, an adaptive clamp slows down to prevent horizontal streaking.
The 110-S TBC option adds time base correction for heterodyne color VTR's to the 110-S Synchronizer.

ORDERING INFORMATION	
110-S Video Synchronizer	\$14,97
options	
Option 10 - Four-Field Memory Adaptive De-	
ption 20 - Adds time base correction terodyne color VTR's	+\$2,000
10-RC Remote Control Unit	\$50
CCESSORY	
arts Kit - Order 020-0990-00	

1410R Option 04 Test Signal Generator

1410R/1411R/1412R
NTSC, PAL, and PAL-M Generators
Five Test Signal Generators and One Switcher
Conforms to EIA Standard RS-170A
(1410R)

Sync to Subcarrier Phasing Maintained or Corrected
Color Frame Reference Output
Genlock to Composite Video
Lock to External References
Adjustable Blanking Widths
Adjustable Sync Delays (H and V)

1910Digital Generator

Four External VITS Inputs for Insertion of Teletext, Closed Captioning, Source ID, etc.

Nonvolatile Memory to Maintain Selected VITS and Full Field Signal Configuration after Power Interruption

Signal Stored in Replaceable PROMs so Your 1910 won't Become Obsolete
The Accuracy and Stability of an all-Digital 10-Bit Sync and Signal Generation (RS-170A)
User Friendly RS-232C Control Port for Added Versatility
New Signals (Eye Test Pattern, Special Multipulse, Color Multipulse), New Functions (VITS Sequence, Field Sequence and More)

The 1410 R Series sync and test signal generators are precision generators for use in studios, remote vans, maintenance facilities and anywhere high quality sync or test signals are required.
Three different models are available. The 1410R is for NTSC applications, the 1411R for PAL and the 1412R is for PAL-M applications.

1410R NTSC Mainframe and SPG2 Sync Generator
\$4,200

OPTIONS

Option 03 - NTSC Package Installed and
Tested Together.
$+\$ 3,460$
Option 04 - NTSC Package Installed and Tested Together.
$+\$ 8,280$

1411R PAL PACKAGES		
STANDARD CONFIGURATIONS		
	Option 03	Option 04
TSG11 (Color Bars)	x	x
TSG12 (Convergence)	x	
TSG13 (Linearity)	x	x
TSG15 (Pulse and Bars)		x
TSG16 (Multiburst)		x
TSP11 (Switcher)		x

1411R PAL Mainframe and SPG12
Sync Generator
\$4,200

OPTIONS

Option 03 - PAL Package Installed and
Tested Together.
$+\$ 3,000$
Option 04 - PAL Package Installed and Tested Together.
$+\$ 7,500$

PAL-M PACKAGES

1412R PAL-M Mainframe and SPG22,
TSG21
$\mathbf{\$ 7 , 4 1 5}$
Option 05 - Adds TSG23/TSG25/TSG26/
TSP21 Installed.
$+\$ 8,795$

Since all signals are stored in replaceable EPROMs, changing needs and industry standards will not cause obsolescence.

Control and versatility of the 1910 are greatly enhanced by the use of its RS-232 control port. Most functions of the 1910 can be controlled, reconfigured and saved. This includes VITS and full field signal selection, matrix signal creation, sequences and other features.

ORDERING INFORMATION
 1910 Digital Generator
 \$9,990
 Option 03 - CBC Test Signals. NC

For complete Television product information, check box on the business return card in this catalog.

The $1450-1$ is compatible with System M Television Transmission, the $1450-2$ is compatible with System B / G, and the $1450-3$ is compatible with System I.

1450-1/1450-2/1450-3

Measurement-Quality Performance for Negligible Distortion
Synchronous Detection Elminates
Quadrature Distortion
Envelope Detection for Accurately Determined Differential Phase

Surface Acoustic Wave Filter Provides Precise Nyquist Slope; Excellent Long and Short-Term Stability

Digital Readout of Input Power Level for Easy, Accurate Field Strength Readings
Constant-Bandpass Characteristics Over Wide Dynamic Range

Any Single VHF or UHF Channel Operation
UHF and VHF Tunable Down Converters
Conforms to EIA Standard RS-462
(System M Only)

The 1450-1 (System M), 1450-2 (System B / G) and 1450-3 (System I) demodulator mainframes are combined with a Tektronix Television Down Converter (TDC) to provide an accurate link between your transmitter's RF signals and video baseband measuring equipment. Unique components work together to identify and eliminate any possible demodulation distortion in reproduced signal characteristics. You see a transparent picture of your transmitter's performance and signal output.
High Performance Spectrum Analyzers for your RF measurements are described on pages 154-174.

Tunable or Fixed-Channel Down Converters

For demodulating an RF signal at a TV channel frequency, the 1450 Series demodulator mainframes must be used with a Tektronix TDC. Three compatible TDCs are available for each system and provide a selection between tunable and fixed-channel performance. The TDC Fixed-Channel Down Converter supports your specified system channel number. Tunable Down Converters
available for VHF and UHF channels are the TDC1 and TDC2 respectively.
Demodulation of the transmitter IF signal may be accomplished by using only the mainframe.

Synchronous and Envelope Detection

The 1450 Series demodulators allow you to select either synchronous or envelope detection. Each method has advantages, yet both are required for full measurement capability. For instance, synchronous detection is necessary for measurements that can be seriously affected by quadrature distortion.
The 1450 Series demodulators have two synchronous video detectors operating in phase quadrature. One detects the inphase signal; the other detects the quadrature component of the video signal. (The quadrature component is a measure of change in visual carrier phase resulting from a change of video level.)
However, if incidental phase modulation is present on the picture carrier, the amount of differential phase measured on a synchronously detected signal will be erroneous. Because of this, an envelope detector is necessary to determine the actual differential phase present. The envelope detector has linear transfer characteristics down to 3% carrier and so provides optimum modulation depth indication.

Tektronix-Developed Surface Acoustic Wave Filter

The 1450 Series demodulators feature a SAW (surface acoustic wave) filter developed by Tektronix. It provides more precise Nyquist slope characteristics without group delay distortion, improves long-term and short-term stability, and lowers maintenance costs compared to conventional filter network circuitry.
In conventional demodulators, the more precisely the bandpass characteristics approach an ideal Nyquist curve, the more complex the filter network required. In the 1450 Series demodulator mainframes however, the bandpass characteristics are determined by just a single component, the SAW filter. Precision is the result.

Conventional tuned IF circuitry must be meticulously adjusted and is subject to change with mechanical and thermal shock. But the SAW filter is in a sealed unit and accurately provides the critical selectivity characteristics of the demodulator-and requires no adjustments.

Constant-Bandpass Characteristics

The Tektronix 1450 Series demodulators offer constant-bandpass characteristics over the entire dynamic range of input signal level. Amplifiers in the mainframe operate at a constant gain, and pin-diode attenuators are used to adjust the overall gain of the demodulator. This more sophisticated approach to AGC (automatic gain control) is necessary to maintain constant-bandpass characteristics over the entire dynamic range of input power (-69 dBm to -3 dBm). Additional attenuation of 30 dB , available in 10 dB steps, can shift the range for higher input power levels. In addition to AGC, demodulator RF/IF gain control can be set for manual operation.

Digital Reading of Input Power

With the accurate (to 0.1 dB) digital readout you get measurements of input power you can depend on at transmitter sites, remote sites, or, for calibrated field strength measurements.

Split and Intercarrier Sound

For making measurements or adjustments on aural transmitters, the 1450 Series demodulators feature both split and intercarrier sound channels. The split carrier channel, which will operate without the presence of the visual carrier, may be used when making measurements on the aural transmitter only.
Four audio outputs give added measurement capability: a 600Ω output, two low impedance outputs for driving a speaker or headphones, and a calibrated output for making deviation measurements with an ac voltmeter or an oscilloscope.

Quadrature Distortion

Quadrature distortion occurs when a single sideband signal is demodulated with an envelope detector.
Quadrature distortion most severely affects the chrominance signal, causing a loss of brightness in highly saturated colors, especially those at high luminance levels. Narrow white picture elements against the dark backgrounds are reproduced at reduced brightness.
Synchronous detection of the television RF signal eliminates quadrature distortion, allowing the true performance of the transmitter to be determined.

ORDERING INFORMATION
 SYSTEM M

1450-1 Television Demodulator (Order one vision IF option) \$14,900
OPTIONS
Option 01 - 37 MHz Vision IF.
Option 02 - 38.9 MHz Vision IF NC Option $03-45.75 \mathrm{MHz}$ Vision IF. NC For demodulation of RF signals, one of the following three down converters must be plugged into the 1450-1 mainframe.
Order one vision IF option and either Option 11 or 14.
TDC Fixed Channel Down Converter -
(Stipulate channel number when ordering.) $\$ 3,750$

TDC-1 - Tunable Down Converter VHF

TDC-2 - Tunable Down Converter UHF Band.
\$7,660
OPTIONS
Option $01-37 \mathrm{MHz}$ Vision IF .
Option 02 - 38.9 MHz Vision IF. NC

Option 03 - 45.75 MHz Vision IF. NC
Option 11 - System M Countries. NC
Option 14 - System M Countries. NC

SYSTEM B/G
1450-2 Television Demodulator (Order both Option 02 and Option 09) $\$ 11,900$

OPTIONS

Option $02-38.9 \mathrm{MHz}$ Vision IF
NC
Option $09-+90 \mathrm{~ns} /-170 \mathrm{~ns}$ Group Delay
For demodulation of RF signals, one of the following three down converters must be plugged into the $\mathbf{1 4 5 0 - 2}$ mainframe. Order both Option 02 and Option 12.
TDC Fixed Channel Down Converter (Stipulate channel number when ordering.) $\mathbf{\$ 3 , 7 5 0}$
TDC-1 - Tunable Down Converter VHF TDC-2 - Tunable Down Converter UHF Band

OPTIONS

Option 02 - 38.9 MHz Vision IF.
NC
Option 12 - System B/G/l Countries. NC

SYSTEM I
1450-3 Television Demodulator (Order Option 02)
\$13,145
Option $02-38.9 \mathrm{MHz}$ Vision IF.
For demodulation of RF signals, one of the following three down converters must be plugged into the 1450-3 mainframe. Order both Option 02 and Option 12.
TDC Fixed Channel Down Converter (Stipulate channel number when ordering.) \$3,750
TDC-1 - Tunable Down Converter VHF Band

TDC-2 - Tunable Down Converter UHF Band. OPTIONS
Option 02 - 38.9 MHz Vision IF. NC
Option 12 - System B/G/l Countries.
NC

1980

ANSWER with Measurement Software
Unattended Monitoring of Video Signals from Studios, STLs, Earth Stations, and Transmitters

Full Spectrum of Timing, Frequency Response, Amplitude, Phase, and Noise Measurements

Waveform Plots for Analysis and Documentation
Remote Operation
Automatic Logging
User Definable Measurement Limits
Operator Initiated Individual Measurement
Vertical Interval Scan for Test Signal Locations

User-Defined Measurement Groups

ORDERING INFORMATION

For Base Unit Plus Software, Order:
1980 ANSWER with Option 01, NTSC
Applications Software
1980 ANSWER with Option 04, NTSC Monitoring Software
1980 ANSWER with Option 05, PAL Monitoring Software
\$28,150
1980 ANSWER Monitoring with Option 06, PAL/NTSC Software
\$30,990
Option 12 - Automatic Call Equipment Inter- $+\$ 600$
face
For Software Only, Order:
1980 F04 $\mathbf{\$ 6 , 3 0 0}$

1980 F05	$\$ 6,300$
1980 F06	$\$ 9,145$

OPTIONAL ACCESSORY

Service Kit - Order 067-1115-01
\$3,580
For complete Television product information, check box on the business return card in this catalog.

NEW 1434 video Noise Generator

Calibrated Noise Levels

White Noise

Impulse Noise with Selectable Polarity, and Variable Width and Density

Hum - 50 Hz or 60 Hz
5 kHz Sinewave
Noise Gating
Calibrated Video Attenuation
Works with NTSC, PAL, PAL-M, and SECAM
ORDERING INFORMATION
1434 Video Noise Generator $\$ 5,500$

1470/1474
NTSC Color Sync and Test Signal Generator
Full Color Sync Generator with Gen-Lock
Locks to Most Helical Scan VTRs
Simple to Operate
Compact and Economical
Full Selection of Sync and Timing Signals
Simplified Timing Via Multiple Subcarrier Phasing Controls

ORDERING INFORMATION

1470 Color Sync and Test Signal Generator (Rackmount)
1474 Color Sync Generator (Rackmount)
\$2,095

1440
Automatic Video Corrector
Reduces Operating Costs
Extends Transmitter Tube Life and Reduces Maintenance Costs

Maintains Consistent High Quality Color Pictures

Automates Transmitter Modulation Level Control

Maintains Correct Sync-To-Video Ratios During Line Voltage Fluctuations
Automatic VIRS Referenced Correction of:
Overall Video Signal Amplitude
Chrominance to Luminance Gain Ratio
Black Level
Chrominance Phase
Burst Gain
Sync Gain
Optional Closed Loop Capabilities for Greater Efficiency and Economy in Transmitter and VTR Operations

ORDERING INFORMATION

1440 NTSC Automatic Video Corrector \$6,325

OPTIONAL ACCESSORIES

Remote Control Unit for 1440 - (Includes two connectors.) Order 015-0240-00
Remote Monitor Unit for 1440 - (Includes one connector.) Order 015-0239-00

Six-Foot Extender Cable - With connectors for use between the 1440 and Remote Control Unit or Remote Monitor Unit. Order 012-0131-00
Three Foot Extender Cable - With connectors, for use between the 1440 chassis and the rear rackmounting section.
Order 012-0637-00

Conforms to CCIR Recommendation 568
In-Service Testing
Out-of-Service Testing
Program Material Protected by Fail-Safe Provisions

525/60 or 625/50 Standards
ORDERING INFORMATION
1430 Random Noise Measuring Set

$(525 / 60)$	$\$ 4,115$
Option 01 - Random Noise Measuring Set	
$(625 / 50)$.	$+\$ 85$

ORDERING INFORMATION

1430 Random Noise Measuring Set (525/60) 4,115
(625/50).

R148/R148-M
Test Signal Generators
Insertion Test Signals (Per EBU, CCIR Recommendation 473-2, Annex 1)

Full-Field Test Signals (Per CCIR Recommendation 567)

Easily Reprogrammable

Safe In-Service ITS Insertion (Per EBU Specifications)

Noise Measurement

APL Bounce Signal
Source Identification Code
Operates with Sound In Syncs
Locks with Mixed Sync (Per EBU Homologation Specifications for ITS Generators) Subcarrier, PAL Pulse, Burst Flag, Comp Sync

ORDERING INFORMATION
R148 PAL Test Signal Generator $\mathbf{\$ 5 , 5 4 0}$
R148M PAL-M Test Signal Generator $\mathbf{\$ 8 , 7 0 0}$
OPTIONAL ACCESSORIES
Noise Measurement Filters - External filters are required with the 148 Generator when making noise measurements.
Low Pass 6.0 MHz 625/50 -
Order 0150220
Noise Weighting 5.0 MHz 625/50 -
Order 015-0215-00
Low Pass 4.2 MHz 525/60 -
Order 015-0212-00
Noise Weighting 4.2 MHz 525/60 -
Order 015-0214-00
\$95
CCIR recommendation 568 provides for measuring sig-
nal-to-weighted random noise on all international transmissions (both $525 / 60$ and $625 / 50$) with a 5.0 MHz low pass filter and a unified noise weighting filter.
Low Pass 5.0 MHz — Order 015-0213-00
Unified Noise Weighting Network Order 015-0283-00
Rackmount to Cabinet Conversion Kit -
Order 040-0768-00

For complete Television product information, check box on the business return card in this catalog.

650HR High Resolution Color Monitor

650HR Series Color Picture Monitors

High Resolution Display Plus Capability for Critical Signal Analysis
0.25 mm Triad Pitch High Resolution Trinitron CRT

Variable Aperture Correction
Precise Color Tracking Over Full Signal Range
Two Video Inputs with Differential (A-B) Capability

Video Inputs Isolated from Ground for Hum Rejection

Capability for Front Panel Switching of External Sync Inputs

NTSC, PAL, SECAM and Multistandard Versions Available

Precise Decoders with Outputs to Provide Vector Display on External X-Y Monitor
Unique Monochrome (White) Display of Decoded Blue Signal for Critical Analysis of Color Noise

The Tektronix 650HR Series color picture monitors are designed for exacting applications where picture quality and signal quality analysis are particularly important. The 650 HR uses a Trinitron CRT with resolution capabilities which exceed the performance of encoded television signals.

The decoders have sufficient chroma channel bandwidth to pass all of the information in standard signals.
The unique blue only mode feeds the decoded blue video signal to the red, green, and blue channels simultaneously. This produces a monochrome display with a high subjective sensitivity to chroma noise, allowing better analysis of video quality.
The chrominance channel may be manually switched to either the monochrome or color modes, or activated automatically by the presence of burst.

Circuits in the Tektronix 650HR Series are designed for color stability and consistency. Outputs are provided from the precision decoders and may be used to drive an X-Y monitor for a vector display. The regulated high voltage supply is not affected by extreme changes in APL even when calibrated brightness, at peak white, is set at 30 fL . Raster size is held within 1%, while excellent clamping maintains a stable black level with a 0% to 100% range of APL.
In 650HR Series color monitors, you can shift the picture either horizontally or vertically, or both (pulse cross). This lets you monitor sync, burst, blanking, vertical interval test, and reference signals. When the monitor is operating in any of these display modes, brightness is automatically advanced to permit observation of the sync pulses and burst. Expansion of the vertical scan is provided in the pulse cross and vertical delay modes, so you can view individual lines in the vertical blanking interval.

Versions of the 650HR are available for certain combinations of NTSC, PAL, SECAM and RGB. (See ordering information chart.)

The following special features are included in the SECAM version. Color sequencing from field identification signals or line burst. Reduced chrominance line crawl. Color sequence error indicater.

The 650HR Series monitors can be used in rack installations or separately in their own cabinets. (See separate TV Division catalog for detailed specifications.)

PHYSICAL CHARACTERISTICS

Dimensions	Cabinet		Rackmount	
	mm	in	mm	in
Width	426	16.8	483	19.0
Height	279	11.0	266	10.5
Depth	419	16.5	464*1	18.3*1
Weights	kg	lb	kg	lb
Net	22.7	50.0	23.5	52.0
Domestic				
Shipping	28.5	65.0	30.4	67.0
Export Shipping	36.3	80.0	37.2	82.0

${ }^{*}{ }^{1}$ With handles

ORDERING INFORMATION

All 650HR Monitors are shipped with rackmounting hardware. Cabinet version hardware is also included.

MODEL					
NUMBER	NTSC	PAL	SECAM	RGB	PRICE
650HR	\bullet				$\$ 5,760$
650HR-1	\cdot			\bullet	$\$ 5,970$
651HR		\cdot			$\$ 6,010$
651HR-1		\cdot		\bullet	$\$ 6,250$
652HR-1		M		\bullet	$\$ 6,660$
655HR-1	\cdot	\cdot		\bullet	$\$ 6,925$
656HR-1		\cdot	\bullet	\bullet	$\$ 7,740$

For complete Television product information, check box on the business return card in this catalog.

FIBER OPTIC CABLE TESTERS

Single-Mode and Multi-Mode Environments
825 nm to 1550 nm

LCD Readout

Accurate, Repeatable Measurements
Optional Chart Recorder, Optional Recorder Output

Digital Storage with Easy-To-View Waveform and Noise Reduction

Two Selectable Pulse Widths (with Optional Pulse Widths on the OF151)

Rugged and Portable-Operates from 12 Volt Vehicle System or Battery Pack

NEW OF235

Fiber Optic TDR

GPIB
 LEEE-488

The OF235 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Dual Wavelength

$1300 \mathrm{~nm} / 1550 \mathrm{~nm}$ Switchable GPIB

3 Loss Measurement Modes

Connectors Available: AT\&T Biconic, FC, NEC, Diamond 3.5, Diamond 2.5, Radiall

$0.25 \mathrm{~dB} /$ Div Vertical Scale

1 Meter Distance Resolution

ORDERING INFORMATION

OF235 Fiber Optic Time Domain

Reflectometer
\$29,500
OPTIONS
Option 01 - XY1.
$+\$ 300$
Option 04 - Chart Recorder. $\quad+\$ 1,050$
Option 07 - Delete 1550 nm.
Option 08 - Delete 1300 nm .
Option 20 - AT\&T Biconic Connector
-\$7,000
$-\$ 4,000$
Option 22 - FC Connector.
Option 23 - NEC Connector.
Option 24 - Diamond Connector
Option 25 - Radiall Connector.

OF150 Fiber Optic Time Domain Reflectometer

OPTIONS

Option 01 - XY1 Output Module.
 $+\$ 1,050$
Option 04 - Chart Recorder. NC
Option $05-850 \mathrm{~nm}$ (Nominal).
Option 20 - AT\&T Biconic Connector
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

(OF235, OF151, OF152, OF150)
Fiber Adaptors:
FA-1 - Deutsch-Multimode Fiber.
FA-2 - AT\&T Biconic-Multimode Fiber.
FA-3 - Diamond (3.5)-Singlemode Fiber.
FA-4 - FC-Singlemode Fiber.
FA-5 - AT\&T Biconic-Singlemode Fiber.
C-5C - Camera.
C-7 - Camera.
Hard Case - Transit. Order 016-0658-00
Soft Case — Order 016-0659-00
Receptacle Connector, Optical -
Ten each. Order 013-0207-02
\$695
$\$ 695$
\$695
\$695
\$695

Chart Paper - One Roll. Order 006-3618-00

Chart Paper - 100 Rolls. Order 006-3618-02

Cable Assembly, Diamond to AT\&T Bi-
conic - Order 175-9708-00
Cable Assembly, Diamond to FC Order 175-9707-00
Cable Assembly, Diamond to Diamond Order 175-9695-00

SERVICE MANUALS

Board Level - Order 070-5601-00
Component Level — Order 070-5602-00
A variety of training accessories are also available including workbooks, videotapes, etc.
Additional information available in the OF150 Series Brochure (request number 22-W-5847). Request copies at your local sales office.
The Tektronix three-year warranty applies to these products.

Temperature Operating Range $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

ORDERING INFORMATION

OF192 Fiber Optic Bandwidth

Test Set

\$32,000
Includes: Ac power cord (161-0118-00); four calibration jumper cables (174-0043-00, 174-0045-00, 174-0047-00, $174-0049-00$); operator handbook (070-5744-00).

OPTIONS

Option 05 - 850NM TX Module. $\quad+\$ 3,000$
Option 06 - 825NM TX Module. $\quad \mathbf{+ \$ 3 , 0 0 0}$
Option $07-1300$ NM TX Module. $\quad+\$ 7,500$
Option 20 - AT\&T Biconic Connector. NC
Option 21 - Diamond Connector. NC
Option 22 - FC Connector. NC
Option 23 - SMA Connector. NC
INTERNATIONAL POWER PLUG OPTIONS
Option A1- Universal Euro $222 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES (OF192)
FA-2 — Fiber Adaptor (AT\&T Biconic) \$695
FA-6 — Fiber Adaptor (FC) \$695
FA-7 - Fiber Adaptor (SMA)
NEW
Electrical/Optical
Optical/Electrical Converters
The OT501/502/503 Transmitters and OR501/502 Receivers are designed to transmit and receive signals across fiber. The receivers can be used to convert most instruments to optical instruments (e.g., the optical scope).

Designed as a TM 500 plug-in, they may be used in any TM 500 mainframe.

OT501/502/503 Transmitters			
	OT501	OT502	OT503
Wavelength	$825 \pm 15 \mathrm{~nm}$	$850 \pm 10 \mathrm{~nm}$	$1300 \pm 25 \mathrm{~nm}$
FWHM*	$<2 \mathrm{~nm}$		$<4 \mathrm{~nm}$
Output Power, Dc	$+3 \mathrm{dBm}$		0 dBm
Mod Input	50Ω		
Mod Input Level Max w/100\% Mod	$\begin{gathered} +20 \mathrm{dBm} \\ <0 \mathrm{dBm} \\ \hline \end{gathered}$		
Mod Freq Response	. 03 to 1700 MHz		$\begin{gathered} .03 \mathrm{to} \\ 1500 \mathrm{MHz} \\ \hline \end{gathered}$
Mod Flatness	$\pm 1 \mathrm{~dB}(.05$ to 1000 MHz$)$		
	$\begin{gathered} \pm 2 \mathrm{~dB} \\ (.03 \text { to } 1700 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \pm 5 \mathrm{~dB} \\ (.03 \mathrm{to} \\ 1500 \mathrm{MHz}) \end{gathered}$
OR501/502 Receivers			
	OR501		OR502
Wavelength	700 to 1500 nm		
Photo Element	Ge-APD		
Max Linear Input	-20 dBm		$+10 \mathrm{dBm}$
Frequency Response	.03 to$1500 \mathrm{MHz} \pm 2 \mathrm{~dB}$.05 to .05 to $1000 \mathrm{MHz} \pm 1 \mathrm{~dB}$		
Noise Floor	$\leqslant-110 \mathrm{dBm} / \mathrm{Hz}$		
Output 50Ω	$\begin{aligned} & \hline-15 \mathrm{dBm} \text { typical } \\ & \text { for }-20 \mathrm{dBm} \\ & \text { optical input } \\ & \hline \end{aligned}$		$\begin{gathered} -12 \mathrm{dBm} \text { typical } \\ -20 \mathrm{dBm} \\ \text { optical input } \end{gathered}$
Optical Attenuator	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$		$2.5 \mathrm{~dB} /$ step (Nom) 37.5 dB (Max)

* Full wave half maximum.

ORDERING INFORMATION

OT501 - 825 nm E/O Converter.
\$5,900
OT502 - 850 nm E/O Converter.
OT503 - 1300 nm E/O Converter.
\$5,900
\$9,500
OR501 - O/E Converter.
OR502 - O/E Converter. \$4,300 \$6,500

OPTIONS

Option 20 - AT\&T Biconic Connector.
NC
Option 21 - Diamond 3.5 Connector.
Option 22 - FC Connector.
Option 23 - SMA Connector.

DATA COMMUNICATIONS ANALYZERS FROM TEKTRONIX: SOLVING PROBLEMS IN A COMPLEX NETWORK WORLD

High Speed. Up to 72 kbps, all Modes
Upload/Download. Uploads Data, Downloads Programs between Analyzer and Host or Analyzer to Analyzer.

NonVolatile Memory. Automatically Retains all Programs, Set-ups and Captured Data.

Multiple Triggers. Multiple String Triggers in the 836, and all Instruments Trigger on Selected Control Line Changes, Error Conditions or Character Strings, Both Masked and Unmasked.

Data Compression. Prevents Buffer from Filling up with Idle Frames in HDLC.

Application RAM and ROM Packs. The 830 M Series Memory Packs Provide Mass Storage (RAM) of Data and Programs plus Application Programs (ROM). The 830L Series Library Packs Allow Multiple Selection of Application Programs through User-Selectable ROM Banks. The ROM Development Aid (834RDA/830RDA) Gives Users the Ability to Automate and Extend the Capabilities of the Analyzers. Other Application ROM Packs Contain Software to Expand the Analyzers and Preprogrammed Test Routines Dedicated to Specific Applications.
Products are Rackmountable. Standard Instruments are Lightweight, Rugged and Portable.

[^13]

OPTIONS

Option 02 - Current Loop Interface. $+\$ 325$
Option 03 - RS-449 (RS-422/RS-423) Interface.
Option 04 - MIL-STD-188C Interface.
$+\$ 750$
$+\$ 350$ Option 05 - Two Wire Direct Interface. +\$395 Option 06 - V. 35 Interface.
$+\$ 800$

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

APPLICATION AND MASS STORAGE PACKS

830 L01 - Two Bank Library Pack (ROM)**. \$255 830 L02 - Four Bank Library Pack (ROM)*1. \$400 830 L03 - Eight Bank Library Pack (ROM)*1. 830M01 - Memory Pack (1 Bank 16 k RAM/ No ROM) ${ }^{* 1}$.
830M02 - Memory Pack (1 Bank 16 k RAM/ 1 Bank 16 k ROM$)^{* 1}$.
830M03 - Memory Pack (1 Bank 16 k RAM/ 4 Banks 16 k ROM)** ${ }^{* 1}$
830M04 - Memory Pack (2 Banks 16 k RAM/ No ROM)** ${ }^{*}$.
830M05 - Memory Pack (2 Banks 16 k RAM/ 1 Bank 16 k ROM$)^{* 1}$.
830M06 - Memory Pack (2 Banks 16 k RAM/ 4 Banks 16 k ROM) ${ }^{* 1}$.
830M07 - Memory Pack (3 Banks 16 k RAM No ROM) ${ }^{* 1}$.
830M08 - Memory Pack (3 Banks 16 k RAM/ 1 Bank 16 k ROM)* ${ }^{*}$.
830M09 - Memory Pack (3 Banks 16 k RAM/ 4 Banks 16 k ROM) ${ }^{* 1}$
Software Options Available with Above*1
Option 01 - 830S01 Asynchronous. \$140
Option 02 - 830S02 Bisync (EBCDIC). \$175
Option 03 - 830S03 Link Test.
\$195
Option 04 - 830S04 HDLC/X. 25 . $\$ 275$
Option 06 - 830S06 Bisync (ASCII). \$175
Option 10 - 830S10 SDLC/SNA (FID2). \$275
Option 11 - 830S11 Extended Monitor. \$250 Option 13 - 830S13 SDLC/SNA (FID3). \$275 Option 1A - 830SDA ROM Development Aid.
\$275 Option 2A - 830SDA with Option 01.
${ }^{* 1}$ For use with the 836 and 835 only.

834RDA - ROM Development Aid.
$\$ 450$ 830RDA - ROM Development Aid. 834 R01 - Asynchronous ROM Pack. 830 R01 - Asynchronous ROM Pack. 834R02A - Bisynchronous (EBCDIC) ROM Pack.
834R03A - Link Test ROM Pack.
830R03 - Link Test ROM Pack. 834R04 - HDLC/X. 25 ROM Pack.
834R05 - Extended Instruction ROM Pack.
834R06 - Bisynchronous (ASCII) ROM Pack. 834 R07 - PARS/IPARS ROM Pack.
830 R07 - PARS/IPARS ROM Pack.
$834 R 10$ - SDLC/SNA (FID2) ROM Pack.
830 R10 - SDLC/SNA (FID2) ROM Pack.
834 R11 - Extended Monitor ROM Pack.
834 R13 - SDLC/SNA (FID3) ROM Pack. 830 R13 - SDLC/SNA (FID3) ROM Pack.
$\$ 450$
\$280
\$280

\$350

$\$ 370$

\$370

$\$ 450$

\$175

\$350

\$375

\$375
$\$ 450$
$\$ 450$
$\$ 425$
\$450
$\$ 450$
Option 12 - (834R02A, 834R06, 834R10, 834R13 ROM Packs Only) Download with ATT Application.

OPTIONAL ACCESSORIES

Service Manual — Order 070-5600-00
$\$ 100$
Carrying Case - Order 016-0672-00 $\$ 80$
Shielded "T" Cable - Order 175-9709-00 \$75
RS-449 Interface Adaptor - (A6741) \$750
Two-Wire Interface Adaptor - (A6742)
\$395
RS-232 V. 24 Tri-State Break-Out Box (A6743)
\$265
V. 35 Interface Adaptor - (A6744) $\quad \mathbf{8 8 0}$

Current Loop Interface Adaptor -
Order 015-0361-00.
\$350
New accessories continually being introduced. Please check with sales engineer at local sales office.
A variety of training accessories are also available including workbooks, videotapes, etc.
Additional information available in the 830 Series Brochure (request number 22-W-5910) and in the $830 \mathrm{Se}-$ ries Selection Guide (request number 22-W-5901). Request copies at your local sales office.

LOGISTICS INFORMATION

For logistics data, see Tektronix Logistics Data Book.

TEKTRONIX METALLIC CABLE TESTERS: ACCURATE TIME DOMAIN REFLECTOMETRY FOR FIELD MAINTENANCE, LONG-RANGE AND SHORT-RANGE

1502/1503

Portable. Battery-Powered, Self-Contained, Lightweight

Rugged. Meets MIL-T-28800, Type III, Class 3, Style A

Versatile. Tests any Type Paired-Conductor and Coax Cable

Easy to Use. Produces Results with Minimal Operator Training

The 1502 is appropriate for testing coax and other cables in aircraft, ships, radar sites, etc. It uses a step-pulse and provides fault resolution to 0.6 inch on short cables. The 1502 performs to a maximum of 2000 feet.
The 1503 tests long runs of coax or twisted pair cables in telephone and other communications applications. It provides high-energy, $1 / 2$-sine-shaped pulses. Range of the 1503, dependent upon cable type, is up to 50,000 feet.

ORDERING INFORMATION	
1502 Short Range TDR Cable Tester	\$6,200
1503 Long Range TDR Cable Tester	\$5,200
Option 01 - (1503 Only) Distance Cal.	+\$375
Option 02 - (1502 Only) With Static Suppressor.	+\$150
Option 04 - With Cable Tester Recorder.	+\$1,050
Option 05 - With Cable Tester Metric Version.	NC
Option 76 - GM (P7) Phosphor.	+\$35

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES (1502)

Chart Recorder — Order 016-0506-04
Chart Paper - One Roll. Order 006-1658-01
Chart Paper - 100 Roll Case.
Order 006-1658-02
Accessory Pouch — Order 016-0351-00 \$25
Impedance Adaptor -
50/75 Ω. Order 017-0091-00*1
50/93 Ω. Order 017-0092-00*1
\$185
50/125 Ω. Order 017-0090-00*
\$185

* Should be purchased with following two parts:
Connector, BNC Female-to-GR -Order 017-0063-00$\$ 43$
Connector, BNC Male-to-GR -Order 017-0064-00$\$ 75$
OPTIONAL ACCESSORIES (1503)
Chart Recorder - Order 016-0506-06 \$1,100
Chart Paper - One Roll. Order 006-1658-01 \$7.50
Chart Paper - 100 Roll Case.Order 006-1658-02$\$ 550$
Isolation Network - (For balanced line). Order 013-0169-00 \$265
Adaptor Cables (BNC-to-Clips) -Nine foot. Order 012-0671-02$\$ 75$30 foot. Order 012-0671-03\$85Direct Current Adaptor with Filter -25 foot cord (for use with standard 12 V auto-mobile lighter plug with negative ground).Order 015-0327-00\$250
Pulse Inverter - Order 015-0495-00 $\$ 75$
A variety of training accessories are also available including workbooks, videotapes, etc.Additional information available in the 1500 Series $T D R$Cable Testers Brochure (request number 27-AX-3004-4).Request copies at your local sales office.

Prices, terms and conditions may change without notice.

LOGISTICS INFORMATION

For logistics data, see Tektronix Logistics Data Book.

SPECTRUM ANALYZERS, SWEPT FREQUENCY SYSTEMS \& IBM PC BASED MEASUREMENT PACKAGES

Choose among a large selection of capabilities: Top RF performance, portability and full programmability in the 490 Series; versatility and high performance economy in the 7000 Series plug-ins-from baseband through millimeter-wave.
Enhance your productivity, measurement repeatability and utility with TekSPANS—the NEW Family of Spectrum Analyzer Applications Software-available for IBM PC, Tek or HP controllers. See page 158.

PRODUCT SELECTION GUIDE

	7L5	7 L 12	7L14	496/496P	7L12 Opt 39	7L14 Opt 39	492/492P	494/494P
Frequency Range	20 Hz to 5 MHz	$\begin{gathered} 100 \mathrm{kHz} \text { to } \\ 1.8 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 10 \mathrm{kHz} \text { to } \\ 1.8 \mathrm{GHz} \end{gathered}$	1 kHz to 1.8 GHz	$\begin{gathered} 100 \mathrm{kHz} \text { to } \\ 2.5 \mathrm{GHz} \end{gathered}$	$1 \mathrm{kHz} \text { to }$ $2.5 \mathrm{GHz}$	50 kHz to 220 GHz	10 kHz to $325 \mathrm{GHz}$
Minimum Resolution	10 Hz	300 Hz	30 Hz	30 Hz	300 Hz	30 Hz	100 Hz	30 Hz
Average Noise Level: (1 kHz BW)	$-133 \mathrm{dBV}$	$-113 \mathrm{dBm}$	$-115 \mathrm{dBm}$	$-115 \mathrm{dBm}$	$-113 \mathrm{dBm}$	$-115 \mathrm{dBm}$	- 110 dBm	$-110 \mathrm{dBm}$
Amplitude Measurement Range:	$\begin{aligned} & +8 \mathrm{dBV} \text { to } \\ & -148 \mathrm{dBV} \end{aligned}$	$\begin{gathered} +30 \mathrm{dBm} \text { to } \\ -115 \mathrm{dBm} \end{gathered}$	$\begin{aligned} & +30 \mathrm{dBm} \text { to } \\ & -130 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +30 \mathrm{dBm} \text { to } \\ -126 \mathrm{dBm} \end{gathered}$	$\begin{aligned} & +30 \mathrm{dBm} \text { to } \\ & -115 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +30 \mathrm{dBm} \text { to } \\ & -130 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +30 \mathrm{dBm} \text { to } \\ & -118 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{gathered} +30 \mathrm{dBm} \text { to } \\ -121 \mathrm{dBm} \end{gathered}$
GPIB Capability: Semiautomatic w/7854	v	v	v		v	v		
Full				496P Only			492P Only	494P Only
Tracking Generator: Opt 25	v							
TR 502		\checkmark	v		v*1	V*1		
TR 503				V*1			\checkmark	\checkmark
Frequency Accuracy:	$\begin{gathered} \pm(5 \mathrm{~Hz}+2 x \\ \left.10^{-6} \text { Dot Freq }\right) \end{gathered}$	$\begin{gathered} \pm(8 \mathrm{MHz}+1 \% \\ \text { of Dial) } \end{gathered}$	$\begin{gathered} \pm(5 \mathrm{MHz}+2 \% \\ \text { of Span) } \end{gathered}$	$\begin{gathered} \pm(5 \mathrm{MHz}+2 \% \\ \text { of Span }) \end{gathered}$	$\begin{gathered} \pm(8 \mathrm{MHz}+1 \% \\ \text { of Dial) } \end{gathered}$	$\begin{gathered} \pm(5 \mathrm{MHz}+2 \% \\ \text { of span }) \end{gathered}$	$\begin{gathered} \pm(0.2 \% \text { or } \\ 5 \mathrm{MHz} \\ +2 \% \text { Span }) \end{gathered}$	$\begin{aligned} & \pm[(2 \% \text { Span or } \\ & \text { RES BW }) \\ & +(C F \times R E F \text { Error }) \\ & +(2 N+25 \mathrm{~Hz})] \\ & \hline \end{aligned}$
Page	170	168	166	159	169	167	162	155
Prices Begin At	*2	*2	*2	\$24,350/\$28,950	$\cdot 2$	*2	\$21,750/\$30,000	\$40,425/\$44,650

[^14]Waveguide Mixers from 18 GHz to 325 GHz , see page 165 .
Tracking Generators, see page 172.
Accessories, see page 174.

494P/494

The 494P complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Built-In Frequency Counter to 325 GHz

HELP Manual in ROM
Nonvolatile Memory Storage
Keypad Data Entry
Direct Plot Capability
Alternate Language Options
GPIB/Fully Programmable (494P)
Full Three Year Warranty

More accuracy, convenience, performance, and value
The Tek 494 and fully programmable 494P are altogether advanced, innovative spectrum analyzers offering portability, ease of use and unprecedented versatility. They deliver maximum utility and benefits at a surprisingly reasonable cost.

Counter center frequency accuracy, zero long-term drift, superior range and resolution in a compact, portable package

The 494 offers the widest amplitude calibrated frequency range of any spectrum analyzer available: 10 kHz to 21 GHz in coax, and 325 GHz using one or more of ten Tek waveguide mixers.
A 4 GHz signal can be measured to within 41 Hz with 1 Hz readout resolution $30 \mathrm{~min}-$ utes after turn on. And the 494's zero drift will insure long-term measurement repeatability on that frequency.

You get 30 Hz resolution bandwidth to $60 \mathrm{GHz}, 100 \mathrm{~Hz}$ resolution bandwidth to 220 GHz and 1 kHz bandwidth to 325 GHz with excellent sensitivity and low phase noise. Popular features common to other 490 Series spectrum analyzers are standard on the 494, including digital storage, manual to programmable convertibility, and environmentalization per MIL-T-28800C, Type III, Class 3, Style C.

An exclusive pushbutton HELP mode makes the 494 accessible to operators of widely varying skills and experience. At the touch of a button or twist of a knob the 494 tells you what to expect from nearly every control-in plain English. Plus optional French, German, or Spanish. Pull-out reference cards supply an additional level of detail. Having answers available at your fingertips minimizes training time and reduces complexity.

Center frequency, span/division, amplitude scaling and reference level selected either by $\mu \mathrm{P}$-aided three-knob operation or direct pushbutton entry
In push-button mode, variables can be set to nonstandard values, i.e., $7 \mathrm{~dB} / \mathrm{div}$ vertical mode or $9.2 \mathrm{kHz} /$ div frequency span.
Nonvolatile memory retains up to ten set-ups and nine displays-for rapid measurements and easy data comparison. One memory location stores on-screen settings to quickly bring the analyzer back if power is turned off.
The fully programmable 494P provides easy-to-implement automated measurements. The 494P is straightforward to interface to our GPIB controllers...or yours. If you want to free your controller but still get graphics output, a convenient front panel PLOT button will send display data to a plotter.
Now increase your ATE capabilities with the NEW TekSPANS general RF applications software in IBMPC, HP or Tek controller versions. See page 158.
In strong testimony of the incomparable reliability of the 494 and 494P, Tek offers the first spectrum analyzer three year warranty. Beyond the first three years of warranty coverage, Tek will extend your service coverage for two years providing all your calibration and maintenance needs for the first five years.

CHARACTERISTICS

The following characteristics and features apply to the 494/494P Spectrum Analyzer after a 30-minute warmup period unless otherwise noted

FREQUENCY RELATED

Center Frequency Range - 10 kHz to 21 GHz standard; amplitude specified coverage to 325 GHz with optional Tektronix waveguide WM 490 Series mixers.
Center Frequency Accuracy - Bands 1 and $5-12$ with span/div $>200 \mathrm{kHz}$ and bands 2-4 with span/div $>100 \mathrm{kHz}$.
$\pm[(20 \%$ of span/div or res bw, whichever is greatest) + (CF \times Ref Freq Error) $+(\mathrm{N} \times$ $15 \mathrm{kHz})$].
Bands 1 and $5-12$ with span/div $\leqslant 200 \mathrm{kHz}$ and Bands $2-4$ with span/div $\leqslant 100 \mathrm{kHz}$.
$\pm[(20 \%$ of span/div or res bw, whichever is greater) $+(\mathrm{CF} \times$ Ref Freq Error $)+(2 \mathrm{~N}+$
25 Hz)].
Center Frequency Readout Resolution - At least 10% of span/div.
Signal Counter Accuracy - $\pm[($ Counter Frequency \times Ref Freq Error) $+(10+2 \mathrm{~N}) \mathrm{Hz}+$ 1 LSD)].
Counter Sensitivity - Center Screen S/N $\geqslant 20 \mathrm{~dB}$.
Counter Frequency Readout Resolution 1 Hz through 1 GHz .
Reference Frequency Error (Aging Rate) $1 \times 10^{-9} /$ day, $1 \times 10^{-7} /$ year.
Frequency Span/Division Range - $50 \mathrm{~Hz} / \mathrm{div}$ to $500 \mathrm{MHz} / \mathrm{div}$ in coaxial bands (10 kHz through 21 GHz) and $50 \mathrm{~Hz} /$ div to $10 \mathrm{GHz} / \mathrm{div}$ in waveguide bands (18 GHz through 325 GHz), plus zero span and maximum span. Any span to two significant digits (within 50 Hz and up to 10 GHz) can also be selected with the Data Entry Keyboard.
Frequency Span/Division Accuracy - Within 5% of the selected span/div over the center eight division of the ten division CRT display.
Resolution Bandwidth (6 dB) -30 Hz then 100 Hz to 1 MHz in decade steps plus auto. Ac^{-} curacy: Within 20%.
Resolution Shape Factor ($60 \mathrm{~dB} / 6 \mathrm{~dB}$) $7.5: 1$ or less, 100 Hz through 1 MHz and $15: 1$ or less for 30 Hz .
Residual FM (After One Hour Warmup) Bands 1 and $5-12$ with span/div $>200 \mathrm{kHz}$, and bands $2-4$ with span/div $>100 \mathrm{kHz}: \leqslant(7 \mathrm{kHz}) \mathrm{N}$ total excursion in 20 ms .
Bands 1 and $5-12$ with span/div $\leqslant 200 \mathrm{kHz}$, and bands $2-4$ with span/div $\leqslant 100 \mathrm{kHz}: \leqslant(10+2 \mathrm{~N})$ Hz total excursion in 20 ms .
Long-Term Drift (at Constant Temperature and Fixed Center Frequency and After OneHour Warmup) - Bands 1 and 5-12 with span/ div $>200 \mathrm{kHz}$, and bands $2-4$ with span/div $>100 \mathrm{kHz}: \leqslant(5 \mathrm{kHz}) \mathrm{N}$ per minute of sweep time. Bands 1 and $5-12$ with span/div $\leqslant 200 \mathrm{kHz}$, and Bands $2-4$ with span/div $\leqslant 100 \mathrm{kHz}: \leqslant 50 \mathrm{~Hz}$ per minute of sweep time.
Noise Sidebands - At least -75 dBc at 30 times the resolution bandwidth offset from the center frequency (-70 dBc for 100 Hz resolution bandwidth or less).

Freq Range	SENSITIVITY AND FREQUENCY RESPONSE				
	LO Harmonic Number	Ave Noise Level For $\mathbf{1 k H z}$ Res BW	Minimum Frequency Counter Sensitivity Minimum Res BW	Freq Response Referenced To 100 MHz With 10 dB Attn	Freq Response About the Mid Point Between Two Extremes
$10 \mathrm{kHz}-1.8 \mathrm{GHz}$	1	$-110 \mathrm{dBm}$	$-101 \mathrm{dBm}$	$\pm 3.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$
$50 \mathrm{kHz}-1.8 \mathrm{GHz}$	1	$-110 \mathrm{dBm}$	-101 dBm	$\pm 2.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$
$1.7 \mathrm{GHz}-5.5 \mathrm{GHz}$	1	$-110 \mathrm{dBm}$	$-101 \mathrm{dBm}$	$\pm 3.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$3.0 \mathrm{GHz}-7.1 \mathrm{GHz}$	1	$-110 \mathrm{dBm}$	$-101 \mathrm{dBm}$	$\pm 3.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$\begin{gathered} 5.4 \mathrm{GHz}-18.0 \mathrm{GHz} \\ \text { (to } 12 \mathrm{GHz} \text {) } \\ \text { (12 GHz-18 GHz) } \end{gathered}$	3	$\begin{aligned} & -95 \mathrm{dBm} \\ & -90 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & -86 \mathrm{dBm} \\ & -81 \mathrm{dBm} \end{aligned}$	$\pm 4.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$
$15.0 \mathrm{GHz}-21.0 \mathrm{GHz}$	3	$-85 \mathrm{dBm}$	$-76 \mathrm{dBm}$	$\pm 6.5 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$

$18.0 \mathrm{GHz}-26.5 \mathrm{GHz}$ WM 490K	6	$-100 \mathrm{dBm}$	-91 dBm	$\pm 6.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$
$26.5 \mathrm{GHz}-40 \mathrm{GHz}$ WM 490A	10	$-95 \mathrm{dBm}$	$-86 \mathrm{dBm}$	$\pm 6.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$
$33 \mathrm{GHz}-50 \mathrm{GHz}$ WM 490Q	10	$-95 \mathrm{dBm}$	$-86 \mathrm{dBm}$	$\pm 6.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$
$40 \mathrm{GHz}-60 \mathrm{GHz}$ WM 490U	10	$-95 \mathrm{dBm}$	$-86 \mathrm{dBm}$	$\pm 6.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$50 \mathrm{GHz}-75 \mathrm{GHz}^{*}$ WM 490V @ 50 GHz @ 75 GHz	15	$\begin{array}{r} -95 \mathrm{dBm} \\ -90 \mathrm{dBm} \\ \hline \end{array}$	$\begin{aligned} & -86 \mathrm{dBm} \\ & -81 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$\begin{aligned} & 60 \mathrm{GHz}-90 \mathrm{GHz}^{*} \\ & \begin{array}{ll} \text { WM 490E } & \text { @ } 60 \mathrm{GHz} \\ & \text { @ } 90 \mathrm{GHz} \\ \hline \end{array} \end{aligned}$	15	$\begin{aligned} & -95 \mathrm{dBm} \\ & -85 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & -89 \mathrm{dBm} \\ & -79 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$75 \mathrm{GHz}-110 \mathrm{GHz}$ WM 490W @ 75 GHz @ 110 GHz	23	$\begin{array}{r} -90 \mathrm{dBm} \\ -80 \mathrm{dBm} \\ \hline \end{array}$	$\begin{aligned} & -84 \mathrm{dBm} \\ & -74 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$90 \mathrm{GHz}-140 \mathrm{GHz}$ WM 490F @ 90 GHz @ 140 GHz	23	$\begin{aligned} & -85 \mathrm{dBm} \\ & -75 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & -79 \mathrm{dBm} \\ & -69 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$\begin{aligned} & 110 \mathrm{GHz}-170 \mathrm{GHz}^{*} \\ & \text { WM 490D } \begin{array}{r} \text { @ } 110 \mathrm{GHz} \\ \\ \text { @ } 170 \mathrm{GHz} \\ \hline \end{array} \end{aligned}$	37	$\begin{array}{r} -80 \mathrm{dBm} \\ -70 \mathrm{dBm} \\ \hline \end{array}$	$\begin{aligned} & -74 \mathrm{dBm} \\ & -64 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$\begin{aligned} & 140 \mathrm{GHz}-220 \mathrm{GHz}^{*} \\ & \text { WM 490G } \begin{array}{r} \text { @ } 140 \mathrm{GHz} \\ \\ \text { @ } 220 \mathrm{GHz} \\ \hline \end{array} \end{aligned}$	37	$\begin{aligned} & -75 \mathrm{dBm} \\ & -65 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & -69 \mathrm{dBm} \\ & -59 \mathrm{dBm} \\ & \hline \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$\begin{aligned} & 220 \mathrm{GHz}-325 \mathrm{GHz}^{*} \\ & \begin{array}{l} 119-1728-00 \text { @ } 220 \mathrm{GHz} \\ \text { @ } 325 \mathrm{GHz} \end{array} \end{aligned}$	56	$\begin{aligned} & -65 \mathrm{dBm} \\ & -50 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & -50 \mathrm{dBm} \\ & -35 \mathrm{dBm} \end{aligned}$	$\pm 6.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$

- Typical values and with frequency response indicated over any 5 GHz range.

AMPLITUDE RELATED

Reference Level Range (Full Screen, Top of Graticule) - -117 dBm to +40 dBm (+40 dBm , includes maximum safe input of +30 dBm and 10 dB gain of IF gain reduction) for $10 \mathrm{~dB} /$ div and $2 \mathrm{~dB} /$ div \log modes. 1 W maximum safe input in the linear mode.
Vertical Display Modes - $10 \mathrm{~dB} / \mathrm{div}, 2 \mathrm{~dB} / \mathrm{div}$, and linear. Any integer between $1-15 \mathrm{~dB} /$ div can also be selected with the data entry keyboard.
Reference Level Steps - $10 \mathrm{~dB}, 1 \mathrm{~dB}$ and 0.25 dB for relative level (Δ) measurements in Log mode. $1-2-5$ sequence and 1 dB equivalent increments in Lin mode. The RF attenuator steps 10 dB for reference level changes above -30 dBm (-20 dBm when minimum noise is active) unless minimum RF attenuation is greater than normal. The IF gain increases 10 dB for each reference level change below -30 dBm (-20 dBm when minimum noise is active).
Display Dynamic Range -80 dB at $10 \mathrm{~dB} / \mathrm{div}$, 16 dB at $2 \mathrm{~dB} /$ div and eight division in linear mode.

Reference Level Accuracy - Accuracy is a function of the characteristics listed below.
Calibrator: (Cal out) See output signal characteristics on next page.
Input Attenuator Accuracy: Dc to 1.8 GHz $0.5 \mathrm{~dB} / 10 \mathrm{~dB}, 1 \mathrm{~dB}$ max accumulative. 1.8 GHz to $18 \mathrm{GHz}: 1.5 \mathrm{~dB} / 10 \mathrm{~dB}, 3 \mathrm{~dB}$ max accumulative. 18 GHz to $21 \mathrm{GHz}: 3.0 \mathrm{~dB} / 10 \mathrm{~dB}, 6 \mathrm{~dB}$ max accumulative.
Frequency Response: See Frequency Response Table on this page.
Display Amplitude Accuracy: $\pm 1.0 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum cumulative error of $\pm 2.0 \mathrm{~dB}$ over the 80 dB window and $\pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to a maximum $\mathrm{cu}-$ mulative error of $\pm 1.0 \mathrm{~dB}$ over the 16 dB window. Lin Mode is 5% of full scale.
Resolution Bandwidth Gain Variation: $\pm 0.4 \mathrm{~dB}$, after Cal routine has been executed and with respect to the 1 MHz filter.
IF Gain Variation: Gain steps are monotonic (same direction) with the following limits: Within $0.2 \mathrm{~dB} / \mathrm{dB}$ to a maximum of $0.5 \mathrm{~dB} / 9 \mathrm{~dB}$, except at the decade transitions of -19 dBm to $-20 \mathrm{dBm},-29 \mathrm{dBm}$ to $-30 \mathrm{dBm},-39 \mathrm{dBm}$ to $-40 \mathrm{dBm},-49 \mathrm{dBm}$ to -50 dBm , and -59 dBm to -60 dBm , where an additional 0.5 dB can occur for a total of 1.0 dB per decade. Maximum deviation over the 97 dB range is within $\pm 2 \mathrm{~dB}$.

SPURIOUS RESPONSES

Residual (No Input Signal Referenced to Mixer Input) - -100 dBm or less. Fundamental mixing Bands 1-3.
Harmonic Distortion (cw Signal Minimum Distortion Mode) - Typically -60 dBc for -40 dBm signal in the minimum distortion mode to 21 GHz . At least -100 dBc for preselected bands 1.7 GHz to 21 GHz .
Third-Order Intermodulation Distortion (Minimum Distortion Mode) - At least 70 dB down from two full screen signals within any frequency span. At least 100 dB down for two signals spaced more than 100 MHz apart from 1.7 GHz to 21 GHz for preselected bands.
LO Emissions (No RF Attenuation) --70 dBm maximum to 21 GHz .

INPUT SIGNAL

RF Input - Type N female connector.
Input Impedance - 50Ω.
Maximum VSWR ${ }^{\star 1}$ with $\geqslant 10 \mathrm{~dB}$ Attenuation

Frequency Range	Typical	Specified Maximum
Dc to 2.5 GHz	$1.2: 1$	$1.3: 1$
2.5 GHz to 6.0 GHz	$1.5: 1$	$1.7: 1$
6.0 GHz to 18 GHz	$1.9: 1$	$2.3: 1$
18 GHz to 21 GHz	$2.7: 1$	$3.5: 1$
50 kHz to 2.5 GHz	$1.9: 1$	
2.5 GHz to 6.0 GHz	$1.9: 1$	
6.0 GHz to 18.0 GHz	$2.3: 1$	
18.0 GHz to 21.0 GHz	$3.0: 1$	

* At Type N female connector to internal mixer

Input Level (Optimum Mixer Level for Minimum Distortion Linear Operation) $-\quad-30 \mathrm{dBm}$ (minimum distortion control setting); 1 dB gain compression -23 dBm .
Optimum Mixer Level for Minimum Noise Display Dynamic Range Enhanced Operation --20 dBm (minimum noise control setting); 1 dB gain compression -18 dBm .
External Reference Frequency - 1 MHz , $2 \mathrm{MHz}, 5 \mathrm{MHz}$ or $10 \mathrm{MHz} \pm 5 \mathrm{ppm}$ (minimum).
Waveshape: Sinewave, ECL, TTL duty cycle 40% 60\%.
Input Impedance: 50Ω ac, 500Ω dc.
Power: -15 dBm to +15 dBm .
Maximum Safe Input Level (RF Attenuation at Zero dB) -+30 dBm (1 W) continuous, 75 W peak for $1 \mu \mathrm{~s}$ or less pulse width and 0.001 maximum duty factor (attenuation limit). Dc must never be applied to RF input.

OUTPUT SIGNAL

Calibrator - (Cal Out) $-20 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$, $100 \mathrm{MHz} \times$ reference frequency error.
1st and 2nd LO - Provides access to the output of the respective local oscillators (1st LO +7.5 dBm minimum to a maximum of +15 dBm ; 2nd LO -22 dBm minimum to a maximum of +15 dBm). These ports must be terminated in 50Ω at all times. Vertical Out - Provides $0.5 \mathrm{~V} \pm 5 \%$ of signal/ div of video above and below the center line.
Horizontal Out - Provides 0.5 V either side of center. Full range -2.5 V to $+2.5 \mathrm{~V} \pm 10 \%$.
Pen Lift $-T \mathrm{~L},+5 \mathrm{~V}$ nominal to lift pen. IF Out - Output of the 10 MHz IF. Level is approximately -5 dBm for a full screen signal at -30 dBm input reference level. Nominal impedance 50Ω.
Probe Power - Provides operating voltages $(+5 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V}$, and ground) for active probes:

IEEE Standard 488-1978 Interface Function Subsets Implemented (494P) - Source Handshake: SH1. Acceptor Handshake: AH1. Talker: T5. Listener: L3. Service Request: SR1. Remote/Local: RL1. Parallel Poll: PP1. Device Clear: DC1. Device Trigger: DT1. Controller: C0.

GENERAL CHARACTERISTICS
For details see page 164.

ENVIRONMENTAL CHARACTERISTICS

Per MIL-T-28800C Type III, Class 3, Style C. For Details see page 160 .

ORDERING INFORMATION

494 Spectrum Analyzer
\$42,175
Includes: Diplexer assembly ($015-0385-00$); 6 ft N to N connector 50Ω coax cable, ($012-0114-00$); N male to BNC female adaptor ($103-0045-00$); 18 in BNC to BNC connector, 50Ω coax cable (012-0076-00); CRT mesh filter ($378-0726-01$); two 4 A fast blow fuse ($159-0017-00$); 115 V power cord (161-0118-00); cord clamp (343-0170-00); CRT visor (016-0653-00); amber CRT light filter ($378-0115-01$); gray CRT light filter (378-0115-02); blue CRT light filter ($378-0115-00$); operator manual ($070-4418-00$); operator handbook (070-4419-00); service manual, volume 1 (070-4416-00); service manual, volume 2 (070-4417-00).
494P Spectrum Analyzer
\$46,400
Includes: In addition to the above a 2 m , double shielded GPIB cable (012-0630-03); programmer manual (070-4415-00).

OPTIONS (494/494P)

Option 08 - Delete External Mixer Capability. Deletes internal switching, front panel connector and external diplexer to connect and use external wavequide mixers. Limits frequency range to 10 kHz to 21 GHz (coaxial input).
Option 12 - Help Mode Text. CRT prompts selectable between German and English. Pull-out reference cards in German.
Option 13 - Help Mode Text. CRT prompts selectable between French and English. Pullout reference cards in French.
Option 14 - Help Mode Text. CRT prompts selectable between Spanish and English. Pull-out reference cards in Spanish.
Option 20 - General Purpose 12.4 GHz to 40 GHz Waveguide Mixer Set. (12.4 GHz to 18 GHz , 18 GHz to 26.5 GHz , and 26.5 GHz to 40 GHz) and hardware.
Option 21 - High Performance 18 GHz to 40 GHz Waveguide Mixer Set. (18 GHz to 26.5 GHz and 26.5 GHz to 40 GHz) and hardware.
Option 22 - High Performance 18 GHz to 60 GHz Waveguide Mixer Set. (18 GHz to 26.5 GHz 26.5 GHz to 40 GHz , and 40 GHz to 60 GHz) and hardware.
Option 30 - Rackmount. 19 inch rack width with front panel input/outputs. See page 161.
Option 31 - Rackmount. 19 inch rack width with rear panel input/output capability. See page 161.
Option 32 - Benchmount. Adds side and top panels, carrying handles and feet for a stackable bench top configuration. See page 161.
$+\$ 900$
$+\$ 2,525$
$+\$ 4,250$
$+\$ 790$
$+\$ 840$
$+\$ 940$

Option 41 - Digital Radio. Provides wider bandwidth preselector, 30 Hz video filter with 100 kHz resolution bandwidth and 5 MHz span/div optimized for 6 GHz and 11 GHz D/R
Option $42-110 \mathrm{MHz}$ IF Output. Provides 5 MHz bandwidth at 6 dB points.
$+\$ 1,500$
Option 45 - (494P only) MATE/CIIL.
\$4,995

CONVERSION KIT

494 to 494P - Conversions are made by your nearest Tektronix Service Center.
Order 040-1140-01
\$5,300

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
WARRANTY-PLUS SERVICE PLAN
SEE PAGE 457

94) 2 Calibrations.	+\$695
M1 - (494P) 2 Calibrations.	+\$715
M2 - (494) +2 Years Service.	+\$1,330
M2 - (494P) + 2 Years Service.	+\$1,350
M3 - (494) 4 Calibrations +2 Years Service.	+\$2,725
M3 - (494P) 4 Calibrations +2 Years Service.	+\$2,785
M4 - (494) 5 Calibrations.	+\$1,590
M4 - (494P) 5 Calibrations.	+\$1,630
M5 - (494) 9 Calibrations +2 Years Servic	+\$4,145
M5 - (494P) 9 Calibrations +2 Years Service.	+\$4,240

1405 TV Sideband Adaptor - 525/60
Markers. See page 173.
\$5,780
TV Trigger Synchronizer -
Order 015-0261-01
$\$ 450$
Hard Case (Transit) — Order 016-0658-00 \$725
Soft Case - Order 016-0659-00
\$100
Rear Panel Protective Cover -
Order 337-3274-00
\$5
Lab Cart - K213. (See page 424.) \$595
Camera - C-5C. (See page 416.) \$495
Note: 490 Series spectrum analyzers are compatible with all Tektronix C-50 Series cameras.

PERIPHERAL PRODUCTS FOR 494P SPECTRUM ANALYZER

4041 System Controller (See page 298.) \$3,995
4105A Color Terminal (See page 58.) \$3,495
4695 Color Graphics Copier (See page 76.)

NEM TEKSPANS' Software (GRASP®)

NEW TekSPANS Software Family to Automate Spectrum Analysis with a Choice of Controllers

Value Packed Spectrum Analyzer Software Expands the Utility of Your IBM PC and Compatibles
Highly Versatile Software Package Links PC to IEEE Bus

Bundled Packages Including Spectrum
Analyzers, PC Interface and Application Software

Easy, Menu Driven Operation for First Time Users

Multiple Site/Remote Site Monitoring for RF Equipment

Tek's GRASP (General RF Applications Software Package) is the first in a family of spectrum analyzer software packages called TekSPANS. GRASP is designed to capitalize on the power of the 490 Series programmable spectrum analyzers and a choice of controllers such as Tek's 4041, IBM PCs and compatibles, and HP Series 200.

Integration of the user's routines into TekSPANS software is very simple, and means that there is now an opportunity to match measurement needs and applications with the right mix of hardware/software and support.
The implementation of the GRASP software package helps improve the accuracy, repeatability, and speed of your measurements. The data logging capability enhances your ability to document, store, retrieve, and manipulate data derived from your test devices. And the front panel setup streamlines the measurement task.

This highly versatile software package offers many applications/utility routines which are selected through easy menu-driven operation. Even a nontechnical operator has immediate access to operations such as swept frequency measurements, identifying true signals from false responses, and performing signal analysis, including measurements of harmonic distortion and signal-tonoise ratio.
From GRASP's main menu, a user selects among any of the submenus for measurements, filter tests, signal search routines, waveform operations and utilities. Selections are made by simply pressing the appropriate function key shown on the screen. Prompts guide the user through each measurement task.

For example, users can utilize a cursors routine for the 490P display on their terminal
screen. It calculates and displays both the absolute amplitude and frequency of one or two marked signals plus the relative amplitude and frequency difference between two markers. The cursors are used to select the points of interest on the display.
The software enables even first-time users to simplify and automate many complex operations and measurements of multiple devices, either locally or at a distant remote site. By allowing a single operator to monitor numerous sites, GRASP provides a powerful, convenient, and time-saving method for monitoring RF equipment at distant locations.
Software licensing for this package is "break the seal".

ORDERING INFORMATION

S26RF00 490P General RF Applica-

 tions Software Package (GRASP)Includes: Software on appropriate media (see option detail below), license agreement, and user's manual.

OPTIONS

Option 01 - IBM AT High Density Floppy Disk.
Option 1A - IBM PC Double Density Floppy Disk
Option 02 - HP $98365 \frac{11 / 4}{}$ Inch Double Density Floppy Disk.
Option 2A - HP 98363112 Inch Micro Floppy Disk.
Option 03 - TEK 4041 DC 100 Tape.

496P/496

The 496P complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.
$50 \Omega / 75 \Omega$ Selectable Inputs
$1 \mathbf{k H z}$ to 1800 MHz Coverage
Amplitude Comparison in 0.25 dB Steps
$1 \mathbf{k H z}$ Frequency Resolution in $\Delta \mathrm{F}$ Mode
Fully Calibrated Amplitude in dBm or dBmV
80 dB Dynamic Range
GPIB/Fully Programmable (496P)

The 496 provides high performance spectrum analysis and measurements in the 1 kHz to 1.8 GHz range. Its high stability and 80 dB dynamic range meet your demands for proof-of-performance measurements, on site or on the bench.

The 496 offers state-of-the-art performance and rugged portability. Resolution bandwidth can be varied from 1 MHz to 30 Hz over the entire frequency range. Automatic phase lock stabilization reduces incidental FM to 10 Hz p-p; phase noise sidebands are at least -75 dBc at 30 times the resolution bandwidth offset. Frequency drift with phase lock is typically 1 kHz in ten minutes after 30 minute warmup. And the 496 provides 1 kHz frequency resolution in ΔF mode.

Easy to Use-Anywhere

Simple 1, 2, 3 knob adjustment sets center frequency, frequency span and reference level. Power on sequence automatically normalizes operational settings and provides maximum input protection.

Digital storage eliminates time-consuming display adjustments. Save A, B Minus Save A, Max Hold and Average modes let you compare, subtract, save maximum values or noise average (smooth) your spectral displays. Constant tuning rate lets you position the signal quickly and accurately at any frequency span.

Microprocessor-aided controls take care of the rest. Most-used functions are automatically controlled.

The 496 Goes Where You Go

Lightweight and compact size combine to provide unmatched portability in a laboratory quality spectrum analyzer. With its singlehandle carry, the 496 is easily moved around the design lab or systems test area, to the field, or wherever it may be needed. It even fits under an airplane seat.

75Ω Measurement Capability

Option 07 offers two inputs and calibrations to select from. The standard 50Ω input calibrated in dBm is accessed via the Type N connector. The 75Ω input connector is BNC and provides calibrated dBmV measurement capability when activated. This option includes a 300 kHz resolution filter to enhance VHF/UHF measurements.

Automate Your Spectrum Analysis with the 496P and TekSPANS Software

The 496P is the fully programmable/GPIB compatible version of the 496 Spectrum Analyzer. Operation, features and benefits of the 496P are essentially the same as the 492P.

Enhance the 496P measurement capability with the NEW TekSPANS general RF applications software. See page 158 for a complete description.

Manual instruments can be converted to programmable instruments at a later time. Contact your Tektronix sales engineer for details.

CHARACTERISTICS

The following characteristics and features apply to the 496/496P Spectrum Analyzers after a 30 minute warm-up period unless otherwise noted.

FREQUENCY RELATED
Center Frequency Range -1 kHz to 1800 MHz .
Frequency Accuracy - $\pm(5 \mathrm{MHz}+20 \%$ of span/div).
Frequency Readout Resolution* ${ }^{1}$ - Within 1 MHz . 496P Tune Command Accuracy (Span/div $\leqslant 50 \mathrm{kHz}$): $\pm 7 \%$ or $\pm 100 \mathrm{~Hz}$, whichever is greater.
Delta Frequency Readout Accuracy (Span/ Division $\leqslant 50 \mathbf{k H z})^{* 1}- \pm 5 \%$.
Frequency Span/Division Range - From
$50 \mathrm{~Hz} /$ div to $100 \mathrm{MHz} / \mathrm{div}$ in a $1-2-5$ sequence.
Maximum Span - When selected, the entire effective frequency range is scanned and displayed.
Zero Span - When selected, the horizontal axis of the CRT is calibrated in time (instead of frequency). The span/div readout is changed to time/div.
Frequency Span/Division Accuracy - Within 5% of the selected span/div over the center eight division of the ten division CRT display.
Resolution Bandwidth ($\mathbf{- 6 ~ d B}$) -30 Hz , then 100 Hz to 1 MHz in decade steps, plus an Auto position. Accuracy: Within 20\%.
Resolution Shape Factor ($60 \mathrm{~dB} / 6 \mathrm{~dB}$) 7.5:1 or less. $15: 1$ or less for 30 Hz resolution bandwidth.
Residual FM (Short Term), Phase Lock On $\leqslant 10 \mathrm{~Hz}$ p-p over 20 ms .
Residual FM (Short Term), Phase Lock Off $-\leqslant 1 \mathrm{kHz} \mathrm{p}$-p over 20 ms .
Long Term Drift (at Constant Temperature and Fixed Center Frequency) - $330 \mathrm{~Hz} /$ 10 minutes after one hour warm-up phase locked.
Noise Sidebands - At least -75 dBc at
30 times the resolution bandwidth offset from the center frequency (-70 dBc for 100 Hz resolution bandwidth or less).
${ }^{*} \Delta F$ mode provides measurements to the nearest kHz plus direct center frequency readout to the nearest kHz between 1 kHz and 500 kHz .

AMPLITUDE RELATED

Reference Level Range (Full Screen, Top of Graticule) - -123 dBm to +40 dBm (+40 dBm includes maximum safe input of +30 dBm and 10 dB of IF gain reduction) for $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} /$ div Log modes. $20 \mathrm{nV} /$ div to $2 \mathrm{~V} /$ div (1 W maximum safe input) in Lin mode.
Reference Level Steps - $10 \mathrm{~dB}, 1 \mathrm{~dB}$, and 0.25 dB for relative level (Δ) measurements in Log mode. 1-2-5 sequence and 1 dB equivalent increments in Lin mode. The RF attenuator steps 10 dB for reference level changes above $-30 \mathrm{dBm}(-20 \mathrm{dBm}$ when Minimum Noise is active) unless Minimum RF attenuation is greater than normal. The IF gain increases 10 dB for each Reference Level change below -30 dBm (-20 dBm when Minimum Noise is active).

Display Dynamic Range - 80 dB at $10 \mathrm{~dB} / \mathrm{div}$, 16 dB at $2 \mathrm{~dB} / \mathrm{div}$, and eight division in Linear mode.
Reference Level Accuracy - Accuracy is a function of the following characteristics.
Calibrator: (Cal out). See output signal characteristics.
Input Attenuator Accuracy: $0.3 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum of 0.7 dB over the 60 dB range, 1 kHz to 1.8 GHz
Display Amplitude Accuracy: $\pm 1.0 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum cumulative error of $\pm 2.0 \mathrm{~dB}$ over the 80 dB window and $\pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to a maximum cumulative error of $\pm 1.0 \mathrm{~dB}$ over the 16 dB window. Lin mode is 5% of full scale.
Resolution Bandwidth Gain Variation: $\pm 0.5 \mathrm{~dB}$. IF Gain Variation: $\pm 0.2 \mathrm{~dB} / \mathrm{dB}$ to a maximum of $\pm 2 \mathrm{~dB}$ over the 90 dB range.
Display Flatness $- \pm 1.5 \mathrm{~dB}, 1 \mathrm{kHz}$ to 1800 MHz measured with $\geqslant 10 \mathrm{~dB}$ RF attenuation. Sensitivity

Resolution Bandwidth	Average Noise Level
30 Hz	-127 dBm
100 Hz	-123 dBm
1 kHz	-115 dBm
10 kHz	-105 dBm
100 kHz	-95 dBm
1 MHz	-85 dBm

SPURIOUS RESPONSE

Residual (No Input Signal Referenced to Mixer Input) - -100 dBm or less.
Harmonic Distortion (cw Signal, Minimum Distortion Mode) - Typically -60 dBc for a full-screen signal.
Third-Order Intermodulation Distortion (Minimum Distortion Mode) - At least - 70 dBc below any two on-screen signals within any frequency span.
LO Emissions (0 dB Attenuation) --70 dBm maximum.
Zero Frequency Spur (Referenced to Input Mixer) - -20 dBm or less.

INPUT SIGNAL

RF Input - Type N female connector
Input Impedance - 50Ω; vswr 1.3:1 maximum (1.2:1 typical) with 10 dB or more RF attenuation. 2.0:1 (1.9:1 typical) with 0 dB attenuation.

Input Level (Optimum Level for Linear Operation) - -30 dBm referred to input mixer. Full screen not exceeded and Min Distortion control setting.
1 dB Compression Point --18 dBm , no RF attenuation.
Maximum Input Level (RF Attenuation at $0 \mathrm{~dB})-+30 \mathrm{dBm}$.
Maximum Input Level (with $\mathbf{2 0} \mathbf{d B}$ or More RF
Attenuation) $-\quad+30 \mathrm{dBm}$ (1 W) continuous 75 W peak, pulse width $1 \mu \mathrm{~s}$ or less with a maximum duty factor of 0.001 (attenuation limit). Dc must never be applied to RF input.

OUTPUT SIGNAL

Calibrator - (Cal Out) $-20 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$ at $100 \mathrm{MHz} \pm 1.7 \mathrm{kHz}$.
1st and 2nd LO - Provides access to the output of the respective local oscillators (1st LO +6 dBm minimum to a maximum of +15 dBm , 2nd $\mathrm{LO}-16 \mathrm{dBm}$ minimum to a maximum of $+15 \mathrm{dBm})$. These ports must be terminated in 50Ω at all times.
Vertical Out - Provides $0.5 \mathrm{~V} \pm 5 \%$ of signal/ div of video above and below the centerline.
Horizontal Out - Provides 0.5 V either side of center. Full range -2.5 V to $+2.5 \mathrm{~V} \pm 10 \%$.
Pen Lift - TTL compatible, nominal +5 V to lift pen.
IF Out - Output of the 10 MHz IF. Level is $\approx-16 \mathrm{dBm}$ for a full screen signal at -30 dBm input reference level. Nominal impedance 50Ω.
IEEE Standard 488-1978 Interface Function Subsets Implemented (496P) - Handshake: SH1. Acceptor Handshake: AH1. Talker: T5. Listener: L3. Service Request: SR1. Remote/Local: RL1. Parallel Poll: PP1. Device Clear: DC1. Device Trigger: DT1. Controller: C0.
Probe Power - Provides operating voltages ($+5 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V}$, and ground) for active probes.

GENERAL CHARACTERISTICS

For detailed specifications refer to the 492 on page 164.
Configuration - (Portable) 496/496P total weight including front cover and standard accessories $20 \mathrm{~kg}(44 \mathrm{lb}), 17.5 \mathrm{~cm} \times 32.7 \mathrm{~cm} \times 49.9 \mathrm{~cm}$ (6.9 in $\times 12.9$ in $\times 19.7 \mathrm{in}$) without handle or cover.

ENVIRONMENTAL CHARACTERISTICS

Per MIL-T-28800C Type III, Class 3, Style C.
Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Altitude - Operating: 4500 m ($15,000 \mathrm{ft}$). Nonoperating: $12000 \mathrm{~m}(40,000 \mathrm{ft})$.
Vibration -5 Hz to 55 Hz at 0.020 inch excursion.
Humidity - Operating: 95\%. Nonoperating 120 hours per MLL-STD-810.
Shock - 30 g of half sine 11 ms duration.
Rain Resistance - Drip proof at 16 liters/ hour/square foot.
Drop - 12 inches.
Electromagnetic Compatibility - 490 Series spectrum analyzers meet the requirements of MIL-STD-461B, operating from 48 Hz to 440 Hz power sources, with the exceptions shown below. Conducted Emissions: CE01: 1 kHz to 15 kHz only. CE03 (Narrowband): Full limits. CE03 (Broadband): 15 dB relaxation from 15 kHz to 50 kHz . Conducted Susceptibility: CS01: Full limits. CS02: Full limits. CSO6: Full limits.
Radiated Emissions: RE01: 10 dB relaxation for first ten harmonics of power line frequency, and exceptioned from 30 kHz to 36 kHz . REO2: Full limits.
Radiated Susceptibility: RS01: Full limits. RS02-1: Full limits. RS02-2: To 5 A only. RS03: Up to 1 GHz only.

Option 0775Ω Input．

OPTION 07 CHARACTERISTICS

 50Ω INPUT RELATEDCharacteristics are the same as the base instru－ ments except for the following：
$\mathbf{3 0 0} \mathbf{k H z}$ Resolution Filter－Replaces the 100 kHz filter．
Sensitivity－Average noise level at 300 kHz bw is -90 dBm ．

75Ω INPUT RELATED

Center Frequency Range -1 MHz to 1000 MHz ．
Frequency Response -5 MHz to 1000 MHz $\pm 2.0 \mathrm{~dB}$ ． 1 MHz response typically $\leqslant-3 \mathrm{~dB}$ from 5 MHz response．
Reference Level Range -+88 dBmV to -75 dBmV ．
RF Input－Type BNC female connector．
Input Impedance－ 75Ω ；vswr 1．35：1 maxi－ mum； 5 MHz to 800 MHz ；vswr 1．6：1 maximum， 800 MHz to 1000 MHz （with 10 dB or more of RF attenuation）．
Maximum Input Level（0 dB Attenuation）－ +78 dBmV ．
Input Coupling－ 100 Vdc maximum（ $\mathrm{dc}+\mathrm{ac}$ peak）．
Calibrator（Cal Out）$-+20 \mathrm{dBmV} \pm 0.5 \mathrm{~dB}$ ， 75Ω at $100 \mathrm{MHz} \pm 1.7 \mathrm{kHz}$ ．

ORDERING INFORMATION

496 Spectrum Analyzer
\＄24，300
Includes： 18 in BNC to BNC connectors 50Ω coax cable （012－0076－00）； $6 \mathrm{ft} N$ to N connectors 50Ω coax cable （ $012-0114-00$ ）； 115 V power cord（ $161-0118-00$ ）； N male to BNC female adaptor（ $103-0045-00$ ）；two 4 A fast blow fuse（159－0017－00）； 2 A fast blow fuse（159－0021－00）； cord clamp（ $343-0170-00$ ）；CRT visor（ $016-0653-00$ ）；blue CRT light filter（378－0115－00）；amber CRT light filter （378－0115－01）；gray CRT light filter（378－0115－02）；CRT mesh filter（ $378-0726-01$ ）；operator manual（ $070-3480-00$ ）；op－ erator handbook（ $070-3483-00$ ）；service manual Volume 1 （070－3481－00）；service manual Volume 2 （070－3482－00）．
496P Fully Programmable／GPIB Spec－ trum Analyzer
\＄28，950
Includes：In addition to the above a 2 meter double shield GPIB cable（012－0630－03）；programmers manual （070－3484－00）．

OPTIONS（496／496P）
Option $07-75 \Omega / 50 \Omega$ Input．
Option $30-$ Rackmount． 19 inch rack width
with front panel input／outputs．
$+\$ 750$
$+\$ 790$

Option 31 －Rackmount． 19 inch rack width with rear panel input／output capability．
Option 32 －Benchmount．Adds side and top panels，carrying handles and feet for a stackable benchtop configuration．
Option 42 － 110 MHz IF Output．Provides 5 MHz bandwidth at 6 dB points．

CONVERSION KIT

496 to 496P－Conversions are made by your nearest Tektronix service center． Order 040－1046－04

INTERNATIONAL POWER PLUG OPTIONS
Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10,50 \mathrm{~Hz}$ ．
Option A4－North American 240 V／15 A， 60 Hz ．
Option A5－Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．

OPTIONAL ACCESSORIES

TR 503 Tracking Generator－（For more information see page 172.
75Ω to 50Ω Power Splitter－ Order 067－1232－00
75Ω to 50Ω Minimum Loss Attenuator－ Order 011－0112－00
Dc Block N to N －Order 015－0509－00
P6201 FET Probe to 900 MHz － Order 010－6201－01
1405 TV Sideband Adaptor－525／60 Mark－ ers．（See page 173．）
\＄5，780
TV Trigger Synchronizer－
Order 015－0261－01
\＄450
Hard Case（Transit）— Order 016－0658－00
\＄725
Soft Case－Order 016－0659－00 \＄100
Rear Panel Protective Cover－
Order 337－3274－00
$\$ 5$
Lab Cart－K213．（See page 424．）\＄595
Camera－C－5C．（See page 416．）\＄495
Note：The 490 Series spectrum analyzers are compatible with all Tektronix C－50 Series cameras．Battery pack $016-0270-02$ is required for C．50，C．51，C．52 and C．53 cameras．

PERIPHERAL PRODUCTS FOR 494P SPECTRUM ANALYZER

4041 System Controller．（See page 298．）
\＄3，995
4105A Color Terminal．（See page 58．）\＄3，995
4695 Color Graphics Copier．（See page 77．）\＄1，595

Option 30 is a rackmount configuration for the 490 Series with standard front panel input／out－ puts．Option 31 is a rackmount configuration with rear panel input／output capability．Option 32 adds side covers and trim to an Option 31，making it into a stackable bench top configuration．

Options 30 and 31 Rackmount are a standard 19 inch rack width and come with standard rackmount fittings．A spectrum analyzer accesso－ ries storage drawer is also included．Dimensions are $22.23 \mathrm{~cm} \times 42.9 \mathrm{~cm} \times 63.5 \mathrm{~cm}$（ $8.75 \mathrm{in} \times$ $16.89 \mathrm{in} \times 25.0 \mathrm{in})$ ．Weight is $32.7 \mathrm{~kg}(72 \mathrm{lb})$ ；in－ cluding the spectrum analyzer．

The Option 32 Benchmount is approximately the same size as the Rackmount but is dressed with side and top panels and carrying handles and feet．The Benchmount provides a convenient sur－ face for stacking other instruments．Dimensions are $23.5 \mathrm{~cm} \times 45.7 \mathrm{~cm} \times 63.5 \mathrm{~cm}$（ $9.25 \mathrm{in} \times$ $17.9 \mathrm{in} \times 25.0 \mathrm{in})$ ．Weight is 31.8 kg （ 70 lb ）；includ－ ing the spectrum analyzer．

492P/492

The 492P complies with IEEE Standard
GPIB 488-1978, and with Tektronix Standard Codes and Formats.

Portable Form Factor

(Compact Size/Lightweight)
50 kHz to 220 GHz Frequency Range
Amplitude Comparison in 0.25 dB Steps
80 dB Dynamic Range
Wide Range of Options
GPIB/Fully Programmable (492P)
Freedom from Spurious Responses
Through Preselection

Lab Quality You Can Get a Handle On

The 492 is a high performance, rugged, instrument of compact size, with microprocessor logic control. Full programmability via GPIB (IEEE Standard 488-1978) compatibility is available in the 492P version.
Three-knob operation provides use as simple as 1, 2, 3 through microprocessor coupled functions such as resolution bandwidth, video bandwidth, sweep time, frequency span, RF attenuation, and refer-
ence level. Measurement accuracy is enhanced through the use of $\Delta \mathrm{dB}$ mode, which switches in 0.25 dB steps.
Digital storage and processing facilitate trace comparisons and add measurement capability through the Max Hold function for frequency drift and amplitude change measurements. Arithmetic operations can be performed between traces or between a trace and a reference. Digital noise averaging mode results in trace smoothing. With digital storage, the display is steady and without flicker, even at the lowest sweep speeds; plus trace values may be retained as long as power is on.

492P Makes Spectrum Analysis Automatic, and Easy.

Two instruments in one, the 492P is a fully programmable version of the 492 Spectrum Analyzer. It incorporates all of the 492's lab quality performance and ease of use features when used as a manual instrument. Push the "Reset to Local" button and the 492P becomes a 492-with operation from the front panel. But, most important, the 492P opens the way to automated spectrum analysis and documentation via its IEEE Standard 488 (GPIB) interface. This versatility makes the 492P useful in many applications in the lab, factory or field.

ATE Software Enhances Utility

The NEW TekSPANS software expands the $492 P$ into a fully automated measurement package for general RF applications. Increase productivity and measurement repeatability of the 492P with a Tek 4041 Controller-or if you prefer your own IBM PC or HP controller. See page 158 for details.

Add Programmability

Programmability/GPIB features can be added to 492 Spectrum Analyzers. This means if you want to delay a programmability/GPIB decision because of budget constraints, or for any other reason, you can convert your 490 Series spectrum analyzer later. Conversions are made at designated Tektronix Service Centers.

Easy to Use

The 492P is designed for ease of operation via the GPIB, just as the 492 is designed for front panel operational ease. Most commands for program control are simply abbreviations of the front panel nomenclature.
The 492P's high level command language and the similarity of commands and responses simplify programming and make program listings easily readable for editing.

Put it to Work

With the programmable 492P on your measurement team, repetitive measurements can be done the same way every time. Your throughput will increase-as will your confidence in results. And, the internal processing and high level programming language makes software development faster. You get high power results with easy programming. When you look at the total performance capability of the 492P, you'll recognize its value: ease of operation both as a programmable and manual instrument. Wide frequency range. The versatility to go where you go. Into the lab for automated testing; into the field for data collection.
For more information on the application and benefits of the 490 Series spectrum analyzers under program control, ask for brochure 26W-5177.

CHARACTERISTICS

The following characteristics and features apply to the 492/492P Spectrum Analyzers after a 30 minute warmup period unless otherwise noted.

FREQUENCY RELATED

Center Frequency Range - 50 kHz to 21 GHz standard, amplitude specified coverage to 220 GHz with optional Tektronix waveguide mixers.
Frequency Accuracy - $\pm(5 \mathrm{MHz}+20 \%$ of span/div) or $\pm(0.2 \%$ of the center frequency $+20 \%$ of span/div) whichever is greater after two hour warmup.
Readout Resolution - Within 1 MHz .
Frequency Span/Division Range - 10 kHz to $500 \mathrm{MHz} / \mathrm{div}$ in a $1-2-5$ sequence in the 50 kHz to 21 GHz center frequency range. Option 03 provides additional span ranges of $500 \mathrm{~Hz}, 1 \mathrm{kHz}$, 2 kHz , and $5 \mathrm{kHz} /$ div.
Frequency Span/Division Accuracy - $\pm 5 \%$ of span/div, measured over center eight divisions.
Resolution Bandwidth (-6 dB Points) 1 MHz to 1 kHz (100 Hz for Option 03) in decade steps, plus an Auto position. Resolution is within 20% of selected bandwidth.

Resolution Shape Factor ($60 \mathrm{~dB} / 6 \mathrm{~dB}$) -

 7.5:1 or less.Residual $\mathbf{F M}-1 \mathrm{kHz} \mathrm{p}-\mathrm{p}$ for 2 ms time duration, improves to $(50 \mathrm{~Hz})$ for 20 ms with phaselock Option 03.
Long Term Drift (At Constant Temperature and Fixed Center Frequency) - $3 \mathrm{kHz} / 10 \mathrm{~min}$ utes after one hour warmup with Option 03 for fundamental mixing.
Noise Sidebands - At least -75 dBc at 30 X resolution offset from the center frequency (-70 dBc for 100 Hz resolution bandwidth Option 03).

Frequency ($\mathbf{k H z \text {) }}$
Typical low end frequency performance for the 492 with Option 03.

AMPLITUDE RELATED

Reference Level Range - Full screen, top of graticule -123 dBm to +40 dBm (+40 dBm , includes maximum safe input of +30 dBm and 10 dB gain of IF gain reduction) for $10 \mathrm{~dB} /$ div and $2 \mathrm{~dB} /$ div \log modes. 1 W maximum safe input in the linear mode.
Reference Level Steps - $10 \mathrm{~dB}, 1 \mathrm{~dB}$, and 0.25 dB for relative level (Δ) measurements in Log mode. $1-2-5$ sequence and 1 dB equivalent increments in Lin mode. The RF attenuator steps 10 dB for reference level changes above $-30 \mathrm{dBm}(-20 \mathrm{dBm}$ when minimum noise is active) unless minimum RF attenuation is greater than normal. The IF gain increases 10 dB for each reference level change below -30 dBm (-20 dBm when minimum noise is active).
Display Dynamic Range -80 dB at $10 \mathrm{~dB} / \mathrm{div}$, 16 dB at $2 \mathrm{~dB} /$ div and eight division in linear mode.
Reference Level Accuracy - Accuracy is a function of the following characteristics listed below.
Calibrator: (Cal out) See output signal characteristics.

Input Attenuator Accuracy: $0.3 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum of 0.7 dB over the 60 dB range, up to $4 \mathrm{GHz} ; 0.5 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum of 1.4 dB over the 60 dB range from 4 GHz to 21 GHz .
Frequency Response: See frequency response table above.
Display Amplitude Accuracy: $\pm 1.0 \mathrm{~dB} / 10 \mathrm{~dB}$ to a maximum cumulative error of $\pm 2.0 \mathrm{~dB}$ over the 80 dB window and $\pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to a maximum cumulative error of $\pm 1.0 \mathrm{~dB}$ over the 16 dB window. Lin Mode is 5% of full scale.
Resolution Bandwidth Gain Variation: $\pm 0.5 \mathrm{~dB}$. IF Gain Variation: $\pm 0.2 \mathrm{~dB} / \mathrm{dB}$ to a maximum of $\pm 2 \mathrm{~dB}$ over the 90 dB range.

```
SPURIOUS RESPONSES
```

Residual (No Input Signal Referenced to Mixer Input) - - 100 dBm or less.
Harmonic Distortion (cw Signal, Minimum Distortion Mode) - Typically -60 dBc for full screen signal in the minimum distortion mode to 21 GHz . At least -100 dBc for preselected Option 01 . 1.7 GHz to 21 GHz .
Third-Order Intermodulation Distortion (Minimum Distortion Mode) - At least 70 dB down from two full screen signals within any frequency span. At least 100 dB down for two signals spaced more than 100 MHz apart from 1.7 GHz to 21 GHz for preselected Option 01.
LO Emissions (0 dB Attenuation) --10 dBm maximum; -70 dBm maximum to 21 GHz for Option 01.

INPUT SIGNAL

RF Input - Type N female connector.
Input Impedance - 50Ω.
Maximum VSWR*1 with $\geqslant 10 \mathrm{~dB}$ Attenuation

Frequency Range	Typical	Specified Maximum
Dc to 2.5 GHz	$1.2: 1$	$1.3: 1$
2.5 GHz to 6.0 GHz	$1.5: 1$	$1.7: 1$
6.0 GHz to 18 GHz	$1.9: 1$	$2.3: 1$
18 GHz to 21 GHz	$2.7: 1$	$3.5: 1$

${ }^{* 1}$ At Type N female connector to internal mixer

Input Level (Optimum Level for Linear Operation) -30 dBm referenced to input mixer. Full screen not exceeded and minimum distortion control settings.
1 dB Compression Point ——18dBm.
Maximum Safe Input Level (RF Attenuation at Zero $\mathbf{d B})-+13 \mathrm{dBm}$ without Option 01. $+30 \mathrm{dBm}(1 \mathrm{~W})$ with Option 01.
Maximum Input Level (with 20 dB or more RF Attenuation) - +30 dBm (1 W) continuous, 75 W peak for $1 \mu \mathrm{~s}$ or less pulse width and 0.001 maximum duty factor (attenuation limit). Dc must never be applied to RF input.

OUTPUT SIGNAL
Calibrator - (Cal Out) $-20 \mathrm{dBm} \pm 0.3 \mathrm{~dB}$, $100 \mathrm{MHz} \pm 1.7 \mathrm{kHz}$.
1st and 2nd LO - Provides access to the output of the respective local oscillators (1st LO +7.5 dBm minimum to a maximum of +15 dBm ; 2nd LO -22 dBm minimum to a maximum of $+15 \mathrm{dBm})$. These ports must be terminated in 50Ω at all times.
Vertical Out - Provides $0.5 \mathrm{~V} \pm 5 \%$ of signal/ div of video above and below the center line.
Horizontal Out - Provides 0.5 V either side of center. Full range -2.5 V to $+2.5 \mathrm{~V} \pm 10 \%$.
Pen Lift - TTL, +5 V nominal to lift pen.
IF Out - Output of the 10 MHz IF . Level is approximately -16 dBm for a full screen signal at -30 dBm input reference level. Nominal impedance 50Ω.
IEEE Standard 488-1978 Interface Function Subsets Implemented (494P) - Source Handshake: SH1. Acceptor Handshake: AH1. Talker: T5. Listener: L3. Service Request: SR1. Remote/Local: RL1. Parallel Poll: PP1. Device Clear: DC1. Device Trigger: DT1. Controller: C0.

GENERAL CHARACTERISTICS

Sweep Time - $20 \mu \mathrm{~S}$ to $5 \mathrm{~s} /$ div ($10 \mathrm{~s} /$ div in auto) in 1-2-5 sequence.
CRT Readout - Displays reference level, center frequency, frequency range, vertical display mode, frequency span/div resolution bandwidth and RF attenuation.
CRT $-8 \mathrm{~cm} \times 10 \mathrm{~cm}$, GH (P31) phosphor standard.
Input Voltage - 90 V ac to 132 V ac or 180 V ac to $250 \mathrm{~V} \mathrm{ac}, 48 \mathrm{~Hz}$ to 440 Hz .
Power - 210 W maximum with all options, at 115 V and 60 Hz .
Configuration - (Portable) 492/492P: total wight including front cover and standard accessories $20 \mathrm{~kg}(44 \mathrm{lb}) 17.5 \mathrm{~cm} \times 32.7 \mathrm{~cm} \times 49.9 \mathrm{~cm}$ (6.9 in $\times 12.9 \mathrm{in} \times 9.7 \mathrm{in}$) without handle or cover.

ENVIRONMENTAL CHARACTERISTICS
Per MIL-T-28800C Type III, Class 3, Style C. See page 160.

ORDERING INFORMATION

492 Spectrum Analyzer
Includes: 18 inch BNC to BNC connector 50Ω coax cable (012-0076-00); 6 ft N to N connector 50Ω coax cable, (012-0114-00); 2 A fast blow fuse (159-0021-00); N male to BNC female adaptor (103-0045-00); CRT mesh filter (378-0726-01); two 4 A fast blow fuse (159-0017-00); 115 V power cord ($161-0118-00$); cord clamp ($343-0170-00$); CRT visor ($016-0653-00$); diplexer assembly ($015-0385-00$); amber CRT light filter ($378-0115-01$); blue CRT light filter ($378-0115-00$); gray CRT light filter ($378-0115-02$); operator manual (070-2726-03); operator handbook (070-2729-01); service manual volume 1 ($070-3783-01$); service manual volume 2 (070-3784-01).
492P Fully Programmable/GPIB/Digi-
tal Storage Spectrum Analyzer $\quad \mathbf{3 1 , 7 5 0}$
Includes: In addition to the above a 2 m , double shield GPIB cable (012-0630-03); programmer manual (070-3401-00).

OPTIONS (492/492P)

Option 01 - Calibrated Internal Preselection. Filtering of input to first mixer for each frequency band.
Option 02 - (492 Only) Digital Storage. With Save A, maximum hold, B minus Save A, display averaging, and storage bypass.
Option 03 - Frequency Stabilization/ 100 Hz Resolution. Provides first local oscillator stabilization by phase locking the oscillator to an internal reference.
Option 08 - Delete External Mixer Capability. Deletes internal switching front panel connector and external diplexer to connect and use external wavequide mixers.
Option 11 - (492P Only) Automatic Preselector Peaking. To store peak preselector values in bands 2, 3, and 4.
Option 20 - General Purpose 12.4 GHz to 40 GHz Waveguide Mixer Set. (12.4 GHz to $18 \mathrm{GHz}, 18 \mathrm{GHz}$ to 26.5 GHz , and 26.5 GHz to 40 GHz) and attaching hardware to extend the upper frequency.
Option 21 - High Performance 18 GHz to 40 GHz Waveguide Mixer Set. (18 GHz to 26.5 GHz and 26.5 GHz to 40 GHz) and attaching hardware to extend the upper frequency.
Option 22 - High Performance 18 GHz to 60 GHz Waveguide Mixer Set. (18 GHz to $26.5 \mathrm{GHz}, 26.5 \mathrm{GHz}$ to 40 GHz , and 40 GHz to 60 GHz) and attaching hardware to extend the upper frequency.
Option 30 - Rackmount. 19 inch rack width with front panel input/outputs.
Option 31 - Rackmount. 19 inch rack width with rear panel input/output capability.
Option 32 - Benchmount. Adds side and top panels, carrying handles and feet for a stackable bench top configuration.
Option 41 - Digital Radio. Provides wider bandwidth preselector, 30 Hz video filter with 100 kHz resolution bandwidth and 5 MHz span/div optimized for 6 GHz and 11 GHz D/R.
Option 42 - 110 MHz IF Output. Provides 5 MHz bandwidth at 6 dB points.

CONVERSION KIT

492 to 492P Conversion - Conversion made by your Tektronix service center. For 492 's with Options 01, 02, 03, 08. Order 040-1038-02 For 492 's with Options 01, 02, 03.
Order 040-1037-03
\$23,500

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz .
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

TR 503 Tracking Generator - (See page 172.)
\$6,620
Microwave Comb Generator TM 500 Series
Compatible - Order 067-0885-00
\$1,800

75Ω to 50Ω Minimum Loss Attenuator -

 Order 011-0112-00Dc Block \mathbf{N} to \mathbf{N} — Order 015-0509-00 \$85
P6201 FET Probe to $900 \mathbf{M H z}$ -
Order 010-6201-01
1405 TV Sideband Adaptor - 525/60 Markers. (See page 173.)
\$5,780
TV Trigger Synchronizer Order 015-0261-01 \$450
$+\$ 3,995$
$+\$ 1,950$
$+\$ 3,590$
$-\$ 1,750$
$+\$ 450$
$+\$ 900$
See page 158 for complete description of the Tek's GRASP (General RF Applications Software Package).
Hard Case (Transit) — Order 016-0658-00
Soft Case - Order 016-0659-00
Rear Panel Protective Cover Order 337-3274-00 \$100

Lab Cart - K213. (See page 424.) \$595
Camera - C-5C. (See page 416.) \$495
Note: The 490 Series spectrum analyzers are compatible with all Tektronix C-50 Series cameras. Battery pack $016-0270-02$ is required for $C-50, C-51, C-52$ and $C-53$ cameras.

PERIPHERAL PRODUCTS FOR 492P SPECTRUM ANALYZER

4041 System Controller. (See page 298.) \$3,995
4105A Color Terminal. (See page 58.) $\$ \mathbf{3}, 495$
4695 Color Graphics Copier. (See page 76.) \$1,595
$+\$ 2,525$
$+\$ 4,250$
$+\$ 790$
$+\$ 840$
$+\$ 940$
$\$ 450$
$\$ 1,500$
\$7,560
\$7,560

490 Series waveguide Mixers
The 490 Series Tektronix Waveguide Mixers cover from 18 GHz to 325 GHz with optimum sensitivity. They are designed specifically for use with the Tektronix 490 Series Spectrum Analyzers.
The two microwave mixers cover ranges 18 GHz to 26.5 GHz and 26.5 GHz to 40 GHz . They have field replaceable diodes and frequency response of $\pm 2 \mathrm{~dB}$ when used with the spectrum analyzers indicated above.
Eight millimeter wave mixers cover the 33 GHz to 220 GHz range in the standard Milspec band ranges. J to G band flange transition (119-1728-00) converts the WM 490G mixer to cover the 220 GHz to 325 GHz range.
The mixers are all gold plated brass, conforming to MIL-G-45204 ClassI, Type 1 specifications and will withstand harsh environments. Mixer sets come complete with a container for spare diodes, a 28 -inch cable, an instruction manual and a wood storage box with foam cutout storage locations for five mixers.

CHARACTERISTICS
For All Waveguide Mixers - Maximum cw RF Input Level: +20 dBm (100 mW).
Maximum PULSED RF Input Level - 1 W peak with 0.001 maximum duty factor and $1 \mu \mathrm{~s}$ maximum pulse width.
LO Requirement -+7 dBm minimum, +15 dBm maximum, +10 dBm typical.
Bias Requirement --2.0 V to +0.5 V with respect to the mixer body through a current limiting resistor, to provide 0 mV to 20 mA of bias current.
1 dB Compression Point -+13 dBm typical.
Amplitude Accuracy - $\pm 6 \mathrm{~dB}$ maximum reference level error with respect to the internal calibrator.

ORDERING INFORMATION	
PERFORMANCE SPECIFIED MIXERS AND SETS	
18 GHz to 26.5 GHz - Order WM 490K.	$\$ 1,240$
26.5 GHz to 40 GHz - Order WM 490A.	$\$ 1,250$
33 GHz to 50 GHz - Order WM 490Q.	$\$ 1,450$
40 GHz to 60 GHz - Order WM 490U.	$\$ 1,720$
50 GHz to 75 GHz - Order WM 490V.	$\$ 1,950$
60 GHz to 90 GHz - Order WM 490E.	$\$ 2,120$
75 GHz to 110 GHz - Order WM 490W.	$\$ 2,175$
90 GHz to 140 GHz - Order WM 490F.	$\$ 2,330$
110 GHz to 170 GHz - Order WM 490D.	$\$ 3,250$
140 GHz to 220 GHz - Order WM 490G.	$\$ 3,325$

ORDERING INFORMATION

 PERFORMANCE SPECIFIED MIXERS AND SETS 18 GHz to 26.5 GHz - Order WM 490K.26.5 GHz to 40 GHz - Order WM 490A.

33 GHz to 50 GHz - Order WM 490Q.
40 GHz to 60 GHz - Order WM 490 U .

60 GHz to 90 GHz - Order WM 490E.
75 GHz to 110 GHz - Order WM 490W.
\$2,175
\$2,330
\$3,250
\$3,325

Frequency Range (GHz)	Tektronix Model No	Band Designation	$\begin{aligned} & \text { Sensitivity } \\ & (\mathrm{dBm})^{* 1} \\ & \hline \end{aligned}$	Frequency Response*2	Conversion Loss*3 Typical
18 to 26.5	WM 490K	K	-100	$\pm 2 \mathrm{~dB}$	$-30 \mathrm{~dB}$
26.5 to 40	WM 490A	A	-95	$\pm 2 \mathrm{~dB}$	$-30 \mathrm{~dB}$
33 to 50	WM 490Q	Q	-95	$\pm 2 \mathrm{~dB}$	$-30 \mathrm{~dB}$
40 to 60	WM 4900	U	-95	$\pm 2.5 \mathrm{~dB}$	$-30 \mathrm{~dB}$
50 to 75	WM 490V	V	-95 at 50 GHz -90 at 75 GHz typical	$\begin{gathered} \pm 3 \mathrm{~dB} \\ \text { typical}^{+4} \end{gathered}$	$\begin{aligned} & -30 \mathrm{~dB} \text { at } 50 \mathrm{GHz} \\ & -35 \mathrm{~dB} \text { at } 75 \mathrm{GHz} \end{aligned}$
60 to 90	WM 490E	E	$\begin{gathered} -95 \text { at } 60 \mathrm{GHz} \\ -85 \text { at } 90 \mathrm{GHz} \\ \text { typical } \end{gathered}$	$\underset{\text { typical }{ }^{4}}{ \pm 3 \mathrm{~dB}}$	$\begin{aligned} & -30 \mathrm{~dB} \text { at } 60 \mathrm{GHz} \\ & -40 \mathrm{~dB} \text { at } 90 \mathrm{GHz} \end{aligned}$
75 to 110	WM 490W	W	$\begin{gathered} -90 \text { at } 75 \mathrm{GHz} \\ -80 \text { at } 110 \mathrm{GHz} \\ \text { typical } \end{gathered}$	$\underset{\text { typical }{ }^{4}}{ \pm 3 \mathrm{~dB}}$	$\begin{aligned} & -35 \mathrm{~dB} \text { at } 75 \mathrm{GHz} \\ & -45 \mathrm{~dB} \text { at } 110 \mathrm{GHz} \end{aligned}$
90 to 140	WM 490F	F	$\begin{gathered} -85 \text { at } 90 \mathrm{GHz} \\ -75 \text { at } 140 \mathrm{GHz} \\ \text { typical } \end{gathered}$	$\underset{\text { typical }{ }^{44}}{ \pm 3 \mathrm{~dB}}$	$\begin{aligned} & -40 \mathrm{~dB} \text { at } 90 \mathrm{GHz} \\ & -50 \mathrm{~dB} \text { at } 140 \mathrm{GHz} \end{aligned}$
110 to 170	WM 490D	D	$\begin{gathered} -80 \text { at } 110 \mathrm{GHz} \\ -70 \text { at } 170 \mathrm{GHz} \\ \text { typical } \end{gathered}$	$\underset{\text { typical }^{4}}{ \pm 3 \mathrm{~dB}}$	$\begin{aligned} & -45 \mathrm{~dB} \text { at } 110 \mathrm{GHz} \\ & -55 \mathrm{~dB} \text { at } 170 \mathrm{GHz} \end{aligned}$
140 to 220	WM 490G	G	$\begin{aligned} & -75 \text { at } 140 \mathrm{GHz} \\ & -65 \text { at } 220 \mathrm{GHz} \\ & \text { typical } \end{aligned}$	$\underset{\text { typical }{ }^{* 4}}{ \pm 3 \mathrm{~dB}}$	$\begin{aligned} & -50 \mathrm{~dB} \text { at } 140 \mathrm{GHz} \\ & -60 \mathrm{~dB} \text { at } 220 \mathrm{GHz} \end{aligned}$
220 to 325	119-1728-00*6	J	$\begin{gathered} -65 \text { at } 220 \mathrm{GHz} \\ -50 \text { at } 325 \mathrm{GHz} \\ \text { typical } \end{gathered}$	$\underset{\text { typical\| }}{ \pm 3 \mathrm{~dB}}$	-60 dB at 220 GHz -70 dB at 325 GHz

${ }^{*}{ }^{1}$ Equivalent average noise level at 1 kHz bandwidth.
${ }^{* 2}$ Maximum amplitude variation across each waveguide mixer band (with peaking control optimized at each frequency in response to a -30 dBm CW input signal to the mixer).
${ }^{* 3} 490 \mathrm{LO}$ drive +10 dBm peaking control optimized.
*4 Over any 5 GHz bandwidth for millimeter wave mixers above 60 GHz .
${ }^{* 5}$ Value estimated at 325 GHz .

* 6 Tapered waveguide transition allowing WM 490G to cover this range.

INDIVIDUAL MIXER MECHANICAL CHARACTERISTICS

Frequency Range (GHz)	Tektronix Model* ${ }^{\text { }}$	Waveguide (EIA)	Flange (JAN)	Length	Width* ${ }^{1}$	Height* ${ }^{1}$	Weight
18 to 26.5	WM 490K	WR-42	UG-595/U	$\begin{aligned} & 8.97 \mathrm{~cm} \\ & (3.53 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 2.22 \mathrm{~cm} \\ & (.875 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 3.68 \mathrm{~cm} \\ & (1.45 \mathrm{in}) \end{aligned}$	$\begin{gathered} 180 \mathrm{~g} \\ (6.5 \mathrm{oz}) \end{gathered}$
26.5 to 40	WM 490A	WR-28	UG-599/U	$\begin{aligned} & 6.93 \mathrm{~cm} \\ & (2.73 \mathrm{in}) \end{aligned}$	$\begin{gathered} 1.90 \mathrm{~cm} \\ (0.750 \mathrm{in}) \end{gathered}$	$\begin{aligned} & 3.35 \mathrm{~cm} \\ & (1.32 \mathrm{in}) \end{aligned}$	$\begin{gathered} 100 \mathrm{~g} \\ (3.7 \mathrm{oz}) \end{gathered}$
33 to 50	WM 490Q	WR-22	UG-383/U	$\begin{gathered} 5.37 \mathrm{~cm} \\ (2.125 \mathrm{in}) \end{gathered}$	$\begin{gathered} 1.84 \mathrm{~cm} \\ (0.725 \mathrm{in}) \end{gathered}$	$\begin{aligned} & 2.82 \mathrm{~cm} \\ & (1.110 \mathrm{in}) \end{aligned}$	$\begin{gathered} 90 \mathrm{~g} \\ (3.3 \mathrm{oz}) \end{gathered}$
40 to 60	WM 490U	WR-19	UG-383/U-M	$\begin{aligned} & 4.52 \mathrm{~cm} \\ & (1.78 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 1.84 \mathrm{~cm}^{* 1} \\ & (0.725 \mathrm{in}) \end{aligned}$	$\begin{gathered} 2.45 \mathrm{~cm} \\ (0.980 \mathrm{in}) \end{gathered}$	$\begin{gathered} 80 \mathrm{~g} \\ (2.9 \mathrm{oz}) \end{gathered}$
50 to 75	WM 490V	WR-15	UG-385/U	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{aligned} & 2.29 \mathrm{~cm} \\ & (0.900 \mathrm{in}) \end{aligned}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
60 to 90	WM 490E	WR-12	UG-387/U	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{aligned} & 2.29 \mathrm{~cm} \\ & (0.900 \mathrm{in}) \end{aligned}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
75 to 110	WM 490W	WR-10	UG-387/U-M	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{gathered} 2.29 \mathrm{~cm} \\ (0.900 \mathrm{in}) \end{gathered}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
90 to 140	WM 490F	WR-08	UG-387/U-M*2	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{gathered} 2.29 \mathrm{~cm} \\ (0.900 \mathrm{in}) \end{gathered}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
110 to 170	WM 490D	WR-06	UG-387/U-M*2	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{aligned} & 2.29 \mathrm{~cm} \\ & (0.900 \mathrm{in}) \end{aligned}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
140 to 220	WM 490G	WR-05	UG-387/U-M*2	$\begin{aligned} & 4.31 \mathrm{~cm} \\ & (1.70 \mathrm{in}) \\ & \hline \end{aligned}$	$\begin{gathered} 0.89 \mathrm{~cm} \\ (0.350 \mathrm{in}) \end{gathered}$	$\begin{gathered} 2.29 \mathrm{~cm} \\ (0.900 \mathrm{in}) \end{gathered}$	$\begin{gathered} 40 \mathrm{~g} \\ (1.5 \mathrm{oz}) \end{gathered}$
220 to 325	119-1728-00 G-J Band flange transition	$\begin{aligned} & \text { WR-05 } \\ & \text { WR-03 } \end{aligned}$	$\begin{aligned} & 74-003 \\ & 74-005 \end{aligned}$	-	-	-	-

${ }^{\star 1}$ Physical dimensions exclude contribution due to the diameter of round waveguide flanges in U, V, E, W, F, D and G bands.
*2 All mixers are equipped with standard UG-XXXXU type flanges as indicated. Flange adaptors to standard MIL F- 3022 type flanges are provided in F, D, and G bands at no additional charge.
${ }^{3}$ All mixers include a protective flange cover, an LO/F port protective shorting cap, and two captive flange screws for round flange mixers.

220 GHz to 325 GHz - Order 119-1728-00 18 GHz to 40 GHz Set - Order WM 4902 Includes: WM 490K; WM 490A.
18 GHz to 60 GHz Set - Order WM 4903 Includes: WM 490K; WM 490A; WM 490 U .
18 GHz to 90 GHz Set - Order WM 4904. includes: WM 490K; WM 490A; WM 490U; WM 490E
18 GHz to 140 GHz Set — Order WM 4905. $\$ 8,750$ Includes: WM 490K; WM 490A; WM 490U; WM 490E; WM 490F.
Cable - Order 012-0649-00
\$31
\$30
\$1,200
\$2,550
\$4,300
\$6,420

Case - Order 016-0465-01

140 GHz to 220 GHz - Tapered transition $119-172900$ used with WM 490F waveguide mixer. GENERAL PURPOSE WAVEGUIDE MIXER AND SET

 12.5 GHz to 18 GHz Frequency Range Order 119-0097-0118 GHz to 26.5 GHz Frequency Range Order 119-0098-01
26.5 GHz to $\mathbf{4 0} \mathbf{~ G H z}$ Frequency Range Order 119-0099-01

Case - Order 016-0465-01

$7 L 14$ in 7603 mainframe with internal spectrum analyzer graticule.

7L14

Excellent Stability, Resolution Bandwidth Range

Digital Storage and Averaging

Swept Measurements with the Tek TR 502
1 kHz to 2.5 GHz Coverage with Option 39
Input Limiter for Extra Input Protection
Semiautomatic Measurements with the Tek 7854

The Tektronix 7 L 14 provides high performance spectrum analysis in the 10 kHz to 1.8 GHz range. Option 39 increases coverage to 1 kHz to 2.5 GHz . Option 23-deleting the built-in input limiter-results in 1 kHz to 1.8 GHz coverage.

7L14 capability translates to confidently making communications systems or EMC measurements. Check the 7L14's specifications to find out about its excellent resolution bandwidth range and filter shape factor, high stability, and spectral purity. Combined with the Tek TR 502 Tracking Generator, the 7 L 14 is the heart of a very stable scalar analysis system available at an affordable price. Check RF networks, filters, amplifiers, and more. . see page 172 for details.

Digital storage helps you compare A and B displays; MAX HOLD captures maximum frequency excursions (as with a drifting oscillator) and max amplitudes, or short duration signals such as in spectrum occupancy monitoring. The 7L14 also features a built-in input limiter that protects the first mixer from overload-you can apply up to one watt to the 7L14.

Make semiautomatic measurements by using the Tek 7854 Digitizing Mainframe. This programmable unit's calculation and marker capabilities can greatly enhance your productivity using the 7 L 14 Spectrum Analyzer. The 7854 Mainframe can also be used with your choice of other Tek 7000 Series test and measurement plug-ins-versatility plus! Get full details from your Tek sales engineer or ask for Application Note Number 26W5653.

CHARACTERISTICS

The following characteristics and features apply to the 7 L 14 Spectrum Analyzer after a 20 minute warm-up period.

FREQUENCY RELATED

Center Frequency Range - 10 kHz to 1.8 GHz .

Center Frequency Readout Resolution Within 1 MHz .
Center Frequency Readout Accuracy $\pm(5 \mathrm{MHz}+20 \%$ of frequency span/division).
Frequency Span/Division Range $200 \mathrm{~Hz} /$ div to $100 \mathrm{MHz} /$ div in calibrated steps in a 1-2-5 sequence.
Accuracy: Within 5\% of the span selected. Linearity: Within 5% of the span selected. Maximum Span: Provides 1.8 GHz of span. Zero Span: Provides fixed frequency operation for time domain display.
Resolution Bandwidth (6 dB) -30 Hz to 3 MHz , in decade steps.
Accuracy: Within $\pm 20 \%$ of the resolution selected.
Resolution Shape Factor ($\mathbf{6 0 / 6} \mathbf{d B}$) - $4: 1$ or less for 3 MHz to $300 \mathrm{~Hz} ; 12: 1$ or less for 30 Hz resolution.
Signal Level Change Between Any Two Bandwidths - $\pm 0.5 \mathrm{~dB}$ at room temperature. $\pm 2.0 \mathrm{~dB}$ maximum over operating temperature (net level at -30 dBm).
Residual FM - $13 \mathrm{~Hz}(p-p)$ when phase locked $\pm 10 \mathrm{kHz}(p-p)$ for 20 ms when not phase locked. Stability - At a fixed temperature after twohour warmup; $\pm 2 \mathrm{kHz} /$ hour phase locked; $\pm 75 \mathrm{kHz} /$ hour not phase locked. Wait ten minutes $/ \mathrm{GHz}$ of tuning when the frequency is changed to make frequency related measurements.

AMPLITUDE RELATED

Display Modes

Log $10 \mathrm{~dB} /$ Division: Provides 70 dB display dynamic range. Accuracy is within $0.15 \mathrm{~dB} / \mathrm{dB}$ to 2 dB maximum over 70 dB dynamic range.
Log $2 \mathrm{~dB} /$ Division: Provides 14 dB display dynamic range. Accuracy is within $\pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to 1.0 dB maximum over 14 dB dynamic range.

LIN: Within 10% over eight divisions. Deviation Between Display Modes (For Full Screen Signal): $\pm 2 \mathrm{~dB}$ from $2 \mathrm{~dB} /$ div to $10 \mathrm{~dB} /$ div, 0.5 div from $2 \mathrm{~dB} / \mathrm{div}$ to LIN.

Reference Level

Below $100 \mathrm{kHz}:+30 \mathrm{dBm}$ to -50 dBm , as the center frequency approaches 10 kHz .
Above $100 \mathrm{kHz}:+30 \mathrm{dBm}$ to -110 dBm in 10 dB calibrated steps.

Display Flatness $- \pm 1.5 \mathrm{~dB}$, with respect to 50 MHz , over any selected frequency span.
Sensitivity - At 50 MHz , applicable from 100 kHz to 1.8 GHz .

Resolution Bandwidth	Averaged Noise Level
30 Hz	-130 dBm
300 Hz	-120 dBm
3 kHz	-110 dBm
30 kHz	-100 dBm
300 kHz	-90 dBm
3 MHz	-80 dBm

SPURIOUS RESPONSES

Residual - $<-100 \mathrm{dBm}$ (referenced to the first mixer input).
Second Order Intermodulation Products 100 kHz to 1.8 GHz ; down 70 dBc or more from two -40 dBm signals, within any frequency span.
Third Order Intermodulation Products 100 kHz to 1.8 GHz ; down 70 dBc or more from two -30 dBm signals, within any frequency span.
RF Attenuator -60 dB range in 10 dB steps.
Accuracy $- \pm(0.25 \mathrm{~dB}+1.2 \%$ of dB reading $)$. IF Gain
Range - 70 dB (80 dB when operating in 30 Hz resolution bandwidth).
Step Accuracy - $\pm 1 \mathrm{~dB} / 10 \mathrm{~dB}$ step to $\pm 2 \mathrm{~dB}$ maximum over entire range.

GENERAL CHARACTERISTICS

Noise Sidebands - -70 dBc minimum at frequency offsets $\geqslant 25 \mathrm{X}$ resolution bandwidth settings.
Sweep - Triggered, manual, external.
Sweep Time - $10 \mathrm{~s} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$ in a $1-2-5$ sequence.
Accuracy - $\pm 5 \%$ of selected Time/Division.
Triggering Modes - Internal, External, Ext in Horiz/Trig and Line.
Sensitivity $- \pm 0.6$ div of internal signal ($p-p$) and/or $\pm 0.6 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ of external signal.
Shipping Weight - $10.8 \mathrm{~kg}(24 \mathrm{lb})$.

INPUT SIGNALS

RF Input - Maximum Input Power Level: +30 dBm . Maximum Input Power Level to the RF Attenuator $\geqslant 10 \mathrm{~dB}: 1 \mathrm{~W}$ average (including dc), 100 W peak simultaneously. Input Impedance: 50Ω; vswr 1.35 maximum with 10 dB of RF attenuation.
External Horizontal/Trigger Input Connector - Input Voltage Range: Typically 0 V to 10 V for 10 div sweep. Typically $0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ to trigger the sweep circuits. 40 V peak maximum.

OUTPUT SIGNALS

Calibrator - (Cal Out) $-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$ at $50 \mathrm{MHz}, \pm 0.01 \%$.
1st Lo Out, 2nd Lo Out, Swp Out and Video Output

ENVIRONMENTAL

The 7 L 14 meets its electrical characteristics over the environmental limits per MIL-T-28800 Type III Class 6, Style E instruments. The 7L14 is operable over the limits of a MIL-T-28800 Class 5 instrument. The 7 L 14 is physically and electrically compatible with all Tektronix 7000 Series mainframes.

Option 39

Extended Frequency Range

Option 39 extends the 7 L 14 's frequency range from 1 kHz to 2.5 GHz .

CHARACTERISTICS
 FREQUENCY

Range -1 kHz to 2.5 GHz .
Center Frequency Accuracy - $\pm(5 \mathrm{MHz}$ $+0.5 \%$ of center frequency $+20 \%$ of Span/Division setting).

AMPLITUDE

Display Flatness $- \pm 1.5$ for 10 kHz to 1.8 GHz , with respect to $50 \mathrm{MHz},+1.5,-2.5$ for 1.8 GHz to 2.5 GHZ .

SPURIOUS RESPONSES

Residual - $\leqslant-95 \mathrm{dBm}$ to 2.5 MHz . $\leqslant-100 \mathrm{dBm}$ for 2.5 MHz to 1.8 GHz . $\leqslant-60 \mathrm{dBm}$ for 1.8 GHz to 2.5 GHz .
Second Order Intermodulation Products Down 70 dB or more from two -40 dBm signals. Third Order Intermodulation Products Down 70 dB or more from two -30 dBm signals within any frequency span.
IF Feed-Through - At least 15 dB down at 2.095 GHz input.

Images - At least 10 dB down at 4.095 GHz to 6.795 GHz .

ORDERING INFORMATION

7L14 Spectrum Analyzer

\$18,060
Includes: Spectrum analyzer graticule, $6 \mathrm{ft} 50 \Omega$ coax cable with BNC connectors (012-0113-00); BNC male to female adaptor ($103-0058-00$); light filter ($378-0625-07$); amber light filter (378-0684-01); clear plastic implosion shield with Log, Lin, Ref, and F (frequency) direction markings (337-1439-01), for 7603 oscilloscope and (337-1159-02) for other 7000 Series oscilloscopes, instruction manual (070-3434-00).

OPTIONS (7L14)

Option 23 - Deletes input limiter.
Option 39 - 1 kHz to 2.5 GHz Extended Frequency Range.
$+\$ 50$
$+\$ 500$
RECOMMENDED MAINFRAMES
7603 Oscilloscope, 100 MHz . (See
page 201.)
\$3,250
R7603 Rackmount Oscilloscopes, 100 MHz . (See page 201.)
\$3,720
MAINFRAME OPTIONS (7603/R7603)
Option 06 - Internal Spectrum Analyzer Graticule.
Option 08 - Protective Front Cover. (Cabinet only.)
Option 77 - GM (P7) Phosphor and Internal Spectrum Analyzer Graticule.
$+\$ 100$
7854 Digitizing Oscilloscope,
400 MHz . (See page 318.)
\$15,830

Tektronix offers service training classes on the 7L14 Spectrum Analyzer. For further training information, contact your local sales/service office or request a copy of the Tektronix Service Training Schedule on the return card in the center of this catalog.

7K11 catv Preamplifier

75Ω Input Impedance and Calibration in dBmV

Extra Sensitivity for CATV and Field Intensity Measurements

This 7000 Series plug-in preamplifier is for use with the 7 L 12 or 7 L 14 and tailored to CATV and field intensity measurement applications, where extra sensitivity is required for demanding measurements. The 7K11 handles 12 channels without overload.
The 7 K 11 provides a 75Ω input impedance and calibration in dBmV . Its low noise figure makes it especially suitable for signal-tonoise and low-level radiation measurements.

CHARACTERISTICS

(with 7L12 or 7L14)
Frequency Range - 30 MHz to 890 MHz .
Display Flatness - $\pm 1.0 \mathrm{~dB}$, with respect to the level at 50 MHz over the frequency range of 50 MHz to 300 MHz ; increasing to +2.0 dB , -2.5 dB over the full frequency range.
Sensitivity - Signal + noise $=2 X$ noise, in Lin mode at $50 \mathrm{MHz} .-90 \mathrm{dBmV}$ at 30 Hz , -80 dBmV at $300 \mathrm{~Hz},-73 \mathrm{dBmV}$ at 3 kHz , -65 dBmV at $30 \mathrm{kHz},-55 \mathrm{dBmV}$ at 300 kHz , -45 dBmV at 3 MHz . Noise figure is $\leqslant 5 \mathrm{~dB}$.
Intermodulation Distortion - Imd products and harmonics from two signals within the frequency range are 70 dB or more down from the reference level for third order intermodulation with two signals at the reference level (full screen).
Reference Level - Calibrated level in 1 dB steps from +79 dBmV to 0 dBmV . Accuracy is referenced to the +30 dBmV calibrator at 50 MHz .
Input Impedance - 75Ω.
Calibrator $-50 \mathrm{MHz} \pm 0.01 \%$ with an absolute amplitude level of $+30 \mathrm{dBmV} \pm 0.3 \mathrm{~dB}$, from 75Ω.

ORDERING INFORMATION

7K11 CATV Preamplifier

\$1,100

Includes: 5.5 inch BNC to BNC 50Ω cable ($012-0214-00$); BNC to F adaptor ($013-0126-00$); 42 inch BNC to BNC 75Ω cable (012-0074-00); instruction manual (070-1664-00).

$7 L 12$ with 016-0155-00 Blank Panel in 7613 Option 06 Variable Persistence mainframe with internal spectrum analyzer graticule.

7L12

Proven, Economical VHF/UHF Coverage
Automatic Phase Lock
300 Hz Resolution Bandwidth
Swept Measurements with the TR 502
Coverage to 2.5 GHz (Option 39)
Semiautomatic Measurements with the Tek 7854

The Tek 7L12 Spectrum Analyzer is a proven, economical performer and very popular among users across a range of applications including AM, FM and TV Broadcasting, two-way radio, and other communications systems testing. The 7L12 is also very useful in EMC and other VHF/UHF applications. By ordering Option 39, the 7L12 may be used to 2.5 GHz .

Performance you can count on includes 300 Hz resolution bandwidth/automatic phase lock stabilization, 70 dB spurious-free dynamic range and a very stable swept measurement capability (100 kHz to 1.8 GHz) using the TR 502 (see page 172). Ease-of-use features include CRT readouts of key parameters, and fully-calibrated displays.
7 L 12 is fully-compatible with the Tek 1405 TV Sideband Analyzer (see page 173) permitting on-the-air transmitter evaluation.
Make semiautomatic measurements by using the Tek 7854 Digitizing Mainframe. This programmable unit's calculation and marker capabilities can greatly enhance your productivity using the 7L12 Spectrum Analyzer. The 7854 can also be put to work with your choice of other Tek 7000 Series test and measurement plug-ins-versatility plus! Get full details from your Tek sales engineer or ask for Application Note Number 26W-5653.

CHARACTERISTICS

The following characteristics and features apply to the 7 L 12 Spectrum Analyzer after a 40 minute warm-up period.

FREQUENCY RELATED

Center Frequency Range - 100 kHz to 1.8 GHz .

Center Frequency Readout Accuracy \pm ($8 \mathrm{MHz}+1 \%$ of dial readout).
Frequency Span/Division Range $500 \mathrm{~Hz} /$ div to $100 \mathrm{MHz} / \mathrm{div}$ in calibrated steps in 1-2-5 sequence.
Accuracy: Within 5\% over center eight division. Linearity: Within 5\% over center eight division. Maximum Span: Provides 1.8 GHz of span.
Zero Span: Provides fixed frequency operation for time domain display.

Resolution Bandwidth (6 dB) -

Range: 300 Hz to 3 MHz , in decade steps.
Accuracy: Within $\pm 20 \%$ of the resolution selected.
Resolution Shape Factor ($\mathbf{6 0 / 6} \mathrm{dB}$) - $4: 1$ or less.

Signal Level Change Over the Five Band-

 widths $-<0.5 \mathrm{~dB}$ at $20^{\circ} \mathrm{C}$.Residual FM - 200 Hz ($p-p$) when phase locked. $20 \mathrm{kHz}(p-p)$ maximum in five seconds when not phase locked.
Stability - At a fixed temperature after two hour warm-up; within $50 \mathrm{kHz} /$ hour phase locked; within $100 \mathrm{kHz} / \mathrm{hour}$ not phase locked.

AMPLITUDE RELATED

Display Modes -

Log $10 \mathrm{~dB} /$ Division: Provides 70 dB display dy namic range. Accuracy is within $1 \mathrm{~dB} / 10 \mathrm{~dB}$ to 1.7 dB maximum over 70 dB display dynamic range.
Log $2 \mathrm{~dB} /$ Division: Provides 14 dB display dynamic range. Accuracy is within $\pm 0.4 \mathrm{~dB} / 2 \mathrm{~dB}$ to 1.0 dB maximum over 14 dB display dynamic range.
LIN: Within 8% over eight center division. Deviation Between Display Modes: $\pm 2 \mathrm{~dB}$ from $2 \mathrm{~dB} /$ div to $10 \mathrm{~dB} / \mathrm{div}, 0.5 \mathrm{div}$ from $2 \mathrm{~dB} / \mathrm{div}$ to LIN.
Reference Level - +30 dBm to -100 dBm in 10 dB steps.
Display Flatness $- \pm 1.7 \mathrm{~dB}$ over any selected frequency span, with respect to the display level at 50 MHz .
Sensitivity for a cw Signal - The following sensitivity characteristics apply at 50 MHz . Sensitivity may decrease 2 dB at 1.7 GHz and to 4 dB at 1.8 GHz .

Resolution Bandwidth	Averaged Noise Level
300 Hz	-115 dBm
3 kHz	-108 dBm
30 kHz	-100 dBm
300 kHz	-90 dBm
3 MHz	-80 dBm

SPURIOUS RESPONSES

Residual $-<-99 \mathrm{dBm}$ (referenced to the first mixer input).
Second Order Intermodulation Products Down 70 dB or more from two -40 dBm signals, within any frequency span.
Third Order Intermodulation Products Down 70 dB or more from two -30 dBm signals, within any frequency span.
RF Attenuator - 60 dB range in 10 dB steps.
Accuracy $- \pm .25 \mathrm{~dB}$ or 1.2% of dB reading; whichever is greater.
IF Gain
Range - 70 dB .
Step Accuracy - $\pm 1 \mathrm{~dB} / 10 \mathrm{~dB}$ step to $\pm 1.5 \mathrm{~dB}$ maximum over entire range.

GENERAL CHARACTERISTICS

Sweep Time - $10 \mathrm{~ms} /$ div (Spectrum position) to $1 \mu \mathrm{~s} /$ div are provided in $1-2-5$ sequence. A variable control provides continuous variation between steps. Accuracy is within 5\%.
Triggering Modes - (P-P) Auto, Norm, Single Sweep.
Sensitivity - $\leqslant 0.5$ div for the ($p-p$) Auto mode, $\leqslant 0.3$ div for the Norm mode, $\leqslant 1.5$ div for the Single Sweep mode.
Shipping Weight - 7.6 kg (17 lb).

INPUT SIGNALS

RF Input - Maximum Input Power Level Linear Operation: RF Attenuator at $0 \mathrm{~dB}:-30 \mathrm{dBm}$. Input Impedance: 50Ω.
Safe Input Levels - RF attenuator at 0 dB : +13 dBm . RF: Attenuator at $60 \mathrm{~dB}:+30 \mathrm{dBm}$ (1 W average, 100 W peak).
Horizontal Input - Requires a $10 \mathrm{~V} \pm 1 \mathrm{~V}$ signal for full deflection.

OUTPUT SIGNALS

Cal Out $-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$ at 50 MHz , $\pm 0.01 \%$.
1st LO Out, 2nd LO Out, Vert Out

Option 39

Extended Frequency Range

Option 39 extends the 7L12's frequency range from 100 kHz to 2.5 GHz .

CHARACTERISTICS
 FREQUENCY

Range - 100 kHz to 2.5 GHz (Usable below 100 kHz with slightly degraded performance).
Center Frequency Accuracy $- \pm(8 \mathrm{MHz}+$ 1% of dial indication).

AMPLITUDE

Display Flatness - $\pm 1.7 \mathrm{~dB}$ for 100 kHz to $1.8 \mathrm{GHz} . \pm 2 \mathrm{~dB}$ for 1.8 GHz to 2.5 GHz .

SPURIOUS RESPONSES

Residual --95 dBm to $2.5 \mathrm{MHz} . \leqslant-99 \mathrm{dBm}$ for 2.5 MHz to $1.8 \mathrm{GHz} . \leqslant-60 \mathrm{dBm}$ for 1.8 GHz to 2.5 GHz .
Second Order Intermodulation Products Down 70 dB or more from two -40 dBm signals. Third Order Intermodulation Products Down 70 dB or more from two -30 dBm signals within any frequency span.
IF Feedthrough - At least 15 dB down at 2.095 GHz input.

Images - At least 10 dB down at 4.095 GHz to 6.795 GHz .

ORDERING INFORMATION

7 L12 Spectrum Analyzer
\$10,960
Includes: Spectrum analyzer graticule, clear plastic implosion shield with LOG, LIN, REF, and \ddagger (frequency) direction markings (337-1439-01) for 7403 N and 7603 Oscilloscopes, and (337-1159-02) for other 7000 Series oscilloscopes; light filter ($378-0625-07$); amber light filter (378-0684-01); 6 foot 50Ω coax cable with BNC connectors (012-0113-00); BNC Male to N Female adaptor (103-0058-00); instruction manual ($070-1298-02$).
Option 39 - 100 kHz to 2.5 GHz Extended Frequency Range.

RECOMMENDED MAINFRAMES

7613 Storage Oscilloscope, 100 MHz .
(See page 210.)
\$5,850
R7613 Rackmount Storage Oscillo-
scope, 100 MHz . (See page 210.) $\$ 6,315$
7603 Oscilloscope, 100 MHz . (See page 201.)
R7603 Rackmount Oscilloscope,
100 MHz . (See page 201.)
\$3,720
7854 Digitizing Oscilloscope,
400 MHz . (See page 318.)
\$15,830
MAINFRAME OPTIONS (7603/R7603, 7613/R7613)
Option 06 - Internal S A Graticule. $+\$ 50$
Option 08 - Protective front cover. (Cabinet
only).
$+\$ 115$
Option 77 - (7603/R7603 Only) GM (P7)
Phosphor and Internal Spectrum Analyzer
Graticule.
$+\$ 100$
OPTIONAL ACCESSORY
Blank Plug-In Panel - Order 016-0155-00

7K11 catV Preamplifier

75Ω Input Impedance and Calibration in dBmV

Extra Sensitivity for CATV and Field Intensity Measurements

This 7000 Series plug-in preamplifier is for use with the 7 L 12 or 7 L 14 and tailored to CATV and field intensity measurement applications, where extra sensitivity is required for demanding measurements. The 7K11 handles 12 channels without overload.

The 7 K 11 provides a 75Ω input impedance and calibration in dBmV . Its low noise figure makes it especially suitable for signal-tonoise and low-level radiation measurements.

CHARACTERISTICS
 (WITH 7L12 or 7L14)

Frequency Range -30 MHz to 890 MHz .
Display Flatness - $\pm 1.0 \mathrm{~dB}$, with respect to the level at 50 MHz over the frequency range of 50 MHz to 300 MHz ; increasing to +2.0 dB , -2.5 dB over the full frequency range.
Sensitivity - Signal + noise $=2 \mathrm{X}$ noise, in Lin mode at $50 \mathrm{MHz} .-90 \mathrm{dBmV}$ at 30 Hz , -80 dBmV at $300 \mathrm{~Hz},-73 \mathrm{dBmV}$ at 3 kHz , -65 dBmV at $30 \mathrm{kHz},-55 \mathrm{dBmV}$ at 300 kHz , -45 dBmV at 3 MHz . Noise figure is $\leqslant 5 \mathrm{~dB}$. Intermodulation Distortion - Imd products and harmonics from two signals within the frequency range are 70 dB or more down from the reference level for third order intermodulation with two signals at the reference level (full screen).
Reference Level - Calibrated level in 1 dB steps from +79 dBmV to 0 dBmV . Accuracy is referenced to the +30 dBmV calibrator at 50 MHz .
Input Impedance - 75Ω.
Calibrator $-50 \mathrm{MHz} \pm 0.01 \%$ with an absolute amplitude level of $+30 \mathrm{dBmV} \pm 0.3 \mathrm{~dB}$, from 75Ω.

ORDERING INFORMATION

7K11 CATV Preamplifier
\$1,100
Includes: 5.5 inch BNC to BNC 50Ω cable ($012-0214-00$); BNC to F adaptor ($013-0126-00$); 42 inch BNC to BNC 75Ω cable ($012-0074-00$); instruction manual ($070-1664-00$).

$7 L 5$ Option 25 Spectrum Analyzer with $L 3(50 \Omega, 600 \Omega, 1 \mathrm{~m} \Omega)$ plug-in module in a 7603 Option 06 mainframe with internal spectrum analyzer graticule. The L3-1 module (shown at right) is switch selectable to $75 \Omega, 600 \Omega$ or $1 \mathrm{M} \Omega$.

7L5

Synthesizer Tuning

Digital Storage and Averaging

Three-Knob Operation

Preset Reference Level and Dot Frequency for Extra Input Protection

Swept Measurements (Option 25
Tracking Generator)
Selectable Input Impedance; Calibration in $\mathrm{dBm}, \mathrm{dBV}$ or Volts/Division

Semiautomatic Measurements with the Tek 7854

The Tektronix 7 L 5 is a high performance, high value spectrum analyzer providing easy-to-use low frequency measurement capability. The 7 L 5 can cover 20 Hz to 5 MHz in one display. Resolution bandwidth can be varied from 10 Hz to 30 kHz , with residual FM of no more than 1 Hz peak-topeak. Comparing baseband channel performance is easy because the 7 L 5 switches from a single channel to a 60 -channel
supergroup without retuning. You see all channel amplitudes at a glance, side-byside.
Digital storage proves particularly useful in the 7 L 5 . With digital averaging and peak detection, you can accurately measure low level signals, such as intermodulation distortion products, in the presence of noise. With Max Hold, you can capture short duration signals and random transient phenomena that would otherwise be lost.

The 7L5 combines high performance with easy-to-use three-knob operation -

1) Set frequency span
2) Set center frequency
3) Set reference level...and measure!

Sweep speed and resolution bandwidth are set automatically.
Digital tuning and synthesizer stability let you set center frequency with six-digit accuracy immediately upon turn-on. Reference level can be set in 1 dB and 10 dB steps, eliminating the need to interpolate amplitude levels. And for measuring wide relative amplitude differences, the 7 L 5 offers 80 dB spurious-free display dynamic range.

The 7L5 makes accurate baseband communications measurements such as noise, spurious response, distortion, and transient interference, all with the certainty of 10 Hz resolution. The 7L5 Option 25 provides swept frequency measurements from 20 Hz to 5 MHz . The tracking generator is built into a "three-wide" 7L5 plug-in analyzer.
This highly capable audio/baseband analyzer finds a place in many areas of use, including measurement of communications system basebands, power line distortion, EMC/RFI, and computer systems.
Make semiautomatic measurements by using the Tek 7854 Digitizing Mainframe. This programmable unit's calculation and marker capabilities can greatly enhance your productivity using the 7 L 5 Spectrum Analyzer. Specify 7L5 Option 12 for proper 7854 interface. Get full details from your Tek sales engineer or ask for Application Note Number 26W-5653.

CHARACTERISTICS

The following characteristics and features apply to the 7L5 Spectrum Analyzer after a warm-up period of ten minutes.

FREQUENCY RELATED

Center Frequency Range - Input Frequency Range: 20 Hz through 5.0 MHz .
Dot Frequency Range: 0 Hz through 4999.75 kHz tuned in 10 kHz or 250 Hz steps.
Accuracy at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}: \pm\left(20 \mathrm{~Hz}+10^{-5}\right.$ of dot frequency). $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}: \pm\left(5 \mathrm{~Hz}+2 \times 10^{-6}\right.$ of dot frequency).
Frequency Span/Division Range - $50 \mathrm{~Hz} /$ div to $500 \mathrm{kHz} /$ div (maximum) in a $1-2-5$ sequence. Accuracy: Within 5\%.
Linearity: Within 5\% over the center eight divisions.
Zero Span: Provides fixed frequency operation for time domain display.
Resolution Bandwidth (6 dB) -10 Hz to 30 kHz in eight steps. Coupled position electronically couples resolution to span/division selection so that both are controlled by the same knob.
Accuracy: Within 20\% of resolution selected (30 Hz to 30 kHz). 10 Hz is $100 \mathrm{~Hz} \pm 20 \mathrm{~Hz} 70 \mathrm{~dB}$ down.
Resolution Shape Factor ($\mathbf{6 0 / 6} \mathrm{dB}$) - 10:1 or better for 10 Hz to 1 kHz and $5: 1$ or better for 3 kHz to 30 kHz .
Signal Level Change Between Any Two Bandwidths - 30 kHz to $100 \mathrm{~Hz}: \leqslant 0.5 \mathrm{~dB}$. 30 kHz to $10 \mathrm{~Hz}: \leqslant 2.0 \mathrm{~dB}$.
Residual $\mathbf{F M}-\leqslant 1 \mathrm{~Hz}(p-p)$ for frequency span of $50 \mathrm{~Hz} /$ div to $2 \mathrm{kHz} /$ div. $\leqslant 40 \mathrm{~Hz}(p-p)$ for frequency span of $5 \mathrm{kHz} /$ div to $500 \mathrm{kHz} / \mathrm{div}$.
Stability $-\leqslant 5 \mathrm{~Hz}$ /hour.

AMPLITUDE RELATED

Display Modes -
Log $10 \mathrm{~dB} /$ Division: Provides 80 dB display dy namic range. Accuracy is within $0.08 \mathrm{~dB} / \mathrm{dB}$ to 2 dB maximum over 80 dB display dynamic range.
Log $2 \mathrm{~dB} /$ Division: Provides 16 dB display dynamic range. Accuracy is within $0.15 \mathrm{~dB} / \mathrm{dB}$ to 1 dB maximum over 16 dB display dynamic range.
LIN: $20 \mathrm{nV} /$ div to 200 mV div in a $1-2-5$ sequence. Accuracy is within 5\%
Reference Level -+21 dBm to -128 dBm (50Ω or 75Ω input impedance), +10 dBm to -139 dBm (600Ω input impedance), +8 dBV to -141 dBV ($1 \mathrm{M} \Omega$ input impedance). Calibrated in 1 dB and 10 dB steps.
Display Flatness - 0.7 dB maximum from 20 Hz to 5 MHz , (add 0.5% quantization error in digital storage).
Sensitivity - Equivalent input noise for each resolution bandwidth setting is measured in video average mode with $10 \mathrm{~s} /$ div sweep rate and input buffer control off. Sensitivity is degraded an additional 8 dB when the input buffer is on.

Resolution Bandwidth	Averaged Noise Level	
	dBm 50 Ohm	dBV 75 Ohm
10 Hz	-135 dBm	-140.5 dBV
30 Hz	-133 dBm	-138.5 dBV
100 Hz	-130 dBm	-135.5 dBV
300 Hz	-125 dBm	-130.5 dBV
1 kHz	-120 dBm	-125.5 dBV
3 kHz	-115 dBm	-120.5 dBV
10 kHz	-110 dBm	-115.5 dBV
30 kHz	-105 dBm	-110.5 dBV

SPURIOUS RESPONSES

Residual $-\leqslant-143 \mathrm{dBV}$ (noncalibrator related, referenced to the input).
Intermodulation Products - Within any frequency span for two on screen signals of any input level, third order down 75 dB or more and second order down 72 dB or more; of any input level up to -53 dBV or of any input level with input buffer on, second and third order down 80 dB or more.

GENERAL CHARACTERISTICS

Sweep - Triggered, manual, auto.
Sweep Time - $10 \mathrm{~s} /$ div to $0.1 \mathrm{~ms} /$ div in a $1-2-5$ sequence.
Accuracy - Within 5\% of selected time/division.
Triggering - Sources are free run, internal and line. Modes are normal, manual sweep and single sweep.
Sensitivity $-\geqslant 1.5$ div of internal signal for both normal and single sweep modes over the approximate frequency range of 30 Hz to 500 kHz .
Shipping Weight $-7.6 \mathrm{~kg}(17 \mathrm{lb})$.

INPUT SIGNALS

Maximum Input Power Level -

$1 \mathrm{M} \Omega / 28 \mathrm{pF}$: $15 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ for ac or pulse signals with risetimes of $2 \mathrm{~V} / \mu \mathrm{S}$ or faster (pulses or ac beyond this specification may open an input fuse). 40 V (dc plus peak ac) for signals with risetimes slower than $2 \mathrm{~V} / \mu \mathrm{s}$.
600Ω (Internally Terminated): 12 V dc or RMS (+24 dBm).
50Ω (Internally Terminated): 3.5 V dc or RMS (+24 dBm).
Input Impedance: Switch selectable $1 \mathrm{M} \Omega$ in parallel with $28 \mathrm{pF}, 50 \Omega$ (75Ω for L3 Option 01) termination, or 600Ω termination.

OUTPUT SIGNAL

Calibrator - (Cal Out) 500 kHz squarewave within $\pm 0.15 \mathrm{~dB}$ of -40 dBV into the plug-in impedance.
Video Out - $50 \mathrm{mV} / \mathrm{div} \pm 5 \%$ (about the CRT center) with source impedance of $1 \mathrm{k} \Omega$.
Horizontal Out -0 V dc to about -6 V dc sawtooth with a source impedance of $5 \mathrm{k} \Omega$.

Option 25 Tracking Generator

The 7 L 5 with Option 25 Tracking Generator, provides selectable $50 \Omega, 75 \Omega$, or 600Ω impedance source that has a calibrated output level for swept frequency tests from 20 Hz to 5.0 MHz . The output frequency can be adjusted so it tracks within 10 Hz of the spectrum analyzer frequency. The frequency span and rates are controlled with the spectrum analyzer. The output level is controlled from the tracking generator. Output level is calibrated and controlled in 10 dB and 1 dB steps over a 63 dB range. An Aux Output may be used to drive a frequency counter. The 7 L 5 with Option 25 is a threewide unit for the 7000 Series mainframes.

CHARACTERISTICS

Frequency Range - 20 Hz to 5.0 MHz .
Output Impedance - $50 \Omega, 75 \Omega$, or 600Ω selected by a front panel switch.
Amplitude - The output level is calibrated in dBm or dBV and selectable in 10 dB or 1 dB steps. A vernier provides continuous variation between calibrated steps.
Range - $50 \Omega: 0 \mathrm{dBm}$ to $-63 \mathrm{dBm} .75 \Omega$: -6 dBm to $-69 \mathrm{dBm} .600 \Omega$: -17 dBm to -80 dBm .
Accuracy (Maximum Output Calibrated at $500 \mathrm{kHz})-50 \Omega: 0 \mathrm{dBm} \pm 0.25 \mathrm{~dB} .75 \Omega$: $-6 \mathrm{dBm}+0.4,-0.2 \mathrm{~dB} .600 \Omega:-17 \mathrm{dBm}+0.5$, -0.1 dB .
Attenuator - Range: 0 dB to 63 dB in 10 dB or 1 dB steps. Accuracy: Within $0.2 \mathrm{~dB} / \mathrm{dB}$ to a maximum of $0.25 \mathrm{~dB} / 10 \mathrm{~dB}$ absolute.
Flatness -50Ω and 75Ω : Within 0.5 dB p-p. 600Ω : Within 1.0 dB p-p. Total System Flatness (7L5 with L3 Plug-in Module and Option 25) 50Ω and 75Ω : Within 1.0 dB p-p. 600Ω : Within 1.25 dB p-p.
Dynamic Range (7L5 with Option 25) $\geqslant 110 \mathrm{~dB}$.
Residual FM (p-p) - (7L5 with Option 25). Spans to $2 \mathrm{kHz} /$ Div: 2 Hz . Spans $5 \mathrm{kHz} /$ Div or Greater: 40 Hz .
Stability $-25 \mathrm{~Hz} / 5$ minutes after ten minute warm-up decreasing to 25 Hz /hour maximum after one hour.

Spurious Suppression, 20 Hz to 5.0 MHz (Harmonic and Nonharmonic) - 40 dB or more with respect to the carrier.
Auxiliary Output $-\geqslant 200 \mathrm{mV}$ RMS into 50Ω.

BALANCED INPUT TRANSFORMER

Frequency Range - 50 kHz to 3 MHz , usable from 10 kHz to 20 MHz .
Flatness -0.25 dB p-p maximum (50 kHz to 3 MHz) including nominal 0.1 dB insertion loss.
Common-Mode Rejection - 25 dB minimum (50 kHz to 3 MHz).
Output Termination - Switchable between $124 \Omega, 135 \Omega$, and none for bridging or external termination.
Connectors - WECO (0.37 in with 0.090 center) on 0.625 in spacing for balanced input. BNC for single-ended output.

ORDERING INFORMATION

(L3 Plug-In Not Included)

7 L 5 Spectrum Analyzer (Requires L3 Plug-in Module)
\$11,070
Includes: Spectrum analyzer graticule (337-1159-00); (7000 Series), and (337-1439-01); (7603), light blue filter ($378-0684-00$); operator manual ($070-1734-01$); service manual ($070-2184-01$)

OPTIONS
Option 11 - L3 Plug-in Module Option 01
shipped with 7L5. $\quad+\mathbf{\$ 1 , 5 8 0}$

Option 12 - 7854 Waveform Oscilloscope compatibility.
$+\$ 150$
Option 20 - L3 Plug-in Module shipped with 7L5
$+\$ 1,580$
Option 25 - Tracking Generator. $\quad+\mathbf{\$ 1 , 5 6 0}$
L3 Plug-in Module, $1 \mathrm{M} \Omega, 50 \Omega, 600 \Omega$ \$1,580
Includes: Instruction manual (070-2154-02).
Option 01 - (L3 Only) $1 \mathrm{M} \Omega, 75 \Omega, 600 \Omega . \quad$ NC
CONVERSION KIT
Tracking Generator - To add to existing
7L5. Order 040-0810-04
\$1,850
RECOMMENDED MAINFRAMES
7854 - Waveform Processing Oscilloscope,
400 MHz . (See page 318.)
\$15,830
7603*1 - Oscilloscope, 100 MHz . (See page 201.)
$\$ 3,250$
R7603*1 - Rackmount Oscilloscope, 200 MHz .
(See page 201.)
\$3,720

* ${ }^{\text {' }}$ Suggested oscilloscope.

MAINFRAME OPTIONS (7603/R7603)

Option 06 - Internal SA Graticule.
$+\$ 50$
Option 08 - Protective Front Cover (Cabinet only).
Option 77 - GM (P7) Phosphor and Internal
SA Graticule.
$+\$ 100$
75Ω to 50Ω Minimum Loss Attenuator -
Ac coupled. Order 011-0112-00
P6105A 10X Probe - 2 m . Order 010-6105-13

Balanced Input Transformer -

Order 013-0182-00
$\$ 300$
Tektronix offers service training classes on the $7 \mathrm{L5}$ Spectrum Analyzer. For further training information, contact your local Sales/Service Office or request a copy of the Customer Service Training Catalog on the return card.

TR 502/TR 503

Tracking Generators

Swept Measurements to 1.8 GHz

Enhances Dynamic Range to Better Than 110 dB

Very Stable—Resolve Signals Using 30 Hz Resolution Bandwidth

Auxilliary, Constant-Level Output Provides for Frequency Counter Measurement-Even of Signals at the Noise Floor

The TR 502 works with the 7 L 12 and 7L14 and the TR 503 works with all 490 Series spectrum analyzers to provide constant level, calibrated RF sources for swept frequency tests to 1.8 GHz .

The low residual FM of these systems enhances narrow bandwidth frequency response measurements. When used as a cw signal source with the analyzer in a manual mode, these systems have excellent frequency stability.

For swept frequency tests and precise frequency measurements, the TR 502 Tracking Generator may be used with a DP 501 Digital Prescaler and DC 509 Option 01 Digital Counter, in a TM 504 Power Module. The TR 502 is linked to the 1 st and 2nd LO of a $7 L 14$ Spectrum Analyzer in a 7603 mainframe.

The tracking generators are two-wide units compatible with the TM 500 and TM 5000 Modular Instrument Series.

The TR 502/TR 503 Aux RF Output may be used to drive a frequency counter package, such as the recommended DP 501, DC 509 Option 01. Frequencies up to 1.8 GHz may be measured accurately in the presence of high level adjacent signals to the sensitivity limits of the analyzer.
The tracking generator sweep rates are controlled with the spectrum analyzer, and the output level is controlled from the tracking generator. The output frequency of the tracking generator is the same as the frequency of the analyzer at any instant of the sweep.

CHARACTERISTICS

	TR 503/All 490 Series	TR 502/7L14	TR 502/7L12
Frequency Range	$100 \mathrm{kHz}-1.8 \mathrm{GHz}$	$100 \mathrm{kHz}-1.8 \mathrm{GHz}$	$100 \mathrm{kHz}-1.8 \mathrm{GHz}$
Output Level	(Maximum) $0 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$	$0 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$	$0 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$
Range	0 to -59 dB in 10 dB and 1 dB steps	0 to -59 dB in 10 dB and 1 dB steps	0 to -59 dB in 10 dB and 1 dB steps
Flatness	Within $\pm 2.25 \mathrm{~dB}$ Max from 100 kHz to 1.8 GHz (Typically $\pm 1.5 \mathrm{~dB}$)	Within $\pm 2 \mathrm{~dB}$ maximum from 100 kHz to 1.8 GHz (Typically $\pm 1.5 \mathrm{~dB}$)	Within $\pm 3.0 \mathrm{~dB}$ maximum from 100 kHz to 1.8 GHz (Typically $\pm 2.0 \mathrm{~dB}$)
Dynamic Range	$\geqslant 110 \mathrm{~dB}$	$\geqslant 110 \mathrm{~dB}$	$\geqslant 100 \mathrm{~dB}$
Residual FM	$50 \mathrm{~Hz} \mathrm{p-p}$	$13 \mathrm{~Hz} \mathrm{p-p}$	200 Hz p-p
Output Impedance	50Ω Nominal, VSWR 2:1 or less to 1.8 GHz	50Ω nominal, VSWR 2:1 or less to 1.8 GHz	50Ω nominal, VSWR 2:1 or less to 1.8 GHz
Auxiliary Output	0.1 V into 50Ω load -7 dBm minimum	0.1 V RMS into 50Ω Load	0.1 V RMS into 50Ω Load
Spurious Signoff	Harmonic: -20 dBc Nonharmonic: -40 dBc	Harmonic: -20 dBc Nonharmonic: -40 dBc	Harmonic: -20 dBc Nonharmonic: -40 dBc

Dot marker frequency measurement capability may be obtained with the TR 502/7L14 Spectrum Analyzer. For more information concerning the dot marker capability, contact your local Tektronix sales engineer.

OUTPUT CONNECTORS

RF Out -0 dBm to -61 dBm signal source that tracks input frequency of spectrum analyzer. Output level is set by Output Level control and Var dB control.
Aux RF Out - For use with frequency counter.

ORDERING INFORMATION

TR 502 Tracking Generator
 \$6,620

Includes: Two 50Ω coax cables (012-0649-00); logic interface cable ($012-0648-00$); N male to BNC female adaptor (103-0045-00); retainer plug-in (343-0604-00); 3 mm male to BNC female adaptor (015-1018-00); instruction manual (070-1735-00).
TR 503 Tracking Generator
\$6,620
Includes: Same as TR 502 except no logic interface cable and instruction manual (070-3526-00).

OPTIONAL ACCESSORIES

TM 503 - (TR 503 only) Power Module.
$\$ 390$
TM 504 - (TR 502 only) Power Module.
DC 509 Option 01 - Digital Counter with high stability time base.
DP 501 - Digital Prescaler.
Blank Panel — Order 016-0195-03
$10 \mathrm{~dB}, \mathbf{3} \mathbf{~ m m}$ Attenuator - Used in the 2nd LO input line to improve TR 502/7L12 Isolation. Order 307-0553-00

1405/7L 12 TV Sideband Adaptor Analyzer System

1405 TV Sideband Adaptor

Facilitates in-Service Testing of Transmitter
Measure Transmitter Frequency Response to $\pm 0.2 \mathrm{~dB}$

Video Circuits Can Be Swept
For In-Service Testing, Use of External Blanking Allows Either Full-Field or Single-Line Operation
Check Aural Fm Deviation with Built-In Bessel Null Technique

Flexible Marker System Will Accept Standard Crystals

To analyze the sideband response of a television transmitter, the 1405 Sideband Adaptor is recommended for use in tandem with the Tektronix 7L12, 7L14, and all 490 Series spectrum analyzers. It generates a composite video signal, which is applied as modulation to a television transmitter. The output is displayed on the spectrum analyzer and appears as a response curve, to within $\pm 0.2 \mathrm{~dB}$, of the transmitter being tested.
The 1405/Spectrum Analyzer combination will display frequency-response characteristics of RF and IF circuits for transmitters with frequencies to 1 GHz . Video circuits can also be analyzed.
Option 02 provides the correct frequencies at the TV Channel marks on the dial readout so that it is ready for use with the 490 Series spectrum analyzers when shipped from the factory.

CHARACTERISTICS

The following characteristics apply to the 1405, 1405/7L12 or 7L14 combination and 1405/490 Series combination. They are applicable over the environmental specification limits for the 1405 and 7000 Series mainframes.

FREQUENCY (FREQUENCY OFFSET)

Range - Will tune and provide a swept video output for a center frequency range of 0 GHz to 1 GHz .
Frequency Dial Accuracy - Dial reading is within 20 MHz of transmitter frequency when properly tuned.
Fine Tuning Range - From $\pm 0.5 \mathrm{MHz}$ to $\pm 1.25 \mathrm{MHz}$, depending upon transmitter frequency setting.
Tuned Frequency Drift $-<1 \mathrm{MHz} /$ hour after a 30 minute warm-up.

OUTPUT SIGNAL LEVEL

Amplitude (Sync Off) - 100 IRE equals 0.714 V p -p when terminated in 75Ω.
Output Impedance - $75 \Omega \pm 1 \%$ at 100 IRE and $\pm 2 \%$ from 0 IRE to 90 IRE.
Variable - 0 IRE to 100 IRE in 10 IRE steps.
Accuracy (at 200 kHz) - ± 1 IRE at 100 IRE; ± 2 IRE from 10 IRE to 90 IRE.
Output Level During Blanking - $0 \mathrm{~V} \pm 0.01 \mathrm{~V}$ at 0 IRE; $0 \mathrm{~V} \pm 0.04 \mathrm{~V}$ at 100 IRE from 0 MHz to $1 \mathrm{MHz} ; 0 \mathrm{~V} \pm 0.02 \mathrm{~V}$ at 100 IRE above 1 MHz .
Cw Output Harmonics - Third harmonic content down 40 dB from 0.1 MHz to 5 MHz ; down 35 dB from 5 MHz to 10 MHz .

FLATNESS

1405 - Within $\pm 0.1 \mathrm{~dB}$ from 100 kHz to 10 MHz , within $\pm 0.2 \mathrm{~dB}$ from 10 MHz to 15 MHz , within ± 0.4 dB from 50 kHz to 20 MHz .

1405 Plus 7L12, 7L14, All 490 Series
For Transmitter Frequency $>20 \mathrm{MHz}$: Within $\pm 0.2 \mathrm{~dB}$ from 100 kHz to 10 MHz of picture carrier, increasing to $\pm 0.3 \mathrm{~dB}$ at 15 MHz ; within $\pm 0.5 \mathrm{~dB}$ from 50 kHz to 20 MHz .
For Transmitter Frequency of 0 MHz to 20 MHz : Within $\pm 0.5 \mathrm{~dB}$ from 100 kHz to 15 MHz .
System Span — $\geqslant 200 \mathrm{kHz} /$ div.
Video Frequency Range - 15 MHz to 0 MHz to 15 MHz .

APL (AVERAGE PICTURE LEVEL)

Variable - 0 IRE to 100 IRE in 10 IRE steps.
Accuracy - ± 2 IRE.
Three Preset Levels - Preset A: OIRE to 50 IRE. Preset B: 25 IRE to 75 IRE. Preset C: 50 IRE to 100 IRE.
Horizontal Sync, Blanking, and Pedestal Du-
ration - Within NTSC (PAL - Option 01) limits (no vertical interval is provided). Transition time is $0.24 \mu \mathrm{~s} \pm 10 \%$, from 10% to 90% points.
Composite Sync Source Blanking - 0 V turns cw on $>-5 \mathrm{~V}$ turns cw off.
Line Strobe - TTL pulse from 0 V to 5 V turns cw on.

AURAL OUTPUT

Output Frequency - $10.396 \mathrm{kHz}: \pm 0.01 \%$ (crystal controlled). Option 01: 9.058 kHz .
Cw Output - Amplitude variable up to $\geqslant+12 \mathrm{dBm}$ into 600Ω. Harmonics down 45 dB or more.
Crystal Requirements - Series Resonant: R2 $<2000 \Omega$; Q >5000; Case, HC/6U or HC/25U.

MARKER CRYSTAL INSTALLATION

Because of the various international standards, the 1405 Option 01*1 is shipped with the marker crystals installed. Frequencies installed are $0.75 \mathrm{MHz}, 1.25 \mathrm{MHz}, 2.25 \mathrm{MHz}, 4.43 \mathrm{MHz}$, 5.00 MHz , and 5.75 MHz . Additional crystals are shipped with the unit.

* 1 Option 01 instruments are connected for a nominal power line voltage of 240 V . They are furnished with the standard North American plug unless Options A1, A2, A3, A4, or A5 is specified.

ORDERING INFORMATION

1405 TV Sideband Adaptor 525/60 Markers
\$5,780
Includes: Instruction manual (070-2078-00).
Option 01 - TV Sideband Adaptor (625/50 Markers).
$+\$ 200$
Option 02 - (Dial Readout for Use with 490 Series).

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

Rackmount-Conversion Kit - For Mounting 1405 or 1405 Option 01 in standard 19 inch rack. Order 016-0489-00

POWER SPLITTER

$75 \Omega / 50 \Omega$ BNC Output， 50Ω BNC Input－ Order 067－1232－00

CABLES，PADS AND ADAPTORS
Calibrator Jumper Cable－ 50Ω BNC to BNC 5.5 in．Order 012－0214－00
Jumper Cable－BNC to BNC $50 \Omega 42$ in． Order 012－0057－01
Jumper Cable－BNC to BNC $75 \Omega, 42$ in． Order 012－0074－00
75Ω to $\mathbf{5 0} \Omega$ Minimum Loss Attenuator－ With dc block， 5.7 dB loss．Order 011－0112－00
75Ω to 50Ω Matching Attenuator－With
11.25 dB conversion factor from dBm to dBV with dc block．Order 011－0118－00
Fixed 10 dB Attenuator－With 3 mm fit－ tings for use with TR 502 with 7L12．
Order 307－0553－00
＂F＂Female to BNC Male Adaptor－ Order 013－0126－00

BNC Female to＂F＂Male Adaptor－ Order 103－0158－00
＂N＂Female to BNC Male Adaptor－ Order 103－0058－00

DC BLOCKS
BNC to BNC－Maximum dc potential 50 V ． Order 015－0221－00
$\mathbf{N (F)}$ to $\mathbf{N (M)}$－ 10 kHz to 21 GHz 50 dc maxi－ mum．Order 015－0509－00

PROTECTIVE VINYL COVERS

For extra protection in field environments，soft vinyl cov－ ers are available to fit over the entire cabinet model mainframe
7000 Series 3 Hole Mainframe Cover－ Order 016－0192－01
7000 Series 4 Hole Mainframe Cover－

Order 016－0531－00

490 Series Rear Panel Connector Cover －Order 337－3274－00\＄5

RIGID FRONT COVERS

Solid snap on or friction fit covers are available to protect the instruments in transit or field use
See appropriate spectrum analyzer and mainframe or－ dering information regarding the Option 08 Protective Front Cover for 7603 and 7613
Protective Front Cover for existing 7603 or 7613 Mainframes：
Blue — Order 040－0835－00 \＄175
Gray — Order 040－0628－00 \＄175
GRATICULES，FILTERS
Plastic Implosion Shield and S A Graticule
－ 7613 and 7623 Mainframes．
Order 378－0625－07
Plastic Implosion Shieid and S A Graticule
－ 7403 and 7603 Mainframes
Order 337－1439－01
Plastic Implosion Shield and S A Graticule
－For all other 7000 Series mainframes．
Order 337－1159－02
$\$ 8.00$
（Internal graticules are available with most 7000 Series mainframes）．
EMC Metal Screen Mesh Filter－For 7500，
7700，7800， 7900 Series and 7613，7623， 7633 instruments．Order 378－0603－00
EMC Metal Screen Mesh Filter－For 7400 Series and 7603 instruments．Order 378－0696－00
Complete selection of colored filters is available in the accessories section，page 451.
$\$ 17.50$

FET Probe P6201－Dc to 900 MHz Order 010－6201－01
\＄1，220
FET Probe P6202A－Dc to 500 MHz ． Order 010－6202－03
Conventional Probe P6056－Dc to 3.5 GHz 6 ft ．Order 010－6056－03

Conventional Probe P6057 — Dc to 1.4 GHz with adaptor．Order 010－6057－03 $\$ 190$
Current Probe P6022－Dc to 150 MHz ． Order 015－0135－00
$\$ 475$
Complete specifications are available in the probes and accessories section，page 425.

CAMERAS

A camera can greatly enhance the versatility of a spec－ trum analyzer．Many different units are available．Howev－ er，the most popular units for the 7000 and 490 Series spectrum analyzers are：
C－59AP－General Purpose Camera．
\＄1，335
C－5C－Low Cost Camera．
\＄495
C－4 Option 02 －Low Cost Camera．\＄370
Complete specifications on all cameras are available in the camera section，page 404.

CARRYING CASES AND MOUNTS
Specialized carrying cases are available in two forms to protect your spectrum analyzer．
Metal carrying cases are available for the 7L5，7L12， 7L14 or 7L18 plug－in units．
Military style fiberglass and foam type transit cases can be custom fitted to many of the instruments．
A special mounting bracket assembly can be fitted to bolt the analyzer securely into the mainframe if desired． Securing Kit－Fits 7L12 or 7L14．
Order 016－0637－00
\＄65
3－Wide Carrying Case－For 7L14，7L5 Op－ tion 25，7L18．Order 016－0626－00
\＄350
2－Wide Carrying Case－For 7L12，7L5． Order 016－0625－00
\＄315
Luggage－Type Carrying Case－For 7603 Option 08， 7613 Option 08．Order 016－0628－00 （Analyzer must have 016－0637－00 Securing Kit）
Hard Case－Transit for the 490 Series
Order 016－0658－00
$\$ 725$
Soft Case－For the 490 Series．
Order 016－0659－00
$\$ 100$
Your local sales office or representative can quote prices and availability on any of these accessories．

Numerous application notes and magazine article reprints on spectrum analyzer mea－ surements are available．Notes on baseband，EMC，AM，FM，two－way radio and television measurements，audio amplifi－ er testing，noise and pulse testing，and oth－ ers have been written to help you with your measurements

In addition，our staff of specialists stands ready to help you solve any special mea－ surement problems．Contact your local Tektronix sales office or representative．

Option 08 protective front cover is shown with 7613 mainframe．

INSTRUMENTS/SYSTEMS PRODUCTS

CONTENTS

Laboratory Oscilloscopes 187
Portable Oscilloscopes 253
Automated Test Systems Instruments 294
Digitizers 306
Acquisition/Processing Systems 330
GPIB Programmable Instruments 338
Modular Test and Measurement Instruments 357
Curve Tracers 393
Cameras 404
Digital Photometer/Radiometer 417
Carts 422
Probes 425
Isolation Measurement Accessories 436
Probe Accessories 446
Adapting/Connecting Accessories 448
Mounting/Viewing Accessories 450

Broadest Selection

We've added new capabilities to the world's broadest selection of portable and laboratory oscilloscopes, programmable and manual general purpose instruments, waveform digitizers, instruments and systems and accessories.

These additions illustrate our continuing commitment to make your time and resources more productive. Here are some examples:

Software

GURU supplies the important communication link between an IBM PC (or PC compatible) and GPIB instrumentation. See page 305.

EZ-TEST 4041 software package helps produce automated test and measurement system programs quickly and easily for the novice programmer. See page 304.

TekMAP library of software supports the 7000 Series digitizers.
To utilitize your 7D20 to its fullest potential, choose from two software packages which provide automated pulse parameter analysis, FFT, propagation delay measurements and storage/retrieval of waveforms. See page 315.
The 7854/IBM PC COMMUTE provides quick access to basic utilities for instrumentation and control. This software supports a 7854 and IBM PC (or PC compatible) and a Tek GURU or National GPIB board. See page 318.

Portable Digitizers

The 2430 brings the best features of the industry standard 2400 Series into the digital world. Tek's new patented feature, Save on Delta, provides unattended pass/fail testing. See page 307

The 2230 and 2220 each feature 4 k record lengths, 100 ns peak detection and optional GPIB or RS-232C interfaces. See page 310.

Automated Test Systems Instruments

The 4041DDU Disk Drive Unit provides additional mass storage, operating efficiency and flexibility for the 4041 System Controller.

Acquisition/Processing Systems

Three new systems combine state-of-the-art waveform acquisition capabilities with computer processing and software control. For a Portable Measurement Package, the MP 2601 features the new 2430 Digital Oscilloscope and 4041 Controller. A complete Audio Measurements Package is found in the MP 2902, which couples the AA 5001, SG 5010, TM 5006 Mainframe, 4105A Computer Terminal and 4041. The new Oscilloscope Measurement Package, the MP 2903, brings together a 2465DVS (or 2465DMS or 2465CTS) and 4105A Computer Terminal, 4041 Controller and Tek EZ-TEST software.

Probes

The P6102A is a miniature 10X passive probe specially designed for full compatibility with all scopes employing $1 \mathrm{M} \Omega, 47 \mathrm{pF}$ inputs.
Quick Delivery Probe - Five modular probes are now ready to ship within 24 hours: P6101A, P6105A, P6106A, P6122, P6131.

Accessories

The Travel Line Package for the Portable scopes provides added protection along the front and rear. This package includes accessory pouch, front panel cover, and carry strap.

CONTENTS

REFERENCE INFORMATION

Page
Increasing Productivity 35
Modular and Integrated Oscilloscopes 176
Programmable General Purpose
Instruments ... 177
Understanding Oscilloscope
Specifications178
Choosing a CRT Phosphor 180
Storage Oscilloscopes 182
Digital Storage Oscilloscopes 184
Sampling Oscilloscopes 185
Waveform Digitizers 186
Automated Test System 294
Acquisition/Processing System Automation 330
Choosing a Scope Camera 409
Making Floating Scope Measurements 436
Choosing a Probe 425

A BROAD PRODUCT LINE

Tektronix designs, manufactures, markets, supports, and services test and measurement products worldwide. Our test and measurement instruments and systems are used by scientists, engineers, and technicians in basic research, product design, manufacturing test, training, maintenance, and service applications in a broad range of industries and public institutions.
Products include:

- Fully-automated desktop, controller and minicomputer-based acquisition/processing systems.
- The state-of-the-art laboratory 7000 Series plug-in instruments.
- The 5000 Series instruments, which continue the 7000 Series concept of flexibility and expandability with a line of plug-ins and mainframes for the cost-conscious user.
- A complete line of portable oscilloscopes that range from hand-held, batteryoperated miniscopes to full-featured, highperformance instruments that have become the standards against which all other portables are measured.
- Two modular and compact product lines of general purpose instrumentation, including the cost-effective TM 500s and the GPIB-compatible and programmable TM 5000s.
- Curve tracers that acquire complete information about a multitude of semiconductor devices and integrated circuits and present it in a quickly comprehensible display.
- A portable digital photometer/radiometer with eight interchangeable probes for measuring illuminance, irradiance, luminance, LED output, and relative intensity.
- Accessories, from cameras to isolation measurement devices, that support not only all Instruments products, but also many Tek Design Automation, Information Display, and Communication products.

MODULAR AND INTEGRATED INSTRUMENTS

There are two basic configurations for test and measurement instruments: modular and integrated. Modular instruments, also called "plug-in" or "laboratory" models, combine a mainframe and one or more interchangeable plug-in subassemblies. Integrated instruments (also called "monolithic") are one-piece units.
Although portable instruments are traditionally designed as integrated units, not all integrated instruments are portable, and some modular systems (such as scopes within the Tektronix TM 500 Instrument line) are designed for easy transport.

Modular Design Advantages

Examples of modular design in Tektronix Instrument products include the 7000 Series, the 5000 Series, the TM 500 General Purpose Instruments and the TM 5000 Programmable General Purpose Instruments.
Versatility is the prime advantage of a modular instrument. Many more functions than could be economically or practically combined in a single unit are available by choosing the right plug-ins. Plug-ins can also extend the original instrument's range of functions. Digital multimeters, curve tracers, spectrum analyzers, and logic analyzers are just a few examples of the many specialized plug-ins Tektronix offers for modular oscilloscope mainframes.
Performance is another advantage. In the case of the 7000 Series instrument, modularity gives you the maximum performance available in an oscilloscope. And modularity also allows you to upgrade your instruments to take advantage of advances in technology.
Modular instruments can often be very cost effective too, because within a given product line, they can be shared. For example the TM 500 test and calibration plug-ins used in the lab for design work can be inserted in a portable mainframe and easily carried to the site of a service problem. Or as another example, a few high-performance laboratory plug-ins from the 7000 Series can be shared among several 7000 Series mainframes.

Consider the versatility and performance advantages as you read about the wide range of Tektronix modular instruments: page 187 for the 7000 Series instruments, page 238 for 5000 Series instruments, page 338 for TM 5000 Programmable Instruments, and page 357 for TM 500 Test and Measurement Instruments.

Integrated Design Advantages

Integrated instruments are often optimized for a single range of functions. One-piece instrument design can provide reductions in weight, increased ease of use, smaller size, lower power requirements, and often, higher performance/price ratios for your key requirements.
Portability can be essential for some test and measurement applications, and in these cases, an integrated design is often the best choice. Because a wide variety of options and optional accessories extend their ranges of applications, versatility can also be a feature of Tektronix integrated instruments.
Tektronix integrated scopes, either portable or rackmounted, are instruments where the design emphasis is often on the factors of economy, ruggedness, environmental protection, and internal or external battery power. See page 253.

TM 500 MANUAL INSTRUMENTS

The Tektronix TM 500 line is a modular system. One-, three-, four-, five-, and six-compartment mainframes accept a broad selection of plug-in instruments. The mainframe provides a common primary power supply, keeping total instrument weight, size, and cost down. Just as important, TM 500 mainframes also provide a signal control and data interface between instrument modules. This allows TM 500 instruments to work either individually or together as integrated measuring systems. The Tektronix TM 500 Instrument line is extensive-more than 35 instruments, including digital multimeters, counter/timers, power supplies, signal sources, oscilloscopes, and more. Custom plug-in kits allow you to add your own unique circuits. With this feature, you can easily apply TM 500's capability to unusual applications.
The TM 500 instrument line has several configurations designed for portability. The TM 515 Traveler Mainframe, attractive and convenient enough to treat as carry-on luggage (it will even go beneath your seat on most airlines), is designed to take rugged travel. It carries up to five TM 500 plug-in instruments. The TM 503 three-compartment mainframe or the TM 504 four-compartment mainframe, with carrying case or protective cover, provide additional portability for the TM 500 instruments. Again, relatively lightweight, rugged construction and convenient size are the key to portability.

TM 5000 GPIB PROGRAMMABLE INSTRUMENTS

The Tektronix TM 5000 products extend the TM 500 concept of configurability to a line of IEEE Standard 488 compatible, fully programmable measurement, stimulus, and interfacing instruments. Tek's TM 5000 programmables are the easiest IEEE Standard 488 test and measurement instruments you can use. Because they are compatible with our TM 500 line of modular instruments, it is possible to configure literally hundreds of customized systemssystems that are programmable, manual, or hybrid-with plug-in, pull-out ease.
Tek's Standard Codes and Formats make communication between TM 5000 instruments easier than ever before. This same set of Standard Codes and Formats is used to communicate with other Tektronix IEEE Standard 488 instruments, such as the 2400 Family Oscilloscopes and 490P Series Spectrum Analyzers. TM 5000 commands are mnemonic. Each bus command is in "standard engineering English", matching the front panel nomenclature-ideal for the programmer who realizes the frustrations of working with many of today's instruments.

With the Learn Mode, one keystroke transfers a complete front panel setup to the controller for storage in memory. This greatly increases the productivity of the engineer by reducing setup time where test settings are constantly changing. You can change a routine without having to reprogram the whole system.
All TM 5000 programmables have diagnostics capability designed right in. They perform self-test on power-up, and indicate an error if a malfunction has occurred. Plus, they've all been designed for fast troubleshooting using signature analysis. All are UL listed.

As with TM 500, TM 5000 programmable systems take up less than half the space of standard rackmount equipment. This size advantage really pays off-on the bench, on the manufacturing floor, or in the field where portability is essential.

GPIB OSCILLOSCOPES

Tektronix has several oscilloscopes to choose from for GPIB capability. The 7854, 2445/2465 Family, 2230, 2220, 2430, 336, and 5223 with their respective GPIB features or options, give you an opportunity to improve the consistency of measurements and control costs. A GPIB system controller can consistently repeat a defined sequence of tests while the operator concentrates on the task instead of the tools. A system comprising a GPIB controller and programmable oscilloscope offers complete automation of many measurements.
The 7854's keystroke programming of local keyboard and remote Waveform Calculator allows user-designed waveform measurement routines-with all mainframe keystroke functions and operating modes remotely controlled via the GPIB.
The 2445/2465 offers a Counter/Timer/ Trigger option for automatically measuring frequency, period, pulse width, and time between events. Also, by combining the GPIB and Digital Multimeter options, this system can efficiently perform both waveform and steady state measurements. For a truly comprehensive measurement system, combine GPIB, Counter/Timer/Trigger, and DMM options.
Software development won't overwhelm your program if you use the built-in "Learn mode" of the $2445 / 2465$ GPIB option to generate detailed setup instructions. With Tek EZ-TEST software from Tektronix, your controller will do more for you while demanding less programming effort.
There are two factory-installed options available for the 2230 (Not retrofitable):

GPIB (IEEE-488) Talker/Listener (Not fully programmable)

RS-232 Talker/Listener (Not fully programmable)
Waveforms, scale factor settings, and cursor data can be transported each way on bus. Only one bus can be installed at the time of order. The scope is not programmable; however, single-sweep reset and some limited storage functions are addressable to enable a "babysitting" application. The 2230 also includes 26K of batterybacked memory with either the RS-232 or GPIB option for additional waveform storage.
The 2220 is available with GPIB or RS-232 options, but does not have battery backed reference memory.
The compact 336 simultaneously displays real-time and digitally stored waveforms. An Auto mode allows "hands-off" operation in many applications.
The 10 MHz 5223 has a roll mode to provide a strip-chart-like view of signals at slow speed, the GPIB interface for I/O of stored waveforms and control of several digital storage functions.

KEY OSCILLOSCOPE SPECIFICATIONS AND FEATURES

You should choose an oscilloscope by matching both performance and features to measurement applications. Don't choose by performance alone, because when features make measurements easier, the result is likely to be more accurate measurements. And if your applications involve repetitive measurements, features that make the measurement faster will be costeffective.

The key oscilloscope specifications and features described below may help you make a decision.

Vertical System Considerations

Because a faithful reproduction of the signal is necessary for measurement accuracy, and because very small signals must often be measured, the key specifications of the vertical system include bandwidth and sensitivity
Depending on your applications, you might also want to consider oscilloscopes that display more than one signal at a time and those with differential or balanced inputs; these features are also described below.

Bandwidth and Risetime

Bandwidth is the range of frequencies that a scope can handle with less than a 3 dB loss in amplitude compared to midband performance. Since modern oscilloscopes work well at low frequencies down to dc, the bandwidth specification is commonly the highest frequency that can be displayed; dc as the lowest, is implied. The following figures illustrate bandwidth specifications.

0 dB: 6 div at 50 kHz

$-3 \mathrm{~dB}: 4.2 \mathrm{div}$ at 100 MHz

While a bandwidth specification is essential for the vertical system(s) of a scope, bandwidth is also sometimes specified for the horizontal system (which gives you a chance to evaluate performance in X-Y measurement applications) and for trigger systems (which permits you to determine the range of possible triggering signals).
Although bandwidth is the most important spec when making amplitude measurements, risetime is the specification to use if you are making timing measurements.

The frequency response of most scopes is designed so that there is a constant that allows you to relate the bandwidth and risetime of the instrument with this approximation:
$T_{r}=\frac{0.35}{B W}$
Given either specification (bandwidth or risetime), you can derive the other and determine if the instrument is suitable for your applications. The rule of thumb for timing measurements is to use an instrument with a risetime at least five times faster than the measurement you expect to make. A 5:1 ratio gives you a risetime measurement with $\leqslant 2 \%$ error. Other ratios and measurement errors are shown in the chart.

Note that very accurate absolute-risetime measurements are not always a requirement. When you are comparing risetimes, for instance, an instrument risetime equal to those being measured is often adequate.

Sensitivity

An oscilloscope sensitivity specification describes the input signal level needed to produce a stated deflection of the electron beam within the CRT. Specifications typically are given in $\mathrm{mV} / \mathrm{cm}$ or $\mathrm{mV} / \mathrm{div}$; with this spec you can determine if small signals will be displayed with enough amplitude for you to make measurements quickly and accurately.
Note that at a given state-of-the-art, sensitivity and bandwidth are trade-offs. The small amount of noise in even the best input circuit will mask very small signals. Raising the bandwidth also increases the noise picked up by the amplifiers, requiring a larger signal to create a clear display. As a consequence of this relationship, many highsensitivity scopes provide bandwidthlimiting controls to allow you to make cleaner low-level measurements at moderate frequencies.
Although sensitivity specifications are most often associated with oscilloscope vertical channels, this specification can also be provided for horizontal systems and for trigger circuits.

Multiple Inputs

It is often quite useful to be able to view more than one input signal without disturbing the connections to your scope. Common applications include: comparisons of a device's input and output signals; checking signals against standards; making timing and/or phase measurements between events. These measurement requirements are usually satisified by dual-trace oscilloscopes that use electronic switching to alternately connect two input signals to a single deflection system. Dual-trace scopes offer the lowest cost and the best comparison capabilities (because there is a single horizontal amplifier and one set of deflection plates). On the other hand, since a fast transient event might occur on one channel while the beam is tracing the other, dualbeam scopes like the Tektronix 7844 (page 203) and 5113 (page 244) are recommended for viewing single-shot phenomena. The 5113 has two independent vertical systems and a common horizontal system and can display up to eight waveforms in its Chop vertical operating mode. The dual-beam 7844 can be equipped with dual time base plug-ins and then used to see a single event at different locations in the signal path, at two sweep rates if necessary.

Vertical System Operating Modes

Multiple inputs, the Add vertical operating mode, and the ability to invert one channel lets you cancel or reject any signal components equal in amplitude and phase that appear at both inputs. This ability provides a simple and accurate way to measure the difference between two signals, and of rejecting most unwanted signal components common to both inputs (such as power supply hum).
Other vertical operating modes are Alternate (in which a complete waveform from one vertical channel is drawn before switching to draw the other), Chopped (in which the scope draws small parts of the waveforms while switching back and forth between the channels at a fixed rate), and Trigger View.
The Trigger View mode is useful anytime you measure events dependent on an external triggering event.

Horizontal System Considerations

The horizontal system of a modern oscilloscope provides a built-in sawtooth sweep generator. With this constant-speed horizontal deflection, measurements calibrated directly in units of time are possible. (As a consequence, the horizontal system of a scope is often called the time base.) This permits direct measurement of time between events, accurate time measurements on small portions of pulse trains, and even time measurements on single, nonrecurrent events.

Sweep Speeds

How fast a sweep speed do you need? One rule states that for frequency measurements at moderate frequencies, a sweep capable of displaying one cycle across the full horizontal scale is usually considered adequate. For example, one cycle of a 10 MHz signal can be displayed across 10 div with a $10 \mathrm{~ns} / \mathrm{div}$ sweep. Don't apply this rule at ultrahigh frequencies, however, as scopes seldom have sweeps that fast.
Another approach emphasizes risetime measurements. For maximum accuracy here, the scope should show the step signal (squarewave, pulse, etc.) across most of the full vertical scale with the rising portion of the signal at nearly a 45° slope. For very fast risetimes, this objective is rarely met because of compounding difficulties and the cost of providing extremely fast sweeps which are both linear and accurate.

Though neither rule can be applied at the very limits, fast sweep speeds are readily available: sweeps to $5 \mathrm{~ns}(500 \mathrm{ps} / \mathrm{div}$ magnified) in the portable 2465; to $200 \mathrm{ps} / \mathrm{div}$ with plug-in time bases for laboratory scopes; or to $10 \mathrm{ps} / \mathrm{div}$ with sampling plugins. (See Sampling Applications on page 185.)

Delayed Sweep Measurements

Delayed sweep scopes can offer you many measurement advantages. If the scope has two calibrated time bases and the Alternate horizontal operating mode (electronic switching of the trace between time bases), then convenient comparisons of the same signal at two different sweep speeds are possible.
If the second time base has an independent trigger, then jitter-free measurements on the delayed sweep are possible.

In every case, timing measurements with delayed sweep are easier to make, and in most cases, there is increased timing measurement accuracy. Many plug-in time bases for laboratory scopes and most portable scopes offer delayed sweep.

Accuracy

Accuracy in a scope's horizontal system is as important to timing measurements as vertical accuracy is to amplitude measurements. Horizontal accuracy to 1.5% is possible with several 7000 Series plug-in time bases and to 1% with the 2445 and 2465 Portable oscilloscopes.

Probe Considerations

An oscilloscope can only display a waveform as accurately as it receives it. Thus, a high accuracy Tektronix probe will complete a measurement system by establishing this critical link between the scope and circuit under test.

A wide range of Tek probes available to solve your specific measurement problems are shown beginning on page 425.

Trigger System Considerations

Besides sensitivity and bandwidth, the flexibility of a trigger system should be a consideration when choosing a scope. Some trigger system features you might need for your measurement applications include:
High and low frequency reject coupling for stable triggering with noisy signals.
TV triggering - for automatic synchronization with video signals.
Alternate triggering - for steady display of either signal with dual-channel scopes.
Peak-to-peak auto triggering - for quick, convenient triggering with automatic level limits.
Variable trigger holdoff - permits trigger holdoff period to be varied to trigger on repetitive complex waveforms.
Single sweep operation - for special applications such as capturing a transient pulse and for CRT photography.
By combining logic analyzer triggering capabilities with an oscilloscope, digital signals can be displayed in analog form for measurements of time and amplitude. The 7A42 Logic Triggered Vertical Amplifier extends the 7000 Series triggering into the arena of logic analysis. The 2400 Series offers Counter/Timer/Trigger options and three Special Edition scopes to provide de-lay-by-events triggering and Boolean logic triggering.

CRT System Considerations

CRT system specifications will tell you how well the scope can display waveforms for direct viewing and for photography. A full complement of CRT system controls contributes greatly to the instrument's ease of use.

CRT Controls

CRT system controls to consider include: Beam Finder - A single pushbutton that allows you to quickly locate any off-screen trace.
Auto Focus - Auto focusing on both laboratory and portable scopes reduces the need for manual readjustments with changes in trace intensity; very useful when traces are displayed at different sweep rates, as in the Alternate horizontal operating mode.
Auto Intensity - Maintains optimum trace intensity over a wide sweep-speed range. External Z-Axis Input - Permits trace brightness modulation, makes some measurements easier by identifying events with an intensified zone on the trace.

PHOTOGRAPHIC WRITING RATE
Photographic writing rate is a measure of the scope／camera／film＇s capability to record high speed signals．
Recording high speed signals on film is de－ pendent on at least three factors：the oscil－ loscope used，film characteristics，and the camera．For maximum writing rate capabili－ ty，the objective is to get as much light en－ ergy to the film surface as possible．Since each component affects photographic writ－ ing rate，the selection for top performance is important．

The fastest writing rate oscilloscopes avail－ able are the $7104 / \mathrm{R} 7103$ ．At $20 \mathrm{~cm} / \mathrm{ns}$ ， these scopes utilize a unique microchannel plate CRT with GH（P31）phosphor stan－ dard．The chart shown graphs the re－ sponse of the 7104／R7103 along with other 7000 Series mainframes and the 485 porta－ ble oscilloscope．（The other instruments shown in the graph utilize optional BE（P11） phosphor to achieve the writing rate perfor－ mance indicated．）

Writing Rate Comparison Graph

On the graph，vertical signal amplitude on the vertical scale is shown against maxi－ mum sinewave frequency（lower scale）and fastest risetime（upper scale）．These speeds assume a small horizontal spot ve－ locity compared to the maximum vertical velocity．The ramp is assumed to be a lin－ ear ramp measured between the 10% and 90\％points．
There is an application note available from Tektronix which further describes photo－ graphic writing rate，including measurement procedures and applications．It is available on request by referencing 42W－5335－1．

Selecting a Phosphor

The catalog description of each oscillo－ scope indicates the phosphors normally supplied or available as options．While a special phosphor may be desirable for a specific measurement application，remem－ ber that each phosphor has its own color， persistence，burn resistance，etc．Improve－ ments in one characteristic are usually at the expense of others．The chart below provides comparisons．

STEP RISETIME（ns）

SINEWAVE FREQUENCY（MHz）
Amplitude vs speed and photographic writing speed comparison of 7000 Series mainframes using BE（P11）phos－ phors（Option 78）．20，000 ASA film and the C－51（f／1．2，1：0．5）Camera．
BE（P11）phosphor has a different spectral output than GH（P31）phosphor standard and more closely matches the sensitivity spectrum of silver halide film types．While photographic writing speed is approximately two times the GH（P31）rate，the visual output luminance is approximately 15% of GH（P31）phosphor standard，using Polaroid Film Type 107，3，000 ASA w／out film fogging．
＊ $20 \mathrm{~cm} / \mathrm{ns}$ is the specified photographic writing speed for the 7104／R7103 Mainframe．However，it is not directly comparable to the other mainframes here because of relaxed phosphor，film and camera requirements．The micro－ channel plate CRT as well as the bright photographed image allow for these relaxed requirements．GH（P31） phosphor standard is used and a C－53（f／1．9，1：0．85 image）Camera，using Polaroid Type 107，3，000 ASA without film fogging．
NOTE：A writing speed enhancer used to fog the film may increase the photographic writing speed．See page 405.

COMPARATIVE CRT PHOSPHOR DATA

COMPARATIVE CRT PHOSPHOR DATA								
Phosphor＊1		$\begin{array}{\|c\|} \hline \text { Fluorescence } \\ \text { and } \\ \text { Phosphorescence } \end{array}$	Relative Luminance＊2	Relative Photographic Writing Speed＊${ }^{3}$	Decay	Relative Burn Resistance	Comments	Ordering information Option
WTDS	JEDC							
GJ	P1	Yellowish－green	50\％	20\％	Medium	Medium	Replaced by GH（P31） in most applications	Special order
WW	P4	White	50\％	40\％	Med－Short	Med－High	Television displays	74
GM	P7	Blue＊5	35\％	75\％	Long	Medium	Long decay，double－ layer screen	76
BE	P11	Blue	15\％	100\％	Med－Short	Medium	For photographic applications	78
GH	P31	Green	100\％	50\％	Med－Short	High	General purposes， brightest available phosphor	80
GR	P39	Yellowish－green	27\％	$N A^{* 4}$	Long	Medium	Low refresh rate displays	40
GY	P43	Yellowish－green	40\％	$\mathrm{NA}^{*} 4$	Medium	Very High	High current density phosphor	Special order
GX	P44	Yellowish－green	68\％	$\mathrm{NA}^{*} 4$	Medium	High	Bistable storage	
WB	P45	White	32\％	$\mathrm{NA}^{* 4}$	Medium	Very High	Monochrome TV displays	

＊ 1 Tektronix is adopting the Worldwide Phosphor Type Designation System（WTDS）as a replacement for the older JEDEC＂P＂number system referenced in this catalog．The chart lists the comparable WTDS designations for the most common＂P＂numbers．
${ }^{* 2}$ Measured with Tektronix J16 Photometer and J6523 Luminance Probe which incorporates a CIE standard eye filter． Representative of 10 kV aluminized screens． $\mathrm{GH}(\mathrm{P} 31)$ as reference．
${ }^{* 3}$ BE（P11）as reference with Polaroid 612 or 106 film．Representative of 10 kV aluminized screens．
＊ 4 Not available．
＊5 Yellowish－green Phosphorescence．

Camera Considerations

Tektronix manufactures a variety of cameras designed for use with oscilloscopes. Two key parameters are the f-number of the lens and the magnification. These parameters affect the light gathering capability of the camera. The chart utilizes a f/1.2 Tektronix C-51 Camera (f/1.9 Tektronix C-53 camera with the 7104). More information on cameras is available on page 404.
Film characteristics are also an important parameter. Generally, the higher the ASA rating of the film used, the higher the film sensitivity and thus, photographic writing rate. It should be recognized that film speed can vary with storage conditions and environmental factors. More information is available from film vendors.

Writing Speed Enhancer

A writing speed enhancer provides controlled fogging of the film to increase its sensitivity. The degree of writing speed improvement is variable, and is dependent on the film, camera, and scope combination used. More information is available on page 405. A writing speed Application Note is also available by requesting 42W-5335-1.

DIGITAL FEATURES INCREASE OSCILLOSCOPE PERFORMANCE

You can make delay and time interval measurement with digital ease on several Tektronix oscilloscopes. The 2400 Series offers Counter/Timer/Trigger options for the standard instrument and the three Special Edition 2465's. These CTT options provide crystal-controlled time base accuracy for several time related measurements and are fully integrated with the operation of the scope and user on-screen menus. The DM 44 factory-installed option for 466 Storage Oscilloscopes allows you to read the delay time, time interval, or frequency right from a LED readout, with no calculation or interpolation required. The DM 44 also incorporates a digital volt/ohm meter and temperature-measurement capabilities.
The 7B10, 7B15, 7B85 and 7B80 plug-ins for the 7000 Series oscilloscopes also provide Δ time measurements. With these plugins, the time interval measurement can be shown on the screen using the 7000 Series CRT readout capability.
For 7000 Series instruments, there are a wide variety of other digital plug-ins. These include a universal counter/timer, a digital multimeter with a temperature mode, digital delay by time or events, and a versatile $0.01 \% \mathrm{~A} / \mathrm{D}$ converter with vertical amplifier.
Combining digital capabilities within the oscilloscope system offers many advantages over separate test units, such as: increased accuracy, scope-controlled digital measurements, measuring convenience and confidence, easier and faster solutions to complex problems, a lower dollar investment, more bench space, and signal conditioning.

MODULAR NONSTORAGE OSCILLOSCOPES

Product	Bandwidth* ${ }^{1}$	Minimum Deflection Factor	Number of Traces	Maximum Sweep Rate	Delayed Sweep	Page	Price*2
$\begin{aligned} & \hline 7104 \\ & \mathrm{R} 7103 \end{aligned}$	1 GHz	$10 \mathrm{mV} / \mathrm{div}$ at BW	up to 4	$200 \mathrm{ps} / \mathrm{div}$	X	194	$\begin{aligned} & \$ 23,995 \\ & \$ 24,520 \end{aligned}$
$\begin{aligned} & \text { 7904A } \\ & \text { R7903 } \end{aligned}$	500 MHz	$\begin{aligned} & 10 \mathrm{mV} / \text { div at } \mathrm{BW} \\ & 10 \mu \mathrm{~V} / \text { div } \\ & 1 \mathrm{~mA} / \mathrm{div} \end{aligned}$	up to 4	$500 \mathrm{ps} / \mathrm{div}$	X	197	$\begin{aligned} & \$ 9,635 \\ & \$ 9,330 \end{aligned}$
$\begin{aligned} & 7844 \\ & \text { R } 7844 \end{aligned}$	400 MHz	$20 \mathrm{mV} / \mathrm{div}$ at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} /$ div	up to 4 Dual-Beam	$1 \mathrm{~ns} / \mathrm{div}$	X	203	$\begin{aligned} & \$ 14,995 \\ & \$ 15,450 \end{aligned}$
$\begin{aligned} & \text { 7704A } \\ & \text { Opt } 09 \end{aligned}$	250 MHz	$20 \mathrm{mV} / \mathrm{div}$ at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} / \mathrm{div}$	up to 4	$2 \mathrm{~ns} / \mathrm{div}$	X	199	\$5,495
7704A	200 MHz	$10 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} / \mathrm{div}$	up to 4	$2 \mathrm{~ns} / \mathrm{div}$	X	199	\$4,995
$\begin{aligned} & 7603 \\ & \text { R } 7603 \end{aligned}$	100 MHz	$\begin{aligned} & 5 \mathrm{mV} / \mathrm{div} \text { at } \mathrm{BW} \\ & 10 \mu \mathrm{~V} / \mathrm{div} \\ & 1 \mathrm{~mA} / \mathrm{div} \end{aligned}$	up to 4	$5 \mathrm{~ns} / \mathrm{div}$	X	201	$\begin{aligned} & \hline \$ 3,250 \\ & \$ 3,720 \end{aligned}$
$\begin{aligned} & \hline 5440 \\ & \text { R5440 } \end{aligned}$	50 MHz	$\begin{aligned} & 5 \mathrm{mV} / \mathrm{div} \text { at } \mathrm{BW} \\ & 10 \mu \mathrm{~V} / \mathrm{div} \\ & 0.5 \mathrm{~mA} / \mathrm{div} \end{aligned}$	up to 8	$5 \mathrm{~ns} / \mathrm{div}$	X	241	$\begin{aligned} & \$ 3,160 \\ & \$ 3,225 \end{aligned}$
$\begin{aligned} & \hline 5110 \\ & \text { R5110 } \\ & 5116 \end{aligned}$	2 MHz	$\begin{aligned} & 1 \mathrm{mV} / \mathrm{div} \text { at } \mathrm{BW} \\ & 10 \mu \mathrm{~V} / \mathrm{div} \\ & 0.5 \mathrm{~mA} / \mathrm{div} \end{aligned}$	up to 8	$100 \mathrm{~ns} / \mathrm{div}$	X	$\begin{aligned} & 244 \\ & 246 \end{aligned}$	$\begin{aligned} & \$ 1,650 \\ & \$ 1,720 \\ & \$ 2,460 \end{aligned}$

${ }^{*}{ }^{1}$ Bandwidths are real time. Sampling plug-ins that extend bandwidths to 14 GHz are available for most mainframes. *2 Price does not include plug-ins.

PORTABLE NONSTORAGE OSCILLOSCOPES

Product	Bandwidth	Minimum Deflection Factor	Dual-Trace	Maximum Sweep Rate	Delayed Sweep	Page	Price

[^15]*2 Programmable via GPIB, useful in Automated Test Applications.

STORAGE

When a conventional oscilloscope cannot capture an event and display it for your measurements because the signal is too slow, or too fast and infrequent, or when you need to compare events that happen at different times instead of simultaneously, consider a storage scope. These are obvious applications, but there are many other situations that also call for the unique advantages of storage. Storage can help you:

Observe signal changes during circuit adjustments
Compare new signals with a standard
Increase the brightness of a dim, low-repe-tition-rate signal for normal viewing
Reduce flicker or noise in a signal
Babysit (unattended monitoring) for a transient event
Capture fast signals that occur infrequently or only once
Capture a complete display of a slowly occurring signal
Enhance other record-keeping techniques like photography

With the right Tektronix storage instrument, the capabilities you need are available, and the storage time can be anywhere from a few minutes to a practically unlimited length of time depending on your choice of instruments.

Only Tektronix Offers Four Distinct Storage Technologies

Two broad categories of storage instruments are named for the storage medium. CRT storage scopes store the captured waveform when the electron beam writes on a target within the cathode-ray tube. Digital storage scopes quantize the waveform and then store it in a digital memory. In addition, there are waveform digitizers, a very special class of storage instruments available in the Tektronix 7000 Series. Within each category there are different technologies and each has its own set of features and benefits.

Bistable CRT Storage

The phosphor in a bistable CRT storage scope has two stable states: written and unwritten. Once stored, this phosphor typically allows waveforms to be displayed for several hours, or until erased by the operator. Bistable storage is the easiest CRT storage type to use. It is also the least expensive CRT storage technology. It features bright, long-lasting displays, but in comparison with other storage technologies, bistable storage displays have less contrast.
The advantages of bistable storage make it particularly useful for mechanical measurements, signal comparisons, and data recording.

Split-screen viewing is another advantage of most bistable storage scopes. This feature allows a reference waveform to be stored on one half of the screen while the other half can be used to store the effects of changes made on the circuit. You can also use the split screen to have the reference waveform in the stored mode and the other half of the display in the nonstored mode to monitor an external input.

Variable Persistence CRT Storage

If you don't need to store waveforms for hours at a time, variable-persistence CRT storage has advantages. The variable-persistence storage CRT has a storage mesh where the electron beam writes the input signal; thereafter, flood guns in the CRT illuminate the phosphor where the storage mesh permits.
CRT storage controls vary the charge on the mesh, allowing you to control the contrast between the trace and the background and to fine tune how long the trace is stored.
The first capability provides easy viewing with high constrast between the dark background and bright waveforms. And this type of storage provides the best displays when viewing traces with varying intensities (such as delaying and delayed sweeps, or traces with external z-axis intensity modulation).

CRT STORAGE PERFORMANCE

Varying the persistence permits you to set up the scope so that the entire waveform can be viewed，yet the stored trace will fade from view just as a new waveform is being stored．Or you can view several traces before the first one fades from view． Then you can see signal response varia－ tions as you make changes in a circuit．
Variable persistence can also be used to provide display integration so that only the coincident portions of a repetitive signal are displayed．Aberration or jitter not com－ mon to all traces will not be stored or dis－ played．Low repetition rate，fast risetime signals that are not discernible on conven－ tional CRT＇s can be easily viewed with this storage technology by allowing each repeti－ tion to build up the trace brightness．

Applications for variable persistence stor－ age include spectrum analysis，time－domain reflectometry，sampling，and any other measurements that require displays of low－ repetition－rate signals．

Fast Transfer CRT Storage

Fast transfer storage scopes use a CRT with a special intermediate mesh target op－ timized for speed．This target captures the waveform and then transfers it to another mesh，one optimized for longer－term stor－ age．As the name implies，the fast transfer storage mode provides increased writing speed（see the next heading）for the 466 Portable Oscilloscope and the 7623A，7633， and 7834 lab scopes．
The second target can also be designed to offer bistable，variable persistence or both modes in combination with the transfer mesh or by itself．In the 7623A，7633，and 7834，this combination of capabilities pro－ vides unique multi－mode storage instru－ ments．Using front panel controls，you can select the operating mode suited to your specific measurement situation．

Stored Writing Speed

For CRT storage scopes，the storage capa－ bility specification is the stored writing speed．This figure of merit is expressed in distance per unit of time．Often $\operatorname{div} / \mu \mathrm{s}$ is more meaningful in terms of your measure－ ments．But because some scopes have nonstandard sized graticules（i．e．，other than 1 cm square major divisions） $\mathrm{cm} / \mu \mathrm{S}$ is useful for comparisons．
The specification is dependent on the speed and amplitude of the input signal．If you know the pulse risetime or sinewave frequency of the input signal and the ampli－ tude of the waveform you want to display， you can use the table below to determine which storage scope is recommended．

CRT STORAGE OSCILLOSCOPES
（In Order of Stored Writing Speed）

Product	Stored Writing Speed	View Time	Type of Storage	Band－ width＊1	Minimum Deflection Factor	Number of Traces	Delayed Sweep	Plug－in	Page	Price
7834	$5500 \mathrm{div} / \mu \mathrm{s}$ $776 \mathrm{div} / \mu \mathrm{s}$ $12 \mathrm{div} / \mu \mathrm{s}$ $0.2 \mathrm{div} / \mu \mathrm{S}$	$\begin{gathered} 30 \mathrm{~s}^{* 3} \\ 30 \mathrm{~min}^{* 4} \text { minimum } \\ 30 \mathrm{~s}^{* 3} \\ 30 \mathrm{~min}^{* 4} \text { minimum } \end{gathered}$	Fast variable persistence Fast bistable Variable persistence Bistable	400 MHz	$20 \mathrm{mV} /$ div at BW ： $10 \mathrm{mV} /$ div at 325 MHz	Up to 4	X	X	206	\＄13，365
466	$\begin{gathered} 3000 \mathrm{div} / \mu \mathrm{s} \\ 3 \mathrm{div} / \mu \mathrm{s} \end{gathered}$	$\begin{aligned} & 15 \mathrm{~s}^{* 3} \\ & 15 \mathrm{~s}^{* 3} \end{aligned}$	Fast variable persistence Variable persistence	100 MHz	$5 \mathrm{mV} /$ div at BW	Up to 2	X		288	\＄7，560
7633	$2200 \mathrm{div} / \mu \mathrm{s}$ $400 \mathrm{div} / \mu \mathrm{s}$ 3 div／$\mu \mathrm{s}$ $0.2 \mathrm{div} / \mu \mathrm{s}$	$30 \mathrm{~s}^{* 3}$ 30 min $30 \mathrm{~s}^{* 3}$ 30 min minimum	Fast variable persistence Fast bistable minimum Variable persistence Bistable	100 MHz	$5 \mathrm{mV} /$ div at BW ； $10 \mu \mathrm{~V} /$ div； $1 \mathrm{~mA} /$ div	Up to 4	x	x	208	\＄8，995
7623A	$\begin{gathered} 150 \mathrm{div} / \mu \mathrm{s} \\ 50 \mathrm{div} / \mu \mathrm{s} \\ 0.5 \mathrm{div} / \mu \mathrm{s} \\ 0.03 \mathrm{div} / \mu \mathrm{s} \\ \hline \end{gathered}$	$30 \mathrm{~s}^{* 3}$ 30 min minimum $30 \mathrm{~s}^{* 3}$ 30 min minimum	Fast variable persistence Fast bistable Variable persistence Bistable	100 MHz	$5 \mathrm{mV} /$ div at BW ； $10 \mu \mathrm{~V} / \mathrm{div}$ ； $1 \mathrm{~mA} /$ div	Up to 4	X	X	208	\＄6，795
7613	$5 \mathrm{div} / \mu \mathrm{s}$	1 hr	Variable persistence	100 MHz	$5 \mathrm{mV} /$ div at BW； $10 \mu \mathrm{~V} /$ div； $1 \mathrm{~mA} /$ div	Up to 4	X	X	210	\＄5，850
5441	$5 \mathrm{div} / \mu \mathrm{s}$	1 hr	Variable persistence	50 MHz	$\begin{gathered} 5 \mathrm{mV} / \text { div at } \mathrm{BW} ; 10 \mu \mathrm{~V} / \text { div; } \\ 0.5 \mathrm{~mA} / \text { div } \end{gathered}$	Up to 8	X	X	241	\＄5，245
$\begin{aligned} & \text { 5111A Opt } 03 \\ & 5111 \mathrm{~A} \end{aligned}$	$\begin{gathered} 0.8 \mathrm{div} / \mu \mathrm{s} \\ 0.05 \mathrm{div} / \mu \mathrm{s} \\ \hline \end{gathered}$	10 hr	Bistable split screen	2 MHz	$1 \mathrm{mV} /$ div at BW ； $10 \mu \mathrm{~V} / \mathrm{div}$ ； $0.5 \mathrm{~mA} /$ div	Up to 8	x	X	244	$\begin{aligned} & \$ 2,905 \\ & \$ 2,700 \end{aligned}$
214	$0.5 \mathrm{div} / \mu \mathrm{s}$	1 hr	Bistable	500 kHz	$10 \mathrm{mV} /$ div at BW ； $1 \mathrm{mV} /$ div	Up to 2			292	\＄2，795
314	$0.4 \mathrm{div} / \mu \mathrm{s}$	4 hr	Bistable	10 MHz	$2 \mathrm{mV} /$ div at BW	Up to 2			291	\＄4，315
SC 503＊2	$0.08 \mathrm{div} / \mu \mathrm{s}$	4 hr	Bistable	10 MHz	$1 \mathrm{mV} /$ div at BW	Up to 2			383	\＄4，095
5113	$0.02 \mathrm{div} / \mu \mathrm{s}$	10 hr	Bistable split screen	2 MHz	$1 \mathrm{mV} /$ div at BW ； $10 \mu \mathrm{~V} /$ div； $0.5 \mathrm{~mA} / \mathrm{div}$	Up to 8 dual－beam	X	X	244	\＄4，005

[^16]
Digital Storage

The fundamental difference between digital storage scopes and CRT storage scopes is that digital scopes quantize the captured waveform and CRT storage scopes do not. Having quantized waveforms in a digital memory gives you measurement capabilities not possible with any other kind of oscilloscope.

With digital storage scopes, you have the advantage of pretrigger viewing. In other words, you can look at a waveform both before and after the trigger event. Another feature is "babysitting;" available because the digital storage scope's trigger can stop as well as start signal acquisition.
Other digital storage scope advantages include signal processing features such as averaging a number of samples of the input signal to reduce the effects of noise; performing calculations on the waveform parameters; or outputting the signal data over RS-232 or GPIB standard interfaces.

Digital storage scopes are typically easy to use and give you crisp, clear displays. Because the data is stored in a digital memory, no fading or blooming of the trace on the CRT phosphor will occur, and storage time is essentially unlimited. This type of storage is excellent for many applications involving single-shot or low-repetition signals, or where the unique advantages of a digitized waveform may be the answer to your measurement needs.

Quantization Techniques

Within digital storage scopes there are two main techniques of quantizing signals-and the technique has a direct effect on the applications of the instruments in that only one kind of digital storage scope can capture single-shot signals.
The digital scopes that can capture signals in a single sweep use what is called "realtime sampling". Other digital storage scopes use "equivalent-time sampling". There are two equivalent-time sampling methods and both require many repetitions of the input signal. In exchange for that requirement, you have the ability to measure signals more than ten times faster than can be captured with real-time sampling.

With Dot Display

5 MHz Signal
With Pulse Interpolator

5 MHz Signal
With Sine Interpolator

5 MHz Signal

10 MHz Signal

10 MHz Signal

10 MHz Signal
Digitizing Rate- 25 MHz

Digital Storage Scope Specifications

For digital storage oscilloscopes that use real time sampling, there is a useful storage bandwidth specification. It expresses the highest frequency sinewave that can be captured in a single sweep and displayed so that you can make measurements. Both the digitizing rate (how often the scope takes samples) and the display reconstruction technique (how the scope displays what's in its memory) must be taken into account in the useful storage bandwidth. See the examples below.
For digital scopes using equivalent time sampling, the specificaton is "equivalenttime bandwidth", the highest frequency signal that can be stored and displayed with less than 3 dB signal amplitude loss. Besides analog specifications (common to all oscilloscopes), other specifications of interest to digital scope users are:

Maximum Digitizing Rate-How often the instrument takes samples of the input signal.
Vertical Resolution (usually expressed in bits of resolution)-How finely the instrument can discriminate between signals very much alike in voltage; for example, 8 bits of resolution is 0.391% when expressed as a percentage, and 10 bits is 0.098\%.

Record length or Horizontal ResolutionHow many words of digital memory are used to store the captured waveform; if the signal is stored in 512 data words, the horizontal resolution is 1 in 512 or 0.195%.

2220	Portable Storage Oscilloscope. 60 MHz bandwidth. 100 ns glitch capture (envelope mode), 4 k record length, and save reference memory.
2230	Portable Storage Oscilloscope. 100 MHz bandwidth. 100 ns glitch capture (envelope mode), 4 k record length, CRT readout, cursor measurements, and save reference memory.
2430	Portable Storage Oscilloscope. 150 MHz bandwidth. "Save on Delta" feature allows 2430 to make pass/fail decisions. 2 ns Transient capture at any sweep speed. Advanced cursors and readout.
336	Portable Digital Storage Oscilloscope. Useful storage bandwidth of 140 kHz , microprocessor controlled with features and modes chosen from menu on CRT.
5D10	Digital Storage Plug-in for the 5000 Series offering real time sampling to 100 $\mathrm{kHz}, \mathrm{CRT}$ readout, 8 -bit vertical resolution, and up to 1024 data words/waveform.
5223	Digitizing Oscilloscope with 10 bits of vertical resolution, roll mode, X-Y plotter output, and optional GPIB interface.
7D20	Full GPIB Programmable Waveform Digitizing Plug-in for the 7000 Series. Offers 70 MHz equivalent time bandwidth and capture of transients with frequency components up to 10 MHz .
7854	Waveform Processing Oscilloscope with 400 MHz equivalent-time bandwidth, keystroke programming, and calibrated sweep speeds to $500 \mathrm{ps} /$ div.

Color Digital Storage Oscilloscope

Tektronix' method of producing color oscilloscope displays, Liquid Crystal Display, is described in the technology section. This technology is combined with digital storage in our 5116 Oscilloscope. Full product specifications begin on page 246. Tek's C-59A, C-5C, C-7, or C-4 Cameras can save those color displays on color film. See pages 415-416, 408 for a complete description. A color photography Application Note is available by requesting 52W-5579.
Your local Tektronix sales engineer, representative, or distributor can help you determine the digital oscilloscope parameters necessary to meet your measurement applications needs.

SAMPLING OSCILLOSCOPES

Sampling is a powerful technique for examining very fast repetitive signals. In principle, sampling is similar to the use of stroboscopic light to study fast mechanical motion. Progressive samples of different portions of successive waveforms are taken; then they are "stretched" in time, amplified by relatively low-bandwidth amplifiers, and finally shown (all seemingly at one time) on the screen of a CRT. The display produced is a replica of the sampled waveforms.

Sampling scopes are capable of resolving events that occur in less than 30 ps on an "equivalent" time base of less than $20 \mathrm{ps} / \mathrm{div}$ with less than 5 mV of peak amplitude.

If your measurement needs require equivalent bandwidths to 14 GHz or sweeps to $10 \mathrm{ps} / \mathrm{div}$, consider the sampling plug-ins described on page 234.
To determine which instrument fits your requirements, refer to the sampling decision tree on page 230.

This sampling technique is limited to depicting repetitive signals, since no more than a portion of the signal is captured and displayed each time the signal occurs. The sampling method, however, provides a means of examining fast-changing signals of low amplitude that cannot be examined in any other way.

	$\begin{gathered} 5223 \\ \text { Digital } \\ \text { Oscilloscope } \end{gathered}$	336 Digital Oscilloscope	$\begin{gathered} 2230 / 2220 \\ \text { Digital } \\ \text { Oscilloscopes } \end{gathered}$	7854 Waveform Processing Oscilloscope	7D20/7D20T Programmable Digitizer	$\begin{gathered} 2430 \\ \text { Digital } \\ \text { Oscilloscope } \end{gathered}$	$\begin{gathered} 390 A D \\ \text { Programmable } \\ \text { Digitizer } \end{gathered}$	7612D Waveform Digitizer	$\begin{gathered} \text { 7912AD } \\ \text { Programmable } \\ \text { Digitizer } \end{gathered}$
Digitizing Technique	Successive approx	Successive approx	Dual parallel conversion	Succesive approx	CCD Successive approx	Successive approx	Dual stage flash conversion	EBS*2 flash conversion	Scan conversion
Maximum Sample Rate	$\begin{array}{\|l\|} \hline 1 \mathrm{MS} / \mathrm{s} \\ (1 \mathrm{\mu s} / \text { point }) \end{array}$	$\begin{array}{\|l\|} \hline 1 \mathrm{MS} / \mathrm{s} \\ (1 \mu \mathrm{~S} / \text { point }) \\ \hline \end{array}$	$20 \mathrm{MS} / \mathrm{s}$	$\begin{array}{\|l\|} \hline 500 \mathrm{KS} / \mathrm{s} \\ (2 \mu \mathrm{~s} / \text { point }) \end{array}$	$\begin{aligned} & 40 \mathrm{MS} / \mathrm{s} \\ & (25 \mathrm{~ns} / \text { point }) \end{aligned}$	$100 \mathrm{MS} / \mathrm{s}$	$\begin{array}{\|l\|} \hline 60 \mathrm{MS} / \mathrm{s} \\ \text { (16.6 ns/point) } \\ \hline \end{array}$	$200 \mathrm{MS} / \mathrm{s}$ ($5 \mathrm{~ns} /$ point)	$\begin{aligned} & \hline 100 \mathrm{GS} / \mathrm{s} \\ & \text { (10 ps/point) } \end{aligned}$
Vertical Amplifier Analog Bandwidth	10 MHz	50 MHz	$\begin{aligned} & 100 \mathrm{MHz} \\ & (2230) \\ & 60 \mathrm{MHz}(2220) \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \mathrm{MHz} / \text { real } \\ & \text { (} 14 \mathrm{GHz} \text { /samp. }) \end{aligned}$	70 MHz	150 MHz	15 MHz	80 MHz	$\begin{aligned} & 500 \mathrm{MHz} / 7 \mathrm{~A} 29 \\ & (200 \mathrm{MHz} / 7 \mathrm{~A} 16 \mathrm{P}) \end{aligned}$
Vertical Resolution	8 bits	8 bits	8 bits	10 bits	8 bits	8 bits	10 bits	8 bits	9 bits
Record Length (Points)	254 to 1016	1024 per channel	$\begin{array}{\|l\|} \hline 2048 \text { dual } \\ 4096 \text { single } \\ \hline \end{array}$	128 to 1024	$\begin{array}{\|l} \hline 820 \text { or } 1024 \text { per } \\ \text { channel } \\ \hline \end{array}$	1024	$\begin{array}{\|l\|} \hline 2048 \text { dual } \\ 4096 \text { single } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 256 \text { to } 2048 \\ \text { per channel } \\ \hline \end{array}$	512
Input Channels	Up to 4 chopped	2 chopped	2 chopped	Up to 4 chopped	2	2 simultaneous acquisition	2	2	1
Independent Time Bases	1 plus	1 plus delaying	$\begin{aligned} & \hline 1 \text { plus delaying } \\ & (2230) \\ & 1(2220) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ \text { delaying } \end{array}$	1 plus	1 plus delaying	$\begin{array}{\|l\|} \hline 1 \text { plus } \\ \text { delaying } \end{array}$	1	2
Maximum Sweep Speed	$\begin{aligned} & 200 \mathrm{~ns} / \mathrm{div} \\ & (20 \mathrm{~ns} \text { in } \mathrm{X} 10) \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \mathrm{~ns} / \mathrm{div} \\ (10 \mathrm{~ns} \text { in } \mathrm{X} 10) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 50 \mathrm{~ns} / \mathrm{div} \\ (5 \mathrm{~ns} \text { in } \mathrm{X} 10) \\ \hline \end{array}$	$500 \mathrm{ps} /$ div (20 ps/div	$50 \mathrm{~ns} / \mathrm{div}$	5 ns/div	N/A	N/A	$500 \mathrm{ps} /$ div
Pretrigger	Yes - with 5B25N	pre, mid, post	Yes	Yes - with 7B87	Yes*3	Yes	Yes	Yes	delay line only
Posttrigger	Yes with delaying	Yes	Yes	Yes with delaying	Yes	Yes	Yes	Yes	No
Waveform Storage Registers	2 to 4	2 plus 16 opt	$\begin{array}{\|l} \hline 3 \text { plus } 26 \text { opt } \\ (2230) \\ 1(2220) \\ \hline \end{array}$	$\begin{aligned} & 2 \text { to } 16 \\ & \text { (5 to } 40 \text { Opt) } \end{aligned}$	6	6	2	2 to 16	1
Waveform Processing		averaging enveloping $\mathrm{CH} 1 \pm \mathrm{CH} 2$ $\mathrm{CH} 1 \times \mathrm{CH} 2$, RMS, mean, p-p	averaging smoothing enveloping	averaging parameters keystroke programming	averaging enveloping	averaging envelope save on delta multiply, add			averaging
Waveform Data Output Format	ASCII or binary	binary	ASCII binary hex	ASCII	ASCII or binary	ASCII or binary	binary	binary	binary
Other	roll mode XY recorder output	XY output cursors CRT readout	roll mode XY recorder output cursors CRT readout cursors (2230)	measurement systems available waveform parameter calculations cursors	roll mode cursors nonvolatile settings	analog plotter output cursors Video Trigger (Opt) direct print out	sample rate switching digital plotter output XY shift mode cursors	sample rate switching measurement systems	measurement systems available
Format Optimization	operator	operator	operator	operator	systems or operator	systems or operator	systems	systems	systems
Page	328	313	310	318	315	307	326	321	324
Prices Begin At	\$5,870	\$4,960	\$5,150/\$4,150	\$15,830	\$7,265/\$8,865	\$8,900	\$11,400	\$28,075	\$27,025

* 1 For applications not requiring programmability see the 5D10 Waveform Digitizer on page 246.
*2 Electron Bombarded Silicon.
${ }^{* 3}$ The 7D20/7D20T has pretrigger capability in the equivalent time digitizing range for repetitive waveforms as well as for single shot.

WAVEFORM DIGITIZERS

Along with conventional oscilloscopes, plugin or integrated, and with storage oscilloscopes, both digital and analog, Tektronix leads the way in waveform acquisition instruments. This commitment to the future of test and measurement instrumentation can be seen today in three programmable waveform digitizers.

The 390AD Programmable Waveform Digitizer is a dual-channel waveform-acquisition digitizer with a maximum sampling rate of $30 \mathrm{MS} / \mathrm{s}$ (or $60 \mathrm{MS} / \mathrm{s}$ in single channel operations). Vertical resolution is 10 bits and the memory length is 2048 data words (4096, single channel) with one breakpoint provided to allow changing the digitizing rate during waveform digitizing. More information is available on page 326.

The 7612D Programmable Waveform Digitizer has full dual-channel operations, a maximum sampling rate of 200 MHz , selectable record lengths from 256 to 2048 data words, and the ability to change sampling rates several times during waveform digitizing. See page 321.
The 7912AD Programmable Transient Waveform Digitizer captures waveforms with a scan converter CRT capable of recording 500 MHz single-shot signals. See page 324 for more information if your applications demand equivalent digitizing rates to 100 GHz and 9 -bit resolution both vertically and horizontally.
In addition to individual instruments, Tek offers a line of acquisition/processing packages and systems. These preconfigured packages and systems utilize our existing programmable waveform digitzers. See pages 330-337.

7000 SERIES INSTRUMENTS

The 7000 Series . . .
 Superior Performance

The 7000 Series plug-in laboratory instruments embody more state-of-the-art performance features than any other oscillo-scope-based measurement system. The 7104 and the R7103 Oscilloscopes feature a 1 GHz bandwidth combined with the fastest risetime and highest photographic writing speed available today.

Maximum Flexibility

A choice of over 40 plug-ins and 19 mainframes gives you the flexibility to configure the scope package to meet your individual needs. When your needs change, your present package can be reconfigured with a minimum of additional equipment and effort.

Expandability

This assures you that the instrument you buy today will adapt to changing measurement needs, and that it won't become obsolete soon after you buy it. Tektronix' most recent developments in plug-in scope capability are: the Waveform Processing Oscilloscope, the 1 GHz High Writing Rate Oscilloscope, the Programmable Digitizer Plug-In Unit, and the four channel Logic Triggered Vertical Amplifier.

Digital Storage Capability

The 7854 provides digital storage, pre and posttrigger viewing, equivalent time sampling, and waveform processing. The IEEE Standard 488 interface is standard.

CONTENTS

Reference 188
7000 Series
Nonstorage Mainframes 193
7000 Series
CRT Storage Mainframes 205
7000 Series Plug-ins 212
Digitizers 306

SUPERIOR PERFORMANCE，FLEXIBILITY AND EXPANDABILITY

The 7000 Series is a unique family of instru－ mentation components，a continuation of the Tektronix commitment to bringing the ul－ timate in measurement technology to the laboratory．

Numerous measurement concepts－oscillo－ scopy，synergistic analog－digital measure－ ments，spectrum analysis，sampling，time domain reflectometry，curve tracing－are fused into a family of interdependent CRT （cathode－ray－tube）mainframes and instru－ mentation plug－ins．
A system can be tailored for your exact measurement needs．Mainframes in the family offer a choice of popular bandwidth ranges and a wide selection of additional features．Plug－ins－including oscilloscope
vertical amplifiers and time bases as well as instruments for a variety of applica－ tions－can be selected to round out your tailored system．
In contrast to an industrial world that is fre－ quently faulted for planned obsolescence， the 7000 Series instrument family strategi－ cally defers obsolescence．Each mainframe and each plug－in reflects the latest technol－ ogy at its inception，yet each fits a well－ planned niche in this interdependent family． The result is an array of instrumentation components that can adapt to our new de－ velopments while protecting your initial in－ vestment．Today＇s system may be expand－ ed to meet future needs at a relatively low
cost by the addition of a plug－in or two When the time comes to add a more power－ ful mainframe，your older model continues to be useful for a host of applications．
All significant parameters are displayed in alphanumeric characters right on the CRT． They are readily visible when you need them for quick oscilloscope measurements，and are permanently recorded on your wave－ form photographs for future analysis and documentation．When your 7000 Series measurement system includes a digital in－ strument plug－in，the measurement is pre－ sented in clear，accurate digital terms， along with a corresponding analog waveform．

[^17]
400-MHz Dual-Beam

A dual-beam oscilloscope is essentially two oscilloscopes in one. A dual-beam oscilloscope is required in applications where two transient events must be compared simultaneously. These application areas commonly include the observation of simultaneous stimulation and reaction in such fields as medicine, biology, chemistry, and mechanical engineering.

Digital Measurement Plug-ins

The 7000 Series digital plug-ins include: A universal counter/timer, digital multimeter with temperature measurement capability, digital delay by time or events, and a versatile 0.01% A/D converter with vertical amplifier. Together with a 7000 Series mainframe, these give you the advantage of seeing what you're measuring, plus accuracy of digital measurements.

Sampling

The 7000 Series sampling plug-ins provide some unique measurement capabilities not available in other sampling oscilloscopes. You get: a low-cost storage CRT for slow scans, a random mode that lets you see leading edges without pretrigger or band-width-limiting delay line, a wide choice of sampling heads at minimal cost, and the convenience of sampling and conventional display at the same time on the CRT.

CRT Storage

Seven 7000 Series mainframes provide some combination of bistable and/or variable persistence storage. The 7834 Storage Oscilloscope can capture single-shot transient events of $<2 \mathrm{~ns}$ risetime. Variable persistence is valuable for effective viewing of slowly changing events or signals.

Digital Storage

The 7854 Waveform Processing Oscilloscope stores repetitive signals up to 400 MHz with conventional plug-ins, up to 14 GHz with the 7S12 TDR/Sampling plugin. The 7854 provides digital storage with waveform processing, waveform measurements at the touch of a button, keystroke programming, and a GPIB interface. The 7D20 Programmable Digitizer plug-in provides dual-trace digital storage of signals up to 70 MHz in any 7000 Series mainframe, except the 7104 and R7103.

Spectrum Analysis

Unexcelled plug-in performance from 20 Hz to 2.5 GHz is provided by the $7 \mathrm{~L} 5,7 \mathrm{~L} 12$ and 7 L 14 Spectrum Analyzer plug-ins. Stable, sensitive and spurious-free, these analyzers work in any 7000 Series mainframe.
Refer to the Spectrum Analyzer section beginning on page 154 for more information.

Nonstorage 1 GHz 7104/R7103

This 300 ps risetime is displayed on a 7104 Oscilloscope. Readout indicates $10 \mathrm{mV} /$ div vertical sensitivity and 200 ps/div sweep speed. The 7104 and R7103 provide ultra-bright displays which permit the viewing of a singleshot transient event up to the maximum bandwidth of the oscilloscope (1 GHz) in ambient light.

Sampling/Time Domain Reflectometry

7854 Waveform Processing Oscilloscope with 7 S12 TDR/Sampling plug-in provides time domain reflectometry and digital processing of sampling. In this photo, the 7854/7S12 measures a discontinuity in millirho/divi sion and calculates an impedance of 52.41Ω at the discontinuity.

Digital Readout Measurements

The 7D12/M2 A/D Converter and Sample/Hold Module measures $+0.737 V$ difference between two points on a complex waveform. The leading and trailing edges of the gate waveform select the points on the signal to be measured

Dual Beam 7844/R7844

The 400 MHz 7844 Dual Beam Oscilloscope displays one input signal at two sweep speeds. The 7844 provides full vertical and horizontal crossover switching and full overlap of both vertical amplifiers on its $8 \times 10 \mathrm{~cm}$ display.

Digital Storage 7854

Here, the 7854 measures the 127.6 ps risetime of a 38.83 mV pulse displayed at a sweep speed of 200 ps/div.

Spectrum Analysis

Max Hold feature of the 7L 14 Spectrum Analyzer plug-in in a 7000 Series mainframe produces perfectly proportioned $\operatorname{Sin} x / x$ spectrum of low rep rate burst of $2.66 \mathrm{MHz}, 6.67 \mu \mathrm{~s}$ in width.

CRT Storage see page 205
Digitizers see page 306.

7000 SERIES VERTICAL SYSTEM SPECIFICATIONS

PLUG-IN		7A13	7A15A	7A16A	7417	7A18A	7A19	7422	7 A24	7A26	7A29	7A42
Performance Feature		Differential dc offset, high-freq CMRR amplifier	Low cost conventional input amplifier	Wide bandwidth conventional input amplifier	Low cost, easy to customize amplifier	Dualchannel amplifier	Wide bandwidth 50Ω input amplifier	Dc-coupled high-gain differential amplifier	Dualchannel 50Ω amplifier	Dualchannel amplifier	Widest bandwidth single channel	Fourchannel logic triggered
Minimum Deflection Factor		$1 \mathrm{mV} / \mathrm{div}$	$\begin{gathered} 5 \mathrm{mV} / \mathrm{div} \\ (0.5 \mathrm{mV} / \mathrm{div})^{* 2} \end{gathered}$	$5 \mathrm{mV} / \mathrm{div}$	$50 \mathrm{mV} / \mathrm{div}$	$5 \mathrm{mV} / \mathrm{div}$	$10 \mathrm{mV} / \mathrm{div}$	$10 \mu \mathrm{~V} / \mathrm{div}$	$5 \mathrm{mV} / \mathrm{div}$	$5 \mathrm{mV} / \mathrm{div}$	$10 \mathrm{mV} / \mathrm{div}$	$20 \mathrm{mV} / \mathrm{div}$
Accuracy* ${ }^{1}$ Without Probe		1.5\%	2\%	2\%	-	2\%	3\%	2\%	2\%	2\%	2\%	3\%
7104 R7103 0 to $35^{\circ} \mathrm{C}$	BW Tr	105 MHz 3.4 ns	80 MHz 4.4 ns	225 MHz 1.6 ns	150 MHz 2.4 ns	$100 \mathrm{MHz}$ 4.7 ns	600 MHz 0.6 ns	$\begin{gathered} 1 \mathrm{MHz} \\ \pm 10 \% \\ 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	400 MHz 0.9 ns	$200 \mathrm{MHz}$ 1.8 ns	$\begin{gathered} 1000 \mathrm{MHz} \\ 0.35 \mathrm{~ns} \end{gathered}$	350 MHz 1.0 ns
$\begin{aligned} & \text { 7904A } \\ & \text { R7903 } \end{aligned}$	BW	105 MHz	80 MHz	225 MHz	$150 \mathrm{MHz}$	$100 \mathrm{MHz}$	$500 \text { MHz }$	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	350 MHz	200 MHz	500 MHz	300 MHz
	Tr	$3.4 \mathrm{~ns}$	4.4 ns	$1.6 \mathrm{~ns}$	$2.4 \mathrm{~ns}$	$4.7 \mathrm{~ns}$	0.8 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	1.0 ns	1.8 ns	0.7 ns* ${ }^{\text {² }}$	1.2 ns
0 to $30^{\circ} \mathrm{C}$	SIG OUT BW	100 MHz	70 MHz	140 MHz	15 MHz	90 MHz	300 MHz	$\begin{gathered} 1 \mathrm{MHz} \\ \pm 9 \% \end{gathered}$	140 MHz	140 MHz	300 MHz	NA
7912AD* 6 0 to $30^{\circ} \mathrm{C}$	BW	105 MHz	80 MHz	225 MHz	150 MHz	100 MHz	500 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	350 MHz	200 MHz	500 MHz	300 MHz
	Tr	3.4 ns	4.4 ns	1.6 ns	2.4 ns	4.7 ns	0.8 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \\ \hline \end{gathered}$	1.0 ns	1.8 ns	0.7 ns	1.2 ns
7844/R	BW	100 MHz	80 MHz	200 MHz	150 MHz	100 MHz	$400 \mathrm{MHz}^{* 3}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	300 MHz	180 MHz	400 MHz	275 MHz
0 to $35^{\circ} \mathrm{C}$	Tr	3.5 ns	4.4 ns	1.8 ns	2.4 ns	4.7 ns	0.9 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	1.2 ns	1.9 ns	0.9 ns	1.3 ns
$\begin{aligned} & 7854^{* 5} \\ & 7834 \\ & 0 \text { to } 35^{\circ} \mathrm{C} \end{aligned}$	BW Tr	100 MHz 3.5 ns	80 MHz 4.4 ns	200 MHz 1.8 ns	$150 \mathrm{MHz}$ 2.4 ns	$100 \mathrm{MHz}$ 4.7 ns	$400 \mathrm{MHz}^{* 3}$ 0.9 ns	$\begin{gathered} 1 \mathrm{MHz} \\ \pm 10 \% \\ 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	$300 \mathrm{MHz}$ 1.2 ns	$180 \mathrm{MHz}$ 1.9 ns	$\begin{gathered} 400 \mathrm{MHz} \\ 0.9 \mathrm{~ns} \end{gathered}$	275 MHz 1.3 ns
7704A Opt 09 0 to $30^{\circ} \mathrm{C}$	BW	100 MHz	75 MHz	170 MHz	150 MHz	90 MHz	$250 \mathrm{MHz}^{*} 4$	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	200 MHz	170 MHz	250 MHz	180 MHz
	Tr	3.6 ns	4.7 ns	2.1 ns	2.4 ns	4.7 ns	1.5 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	1.8 ns	2.1 ns	1.5 ns	1.9 ns
	$\begin{aligned} & \text { SIG OUT } \\ & \text { BW } \end{aligned}$	60 MHz	55 MHz	70 MHz	15 MHz	55 MHz	80 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	70 MHz	70 MHz	80 MHz	NA
7704A 0 to $50^{\circ} \mathrm{C}$	BW	95 MHz	75 MHz	160 MHz	150 MHz	75 MHz	250 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	200 MHz	150 MHz	250 MHz	175 MHz
	Tr	3.8 ns	4.7 ns	2.2 ns	2.4 ns	4.7 ns	1.8 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	1.8 ns	2.4 ns	1.8 ns	2.0 ns
	SIG OUT BW	60 MHz	55 MHz	70 MHz	15 MHz	55 MHz	80 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	70 MHz	70 MHz	80 MHz	NA
7603/R	BW	75 MHz	65 MHz	100 MHz	100 MHz	75 MHz	100 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	100 MHz	100 MHz	100 MHz	100 MHz
	Tr	4.8 ns	5.4 ns	3.5 ns	3.5 ns	4.7 ns	3.5 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	3.5 ns	3.5 ns	3.5 ns	3.5 ns
0 to $50^{\circ} \mathrm{C}$	SIG OUT BW	55 MHz	50 MHz	60 MHz	15 MHz	50 MHz	65 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	60 MHz	60 MHz	65 MHz	NA
7633/R	BW	75 MHz	50 MHz	100 MHz	100 MHz	70 MHz	100 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	100 MHz	100 MHz	100 MHz	100 MHz
7623A/R	Tr	4.8 ns	5.4 ns	3.5 ns	3.5 ns	4.7 ns	3.5 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	$3.5 \mathrm{~ns}$	3.5 ns	$3.5 \mathrm{~ns}$	3.5 ns
$\begin{aligned} & 7613 / \mathrm{R} \\ & 0 \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	SIG OUT BW	55 MHz	50 MHz	60 MHz	15 MHz	50 MHz	65 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	60 MHz	60 MHz	65 MHz	NA
7612D*6	BW	65 MHz	60 MHz	80 MHz	80 MHz	65 MHz	80 MHz	$\begin{aligned} & 1 \mathrm{MHz} \\ & \pm 10 \% \end{aligned}$	80 MHz	80 MHz	80 MHz	80 MHz
0 to $40^{\circ} \mathrm{C}$	Tr (calculated)	6.0 ns	6.7 ns	5.0 ns	5.0 ns	6.0 ns	5.0 ns	$\begin{gathered} 350 \mathrm{~ns} \\ \pm 9 \% \end{gathered}$	5.0 ns	5.0 ns	5.0 ns	5.0 ns
PAGE		218	214	213	214	215	213	219	215	215	213	216
Price		\$3,320	\$695	\$1,275	\$455	\$1,395	\$2,825	\$1,745	\$2,590	\$2,295	\$3,245	\$6,050

* Accuracy percentages apply to all deflection factors. Plug-in gain must be set at the deflection factor designated on each plug-in. When a probe is used, the gain must be set with the calibration signal applied to the probe tip. The calibration signal is supplied by an external calibrator whose accuracy is within 0.25%.

[^18]7000 SERIES OSCILLOSCOPE SYSTEMS/PROBE SELECTION GUIDE*1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{8}{|c|}{PASSIVE VOLTAGE \(1 \mathrm{M} \Omega\) INPUT COMPATIBLE} \& \multicolumn{2}{|l|}{PASSIVE VOLTAGE \(50 \Omega\) INPUT COMPAT} \& \multicolumn{4}{|c|}{ACTIVE PROBES \(50 \Omega / 1 \mathrm{M} \Omega\) INPUT COMPATIBLE} \\
\hline PROBE \& \& \[
\begin{gathered}
\hline \text { P6101A } \\
1 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6105A } \\
2 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\hline \text { P6130 } \\
1.5 \mathrm{~m} \\
\text { P6106A } \\
1 \mathrm{~m} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\hline \text { P6131 } \\
1.3 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{P}^{2} 055^{* 2} \\
3.5 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6062B*5 } \\
6 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6009 } \\
9 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6015 } \\
10 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\hline \text { P6056 } \\
1.5 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6057 } \\
6 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6201*4 } \\
6 \mathrm{ft}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6202A*4 } \\
2 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{P} 6230 * 4^{4} \\
1.5 \mathrm{~m}
\end{gathered}
\] \& \[
\begin{gathered}
\text { P6046 } \\
6 \mathrm{ft}
\end{gathered}
\] \\
\hline FEATU \& \& Miniature \& Miniature \& Miniature Fast Risetime \& Subminiature Fast Risetime \& \[
\begin{gathered}
\text { Adj } \\
\text { Attenuation } \\
\text { Differential }
\end{gathered}
\] \& Selectable Attenuation 1X:10X \& \[
\begin{array}{r}
1.5 \mathrm{kV} \\
\text { Risetime }
\end{array}
\] \& \[
\begin{aligned}
\& 40 \mathrm{kV} \\
\& \text { Peak }
\end{aligned}
\] \& \begin{tabular}{l}
Fastest 10X \\
Passive Probe Low C
\end{tabular} \& \begin{tabular}{l}
Fastest 100X \\
Passive Probe Low C
\end{tabular} \& Low Capactive Loading Ac Coupling Dc Offset \& \[
\begin{gathered}
10 \mathrm{M} \Omega \\
\text { Input } \\
\text { Impedance } \\
\text { Dc Offset }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { ECL } \\
\& \text { Bias/ } \\
\& \text { Offset }
\end{aligned}
\] \& Differential High CMRR \\
\hline ATTEN \& ATION \& 1X \& 10X \& 10x \& 10x \& 10x \& Selectable \& 100X \& 1000X \& 10X \& 100X \& Selectable \& Selectable \& 10X \& Selectable \\
\hline 7100 FAMILY \& \[
\begin{aligned}
\& \text { 7A19 } \\
\& \text { 7A24 } \\
\& \text { 7A26 } \\
\& \text { 7A29 } \\
\& \text { 7A42 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{NC} \\
\mathrm{NC} \\
34 \mathrm{MHz} \\
\mathrm{NC} \\
34 \mathrm{MHz}
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{NC} \\
\mathrm{NC} \\
100 \mathrm{MHz} \\
\mathrm{NC} \\
100 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{NC} \\
\mathrm{NC} \\
175 \mathrm{MHz} \\
\mathrm{NC} \\
250 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& NC
NC
NC
NC
300 MHz \& \[
\begin{aligned}
\& \mathrm{NC} \\
\& \mathrm{NC} \\
\& \mathrm{NC}
\end{aligned}
\] \& \begin{tabular}{l}
NC \\
NC \\
NC
\end{tabular} \& NC
NC
125 MHz
NC
130 MHz \& \[
\begin{gathered}
\hline \mathrm{NC} \\
\mathrm{NC} \\
75 \mathrm{MHz} \\
\mathrm{NC} \\
80 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 500 \mathrm{MHz} \\
\& 350 \mathrm{MHz} \\
\& \\
\& 950 \mathrm{MHz} \\
\& 350 \mathrm{MHz}
\end{aligned}
\] \& \[
\begin{aligned}
\& 480 \mathrm{MHz} \\
\& 350 \mathrm{MHz} \\
\& \\
\& 800 \mathrm{MHz} \\
\& 350 \mathrm{MHz}
\end{aligned}
\] \& \[
\begin{aligned}
\& 430 \mathrm{MHz} \\
\& 310 \mathrm{MHz} \\
\& 195 \mathrm{MHz} \\
\& 660 \mathrm{MHz} \\
\& 300 \mathrm{MHz}
\end{aligned}
\] \& 300 MHz
300 MHz
185 MHz
450 MHz
280 MHz \& \[
\begin{aligned}
\& 480 \mathrm{MHz} \\
\& 350 \mathrm{MHz} \\
\& 200 \mathrm{MHz} \\
\& 800 \mathrm{MHz} \\
\& 350 \mathrm{MHz} \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{r}
100 \mathrm{MHz} \\
100 \mathrm{MHz} \\
90 \mathrm{MHz} \\
100 \mathrm{MHz} \\
100 \mathrm{MHz}
\end{array}
\] \\
\hline 7900 FAMILY \& \begin{tabular}{l}
7 A13 \\
7A15A \\
7A16A \\
7A18A \\
7A19 \\
7 A22 \\
7 724 \\
7 726 \\
7 A42
\end{tabular} \& \[
\begin{gathered}
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
\mathrm{NC} \\
1 \mathrm{MHz} \\
\mathrm{NC} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& 75 MHz
75 MHz
75 MHz
NC
NC
NC
100 MHz
100 MHz \& \[
\begin{gathered}
105 \mathrm{MHz} \\
75 \mathrm{MHz} \\
200 \mathrm{MHz} \\
75 \mathrm{MHz} \\
\mathrm{NC} \\
\mathrm{NC} \\
\mathrm{NC} \\
175 \mathrm{MHz} \\
250 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& NC
NC
NC
NC
NC
NC
NC
NC
300 MHz \& \begin{tabular}{l}
65 MHz \\
NC \\
1 MHz NC
\end{tabular} \& \[
\begin{aligned}
\& 75 \mathrm{MHz} \\
\& 75 \mathrm{MHz} \\
\& \mathrm{NC} \\
\& 1 \mathrm{MHz} \\
\& \mathrm{NC}
\end{aligned}
\] \& 85 MHz
70 MHz
130 MHz
70 MHz
NC
NC
125 MHz
130 MHz \& \[
\begin{gathered}
65 \mathrm{MHz} \\
60 \mathrm{MHz} \\
80 \mathrm{MHz} \\
60 \mathrm{MHz} \\
\mathrm{NC} \\
\mathrm{NC} \\
75 \mathrm{MHz} \\
80 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& \[
\begin{aligned}
\& 500 \mathrm{MHz} \\
\& 350 \mathrm{MHz} \\
\& 300 \mathrm{MHz}
\end{aligned}
\] \& \[
\begin{array}{r}
105 \mathrm{MHz} \\
80 \mathrm{MHz} \\
205 \mathrm{MHz} \\
75 \mathrm{MHz} \\
480 \mathrm{MHz} \\
350 \mathrm{MHz} \\
300 \mathrm{MHz}
\end{array}
\] \& \[
\begin{array}{r}
105 \mathrm{MHz} \\
80 \mathrm{MHz} \\
215 \mathrm{MHz} \\
75 \mathrm{MHz} \\
430 \mathrm{MHz} \\
310 \mathrm{MHz} \\
185 \mathrm{MHz} \\
300 \mathrm{MHz} \\
\hline
\end{array}
\] \& \begin{tabular}{l}
105 MHz \\
75 MHz \\
205 MHz \\
75 MHz \\
300 MHz \\
290 MHz \\
185 MHz \\
300 MHz
\end{tabular} \& \begin{tabular}{l}
105 MHz 80 MHz 205 MHz 75 MHz 480 MHz \\
350 MHz 290 MHz 300 MHz
\end{tabular} \& \begin{tabular}{l}
70 MHz \\
60 MHz \\
90 MHz \\
60 MHz \\
95 MHz \\
90 MHz \\
85 MHz \\
90 MHz
\end{tabular} \\
\hline 7800 FAMILY \& \begin{tabular}{l}
7 A13 \\
7A15A \\
7A16A \\
7A18A \\
7 719 \\
7 A22 \\
7 A24 \\
7A26 \\
7 A42
\end{tabular} \& \[
\begin{gathered}
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
\mathrm{NC} \\
1 \mathrm{MHz} \\
\mathrm{NC} \\
34 \mathrm{MHz} \\
34 \mathrm{MHz} \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
100 \mathrm{MHz} \\
75 \mathrm{MHz} \\
100 \mathrm{MHz} \\
85 \mathrm{MHz} \\
\mathrm{NC} \\
1 \mathrm{MHz} \\
\mathrm{NC} \\
100 \mathrm{MHz} \\
100 \mathrm{MHz} \\
\hline
\end{array}
\] \& 100 MHz
75 MHz
160 MHz
85 MHz
NC
NC
NC
145 MHz
200 MHz \& NC
NC
NC
NC
NC
NC
NC
NC
275 MHz \& 65 MHz

NC
1 MHz

NC \& $$
\begin{aligned}
& 75 \mathrm{MHz} \\
& \\
& 85 \mathrm{MHz} \\
& \mathrm{NC} \\
& 1 \mathrm{MHz} \\
& \mathrm{NC}
\end{aligned}
$$ \& 85 MHz

70 MHz
110 MHz
80 MHz
NC
1 MHz
NC
105 MHz

110 MHz \& $$
\begin{gathered}
60 \mathrm{MHz} \\
55 \mathrm{MHz} \\
75 \mathrm{MHz} \\
60 \mathrm{MHz} \\
\mathrm{NC} \\
1 \mathrm{MHz} \\
\mathrm{NC} \\
75 \mathrm{MHz} \\
75 \mathrm{MHz} \\
\hline
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 400 \mathrm{MHz} \\
& 300 \mathrm{MHz} \\
& 275 \mathrm{MHz}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 400 \mathrm{MHz} \\
& 300 \mathrm{MHz} \\
& 275 \mathrm{MHz} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
100 \mathrm{MHz} \\
80 \mathrm{MHz} \\
165 \mathrm{MHz} \\
90 \mathrm{MHz} \\
360 \mathrm{MHz} \\
280 \mathrm{MHz} \\
155 \mathrm{MHz} \\
260 \mathrm{MHz} \\
\hline
\end{array}
$$

\] \& | 100 MHz 80 MHz 170 MHz |
| :--- |
| 75 MHz |
| 320 MHz |
| 270 MHz |
| 150 MHz |
| 260 MHz | \& \[

$$
\begin{array}{r}
100 \mathrm{MHz} \\
80 \mathrm{MHz} \\
190 \mathrm{MHz} \\
90 \mathrm{MHz} \\
400 \mathrm{MHz} \\
300 \mathrm{MHz} \\
180 \mathrm{MHz} \\
275 \mathrm{MHz} \\
\hline
\end{array}
$$

\] \& | 70 MHz |
| :--- |
| 60 MHz |
| 85 MHz |
| 65 MHz |
| 95 MHz |
| 90 MHz |
| 85 MHz |
| 90 MHz |

\hline 7704A FAMILY \& | 7 A13 |
| :--- |
| 7A15A |
| 7A16A |
| 7A18A |
| 7A19*3 |
| 7A22 |
| 7A24 |
| 7A26 |
| 7 A42 | \& 34 MHz

34 MHz
34 MHz
34 MHz
NC
1 MHz
NC
34 MHz
34 MHz \& 70 MHz
70 MHz
100 MHz
75 MHz
NC
1 MHz
NC
100 MHz
100 MHz \& 95 MHz
70 MHz
145 MHz
75 MHz
NC
NC
NC
140 MHz
150 MHz \& NC
NC
NC
NC
NC
NC
NC
NC
180 MHz \& 65 MHz

NC

1 MHz \& $$
\begin{gathered}
70 \mathrm{MHz} \\
75 \mathrm{MHz} \\
\mathrm{NC} \\
1 \mathrm{MHz} \\
\mathrm{NC}
\end{gathered}
$$ \& 85 MHz

65 MHz
115 MHz
70 MHz
NC
NC
105 MHz

115 MHz \& $$
\begin{gathered}
65 \mathrm{MHz} \\
55 \mathrm{MHz} \\
75 \mathrm{MHz} \\
60 \mathrm{MHz} \\
\mathrm{NC} \\
\mathrm{NC} \\
75 \mathrm{MHz} \\
75 \mathrm{MHz} \\
\hline
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 250 \mathrm{MHz} \\
& 200 \mathrm{MHz} \\
& 180 \mathrm{MHz}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 250 \mathrm{MHz} \\
& 200 \mathrm{MHz} \\
& 180 \mathrm{MHz}
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
100 \mathrm{MHz} \\
75 \mathrm{MHz} \\
160 \mathrm{MHz} \\
75 \mathrm{MHz} \\
220 \mathrm{MHz} \\
185 \mathrm{MHz} \\
160 \mathrm{MHz} \\
170 \mathrm{MHz}
\end{array}
$$

\] \& \[

$$
\begin{gathered}
100 \mathrm{MHz} \\
70 \mathrm{MHz} \\
150 \mathrm{MHz} \\
75 \mathrm{MHz} \\
215 \mathrm{MHz} \\
\\
180 \mathrm{MHz} \\
140 \mathrm{MHz} \\
160 \mathrm{MHz} \\
\hline
\end{gathered}
$$

\] \& | 100 MHz |
| :--- |
| 75 MHz |
| 160 MHz |
| 75 MHz |
| 250 MHz |
| 200 MHz |
| 165 MHz |
| 180 MHz | \& | 70 MHz |
| :--- |
| 55 MHz |
| 80 MHz |
| 60 MHz |
| 85 MHz |
| 80 MHz |
| 80 MHz |
| 80 MHz |

\hline 7600 FAMILY \& | 7A13 |
| :--- |
| 7A15A 7A16A 7A18A 7 A22 7A26 7 A42 | \& | 34 MHz |
| :--- |
| 34 MHz |
| 34 MHz |
| 34 MHz |
| 1 MHz |
| 34 MHz |
| 34 MHz | \& \[

$$
\begin{aligned}
& 70 \mathrm{MHz} \\
& 60 \mathrm{MHz} \\
& 95 \mathrm{MHz} \\
& 70 \mathrm{MHz} \\
& 1 \mathrm{MHz} \\
& 95 \mathrm{MHz} \\
& 95 \mathrm{MHz}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 75 \mathrm{MHz} \\
& 60 \mathrm{MHz} \\
& 95 \mathrm{MHz} \\
& 70 \mathrm{MHz} \\
& \mathrm{NC} \\
& 95 \mathrm{MHz} \\
& 95 \mathrm{MHz}
\end{aligned}
$$
\] \& NC

NC
NC
NC
NC
NC
100 MHz \& 55 MHz

1 MHz \& \[
$$
\begin{array}{r}
70 \mathrm{MHz} \\
60 \mathrm{MHz} \\
95 \mathrm{MHz} \\
70 \mathrm{MHz} \\
1 \mathrm{MHz} \\
95 \mathrm{MHz} \\
95 \mathrm{MHz} \\
\hline
\end{array}
$$

\] \& | 60 MHz |
| :--- |
| 55 MHz |
| 85 MHz |
| 65 MHz |
| 85 MHz |
| 85 MHz | \& | 55 MHz |
| :--- |
| 50 MHz |
| 65 MHz |
| 55 MHz |
| 65 MHz |
| 65 MHz | \& \& \& \[

$$
\begin{array}{r}
75 \mathrm{MHz} \\
65 \mathrm{MHz} \\
100 \mathrm{MHz} \\
75 \mathrm{MHz} \\
100 \mathrm{MHz} \\
100 \mathrm{MHz}
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
75 \mathrm{MHz} \\
65 \mathrm{MHz} \\
100 \mathrm{MHz} \\
75 \mathrm{MHz} \\
100 \mathrm{MHz} \\
100 \mathrm{MHz}
\end{array}
$$
\] \& 75 MHz

65 MHz
100 MHz
75 MHz
100 MHz

100 MHz \& | 55 MHz |
| :--- |
| 50 MHz |
| 70 MHz |
| 55 MHz |
| 70 MHz |
| 70 MHz |

\hline
\end{tabular}

The values in the above table represent the approxi mate useful frequency response for the measurement systems at the probe tip. *2 015-0437-00 Matched pair recommended.	*3 Option 09 Mainframe. *4 Requires 1101/1101A Power Supply or other external source of power when used with 7854, 7603, 7633, 7623, or 7613.	${ }^{* 5}$ Bandwidths given for 10X switch position. NC $=$ Not compatible If there is no bandwidth specified, the probe/plug-in combination is compatible but not recommended.

7000 SERIES MAINFRAME/TIME BASE/CAMERA SELECTION GUIDE

	TIME BASES								CAMERAS					
	7B50A	7B53A	7B80	7B85	7B87	7B92A	7B10	7B15	C-51	C-53	C-59	C-5C	C-7	$\begin{gathered} \text { C-4 } \\ \text { Opt } 02 \end{gathered}$
Mainframe	Single Time Base	Dual Time Base with Mixed Sweep	Single Time Base	Single Time Base with Delaying Δ Delay	Single Time Base with Pretrigger	Dual Time Base with Display Switching	Single Time Base	Single Time Base with Delaying Δ Delay	High Writing Rate	Genera	urpose		Low Cost	
7104/R7103						\checkmark	\checkmark	\checkmark		\checkmark		v	\checkmark	\checkmark
7904A/R7903			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		ν	\checkmark	\checkmark
7844/R7844			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
7834			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark
7854		Opt 05*1	v*1	V*	v	V*	V*	V*	v	\checkmark		v	\checkmark	ν
7704A			\checkmark	\checkmark		\checkmark	v	\checkmark	v	\checkmark				\checkmark
7603/R7603	v	v									v	Opt 01	Opt 01	v
$\begin{aligned} & \hline 7633 / R 7633 \\ & 7623 A / R 7623 A \end{aligned}$	\checkmark	v								\checkmark		v	v	v
7613/R7613	ν	\checkmark								v		\checkmark	\checkmark	\checkmark
Page	224	224	220	220	220	222	223	223	413	413	415	416	410	408
Prices Begin At	\$1,075	\$1,685	\$1,620	\$1,895	\$1,800	\$3,745	\$2,495	\$2,830	\$2,360	\$1,940	\$1,335	\$495	\$595	\$370

${ }^{\text {* }}$ Full capabilities of 7854 not achievable with this time base.

K213 Lab Instrument Cart

The K213 Lab Instrument Cart accepts all 7000 Series oscilloscopes. A lockable drawer for storage and a movable shelf for additional instrumentation are included. The shelf accepts TM 500 Test and Measurement instruments, 5000 Series oscilloscopes, or 400 Series oscilloscopes. A drawer for the 7854 keyboard and a plug-in storage cabinet are available as Options 10 and 12 respectively, or Option 22 for both. For full details see Cart section, page 422.

7000 SERIES MAINFRAMES AND PLUG-INS DIMENSIONS AND WEIGHTS

Dimensions		7612D	7912AD	7854*1	7104	R7103	7904A	R7903	7844	R7844	7834	7704A	7603	R7603	$\begin{gathered} 7633, \\ 7623 A, \\ 7613 \end{gathered}$		Plug-ins	
Width	$\begin{aligned} & \mathrm{mm} \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} 483 \\ 19.0 \\ \hline \end{gathered}$	$\begin{aligned} & 483 \\ & 19.0 \\ & \hline \end{aligned}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{gathered} 483 \\ 19.0 \\ \hline \end{gathered}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{gathered} 483 \\ 19.0 \\ \hline \end{gathered}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{gathered} 305 \\ 19.0 \\ \hline \end{gathered}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{gathered} 483 \\ 12.0 \\ \hline \end{gathered}$	$\begin{array}{r} 221 \\ 8.7 \\ \hline \end{array}$	$\begin{gathered} 483 \\ 19.0 \\ \hline \end{gathered}$	$\begin{array}{r} 221 \\ 8.7 \\ \hline \end{array}$	$\begin{gathered} 483 \\ 19.0 \\ \hline \end{gathered}$	$\begin{aligned} & 7.1 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 140 \\ 5.5 \\ \hline \end{array}$
Height	$\begin{aligned} & \mathrm{mm} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 178 \\ & \quad 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 178 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 348 \\ & 13.7 \end{aligned}$	$\begin{gathered} 345 \\ 13.6 \\ \hline \end{gathered}$	$\begin{aligned} & 178 \\ & \quad 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 345 \\ 13.6 \\ \hline \end{gathered}$	$\begin{gathered} 135 \\ 5.3 \\ \hline \end{gathered}$	$\begin{gathered} 328 \\ 12.9 \\ \hline \end{gathered}$	$\begin{gathered} 178 \\ \quad 7.0 \\ \hline \end{gathered}$	$\begin{gathered} 345 \\ 13.6 \end{gathered}$	$\begin{gathered} 345 \\ 13.6 \\ \hline \end{gathered}$	$\begin{aligned} & 290 \\ & 11.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 133 \\ 5.3 \\ \hline \end{array}$	$\begin{gathered} 305 \\ 12.0 \\ \hline \end{gathered}$	$\begin{array}{r} 133 \\ 5.3 \\ \hline \end{array}$		$\begin{array}{r} 127 \\ 5.0 \\ \hline \end{array}$
Depth	$\begin{aligned} & \mathrm{mm} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 679 \\ & 26.8 \end{aligned}$	$\begin{aligned} & 679 \\ & 26.8 \\ & \hline \end{aligned}$	$\begin{gathered} 627 \\ 24.7 \\ \hline \end{gathered}$	$\begin{aligned} & 592 \\ & 23.3 \end{aligned}$	$\begin{aligned} & 704 \\ & 27.7 \end{aligned}$	$\begin{aligned} & 577 \\ & 22.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 579 \\ & 22.8 \end{aligned}$	$\begin{aligned} & 605 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 630 \\ & 24.8 \end{aligned}$	$\begin{aligned} & 589 \\ & 23.2 \\ & \hline \end{aligned}$	$\begin{gathered} 577 \\ 22.7 \\ \hline \end{gathered}$	$\begin{gathered} 610 \\ 24.0 \\ \hline \end{gathered}$	$\begin{gathered} 627 \\ 24.7 \end{gathered}$	$\begin{aligned} & 597 \\ & 23.5 \end{aligned}$	$\begin{aligned} & 566 \\ & 22.3 \\ & \hline \end{aligned}$	$\begin{gathered} 368 \\ 14.5 \\ \hline \end{gathered}$	$\begin{aligned} & 368 \\ & 14.5 \end{aligned}$

Weights \approx

Net	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{lb} \end{aligned}$	$\begin{array}{r} 25.0 \\ 55.0 \\ \hline \end{array}$	$\begin{aligned} & 22.7 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.4 \\ 45.0 \\ \hline \end{array}$	$\begin{array}{r} 19.8 \\ 43.6 \\ \hline \end{array}$	$\begin{array}{r} 20.0 \\ 44.0 \\ \hline \end{array}$	$\begin{array}{r} 16.9 \\ 37.2 \\ \hline \end{array}$	$\begin{array}{r} 12.3 \\ 27.0 \\ \hline \end{array}$	$\begin{array}{r} 16.3 \\ 36.0 \\ \hline \end{array}$	$\begin{array}{r} 15.0 \\ 33.0 \\ \hline \end{array}$	$\begin{array}{r} 16.1 \\ 35.5 \\ \hline \end{array}$	$\begin{array}{r} 13.6 \\ 30.0 \\ \hline \end{array}$	$\begin{array}{r} 13.6 \\ 30.0 \\ \hline \end{array}$	$\begin{aligned} & 13.6 \\ & 30.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.6 \\ 30.0 \\ \hline \end{array}$	$\begin{array}{r} 14.5 \\ 32.0 \\ \hline \end{array}$	$\begin{aligned} & 0.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 9.0 \end{aligned}$
Shipping	kg	42.1	32.6	28.1	25.4	30.9	21.4	23.6	21.3	28.5	21.3	19.5	20.8	28.2	19.0	28.2	2.3	5.4
	lb	93.0	72.0	62.0	56.0	68.0	47.0	52.0	47.0	63.0	47.0	43.0	46.0	62.0	42.0	62.0	5.0	12.0

${ }^{*}{ }^{1}$ Calculator dimensions and weights, width 277 mm (10.9 in), height 69 mm (2.7 in), depth 165 mm (6.5 in).
CURRENT APPLICATION NOTES FOR 7000 SERIES

Title	Featuring	Part No	Title	Featuring	Part No
PULSE ECHO MEASUREMENTS with digital accuracy	7603/7A22/7D15/7B53A timing measurements between nonadjacent pulses.	$\begin{aligned} & \text { 42AX-3681-1 } \\ & 42 \mathrm{~W}-3681-1 \end{aligned}$	Pulse and digital timing meas-urements-a better technique	7B80/7B85 general operation overview	42AX-3379-1
	Ultrasonic transducers.		Using storage to find troublesome logic glitches	7633 shows how to capture and evaluate glitches	42AX-3085
7A42	7A42 Logic triggered amplifier, checking logic levels.	42W-5629			
7 A 42 Bus Contention	7 742 Microprocessor Bus Contention	42W-5630	Variable persistence storage applications	7613/5441 various applications for variable persistence storage oscilloscopes.	42AX-3198
			Automated TDR Testing	Made easy with the 7854 oscilloscope/ 7S12 sampler plug-in.	42W-5334-1
7A42 Advanced Trigger Application	7A42 measures complex signals easily.	42W-5588			
	7D15/7A18/7A22 X-Y power dissipa	42AX-3957	Bistable storage applications	Tektronix Storage Oscilloscopes. Describes various applications.	42AX-3199
Timing for Measuring SOA	measurements.		Increased Measurement Accuracy Using a 7D15 in any 7000 Series Scope	Introduction demonstrating variety of counting \& timing measurements.	42W-5017-1
DAC MEASUREMENTS: The sampling oscilloscope	7S14/7D12/M2/7B92A/7904 measuring DAC (digital analog converter) settling time.	42AX-3632-1			
app			7D20 Programmable Digitizer: Digitizing Performance \& versatility in a power plug-in	In-depth discussion of the features, functions and capabilities	42W-5079-1
Accurate Radar Pulse Measurements	7D11 example of radar pulse delay time measurement	$\begin{array}{\|l\|} \hline \text { AX-2659-3 } \\ \text { 42W-2659-3 } \end{array}$			
Measuring time interval between non-adjacent digital word train pulses or multiecho radar pulses	7D15 demonstrates ability to measure the time between adjacent pulses with digital counter accuracy.	42W-2680-3	Sampling for High Speed Measurements	Describes how sampling works, TDR measurements, probes \& sampling systems	42W-5195
			Measurement Techniques w/Differential Amplifiers	Outines what they are, functions \& benefits	42W-5325
The 7D20 Programmable Digitizer: Performing a Wide Range of Measurement Tasks	7D20 application examples including ultrasonic testing, monitoring nerve activity. measuring pulse jitter, and SOA analysis of power devices	42W-5085	Applying Photographic Writing Rate to High Speed Signal Measurements	Describes how scope/camera systems photograph fast moving traces	42W-5335-1
Accurately			Power Supply/ Device Testing	Describes advanced 7854 waveform processing functions of typical series of five power supply \& device test operations	42W-5700
Measuring memory core I/O signals with digital accuracy	7000 Series digital plug-ins demonstrate how to make accurate pulse parameter	42AX-2686-1			
	measurements both of amplitude and pulse timing.		Basic SW Programs for Communicating Between 7854 \& IBM PC	Describes installation \& configuration of National Instrument's IEEE-488 card, \& programs to make transfers \& specific programs in IBM BASIC	42W-5802
Measuring disc drive time and access voltages with Tektronix	7000 Series digital plug-ins use a single CRT display to perform both digital and	$\begin{aligned} & \text { 42AX-2687-2 } \\ & \text { 42W-2687-2 } \end{aligned}$			
7000 Series Digital Plug-ins	analog analysis of complex waveforms.		7854 Measurement Primer	Teaches most basic functions, including acquiring waveform, stored waveform measurements, storing/displaying multiple waveforms.	42W-5968
MEASUREMENT VARIETY An Engineering challenge featuring the 7854	7854/Waveform Calculator basic operation, application software for percent overshoot, data monitoring and histogram.	$\begin{aligned} & \text { 42AX-4281 } \\ & 42 W-4281-1 \end{aligned}$			
GPIB COMMUNICATION with the 7854	7854/4052 and 7854/4924 types of I/O transfers, transmissions formats, and oper-	42AX-4416-1 42W-4416-1	Sampling Primer	Basic sampling principles in signal acquisition for scope measurements.	42W-5969

CONTENTS
7104/R7103 1 GHz General Purpose 194
7904A/R7903 500 MHz
General Purpose 197
7844/R7844 400 MHz Dual Beam 203
7704A 200 MHz General Purpose 199
7603/R7603 100 MHz General Purpose 201
Plug-ins 212
High Performance Digitizing Mainframes 306

7000 SERIES NONSTORAGE SELECTION GUIDE

	7104/R7103	7904A/R7903	7844/R7844	7704A Opt 09	7704A	7603/R7603
Bandwidth*1	1 GHz	500 MHz	400 MHz	250 MHz	200 MHz	100 MHz
Minimum Deflection Factor	$10 \mathrm{mV} /$ div at BW	$10 \mathrm{mV} / \mathrm{div}$ at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} / \mathrm{div}$	$\begin{gathered} 20 \mathrm{mV} / \mathrm{div} \text { at BW } \\ 10 \mu \mathrm{~V} / \mathrm{div} \\ 1 \mathrm{~mA} / \mathrm{div} \end{gathered}$	$\begin{gathered} 20 \mathrm{mV} / \mathrm{div} \text { at BW } \\ 10 \mu \mathrm{~V} / \mathrm{div} \\ 1 \mathrm{~mA} / \mathrm{div} \end{gathered}$	$10 \mathrm{mV} / \mathrm{div}$ at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} / \mathrm{div}$	$5 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $1 \mathrm{~mA} / \mathrm{div}$
Maximum Sweep Rate	$200 \mathrm{ps} /$ div	$500 \mathrm{ps} /$ div	$1 \mathrm{~ns} /$ div	$2 \mathrm{~ns} /$ div	$2 \mathrm{~ns} /$ div	$5 \mathrm{~ns} /$ div
Four Traces	ν	ν	Dual Beam	ν	\checkmark	\checkmark
Delayed Sweep	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Page	194	197	203	199	199	201
Prices*2 Begin At	\$23,995/\$24,520	\$9,635/\$9,330	\$14,995/\$15,450	\$5,495	\$4,995	\$3,250/\$3,720

*1 Bandwidths are real time. Sampling plug-ins that extend bandwidths to 14 GHz are available for most mainframes.
*2 Price does not include plug-ins.

A high performance instrument system begins with the basic oscilloscope building block-the 7000 Series mainframe. Each mainframe consists of a cathode-ray tube, a power supply, electron beam deflection systems, and the switching circuitry necessary to integrate a versatile and complete measurement system.

The Tektronix 7104 and the R7103 are 1 GHz oscilloscopes featuring the fastest risetime (350 ps) and highest photographic writing speed ($20 \mathrm{~cm} / \mathrm{ns}$) available today.

Choose from a variety of features, including bandwidth, photographic writing speed, dual-beam, alphanumeric displays, rackmounting, and three- or four-plug-in flexibility.

7104／R7103

1 GHz at $10 \mathrm{mV} / \mathrm{div}$
350 ps Risetime
200 ps／div Fastest Calibrated Sweep Rate
Horizontal Bandwidth 350 MHz
Ultra High Photographic Writing Speed－ at Least $20 \mathrm{~cm} / \mathrm{ns}$

CRT Readout

7 Inch Rackmount（R7103 Only）
Phase Compensation Option－Phase Matching to $\mathbf{2 5 0} \mathbf{~ M H z}$（7104 Only）

TYPICAL APPLICATIONS

＊High Speed Semiconductor Design

＊Laser and High Energy Research
＊Digital Communications

See page 192 for available Application Notes．
The capabilities of the 7104 and the seven inch rackmount R7103 are of substantial val－ ue in numerous high technology environ－
ments．The 7104／R7103 have both the high－ est writing speed and highest bandwidth available in a general－purpose oscilloscope today．

The 7104／R7103＇s outstanding writing speed means unsurpassed single－shot ca－ pability，with trace brightness about one－ thousand times that of conventional oscillo－ scopes．Any single－shot signal within the 1 GHz bandwidth can be seen directly on the CRT in average room light．Also， singleshot photography is now simple and straightforward，using standard oscillo－ graphic cameras and film without high－ speed enhancement techniques．
It is by no means unusual to see 250 MHz data rates and 900 MHz analog frequencies outside the lab and on the production line． In digital design，too，anomalies such as ringing and overshoot can only be dealt with by evaluating the signal＇s analog characteristics．
You can capture the fastest transients with－ out expensive high－speed film or other time consuming and complex techniques like fogging or reducing the scan．In fact，you can see those signals on the CRT，and elimi－ nate costly time consuming photographs．

See What You Could Never See Before．

Before－A pulse train on a TEK 7904A doesn＇t reveal the low－level glitch occurring every ten－thou－ sandth pulse．（The TEK 7904A was previously the world＇s fastest－writing－rate scope．）

After－The same pulse train viewed directly on the 7104／R7103，with one－thousand times the brightness of conventional scopes．The researcher can now an－ alyze the pulse with the naked eye and take pictures with ease．

Before－Low repetition rate pulse is invisible on a conventional oscilloscope

With its sweep speed of $200 \mathrm{ps} /$ div, the $7104 / R 7103$ clearly shows a single-shot, 350 -ps step, five divisions in amplitude.

Horizontal bandwidth of 350 MHz , with the $X-Y$ phase compensation Option 02 (7104 only), gives accurate $X-Y$ displays to 250 MHz . Designers can now directly obtain V-I curves for high-speed switching power supply evaluation or monitor performance of digital communication systems using phase constellation displays.

CHARACTERISTICS

The following characteristics are common to the 7104 and the R7103, except those noted under the R7103.

VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins (except 7D01, 7D02, and 7D20).
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Trace Separation - (7104 only) In dual sweep modes positions B trace at least four divisions above and below A trace.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Channels - Two right-hand plug-in compartments. Compatible with the 7B10 Series, 7B80 Series, 7B50A, 7B92A, 7000 Series vertical amplifiers and specialized plug-ins (7B92, 7D01, 7D02, and 7D20 not recommended).
Bandwidth - Dc to 350 MHz .
Display Modes - (7104 only) A, Alt, Chop, B. Chopped mode repetition rate is $\approx 200 \mathrm{kHz}$.
Fastest Calibrated Sweep Rate - $200 \mathrm{ps} / \mathrm{div}$ with the 7B10 or 7B15.
X-Y Mode - With Delay Compensation (7104 only using 7A19s or 7A29s at least one having Variable Delay Option, B horizontal compartment only): Phase shift is 2° from dc to 50 MHz (after adjusting variable delay for balance at 35 MHz). Phase balance can be obtained at any frequency up to 250 MHz . Without Delay Compensation: Phase shift is 2° from dc to 50 kHz .

CRT AND DISPLAY FEATURES

For CRT phosphor data see page 181.
CRT - Internal 8×10 division ($0.85 \mathrm{~cm} /$ div) graticule with variable illumination. Accelerating potential is 12.5 kV . GH (P31) phosphor standard.
Readout and Graticule Modes - Each continuous or pulsed. Pulse Source Front Panel Selectable: + Gate, External, Manual. Pulsed graticule is on for $\approx 0.5 \mathrm{~s}$.
Typical Photographic Writing Speed*1

CRT	Camera	Lens	Writing Speed $\mathrm{cm} / \mathrm{ns}$
Standard	C-53	$\mathrm{f} / 1.9$ $1: 0.85$	20
$8 \mathrm{~cm} \times 10 \mathrm{~cm}$			

${ }^{*}$ Using the standard GH (P31) phosphor standard and Polaroid Type 107, 3,000 ASA film without film fogging.

A digital circuit that shows no jitter on a conventional oscilloscope is found to have a 2.0 ns jitter when viewed with the distinct image viewing capability of the 7104/R7103.

The transient load line of a fast switching transistor in a power supply prototype (switching time $=10 \mathrm{~ns}$) is easily measured for compliance with safe operating area. (Hort zontal $=$ Voltage; Vertical $=$ Current) .

Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating offscreen signal.
External Z-Axis Input - 2 V p-p for full intensity range. A positive signal blanks the trace. Maximum input voltage is 15 V (dc + peak ac) and $\mathrm{p}-\mathrm{p}$ ac. Input is dc coupled.

Circuit faults such as high frequency pulse overshoot and ringing can easily be observed with the 7104/R7103's 1 GHz bandwidth.

View of a single clocking pulse 0.8 ns rise and 2 ns pulse width.

The R7103 requires only seven inches of rack height in a standard 19 inch rack. It is fan-cooled and comes complete with slideout chassis tracks.

CALIBRATOR

Voltage Output - Squarewave positive-going from ground.
Voltage Ranges - $40 \mathrm{mV}, 0.4 \mathrm{~V}$, and 4 V into $100 \mathrm{k} \Omega ; 4 \mathrm{mV}, 40 \mathrm{mV}$, and 0.4 V into 50Ω. Amplitude accuracy is within 1\%. Repetition rate is 1 kHz within 0.25%.
Current Output - 40 mA rectangular waveshape with optional current-loop accessory ($012-0341-00$) connected to calibrator output. Output R is 450Ω.

OUTPUTS/INPUTS

+Sawtooth - Starts 1 V or less from ground into $1 \mathrm{M} \Omega$. Output voltage is $50 \mathrm{mV} / \mathrm{div}(\pm 15 \%)$ into $50 \Omega, 1 \mathrm{~V} / \mathrm{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Output R is $\approx 950 \Omega$.
+Gate - Positive-going rectangular waveform. Output voltage is $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega, 10 \mathrm{~V}$ $(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Risetime is 5 ns or less into 50Ω. Output R is $\approx 950 \Omega$.
Vertical Signal Out - Output voltage is $25 \mathrm{mV} /$ div into $50 \Omega, 0.5 \mathrm{~V}$ into $1 \mathrm{M} \Omega$. Output R is $\approx 950 \Omega$. Bandwidth depends upon vertical plugin. See page 190.
Camera Power - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for C-50 Series camera.
Probe Power - Two rear-panel connectors for active probes (i.e., P6201, P6202A, P6230).
External Single-Sweep Reset - Ground closure, rear panel BNC, input to reset sweep.
Single-Sweep Ready Indicator - Rear panel BNC provides 5 V out to indicate single-sweep ready condition.
Graticule/Readout, Single-Shot - Ground closure, rear panel BNC input initiates one frame of CRT read-out. Graticule Illumination is illuminated for $\approx 0.5 \mathrm{~s}$.

POWER REQUIREMENTS

Line Voltage Ranges - 90 V to 132 V ac and 180 V to 250 V ac.

ENVIRONMENTAL AND SAFETY

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m (15,000 ft). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) \mathrm{p}-\mathrm{p}$ displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz .
Humidity - Operating and Nonoperating: 95\%, five cycles (120 hours), referenced to MLLE16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
EMC Capability - (7104, Option 03 only) Meets MIL-STD-461B requirements when tested in accordance with certain test methods of MIL-STD462. Contact your Tektronix representative for more information.
Safety - UL listed (UL1244) and CSA certified (CSA 556B)

PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	305	12.0	483	19.0
Height	345	13.6	178	7.0
Depth	592	23.3	704	27.7
Weight \approx	$\mathbf{k g}$	lb	$\mathbf{k g}$	lb
Net	19.8	45.0	20.0	44.0
Shipping	25.4	56.0	30.9	68.0

CHARACTERISTICS (R7103)

The following characteristics for the R7103 are in addition to or in lieu of those listed previously.

HORIZONTAL SYSTEM

Single Channel - Right-hand plug-in compartment compatible with time bases of the 7B10 and 7B80 Series and the 7B50A and 7B92A. The 7B50 Series (except 7B50A), the 7B70 Series and the 7B92 (non-A) are not recommended. 7000 Series vertical amplifiers and specialized plug-ins (except 7D01, 7D02, and 7D20) may also be used.
Bandwidth - Dc to 350 MHz .
X-Y Mode - Phase shift is 2° from dc to 50 kHz .

OUTPUTS/INPUTS

Vertical Signal Out - Output voltage is $25 \mathrm{mV} /$ div within 25% into $50 \Omega, 0.5 \mathrm{~V}$ into $1 \mathrm{M} \Omega$. Output R is $\approx 950 \Omega$.

ORDERING INFORMATION (PLUG-INS NOT INCLUDED)

7104 Oscilloscope
\$23,995
Includes: Power cord (161-0066-00); instruction manual (070-2314-00).

R7103 Rackmount Oscilloscope

\$24,520
Includes: Power cord (161-0066-00); mask frame (426-0514-00); CRT filter (378-0625-00); drawer slide (351-0375-01); right spacer (361-0806-00); left spacer (361-0807-00); hardware kit (016-0099-00); instruction manual (070-0539-00).

OPTIONS (7104)
Option 02 - (7104 only) X-Y Horizontal Compensation. $+\$ 315$
Option 03 - (7104 only) EMC Capability. $+\$ 395$ CONVERSION KIT (7104)
EMC Modification -
(7104 only). Order 040-0965-00
$\$ 520$

INTERNATIONAL POWER PLUG OPTIONS (7104/R7103)

Option A1 - Universal Euro 220 V/16 A, 50 Hz
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz .
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$. RECOMMENDED PLUG-INS
7 A29 - Vertical amplifier, 50Ω input, dc to $1 \mathrm{GHz} ; 10 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div vertical sensitivity.
7442 - Four channel, 350 MHz bandwidth vertical amplifier with Boolean logic triggering capabilities.
\$6,050
$7 B 10$ - Delayed time base with $200 \mathrm{ps} / \mathrm{div}$ to 0.2 s/div calibrated sweep speed; triggering up to 1 GHz .
$7 \mathrm{B15}$ - Delaying time base with $200 \mathrm{ps} /$ div to $0.2 \mathrm{~s} /$ div calibrated sweep speed; triggering up to 1 GHz ; capable of Δ time measurements in conjunction with 7B10.
7B92A - Dual time base with $500 \mathrm{ps} /$ div to $0.2 \mathrm{~s} /$ div calibrated sweep speed; triggering up to 500 MHz ; capable of delay time measurements.

OPTIONAL ACCESSORIES
Recommended Cameras - See page 406.
Recommended Probes - See page 426.

Recommended Carts -

K213 Option 12 - (7104) See page 424.
K217 - (R7103) See page 424

The 7D01, 7002 Logic Analyzers and 7D20 Digitizer are not recommended for use in the 7104/R7103 mainframe. Such use will void the 7104/R7103 warranty.

7904A/R7903

500 MHz at $10 \mathrm{mV} / \mathrm{div}$
700 ps Risetime (7904A)
$500 \mathrm{ps} /$ div Fastest Calibrated Sweep Rate
Greater Than $4 \mathrm{~cm} / \mathrm{ns}$ Writing Speed with Optional CRT (Option 13)

CRT Readout
Over 30 Compatible Plug-ins
900 MHz FET Probe Available

TYPICAL APPLICATIONS

* Digital Design

* Radar
* Laser Research

See page 192 for available Application Notes.
The 7904A and 5.25 inch rackmount R7903 are high bandwidth, general-purpose oscilloscopes. The 7A29 Amplifier/7904A mainframe attains 500 MHz at $10 \mathrm{mV} / \mathrm{div}$. A 7A29
variable delay option allows for the matching of signal transit times of two plug-ins and their probes to better than 50 ps .
The P6201 1X FET probe gives you high impedance and wide bandwidth. It has a 900 MHz bandwidth by itself, and in combination with the 7A29/7904A, it provides a system bandwidth of 450 MHz at 10 mV .
The CRT, the major contributor to the performance of the 7904A and R7903, has good visual brightness and an $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area.
For high photographic writing speed applications, Option 13 provides BE (P11) phosphor and a reduced scan CRT yielding greater than $4 \mathrm{~cm} / \mathrm{ns}$ photographic writing rate. For comparison of 7000 -Series photographic writing speeds, see page 180.

CHARACTERISTICS

The following characteristics are common to the 7904A and R7903, except those noted under the R7903.

VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.

Display Mode - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Trace Separation Range - (7904A only) In dual sweep modes, positions B trace at least four divisions above and below A trace.
Delay Line - Permits viewing leading edge of displayed waveform when using 7B80 and 7B90 Series time bases. 7B50 Series not recommended.

HORIZONTAL SYSTEM

Channels - 7904A: Two right-hand plug-in compartments. R7903: One right-hand plug-in compartment. 7904A and R7903: Compatible with 7B80 and 7B90 Series time bases, 7000 Series vertical amplifiers and specialized plug-ins.
Bandwidth - Dc to at least 1 MHz .
Display Modes - A, Alt, Chop, B. Chopped mode repetition rate is $\approx 200 \mathrm{kHz}$.
Fastest Calibrated Sweep Rate - $500 \mathrm{ps} /$ div with the 7B92A.
X-Y Mode - With Delay Compensation: Phase shift is within 2° from dc to 1 MHz . Without Delay Compensation: Phase shift is within 2° from dc to 35 kHz .

CRT AND DISPLAY FEATURES

For CRT phosphor data see page 180.
CRT - Internal 8×10 division ($0.85 \mathrm{~cm} /$ div) graticule with variable illumination. Accelerating potential is 24 kV . GH (P31) phosphor is standard.
Option 04, Maximum Brightness CRT with Reduced Area - Internal $4 \mathrm{~cm} \times 5 \mathrm{~cm}$ graticule with variable illumination. Accelerating potential is 24 kV . GH (P31) phosphor is standard.
Option 13, Maximum Brightness CRT with Reduced Area - Internal $4 \mathrm{~cm} \times 5 \mathrm{~cm}$ graticule with variable illumination. Accelerating potential is 24 kV with BE (P11) phosphor.
Option 78, BE (P11) Phosphor - Replaces standard GH (P31) phosphor.
Typical Photographic Writing Speed*1

CRT	Camera	Lens	Writing Speed cm/ns
Opt 13 $4 \mathrm{~cm} \times 5 \mathrm{~cm}$		C-51P	$\mathrm{f} / 1.2$
Opt 78 $8 \mathrm{~cm} \times 10 \mathrm{~cm}$		$1: 0.5$	4

*1 Using the optional BE (P11) phosphor and Polaroid Type 612 20,000 ASA Film without film fogging.
In typical applications, GH (P31) phosphor standard has approximately one-half the writing speed of BE (P11) phosphor. The writing speed can be increased by using controlled film fogging with a writing speed enhancer (camera accessory). See page 405.
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating offscreen signal.
External Z-Axis Input - 2 V p-p for full intensity range. A positive signal blanks the trace. Maximum input voltage is $15 \mathrm{~V}(\mathrm{dc}+$ peak ac) and $\mathrm{p}-\mathrm{p}$ ac. Input is dc coupled.

CALIBRATOR

Output Waveshape - Rectangular positive-going from ground.
Voltage Ranges - $40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into an open circuit. $4 \mathrm{mV}, 40 \mathrm{mV}, 0.4 \mathrm{~V}$ into 50Ω. Amplitude accuracy is within 1%. Repetition rate is 1 kHz within 0.25%.
Current Output - 40 mA with optional current loop accessory ($012-0341-00$) connected to calibrator output. Output R is 450Ω.

The R7903 requires only 5.25 inches of rack height in a standard 19 inch rack．It is fan－cooled and comes complete with slide－out chassis tracks．

OUTPUTS／INPUTS

＋Sawtooth－Sawtooth starts 1 V or less from ground into $1 \mathrm{M} \Omega$ ．Front－panel selectable from A or B horizontal．Output voltage is $50 \mathrm{mV} / \mathrm{div}$ （ $\pm 15 \%$ ）into $50 \Omega, 1 \mathrm{~V} / \operatorname{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$ ．Out－ put R is $\approx 950 \Omega$ ．
＋GATE－Positive－going rectangular waveform derived from A，B，or Delayed Gate，front－panel selectable．Output voltage is $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega, 10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$ ．Risetime is 5 ns or less into 50Ω ．
Vertical Signal Out－Selected by B Trigger Source switch．Output voltage is $25 \mathrm{mV} / \mathrm{div}$ into $50 \Omega, 0.5 \mathrm{~V} /$ div into $1 \mathrm{M} \Omega$ ．Output R is $\approx 950 \Omega$ ． Bandwidth depends upon vertical plug－in．See page 192.
Camera Power－Three－prong connector to the left of the CRT provides power，ground，and re－ mote single－sweep reset access for C－50 Series cameras．
Probe Power－Two rear－panel connectors for two active probes．

POWER REQUIREMENTS

Line Voltage Ranges－ 90 V to 132 V ac and 180 V to 250 V ac．
Line Frequency－ 48 Hz to 440 Hz ．
Maximum Power Consumption－ 210 W， 3．5 A at 90 V line， 60 Hz ．

ENVIRONMENTAL AND SAFETY

Ambient Temperature－Operating： $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ．Nonoperating：$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ．
Altitude－Operating： $5000 \mathrm{~m}(15,000 \mathrm{ft})$ ．Non－ operating： $15000 \mathrm{~m}(50,000 \mathrm{ft})$ ．
Vibration－Operating： 15 minutes along each of the three major axes． $0.04 \mathrm{~cm}(0.015 \mathrm{in})$ p－p dis－ placement 10 Hz to 55 Hz to 10 Hz in one minute cycles．Held for three minutes at 50 Hz ．
Humidity－Operating and Nonoperating：95\％， five cycles（ 120 hours），referenced to MIL－E－ 16400F．
Shock－Nonoperating： 30 g ＇s， $1 / 2$ sine， 11 ms duration in each direction along each major axis． Total of six shocks．
EMC Capability－Meets MIL－STD－461B re－ quirements when tested in accordance with cer－ tain test methods of MIL－STD－462．Contact your Tektronix representative for more information．
Safety－UL listed（UL 1244）and CSA certified （CSA 556B）．

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$	$\mathbf{m m}$	$\mathbf{i n}$
Width	305	12.0	483	19.0
Height	345	13.6	135	5.3
Depth	577	22.7	579	22.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	16.9	37.2	12.3	27.0
Shipping	21.4	47.0	23.6	52.0

CHARACTERISTICS（R7903）
The following characteristics for the R7903 are in addition to or in lieu of those listed previously．

HORIZONTAL SYSTEM
Channel－Single right－hand plug－in compart－ ment．Compatible with 7B80 Series，7B90 Series， 7000 Series vertical amplifiers and specialized plug－ins．
Fastest Calibrated Sweep Rate－ $500 \mathrm{ps} / \mathrm{div}$ with the 7B92A．

CRT AND DISPLAY FEATURES

Option 10，Pulsed Graticule－Provides a means of pulsing the graticule lights at a preset level coincident with a single－shot event in one exposure．The graticule lights may be pulsed by the event，an external ground closure，or a front panel pushbutton．If the mainframe is equipped with CRT readout，Option 10 provides additional controls and inputs for CRT readout pulsed operation．

CALIBRATOR

（NOT AVAILABLE WITH OPTION 10）
Voltage Ranges $-4 \mathrm{mV}, 40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into an open circuit； $4 \mathrm{mV}, 40 \mathrm{mV}, 0.4 \mathrm{~V}$ into 50Ω ．
Current Output－ 40 mA rectangular wave－ shape with optional current－loop accessory （012－0341－00）connected to calibrator output． Output R is 450Ω ．

OUTPUTS／INPUTS（STANDARD）

＋Sawtooth－Sawtooth starts 1 V or less from ground（into $1 \mathrm{M} \Omega$ ）．Output voltage is $50 \mathrm{mV} / \mathrm{div}$ （ $\pm 15 \%$ ）into $50 \Omega, 1 \mathrm{~V} / \mathrm{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$ ．Out－ put R is $\approx 950 \Omega$ ．
＋Gate－Positive－going rectangular waveform derived from Main or Auxiliary Gate．Output volt－ age $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega .10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$ ．Risetime is 7 ns or less into 50Ω ．Output R is $\approx 950 \Omega$ ．
Vertical Signal Out－Selected by Trigger Source switches．Output voltage is $25 \mathrm{mV} /$ div into $50 \Omega, 0.5 \mathrm{~V} / \mathrm{div}$ into $1 \mathrm{M} \Omega$ ．Output R is $\approx 950 \Omega$ ． Bandwidth depends upon vertical plug－in．See page 190.
External Single－Sweep Reset－Ground clo－ sure，rear panel input to reset sweep．

Single－Sweep Ready Output－Rear panel BNC provides 5 V out to indicate single－sweep ready condition．
Probe Power－Two front－panel connectors for two active probes．Not available for R7903 Option 10.
CRT Readout－Inhibit：Ground closure，rear panel BNC input locks out CRT readout．Not avail－ able with Option 10．Single－Shot：Ground closure， rear panel BNC input initiates one frame of CRT readout．Not available with Option 10 separately， but in combination with the pulsed graticule input． OUTPUTS／INPUTS（OPTIONS）
Option 10，Pulsed Graticule－No CRT read－ out single－shot input，CRT readout inhibit input， calibrator，and probe power．Single－shot graticule and CRT readout（ground closure）rear－panel BNC input is added．Initiates one frame of CRT readout and pulses graticule．

POWER REQUIREMENTS

Line Voltage Ranges－ 90 V to 132 V ac and 180 V to 264 V ac．
Maximum Power Consumption－ 160 W， 2 A at 115 V line， 60 Hz ．

ORDERING INFORMATION
 （PLUG－INS NOT INCLUDED）

7904A Oscilloscope
$\$ 9,635$
Includes：Power cord（161－0066－00）；instruction manual （070－4593－00）．
R7903 Oscilloscope
\＄9，330
Includes：Power cord（161－0066－00）；test adaptor （012－0092－00）；two 18 in test leads（012－0087－00）；slide guide（351－0314－01）；hardware kit（016－0099－00）；instruc－ tion manual（070－1464－00）．

OPTIONS（7904A／R7903）

Option 02 －（7904A only）X－Y Horizontal
Compensation．Adds an $X-Y$ delay compensa－ tion network that equalizes the signal delay between either vertical compartment and the B horizontal compartment．
$+\$ 260$
Option 03 －EMC Capability．Adds special shielding for protection to the instrument when operated in severe EMC environments．
Option 04 －（R7903 only）Maximum Bright－ ness $4 \mathrm{~cm} \times 5 \mathrm{~cm}$ CRT Display．GH（P31）Phos－ phor is Standard．
Option 10 －（R7903 only）Pulsed Graticule．
Option 13 －Maximum Brightness $4 \mathrm{~cm} \times$ 5 cm CRT Display with BE（P11）Phosphor． $+\$ 260$
$\begin{array}{ll}5 \mathrm{~cm} \text { CRT Display with BE（P11）Phosphor．} & +\$ 600 \\ \text { Option } 78 \text {－BE（P11）Phosphor．} & +\$ 100\end{array}$
CONVERSION KITS（7904A／R7903）

X－Y Horizontal Compensation－

（7904A only）．Order 040－0606－00

EMC Capability－

（7904A）Order 040－0570－00 \＄375
（R7903）Order 040－0647－00 \＄375

CRT Readout－

（R7903 only）Order 040－0605－03 \＄650
INTERNATIONAL POWER PLUG OPTIONS （7904A／R7903）
Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$ ．
Option A5－Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
OPTIONAL ACCESSORIES（7904／R7903）
Recommended Plug－ins－See page 190.
Recommended Probes－See pages 191 and 426.
Recommended Cameras－See pages 192 and 406.
Recommended Carts－
K213 Option 12－（7904A）See page 424.
K217－（R7903）See page 424.

Tektronix offers service training classes on the 7904A Gen－ eral Purpose Oscilloscope．For further training information， contact your local sales／service office or request a copy of the Customer Service Training Catalog on the return card in the back of this catalog．

7704A

Dc to $250 \mathbf{M H z}$ Bandwidth (Option 09)
Dc to 200 MHz with Optimum
Pulse Response

1.8 ns Risetime

2 ns/div Fastest Calibrated Sweep Rate
Greater Than 15 cm/ns
Enhanced Writing Speed with Optional CRT Option 13 and WSEN

CRT Readout

TYPICAL APPLICATIONS

* Communications

* Digital Design

* Component Testing

See page 192 for available Application Notes.
The 7704A offers you a choice of bandwidth performances to optimize the oscilloscope for your type of application. In the standard model, pulse aberrations are minimized while giving you a bandwidth of 200 MHz . For higher frequency applications, Option 09 provides a bandwidth of 250 MHz .
For high writing speed applications, Option 13 provides BE (P11) phosphor and a reduced scan CRT yielding $>15 \mathrm{~cm} / \mathrm{ns}$ photographic writing rate with the Tektronix C51 Camera and WSEN (writing speed enhancer described on page 405). For a comparison of 7000 -Series photographic writing speeds see page 180.

C-51P Camera shown with WSEN.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Option 09, Bandwidth Change (250 MHz) 7704A vertical circuit performance is adjusted to extend frequency response to 250 MHz at 20 mV /div (upper -3 dB) when 7A29 is used. Provides additional performance for those working in this frequency domain.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is internally selectable $\approx 100 \mathrm{kHz}$ or 1 MHz .
Trace Separation - In dual sweep modes, positions B trace above and below A trace.
Delay Line - Permits viewing leading edge of waveform.

HORIZONTAL SYSTEM

Channels - Two right-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Fastest Calibrated Sweep Rate $-2 \mathrm{~ns} / \mathrm{div}$. Chopped Mode (Between Horizontal Plugins) - Repetition rate is internally selectable, $\approx 20 \mathrm{kHz}$ or 200 kHz .
X-Y Mode - Phase shift is within 2° from dc to 50 kHz between vertical and horizontal channels. Frequency response: $<10 \%$ down at 3 MHz .

CRT AND DISPLAY FEATURES

CRT - Internal $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ graticule with variable illumination. Accelerating potential is 24 kV . GH (P31) phosphor is standard.
Option 04, Maximum Brightness CRT with Reduced Area - Internal $4 \mathrm{~cm} \times 5 \mathrm{~cm}$ graticule with variable illumination. Accelerating potential is 24 kV . GH (P31) phosphor is standard.

Option 13, Maximum Brightness CRT with Reduced Area - Internal $4 \mathrm{~cm} \times 5 \mathrm{~cm}$ graticule with BE (P11) phosphor. Accelerating potential is 24 kV.
Option 78, BE (P11) Phosphor - Replaces standard GH (P31) phosphor.

CRT	Camera	Lens	Writing Speed cm/ns
$\begin{gathered} \text { Opt } 78 \\ 8 \mathrm{~cm} \times 10 \mathrm{~cm} \end{gathered}$	C-51P	$\begin{aligned} & \mathrm{f} / 1.2 \\ & 1: 0.5 \end{aligned}$	2
$\begin{gathered} \text { Opt } 13 \\ 4 \mathrm{~cm} \times 5 \mathrm{~cm} \end{gathered}$			4
$\begin{gathered} \text { Opt } 04 \\ 4 \mathrm{~cm} \times 5 \mathrm{~cm} \end{gathered}$			2

*1 Using the optional BE (P11) phosphor and Polaroid Type 612 20,000 ASA Film without film fogging.
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating offscreen signal.
External Z-Axis Input - 2 V p-p for full intensity range. A positive signal blanks the trace. Minimum pulse width to blank trace is 30 ns at 2 V . Maximum input voltage is 15 V (dc + peak ac) and p-p ac. Input is dc-coupled.

OUTPUTS/INPUTS

+Sawtooth - Sawtooth starts 1 V or less from ground (into $1 \mathrm{M} \Omega$). Internally selectable from A or B horizontal. Output voltage is $50 \mathrm{mV} / \mathrm{div}(\pm 15 \%)$ into $50 \Omega, 1 \mathrm{~V} / \operatorname{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Output R is 950Ω nominal.
+Gate - Positive-going rectangular waveform derived from A, B, or Delayed Gate, internally selectable. Output voltage is $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega, 10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Risetime is 20 ns or less into 50Ω. Output R is 950Ω nominal.
Vertical Signal Out - Selected by B Trigger Source switch. Output voltage is $25 \mathrm{mV} /$ div into $50 \Omega, 0.5 \mathrm{~V} /$ div into $1 \mathrm{M} \Omega$. The bandwidth depends upon vertical plug-in. Output R is 950Ω nominal.
External Single-Sweep Reset - Ground closure, rear-panel input to reset sweep.
Camera Power - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for the C-50 Series cameras.
Probe Power - Two rear-panel connectors provide correct operating voltages for two active probes.

CALIBRATOR

Voltage Output - Rectangular waveshape, positive-going from ground (40 V and 4 mV available when selected by internal jumper). Ranges are $40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into $1 \mathrm{M} \Omega ; 20 \mathrm{mV}, 0.2 \mathrm{~V}$, 0.4 V into 50Ω. Amplitude accuracy is within 1% $\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$; within $2 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$. Repetition rate is 1 kHz within $0.25 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$; within $0.5 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Current Output - 40 mA rectangular waveshape with optional current-loop accessory (012-0259-00) connected between 4 V and ground pin jacks.

POWER REQUIREMENTS

Line Voltage Ranges - 90 V to 132 V ac and 180 V to 264 V ac.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 180 W, 2.5 A at 115 V line, 60 Hz .

ENVIRONMENTAL AND SAFETY

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) \mathrm{p}$-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz .
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MIL-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
EMC Capability - (Option 03) Meets MIL-STD461B requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	305	12.0
Height	345	13.6
Depth	577	22.7
Weights \approx	kg	lb
Net	13.6	30.0
Shipping	19.5	43.0

ORDERING INFORMATION (PLUG-INS NOT INCLUDED)

7704A Oscilloscope
\$4,995
Includes: 20 in two-pin-to-BNC cable (175-1178-00); instruction manual (070-0981-00).

OPTIONS

Option 03 - EMC Capability.
Option 04 - Maximum Brightness $4 \mathrm{~cm} \times$ 5 cm CRT Display. GH (P31) Phosphor is Standard.
$+\$ 500$
Option 09 - Bandwidth Change to 250 MHz . $+\$ 500$

Option 13 - Maximum Brightness $4 \mathrm{~cm} \times$
5 cm CRT Display with BE (P11) Phosphor. $\quad+\mathbf{\$ 6 0 0}$
Option 78 - BE (P11) Phosphor. $+\mathbf{\$ 1 0 0}$
CONVERSION KITS

CRT Readout -

With Probe Power. Order 040-0613-06
EMC Capability — Order 040-0612-00 \$375
Signal Out/ln — Order 040-0619-03 \$200
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz .
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
OPTIONAL ACCESSORIES
Recommended Plug-ins - See page 190.
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406.
Recommended Cart -
K213 Option 12 - See page 424.

The K213 cart shown with optional plug-in storage and keyboard drawer.

Tektronix offers service training classes on the 7704A General Purpose Oscilloscope. For further training information, contact your local sales/service office or request a copy of the Customer Service training Catalog on the return card in the back of this catalog.

7603/R7603

Dc to $100 \mathbf{M H z}$ Bandwidth

3.5 ns Risetime

$5 \mathrm{~ns} /$ division Fastest Calibrated Sweep Rate
Greater than $\mathbf{2 6 0} \mathbf{c m} / \mu \mathrm{s}$ Writing Speed with Optional CRT (Option 13)

6.5 Inch CRT
CRT Readout
5.25 Inch Rackmount

TYPICAL APPLICATIONS

* Digital Design and Testing
* Communications

* Spectrum Analysis

See page 192 for available Application Notes.
The Tektronix 7603 and R7603 Oscilloscopes represent the best price/performance ratio available in the 100 MHz plug-in oscilloscope market today.
The CRT is large-8 $\times 10$ division ($1.22 \mathrm{~cm} / \mathrm{div}$)-and features an internal graticule with variable illumination and 15 kV accelerating potential. An optional maximum brightness CRT with a smaller $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display and 18 kV potential gives you greater visual brightness and higher photographic writing speed. See page 180 for writing speed specifications.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes — Left, Alt, Add, Chop, Right Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Channels - One right-hand plug-in compartment. Compatible with all 7000 Series plug-ins. Bandwidth - Dc to 2 MHz .
Fastest Calibrated Sweep Rate - $5 \mathrm{~ns} / \mathrm{div}$.
X-Y Mode - The phase shift is within 2° from dc to 35 kHz .

CRT AND DISPLAY FEATURES

CRT - Internal 8×10 division ($1.22 \mathrm{~cm} /$ div) graticule with variable illumination. Accelerating potential is 15 kV . GH (P31) phosphor is standard.
Option 01, Without CRT readout - (CRT readout may be added later with conversion kit 040-0654-02)
Option 04, Maximum Brightness CRT with Reduced Area - Internal $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ graticule with variable illumination. Accelerating potential is 18 kV . GH (P31) phosphor is standard.
Option 06, Spectrum Analyzer Graticule Provides interal spectrum analyzer graticule.
Option 13, Maximum Brightness CRT with Reduced Area - Internal $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ graticule with BE (P11) phosphor. Accelerating potential 18 kV .
Optional Phosphors (Specify) - GM (P7), BE (P11), or GM (P7)/SA (phosphor/spectrum analyzer graticule combination.)

Typical Photographic Writing Speed*1

CRT	Camera	Lens	Writing Speed cm/ $\mu \mathrm{s}$
Standard 8 div x 10 div	C-53	$\begin{gathered} \text { f/1.9 } \\ 1: 0.85 \end{gathered}$	122
$\begin{gathered} \text { Opt } 13 \\ 8 \mathrm{~cm} \times 10 \mathrm{~cm} \end{gathered}$			260
$\begin{gathered} \text { Opt } 04 \\ 8 \mathrm{~cm} \times 10 \mathrm{~cm} \end{gathered}$			180

* 1 Using Polaroid Type 107 3,000 ASA film without film fogging.
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating an offscreen signal.
External Z-Axis Input -2 V p-p for full intensity range from dc to 2 MHz ; intensity range diminishes to 20% of full range at 10 MHz . A positive signal blanks the trace. Maximum input voltage is 10 V (dc + peak ac) and p-p ac.

CALIBRATOR

Voltage Output - Rectangular waveshape, positive-going from ground (dc. voltage available when selected by internal jumper).
Voltage Ranges - $40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into $1 \mathrm{M} \Omega$; $20 \mathrm{mV}, 0.2 \mathrm{~V}, 0.4 \mathrm{~V}$ into 50Ω. Amplitude accuracy is within $1 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$; within $2 \%\left(0^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$). Repetition rate is $\approx 1 \mathrm{kHz}$.
Current Output - 40 mA rectangular waveshape (dc current available when selected by internal jumper) with optional current-loop accessory ($012-0259-00$) connected between 4 V and ground pin jacks. Output R is 950Ω.

OUTPUTS/INPUTS

+Sawtooth Out (Rear Panel) - Sawtooth starts 1 V or less from ground (into $1 \mathrm{M} \Omega$). Output voltage is $1 \mathrm{~V} / \mathrm{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 50 \mathrm{mV} / \mathrm{div}$ ($\pm 15 \%$) into 50Ω. Output R is 950Ω.
+Gate Out (Rear Panel) - Positive gate of the same duration and coincident with sweep. Selectable from Main, Delay, or Auxiliary Gate. Output voltage is $10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 0.5 \mathrm{~V}(\pm 10 \%)$ into 50Ω. Risetime is 20 ns or less into 50Ω. Output R is 950Ω.
Vertical Signal Out (Rear Panel) - Selected by Trigger Source switch. Output voltage is $0.5 \mathrm{~V} /$ div into $1 \mathrm{M} \Omega, 25 \mathrm{mV} /$ div into 50Ω. Output R is 950Ω. Bandwidth determined by vertical plugin. See page 190.
Camera Power - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for the C-50 Series cameras.
External Single-Sweep Reset - Ground closure, rear panel BNC provides input to reset sweep.
Single-Sweep Ready Output - Rear panel BNC provides 5 V out to indicate single-sweep ready condition.

POWER REQUIREMENTS

Line Voltage Ranges - 100, 110, 120, 200, 220 , and 240 V ac $\pm 10 \%$; internally selectable with quick-change jumpers.
Line Frequency -50 Hz to 60 Hz .
Option 05, Line Frequency Change (50 Hz to 400 Hz) - Converts the R7603 and 7603 to 50 Hz to 400 Hz operation.
Maximum Power Consumption - 180 W , 2.0 A at 115 V line, 60 Hz . Cooling is provided by a fan.

ENVIRONMENTAL AND SAFETY
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

The 7 L 14 converts the 7603 Oscilloscope to a 1.8 GHz Spectrum Analyzer.

Vibration - Operating: 15 minutes along each of the three major axes. 0.04 cm (0.015 in) p-p displacement 0 Hz to 55 Hz to 9 Hz in one minute cycles. Held for three minutes at 55 Hz .
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MLLE-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
EMC Capability - (Option 03) Meets MIL-STD461B requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS

	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	221	8.7	483	19.0
Height	290	11.4	133	5.3
Depth	610	24.0	627	24.7
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	13.6	30.0	13.6	30.0
Shipping	20.8	46.0	19.0	42.0

The R7603 requires only 5.25 inches of rack height in a standard 19 inch rack. It is fan cooled and comes complete with slide-out chassis tracks.

ORDERING INFORMATION (PLUG-INS NOT INCLUDED)

7603 Oscilloscope
\$3,250
Includes: Clear CRT filter (337-1700-04); blue CRT filter (337-1700-01); 20 in two-pin-to-BNC cable (175-1178-00); instruction manual (070-1310-00).
R7603 Rackmount Oscilloscope $\mathbf{\$ 3 , 7 2 0}$
Includes: In addition to the above a rackmounting hardware kit (016-0099-00).

OPTIONS (7603/R7603)

Option 01 - Without CRT Readout.
$-\$ 280$
Option 03 - EMC Capability. Adds special shielding for protection to the instrument when operated in severe EMC environments.

Option 04 - Maximum Brightness $8 \mathrm{~cm} \times$ 10 cm CRT Display. GH (P31) Phosphor is Standard.
$+\$ 395$

Option 05 - Line Frequency Change $(50 \mathrm{~Hz}$ to 400 Hz). (7603)
(R7603)
Option 06 - With Internal Spectrum Analyzer Graticule.
$+\$ 500$

Option 08 - (7603 only) Protective Panel Cov-
er.
Option 13 - Maximum Brightness $8 \mathrm{~cm} \times$ 10 cm CRT Display with BE (P11) Phosphor.
Option 20 - (R7603 only) IEEE Standard 488 Interface for the 7D20 only. (Deletes rear panel + sawtooth out, + gate out, and vert sig out.) Option 76 - GM (P7) Phosphor.
Option 77 - GM (P7) Phosphor with Internal Spectrum Analyzer Graticule.
Option 78 - BE (P11) Phosphor. $+\mathbf{\$ 1 0 0}$
CONVERSION KITS (7603/R7603)
CRT Readout - (7603) Order 040-0654-02 (R7603) Order 040-0674-02
EMC Capability - (7603) Order 040-1000-00 (R7603) Order 040-0955-00
Power Supply - To Light Plug-in Pushbuttons. Order 040-0686-01

X-Y Horizontal Comp — Order 040-0718-00

INTERNATIONAL POWER PLUG OPTIONS (7603 and R7603)

Option A1- Universal Euro $222 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES (7603/R7603)

Field installable Option 20 (R7603 only) intended for use with a previously purchased R7603, this kit provides parts to connect the 7D20's IEEE Standard 488 Interface to the R7603 mainframe.
Order 040-1093-00
\$380
Five other field installable kits are available, one for each of the international power plug options, A1-A5. Contact your local Tektronix Sales Office for information.
A1 - Universal Euro. Order 040-1094-00
A2 - UK. Order 040-1095-00
A3 - Australian. Order 040-1096-00
\$345
\$300

A4 — North American. Order 040-1097-00
A5 - Switzerland. Order 040-1098-00
\$300

Recommended Plug-ins - See page 190
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406.

Recommended Carts -

K213 Option 12 - (7603) See page 424.
K217 - (R7603) See page 424.

7844/R7844

400 MHz Bandwidth
900 ps Risetime
1 ns/division Fastest Calibrated Sweep Rate
Greater than $1.5 \mathrm{~cm} / \mu \mathrm{s}$ Writing Speed
$8 \mathrm{~cm} \times 10 \mathrm{~cm}$ Display
CRT Readout
True Dual Beam (Dual-Gun)
Full Vertical Crossover Switching

TYPICAL APPLICATIONS

* Radar/Lidar

* Destructive Testing
* SCR Switching

See page 192 for available Application Notes.
The 7844 and seven inch rackmount R7844 are wide bandwidth, dual-beam oscilloscopes designed primarily for fast, singleshot events. Unique features such as pulsed graticule and pulsed CRT readout allow you to photograph vertical and horizontal scale factors, test date, test number, and other pertinent data before or after an event. Vertical signal crossover switching permits you to view a single event from a single probe at two sweep speeds. See page 180 for photographic writing speed specifications.

CHARACTERISTICS VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Logic

	Beam 1	Beam 2
Vertical Compartment	Left	Left
Controlling Beam	Left	Right
	Right	Left
	Right	Right

Crossover - Permits viewing the same signal on two time bases.
Trace Separation - Beam 1 can be positioned $\pm 4 \mathrm{~cm}$ with respect to Beam 2 .
Delay Line - Permits viewing leading edge of displayed waveform when using 7B80 and 7B90 Series time bases. Not compatible with 7B50 Series.

HORIZONTAL SYSTEM

Channels - Two right-hand plug-in compartments. Compatible with 7B80 Series, 7B90 Series, 7000 Series vertical amplifiers, and specialized plug-ins.
Bandwidth - Dc to at least 1 MHz .
Fastest Calibrated Sweep Rate - $1 \mathrm{~ns} / \mathrm{div}$.
X-Y Mode - Phase shift is within 2° from dc to 50 kHz .
Horizontal Separation - Beam 1 can be positioned at least 0.25 cm to the right and at least 0.25 cm to the left of Beam 2 with a total 2 cm range.
Display Logic

Beam 1	Beam 2
A Horizontal	A Horizontal
A Horizontal	B Horizontal
B Horizontal	A Horizontal
B Horizontal	B Horizontal

CRT AND DISPLAY FEATURES

CRT - Dual beam, full overlap. $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ graticule with variable illumination. CRT readout intensity is adjustable with front-panel control. Accelerating potential is 24 kV . GH (P31) phosphor.
Option 78, BE (P11) Phosphor - Replaces standard GH (P31) phosphor.
Pulsed Readout and Graticule Illumination - Provides a means of pulsing the graticule lights and CRT readout at a preset level, coincident with a single-shot event in one exposure. The graticule lights and CRT readout can be pulsed by the event, an external ground closure, or front-panel pushbutton.
Typical Photographic Writing Speed*1

CRT	Camera	Lens	Writing Speed $\mathrm{cm} / \mathrm{ns}$
Standard $8 \mathrm{~cm} \times 10 \mathrm{~cm}$			
Opt 78 $8 \mathrm{~cm} \times 10 \mathrm{~cm}$		$\mathrm{f} / 1.2$	0.75
81	$1: 0.5$		

* ${ }^{1}$ Using Polaroid Type 1073000 ASA film without film fogging.
The photographic writing speed enhancer, Option 22, provides a preset automatic method of film fogging for the 7844. Option 22 is recommended for writing speed enhancement when a camera with a writing speed enhancer is not available.
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder (Beam 1 and Beam 2, Independent Controls) - Aids in locating off screen signal.
External Z-Axis Input (Beam 1 and Beam 2)
-2 V p-p for full intensity range. A positive signal blanks the trace. Maximum input voltage is 15 V (dc + peak ac), p-p ac and dc coupled.

CALIBRATOR

Voltage Output - Rectangular waveform posi-tive-going from ground, $1 \mathrm{kHz}(\pm 0.25 \%)$.
Voltage Ranges $-4 \mathrm{mV}, 40 \mathrm{mV}, 0.4 \mathrm{~V}$, $4 \mathrm{~V}(\pm 1 \%)$ into an open circuit; $0.4 \mathrm{mV}, 4 \mathrm{mV}$, $40 \mathrm{mV}, 0.4 \mathrm{~V}(\pm 1 \%)$ into 50Ω.

Current Output - $40 \mathrm{~mA}(\pm 1 \%)$ rectangular waveshape. Front panel current loop on 7844; optional current loop adaptor (012-0341-00) required for R7844. Output R is 450Ω.

OUTPUTS/INPUTS

A and B + Sawtooth - Sawtooth starts 1 V or less from ground (into $1 \mathrm{M} \Omega$). Output voltage is $50 \mathrm{mV} / \mathrm{div}(\pm 15 \%)$ into $50 \Omega, 1 \mathrm{~V} / \operatorname{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Output R is $\approx 950 \Omega$.
A and B+Gate - Positive-going rectangular waveform derived from Main or Delayed Gate. Output voltage $0.5 \mathrm{~V}(\pm 10 \%)$ into 50Ω. $10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Risetime is 5 ns or less into 50Ω. Output R is $\approx 950 \Omega$.
Camera Power - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for C-50 Series cameras.
Probe Power - Two connectors provide correct operating voltages for two active probes.
External Single-Sweep Reset - Ground closure, rear panel BNC, provides input to reset sweeps.
Single-Sweep Ready Output -+5 V , rear panel BNC output, for single-sweep ready indication.

POWER REQUIREMENTS

Line Voltage Ranges - Selectable 115 V nominal (90 V to 132 V), 230 V nominal (180 V to 264 V).
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 235 W , 2.9 A at 60 Hz 115 V line.

ENVIRONMENTAL AND SAFETY

Ambient Termperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in})$ p-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz .
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MIL-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
EMC Capability - (Option 03) Meets MIL-STD461B requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	305	12.0	483	19.0
Height	328	12.9	178	7.0
Depth	605	23.8	630	24.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	16.3	36.0	15.0	33.0
Shipping	21.3	47.0	28.5	63.0

ORDERING INFORMATION
 (PLUG-INS NOT INCLUDED)

7844 Oscilloscope
$\$ 14,995$
Includes: Power cord (161-0066-00); instruction manual (070-1676-02).
R7844 Rackmount Oscilloscope
$\mathbf{\$ 1 5 , 4 5 0}$
Includes: In addition to the above a hardware rackmount kit (016-0099-00); slide guide (351-0314-01).

OPTIONS (7844/R7844)

Option 03 - EMC Capability. Adds special shielding for protection to the instrument when operated in severe EMC environments. \$395
Option 22 - Writing Speed Enhancer. $+\$ 400$
Option 78 - BE (P11) Phosphor. $\quad+\mathbf{1 0 0}$ CONVERSION KIT (7844)
EMC Capability — Order 040-0834-01

INTERNATIONAL POWER PLUG OPTIONS (7844/R7844)

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
OPTIONAL ACCESSORIES (7844/R7844)
Recommended Plug-ins - See page 190.
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406.
Recommended Carts -
K213 Option 12 - (7844) See page 424.
K217 - (R7844) See page 424.

A6902B Isolator

A dual-channel, optical and transformercoupled voltage isolator, the A6902B allows safely grounded test instruments to make floating measurements at high sensitivity levels in the presence of large commonmode signals.
Designed for use with any dual-channel oscilloscope, the A6902B permits simultaneous observation of two signals at two different points in the same circuit; or signals in two different circuits without respect to common lead voltages.
See page 437 for a complete description.

7000 SERIES CRT STORAGE MAINFRAMES

Storage mainframes in the 7000 Series offer a full selection of stored writing speeds: from $\approx 0.03 \mathrm{~cm} / \mu \mathrm{s}$ for mechanical, spectrum analysis, or TDR applications, to $2500 \mathrm{~cm} / \mu \mathrm{s}$ for capturing fast single events such as high speed digital logic. A selection of storage modes offers the following features:
Bistable Long View Time
Variable
Persistence High Contrast
Displays

FAST Bistable | Captures Fast Single |
| ---: |
| or Multiple Events |

FAST Variable
Persistence \qquad Provides Maximum Stored Writing Rate

CONTENTS

7834 Fast Storage .. 206
7633/R7633 Multimode Storage 208
7623A/7623A Multimode Storage 208
7613/R7613 Variable Persistence Storage .. 210
Nonstorage Mainframes 193
CRT Storage Mainframes 205
Plug-Ins .. 212
High Performance Digitizing Mainframes 306

7854 Digital Storage (400 MHz Waveform Processing). See page 318.

SINEWAVE FREQUENCY

7834
Dc to $\mathbf{4 0 0} \mathbf{~ M H z}$ Bandwidth
900 ps Risetime
1 ns/div Fastest Calibrated Sweep Rate
$2500 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed
Stores Single-Shot Risetimes as
Fast as 1.4 ns
Multimode Storage
Long View Time

TYPICAL APPLICATIONS

* Laser Fusion

* Destructive Testing
* High Speed Logic

See page 192 for available Application Notes.

The 7834 Storage Oscilloscope has a stored writing speed of $2500 \mathrm{~cm} / \mu \mathrm{s}$, enabling storage of single-shot risetimes to 1.4 ns , 3.6 cm high, at eight-divisions amplitude, re-duced-scan mode. The 7834's mainframe bandwidth is 400 MHz . The system bandwidth may vary from 75 MHz to 400 MHz depending on the plug-in selected.*1

This instrument has four storage modes: Bistable, Variable Persistence, Fast Bistable and Fast Variable Persistence.

Bistable provides stored displays with long (30 minute) view time.

Variable Persistence gives high contrast displays of both single-shot and repetitive phenomena. When viewing changing waveshapes, variable persistence provides continuous bright displays of new information as old information fades from the CRT.

Fast Bistable increases bistable writing rates to $350 \mathrm{~cm} / \mu \mathrm{s}$ (reduced scan).
Fast Variable Persistence provides the maximum stored writing rate of $2500 \mathrm{~cm} / \mu \mathrm{s}$ (reduced scan). View time is at least 30 seconds.

The four-compartment flexibility means that more than one measurement can be performed at the same time without switching plug-ins. The 7834 also offers auto-erase for automatic display updating...a save control for 30 times longer viewing...gated readout which prevents the blooming that tends to

[^19]
occur between sweeps with nongated readout... and an adjustable multitrace delay for varying the viewing time prior to the next sweep in the fast transfer mode.

This multimode storage unit is designed for single shot, low-repetition-rate or fast pulse analysis.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins.
Bandwidth - 400 MHz with 7A29 Amplifier plugin. See page 190.
Risetime - 900 ps or less with 7A29 Amplifier plug-in. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Trace Separation - In dual-sweep modes, positions B trace at least four divisions above or below the A trace.
Delay Line - Permits viewing leading edge of displayed waveform (not recommended for use with 7B50 Series time bases).

HORIZONTAL SYSTEM

Channels - Two right-hand plug-in compartments. Compatible with all 7000 Series plug-ins.

Bandwidth - Dc to at least 1 MHz .
Display Modes - A, Alt, Chop, B. Chopped mode repetition rate is $\approx 200 \mathrm{kHz}$
Fastest Calibrated Sweep Rate - $1 \mathrm{~ns} / \mathrm{div}$.
X-Y Mode - Without Delay Compensation: Phase shift is 2° from dc to 1 MHz (B horizontal only, Option 02). Without Delay Compensation: Phase shift is 2° from dc to 35 kHz .

CRT AND DISPLAY FEATURES

CRT - Internal variable illuminated graticule. 8×10 division ($0.9 \mathrm{~cm} /$ div) graticule in full scan and 8×10 division ($0.45 \mathrm{~cm} / \mathrm{div}$) in reduced scan. Accelerating potential is $\approx 10 \mathrm{kV}$ full scan mode, and 12 kV in reduced scan mode. GH (P31) phosphor standard.
Option 01, Without CRT Readout and Probe
Power - CRT readout and probe power can be added later with conversion kit (040-0811-03).
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating an offscreen signal.
CRT Display Modes - Nonstore, Bistable, Variable Persistence, Fast Bistable and Fast Variable Persistence (full and reduced scan).
Auto Erase - Continuously variable from $<1 \mathrm{~s}$ to $>10 \mathrm{~s}$.

Multitrace Delay - Adjusts the transfer cycle time in the fast transfer modes. Continuously variable from $<1 \mathrm{~s}$ to $>4 \mathrm{~s}$.
Presistence - (Variable Persistence Mode only) Controls rate of continuous erasure of the variable persistence and fast variable persistence stored displays.
Save - Prevent accidental erasure of display and extends view time up to 30 times longer in all modes.
External Z-Axis Input - 2 V p-p for full intensity range from dc to 1 MHz . Positive signal blanks the trace. Maximum input voltage is 15 V (dc plus peak ac).

Storage Writing Speed

Full Scan (Center $6 \mathrm{div} \times 8 \mathrm{div}$ at $0.9 \mathrm{~cm} / \mathrm{div})$				
	Fast Variable Display	Fast Mode	Variable Persistence	
Bistable	Persistence	Bistable		
Stored				
Writing	$270 \mathrm{~cm} / \mu \mathrm{s}$	$45 \mathrm{~cm} / \mu \mathrm{s}$		
Speed	$(300 \mathrm{div} / \mu \mathrm{s})$	$1.8 \mathrm{~cm} / \mu \mathrm{s}$	$0.03 \mathrm{~cm} / \mu \mathrm{s}$	
$(50 \mathrm{div} / \mu \mathrm{s})$	$(2 \mathrm{div} / \mu \mathrm{s})$	$(.03 \mathrm{div} / \mu \mathrm{s})$		
View				
Time	$30 \mathrm{~s}^{* 1}$	$30 \mathrm{~min}^{* 2}$	$30 \mathrm{~s}^{* 1}$	30 min
Erase				
Time	1.4 s	1.4 s	0.9 s	0.9 s

Reduced Scan (Center $8 \mathrm{div} \times 10 \mathrm{div}$ at $\mathbf{0 . 4 5} \mathrm{cm} / \mathrm{div}$)

Display Mode	Fast Variable Persistence	Fast Bistable	Variable Persistence	Bistable
Stored Writing Speed	$\begin{aligned} & 2500 \mathrm{~cm} / \mu \mathrm{s} \\ & (5,500 \mathrm{div} / \mu \mathrm{s}) \end{aligned}$	$\begin{aligned} & 350 \mathrm{~cm} / \mu \mathrm{s} \\ & (776 \mathrm{div} / \mu \mathrm{s}) \end{aligned}$	$\begin{aligned} & 5.4 \mathrm{~cm} / \mu \mathrm{S} \\ & (12 \mathrm{div} / \mu \mathrm{s}) \end{aligned}$	$\begin{aligned} & 0.09 \mathrm{~cm} / \mu \mathrm{s} \\ & (0.2 \mathrm{div} / \mu \mathrm{s}) \end{aligned}$
View Time	$30 \mathrm{~s}^{* 1}$	$30 \mathrm{~min}^{* 2}$	$30 \mathrm{~s}^{* 1}$	$30 \mathrm{~min}^{* 1}$
\approx Erase Time	1.4 s	1.4 s	0.9 s	0.9 s

*1 View times are at full stored display intensity. They may be increased more than 30 times by using reduced intensity in the Save display mode.
*2 Save intensity at minimum.

Scan Mode	Sweep Speed	Peak-to-Peak Sinewave	Step Response
Reduced Scan 5,500 div/ $\mu \mathrm{s}$ ($0.45 \mathrm{~cm} / \mathrm{div}$)	$\geqslant 1 \mathrm{~ns} / \mathrm{div}$	$\begin{aligned} & 7.1 \mathrm{div} \\ & 250 \mathrm{MHz} \end{aligned}$	7.7 div 1.4 ns
		$\begin{aligned} & 8 \operatorname{div} \\ & 221 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 8 \mathrm{div} \\ & 1.45 \mathrm{~ns} \end{aligned}$
Full Scan $300 \mathrm{div} / \mu \mathrm{s}$ ($0.9 \mathrm{~cm} / \mathrm{div}$)	$\geqslant 10 \mathrm{~ns} /$ div	$\begin{aligned} & 3.2 \mathrm{div} \\ & 30 \mathrm{MHz} \end{aligned}$	3 div 10 ns
		$\begin{aligned} & 6.4 \mathrm{div} \\ & 15 \mathrm{MHz} \end{aligned}$	5 div 16.6 ns

CALIBRATOR

Voltage Output - Squarewave, positive-going from ground.
Voltage Range - $40 \mathrm{mV}, 0.4 \mathrm{~V}$, and 4 V into $100 \mathrm{k} \Omega ; 4 \mathrm{mV}, 40 \mathrm{mV}$, and 0.4 V into 50Ω. Amplitude accuracy is within 1%; repetition rate is 1 kHz within 0.25%.
Current Output - 40 mA squarewave with optional current-loop accessory ($012-0341-00$) connected to calibrator output. Output R is 450Ω.

OUTPUTS/INPUTS

+Sawtooth - Starts 1 V or less from ground into $1 \mathrm{M} \Omega$. Output voltage is $1 \mathrm{~V} /$ div $(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 50 \mathrm{mV} / \mathrm{div}(\pm 15 \%)$ into 50Ω. Output R is $\approx 950 \Omega$.

Readout is stored with the waveform on several CRT storage scopes including the 7613, 7623A, 7633 and 7834 (shown). Multimode storage is available on the 7623A, 7633, and 7834.
+Gate - Positive going waveform of the same duration and coincident with sweep selectable from A Gate, B Gate or A Delayed Gate. Output voltage is $10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 0.5 \mathrm{~V}(\pm 10 \%)$ into 50Ω. Output R is $\approx 950 \Omega$.
Vertical Signal Out - Selected by A Trigger Source switch. Output voltage is 0.5 V into $1 \mathrm{M} \Omega$, 25 mV into 50Ω. Output R is $\approx 950 \Omega$.
Bandwidth - Determined by vertical plug-in. See page 190.
Remote Single Sweep Reset, Remote Save and Remote Erase - Rear panel BNC connector inputs, ground closure activated.
Remote Fast Transfer Gate - TTL compatible. Low to high transition enables high speed target to receive information to be stored; high to low transition initiates transfer from high speed target to storage target.
Camera Power - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for the C-50 Series cameras.
Probe Power - Two rear-panel connectors for two active probes.

POWER REQUIREMENTS

Line Voltage Ranges - 90 V to 132 V ac and 180 V to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 215 W .
ENVIRONMENTAL AND SAFETY
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: $5000 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. 0.04 cm (0.015 in) p-p displacement 10 Hz to 55 Hz to 10 Hz in one minute cycles. Held for three minutes at 55 Hz , referenced to MIL-T-28800C.
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MIL-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks, referenced to MIL-T-28800C.
EMC Capabilty - Meets MIL-STD-461B requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	305	12.0
Height	345	13.6
Depth	589	23.2
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	16.1	35.5
Shipping	21.3	47.0

STEP RISETIME (ns)

Graph showing the stored writing speed needed to display a give sinewave or step risetime at a given amplitude.
${ }^{* 1}$ Reduced Scan divisions are 0.45 cm .

ORDERING INFORMATION

 (PLUG-INS NOT INCLUDED)7834 Storage Oscilloscope \$13,365
Includes: Installed gray CRT filter (378-0625-02); green CRT filter (378-0625-08); power cord (161-0066-00); instruction manual (070-1988-00).

OPTIONS

Option 01 - Without CRT Readout and Probe Power.
Option 02 - X-Y Mode Phase Correction. Adds an $X-Y$ delay compensation network that equalizes the signal delay between either vertical compartment and the B horizontal compartment.
Option 03 - EMC Capability. Adds special shielding for protection to the instrument when operated in sever EMC environments.

CONVERSION KITS

CRT Readout - Order 040-0811-05
X-Y Mode Phase Correction -
Order 040-0942-01
EMC Capability — Order 040-0880-00 \$375
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

Cradle Mount Adaptor - For Rackmounting. Order 040-0560-00
Recommended Plug-ins - See page 190.
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406. Recommended Cart -
K213 Option 12 - See page 424.

7633/R7633 \& 7623A/R7623A

Dc to 100 MHz Bandwidth

3.5 ns Risetime

$5 \mathrm{~ns} /$ div Fastest Calibrated Sweep Rate
$1000 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed (7633/R7633)
$135 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed (7623A/R7623A)

Multimode Storage
Long View Time

TYPICAL APPLICATIONS (7633/R7633)

* Digital Design
* Destructive Testing
* Communications

TYPICAL APPLICATIONS (7623A/R7623A)

* Ultrasonics

* Power Supply Design
* Component Testing

See page 192 for available Application Notes.

The Tektronix 7633 Storage Oscilloscope provides $2200 \mathrm{div} / \mu \mathrm{s}(1000 \mathrm{~cm} / \mu \mathrm{S})$ stored writing speed and 100 MHz bandwidth. The instrument has three display modes-store, nonstore, and save-and four storage modes-bistable, variable persistence, fast bistable, and fast variable persistence. The maximum writing speed of $1000 \mathrm{~cm} / \mu \mathrm{s}$ (using the center 8×10 reduced scan divisions, $0.45 \mathrm{~cm} / \mathrm{div}$) is achieved in reduced scan mode.

This multimode storage instrument allows for retention and viewing for fast-rise, low-repetition-rate, single-shot, or slow-moving waveforms.

The R7633 and R7623A require only 5.25 inches of rack height in a standard 19 inch rack. They are fan cooled and come complete with slide-out chassis tracks.

Characteristics are common to the 7633/R7633 and the 7623A/R7623A unless noted.

The Tektronix 7623A and R7623A Storage Oscilloscope have all the features and performance of the 7633/R7633 except the reduced scan mode.

CHARACTERISTICS
 VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins. See page 190
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.
Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM
Channel - One right-hand plug-in compartment. Compatible with all 7000 Series plug-ins. See page 190
Bandwidth - Dc to at least 2 MHz .
Fastest Calibrated Sweep Rate $-5 \mathrm{~ns} / \mathrm{div}$.
X-Y Mode - Phase shift $<2^{\circ}$ from dc to 35 kHz .

CRT AND DISPLAY FEATURES

CRT - Internal 8×10 division ($0.9 \mathrm{~cm} /$ div) and 8×10 division ($0.45 \mathrm{~cm} /$ div) graticule with variable illumination. Accelerating potential is $\approx 8.5 \mathrm{kV}$ in normal mode, 10 kV in reduced scan mode. GH (P31) phosphor standard.
Option 01, Without CRT readout - CRT readout can be added later with a conversion kit (040-0748-01 for 7633/7623A or 040-0759-01 for R7633/R7623A).
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating an offscreen signal.
CRT Display Modes - Nonstore, Bistable, Variable Persistence, Fast Bistable, Fast Variable Persistence. Full or reduced scan may be selected on the 7633 in all display modes. Select normal scan to view the entire CRT; select reduced scan for the fastest writing rate.
Auto Erase - Continuously variable to $>10 \mathrm{~s}$.
Save - Prevents accidental erasure of display and extends view time up to 30 times longer in all modes.

Persistence - (Variable Persistence mode only) controls rate of continous erasure of the variable persistence and fast variable persistence stored displays.
External Z-Axis Input -2 Vp -p for useful intensity range from dc to 2 MHz . Intensity range diminishes to 20% of full range at 10 MHz . Positive signal blanks the trace. Maximum input voltage is 10 V (dc + peak ac) and p-p ac.

Storage Writing Speed Full Scan (7633/R7633 and 7623A/R7623A)				
Display Mode	Fast Variable Persistence	Fast Bistable	Variable Persistence	Bistable
Stored Writing Speed	$135 \mathrm{~cm} / \mu \mathrm{s}$	$45 \mathrm{~cm} / \mu \mathrm{s}$	$0.45 \mathrm{~cm} / \mu \mathrm{s}$	$0.03 \mathrm{~cm} / \mu \mathrm{s}$
View Time	$30 \mathrm{~s}{ }^{1}$	30 min minimum	$30 \mathrm{~s}^{* 1}$	30 min minimum
$\approx \text { Erase }$ Time	1.4 s	1.4 s	0.9 s	0.9 s
Reduced Scan (7633/R7633 Only)				
Display Mode	Fast Variable Persistence	Fast Bistable	Variable Persistence	Bistable
Store Writing Speed	$1000 \mathrm{~cm} / \mu \mathrm{s}$	$180 \mathrm{~cm} / \mu \mathrm{s}$	$1.35 \mathrm{~cm} / \mu \mathrm{s}$	$0.09 \mathrm{~cm} / \mu \mathrm{s}$
View Time	$30 \mathrm{~s}{ }^{\text {c }}$	30 min minimum	$30 \mathrm{~s}^{* 1}$	30 min minimum
$\approx \text { Erase }$ Time	1.4 s	1.4 s	0.9 s	0.9 s

${ }^{* 1}$ These times are at full stored display intensity. They may be increased more than 30 times by using reduced intensity in the Save display mode.

STEP RISETIME (ns)

SINEWAVE FREQUENCY (MHz)

Graph showing the stored writing speed needed to display a given sinewave or step risetime at a given amplitude.
${ }^{*}{ }^{1}$ Reduced Scan divisions are 0.45 cm .

Fast Variable Persistence Writing Speed

Scan	Sweep Speed	Peak-to-Peak Sinewave	Step Response
Mode		7.1 div	7.7 div
Reduced Scan ${ }^{* 1}$		$\geqslant 5 \mathrm{~ns} /$ div	100 MHz
2200 div/ $\mu \mathrm{s}$	3.5 ns		
$(0.45 \mathrm{~cm} /$ div $)$		8 div	8 div
		89 MHz	3.7 ns
Full Scan ${ }^{* 2}$		3.2 div	3 div
$150 \mathrm{div} / \mu \mathrm{s}$		15 MHz	20 ns
$(0.9 \mathrm{~cm} / \mathrm{div})$	$\geqslant 50 \mathrm{~ns} /$ div	6.4 div	5 div
		7.5 MHz	33 ns

* ' Applies to 7633/R7633 only.
${ }^{* 2}$ Applies to 7633/R7633 and 7623A/R7623A.

CALIBRATOR

Voltage Output - Rectangular waveshape, positive-going from ground (dc voltage available when selected by internal jumper).
Voltage Ranges - $40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into $1 \mathrm{M} \Omega$; $20 \mathrm{mV}, 0.2 \mathrm{~V}, 0.4 \mathrm{~V}$ into 50Ω. Amplitude accuracy is within $1 \%\left(15^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$; within $2 \%\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$). Repetition rate is $\approx 1 \mathrm{kHz}$.
Current Output - 40 mA rectangular waveshape with optional current-loop accessory (012-0259-00) connected between 4 V and ground pin jacks. Output R is $\approx 450 \Omega$.

OUTPUTS/INPUTS

+Sawtooth - Sawtooth starts 1 V or less from ground into $1 \mathrm{M} \Omega$. Output voltage is $50 \mathrm{mV} / \mathrm{div}$ $(\pm 15 \%)$ into $50 \Omega, 1 \mathrm{~V} / \mathrm{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Output R is 950Ω within 2%.
+Gate - Positive-going waveform of the same duration and coincident with sweep selectable from main, delay, or auxiliary gate.. Output voltage is $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega, 10 \mathrm{~V}(\pm 10 \%$,) into $1 \mathrm{M} \Omega$. Risetime is 20 ns or less into 50Ω. Output R is 950Ω within 2%.
Vertical Signal Out - Selected by Trigger Source switch. Output voltage is $25 \mathrm{mV} / \mathrm{div}$ into $50 \Omega, 0.5 \mathrm{~V} /$ div into $1 \mathrm{M} \Omega$. Output R is 950Ω within 2%. Bandwidth is determined by vertical plug-in. See page 190.
Camera Power Output - Three-prong connector to the left of the CRT provides power, ground and remote single-sweep reset access for the C-50 Series cameras.
External Single-Sweep Reset - Ground closure; rear panel BNC input to reset sweep.
Remote Erase - Rear panel BNC connector inputs, ground closure activated.

POWER REQUIREMENTS

Line Voltage Ranges - $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}$, $200 \mathrm{~V}, 220 \mathrm{~V}$, and 240 V ac $\pm 10 \%$; internally selectable with quick change jumpers.
Line Frequency - 50 Hz to 60 Hz .
Option 05, Line Frequency Change (50 Hz to 400 Hz) - Converts the 7633, R7633, 7623A and R7623A to 50 Hz to 400 Hz operation.
Maximum Power Consumption - 180 W, 2.0 A at 115 V line, 60 Hz . Fan cooling is provided for all models.

ENVIRONMENTAL AND SAFETY
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) \mathrm{p}-\mathrm{p}$ displacement 10 Hz to 55 Hz to 10 Hz in one minute cycles. Held for three minutes at 55 Hz (MIL-T-28800B).

Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MIL-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks (MIL-T-28800C).
EMC Capability - Meets MIL-STD-461A requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	$\mathbf{i n}$	$\mathbf{m m}$	in
Width	221	8.7	483	19.0
Height	305	12.0	133	5.3
Depth	597	23.5	566	22.3
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	13.6	30.0	14.5	32.0
Shipping	19.0	42.0	28.2	62.0

ORDERING INFORMATION (PLUG-INS NOT INCLUDED)

7633 Storage Oscilloscope
\$8,995
Includes: 20 in two-pin-to-BNC cable (175-1178-00); power cord (161-0066-00); green CRT filter (378-0625-08); instruction manual (070-1767-00).
R7633 Storage Oscilloscope $\$ 9,505$ Includes: Same as 7633 plus rackmounting hardware.
7623A Storage Oscilloscope
\$6,795
Includes: Same as 7633 , instruction manual replaced with 070-1685-00.
R7623A Storage Oscilloscope
\$7,240
Includes: Same as 7633 plus rackmounting hardware, instruction manual replaced with 070-1685-00.

OPTIONS (7633/R7633/7623A/R7623A)

Option 01 - Without CRT Readout. -\$280
Option 03 - EMC Capability. Adds special shielding for protection to the instrument when operated in severe EMI environments
Option 08 - (7633/7623A) Protective Panel Cover.
Option 05 - Line Frequency Change
(50 Hz to 400 Hz).
$+\$ 315$
Option 23 - (7633/7623A only)
VDE RPM Mark.
$+\$ 50$
CONVERSION KITS (7633/R7633/7623A/R7623A)

CRT Readout -

$\begin{array}{ll}\text { (7633/7623A) Order 040-0748-01 } & \$ 650 \\ \text { (R7633/R7623A) Order 040-0759-01 } & \mathbf{\$ 6 5 0}\end{array}$
EMC Capability -
(7633/7623A) Order 040-0663-01 \$375
(R7633/R7623A) Order 040-0678-01 \$375
Power Supply - To Light Plug-in
Pushbuttons. Order 040-0686-01

INTERNATIONAL POWER PLUG OPTIONS (7633/R7633/7623A/R7623A)

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

(7633/R7633/7623A/R7623A)
Recommended Plug-ins - See page 190.
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406.

Recommended Carts -

K213 Opt $12-(7633 / 7623 A)$ See page 424.
K217 - (R7633/R7623A) See page 424.

7613/R7613
Dc to 100 MHz Bandwidth
3.5 ns Risetime
$5 \mathrm{~ns} / \mathrm{div}$ Fastest Calibrated Sweep Rate
$4.5 \mathrm{~cm} / \mu \mathrm{s}$ Stored Writing Speed
Variable Persistence Storage

Long View Time

5.25 Inch Rackmount Height

* Audio
 * Mechanical Transducers
 * Spectrum Analysis

See page 192 for available Application Notes
The Tektronix 7613 Storage Oscilloscope offers variable persistence operation with a stored writing speed of $5 \mathrm{div} / \mu \mathrm{s}$ or nonstorage operation. Stored traces may be viewed up to 60 minutes on a display area of 8×10 division ($0.9 \mathrm{~cm} / \mathrm{div}$).

CHARACTERISTICS
 VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments. Compatible with all 7000 Series plug-ins. See page 190.
Bandwidth - Determined by mainframe and plug-in unit. See page 190.
Risetime - Determined by mainframe and plugin unit. See page 190.

Deflection Factor - Determined by plug-in unit. See page 190.
Display Modes - Left, Alt, Add, Chop, Right. Chopped mode repetition rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Channel - One right-hand plug-in compartment. Compatible with all 7000 Series plug-ins. See page 190.
Bandwidth - Dc to at least 2 MHz .
Fastest Calibrated Sweep Rate $-5 \mathrm{~ns} /$ div.
X-Y Mode - Phase shift is within 2° from dc to 35 kHz .

CRT AND DISPLAY FEATURES

CRT - Internal 8×10 division ($0.9 \mathrm{~cm} /$ div) graticule with variable illumination. Accelerating potential is 8.5 kV . GH (P31) phosphor.
Option 01, Without CRT Readout - CRT readout can be added later with a conversion kit (040-1656-02 for 7613 or 040-0676-02 for R7613).
Autofocus - Reduces the need for additional manual focusing with changes in intensity after focus control has been set.
Beam Finder - Aids in locating an offscreen signal.
External Z-Axis Input - 2 V p-p for full intensity range from dc to 2 MHz . Intensity range diminishes to 20% of full range at 10 MHz . A positive signal blanks the trace. Maximum input voltage is 10 V (dc + peak ac) and p-p ac.
CRT Display Modes - Nonstore, Variable Persistence.
Erase Time - 0.5 s or less.
Persistence - (Variable) Controls rate of continuous erasure of stored displays.
Save - Prevents accidental erasure of display and activates the save time control.
Save Time Control - Allows an extension of the view time (see Storage View Time Chart below).

Maximum Stored Writing Speed -

 $>4.5 \mathrm{~cm} / \mu \mathrm{s}$.Storage Viewing Time - Amount of time the stored signal can be viewed before it fades away. At the maximum writing speed the view time is 15 s or 0.25 minutes with the stored intensity control fully cw . Adjusting the stored intensity ccw will reduce the stored writing speed, but view time can be increased up to five minutes (see the chart below).

STORED WRITING SPEED (div/ $\mu \mathrm{s}$ at MAXIMUM PERSISTENCE)

SINEWAVE FREQUENCY IN MHz

Graph showing the stored writing speed needed for a given sinewave or step risetime at a given amplitude.

CALIBRATOR

Voltage Output - Rectangular waveshape, positive-going from ground. (Dc voltage available when selected by internal jumper.)
Voltage Ranges - $40 \mathrm{mV}, 0.4 \mathrm{~V}, 4 \mathrm{~V}$ into 1 Ms ; $20 \mathrm{mV}, 0.2 \mathrm{~V}, 0.4 \mathrm{~V}$ into 50Ω. Amplitude accuracy is within $1 \%\left(15^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$; within $2 \%\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$). Repetition rate is $\approx 1 \mathrm{kHz}$ within 0.20%.
Current Output - 40 mA dc or 40 mA rectangular waveshape with optional current-loop accessory (012-0259-00) connected between 4 V and ground pin jacks.

OUTPUTS/INPUTS

+Sawtooth - Sawtooth starts 1 V or less from ground (into $1 \mathrm{M} \Omega$). Output voltage is $50 \mathrm{mV} /$ div ($\pm 15 \%$) into $50 \Omega, 1 \mathrm{~V} / \operatorname{div}(\pm 10 \%$) into $1 \mathrm{M} \Omega$. Output R is 950Ω within 2%.
+Gate - Positive-going waveform pulse of the same duration and coincident with sweep. Selectable from main, delay, or auxiliary gate. Output voltage is $0.5 \mathrm{~V}(\pm 10 \%)$ into $50 \Omega, 10 \mathrm{~V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega$. Risetime is 20 ns or less into 50Ω. Output R is 950Ω within 2%.
Vertical Signal Out - Selected by Trigger Source switch. Output voltage is $25 \mathrm{mV} / \mathrm{div}$ into $50 \Omega, 0.5 \mathrm{~V} /$ div into $1 \mathrm{M} \Omega$. Output R is 950Ω within 2%. Bandwidth is determined by vertical plug-in. See page 190.
Camera Power Output - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for the C -50 Series cameras.

External Single-Sweep Reset - Ground closure; rear panel input to reset sweep.
Remote Erase - Ground closure; rear panel BNC provides input to erase stored trace.

POWER REQUIREMENTS

Line Voltage Ranges - 100, 110, 120, 200, 220 , and 240 V ac $\pm 10 \%$; internally selectable with quick change jumpers.
Line Frequency - 50 Hz to 60 Hz .
Option 05, Line Frequency Change (50 Hz to 400 Hz) - Converts the 7613 and R7613 to 50 Hz to 400 Hz operation.
Maximum Power Consumption - 180 W , 2.0 A at 115 V line, 60 Hz . Fan cooling is provided for both models.

ENVIRONMENTAL AND SAFETY
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: $5000 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) \mathrm{p}$-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz (MIL-T-28800C).
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours), referenced to MIL-E-16400F.
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks (MIL-T-28800C).
EMC Capability - Meets MLL-STD-461B requirements when tested in accordance with certain test methods of MIL-STD-462. Contact your Tektronix representative for more information.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	221	8.7	483	19.0
Height	305	12.0	133	5.3
Depth	597	23.5	566	22.3
Weights \approx	$\mathbf{k g}$	lb	$\mathbf{k g}$	lb
Net	13.6	30.0	14.5	32.0
Shipping	19.0	42.0	28.2	62.0

ORDERING INFORMATION

(PLUG-INS NOT INCLUDED)

7613 Storage Oscilloscope

\$5,850
Includes: 20 in two-pin-to-BNC cable ($175-1178-00$); gray CRT filter ($378-0625-02$); power cord ($161-0066-00$); instruction manual (070-1463-01).
R7613 Storage Oscilloscope $\$ 6,315$
Includes: Same as 7613 plus rackmounting hardware.

OPTIONS (7613/R7613)

Option 01 - Without CRT Readout.
Option 03 - EMC Capability. Adds special shielding for protection to the instrument when operated in severe EMI environments.
$+\$ 375$
Option 05 - Line Frequency Change $(50 \mathrm{~Hz}$ to 400 Hz).
$+\$ 315$
Option 06 - Special Internal Graticule (Spectrum Analyzer).
Option 08 - (7613 only) Protective Panel
Cover. $+\$ 115$
Option 23 - (7613 only) VDE RPM Mark. $\mathbf{+ \$ 5 0}$

CONVERSION KITS (7613/R7613)

CRT Readout -

(7613) Order 040-0656-02 \$650
(R7613) Order 040-0676-02 \$650

EMC Capability -

(7613) Order 040-0663-01 \$375
(R7613) Order 040-0678-01 $\$ 375$

Line Frequency Change Order 040-0687-02.
Power Supply - To Light Plug-in Pushbuttons. Order 040-0686-01

INTERNATIONAL POWER PLUG OPTIONS

 (7613/R7613)Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES (7613/R7613)
Recommended Plug-ins - See page 190.
Recommended Probes - See pages 191 and 426.
Recommended Cameras - See pages 192 and 406.

Recommended Carts -

K213 Opt 12 - (7613) See page 424. K217 - (R7613) See page 424.

K213 cart shown with optional plug-in storage and keyboard drawer.

7000 SERIES PLUG-INS

CONTENTS

Amplifiers
Wideband Single Channel 213
Programmable Digitizer 214, 315
Dual Trace .. 215
Logic Triggered .. 216
Differential ... 218
Curve Tracer .. 219
Time Bases
Delayed .. 220, 223
Δ Delaying .. 220, 223
Single ... 220, 224
Dual .. 223, 224
Digital
Multimeter .. 225
Delay ... 226
A/D Converter .. 227
Universal Counter/Timer 228
Spectrum Analyzers 154, 229
Sampling .. 230

For the 7000 Series, you can select from over forty different plug-in units-singletrace and dual-trace amplifiers, differential comparators, samplers, logic analyzers, spectrum analyzers, trigger recognizers, waveform digitizer, curve tracer, universal counter/timer, digital multimeter, digital delay unit, a wide range of time-bases, and others. This variety lets you tailor your instrument to meet your immediate need-for the most exotic application-and then expand its capabilities later as your needs change.

7A29

Dc to 1 GHz Bandwidth
$10 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div Calibrated Deflection Factors
50Ω Input
± 500 ps Variable Delay Line (Option 04)
The 7A29 is a high-performance, wide-band, single-trace amplifier which provides a bandwidth of 1 GHz in the 7100 Series mainframes. Bandwidth constant over the entire range of calibrated deflection sensitivities of $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} /$ div. Input impedance is 50Ω. Manually resettable input protection circuitry protects the input against most common overloads. Polarity of the display is selectable by a frontpanel switch. An optional variable delay line (front-panel adjustable) permits matching the transit time of two 7A29s and/or probes to better than 10 ps .

CHARACTERISTICS

Bandwidth — Dc Coupled: 1 GHz ($10 \mathrm{mV} / \mathrm{div}$ to 1V/div).
Deflection Factor - Calibrated: $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$ in seven steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted at $0.1 \mathrm{~V} /$ div. Uncalibrated: Variable continuously between steps and a maximum of at least $2.5 \mathrm{~V} / \mathrm{div}$ (with some bandwidth reduction).
Input Z -50Ω.
Ac Coupling - -3 dB at 1 kHz or less from a 50Ω source.
Option 04, Variable Signal Delay - Permits matching the transit time of two preamps and probes to better than 10 ps . Range is $\pm 500 \mathrm{ps}$.
Maximum Input Voltage - Dc Coupled: 50 V or 10 V RMS (whichever is less). Ac Coupled: 100 V additional.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): $0.04 \mathrm{div} /{ }^{\circ} \mathrm{C}$ or less.
Input Protection - Internal detection circuitry provides protection by automatically disconnecting excessive signals of up to 50 V . The "disconnected" condition is indicated and has manual reset.

ORDERING INFORMATION

7A29 Amplifier
\$3,245
Includes: Instruction manual (070-2320-00).
Option 04 - Variable Signal Delay. $\quad+\mathbf{4 3 5}$

P6201 fet Probe

Dc to $\mathbf{9 0 0} \mathbf{~ M H z}$ Bandwidth
50Ω or $1 M \Omega$ Inputs
Very low input capacitance permits high frequency signal acquisition with minimum loading while high input resistance minimizes low frequency and dc loading. Requires probe power (either from scope or 1101A Probe Power Supply.

Dc to 1 GHz Amplifier

Dc to $\mathbf{6 0 0} \mathbf{~ M H z}$ Amplifier

7A19

Dc to 600 MHz Bandwidh
$10 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$ Calibrated Deflection Factors

50Ω Input

± 500 ps Variable Delay Line (Option 04)
The 7A19 is a high-performance, wide-band, single-trace amplifier which provides a bandwidth of 600 MHz in the 7100 Series mainframes. Bandwidth is constant over the entire range of calibrated deflection sensitivities of $10 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$. Input impedance is 50Ω. An optional variable delay line (front-panel adjustable) permits matching the transit time of two 7A19s and/or probes to better than 50 ps .

CHARACTERISTICS

Bandwidth - Dc Coupled: $600 \mathrm{MHz}(10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$).
Deflection Factor - Calibrated: $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$ in seven steps ($1-2-5$ sequence). Accuracy is within 3%.
Input $\mathbf{Z}-50 \Omega$.
Option 04, Variable Signal Delay - Permits matching the transit time of two preamps and probes to better than 50 ps. Range is ± 500 ps.
Maximum Input Voltage - Dc Coupled: 50 V or 10 V RMS (whichever is less). Ac Coupled: 100 V additional.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or less.

ORDERING INFORMATION

7A19 Amplifier
\$2,825
Includes: Instruction manual (070-2199-00).
Option 04 - Variable Signal Delay. $\quad+\$ 435$

7A16A

Dc to $\mathbf{2 2 5}$ MHz Bandwidth
$5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors
1 M Ω Input
The 7A16A is a single-trace amplifier which provides a bandwidth of 225 MHz in the 7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. Bandwidth may be limited to 20 MHz to reduce displayed noise in lowerfrequency applications.

CHARACTERISTICS

Bandwidth - Dc Coupled: $5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$; 250 MHz . Ac Coupled: 10 Hz or less to 250 MHz .. Deflection Factor - Calibrated: $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in 10 steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted at $10 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and C - $1 \mathrm{M} \Omega$ within $2 \% ; \approx 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac), ac component $500 \vee$ p-p maximum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): 0.02 div/ ${ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.
Displayed Noise $-\leqslant 0.1$ div at $5 \mathrm{mV} /$ div (with a 7900 Series mainframe).

ORDERING INFORMATION	
7A16A Amplifier Includes: Instruction manual ($070-1378-01$).	

7A17

Dc to 150 MHz Bandwidth
$50 \mathrm{mV} / \mathrm{div}$ Calibrated Deflection Factor

Low Cost

Easy to Customize
The 7 A 17 is a basic, 150 MHz single-channel amplifier with provision for the addition of user-developed circuitry for special unique applications.
The layout of the circuit board assembly provides a blank soldering pad matrix and ground plane surface totaling approximately 40 square inches. Circuits may be installed here. Mainframe power is identified and available on the circuit board. The front subpanel is prepunched with holes of various sizes and shapes which allow for the mounting of connectors, switches, indicators, etc.

CHARACTERISTICS

Deflection Factor - Adjustable to $50 \mathrm{mV} / \mathrm{div}$. There is no step attenuation.
Input \mathbf{Z} - 50Ω.
Maximum Input Voltage - 5 V RMS.

ORDERING INFORMATION

7A17 Amplifier
Includes: Instruction manual (070-1263-00).

For recommended probes refer to pages 191 and 426.
For 7000 Series vertical system specifications see

7A15A

Dc to 80 MHz Bandwidth

$5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div Calibrated Deflection Factors

1 M Ω Input
$500 \mu \mathrm{~V} /$ div at 10 MHz (10X Gain)
The 7A15A is a single-trace amplifier which provides a bandwidth of 80 MHz in the 7800 , 7900 , and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} /$ div to $10 \mathrm{~V} / \mathrm{div}$. A 10X gain amplifier provides $500 \mu \mathrm{~V}$ sensitivity with a bandwidth of 10 MHz . Polarity of the display is selectable by a front-panel switch.

CHARACTERISTICS

Bandwidth - Dc Coupled: $80 \mathrm{MHz}(5 \mathrm{mV} /$ div to $10 \mathrm{~V} / \mathrm{div}$). Ac coupled: 10 Hz or less to 80 MHz .
Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ in 11 steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted at $10 \mathrm{mV} / \mathrm{div}$. X10 mag (increases sensitivity to $500 \mu \mathrm{~V}$) accuracy is within 10% at 10 MHz bandwidth throughout deflection factor settings. Uncalibrated: Variable continuously between steps to a maximum of at least $25 \mathrm{~V} /$ div. Input R and C - $1 \mathrm{M} \Omega$ within 2%; $\approx 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component $500 \mathrm{~V} p-\mathrm{p}$ maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): $0.01 \mathrm{div} / \mathrm{C}^{\circ}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.

ORDERING INFORMATION

7A15A Amplifier \$695
Includes: Instruction manual (070-1210-00)

For floating measurements, order A6902B Isolator. See page $\mathbf{4 3 7}$ for complete description.

7D20

GPIB

The 7D20 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Digital Storage for $\mathbf{7 0 0 0}$ Series Mainframe
Totally Programmable
70 MHz Bandwidth for Repetitive Signals
10 MHz Single-Shot Bandwidth
Two Channels Simultaneous Acquisition
Pretrigger and Posttrigger
Storage of Six Independent Waveforms
Enveloping and Signal Averaging

Cursor Measurements

The 7D20 brings state-of-the-art digital performance to Tektronix 7000 Series mainframes and rackmounts. See page 315 for complete description. (Not recommended for use in the 7104 and R7103 mainframes).

ORDERING INFORMATION	
7D20 Programmable Digitizer	$\$ 7,265$
RECOMMENDED PROBE	
P6053B Miniature 10X Probe - Has a	
probe identification button which allows remote	
sequencing.	
3.5 Foot Cable - Order 010-6053-11	$\$ 170$
6.0 Foot Cable - Order 010-6053-13	$\$ 170$
9.0 Foot Cable - Order 010-6053-15	$\$ 170$

Dc to $\mathbf{4 0 0} \mathbf{~ M H z}$ Amplifier

7A24

Dc to 400 MHz Bandwidth
$5 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors

50Ω Input

The 7A24 is a high-performance, wide-band, dual-trace amplifier which provides 400 MHz bandwidth in the 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivies from $5 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div. Input impedance is 50Ω. The 7A24 features five operating modes, trigger source selectability and trace identify.

CHARACTERISTICS

Bandwidth - Dc Coupled: 400 MHz ($5 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$).
Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} /$ div in eight steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted to $5 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to a maximum of at least $2.5 \mathrm{~V} / \mathrm{div}$.
Input Z -50Ω within 0.5%; vswr $1.25: 1$ or less at $5 \mathrm{mV} /$ div and $10 \mathrm{mV} / \mathrm{div}$, $1.15: 1$ or less from $20 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div at 250 MHz .
Maximum Input Voltage - Dc Coupled: 5 V RMS.
Dc Stability — Drift with Ambient Temperature (Line Voltage Constant): $0.02 \mathrm{div} /{ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.
Displayed Noise - 0.7 div or less at $5 \mathrm{mV} / \mathrm{div}$ (with a 7900 Series mainframe)
Common-Mode Rejection Ratio - At least 10:1, dc to 50 MHz .

ORDERING INFORMATION

7 A24 Amplifer
\$2,590
Includes: Instruction manual (070-1485-00).

7A18A

Dc to 75 MHz Amplifier

7A26
Dc to $\mathbf{2 0 0} \mathbf{~ M H z}$ Bandwidth
$5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div
Calibrated Deflection Factors

1 M Ω Input

The 7A26 is a dual-trace amplifier which provides a bandwidth of 200 MHz in the 7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$. Bandwidth may be limited to 20 MHz to reduce displayed noise in lower-frequency applications. The 7A26 features five operating modes, trigger source selectability and trace-identify.

CHARACTERISTICS

Bandwidth - Dc Coupled: $200 \mathrm{MHz}(5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div). Ac Coupled: 10 Hz or less to 200 MHz ($5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div).
Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}$ to 5 V /div in ten steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted at $10 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to a maximum of at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input \mathbf{R} and $\mathrm{C}-1 \mathrm{M} \Omega$ within $2 \% ; \approx 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac), ac component $500 \vee$ p-p maximum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): 0.02 div/ ${ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 division in any one minute after one hour warm-up.
Displayed Noise -0.1 div or less at $5 \mathrm{mV} /$ div (with a 7900 Series mainframe).
Common-Mode Rejection Ratio (Add, CH 2 Invert) - At least 10:1, dc to 50 MHz .

ORDERING INFORMATION

7A26 Amplifier
\$2,295
Includes: Instruction manual (070-1484-01).

For recommended Probes see pages 191 and 426
For 7000 Series vertical system specifications see page 190.

7A18A

Dc to 75 MHz Bandwidth
$5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div Calibrated Deflection Factors

1 M Ω Input

Dc Offset (Option 06)

The 7A18A is a dual-trace amplifier which provides a bandwidth of 75 MHz in the 7800, 7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$. The 7A18A features five operating modes, trigger source selectability, and a trace-identify function.

CHARACTERISTICS

Bandwidth - Dc Coupled: 75 MHz ($5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div). Ac Coupled: 10 Hz or less to 75 MHz ($5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$).
Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div in ten steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted to $10 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to a maximum of at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and C - $1 \mathrm{M} \Omega$ within 2%; $\approx 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): 0.01 div $/{ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.
Displayed Noise - 0.06 div or less.
Common-Mode Rejection Ratio (Add, CH 2 Invert) - At least 10:1, dc to 50 MHz .

DC OFFSET OPTION

Option 06, Dc Offset - Allows small signals riding on larger signals, such as power supply ripple, to be analyzed. Separate Channel 1 and Channel 2 variable offset controls are concentric with the position controls replacing the identify push-buttons of the standard 7A18A. The ac-dcground switch of each channel is expanded to accommodate a fourth position for dc offset.
Offset Range Display - ± 200 division maximum, equivalent to $\pm 1 \mathrm{~V}$ at $5 \mathrm{mV} / \mathrm{div}$.
Accuracy - When in dc Offset the deflection accuracy is derated by 1%.

ORDERING INFORMATION	
7A18A Amplifier	$\$ 1,395$
Includes: Instruction manual (070-4329-00).	$+\$ 210$
Option $06-$ Dc Offset.	

For floating measurements, order A6902B Isolator. See page 437 for complete description.

7 A42
Up to 350 MHz Bandwidth (7100 Family)
Four Input Channels
Boolean Logic Triggering
Nested Trigger Functions
Variable Switching Thresholds
Precise Amplitude and Timing Measurement
External Clock Synchronization
$1 \mathrm{M} \Omega / 50 \Omega$ Switchable Inputs
Variable/Bias Offset Probe Compatibility
7000 Series Mainframe Compatible

The 7A42 Four Channel Logic Triggered Vertical Amplifier is a two-wide 7000 Series plug-in that provides a significant new dimension to oscilloscope measurements through the combination of amplifier and triggering technologies. The 7A42 triggering permits all signals to be displayed in analog form for high resolution measurements of both time and amplitude characteristics.

High Resolution Analog Display of Digital Signals

Very accurate analog representations of digital signals are displayed. Input attenuators can be optimized for either TTL or ECL logic families. A 1 ns risetime with 200 ps or less delay difference between the four input channels provides precise, high resolution timing measurements. The 7A42 accurately displays risetimes and falltimes, allows pulse width to be precisely measured, enables pulse aberrations to be viewed and quantified, and amplitude to be measured with confidence.

Advanced Triggering

Triggers are generated by the 7A42 upon recognition of user-programmed Boolean combinations of logic levels and transitions at any or all of its input channels. Independent variable switching thresholds and edge sensitivity make triggering on digital signals an easy task.

Nested Triggering Functions

One level of nested triggering is implemented in the 7A42. Triggers may be generated on event " A ", event " B ", or on " A then B ". In " A then B " mode, the 7A42 arms on event A, and generates a trigger to a time base on the next occurrence of event B. A reset input disarms the 7A42 in nested triggering mode at any time. Nested triggering provides the flexibility needed to trigger on even the most complex event.

See The Trigger Event

Delay lines in the 7A42 permit the trigger event to be displayed in its entirety. A representation of the 7A42 Trigger Out signal can be displayed on the mainframe CRT. This Trigger View trace shows where the trigger event occurred and how long it lasted

Trigger Filtering Prevents Inadvertent Triggering

A continuously variable (equal to or greater than 300 ns) trigger filter control eliminates unnecessary or inadvertent triggering by requiring that a trigger function remain true longer than the Trigger Filter setting.

External Clock Synchronization

An external clock input allows further qualification of a triggering event to coincide with either a positive or negative transition of an external clock signal. This input is compatible with either TTL or ECL levels.

Special Probe Features

The 7A42 Probe Offset accommodates the P6230 Variable Bias/Offset Probe, which is ideal for probing ECL circuits with reduced loading. The P 6230 is a $1.5 \mathrm{GHz}, 450 \Omega$ probe with the ability to place bias voltage at its tip. A wide variety of accessories, including very flexible grounding schemes, make the P6230 ideal for high speed digital circuit testing. The P6131 10X high impedance probe is the recommended probe for TTL, high speed TTL, CMOS and other high impedance logic families.

Easy Setup

CRT readout of attenuator settings and the display of error messages designed to guide a user through the process of setting up the instrument make the 7A42 easy to operate. The use of multicolored LEDs communicate the status of other 7A42 functions at a glance. A battery backup system preserves the current settings when power is removed and reapplied, thus saving setup time.

CHARACTERISTICS

VERTICAL SYSTEM
Input - Four channels, BNC connectors. Deflection Factor - Calibrated Through 10X Probe: TTL (CMOS) family is 1,2 , $5 \mathrm{~V} /$ div. ECL family is $0.2,0.5,1 \mathrm{~V} /$ div. Gain Accuracy: Within 3%.
Bandwidth - To 350 MHz maximum. See 7000 Series Vertical System Specifications on page 190 for frequency response in specific mainframes.
Input Impedance - Selectable between $1 \mathrm{M} \Omega$ and 50Ω. High Impedance: $1 \mathrm{M} \Omega$ $\pm 1 \%$, in parallel with $\approx 15 \mathrm{pF}$. Low Impedance: $50 \Omega \pm 1 \Omega$ at dc. Vswr is $\leqslant 1.15: 1$, dc to 300 MHz .
Maximum Input Voltage - 1 M : 25 V (dc + peak ac) 36 MHz or less, derated linearly to 3 V (peak ac) at $300 \mathrm{MHz} .50 \Omega$: 5 V RMS during any 1 ms time interval. Active internal protection opens all inputs if overvoltage is applied to any channel.
Dc Stability - Drift with Time (Ambient Temperature and Line Voltage Constant): Not more than 0.2 division in any 10 minute after 20 minute warm-up. Drift with Ambient Temperature (Line Voltage Constant): Not more than 0.2 div for $10^{\circ} \mathrm{C}$ ambient change.
Differential Delay - 200 ps maximum between the four input channels.
Trigger View or External Clock View - Time Coincidence with Channel Display: Trigger View is within 3 ns . External Clock View is within 5 ns .

TRIGGER SYSTEM

Switching Threshold - Voltage Range*1: TTL (CMOS) family is +12.8 V to -12.7 V . ECL family is +2.56 V to -2.54 V . Accuracy ${ }^{* 1}: \mathrm{TTL}$ (CMOS) family is $\pm 50 \mathrm{mV} \pm 2 \%$ of setting. ECL family is $\pm 10 \mathrm{mV} \pm 2 \%$ of setting.
Presets ${ }^{* 1}$: TTL (CMOS) is +1.4 V . ECL is -1.3 V . Probe Offset activated is 0 V .
Tip (Probe Offset) Input - Maximum Voltage Range: +5.1 V to -5.1 V , dc only. DVM Accuracy: $\pm 20 \mathrm{mV} \pm 2 \%$ of reading.
Trigger Filter - Range: Off, or adjustable from $<15 \mathrm{~ns}$ to $>300 \mathrm{~ns}$. Match, Trigger Function A to Trigger Function B: Within 20\% at maximum setting.
External Clock Input - Maximum Voltage Range: +5 V to -5 V (dc + peak ac). Threshold: Two External Clock Input modes are available, TTL or ECL. TTL level at logic zero is $\leqslant 0.8 \mathrm{~V}$; at logic one is $\geqslant 2 \mathrm{~V}$. ECL level at logic zero is $\leqslant-1.5 \mathrm{~V}$; at logic one is $\geqslant-1.1 \mathrm{~V}$. Input Impedance: TTL level is $\approx 10 \mathrm{~K} \Omega$ in parallel with $\approx 55 \mathrm{pF}$, terminated to +5 V , compatible with a 1 X probe. ECL level is $\approx 50 \Omega$, terminated to -2 V . Pulse Width: TTL level is 20 ns minimum, either pulse transition selected. ECL level is 5 ns minimum, leading pulse transition selected; or 10 ns minimum, trailing pulse transition selected. Setup Time: 10 ns minimum. Hold Time: 10 ns minimum.
Channel Edge Sensitivity - Setup Time, Channel to Channel: 5 ns minimum (time that level sensitive portion of trigger function must be true before Edge Sensitive Channel transition).

[^20]Hold Time, Channel to Channel: 5 ns minimum, (time that level sensitive portion of trigger function must remain true after Edge Sensitive Channel transition). Setup Time, Edge Sensitive Channel: 10 ns minimum (time that level of Edge sensitive channel must be stable before transition). Hold Time, Edge Sensitive Channel: 5 ns minimum (time that level of Edge Sensitive Channel must remain stable after transition).
Trigger Out Connector - Output Voltage: 1 V into 50Ω. Output Impedance: $\approx 50 \Omega$. Toggle Frequency: 125 MHz maximum. Propagation Delay: Channel Input to Trigger Output is 25 ns or less. A then B Mode: Time between A and B is 5 ns minimum (minimum setup time from event A to event B). Time from B to A is 5 ns minimum (minimum time after event B to next event A). Event Duration (minimum time to insure proper arming and

Four Channel Analog Display with Trigger View

Up to four logic signals can be displayed by the 7A42 in true analog form. Additionally, the Trigger View trace provides the ability to view exactly when the programmed Trigger Function is satisfied.

Range of Sensitivities

Three display sensitivities are available for each of the logic families. Select the most convenient display size for the application; small amplitudes for many traces on the screen, or large sizes when more signal detail is desired.
triggering): Event A is 5 ns minimum. Event B is 5 ns minimum. Front panel A then B Gate Output: Active only if selected and in the A then B mode.
Mainframe A Then B Gate Output - Active only in A then B mode. Pulse Width (Measured at the 50% Points): Greater than the time between event A and event B by $5 \mathrm{~ns} \pm 2 \mathrm{~ns}$.
Reset Input - Maximum Input Voltage: +5 V to -5 V (dc + peak ac). Input Impedance: $\approx 50 \Omega$. Logic Zero Level: $\leqslant 0.2 \mathrm{~V}$. Logic One Level: $\geqslant 0.8 \mathrm{~V}$. Pulse Width: 100 ns minimum. Timing (Post-Reset Inhibit Time to Next Trigger): 10 ns minimum (time from falling edge of Reset to next recognizable event).
Response Time: Reset pulse must lead or be coincident with event recognition to inhibit trigger output. Event recognition must lead the Reset pulse by 10 ns to guarantee trigger output.

Selective Triggering on a Low Amplitude Pulse

Independent and variable trigger thresholds for each of the four input channels allow selective triggering on an abnormally low amplitude pulse (indeterminate state) within a pulse train. Shown above, two channels are used to establish dual thresholds to bracket the low level pulse. The 7A42 triggers on any signal that remains between the two thresholds longer than the time set by the Trigger Filter.

Edge Sensitive Triggering

Data bus transitions are generally not allowed during a specified time at the end of a microprocessor read cycle. In the above display, the 7A42 has captured a posi tive transition of a data line during the time when data should have been stable (note trigger view pulse). The 7A42's Edge Sensitivity enhances its Boolean triggering by detecting rising or falling transitions of one signal during a time qualified by the states of the other channels.

BATTERY BACKUP

Ni-Cad Battery (3.75 V) - Provides power to preserve front panel control status a minimum of 200 hours while main power is off. Battery requires about 24 hours to fully charge from discharged condition.

ORDERING INFORMATION
 7A42 Logic Triggered Vertical Amplifier $\mathbf{\$ 6 , 0 5 0}$ Includes: Instruction manual (070-4285-00).

OPTIONAL ACCESSORIES

P6230 Variable Bias/Offset 10X Probe

The P6230 probe is recommended for high speed ECL probing. It is a very low capacitance, high bandwidth, probe ideal for ECL and features a variable bias/offset that minimizes its dc loading on the circuit. See page 434 for details.

Order 010-6230-01

P6131 10X Passive Probe

The P6131 is a general purpose probe, ideal for use with TTL and CMOS circuits, and is recommended for use with the 7442 for up to 300 MHz system bandwidth. Sev eral subminiature and miniature accessories are also available including a probe-to-DIP for IC testing. See page 433 for details.

Order 010-6131-01
KLIPKIT - Provides hands-free connection to integrated circuits. See page 433 for complete description. Order 013-0197-00

7 A13

Differential Comparator Amplifier

7A13

Dc to 105 MHz Bandwidth
$1 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors

$1 M \Omega$ Input Switchable to ∞

20,000:1 CMRR

$10,000 \mathrm{~cm}$ Effective Screen Height

The 7A13 is a differential comparator amplifier which provides dc to 105 MHz bandwidth in all the 7100 and 7900 Family instruments. It incorporates a number of features which make it particularly versatile, especially in multitrace combination with other 7000 Series vertical plug-ins.
The 7A13 has constant bandwidth over the $1 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div deflection factor range. The bandwidth is selectable to Full or 5 MHz for best displayed noise conditions for lowfrequency applications.
As a differential amplifier the 7A13 provides a balanced (+ and -) input for applications requiring rejection of a common-mode signal. The CMRR is $20,000: 1$ from dc to 100 kHz , derating to $200: 1$ at 20 MHz . The unit can reject up to 10 V of common-mode signal at a deflection factor setting of $1 \mathrm{mV} /$ div, increasing to 100 V at $10 \mathrm{mV} / \mathrm{div}$ (X10 Vc pulled) and 500 V at $0.1 \mathrm{~V} /$ div.
As a comparator amplifier the 7A13 provides an accurate (0.1%) positive or negative internal offsetting voltage of up to $\pm 10 \mathrm{~V}$. This precision offset voltage effectively provides a screen height of 10,000 div at $1 \mathrm{mV} /$ div. The offset voltage is also available as an output for external monitoring.

CHARACTERISTICS

Bandwidth - Dc Coupled: 105 MHz ($1 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$).
Input R and $C-1 \mathrm{M} \Omega$ within 0.15%; $\approx 20 \mathrm{pF}$. Rin $\approx \infty$ is available in the 1 mV to $50 \mathrm{mV} /$ div range, selectable by an internal switch.
Deflection Factor - Calibrated: $1 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ in 12 steps (1-2-5 sequence). Accuracy is within 1.5% with gain adjusted at $1 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to a maximum of at least $12.5 \mathrm{~V} / \mathrm{div}$.
Maximum Input Gate Current $-0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}: 0.2 \mathrm{nA}$ or less. $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$: 2 nA or less.
Dc Stability — Drift with Ambient Temperature (Line Voltage Constant): $2 \mathrm{mV} / 10^{\circ} \mathrm{C}$ to 0.2 div $10^{\circ} \mathrm{C}$ or less, (whichever is greater). Drift with Time (Ambient Temperature and Line Voltage Constant): Short term is 1 mV p-p or 0.1 div or less (whichever is greater) over any one minute interval after 20 minute warm-up. Long term is $1 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or 0.1 division or less (whichever is greater) during any one hour interval after 20 min ute warm-up.
Signal Range

Deflection Factor Settings	$\begin{gathered} 1 \mathrm{mV} \text { to } \\ 50 \mathrm{mV} / \mathrm{div} \end{gathered}$	10 mV to $50 \mathrm{mV} / \mathrm{div}$ (X10 Vc out) and 0.1 V to $0.5 \mathrm{~V} / \mathrm{div}$	$\begin{gathered} 0.1 \mathrm{~V} \text { to } \\ 0.5 \mathrm{~V} / \mathrm{div} \\ \text { (X10 } \mathrm{Vc} \text { out) } \\ \text { and } 1 \mathrm{~V} \\ \text { to } 5 \mathrm{~V} / \mathrm{div} \end{gathered}$
Commonmode Signal	$\pm 10 \mathrm{~V}$	$\pm 100 \mathrm{~V}$	$\pm 500 \mathrm{~V}$
Maximum Dc Coupled Input (dc + peak ac at 1 kHz or less)	$\pm 40 \mathrm{~V}$	$\pm 400 \mathrm{~V}$	$\pm 500 \mathrm{~V}$
Maximum Ac Coupled Input (dc voltage)		$\pm 500 \mathrm{~V}$	

Displayed Noise (Tangentially Measured) With X10 Vc In: $400 \mu \mathrm{~V}$ ($200 \mu \mathrm{~V}$ RMS) or less at $1 \mathrm{mV} / \mathrm{div}$; 0.2 div or less at $2 \mathrm{mV} /$ div to $5 \mathrm{mV} / \mathrm{div}$; 0.05 div or less at $10 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$. With X10 Vc Out: 0.4 div or less at $10 \mathrm{mV} /$ div to $0.5 \mathrm{~V} /$ div.
Overdrive Recovery - 1μ s to recover to within 2 mV and 0.1 ms to recover to within 1 mV after a pulse of $\pm 10 \mathrm{~V}$ or less at $1 \mathrm{mV} /$ div only, regardless of pulse duration.
Internal Comparison Voltage - Range: 0 V to $\pm 10 \mathrm{~V}$. Accuracy: $\pm(0.1 \%$ of setting $+3 \mathrm{mV})$. Vc Output $\mathrm{R}: \approx 15 \mathrm{k} \Omega$.

Common-Mode Rejection Ratio

At least 2000:1, $10 \mathrm{mV} /$ div to 50 mV (X 10 Vc out) and $0.1 \mathrm{~V} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. Ac coupled input at least $500: 1$ at 60 Hz .

ORDERING INFORMATION

7A13 Amplifier $\mathbf{\$ 3 , 3 2 0}$
Includes: Instruction manual (070-1940-02).
For floating measurements, order A6902B Isolator. See page 437 for complete description.

For recommended probes see pages 191 and 426.
For 7000 Series vertical system specifications see page 190.

P6055

20,000:1 CMRR 10X with Readout

Dc to 60 MHz

Low Capacitance

High CMRR

Compact Size

The P6055 is a miniature, low-capacitance, 10X probe designed for use with Tektronix differential amplifiers with nominal input capacitances from 20 pF to 47 pF . The attenuation ratio is adjustable to compensate for differences in input resistance of the amplifier (the amplifier input resistance must be $1 \mathrm{M} \Omega \pm 2 \%$). A special locking type readout connector allows the probe to be used with instruments with or without readout capability.
When two P6055 Probes are used to drive the two inputs of a differential amplifier, the ability to change the attenuation ratio of one probe versus the other is helpful in maintaining the CMRR of the system. The use of a matched pair of P6055 differential probes provides the best possible system CMRR.

CHARACTERISTICS

Maximum Useful Bandwidth - 60 MHz .
Risetime - 5.8 ns .
Input Capacitance - $\approx 10 \mathrm{pF}$ when used with instrument that has 20 pF input capacitance; 12.5 pF when used with instrument that has 47 pF input capacitance.
Attenuation - Adjustable to 10X.
Input Resistance - $1 \mathrm{M} \Omega \pm 0.5 \%$.
CMRR - 20,000:1 from dc to 1 kHz derating to 100:1 at 20 MHz .
Maximum Voltage - 500 V (dc + peak ac) from dc to 12 MHz . P-p voltage derates to 100 V at 70 MHz .

ORDERING INFORMATION
 P6055 10X, 3.5 ft , Differential Probe.

Order 010-6055-01
$\$ 275$
Includes: Retractable hook tip (BB, 013-0107-05); 13 cm (5 inch) ground lead (175-0124-01); two electrical insulating sleeves (BP, 166-0404-01); two alligator clips (AS, 344-0046-00); probe holder ($352-0090-00$); adjustable tool (CP, 003-0675-01); hook tip (BU, 206-0114-00); 13 cm (6 inch) electrical ground lead (DF, 175-1256-0) ; 30 cm (12 inch) ground lead ($175-0125-01$); instruction manual ($070-1115-00$).
Matched Pair of P6055 Probes.
Order 015-0437-00

[^21]
7 A22

Dc to 1 MHz Bandwidth
$10 \mu \mathrm{~V} /$ div to $10 \mathrm{~V} /$ div
Calibrated Deflection Factors

1 M Ω Input
$100,000: 1$ CMRR
Selectable Upper and Lower -3 dB Points
Dc Offset
$10 \mu \mathrm{~V} /$ Hour Dc Drift＊${ }^{*}$

The 7A22 is a high－gain differential amplifier well suited for difficult low－amplitude，low－ frequency measurements．Selectable high and low pass filters help eliminate unwanted noise and drift from the display and from the triggering signal．

CHARACTERISTICS

Bandwidth－HF：-3 dB point．Selectable in nine steps（ $1-3$ sequence）from 100 Hz to 1 MHz ． Accuracy is within 10% of selected frequency．Ri－ setime is $350 \mathrm{~ns} \pm 9 \%$ in 1 MHz position． LF：-3 dB point．Selectable in six steps（ $1-10$ se－ quence）from 0.1 Hz to 10 kHz ．Accuracy is within 12% of selected frequency．The switch also con－ tains dc and dc with Offset positions．Ac coupled at input， 2 Hz or less．
Deflection Factor－Calibrated： $10 \mu \mathrm{~V} / \mathrm{div}$ to 10 V ／div in 19 steps（ $1-2-5$ sequence）．Accuracy is within 2% with gain adjusted to $1 \mathrm{mV} /$ div．Uncali－ brated：Variable continuously between steps to a maximum of at least $25 \mathrm{~V} /$ div．
Signal and Offset Range

Deflection Factor Settings	$\begin{gathered} 10 \mu \mathrm{~V} \\ \text { to } \\ 10 \mathrm{mV} / \mathrm{div} \end{gathered}$	$\begin{aligned} & 20 \mathrm{mV} \\ & \text { to } \\ & 0.1 \mathrm{~V} / \mathrm{div} \end{aligned}$	$\begin{gathered} 0.2 \mathrm{~V} \\ \text { to } \\ 1 \mathrm{~V} / \mathrm{div} \end{gathered}$	$\begin{gathered} 2 \mathrm{~V} \\ \text { to } \\ 10 \mathrm{~V} / \mathrm{div} \end{gathered}$
Common－ Mode Signal	$\pm 10 \mathrm{~V}$	$\pm 100 \mathrm{~V}$	$\pm 500 \mathrm{~V}$	
Maximum Dc Coupled Input （dc＋peak ac at 1 kHz or less）	$\pm 15 \mathrm{~V}$	$\pm 200 \mathrm{~V}$	$\pm 500 \mathrm{~V}$	
Maximum Ac Coupled Input （dc voltage）	$\pm 500 \mathrm{~V}$ dc rejection，at least $4 \times 10^{5}: 1$			
Dc Offset	$\begin{gathered} +1 \mathrm{~V} \\ \text { to } \\ -1 \mathrm{~V} \end{gathered}$	$\begin{gathered} +10 \mathrm{~V} \\ \text { to } \\ -10 \mathrm{~V} \end{gathered}$	$\begin{gathered} +100 \mathrm{~V} \\ \text { to } \\ -100 \mathrm{~V} \end{gathered}$	$\begin{aligned} & +1000 \mathrm{~V} \\ & \text { to } \\ & -1000 \mathrm{~V} \end{aligned}$

Input R and $C-1 M \Omega$ within $1 \% ; \approx 47 \mathrm{pF}$ ．
Maximum Input Gate Current（Differentially Measured）－ $10 \mu \mathrm{~V} /$ div to $10 \mathrm{mV} /$ div： 40 pA at $+25^{\circ} \mathrm{C} ; 200 \mathrm{pA}$ at $+50^{\circ} \mathrm{C} .20 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div： $10 \mathrm{pA}: 10 \mathrm{pA}$ at $+25^{\circ} \mathrm{C} ; 20 \mathrm{pA}$ at $+50^{\circ} \mathrm{C}$ ．
Single ended，one－half the differential measure－ ment．Display shift（ $10 \mu \mathrm{~V} / \mathrm{div}$ ，ac coupled）is ± 4 division at $+25^{\circ} \mathrm{C} ; \pm 20$ division at $+50^{\circ} \mathrm{C}$ ．
＊With constant temperature．See dc stability specifications．

7 A22

Differential Amplifier

Dc Stability－（Line Voltage Constant）： $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or less．Drift with Time（Ambient Tem－ perature and Line Voltage Constant）：Short term is $5 \mu \mathrm{Vp}$－p or 0.1 div（whichever is greater）over any one minute interval after one hour warm－up． Long term is $10 \mu \mathrm{Vp}-\mathrm{p}$ or 0.1 div（whichever is greater）in any one hour interval after one hour warm－up．
Displayed Noise－ $16 \mu \mathrm{~V}$ or 0.1 div（whichever is greater）at maximum bandwidth．Source resis－ tance 25Ω or less measured tangentially．
Overdrive Recovery－ 10μ s or less to recover within 0.5% of zero level after removal of a test signal applied for 1 s （signal amplitude not to ex－ ceed differential dynamic range）．Front－panel Overdrive light indicates that an overdrive condi－ tion is being approached．
Common－Mode Rejection Ratio（for signals not exceeding common－mode signal range）

ORDERING INFORMATION

7A22 Amplifier
Includes：Instruction manual（070－0931－00）．
High CMRR Differential Probes
Matched pair of P6055 probes for maximum CMRR．（See page 439 for complete P6055 de－ scription．）Order 015－0437－00

7CT1N

Curve Tracer

7CT1N

$10 \mathrm{nA} /$ div to $20 \mathrm{~mA} / \mathrm{div}$ Vertical Deflection Factors

$0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$

Horizontal Deflection Factors

The 7CT1N converts your 7000 Series oscil－ loscope into a semiconductor curve tracer capable of displaying characteristics of small－signal devices to power levels up to 0.5 W ．The 7CT1N operates in either the hor－ izontal or vertical compartments of any 7000 Series mainframe．It may be used in con－ junction with standard amplifier and time－ base plug－in units to display signal wave－ forms along with characteristic curve families．

For more information on the 7CT1N see page 402 in Curve Tracer section．

ORDERING INFORMATION

7CT1N Curve Tracer
Includes：Instruction manual（070－1247－00）．

7B80/7B85/7B87

$1 \mathrm{~ns} /$ div to $\mathbf{5} \mathbf{s} /$ div Calibrated Time Bases
Triggering to 400 MHz
Variable Trigger Holdoff
Peak-to-Peak Auto Triggering

7B85 Features:
Δ Time Measurements with CRT Readout
Delayed Time Measurements with CRT Readout

Vertical Trace Separation
Between Two Delayed Sweeps

7B87 Features:
Pretrigger When Used with 7854

The 7B80, 7B85 and 7B87 are horizontal time bases recommended for use with 7700,7800 and 7900 Series mainframes to provide optimum bandwidth/sweep-speed compatibility. (Each may be used in any slower 7000 Series mainframe with some reduction in sweep accuracy at the fastest sweep speed.)
Each plug-in can be used separately as an independent single time base, or combined in any mainframe with two horizontal compartments for delaying and delayed operation.
$X-Y$ displays are available using a 7B80 with Option 02. A front-panel button (Display Mode) selects normal sweep or X-Y display. Both signals are applied to vertical (Y) amplifiers, and the desired horizontal (X) signal is then routed through plug-in and mainframe trigger paths to the 7B80. An X-Y mode selection then applies the signal to the horizontal deflection system. This option is appropriate where the user is making $Y-T$ and $X-Y$ measurements, and changing the amplifier frequently from the vertical to the horizontal compartment is not acceptable.
The 7B87 is designed for use with the 7854 mainframe to provide additional pretrigger capability. The pretrigger feature is compatible only with the 7854 at this time. When used in the B horizontal of the 7854, the 7B87 provides both single shot and pretrigger capability to the 7854 .

Pretrigger allows you to view what has occurred before the trigger event in single shot applications. The amount of pretrigger time is determined by the Acquire-Stop delay time setting. The total amount of pretrigger is 0.2 to 9.9 times the time/div setting.

The Int $\div 1000$ control reduces the stored time/div to 1000 times slower than the real time display on a 7854. This does not, however, affect the Acquire-Stop delay time. The Int $\div 1000$ control allows stored sweep speeds from 10 ms to $5000 \mathrm{~s} /$ div for slow speed applications.

An Ext Clock-In connector is provided for clock frequencies other than that offered by the Int clock of the 7B87.

7000 SERIES TIME BASE SELECTION GUIDE

Performance Feature	7B50A	7B53A	7B80	7B85	7B87	7B92A	7B10	7B15
Single Time Base	\checkmark		\checkmark	\checkmark	\sim		\checkmark	\checkmark
Dual Time Base		ν				\sim		
With Mixed Sweep		\checkmark						
TV Sync Triggering		Opt 05						
Used Also As Delayed Time Base			\checkmark				ν	
Delaying Sweep				\checkmark				\checkmark
Δ Delay Sweep				\checkmark				\checkmark
Pretrigger					\checkmark			
Single Shot Digitizing					\checkmark			
Display Switching						\checkmark		
Page	224	224	220	220	220	222	223	223
Prices Begin At	\$1,075	\$1,685	\$1,620	\$1,895	\$1,800	\$3,745	\$2,495	\$2,830

7000 SERIES TIME BASE/MAINFRAME RECOMMENDATION

Mainframe	7B50A	7B53A	7880	$7 \mathrm{B85}$	7887	7B92A	7810	7B15
7104/R7103						\checkmark	\checkmark	\checkmark
7904A/R7903			v	v		\checkmark	\sim	\sim
7844/R7844			v	v		\checkmark	\sim	\sim
7834			\checkmark	ν		\sim	\checkmark	\sim
7854			$\sim^{* 1}$	N*1	\checkmark	$v^{* 1}$	~*1	$\sim^{* 1}$
7704A/R7704			ν	$\nu^{* 2}$		v*2	\sim	レ*2
7603/R7603	v	\checkmark						
$\begin{array}{\|l} \hline 7633 / R 7633 \\ \text { 7623A/R7623A } \\ \hline \end{array}$	\sim	\checkmark						
7613/R7613	\checkmark	\checkmark						

[^22]
CHARACTERISTICS

Characteristics are common to all three units unless otherwise noted

MAIN SWEEP

Sweep Rates - Calibrated: 5 s/div to $10 \mathrm{~ns} / \mathrm{div}$ in 27 steps ($1-2-5$ sequence). X10 Magnifier extends fastest calibrated sweep rate to 1 ns div. Uncalibrated: Variable is continuous to at least 2.5 times the calibrated sweep rate.

Sweep Accuracy - Measured over the center eight divisions, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, in the 7700 , 7800, or 7900 Series mainframe. Derate accuracies by an additional 1% for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Time/Div*1	Unmagnified	Magnified
$5 \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div	4.0%	Unspecified
$0.5 \mathrm{~s} /$ div to $50 \mathrm{~ns} / \mathrm{div}$	1.5%	2.5%
$20 \mathrm{~ns} /$ div to $10 \mathrm{~ns} / \mathrm{div}$	2.5%	4.0%

* 1 Fastest calibrated sweep rate is limited by 7700 and 7600.

Trigger Holdoff Time

$\left.\begin{array}{l|c|c}\hline & \text { Minimum }\end{array} \quad \begin{array}{c}\text { Maximum } \\ \text { with Variable }\end{array}\right]$
Δ Time Range - (7B85 only) 0 to at least 9.0 times Time/Div setting.
Δ Time Accuracy $\left(+15^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}$) (7B85 only) $0.5 \mathrm{~s} /$ div to $50 \mathrm{~ms} /$ div: Within $(0.5 \%$ of reading $+0.1 \%$ full scale +1 count) ${ }^{\star 1} .20 \mathrm{~ms} /$ div to $100 \mathrm{~ns} /$ div: Within (0.5% of reading $+0.03 \%$ full scale +1 count $)^{\star 1}$.
${ }^{*}{ }^{1}$ Full scale equals ten times the Time/Div switch setting.
Trace Separation Range - (7B85 only) Functional only in Δ Delay Time mode when alternating or chopping between time base units. The second delayed sweep display can be vertically positioned at least three divisions below the first delayed sweep display.
Delay Time Range - (7B85 only) 0.2 or less to at least 9.0 times Time/Div setting.
Delay Time Jitter - (7B85 only) 0.02\% or less of Time/Div setting plus 0.1 ns .

Figure 1. Delaying and delayed sweeps are shown with the mainframe selecting Alt sweep modes. The delay time to the start of the delayed sweep is digitally presented on the lower edge of the CRT.

TRIGGERING
Triggering Sensitivity From Repetitive Signals (Auto and Norm Modes)

Coupling	Triggering Frequency Range* ${ }^{*}$	Min Signal Required	
		Int	Ext
Ac	30 Hz to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \end{array}$
Ac LF Rej*2	30 kHz to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \end{array}$
Ac HF Rej	30 Hz to 50 kHz	0.3 div	50 mV
Dc* ${ }^{3}$	Dc to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \operatorname{div} \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \end{array}$

* ${ }^{1}$ Triggering frequency ranges are limited to the frequency of the vertical system when operating in the Internal mode.
${ }^{* 2}$ Will not trigger on sinewaves of less than eight division Internal, or 3 V External, at or below 60 Hz .
*3 Triggering Frequency Range for dc coupling applies to frequencies above 30 Hz when operating in the Auto Triggering mode.
Single Sweep - Requirements are same as for repetitive signals.
Internal Trigger Jitter -0.1 ns or less at 400 MHz .

Triggering Sensitivity in P-P Auto Mode			
	Triggering		
Coupling	Frequency Range	Min Signal Required	
	Int	Ext	
Low Frequency			
Response:			
	Re At least 50 Hz	2.0 div	500 mV
Ac or dc	200 Hz to 50 MHz	0.5 div	125 mV
Ac or dc	50 MHz to 400 MHz	1.5 div	375 mV

External Trigger Input - Maximum Input Voltage: 250 V (dc + peak ac). Input R and C: $1 \mathrm{M} \Omega$ within 5% and 20 pF within 10%. Level Range (Excluding P-P Auto): At least $\pm 1.5 \mathrm{~V}$ in Ext $\div 1$, at least $\pm 15 \mathrm{~V}$ in Ext $\div 10$.
Internal Clock - (7B87 only) Pretrigger: 0.02048 Hz to 20.45 MHz determined by the Time/ Div, X10 magnification and $\div 1000$ switches. Accuracy of Internal and Internal $\div 1000=0.1 \%$.
External Clock - (7B87 only) Maximum Input: 5 V peak. Input R: $100 \mathrm{k} \Omega$ within 5%. Threshold voltage TTL compatible. Maximum input frequency 10 MHz with BNC input. Delay $0.5 \mu \mathrm{~s}$ or less.

Figure 2. With the mainframe still selecting Alt sweeps, delaying and both delayed sweeps are shown. The digi tal readout on the lower CRT edge shows the time between the two sweep delays. The Trace Separation knob is used to position the second delayed sweep below the first delayed sweep with up to three division of separation.

Acquire Stop Delay - (7B87 only) Total Range: 0.2 or less to at least 9.9 times Time/Div setting. Jitter ($5 \mathrm{~s} / \mathrm{div}$ to $10 \mu \mathrm{~s} / \mathrm{div}$): 0.02% of Time/Div setting or less. Delay Accuracy ($+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$): From $0.5 \mathrm{~s} / \mathrm{div}$ to $10 \mu \mathrm{~s} /$ div is within 0.5% of measurement plus 5% of Time/Div setting.
Single Shot Performance - (7B87 only) With 7854 Internal Clock.

Fastest Sweep (Time/Div)	Points/Waveform
$50 \mu \mathrm{~S}$	128
$100 \mu \mathrm{~S}$	256
$200 \mu \mathrm{~S}$	512
$500 \mu \mathrm{~S}$	1024

7B80 Option 02, X-Y Display Capability — A front panel switch selects either normal sweep displays or $X-Y$ displays. In the $X-Y$ mode, the X and Y signals are applied to the inputs of a dual trace vertical amplifier or two single trace vertical amplifiers. The X signal is routed via the amplifier/ mainframe trigger path to the 7B80 Option 02, and then to the mainframe horizontal amplifier for display.

ORDERING INFORMATION

7B80 Time Base \$1,620
Includes: Instruction manual (070-1959-00).
Option 02 - X-Y Display Capability. $\quad+\$ 105$
7B85 Delaying Time Base $\mathbf{\$ 1 , 8 9 5}$
Includes: Instruction manual (070-1961-01).
7B87 Time Base (for use with 7854)
\$1,800
Includes: Instruction manual (070-2788-00)

7B92A

Dual Time Base

7B92A

$0.5 \mathrm{~ns} / \mathrm{div}$ to $0.2 \mathrm{~s} / \mathrm{div}$ Calibrated Time Base

Triggering to 500 MHz

Alternate Display of Intensified
Delaying and Delayed Sweeps
Contrast Regulation Between
Delaying and Delayed Sweeps

The 7B92A Dual Time Base is recommend－ ed for use in the 7100， 7800 and 7900 Series mainframes．（The 7B92A may be used in all other mainframes at slower sweep speeds．）
There are four display modes：normal sweep，intensified delaying sweep，delayed sweep，and alternate sweep．When operat－ ing in the Auto mode of main triggering，a bright base line is displayed in the absence of a trigger signal．

CHARACTERISTICS

DELAYING SWEEP（MAIN SWEEP）
Sweep Rate－Calibrated： $0.2 \mathrm{~s} /$ div to $10 \mathrm{~ns} /$ div in 27 steps（ $1-2-5$ sequence）．Uncalibrated：Vari－ able continuously between steps to at least 2.5 times the calibrated sweep rate．The variable control is internally switchable between delaying and delayed sweeps．
Sweep Accuracy－Measured over the center eight division in a 7900 Series mainframe：

Time／Div	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\mathbf{0}^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$0.2 \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div	Within 2%	Within 3%
$10 \mathrm{~ns} /$ div	Within 3%	Within 4%

Delay Time Multiplier Range－ 0 to 9.8 times the Delay Time／Div setting from $0.2 \mathrm{~s} /$ div to $10 \mathrm{~ns} / \operatorname{div}(0 \mathrm{~s}$ to 1.96 s ）．
Delay Time Jitter＊1

0.2 s／div to $50 \mu \mathrm{~s} / \mathrm{div}$	1 part in 50,000 of the maximum available delay time
$20 \mu \mathrm{~s} / \mathrm{div}$ to $10 \mathrm{~ns} / \mathrm{div}$	1 part in 50,000 of the maximum available delay time +0.5 ns
delay mum a Delay	for the first 2% of maximum available elay Time Mult dial setting >0.2 ）．Maxi－ delay time is ten times the Time／Div or witch setting．

$0.2 \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} / \mathrm{div}$	Both Delay Time Mult dial settings at 0.5 or greater	$\begin{aligned} & \pm(0.75 \% \text { of read- } \\ & \text { ing }+0.25 \% \\ & \text { of full scale } \left.{ }^{* 2}\right) \end{aligned}$
	One or both Delay Time Mult dial settings at less than 0.5	$\pm(0.75 \%$ of read－ ing $+0.5 \%$ of full scale ${ }^{* 2}+5 \mathrm{~ns}$ ）
$50 \mathrm{~ns} / \mathrm{div}$ to $10 \mathrm{~ns} /$ div	Both Delay Times equal to or greater than 25 ns	$\begin{aligned} & \pm(1 \% \text { of reading } \\ & +0.5 \% \text { of full } \\ & \text { scale } \left.{ }^{* 2}\right) \end{aligned}$
	One or both Delay Times less than 25 ns	$\begin{aligned} & \pm(1 \% \text { of reading } \\ & +1 \% \text { of full } \\ & \text { scale } \left.{ }^{* 2}+5 \mathrm{~ns}\right) \end{aligned}$

${ }^{* 1}+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ．
＊2 Full scale is ten times the Time／Div or Dly Time setting． Accuracy applies over the center eight division from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ．

TRIGGERING

Triggering Sensitivity （Auto and Norm Modes）

Coupling	Triggering Frequency Range	Min Signal Required	
		Int	Ext
Ac	$\begin{gathered} 30 \mathrm{~Hz} \text { to } 20 \mathrm{MHz} \\ 20 \mathrm{MHz} \text { to } 500 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{div} \\ & 1.0 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 500 \mathrm{mV} \end{aligned}$
Ac LF Rej	30 kHz to 20 MHz 20 MHz to 500 MHz	$\begin{aligned} & 0.5 \mathrm{div} \\ & 1.0 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 500 \mathrm{mV} \end{aligned}$
Ac HF Rej	30 Hz to 50 kHz	0.5 div	100 mV
Dc to 20 MHz Dc	$\begin{gathered} 0.5 \text { div } \\ 20 \mathrm{MHz} \text { to } 500 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 100 \mathrm{mV} \\ 1.0 \mathrm{div} \end{gathered}$	500 mV

HF Sync－Triggering sensitivity is 0.5 div Int or 100 mV Ext，from 100 MHz to 500 MHz for any coupling except Ac HF Rej．
Single Sweep－Triggering requirements are the same as normal sweep．When triggered，time base produces one sweep only until reset．
Internal Trigger Jitter－ 50 ps or less at 500 MHz ．
External Trigger Input－Selectable 50Ω or $1 \mathrm{M} \Omega$ inputs（ $1 \mathrm{M} \Omega$ is paralleled by $\approx 20 \mathrm{pF}$ ）．Maxi－ mum Input Voltage： 250 V （dc + peak ac）for $1 \mathrm{M} \Omega$ input and 1 W average for 50Ω input．Level Range：At least $\pm 3.5 \mathrm{~V}$ in Ext，at least $\pm 35 \mathrm{~V}$ in Ext $\div 10$ ．

DELAYED SWEEP

Sweep Rate－Calibrated： $0.2 \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~ns} / \mathrm{div}$ in 27 steps（ $1-2-5$ sequence）．Uncalibrated：Vari－ able continuously between steps to at least 2.5 times the calibrated sweep rate．The variable control is internally switchable between delaying and delayed sweeps．
Sweep Accuracy－Measured over the center eight divisions in a 7900 Series mainframe：

Time／Div	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$0.2 \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div	Within 2%	Within 3%
$10 \mathrm{~ns} /$ div to $5 \mathrm{~ns} /$ div	Within 3%	Within 4%
$2 \mathrm{~ns} /$ div to $1 \mathrm{~ns} /$ div	Within 4%	Within 5%
$0.5 \mathrm{~ns} /$ div	Within 5%	Within 6%

Delayed Triggering Sensitivity

	Triggering	Min Signal Required	
Coupling		Int	Ext
	30 Hz to 20 MHz	$0.5 \operatorname{div}$	100 mV
Ac	20 MHz to 500 MHz	1.0 div	500 mV
	Dc to 20 MHz	0.5 div	100 mV
Dc	20 MHz to 500 MHz	1.0 div	500 mV

Internal Trigger Jitter－ 50 ps or less at 500 MHz ．
External Trigger Input－Selectable 50Ω or $1 \mathrm{M} \Omega$ inputs（ $1 \mathrm{M} \Omega$ is paralleled by $\approx 20 \mathrm{pF}$ ）．Maxi－ mum Voltage Input： 250 V （dc + peak ac）for $1 \mathrm{M} \Omega$ input，and 1 W average for 50Ω input．Level Range：At least $\pm 3.5 \mathrm{~V}$ in Ext．

ORDERING INFORMATION
7B92A Dual Time Base Includes：Instruction manual（070－1751－02）．

7B10/7B15

$0.2 \mathrm{~ns} /$ div to $0.2 \mathbf{s} /$ div Calibrated Time Bases
Triggering to 1 GHz
Variable Trigger Holdoff
Peak-to-Peak Auto Triggering

7B15 Features:
Δ Time Measurements with CRT Readout
Delayed Time Measurements with CRT Readout

Vertical Trace Separation Between Two Delayed Sweeps

The 7B10 and 7B15 are horizontal time bases designed for use with the 7100 Series mainframes to provide optimum band-width/sweep-speed compatibility, but may also be used with the 7700,7800 , and 7900 Series mainframes. (Each may be used in any slower 7000 Series mainframe with some reduction in sweep accuracy at the fastest sweep speed.)
Either plug-in can be used separately as an independent single time base, or they can be combined in any mainframe with two horizontal compartments for delaying and delayed operation.

The 7B10 and 7B15 provide the Δ time measurement in addition to the standard delay time display.
Delta time measurement is accomplished simply by manually positioning two intensified zones on the waveform. The time difference between the two zones is displayed in the CRT readout. (See waveform photos on page 221.) Expansion and overlapping of the two intensified zones is possible to allow very precise setting of the zones to the desired points on the displayed waveform.

7B10

Delayed Time Base

CHARACTERISTICS MAIN SWEEP

Sweep Rates - Calibrated: 2 ns/div to 0.2 s/div in 25 steps ($1-2-5$ sequence). X10 Magnifier extends fastest calibrated sweep rate to $0.2 \mathrm{~ns} /$ div. Uncalibrated: Variable is continuous to at least 2.5 times the calibrated sweep.

Sweep Accuracy - Measured over the center eight divisions, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, in a 7100,7800 or 7900 Series mainframe. Derate accuracies by an additional 1% for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Time/Div*1	Unmagnified	Magnified
$0.2 \mathrm{~s} /$ div to $10 \mathrm{~ns} /$ div	2%	3%
$5 \mathrm{~ns} /$ div and $2 \mathrm{~ns} /$ div	3%	4%

* 1 Fastest calibrated sweep rate is limited by 7900, 7800, 7700, 7600 and 7300 Series mainframes.

Trigger Holdoff Time

	Minimum	Maximum with Variable
$0.2 \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$	40 ms or less	400 ms or greater
$20 \mathrm{~ms} /$ div to $2 \mu \mathrm{~s} / \mathrm{div}$	2 times the Time/Div Setting	20 times the Time/Div Setting
$\begin{aligned} & 1 \mu \mathrm{~s} / \mathrm{div} \\ & \text { to } 0.5 \mu \mathrm{~s} / \mathrm{div} \end{aligned}$	$2 \mu \mathrm{~s}$ or less	$20 \mu \mathrm{~s}$ or greater
$0.2 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~ns} / \mathrm{div}$	$2 \mu \mathrm{~S}$	$6 \mu \mathrm{~s}$ or greater

Δ Time Range - (7B15 only) 0 to at least 9.0 times Time/Div setting.
Δ Time Accuracy - $20 \mathrm{~ms} /$ div to $100 \mathrm{~ns} /$ div. Within 0.5% of reading +3 counts.
Trace Separation Range - (7B15 only) Functional only in Δ Delay Time mode when alternating or chopping between time base units. The second delayed sweep display can be vertically positioned at least three divisions below the first delayed sweep display.

7B15

Δ Delaying Time Base
Delay Time Range - (7B15 only) 0.2 or less to at least 9.0 times Time/Div setting.
Delay Time Jitter - (7B15 only) 0.02\% of Time/ Div setting up through $50 \mu \mathrm{~s} / \mathrm{div}$. 0.03% of Time/ Div setting plus 0.1 ns for sweep speeds of $20 \mu \mathrm{~s} /$ div through $100 \mathrm{~ns} /$ div.

TRIGGERING

Triggering Sensitivity for Repetitive Signals

Coupling	Triggering Frequency Range* ${ }^{1}$	Min Signal Required	
		Int	Ext
AC	30 Hz to 250 MHz 250 MHz to 1 GHz	0.5 div 1.5 div	$\begin{array}{r} 50 \mathrm{mV} \\ 150 \mathrm{mV} \\ \hline \end{array}$
Ac LF Rej* ${ }^{2}$	50 kHz to 250 MHz 250 MHz to 1 GHz	0.5 div 1.5 div	$\begin{array}{r} 50 \mathrm{mV} \\ 150 \mathrm{mV} \\ \hline \end{array}$
Ac HF Rej	30 Hz to 40 kHz	0.5 div	50 mV
Dc*3	Dc to 250 MHz 250 MHz to 1 GHz	0.5 div 1.5 div	$\begin{array}{r} 50 \mathrm{mV} \\ 150 \mathrm{mV} \end{array}$

${ }^{* 1}$ The triggering frequency ranges given here are limited to the $-3 d B$ frequency of the oscilloscope vertical system when operating in the Internal mode.
*2 Will not trigger on sinewaves at or below 60 Hz when amplitudes are less than eight division Internal or 3 V External.
*3 The Triggering Frequency Range for Dc Coupling applies to frequencies above 30 Hz when operating in the Auto Triggering Mode.
Single Sweep - Requirements are the same as for repetitive signals.
Internal Trigger Jitter - 30 ps or less at 1 GHz . HF Sync Mode - 250 MHz to 1 GHz 0.3 div In ternal and 0.75 mV External.
External Trigger Input - Maximum Input Voltage: 250 V (dc + peak ac) for $1 \mathrm{M} \Omega$ input, 1 W average for 50Ω input. Input R and C: $1 \mathrm{M} \Omega$ within 5% and 20 pF within 10%; for 50Ω input, 50Ω within 2%. Level Range: At least $\pm 3.5 \mathrm{~V}$ in Ext $\div 1$.

ORDERING INFORMATION

7B10 Time Base
\$2,495
Includes: Instruction manual (070-2316-00).
7B15 Delaying Time Base
\$2,830
Includes: Instruction manual (070-2318-00).

Dual Time Base
7B53A/7B50A
$5 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ Calibrated Time Base
Triggering to 100 MHz (7B53A) and 150 MHz (7B50A)

Variable Trigger Holdoff (7B50A)
P-P Auto Triggering (7B50A)

Single Sweep Operation

Calibrated Mixed Sweep (7B53A)
TV Sync Separator Triggering (7B53A Option 05)

The easy-to-use 7B53A and 7B50A Time Bases are recommended for use with 7600 Series mainframes to provide optimum bandwidth/sweep speed compatibility. They may, however, be used in any 7000 Series mainframe to provide sweep rates of $5 \mathrm{~ns} / \mathrm{div}$.

The 7B53A provides normal, intensified delaying, delayed, and mixed sweep.

CHARACTERISTICS (7B53A)

DELAYING SWEEP

Sweep Rate - Calibrated: $50 \mathrm{~ns} /$ div to $5 \mathrm{~s} /$ div in 25 steps ($1-2-5$ sequence). $5 \mathrm{~ns} /$ div, the fastest calibrated sweep rate, is obtained with the X10 Magnifier. Uncalibrated: Variable continuously between steps to at least 2.5 times the calibrated sweep rate. The variable control is internally switchable between main, delayed-sweep, and variable main-sweep holdoff.

7B50A

Time Base
Sweep Accuracy - Measured over the center eight divisions.

Time/Div	Unmagnified		Magnified			
	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to				
$+50^{\circ} \mathrm{C}$						$+15^{\circ} \mathrm{C}$ to
:---:						
$+35^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to				
:---:						
$+50^{\circ} \mathrm{C}$						

Delay Time Multiplier Range - 0 to 10 times the Delay Time/Div setting from 5 s/div to $1 \mu \mathrm{~s} / \mathrm{div}$.
Differential Delay Time Measurement Accuracy $-5 \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div: $\pm 1.4 \%$ of measurement $+0.3 \%$ of full scale. $0.5 \mathrm{~s} /$ div to $1 \mu \mathrm{~s} /$ div: $\pm 0.7 \%$ of measurement $+0.3 \%$ of full scale. Full scale is ten times the Delay Time/Div setting. Accuracy applies over the center 8 DTM div from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Delay Time Jitter - 0.05% or less of Time/Div setting.

Triggering Sensitivity			
Coupling	Triggering Frequency Range	Min Signal Required	
		Int	Ext
Ac	30 Hz to 10 MHz 10 MHz to 100 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 500 \mathrm{mV} \\ & \hline \end{aligned}$
Ac LF Rej* ${ }^{\text {a }}$	30 kHz to 10 MHz 150 kHz to 10 MHz 10 MHz to 100 MHz	0.3 div 1.5 div	100 mV 500 mV
Ac HF Rej	30 Hz to 50 kHz	0.3 div	100 mV
Dc	Dc to 10 MHz 10 MHz to 100 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 500 \mathrm{mV} \end{aligned}$

* ${ }^{1}$ Will not trigger on sinewaves of three division or less Int or 1.5 V Ext below 120 Hz .
Single Sweep - Triggering requirements are the same as normal sweep. When triggered, sweep generator produces one sweep only until reset.
Internal Trigger Jitter - 1 ns or less at 75 MHz .
External Trigger Input - Maximum Input Voltage: 500 V (dc + peak ac), $500 \mathrm{Vp-p}$ ac at 1 kHz or less. Input R and C: $1 \mathrm{M} \Omega$ within 2% and 20 pF within 2 pF . Level Range: At least +1.5 V to -1.5 V in Ext, at least +15 V to -15 V in Ext $\div 10$

DELAYED SWEEP

Sweep Rate - Calibrated: $0.05 \mu \mathrm{~s} /$ div to $0.5 \mathrm{~s} /$ div in 22 steps ($1-2-5$ sequence). $5 \mathrm{~ns} /$ div, the fastest calibrated sweep rate, is obtained with the X10 Magnifier. Uncalibrated: Variable continuously between steps to at least 2.5 times the calibrated sweep rate. The variable control is internally switchable between main, delayed sweep, and variable main sweep holdoff.
Sweep Accuracy - Measured over the center eight divisions.

Time/Div	Unmagnified		Magnified			
	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to				
$+50^{\circ} \mathrm{C}$						$+15^{\circ} \mathrm{C}$ to
:---:						
$+35^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to				
:---:						
$+50^{\circ} \mathrm{C}$						

Delayed Sweep Gate - Output Voltage: $\approx+3.5 \mathrm{~V}$ into at least $10 \mathrm{k} \Omega$ shunted by 100 pF or less, or 0.5 V into 50Ω. Risetime: 50 ns or less. Output R is 350Ω within 10%. Gate is available at the Dly'd Trig In connector when the delayed sweep source switch is set to Int.
Triggering Sensitivity

Triggering					
Coupling	Frequency Range	$	$	Min Signal Required	
:---:	:---:				

Internal Trigger Jitter - 1 ns or less at 75 MHz . External Trigger Input - Maximum Input Voltage: 500 V (dc + peak ac), $500 \mathrm{Vp-p}$ ac at 1 kHz or less. Input R and $\mathrm{C}: 1 \mathrm{M} \Omega$ within 2% and 20 pF within 2 pF . Level Range: At least +1.5 V to -1.5 V in Ext.

MIXED SWEEP

Sweep Accuracy - Within 2\% plus measured main sweep error. Exclude the following portions of mixed sweep: First 0.5 div after start of main sweep display and 0.2 div or $0.1 \mu \mathrm{~s}$ (whichever is greater) after transition of main to delayed sweep.

EXT HORIZONTAL INPUT

Deflection Factor - $10 \mathrm{mV} /$ div within 10% when in Ext, Mag X10; $100 \mathrm{mV} /$ div within 10% when in Ext; $1 \mathrm{~V} /$ div within 10% when in Ext $\div 10$.

Bandwidth

Coupling	Lower -3 dB	Upper -3 dB
Ac	40 Hz	2 MHz
Ac LF Rej	16 kHz	2 MHz
Ac HF Rej	40 Hz	100 kHz
Dc	Dc	2 MHz

TV SYNC
Option 05, TV Sync Separator Triggering Permits stable internal line or field rate triggering from displayed composite video or composite sync waveforms. Conventional waveform displays and measurements can be made from standard broadcast or closed circuit TV systems, domestic or international, with up to 1201 -line, 60 Hz field rates. Individual lines may be displayed with delayed sweep features. The wide range of delayed sweeps permits accurate alternate-frame, colorburst observations in the PAL color system. Option 05 deletes ac line trigger and Ext $\div 10$ from trigger source.

CHARACTERISTICS (7B50A)

Sweep Rates - $0.05 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} / \mathrm{div}$ in 25 steps ($1-2-5$ sequence). $5 \mathrm{~ns} / \mathrm{div}$, the fastest calibrated sweep rate, is obtained with the X10 Magnifier. Uncalibrated: Variable continuously between steps to at least 2.5 times the calibrated sweep rate.
Sweep Accuracy - Measured over center eight division, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, with any 7000 Series mainframe. Derate accuracies by an additional 1% each for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Time/Div	Unmagnified	Magnified
$5 \mathrm{~s} /$ div to $1 \mathrm{~s} / \mathrm{div}$	4%	Unspecified
$0.5 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$	2%	3%
$0.2 \mu \mathrm{~s} /$ div to $0.05 \mu \mathrm{~s} / \mathrm{div}$	3%	4%

TRIGGERING
Trigger Holdoff Time

Minimum $5 \mathrm{~s} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$	2 times Time/Div setting or less
$0.5 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ns} /$ div	$2.0 \mu \mathrm{~s}$ or less
Variable	Extends holdoff time through at least 2 sweep lengths for sweep rates of $20 \mathrm{~ms} /$ div or faster

Triggering Sensitivity*1

Coupling	Triggering Frequency Range* ${ }^{2}$	Min Signal Required	
		Int	Ext
Ac	30 Hz to 50 MHz 50 MHz to 150 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \\ \hline \end{array}$
Ac LF Rej ${ }^{* 3}$	30 kHz to 50 MHz 50 MHz to 150 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \end{array}$
Ac HF Rej	30 Hz to 50 kHz	0.3 div	50 mV
Dc*4	Dc to 50 MHz 50 MHz to 150 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 250 \mathrm{mV} \end{array}$

${ }^{\text {*1 }}$ Auto and Norm modes.
*2 Triggering frequency ranges are limited to the frequency of the vertical system when operating in the Int mode.
${ }^{* 3}$ Will not trigger on sinewaves of less than eight division Internal, or 3 V External, at or below 60 Hz .
*4 Triggering Frequency Range for dc coupling applies to frequencies above 30 Hz when operating in the Auto Triggering mode.
Triggering Sensitivity (P-P Auto Mode)

	Triggering	Min Signal Required	
Coupling		Int	Ext
Ac or dc	200 Hz to 50 MHz	0.5 div	125 mV
Ac or dc	50 MHz to 150 MHz	1.5 div	375 mV

Single Sweep - Triggering requirements are the same as normal sweep. When triggered, sweep generator produces only one sweep until reset.
Option 02, X-Y Display Capability - A front panel switch selects either normal sweep displays or $X-Y$ displays. In the $X-Y$ mode, the X and Y signals are applied to the inputs of a dual-trace vertical amplifier or two single-trace vertical amplifiers. The X signal is routed via the amplifier/mainframe trigger path to the 7B50A Option 02, and then to the mainframe horizontal amplifier for display.

ORDERING INFORMATION

7B53A Dual Time Base

Includes: Instruction manual (070-1342-01).
Option 05 - TV Triggering. $+\$ 160$ Includes: Instruction manual (070-1471-00), 7B50A Time Base \$1,075 Includes: Instruction manual (070-1986-00). Option 02 - X-Y Display Capability. $+\$ 105$

7D13A

Digital Multimeter

7D13A

31/2 Digit CRT Readout

500 V Maximum Common-Mode Voltage
Temperature Mode

The 7D13A Digital Multimeter is designed for use in all 7000 Series oscilloscope mainframes with CRT readout. The 7D13A functions in any compartment.
The 7D13A measures dc volts, dc current, and resistance. It also measures temperature from a temperature sensor on the tip of the P6601 temperature probe. The temperature probe functions regardless of 7D13A mode or range setting and provides a frontpanel analog signal output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $\left(0^{\circ} \mathrm{C}=0 \mathrm{~V}\right)$. Temperature may be measured simultaneously along with any other function.
When the 7D13A is used, the character generator traces out a $31 / 2$-digit display on the CRT and a legend for units such as $k \Omega$, $\mathrm{mA},{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS

Dc Voltage Range - 0 V to 500 V in four ranges. $3^{1 / 2}$-digit presentation of $1.999 \mathrm{~V}, 19.99 \mathrm{~V}$, 199.9 V , and 500 V full scale. Accuracy is $\pm 0.1 \%$ of reading ± 1 count from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, $\pm 0.2 \%$ of reading ± 2 counts from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Input impedance is $10 \mathrm{M} \Omega$ on all ranges. Maximum safe input is 500 V peak between either contact and ground, 500 V peak between voltage contacts.

Dc Current Range - 0 A to 2 A in four ranges. $31 / 2$-digit presentation of $1.999 \mathrm{~mA}, 19.99 \mathrm{~mA}$, 199.9 mA , and 1999 mA full scale. Accuracy is $\pm 0.5 \%$ of reading ± 2 counts from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}, \pm 0.7 \%$ of reading ± 4 counts from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Maximum input is 3 A (fuse protected).
Resistance Range -0Ω to $2 \mathrm{M} \Omega$ in five ranges. $31 / 2$-digit presentation $199.9 \Omega, 1999 \Omega$, $19.99 \mathrm{k} \Omega, 199.9 \mathrm{k} \Omega$, and $1999 \mathrm{k} \Omega$ full scale. Accuracy is $\pm 0.5 \%$ of reading ± 1 count from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}, \pm 0.8 \%$ of reading ± 2 counts from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Input is fuse protected.
Temperature Measurement Range - $-62^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ in one range. $31 / 2$-digit presentation to $+200^{\circ} \mathrm{C}$.
Temperature Measurement Accuracy*1

7D13A Operating Conditions	Temperature Value Measured	Measurement Accuracy
$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$ (room temperature)	$-62^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}$
	$+150^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C},-6^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}$		
$+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-62^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	Add $1.5^{\circ} \mathrm{C}$ to above tolerance in each direction

${ }^{* 1}$ Probe calibrated to the instrument.
Settling Time - 1 s or less (voltage, current, and resistance modes).
Polarity - Automatic indication.
Maximum Common-Mode Voltage - 500 V peak between two terminals and ground.
Normal-Mode Rejection Ratio - At least 30 dB at 60 Hz .
Common-Mode Rejection Ratio - With a $1 \mathrm{k} \Omega$ imbalance, at least 100 dB at dc; 80 dB at 60 Hz .
Over Range Indication - When over range occurs, the readout blinks and the most significant digit displays a three.
Temperature Out - $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ into a load of at least $2 \mathrm{k} \Omega$.

ORDERING INFORMATION

7D13A Digital Multimeter $\mathbf{\$ 1 , 2 8 0}$

Includes: Pair of test leads (003-0120-00); P6601 Temperature Probe package ($010-6601-01$); instruction manual (070-3972-00).

7D11

Digital Delay Unit
7D11
Delay by Time or Events
Digital Delay Readout to $71 / 2$ Digits
100 ns to 1 s Delay Time
1 ns Resolution
2.2 ns Delay Time Jitter
0.5 ppm ($\pm 2 \mathrm{~ns}$) Accuracy

Delay Interval CRT Display

Figure 1. Delay-by-time. A 0.2μ s time marker delayed 4.9998 ms by the 7D11 and displayed at $5 \mathrm{~ns} /$ div.

In the delay-by-events mode, the 7D11 counts arbitrary trigger events, periodic or aperiodic, and delivers an output after the preselected count has been reached (see Figure 2).
The delay-by-events mode is used to eliminate jitter in mechanically based systems such as disc file memories. It is also useful for selecting a certain time frame in data for analysis and for making other measurements under complex timing conditions.
An accurate and jitter-free delay-by-time is very useful when working with digital logic, pcm telemetry, sonar, radar, shock tube testing, and delay line measurements, to name a few. On receipt of a trigger, the 7D11 in the delay-by-time mode counts a highly accurate clock; at the selected delay time, it delivers a delayed trigger to its frontpanel connector and mainframe. In both modes, delay time or number of events to be counted is selected by a single frontpanel control.
When the 7D11 is installed in a vertical compartment, the CRT can display a waveform that lasts for the duration of the delay interval. This waveform may be displayed together with the signal waveform the 7D11 triggers on. From a vertical compartment, the 7D11 can trigger a time base such as 7B80, 7B53A, or another 7D11 through the internal mainframe trigger path.
In any horizontal compartment, the 7D11 generates a display similar to the "A intensified by $\mathrm{B}^{\prime \prime}$ mode of conventional delayed sweep. When used in the A horizontal compartment, the 7D11 B sweep delay mode controls will permit the B sweep to run after the delay generated by the 7D11. This delay interval is also available at the front panel for such uses as gated interval counter measurements and generating pulses of highly accurate width.

Figure 2. Delay-by events. The lower trace is the master clock in our logic circuit. The top trace is our data which is delayed by 265 clock pulses.

In delay-by-events, an external pulse (events start trigger) may be used to enable counting of the events. In such applications as a line selector on a video monitor, the vertical sync pulse is the events start trigger. Then the 7D11 counts " n " number of horizontal sync pulses (events) into the field or frame. In a similar manner, the origin pulse of a disc memory can be used as the events start trigger, and the disc clock pulses become the events that are counted.
For timing measurements that require a higher degree of accuracy than the 0.5 ppm source available in the 7D11, the delay-bytime clock may be referenced to an external 1 MHz timing standard through the Ext 1 MHz input.
Time delay resolution up to 1 ns may be obtained by using the front-panel fine delay control.

By setting an internal switch, the indicated delay time is half the actual delay time. In such applications as TDR, radar timing, etc, the CRT readout would display the "one-way-trip" time.

CHARACTERISTICS EVENTS DELAY

Events Delay Range - One to 10^{7} events.
Delay Increment - One event.
Insertion Delay - $35 \mathrm{~ns} \pm 5 \mathrm{~ns}$.
Recycle Time - $<500 \mathrm{~ns}$.
Maximum Event Frequency - At least 50 MHz .

TRIGGERING

External Trigger

Source	Int, Line, Ext, Ext $\div 10$
Coupling	Dc, Ac, Ac LF Rej, Ac HF Rej
Max Input Voltage	250 V Dc + peak Ac
Level	$\pm 1.75 \mathrm{~V}$ in Ext
Range	$\pm 17.5 \mathrm{~V}$ in Ext $\div 10$
Input R and C	$1 \mathrm{M} \Omega \pm 5 \%, 20 \mathrm{pF} \pm 2 \mathrm{pF}$

Triggering Sensitivity			
	Triggering	Min Signal Required	
Coupling	Frequency Range	Int	Ext
	30 kHz to 10 MHz	0.3 div	150 mV
Ac	10 MHz to 50 MHz	1.0 div	750 mV
	30 kHz to 10 MHz	0.3 div	-
	150 kHz to 10 MHz	-	150 mV
Ac LF Rej*	10 MHz to 50 MHz	1.0 div	750 mV
Ac HF Rej	30 Hz to 50 kHz	0.3 div	150 mV
	Dc to 10 MHz	0.3 div	150 mV
Dc	10 MHz to 50 MHz	1.0 div	750 mV

${ }^{* 1}$ Will not trigger on sinewaves of three division or less Int or 1.5 V Ext below 120 Hz .

Events Start Trigger

Source	External Only
Coupling	Dc Only
Max Input Voltage	150 V dc + peak ac
Level Range	$\pm 3 \mathrm{~V}$
Input R \& C	$1 \mathrm{M} \Omega$ within $5 \%, 20 \mathrm{pF} \pm 2 \mathrm{pF}$
	$100 \mathrm{mV} \min , 30 \mathrm{~Hz}$ to $2 \mathrm{MHz} ;$ increasing to $250 \mathrm{mV}, 2 \mathrm{MHz}$ to $20 \mathrm{MHz} ;$ increasing to $500 \mathrm{mV}, 20 \mathrm{MHz}$ to 50 MHz.

TIME DELAY
Digital Delay Range - Normal Mode: 100 ns to 1 s in 100 ns increments. Echo Mode: 200 ns to 2 s in 200 ns increments.
Analog Delay - Continuously variable from 0 ns to at least 100 ns . Accuracy is within 2 ns of indicated delay.
Jitter With Internal Clock - 2.2 ns or delay time $\times 10^{-7}$, whichever is greater.

Insertion Delay - Zero within 2 ns.
Recycle Time - Less than 575 ns.
Time Base - 500 MHz oscillator phase-locked to internal or external clock.
Clock - Internal: 5 MHz crystal oscillator. Accuracy is 0.5 ppm . External: 1 MHz within 1%, ac coupled, 50Ω.

OUTPUTS

Delayed Trigger Out - Amplitude: 2 V or greater into open circuit, 1 V or greater into 50Ω. Risetime into 50Ω Load: 2 ns or less. Falltime into 50Ω Load: 5 ns or less. Pulse Width: 200 ns to 250 ns .
Delay Interval Out - Amplitude: 2 V or greater into open circuit, 1 V or greater into 50Ω. Risetime Into Falltime: 5 ns or less. Accuracy: Equal to delay interval less 20 ns to 30 ns .

READOUT

Display - $71 / 2$ digit with leading zero suppression, ms legend in time delay mode. Plus (+) symbol reminds the operator to add on the Fine Delay (ns) setting.

ORDERING INFORMATION

7D11 Digital Delay Unit \$3,400 Includes: Instruction manual (070-1329-00).

7D12/M2

A/D Converter and Sample/Hold Module
7D12/M2
Oscilloscope-Controlled Sampling DVM
$\leqslant \mathbf{1 0}$ ns Aperture Uncertainty
Input Signal and Sample Points
Displayed on CRT

1 mV Resolution

25 MHz Bandwidth
0 V to 2 V and 0 V to 20 V Input Range, 200 V with P6055 Probe
Automatic, Manual, or External Triggering
Automatic Polarity and Overrange Indicators
31/2 Digit CRT Readout
The 7D12 is designed for use with all 7000 Series oscilloscope mainframes with CRT readout.
The M2 Sample/Hold Module measures voltage amplitude from ground to a selected point or the difference voltage between any two selected points (independent control of each point). The sample point(s) may be triggered automatically, manually, or externally from sources such as the oscilloscope's Delayed B gate, the 7D15's pseudo gate, 7D11's delayed trigger out, etc.
On command, the 7D12/M2 samples the displayed waveform and also generates a gate display. Both the signal and 7D12/M2 gate are displayed together providing a visual indication of where the sample(s) is taken. In the S_{1} mode (sample one), a single sample coincident with the rise of the 7D12/M2 displayed gate is taken, and the voltage amplitude, from the 0 V level, is digitally displayed on the CRT readout. In the $\mathrm{S}_{2}-\mathrm{S}_{1}$ mode (sample two minus sample one), two samples are taken, one at the rise and one at the fall of the 7D12/M2 displayed gate, and the voltage difference between these two points is digitally displayed on the CRT readout.

CHARACTERISTICS

Sample-Gate Display Amplitude - Two division, risetime and falltime 5 ns or less.
Analog-Signal Display - Bandwidth is dc to 25 MHz (dc coupling), 3.4 Hz to 25 MHz (ac coupling). Vertical Sensitivity is $100 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in 6 steps ($1-2-5$ sequence in combination with M2 range and 7D12 vertical display attenuation). Accuracy is within 5%.
Input R and $\mathbf{C}-1 \mathrm{M} \Omega$ and 20 pF .
Maximum Input Voltage - 100 V peak.
Measurement Readout - 0 V to 20 V in two ranges. $31 / 2$ digit presentation of 1.999 V and 19.99 V full scale, extended to 199.9 V with P6055 Probe.
Overrange Indication - When overrange occurs, a $>$ symbol appears to the left of the reading.
Aperture Uncertainty - 10 ns or less.
Pulse-Width Sample Time ($\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}$ Mode) 30 ns to 5 ms with repetitive signal. $150 \mu \mathrm{~S}$ to 5 ms with single-shot signal.
Measurement Rate - External Trigger: 1 to 12 measurements per second, depending on external trigger frequency and internal adustment. Auto Trigger: 1 to 4 measurements per second, internally adjustable.
Accuracy Without Probe* ${ }^{*}$

Temperature Range	S_{1} Mode	$\mathrm{S}_{\mathbf{2}}-\mathrm{S}_{1}$ Mode
$\begin{aligned} & +20^{\circ} \mathrm{C} \text { to } \\ & +30^{\circ} \mathrm{C} \end{aligned}$	$\pm 0.15 \%$ of $p-p$ input voltage, $\pm 0.1 \%$ of reading, ± 2 counts, \pm the percentage of ac decay*2	$\begin{aligned} & \pm 0.25 \% \text { of p-p } \\ & \text { input voltage, } \\ & \pm 0.15 \% \text { of reading. } \\ & +2 \text { counts, } \\ & \pm \text { the percentage } \\ & \text { of ac decay*2 } \\ & \hline \end{aligned}$
$\begin{aligned} & +15^{\circ} \mathrm{C} \text { to } \\ & +40^{\circ} \mathrm{C} \end{aligned}$	0.25% of p-p input voltage, $\pm 0.2 \%$ of reading, ± 3 counts, the percentage od ac decay*2	$\begin{aligned} & \pm 0.35 \% \text { of p-p } \\ & \text { input voltage, } \\ & \pm 0.25 \% \text { of reading. } \\ & \pm 3 \text { counts, } \\ & \pm \text { the percentage } \\ & \text { of ac decay*2 } \\ & \hline \end{aligned}$

* 40 ns after Input Signal Step Function
${ }^{* 2}$ Applicable when M2 is ac coupled.

Sample and Hold DVM measures difference voltage (-168.6 V) between two points on complex waveform. Gate waveform indicates two points; leading and trailing edges where voltage difference is made.

ORDERING INFORMATION

7D12 A/D Converter (Module Not Included)
Includes: Instruction manual (070-1469-00). M2 Sample/Hold Module
\$1,550
Includes: In addition to above, 3.5 ft P6055 probe package (010-6055-01).
Option 02 - Without P6055.
$-\$ 100$
For recommended probes see pages 191 and 426.

Modes	Range	Accuracy
Frequency Mode	Dc to 225 MHz Resolution 0.1 Hz max	$\epsilon_{\mathrm{Freq}}(\mathrm{~Hz})= \pm \mathrm{TB} \cdot \mathrm{f}_{\text {in }} \pm \frac{1}{\mathrm{~T}}$
Period and Multi-Period Mode	10 ns to 10^{5} seconds with selected averaging of 1 to 1000 events in decade steps. Resolution to 10 ps.	$\epsilon_{\text {Period(s) }}= \pm T B \cdot P_{\text {in }} \pm \frac{10^{-9}}{N} \pm \frac{2 E_{n p k}}{\frac{d v}{d t}} \cdot N \quad \pm \frac{P_{c k}}{N}$
Time Interval (TI) and TI Average Mode	6 ns to 10 seconds with selected averaging of 1 to 1000 in decade steps. Resolution is 0.1 ns .	
Frequency Ratio, CH B/Ext Clock	10^{-7} to 10^{4}	
Manual Stop Watch	0 to 10^{5} seconds	
Totalize, CH B	0 to 10^{8} counts	

Note: Formulas given where ϵ is the error; TB (expressed as a decimal) is the time base accuracy; Pin is the period of time interval of unknown signal; N is the number of events averaged; $P_{c k}$ is the measurement clock period; T is the gate time; fin is the frequency of the unknown signal; Enpk equals peak noise pulse amplitude as presented to Schmitt trigger circuit; dv/dt equals signal slope at input to Schmitt trigger (volts per second).

225 MHz Counter/Timer

7D15

Oscilloscope-Controlled Time and Frequency Measurements

10 ns Single-Shot Time Interval Measurement Resolution

Time Interval Averaging
CRT Display of Counting Interval
10 ps Period-Averaging Resolution
Frequency Measurements Directly to 225 MHz

Signal Conditioning via Mainframe Trigger Source
For Measurement Applications Guide order 42W-5017-1.

The 7D15 Universal Counter/Timer is designed for use in all 7000 Series oscilloscope mainframes with CRT readout.

The 7D15 can be completely controlled by the oscilloscope's delayed gate. Arming inputs are provided for each channel. By using the delayed B gate to control the start and stop count points, measurements can be made between any two points on the CRT display (See Figure 1).

The 7D15 offers all the measurement capabilities of a Universal Counter/Timer, such as time interval, period, period and time interval averaging, frequency, frequency ratio, totalize, and manual stop watch.
The 7D15 may be used in vertical or horizontal compartments of 7000 Series mainframes. It provides a full eight-digit CRT display with leading zero suppression and positioned decimal. Legend and averaging information appear at the bottom of the CRT display.

Figure 1. Oscilloscope-controlled digital measurements using the delayed B gate as the arming input logic allow user to make precise time interval measurement from third to seventh pulse on CRT display. Counter CH A is "armed" with leading edge of B gate while CHB Counter is "armed" with falling edge of B gate. Lower trace is pseudo gate of 7D15. CRT readout displays the result of $2325.295 \mu \mathrm{~s}$.

Figure 2. The propagation delay time between the input of a delay line (upper trace) and the output of the delay line (middle trace) is measured digitally. Lower trace is $7 D 15$ pseudo gate display. CRT readout displays the result of 151.0 ns .

CHARACTERISTICS
 INPUT SIGNAL CH A \& B

Frequency Range (CH B Only) - Dc Coupled: Dc to 225 MHz . Ac Coupled: 5 Hz to 225 MHz .

Sensitivity (CH A and B Inputs) - 100 mV p-p. Trigger Source: 0.5 division to $100 \mathrm{MHz}, 1.0$ division to 225 MHz , or to the vertical system bandwidth, whichever is less.
Input R and C-1 M Ω and 22 pF .
Triggering (Preset Position) - Automatically triggers at 0 V .
Level Control Range (CH A and B Inputs) -
100 mV Range: $\pm 500 \mathrm{mV}$. 1 V Range: $\pm 5 \mathrm{~V}$. 10 V Range: $\pm 50 \mathrm{~V}$.
Arming Inputs - Input R and C: $10 \mathrm{k} \Omega$ and 20 pF . Sensitivity Arm A: Logical $1 \geqslant+0.5 \mathrm{~V}$, logical $0 \leqslant+0.2 \mathrm{~V}$. Sensitivity Arm B: Logical 1 $\leqslant+0.2 \mathrm{~V}$, logical $0 \geqslant+0.5 \mathrm{~V}$.
External Clock-In - 20 Hz to 5 MHz .
Reset Front Panel - Readies the instrument. All counters are affected, including averaging circuits.

INTERNAL TIME BASE

Crystal Oscillator - Accuracy: Within 0.5 ppm $\left(0^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$ ambient). Long-Term Drift: 1 part or less in 10^{7} per month. Oscillator: Temperature compensated; no warm up is required.

OUTPUT SIGNALS
Clock Out - Logical $1 \geqslant+0.5 \mathrm{~V}$ into 50Ω. Logical $0 \leqslant 0 \mathrm{~V}$ into 50Ω. TTL compatible without 50Ω load (1.6 mA current capacity).
A and B Trigger Level - $Z_{\text {out }} \approx 1 \mathrm{k} \Omega$, Vout $= \pm 0.5 \mathrm{~V}$ into $1 \mathrm{M} \Omega$.
Displayed Waveform (Internally Connected) - Front-panel switch screwdriver controlled selects true gate, pseudo gate, or CH B signal out.
External Display - Same as internal except position control has no effect.
Display Mode Switch - 0.1 s to 5 s ; also a preset position for infinite display time. Allows selection of readout "follow or store."
Readout - Eight-digit display; the four most significant have zero suppression. Overflow indicated by a greater than symbol.

ORDERING INFORMATION

7D15 Universal Counter/Timer

\$3,495

Includes: Two 44 inch Sealectro to BNC connector cables ($012-0403-00$); instruction manual ($070-1433-00$).

7L14
Excellent Stability, Resolution Bandwidth Range
Digital Storage and Averaging
Swept Measurements with the Tek TR502
1 kHz to 2.5 GHz Coverage (Option 39)
Input Limiter for Extra Input Protection
Semiautomatic Measurements with the
Tek 7854

The Tektronix 7 L 14 is a VHF/UHF analyzer with digital storage. It provides high performance in the 10 kHz to 1.8 GHz range. Measurements for RFI/EMC, FM, TV, avionics, navigation, two-way and other communications sytems are made with accuracy and convenience.
Resolution bandwidth can be varied from 30 Hz to 3 MHz over the entire frequency range. Automatic phase lock ensures excellent stability-incidental FM is $\leqslant 13 \mathrm{~Hz}$ peak-to-peak. Phase noise sidebands are no greater than -70 dBc at 25 resolution bandwidths away.
All this gives you the critical accuracy necessary for design and proof-of-performance measurements. Check broadband RF networks, filter networks, amplifiers, and more...easily and economically.
For a complete description of the 7L14 see page 166.

7L12

Proven, Economical VHF/UHF Coverage
Automatic Phaselock, 300 Hz Resolution Bandwidth
Swept Measurements with the TR 502
Coverage to 2.5 GHz (Option 39)
Semiautomatic Measurements with the Tek 7854

The 7 L 12 is a popular instrument in applications not requiring the resolution, low-end coverage, and digital storage of the 7L14. Resolution bandwidth can be varied from 300 Hz to 3 MHz , with -115 dBm sensitivity at 300 Hz . Automatic phase lock results in good stability; residual FM is $\leqslant 200 \mathrm{~Hz}$ peak-to-peak.
The 7L12 meets the measurement requirements of many AM, FM, two-way radio and other communications systems.
The 7 L 12 has a 70 dB spurious-free display dynamic range; low level noise measurements are made accurately, easily.
For a complete description of the 7 L 12 see page 168.

7L5

Synthesizer Tuning

Digital Storage and Averaging

Three-Knob Operation

Preset Reference Level and Dot Frequency for Extra Input Protection

Swept Measurements (Option 25)

Selectable Input Impedance; Calibration in dBm, dBV or Volts Per Division
Semiautomatic Measurements with the Tek 7854

The Tektronix 7L5 provides easy-to-use lowfrequency measurement capability. The 7L5 can cover 20 Hz to 5 MHz in one display. Resolution bandwidth can be varied from 10 Hz to 30 kHz , with residual FM of no more than 1 Hz peak-to-peak. Comparing baseband channel performance is easy because the 7 L 5 switches from a single channel to a 60 -channel supergroup without retuning. You see all channel amplitudes at a glance, side-by-side.

Probe-compatible plug-in input modules provide a variety of impedances for the 7L5. The L3 may be switch-selected to 50Ω, 600Ω or $1 \mathrm{M} \Omega$. The L3 Option 01 is switchselectable to $75 \Omega, 600 \Omega$ or $1 \mathrm{M} \Omega$.
For a complete description of the 7 L 5 see page 170.

PULSE RESPONSE
Up to 175 ps T_{r}

PULSE RESPONSE

MEASUREMENT FLEXIBILITY

- Dc to $350 \mathrm{MHz}\left(\mathrm{T}_{\mathrm{r}} 1 \mathrm{~ns}\right.$) $1 \mathrm{M} \Omega-\mathrm{S}-5$
- Dc to $1 \mathrm{GHz}\left(\mathrm{T}_{\mathrm{r}} 350 \mathrm{ps}\right) 50 \Omega-\mathrm{S}-1$
- Dc to $1 \mathrm{GHz}\left(\mathrm{T}_{\mathrm{r}} 350 \mathrm{ps}\right) 100 \mathrm{k} \Omega-\mathrm{S}-3 \mathrm{~A}$
- Dc to $4.6 \mathrm{GHz}\left(\mathrm{T}_{\mathrm{r}} 75 \mathrm{ps}\right) 50 \Omega-\mathrm{S}-2$
- Dc to $11.5 \mathrm{GHz}\left(\mathrm{T}_{\mathrm{r}} 30 \mathrm{ps}\right) 50 \Omega-\mathrm{S}-6$
- Dc to $14 \mathrm{GHz}\left(\mathrm{T}_{\mathrm{r}} 25 \mathrm{ps}\right) 50 \Omega-\mathrm{S}-4$
- 1 GHz to 18 GHz Sinewave Trigger Countdown-S-51
$\cdot \leqslant 25 \mathrm{ps}$ Tr Pulse Generator-S-52
- Dc to 1 GHz Trigger Recognizer-S-53
$\bullet \leqslant 1$ ns T_{r} Pulse Generator-S-54

Sampling Plug-ins

7000 Series sampling plug-ins can increase the versatility of your mainframe by providing measurement capabilities up to 14 GHz on repetitive signals. The Sampling family consists of five plug-ins, ten specially-designed sampling heads, and various supporting accessories that provide maximum configurability for numerous applications.
Specific uses for samplers include general UHF measurement and TDR (Time Domain Reflectometry).

UHF Measurements

For flexibility in time domain measurement, the 7S11 Sampling Unit/7T11 Sampling Sweep combination provides triggering to 12.4 GHz , and the choice of modular heads for optimum signal acquisition. Two 7S11's and one 7 T11 provide dual-trace capability. For plug-in sampler operationally similar to conventional vertical/time base plug-ins, the 1 GHz 7 S 14 is available. Two identical channels provide $2 \mathrm{mV} /$ div sensitivity, dual trace display, built-in time base, and calibrated delayed sweep. All of these plug-ins provide a cost-effective way to obtain Gigahertz measurement capability for repetitive signals.

TDR

TDR is widely used in microwave stripline evaluation, computer backplane measurements, and printed circuit board testing. With TDR, a pulse is sent down a conductive path and measured as it reflects back from any impedance changes in the device under test. Any impedance variations in the path cause a corresponding signal to be displayed on the scope. The precise location and type of impedance anomaly (open, short, step change) in the conductive path is directly readable on the display. The fast risetimes of samplers make them well suited for these measurements. The high resolution 7 S12 TDR Sampler provides maximum versatility in addition to general purpose applications.
Use the Sampling Decision Tree diagram on the preceding page to select the configuration for your measurement requirement.

	Bandwidth	Risetime	Input Impedance	Noise	Connector
S-1	$\begin{gathered} \mathrm{Dc} \text { to } \\ 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\leqslant 350$ ps	50Ω	$\begin{aligned} & \leqslant 1 \mathrm{mV}^{*} 1 \\ & \leqslant 2 \mathrm{mV}^{*} \end{aligned}$	GR
S-2	$\begin{gathered} \mathrm{Dc} \text { to } \\ \text { 4.6 GHz } \\ \hline \end{gathered}$	$\leqslant 75$ ps	50Ω	$\begin{aligned} & \leqslant 3 \mathrm{mV}^{*} \\ & \leqslant 6 \mathrm{mV}^{*} \end{aligned}$	GR
S-3A	$\begin{gathered} \mathrm{Dc} \text { to } \\ 1 \mathrm{GHz} \\ \hline \end{gathered}$	$\leqslant 350$ ps	$100 \mathrm{k} \Omega$	$\leqslant 3 \mathrm{mV}$ at probe tip*2	Probe
S-4	$\begin{gathered} \mathrm{Dc} \text { to } \\ 14 \mathrm{GHz} \end{gathered}$	$\leqslant 25$ ps	50Ω	$\begin{array}{\|l\|} \hline \leqslant 2.5 \mathrm{mV}^{* 1} \\ \leqslant 5 \mathrm{mV}^{* 2} \end{array}$	$\begin{gathered} \text { SMA } \\ (3 \mathrm{~mm}) \\ \hline \end{gathered}$
S-5	$\begin{gathered} \mathrm{Dc} \text { to } \\ 350 \mathrm{MHz} \end{gathered}$	$\leqslant 1 \mathrm{~ns}$	$1 \mathrm{M} \Omega$	$\begin{array}{\|l\|} \leqslant 500 \mu V^{+1} \\ \leqslant 5 \mathrm{mV}^{* 2} \end{array}$	BNC
S-6	$\begin{gathered} \text { Dc to } \\ 11.5 \mathrm{GHz} \end{gathered}$	$\leqslant 30 \mathrm{ps}$	50Ω feed thru	$\leqslant 5 \mathrm{mv}^{* 2}$	SMA (3 mm)

[^23]

CRT photo shows an automated impedance measurement on a four foot length of 93Ω coax. An easy-to-use program allows the operator to obtain a direct readout in Ohms (bottom center) after positioning cursors on selected points on the display.
Automated Measurements with the 7854 Oscilloscope and 7S12 Sampler Plug-in

The 7854/7S12 combination is ideally suited for making a wide variety of automated sampling measurements. Examples of easy-to-program measurements are: measuring propagation delay through active or passive devices; measuring distance to faults in coax cables; and measuring impedance in EC boards and other controlled-impedance devices. Programs can be entered into the 7854 via the calculator keyboard for simple operator-controlled measurements, or tests can be computer-controlled via a remote terminal on the GPIB for production applications.

ACCESSORY PROBES FOR 50Ω SAMPLERS

Passive							
Type	Attenuation	Length*	Loading		Risetime (in ns)	Bandwidth	Package Number*2
P6056	10 X	6.0	500Ω	1 pF	<0.1	Dc to 3.5 GHz	$010-6056-03$
P6057	100 X	6.0	$5 \mathrm{k} \Omega$	1 pF	<0.25	Dc to 1.4 GHz	$010-6057-03$

P6201	$\begin{array}{r} 1 x \\ 10 x \\ 100 x \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \end{gathered}$	$\begin{gathered} 3 \mathrm{pF} \\ 1.5 \mathrm{pF} \\ 1.5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & <0.4 \\ & <0.4 \\ & <0.4 \end{aligned}$	Dc to 900 MHz Dc to 900 MHz Dc to 900 MHz	010-6201-01 (includes attenuators)
P6202A	10 X 100x	$\begin{aligned} & 2 \mathrm{~m} \\ & 2 \mathrm{~m} \end{aligned}$	$10 \mathrm{M} \Omega$ $10 \mathrm{M} \Omega$	$2 \mathrm{pF}$ 2 pF	$\begin{aligned} & <0.7 \\ & <0.7 \end{aligned}$	Dc to 500 MHz Dc to 500 MHz	010-6202-03 plus 010-0384-00 to provide 100X

Active - Variable Bias/Off́set*3									
P6230	10 X	1.6	450Ω	1.6 pF	$\leqslant 0.23 \mathrm{ps}$	Dc to 1.5 GHz	$010-6230-01$		

[^24]${ }^{* 2}$ Refer to probe section for additional information.
${ }^{* 3}$ Requires power source: Most four compartment mainframes provide probe power. See page 425 for Probe Power Supplies.

7S14/5S14N

Calibrated Delayed Sweep
Two-Dot Time Measurement
Dc to 1 GHz Bandwidth
Dual Trace, 2 mV Sensitivity
CRT Readout (7S14 Only)
Simplified Triggering
Operational Ease of a
Conventional Oscilloscope

The 7S14 and 5S14N Sampling Units provide dual-trace 1 GHz bandwidth in the 7000 and 5000 Series oscilloscope mainframes, respectively. Operation and specifications of the two units are identical except that the 5 S 14 N does not provide CRT readout. Each of the units occupies two plug-in compartments of a mainframe.

The two identical vertical channels of the 7S14/5S14N provide two millivolts per division sensitivity at the full 1 GHz bandwidth of the instrument. The $7 \mathrm{~S} 14 / 5 \mathrm{~S} 14 \mathrm{~N}$ also uses a two-ramp time base which provides calibrated delayed sweep to 100 picoseconds per division.
Learning to operate the 7S14/5S14N requires a minimum of effort for those familiar with conventional oscilloscope operation for 7000 or 5000 Series oscilloscopes. Frontpanel controls are grouped and color coded by function, and control nomenclature is similar to that of conventional oscilloscopes.
The two-dot measurement capability of the 7S14/5S14N provides an easy and accurate means of measuring time intervals on the displayed waveform. The two dots are positioned by the Delay controls; the time interval between them is determined by multiplying the Delay Time Multiplier setting by the selected time per division. This eliminates the need to interpolate between graticule markings on the CRT.

CHARACTERISTICS

The following specifications are identical for both units unless otherwise noted.

VERTICAL CHANNEL

Modes - CH 1 only; CH 2 only; Dual Trace; CH 1 added to $\mathrm{CH} 2 ; \mathrm{CH}_{2}$ subtracted from $\mathrm{CH}_{1}\left(\mathrm{CH}_{2}\right.$ Invert); CH 1 Vertical (Y), CH 2 Horizontal (X).
Input Impedance - Nominally 50Ω.
Bandwidth - Equivalent to dc to 1 GHz .
Risetime - 350 ps or less.
Step Aberrations - $+2 \%,-3 \%$, total of 5% p-p within first $5 \mathrm{~ns}, \pm 1 \%$ thereafter, both tested with a 284 Pulse Generator.

7S14 For 7000 Series Mainframes

Dual Trace Delayed Sweep Sampler*1
Deflection Factor $-2 \mathrm{mV} / \mathrm{div}$ to $0.5 \mathrm{~V} / \mathrm{div}$ in eight steps ($1-2-5$ sequence). Continuously variable between steps by at least 2.5 to 1 .
Accuracy - Within $\pm 3 \%$.
Maximum Input Voltage $- \pm 5 \mathrm{~V}$.
Input Signal Range -2 Vp -p maximum within $\mathrm{a}+2 \mathrm{~V}$ to -2 V window at any sensitivity.
Dc Offset Range - At least +2 V to -2 V .
Displayed Noise -2 mV or less unsmoothed (measured tangentially). Low noise pushbutton reduces random noise by a factor of 4 to 1 or more.
Vertical Signal Output - $0.2 \mathrm{~V} /$ div of vertical deflection; $10 \mathrm{k} \Omega$ source resistance.
Channel Delay Difference - Adjustable to zero, or for any time difference up to at least 1 ns .

TIME BASE

Scan Modes - Repetitive, single, manual, or external.
Delaying Sweep - May be used as the CRT time base or as a delay generator for the delayed sweep. The sweep starts with minimum delay from the instant of trigger recognition. When the delaying sweep mode is selected for the time base, two bright dots in the trace, which may be positioned anywhere on the displayed waveform, are generated. The time between dots is equal to the reading on the Delay Time Multiplier dial multiplied by the Time/Div.
Delayed Sweep - This mode is used when the signal to be displayed occurs considerably later than the instant of trigger recognition or when the time must be 5 ns or less per division. The delayed sweep may be started with zero delay time with respect to the start of the delaying sweep. Or the start may be delayed by any time interval up to that represented by ten divisions of the delaying sweep selected.
Horizontal Signal Output - $1.0 \mathrm{~V} / \mathrm{div}$ of horizontal deflection; $10 \mathrm{k} \Omega$ source resistance.

DELAYING SWEEP

Range - $10 \mathrm{~ns} /$ div to $100 \mu \mathrm{~s} /$ div in 13 steps (1-25 sequence).
Accuracy - Within $\pm 3 \%$, excluding first 0.5 division of displayed sweep.

Delayed Zero (1st Dot) - Adjustable to correspond to any instant within the time interval represented by the first nine division of the delaying sweep selected.
Delay Time (2nd Dot) - Adjustable to any position of the time interval represented by ten division of the delaying sweep selected.
Delay Accuracy - Within $\pm 1 \%$ of ten division when measurement is made within the last 9.5 division.

DELAYED SWEEP

Range - $100 \mathrm{ps} /$ div to $100 \mu \mathrm{~s} /$ div in 19 steps (1-2-5 sequence). Variable between steps by at least 2.5 to 1.
Accuracy - Within $\pm 3 \%$ excluding first 0.5 division of displayed sweep.
Start Delay - Depends on the delaying sweep time selected and the setting of the Delay Time Multiplier dial. Adjustable from zero to any time interval up to that represented by ten divisions of the delaying sweep selected. The delaying sweep start point corresponds to the position of the second bright dot.
Delay Jitter - $<0.05 \%$ of the time represented by one division of the delaying sweep selected.

TRIGGERING AND SYNC

Signal Sources - Internal from CH 1 vertical input or external through front-panel connector. External Triggering - Nominal 50Ω input, ac coupled, 2 V p-p 50 V dc maximum. Trigger pulse amplitude 10 mV p-p or more with risetime of $1 \mu \mathrm{~S}$ or less. 10 Hz to 100 MHz . Sinewave amplitude 10 mV p-p or more from 150 kHz to 100 MHz .
Internal Triggering - Pulse amplitude 50 mV $\mathrm{p}-\mathrm{p}$ or more with risetime of $1 \mu \mathrm{~s}$ or less. Sinewave amplitude $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more from 150 kHz to 100 MHz .
Triggered Mode - Trigger recognition may be made to occur at any selected voltage level between +0.5 V and -0.5 V on either $\mathrm{a}+$ slope or $a-s l o p e ~ o f ~ t h e ~ t r i g g e r i n g ~ s i g n a l . ~$
Autotrigger Mode - For small signals or when there may be no triggering signal. Sampling pulses are automatically generated at a low rate in the absence of a triggering signal so that a trace may always be generated and displayed. The trigger level range automatically adjusts to approximately the $p-p$ voltage of the signal.
Holdoff - Varies the length of the interval during which recognition is inhibited. Variation is at least 5 to 1 . The control is particularly useful for displaying digital words when triggering on binary pulses.
HF SYNC Mode - For sinewaves from 100 MHz to $1 \mathrm{GHz}, 10 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more from external source, $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more from internal pickoff.

[^25]
7S12

45 ps TDR or a General Purpose Sampler

6 Plug-In Sampling Heads Available
2 Plug-In Pulse Sources Available
1 Trigger Recognizer Head Available
1 Trigger Countdown Head Available

The 7S12 is a combined vertical-horizontal, double-width plug-in for high resolution TDR or general purpose sampling measurements. As a TDR using the S-6 Sampling Head and S52 Pulse Generator Head, the 7S12 has a system risetime of 45 ps (return from short-circuit termination) and distance range to 250 feet in any cable. Its vertical scale is caliated in reflection coefficient (ρ) from $2 \mathrm{~m} /$ /div to $500 \mathrm{~m} \rho /$ div and in voltage from $2 \mathrm{mV} /$ div to $500 \mathrm{mV} /$ div. Two-way time or one-way distance to a discontinuity of interest is read directly from tape dial calibrated for time, air, polyethylene, or your choice of dielectrics. As a long line TDR using the S5 Sampling Head and S-54 Pulse Generator Head, distance calibration extends to 4900 feet (air line) and discontinuities to twice this distance may be viewed. System risetime with this combination is 1.5 ns .
General-purpose measurements may be made by using an $\mathrm{S}-1, \mathrm{~S}-2, \mathrm{~S}-3 \mathrm{~A}, \mathrm{~S}-4, \mathrm{~S}-5$, or S-6 Sampling Head with an S-53 Trigger Recognizer Head or S-51 Trigger Countdown Head. For dual-trace sampling displays, use a 7S11 Sampling Unit with a 7S12. The addition of a 7M11 Dual Delay Line provides the signal delay necessary to view the triggering event when a pretrigger signal is not available.

CHARACTERISTICS
 SYSTEM PERFORMANCE WITH
 S-6 AND S-52

System Risetime - 35 ps or less for the incident step. 45 ps or less for the displayed reflection from a short-circuited, 1 ns test line.
Time and Distance Ranges - Direct-reading tape dial gives calibrated one-way distance to at least 375 ft (air line). Time range is at least $0.75 \mu \mathrm{~S}$ round trip. Both ranges are limited by the duration of the pulse from the S-52.
Pulse Amplitude - At least +200 mV into 50Ω.
Input Characteristics - Nominal 50Ω, feedthrough signal channel (termination supplied). SMA (3 mm) connectors.
Jitter - $<10 \mathrm{ps}$ (without signal averaging).
Aberrations - $+7 \%,-7 \%$, total of 10% p-p within 1.8 ns of step with reference point at 1.8 ns from step; $+2 \%,-2 \%$, total of 4% p-p after first 2.5 ns with reference point at 300 ns from step.

7S12

TDR/Sampler

TDR SYSTEM PERFORMANCE WITH S-5 AND S-54
System Risetime - 1.5 ns or less for the displayed reflection from a short-circuited test line.
Time and Distance Ranges - Direct-reading tape dial gives calibrated one-way distances to 4900 ft (air line), 3240 ft solid polyethylene. Time range is $20 \mu \mathrm{~S}$ round trip.
Pulse Amplitude - At least +400 mV into 50Ω.
Input Characteristics - Nominal 50Ω test line connection (cable and T supplied). BNC connectors.
Jitter $-<20 \mathrm{ps}$ (without signal averaging).
Aberrations - $+4 \%,-6 \%$, total of $10 \% \mathrm{p}$-p within first 17 ns of step; $+1.5 \%,-1.5 \%$, total of 3% thereafter.

The 7S12 displays reflection coefficient (ρ) versus distance on a device-under-test. Here the 7S12 measures a reflection caused by a crack (open) in a PCB under test. Distance can be read directly from the 7S12 front panel, or calculated from the time base settings.

NOTE: See 1502 and 1503 Portable TDR Cable testers on page 153.

OTHER 7S12 CHARACTERISTICS

Vertical Scale - Calibrated in $\mathrm{m} \rho$ (reflection coefficient 10^{-3}) and mV from 2 to 500 units/division in eight steps ($1-2-5$ sequence), accurate within 3\%. Uncalibrated variable is continuous between steps.
Resolution - Reflection coefficients as low as 0.001 may be observed. Signal averaging reduces test-line noise in display.
Dc Offset Range -+1 V to -1 V . Allows open-circuit reflections to be displayed at full sensitivity. Monitor jack provides X10 dc offset through $10 \mathrm{k} \Omega$.
Time/Distance - Tape Dial is Calibrated in Time and Distance: Full-scale ranges of 4900 ft , $490 \mathrm{ft}, 49 \mathrm{ft}$ (air dielectric); $3200 \mathrm{ft}, 320 \mathrm{ft}, 32 \mathrm{ft}$ (polyethylene dielectric); and $10 \mu \mathrm{~s}, 1 \mu \mathrm{~S}, 0.1 \mu \mathrm{~S}$ (time). Accurate within 1%. Distance calibration may be preset for dielectric having propagation factors from 0.6 to 1 .
Time/Div - $20 \mathrm{ps} / \mathrm{div}$ to $1 \mu \mathrm{~s} / \mathrm{div}$ (1-2-5 sequence) in three ranges with direct-reading magnifier. Accurate within 3%. Uncalibrated variable is continuous between steps.
Locate Button - Provides instant return to unmagnified display showing entire full-scale range. Brightened portion of trace indicates time position and duration of magnified display.
Display Modes - Repetitive or single sweep, manual or external scan.
Signal Outputs - Pin jacks provide both vertical signal and sweep outputs.

ORDERING INFORMATION

$7 S 12$ TDR/Sampler without Sampling Heads (Tape Dial in Feet)
\$3,985
Includes: 750 ps rigid " U " delay line ($015-1017-01$); shortcircuit termination ($015-1021-00$); TDR graticule overlay ($331-0296-00$); TDR slide rule ($003-0700-00$); TDR graticule overlay (331-0297-00); instruction manual (070-1244-00).
Option 03 - Tape Dial Change (Meters). $\quad \mathbf{\$ 2 5}$

RECOMMENDED MAINFRAME
 See Page 201

7603 Oscilloscope Mainframe
\$3,250

OPTIONAL ACCESSORIES

3 ft Sampling-Head Extender -
Order 012-0124-00
\$415
6 ft Sampling-Head Extender Order 012-0125-00

Extenders allow the user to locate the sampling head directly in a test fixture, avoiding potential signal degradation by cables.

7S11

Sampling Unit

7S11

$2 \mathrm{mV} /$ div to $200 \mathrm{mV} /$ div
Calibrated Deflection Factors

Plug-In Sampling Heads

The 7S11 single-channel sampling unit employs the sampling plug-in head concept. The heads, which mount in the 7S11, range in bandwidth from 350 MHz to 14 GHz .
The 7S11 can be used for a variety of applications. Single-channel sampling uses one 7S11 with a 7T11A Time Base. Two 7S11s and one 7T11A provide dual-trace sampling. One 7S11 and one 7S12 provide dual-trace sampling. Two 7S11s can be used for $X-Y$ operations.

CHARACTERISTICS

Deflection Factor - $2 \mathrm{mV} /$ div to $200 \mathrm{mV} /$ div in seven steps (1-2-5 sequence), accurate within 3%. Uncalibrated variable is continuous (extends deflection factor from $1 \mathrm{mV} /$ div or less to at least $400 \mathrm{mV} / \mathrm{div}$). Deflection factor is determined by the plug-in sampling head.
Bandwidth - Determined by the sampling head. Input Impedance - Determined by the sampling head.
Dc Offset - Range, +1 V to -1 V or more. Offset out is 10X the offset voltage within 2%. Source R is $10 \mathrm{k} \Omega$ within 1%.
Delay Range - At least 10 ns for comparing two signals in a dual-trace application.
Memory Slash - 0.1 div or less at 20 Hz .
Vertical Signal Out - 200 mV per displayed div within 3\%.
Ambient Temperature - Performance characteristics are valid over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

[^26]7T11A

Sampling Sweep Unit

7T11A

$10 \mathrm{ps} / \mathrm{div}$ to $\mathbf{5 m s} / \mathrm{div}$ Calibrated Time Base
Random or Sequential Sampling
Equivalent or Real Time Sampling

No Pretrigger Required

The 7T11A Sampling Time Base provides equivalent-time and real-time horizontal deflection for single-trace or dual-trace sampling. Timing accuracy is within 3% and nonlinearity is well below 1\%. Triggering range is from approximately 10 Hz (sequential mode) to above 12.4 GHz . The 7T11A works with all 7000 Series instruments and is a companion unit to the 7S11.

CHARACTERISTICS

Time/Division Range - $10 \mathrm{ps} /$ div to $5 \mathrm{~ms} /$ div (1-2-5 sequence) directly related to time position ranges. Uncalibrated variable is continuous between steps to at least $4 \mathrm{ps} /$ div.
Time Position Range - Equivalent time is 50 ns to $50 \mu \mathrm{~s}$ in four steps; real time is 0.05 ms to 50 ms in three steps.
Time/Division Accuracy - Within 3\% for all time/division settings over center 8 cm .

TRIGGERING

External 50Ω Input - Frequency range is dc to 1 GHz in 1X Trig Amp mode. Sensitivity range is 12.5 mV to 2 V p-p (dc to 1 GHz) in X1 Trig Amp, 1.25 mV to 2 V p-p (1 kHz to 50 MHz) in X10 Trig Amp. Input R is 50Ω within 10%. Maximum input voltage is 2 V (dc + peak ac).
External $1 \mathbf{M} \Omega$ Input - Frequency range is dc to 100 MHz in X 1 Trig Amp mode. Sensitivity range is 12.5 mV to 2 V p - (dc to 100 MHz in X 1 Trig Amp, 1.25 mV to $2 \mathrm{Vp}-\mathrm{p}(1 \mathrm{kHz}$ to 50 MHz) in $\times 10$ Trig Amp. Input R is $1 M \Omega$ within 5%. Maximum input voltage is $100 \mathrm{Vp-p}$ to 1 kHz (derating 6 dB per octave to a minimum $5 \mathrm{~V} p-p$).

External HF Sync - Frequency range is 1 GHz to 12.4 GHz . Sensitivity range is 10 mV to $500 \mathrm{mV} \mathrm{p}-\mathrm{p}$. Input R is $1 \mathrm{M} \Omega$. Maximum input voltage is $2 \mathrm{Vp} p$. Internal Trigger Source (Sinewave Triggering)** - Frequency range is 5 kHz to 500 MHz in X1 Trig Amp: 5 kHz to 50 MHz in X10 Trig Amp. Sensitivity range is 125 mV to 1 Vp -p (referred to the vertical input) in X1 Trig Amp; 12.5 mV to $1 \mathrm{Vp}-\mathrm{p}$ (referred to the vertical input) in the X 10 Trig Amp.

* 1 Trigger circuits will operate to dc with pulse triggering, except for HF Sync.
Random Mode Trigger Rate - 100 Hz minimum.
Display Jitter*1

Time Pos Range	Sequential Mode	Random Mode
$50 \mu \mathrm{~s}$ to 500 ns	0.4 div or less	1 div or less
50 ns	10 ps	30 ps

* ${ }^{1}$ Measured under optimum trigger conditions with Time/ Division switch clockwise.
Pulse Out - Positive pulse amplitude at least 400 mV (into 50Ω) with 2.5 ns risetime or less.
Trigger Kickout -2 mV or less into 50Ω (except HF SYNC).
Display Scan Rate - Continuously selectable from at least 40 sweeps/s to <2 sweeps/s.
External Scan - Deflection factor is continuously variable from $1 \mathrm{~V} /$ div to $10 \mathrm{~V} /$ div. Input R is $100 \mathrm{k} \Omega$ with 10%. Maximum input voltage is 100 V (dc + peak ac).
Sweep Out - $1 \mathrm{~V} /$ div within 2%. Source R is $10 \mathrm{k} \Omega$ within 1%.
Ambient Temperature - Performance characteristics are valid over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

7511 and 7T11A Plug-ins together provide accurate measurements on repetitive signals. Pulse risetime of 21 ps shown.

ORDERING INFORMATION

7T11A Sampling Sweep Unit
Includes: 42 inch BNC 50Ω cable ($012-0057-01$); 3 mm SMA male to BNC adaptor (015-1018-00); 3 mm SMA male to GR874 adaptor (015-1007-00); 10X 50Ω attenuator ($011-0059-02$); instruction manual ($070-0986-00$).

7M11

Delay Line
7M11
75 ns Time Delay

Selectable Trigger out

175 ps Risetime
The 7M11 is a passive dual delay line for use with the 7000 Series sampling system. In low-repetition-rate applications requiring the sequential mode of operation, the 7M11 provides the trigger source and signal delay necessary to view the triggering event at fast time-per-division settings.
Vertical delay for two 7S11 vertical sampling units is available with the dual $50 \Omega, 75 \mathrm{~ns}$ delay lines. The closely matched (30 ps) lines have GR874 input-output connectors, 175 ps risetime, and 2 X signal attenuation. Trigger selection is from either input, 5 X attenuated, with a risetime of 600 ps or less.

CHARACTERISTICS

DELAY LINE
Time Delay - 75 ns within 1 ns .
Delay Difference - 30 ps or less between channels.
Risetime - 175 ps or less.
Attenuation - 2 X within 2% into 50Ω.
Input Impedance - 50Ω within 2%.
Maximum Input - $\pm 5 \mathrm{~V}$ (dc + peak ac).

TRIGGER OUTPUT

Risetime - 600 ps or less.
Attenuation - 5 X within 10% into 50Ω (referred to input).
Output Impedance - 50Ω within 10%.
Ambient Temperature - Performance characteristics are valid over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

[^27]

The S-1 Sampling Head is a low noise, 350 ps risetime unit with a 50Ω input impedance. The S-1 can be plugged in or attached by a cable for remote use. A trigger pickoff within the S-1 provides a trigger signal output from the plug-in unit.
Risetime - 350 ps or less.
Bandwidth - Equivalent to dc to 1 GHz at 3 dB down.
Transient Response - Aberrations as observed with the 284 Pulse Generator are $+0.5 \%$, -3% or less, total of 3.5% or less p-p, first 5 ns following the step transition; -0.5% or less, total of 1% or less $p-p$ after 5 ns .

Displayed Noise - Smoothed: 1 mV . Unsmoothed: 2 mV or less.
Signal Range - Variable dc offset allows signals between +1 V and -1 V limits to be displayed at $2 \mathrm{mV} /$ div. Signals between +2 V and -2 V limits may be displayed at $200 \mathrm{mV} / \mathrm{div}$. For best dot response with random-sampling sweep unit, signal amplitude should be $<500 \mathrm{mV}$ p-p. Input Characteristics - Norminally 50Ω. Safe overload is $\pm 5 \mathrm{~V}$. GR874 input connectors.
Weights - Net: 0.5 kg (1.0 lb). Shipping: 1.4 kg (3.0 lb).

ORDERING INFORMATION

S-1 Sampling Head

\$1,360
Includes: $5 \mathrm{~ns}, 50 \Omega$ RG58 A/U cable (017-0512-00); 10X, 50Ω GR attenuator (017-0078-00); instruction manual (070-0763-00).

S-2
 Dc to 4.6 GHz Bandwidth
 Displayed Noise $<6 \mathrm{mV}$ (Unsmoothed)
 Internal Trigger Pickoff

The S-2 Sampling Head is a 75 ps risetime unit with a 50Ω input impedance. The S-2 can be plugged in or attached by a cable for remote use. A trigger pickoff within the $\mathrm{S}-2$ provides a trigger signal output from the plug-in unit.
Risetime - 75 ps or less.
Bandwidth - Equivalent to dc to 4.6 GHz at 3 dB down.
Transient Response - Aberrations as observed with the 284 Pulse Generator are $+5 \%$, -5% or less, total of 10% or less p-p, first 2.5 ns following a step transition; $+2 \%,-2 \%$ or less total of 4% or less p-p after 2.5 ns .
Displayed Noise - Smoothed: 3 mV . Unsmoothed: 6 mV or less.

Signal Range - Variable dc offset allows signals between +1 V and -1 V limits to be displayed at $2 \mathrm{mV} /$ div. Signals between +2 V and -2 V limits may be displayed at $200 \mathrm{mV} / \mathrm{div}$. For best dot response with random-sampling sweep unit, signal amplitude should be $<200 \mathrm{mV}$ p-p.
Input Characteristics - Nominally 50Ω. Safe overload is $\pm 5 \mathrm{~V}$. GR874 input connectors.
Weights - Net: $0.5 \mathrm{~kg}(1.0 \mathrm{lb})$. Shipping: 1.4 kg (3.0 lb).

ORDERING INFORMATION

S-2 Sampling Head

\$1,595
Includes: 50Ω GR attenuator ($017-0078-00$); $5 \mathrm{~ns}, 50 \Omega$ RG213/U Cable (017-0502-00); 10X, instruction manual (070-0764-00).

S-3A

Displayed Noise $<3 \mathrm{mV}$ (Unsmoothed)
Dc to 1 GHz Bandwidth
Compact, $4.5 \mathrm{ft}, 100 \mathrm{k} \Omega, 2.3 \mathrm{pF}$ Probe
The S-3A Sampling Head is an active sam-pling-probe unit with $100 \mathrm{k} \Omega, 2.3 \mathrm{pF}$ input impedance. Up to 2 V of dc offset may be used while maintaining a $2 \mathrm{mV} / \mathrm{div}$ deflection factor.
Risetime - 350 ps or less.
Bandwidth (Probe Only) - Equivalent to dc to 1 GHz at 3 dB down.
Transient Response (Probe Only) - Aberrations in the first 2 ns following a step are $+8 \%$, -2% or less, total of 10% or less $p-p,+1 \%$, -1% or less, total of 2% or less $p-p$ after 2 ns , with 284 pulse displayed.
Displayed Noise (Probe Only) -3 mV or less referred to probe tip (includes 90% of dots).
Signal Range - Variable dc offset allows signals between $+1 \mathrm{~V}, 1 \mathrm{X}$ range, or +2 V and $-2 \mathrm{~V}, 2 \mathrm{X}$ range, to be displayed at $2 \mathrm{mV} / \mathrm{div}$. The signal range may be increased 10X or 100X with the probe attenuators.
Weight - Net: $1.4 \mathrm{~kg}(3.0 \mathrm{lb})$. Shipping: 2.3 kg (5.0 lb).

ORDERING INFORMATION

S-3A Sampling Head

\$2,070
Includes: 10X attenuator head ($010-0364-00$); 100X attenuator head (010-0365-00); two test-point jacks (131-0258-00); coupling capacitor (011-0098-00); probe tip (206-0114-00); tip ground adaptor ($013-0085-00$); $51 / 2$ inch ground lead (175-1017-00); 12 $1 / 2$ inch ground lead (175-1018-00); 3 inch cable assembly (195-6176-00); end cap (200-0834-00); three ground clips (344-0046-01); two end caps (200-0835-00); probe holder (352-0090-00); carrying case (016-0121-01); 6 inch elec lead (175-0849-00); 3 inch elec lead (175-0849-00); retractable hook tip (013-0097-01); 50Ω voltage pickoff (017-0077-01); instruction manual (070-1148-00).

The S-4 Sampling Head is a 25 ps risetime unit with a 50Ω input impedance. The S-4 can be plugged into the sampling unit or attached by a sampling head extender for remote use. A trigger pickoff within the S-4 provides a trigger signal output from the plug-in unit.

Risetime - 25 ps or less.

Bandwidth - Equivalent to dc to 14 GHz at 3 dB down.
Transient Response - Aberrations in the first 400 ps following a step from an S-52 Pulse Generator Head are $-10 \%,+10 \%$ or less, total of 20% or less p-p. From 400 ps to 25 ns following a step from a 284 Pulse Generator, $-0 \%,+10 \%$ or less, total of 10% or less, p-p with 284 pulse displayed; after $25 \mathrm{~ns},-2 \%,+2 \%$ or less, total of 4% or less $p-p$.
Displayed Noise - Smoothed: 2.5 mV . Unsmoothed: 5 mV or less.
Signal Range - Variable dc offset allows signals between +1 V and -1 V limits to be displayed at $2 \mathrm{mV} / \mathrm{div}$. For best dot-transient response with random-sampling sweep unit, signal amplitude should be less than 500 mV p-p.
Input Characteristics - Nominally 50Ω. Safe overload is $\pm 5 \mathrm{~V}$. SMA (3 mm) input connector.
Weight - Net: 0.5 kg (1.0 lb). Shipping: 0.9 kg (2.0 lb).

ORDERING INFORMATION

S-4 Sampling Head
\$3,120
Includes: 10X 50Ω SMA attenuator ($015-1003-00$); 2 ns cable with SMA connectors (015-1005-00); GR874 to SMA male adaptor ($015-1007-00$); SMA male-to-male adaptor ($015-1011-00$); 5/16 inch wrench ($003-0247-00$); instruction manual (070-0896-01).

S-5

Dc to 350 MHz Bandwidth
1 M $\Omega, 15 \mathrm{pF}$ Input
Impedance
Passive Probe
Internal Trigger Pickoff

Risetime - S-5 Only: 1 ns or less. With 3.5 ft P6010: 1 ns or less.
Bandwidth - Equivalent to dc to 350 MHz at 3 dB down at input connector or probe tip.
Transient Response - S-5 Only (Driven with a 50Ω Source Terminated in 50Ω): Aberrations $+2.5 \%,-5 \%$ or less, total of 7.5% or less p-p within 17 ns after step; $+1 \%,-1 \%$ or less, total of 2% or less $p-p$ thereafter.
S-5/P6010 (3.5 ft Probe, Properly Compensated): Aberrations $+5 \%,-5 \%$ or less total of 10% or less p-p within 25 ns after step; $+1 \%,-1 \%$ or less total of 2% or less $p-p$ thereafter.
Displayed Noise - S-5 Only: $500 \mu \mathrm{~V}$ or less (includes 90% of dots). S5/P6010: 5 mV or less (includes 90% of dots).
Signal Range - S-5 Only: Dc coupled is $1 \mathrm{Vp-p}$ from +1 V to -1 V . Ac coupled is $1 \mathrm{~V} p-\mathrm{p}$. S5/P6010: Dc coupled (dc + peak ac) is 10 V $\mathrm{p}-\mathrm{p}$. Ac coupling, dc voltage is 100 V .
Input Characteristics - S-5 Only: $1 \mathrm{M} \Omega$ within 1% paralleled by 15 pF . S-5/P6010: $10 \mathrm{M} \Omega$ paralleled by $\approx 10 \mathrm{pF}$.
Attenuator Accuracy - Probe attenuation is 10X within 3%.
Weight - Net: $0.3 \mathrm{~kg}(0.6 \mathrm{lb})$. Shipping: 0.9 kg (2.0 lb).

ORDERING INFORMATION

S-5 Sampling Head

\$1,555
Includes: 50Ω termination (011-0049-01); P6010 probe package ($010-0188-00$); instruction manual (070-0942-00).

The S-6 Sampling Head is a 50Ω feedthrough unit for high-speed applications.
Risetime - 30 ps or less. 35 ps or less as observed with S-52 Pulse Generator.
Bandwidth - Equivalent to dc to 11.5 GHz at 3 dB down.
Transient Response - Pulse aberrations following the steps are $+7 \%,-7 \%$, total of 10% $\mathrm{p}-\mathrm{p}$ within 1.8 ns of step with reference point at 1.8 ns from step; $+2 \%,-2 \%$, total of 4% p-p after first 2.5 ns with reference point at 300 ns from step.
Displayed Noise - 5 mV or less, measured tangentially.
Signal Range -+1 V to -1 V (dc + peak ac$)$. 1 Vp -p. Dc offset allows any portion of input signal to be displayed.
Input Characteristics - Nominally 50Ω, loopthrough system, unterminated. SMA (3 mm) connectors. Safe overload is $\pm 5 \mathrm{~V}$.
Weight - Net: $0.5 \mathrm{~kg}(1.0 \mathrm{lb})$. Shipping: 0.9 kg $(2.0 \mathrm{lb})$.

ORDERING INFORMATION

S-6 Sampling Head

\$2,685
Includes: 50Ω termination (015-1022-00); 1 ns 50Ω cable ($015-1019-00$); SMA (3 mm) female-to-female adaptor ($015-1012-00$); combination wrench (003-0247-00); SMA male-to-GR874 adaptor (015-1007-00); instruction manual (070-1128-01).

TIMING HEAD CHARACTERISTICS

	Bandwidth	Risetime	Application
S-51	1 GHz to 18 GHz trigger countdown	-	High Speed Sinewave Sampling
S-52	-	$\leqslant 25 \mathrm{ps}$	High Resolution TDR
S-53	Dc to 1 GHz trig- ger recognizer	-	General Purpose Sampling
S-54	-	$\leqslant 1 \mathrm{~ns}$	Medium Resolution TDR

S-51

18 GHz Countdown
10 ps or Less Trigger Jitter

The S-51 Trigger Countdown Head is a freerunning tunnel-diode oscillator designed to provide stable sampling displays of sinewaves from 1 GHz to 18 GHz . The S-51 has a front-panel sync control that synchronizes the oscillator frequency to a subharmonic of the input signal. The output from the S-51 is available at a front-panel trigger output connector and through a rearpanel connector for internal triggering. The output signal is a direct countdown of the input and permits triggering by a standard sampling time-base unit.
Input Signal - Frequency range is 1 GHz to 18 GHz . Stable synchronization on signals at least $100 \mathrm{mV} \mathrm{p}-\mathrm{p}$, as measured separately into 50Ω, 5 V , p-p maximum.
Input Characteristics - 50Ω SMA (3 mm) connector. Open termination paralleled by 1 pF .
Trigger Output - Front-panel trigger output is at least 200 mV into 50Ω, BSM type connector. Internal trigger output is at least 100 mV into 50Ω, internally connected to sampling unit. Jitter is 10 ps or less with signals from 5 GHz to 18 GHz ; 15 ps or less with signals from 1 GHz to 5 GHz . Kickout at signal input connector is 400 mV or less; kickout occurs between successive samples.
Weight - Net: $0.5 \mathrm{~kg}(1.0 \mathrm{lb})$. Shipping: 2.3 kg (5.0 lb).

ORDERING INFORMATION

S-51 Trigger Countdown Head
\$1,655
Includes: Instruction manual (070-0898-00).

The S-52 Pulse Generator Head is a tunneldiode step generator designed for use with the 7S12 as a high resolution TDR (Time Domain Reflectometer). For TDR applications, it features automatic bias circuit control to eliminate effects of tunnel-diode and load changes. A 50Ω reverse termination minimizes reflections. The pulse width is sufficient for distances up to 250 ft in any cable. A pretrigger output allows operation in sequential sampling systems without a delay line.
Pulse Output - Risetime is 25 ps or less. Amplitude into 50Ω is at least 200 mV , positive-going. Pulse duration when used with the $7 S 12$ in the TDR mode is typically 750 ps . Pulse duration when powered by the 7 S 11 is $>800 \mathrm{~ns}$. Pulse period $16 \mu \mathrm{~s}$ within $2 \mu \mathrm{~s}$. Pulse aberrations following the step are $+7 \%,-7 \%$, total of $10 \% \mathrm{p}$-p within 1.8 ns of step with reference point at 1.8 ns from step, $+2 \%,-2 \%$, total of $4 \% p-p$ after first 2.5 ns with reference point at 300 ns from step.

Pretrigger Output - Risetime is 1 ns or less. Amplitude into 50Ω is at least 1 V , positive going. Pretrigger pulse duration is 4 ns . Pretrigger occurs 85 ns (within 5 ns) before the pulse output. Pretrigger to pulse output jitter is 10 ps or less. Pretrigger output is also available at rear connector for internal triggering of the sampling sweep unit.
Output Connectors - Pulse output uses an SMA (3 mm) connector. Pretrigger output uses a BSM connector.
Weight - Net: $0.3 \mathrm{~kg}(0.8 \mathrm{lb})$. Shipping: 0.5 kg (1.0 lb).

ORDERING INFORMATION

S-52 Pulse Generator Head \$1,920
Includes: 1 ns, 50Ω semirigid coax delay line (015-1023-00); instruction manual (070-1101-01).

The S-53 Trigger Recognizer Head is intended for use with the 7S12 to permit operation as a general-purpose sampling system. The S-53 supplies triggering for the 7S12.
Input Characteristics - Frequency range is dc to 1 GHz . Sensitivity range is 10 mV to $2 \mathrm{~V} \mathrm{p}-\mathrm{p}$ into 50Ω. Kickout at input, $\pm 5 \mathrm{mV}$ or less.

Output Characteristics - Risetime is 1 ns or less. Amplitude is at least 1.5 V positive-going into 50Ω. Pulse duration is 3 ns within 2 ns at the 50% amplitude level. Pulse period is $27 \mu \mathrm{~s}$ minimum. Trigger-to-signal delay is 15 ns or less.
Connectors - Trigger input connector is BNC type. Front-panel trigger output connector is BSM type. Trigger output is also available at rear connector for internal triggering.
Weight - Net: $0.3 \mathrm{~kg}(0.8 \mathrm{lb})$. Shipping: 0.5 kg (1.0 lb).

ORDERING INFORMATION

S-53 Trigger Recognizer Head \$1,390 Includes: 42 inch, 50Ω cable ($012-0057-01$); $10 \times 50 \Omega$ attenuator (011-0059-02); instruction manual (070-1147-00).

S-54

The S-54 Pulse Generator Head is a step generator designed for use with the 7S12 as a long line TDR unit.
For TDR applications, it S-54 is 50Ω reverse terminated to minimize reflections and has a 0 V base line to eliminate base line shift with load changes. A continuously variable frontpanel control enables adjustment of pretrigger lead time. The pretrigger output allows operation in sequential sampling systems without a delay line.
Pulse Output - Risetime is 1 ns or less. Amplitude into 50Ω is +400 mV or greater. Pulse duration is $25 \mu \mathrm{~s}$ within $2 \mu \mathrm{~s}$. Pulse aberrations following the step are $+1.5 \%,-1.5 \%$, total of 1.5% p-p, as displayed with S-1 Sampling Head. Base line level is 0 V within 20 mV , terminated in 50Ω.
Pretrigger Output - Risetime is 5 ns or less. Amplitude into 50Ω is at least 200 mV , positivegoing. Pretrigger pulse duration is 20 ns or less at the 50% amplitude point. Pretrigger lead time is front panel adjustable from 120 ns or less to $1 \mu \mathrm{~s}$ or greater. Pretrigger-to-pulse-output jitter is 100 ps or less at 120 ns lead time to 1 ns or less at 1μ s lead time.
Output Connectors - Pulse output uses a BNC connector. Pretrigger output uses a BSM connector.
Weight - Net: $0.3 \mathrm{~kg}(0.8 \mathrm{lb})$. Shipping: 0.5 kg (1.0 lb).

ORDERING INFORMATION

S-54 Pulse Generator Head
\$1,335
Includes: BNC T connector (103-0030-00); 8 inch 50Ω cable (012-0118-00); instruction manual (070-1093-00).

OPTIONAL SAMPLING ACCESSORIES

CT-1 Current Transformer -

With GR Cable. Order 015-0041-00 \$175

P6056 10X Passive Probe -	
Order 010-6056-03	$\$ 185$

Order 010-6056-03	$\$ 185$
P6057 100X Passive Probe -	
Order 010-6057-03	$\$ 190$

Order 010-6057-03	$\mathbf{\$ 1 9 0}$
Coupling Capacitor, GR874-K -	
Order 017-0028-00	$\mathbf{\$ 1 0 0}$

Order 017-0028-00 \$100
Power Divider GR874-TPD -
Order 017-0082-00
GR to BNC Adaptor -
Order 017-0063-00

Probe Tip-to-BNC Adaptor -
Order 013-0084-01
Probe Tip-to-GR Adaptor -
Order 017-0076-00
Probe Tip-to-GR Terminated Adaptor Order 017-0088-00 \$50

OPTIONAL SAMPLING HEAD ACCESSORIES With SMA ($\mathbf{3} \mathrm{mm}$) Connectors

2X 50Ω Attenuator - Order 015-1001-00 $\$ 120$
5X 50Ω Attenuator - Order 015-1002-00 \$120
10X 50Ω Attenuator - Order 015-1003-00 \$120
50Ω Termination - Order 015-1004-00 $\$ 60$
2 ns 50Ω Signal Cable -
Order 015-1005-00
$\mathbf{5}$ ns 50Ω Signal Cable -
Order 015-1006-00
Female-to-GR874 Adaptor -
Order 015-1007-00
Male-to-GR874 Adaptor -
Order 015-1008-00
\$100
Male-to-N Female Adaptor -
Order 015-1009-00
Male-to-7 mm Adaptor -
Order 015-1010-00
Male-to-Male Adaptor - Order 015-1011-00 \$175
Female-to-Female Adaptor -
Order 015-1012-00
$\$ 9.25$
Coupling Capacitor — Order 015-1013-00 \$200
50Ω Power Divider T — Order 015-1014-00 \$200
500 ps 50Ω Semi-rigid Cable -
Order 015-1015-00
\$25
SMA T Adaptor - Order 015-1016-00 \$35
SMA Male-to-BNC Female Adaptor -
Order 015-1018-00
1 ns 50Ω Cable - Order 015-1019-00 $\$ 120$
SMA Male Short-Circuit Termination -
Order 015-1020-00
$\$ 17.50$
SMA Female Short-Circuit Termination -
Order 015-1021-00
SMA Male 50Ω Termination -
Order 015-1022-00
\$32
With 50Ω BNC Connectors
Feed-through Termination -
Order 011-0049-01
\$25
Feed-through (5 W) - Order 011-0099-00
2X Attenuator - Order 011-0069-02
$\$ 40$
\$35
2.5X Attenuator - Order 011-0076-02

5X Attenuator - Order 011-0060-02
10X Attenuator - Order 011-0059-02
18 in, Coaxial Cable - Order 012-0076-00
42 in, Coaxial Cable - Order 012-0057-01

5000 SERIES INSTRUMENTS

CONTENTS

5000 Series Storage Mainframes 241, 244
5000 Series Nonstorage Mainframes 241, 244
5000 Series Color Oscilloscope 246
5000 Series Plug-ins 242, 243, 247-252
5000 Series Digitizing Oscilloscope 328

Low Cost
Seven Oscilloscope Models
$2 \mathrm{MHz}, 10 \mathrm{MHz}$ or 50 MHz Bandwidth
$\mathbf{1 0 ~} \mu \mathrm{V} /$ Div Sensitivity
Sampling to 1 GHz
Wide Choice of Plug-Ins
One to Eight Trace Capability
Color, Digital, Dual-Beam \& Storage Displays
Large 6.5 Inch CRT (8 x 10 Div)
CRT Readout (5400 Series and 5D10)
Delayed-Sweep Time Bases
Y-T or X-Y Operation
Bench-to-Rack Convertibility

The 5000 Series plug-in oscilloscope family is designed to provide maximum versatility and performance at the lowest possible price.
The seven 5100 Series mainframes provide realtime bandwidth to 2 MHz , sampling bandwidth to 1 GHz , sensitivity to 10 microvolts per division, CRT and digital storage, dual sweep operation, and more. The 5116, with the 5D10 digital storage, provides multicolor display of multitrace signals, scale factor readout, and cursor measurements.

5000 SERIES SELECTION GUIDE

	5440/R5440 Nonstorage with Readout	5441/R5441 Variable Persistence Storage with Readout	5110/R5110 Nonstorage	5111A/R5111A Bistable Storage	5113/R513 Dual Beam Bistable Storage	5116 Nonstorage Color* ${ }^{* 1}$
Bandwidth *2	50 MHz	50 MHz	2 MHz	2 MHz	2 MHz	2 MHz
Minimum Deflection Factor	$5 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} /$ div $0.5 \mathrm{~mA} / \mathrm{div}$	$5 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~mA} / \mathrm{div}$	$1 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~mA} / \mathrm{div}$	$1 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~mA} / \mathrm{div}$	$1 \mathrm{mV} / \mathrm{div}$ at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~mA} / \mathrm{div}$	$1 \mathrm{mV} /$ div at BW $10 \mu \mathrm{~V} / \mathrm{div}$ $0.5 \mathrm{~mA} / \mathrm{div}$
Maximum Sweep Rate	5 ns	5 ns	100 ns	100 ns	100 ns	100 ns
Eight Traces	v	\checkmark	v	\checkmark	Dual Beam	v
Delayed Sweep	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Page	241	241	244	244	244	246
$\begin{aligned} & \text { Prices*3 } \\ & \text { Begin at } \end{aligned}$	\$3,160/\$3,225	\$5,245/\$5,300	\$1,650/\$1,720	\$2,700/\$2,765	\$4,005/\$4,135	\$2,460

*1 The 5116 must be used with 5D10 to obtain color display.
${ }^{* 2}$ Bandwidths are real time. Sampling plug-ins that extend bandwidths to 14 GHz are available for most mainframes,
${ }^{*} 3$ Price does not include plug-ins.

The 5223 digitizing mainframe with the 5B25N time base provides digitization of signals to 10 MHz with optional GPIB interface.

The 5400 Series mainframes provide all of the capabilities of the 5100 Series mainframes plus 50 MHz bandwidth, variable persistence storage, and CRT readout of vertical and horizontal scale factors.

5100 SERIES OSCILLOSCOPES

Four 5100 Series oscilloscope mainframes are available: the 5110 single-beam nonstorage mainframe, the 5111A single-beam storage mainframe, the 5113 dual-beam storage mainframe, and the 5116 single-beam nonstorage mainframe with color shutter. All of these mainframes feature 2 MHz vertical systems with large $61 / 2$ inch CRTs.
Each of the 5000 Series mainframes houses up to three plug-in units. For conventional $Y-T$ operation, the left and middle plug-ins are amplifier units and the right plug-in is a time base unit. An amplifier unit may be used in the right-hand plug-in compartment to provide $X-Y$ operation to the full sensitivity of the amplifier unit used. A dual-trace amplifier unit in the right-hand compartment can provide fully independent dual $X-Y$ displays.
When used with the 5D10 Waveform Digitizer, the 5116 mainframe provides a unique three color display, with scale factor and cursor readouts, in addition to the digital storage capabilities of the 5D10.
Detailed descriptions of the 5100 Series mainframes and plug-ins start on page 244.

5223 DIGITIZING OSCILLOSCOPE

You can get the benefits of digital storage, along with the time-tested advantages of a
conventional analog scope, in the 10 MHz 5223 Digitizing Oscilloscope. Combined in one powerful, convenient oscilloscope are pushbutton ease, high quality waveform display, pretrigger signal manipulation, and optional GPIB interface, plus real-time ana\log display capability.
Use the 5223 in the digital storage mode to capture repetitive events up to 10 MHz in frequency or single-shot events up to 100 kHz in frequency. The maximum sample rate is 1 MHz ; storage capacity is 1024 bits per vertical compartment.
The digitized display will never fade or bloom, so you get more accurate measurements, more conveniently. High 10-bit vertical resolution gives you an accurate representation of your signals.
For further information on the 5223 Digitizing Oscilloscope and its associated 5B25N time base unit, see page 328 in the Digitizer Section.

5400 SERIES OSCILLOSCOPES

Two 5400 Series display units are presently available: A single-beam, nonstorage display and a variable persistence storage display. Both feature CRT readout of plug-in scale factors, three plug-in compartments and benchmount-to-rackmount convertibility.

The 5400 Series offers 50 MHz bandwidth and is capable of satisfying a wide range of measurement needs. It features readout of plug-in scale factors on the CRT (except with plug-ins having a suffix $\mathrm{N}: 5 \mathrm{~A} 22 \mathrm{~N}$, 5B10N, etc.). This feature, previously available only on more sophisticated oscilloscopes, allows you to make measurements more quickly and conveniently. The CRT readout can also be externally accessed (Option 03). Detailed descriptions of the 5400 Series mainframes and associated plug-ins start on page 241.

PLUG-IN VERSATILITY

A wide choice of plug-ins is available in the 5000 Series family. All these plug-ins are compatible with the 5400 Series, and most are compatible with 5100 Series mainframes. Compatibility of 5000 Series mainframes and plug-ins are shown in the chart below.
The amplifier plug-ins include single, dual, and four trace units, and various differential amplifiers. The time base plug-ins include single, dual, and delaying sweep units, and a digital time base.

5000 SERIES MAINFRAME/PLUG-IN COMPATABILITY

[^28]Three special-purpose plug-ins are also available. The 5CT1N is a semiconductor curve tracer plug-in. It allows characteristic curves of transistors, FETs, diodes and other semiconductor devices to be displayed on the CRT. The 5 S 14 N , a general-purpose dual-trace, delayed sweep sampler, extends the bandwidth of the 5100 , the 5400 Series, and the 5223 to 1 GHz at 2 mV sensitivity.
The 5D10 is a dual channel digital storage unit with cursors, CRT scale factor readout, roll mode and plotter output.
Back-lighted knob skirts on the plug-ins provide scale-factor readout. The correct scale factor is automatically indicated when using the X 10 magnifier and/or the recommended 1X and 10X probes. In addition, the 5400 Series automatically presents cor-
rect scale factors on the CRT when used with non- N suffix plug-ins. This feature helps reduce human errors and enables photographic recording of measurement conditions.

5000 Series rackmount oscilloscopes and cabinet-torackmount kits include complete slide out tracks and mounting hardware interface with standard 19 inch racks.

5000 SERIES PLUG-IN/PROBE COMPATIBILITY

Plug-in	Probe	Attenuation	Features
5A14N 5A15N 5A18N 5D10	P6101A P6102A P6062B	$\begin{gathered} 1 \mathrm{X} \\ 10 \mathrm{X} \\ 1 \mathrm{X}-10 \mathrm{X} \end{gathered}$	Full bandwidth Full bandwidth Switchable attenuation, ground-reference button
5A21N 5A22N 5A26	$\begin{aligned} & \text { P6101A } \\ & \text { P6102A } \\ & \text { P6062B } \\ & \text { P6055 } \end{aligned}$	$\begin{gathered} 1 \mathrm{X} \\ 10 \mathrm{X} \\ 1 \mathrm{X}-10 \mathrm{x} \\ 10 \mathrm{X} \end{gathered}$	Full bandwidth Full bandwidth Switchable attenuation, ground-reference button Variable attenuation for high CMRR in differential operation.
$\begin{aligned} & \text { 5A38 } \\ & 5 A 48 \end{aligned}$	$\begin{aligned} & \hline \text { P6101A } \\ & \text { P6105A } \\ & \text { P6062B } \end{aligned}$	$\begin{gathered} 1 X \\ 10 X \\ 1 X-10 x \end{gathered}$	Reduced bandwidth Full bandwidth Switchable attenuation, ground-reference button, reduced bandwidth at 1 X .

Cabinet-to-Rackmount

Order 040-0583-03
Rackmount-to-Cabinet
Order 040-0584-04
Rackmount-to-Cabinet (R5223 Only)
Order 040-0975-01
Cabinet-to-Rackmount (5223 Only)
Order 040-0976-04

SCOPE-MOBILE® Carts - For cabinet models.
Order Lab Instrument Cart, K213.
CAMERAS
C-5C or C-4 Option 02 - For all 5100 Series. Suitable for repetitive or stored traces.
C-59A (G or P) - General Purpose. For 5100 Series Storage scopes, 5440 (P back), 5441 (G back).
For full details see camera section on page 404.
OPTIONAL ACCESSORIES
Blank Plug-in Kit — Order 040-0818-03 \$105
Blank Panel — Order 016-0195-03 \$25
Viewing Hoods -
Order 016-0154-00
Order 016-0452-00 (Folding)
Protective Cover - Order 016-0544-00
For full details see accessories section on page 403.

See Probe section for complete descriptions, page 425.

5000 SERIES MAINFRAMES AND PLUG-INS DIMENSIONS AND WEIGHTS

	5223				5100 and 5400 Series				Plug-ins			
	Cabinet		Rackmount		Cabinet		Rackmount		Single Width		Double Width	
Dimensions	mm	in										
Width Height Depth	$\begin{aligned} & 231 \\ & 328 \\ & 572 \end{aligned}$	$\begin{array}{r} 8.4 \\ 12.9 \\ 22.5 \\ \hline \end{array}$	$\begin{aligned} & 483 \\ & 178 \\ & 569 \end{aligned}$	$\begin{array}{r} 19.0 \\ 7.0 \\ 22.4 \end{array}$	$\begin{aligned} & 213 \\ & 302 \\ & 518 \end{aligned}$	$\begin{array}{r} 8.4 \\ 11.9 \\ 20.4 \end{array}$	$\begin{aligned} & 483 \\ & 133 \\ & 483 \end{aligned}$	$\begin{array}{r} 19.0 \\ 5.3 \\ 19.0 \end{array}$	$\begin{array}{r} 66 \\ 127 \\ 305 \end{array}$	$\begin{array}{r} 2.6 \\ 5.0 \\ 12.0 \end{array}$	$\begin{aligned} & 132 \\ & 127 \\ & 305 \end{aligned}$	$\begin{array}{r} 5.2 \\ 5.0 \\ 12.0 \end{array}$
Weights \approx	kg	Ib	kg	Ib	kg	lb	kg	lb	kg	1 b	kg	lb
Net Shipping	$\begin{aligned} & 16.9 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 37.3 \\ & 45.0 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 42.0 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 10.9 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 43.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 2.8 \\ 10.0 \end{array}$	$\begin{aligned} & 2.6 \\ & 4.9 \end{aligned}$	$\begin{array}{r} 5.8 \\ 10.8 \end{array}$

CURRENT APPLICATION NOTES FOR 5000 SERIES

Title	Featuring	Request Number
BIOPHYSICAL DATA RETRIEVAL, The Digitizing Approach	$5223 / 5 B 25 N / 5 A 18 \mathrm{~N}$ Roll mode, chart recorder output.	W-4462-1
INTERPRETING MECHAN- ICAL MEASUREMENTS WITH THE PLUG-IN OSCILLOSCOPE	$5111 / 5 A 22 N / 5 A 18 N$ Transducer measurements and storage.	A-3533-1
SIMULTANEOUS DISPLAY OF TWO INDEPENDENT X-Y SIGNAL PAIRS	$5111 / 5 A 15 / 5 A 15 N / 5 A 18 N$. Dual X-Y techniques, engine analysis.	AX-4114

Title	Featuring	Request Number
SIMULTANEOUS X-Y, Y-T DISPLAYS	$5111 / 5 A 15 / 5 A 15 N / 5 B 12 N$. X-Y, Y-T techniques. Biomedical application.	AX-4113
CUSTOM PLUG-IN IDEAS	Recommended starter note for customers considering custom plug-in project.	AX-3758
FOR 5000 SERIES SCOPES		
A HIGH RESOLUTION 60 Hz		
NOTCH FILTER	Construction project using a commercial module in our plug-in kit. Preconditions signals by removing 60 Hz hum.	AX-4031
A TRUE RMS CONVERTER	Construction project using thermal true RMS converter module in our blank plug-in kit. Measures true RMS up to 200 V RMS.	AX-4112

5440/R5440 General Purpose 5441/R5441 storage

Dc to 50 MHz
 Sampling to 1 GHz

5 div/ μ s Stored Writing Speed (5441/R5441)
Variable Persistence Storage (5441/R5441)
CRT Readout
3 Plug-in Flexibility
Wide Choice of Plug-ins
Bench to Rack Convertibility

Low Cost

TYPICAL APPLICATIONS (5440/R5440)

* Electrical Engineering
 * Component Testing
 * Ultrasonics
 TYPICAL APPLICATIONS (5441/R5441)

\author{

* Ultrasonics
 * Low Power Laser
 * Fiber Optics
}

See page 240 for available Application Notes.

The 5440 and 5441 combine versatility and low cost in a $50 \mathrm{MHz}(1 \mathrm{GHz}$ with 5 S 14 N dual trace sampling unit) general-purpose, plug-in oscilloscope. They feature CRT readout of plug-in scale factors, sensitivities to 10 microvolts per division, display of up to eight different signals at two different sweep rates, a three plug-in mainframe, a wide choice of plug-ins and bench to rack convertibility.
Plug-in scale factors are displayed on the CRT, so measurement time and operator errors are reduced by taking into account magnifiers and probe attenuators. The CRT readout can also be accessed externally to allow the display of dates, times, test numbers, etc., along with displayed waveforms. (Order Option 03 User Addressable CRT Readout).
The variable persistence of the 5441 provides the ideal means of viewing hard-toobserve signals such as fast single-shot transients and very low frequency phenomena that require a very slowly moving trace on the CRT. It may be used to completely eliminate the flicker inherent in low-rep-rate traces. With the 5441, the viewing time at normal intensity for any trace can be varied from a fraction of a second to more than five minutes. At lowered intensity (SAVE mode), signals may be viewed for up to an hour.
In addition to permitting convenient viewing of single-shot and low frequency phenomena, the variable persistence of the 5441 may also be used to suppress the random noise that obscures the true waveform in signals with low signal-to-noise ratio.

The 5441 is especially useful for looking at very low-rep rate signals with the 5 S 14 N 1 GHz sampling plug-in unit. In that application, the sample-by-sample development of a complete waveform on the CRT screen can take several seconds or even minutes, if the signal repetition rate is very slow. The variable persistence allows all samples to remain on screen until the entire waveform has been developed.
All the plug-ins in the 5000 Series are compatible with the 5440 and 5441.*1
The wide variety of plug-ins allows oscilloscope/plug-in configuration to meet your current and future needs: from a sin-gle-trace, single time-base configuration for production monitoring, to four-trace, delayed sweep for logic work, to four-trace differential amplifiers for transducer measurements, to dual-trace, delayed sweep for general purpose measurements.
*1 Plug-ins with a suffix N (5B12N, etc.) do not provide CRT readout. The 5B10N and 5B12N Time Bases do not permit viewing the leading edge of a triggered waveform when used in the 5400 Series.

CHARACTERISTICS VERTICAL SYSTEM

The following characteristics are for both the 5440/R5440 and 5441/R5441 unless otherwise indicated.
Channels - Left and center plug-in compartments. Compatible with all 5000 Series plug-ins. CRT readout is not available with plug-ins having a suffix $N(5 A 18 N$, etc.).
Bandwidth - Up to 50 MHz , determined by plug-in unit. See page 237.
Deflection Factor - Determined by plug-in unit. See page 237.
Chopped Mode - The oscilloscope will chop between channels at $\approx 25 \mathrm{kHz}$ to 100 kHz , depending on plug-ins and operating modes.
Alternate Mode - Each plug-in is swept twice before switching to the next. A single-trace amplifier is swept twice and each channel of a dualtrace amplifier is swept once before switching to the second amplifier.

HORIZONTAL SYSTEM

Channel - Right-hand plug-in compartment. Compatible with all 5000 Series plug-ins. CRT readout is not available for plug-ins with a Suffix N (5B10N, etc.).
Internal Trigger Mode - Left vertical, right vertical.
Fastest Calibrated Sweep Rate - $10 \mathrm{~ns} / \mathrm{div}$, determined by plug-in.
$\mathbf{X}-\mathbf{Y}$ Mode - Phase shift is within 2° from dc to 20 kHz .

CRT AND DISPLAY FEATURES

CRT - 5440/R5440: Internal parallax-free 8×10 div ($1.22 \mathrm{~cm} /$ div) illuminated graticule. Accelerating potential is 15 kV with GH (P31) phosphor standard. 5441/R5441: Internal, parallax-free, 8×10 div ($0.9 \mathrm{~cm} /$ div) illuminated graticule. Accelerating potential is 8.5 kV . GH (P31) phosphor standard.
Autofocus - Reduces the need for manual focusing with changes in intensity after focus control has been set.
External Intensity Input -+5 V turns beam on from off condition. -5 V turns beam off from on condition. Frequency range is dc to 2 MHz . Input R and C is $\approx 10 \mathrm{k} \Omega$ paralleled by $\approx 40 \mathrm{pF}$. Maximum input is $\pm 50 \mathrm{~V}$ (dc + peak ac).
Beam Finder - Brings offscreen into graticule area.

5440/R5440 FEATURES

Minimum Photographic Writing Speed — Using Polaroid film 20,000 ASA without film fogging. Writing speed can be increased with the Tektronix Writing Speed Enhancer. (See page 410 for more information.)

Writing Speed $\mathrm{cm} / \mu \mathrm{s}$				Camera	Lens
GH (P31) Phosphor		BE (P11) Phosphor			
$\begin{gathered} 20,000 \\ \text { ASA } \end{gathered}$	$\begin{aligned} & 3000 \\ & \text { ASA } \end{aligned}$	$\begin{gathered} 20,000 \\ \text { ASA } \end{gathered}$	$\begin{aligned} & 3000 \\ & \text { ASA } \\ & \hline \end{aligned}$		
180	90	245	125	C-59P	$\begin{gathered} \mathrm{f} / 2.8 \\ 0.67 \mathrm{mag} \\ \hline \end{gathered}$
330	160	450	230	C-50P*1	$\begin{gathered} \mathrm{f} / 1.9 \\ 0.7 \mathrm{mag} \\ \hline \end{gathered}$

${ }^{*}$ ' Slight cropping of the graticule comers. Requires optior al battery pack (016-0270-02) for operation with the 5440 .
Optional Phosphors (Specify) - GM (P7) or BE (P11).

5441/R5441 FEATURES

Persistence - Continuously variable, may be turned off when not needed, thus producing highcontrast stored displays without the characteristic fading of variable persistence.
Maximum Stored Writing Speed - Writing speed $>5 \mathrm{div} / \mu \mathrm{s}$ for a view time of 15 s .
Storage View Time - The view time is the amount of time the stored signal can be viewed before it fades away.
At the maximum writing speed the view time is 15 seconds with the writing speed control fully cw . Adjusting the stored instensity ccw will reduce the stored writing speed, but view time can be increased up to five minutes (refer to chart below).
Save Mode - Extends view time of stored displays up to one hour; prevents erasure of stored display and storage of unwanted displays.
Erase Time - $0.5 \mathrm{~s} \pm 10 \%$.

Current Output - 4 mA within 1%. Frequency is two times the line frequency.

Line Voltage Ranges - 100, 110, 120, 200, 220 , and 240 V ac $\pm 10 \%$ (except that maximum input should not exceed 250 V ac) internally selected with quick change jumpers.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 100 W at 120 V ac. 60 Hz .

ENVIRONMENTAL AND SAFETY

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	213	8.4	483	19.0
Height	302	11.9	133	5.3
Depth	518	20.4	483	19.0
Weights	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	lb
Net	10.4	23.0	10.9	24.0
Shipping	14.5	32.0	19.5	43.0

ORDERING INFORMATION

(PLUG-INS NOT INCLUDED)
5440 Oscilloscope
\$3,160
Includes: Instruction manual (070-2139-01),
R5440 Rackmount Oscilloscope
Includes: Same as 5440 .
5441 Oscilloscope
Includes: Instruction manual (070-2140-01).
R5441 Oscilloscope (Rackmount)
Includes: Same as 5441.
\$5,300

OPTIONS (5440/R5440 and 5441/R5441)
Option 01 - Without CRT Readout.
Option 03 - User Addressable CRT Readout. Up to 20 user-selected characters may be displayed in the CRT readout for additional test information such as time, date, device tested, test number, etc. Especially useful for documenting photographs. Programming of characters is done by external resistors and
switches.
Option 04 - (5440/5441 only) Protective Panel Cover.
Option 76 - (5440/R5440 only) GM (P7) Phosphor.
Option 78 - (5440/R5440 only) BE (P11) Phosphor

CONVERSION KITS

(5440/R5440 and 5441/R5441)
CRT Readout - Order 040-0691-02
Cabinet-to-Rackmount -
Order 040-0583-03
Rackmount-to-Cabinet -
Order 040-0584-04
$+\$ 150$
$+\$ 40$

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10,1,50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
OPTIONAL ACCESSORIES
Recommended Plug-ins - See page 239.
Recommended Probes - See pages 239 and 426.
Recommended Cameras - See page 406.

Dual Trace
5A38
Dc to 35 MHz Bandwidth
$10 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div Calibrated Deflection Factors

The 5 A38 is a dual trace, 35 MHz plug-in amplifier for use only in the 5223 and the 5400 Series mainframes. It features $10 \mathrm{mV} / \mathrm{div}$ sensitivity and CRT readout of deflection factor.*1

CHARACTERISTICS

Bandwidth - Dc Coupled: To $\geqslant 35 \mathrm{MHz}$. Lower End Response, Ac Coupled: $\leqslant 10 \mathrm{~Hz}$.
Deflection Factors - Calibrated: $10 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div in a $1-2-5$ sequence. Accuracy: is $\leqslant 3 \%$ from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}, 4 \%$ from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Uncalibrated: Variable is continuous between steps to at least $25 \mathrm{~V} /$ div.
Input R and $C-1 \mathrm{M} \Omega$ paralleled by $\approx 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac). Ac Coupled: 500 V (dc + peak ac). Ac Component: 500 V p-p maximum at 1 kHz or less.
Stability - $\leqslant 0.3 \mathrm{mV}$ vertical shift in any one minute after one hour warm-up, ambient temperature and line voltage held constant. $\leqslant 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ vertical shift with line voltage held constant.
Display Modes - Channel 1 only, Channel 2 only (normal or inverted), Dual Trace, and Added. Alternated or chopped operation determined by time base plug-in. Internal trigger selectable from Channel 1 or Channel 2.
Risetime $-\leqslant 10 \mathrm{~ns}$.
Channel Isolation $-\geqslant 50: 1$ to 35 MHz with both traces displayed.

ORDERING INFORMATION
5A38 Dual Trace Amplifier
Includes: Instruction manual (070-1694-00).
For floating measurements, order A6902B Isolator. See
page 437 for complete description.

[^29]

5A48

Dc to $\mathbf{5 0} \mathbf{~ M H z}$ Bandwidth
$1 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$ Calibrated Deflection Factors

The 5 A 48 is a dual trace 50 MHz plug-in amplifier for use in the 5223 and the 5400 Se ries mainframes. The 5A48 features five operating modes, selectable trigger source, and CRT readout of deflection factor. ${ }^{* 1}$

CHARACTERISTICS

Bandwidth - Dc Coupled: Dc to at least 50 MHz at $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div, dc to at least 25 MHz at $1 \mathrm{mV} / \mathrm{div}$ and $2 \mathrm{mV} / \mathrm{div}$ (3 dB down). Ac coupled: 10 Hz or less (1 Hz with 10X probe) at all deflection factors (3 dB down).
Deflection Factors - Calibrated: $1 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div in a $1-2-5$ sequence. Accuracy: $\leqslant 5 \%$ at $1 \mathrm{mV} /$ div and $2 \mathrm{mV} /$ div; $\leqslant 3 \%$ from $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} ; \leqslant 4 \%$ from $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Uncalibrated: Variable is continuous between steps to at least $25 \mathrm{~V} / \mathrm{div}$.
Input R and C-1 M Ω within 1% paralleled by $\approx 24 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac. Ac Coupled: 500 V (dc + peak ac). Ac Component: 500 V p-p maximum, 1 kHz or less.
Stability - $\leqslant 0.3 \mathrm{mV}$ vertical shift in any one minute after one hour warm-up, ambient temperature and line voltage held constant. $\leqslant 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ vertical shift with line voltage held constant.

* ${ }^{1}$ CRT readout not functional in 5223.

Display Modes - Channel 1 only, Channel 2 only (normal or inverted), Dual trace, Added, Atternated, Chopped (determined by time base plug-in horizontal compartment). Internal Trigger Source: Selectable from Channel 1 or Channel 2. Risetime -7 ns or less ($5 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}$), 14 ns or less ($1 \mathrm{mV} /$ div and $2 \mathrm{mV} / \mathrm{div}$).

ORDERING INFORMATION

5A48 Dual Trace Amplifier
 $\$ 1,140$

Includes: Instruction manual (070-1450-00).
For floating measurements, order A6902B Isolator. See page 437 for complete description.

5B40/5B42

Single Sweep
$10 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} /$ div Calibrated Time Base

Triggering to 50 MHz

The 5B40/5B42 Time Bases are designed for use in 5400 Series mainframes. They feature sweep rates from $10 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ and CRT readout of the sweep rate selected. The 5B42 also features delayed sweep rates up to $10 \mathrm{~ns} / \mathrm{div}$.

CHARACTERISTICS

The following characteristics are the same for the 5B40 and 5B42 unless otherwise noted.
Sweep Rate - $0.1 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} / \mathrm{div}$ in 24 calibrated steps ($1-2-5$ sequence). $10 \mathrm{~ns} / \mathrm{div}$ is fastest sweep rate obtained with X10 magnifier. Uncalibrated, continuously variable between steps and up to $12.5 \mathrm{~s} /$ div.

Sweep Accuracy - Measured in 5400 Series oscilloscope over center eight graticule divisions. Valid for 100 div of magnified sweep after the first 30 ns .

	Unmagnified		Magnified	
	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
	3%	4%	4%	5.5%
$5 \mathrm{~s} /$ div and $2 \mathrm{~s} / \mathrm{div}$,				
$0.2 \mu \mathrm{~s} / \mathrm{div}$ and $0.1 \mu \mathrm{~s} /$ div	4%	5%	5%	6.5%

TRIGGERING

Triggering Sensitivity

Coupling	Frequency Range	Minimum Signal Required	
		Internal	External
Dc 5400 ampl	Dc to 10 MHz	$0.4 \mathrm{div}^{* 1}$	$60 \mathrm{mV}{ }^{1}$
		$0.4 \mathrm{div}^{*} 2$	$100 \mathrm{mV}{ }^{2}$
5400 ampl	10 MHz to 60 MHz	$1.0 \mathrm{div}^{* 1}$	$150 \mathrm{mV} * 1$
		$1.0 \mathrm{div}^{* 2}$	$400 \mathrm{mV}{ }^{2}$
5100 ampl	Dc to 2 MHz	$0.4 \mathrm{div}^{* 2}$	$100 \mathrm{mV} * 2$
Ac	Trigger requirements increase below 50 Hz		
LFFRej	Trigger requirements increase below 7.5 kHz		
HF Rej	Trigger requirements increase above $50 \mathrm{kHz}{ }^{* 1}$		

Single Sweep - Triggering requirements are the same as normal sweep. When triggered, sweep generator produces only one sweep.
Ext Trigger Input - Maximum Input Voltage: 350 V dc + peak ac, 350 V p-p ac at $\leqslant 1 \mathrm{kHz}$. Input R and C: $1 \mathrm{M} \Omega$ paralleled by $\approx 24 \mathrm{pF}$. Trigger Level Range: $\geqslant \pm 1.5 \mathrm{~V}(5 \mathrm{~B} 40)$ and $\pm 2.5 \mathrm{~V}$ (5B42).
Ext Horizontal Input - Deflection Factor: $50 \mathrm{mV} /$ div $\pm 3 \%$. Input R and $\mathrm{C}: 1 \mathrm{M} \Omega$ paralleled by $\approx 24 \mathrm{pF}$. Dc Coupled Bandwidth: Dc to $\leqslant 2 \mathrm{MHz}$. Ac Coupled Lower Response: $\leqslant 50 \mathrm{~Hz}$. Maximum Input Voltage: 350 V (dc + peak ac) or 350 V p-p ac at $\leqslant 1 \mathrm{kHz}$.

DELAYING SWEEP (5B42 ONLY)

Delay Time Multiplier Range - 0.2 to 10 times the Time/Div setting.
Differential Time Measurement Accuracy Within 1% plus 0.2% of full scale from $1 \mu \mathrm{~S}$ to 0.5 s delay time. Within 2% plus 0.2% of full scale of 1 s to 5 s delay time.
Jitter $-<0.05 \%$ of the time represented by one division of delaying sweep selected.

DELAYED SWEEP (5B42 ONLY)
Sweep Rate - $0.1 \mu \mathrm{~s} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$ in 21 calibrated steps ($1-2-5$ sequence). $10 \mathrm{~ns} / \mathrm{div}$ is the fastest calibrated sweep rate obtained with the X10 magnifier.
Sweep Accuracy - Measured over the center eight division. Same as undelayed sweep.
Triggering - The same as the internal triggering specifications in the table above.

ORDERING INFORMATION	
5B40 Time Base	
Includes: Instruction manual (070-1742-00).	
5B42 Delaying Time Base	$\$ 1,435$

5100
Series Oscilloscopes
Low Cost
Dc to 2 MHz
Sampling to 1 GHz
Wide Choice of Plug-ins
Rear Panel Signal Outputs Optional
See page 238 for Application Notes.

5110/R5110

Lowest Cost Single Beam Nonstorage Oscilloscope with Plug-in Configurability

8 Channels at $1 \mathrm{mV} / \mathrm{div}, 4$ Channels at $50 \mu \mathrm{~V} / \mathrm{div}$, 2 Channels at $10 \mu \mathrm{~V} / \mathrm{div}$, with Appropriate Amplifiers

TYPICAL APPLICATIONS

* Biomedical Research

* Electro-Mechanical Design and Test

The 5110 is a single beam nonstorage oscilloscope featuring a large diagonal $61 / 2$ inch ($1.27 \mathrm{~cm} / \mathrm{div}$) CRT.
Tailor your measurement needs with the appropriate plug-in units to obtain high-gain differential ($10 \mu \mathrm{~V} / \mathrm{div}$), four channel differential at $50 \mu \mathrm{~V} / \mathrm{div}$, eight-channel displays at $1 \mathrm{mV} / \mathrm{div}$. Or choose from single-trace or dual-trace basic amplifiers and time-base plug-ins to suit the special needs of education and industry.
When using two amplifiers and the 5B12N dual time base in the dual-sweep mode, the two sweeps are slaved individually to the two amplifiers.

5111A/R5111A
Single Beam Bistable Storage Oscilloscope
Split-Screen Display
Stored Writing Speed to $800 \mathrm{div} / \mathrm{ms}$ in Enhanced Mode (Option 03)

TYPICAL APPLICATIONS

* Electro-Mechanical Design and Test

* Vibration Analysis

The 5111A is a single beam, split-screen, bistable storage oscilloscope with a large $61 / 2$ inch diagonal display. The 5111A extends measurement capability into areas requiring retention of single and multitrace displays for long-term examination and/or photography. It is particularly useful for recording low and medium frequency signals.
The standard 5111A provides writing speeds to $50 \mathrm{div} / \mathrm{ms}$; option 03 extends the writing speed to 800 divisions per millisecond, suitable for capturing a single-shot display of a 60 kHz sinewave four divisions in amplitude.
Up to eight traces can be displayed and stored simultaneously, with two 5A14N amplifier plug-in units. When using two amplifiers and the 5B12N dual time base in the dual-sweep mode, the two sweeps are slaved individually to the two amplifiers.

5113/R5113
Dual Beam Bistable Storage Oscilloscope
Split-Screen Dispaly
Two Independent Vertical Systems
Two Single-Shot Display Signals Display without Timesharing
Stored Writing Speed $\geqslant 20 \mathrm{div} / \mathrm{ms}$

TYPICAL APPLICATIONS

* Biomedical Research
* Low Rep Rate Observation

The 5113 is a dual beam bistable storage oscilloscope featuring easy-to-use splitscreen storage. Stored writing speed is at least $20 \mathrm{div} / \mathrm{ms}$. View time is at least one hour at normal intensity and can be increased to ten hours at reduced intensity.
The 5113 can display two simultaneous events, either single-shot or repetitive, against a common time base within the bandwidth and writing rate limits of the system. Both beams are driven by one set of horizontal deflection plates.
The 5113 is particularly useful in biomedical research where low-repetition-rate stimulus/ response potentials need to be simultaneously observed and recorded.

5100 Series Oscilloscopes

COMMON CHARACTERISTICS

These characteristics are for the 5110／R5110， 5111A／R5111A，5113／R5113 and 5116 unless oth－ erwise indicated．

VERTICAL SYSTEM

Channels－Left and center plug－in compart－ ments．Compatible with all 5100 Series plug－ins． See page 239.
Bandwidth -2 MHz ，determined by plug－in． See page 239.
Deflection Factor－Determined by plug－in． See page 239.
Chopped Mode－（5110／R5110，5111A／R5111A， 5116）The mainframe vertical amplifier will chop between left and center plug－in compartments， and／or between two or more amplifier channels． The total time segment per channel is $\approx 5 \mu \mathrm{~s}$ ， consisting of $\approx 4 \mu \mathrm{~s}$ displayed，$\approx 1 \mu \mathrm{~s}$ blanked． Chop or alternate mode is selected at the time base unit．
Chopped Mode－（5113／R5113）The left and right mainframe vertical amplifiers are dedicated to the left and center plug－in compartments．Each mainframe vertical amplifier will chop between two or more channels in their associated plug－in compartments．No channel switching is neces－ sary between left and center plug－in compart－ ments．The total time segment per channel is $\approx 5 \mu \mathrm{~s}$ ，consisting of $4 \mu \mathrm{~s}$ displayed，$\approx 1 \mu \mathrm{~S}$ blanked．Chop or alternate mode is selected at the time base unit．
Alternate Mode－（5110／R5110，5111A／ R5111A，5116）Each amplifier plug－in is swept twice before switching to the next．Single－trace amplifiers are swept twice．Each channel of a dual－trace amplifier is swept once before switch－ ing to the second amplifier．
Alternate Mode－（5113／R5113）Single－trace amplifiers are swept full time．Each channel of a multitrace amplifier is swept once before switch－ ing to the next channel．No channel switching is necessary between left and center plug－in compartments．

HORIZONTAL SYSTEM

Channel－Right－hand plug－in compartment． Compatible with all 5100 Series plug－ins．See page 239.
Fastest Calibrated Sweep Rate－ $0.1 \mu \mathrm{~s} / \mathrm{div}$ （X10 mag）with 5 B 10 N or 5 B 12 N ； $10 \mu \mathrm{~s} /$ div（10X mag）with 5D10．
X－Y Mode－Phase shift is within 1° from dc to 100 kHz ．

CRT AND DISPLAY FEATURES

CRT－Internal 8×10 div（ $1.27 \mathrm{~cm} / \mathrm{div}$ ）parallax－ free，nonilluminated graticule．lluminated graticule available at extra cost．（Illuminated graticule stan－ dard on 5116．）
Accelerating Potential－5110／R5110， 5111A／R5111A，5113／R5113： 3.5 kV ．5116： 4.5 kV ． Standard Phosphor－5110／R5110：GH（P31）． 5111A／R5111A，5113／R5113：Equivalent to GJ（P1）．
Optional Phosphors（Specify）－（5110／R5110 only）GM（P7）or BE（P11）．
Beam Finder－Aids in locating an off－screen signal．

Maximum Stored Writing Speed－（5111A and 5113 only）5111A／R5111A：At least $20 \mathrm{div} / \mathrm{ms}$ in the Normal Mode and 50 div／ms in the En－ hanced Mode．5113／R5113：At least $20 \mathrm{div} / \mathrm{ms}$ ．
With Option 03，Fast Writing Speed CRT－ （5111A and 5113 only）At least 200 div／ms（center 6×8 div）in the Normal Mode and 800 divs／ms （center 6×8 div）in the Enhanced Mode．
Storage View Time－（5111A and 5113 Only） At least one hour at normal intensity；up to ten hours at reduced intensity，after which time it may be increased to original level．
Erase Time－（ 5111 A and 5113 only）$\approx 250 \mathrm{~ms}$ ．

CALIBRATOR

Voltage Output－Squarewave，positive－going from ground．
Voltage Range－ 400 mV within 1% ．
Current Output－ 4 mA with current loop．Fre－ quency is two times the line frequency．

OUTPUTS／INPUTS
External Intensity Input -+5 V turns beam on from off condition．-5 V turns beam off from on condition．Frequency range is dc to 1 MHz ． Input R and C is $\approx 10 \mathrm{k} \Omega$ paralleled by $\approx 40 \mathrm{pF}$ ． Maximum input is $\pm 50 \mathrm{~V}$（dc + peak ac）．

POWER REQUIREMENTS

Line Voltage Ranges－100，110，120，200， 220 ，and 240 V ac $\pm 10 \%$（except that maximum input should not exceed 250 V ac）．Internally se－ lected with quick change jumpers．
Line Frequency－ 48 Hz to 440 Hz ．
Maximum Power Consumption－ 110 W ．
ENVIRONMENTAL
Ambient Temperature－5110／5111A／5113： Operating， $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ；nonoperating，$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} .5116$ ：Operating， $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ ；non－ operating，$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ．

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	213	8.4	483	19.0
Height	302	11.9	133	5.3
Depth	518	20.4	483	19.0
Weights	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	lb
Net	10.4	23.0	10.9	24.0
Shipping	14.5	32.0	19.5	43.0

Option 07

Rear Panel Signal Outputs

CHARACTERISTICS

Left and Center Compartments－Two BNC connectors provide access to the CRT related signals from the left and center plug－in amplifiers． Sensitivity： 0.5 V／CRT division．Output imped－ ance： $1 \mathrm{k} \Omega$ ．
Right Compartment－Sweep：One BNC con－ nector provides access to the CRT－related sweep waveform．Sensitivity is 0.5 V／CRT division；posi－ tive－going sawtooth，$\geqslant 5 \mathrm{~V}$ ．Output Impedance is $1 \mathrm{k} \Omega$ ．Gate：One BNC connector provides access to TTL compatible gate．Positive－going，coinci－ dent with displayed sweep．

X－Y Mode－CRT－related X－Y signals are avail－ able at the appropriate rear panel connectors when amplifier plug－ins are used in either the left or center compartment and the right compart－ ment to display $X-Y$ information．Sensitivity $(X-Y$ ）： $0.5 \mathrm{~V} / \mathrm{CRT}$ division．

ORDERING INFORMATION
 （PLUG－INS NOT INCLUDED）

5110 Oscilloscope
R5110 Oscilloscope $\$ \mathbf{1 , 7 2 0}$
Includes：Same as 5110 ．
5111A Oscilloscope $\$ 2,700$
Includes：Power cord（161－0066－00）；instruction manual （070－3934－00）
R5111A Oscilloscope $\$ 2,765$
Includes：Same as 5111A．
5113 Oscilloscope \＄4，005
Includes：Instruction manual（070－2137－01）．
R5113 Oscilloscope
\＄4，135
Includes：Same as 5113
5116 Oscilloscope
\＄2，460
Includes：Power cord（161－0066－00）；instruction manual （070－4544－00）．
Option 02 －（ $5110,5111 \mathrm{~A}, 5113,5116$ only） Protective Panel Cover．The cover protects the front panel and knobs during transportation and storage．
Option 03 －（5111A／R5111A and 5113／R5113 only）．Fast Write CRT increases stored writing speed to $200 \mathrm{div} / \mathrm{ms}$（center $6 \times 8 \mathrm{div}$ ）．$\quad \mathbf{+ \$ 1 5 0}$
Option 07 －Add Rear Panel Signals Out．$+\$ 130$
Option 76 －（5110，R5110 only）GM（P7） Phosphor．
$+\$ 50$
Option 78 －（5110，R5110 only）BE（P11）
Phosphor．
CONVERSION KITS
Cabinet－to－Rackmount Conversion Kit－ Order 040－0583－03
Rackmount－to－Cabinet Conversion Kit－ Order 040－0584－04
Protective Panel Cover Kit－$(5110,5111 \mathrm{~A}$ ，
5113， 5116 only）．Order 040－0620－00
Rear Panel Signal Outputs－
Order 040－0915－02
INTERNATIONAL POWER PLUG OPTIONS
Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13,50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American 240 V／15 A， 60 Hz ．
Option A5－Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．

OPTIONAL ACCESSORIES

Recommended Plug－ins－See page 239.
Recommended Probes－See pages 240 and 426
Recommended Cameras－See page 406

Three Color, High Resolution Digital Storage Display with 5D10
Convergence Not Required, Single Beam Design

Accepts Full Range of 5100 Series Amplifiers for Preconditioning or Noncolor Applications

The 5116 Oscilloscope, when used with the 5D10 digital storage plug-in unit, provides a unique three-color display of the digital storage capabilities and features of the 5D10.
Color enhances individual trace and readout identification, thereby providing a much improved user interface. The coding capabilities afforded by color allow for interpretation and differentiation of data more quickly, reduced measurement time, fewer errors, and improved resolution by using the full screen for overlapping signals. See page 45 for a color photo of the 5116 with the 5D10.
Permanent color records may be obtained with either a Tektronix camera (see pages 403-416) or with the 5D10 plotter output.
The 5D10 occupies the center and right plug-in compartments of the mainframe with which it is used. The left-hand plug-in compartment may be used to house an additional 5100 Series amplifier plug-in whose signal may be displayed through the unique Channel 2 left plug-in display capability of the 5D10. In this mode of operation, the signal from the additional amplifier plug-in unit is digitized and displayed on screen in place of Channel 1 of the 5D10. In this way, the $10 \mu \mathrm{~V} /$ div 5A22N may be used to provide a digitally stored display of a very low level differential signal. Or, a dual trace amplifier
such as the 5A26, may be used in the left-hand plug-in compartment to permit the simultaneous color display of three signals, with color-coded cursor measurements available on each of the three.
In addition to its color operation with the 5D10 digital storage unit, the 5116 mainframe may also be used with any of the other 5100 Series plug-in units, with exactly the same functionality as the 5110 mainframe (see mainframe/compatibility chart on page 239).

CHARACTERISTICS

The following characteristics are in addition to those listed previously.

CRT AND DISPLAY FEATURES

Standard CRT - Internal 8×10 div ($1.27 \mathrm{~cm} / \mathrm{div}$) parallax-free, illuminated graticule.
Accelerating Potential -4.5 kV .
Color Shutter — With 5D10: Three-color display of blue-green, orange, and neutral. Without 5D10: Blue-green display.
Beam Finder - Positions beam on screen regardless of vertical and horizontal position control settings.

ORDERING INFORMATION (PLUG-INS NOT INCLUDED)

5116 Oscilloscope
\$2,460
Includes: Power cord (161-0066-00); instruction manual (070-4544-00).

OPTIONS

Option 02 - Protective Panel Cover. The cover protects the front panel and knobs during transportation and storage. $\quad+\$ 40$
Option 07 - Add Rear Panel Signals Out. $+\$ 130$

CONVERSION KITS

Cabinet-to-Rackmount Conversion Kit Order 040-0583-03

Rackmount-to-Cabinet Conversion Kit Order 040-0584-04

Protective Panel Cover Kit -

Order 040-0620-00
Rear Panel Signal Outputs Conversion Kit (Option 07) - Order 040-0915-02

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
For 5D10 Waveform Digitizer see next page.
For recommended cameras see page 406.
For a description and photos of color display technology see page 45.

5D10

Compatible with all 5000 Series Mainframes
Digital Storage
CRT Readout
Powerful Triggering Capability
1\% Accuracy
Dual Channel
1 MHz Sample Frequency
Save Reference Waveforms
X-Y Recorder Output
Signal Conditioning Via Left Vertical Plug-In
Color Signal Source for 5116 Oscilloscope

The 5D10 enhances all Tektronix 5000 Se ries mainframes by providing storage for transient events with frequency components up to 100 kHz for a single channel acquisition and up to 50 kHz for dual channel acquisition, all in a compact two-wide plug-in.

Color/Waveform Digitizing System

Together, the 5D10 and the Tektronix 5116 Oscilloscope create a system of high resolution color*1 and waveform digitizing for superior trace and readout clarity. Digital storage provides clear, crisp, bright displays which can be viewed indefinitely. And also the following additional features:
Cursors permit convenient single-point and point-to-point measurement of time, amplitude, and frequency for fast, accurate, and reliable answers.

[^30]CRT Readout displays all pertinent instrument settings, cursors, and waveform levels. Lets you read out complete operational status at a glance.
Pretrigger allows viewing information prior to the trigger event so you can see all your data. Center and posttrigger selection is also provided.
Free Run optimizes the data presentation for low speed phenomena, much like a stripchart recorder.
1\% Accuracy improves measurement quality in both vertical and horizontal modes.
Dual Samplers ensure time coincidence between the two input channels.
Bi-Slope Triggering assures triggering when the slope of a transient event is not known.
1 MHz Sample Frequency stores singleshot events to approximately 100 kHz in bandwidth with 8 -bit vertical resolution.
Storage View-Time control from 1 second to infinity.
Save Reference permits comparisons of signals stored at different times.
X-Y Displays provide less than 1° phase shift up to 100 kHz of parametric related signals.
X-Y Recorder Output provides inexpensive, archivable hard copies complete with readout, graticule, and displayed waveforms in full color.

Preconditioning of up to two signals for Channel 2 by using the left vertical plug-in (when used in 5100 Series mainframes only).
For example, plug-ins such as the 5A21N, 5A22N and 5A26 can provide differential performance with sensitivities ranging to $10 \mu \mathrm{~V} /$ div (5A22N). The 5D10 can acquire a total of three signal channels when using the Channel 2 left plug-in acquisition feature.

CHARACTERISTICS VERTICAL

Vertical Modes - CH 1, CH 2, Add, Dual, X-Y. Channel 2 Modes - V/div, Left plug in.
Deflection Factor - $1 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ in 14 calibrated steps (1-2-5 sequence).
Accuracy - Input to Readout Numbers: $5 \mathrm{mV} /$ div to $1 \mathrm{~V} /$ div $\pm 1 \% ; 1 \mathrm{mV} /$ div to $2 \mathrm{mV} /$ /div $\pm 2 \% ; 2 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div $\pm 2 \%$; Input to CRT graticule $\pm 2 \%$. From Left Vertical Plug-in: Add $\pm 1 \%$ to above specifications. Add Mode: Add $\pm 1 \%$ to above specifications.
Input R and C-1M $\pm 0.5 \%$ paralled by $\approx 47 \mathrm{pF}$.
Maximum Input - 250 V (dc + peak ac); 250 V $\mathrm{p}-\mathrm{p}$ ac at 1 kHz or less.
Bandwidth - Single Channel: Suitable from dc to 100 kHz . Dual Channel: Suitable from dc to 50 kHz . Ac Coupling: 3 dB point -10 Hz or less (1 Hz with 10X probe).
Common-Mode Rejection - At least 50:1, dc to 100 kHz .
Resolution - Vertical: X-Y or Y-T; 0.04 div (8-bit digitzer). Horizontal: Y-T; 0.01 div (1024 memory locations shared among all traces displayed).
Phase Shift - $\leqslant 1.0^{\circ}$ phase shift between CH 1 and CH 2 , dc to 100 kHz .
Display Output (to X-Y Recorder) - Amplitude: $0.2 \mathrm{~V} /$ div $\pm 2 \%$. Speed: Compatible with $X-Y$ recorders with $20 \mathrm{in} / \mathrm{s}$ slew rate, or faster. Pen Lift: Isolated switch contacts, SPST (floating); normally open or normally closed selected by internal jumper.

TIME BASE

Sweep Rates - 0.1 ms to $50 \mathrm{~s} /$ div in 18 calibrated steps 1-2-5 sequence (to $10 \mu \mathrm{~s} / \mathrm{div}$ with 10 X magnifier).
Accuracy - Within $\pm 1 \%$ of readout numbers.
External Input - Allows external pulse generator to determine acquisition rate. Accepts TTL levels up to 1 MHz rate.
Possible Under-Sampling Indicator - Indicator lights when fewer than eight sample pulses occur during interval between successive threshold crossing of triggering signals.

TRIGGERING

Sources - $\mathrm{CH} 1, \mathrm{CH} 2$, left plug-in (via mainframe), line, external.
Coupling - Dc, ac.
Sensitivity - External: 100 mV ; dc to 50 kHz or pulsewidth $>5 \mu \mathrm{~s} ; 250 \mathrm{mV} 50 \mathrm{kHz}$ to 250 kHz or pulsewidth $>1 \mu \mathrm{~s} . \mathrm{CH} 1, \mathrm{CH} 2$, Left Plug-in: 0.4 div, dc to 50 kHz or pulsewidth $>5 \mu \mathrm{~s}$; 1.0 div, 50 kHz to 250 kHz or pulsewidth $>1 \mu \mathrm{~s}$.
Bi-Slope Trigger - Amplitude, frequency, and pulsewidth specifications apply to absolute value of signal (rectified).
External Trigger Input - Input R and C: $1 \mathrm{M} \Omega$ $\pm 2 \%$ paralleled by $\approx 47 \mathrm{pF}$. Maximum input 250 V (dc + peak ac). $250 \mathrm{Vp}-\mathrm{p}$ ac at 1 kHz or less.

ORDERING INFORMATION

5D10 Waveform Digitizer
\$2,045
Includes: Diagnostics manual (070-4323-00); operator manual ($070-3696-01$); service manual ($070-3697-00$).

P6102A 10x Probe

Dc to 60 MHz
Scale Factor Readout Coding
Fully Compatible with all 5100 Series
The P6102A is a miniature 10 X passive probe specially designed for use with all 5100 Series amplifier plug-ins, TM 500 Series SC 501, SC 502, and SC 503 plug-in oscilloscopes, and other scopes having nominal 47 pf inputs. Compensation range is 38 pf to 55 pf .
The P6102A automatically codes CRT read-out-equipped scopes to show the correct scale factor and the knob-skirt readout on plug-ins with this feature. A ground reference button is included to provide easy location of ground position on the CRT and an easy means of identifying channels on multichannel displays.
The P6102A employs modular construction featuring just three snap-together modules. This means easy user repair and low maintenance costs.

CHARACTERISTICS

Length -2 m .

Attenuation - $10 \mathrm{X} \pm 3 \%$.
Input R and C-10 M Ω, 13.2 pf .
Bandwidth - Dc to $>60 \mathrm{MHz}$.
Risetime - <5.9 ns.
Aberrations - $\pm 3 \%, 5 \%$ p-p.
Compensation Range - 38 pf to 55 pf .
Maximum Nondestructive Input Voltage 500 V (dc + peak ac).

ENVIRONMENTAL
Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Humidity - Five cycles (120 hours total) at 95% to 97%.
Altitude - Operating: To $4,600 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

ORDERING INFORMATION

P6102A Miniature 10X Probe

$\$ 75$
Includes: Retractable hook tip ($013-0107-05$); ground cover sleeve ($166-0404-01$); 130 mm ground lead (175-0124-01); 300 mm ground lead (175-0125-01); miniature alligator clip (344-0046-00); IC testing tip ($015-0201-06$); black marker band (334-2794-00); white marker band ($334-2794-01$); silver-grey marker band (334-2794-02); adjusting tool (003-1364-00); accessory pouch ($016-0708-00$); instruction manual ($070-5824-00$).

5A15N

Single Trace

5A15N Amplifier

Dc to 2 MHz Bandwidth
$1 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$

The 5A15N is the simplest of the 5A Series plug－in amplifiers to use．It provides a band－ width of dc to 2 MHz in any 5000 Series mainframe at sensitivities to $1 \mathrm{mV} /$ div．Two 5A15Ns may be used in a mainframe to pro－ vide dual－trace operation，or to provide $1 \mathrm{mV} / \mathrm{div} \mathrm{X}-\mathrm{Y}$ operation if one of the amplifi－ ers is inserted in the right－hand compart－ ment of mainframe．

CHARACTERISTICS

Bandwidth－Dc Coupled：Dc to at least 2 MHz at all deflection factors．Ac Coupled： 2 Hz or less to at least 2 MHz at all deflection factors．
Deflection Factor－Calibrated： $1 \mathrm{mV} / \mathrm{div}$ to 5 V ／div in 12 steps（1－2－5 sequence）．Accuracy is within 2% ．Uncalibrated：Variable is continuous between steps to at least $12.5 \mathrm{~V} /$ div．
Input R and C－1 M \mathbf{C} within 1% paralleled by $\approx 47 \mathrm{pF}$ ．
Maximum Input－Dc Coupled： 350 V （dc＋ peak ac）．Ac Coupled： 350 V dc．

ORDERING INFORMATION

5A15N Amplifier
\＄390 Includes：Instruction manual（070－1136－00）

Dual Trace

5A18N Amplifier

Dc to 2 MHz Bandwidth
$1 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div

The 5A18 is essentially a dual－trace 5A15N． Bandwidth is dc to 2 MHz in any 5000 Series mainframe at sensitivities to $1 \mathrm{mV} / \mathrm{div}$ ．The Channel 2 signal may be inverted by means of a front panel switch to provide difference measurements of two signals in the ADD mode．The internal trigger signal is selectable from Channel 1 or Channel 2 by means of front－panel pushbuttons．

Dual trace X－Y operation may be obtained with a 5 A 18 N in the right－hand compartment of any 5000 Series mainframe．

CHARACTERISTICS

Bandwidth－Dc Coupled：Dc to at least 2 MHz at all deflection factors．Ac Coupled： 2 Hz or less to at least 2 MHz at all deflection factors．
Deflection Factor－Calibrated： $1 \mathrm{mV} /$ div to $5 \mathrm{~V} /$／div in 12 steps（ $1-2-5$ sequence）．Accuracy is within 2% ．Uncalibrated：Variable is continuous between steps to at least $12.5 \mathrm{~V} /$ div．
Input R and C－1 M 2 within 1% paralleled by $\approx 47 \mathrm{pF}$ ．
Maximum Input－Dc Coupled： 350 V （dc＋ peak ac）．Ac Coupled： 350 V dc．
Chopping Rate -25 kHz to 100 kHz depending upon plug－in combinations and number of traces displayed．

ORDERING INFORMATION

5A18N Amplifier
$\$ 815$ Includes：Instruction manual（070－1137－00）．

5A14N

Four Trace

5A14N Amplifier

Dc to 1 MHz Bandwidth
$1 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$

The 5 A 14 N is a four－trace amplifier unit which provides 1 MHz bandwidth and sensi－ tivity to $1 \mathrm{mV} / \mathrm{div}$ in any 5000 Series main－ frame．Each channel may be displayed sep－ arately，or the channels may be alternated or chopped in any combination．The internal triggering signal is available from Channel 1 only．Two 5A14Ns may be combined to pro－ vide eight－trace operation in any 5000 Series mainframe．

CHARACTERISTICS

Bandwidth－Dc Coupled：Dc to at least 1 MHz at all deflection factors．Ac Coupled： 2 Hz or less to at least 1 MHz at all deflection factors．
Deflection Factor－Calibrated： $1 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in 12 steps（1－2－5 sequence）．Accuracy is within 2% ．Uncalibrated：Variable is continuous between steps to at least $12.5 \mathrm{~V} /$ div．
Input R and C $-1 \mathrm{M} \Omega$ within 1% paralleled by $\approx 47 \mathrm{pF}$ ．
Maximum Input－Dc Coupled： 350 V （dc＋ peak ac）．Ac Coupled： 350 V dc．
Chopping Rate -25 kHz to 100 kHz depending upon plug－in combinations and number of traces displayed．

ORDERING INFORMATION

5A14N Four Trace Amplifier \＄1，620 Includes：Instruction manual（070－1229－00）．

5A19N

Differential Amplifier

5A19N

Dc to 2 MHz Bandwidth
$1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$

Dc Offset

The 5A19N is a low-cost differential amplifier featuring variable dc offset and simplicity of controls. It is ideal for monitor and systems applications. It operates in the left or middle plug-in compartment of the 5000 Series mainframe for $Y-T$ displays, or in the right compartment for $X-Y$ displays.

CHARACTERISTICS

Bandwidth - Dc Coupled: Dc to at least 2 MHz at all deflection factors. Ac Coupled: 2 Hz or less to at least 2 MHz at all deflection factors.
Deflection Factor - Calibrated: $1 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ in a $1-2-5$ sequence. Accuracy is within 2%. Uncalibrated: Variable is continuous between steps to at least $50 \mathrm{~V} / \mathrm{div}$.
Input R and C-1 M 2 within 0.3% paralleled by $\approx 47 \mathrm{pF}$.

Signal and Offset Range

Deflection Factor Settings	$1 \mathrm{mV} /$ div to $200 \mathrm{mV} / \mathrm{div}$	$500 \mathrm{mV} /$ /div to $20 \mathrm{~V} /$ div
Common-Mode Signal Range	$\pm 16 \mathrm{~V}$	$\pm 350 \mathrm{~V}$
Maximum Dc Coupled Input	$\pm 350 \mathrm{~V}$	
(Dc + Peak Ac at 1 kHz or Less)	$\pm 30 \mathrm{~V}$	
Maximum Ac Coupled Input (Ac Voltage)	$\pm 350 \mathrm{~V}$	
	+15 V to	+350 V to
Dc Offset Range	-15 V	-350 V

Common-Mode Rejection Ratio - Dc Coupled: $1 \mathrm{mV} /$ div to $200 \mathrm{mV} /$ div, at least $1000: 1$ from dc to 10 kHz ; decreasing to $100: 1$ at $500 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$.

[^31]5A21N

Differential Amplifier

5A21N
Dc to 1 MHz Bandwidth
10 kHz Bandwidth Limiter
$50 \mu \mathrm{~V} /$ div to $5 \mathrm{~V} /$ div
100,000:1 CMRR
Voltage and Current Probe Inputs
The 5A21N is a differential amplifier with a current probe input. In the voltage mode, it provides sensitivities of $50 \mu \mathrm{~V} /$ div to $5 \mathrm{~V} /$ div; with the optional P6021 Current Probe, it provides current sensitivities from 0.5 $\mathrm{mA} /$ div to 0.5 A div.

CHARACTERISTICS

Bandwidth - Dc Coupled: Dc to at least 1 MHz . Ac Coupled: 2 Hz less at least 1 MHz . Bandwidth may be limited to 10 kHz .

Deflection Factor - Calibrated: $50 \mu \mathrm{~V} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ in 16 steps ($1-2-5$ sequence). Accuracy is within 2%. Uncalibrated: Variable is continuous between steps to at least $12.5 \mathrm{~V} /$ div.
Input R and C - Voltage Mode: $1 \mathrm{M} \Omega$ within 0.15% paralleled by $\approx 47 \mathrm{pF}$.

Maximum Input Voltage

	Dc Coupled	Ac Coupled
$50 ~ \mu \mathrm{~V} /$ div to	$10 \mathrm{~V}(\mathrm{dc}+$	
$50 \mathrm{mV} /$ div	peak ac)	350 V dc (coupling cap pre- charged), 10 V peak ac
$10 \mathrm{mV} /$ div	350 V (dc + peak ac)	
to $5 \mathrm{~V} /$ div		

Input Gate Current - 100 pA or less (equivalent to $100 \mu \mathrm{~V}$ or less, depending on external loading, at $+25^{\circ} \mathrm{C}$.
Displayed Noise - $30 \mu \mathrm{~V}$ or less, tangentially measured.
Common-Mode Rejection Ratio - Ac Coupled: $50 \mu \mathrm{~V} / \mathrm{div}$ to $0.5 \mathrm{mV} / \mathrm{div}$, at least 20,000:1 at 5 kHz and above decreasing to $400: 1$ at 10 Hz . Dc Coupled: at least $100,000: 1$ dc to 30 kHz at $50 \mu \mathrm{~V} / \mathrm{div}$ and $100 \mu \mathrm{~V} / \mathrm{div}$ with up to 20 V p-p sinewave, decreasing by $<20 \mathrm{~dB} /$ decade on sensitivity ranges up to $50 \mathrm{mV} / \mathrm{div}$. From $100 \mathrm{mV} /$ /div to $5 \mathrm{~V} /$ /div, CMRR is at least $400: 1$ with up to $100 \mathrm{~V} p-\mathrm{p}$ sinewave.

CURRENT PROBE INPUT

(WITH P6021 CURRENT PROBE)
Bandwidth - 15 Hz or less, to at least 1 MHz . Bandwidth may be limited to 10 kHz .
Deflection Factor - Calibrated: $0.5 \mathrm{~mA} / \mathrm{div}$ to $0.5 \mathrm{~A} /$ div in 10 steps (1-2-5 sequence). Accuracy is within 3\%. Uncalibrated: Variable is continuous between steps to at least $1.25 \mathrm{~A} / \mathrm{div}$.
Maximum Input Current - 4 A p -p (at probe loop) with 125-turn P6021 Current Probe. Displayed Noise - $300 \mu \mathrm{~A}$ or less, tangentially measured. Performance characteristics are valid for the 5 A 21 N from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

[^32]
P6055

20,000:1 CMRR 10X with Readout

The P6055 is a miniature, low-capacitance, 10X probe designed for use with Tektronix differential amplifiers with nominal input capacitances from 20 pF to 47 pF . The attenuation ratio is adjustable to compensate for differences in input resistance of the amplifier (amplifier input resistance must be $1 \mathrm{M} \Omega$ $\pm 2 \%$). A special locking type readout connector allows use with instruments with or without readout capability.
When two P6055 Probes are used to drive the two inputs of a differential amplifier, the ability to change the attenuation ratio of one probe versus the other is helpful in maintaining the CMRR of the system. The use of a matched pair of P6055 differential probes provide the best possible system CMRR.

CHARACTERISTICS

CMRR - 20,000:1 from dc to 1 kHz derating to $100: 1$ at 20 MHz .
Attenuation - Adjustable to 10 X .
Input Resistance - $1 \mathrm{M} \Omega \pm 0.5 \%$.
Input Capacitance - $\approx 10 \mathrm{pF}$ when used with instrument that has 20 pF input capacitance; 12.5 pF when used with instrument that has 47 pF input capacitance.
Maximum Useful Bandwidth -60 MHz .
Typical Probe Risetime - 5.8 ns .
Maximum Voltage - 500 V (dc + peak ac) from dc to 12 MHz , p-pV derated to 100 V at 70 MHz .

ORDERING INFORMATION

P6055 10X, Differential Probe

 3.5 ft Cable. Order 010-6055-01\$275 Includes: Retractable hook tip (BB, 013-0107-05); 13 cm (5 inch) ground lead (175-0124-01); probe holder ($352-0090-$ 00); two electrical insulating sleeves (BP, 166-0404-01); two alligator clips (AS, 344-0046-00); adjustable tool (CP, 003 -0675-01); hook tip (BU, 206-0114-00); 13 cm (6 inch) electrical ground lead (DF, $175-1256-00$); 30 cm (12 inch) ground lead ($175-0125-01$); instruction manual ($070-1115-00$).
Matched Pair of Two P6055 Probes.
Order 015-0437-00
\$535
See page 446 for probe accessories.

Differential Amplifier

5A26

Dual Differential Amplifier

5A22N
Dc to $1 \mathbf{M H z}$ Bandwidth

$10 \mu \mathrm{~V} /$ div to $\mathbf{5} \mathbf{V} /$ div

100,000:1 CMRR
Selectable Upper and Lower -3 dB Points
Dc Offset

The 5A22N is the most versatile of the 5000 Series differential amplifiers. It features front panel selectable filtering which enables reduction of undesirable displayed noise; both upper and lower 3 dB points are selectable. Dc offset at full bandwidth is available for viewing signals riding on a dc component, such as low-level ripple and noise on a power supply.
These features, together with its high com-mon-mode rejection, make the 5A22N well suited for measurements in difficult low-amplitude, low-frequency areas.

CHARACTERISTICS

Bandwidth - HF -3dB Point: Selectable in 9 steps ($1-3$ sequence) from 100 Hz to 1 MHz . 100 Hz to 0.3 MHz , accuracy is within 20% of selected frequency; at 1 MHz , bandwidth is down 3 dB or less. LF -3 dB Point: Selectable in 6 steps ($1-10$ sequence) from 0.1 Hz to 10 kHz accuracy is within 20% of selected frequency. Ac Coupled: 2 Hz or less.
Deflection Factor - Calibrated: $10 \mu \mathrm{~V} / \mathrm{div}$ to 5 V /div in a $1-2-5$ sequence. Accuracy is within 3%. Uncalibrated: Variable is continuous between steps to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and C-1 M Ω within 0.15% paralleled by $\approx 47 \mathrm{pF}$.
Maximum Input Gate Current - 200 pA or less.

Displayed Noise - $20 \mu \mathrm{~V}$ at maximum bandwidth, source resistance 25Ω or less, measured tangentially.
Overdrive Recovery - $10 \mu \mathrm{~s}$ or less to recover within 99.5% of reference level after removal of a test signal applied for 1 s . Signal amplitude not to exceed common-mode signal range.
Drift with Temperature $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or less.

Common-Mode Rejection Ratio

- Ac Coupled: $10 \mu \mathrm{~V} /$ div to $0.5 \mathrm{mV} / \mathrm{div}$, at least $20,000: 1$ at 5 kHz and above, decreasing to $400: 1$ at 10 Hz . Dc Coupled: At least 100,000:1, dc to 30 kHz from $10 \mu \mathrm{~V} /$ div to $100 \mu \mathrm{~V} /$ div with up to 20 V p-p sinewave, decreasing by $<20 \mathrm{~dB} /$ decade on sensitivity ranges up to $50 \mathrm{mV} / \mathrm{div}$. From $100 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$, CMRR is at least $400: 1$ with up to 100 V p-p sinewave.

Signal and Offset Range		
Deflection Factor	$10 \mu \mathrm{~V}$ to $50 \mathrm{mV} / \mathrm{div}$	0.1 V to $5 \mathrm{~V} / \mathrm{div}$
Settings	$\pm 10 \mathrm{~V}$	-350 V
Common-Mode		
Signal Range		
Maximum Dc Coupled Input (dc + peak ac at 1 kHz or less)	$\pm 12 \mathrm{~V}$	$\pm 350 \mathrm{~V}$
Maximum Ac Coupled Input (dc voltage)	$\pm 350 \mathrm{~V}$	
Dc rejection, at least $4 \times 10^{5}: 1$		

ORDERING INFORMATION
 5A22N Differential Amplifier
 \$1,190
 Includes: Instruction manual (070-1230-00).

The 5A21N and 5A22N Differential Amplifiers are available with CRT readout at additional cost (CRT readout functional in 5400 Series mainframes only). Contact your local Tektronix sales engineer for details.

5A26

Dc to 1 MHz Bandwidth
$50 \mu \mathrm{~V} /$ div Sensitivity at 1 MHz

100,000: 1 CMRR

2 Differential Amplifiers in One Plug-In

CRT Readout

The 5A26 Dual Differential Amplifier combines two independent differential amplifiers in one plug-in. It adds no-compromise differential measurement capability to the line of low-cost, high-performance 5000 Se ries laboratory oscilloscopes.

The 5A26 provides $50 \mu \mathrm{~V} /$ div sensitivity at 1 MHz , high common-mode rejection ratio, CRT readout in any standard 5400 Series mainframe, trigger-source selection and bandwidth limit on each channel. With two 5A26s, it is possible to observe up to four differential channels at one time.

The 5A26 has many applications in areas that require dual differential performance, especially in biomedical and electromechanical fields, education, and component manufacturing.

CHARACTERISTICS

Number of Differential Channels - Two.
Bandwidth - Dc Coupled: Dc to at least 1 MHz . Ac Coupled: 2 Hz or less to at least 1 MHz . Bandwidth may be limited to 10 kHz .
Deflection Factor - Calibrated: $50 \mu \mathrm{~V} / \mathrm{div}$ to $5 \mathrm{~V} /$ /div in 16 steps ($1-2-5$ sequence). Accuracy is within 2%. Uncalibrated: Variable is continuous between steps to at least $12.5 \mathrm{~V} / \mathrm{div}$.
CRT Readout - CRT readout of deflection factors. Functional in CRT readout-equipped 5400 Series oscilloscopes, nonfunctional in 5100 Series oscilloscopes.
Input R and C-1M \mathbf{C} within 0.15% paralleled by $\approx 47 \mathrm{pF}$.

Maximum Input Voltage		
	Dc Coupled	Ac Coupled
$50 \mu \mathrm{~V} / \mathrm{div}$ to	10 V	$10 \mathrm{~V} \mathrm{ac,350V}$
$50 \mathrm{mV} / \mathrm{div}$	(dc + peak ac)	(coupling cap precharged)
$100 \mathrm{mV} /$ div	350 V	350 V
to $5 \mathrm{~V} /$ div	(dc + peak ac)	(dc + peak ac)

Maximum Input Gate Current - 100 pA or less (equivalent to $100 \mu \mathrm{~V}$ or less, depending on external loading) at $+25^{\circ} \mathrm{C}$.
Displayed Noise - $30 \mu \mathrm{~V}$ or less, tangentially measured.
Common-Mode Rejection Ratio

Dc Coupled	
$50 \mu \mathrm{~V} /$ div to $50 \mathrm{mV} / \mathrm{div}$	At least 100,000:1 from dc to 30 kHz with up to 20 V p-p sinewave
$100 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$	At least 300:1 from dc to 30 kHz with up to 100 V p-p sinewave
Ac Coupled	
$50 \mu \mathrm{~V} /$ div to $50 \mathrm{mV} / \mathrm{div}$	At least 20,000:1 at 5 kHz to 30 kHz , decreasing to not less than $2000: 1$ at 60 Hz

ORDERING INFORMATION

5A26 Dual Differential Amplifier
\$1,305
Includes: Instruction manual (070-1947-00).

High CMRR Differential Probes

Matched pair of P6055 probes for maximum CMRR described on previous page.

5B10N

Time Base/Amplifier
5B10N/5B12N
$100 \mathrm{~ns} /$ div to 5 s/div Calibrated Time Base
Single Sweep Operation
X10 Magnifier
Alternate and Chopped Displays
$50 \mathrm{mV} / \mathrm{div}$ and $500 \mathrm{mV} /$ div External Input
Dual and Delayed Sweep (5B12N)

The 5B10N and the 5B12N time base units are designed for use with the Tektronix 5100 Series oscilloscope mainframes. They can also be used with the Tektronix 5400 Series mainframes, although they do not activate the scale factor readout in the 5400 Series. The 5B10N and the 5B12N both provide $1 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div calibrated sweep rates; a 10X magnifier extends the fastest sweep rate to $100 \mathrm{~ns} / \mathrm{div}$.

The 5B12N is a dual time base unit which provides both delayed and dual sweeps. When the 5 B 12 N is used in the delayed sweep mode, both the delaying and delayed sweeps may be displayed on screen, with all displayed signals being shown at both sweep rates. The delayed sweep may be made to run immediately after the expiration of a selected delay time, or may be made to wait for the next suitable triggering signal after the expiration of the selected delay time. Precise delay time is selected by means of a ten-turn potientiometer. Delayed sweep is used primarily for obtaining extremely high magnification of some portion of the displayed signal. It also provides a means of making more precise timing measurements on a displayed signal.

5B12N

Dual Sweep Time Base
When the 5B12N is used in the dual-sweep mode, the two time bases are used independently of each other. The signal or signals from the vertical amplifier in the left hand compartment are displayed at the A time base rate, and the signal or signals from the vertical amplifier in the center compartment are displayed at the B time base rate. (When used with the dual-beam 5113 mainframe, the signals from both amplifiers are displayed at both sweep rates.)

Both the 5B10N and the 5B12N may be triggered from internal signals from either vertical amplifier, from an external triggering signal, or internally at the power line frequency. Auto triggering provides a bright base line in case of loss of triggering signal.
Both units have a single sweep mode which allows the user to set the time base to sweep once upon receipt of a triggering signal and then to remain locked out from producing further sweeps until manually reset. This mode is particularly useful in capturing single transients on one of the 5100 or 5400 storage mainframes.
An external signal input connector on both the 5B10N and the 5B12N allows their use as a conventional amplifier to provide $X-Y$ operation of the oscilloscope without the need for switching plug-in units.

CHARACTERISTICS

MAIN SWEEP

The following specifications are the same for the $5 B 10 \mathrm{~N}$ and the A sweep of the 5B12N. B sweep specifications are identical except where indicated.
Sweep Rates - Calibrated: $1 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div in 21 steps (1-2-5 sequence). X10 Magnifier extends displayed sweep time/div to 100 ns . Uncalibrated: Continuously variable between steps and to $12.5 \mathrm{~s} /$ div. B Sweep: $0.2 \mu \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~s} /$ div in 20 calibrated steps.

Sweep Accuracy - Unmagnified: Within 3\% from $1 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div and within 4% at $2 \mathrm{~s} /$ div and $5 \mathrm{~s} / \mathrm{div}$. Add 1% for magnified sweep operation. B Sweep: Within 3% from $1 \mu \mathrm{~s} /$ div to $0.1 \mathrm{~s} / \mathrm{div}$. Within 4% at $0.2 \mu \mathrm{~s} / \mathrm{div}, 0.5 \mu \mathrm{~s} / \mathrm{div}$, 0.2 s/div, and 0.5 s/div.

TRIGGERING
Triggering Sensitivity

	Coupling	To 1 MHz	At 2 MHz
Dc	Internal	0.4 div	0.6 div
	External (A sweep only)	200 mV	200 mV
	Requirements increase below 50 Hz		

Auto Trig - Same as above except signal rate requirements are 15 Hz and above.
Single Sweep - Same as for ac and dc coupled (A sweep only).
External Trigger Input - Maximum Input: 350 V (dc + peak ac). Input R and C: $1 \mathrm{M} \Omega$ within 2% paralleled by $\approx 70 \mathrm{pF}$. Trigger Level Voltage Range: +5 V to -5 V .

EXTERNAL HORIZONTAL MODE

Deflection Factor - Calibrated: $50 \mathrm{mV} / \mathrm{div}$ and $500 \mathrm{mV} / \mathrm{div}$. Accuracy is within 3\%. X10 variable extends range to at least $5 \mathrm{~V} /$ div.
Bandwidth - Dc Coupled: Dc to at least 1 MHz . Ac Coupled: 50 Hz or less to at least 1 MHz .
Input R and C-1M Ω within 2% paralleled by $\approx 70 \mathrm{pF}$.
Maximum Input Voltage - 350 V (dc + peak ac).

DELAYING SWEEP (5B12N)

Delay Time - Accuracy: $1 \mu \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~s} / \mathrm{div}$, within $1 \% .1 \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div, within 2%. Multiplier Range: 0.2 to 10.2 times the time/division setting. Multiplier Incremental Linearity: Within 0.2%.
Differential Time Measurement Accuracy Within 1% plus 2 minor dial div for $1 \mu \mathrm{~s}$ to 0.5 s delay times. Within 2% plus 2 minor dial div for 1 s to 5 s delay times.
Jitter - $<0.05 \%$ of the time represented by one division of the delaying sweep selected.

ORDERING INFORMATION

5B10N Time Base/Amplifier
 Includes: Instruction manual (070-1140-00).

\$585
5B12N Dual Time Base
\$1,230
Includes: Instruction manual (070-1141-00).

5S14N

Dc to 1 GHz Bandwidth
Dual Trace, $2 \mathrm{mV} / \mathrm{div}$ Sensitivity
Calibrated Delayed Sweep
Simplified Triggering
Operational Ease of
Conventional Oscilloscope
Two-Dot Time Measurements

CHARACTERISTICS VERTICAL CHANNEL

Modes - CH 1 only; CH 2 only; Dual Trace; CH 1 added to $\mathrm{CH} 2 ; \mathrm{CH}_{2}$ subtracted from $\mathrm{CH}_{1}\left(\mathrm{CH}_{2}\right.$ Invert); CH 1 Vertical (Y), CH 2 Horizontal (X).
Input Impedance - Nominally 50Ω.
Bandwidth - Equivalent to dc to 1 GHz .
Risetime - 350 ps or less.
Step Aberrations - +2\%, -3%, total of 5% p -p within first $5 \mathrm{~ns}, \pm 1 \%$ thereafter, both tested with a 284 Pulse Generator.
Deflection Factor - 2 mV /div to $0.5 \mathrm{~V} / \mathrm{div}$ in eight steps ($1-2-5$ sequence). Continuously variable between steps by at least 2.5 to 1 .
Accuracy - Within $\pm 3 \%$.
Maximum Input Voltage $- \pm 5 \mathrm{~V}$.
Input Signal Range - 2 V p-p maximum within $\mathrm{a}+2 \mathrm{~V}$ to -2 V window at any sensitivity.
Dc Offset Range - At least +2 V to -2 V .
Displayed Noise -2 mV or less unsmoothed (measured tangentially). Low noise pushbutton reduces random noise by a factor of 4 to 1 or more.
Vertical Signal Output - $0.2 \mathrm{~V} /$ div of vertical deflection; $10 \mathrm{k} \Omega$ source resistance.
Channel Delay Difference - Adjustable to zero, or for any time difference up to at least 1 ns .

TIME BASE
Scan Modes - Repetitive, single, manual, or external.
Delaying Sweep - May be used as the CRT time base or as a delay generator for the delayed sweep. The sweep starts with minimum delay from the instant of trigger recognition. When the delaying sweep mode is selected for the time base, two bright dots in the trace, which may be positioned anywhere on the displayed waveform, are generated. The time between dots is equal to the reading on the Delay Time Multiplier dial multiplied by the Time/Div.
Delayed Sweep - This mode is used when the signal to be displayed occurs considerably later than the instant of trigger recognition or when the time must be 5 ns or less per division. The delayed sweep may be started with zero delay time with respect to the start of the delaying sweep. Or the start may be delayed by any time interval up to that represented by ten divisions of the delaying sweep selected.
Horizontal Signal Output - $1.0 \mathrm{~V} /$ div of horizontal deflection; $10 \mathrm{k} \Omega$ source resistance.

5S14N

Sampler

5CT1N

Curve Tracer

DELAYING SWEEP

Range - $10 \mathrm{~ns} /$ div to $100 \mu \mathrm{~s} / \mathrm{div}$ in 13 steps (1-25 sequence).
Accuracy - Within $\pm 3 \%$, excluding first 0.5 division of displayed sweep.
Delayed Zero (1st Dot) - Adjustable to correspond to any instant within the time interval represented by the first nine divisions of the delaying sweep selected.
Delay Time (2nd Dot) - Adjustable to any position of the time interval represented by ten divisions of the delaying sweep selected.
Delay Accuracy - Within $\pm 1 \%$ of ten divisions when measurement is made within the last 9.5 divisions.

DELAYED SWEEP

Range - $100 \mathrm{ps} /$ div to $100 \mu \mathrm{~s} / \mathrm{div}$ in 19 steps (1-2-5 sequence). Variable between steps by at least 2.5 to 1.
Accuracy - Within $\pm 3 \%$ excluding first 0.5 division of displayed sweep.
Start Delay - Depends on the delaying sweep time selected and the setting of the Delay Time Multiplier dial. Adjustable from zero to any time interval up to that represented by ten divisions of the delaying sweep selected. The delaying sweep start point corresponds to the position of the second bright dot.
Delay Jitter - $<0.05 \%$ of the time represented by one division of the delaying sweep selected.

TRIGGERING AND SYNC

Signal Sources - Internal from CH 1 vertical input or external through front-panel connector.
External Triggering - Nominal 50Ω input, ac coupled, 2 V p-p 50 V dc maximum. Trigger pulse amplitude $10 \mathrm{mV} p-\mathrm{p}$ or more with risetime of $1 \mu \mathrm{~s}$ or less. 10 Hz to 100 MHz . Sinewave amplitude 10 mV p-p or more from 150 kHz to 100 MHz .
Internal Triggering - Pulse amplitude 50 mV $\mathrm{p}-\mathrm{p}$ or more with risetime of $1 \mu \mathrm{~s}$ or less. Sinewave amplitude 50 mV p-p or more from 150 kHz to 100 MHz .
Triggered Mode - Trigger recognition may be made to occur at any selected voltage level between +0.5 V and -0.5 V on either $\mathrm{a}+$ slope or $\mathrm{a}-$ slope of the triggering signal.

5 CT 1 N curve Tracer

Test Semiconductor Devices to 0.5 W
$10 \mathrm{nA} /$ div to $20 \mathrm{~mA} /$ div Vertical Deflection Factors
$0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div Horizontal Deflection Factors

For a complete description see page 402.

5S14N continued

Autotrigger Mode - For small signals or when there may be no triggering signal. Sampling pulses are automatically generated at a low rate in the absence of a triggering signal so that a trace may always be generated and displayed. The trigger level range automatically adjusts to approximately the $p-p$ voltage of the signal.
Holdoff - Varies the length of the interval during which recognition is inhibited. Variation is at least 5 to 1 . The control is particularly useful for displaying digital words when triggering on binary pulses.
HF SYNC Mode - For sinewaves from 100 MHz to $1 \mathrm{GHz}, 10 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more from external source, 50 mV p -p or more from internal pickoff.

ORDERING INFORMATION

5S14N Dual-Trace Delayed Sweep

Sampler for 5000 Series Oscilloscopes $\mathbf{\$ 6 , 3 5 5}$
Includes: Two X10 attenuators (011-0059-02); two 42 in 50Ω coaxial cables (012-0057-01); instruction manual (070-1409-00).

PORTABLE OSCILLOSCOPES

Tektronix offers the widest selection of portable scopes so you'll be able to choose the specific instrument that best suits your needs.
25 portable scopes with many optional features are available with bandwidths from 500 kHz to 350 MHz .

All Portable Oscilloscopes listed in this section are available through the Na tional Marketing Center by calling toll free 1-800-4262200. In addition to being able to give you direct order entry, the NMC Sales Engineers are available to offer you immediate technical assistance about product specifications, capabilities, and applications. They can send you literature, discuss available accessories, tell you about payment terms and options, or help you contact your local sales and service office.

CONTENTS

Portable Scopes Selection Guide 254
Portable Scopes Application Notes 255
Portable Scopes Accessories Chart 255

Portable Nonstorage Oscilloscopes

485350 MHz Dual Trace256
2465300 MHz Four Channel 259
2465 DVS Special Edition 300 MHz 259
2465 DMS Special Edition 300 MHz 259
2465 CTS Special Edition 300 MHz 259
2445150 MHz Four Channel 259
2335100 MHz Dual Trace 268
2336100 MHz Dual Trace w/ Δ Time 268
2336YA 100 MHz Dual Trace w/s Time, Elapsed Time Meter 268
2337100 MHz Dual Trace w/ Δ Time \& DMM 268
2236100 MHz Dual Trace, Dual Time Base, w/Counter, Timer, Multimeter 272
2235100 MHz Dual Trace, Dual Time Base 274
2235100 MHz Dual Trace, Option 01
Dual Time Base 274
2213A 60 MHz Dual Trace, 278
2215A 60 MHz Dual Trace, Dual Time Base 278
305 Battery Powered $5 \mathrm{MHz} / \mathrm{DMM}$ 283
2215 MHz 284
2131 MHz/DMM 285
212500 kHz Dual Trace 287
Portable CRT Storage Oscilloscopes
466100 MHz Dual Trace,
Dual Time Base 288
31410 MHz Dual Trace 291
214500 kHz Dual Trace 292
Portable Digital Storage Oscilloscope
2430150 MHz Digital Storage 307
222060 MHz Digital Storage 310
2230100 MHz Digital Storage 310
33650 MHz Digital Storage 313
Portable Power Accessories
281
281
1106 Battery Pack 281
1107 DC Inverter 282
A6902B Isolator 437
A6901 Ground Isolation Monitor 438

PORTABLE REAL TIME OSCILLOSCOPE SELECTION GUIDE

PRODUCT	BAND－ WIDTH （MHz）	SENSI－ TIVITY （mV／div）	DUAL TRACE	DELAYED SWEEP	FASTEST SWEEP （ns／div）	FEATURES	SIZE mm（in） HxWxD	WEIGHT kg（lb）	POWER REQUIREMENTS	PAGE	PRICES BEGIN AT
485	$350 * 1$	5	\checkmark	\checkmark	1	Widest BW in a portable instrument	$\begin{aligned} & 170 \times 310 \times 470 \\ & (7 \times 12 \times 19) \\ & \hline \end{aligned}$	$\begin{array}{r} 9.5 \\ (21) \\ \hline \end{array}$	Line（90－136／180－272 V ac， $48-440 \mathrm{~Hz}$ ）	256	\＄9，100
$2465^{* 2}$ $2465 \mathrm{CTS}^{* 3}$ $2465 \mathrm{DMS}^{* 3}$ $2465 \mathrm{DVS}^{* 3}$	300	$\begin{gathered} 2^{2} \\ (100 \mathrm{MHz} \\ \text { at } 2 \mathrm{mV}) \end{gathered}$	$\begin{gathered} 4 \\ \text { Channel } \end{gathered}$	\checkmark	500 ps	CRT Readout，Δ Volts Δ Time Cursors	$\begin{aligned} & 190 \times 330 \times 434 \\ & (7.5 \times 13 \times 17.1) \end{aligned}$	$\begin{gathered} 10.2 \\ (22.4) \end{gathered}$	$\begin{aligned} & \text { Line (} 90-132 / 180-250 \mathrm{~V} \text { ac, } \\ & 48-440 \mathrm{~Hz} \text {) } \end{aligned}$	259	$\begin{aligned} & \$ 5,350 \\ & \$ 7,150 \\ & \$ 8,400 \\ & \$ 9,200 \end{aligned}$
2445^{*}	150	2	$\begin{array}{\|c\|} \hline 4 \\ \text { Channel } \end{array}$	\checkmark	1	CRT Readout，Δ Volts Δ Time Cursors	$\begin{aligned} & 190 \times 330 \times 434 \\ & (7.5 \times 13 \times 17.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.2 \\ & (22.4) \end{aligned}$	$\begin{aligned} & \text { Line (} 90-132 / 180-250 \mathrm{~V} \mathrm{ac} \text {, } \\ & 48-440 \mathrm{~Hz} \text {) } \end{aligned}$	259	\＄3，590
2335	100	5	\checkmark	\sim	5	Rugged，compact lightweight	$\begin{aligned} & 140 \times 270 \times 430 \\ & (5 \times 11 \times 17) \\ & \hline \end{aligned}$	$\begin{array}{r} 7.7 \\ (17) \\ \hline \end{array}$	Line（100－132／200－250 V ac， $48-440 \mathrm{~Hz}$ ）	268	\＄3，390
2336	100	5	\checkmark	\checkmark	5	B Trigger，Δ Time	$\begin{aligned} & 140 \times 270 \times 430 \\ & (5 \times 11 \times 17) \\ & \hline \end{aligned}$	$\begin{array}{r} 7.7 \\ (17) \\ \hline \end{array}$	$\begin{aligned} & \text { Line }(100-132 / 200-250 \mathrm{~V} \text { ac, } \\ & 48-440 \mathrm{~Hz}) \end{aligned}$	268	\＄3，690
2336 YA	100	5	\checkmark	\checkmark	5	B Trigger，Δ Time，Elapsed Time Indicator，Extra probes and manual	$\begin{aligned} & 140 \times 270 \times 430 \\ & (5 \times 11 \times 17) \end{aligned}$	$\begin{array}{r} 7.7 \\ (17) \end{array}$	Line（100－132／200－250 V ac， $48-440 \mathrm{~Hz}$ ）	268	\＄3，890
2337	100	5	\checkmark	\checkmark	5	B Trigger，Δ Time， DMM	$\begin{aligned} & 140 \times 270 \times 430 \\ & (5 \times 11 \times 17) \\ & \hline \end{aligned}$	$\begin{array}{r} 7.7 \\ (17) \\ \hline \end{array}$	$\begin{aligned} & \text { Line }(100-132 / 100-250 \mathrm{~V} \text { ac, } \\ & 48-440 \mathrm{~Hz}) \end{aligned}$	268	\＄3，990
2235	$100^{* 4}$	2	v	\checkmark	5	Dual Time Base，Single Sweep Trigger View，BW Limit	$\begin{aligned} & \hline 137 \times 360 \times 440 \\ & (5.4 \times 14.2 \times 17.3) \\ & \hline \end{aligned}$	$\begin{gathered} 6.1 \\ (13.5) \\ \hline \end{gathered}$	Line（ $90-250 \mathrm{~V} \mathrm{ac}, 48-440 \mathrm{~Hz}$ ）	274	\＄1，750
2235 Opt 01	$100^{* 4}$	2	\sim	\checkmark	5	Dual Time Base，Single Sweep Trigger View，BW Limit，Scale Illumination，HF／LF Rej	$\begin{array}{r} 137 \times 360 \times 440 \\ (5.4 \times 14.2 \times 17.3) \end{array}$	$\begin{gathered} \hline 6.1 \\ (13.5) \end{gathered}$	Line（90－250 V ac， $48-440 \mathrm{~Hz}$ ）	274	\＄1，995
2236	$100^{* 4}$	2	\checkmark	\checkmark	5	Dual Time Base，BW Limit with Counter，Timer，Multimeter	$\begin{array}{l\|} \hline 137 \times 360 \times 440 \\ (5.4 \times 14.2 \times 17.3) \\ \hline \end{array}$	$\begin{array}{r} 7.4 \\ (16.3) \\ \hline \end{array}$	Line（90－250 V ac，48－440 Hz）	272	\＄2，650
2213A	$60^{* 5}$	2	\checkmark	\checkmark	5	Single Time Base，with Delay， BW Limit，Single Sweep P－P Auto	$\begin{aligned} & \hline 137 \times 360 \times 440 \\ & (5.4 \times 14.2 \times 17.3) \end{aligned}$	$\begin{gathered} 5.8 \\ (12.8) \end{gathered}$	Line（ $90-250 \mathrm{~V} \mathrm{ac}, \mathrm{48-440} \mathrm{Hz)}$	278	\＄1，275
2215A	$60^{* 5}$	2	\checkmark	\sim	5	Dual Time Base，BW Limit， Single Sweep，P－P Auto	$\begin{array}{l\|} \hline 137 \times 360 \times 440 \\ (5.4 \times 14.2 \times 17.3) \\ \hline \end{array}$	$\begin{gathered} 6.1 \\ (13.5) \\ \hline \end{gathered}$	Line（90－250 V ac， $48-440 \mathrm{~Hz}$ ）	278	\＄1，525
305	5	5	\checkmark		100	Autoranging DMM battery power	$\begin{aligned} & 110 \times 240 \times 370 \\ & (4.4 \times 9 \times 15) \end{aligned}$	$\begin{gathered} 4.8 \\ (10.6) \end{gathered}$	Line（90－132／180－264 V ac， $48-440 \mathrm{~Hz}$ ）built－in battery， or external dc	283	\＄2，590
221	5	5			100	5 MHz hand－held	$\begin{aligned} & 80 \times 130 \times 230 \\ & (3 \times 5 \times 9) \end{aligned}$	$\begin{array}{r} 1.6 \\ (3.5) \\ \hline \end{array}$	Built－in battery，line（90－250 $\mathrm{Vac}, 48-62 \mathrm{~Hz}$ ）	284	\＄2，260
213	1	20			400	DMM／scope at $<4 \mathrm{lb}(1.7 \mathrm{~kg})$	$\begin{aligned} & 70 \times 130 \times 230 \\ & (3 \times 5 \times 9) \end{aligned}$	$\begin{array}{r} 1.7 \\ (3.7) \end{array}$	Built－in battery，line（90－136／ $180-250 \mathrm{~V} \mathrm{ac}, 48-62 \mathrm{~Hz}$ ）， or external dc	285	\＄2，830
212	$\begin{gathered} 0.5 \\ (500 \mathrm{kHz}) \\ \hline \end{gathered}$	10	\sim		$\begin{gathered} 1000 \\ (1 \mu \mathrm{~s} / \mathrm{div}) \end{gathered}$	Integral $1 \mathrm{M} \Omega$ probe	$\begin{aligned} & 80 \times 130 \times 240 \\ & (3 \times 5 \times 10) \end{aligned}$	$\begin{array}{r} 1.6 \\ (3.5) \\ \hline \end{array}$	Built－in，battery，line $(104-126 \mathrm{~V} \text { ac } 58-62 \mathrm{~Hz})$	287	\＄2，045

PORTABLE STORAGE OSCILLOSCOPE SELECTION GUIDE

PRODUCT	BAND－ WIDTH （MHz）	SENSI－ TIVITY （ $\mathrm{mV} / \mathrm{div}$ ）	$\begin{aligned} & \text { DUAL } \\ & \text { TRACE } \end{aligned}$	DELAYED SWEEP	FASTEST SWEEP （ $\mathrm{ns} / \mathrm{div}$ ）	FEATURES	SIZE mm（in） HxWxD	WEIGHT kg（lb）	POWER REQUIREMENTS	PAGE	PRICES BEGIN AT
2220	60	2	\checkmark		5	Digital Storage $20 \mathrm{MS} / \mathrm{s}$ at $5 \mu \mathrm{~s} / \mathrm{div}$ and faster	$\begin{aligned} & 137 \times 237 \times 440 \\ & (5.4 \times 9.3 \times 17.3) \end{aligned}$	$\begin{gathered} 8.3 \\ (18.0) \\ \hline \end{gathered}$	Line（ $90-250 \mathrm{~V}$ ac， $48-440 \mathrm{~Hz}$ ）	310	\＄4，150
2230	100	2	\checkmark	\sim	5	Digital Storage $20 \mathrm{MS} / \mathrm{s}$ at $5 \mu \mathrm{~s} / \mathrm{div}$ and faster	$\begin{aligned} & 137 \times 237 \times 440 \\ & (5.4 \times 9.3 \times 17.3) \end{aligned}$	$\begin{gathered} 8.3 \\ (18.0) \\ \hline \end{gathered}$	Line（ $90-250 \mathrm{Vac}$ ， $48-440 \mathrm{~Hz}$ ）	310	\＄5，150
2430	150	2	\checkmark	\checkmark	5	Digital Storage $100 \mathrm{MS} / \mathrm{s}$ with 8 bit resolution and dual channel acquisition	$\begin{aligned} & 190 \times 330 \times 479 \\ & (7.5 \times 13 \times 18.8) \end{aligned}$	$\begin{gathered} 11.1 \\ (24.4) \end{gathered}$	$\begin{aligned} & \text { Line }(90-132 \mathrm{~V} \mathrm{ac} / \\ & 180-250 \mathrm{~V} \mathrm{ac}, 48-440 \mathrm{~Hz}) \end{aligned}$	307	\＄8，900
466	100	5	\checkmark	\checkmark	5	Fast transfer and Variable Persistence．3，000 div／$\mu \mathrm{s}$ stored stored writing speed at reduced scan．	$\begin{aligned} & 160 \times 330 \times 550 \\ & (6 \times 13 \times 22) \end{aligned}$	$\begin{aligned} & 11.8 \\ & (26) \end{aligned}$	Line（99－132／198－264 V ac， $48-440 \mathrm{~Hz}$ ）or battery pack	288	\＄7，560
336	50	5	\checkmark	\sim	100	Digital Storage $1 \mathrm{Ms} / \mathrm{s}$ Microprocessor control and Menu driven＊${ }^{*}$	$\begin{aligned} & 112 \times 237 \times 482 \\ & (4.4 \times 9.3 \times 14.6) \end{aligned}$	$\begin{gathered} 5.1 \\ (11.3) \end{gathered}$	Line（90－132／180－250 V ac， $48-440 \mathrm{~Hz}$ ）	313	\＄4，960
314	10	1	ν		100	Bistable．Stored Viewing Time to $4 \mathrm{hr} 400 \mathrm{div} / \mathrm{ms}$ Stored Writing Speed	$\begin{aligned} & 110 \times 240 \times 350 \\ & (4.4 \times 9 \times 14) \end{aligned}$	$\begin{gathered} 4.7 \\ (10.3) \end{gathered}$	Line（90－132／180／264 V ac， $48-440 \mathrm{~Hz}$ ）or extemal dc	291	\＄4，315
214	$\begin{gathered} 0.5 \\ (500 \mathrm{kHz}) \end{gathered}$	10	ν		$\begin{gathered} 1000 \\ (1 \mu \mathrm{~s} / \mathrm{div}) \end{gathered}$	Bistable． 500 div／$/ \mathrm{s}$ stored writing speed．Fully self－contained．	$\begin{aligned} & 80 \times 130 \times 240 \\ & (3 \times 5 \times 10) \end{aligned}$	$\begin{array}{r} 1.6 \\ (3.5) \end{array}$	Built－in battery or line （104－126 V ac， $58-62 \mathrm{~Hz}$ ）	292	\＄2，795

${ }^{*}$ 1 Bandwidth specifications for the 485 are dc to 350 MHz with 50Ω inputs and dc to 250 MHz with 1 M 2 inputs．
${ }^{* 2}$ The 2445 and 2465 offer as options： $41 / 2$ digit DMM， 150 MHz Counter／Timer／Trigger， 17 －Bit Word Recognizer，TV Trigger and GPIB Interface．
＊3 Special Edition 2465
$* 4$ The 2235 and 2236 are specified 100 MHz for sensitivities from 5 mV to $5 \mathrm{~V} /$ div and 90 MHz in 2 mV ．
＊5 The 2213 A and 2215 A are specified 60 MHz for sensitivities from 5 mV to $5 \mathrm{~V} / \mathrm{div}$ and 50 MHz in 2 mV ．
${ }^{*}$ See specifications in digitizer section．

PORTABLE SCOPE APPLICATION LITERATURE

Tektronix product literature is readily available from your local Tektronix sales office.
For data sheets and product brochures, just ask for literature on the specific instrument. Additional related publications also available are listed below.

TITLE	FEATURING	PART NO
Portable Oscilloscope Selection Guide	A helpful aid for chossing the right portable scope for your needs	$38 \mathrm{~W}-5158-2$
2000 Series Warranty	Describes Tek's 3-year warranty on 2000 Series scopes and 5-year warranty plus service	$81 \mathrm{~W}-5258$
Brochure		

TITLE	FEATURING	PART NO
336 Brochure	Describes 336	53W-5426-1
XYZs Of Using a Scope	A basic primer that features the 2200 Series	46AX-4758-1
XYZ's Instructor's Aid		46W-5169-2
XYZ's Workbook		46W-5170-2
Using Delayed Sweep In Measuring Digital Word Trains	Application Note	41AX-3349
VITS Analysis for TV Servicing	Application Note	$\begin{aligned} & \text { 41AX-4047-1 } \\ & \text { 46W-5207 } \end{aligned}$
Basic Video System Measurements	Describes TV measurements using 2445/2465 Option 05 scopes	38W-5511
Electromagnetic Interference Article	Article Reprint	40W-5582
Pulse Parameters	Application Note	46W-5205-1
Frequency Measurements	Application Note	46W-5206-1
Pulse Ringing \& Overshoot	Application Note	46W-5209
Swept Frequency Filter \& Amplifier	Application Note	46W-5210
Power Supply Testing	Application Note	46W-5211
General Troubleshooting	Application Note	46W-5212
TDR Measurements with a Scope	Application Note	$\begin{aligned} & 46 \mathrm{~W}-5215 \\ & 46 \mathrm{~W}-5216 \end{aligned}$
Pulse Rise Time	Application Note	46W-5217-1
Integrating a Scope	Article Reprint	46W-5337
Catch Glitches on Slow Sweep	Article Reprint	41AX-4765
Portables Storage	Selection Guide	41W-5546
2445/65 TDR	Application Note	38W-5221-1
Quick \& Easy Phase Measurement	Application Note	38W-5223-1
Chip CRT \& Assembly	Article Reprint	38W-5312
Your Direct Line to the World's Best Instruments and Technical Expertise	Find out about the Tektronix National Marketing Center and Tek's service offices	60A-4873-1

PORTABLE SCOPE/ACCESSORIES COMPATIBILITY GUIDE

	PRobes* 5			CAMERAS			CARTS	MISCELLANEOUS ACCESSORIES
	Passive	Active	Current	Single Shot or Low Rep Rate	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Stored/Stable } \\ \text { or Repetitive } \end{array} \\ \hline \end{array}$	Low Cost		
485	P6101A P6063B P6106A P6015 P60566 P6009 P6057 P6048 P6130	$\begin{array}{\|l} \hline \text { P6201 } \\ \text { P6202A } \\ \text { P6230 } \end{array}$	$\begin{aligned} & \text { A6302/AM } 503 \\ & \text { A6303/AM } 503 \\ & \text { P6022 } \\ & \text { P6021 } \end{aligned}$ P6021	$\begin{aligned} & \text { C-318 } \\ & \text { o16-0306-01 } \\ & \text { adaptor } \end{aligned}$	$\begin{aligned} & \text { C-30B } \\ & \text { 016-0306-01 } \\ & \text { adaptor* } \end{aligned}$	NA	$\begin{array}{\|l\|l\|} \hline \mathrm{K} 117 \\ \mathrm{~K} 212 \\ \hline \end{array}$	Folding Viewing Hood 016-0274-00 \& 016-0082-00; 1105 Battery Power Supply Rain Cover 016-0554-00; Rack Adaptor 016-0558-00.
466	P6101A P6015 P6105A P6009 P6062B P6130	$\begin{array}{\|l} \hline \text { P6201 } \\ \text { P6202A } \\ \text { P6230 } \end{array}$	P6022 A6302/AM 503 A6303/AM 503 A6303 P6021	$\begin{array}{\|l} \hline \text { C-31B Opt 01 } \\ \text { 016-0269-03 } \\ \text { adaptor-1 } \end{array}$	$\begin{aligned} & \text { C-30B Opt 01 } \\ & \text { 016-0269-03 } \\ & \text { adaptor } \end{aligned}$	C-5C Opt 02 016-0359-01 adaptor* C-4 122-0894-01 adaptor ${ }^{*}$	$\begin{array}{\|l\|l\|} \hline \mathrm{K} 117 \\ \mathrm{~K} 212 \end{array}$	Folding Polarized Viewing Hood 016-0180-00; Collapsible Viewing Hood (Binocular) 016-0566-00; Protective Cover 016-0365--0; Mesh Filter 378-0726-01; 1105 Battery Power Supply; Rack Adaptor 016-0675-00
$\begin{aligned} & 2430 \\ & 2445 \\ & 2465 \\ & 2465 \text { DVS } \\ & 2465 \mathrm{CTS} \\ & 2465 \text { DMS } \end{aligned}$	P6101A P6009 P66131 P6407 P6015 P6133 (2445)	$\begin{array}{\|l} \hline \text { P6201 } \\ \text { P6202A } \\ \text { P6230 } \end{array}$	$\begin{aligned} & \text { P6022 } \\ & \text { A6302/AM } 503 \\ & \text { A6303/AM } 503 \end{aligned}$ P6021	$\begin{aligned} & \text { C-31B Opt 01 } 01 \\ & 016-2069.03 \\ & \text { adaptor-1 } \end{aligned}$	$\begin{aligned} & \text { C-30B Opt 01 } \\ & \text { 016-0269-03 } \\ & \text { adaptor } \end{aligned}$	C-5C Opt 02 016-0359-01 adaptor* C-4 122-0894,01 adaptor ${ }^{-1}$	$\begin{array}{\|l\|l\|} \hline \mathrm{K} 117 \\ \mathrm{~K} 212 \\ \hline \end{array}$	Folding Polarized Viewing Hood 016-0180-00; Collapsible Viewing Hood (Binocular) 016-0566-00; 1105 Battery Power Supply; Protective Cover 016-0720-00.
$\begin{aligned} & 2335 \\ & 2336 \\ & 2336 \mathrm{YA} \end{aligned}$ 2337	P6130 P6009 P6063B P6015 P6088 P6101A $(2336 \mathrm{YA})$	$\begin{array}{\|l\|l\|} \hline \text { P6202A } \\ \text { P6201 } \\ \text { P6230 } \end{array}$	P6022 A6302/AM 503 A6303/AM 503 A6303 P6021	NA	NA	$\begin{aligned} & \text { C-5C Opt 04 016-0359-01 } \\ & \text { adaptor }{ }^{\text {ad }} \\ & \text { (with flash) } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{K} 117 \\ \mathrm{~K} 212 \end{array}$	2335 Rack Adaptor Kit 016-0468-00.
2213A $2215 A$ 2220 2230 2235 2235 Opt 01 2236	P6101A P6009 P6630 P66015 P6062 P6230 P6122 P6121 (2236, 2230)	$\begin{array}{\|l\|} \hline \text { P6201 } \\ \text { P6202A } \end{array}$	P6021 P6022 A6302/AM 503 A6303/AM 503	$\begin{aligned} & \text { C-31B Opt } 01 \\ & 016-0269-03 \\ & \text { adaptor } \end{aligned}$	$\begin{aligned} & \text { C-31B Opt 01 } 01 \\ & 016-0269-03 \\ & \text { adaptor } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 1117 \\ \mathrm{~K} 212 \end{array}$	Clear CRT Light Filter 337-2775-01; CRT TV Graticule Custom Mod; Accessories Pouch 016-0677-02; Front Cover 200-2520-00; RM Kit: 016-0466-00 for 2213A, 2215A and 2235; 016-0833-00 for $2235 \mathrm{Opt} 01 ; 016-0015-00$ for 2236; P6602 Temperature Probe 010-6602-00.
$\begin{aligned} & \overline{314,305} \\ & 336 \end{aligned}$	P6101A P6149A P6148A (336)		$\begin{aligned} & \text { P6021 P6022 } \\ & \text { A6302/AM } 503 \\ & \text { A6303/AM } 503 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { C-31B Opt } 01 \\ & 016-0327-01 \\ & \text { adaptor }{ }^{2} \text { 2 } \end{aligned}$			NA	Viewing Hood 016-0297-00; Mesh Filter 378-0063-00; 1105 Battery Power Supply; Rain Cover $(314,335)$ 016-0612-00.

[^33]

485
350 MHz at $5 \mathrm{mV} / \mathrm{div}$
$1 \mathrm{~ns} /$ div Sweep Rate
2.0 div／ns Writing Speed
$1 \mathrm{M} \Omega \& 50 \Omega$ Input Impedances
Input Protection 50Ω Internal
Automatic Deflection Factor Readout
Pushbutton Ext Trigger View
Battery Operation（Optional）
Weighs $\approx 9.5 \mathrm{~kg}(21 \mathrm{lb})$

TYPICAL APPLICATIONS

＊Digital Circuitry Design

＊Computer Memory Design（Disk or Tape Drive）

＊Laser Pulse Work

＊High Voltage Research Lab

At just 21 pounds，the $1 \mathrm{~ns} /$ div，dual－trace， 350 MHz 485 oscilloscope is highly compati－ ble with today＇s increasing technology．Fast 2.0 div／ns writing speed makes it especially attractive for use in field research environments．

The 485 features a wide bandwidth at its full $5 \mathrm{mV} /$ div vertical sensitivity（ 350 MHz at 50Ω and 250 MHz at $1 \mathrm{M} \Omega$ ）．Selectable in－ put impedance provides the capability to measure low and high impedance points with the same scope and without active probes．

Internal detection circuitry protects the 50Ω input by automatically disconnecting when the signal exceeds approximately 50 V RMS．

You no longer have to mentally compensate for attenuating probes．Automatic vertical scale－factor readout is provided by three light－emitting diodes located around the edge of each input attenuator knob．A quick glance tells the correct on－screen V／div when the recommended 10 X or 100X probes are used．

You always know exactly where you are in a pulse train when making a delayed sweep measurement．An alternate sweep mode al－ lows the delayed sweep to appear alter－ nately with the intensified main sweep．In this mode，you can view the intensified zone and the delayed display simultaneously．
The external trigger signal can be easily viewed on the 485．A front－panel push－ button automatically routes the external sig－ nal used to trigger time base A to the verti－ cal deflection amplifier．This feature can also be used to quickly make time compari－ sons between the signal of interest and the external trigger signal．
On the 485，focus is always correct for sin－ gle－shot photography．An autofocus circuit eliminates the need to readjust the focus each time the intensity is changed．

When commercial power is not available，use the 1105 Battery Power Supply．It weighs only 19.5 pounds，and lets you take the high－per－ formance 485 virtually anywhere．

Often chosen as a general-purpose scope for computer and electronic servicing environments because of its fast writing speed and wide bandwidth, the 485 can also be found in specialized and unusual applications. For example, to maintain a groundbased laser/radar acquisition system, the 485's alternate sweep switching capability can be very useful.

CHARACTERISTICS
 VERTICAL SYSTEM
 (2 IDENTICAL CHANNELS)

Bandwidth*1 and Risetime*2

$-15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$		$+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
50Ω	Dc to $350 \mathrm{MHz}, 1 \mathrm{~ns}$	Dc to $300 \mathrm{MHz}, 1.2 \mathrm{~ns}$
$1 \mathrm{M} \Omega$	Dc to $250 \mathrm{MHz}, 1.41 \mathrm{~ns}$	Dc to $200 \mathrm{MHz}, 1.8 \mathrm{~ns}$

${ }^{* 1}$ Measured at $-3 d B$. Bandwidth may be limited to $\approx 20 \mathrm{MHz}$ by bandwidth limit switch.
*2 At all deflection factors from 50Ω terminated source.
Lower - 3 dB Point, Ac Coupling - 1X Probe: 1 kHz or less for 50Ω, and 10 Hz or less for $1 \mathrm{M} \Omega$. 10X Probe: 100 Hz or less for 50Ω, and 1 Hz or less for $1 \mathrm{M} \Omega$.
Deflection Factor - Calibrated: $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div ($1-2-5$ sequence). Accuracy: $+2 \%$. Uncalibrated: Continuously variable between steps and to at least $12.5 \mathrm{~V} / \mathrm{div}$. Gain can be recalibrated at the front panel.
Display Modes - $\mathrm{CH} 1, \mathrm{CH} 2$ (normal and inverted), Alternate, Chopped ($\approx 1 \mathrm{MHz}$ rate), $X-Y$ ($\mathrm{CH} 1-\mathrm{Y}$ and CH_{2-X}), Add ($\mathrm{CH} 1 \pm \mathrm{CH}_{2}$).
Common-Mode Rejection Ratio - At least 20 dB at 50 MHz for common-mode signals of 6 div or less.
Automatic Scale Factor - Probe tip deflection factors for $1 \mathrm{X}, 10 \mathrm{X}$, and 100X coded probes are automatically indicated by three readout lights at the edge of the knob skirts. All lights are off when the channel is not selected for display or when the trace identification control on the probe is depressed.
Selectable Input Impedance - 50Ω and $1 \mathrm{M} \Omega$ impedances are available at a single BNC connector by pushbutton selection. $50 \Omega \pm 0.5 \%$; VSWR $1.15: 1$ or less from $20 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$, $1.25: 1$ or less at $5 \mathrm{mV} /$ div and $10 \mathrm{mV} / \mathrm{div}$ to 350 MHz .
Input R and C - $1 \mathrm{M} \Omega \pm 1 \%$ paralleled by $\approx 20 \mathrm{pF}$.
50Ω Protection - Internal detection circuitry provides protection by automatically disconnecting excessive signals of up to 50 V . The "disconnected" condition is indicated, and has manual reset.
Maximum Input Voltage

50Ω	Protection disconnect occurs for voltages that exceed approximately: 5 V RMS continuous 0.1 W-second for instantaneous voltages of 5 V to 50 V	
$1 \mathrm{M} \Omega$	Dc coupled	$\begin{aligned} & 250 \mathrm{~V} \text { (dc }+ \text { peak ac). } \\ & 500 \mathrm{p} \text {-p to } 1 \mathrm{kHz} \end{aligned}$
	Ac coupled	$\begin{aligned} & 500 \mathrm{~V}(\mathrm{dc}+\text { peak ac }) \\ & 500 \mathrm{~V} \text { p-p to } 1 \mathrm{kHz} \end{aligned}$

Selectable Input Coupling - Ac; dc; GND (provides zero reference, precharges coupling capacitor, disconnects 50Ω load in 50Ω mode).
Delay Line - Permits viewing leading edge of displayed waveform.
Probe Power - Connectors provide correct voltages for two optional P6201, P6202A or P6230 active probes.

HORIZONTAL SYSTEM

Time Base A and B - Calibrated Sweep Range: $1 \mathrm{~ns} / \mathrm{div}$ to $0.5 \mathrm{~s} /$ div ($1-2-5$ sequence).
Variable Time Control - Time Base A provides continuously variable uncalibrated sweep rates between steps and to at least $1.25 \mathrm{~s} / \mathrm{div}$.
Time Base A and B Accuracy*1

Sweep Rate	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
$1 \mathrm{~ns} /$ div to $20 \mathrm{~ns} /$ div	$\pm 3 \%$	$\pm 5 \%$
$50 \mathrm{~ns} /$ div to $0.1 \mathrm{~s} / \mathrm{div}$	$\pm 2 \%$	$\pm 4 \%$
$0.2 \mathrm{~s} /$ div and $0.5 \mathrm{~s} / \mathrm{div}$	$\pm 3 \%$	$\pm 5 \%$

${ }^{*}$ Center 8 division.
Horizontal Display Modes - A, Intensified, Atternate, and B (delayed sweep). A only is displayed for A sweep rates of 1,2 , and $5 \mathrm{~ns} /$ div. B ends A for increased intensity in the delayed mode.
Alternate Display Modes - Allows the B delayed sweep to appear alternately with the intensified A sweep. Trace separation control positions B (delayed sweep ≈ 4 div from the A sweep).

CALIBRATED SWEEP DELAY
Delay Time Range - 0 to 10X delay time/div setting of $10 \mathrm{~ns} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$.
Differential Delay Time

Measurement Accuracy

Delay Time Setting	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$
$10 \mathrm{~ns} /$ div and $20 \mathrm{~ns} / \mathrm{div}$	$\pm(1 \%$ of measurement
	$+0.2 \%$ of full scale)* ${ }^{* 1}$
$50 \mathrm{~ns} /$ div to $1 \mathrm{~ms} /$ div	$\pm(0.5 \%$ of measurement
	$+0.1 \%$ of full scale)* ${ }^{*}$
$2 \mathrm{~ms} /$ div to $0.5 \mathrm{~s} /$ div	$\pm(1 \%$ of measurement
	$+0.1 \%$ of full scale) ${ }^{* 1}$

${ }^{*}{ }^{1}$ Full scale is 10 times the delay time/div setting.
Jitter - 1 part or less in 20,000 of 10X the time/ div setting.

TRIGGERING A and B

A Trigger Modes - Normal (sweep runs when triggered). Automatic (sweep free-runs in the absence of a triggering signal and for signals below 20 Hz). Single sweep (sweep runs one time on the first triggering event after the reset selector is pressed). Lights Indicate when sweep is triggered and when single sweep is ready.
A Trigger Holdoff - Adjustable control permits a stable presentation of repetitive complex waveforms. The control covers at least the time of one full sweep for faster than $0.2 \mathrm{~s} /$ div.
B Trigger Modes - B runs after delay time (starts automatically at the end of the delay time) and B triggerable after delay time (runs when triggered). The B (delayed) sweep runs once, in each of these modes, following the A sweep delay time.

Time Base A and B Trigger
Sensitivity and Coupling

Coupling	To 50 MHz	To $\mathbf{3 5 0} \mathbf{~ M H z}$
Dc Internal	0.3 div deflection	1.5 div deflection
Dc External	20 mV	100 mV
Ac	Signals below 16 Hz are attenuated	
Ac LF Reject	Signals below 16 kHz are attenuated	
Ac HF Reject	Signals below 16 Hz and above 50 kHz are attenuated	

Jitter - 0.1 ns or less at 350 MHz at $1 \mathrm{~ns} /$ div.
A Trigger View - A spring-loaded pushbutton overrides other vertical controls and displays the external signal used for A sweep triggering. This provides quick verification of the external signal and time comparison between a vertical signal and the external trigger signal. The deflection factor is $\approx 50 \mathrm{mV} /$ div ($0.5 \mathrm{~V} /$ div with external $\div 10$ source).
Level and Slope - Internal, permits selection of triggering at any point on the positive or negative slope of the displayed waveform. External, level is adjustable through at least $\pm 0.5 \mathrm{~V}$ for either polarity; $\pm 5 \mathrm{~V}$ for external $\div 10$.
A Sources - Internal, line, external, external $\div 10$.
B Sources - B runs after delay time, internal, external, external $\div 10$.
External Inputs - R and $C \approx 1 \mathrm{M} \Omega$ paralleled by $\approx 20 \mathrm{pF}$. Maximum Input Voltage: 500 V (dc + peak ac), 500 Vp -p to 1 kHz .

X-Y OPERATION

Full Sensitivity X-Y (CH 1 Vertical, CH 2 Horizontal) $-5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div, accurate $\pm 2 \%$. Y -axis bandwidth identical to CH 1 . X -axis bandwidth is dc to at least $4 \mathrm{MHz}(-3 \mathrm{~dB})$. Phase difference between amplifiers is 3° or less to 4 MHz .

CRT AND DISPLAY FEATURES

CRT - 8×10 division display ($0.8 \mathrm{~cm} / \mathrm{div}$). Horizontal and vertical centerlines further marked in 0.2 division increments. Accelerating potential is 21 kV. GH (P31) Phosphor standard, BE (P11) optional.
Photographic Writing Speed - At least 1 div/ns with standard GH (P31) Phosphor and at least 2 div/ns with optional BE (P11) Phosphor using the Tektronix C-31B Camera and 3000 speed Type 107 film.
Autofocus - Automatically maintains beam focus for all intensity settings.
Graticule - Internal, nonparallax; variable edge lighting; markings for measurement of risetime.
Beam Finder - Compresses trace to within graticule area for ease in determining the location of an off-screen signal.
Z-Axis Input - Risetime ≈ 15 ns. Input R $\approx 500 \Omega+0.2 \mathrm{~V}$ (dc to 20 MHz) decreases intensity. +2 V (dc to 2 MHz) blanks maximum intensity trace.

OTHER CHARACTERISTICS

Two－Frequency，Fast－Rise Calibrator－Out－ put resistance is 450Ω with a risetime（positive slope）into 50Ω of 1 ns or less． 1 kHz ，duty cycle 49.8% to 50.2% ，Amplitude is $5 \mathrm{~V} \pm 0.5 \%$ into $1 \mathrm{M} \Omega$ and $0.5 \mathrm{~V} \pm 1 \%$ into $50 \Omega(\pm 0.5 \%)$ ．Optional BNC accessory current loop provides 50 mA $\pm 1 \%$ ．Selectable repetition rates are 1 kHz and $1 \mathrm{MHz} \pm 0.25 \%$ ．Specifications apply over $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ range．
A Sweep Output－Open Circuit：$\approx 10 \mathrm{~V}$ posi－ tive－going sawtooth；into $50 \Omega, \approx 0.5 \mathrm{~V}$ ．
A and B Gate Outputs－Open Circuit：$\approx 4 \mathrm{~V}$ positive－going rectangular pulse；into 50Ω $\approx 0.5 \mathrm{~V}$ ．

POWER REQUIREMENTS

Line Voltage Range－ 90 V ac to 136 V ac and 180 V ac to 272 V ac．Recessed slide switch se－ lects nominal operating line range．
Line Frequency－ 48 Hz to 440 Hz ．
Maximum Power Consumption－ 60 W at 115 V line．

ENVIRONMENTAL

Ambient Temperature－Operating：$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ．Nonoperating：$-35^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ．Fil－ tered forced air ventilation is provided．
Altitude－Operating：To $4600 \mathrm{~m}(15,000 \mathrm{ft})$ ； maximum allowable ambient temperature de－ creased by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from 5000 ft to $15,000 \mathrm{ft}$ ． Nonoperating：To $15000 \mathrm{~m}(50,000 \mathrm{ft})$ ．
Vibration－Operating： 15 minutes along each of the 3 axes． $0.06 \mathrm{~cm}(0.025 \mathrm{in})$ p－p displacement （ 4 g ＇s at 55 Hz ） 10 Hz to 55 Hz to 10 Hz in $1 \mathrm{~min}-$ ute cycles．
Humidity－Operating and Nonoperating： 5 cy－ cles（ 120 hrs ）to 95% relative humidity referenced to MIL－E－16400F（par 4．5．9 through 4．5．9．5．1，Class 4）．
Shock－Operating and Nonoperating： 30 g ＇s， $1 / 2$ sine， 11 ms duration， 2 shocks per axis in each direction for a total of 12 shocks．

PHYSICAL CHARACTERISTICS				
	Cabinet		Rackmount	
Dimensions	$\mathbf{m m}$	in	mm	in
Width	305	12.0	483	19.0
Height	168	6.6	177	7.0
Depth			457	18.0
（handle extended）	523	20.6		
（handle not extended	470	18.5		
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net（with accessories）	10.9	24.0		
Net（without accessories）	9.5	21.0	11.9	26.2
Shipping	15.0	33.0	24.5	54.0

ORDERING INFORMATION

（PROBES NOT INCLUDED）

\＄9，100
Includes： 18 inch 50Ω BNC cable（ $012-0076-00$ ）；two BNC jack posts（ $012-0092-00$ ）；clear filter（ $386-0118-00$ ）； accessory pouch（ $016-0535-00$ or $016-0537-00$ ）；four 3 amp fuses（159－0015－00）；two 50Ω terminators （011－0049－01）；service manual（070－1193－00）；operator manual（070－1194－00）．
R485 Rackmount Oscilloscope \＄9，420 Includes：Same as 485 plus mounting hardware and slide out assemblies．

OPTIONS

Option 04 －EMC Modification．
$+\$ 220$
Option 78 －BE（P11）Phosphor．
$+\$ 200$
INTERNATIONAL POWER PLUG OPTIONS
Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American 240 V／15 A， 60 Hz．
OPTIONAL ACCESSORIES

Passive Probes

	Scope Input	Attenua－ tion	Loading	Bandwidth＊1 with 485
P 6056 6 ft	50Ω	10 X	500Ω 1 pF	350 MHz
P 6057 6 ft	50Ω	100 X	5000Ω 1 pF	350 MHz
P 6106 A 2 m	$1 \mathrm{M} \Omega$	10 X	$10 \mathrm{M} \Omega$ 13 pF	250 MHz
P 6130 1.5 m	$1 \mathrm{M} \Omega$	10 X	$10 \mathrm{M} \Omega$ 12.7 pF	250 MHz
P 6063 B 6 ft	$1 \mathrm{M} \Omega$	Switchable 1 X	$1 \mathrm{M} \Omega$ 12 pF $10 \mathrm{M} \Omega$ 14 pF	200 MHz

Active Probes

$\begin{gathered} \text { P6230 } \\ 1.5 \mathrm{~m} \end{gathered}$	$50 \Omega / 1 \mathrm{M} \Omega$	10x	$\begin{aligned} & 450 \Omega \\ & 1.3 \mathrm{pF} \end{aligned}$	350 MHz
$\begin{gathered} \mathrm{P} 6201 \\ 2 \mathrm{~m} \end{gathered}$	$50 \Omega / 1 \mathrm{M} \Omega$	1X 10X Head 100X Head	$\begin{gathered} 100 \mathrm{k} \Omega \\ 3 \mathrm{pF} \\ 1 \mathrm{M} \Omega \\ 1.5 \mathrm{pF} \\ 1 \mathrm{M} \Omega \\ 1.5 \mathrm{pF} \\ \hline \end{gathered}$	330 MHz
$\begin{aligned} & \text { P6202A } \\ & 2 \mathrm{~m} \end{aligned}$	$50 \Omega / 1 \mathrm{M} \Omega$	$10 x$ 100X Head	$\begin{gathered} 10 \mathrm{M} \Omega \\ 2 \mathrm{pF} \\ 10 \mathrm{M} \Omega \\ 2 \mathrm{pF} \end{gathered}$	285 MHz

Current Probes				
$\begin{gathered} \text { P6022 } \\ 5 \mathrm{ft} \end{gathered}$	$1 \mathrm{M} \Omega$	$\begin{array}{\|c\|} \hline \text { Switchable*2 } \\ 10 \mathrm{~mA} / \text { div } \\ 100 \mathrm{~mA} / \text { div } \end{array}$	$\begin{gathered} 0.03 \Omega @ \\ 1 \mathrm{MHz}, \\ 0.2 \Omega @ \\ 120 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 935 \mathrm{~Hz} \text { to } \\ & 120 \mathrm{MHz} \end{aligned}$
A6302／ AM 503 2 m	$50 \Omega / 1 \mathrm{M} \Omega$	Selectable＊2 $1 \mathrm{~mA} /$ div to $5 \mathrm{~A} / \mathrm{div}$	0.1Ω＠ 5 MHz ， 0.5Ω＠ 50 MHz	Dc to 50 MHz
A6303／ AM 503 2 m	$50 \Omega / 1 \mathrm{M} \Omega$	$\begin{gathered} \text { Selectable }{ }^{2} \\ 10 \mathrm{~mA} / \text { div to } \\ 5 \mathrm{~A} / \mathrm{div} \end{gathered}$	$\begin{gathered} 0.02 \Omega @ \\ 1 \mathrm{MHz}, \\ 0.15 \Omega @ \\ 15 \mathrm{MHz} \end{gathered}$	Dc to 15 MHz

＊＇Bandwidths measured at upper $-3 d B$ for given cable lengths．
＊2 Scope sensitivity set at $10 \mathrm{mV} / \mathrm{div}$ ．

Carrying Strap－Order 346－0199－00
Current Loop Adaptor－The adaptor pro－ vides an accurate 50 mA squarewave calibra－ tor when connected to the 485 voltage calibra－ tor．The risetime is $\approx 25 \mathrm{~ns}$ ．Order 012－0341－00
$50 \Omega 5 \mathrm{X}$ Pad－Provides reverse termination for the calibrator．Order 011－0060－02
Folding Viewing Hoods－Folds to
$1.2 \times 11.5 \times 19.1 \mathrm{~cm}\left(7 / 16 \times 71 / 2 \times 7^{1 / 2} \mathrm{in}\right)$ ． Order 016－0274－00
Folds to $1.4 \times 17.2 \times 34.9 \mathrm{~cm}(9 / 16 \times 63 / 4 \times$ $13^{3 / 4} \mathrm{in}$ ）．Order 016－0082－00

A6902B Isolator－For floating measure－ ments see page 437 for complete description． Order A6902B

Battery Power Supply — Order 1105 Battery Power Supply
Rack Adaptor－Order 016－0558－00

RECOMMENDED CAMERAS

For further information see camera section，page 412.
C－30BP General Purpose Camera－In－ cludes 016－0306－01 mounting adaptor． Order C－30BP
\＄1，480
C－31BP High Speed Camera－Includes 016－0306－01 mounting adaptor．Order C－31BP
\＄1，700
RECOMMENDED CARTS
K212 Portable Instrument Cart－For on－ site mobility．See page 423.
\＄330
K117 Instrument Shuttle－For site－to－site mobility．See page 423.
\＄265

Three Special Editions and Five Options

The 300 MHz 2465 and 150 MHz 2445 represent the leading edge of technology, establishing higher standards in both value and performance for today's portable oscilloscopes. They enable faster and more precise measurements than ever before possible in a portable oscilloscope. For even more value, Tektronix is offering three specially priced products, the 2465DVS, 2465DMS, and 2465CTS. Each is configured with new options to greatly simplify complex measurements and substantially increase user productivity.

Options

Five options can be ordered with the 2465 or 2445. Their descriptions follow the 2400 Series characteristics.

GPIB IEEE Standard 488 Programmable for Semiautomatic Measurement Systems (Option 10)
150 MHz Counter/Timer/Trigger (CTT) with 17-Bit Word Recognizer (Option 09)
150 MHz Counter/Timer/Trigger (CTT) (Option 06)
TV Waveform Measurement System (Option 05)
$41 / 2$ Digit Autoranging DMM (Option 01)

Multiple Option Allowance

When more than one option is ordered, a Multiple Option Allowance is applied to the purchase.

Special Edition 2465DVS, 2465DMS, and 2465CTS

For maximum versatility and high-resolution video applications, choose the 2465DVS. This is a specially priced and configured 2465 with five options: (1) a $4 \frac{1}{2} 2$ digit autoranging digital multimeter (Option 01); (2) a crystal-controlled time base, 150 MHz counter/timer/trigger and 17-bit word recognizer (Option 09); (3) an IEEE Standard 488 Interface Bus (Option 10) which provides complete talker/listener control, making the 2465DVS programmable; (4) the TV waveform measurement system (Option 05) and (5) two additional P6131 probes (Option 22).

For automatic test and measurement applications, the 2465DMS, is a specially priced and configured 2465 with Options 01, 09, 10, 22.
The 2465CTS is a specially priced and configured 2465 with Options 09, 10, and 22. It is ideal for automatically measuring frequency, period pulse width, and time between events. For moderate speed signals risetimes and falltimes can be automatically measured.

For more information about these instruments, refer to the characteristics and ordering information for the 2465 and the individual options.

Precision Measurements

Crystal Controlled Time Base (Option 09/06)
Δ Volts and Δ Time Cursors
Adjustable Channel 1Channel 2 Delay Matching
Time-Interval Resolution to 20 ps (10 ps Option 09/06) Calibrated Horizontal Variable
The $2465 / 2445$ Family oscilloscopes set new norms in measurement precision. With 1\% horizontal system accuracy and 2% vertical deflection accuracy, they give you greater measurement confidence than ever before. On-screen vertical and horizontal cursors deliver immediate and accurate results of voltage, time, frequency, ratio, and phase measurements.
Cursors increase accuracy and operator productivity. With them, measurements can be made quickly, with almost no chance of interpretation errors and no CRT linearity error. The front-panel-controlled Channel 1-Channel 2 delay-matching adjustment compensates probe and vertical-channel delay differences.

CRT Readouts

Vertical and Horizontal Scale Factors
Trigger Level
Voltage, Time, Frequency, Phase, and Ratio Measurement Values

50Ω Overload Condition

Mode Indicators
Probe Identification
Readouts permit easy setup and interpretation of waveform displays. The horizontal time base always remains calibrated with three significant digits and a decimal point, even if variable settings are used.

Versatile Triggering

> Hands-Off Auto Level Triggering
> Predictable Triggering on Logic Thresholds and Intermittent Signals Delay-By-Events and Boolean Triggering (Option 09/06)

These oscilloscopes can trigger on any one of the four channels. Auto-level circuitry gives you convenient hands-off triggering, even with changing trigger-signal amplitudes. With the position-independent triggering, trigger level remains constant whenever you reposition the display. And the trigger-level readout enables you to preset the amplitude for predictable triggering on both logic thresholds and transient events.

Single-sequence triggering can capture a single event or multiple events by displaying a single sweep of each trace on the CRT. At the end of the sequence, scale factors and other readout data are briefly displayed and graticule illumination flashes on momentarily, allowing waveform photography.

Measurement Convenience
 Four Independent Channels

B Sweep Displays A-Sweep Trigger Event
Selectable 50Ω and 1 M Ω Input Impedances with 50Ω Overload Protection
Four channels produce clear and complete views to simplify complex measurements. With the B sweep you can display any portion of the A sweep, including the A-sweep trigger event. Sweep-delay range is adjustable down to zero delay. This combination allows easy timing measurements to be made on highly asymmetric or jittering waveforms. It provides accurate delayedand Δ-time measurements-from the first pulse on the trace-and allows the operator to examine the A-trigger event in detail.

Input impedance is selectable between $1 \mathrm{M} \Omega$ and 50Ω on Channels 1 and 2, eliminating the need for external $50-\Omega$ terminators. Overload protection is also ensured. If excessive signal is applied while $50-\Omega$ coupling is selected, coupling automatically switches to $1-\mathrm{M} \Omega$ coupling to prevent possible damage.

Environmental

Exceptional electromagnetic compatibility qualities make the $2465 / 2445$ Family oscilloscopes attractive for use in high-RF situations such as computer manufacturing, testing, and servicing. These instruments are also UL listed and CSA certified for safety. Their rugged design meets MIL-T28800C environmental requirements for Type III, Class 3, Style C equipment.

Reliability

Because of our confidence in their troublefree performance, Tektronix offers a three year warranty. It covers all labor and parts, including CRT and excluding probes. You can also economically extend the warranty coverage up to five years by choosing from five practical service plans. These optional plans are designed to meet specific maintenance needs and are available in most countries.

CHARACTERISTICS

Characteristics are common to the 2465/2445 Family except where indicated.

VERTICAL SYSTEM

Display Modes - CH 1, CH 2, CH 3, CH 4, Add (CH $1+\mathrm{CH} 2$); Invert (CH 2 only); Alternate and Chopped. Bandwidth Limit (20 MHz). If Var V/Div knob is rotated out of detent, efficient RATIO measurements can be performed with ΔV cursors.

CHANNEL 1 AND CHANNEL 2

Deflection Factor $-2 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in a 1 -2-5 sequence.
Accuracy - $\pm 2 \%$ for $\leqslant 5$ div signals centered vertically for temperatures from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Add $\pm 1 \%$ of reading for temperatures from $-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. For 50Ω Coupling, add $\pm 1 \%$. For CH 2 Invert, add $\pm 1 \%$.
$\Delta \mathbf{V}$ Accuracy $- \pm(1.25 \%$ of reading +0.03 div + signal aberrations) for temperatures from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Add 1% of reading for temperatures from $-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. For 50Ω Coupling, add $\pm 1 \%$. For CH 2 Invert, add $\pm 1 \%$. Measured with cursors, over the entire graticule area.
$\Delta \mathbf{V}$ Range $- \pm 8$ times the Volts/Div switch setting.
Variable Range - Continuously variable between Volts/Div switch settings. Extends maximum deflection factor to at least $12.5 \mathrm{~V} /$ div.
Frequency Response (3 dB Bandwidth and Risetime ${ }^{* 1}$) - With a 6 div signal, terminated in 50Ω, with Var Volts/Div in calibrated detent.

	Volts/Div Setting	With Standard Accessory Probe or Internal 50Ω Termination
$\mathbf{2 4 6 5}$	$-15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\geqslant 5 \mathrm{mV}$
$+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$\geqslant 5 \mathrm{mV}$	Dc to $300 \mathrm{MHz}, 1.17 \mathrm{~ns}$
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	2 mV	Dc to $100 \mathrm{MHz}, 1.4 \mathrm{~ns}$
2445		
$-15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\geqslant 5 \mathrm{mV}$	Dc to $150 \mathrm{MHz}, 2.33 \mathrm{~ns}$
$+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$\geqslant 5 \mathrm{mV}$	Dc to $100 \mathrm{MHz}, 3.5 \mathrm{~ns}$
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	2 mV	Dc to $80 \mathrm{MHz}, 4.38 \mathrm{~ns}$

${ }^{\text {* }}$ Risetime calculated from: Bandwidth x Risetime $=0.35$
Ac Coupled Lower -3 dB Point - With 1X Probe: 10 Hz or less. With 10 X Probe: 1 Hz or less.
Common-Mode Rejection Ratio - At least $20: 1$ at 50 MHz for common-mode signals of 8 div or less, with Var Volts/Div control adjusted for best CMRR at 50 kHz at any Volts/Div setting $\geqslant 5 \mathrm{mV}$. At least $20: 1$ at 20 MHz at $2 \mathrm{mV} /$ div.
Channel Isolation - 100:1 or greater attenuation of the deselected channel at $100 \mathrm{MHz} ; 50: 1$ or greater attenuation at 300 MHz (for 2465); 50:1 or greater attenuation at 150 MHz (for 2445). Measured with an eight-division input signal, deflection factors from $2 \mathrm{mV} /$ div to $500 \mathrm{mV} /$ div, and with equal Volts/Div switch settings on both channels.
Displayed CH 2 Signal Delay with Respect to
CH 1 Signal - Adjustable through a range of at least ± 500 ps.
Input Z (1 M Ω) - $1 \mathrm{M} \Omega \pm 0.5 \%$ shunted by $15 \mathrm{pF}, \pm 2 \mathrm{pF}$. The maximum input voltage is $400 \mathrm{~V}(\mathrm{dc}+$ peak ac); 800 V p-p ac at 10 kHz or less, for ac and dc coupling.

Input Z (50 Ω) - $50 \Omega \pm 1 \%$, with vswr of $\leqslant 1.3: 1$ from dc to 300 MHz (for 2465), or from dc to 150 MHz (for 2445). Maximum input voltage is 5 V RMS with 1 -s averaging internal, $\pm 50 \mathrm{~V}$ peak.
Cascaded Operation - CH 2 Signal Out is coupled into CH 1 input. Bandwidth is dc to 50 MHz or greater and the deflection factor is $400 \mu \mathrm{~V} / \mathrm{div} \pm 10 \%$.

CHANNEL 3 AND CHANNEL 4
Deflection Factor - $0.1 \mathrm{~V} /$ div and $0.5 \mathrm{~V} /$ div $\pm 10 \%$.

Frequency Response

(Bandwidth and Risetime)*1

2465	With Standard Accessory Probe (-3 dB)	With 50Ω External Termination
$\begin{aligned} & -15^{\circ} \mathrm{C} \text { to } \\ & +35^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dc to } 300 \mathrm{MHz} \\ 1.17 \mathrm{~ns} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Dc} \text { to } 300 \mathrm{MHz} \text {, } \\ & (-4.7 \mathrm{~dB}) 1.4 \mathrm{~ns} \end{aligned}$
$\begin{aligned} & +35^{\circ} \mathrm{C} \text { to } \\ & +55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dc to } 250 \mathrm{MHz} \\ & 1.4 \mathrm{~ns} \end{aligned}$	$\begin{gathered} \mathrm{Dc} \text { to } 250 \mathrm{MHz} \text {, } \\ (-4.7 \mathrm{~dB}) 1.75 \mathrm{~ns} \end{gathered}$
2445		
$\begin{aligned} & -15^{\circ} \mathrm{C} \text { to } \\ & +55^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Dc to } 150 \mathrm{MHz} \\ 2.33 \mathrm{~ns} \end{gathered}$	Dc to 150 MHz , (-3 dB) 2.33 ns

* ${ }^{1}$ With a 6 div signal, from a 50Ω terminated source.

Input $Z-1 \mathrm{M} \Omega \pm 1 \%$, shunted by $15 \mathrm{pF} \pm 3 \mathrm{pF}$.
Maximum Input Voltage - $\pm 400 \mathrm{~V}$ (dc + peak ac): $800 \mathrm{Vp-p} \mathrm{ac} \mathrm{at} 10 \mathrm{kHz}$ or less.
Channel Isolation - 50:1 or greater attenuation of the deselected channel at 100 MHz with an 8 div input signal.

ALL CHANNELS

Low Frequency Linearity - 0.1 div or less compression or expansion of a 2 div, centerscreen signal when positioned anywhere within the graticule area.
Bandwidth Limiter - Reduces upper 3 dB bandpass to a limit of 13 MHz to 24 MHz .
Vertical Signal Delay - At least 30 ns of the signal is displayed before the triggering event is displayed on the A sweep for settings $\geqslant 10 \mathrm{~ns} /$ div. At least 10 ns of delay is displayed at $5 \mathrm{~ns} /$ div for the 2465 .
Chopped Mode Switching Rate -2.5 MHz $\pm 0.2 \%$ from $2 \mu \mathrm{~s} /$ div to $20 \mu \mathrm{~s} /$ div (1.25 MHz dual channel cycle rate). At All Other Sweep Speeds: $1 \mathrm{MHz} \pm 0.2 \%$ (500 kHz dual channel cycle rate).

HORIZONTAL SYSTEM

Display Modes - A, A Intensified, B Delayed, Alternate (A Intensified and B Delayed), B ends A for increased intensity in the delayed mode. For $X-Y$ operation Channel 1 supplies the x-axis (horizontal) deflection.

A Sweep Time Base Range

2465: $0.5 \mathrm{~s} /$ div to $5 \mathrm{~ns} /$ div in a $1-2-5$ sequence of 25 steps. X10 Mag feature extends maximum sweep speed to $500 \mathrm{ps} / \mathrm{div}$.
2445: $1 \mathrm{~s} / \mathrm{div}$ to $10 \mathrm{~ns} / \mathrm{div}$ in a 1-2-5 sequence of 25 steps. X10 Mag feature extends maximum sweep speed to $1 \mathrm{~ns} / \mathrm{div}$.

B Sweep Time Base Range

$2465: 50 \mathrm{~ms} /$ div to $5 \mathrm{~ns} /$ div in a $1-2-5$ sequence of 22 steps. X10 Mag feature extends maximum sweep speed to $500 \mathrm{ps} / \mathrm{div}$.
2445: $50 \mathrm{~ms} /$ div to $10 \mathrm{~ns} /$ div in a $1-2-5$ sequence of 21 steps. X10 Mag feature extends maximum sweep speed to $1 \mathrm{~ns} /$ div.

Variable Time Control - Continuously variable and calibrated between settings of the Sec/Div switch. Extends slowest A sweep speed to $1.5 \mathrm{~s} / \mathrm{div}$. Operates in conjunction with the A Sec/Div switch when A and B are locked together; operates in conjunction with the B Sec/ Div switch when A and B are not locked together. When Var is out of detent position, the $\Delta \mathrm{T}$ cursors give RATIO measurements, where five horizontal div are 100%. The variable control causes $1 / \Delta T$ cursors to give PHASE measurements where five horizontal div are 360°

CALIBRATED SWEEP DELAY

Timing Accuracy - Measured with Sec/Div switches set to $0.1 \mathrm{~s} / \mathrm{div}$ or faster and temperature from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. (Refer to note below.)

Parameter	Unmagnified	Magnified
A and B Sweep* ${ }^{* 1}$	$\begin{gathered} \pm(0.7 \% \text { of time interval } \\ +0.6 \% \text { of full scale) } \end{gathered}$	$\begin{gathered} \pm(1.2 \% \text { of time interval } \\ +0.6 \% \text { of full scale) } \\ \hline \end{gathered}$
Δ Time (with Cursors) ${ }^{* 2}$	$\begin{array}{\|l} \pm(0.5 \% \text { of time } \\ \\ +0.3 \% \text { of full scale) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \pm(1 \% \text { of time inteval } \\ +0.3 \% \text { of full scale) } \end{array}$
Δ Time (with Delayed B Sweep) ${ }^{* 3}$	$\begin{aligned} & \pm(0.3 \% \text { of time interval } \\ & +0.1 \% \text { of full scale) } \end{aligned}$	
Delay Time ${ }^{* 4}$	$\pm(0.3 \%$ of delay setting $+0.6 \%$ of full scale), $+0 \mathrm{~ns},-25 \mathrm{~ns}$	

${ }^{* 1}$ Time interval is measured on the center horizontal graticule line with Var Sec/Div control in detent (0.6\% full scale is 0.06 div).
${ }^{* 2}$ Time interval is measured with cursors, anywhere on the graticule.
${ }^{* 3}$ Time interval is measured with Delayed B Sweep and with both delays set at 1% or more of full scale from minimum delay (no "?" displayed in readout).
${ }^{* 4}$ Delay time is from A Sweep trigger point to start of B Sweep.
NOTE: With the A Sec/Div switch set to either 0.5 s or 0.2 s , add 0.5% of time interval to all accuracy specifications.
With the A Sec/Div switch set to 1 s (2445 only), add 2% of time interval to all accuracy specifications.
With the Var Sec/Div control out of detent, add 2% to both the A Sweep and the B Sweep accuracy specifications (except $1 \mathrm{~s} /$ div setting for 2445).

For temperature from $-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and from $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, add 0.2% of time interval to all Δ Time and Delay Time specifications; add 0.5\% of time interval to the A Sweep and the B Sweep accuracy specifications.

Δ Time Readout Resolution

2465: Greater of either 10 ps or 0.025% full scale. 2445: Greater of either 20 ps or 0.025% full scale. Δ Time Range $- \pm 10$ times the A Sec/Div switch setting.
Delay Pickoff Jitter - Within 0.004% (one part or less in 25,000) of the maximum available delay, plus 100 ps .
Delay Time Position Range - 0 to 9.95 times the A Sec/Div switch setting. Main sweep triggering event is observable on delayed sweep with minimum delay setting.

TRIGGERING
The minimum $p-p$ signal amplitude for stable triggering is stated for CH 1 or CH 2 source. The signal amplitude for CH 3 or CH 4 source is one-half of CH 1 or CH 2 source specification. For multiple channel source (Alternate Vertical Mode) add 1 div to the single channel source specification.
Dc Coupled - 0.35 div from dc to 50 MHz , increasing to 1.5 div at $500 \mathrm{MHz}(250 \mathrm{MHz}$ for 2445).

Noise Reject Coupled - 1.2 div from dc to 50 MHz , increasing to 4.5 div at 500 MHz (250 MHz for 2445). An amplitude sensing mode, defined by increased trigger hysteresis. For signals within the vertical bandwidth, triggering will not occur (signal reject) with 0.4 div or less.
Ac Coupled - 0.35 div from 60 Hz to 50 MHz , increasing to 1.5 div at $500 \mathrm{MHz}(250 \mathrm{MHz}$ for 2445). Attenuates signals below 60 Hz .

HF Reject Coupled - 0.5 div from dc to 30 kHz .
LF Reject Coupled - 0.5 div from 80 kHz to 50 MHz , increasing to 1.5 div at 500 MHz (250 MHz for 2445).
Jitter - Less than 50 ps at 300 MHz with A and B Sec/Div set for $5 \mathrm{~ns} /$ div sweep and 10X Mag on (100 ps at 150 MHz and $10 \mathrm{~ns} / \mathrm{div}$ for 2445).
Trigger Level Control Range - CH 1 or CH 2 : ± 18 times the Volt/Div setting. CH 3 or $\mathrm{CH} 4: \pm 9$ times the Volts/Div setting.
Trigger Level Control Readout Accuracy For triggering signals with transition times $>20 \mathrm{~ns}$.
Channel 1 or Channel 2 Source (Dc Coupled): $\pm[3 \%$ of Level setting $+3 \%$ of $p-\mathrm{p}$ signal +0.2 div $+0.5 \mathrm{mV}+(0.5 \mathrm{mV} \times$ probe attenuation factor)] for temperatures from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Add $1.5 \mathrm{mV} \times$ probe attenuation factor for temperatures from $-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Channel 1 and Channel 2 (50Ω Coupled, Channel 2 Invert): Add $\pm 1 \%$ of setting to dc coupled specification at $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Channel 1 or Channel 2 Source (Noise Reject Coupled): Add ± 0.6 div to the dc coupled specification.
Channel 3 or Channel 4 Source (Dc Coupled): $\pm[3 \%$ of Level control setting $+4 \%$ of $p-p$ signal +0.1 div $+(0.5 \mathrm{mV} \times$ probe attenuation factor)]. Channel 3 or Channel 4 Source (Noise Reject Coupled): Add ± 0.3 div to the Dc Coupled specification.
Auto Level Mode Maximum Triggering-Signal Period - At least 20 ms with A Sec/Div settings $<10 \mathrm{~ms} / \mathrm{div}$. At least four times the A Sec/ Div setting with settings from $10 \mathrm{~ms} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$. At least 200 ms with A Sec/Div switch settings $>50 \mathrm{~ms} / \mathrm{div}$.
Auto Mode Maximum Triggering-Signal Period - At least 80 ms with A Sec/Div settings $<10 \mathrm{~ms} /$ div. At least 16 times the $\mathrm{A} \mathrm{Sec} /$ Div settings from $10 \mathrm{~ms} /$ div to $50 \mathrm{~ms} / \mathrm{div}$. At least 800 ms with A Sec/Div setting $>50 \mathrm{~ms} / \mathrm{div}$.
Auto Level Mode Trigger-Acquisition Time - From 8 to 100 times the specification for Auto Level Mode Maximum Triggering-Signal Period, depending on the triggering-signal period and waveform.

Slope Selection - Conforms to trigger-source waveform or ac power-source waveform.
A Trigger Holdoff - An adjustable control permits a stable presentation of repetitive complex waveforms. Extends A sweep holdoff to at least 10 times $\mathrm{Sec} / D i v$ setting. At the fully clockwise setting, B sweep ends A sweep.

X-Y OPERATION

Three-Channel X-Y Display - Channel 1 supplies the X-axis (horizontal) deflection signal. Any or all of the vertical channels (including Channel 1) can supply the Y-axis (vertical) deflection signal(s).
X-Axis Deflection Factor Range, Variable Range, and Accuracy - Same as Channel 1.
X-Axis Bandwidth - Dc to 3 MHz .
Input Z - Same as Channel 1.
Phase Difference Between X and Y (Without Bandwidth Limit) $-\leq 1^{\circ}$ from dc to 1 MHz . $\leqslant 3^{\circ}$ from 1 MHz to 2 MHz .
X-Axis Low-Frequency Linearity - 0.2 div or less compression or expansion of a two-div, cen-ter-screen signal when positioned within the graticule area.

CURSOR AND FRONT PANEL DISPLAY

Δ Volts Cursor Position Range - At least the center 7.6 vertical divisions.
Δ Time Cursor Position Range - At least the center 9.6 horizontal divisions.
Power Down Memory - Front panel settings will be stored in nonvolatile memory provided no controls are moved for at least 10 s before power down.

Z-AXIS INPUT

Sensitivity - Positive voltage decreases intensity. From dc to $2 \mathrm{MHz},+2 \mathrm{~V}$ blanks a maximumintensity trace. From 2 MHz to $20 \mathrm{MHz},+2 \mathrm{Vp}$-p modulates a normal-intensity trace.
Input Resistance - $9 \mathrm{k} \Omega \pm 10 \%$.
Maximum Input Voltage $- \pm 25 \mathrm{~V}$ peak; 25 V $\mathrm{p}-\mathrm{p}$ ac at 10 kHz or less.

SIGNAL OUTPUTS

Calibrator - Measured with the Sec/Div setting at $1 \mathrm{~ms} / \mathrm{div}$.
Output Voltage and Current: $0.4 \mathrm{~V} \pm 1 \%$ into a $1 \mathrm{M} \Omega$ load, $0.2 \mathrm{~V} \pm 1.5 \%$ into a 50Ω load, or 8 mA $\pm 1.5 \%$ into a short circuit.
Repetition Period and Accuracy: Two times the A Sec/Div setting for settings from $100 \mathrm{~ns} / \mathrm{div}$ to $100 \mathrm{~ms} /$ div. Accuracy is $\pm 0.1 \%$, measured during sweep time or with Single Sequence A Trigger Mode selected.
Symmetry: Duration of high-portion output cycle is 50% of the output period \pm (the lesser of 500 ns or 25% of period).
Pulse-Period or Pulse-Width Jitter: 10 ns or less.
CH 2 Signal Out: Output Voltage: $20 \mathrm{mV} / \mathrm{div}$ $\pm 10 \%$ into $1 \mathrm{M} \Omega, 10 \mathrm{mV} /$ div $\pm 10 \%$ into 50Ω. Offset: $\pm 10 \mathrm{mV}$ into 50Ω when dc balance has been performed within $\pm 5^{\circ} \mathrm{C}$ of the operating temperature.
A Gate Out and B Gate Out: Output Voltage: 2.4 V to 5 V positive going pulse, starting at 0 V to 0.4 V . Output Drive: Will supply $400 \mu \mathrm{~A}$ during HI state; will sink 2 mA during LO state.

CRT READOUT AND WAVEFORM INFORMATION

Tektronix 2465 300wtrosenuscops

Your eyes never have to leave the screen to obtain front panel settings and measurement results.
In the CRT example above, the top area of the display provides trigger source, trigger voltage level, and stime results. The lower area displays the selected volts/div and seconds/div scale factors and that bandwidth limit and holdoff are activated.

CRT AND DISPLAY FEATURES
Standard CRT - $80 \mathrm{~mm} \times 100 \mathrm{~mm}(8 \mathrm{~cm} \times$ 10 cm).
Standard Phosphor - GH (P31) is standard.
Nominal Accelerating Potential - 16 kV .

POWER REQUIREMENTS

Line Voltage Ranges - $115 \mathrm{~V}: 90 \mathrm{~V}$ to 132 V ac. 230 V : 180 V to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Power Consumption - Typical: 70 W (140 VA). Maximum: 120 W (180 VA).

ENVIRONMENTAL AND SAFETY
The 2465/2445 Family oscilloscopes meet or exceed the environmental requirements of MIL-T28800C for Type III, Class 3, Style C equipment, tested for humidity 4.5 .5 .1 .2 .2 , low temperature 4.5.5.1.3 and high temperature 4.5.5.1.4.

Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Altitude - Operating: To $4600 \mathrm{~m}(15,000 \mathrm{ft})$. Maximum operating temperature decreases $1^{\circ} \mathrm{C}$ for each $1,000 \mathrm{ft}$ above $5,000 \mathrm{ft}$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of three axes at a total displacement of 0.025 inch p-p (4 g's at 55 Hz), with frequency varied from 10 Hz to 55 Hz in one-minute sweeps. Held 10 minutes at each major resonance, or if none existed, held 10 minutes at 55 Hz (75 minutes total test time).
Packaged Transportation Vibration - Meets the limits of the National Safe Transit Association Test Procedure $1 \mathrm{~A}-\mathrm{B}-1$; excursion of 1 inch $p-p$ at $4.63 \mathrm{~Hz}(1.1 \mathrm{~g})$ for 30 minutes.
Humidity - Operating and Nonoperating: Stored at 95% relative humidity for 5 cycles (120 hours) from $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, with operational performance checks at $+30^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$.
Shock - Operating and Nonoperating: 50 g 's,half-sine, 11 ms duration, three shocks on each face, for a total of 18 shocks.
Electromagnetic Compatibility - Meets MIL-STD-461B for the following tests: RE02 Part 4 and 7; CE01 Part 2; CE03 Part 2; CS01 Part 2; CS02 Part 2; CS06 Part 2; RS01 Part 2; RS03 $1 \mathrm{~V} /$ meter up to 1 GHz .

Meets FCC Rules and Regulations, Part 15, Subpart J, Class A. Meets VDE 0871, Category B.
Safety - UL listed (UL 1244) and CSA certified (CSA 556B).
Drip Proof - With Cover On: Meets MIL-T28800C Para. 4.5.5.5.3.
Transit Drop - Not in Shipping Package: 12 inch drop on each corner and each face (MIL-T-28800C, para 4.5.5.4.2).
Packaged Transportation Drop - Meets the limits of the National Safe Transit Association Test Procedure 1A-B-2; 10 drops of 36 inches.
Bench Handling - With and Without Cabinet Installed: MIL-STD-810C, Method 516, Procedure V (MIL-T-28800C, para 4.5.5.4.3).
Topple - Operating and Cabinet Installed: Set on rear feet and allowed to topple over onto each of four adjacent faces.

For Standard Scope \& Options	Cabinet		Option 1R Rackmount	
Dimensions	mm	in	mm	in
Width (with handle)	330	13.0	483	19.0
Height			178	7.0
(with feet/pouch)	190	7.5		
(without pouch)	160	6.3		
(with Opt 01, with feet/pouch)	230	9.0		
(with Opt 01, w/o pouch)	199	7.8		
Depth (with front panel cover)	434	17.1	419	16.5
(with handle extended)	$\begin{aligned} & 334 \\ & 505 \end{aligned}$	$\begin{aligned} & 17.1 \\ & 19.9 \end{aligned}$		
Weights	kg	lb	kg	lb
Net (w/o accessories \& pouch)	9.3	20.5	13.3	29.3
(with Opt $01 \mathrm{w} / \mathrm{o}$ accessories				
and pouch)	9.9	22.0		
(with accessories \& pouch)	10.2	22.4	14.2	31.2
(with Opt 01 with accessories				
and pouch)	13.0	28.8		
Shipping	12.8	28.2	19.1	42.0
(with Opt 01)	14.9	33.0		

Ordering Information — See page 267.

Option 10 gpis Intertace

Bus Interface complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

All of the High Performance Characteristics of Standard 2465/2445 Oscilloscopes Plus Programmability
Remote Control of Front Panel Functions
Selectable at Front Panel:
Device Address, Talk/Listen Mode, Message Terminator
Front Panel Status Indicators:
REM (Remote), SRQ (Service Request), LOCK (Local Lockout)
Compatible with All Other 2465/2445 Options
User Generated SRQ:
To Signal Controller During
Program Control

RQS Control:
 Optional Enable or Disable of
 SRQ Reporting

Option 10, which adds the ability to communicate over the General Purpose Interface Bus, transforms the 2465/2445 Family oscilloscopes into ideally suited components for use in a variety of semiautomatic test or measurement systems.
A host controller, such as the Tektronix 4041 can be easily programmed to assist the oscilloscope operator in performing a complete sequence of tests and measurements. Front panel settings can be remotely set or changed. It is possible not only to display scope parameters and settings on the CRT, but also to read them back over the GPIB to the controller. Similarly, the results of voltage, time, frequency, phase, and ratio measurements can be both displayed on the CRT and communicated back over the bus.
The ability to display prompting messages (by embedding them in control programs) reduces the chance of operator error at critical points in a test procedure.
Message structure for the 2465/2445 Family, like that for other Tektronix GPIB-controllable instruments, conforms with Tektronix Standard Codes and Formats. The abilty to select message termination characters facilitates use with most types of controllers.

CHARACTERISTICS

The set of characteristics is the same as specified for standard 2465/2445 oscilloscopes and includes the following additions:
Standard Interface Functions Implemented SH1, AH1, T6, L3, SR1, RL1, DC1, E1 DTØ CØ, PPØ.

Vertical Position Accuracy -

Channel 1 and Channel 2 (Noninverted): $\pm[0.3$ div $+3 \%$ of distance (in divisions) from center screen +0.5 mV divided by the Volt/Div setting]. Channel 2 Inverted: Add 0.2 div for $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (excluding $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$) add 1.5 mV divided by the Volt/Div setting.
Channel 3 and Channel 4: $\pm[0.7$ div $+3 \%$ of distance (in div) from center screen].

Ordering Information — See page 267.

Option 01Digital Multimeter

All of the High Performance Characteristics of Standard 2465/2445 Oscilloscopes Plus a 41/2 Digit Autoranging Digital Multimeter
True RMS Ac Volts from 20 Hz to 100 kHz
True RMS Ac Current from 20 Hz to 10 kHz
$10 \mu \mathrm{~V}$ Resolution on Dc Volts
Continuity Beeper
UL Listed, CSA Certified
Temperature Probe $-62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}$
Calibration via Front Panel without Removing Instrument Covers

```
Convenience Features Include:
Set Reference, Hold, Smooth,
Minimum/Maximum, dBV , and dBm
```

Option 01 (DMM) complements the measurement demands placed on the 2400 Se ries oscilloscopes. This $41 / 2$ digit DMM offers features not normally found on other DMMs in its class, such as: (1) Direct readout of dBV and dBm ; (2) Continuity with audible tone; (3) Display of minimum or maximum values of readings that occurred since the last reset or function change; (4) Averaging blocks of accumulated measurement values to create a smoothing or filtering effect when desired; (5) Rugged, designed to meet or exceed the requirements of MIL-T28800 C, Class 3 environment, thus ensuring reliable operation under the same temperature and humidity extremes as the 2400 Series oscilloscopes; (6) UL listed and CSA certified.

CHARACTERISTICS

The set of characteristics is the same as specified for standard 2465/2445 oscilloscopes and includes the following additions:
All accuracy specifications are stated with an operating temperature range of $+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$ and a relative humidity of 95% or less.

DC VOLTAGE

Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 500 \mathrm{~V}$.
Resolution - $10 \mu \mathrm{~V}$ ($41 / 2$ digits).

Accuracy $- \pm(0.03 \%$ of reading $+0.01 \%$ of full scale). For 500 V range $\pm(0.03 \%$ of reading $+0.04 \%$ of full scale).
Input Resistance $->100 \mathrm{G} \Omega$ on the 0.2 V and 2 V ranges, $10 \mathrm{M} \Omega$ on the higher ranges. Resistance can be changed to $10 \mathrm{M} \Omega$ on all ranges.
Normal-Mode Rejection Ratio $-\geqslant 60 \mathrm{~dB}$ at 50 Hz and 60 Hz .
Common-Mode Rejection Ratio - 100 dB at $\mathrm{dc},>80 \mathrm{~dB}$ at 50 Hz and 60 Hz with $1 \mathrm{k} \Omega$ imbalance.
Maximum Input Voltage - 500 V RMS, 700 V peak between inputs and ground.
Response Time $-<2 \mathrm{~s}$ in Auto, $<1 \mathrm{~s}$ in Manual range.

AC RMS VOLTAGE

Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 500 \mathrm{~V}$.
Resolution - $10 \mu \mathrm{~V}$ ($4^{1 ⁄ 2}$ digits).
Accuracy - \pm (\% of reading $+\%$ of full scale).

Ranges	$\mathbf{2 0 0} \mathbf{~ m V}$ to 200 V	$\mathbf{5 0 0} \mathbf{V}$
20 Hz to 40 Hz	$\pm(0.7 \%+0.1 \%)$	$\pm(0.7 \%+0.2 \%)$
40 Hz to 10 kHz	$\pm(0.3 \%+0.1 \%)$	$\pm(0.3 \%+0.2 \%)$
10 kHz to 20 kHz	$\pm(0.7 \%+0.1 \%)$	$\pm(0.7 \%+0.2 \%)$
20 kHz to 100 kHz	$\pm(5 \%+0.1 \%)$	$\pm(5 \%+0.2 \%)$

Crest Factor - $\leqslant 4$ at full scale.
Common-Mode Rejection Ratio $-\geqslant 60 \mathrm{~dB}$ at 50 Hz and 60 Hz with $1 \mathrm{k} \Omega$ imbalance.
Response Time $-<3 \mathrm{~s}$ in Auto, $<2 \mathrm{~s}$ in Manual range.
Input Impedance - $1 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$.
Maximum Input Voltage - 500 V RMS, 700 V peak between inputs and ground, not to exceed 10^{7} V-Hz product.
$\mathbf{d B V}, \mathbf{d B m}$ - Calculated reading of ac voltage measurements. dBV is the display result equal to $20 \log \left(V_{\text {UNK }} / V_{\text {REF }}\right)$ where $V_{\text {REF }}=1 \mathrm{~V} . \mathrm{dBm}$ is referenced 1 mW into 600Ω

HI Ω RESISTANCE

Ranges - $2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega 20 \mathrm{M} \Omega$.
Accuracy $- \pm(0.1 \%$ of reading $+0.01 \%$ of full scale) for $2 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega, \pm(0.5 \%$ of reading $+0.01 \%$ of full scale) for $20 \mathrm{M} \Omega$. For Relative Humidity (RH) above 70%, add 2% of reading per 10% RH for the two highest resistance ranges.
Maximum Input Voltage - 500 V RMS 700 V peak.
Full Scale Voltage -2 V .
Open Circuit Voltage $-<6 \mathrm{~V}$.
Resolution - 0.1Ω ($41 / 2$ digits).
Response Time $-<2 \mathrm{~s}$ in Auto, $<1 \mathrm{~s}$ in Manual range. $<5 \mathrm{~s}$ in $20 \mathrm{M} \Omega$ range.

LO Ω RESISTANCE

Ranges - $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$.
Accuracy - $\pm(0.1 \%$ of reading $+0.1 \%$ of full scale) for $200 \Omega, \pm(0.1 \%$ of reading $+0.01 \%$ of full scale) for $2 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega, \pm(0.25 \%$ of reading $+0.01 \%$ of full scale) for $2 \mathrm{M} \Omega$. For Relative Humidity (RH) above 70%, add 2% of Reading per $10 \% \mathrm{RH}$ for the two highest resistance ranges.
Maximum Input Voltage - 500 V RMS, 700 V peak.
Full Scale Voltage - 0.2 V .
Open Circuit Voltage $-<6 \mathrm{~V}$.
Resolution - 0.01Ω
Response Time $-<2 \mathrm{~s}$ in Auto, $<1 \mathrm{~s}$ in Manual range.
Continuity - An audible tone indicates $<10 \Omega$. Reponse time is $\approx 0.1 \mathrm{~s}$.

DC AMPS

Ranges - $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}$.
Accuracy $- \pm(0.1 \%$ of reading $+0.02 \%$ of full scale).
Burden Voltage - $<150 \mathrm{mV}$ up to 100 mA increasing to $<500 \mathrm{mV}$ at 1 A .
Resolution - 10 nA .
Response Time $-<2 \mathrm{~s}$ in Auto, $<1 \mathrm{~s}$ in Manual range.

AC (RMS) AMPS
Ranges $-100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~A}$.
Accuracy - $\pm(0.6 \%$ of reading $+0.1 \%$ of full scale) from 20 Hz to 10 kHz .
Burden Voltage - $<150 \mathrm{mV}$ up to 100 mA increasing to $<500 \mathrm{mV}$ at 1 A .
Resolution - 10 nA .
Response Time $-<3 \mathrm{~s}$ in Auto, $<2 \mathrm{~s}$ in Manual range.

TEMPERATURE

Range $--62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}, \pm(2 \%$ of reading $+1.5^{\circ} \mathrm{C}$). Readout may be in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ with a resolution of 0.1°.

OTHER CHARACTERISTICS

Reading Rate - Three readings/s nominal except 1.5 readings/s on $20 \mathrm{M} \Omega$ range.
Temperature Coefficient $-\leqslant 0.1 \times$ the accuracy specification $/{ }^{\circ} \mathrm{C}$ from $-15^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}$ and from $+28^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
GPIB Compatibility for Semiautomatic Measurement Systems - When combined with Option 10, the DMM (Option 01) oscilloscope combination is fully programmable. Complies with Tektronix Standard Codes and Formats.
Ordering Information - See page 267.

Option 09

Counter/Timer/Trigger (CTT)
with Word Recognizer (WR)
All of the High Performance Characteristics of Standard 2465/2445 Oscilloscopes Plus Crystal-Controlled Time Base

0.001\% Accuracy

Totalize up to 9,999,999 Events
Delay-By-Events Triggering up to a Total of 4,194,303 Events

Boolean Logic Triggering on Both Digital and Analog Signals

17-Bit Word Recognizer Probe

Adding Option 09 to the 2400 Series oscilloscopes provides crystal-controlled time base accuracy for several time related measurements. Its use is fully integrated with the operation of the oscilloscope and with user on-screen menus. Four new 2400 Series capabilities are provided by this option:
(1) Precision time-interval measuring;
(2) Event and frequency counting; (3) Delay-
by-events triggering; (4) Boolean logic triggering.
A 17-Bit word recognizer probe is available for a variety of applications, such as triggering on a word occurrence, counting words, or delaying the B sweep by a number of words.

CHARACTERISTICS

The set of characteristics is the same as specified for standard $2465 / 2445$ oscilloscopes and includes the following additions:
Sensitivity - Signal input requirements for Frequency, Period, Totalize, Delay-by-Events and Logic Trigger.

Input	Displayed Signal	Frequency Range
$\mathrm{CH} 1, \mathrm{CH} 2$	1.5 div	Dc $(0.5 \mathrm{~Hz}$ for Frequency and Period $)$ to 50 MHz
$\mathrm{CH} 3, \mathrm{CH} 4$	0.75 div	
$\mathrm{CH} 1, \mathrm{CH} 2$	4.0 div	50 MHz to $\geqslant 150 \mathrm{MHz}$
$\mathrm{CH} 3, \mathrm{CH} 4$	2.0 div	

Source - A trigger or word recognizer for Frequency, Period, and Totalize.

FREQUENCY

Range - Autoranging over input frequency from 0.5 Hz to 150 MHz .

Resolution $- \pm\left[L S D+1.4 \times \frac{\text { TJE }}{\mathrm{N}} \times(F)^{2}\right]$
Where: LSD $=$ Least Significant Digit (0.1 ppm of full scale)
TJE $=$ Trigger Jitter Error
$N=$ Number of cycles of measured frequency during measurement interval (0.5 s or 1 period of the input signal, whichever is greater).

Display - Seven digits, updates twice per second or every two periods, whichever is slower.
Accuracy - Resolution $\pm 0.001 \%$ of reading over entire temperature range of $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

PERIOD
Range - Autoranging over an input period from 6.666667 ns to 2 s .

Resolution $- \pm\left(\mathrm{LSD}+1.4 \times \frac{\mathrm{TJE}}{\mathrm{N}}\right)$
Where: LSD $=$ Least Significant Digit (0.1 ppm of full scale)
TJE $=$ Trigger Jitter Error
$\mathrm{N}=$ Number of cycles of measured frequency during measurement interval (0.5 s or 1 period of the input signal, whichever is greater).
Display - Seven digits, updates twice per second or every two periods, whichever is slower.
Accuracy - Resolution $\pm 0.001 \%$ of reading over entire temperature range of $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

ACCURACY AND RESOLUTION DEFINITIONS

TJE (Trigger Jitter Error) =

$\sqrt{\frac{(\text { en1 })^{2}+(e n 2)^{2}}{\text { Input Slew Rate }}}$
Where: en1 = RMS noise of vertical system in div on screen.
en2 $=$ RMS noise voltage of input signal in divs.

in divs.		
Volts/Div	Trigger Coupling	
	en1 Dc and Noise Rej	en2 HF Reject
2 mV	0.15 div	0.05 div
5 mV to 5 V	0.1 div	0.05 div

Δ TIME, 1/DTIME

TRIG AFT DLY Accuracy $- \pm($ LSD $+0.01 \mathrm{x}$ B Time/div $+0.001 \% \times \mathrm{A}$ Sec/div $+0.001 \%$ of reading +50 ps). Measured with signals (visually superimposed) having minimum Trigger Jitter Error and with channel-to-channel delay mismatch nulled out. (B Time/div includes 10X mag.)
RUN AFT DLY Accuracy - \pm (LSD $+0.0008 \times$ A Sec/Div $+0.01 \times$ B Time/Div $+83 \mathrm{ps})$. $(\mathrm{B}$ Time/ Div includes 10 X mag.)

Note: Input Signal is five vertical div with a $2 n$ risetime. Measured times are four horizontal div.
TJE is negligible for Slew Rates >0.1 div/ns.
Δ Time-TRIG AFT DLY assumes visual superposition.

Display Update Rate - Auto resolution, twice per second or every four sweeps, whichever is slower. Depends on trigger and sweep rates with selectable resolution.

PULSE WIDTH (ALT SLOPE)

When selected, displays the time interval defined by opposite slopes of a waveform using triggered delayed sweep.
Accuracy - Same as Δ time Triggered Mode.
Minimum Pulse Width $-\geqslant 1 \mathrm{~ns}$.
Display Update Rate - Same as Δ time Mode.

dELAY TIME

TRIG AFT DLY Accuracy - \pm (LSD $+0.001 \%$ of reading $+0.5 \mathrm{~ns}+A$ trigger slew error $+B$ trigger slew error). Add 0.5 ns for dual channel measurements.
Where: Trigger slew error equals trigger level control readout accuracy \div trigger signal slew rate at the trigger point.
When measured using word recognizer on the B Trigger: Add 100 ns using external clock; add 200 ns without external clock.
RUN AFT DLY Accuracy - \pm (LSD +0.0012 x A Sec/Div $+0.03 \times$ B Time/div +50 ns). (B Time/ div includes 10 X mag.)
If measured using word recognizer on the B Trigger: Add 100 ns using external clock; add 200 ns without external clock.

Note: Input Signal is five vertical div with a 2 ns risetime. Measured times are four horizontal div. TJE is negligible for Slew Rates >0.1 div/ns. $\triangle T i m e-T R I G$ AFT DLY assumes visual superposition.
Display Update Rate - Auto, twice per second or once for each sweep, whichever is slower. Depends on trigger and sweep rate for selectable resolution. LSD Table

A Sec/Div	Selected Resolution	LSD
10 ns to 1 s	AUTO	See Auto Resolution on next page
10 ns to $5 \mu \mathrm{~s}$	10 ps 100 ps 1 ns	10 ps 100 ps 1 ns
$10 \mu \mathrm{~s}$ to $50 \mu \mathrm{~s}$	10 ps or 100 ps 1 ns	100 ps 1 ns
$100 \mu \mathrm{~s}$ to $500 \mu \mathrm{~s}$	10 ps to 1 ns	1 ns
1 ms to 5 ms	10 ps to 1 ns	10 ns
10 ms to 50 ms	10 ps to 1 ns	100 ns
100 ms to 500 ms	10 ps to 1 ns	$1 \mu \mathrm{~s}$
1 s	10 ps to 1 ns	$10 \mu \mathrm{~s}$

Auto Resolution		
A Sec/Div	Trigger Repetition Rate	LSD
10 ns to $2 \mu \mathrm{~s}$	$>20 \mathrm{kHz}$	100 ps
10 ns to $2 \mu \mathrm{~s}$	200 Hz to 20 kHz	1 ns
$5 \mu \mathrm{~s}$ to $200 \mu \mathrm{~s}$	$>200 \mathrm{~Hz}$	1 ns
10 ns to $200 \mu \mathrm{~s}$	$<200 \mathrm{~Hz}$	10 ns
$500 \mu \mathrm{~s}$ to 5 ms	Any	10 ns
10 ms to 50 ms	Any	100 ns
100 ms to 500 ms	Any	$1 \mu \mathrm{~s}$
1 s	Any	$10 \mu \mathrm{~s}$

Note: 2445 A Sec/Div settings range from 20 ns to 1 s . 2465 A Sec/Div settings range from 10 ns to 500 ms .
totalize
Maximum Count - To 9,999,999 events.

DELAY BY EVENTS

A or B Sweep - The A trigger or 17 -bit word recognizer defines start events. The B trigger or 17-bit word recognizer defines delay events. Maximum delay count up to $4,194,303$. Minimum time from start event to any delay event $\geqslant 4$ ns. Minimum pulse width $\geqslant 3.3$ ns. With A sweep in the delayed by events mode, the B sweep is delayable by time.

LOGIC TRIGGER

Combination Trigger - A sweep can be triggered from logical combinations of A and B triggers $(A$ and B) or (A or B), or the word recognizer. B sweep can be triggered from the word recognizer. Minimum time to satisfy logic combinations $\geqslant 4 \mathrm{~ns}$.

WORD RECOGNIZER

Input - P6407 Word Recognizer Probe (010-6407-01), 17 bits plus clock. (No CRT display from P6407.)

All Inputs	Threshold	Load	Safe Limit
Hi	$<2.0 \mathrm{~V}$	$<20 \mu \mathrm{~A}$	5.5 V
Lo	$>0.6 \mathrm{~V}$	$>-0.6 \mathrm{~mA}$	-0.5 V

Display Radix - Hexadecimal, octal, binary.
Data Rate -0 MHz to $\geqslant 20 \mathrm{MHz}$ with clock, 0 MHz to $\geqslant 10 \mathrm{MHz}$ without clock.
Data Setup Time - 25 ns.
Data Hold Time - 0 ns.
GPIB Compatibility for Semiautomatic Measurement Systems - When combined with Option 10 the CTT/WR (Option 09) Oscilloscope combination is fully programmable. Complies with Tektronix Standard Codes and Formats.
Ordering Information - See page 267.

Tektronix 2465 smompe menescops

resolution <nute ins 100ps 10ps)

Option 06

Counter/Timer/Trigger (CTT)
The Counter/Timer/Trigger is available without the word recognizer probe as Option 06. Specifications and included accessories (except WR probe) are the same as Option 09. The word recognizer cannot, however, be added to Option 06 after delivery (field retrofit kits are not available).

This sample waveform and CRT readout show a 2445's high-fidelity display of the Vertical Interval Reference Signal on Line 19, Field 1 with the television blanking-level clamp (TVC) engaged. The instrument used is also equipped with Option 10 (GPIB).

Option 05

TV Waveform Measurement System
All of the High Performance Characteristics of Standard 2465/2445 Oscilloscopes Plus Television Waveform Analysis Capabilities
Selectable System-M and Nonsystem-M Protocols

Selectable Triggering on any Line with a Field, with Line-Number Readout

Compatible with Composite Video having $13.1 \mathbf{k H z}$ to $77 \mathbf{~ k H z}$ Line Rates

TV Blanking-Level Clamp (Back-Porch)
Optimized Vertical Response Comparable to High Performance TV Waveform Monitors

Option 05 extends 2465/2445 oscilloscopes to versatile television waveform measurement systems. Enhanced features make these instruments especially useful for testing and troubleshooting any equipment that combines raster display with video signals. Scopes equipped with Option 05 have practical application in virtually every stage of the product life cycle-design engineering, production lines, calibration facilities, QA areas, and service/maintenance functions.

Back-porch clamp circuitry delivers a stable display of composite video, even when signals are characterized by changing average picture level and low frequency hum.
Direct CRT readout of the triggering line number is a feature unique to Tektronix $2465 / 2445$ oscilloscopes with Option 05. By eliminating operator line counting, we removed the uncertainty that is inherent with less-advanced oscilloscope television options.

New circuitry optimizes triggering on television signals. Any of four trigger coupling modes can be chosen to display desired portions of the composite signal-Lines, Field 1, Field 2, Field 1 alternating with Field 2.

CHARACTERISTICS

The set of characteristics is the same as specified for standard $2465 / 2445$ oscilloscopes and includes the following additions:

VERTICAL SYSTEM

(CHANNEL 1 AND CHANNEL 2)

Frequency Response - For Volts/Div switch settings between 5 mV and 0.2 V with Var Volts/ Div control in calibrated detent and using a 5 -div, 50 kHz reference signal from a 50Ω or 75Ω system.

Range	Frequency Reponse	
	With Full BW	With BW Limiting
50 kHz to 5 MHz	$\pm 1 \%$	$+1 \%,-4 \%$
$>5 \mathrm{MHz}$ to 10 MHz	$+1 \%,-2 \%$	$* 1$
$>10 \mathrm{MHz}$ to 30 MHz	$+2 \%,-3 \%$	$* 1$
$>30 \mathrm{MHz}$	$* 1$	${ }^{*}$

*1 Same as 2445/2465
Squarewave Flatness - 1% p-p for both 60 Hz and 15 kHz squarewaves, from a 50Ω or 75Ω system using a 1.0 V input with a $50 \mathrm{mV} /$ div setting and using a 0.1 V input at 20 mV /div setting. 1.5% p-p using a 0.1 V input with $5 \mathrm{mV} / \mathrm{div}$ and $10 \mathrm{mV} /$ div settings. Setup with $1 \mathrm{M} \Omega \mathrm{dc}$ input coupling, external 50Ω termination, Var Volts/Div control in calibrated detent, and fast-rise input signal (risetime $\leqslant 1 \mathrm{~ns}$). Exclude first 50 ns following step transition. For signals with risetimes $\leqslant 10 \mathrm{~ns}$, add 2% p-p between 155 ns and 165 ns after step transition.
Television Blanking-Level Clamp (BackPorch) 60 Hz Rejection (Channel 2 Only) $\geqslant 18 \mathrm{~dB}$ at 60 Hz ; with calibrated Volts/Div settings between 5 mV and 0.2 V , and a 6 -div reference signal.
Television Blanking-Level Clamp (BackPorch) Reference - Within 1.0 div of ground reference.

TRIGGERING

Sync Separation - Stable sync separation from sync-positive or sync-negative composite video on systems with 525 to 1280 lines/frame, 50 Hz or 60 Hz field rate, interlaced or noninterlaced scan.
Trigger Modes - LINES, FLD 1, FLD 2, and ALT (FLD 1-FLD 2) coupling.
Input Signal Amplitude for Stable Triggering Channel 1 and Channel $2-1.0$ div for composite video and 0.3 div for composite sync signals (dc + peak video-signal amplitude must be within 18 div of input ground reference).
Channel 3 and Channel $4-0.5$ div for composite video and 0.25 div for composite sync signals (dc peak video-signal amplitude must be within 9 div of input ground reference).
GPIB Compatibility for Semiautomatic Measurement Systems - When combined with Option 10, the TV Waveform Measurement Systems (Option 05)/oscilloscope combination is fully programmable. Complies with Tektronix Standard Codes and Formats.

ORDERING INFORMATION

2465300 MHz Oscilloscope \$5,350
Includes: Two P6131 10X 1.3 m probes with accessories (010-6131-01); $2 \mathrm{~A}, 250 \mathrm{~V}$ fuse (159-0021-00); zip lock accessory pouch (016-0537-00); blue plastic CRT filter (378-0199-03); clear plastic CRT filter; snap accessory pouch (016-0692-00); front cover; power cord (161-010400); operator manual ($070-3832-00$); reference guide ($070-$ 4180-00).
2445150 MHz Oscilloscope
\$3,590
Includes: Same as 2465, except two P6133 10X 2 m probes (P6133) and operator manual (070-3830-00).
2465DVS 300 MHz Oscilloscope $\quad \$ 9, \mathbf{2 0 0}$
Includes: Same as 2465, plus DMM (Option 01), TV (Option 05), CCT/WR (Option 09), GPIB (Option 10), and two additional P6131 probes (Option 22). Provides most costeffective combination of these options.
2465DMS 300 MHz Oscilloscope
$\$ 8,400$
Includes: Same as 2465 , plus DMM (Option 01), CCT/WR (Option 09), GPIB (Option 10), and two additional P6131 probes (Option 22). Provides most cost-effective combination of these options.
2465CTS 300 MHz Oscilloscope
\$7,150
Includes: Same as 2465, plus CCT/WR (Option 09), GPIB (Option 10), and two additional P6131 probes (Option 22). Provides most cost-effective combination of these options.

INSTRUMENT OPTIONS

Option 01*3 - Digital Multimeter.
+\$1,500 Includes: Same as 2465 or 2445 instruments, plus probe set (012-0941-00); temperature probe (010-6602-00); probe set accessories ($020-0087-00$); DMM operator manual (070-4183-00); reference guide (070-5365-00).
Option 05 - TV Waveform Measurement System.
$+\$ 1,050$
Includes: Same as 2465 or 2445 instruments plus CCIR graticule CRT filter (378-0199-01); NTSC graticule CRT filter (378-0199-02); polarized collapsible viewing hood (016-0180-00); operator manual (070-4629-00); reference guide (070-5382-00).
Option 06 - Counter/Timer Trigger $\quad \mathbf{+ \$ 1 , 0 0 0}$ Includes: Same as 2465 or 2445 instruments, plus 20 grabber tips (206-0222-00); two 10 inch 10 wide comb (012-0747-00); operator manual (070-4631-00); reference card (070-5382-00).
Option 09*1*2 - CTT/Word Recognizer $\mathbf{+ \$ 1 , 4 0 0}$ Includes: Same as 2465 or 2445 instruments, plus a word recognizer probe (010-6407-01); 20 grabber tips (206-0222-00); two 10 inch 10 wide comb (012-0747-00); operator manual (070-4631-00); reference card (070-5366-00).
Option 10 - GPIB Interface $\quad+\$ 900$ Inciudes: Same as 2465 or 2445 instruments, plus operator manual (070-4633-00); reference guide (070-5364-00)

MULTIPLE OPTION ALLOWANCE (MOA)
When a 2465 or 2445 is ordered with more than two of the above options, a special price allowance is applied. This allowance is not applicable to the 2465DVS, 2465DMS, or the 2465CTS specially priced edition.
Option 2A - MOA for combining two of the above options.

Option 3A - MOA for combining three of the above options.
Option 4A - MOA for combining four of the above options.
$-\$ 250$
$-\$ 500$
$-\$ 750$

OTHER INSTRUMENT OPTIONS

Rackmount 2465 Option 1R comes complete with slideout chassis tracks.
Option 1R*3 - Configure Oscilloscope for Rackmount
$+\$ 320$ Includes: Same as 2465 or 2445 instrument (except pouch) plus rackmount hardware and slide-out assemblies.
Option 11*1 - Rear Panel Probe Power. $\mathbf{+ \$ 1 6 5}$
Option 22 - Two additional P6131 Probes. $\mathbf{+ \$ 2 5 0}$

* 1 Option 11 may not be ordered with Option 09 or the 2445.
*2 Option 09 includes Option 06.
*3 Option 1R may not be ordered with Option 01. For rackmounting Option 01, 2465DVS, and 2465DMS contact your Tektronix sales office.
NOTE: Options 01, 05, 06, 09, and 10 are not retrofitable with field upgrade kits

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16$ A, 50 Hz .
Option A2 - UK 240 V13 A, 50 Hz .
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS-

 SEE PAGE 458M1 - (2465 and Special Editions) 2 Calibrations.
M1 - (2445) 2 Calibrations.
$+\$ 265$

M2 - (2465 and Special Editions) 2 Years Service.
$+\$ 270$
M2 - (2445) 2 Years Service.
M3 - (2465 and Special Editions) 2 Years Service and 4 Calibrations.

M3 - (2445) 2 Years Service and 4 Calibrations.
M4 - (2465 and Special Editions) 5 Calibrations. $+\$ 670$
M4 - (2445) 5 Calibrations. $+\$ 660$
M5 - (2465 and Special Editions) 9 Calibrations +2 Years Service.
$+\$ 1,350$
M5 - (2445) 9 Calibrations +2 Years Service. $\mathbf{+ \$ 1 , 2 9 5}$

OPTIONAL ACCESSORIES

Rackmounting Coversion Kit - Not compatible with Option 01. Order 016-0691-01
Probe Power Extender Cable for Rackmount 2445/2465 Option 11 -
Order 020-0104-00
Word Recognizer Extender Cable for Rackmount 2445/2465 Option 09 and 2465CTS - Order 020-0103-00. \$32
GPIB Cable- Double shield, low EMC.
(1m) Order 012-0991-01
\$135
(2m) Order 012-0991-00 \$150 gram Generator. Together these can provide automatic or semiautomatic parametric results.

Dc to 100 MHz Bandwidth

```
\(5 \mathrm{mV} / \mathrm{div}\) to \(5 \mathrm{~V} / \mathrm{div}\)
```

$5 \mathrm{~ns} /$ div Sweep Rate
Three Year Warranty-Five Year Option

TYPICAL APPLICATIONS

\author{

* Rugged Field Service
 * Computer Peripheral Service
 * Communication Equipment Service
}

Compact and lightweight for ultra-portability, these oscilloscopes are designed and built for on-site trouble-shooting. The 2335, $2336,2336 \mathrm{YA}$ and 2337 are useful for high speed logic and digital applications. They
feature an innovative and protective flip-top cover that doubles as a front panel with Δ Time on the 2336, 2336YA and Δ Time/ DMM on the 2337 versions. The entire outside case of all four instruments is made of durable, one-piece aluminum and the front panels are coated with scratch resistant plastic. When the flip-tops are latched shut, the entire scope can withstand the abuse and heavy usage of field service environments.
Vertical channels have calibrated deflection factors from $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div with a variable gain control to increase the sensitivity to at least $2 \mathrm{mV} / \mathrm{div}$. An internal delay line permits observation of the leading edge of a waveform. Variable sweep speeds range from $0.5 \mathrm{~s} /$ div to $50.0 \mathrm{~ns} / \mathrm{div}$ and a 10X magnifier can increase the sweep rate to $5 \mathrm{~ns} / \mathrm{div}$. An auto-trigger mode allows triggering on waveforms with repetitive rates down to approximately 10 Hz . The sweep rate will run freely and provide a base line trace in the absence of an adequate trigger signal.

Many exterior features have been incorporated into these new ultra-portable scopes to make them fast and convenient to use. The CRT produces bright, high resolution traces that are readily visible in most light conditions. The Δ Time/DMM readouts are distinct, backlighted LCD (Liquid Crystal Displays) for clear viewing in any lighting condition. All knobs and switches have been located in logical groupings to avoid errors and delays during operation. And for the 2336, 2336YA and 2337 models, Δ Time and DMM display and controls are in the hinged, fliptop cover.
All four oscilloscopes come with detachable power cord, integral EMI shielding, and an accessories pouch. They are manufactured to withstand impact shocks of 50 g 's, almost twice that of other portable scopes from Tektronix. This ruggedness meets MIL-T-28800C, Class 3 environmental requirements for aerospace and military qualification.

2335

In strong testimony of the incomparable reliability of the 2000 Family oscilloscopes, Tek offers a three year warranty: All labor and parts, including CRT, excluding probes. And then, beyond the "basic three years" of warranty coverage, Tek will extend your service coverage up to five years, offering you a choice of three practical service plans to meet your specific service needs.
The 2336YA version of the standard 2336 100 MHz Portable Oscilloscope has a 5000 hour elapsed time indicator installed, and also includes additional accessories and an extra set of manuals. The 2336YA has been accepted and specified by the U.S. Navy. 2300 Series products have National Stock Numbers. Check the Logistics Data Book for information.

CHARACTERISTICS

The following characteristics are common to the $2335,2336,2236 \mathrm{YA}$, and 2337 Oscilloscopes except where indicated.

VERTICAL SYSTEM
 (TWO IDENTICAL CHANNELS)

Bandwidth and Risetime

$-15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Dc to at least 100 MHz,	Dc to at least 85 MHz,
3.5 ns	4.15 ns

Bandwidth Limit - 20 MHz by bandwidth limit switch.
Lower - 3 dB Point Ac Coupling - 1X Probe: 10 Hz or less. 10X Probe: 1 Hz or less.
Deflection Factor $-5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div. 1-2-5 sequence. Accuracy: $\pm 3 \%$. Uncalibrated: Continuously variable between steps and to at least $2 \mathrm{mV} / \mathrm{div}$.

Display Modes - $\mathrm{CH} 1, \mathrm{CH} 2$, Add CH 2 (normal and inverted), Alternate, Chopped ($\approx 275 \mathrm{kHz}$ rate).
Common-Mode Rejection Ratio - For com-mon-mode signals of 6 div or less. 2335, 2336, 2337: At least $10: 1$ at 50 MHz . 2336 YA : At least $25: 1$ at $10 \mathrm{MHz} ; 10: 1$ at 100 MHz .
Channel Isolation —>100:1 at 25 MHz .
Input R and C-1M $\pm 2 \%$ paralleled by 20 pF $\pm 10 \%$.
Maximum Input Voltage - Ac or dc coupled, 400 V (dc + peak ac) or $500 \mathrm{~V} \mathrm{p-p}$ ac at 1 kHz or less.

HORIZONTAL SYSTEM

Time Base A - $0.05 \mu \mathrm{~s} /$ div to $0.5 \mathrm{~s} /$ div (1-2-5 sequence). X10 magnified extends maximum sweep rate to $5 \mathrm{~ns} /$ div.
Time Base B - $0.05 \mu \mathrm{~s} /$ div to $50 \mathrm{~ms} / \mathrm{div}(1-2-5$ sequence). X10 magnified extends maximum sweep rate to $5 \mathrm{~ns} /$ div.
Variable Time Control - Time base A provides continuously variable uncalibrated sweep rates between steps and to at least $1.25 \mathrm{~s} / \mathrm{div}$.
Time Base A and B Accuracy*1

	$+20^{\circ} \mathrm{C}$ to $+\mathbf{3 0}{ }^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Unmagnified	$\pm 2 \%$	$\pm 3 \%$
Magnified	$\pm 3 \%$	$\pm 4 \%$

* ${ }^{1}$ Full ten divisions

Display Modes - A, A intensified by B, B delayed.

CALIBRATED SWEEP DELAY
Delay Time Range - Continuous from 50 ns to at least 5 s after start of delaying sweep.

Differential Time Measurement Accuracy*1

	$\mathbf{+ 1 5}{ }^{\circ} \mathbf{C}$ to $+\mathbf{3 5}{ }^{\circ} \mathbf{C}$	$\mathbf{- 1 5}{ }^{\circ} \mathbf{C}$ to $+\mathbf{5 5}{ }^{\circ} \mathbf{C}$
2335	0.75%	1.5%
	+0.015 major dial div	+0.015 major dial div
$2336 / 2336 \mathrm{YA}$	$\pm \mathbf{1} \%$ of reading	$\pm 2.5 \%$ of reading
2337	± 1 count	± 1 count

* 2336 YA Only: $+10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ is 2% of reading ± 1 count.
Jitter - One part or less in 20,000 (0.005\%) of 10 times the A Sweep Time/Div setting.

TRIGGERING

A Trigger Mode - Normal (sweep runs when triggered). Automatic (sweep free runs in absence of a triggering signal and for signals below 30 Hz). Single Sweep (sweep runs once on first triggering event after reset selector is pressed). LED indicates when sweep is triggered and when single sweep is ready.

A and B Trigger Sensitivity

$\begin{aligned} & 2335,2336, \\ & 2337 \end{aligned}$	Internal	External* ${ }^{1}$	External $\div 10 * 1$
$\begin{array}{r} 20 \mathrm{MHz} \\ 100 \mathrm{MHz} \end{array}$	0.3 div 1.1 div	$\begin{array}{r} 50 \mathrm{mV} \\ 150 \mathrm{mV} \end{array}$	$\begin{gathered} 500 \mathrm{mV} \\ 1.5 \mathrm{~V} \end{gathered}$
2336YA			
$\begin{array}{r} 25 \mathrm{MHz} \\ 100 \mathrm{MHz} \\ 150 \mathrm{MHz} \end{array}$	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.0 \mathrm{div} \\ & 1.1 \mathrm{div} \end{aligned}$	$\begin{array}{r} 50 \mathrm{mV} \\ 150 \mathrm{mV} \\ 300 \mathrm{mV} \end{array}$	$\begin{gathered} 500 \mathrm{mV} \\ 1.5 \mathrm{~V} \\ 3 \mathrm{~V} \end{gathered}$

*' External B Trigger sensitivity is not applicable to the 2335.

Trigger Coupling - Ac (-3 dB 20 Hz), dc, LF REJ attenuates signals above 50 kHz . B Trigger coupling is ac only.
A Trigger Hold Off - Adjustable control permits a stable presentation of repetitive waveforms.
Δ Time B Trigger Modes (2336, 2336YA and 2337 Only) - Provides two intensified zones on the CRT trace for differential time measurements. Time difference between the two intensified zones is determined by B Delay Time Position and Δ Time Position controls, and is displayed on the LCD readout.
Runs After Delay - B Sweep starts immediately after the delay time selected by the Delay Time Position control and is independent of B trigger signal.
Triggerable After Adjustable Delay Time The B Sweep Trigger is sourced from a composite of CH 1 and $\mathrm{CH} 2 ; \mathrm{CH} 1$ only, 2 only or from the Ext Trigger input connector.
Jitter - 2335, 2336, 2337: 1.0 ns or less at $100 \mathrm{MHz} .2336 \mathrm{YA}: 0.5 \mathrm{~ns}$ at 100 MHz .
A Trigger View - A spring loaded pushbutton overrides other vertical controls to display the signal used to trigger the A Sweep. This control provides quick verification of the (trigger) signal and permits a time comparison between the vertical input signal and the trigger signal. Deflection Factor is $100 \mathrm{mV} /$ div $\pm 40 \%$ ($1 \mathrm{~V} /$ div with Ext $\div 10$).
Level and Slope - Internal, permits selection of triggering at any point on positive or negative slope of vertical input signal. Level adjustment through at least $\pm 1 \mathrm{~V}$ in Ext, through at least $\pm 10 \mathrm{~V}$ in Ext $\div 10$.
A Sources - Vertical Mode, CH 1, CH 2, Line, Ext, Ext $\div 10$.
B Sources (2336, 2336YA and 2337 Only) Δ Time runs after delay, Vertical Mode, CH 1 , CH 2 , Ext (all modes ac coupled).
External Inputs - R and C $1 \mathrm{M} \Omega \pm 10 \%, 20 \mathrm{pF}$ $\pm 30 \% .400 \mathrm{~V}$ (dc + peak ac) or 500 V ac p-p at 1 kHz or less.

X-Y OPERATION

Full Sensitivity X-Y (CH 1 Horizontal, CH 2 Vertical) - $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div ($1-2-5$ sequence), accurate $\pm 5 \%$ from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$, accurate $\pm 8 \%$ from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. X -axis bandwidth is dc to at least 2 MHz . Y -axis bandwidth is dc to at least 100 MHz . Phase difference between amplifiers is 3° or less from dc to 200 kHz .

CRT AND DISPLAY FEATURES CRT - $8 \times 10 \mathrm{div}$ ($8 \mathrm{~mm} / \mathrm{div}$) display. Horizontal and vertical centerlines further marked in 0.2 div increments. Accelerating potential is 18 kV . GH (P31) phosphor.
Graticule - Internal, nonparallax, nonilluminated; markings for measurement of risetime.
Beam Finder - Compresses trace to within graticule area to locate an off screen signal.
Z-Axis Input - Positive-going, dc coupled signal decreases intensity; $5 \mathrm{~V} p-p$ signal causes noticeable modulation at normal intensity; dc to 20 MHz .

OTHER CHARACTERISTICS
Amplitude Calibrator - 0.2 V accurate $\pm 1 \%$ from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}, \pm 1.5 \%$ from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

POWER REQUIREMENTS

Line Voltage Ranges - 100 V ac to 132 V ac and 200 V ac to 250 V ac. Option 03 provides 90 V ac to 115 V ac or 180 V ac to 230 V ac.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 35 W at $115 \mathrm{~V}, 60 \mathrm{~Hz}$.

ENVIRONMENTAL

The 2335 Oscilloscope meets all environmental requirements of MIL-T-28800C, Class 3 . The 2336, 2336 YA and 2337 Oscilloscopes meet the environmental requirements of MIL-T-28800, Class 3 except as indicated herein to avoid potential damage to the LCD readout.
Temperature - Forced air ventilation during normal operation.
2335: Operating is $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating is $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2335 Option 1R (Rackadapted): Operating temperature inside equipment rack must be between $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ and exhaust fan temperature must not exceed $+65^{\circ} \mathrm{C}$. Nonoperating is $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
$2236 / 2237$: Operating is $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating is $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Altitude - Operating: Sea level to 4600 m ($15,000 \mathrm{ft}$). Nonoperating: Sea level to 15000 m ($50,000 \mathrm{ft}$).

Vibration - Test samples were subjected to sinusoidal vibration in the X, Y, and Z-axes with the frequency varied from 10 Hz to 55 Hz to 10 Hz in one minute cycles for a duration of 15 minutes. Total displacement was 0.025 in $\mathrm{p}-\mathrm{p}$ at (4 g 's at 55 Hz).
Humidity - 2335 (Operating and Nonoperating): 95%, five cycles (120 hours), referenced to MIL-T28800B Paragraph 3.9.2.2.
2336, 2336YA and 2337 (Operating): 90\% (72 hours) at $+55^{\circ} \mathrm{C}$.
2336, 2336YA and 2337 DMM (Operating): 90% (24 hours) at $+35^{\circ} \mathrm{C}$ and 70% (24 hours) at $+50^{\circ} \mathrm{C}$.
2336, 2336YA and 2337 and DMM: 90% (72 hours) at $60^{\circ} \mathrm{C}$.
Shock - Operating 50 g 's, $1 / 2$ sine, 11 ms duration, 3 shocks per axis along each major axis. Total of 18 shocks.
Electromagnetic Compatibility (EMC) - Test samples were found in compliance with the Class 3 requirements of MIL-STD-461B using procedural steps outlined in MIL-STD-462. (Increase RS03 requirements from $1 \mathrm{~V} / \mathrm{m}$ to $10 \mathrm{~V} / \mathrm{m}$) for RE01, use 500 Hz to 30 kHz in place of 30 Hz to 30 kHz .

2337	$\begin{gathered} 2335,2336,2336 \mathrm{YA}, \\ \text { Cabinet } \end{gathered}$		$\begin{gathered} 2335 \text { Option 1R } \\ \text { Rackmount } \\ \hline \end{gathered}$	
Dimensions	mm	in	mm	in
Width	274	10.8	483	19.0
(with handle)	315	12.4		
Height			133	5.2
(with feet/pouch)	210	8.3		
(without pouch)	135	5.3		
Depth			378	14.9
(with front cover) (handle extended)	$\begin{aligned} & 430 \\ & 528 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 20.8 \end{aligned}$		
Weights (2335)	kg	lb	kg	lb
Net (without accessories or pouch)	7.7	17.0	11.7	25.8
Net (with accessor-				
ries and pouch)	8.6	19.0	12.6*1	$27.8{ }^{\text {¹ }}$
Shipping	10.6	23.5	16.9	37.3
Weights (2336,2336YA, 2337)	kg	lb	kg	lb
Net (without accesso-				
ries and pouch)	8.0	17.6		
Net (with accessories and pouch)	8.9	19.6		
Shipping	10.9	24.1		

${ }^{* 1}$ No pouch for 2335 Option 1R.

2337 with Digital Multimeter

DC VOLTAGE

Full Scale Ranges - 2 V (autoranging to 200 mV); 200 V (autoranging to 20 V); and 500 V . Resolution - $100 \mu \mathrm{~V}$ at 200 mV full scale. Accuracy

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	Within $\pm 0.15 \%$ of reading ± 1 count

$-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$	Add 0.01% for every ${ }^{\circ} \mathrm{C}$ below $+15^{\circ} \mathrm{C}$
$+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Add $\pm 0.01 \%$ for every ${ }^{\circ} \mathrm{C}$ above $+35^{\circ} \mathrm{C}$
80% Relative	Add $\pm 0.25 \%$ of reading ± 3 counts
Humidity	

Input Resistance - $10 \mathrm{M} \Omega \pm 0.25 \%$.
Rejection Ratio - Normal-Mode: 60 dB minutes at 50 Hz and 60 Hz . Common-Mode: 100 dB minutes at dc, 60 dB minutes at 50 Hz and 60 Hz .
Response Time - Within 3s (no autorange); within 9 s (up range); within 7 s (down range).
Maximum Input Voltage - 500 V (dc + peak ac) at 60 Hz (between positive and negative inputs or between either input and ground).

AC VOLTAGE

Full Scale Ranges - 2 V (autoranging to 200 mV); 200 V (autoranging to 20 V); and 350 V .
Crest Factor - (When peak voltage input is <3 times full scale) Six.

Accuracy* ${ }^{1}$

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} \quad$ Within $\pm 3 \%, \pm 6$ counts ${ }^{* 1}$, 20 Hz to 20 kHz

$-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$	Add $\pm 0.05 \%$ for every ${ }^{\circ} \mathrm{C}$ below $+15^{\circ} \mathrm{C}$
$+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Add $\pm 0.05 \%$ for every ${ }^{\circ} \mathrm{C}$ above $+35^{\circ} \mathrm{C}$

${ }^{* 1}$ Nonsinewaves: Derate below 50 Hz . For crest factors >3, add $+0,-1 \%$ of reading.
Input Impedance - Resistance $10 \mathrm{M} \Omega \pm 0.25 \%$ in series with input blocking cap. Capacitance $(20 \mathrm{~V}, 200 \mathrm{~V}$, and 350 V range) $<150 \mathrm{pF}$; (200 mV , 2 V range) $<220 \mathrm{pF}$.
Common-Mode Rejection Ratio - 60 dB minimum at 50 Hz and $60 \mathrm{~Hz}, 2 \mathrm{~V}$ range; 53 dB minimum at 50 Hz and $60 \mathrm{~Hz}, 200 \mathrm{~V}$ and 300 V range. Response Time - Within 3 s (no autorange); within 9 s (up range); within 7 s (down range).
Maximum Input Voltage -500 V (dc + peak ac) at 60 Hz (between positive and negative inputs or between either input and ground).

RESISTANCE

Full Scale Ranges - $2 \mathrm{k} \Omega$ (autoranging to 200Ω); $200 \mathrm{k} \Omega$ (autoranging to $20 \mathrm{k} \Omega$); $20 \mathrm{M} \Omega$ (autoranging to $2 \mathrm{M} \Omega$).
Resolution - 0.1Ω.
Accuracy

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	Within $\pm 0.5 \% \pm 2$ count $+0.4 \Omega$

| $-15^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ | Add 0.05% for every ${ }^{\circ} \mathrm{C}$ below $+15^{\circ} \mathrm{C}$ |
| :--- | :--- | | $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ | Add 0.05% for every ${ }^{\circ} \mathrm{C}$ above $+35^{\circ} \mathrm{C}$ |
| :--- | :--- |

$>80 \%$ Relative

 HumidityAdd $\pm 1 \%$ of reading ± 8 counts

Response Time - $<4 \mathrm{~s}$.

Maximum Input Voltage - 500 V (dc + peak ac) at 60 Hz (between positive and negative inputs or between either input and ground).

ORDERING INFORMATION

2335 Oscilloscope
\$3,390
Includes: Two P6108A 10X Probes (010-6108-13); accessory pouch ($016-0674-00$); zip lock accessory pouch ($016-0537-00$); clear CRT implosion shield ($337-2781-00$); installed, blue CRT implosion shield ($337-2760-00$); two 1 A fuses (159-0022-00); 1/2 A fuse (159-0025-00); power cord (161-0104-00); operator manual (070-4115-00).
2336 Oscilloscope with Δ Time
\$3,690
Includes: Same as 2335, instruction manual (070-4117-00) instead.

2336 YA

The 2336 YA has been accepted and specified by the U.S. Navy. Also see page 277.
2336YA Oscilloscope with Δ Time, Elapsed Time Meter, Extra Accessories and Manuals
\$3,890
Includes: Same as 2336 plus P6101A probe (010-6101-13); three probe tip adaptors (103-0051-01); three spring tip adaptors (206-0060-00); operator manual (070-$5010-00$); service manual ($070-5011-00$).
2337 Oscilloscope with Δ Time and DMM
\$3,990
Includes: Same as 2335, instruction manual (070-4119-00) instead.

Rackmount 2335 Option 1R
Option 1R - (2335 only) Rack Conversion. $\mathbf{+ \$ 3 2 5}$
Option $03-100 \mathrm{~V} / 200 \mathrm{~V}$, ac nominal, 48 Hz to 440 Hz .

CONVERSION KIT
Rackmount Conversion - (2335 only.)
Order 016-0468-00
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS

 SEE PAGE 458| (2335) 2 Calibrations. | +\$145 |
| :---: | :---: |
| M1 - (2336/2336YA) 2 Calibrations. | +\$160 |
| M1 - (2337) 2 Calibrations. | +\$180 |
| M2 - (2335) + 2 Years Service. | +\$140 |
| M2 - (2336/2336YA) +2 Years Service. | +\$160 |
| M2 - (2337) +2 Years Service. | +\$180 |
| M3 - (2335) +2 Years Service \& 4 Calibrations. | +\$410 |
| M3 - (2336/2336YA) 2 Years Service \& 4 Calibrations. | +\$470 |
| M3 - (2337) 2 Years Service \& 4 Calibrations. | +\$51 |
| M4 - (2335) 5 Calibrations. | +\$390 |
| M4 - (2336/2336YA) 5 Calibrations. | +\$445 |
| M4 - (2337) 5 Calibrations. | +\$480 |
| M5 - (2335) 9 Calibrations +2 Years Service. | +\$825 |
| M5 - (2336/2336YA) 9 Calibrations +2 Years | |
| Service. | +\$940 |
| M5 - (2337) 9 Calibrations +2 Years Service. | +\$1,025 |

OPTIONAL ACCESSORIES

The 1106 fits under the scope. The 1107 attaches to the rear.
See page 281 for complete descriptions on power supplies.
Battery Pack - Order 1106
\$1,235
Dc Power - Order 1107 \$475
A6902B Isolator - For floating measurements see page 437 for complete description. Order A6902B
$\mathbf{\$ 1 , 9 9 5}$

RECOMMENDED PROBES

See probe section for complete descriptions, page 425.
P6108A - 10X probe. Order 010-6108-13 \$100
P6202A - 10X FET probe. Order 010-6202-03 \$680
P6022 - Current probe. Order 015-0135-00
\$475

RECOMMENDED CAMERA

C-5C Option 04 - Includes 016-0359-01 adaptor and flash (camera mount not provided). See page 416.

RECOMMENDED CARTS

K212 Portable Instrument Cart - For onsite mobility. See page 423.
$\$ 330$
K117 Instrument Shuttle - For site-to-site mobility. See page 423.
\$265

2236

Dc to $\mathbf{1 0 0} \mathbf{~ M H z}$ Bandwidth
Integrated Counter／Timer／DMM
Light Weight，Easy to Use
2 mV Sensitivity
5 ns／div Sweep Rate
100 MHz Counter
Gated Counter Measurements
Δ Time
Channel 1 Ac and Dc Volts
Three Year Warranty－Five Year Option

TYPICAL APPLICATIONS

＊Digital Design and Testing

＊Field Service

＊Amplifier Design and Testing

The 100 MHz 2236 introduces a new con－ cept in waveform measurement：a 100 MHz counter／timer／DMM，integrated into the scope＇s vertical，horizontal and trigger sys－ tems．This convenient feature simplifies set－ up（by allowing consolidated setups and combinations of measurements），heightens
measurement confidence and expands scope versatility．The 2236 replaces mental gymnastics and round－about problem－solv－ ing with simple，direct，accurate，digital readouts that supplement your analog measurements．
The Tek 2236 provides easy，accurate，and versatile measurements through micro－ processor－driven waveform analysis． Autoranged and autoaveraged counter／ timer measurements are made on the signal triggering the A sweep，or in gated modes on the signal triggering the B sweep． Autoranged DMM measurements are made through floating DMM side inputs and up－ range at 5000 counts．Channel 1 voltage measurements made on Channel 1 signal include：dc，relative dc，relative and true ac RMS voltage．Self－testing includes power－on and user interactive routines．
The 2236 uses intensified markers on－ screen to define the area to be measured on a burst or short－duration pulse train．Gat－ ed counter measurements are made via the B trigger with operator prompting and auto－ matic，digital readout of results．（See Fig－ ures $1,2,3$ ）．With period averaging the 2236 can make low frequency measurements in－ stantly，in contrast to the several seconds delay encountered on conventional counter／timers．

The scope and DMM can be applied simul－ taneously，with concurrent CRT and digital readout displays．The same probe feeds
data to the scope and provides information to the DMM，thus eliminating tangled leads and extra setup time required to obtain true ac RMS or dc voltage readings（see Figure 6）．

DMM auto ranging simplifies setup．An ohm－ meter range of $2 \mathrm{G} \Omega$－a hundred times the range of most such devices－allows service technicians to quickly pinpoint even small amounts of transformer leakage，or design－ ers to accurately check the insulating prop－ erty of capacitors（see Figure 9）．
Frequency，period and width measurements are push－button simple，with accuracies to 0.001% and beyond．On－screen operator prompts further ensure fail－safe setup（see Figure 7）．
An audible，automatic diode／junction detec－ tion，and continuity signal saves both time and interpretation errors by allowing the op－ erator to concentrate on probing rather than on observing the front panel（see Figure 8）．

In strong testimony of the incomparable reli－ ability of the 2000 Family of oscilloscopes， Tek offers a three year warranty：All labor and parts，including CRT，excluding probes． And then，beyond the＂basic three years＂of warranty coverage，Tek will extend your ser－ vice coverage up to five years，offering you a choice of three practical service plans to meet your specific service needs．
See page 275 for Characteristics．

Figure 1. With the B sweep triggered, the frequency within the intensified zone on the A sweep is measured.

Gated Period Measurement

Figure 2. With the B sweep triggered, the period within the intensified zone on the A sweep is measured.

Gated Width Measurement

Figure 3. With the B sweep triggered, the width to be mea sure is within the intensified zone and polarity is selected by the B trigger slope control.

Gated Totalize Measurement

With the B sweep triggered, the events within the intensified portion of the A sweep are totalized. A single events count can be made using single sweep.

Delay Time Measurement

Figure 4. Delay time is measured from the start of the A sweep to the start of the intensified zone.

Delta Time Measurement

Figure 5. The time between the two intensified zones on the A sweep is measured with up to 10-picosecond resolution.

Channel 1 Volts Measurement

Figure 6. The average dc or true ac RMS component of a waveform is measured directly through channel 1 or from the floating DMM input.

Continuity Measurement

Resistances $>5 \Omega$, the message "OPEN" is displayed. $<5 \Omega$, a tone is generated and the message "SHORT" is displayed.

Operator Prompting

no dEttR

Figure 7. Error messages and prompts make counter/timer/DMM measurements easier.

Diode Detection and Test

Figure 8. Automatic junction detection during normal resistance measurements first displays "DIODE" and then the forward voltage drop to 1%.

Extended Range Resistance Measurement

Figure 9. 0Ω (with 0.01Ω resolution) to $1.99 \mathrm{G} \Omega$, to find hard-to-trace problems like leaky caps or bad transformers.

Temperature Measurement

रुद00

With optional P6602 Probe: From $-62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $+446^{\circ} \mathrm{F}$; resolution to 0.1° (either range).

Microprocessor Diagnostics

Automatic power-up and user-interactive diagnostic routines simplify CTM service.

Accurate Time Measurement

Time base error only $10 \mathrm{ppm}(0.001 \%)$ standard, and only $0.5 \mathrm{ppm}(0.00005 \%)$ with optional temperature compensated crystal oscillator.

Measurement Ease and Accuracy

See the measurement you make on the CRT, read the result with digital accura cy on the 9-digit display.

For further information and characteristics see page 275.

2235

Dc to $\mathbf{1 0 0} \mathbf{~ M H z}$ Bandwidth

Light Weight
Easy to Use
2 mV Sensitivity
Advanced Trigger System
Trigger View
$5 \mathrm{~ns} /$ div Sweep Rate
Delayed Sweep Measurements
Large, Bright CRT
$10 X$ Probes Included
Three Year Warranty—Five Year Option

TYPICAL APPLICATIONS

\author{

* Field Service
 * Design
 \section*{* Component Testing}
}

The 100 MHz 2235 offers high value and high performance. The low price is made possible by the 2200 Series innovative architecture. Yet it has the needed features, operational simplicity and-not least-solid reliability. All backed by a three-year warranty on all parts and labor, including the CRT, excluding probes.

The 2235 ensures measurement quality and reliability while reducing instrument cost. Tek started with the innovative architecture of the 2200 Series: fewer boards, fewer mechanical parts, less cabling and electrical connectors. This approach, plus advanced circuit design and a focus on essential features, has led to a scope that's more accurate, more reliable, lighter and more serviceable-and simpler to use-than any other 100 MHz scope.
The 2235 delivers 2% vertical and horizontal accuracy in normal operation. Accuracy of 3% or better is maintained across a wide range of environmental extremes. Trace noise, chop noise, vertical aberrations and sweep interference have been reduced to a minimum. Delay jitter of $1: 20,000$ ensures excellent timing measurement resolution. Triggering is sensitive to 0.3 div at 10 MHz . There's a trigger view for simplifying setup; single sweep for photographing transients; bandwidth limit for noisy environments; and a bright, high-resolution 14 kV dome mesh CRT.

Features like rugged design, light weight and an easy-to-learn front panel make the 2235 an ideal service scope. In both service and design, it offers the sensitivity for low level measurements and sweep rates for fast logic families, plus 10:1 variable holdoff range for complex word triggering. And at the bottom line, it offers the price and reliability to significantly lower the cost of owning a quality scope.

2235 Option 01
 (AN/USM-488)

Fully Provisioned Through the U.S. Army System

Meets or Exceeds MIL-T-28800C and MIL-STD-461B Part 4 for EMC/EMI

Dc to 100 MHz Bandwidth
Accepted and Specified by the U.S. Army
The 2235 Option 01 is accepted and specified by the U.S. Army. If you're involved in designing and specifying systems for the U.S. Army, here is a 100 MHz oscilloscope that should top your support equipment lists.

Comparable in performance to the standard 2235, the 2235 Option 01 version has impressive features. It meets the rigid environmental requirements of MIL-T-28800C for Class 5 instruments. Electromagnetic interference is improved over the standard 2235, and meets MIL-STD-461B part 4 requirements. It has adjustable graticule illumination as well as uncalibrated indicator lights for both the horizontal time base and the vertical channels. HF REJ and LF REJ filtering expand flexibility for trigger coupling.
For your convenience we've also included a protective front-panel cover, accessory pouch, P6101A 1X 2-meter probe, binocular viewing hood, BNC T connector, BNC male-to-binding post, two IC grabber tips and a service manual.

CHARACTERISTICS

The following electrical characteristics are common to the 2236, 2235, and 2235 Option 01 except where noted.

VERTICAL SYSTEM

(TWO IDENTICAL CHANNELS)
Bandwidth (-3dB) and Risetime - 100 MHz and 3.5 ns , derated to 90 MHz at $2 \mathrm{mV} /$ div and outside $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Bandwidth Limit: 20 MHz $\pm 10 \%$.
Deflection Factor - 2 mV to $5 \mathrm{~V} /$ div at $\pm 2 \%$. Accuracy derated $\pm 3 \%$ outside $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}\left(+10^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}$, 2235 Option 01). Continuously variable between steps by at least 2.5:1.

Step Response Aberrations - 2235 and 2235
Option 01: $+4 \%,-4 \%, 4 \% \mathrm{p}-\mathrm{p}(2 \mathrm{mV}$ to $0.5 \mathrm{~V} / \mathrm{div}$).
2236: $+4 \%,-4 \%, 4 \%$ p-p (5 mV to $0.5 \mathrm{~V} /$ div), $+5 \%,-5 \%, 5 \%$ p-p ($2 \mathrm{mV} / \mathrm{div}$).
Display Modes - CH 1, CH 2, CH 2 Invert, Add, Alternate, Chop (500 kHz).
Common-Mode Rejection Ratio - At least $10: 1$ at 50 MHz for signals of 6 div or less (10:1 at 80 MHz 2235 Option 01).
Input R and C - 2235 and 2235 Option 01: $1 \mathrm{M} \Omega, 20 \mathrm{pF}$. 2236: $1 \mathrm{M} \Omega, 22 \mathrm{pF}$.
Maximum Input Voltage (Ac and Dc Coupled) -400 V (dc + peak ac) or 800 V (p -p to 10 kHz).
Channel 1/Channel 2 Isolation - 100:1 at 50 MHz .

HORIZONTAL SYSTEM

Sweep Rate - A Time Base: $0.05 \mu \mathrm{~S}$ to $0.5 \mathrm{~s} / \mathrm{div}$ in 1-2-5 sequence. 10X Mag: $5 \mathrm{~ns} / \mathrm{div}$. B Time Base: $0.05 \mu \mathrm{~s}$ to $50 \mathrm{~ms} /$ div in $1-2-5$ sequence. 10X Mag: $5 \mathrm{~ns} /$ div.
Sweep Linearity - $\pm 5 \%$ over any two of center eight divisions.

Accuracy -		
	$+\mathbf{1 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{3 5 ^ { \circ }} \mathrm{C} * 1$	$0^{\circ} \mathrm{C}$ to $+\mathbf{5 0}{ }^{\circ} \mathrm{C}$
Unmagnified	$\pm 2 \%$	$\pm 3 \%$
Magnified	$\pm 3 \%$	$\pm 4 \%$

${ }^{* 1}+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ for 2235 Option 01.
Display Modes - A, Alternate (A Intensified and B Delayed) and B.

CALIBRATED SWEEP DELAY

Delay Time Range - Continuously variable with 10 -turn control from $<0.5+300 \mathrm{~ns}$ to >10 div.
Differential Delay Time Accuracy (2235 and 2235 Option 01) - $\pm 1 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$; $\pm 2 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Δ Time Measurement Accuracy (2236) Max accuracy equal to time base accuracy $\pm 50 \mathrm{ps}$. Time Base Accuracy With Standard Oscillator: $10 \mathrm{ppm}(0.001 \%)$; with Option 14 TCXO (Temperature-Compensated Crystal Oscillator): $0.5 \mathrm{ppm}(0.00005 \%)$.
Delay Jitter - 2236: 10,000:1 (0.01\%). 2235 and 2235 Option 01: 20,000:1 (0.005\%).

TRIGGERING
A Trigger Sensitivity

2235 \& 2235 Opt 01	Internal	External (p-p volts)
10 MHz	0.3 div*1	35 mV
60 MHz	1.0 div	120 mV
100 MHz (2235)	1.5 div	200 mV
100 MHz (2235 Opt 01)	1.5 div	150 mV
$\mathbf{2 2 3 6}$		
10 MHz	0.35 div	40 mV
60 MHz	1.2 div	150 mV
100 MHz	1.5 div	250 mV
2236 CTM		
10 MHz	0.5 div	50 mV
60 MHz	1.5 div	160 mV
100 MHz	2.0 div	300 mV

B Trigger (Internal Only) Sensitivity

	10 MHz	$\mathbf{6 0} \mathbf{~ M H z}$	100 MHz
$2235 \& 2235$ Opt 01	0.35 div	1.0 div	1.5 div
2236	0.4 div	1.2 div	1.5 div
2236 CTM	0.5 div	1.5 div	2.0 div

*1 0.35 for 2235 Option 01.
TV Trigger Sensitivity - TV Field: 1.0 div of composite sync. TV Line: 0.3 div (2235); 0.35 div (2236 and 2235 Option 01).
Bandwidth Limiting - 20 MHz when bandwidth limit switch depressed.
High Frequency Reject - (2235 Option 01 only) Attenuates signals above 40 kHz .
Low Frequency Reject - (2235 Option 01 only) Attenuates signals below 40 kHz .
Trigger System Operating Modes - Normal, $p-p$ automatic, TV line, TV field, and single sweep.
Trigger View System - Same deflection factors as vertical channels with internal sources; $100 \mathrm{mV} /$ div with ac and dc external, and $1 \mathrm{~V} / \mathrm{div}$ with dc $\div 10$ external. Accuracy is $\pm 20 \%$. Delay difference between trigger view (EXT input) and either vertical channel is $<2.0 \mathrm{~ns}$.
External Trigger Input - Coupling: Ac, dc, or dc $\div 10$.
Variable Holdoff Control - Increases A sweep holdoff time at least 10:1.

X-Y OPERATION

Deflection Factors - Same as scope's vertical system with the V/div switch in calibrated detent. Accuracy

	Y-Axis	X-Axis
$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 3 \%$
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 3 \%$	$\pm 4 \%$

Bandwidth - Y-Axis: same as scope's vertical system. X-Axis: 2.5 MHz .
Phase Difference Between X-Axis and Y-Axis Amplifiers - $\pm 3^{\circ}$ from dc to 150 kHz with dc coupled inputs.

CRT AND DISPLAY FEATURES

CRT $-8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display; internal unilluminated graticule (2235 Option 01 is illuminated.) Accelerating potential is 14 kV . GH (P31) phosphor standard.
Controls - Beam Finder, Focus, Separate A and B Sweep Intensity, Trace Rotation. 2235 Option 01 also has Variable Scale Illumination.
Z-Axis Input - Dc coupled, positive-going signal decreases intensity; 5 V p-p signal causes noticeable modulation; dc to 20 MHz .

OTHER CHARACTERISTICS

Probe Adjust Signal - (2235/2236) Squarewave, $0.5 \mathrm{~V} \pm 5 \%, 1 \mathrm{kHz} \pm 20 \%$.
Amplitude Calibrator - (2235 Option 01 only) Squarewave, $0.5 \mathrm{~V} \pm 2 \%, 1 \mathrm{kHz} \pm 20 \%$.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 250 V ac . (No line switches or fuse changes needed.)
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 2235: 40 W , 70 V A. 2236: $60 \mathrm{~W}, 110 \mathrm{VA}$.)
Dc Operation - 12 V to 30 V available with 1105, 1106, and 1107.

ENVIRONMENTAL

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, (except 2236 CTM ac RMSV, DCV, and Ω Modes: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$). Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: To 4600 m ($15,000 \mathrm{ft}$). Maximum operating temperature decreased $1^{\circ} \mathrm{C} / 1,000 \mathrm{ft} 5,000 \mathrm{ft}$ to $15,000 \mathrm{ft}$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the major axes. 0.015 in $\mathrm{p}-\mathrm{p}$ displacement 10 Hz to 55 Hz to 10 Hz in one minute cycles. Held for 10 minutes at $55 \mathrm{~Hz}(2.4 \mathrm{~g}$'s at 55 Hz).
Humidity - Operating and Nonoperating: 95\%, five cycles (120 hours) referenced to MIL-T28800C, Paragraph 4.5.5.1.2.2.
Shock - Operating: 30 g 's, $1 / 2$ sine, 11 ms duration, 3 shocks per axis along each major axis. Total of 18 shocks.
EMC - Meets Class B requirements per VDE 0871B for radiated and conducted emission. 2235 Option 01 AN/USM 488 Only: Meets requirements of MIL STD-461B Part 4, CE03, CS01, CS02, CS06, RE02 (to 1 GHz), and RS03 ($1 \mathrm{~V} /$ meter to 1 GHz).

PHYSICAL CHARACTERISTICS				
Dimensions	$\mathbf{2 2 3 5}$ and 2235 Opt 01	2236		
	$\mathbf{m m}$	in	$\mathbf{m m}$	in
	328	12.9	328	12.9
Height*3	137	5.4	137	5.4
Depth*2	440	17.3	440	17.3
Weight	$\mathbf{k g}$	$\mathbf{l b}$	$\mathbf{k g}$	$\mathbf{l b}$
Net	6.1	13.5	7.3	16.2

${ }^{*}{ }^{1}$ Without handle.
*2 Without front cover.
*3 2235 Option 01 height with pouch is 150 mm (5.9 in).

ic diode detection displays forward voltage drop to $\pm 1 \%$; continuity mode activates tone if resistance is $<5 \Omega$.*2
Temperature - Uses Optional Tektronix P6602 Temperature Probe. Temperatures in C or F selected with Freq/ Δ Time button. Range: $-62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $\left.+446^{\circ} \mathrm{F}\right)$. Resolution: To 0.1° (either range). Accuracy: To $\pm 2 \%$ of reading $\pm 1.5^{\circ} \mathrm{C} ; \pm 2 \%$ of reading $\pm 2.70^{\circ} \mathrm{F}$.
Multimeter Inputs - Isolated from oscilloscope ground. Input Z: $10 \mathrm{M} \Omega$. Maximum Input Voltage: 500 V (dc + peak ac), for all functions.
${ }^{* 1}$ Ranges, resolutions, and accuracies can be degraded due to gating errors and a smaller number of automatic averages made during a gated frequency, period, or width measurement. For complete formula specifications see operator's manual.
*2 For complete accuracy and resolution error formula specifications see operator's manual.

ORDERING INFORMATION

2236 Oscilloscope with Counter/

Timer/Multimeter

\$2,650
Includes: Two P6121 10X voltage probes (010-6121-01); DMM leads; reference guide; operator manual (070-4205-00).
2235 Oscilloscope
\$1,750
Includes: Two P6122 10X voltage probes (010-6122-01); operator manual (070-4207-00).
2235 Option 01 Oscilloscope
(AN/USM-488) Order 2235L
\$1,995
Includes: Two P6122 10X Voltage Probes (010-6122-01); P6101A 1X Voltage Probe (010-6101-13); viewing hood (016-0566-00); BNC T-connector; BNC male to binding post; front panel cover; accessory pouch; two grabber tips; operator manual (070-4976-00); service manual (070-4977-00)

OPTIONS

Option 02 - (2236 only) Front panel cover and accessory pouch.
$+\$ 47$
Option 14 - (2236 Only) TCXO TemperatureCompensated Crystal Oscillator, 0.5 ppm accuracy.
Option 33 - (2235, 2236 only) Travel Line Package. See page 280.

CONVERSION KITS

Rackmount Adaptor - See page 280
(2335) Order 016-0466-00
(2235 Option 01) Order 016-0833-00
(2236) Order 016-0015-00

Travel Line Package Retrofit Kit - See page 280.
TCX0 Retrofit Kit - (2236 only) Temperature compensated crystal oscillator, 0.5 ppm accuracy. Order 040-1136-00
$+\$ 295$
$+\$ 200$
$\$ 150$
\$230
\$365

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16$ A, 50 Hz .
Order 020-0859-00.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0860-00.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$
Order 020-0861-00.
Option A4 - North American 240 V/15 A, 60 Hz.
Order 020-0862-00.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0863-00.
WARRANTY-PLUS SERVICE PLANS SEE PAGE 457
M1 - (2235/2235 Option 01) 2 Calibrations. $+\$ 135$
M1 - (2२36) 2 Calibrations. $\mathbf{+ \$ 1 6 0}$
M2 - (2२35/२२35 Option 01) +2 Years Service. $+\mathbf{\$ 1 2 5}$
M2 - (2236) +2 Years Service.
M3 - (2235/2235 Option 01) 2 Years Service \& 4 Calibrations.
M3 - (2236) 2 Years Service \& 4 Calibrations.
M4 - (2235/2235 Option 01) 5 Calibrations.
M4 - (2236) 5 Calibrations.
M5 - (2235/2235 Option 01) 9 Calibrations +2 Years Service.
$+\$ 805$
M5 - (2236) 9 Calibrations +2 Years Service. $+\$ 900$

OPTIONAL ACCESSORIES

Front Panel Cover and Accessory
Pouch*1 - Order 020-0672-02
Front Panel Cover* ${ }^{\text {1 }}$ - Order 200-2520-00 $\mathbf{\$ 5 . 5 0}$
Accessory Pouch*1 - Order 016-0677-02 \$42
Viewing Hoods -
(Collapsible) Order 016-0592-00
(Binocular) Order 016-0566-00*1
(Polarized) Order 016-0180-00
Carrying Strap — Order 346-0199-00 \$17
Carrying Case - Order 016-0792-00*2
\$340
Rack Adaptor Kits -
(2235) Order 016-0466-00 $\$ 110$
(2235 Option 01) Order 016-0833-00 \$150
(2236) Order 016-0015-00
$\$ 150$
$\$ 230$
CRT Light Filter -
(Clear*1) Order 337-2775-01
$\$ 1.75$
(Blue) Order 337-2775-00
$\$ 3.00$
1107 Mounting Kit — Order 016-0785-00
$\$ 50$
1107 DC Inverter - See page 281.
\$475
1106 Battery Pack - See page 281.
\$1,235
1105 Power Supply - See page 281.
\$1,650
A6902B Isolator - See page 437.
A6901 Ground Isolator Monitor - See page 438. Order A6901

RECOMMENDED PROBES
See probe section for additional probes, page 425.
P6420 DMM RF Probe - Order 010-6420-03 \$145
40 kV DMM Probe — Order 010-0277-00 \$165
P6602 Temperature Probe - For use with 2236 CTM. Order 010-6602-00
\$225

RECOMMENDED CAMERAS

C-5C - See page 413.
(2235 Option 01) C-5C Option 02 \$465
(2235, २236) C-5C Option 04 \$495
(2235, 2236) C-7 Option 02
(२235 Option 01) Option 03
C-4 - (2235 Option 01) See page 414. RECOMMENDED CARTS
K212 - (On-site mobility) See page 423.
\$330
K117 - (Site-to-site mobility) See page 423. SERVICE MANUALS
(2२35) Order 070-4206-00
$\$ 25$
(2236) Order 070-4204-00
$\$ 25$
*' Standard with the 2235 Option 01 (AN/USM-488).

MILITARY AND SPECIAL SERVICE OSCILLOSCOPES

2235 Option 01
 (AN/USM-488)

Dc to $100 \mathbf{~ M H z}$ Bandwidth
Fully Provisioned Through
the U.S. Army System
Meets or Exceeds MIL-T-28800C and MIL-STD-461B Part 4 for EMC/EMi
Three Year Warranty-Five Year Option
Accepted and Specified by the U.S. Army
National Stock Number 6625-01-187-7847
The 2235 Option 01 is accepted and specified by the U.S. Army. If you're involved in designing and specifying systems for the U.S. Army, here is a 100 MHz oscilloscope that should top your support equipment lists.

Comparable in performance to the standard 2235, the 2235 Option 01 version has impressive features. It meets the rigid environmental requirements of MIL-T-28800C for Class 5 instruments. Electromagnetic inter-

2336YA

Dc to 100 MHz Bandwidth

$5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$

$5 \mathrm{~ns} /$ div Sweep Rate

Rugged for Field Service

Three Year Warranty-Five Year Option
Accepted and Specified by the U.S. Navy
National Stock Number 6625-01-172-6119

Compact and lightweight for ultra-portability, designed and built for on-site troubleshooting. The 2336YA is useful for high speed logic and digital applications and features an innovative and protective flip-top cover that doubles as a front panel indicator for Δ Time measurements. The entire outside case is made of durable, one-piece aluminum and the front panels are coated with scratch resistant plastic. When the flip-top is latched shut, the entire scope can withstand the abuse and heavy usage of field service environments.
Vertical channels have calibrated deflection factors from $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div with a variable gain control to increase the sensitivity to at least $2 \mathrm{mV} /$ div.

ference is improved over the standard 2235 , and meets MIL-STD-461B part 4 requirements. It has adjustable graticule illumination as well as uncalibrated indicator lights for both the horizontal time base and the vertical channels. HF REJ and LF REJ filtering expand flexibility for trigger coupling.

For your convenience we've also included a protective front-panel cover, cord wrap/ storage pouch, binocular viewing hood, P6101A 1X 2-meter probe, BNC T connector, BNC male-to-binding post, two IC grabber tips and a service manual.
For a complete description see page 274.

The 2336YA comes with detachable power cord, integral EMI shielding, and an accessories pouch. It is manufactured to withstand impact shocks of 50 g 's, almost twice that of other portable scopes from Tektronix. This ruggedness meets MIL-T-28800, Class 3 environmental requirements for aerospace and military qualification.

The 2336YA has a 5000 hour elapsed time indicator installed, and also includes additional accessories and an extra set of manuals.

For a complete description see page 268.

2215A/2213A

Dc to 60 MHz Bandwidth

Lightweight
Easy to Use
2 mV Sensitivity
Advanced Trigger System
$5 \mathrm{~ns} /$ div Sweep Rate

Delayed Sweep Measurements
Large, Bright CRT
10X Probes Included
Three Year Warranty-Five Year Option

TYPICAL APPLICATIONS

* Television Service
 * Production Test

* Education

Two 60 MHz , dual trace oscilloscopes from Tektronix offer unprecedented value in both initial and life cycle costs. Beginning with the architecture developed for the 2235 , the improvements found in that instrument have been incorporated into the 2213A and 2215A. This approach leads to improved specifications, even higher reliability and new features such as bandwidth limit, single sweep, and a bright 14 kV dome mesh CRT.

These oscilloscopes provide unexcelled performance in a small lightweight package; $6.1 \mathrm{~kg}(13.5 \mathrm{lb}) 2215 \mathrm{~A} ; 5.8 \mathrm{~kg}(12.8 \mathrm{lb})$ 2213A.
$X-Y$ operation is simple and easy to use. Both vertical input channels (CH 1 and CH 2) can be used through their full range of sensitivity settings. Vertical sensitivities range from 2 mV to $5 \mathrm{~V} /$ div. Sweep speeds range from $0.5 \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ns} / \mathrm{div}$. A 10 X magnification provides $5 \mathrm{~ns} / \mathrm{div}$.
A pushbutton beamfinder allows easy scope setups. The scope bezel accepts a Tektronix C-5C scope camera with graticule illuminating flash (Option 04).
The advanced triggering system features true vertical mode alternate triggering; both the 2215A and 2213A will trigger alternately even with unrelated signals. Other features include variable trigger holdoff, TV line and TV field triggering at any sweep speed, and peak to peak auto mode. On the 2215A, the dual time base operates in either Runs After Delay or Triggered After Delay modes. The latter permits jitter-free measurements.

The 2213A's single time base delay provides the user with the performance of intensified and delayed sweep operations at a low price. Where dual time base performance is required, the 2215A delivers it with alternate sweep switching. The 2215A can
display four traces; vertical channels 1 and 2 at the A sweep rate, and vertical channels 1 and 2 , delayed, at the B sweep rate. The 2215A also has separate A and B intensity controls that provide convenient control over the A sweep, intensified zone, and B sweep.
Low life cycle cost is brought about by the inherent reliability of the new scopes. The parts count and cabling have been greatly reduced as compared to older designs. Even the traditional line transformer and line voltage selector switches have been eliminated, thanks to a new high-efficiency power supply. The advantages of these power supply improvements are that the 2215A and $2213 A$ will operate from mains voltages of 90 V to 250 V RMS at frequencies from 48 Hz to 440 Hz . Additional reliability also results from superior mechanical design and packaging, soldered-in components, absolute minimum of connectors and very low power consumption.

In strong testimony of the incomparable reliability of the 2000 Family oscilloscopes, Tek offers a three year warranty. All labor and parts, including CRT, excluding probes. And then, beyond the "basic three years" of warranty coverage, Tek will extend your service coverage up to five years, offering you a choice of three practical service plans to meet your specific service needs.

CHARACTERISTICS

The following electrical characteristics are common to the 2215A and 2213A except where noted:

VERTICAL SYSTEM

(2 IDENTICAL CHANNELS)
Bandwidth (-3 dB) and Risetime

$0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Dc to $60 \mathrm{MHz}, 5.8 \mathrm{~ns}$	Dc to $50 \mathrm{MHz}, 7 \mathrm{~ns}$
$5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div	$5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div
Dc to $50 \mathrm{MHz}, 7 \mathrm{~ns}$	Dc to $50 \mathrm{MHz}, 7 \mathrm{~ns}$
$2 \mathrm{mV} /$ div	$2 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ /div

Bandwidth Limit - $10 \mathrm{MHz} \pm 15 \%$.
Deflection Factor $-2 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div} \pm 3 \%$ $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right) .1-2-5$ sequence. Uncalibrated: Continuously variable between steps to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Display Modes - CH 1, CH 2, Add CH 2 Invert, Alternate, Chopped, ($\approx 500 \mathrm{kHz}$).
Common-Mode Rejection Ratio - At least $10: 1$ at 25 MHz for common-mode signals of 6 divisions or less.
Input R and C-1 M $\Omega \pm 2 \%$ paralleled by 20 pF $\pm 2 \mathrm{pF}$.
Maximum Input Voltage (Ac and Dc Coupled) -400 V (dc + peak ac) or 800 V (p-p to 10 kHz).
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Time Base A (2215A and 2213A) $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$ (1-2-5 sequence). 10X magnifier extends max sweep rate to $5 \mathrm{~ns} /$ div.
Time Base B (2215A Only) - $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div ($1-2-5$ sequence). 10X magnifier extends max sweep rate to $5 \mathrm{~ns} / \mathrm{div}$.
Variable Time Control (2215A and 2213A) Time Base A provides continuously variable uncalibrated sweep rates between steps to at least $1.25 \mathrm{~s} /$ div.
Time Base A (2215A and 2213A) and B (2215A Only) Accuracy

	$+15^{\circ} \mathrm{C}$ to $+\mathbf{3 5}{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Unmagnified	$\pm 3 \%$	$\pm 4 \%$
Magnified	$\pm 4 \%$	$\pm 5 \%$

X-Y OPERATION

Full Sensitivity X-Y (CH 1 X, CH 2 Y) $2 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$, accurate $\pm 4 \%$. Bandwidth is dc to at least 2 MHz . Phase difference between X and Y is 3° or less from dc to 100 kHz .

CRT AND DISPLAY FEATURES

CRT $-8 \times 10 \mathrm{~cm}$ display. Horizontal and vertical center lines further marked in 0.2 cm increments, mesh grid. Accelerating potential is 14 kV . GH (P31) phosphor standard.
Graticule - Internal, nonparallax, unilluminated.
Beam Finder - Compresses trace to within graticule area for ease in locating an off-screen signal. A preset intensity level provides a constant brightness.
Z-Axis Input - Dc coupled, positive-going signal decreases intensity; $5 \mathrm{~V} p-\mathrm{p}$ signal causes noticeable modulation; dc to 10 MHz .

OTHER CHARACTERISTICS

Probe Adjust Signal - Squarewave, 0.5 V $\pm 5 \%, 1 \mathrm{kHz} \pm 20 \%$.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 40 W , 70 VA .
Dc Operation - 12 V to 30 V available with 1105, 1106, and 1107.

ENVIRONMENTAL

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: To $4600 \mathrm{~m}(15,000 \mathrm{ft})$; maximum allowable ambient temperature decreased by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from 5000 ft to $15,000 \mathrm{ft}$. Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the major axes. 0.015 in p-p displacement 10 Hz to 55 Hz to 10 Hz in one minute cycles. Held for 10 minutes at 55 Hz (2.4 g 's at 55 Hz).
Humidity - Operating and Nonoperating: 95%, five cycles (120 hours) referenced to MIL-T28800C, par 4.5.5.1.2.2.
Shock - Operating: 30 g 's $1 / 2$ sine, 11 ms duration, 3 shocks per axis along each major axis. Total of 18 shocks.
EMC - Meets Class B requirements per VDE 0871B for radiated and conducted emission.

PHYSICAL CHARACTERISTICS				
Dimension	2215A		2213A	
	$\mathbf{m m}$	in	$\mathbf{m m}$	in
	328	12.9	328	12.9
Height	137	5.4	137	5.4
Depth*2	440	17.3	440	17.3
Weights \approx	$\mathbf{k g}$	lb	$\mathbf{k g}$	$\mathbf{l b}$
Net	6.1	13.5	5.8	12.8

${ }^{*}{ }^{1}$ Without handle.
*2 Without front cover.

See Ordering Information on next page.

TV Trigger Sensitivity - TV Field: 1.0 div, TV Line: 0.3 div of composite sync.
Bandwidth Limiting - 10 MHz when BW limit switch depressed.
External Inputs - R and C $1 \mathrm{M} \Omega$ paralleled by 20 pF .400 V (dc + peak ac) or 800 V ac p-p at 10 kHz or less.

> DELAYED (B) TIME BASE (2215A)

Level and Slope - Separate slope and level controls for triggering B sweep.
B Trigger Sensitivity -0.4 div at 5 MHz . 1.5 div at 60 MHz (internal source only).

ORDERING INFORMATION
2215A Delayed Alternate Time Base Oscilloscope
Includes: Two P6122 10X voltage probes (010-6122-01); operator manual (070-4732-00).
2213A Single Time Base Oscilloscope with Delayed Sweep
$\$ 1,275$
Includes: Two P6122 10X voltage probes (010-6122-01); operator manual (070-4734-00).
Impact resistant packaging - Contact your local Tektronix sales engineer for details.
Power Cords - Standard: 110 V ac North
American plug.

OPTIONS

Option 02 - Front panel cover and accesso-
ry pouch. $+\$ 47$
Option 33 - Travel Line Package. $\$ 200$

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0859-00.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$. Order 020-0860-00.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0861-00.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Order 020-0862-00.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0863-00.

WARRANTY-PLUS SERVICE PLANS-

 SEE PAGE 457| 2213A) 2 Calibrations. | +\$85 |
| :---: | :---: |
| M1 - (2215A) 2 Calibrations. | +\$100 |
| M2 - (2213A) + 2 Years Service. | +\$100 |
| M2 - (2215A) +2 Years Service. | +\$110 |
| M3 - (2213A) 2 Years Service \& 4 Calibrations. | +\$265 |
| M3 - (2215A) 2 Years Service \& 4 Calibrations. | +\$290 |
| M4 - (2213A) 5 Calibrations. | +\$270 |
| M4 - (2215A) 5 Calibrations. | +\$295 |
| M5 - (2213A) 9 Calibrations +2 Years Service | +\$585 |
| M5 - (2215A) 9 Calibrations +2 Years Service. | +\$620 |

OPTIONAL ACCESSORIES
Travel Line Package Retrofit Kit - See this page.
Rack Adaptor Kit — Order 016-0466-00
$\$ 110$
Front Panel Cover - Order 200-2520-00
Accessory Pouch - Order 016-0677-02
$\$ 5.50$
Pouch and Cover - Order 020-0672-02
$\$ 42$
\$47

Viewing Hoods -

(Collapsible) Order 016-0592-00 \$13
(Binocular) Order 016-0566-00
(Polarized) Order 016-0180-00
Carrying Strap - Order 346-019900
Carrying Case - Order 016-0792-00
\$17
CRT Light Filter -
$\$ 340$
Clear. Order 337-2775-01
$\$ 3.00$
A6902B Isolator - For floating measurements see page 437 for complete description.

RECOMMENDED PROBES
See pages 255 and 425 .

RECOMMENDED CAMERAS

C-5C Option 04 - See page 415.
$\$ 495$
C-7 Option 02 - See page 410.

RECOMMENDED CARTS

K212 - For on-site mobility. See page 423.
K117 - For site-to-site mobility.
See page 423.

SERVICE MANUALS

(2213A) - Order 070-4733-00
$\$ 25$
(2215A) — Order 070-4735-00

Travel Line Package

Impact Resistant Packaging

Impact Protection
Cord Wrap
Pouch and Cover
Carrying Strap
Now, give your 2200 Series instrument the added protection often necessary when used in rough environments. This package provides protection from impacts along the front and rear of the instrument. The rear bumper is designed to provide a wider base to set the instrument on and reduces the potential of tip over when standing vertically. The rear also has integrated in it a power cord wrap.
The high quality rubber moldings offer long life and are resistant to cracking and becoming brittle with age. This composition provides excellent desk/bench and inclined plane grab, so there is no worry about instrument slippage.
A front panel protective cover and an accessory pouch for carrying probes and documentation is also included, plus a convenient carrying strap for hands free operation and transport.
The Travel Line Package is available for 2200 Series products. It can be ordered at the time of purchase or as a field retrofit kit.

ORDERING INFORMATION

Travel Line Package - Includes rubber moldings, accessory pouch, front panel cover, and carry strap. Order your 2200 Series instrument with Option 33.
Travel Line Package Conversion Kit - Includes same items as in the Option 33 Travel Line Package including replacement cabinet and rear cover with the rubber moldings installed.
\$330 (2213, 2215, 2213A, 2215A, and 2235) Order 040-1188-00
\$265 (2236) Order 040-1187-00
ontact your local sales engineer or the National Marketing Center.
(2220/2230) Order 016-1003-00.

OPTIONAL ACCESSORIES

BNC Female to BNC Female Connector Order 103-0070-00
50Ω RF Coaxial Cable - Order 012-0117-00 $\mathbf{\$ 1 7 . 0 0}$

Shown (from left) are the 1105 Power Supply, the 1106 Battery Pack, and the 1107 Dc Inverter.

Portable Power

Tektronix power accessories offer true field-use-portability and operating freedom at service and maintenance sites where conventional ac power sources are not available. They let your scopes go where you need them-and have enough power for your testing and troubleshooting tasks.
The following table outlines the preferred power accessory (or accessory combination) for Tektronix portable oscilloscopes. Note that for many instruments, the 1105 Power Supply is a compatible alternate dc power source.

Instrument	Recommended Power Accessory
$2213^{* 2}, 2213 A^{* 1}, 2215^{* 2}, 2215 A^{*+1}$,	$1107 / 1106$
$2220^{*+}, 2230^{* 1}, 2235$ Option $01^{* 1}$,	Inverter Battery Pack
$2235^{* *}, 2236^{* 1}, 2335^{* 1}$,	Combination or
$2236^{*+}, 2336 \mathrm{YA}^{* 1}, 2337^{* 1}$,	1107 Dc Inverter
$2445^{* 1}, 2465^{* 1}, 2465 \mathrm{CTS}$,	with Auxiliary
$4265 \mathrm{DVS}, 2465 \mathrm{DSS}$	Dc Source
$314,335,464^{* 3}, 465 \mathrm{~B}^{* 3}$	1106 Battery Pack or
$466^{* 3}, 475^{* 3}, 475 \mathrm{~A}^{* 3}$	1105 Power Supply
$336,434,465 \mathrm{M}$,	1105 Power Supply
$468^{* 4}, 485$	

* 1 The 1105 Power Supply is also compatible with these instruments.
*2 Some lower-serial-numbered units are not compatible for use with the 1107 Dc Inverter and the 1105 Power Supply. Neither the 1107 Dc Inverter nor the the 1105 Power Supply are compatible with the following instruments, unless Option 48 is installed:
US-built 2213 below Serial Number 1020100
US-built 2215 below Serial Number B022000
UK-built 2213 below Serial Number 200239
UK-built 2215 below Serial Number 200307
*3 These instruments require Option 07 for operation with the 1106 Battery Pack. Field conversion kits are avait able. Contact your local Tektronix sales engineer. But when the 1105 Power Supply is used with these 400 Series instruments, Option 07 is not required.
${ }^{* 4}$ Because of limited instrument operating time available when running from the internal batteries, it is recommended that an external dc power source be used.

$1105_{\text {powere supply }}$

CHARACTERISTICS

 ELECTRICALInternal Battery Voltage Range -+22 V to +28 V .
External Dc Input Voltage Range -+24 V to +30 V . Maximum elevation for the positive and the negative power leads is 60 V with respect to chassis ground.
Output - Waveform: Squarewave. Frequency: $60 \mathrm{~Hz} \pm 10 \%$. Amplitude: See following table.

Dc Power Source	Peak Ac Output	
	Standard Configuration and 0.9-A Load	Option 01 Configuration and 0.45-A Load
+22 V Internal	$108 \mathrm{~V} \pm 7 \%$	$216 \mathrm{~V} \pm 7 \%$
+24V External		
+28 V Internal	$138 \vee \pm 7 \%$	$276 \vee \pm 7 \%$
+30 V External		

Maximum Recommended Output Current Standard: 0.9 A. Option 01: 0.45 A .
Minimum Battery Operating Time - 50 watt hours from full charge.
Battery Charging Time - 14 hours to 16 hours from full discharge at temperatures from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$.
Battery Charging Rate - Full: $600 \mathrm{~mA} \pm 10 \%$. With Thermal Cutout Open: $254 \mathrm{~mA} \pm 10 \%$.
Ac Charging Power Frequency Range 50 Hz to 60 Hz .
Ac Charging Voltage Rates - See following table.

	Ac Voltage Ranges	
1105 Line Voltage Selection Wiring	Standard Configuration	Option 01 Configuration
From Factory	100 V to 132 V	200 V to 264 V
With Internal	90 V to 120 V	90 V to 120 V
Connection	180 V to 240 V	100 V to 132 V
Changes	200 V to 264 V	180 V to 240 V

ORDERING INFORMATION

1106 Battery Pack

\$1,235

Includes: Instruction manual (070-1713-00).
Mounting Kit for 2445 and 2465
Oscilloscopes - Order 016-0797-00.

ORDERING INFORMATION

1105 Power Supply

\$1,650
Includes: Dc power cord, 915 mm (36 in), for external dc input (161-0094-00); instruction manual (070-1479-01).
Option 01 - 230 V Operation.
NC
Includes: $2.1 \mathrm{~m}(7 \mathrm{ft})$ IEC power cable (161-0098-00).

1106 Bateer Pack

CHARACTERISTICS
 ELECTRICAL

Dc Power Output -+22 V to +24 V for 7 am-pere-hour with maximum current of 5 A .
Minimum Battery Operating Time -75 watt hours from full charge.
Battery Charging Time - 14 hours to 16 hours, from full discharge, at temperatures from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$.
Battery Charging Rate - Full: 620 mA . With Thermal Cutout Open: 60 mA .
Ac Charging Power Frequency Range 50 Hz to 400 Hz .
Ac Charging Voltage Ranges - Standard: 100 V to $132 \mathrm{~V} ; 200 \mathrm{~V}$ to 264 V . With Internal connection change: 90 V to $120 \mathrm{~V} ; 180 \mathrm{~V}$ to 240 V .
Maximum Ac Charging Power Consumption 40 W at $115 \mathrm{~V}, 60 \mathrm{~Hz}$.

ENVIRONMENTAL

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$ Nonoperating (with battery installed): $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $+140^{\circ} \mathrm{F}$). Nonoperating (without battery): $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width (latches in		
latched position)	292	11.5
Height (w/feet \& latches)	66	2.6
Depth	432	17.0
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net	7.3	$\mathbf{1 6 . 0}$

-

Maximum Power Consumption from Ac Source - 40 W.

ENVIRONMENTAL
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$. Nonoperating (with battery installed): $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $+140^{\circ} \mathrm{F}$). Nonoperating (without battery): $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	165	6.5
Height	250	9.8
Depth	216	8.5
Weight	$\mathbf{k g}$	lb
Net	8.8	19.4

The 1107 Dc Inverter can be quickly attached to or detached from the rear of Tektronix 2000 Family oscilloscopes via easily installed adapter kits．Shown here with adapters installed are（from left）the Tektronix 2236， 2336 and 2465 Oscilloscopes．

1107 oc inverter

CHARACTERISTICS ELECTRICAL

Output Frequency－Approximately 60 Hz ． Output Voltage and Timing（ +12 V Mode）－ Measured with a 200Ω resistive load（approxi－ mately 60 W ）．

Output Parameter	With +12.3 V Dc Input	With +14.2 V Dc Input
	$160 \mathrm{~V} \pm 10 \%$	$160 \mathrm{~V} \pm 10 \%$
Table Voltage	$130 \mathrm{~V} \pm 10 \%$	$140 \mathrm{~V} \pm 10 \%$
Turn－on Time	$6.2 \mathrm{~ms} \pm 15 \%$	$6.2 \mathrm{~ms} \pm 15 \%$
Dead Time	$2.2 \mathrm{~ms} \pm 15 \%$	$2.2 \mathrm{~ms} \pm 15 \%$

Output Voltage and Timing（ +24 V Mode）－ Measured with a 166Ω resistive load（approxi－ mately 100 W ）．

Output Parameter	$\mid c$ With＋22．5 V Dc InputWith＋28．5 V Dc Input	
	$150 \mathrm{~V} \pm 10 \%$	$160 \mathrm{~V} \pm 10 \%$
Table Voltage	$135 \mathrm{~V} \pm 10 \%$	$150 \mathrm{~V} \pm 10 \%$
Turn－on Time	$6.2 \mathrm{~ms} \pm 15 \%$	$6.2 \mathrm{~ms} \pm 15 \%$
Dead Time	$2.2 \mathrm{~ms} \pm 15 \%$	$2.2 \mathrm{~ms} \pm 15 \%$

Rated Output Power in $\mathbf{+ 1 2} \mathbf{V}$ Mode -70 W $\left(-15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) ; 50 \mathrm{~W}\left(-15^{\circ} \mathrm{C}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$ ． Dc source must be $117 \mathrm{VA} \mathrm{a}+11.7 \mathrm{~V}$ or greater．
Rated Output Power in＋24 V Mode－ 100 W ．
Output Overload Protection－Ouput is dis－ abled and audible tone generated when the ac load exceeds 100 W ．
Input Voltage Range Selection－Selection between +12 V mode and +24 V mode is automatic．

Operating Inputs－Measured at input of sup－ plied dc power cord．

	Dc Volts	
	＋12 V Mode	＋ 24 V Mode
Turn－on Range	$\begin{gathered} +11.7 \text { to } 15.9 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} +22.2 \text { to }+30.0 \\ \pm 5 \% \end{gathered}$
Battery Protection Shut－down Limit＊${ }^{1}$	$+10.0 \pm 5 \%$	$+21.0 \pm 5 \%$
Difference Between Minimum Turn－on Range and Battery Protection Shut－ down Limit＊1	$\geqslant 1.2$	$\geqslant 0.85$
${ }^{* 1}$ Tested with a varia output．	le dc supply	out a load on th

The 1107 Dc Inverter meets environmental re－ quirements of MIL－T－28800C for Type III，Class，3， Style C equipment with humidity and temperature requirements defined in paragraphs 3．9．2．2， 3．9．2．3，and 3．9．2．4，except Electromagnetic Compatiblity．
Ambient Temperature－Operating：$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+5^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ ．Nonoperating： $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ ．
Altitude－Operating：To $4600 \mathrm{~m}(15,000 \mathrm{ft})$ ． Maximum operating temperature decreases $1^{\circ} \mathrm{C}$ for each $300 \mathrm{~m}(1,000 \mathrm{ft})$ above $1500 \mathrm{~m}(5,000 \mathrm{ft})$ ． Nonoperating：To $15,250 \mathrm{~m}(50,000 \mathrm{ft})$ ．
Humidity－Operating and Nonoperating： 5 cy－ cles（120 hours）referenced to MIL－T－28800C par 4．5．5．1．2．2．for Type III，Class 3 Instruments．
Electromagnetic Compatibility－Meets radi－ ated emission requirements per VDE 0871 Class B，Meets MIL－STD－461B for the following tests：Part 4 （CEO1，CE03，and CSO2）；Part 5 （CS06 and RSO2）；and Part 7 （CS01，RE02，and RS03）．Conducted emissions measurements are performed on the dc input power cord．
Vibration－Operating： 15 minutes along each of three major axes at a total displacement of 0.025 inch $\mathrm{p}-\mathrm{p}(4 \mathrm{~g}$ at 55 Hz ），with frequency var－ ied from 10 Hz to 55 Hz to 10 Hz in one minute sweeps．Held 10 minutes at 55 Hz in each of the three major axes．

The Tektronix 2465 Oscilloscope with attached 1106 Bat－ tery Pack and 1107 Dc Inverter becomes a completely independent measurement package－readily transport－ able to remote sites where conventional ac power sources are not available．

Shock－Operating and Nonoperating： $50 \mathrm{~g}, 1 / 2$ sine， 11 ms duration，three shocks per axis each direction，for a total of 18 shocks．
Note：The following 1107 Dc Inverter and oscillo－ scope combinations meet or exceed MIL－T－ 28800C Class 3 requirements for vibration and shock when attached together in a unitized pack－ age with designated mounting hardware：

$1107 / 2445$	$1107 / 2335$
$1107 / 2465$	$1107 / 2336$
$1107 / 1106 / 2445$	$1107 / 2337$
$1107 / 1106 / 2465$	

1107／1106／2465
1107／2336

Transportation Package Vibration－Meets the limits of National Safe Transit Association Test Procedure 1A－B－1．
Transportation Package Drop－Meets the limits of National Safe Transit Association Test Procedure 1A－B－2 with a 914 mm （ 36 inch）drop．

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	276	10.9
Height	119	4.7
Depth	84	3.3
Weight	$\mathbf{k g}$	lb
Net	1.6	3.5
Shipping	1.8	4.0

ORDERING INFORMATION

1107 Dc Inverter

\＄475
Includes： 559 mm （ 22 in ），dc power cord（161－0095－00）； instruction manual（070－5056－00）．

[^34]

305

$\mathbf{5 M H z}$ at $5 \mathrm{mV} /$ div	Full X-Y
Dual Trace/DMM	Weighs $\approx 10.6 \mathrm{lb}$
Internal Battery Pack	

TYPICAL APPLICATIONS

* Electro-Mechanical Measurements

* Medical Electronics Maintenance
* Automotive/Motor Vehicle

The 305 Oscilloscope/DMM is the ideal oscilloscope for those who demand portability and multifunction versatility in their test instrumentation.
The SONY•/TEKTRONIX 305 combines a 5 MHz oscilloscope with a precise integral autoranging DMM and a built-in rechargeable battery pack. Take the 305 instead of multiple instruments when you climb the ladder to maintain your in-plant industrial controls. Or leave the extension cord at your bench when you go on location to service medical instrumentation.
The 305 features a dual-trace 5 MHz oscilloscope with a large $8 \times 10 \mathrm{div}(0.6 \mathrm{~cm} / \mathrm{div})$ CRT display and an autoranging DMM with dc and ac volts, and resistance measurement functions-all in a $10.6 \mathrm{lb}(4.8 \mathrm{~kg})$, $4.4 \times 9.3 \times 14.6$ inch ($11.2 \times 23.6 \times 37.1 \mathrm{~cm}$) package. The front panel TTL marker presets the trigger generator for optimum level control on TTL signals.

CHARACTERISTICS

VERTICAL SYSTEM

Bandwidth — Dc to at least 5 MHz . For ac coupling, the lower 3 dB point is $\approx 10 \mathrm{~Hz}$.
Deflection Factor - 5 mV /div to $10 \mathrm{~V} /$ div (1-2-5 sequence) accurate $\pm 3 \%$ from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$, $\pm 4 \%$ through remainder of operating range. Uncalibrated, continuously variable between steps and to at least $25 \mathrm{~V} / \mathrm{div}$.
Display Modes - CH 1, CH 2, Chopped, Alternate, Added, Invert CH 2 and $X-Y$. Bandwidth in Add mode is dc to at least 4.5 MHz .
Input R \& C $-1 \mathrm{M} \Omega \pm 2 \%$, paralleled by $\approx 47 \mathrm{pF}$.
Maximum Input Voltage - Ac or dc coupled, $250 \mathrm{~V}(\mathrm{dc}+$ peak ac), or 250 Vp -p at $<1 \mathrm{kHz}$.

HORIZONTAL SYSTEM

Time Base - $500 \mathrm{~ms} /$ div to $1 \mu \mathrm{~s} /$ div ($1-2-5 \mathrm{se}-$ quence). X10 magnifier extends sweep rate to $0.1 \mu \mathrm{~s} / \mathrm{div}$.
Variable Time Control - Uncalibrated, continuously variable between steps and to at least $1.25 \mathrm{~s} / \mathrm{div}$.
Time Base Accuracy*1

	$0^{\circ} \mathrm{C}$ to $+\mathbf{4 0 ^ { \circ } \mathrm { C }}$	$-\mathbf{1 5}{ }^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Unmagnified	$\pm 3 \%$	$\pm 4 \%$
Magnified	$\pm 5 \%$	$\pm 6 \%$

* ${ }^{1}$ Center 8 divisions (excludes first 10 divisions and all sweep past 90 divisions in $\times 10$ magnifier).

TRIGGERING

Modes - Normal and Auto ($p-p$).
TTL Triggering - TTL position of trigger level control presets for optimum triggering from TTL levels, in $50 \mathrm{mV}, 0.1 \mathrm{~V}$ and $0.2 \mathrm{~V} /$ div or external trigger signals.
Trigger Sources - Internal CH 1, internal CH2, external. TTL Threshold voltage, internal (with 10 X probe) 1.4 V within $\pm 0.3 \mathrm{~V}$, External (with 10 X probe) 1.4 V within $\pm 0.2 \mathrm{~V}$.

Trigger Sensitivity in Normal Mode

Coupling	To $\mathbf{0 . 5} \mathbf{~ M H z}$	At $\mathbf{5} \mathbf{~ M H z}$
Dc Internal	0.3 div	0.75 div
Dc External	15 mV	50 mV
Ac	Requirements increase below 60 Hz	
P-P Auto Operation Sensitivity		
Coupling	$\mathbf{5 0 0 ~ H z}$ to 0.5 MHz	0.5 MHz to 5 MHz
Dc, Ac Internal	0.5 div	1.0 div
Dc, Ac External	35 mV	70 mV

External Trigger - Maximum Input Voltage: 250 V (dc + peak ac) at 1 kHz or less (same as vertical). Input R and $C: \approx 1 M \Omega$ paralleled by $\approx 47 \mathrm{pF}$.

X-Y OPERATION

Input - X-axis input is via the CH 1 connector; Y-axis input is via the CH 2 connector.
X-Y Characteristics - Same as stated for vertical deflection, except deflection factor accuracy is $\pm 4 \%$ from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ over the center 8 div.
X-Axis Bandwidth - Dc to 150 kHz .
CRT AND DISPLAY FEATURES
CRT - 8×10 div ($0.632 \mathrm{~cm} / \mathrm{div}$) display. Accelerating potential is 2 kV . $\mathrm{GH}(\mathrm{P} 31)$ phosphor standard.
Graticule - Internal, nonilluminated.

DMM

DC VOLTAGE
Ranges - $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ (autoranging).
Accuracy - Within 0.1% of reading, ± 2 counts. Common-Mode Rejection - $>100 \mathrm{~dB}$ at dc , 80 dB at 60 Hz with $1 \mathrm{k} \Omega$ imbalance.
Normal-Mode Rejection - $>30 \mathrm{~dB}$ at 60 Hz increasing 20 dB per decade to 2 kHz .
Response $-<1$ s plus range step time ($<1 \mathrm{~s} /$ step).
Input R - $10 \mathrm{M} \Omega \pm 2 \%$.
Maximum Input Voltage - $\pm 1000 \mathrm{~V}$ (dc + peak ac) between HI and LO inputs or between Hl and chassis. ± 500 (dc + peak ac) between LO and chassis (LO Floating Voltage).

AC VOLTAGE
Ranges - $2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 700 \mathrm{~V}$, (autoranging).
Accuracy - Within 0.5% of reading, ± 10 counts, 40 Hz to 500 Hz .
Response Time $-<5$ s plus range step time (<1 s/step).
Input Impedance - $10 \mathrm{M} \Omega$ paralled by $\approx 70 \mathrm{pF}$.
Maximum Input Voltage - 700 V RMS if sinusoidal. $\pm 1000 \mathrm{~V}$ (dc + peak ac) between Hl and LO inputs or between Hl and chassis. $\pm 500 \mathrm{~V}$ (dc component) between HI and LO inputs.
$\pm 500 \mathrm{~V}$ (dc + peak ac) between LO and chassis (LO Floating Voltage).

RESISTANCE

Ranges - $2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2000 \mathrm{k} \Omega$.
Accuracy - Within 0.6% of reading ± 3 counts.
Response Time $-<5 \mathrm{~s}$ plus range step time (<1 s/step).
Maximum Input Voltage - $\pm 100 \mathrm{~V}$ (dc + peak ac) between Hl and LO inputs. 500 V (dc + peak ac) between LO and chassis (LO Floating Voltage).

OTHER CHARACTERISTICS

Amplitude Calibrator - 0.3 V accurate $\pm 1 \%$ from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C} \pm 2 \%$ from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 132 V ac or 180 V ac to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 17 W.
External Dc Source -+9 V to +32 V .
Charge Time - At least 16 hours for full charge.
Operating Time - Internal NiCd batteries provide ≈ 1.6 hours of scope and DMM operation, 10 hours of DMM alone operation, or two hours of scope alone operation at maximum trace intensity and $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ operating temperature.

ENVIRONMENTAL

Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (Oscilloscope), $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (DMM). Nonoperating: $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: To 9000 m ($30,000 \mathrm{ft}$) maximum, decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from $5,000 \mathrm{ft}$ to $30,000 \mathrm{ft}$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$ maximum.
Vibration - 15 minutes along each of the 3 major axes, 0.025 in (0.06 cm) p-p displacement (4 g 's at 55 Hz) 10 Hz to 55 Hz to 10 Hz in $1 \mathrm{~min}-$ ute cycles.
Humidity - Nonoperating: 5 cycles (120 hours) of MIL-E-16400G. Omit freezing and vibration and allow a post-test drying period at $+25^{\circ} \mathrm{C}, \pm 5^{\circ} \mathrm{C}$ and 20% to 80% relative humidity.
Shock - Operating and Nonoperating: 30 g 's,
$1 / 2$ sine, 11 ms duration. Total of 12 shocks.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width (with handle)	236	9.3
Height	112	4.4
Depth (handle not extended)	371	14.6
Depth (handled extended)	458	18.0
Weights \approx	$\mathbf{k g}$	lb
Net (without accessories)	4.8	10.6
Shipping	7.8	17.1

ORDERING INFORMATION

305 DMM/Oscilloscope

\$2,590
Includes: Two P6149 10X probes (010-6149-13); carrying case (016-0401-00); carrying case cover (200-2260-00); carrying strap assembly (346-0131-02); DMM probe package (012-0732-00); clear CRT filter ($331-0394-01$); blue CRT filter (378-2016-01); external dc cable assembly (012-0406-00); service manual (070-2423-01); operator manual (070-2424-00).
The SONY®/TEKTRONIX® 305 DMM/Oscilloscope is manufactured and marketed in Japan by Sony/Tektronix Corporation, Tokyo, Japan, Outside of Japan the 305 is available from Tektronix, Inc., its marketing subsidiaries and distributors

OPTIONAL ACCESSORIES

Viewing Hood -

Order 016-0297-00
Adaptor Connector - BNC to binding post
Order 103-0033-00

RECOMMENDED CAMERA

C-30BP Option 01 - General purpose camera. See page 412.
Camera Adaptor - Required to mount the C-30BP Camera to the 305. Order 016-0327-01

RECOMMENDED CARTS

K212 Portable Instrument Cart - For on
site mobility. See page 423.
K117 Instrument Shuttle - For site-to-site mobility. See page 423.

221
$5 \mathrm{MHz}, 5 \mathrm{mV} /$ div to $100 \mathrm{~V} / \mathrm{div}$
$0.1 \mu \mathrm{~s} / \mathrm{div}$ Sweep Rate with
X10 Sweep Magnifier
Internal Battery Pack
Integral 1 M Ω Probe
Weighs $\approx 1.6 \mathrm{~kg}(3.5 \mathrm{lb})$

TYPICAL APPLICATIONS

* Communication Equipment Service
 * Electro-Mechanical Measurements * Industrial Plant Maintenance

The 221 Miniscope weighs just 3.5 pounds and measures only $3 \times 5.2 \times 9$ inches. It easily fits into a tool box or brief case, yet has the capability needed for on-site service of much of today's complex equipment. This versatile miniscope has a 5 MHz bandwidth, $5 \mathrm{mV} /$ div sensitivity, and $0.1 \mu \mathrm{~s} / \mathrm{div}$ sweep rate (using X10 magnifier) packaged in an impact-resistant case.
Internal rechargeable batteries allow at least two hours operation away from external power sources. And the 221 will operate and charge from practically all the world's principal line voltages: 90 V to $250 \mathrm{~V}, 48 \mathrm{~Hz}$ to 62 Hz ac, or 80 V to 250 V dc (all without making any change to the instrument)
The $1 \mathrm{M} \Omega$ low-capacitance probe minimizes circuit loading. And because it's attached, it's always there when you need it. Vertical deflection factors extend from $5 \mathrm{mV} / \mathrm{div}$, allowing on-screen measurement of signals up to $600 \mathrm{~V} \mathrm{dc}+$ peak ac. The $1 \mu \mathrm{~s} / \mathrm{div}$ to $200 \mathrm{~ms} / \mathrm{div}$ time base is enhanced by a X10 magnifier that extends the fastest range to $0.1 \mu \mathrm{~s} / \mathrm{div}$. A variable control will slow the sweep to about $0.5 \mathrm{~s} /$ div.
A single rotary control on the 221 is used for all trigger level and slope functions. Controls are side mounted and recessed for protection, yet are easily accessible.

In applications where it is necessary to "float" the oscilloscope to make your measurements, 200 Series miniscopes can be elevated to 700 V (dc + peak ac) above ground when operated from batteries. Although insulated, caution should be observed when connecting the probe to test points.
The 221 is used in a wide assortment of service applications. For example, in data transmission systems, the 221 is preferred for maintenance and testing of modems because of its ability to see higher frequency noise. It can even help in building roads by spot checking motors in a road grader's closed loop servo system that controls blade angle, depth of cut and machine direction.

CHARACTERISTICS
 VERTICAL SYSTEM

Bandwidth (-3 dB point) - Dc to 5 MHz at all calibrated deflection factors. Lower -3 dB point ac coupled is $\approx 2 \mathrm{~Hz}$.
Deflection Factor - $5 \mathrm{mV} /$ div to $100 \mathrm{~V} /$ div, accurate $\pm 3 \%$ from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ and $\pm 5 \%$ from $-15^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Uncalibrated; Continuously variable between steps to at least $300 \mathrm{~V} / \mathrm{div}$.
Input R and $C-\approx 1 \mathrm{M} \Omega$ paralleled by $\approx 29 \mathrm{pF}$ via attached signal acquisition probe.
Maximum Input Voltage - 600 V (dc + peak ac), $600 \mathrm{Vp-p} \mathrm{ac}$,5 MHz or less.

HORIZONTAL SYSTEM
Time Base - $1 \mu \mathrm{~s} /$ div to $200 \mathrm{~ms} /$ div, accurate $\pm 3 \%$.
Magnifier - Increases all sweep speeds X10 with a maximum sweep speed of $0.1 \mu \mathrm{~s} / \mathrm{div}$.
Variable Time Control - Extends minimum sweep rate to $\approx 0.5 \mathrm{~s} / \mathrm{div}$. Continuously variable between calibrated settings.

TRIGGERING

Modes - Automatic or manual. Level and slope selected with a single control. Automatic operation minimizes trigger adjustment and provides a bright baseline with no input.
Trigger Sensitivity

Source	To 1 MHz	At 5 MHz
Internal	0.5 div	1 div
External	0.5 V	1 V

X-Y OPERATION

Input - X -axis input is via the external trigger or the external horizontal input.
X-Axis Deflection Factor $-1 \mathrm{~V} / \mathrm{div} \pm 10 \%$, dc to 500 kHz . Sensitivity is increased by a factor of 10 ($0.1 \mathrm{~V} / \mathrm{div}$) using horizontal magnifier.
Maximum External Horizontal Input Voltage - 200 (dc + peak ac), 200 V (p-p ac) to 500 kHz , decreasing to $20 \mathrm{~V} \mathrm{p-p}$ ac at 5 MHz .
Input Impedance $-\approx 0.5 \mathrm{M} \Omega$ paralleled by $\approx 30 \mathrm{pF}$.

CRT AND DISPLAY FEATURES

CRT -6×10 div ($0.52 \mathrm{~cm} / \mathrm{div}$) display. Accelerating potential is 1 kV . GH (P31) phosphor standard.
Graticule - Internal, black line, nonilluminated.

OTHER CHARACTERISTICS

Insulation Voltage - 500 V RMS or 700 V (dc + peak ac) when operated from internal batteries, with the line cord stored and the plug protected. When operated from an external line, line voltage plus floating voltage not to exceed 250 V RMS; or 1.4 times line $+(\mathrm{dc}+$ peak ac$)$ not to exceed 350 V .
Power Sources - Internal NiCd batteries provide at least 2 hours operation at maximum trace intensity for a charging and operating temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. Internal charger charges the batteries when connected to an ac line with instrument turned on or off. Dc opera-
tion is automatically interrupted when battery voltage drops to $\approx 10 \mathrm{~V}$ to protect batteries against deep discharge. Full recharge requires ≈ 16 hours. Extended time charges will not damage the batteries. An expanded scale battery meter indicates full, low, and recharge.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 250 V ac or 80 V ac to 250 V ac.
Line Frequency - 48 Hz to 62 Hz .
Maximum Power Consumption - 5 W .
ENVIRONMENTAL
Ambient Temperature - Operating (Battery Only): $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Charging or Operating from Ac Line: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Altitude - Operating: 7600 m (25,000 ft), decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ above $15,000 \mathrm{ft}$. Nonoperating: 15000 m (50,000 ft).
Vibration - Operating and Nonoperating: 15 minutes along each of the 3 major axes, 0.06 cm (0.025 in) p-p displacement (4 g 's at $55 \mathrm{~Hz}) 10 \mathrm{~Hz}$ to 55 Hz to 10 Hz in 1 minute cycles. Held for 3 minutes at 55 Hz .
Humidity -5 days at $+50^{\circ} \mathrm{C}, 95 \%$ humidity.
Shock - Operating and Nonoperating: 100 g 's, $1 / 2$ sine, 2 ms duration each direction along each major axis. Total of 12 shocks.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	133	5.2
Height	76	3.0
Depth	228	9.0
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net (w/o accesssories)	1.6	3.5
Shipping	3.6	8.0

ORDERING INFORMATION

221 Oscilloscope

\$2,260
Includes: Integral probe, batteries, viewing hood (016-0199-01); carrying case (016-0512-00); neck strap (346-0104-00); two spare fuses (159-0080-00); service manual (070-1573-01); operator manual (070-1572-00).

OPTIONAL ACCESSORIES

Alligator Clip Kit - A pair of alligator clips that allow connecting the probe and ground lead to large (up to $3 / 8$ inch) conductors. Includes: red clip (015-0229-00); yellow clip ($015-0230-00$); $6-32$ to probe adaptor (103-0051-01). Order 015-0231-00
Probe-Tip - To BNC Panel Connector Adaptor. Order 013-0084-01
Probe-Tip - To BNC Cable Adaptor. Order 103-0096-00
Power Cable Adaptor Assembly - A short length of two-wire power cord. One end has a female NEC socket fitting the 200 Series power cords; the other end is left open so that the wires can be attached to a non-NEC male power plug. Plugs not supplied. Order 161-0077-01

To order, call your local Tektronix Sales Office, or call Tek's National Marketing Center, toll free: 1-800-426-2200, Ext 99. In Oregon call collect: (503) 627-9000, Ext. 99

TYPICAL APPLICATIONS

1 MHz at $20 \mathrm{mV} /$ div
$0.4 \mu \mathbf{s} /$ div Sweep Rate with X10 Sweep Magnifier
DMM and Miniscope in One Unit
Rugged Construction
Internal Battery Pack
Compact, Weighs $\approx 1.7 \mathrm{~kg}$ (3.7 lb)
True RMS Voltage \& Current Measurements

* Power Equipment Measurements
* Medical Electronics Maintenance
* Industrial Control Systems

The 213 combines a precision $3^{1 / 2} 2$ digit digital multimeter and a 1 MHz oscilloscope in one instrument. It is a compact $(3 \times 5.2 \times 8.9$
inches) and light weight (only 3.7 pounds) package that will fit easily into your briefcase or tool kit.

In operation, the light weight 213 can be hand held, rested on the equipment being tested or carried conveniently on a neckstrap. Operating controls are designed for speedy measurements and easy understanding.
Rugged construction enables the 213 to withstand hostile industrial or transportation environments.

In applications where it is necessary to "float" the oscilloscope to make your measurements, 200 Series miniscopes can be elevated to 700 V (dc + peak ac) above ground when operated from batteries. Although insulated, caution should be observed when connecting the probe to test points.

The 213, combining both oscilloscope and DMM functions, fits many on-site service applications. As an example, the 213 is used extensively for preventive maintenance on industrial control systems.

CHARACTERISTICS

VERTICAL SYSTEM (VOLTAGE)

Bandwidth - Dc to 1 MHz (-3 dB point) for 20 $\mathrm{mV} /$ div to $100 \mathrm{~V} /$ div deflection factors. Dc to 400 kHz (-3 dB point) for $5 \mathrm{mV} /$ div and $10 \mathrm{mV} / \mathrm{div}$. Lower -3 dB point for ac coupling is $\approx 1 \mathrm{~Hz}$.
Deflection Factor - $5 \mathrm{mV} /$ div to $100 \mathrm{~V} /$ div (1-25 sequence). Accuracy: $\pm 3 \%$. Uncalibrated: Continuously variable between steps to at least $250 \mathrm{~V} /$ div.
Input R and C - $10 \mathrm{M} \Omega$ paralleled by 150 pF for $5 \mathrm{mV} /$ div through $1 \mathrm{~V} /$ div and 100 pF for $2 \mathrm{~V} /$ div through $100 \mathrm{~V} /$ div.

Maximum Input Voltage

Input Condition	Maximum Input Voltage
Dc coupled, $5 \mathrm{mV} /$ div	500 V (dc + peak ac)
to $1 \mathrm{~V} / \mathrm{div}$	at 1 MHz or less
Ac coupled, 5 mV /div	800 V (dc + peak ac)
to $1 \mathrm{~V} /$ div	500 V peak ac component
Ac, Dc coupled,	800 V (dc + peak ac)
$2 \mathrm{~V} /$ div to $100 \mathrm{~V} /$ div	at 1 MHz or less

VERTICAL SYSTEM (CURRENT)

Bandwidth - Dc to at least $400 \mathrm{kHz}(-3 \mathrm{~dB}$ point) for $20 \mu \mathrm{~A}$ /div through $100 \mathrm{~mA} /$ div deflection factors. Dc to at least 200 kHz (-3 dB point) for $5 \mu \mathrm{~A} /$ div and $10 \mu \mathrm{~A} /$ div.
Deflection Factor $-5 \mu \mathrm{~A} /$ div to $100 \mathrm{~mA} /$ div (1 -$2-5$ sequence). Accuracy: $\pm 3 \%$. Uncalibrated: Continuously variable between steps to at least $250 \mathrm{~mA} /$ div.
Maximum Input Current - 2 ARMS or 3 A peak for any range (fuse and diode protection).

HORIZONTAL SYSTEM
Time Base - $2 \mu \mathrm{~s} / \mathrm{div}$ to $500 \mathrm{~ms} /$ div (1-2-5 sequence). Accuracy: $\pm 5 \%$.
Variable Magnifier - Increases all sweep speeds to at least X5 with a maximum sweep speed of $0.4 \mu \mathrm{~s} / \mathrm{div}$.

TRIGGERING

Modes - Normal (sweep runs when triggered). Automatic (sweep free-runs in absence of trigger signal or for frequencies below 7 Hz).
Trigger Sensitivity and Coupling - Ac Internal: (Auto and Normal 1 MHz) 0.5 div. Dc External: $1 \mathrm{MHz}, 1 \mathrm{~V}$.

CRT AND DISPLAY FEATURES

CRT $-6 \times 10 \mathrm{div}$ ($0.52 \mathrm{~cm} /$ div) display. GY (P43) phosphor.
Graticule - Internal, black line, nonilluminated.
OTHER CHARACTERISTICS
Insulation Voltage - 500 V RMS or 700 V (dc + peak ac) when operated from internal batteries with line cord and plug stored. When operated from ac, line voltage plus floating voltage not to exceed 250 V RMS or 1.4 X line + (dc + peak ac) not to exceed 350 V .
Power Sources - Internal NiCd batteries provide three to five hours operation at maximum trace intensity for a charging and operating temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. Internal charger charges batteries when connected to an ac line with instrument turned on or off. Dc opera tion is automatically interrupted when battery voltage drops below 2 V to protect batteries against deep discharge. Full recharge requires ≈ 16 hours.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 136 V ac. Option 01 is 180 V ac to 250 V ac.
Line Frequency - 48 Hz to 62 Hz
Maximum Power Consumption - 8 W .

ENVIRONMENTAL
Ambient Temperature - Operating (Battery Only): $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Charging or Operating from Ac Line: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Altitude - Operating: To $7500 \mathrm{~m}(25,000 \mathrm{ft})$, decrease maximum temperature by $1^{\circ} \mathrm{C} / 1,000 \mathrm{ft}$ above 15,000 ft. Nonoperating: $12500 \mathrm{~m}(40,000$ ft).
Vibration - Operating and Nonoperating: 15 minutes along each of the 3 major axes, 0.06 cm (0.025 in) p-p displacement (4 g 's at 55 Hz) 10 Hz to 55 Hz to 10 Hz in 1 minute cycles. Held for 3 minutes at 55 Hz .
Humidity $-+40^{\circ} \mathrm{C}$ or less, 80% or less relative humidity.
Shock - Operating and Nonoperating: 150 g 's, $1 / 2$ sine, 2 ms duration in each direction along each major axis. Total of 12 shocks.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	133	5.2
Height	76	3.0
Depth	226	8.9
Weights \approx	$\mathbf{k g}$	lb
Net (without accessories)	1.7	3.7
Shipping	3.9	8.6
Drovides true RMS		

Provides true RMS readings of voltage and current.

DC AND AC VOLTAGE

Range -0.1 V to 1000 V full scale in five ranges.
Resolution - $100 \mu \mathrm{~V}$ at 0.1 V full scale.
Accuracy in Dc Mode - For $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Range*1

0.1 V	$\pm 0.1 \%$ of reading ± 3 counts. Temp coef is
	$\left(\pm 0.015 \%\right.$ of reading $+0.04 \%$ of full scale) per ${ }^{\circ} \mathrm{C}$
1 V	$\pm 0.1 \%$ of reading ± 1 count. Temp coef is
	$\left(\pm 0.01 \%\right.$ of reading $+0.01 \%$ of full scale) per ${ }^{\circ} \mathrm{C}$
10 V and	$\pm 0.15 \%$ of reading ± 1 count. Temp coef is
100 V	$\left(\pm 0.015 \%\right.$ of reading $+0.01 \%$ of full scale) per ${ }^{\circ} \mathrm{C}$
1000 V	$\pm 0.2 \%$ of reading ± 1 count. Temp coef is
	$\left(\pm 0.02 \%\right.$ of reading $+0.01 \%$ of full scale) per ${ }^{\circ} \mathrm{C}$

* 1 Full scale

Accuracy in RMS Mode - For $25^{\circ} \mathrm{C} \pm 5^{\circ}$. Temperature coefficient ($\pm 0.05 \%$ of reading $+0.1 \%$ of full scale) per ${ }^{\circ} \mathrm{C}$.

Range	Within \% of reading shown $\pm \mathbf{5}$ counts* 1		
	Dc	40 Hz to 4 kHz	4 kHz to 40 kHz
0.1 V	2.5%	1.5%	3.5%
$1 \mathrm{~V}, 10 \mathrm{~V}, \& 100 \mathrm{~V}$	2%	1%	1%
1000 V	2%	1%	2%

* ${ }^{1}$ Accuracy limit increases linearly for crest factor >2 up to twice indicated limit for crest factor of five.
Input Resistance - $10 \mathrm{M} \Omega$.
Input Capacitance - 150 pF on 0.1 V to 10 V ranges, 100 pF on 100 V and 1000 V ranges.
Settling Time - Dc: 1.5 s to 0.1% of reading. RMS: 2 s to 1% of reading.

Maximum Input Voltage

Range	Dc Coupled	Ac Coupled
0.1 V to 10 V	$500 \mathrm{~V}^{* 1}$	$800 \mathrm{~V}^{* 1}$
100 V to 1000 V	$800 \mathrm{~V}^{* 1}$	

${ }^{1}$ Dc + peak ac

DC AND AC CURRENT

Range - 0.1 mA to 1000 mA full scale in five ranges.
Resolution - 100 nA at 0.1 mA full scale.

Accuracy in Dc Mode - For $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
Temperature Coef - $(\pm 0.02 \%$ of reading $\pm 0.04 \%$ of full scale) per ${ }^{\circ} \mathrm{C} .0 .1 \mathrm{~mA} \pm 0.5 \% \pm 3$ counts. 1 mA to $1000 \mathrm{~mA} \pm 0.25 \% \pm 3$ counts.

Accuracy in Ac Mode

Range	Within \% of reading shown ± 5 counts*1		
	Dc	40 Hz to 4 kHz	4 kHz to 40 kHz
0.1 mA	2.5%	1.5%	4.5%
1 mA to 1000 mA	2.5%	1.5%	3.5%

${ }^{* 1}$ Accuracy limit increases linearly for crest factor >2 up to twice the indicated limit for crest factor of five.
Settling Time - 1.5 s to 0.1% of reading.
Maximum Input Current - 2 A RMS or 3 A peak on any scale (fuse and diode protection).

RESISTANCE

Ranges $-1 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$ full scale in five ranges.
Resolution - 1Ω on $1 \mathrm{k} \Omega$ scale.
Accuracy - For $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

Range	$\%$ of Reading
$1 \mathrm{k} \Omega$	$0.5 \% \pm 3$ counts
$10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$	$0.5 \% \pm 1$ count
$10 \mathrm{M} \Omega$	$1 \% \pm 1$ count

Settling Time - Two seconds ± 2 counts.
READOUT
Number of Digits - $3^{1 / 2}$ digits plus decimal point and sign.
Display Size -1 cm high by 4 cm wide (five characters).
Over-Range Capability - At least 200\% of full scale.

Over-Range Indication - Displays scrambled characters.

ORDERING INFORMATION

213 Miniscope/DMM

\$2,830
Includes: Integral probe, batteries, viewing hood ($016-0199-01$); carrying case ($016-0512-00$); two alligator clip to banana jack test leads (red 012-0015-00, black 012-0014-00); neck strap (346-0104-00); two power line fuses (159-0080-00); identification tag (334-2614-00); identification tag (000-7983-00); service manual (070-1481-00); operator manual (070-1480-00).
Option $01-180 \mathrm{~V}$ ac to 250 V ac (48 Hz to 62 Hz) or dc.

NC
Includes: In addition to above, power line plug (161-0077-01).

OPTIONAL ACCESSORIES

Alligator Clip Kit - A pair of alligator clips that allow connecting the probe and ground lead to large (up to $3 / 8 \mathrm{in}$) conductor. Includes red clip ($015-0229-00$); yellow clip ($015-0230-00$) $6-32$ to probe adaptor (103-0051-01). Order 015-0231-00
Probe-Tip - To BNC Panel Connector Adap tor. Order 013-0084-01

Probe Tip - To BNC Cable Adaptor. Order 103-0096-00
Power Cable Adaptor Assembly An 11 inch two-wire power cord. One end has a female NEC socket fitting the 200 Series power cords; the other end is left open so that the wires can be attached to a non-NEC male power plug. Plugs not supplied. Order 161-0077-01

212
$500 \mathrm{kHz}, 1 \mathrm{mV} /$ div to $50 \mathrm{~V} /$ div
Internal Battery Pack
Integral 1 M Ω Probe
Weighs $\approx 1.6 \mathrm{~kg}(3.5 \mathrm{lb})$

TYPICAL APPLICATIONS

* Electro-Mechanical Measurements
* Biomedical

The 212 features these signal acquisition capabilities: bandwidth to 500 kHz with deflection factors from $1 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$. It is light weight (only 3.5 pounds) and compact ($3 \times 5.25 \times 9.5$ inches).
Built of impact-resistant plastic and fully self-contained, this miniature portable is perfect for applications in severe environments. And it permits "floating" measurements since it is double insulated and can be elevated to 700 V (dc + peak ac) above ground when operated from batteries. Although insulated, normal caution should be observed when connecting the oscilloscope probe to the test point.
The 212 features integral probes that are color matched with the vertical deflection controls to minimize measurement error. The probes have their own storage space and are part of the instrument-you can't forget and leave them behind. Clip-on 10X attenuators are available for higher voltage applications.
Trigger level and slope functions are simplified to one rotary control on the side of the unit. A convenient neckstrap is an included accessory, freeing both hands to perform other tasks.

CHARACTERISTICS VERTICAL SYSTEM

Bandwidth - Dc to at least 500 kHz from $10 \mathrm{mV} /$ div to $50 \mathrm{~V} /$ div, reducing to at least 100 kHz at $1 \mathrm{mV} /$ div. Lower -3 dB point ac coupled is $\approx 2 \mathrm{~Hz}$.
Deflection Factors - $1 \mathrm{mV} /$ div to $50 \mathrm{~V} / \mathrm{div}(1-2-$ 5 sequence). Accuracy: $\pm 5 \%$. Uncalibrated: Continuously variable between steps to at least $125 \mathrm{~V} / \mathrm{div}$.

Line Voltage Range - 110 V ac to 126 V ac. Can be operated at 104 V ac to 110 V ac with resulting slow discharge of internal batteries. Option 01 is 220 V to 250 V . Option 02 is 90 V to 110 V.

Line Frequency - 58 Hz to 62 Hz . Options 01 and 02 are 48 Hz to 52 Hz .
Maximum Power Consumption - 3 W . ENVIRONMENTAL
Ambient Temperature - Operating (Battery Only): $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Charging or Operating from Ac Line: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Altitude - Operating: $7500 \mathrm{~m}(25,000 \mathrm{ft})$, decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ above $15,000 \mathrm{ft}$. Nonoperating: $15000 \mathrm{~m}(50,000$ ft).
Vibration - Operating and Nonoperating: 15 minutes along each of the three major axes. 0.06 cm (0.025 in) p-p displacement (4 g 's at $55 \mathrm{~Hz}) 10 \mathrm{~Hz}$ to 55 Hz to 10 Hz in 1 minute cycles. Held for 3 minutes at 55 Hz .
Humidity - 95\%, five cycles (120 hours). Referenced to MIL-T-28800C, par 4.5.5.1.2.2.
Shock - Operating and Nonoperating: 150 g 's, $1 / 2$ sine, 2 ms duration in each direction along each major axis. Total of 12 shocks.

PHYSICAL CHARACTERISTICS

Dimensions	mm	in
Width	133	5.3
Height	76	3.0
Depth	241	9.5
Weights \approx	kg	lb
Net (without accessories)	1.6	3.5
Shipping	3.2	7.0

ORDERING INFORMATION

212 Dual-Trace Oscilloscope

\$2,045
Includes: Integral probes, batteries, viewing hood (016-0199-01); carrying case (016-0512-00); two 4-A fuses ($159-0121-00$); identification tags ($000-7983-00$); identification tag ($334-2614-00$); carrying strap (346-0104-00); service manual (070-5053-00); operator manual (070-5052-00).

OPTIONS

Option 01 - For 220 V to $250 \mathrm{~V}(48 \mathrm{~Hz}$ to 52 Hz).

Includes: Batteries.

Option 02 - For 90 V to $110 \mathrm{~V}(48 \mathrm{~Hz}$ to 52 Hz).
Includes: Batteries.

OPTIONAL ACCESSORIES

10X Attenuator Package - A slip-on tip to provide lower circuit loading ($4.4 \mathrm{M} \Omega, \approx 20 \mathrm{pF}$) and higher maximum input voltage 1000 V (dc + peak ac) includes: 10X attenuator (010-0378-01); pincher tip (013-0071-00); flex tip (206-0060-00); banana tip (134-0013-00); IC
adaptor (206-0203-00). Order 010-0378-01
Alligator Clip Kit - A pair of alligator clips that allow connecting the probe (or optional 10X attenuator) and ground lead to large $3 / 8$ in) conductors. Includes: 6-32 to probe adaptor (103-0051-01); red clip (015-0229-00); yellow clip (015-0230-00). Order 015-0231-00
Probe-Tip - To BNC Panel Connector Adaptor. Order 013-0084-01
Probe-Tip - To BNC Cable Adaptor. Order 103-0096-00
Power Cable Adaptor Assembly - A short length of two-wire power cord. One end has a female NEC socket fitting the 200 Series power cords; the other end is left open so that the wires can be attached to a non-NEC male power plug. Plugs not supplied.
Order 161-0077-01 not to exceed 250 V RMS; or 1.4 X line + (dc + peak ac) not to exceed 350 V .
Power Sources - Internal NiCd batteries provide \approx three to five hours operation for a charging and operating temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. Internal charger charges the batteries when connected to an ac line with instrument turned off. Battery operation is automatically interrupted when battery voltage drops to $\approx 10 \mathrm{~V}$ to protect batteries against deep discharge. Full recharge requires ≈ 16 hours. Extended charge times will not damage the batteries.
A pilot light battery-charge indicator light will extinguish when oscilloscope has about ten minutes of operating time remaining in the batteries.

POWER REQUIREMENTS

PORTABLE STORAGE OSCILLOSCOPES

Tek offers a broad line of portable storage oscilloscopes, beginning with CRT storage in this section. Digital storage scopes feature three NEW offerings, the 2220, 2230, and 2430. These and other digital storage scopes are listed in the Digitizers section beginning on page 306.

466

100 MHz at $5 \mathrm{mV} /$ div

$5 \mathrm{~ns} /$ div Sweep Rate with X10 Sweep Magnifier
Variable Persistence and Fast Mesh
Transfer Storage Modes
$3000 \mathrm{div} / \mu \mathrm{s}$ Stored Writing Speed
Battery Operation (Optional)
Third Channel Trigger View
Weighs $\approx 11.8 \mathrm{~kg}(26 \mathrm{lb})$

TYPICAL APPLICATIONS

* Disk/Tape Drive Logic Design

* Laser Pulse Analysis

* Low Rep Rate Radar Pulse Analysis

* Destructive Test Monitoring

The 466 Portable Storage Oscilloscope is designed to display nonrepetitive or slow moving signals. And with the exception of increased stored writing speed on the 466, both instruments offer similar performance.

466 with Differential Time/DMM Option (466 DM44)

Operating in a reduced scan mode, the stored writing speed is $3000 \mathrm{div} / \mu \mathrm{s}$ ($1350 \mathrm{~cm} / \mu \mathrm{S}$). This instrument features two modes of storage - variable persistence and fast transfer.

The bright 8×10 div CRT has 0.90 cm divisions. A reduced scan 8×10 div graticule is superimposed over the center of the main graticule, with 0.45 cm divisions. The graticules is etched onto the inner face of the CRT to eliminate parallax problems.
A third channel trigger view allows the simultaneous display of channels 1 and 2 with the external A trigger.
Tektronix P6062B Probes provide operator convenience of 1 X or 10X input attenuation at the probe tip. The correct deflection factor is automatically indicated on the front panel when the probe attenuation factor is switched.

Lightweight plus the ability to use optional, external dc power makes the 466 sufficiently portable for virtually all field measurement applications. The snap-on 1106 Battery Pack is also useful in isolating these oscilloscopes from noisy or intermittent power sources.

CHARACTERISTICS

VERTICAL SYSTEM
(2 IDENTICAL CHANNELS)
Bandwidth*1 and Risetime - At all deflection factors from 50Ω terminated source.

$-15^{\circ} \mathrm{C}$ to $+\mathbf{4 0 ^ { \circ } \mathrm { C }}$	$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Dc to $100 \mathrm{MHz}, \leqslant 3.5 \mathrm{~ns}$	Dc to $85 \mathrm{MHz}, \leqslant 4.15 \mathrm{~ns}$

${ }^{*}$ Measured at -3 dB down. Bandwidth may be limited to $\approx 20 \mathrm{MHz}$ by bandwidth limit switch. Lower -3 dB point, ac coupling 1 X probe; 10 Hz or less. 10X probe; 1 Hz or less.

Deflection Factor - $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div (1-2-5 sequence). Accuracy: $\pm 3 \%$. Uncalibrated: Continuously variable between steps and to $\approx 12.5 \mathrm{~V} / \mathrm{div}$. In cascade mode sensitivity is $\approx 1 \mathrm{mV} / \mathrm{div}$. Cascaded bandwith is at least 50 MHz when signal out is terminated in 50Ω.
Display Modes - CH 1, CH 2 (normal or inverted), Alternate, Chopped ($\approx 250 \mathrm{kHz}$), added, $X-Y$. Common-Mode Rejection Ratio - At least 20 dB at 20 MHz for common-mode signals of 6 div or less.
Automatic Scale Factor - Probe tip deflection factors for 1 X or 10X coded probes are automatically indicated by two readout lights behind the knob skirts. All lights are off when the channel is not displayed. Ground reference display selectable at probe (when dc coupled).
Input R and C - $1 \mathrm{M} \Omega \pm 2 \%$ paralleled by $\approx 20 \mathrm{pF}$.
Maximum Input Voltage

Dc Coupled	250 V (dc + peak ac)
	500 V (p-p ac at 1 kHz or less)
Ac Coupled	500 V (dc + peak ac)
	500 V (p-p ac at 1 kHz or less)

Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL SYSTEM

Time Base A - $0.05 \mu \mathrm{~s} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$ (1-2-5 sequence). X10 magnifier extends sweep rate to $5 \mathrm{~ns} /$ div.
Time Base B - $0.05 \mu \mathrm{~s} /$ div to $50 \mathrm{~ms} / \mathrm{div}$ (1-2-5 sequence). X 10 mag extends sweep rate to $5 \mathrm{~ns} /$ div.
Variable Time Control - Time Base A: Provides continuously variable uncalibrated sweep rates between steps and to at least $1.25 \mathrm{~s} /$ div. Warning light indicates uncalibrated setting.
Time Base A and B Accuracy*1

	$+20^{\circ} \mathrm{C}$ to $+\mathbf{3 0} 0^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Unmagnified	$\pm 2 \%$	$\pm 3 \%$
Magnified	$\pm 3 \%$	$\pm 4 \%$

${ }^{*}{ }^{1}$ Full 10 divisions.
Display Modes - A, mixed sweep, A intensified, B delayed. B ends A for increased intensity in the delayed mode.
Calibrated Mixed Sweep - Displays A sweep for period determined by Delay-Time Position control, then displays B sweep for remainder of horizontal sweep.

CALIBRATED SWEEP DELAY

Delay Time Range - 0.2 to X10 delay Time/Div settings of 200 ns to 0.5 s (minimum delay time is 200 ns).
Differential Time Measurement Accuracy

Delay Time Setting	$+\mathbf{1 5}^{\circ} \mathrm{C}$ to $+\mathbf{3 5}{ }^{\circ} \mathrm{C}$	$-\mathbf{1 5}^{\circ} \mathrm{C}$ to $+\mathbf{5 5}{ }^{\circ} \mathrm{C}$		
Over one or more major dial div	$\pm 1 \%$	$\pm 2.5 \%$		
Less than one major dial div	± 0.01 major			
dial div			$\quad \pm 0.025$ major	dial div
:---:				

Jitter - One part or less in $50,000(0.002 \%)$ of X10 the A sweep time/div setting.

TRIGGERING
A Trigger Modes - Normal (sweep runs when triggered), automatic (sweep free-runs in the absence of a triggering signal and for signals below

30 Hz). Single Sweep (sweep runs one time on the first triggering event after the reset selector is pressed). Lights indicate when sweep is triggered and when single sweep is ready.
A Trigger Holdoff - Adjustable control permits a stable presentation of repetitive complex waveforms. At least 10:1 variation.
B Trigger Modes - B starts after delay time (starts automatically at the end of the delay time). B triggerable after delay time (runs when triggered). The B (delayed) sweep runs once, in each of these modes, following the A sweep delay time.

Time Base A and B Trigger

Sensitivity and Coupling

Coupling	To 25 MHz	At 100 MHz
Dc Internal	0.3 div deflection	1.5 div deflection
Dc External	50 mV	150 mV
Dc External $\div 10$	500 mV	1.5 V
Ac	Requirements increase below 60 Hz	
Ac LF Reject	Requirements increase below 50 kHz	
Ac HF Reject	Requirements increase below 30 Hz and above 50 kHz	

Jitter -0.5 ns or less at 100 MHz and $5 \mathrm{~ns} /$ div (X10 magnifier).
A Trigger View - A spring-loaded pushbutton overrides other vertical controls and displays the external signal used for A sweep triggering. This provides quick verification of the signal and time comparison between a vertical signal and the trigger signal. The deflection factor is $\approx 50 \mathrm{mV} /$ div ($0.5 \mathrm{~V} / \mathrm{div}$ with external $\div 10$ source).
Level and Slope - Internal, permits selection of triggering at any point on the positive or negative slope of the displayed waveform. Level adjustment through at least $\pm 2 \mathrm{~V}$ in external, through at least $\pm 20 \mathrm{~V}$ in external $\div 10$.
A Sources - Normal, CH 1, CH 2 line, external and external $\div 10$.
B Sources - Starts after delay, normal, CH 1 , CH 2 , and external.
External Inputs - R and $C \approx 1 M \Omega$ paralleled by $\approx 20 \mathrm{pF} .250 \mathrm{~V}$ (dc + peak ac) maximum input.
Third Channel Trigger View - Deflection Factor (Dc Trigger Coupling Only). Ext is: $100 \mathrm{mV} / \mathrm{div}$ $\pm 5 \%$. Ext $\div 10$ is: $1 \mathrm{~V} / \mathrm{div} ~ \pm 5 \%$. Delay Difference: $5.0 \mathrm{~ns} \pm 0.5 \mathrm{~ns}$ after vertical display. Trigger Point: \approx center screen. Risetime: $\leqslant 5 \mathrm{~ns}$. Aberration: < $10 \% \mathrm{p}-\mathrm{p}$.

X-Y OPERATION

Full Sensitivity X-Y (CH 1 Horizontal, CH 2 Vertical) $-5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div. Accuracy: $\pm 4 \%$. Bandwidth: Dc to at least 4 MHz . Phase Difference Between Amplifiers: 3° or less from dc to 50 kHz .

CRT AND DISPLAY FEATURES

CRT - 8×10 div display, each div is 0.9 cm (normal); $0.45 \mathrm{~cm} /$ div reduced scan. Accelerating potential is 8.5 kV (normal), 10 kV (reduced scan). GH (P31) phosphor standard.
Graticule - Internal, nonparallax; variable edge lighting; markings for measurement of risetime.
Beam Finder - Compresses trace to within graticule area for ease in determining the location of an off-screen signal. A preset intensity level provides a constant brightness.

Z-Axis Input - Dc coupled, positive-going signal decreases intensity; 5 Vp -p signal causes noticeable modulation at normal intensity; dc to 50 MHz .

STORED WRITING SPEEDS		
Full Scan*1	Stored Writing Speed	Storage*2 View Time
Fast Transfer	$67.5 \mathrm{~cm} / \mu \mathrm{s}$	$>15 \mathrm{~s}$
Variable Persistance	$.225 \mathrm{~cm} / \mu \mathrm{s}$	$>15 \mathrm{~s}$
Reduced Scan*3		
Fast Transfer	$135 \mathrm{~cm} / \mu \mathrm{s}$	$>15 \mathrm{~s}$
Variable Persistance	$1.35 \mathrm{~cm} / \mu \mathrm{s}$	$>15 \mathrm{~s}$

${ }^{*}{ }^{1}$ Center 6×8 division; $0.9 \mathrm{~cm} /$ division.
*2 These times are at full-stored display intensity; they can be extended at least 25 times using reduced intensity in Save Display Mode.
*3 Center 8×10 division; $0.45 \mathrm{~cm} /$ division.
OTHER CHARACTERISTICS
Amplitude Calibrator

Output Voltage	0.3 V	$1 \%+0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Output Current	30 mA	$2 \%+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$
Frequency	$\approx 1 \mathrm{kHz}$	

Vertical Signal Output - CH 1 vertical signal is dc to at least 50 MHz and $\approx 25 \mathrm{mV} /$ div terminated into 50Ω, and $\approx 50 \mathrm{mV} /$ div terminated into $1 \mathrm{M} \Omega$.
Gate Outputs - Positive gates from both time bases ($\approx 5 \mathrm{~V}$).

POWER REQUIREMENTS

Line Voltage Range - Quick change, line voltage selector provides $110 \mathrm{~V}, 115 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$, 230 V , and 240 V ac, each $\pm 10 \%$. Option 07 is 12 V dc to 24 V dc.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 100 W at 115 V and 60 Hz .

ENVIRONMENTAL

Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Forced air ventilation is provided.
Altitude - Operating: To 4600 m ($15,000 \mathrm{ft}$); maximum allowable ambient temperature decreased by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from $5,000 \mathrm{ft}$ to $15,000 \mathrm{ft}$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three axes, $0.06 \mathrm{~cm}(0.025 \mathrm{in}) \mathrm{p}$-p displacement (4 g 's at 55 Hz) 10 Hz to 55 Hz to 10 Hz in 1 minute cycles.
Humidity - Operating and Nonoperating: 95\%, 5 cycles (120 hours). Referenced to MIL-T28800C, par. 4.5.5.1.2.2.
Shock - Operating and Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration, 2 shocks per axis in each direction for a total of 12 shocks.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width (with handle)	330	13.1
Height (without pouch)	159	6.2
Depth (with panel cover)	550	21.7
Depth (handle extended)	597	23.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net (without panel cover or accessories) Net (with panel cover and accessories)	11.8	26.0
Shipping	13.5	29.8

See ordering information on next page.

DM 44

Differential－Time／DMM Option for 466
$31 / 2$ Digit LED Display
Time Intervals Accurate to 1\％
Frequency Accurate to 2\％
Dc Voltage Measurements Accurate to 0．1\％
Resistance Accurate to 0．3\％
Temperature from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

One percent timing measurements were never this easy！With the DM 44 Option time intervals can be read directly from the $3^{1 / 2}$ digit LED screen．Simply use the Delay Time control and the Δ Time Dial to superim－ pose the end of the interval on the begin－ ning．Then read its differential time or fre－ quency from the $3^{1 / 2}$ digit LED panel．It＇s that simple．Time intervals are accurate to 1% and the frequency of periodic wave－ forms can be read out with 2% accuracy by simply pushing the 1 ／Time button．
Compare the DM 44 sequence with the measurement technique you may now be using．Calculating the interval from the CRT may take 10 times as long．
Voltage，resistance，and temperature mea－ surements are also much easier with a DM 44．It measures dc voltage with 0.1% ac－ curacy，resistance with 0.3% accuracy，and temperature from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ．Previ－ ously，you would have needed a separate DMM and digital thermometer in addition to your oscilloscope．Now，these features are combined in one small，inexpensive，integral package．

DC VOLTAGE
Ranges－ 0 to $200 \mathrm{mV}, 0$ to $2 \mathrm{~V}, 0$ to $20 \mathrm{~V}, 0$ to $200 \mathrm{~V}, 0$ to 1.2 kV ．
Resolution－ $100 \mu \mathrm{~V}$ ．
Accuracy－Within 0.1% of reading ± 1 count． Input Resistance－ $10 \mathrm{M} \Omega$ for all ranges．Re－ moval of an internal strap increases resistance to $\approx 1000 \mathrm{M} \Omega$ on 200 mV and 2 V ranges．
Normal－Mode Rejection Ratio－At least 60 dB at 50 Hz and 60 Hz ．
Common－Mode Rejection Ratio－At least 100 dB at dc， 80 dB at 50 Hz and 60 Hz ．
Recycle Rate－≈ 3.3 measurements／s．
Response Time－Within 0.5 s ．
Maximum Safe Input Voltage $- \pm 1200 \mathrm{~V}$ dc + peak ac between + and common inputs or between + and chassis．$\pm 500 \mathrm{~V}$（dc + peak ac） common floating voltage between common and chassis．

RESISTANCE

Ranges－ 0 to $200 \Omega, 0$ to $2 \mathrm{k} \Omega, 0$ to $20 \mathrm{k} \Omega, 0$ to $200 \mathrm{k} \Omega, 0$ to $2 \mathrm{M} \Omega$ and 0 to $20 \mathrm{M} \Omega$ ．
Resolution－ 0.1Ω ．
Accuracy

Range	Accuracy
200Ω	within $0.25 \% \pm 1$ count + probe resistance
$2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$	within $0.25 \% \pm 1$ count
$20 \mathrm{M} \Omega$	within $0.3 \% \pm 1$ count

Recycle Rate $-\approx 3.3$ measurements／s． Response Time

200Ω through $200 \mathrm{k} \Omega$ ranges	within 1 s
$2 \mathrm{M} \Omega$ ranges $20 \mathrm{M} \Omega$ ranges	within 5 s

Maximum Safe Input Voltage－ 120 V RMS between＋and common inputs．

TEMPERATURE USING P6430 PROBE Range $-=55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ．

Accuracy

| DM 44 | P6430
 Temperature | Tip Temperature |
| :--- | :---: | :---: | | Accuracy（Probe |
| :---: |
| Calibrated to DM 44） |$~$| $+15^{\circ} \mathrm{C}$ to | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | $\pm 2^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: |
| $+35^{\circ} \mathrm{C}$ | | |
| $-15^{\circ} \mathrm{C}$ to | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 3^{\circ} \mathrm{C}$ |
| $+55^{\circ} \mathrm{C}$ | $+125^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | $\pm 4^{\circ} \mathrm{C}$ |

ORDERING INFORMATION
 466 Storage Oscilloscope
 \＄7，560

Includes：Two P6105A probes（010－6105－13）；blue ac－ cessory pouch（016－0535－02）；clear pouch（016－0537－00）； CRT light filter（337－1674－01）；two $1 \frac{112}{2}$ A fuses（159－0016－ 00 ）；one $3 / 4$ A fuse（ $159-0042-00$ ）；ground wire adaptor （134－0016－01）；viewing hood（016－0592－00）；operator manual（070－2037－00）

466 DM 44

Storage Oscilloscope／DMM
\＄8，260
Includes：Same as 466 plus，one pair test leads（ $003-0120-00$ ）；one P6430 Temperature Probe（010－6430－00）；service manual （070－2036－01）；operator manual（070－4796－00）．

OPTIONS

Option 01 －Delete DM 44 Temperature Probe（466DM 44 only）．
Option 04 －EMC Capability．$+\$ 220$
Option 05 －TV Sync Separator（Provides Triggering on TV Field）．
$+\$ 385$
Option 07 －External Dc Operation（Not for DM 44）．
＋\＄330
INTERNATIONAL POWER PLUG OPTIONS
Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American 240 V／15 A， 60 Hz ．

OPTIONAL ACCESSORIES

1106 －Battery Pack（Used with Option 07．） （See page 281．）
\＄1，235
1105 －Battery Power Supply（See page 281．）\＄1，650
Mesh Filter－Improves display contrast in high ambient light．Order 378－0726－01
Protective Cover－Waterproof vinyl． Order 016－0365－00
Folding Viewing Hood — Order 016－0592－00
Folding Binocular Hood－
Order 016－0566－00
Polarized Collapsible Viewing Hood－ Order 016－0180－00

Rack Adaptor－（Not for DM 44．）
Order 016－0676－00
A6902B Isolator－For floating measure－ ments see page 437 for complete description．

RECOMMENDED CAMERA

C－30BP Option 01 －General Purpose Cam－ era．Includes 016－0301－01 mounting adaptor／ corrector lens．See page 412.

RECOMMENDED CARTS

K212 Portable Instrument Cart－For on site portability．See page 423.

K117 Instrument Shuttie－For site－to－site portability．See page 423

RECOMMENDED PROBES

See pages 255 and 426.
Modification kits for field conversion of existing 466s to Op－ tion 07 or DM 44 equipped scopes are available．These are typically more expensive than when the option is ordered with the instrument．Contact your Tektronix sales engineer，distribu－ tor，or representative for information．

10 MHz at $1 \mathrm{mV} / \mathrm{div}$

$100 \mathrm{~ns} /$ div Sweep Rate with X10 Sweep Magnifier
Stored Viewing Time to 4 Hours
Integrate Mode for Intensifying Fast Risetime, Low Repetition Rate Signals
Operates from Ac Line, 12 V Dc, or 24 V Dc
Small Size, Weighs $\approx 4.7 \mathrm{~kg}(10.5 \mathrm{lb})$

TYPICAL APPLICATIONS

* Industrial Control Systems
* Biophysical Instrumentation

* Communication Equipment Service

The 10.5 pound, bistable storage 314 provides $1 \mathrm{mV} /$ div sensitivity at 10 MHz , with a four hour viewing time. With long-term storage, you can use the 314 to monitor signal lines where undesired transients are suspected.
For fast risetime, low repetition rate signals, an integrate mode increases the intensity of the stored trace.
Compact size and operation from ac or external dc source mean that the 314 will easily go wherever you need a storage oscilloscope.

Combined function controls, color coding, and functional front-panel layout make the 314 easy to use. Probes mount on the side, permitting an uncrowded front panel and large CRT.
The 1 mV /div sensitivity is particularly useful for measurement of transducer signals such as those from magnetic recording heads. An autoerase mode, with variable erase period from 1 second to 5 seconds, enhances the ability of the 314 to make measurements on slowly changing analog signals such as those from a pressure transducer. Other applications for the 314 occur in industrial control systems, biophysical instrumentation, communication terminals, POS terminals, computer peripherals, and communication systems.

CHARACTERISTICS

 VERTICAL SYSTEMBandwidth and Risetime - Dc to at least 10 MHz . Risetime: 35 ns or less for a 4 div step input. For ac coupling, the lower 3 dB point is 10 Hz or less.
Deflection Factor - $1 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}(1-2-5$ sequence), accurate $\pm 3 \%$. Uncalibrated: Continuously variable between steps to at least $25 \mathrm{~V} /$ div.
Display Modes - CH 1, CH 2 (normal or inverted), chopped, alternate, added, and $X-Y$.
Input R and $C-1 \mathrm{M} \Omega$ paralleled by $\approx 47 \mathrm{pF}$.
Maximum Input Voltage - Ac or dc coupled, 300 V (dc + peak ac).
Delay Line - Permits viewing leading edge of displayed waveform.

Amplitude Calibrator - 0.5 V accurate $\pm 1 \%$ from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}, \pm 2 \%$ from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

HORIZONTAL SYSTEM

Time Base - $1 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div. X10 magnifier extends sweep rate to $100 \mathrm{~ns} /$ div.
Variable Time Control - Uncalibrated, continuously variable between steps and to at least $12.5 \mathrm{~s} / \mathrm{div}$.
Time Base Accuracy* ${ }^{1}$

Unmagnified	
$1 \mu \mathrm{~s} /$ div to $0.2 \mathrm{~s} / \mathrm{div}$	$\pm 3 \%$
$0.5 \mathrm{~s} /$ div to $5 \mathrm{~s} / \mathrm{div}$	$\pm 4 \%$
Magnified	
$50 \mathrm{~ms} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$	$\pm 5 \%$
$0.5 \mu \mathrm{~s} /$ div to $20 \mathrm{~ms} / \mathrm{div}$	$\pm 4 \%$
$0.1 \mu \mathrm{~s} /$ div and $0.2 \mu \mathrm{~s} / \mathrm{div}$	$\pm 5 \%$

${ }^{* 1}$ Center 8 divisions

TRIGGERING

Modes - Normal (sweep generator requires a trigger to generate a sweep). Automatic (minimizes trigger adjustment). Sweep generator freeruns in the absence of a trigger. Single sweep (one sweep is initiated by the first trigger after a reset).
Trigger Sources - Internal: CH 1, CH 2 or composite, external.
Sensitivity and Coupling

Coupling	$1 \mathbf{~ M H z}$	10 MHz
Dc Internal	0.3 div deflection	1 div deflection
Dc External	150 mV	500 mV
Ac	Requirements increase below 30 Hz	
Ac LF Reject	Requirements increase below 50 kHz	

X-Y OPERATION

Input - X-axis input is via the external horizontal input connection. Both CH 1 and CH 2 provide vertical inputs. Using chopped mode, two simultaneous $X-Y$ displays can be obtained.
X-Axis Deflection Factors - Continuously variable from $20 \mathrm{mV} / \mathrm{div}$ to $2 \mathrm{~V} /$ div. Bandwidth, dc to at least 200 kHz .
Input Impedance - $1 \mathrm{M} \Omega \pm 2 \%$ paralleled by $\approx 62 \mathrm{pF}$.

CRT AND DISPLAY FEATURES

CRT -8×10 div（ $0.6 \mathrm{~cm} /$ div）display．Accelerat－ ing potential is 2 kV ．GX（P44）phosphor．
Graticule－Internal，nonilluminated．Vertical and horizontal centerlines marked in 5 minor div per major $0.6 \mathrm{~cm} /$ div．
Z－Axis Input－Range +5 V to +20 V （dc cou－ pled）with a 100 kHz or greater usable frequency range．Maximum input voltage， 50 V （dc＋peak ac）．

STORAGE FEATURES

Display Modes－Direct view，bistable storage， and nostore modes．Enhance mode to increase stored writing rate in the single sweep mode． Autoerase mode to automatically erase stored display after each sweep．Viewing time before autoerase can be varied from 1 s or less to at least 5 s ．Integrate mode increases stored bright－ ness of very fast repetitive signals．
Stored Writing Speed－Normal，at least $80 \mathrm{div} / \mathrm{ms}$ ．Enhanced，increases to at least $400 \mathrm{div} / \mathrm{ms}(250 \mathrm{~cm} / \mathrm{ms})$ in enhanced mode．
Erase Time－ 300 ms ．
POWER REQUIRMENTS
Line Voltage Ranges－ 90 V ac to 130 V ac or 180 V ac to 264 V ac．
Line Frequency－ 48 Hz to 440 Hz ．
Power Consumption－ 29 W maximum at 115 V ac．

To order，call your local Tektronix Sales Office，or call Tek＇s National Marketing Center， toll free：1－800－426－2200，Ext 99．In Oregon call collect：（503）627－9000，Ext． 99

External Dc Source－＋11 V dc to +14 V dc or +22 V dc to +28 V dc．
Dc Current Drain－ 1.6 A at +12 V or 0.8 A at +24 V ．

ENVIRONMENTAL

Ambient Temperature－Operating：$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ．Nonoperating：$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ．
Altitude－Operating： $6000 \mathrm{~m}(20,000 \mathrm{ft})$ maxi－ mum，decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ from 5000 ft to $20,000 \mathrm{ft}$ ．Nonoperat－ ing： $15000 \mathrm{~m}(50,000 \mathrm{ft})$ maximum．
Vibration－Operating： 15 minutes along each of the three major axes， $0.06 \mathrm{~cm}(0.025 \mathrm{in}) \mathrm{p}$－p dis－ placement（ 4 g ＇s at 55 Hz ） 10 Hz to 55 Hz to 10 Hz in 1 minute cycles．
Humidity－Nonoperating： 5 cycles（ 120 hours） of MLL－Std－202D，Method 106C．Omit freezing and vibration and allow a post－test drying period at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and 20% to 80% relative humidity．
Shock－Operating and Nonoperating： 30 g ＇s， $1 / 2$ sine， 11 ms duration each direction along each major axis．Total of 12 shocks．

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width（with handle）	236	9.3
Height（without pouch）	112	4.4
Depth（handle not extended）	347	13.6
Depth（handle extended）	448	17.6
Weight \approx	kg	lb
Net（without accessories）	4.7	10.5
Shipping	7.6	17.0

ORDERING INFORMATION

314 Storage Oscilloscope \＄4，315
Includes：Two P6149A 10X probes（010－6149－13）；carry－ ing case and pouch（016－0612－00）；strap（346－0131－02）； external dc cable assembly（012－0406－00）；two 1．6－A fuses（159－0098－00）；two 0．8－A fuses（159－0132－00）； two $0.15-\mathrm{A}$ fuses（ $159-0130-01$ ）；three $0.16-\mathrm{A}$ fuses （159－0131－00）；service manual（070－1824－00）；operator manual（070－1823－00）．
The SONY ${ }^{(T E K T R O N I X ~}{ }^{\star} 314$ is manufactured and mar－ keted in Japan by Sony／Tektronix Corporation，Tokyo， Japan．Outside of Japan the 314 is available from Tek－ tronix，Inc．，its marketing subsidiaries and distributors．

RECOMMENDED CAMERA

C－30BP Option 01 －General Purpose Cam－ era．See page 412.
Camera Adaptor－Required to mount the C－30BP to the 314．Order 016－0327－01

RECOMMENDED PROBES
See pages 255 and 427.

214
$500 \mathrm{kHz}, 1 \mathrm{mV} /$ div to $50 \mathrm{~V} /$ div
Internal Battery
Integral $1 \mathrm{M} \Omega$ Probe
Weighs $\approx 1.6 \mathrm{~kg}(3.5 \mathrm{lb})$

TYPICAL APPLICATIONS

＊Industrial Control Systems

＊Electro－Mechanical Measurements

The 214 features these signal acquisition capabilities：bandwidth to 500 kHz with de－ flection factors from $1 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$ ．It is lightweight（only 3.5 pounds）and com－ pact（ $3 \times 5.3 \times 9.5$ inches）．The 214 offers bistable storage capabilities．This is useful for viewing nonrepetitive or slow moving signals．

Built of impact－resistant plastic and fully self contained，this miniature portable is ideal for applications in severe environments．And it permits＂floating＂measurements since it is double insulated and can be elevated to $700 \mathrm{~V}(\mathrm{dc}+\mathrm{ac})$ above ground when oper－ ated from batteries．Although insulated，nor－ mal caution should be observed when con－ necting the oscilloscope probe to the test point．

The 214 features integral probes that are color matched with the vertical deflection controls to minimize measurement error． The probes have their own storage space and are part of the instrument－you can＇t forget and leave them behind．Clip－on 10X attenuators are available for higher volt－ age applications．

Trigger level and slope functions are simplified to one rotary control on the side of the unit. A convenient neckstrap is an included accessory, freeing both hands to perform other tasks.

In the single sweep mode the 214 can be set to wait for, then record, a single event. With this feature, the scope's sweep circuit is armed and will wait for the signal to arrive before it runs. When the signal occurs, the sweep runs once. When combined with storage, this provides the unique capabilities of automatically waiting for an event and then storing it for subsequent viewing.

CHARACTERISTICS
 VERTICAL SYSTEMS

Bandwidth - Dc to at least 500 kHz from $10 \mathrm{mV} /$ div to $50 \mathrm{~V} /$ div, reducing to at least 100 kHz at $1 \mathrm{mV} /$ div. Lower -3 dB point ac coupled is $\approx 2 \mathrm{~Hz}$.
Deflection Factors - 1 mB /div to $50 \mathrm{~V} /$ div (1-25 sequence), accurate $\pm 5 \%$. Uncalibrated: Continuously variable between steps to at least $125 \mathrm{~V} /$ div.
Display Modes - CH 1 only. CH 2 only, or CH 1 and CH 2 chopped (\approx chop rate -40 kHz) from $500 \mathrm{~ms} / \mathrm{div}$ to $2 \mathrm{~ms} / \mathrm{div}$ of time base, alternate from $1 \mathrm{~ms} /$ div to $5 \mu \mathrm{~s} / \mathrm{div}$ of time base.
Input R and $C-\approx 1 \mathrm{M} \Omega$ paralleled by $\approx 160 \mathrm{pF}$ from $1 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{mV} / \mathrm{div}$; and 140 pF from $100 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$.
Maximum Input Voltage*1

$1 \mathrm{mV} /$ div to $50 \mathrm{mV} / \mathrm{div}$	$600 \mathrm{~V}($ dc + peak ac $)$ ac not over 2 kHz
$0.1 \mathrm{~V} /$ div to $50 \mathrm{~V} / \mathrm{div}$	600 V (dc + peak ac)
	600 V p-p ac; 5 MHz or less

*1 $1 \times$ Probe Only

HORIZONTAL SYSTEMS

Time Base $-5 \mu \mathrm{~s} / \mathrm{div}$ to $500 \mathrm{~ms} /$ div, accurate $\pm 5 \%$.
Variable Magnifier - Increases each sweep rate X 5 with a maximum sweep speed of $1 \mu \mathrm{~s} / \mathrm{div}$.
External Horizontal Input - (CH 1) $1 \mathrm{mV} /$ div to $50 \mathrm{~V} / \mathrm{div} \pm 10 \%$; dc to $100 \mathrm{kHz}: X-Y$ phasing to $5 \mathrm{kHz}<3^{\circ}$. Input characteristics same as CH 1 .
Maximum External Horizontal Input Voltage and Impedance - Same as for vertical inputs. Input Impedance - R and C, 1 M Ω paralleled by $\approx 30 \mathrm{pF}$.

TRIGGERING

Trigger Modes (Automatic or Normal) - Level and slope selected with a single control. Automatic operation minimizes trigger adjustment and provides a bright baseline with no input.

Trigger Sensitivity and Coupling

Dc Coupling	To 500 Hz
Internal (w/composite trigger source)	0.2 div
Internal (w/CH 2 trigger source)	0.2 div
External	1 V

Maximum External Trigger Input Voltage -

 $8 \mathrm{~V}(\mathrm{dc}+$ peak ac), $16 \mathrm{~V}(\mathrm{p}-\mathrm{p})$ at 500 kHz or less.Single Sweep - Sweep generator produces one sweep when trigger is received.

CRT AND DISPLAY FEATURES

CRT - Bistable storage, $6 \times 10 \operatorname{div}(0.52 \mathrm{~cm} /$ div $)$ display. GX (P44) phosphor.
Graticule - Internal, black line, nonilluminated.

STORAGE FEATURES

Stored Writing Speed - Normal, at least $80 \mathrm{div} / \mathrm{ms}$. Enhanced, increases single-sweep storage writing speed to at least 500 div/ms. Enhance is automatic from 0.1 ms to $5 \mu \mathrm{~s} / \mathrm{div}$ in single sweep.
Stored Luminance - At least 8 fL at $25^{\circ} \mathrm{C}$.
Storage Viewing Time $-\approx 1$ hour.
OTHER CHARACTERISTICS
Insulation Voltage - 500 V RMS or 700 V (dc + peak ac) when operated from internal batteries, with the line cord and plug stored. When operated from ac, line voltage plus floating voltage not to exceed 250 V RMS; or 1.4 times line voltage $+d c+$ peak ac not to exceed 350 V .
Power Sources - Internal NiCd batteries provide ≈ 3.5 to 5 hours operation (≈ 2.5 to 3.5 hours in 214 stored mode) for a charging and operating temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. Internal charger charges the batteries when connected to an ac line with instruments turned off. Battery operation is automatically interrupted when battery voltage drops to $\approx 10 \mathrm{~V}$ to protect batteries against deep discharge. Full recharge requires ≈ 16 hours. Extended charge times will not damage the batteries.
A pilot light battery-charge indicator light will extinguish when oscilloscope has about 5 minutes of operating time remaining in the batteries.

POWER REQUIREMENTS

Line Voltage Range - 110 V ac to 126 V ac. Can be operated at 104 V to 110 V with resulting slow discharge of batteries. Option 01 is 220 V to 250 V . Option 02 is 90 V to 110 V .
Line Frequency - 58 Hz to 62 Hz . Options 01 and 02 are 48 Hz to 52 Hz .
Maximum Power Consumption - 3 W . ENVIRONMENTAL
Ambient Temperature - Operating (Battery Only): $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Charging or Operating From Ac Line: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Altitude - Operating: $7600 \mathrm{~m}(25,000 \mathrm{ft})$, decrease maximum temperature by $1^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ above $15,000 \mathrm{ft}$. Nonoperating: 15000 m (50,000 ft).
Vibration - Operating and Nonoperating: 15 minutes along each of the 3 major axes, 0.06 cm (0.025 in) p-p displacement (4 g 's at $55 \mathrm{~Hz}) 10 \mathrm{~Hz}$ to 55 Hz to 10 Hz in 1 minute cycles. Held for 3 minutes at 55 Hz .
Humidity - $95 \%, 5$ cycles (120 hours). Referenced to MIL-T-28800C, par. 4.5.5.1.2.2.
Shock - Operating and Nonoperating: 150 g 's, $1 / 2$ sine, 2 ms duration in each direction along each major axis. Total of 12 shocks.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	133	5.3
Height	76	3.0
Depth	241	9.5
Weight \approx	$\mathbf{k g}$	lb
Net (without accessories)	1.6	3.5
Shipping	3.2	7.0

ORDERING INFORMATION

214 Dual-Trace Storage Oscilloscope $\$ 2,795$
Includes: Integral probe, batteries, viewing hood (016-0199-01); carrying case (016-0512-00); two 4-A fuses ($159-0121-00$); identification tags ($000-7983-00$); identification tag ($334-2614-00$); carrying strap ($346-0104-00$); service manual (070-5055-00); operator manual (070-5054-00).

OPTIONS

Option 01 - For 220 V to $250 \mathrm{~V}(48 \mathrm{~Hz}$ to 52 Hz).

NC
Option 02 - For 90 V to $110 \mathrm{~V}(48 \mathrm{~Hz}$ to 52 Hz$)$. NC

OPTIONAL ACCESSORIES

10X Attenuator Package - A slip-on tip to provide lower circuit loading ($4.4 \mathrm{M} \Omega, \approx 20 \mathrm{pF}$) and higher maximum input voltage 1000 V (dc + peak ac). Includes: flex tip (206-0060-00); 10X attenuator (010-0378-01); pincher tip (013-0071-00); banana tip (134-0013-00); IC adaptor (206-0203-00). Order 010-0378-01
Alligator Clip Kit - A pair of alligator clips that allow connecting the probe (or optional 10X attenuator) and ground lead to large (up to $3 / 8 \mathrm{in}$) conductors. Includes: 6-32 to probe adaptor (103-0051-01); red clip (015-0229-00); yellow clip (015-0230-00). Order 015-0231-00
Probe-Tip - To BNC Panel Connector Adaptor. Order 013-0084-01
Probe-Tip - To BNC Cable Adaptor. Order 103-0096-00
AUTOMATED TEST
CONTENTS
Programming Ease 295
Systems Support 297
Controllers and Peripherals 298
SPS Basic Software 301
TEK EZ-TEST Software 304
GURU Software 305
Digitizers 306
Measurement Systems 330
TM 5000 Modular Instruments 338 SYSTEMS AND INSTRUMENTS

Tektronix offers a variety of programmable measurement instruments to meet your measurement needs. Starting with a wide performance base of GPIB compatible waveform digitizers, with capabilities up to 14 GHz . And, with the 7D20 digitizer plug-in, your existing Tektronix 7000 Series oscilloscope can become a GPIB programmable waveform digitizer-another example of our designed-in commitment to expandability.

Plus, we have a broad range of other GPIB programmable instruments to complete your system-signal and power sources, measurement devices, switchers, spectrum analyzers, multifunction interface units. And they are all supported by a selection of instrument controllers, peripherals, and software.

We provide extensive and ongoing docu-mentation-hardware and software manuals, controller programming guides, instrument interfacing guides, application notes, even a regular newsletter on signal processing and instrument control. In addition, an instrumentation software library provides programs to help you develop measurement software to solve your measurement problems

Configurability

Tek systems offerings afford maximum flexibility, right down to the number of ways in which they may be configured.

1. Individual systems components are orderable separately and include instrument interfacing guides, documentation, and in some specific cases, application software available through the Tektronix Instrument Software Library.

2. Preconfigured measurement packages

 (MP) make it easy to purchase the mostneeded components in a packaged system that you integrate and install yourself. Instruments contained in measurement packages carry the normal, stand-alone instrument warranty and do not include on-site installation.3. Factory-integrated measurement systems (MS) are, in many cases, a cost-effective alternative to developing systems yourself. They are assembled and tested at our factory and include on-site installation, 90-day on-site system warranty, training credit and system checkout software.
4. Custom systems are generally modified/ expanded versions of our standard packages and include integration, checkout software, on-site installation and warranty. They do not include device-specific application software.

Tek documentation is extensive and on-going. It includes hardware and software manuals, programming guides, interfacing guides, application notes, even a regular newsletter on instrument control and signal processing.

Whatever your needs, from a single GPIB instrument to a complete measurement system, we're sure you'll find the right measure of performance in the pages that follow Take the time to evaluate your own unique needs -and our uniquely personal solutions. You'll be making an investment in performance that will pay dividends for years.

PROGRAMMING EASE . . . Another Order of Magnitude in Measurement Convenience Tektronix Standard Codes and Formats...

A Commitment to Compatibility
 Tektronix Programmable Instruments Speak Your Language

With Tektronix programmable instruments, compatibility is the key. And it's more than just IEEE Standard 488 compatibility. It's total system compatibility, from configuring to programming. This higher level of compatibility is achieved through conformance to the additional standard of Tektronix Standard Codes and Formats. Tektronix Standard Codes and Formats extend compatibility through:
-An ASCll-coded language for easy, En-glish-like programming.
-Command names that are descriptive abbreviations of instrument functions for simple and direct instrument control
-Universal message and data formats for instrument-to-instrument consistency.
In short, Tektronix programmable instruments speak a system language that is the same as your language.
Need to set your power supply to 5 volts?
It's easy with the TM 5000 Series PS 5010 Programmable Power Supply. Just send the message VPOS 5 over the IEEE Standard 488 Bus to the power supply, and it will change its positive output to 5 volts.
Want to set the negative supply to -9 volts? Just send VNEG 9, or even VNEG -9. All Tektronix programmable instrument commands are simple, English abbreviations for the instrument functions, with direct matches to the front-panel control labels where appropriate. So, if you know how to operate the instrument, you essentially know what commands to send it.

What could be simpler than DCV 2 to change your TM 5000 DM 5010 Programmable Multimeter to the 200 mV range for dc voltage measurements? Or ACV 2 to switch it to the 2 V range for ac measurements? But then, you may not always be sure of the range you need. So just send DCV or ACV without specifying the range, and the multimeter will auto-range to give you the best measurement. You don't have to learn a new language to speak to an instrument or understand instrument control messages-they're self documenting.

Getting Your Message Across

It doesn't take long to become familiar with the command set for any Tektronix programmable instrument. And, once you have that familiarity, you'll want to begin actually programming for automated measurements. First, though, you'll need to know something about IEEE Standard 488 Bus communication.
IEEE Standard 488 specifies overall bus functions, leaving many implementation options to designer discretion. One option is how controllers and instruments signal message endings to each other. Some controllers end messages by asserting End Or Identify (EOI) concurrent with sending the last character of a message, others by adding a line feed (LF) character and asserting EOI concurrent with that. For compatibility, your instruments and controller must use the same message termination mode.
Whatever your choice of IEEE Standard 488 instrument controller, Tektronix programmable instruments are designed for compatibility. A switch on each Tektronix programmable instrument lets you match it to your controller by selecting the EOI only or EOI/LF message termination mode. But, if you've chosen a Tektronix controller, you won't have to bother with this switch. All Tektronix-supplied instrument controllers use EOI only, and all Tektronix programmable instruments are shipped set for EOI only. Along with the Message Terminator switch, you'll also find that Tektronix programmable instruments have a bank of at least five ad-

system rack space
ditional switches or front panel push buttons to set the instrument's primary bus address. For an IEEE Standard 488 system to work, each instrument on the bus must have a different address. Valid addresses range from 0 to 30, with 0 reserved in some cases for the controller. Before connecting your Tektronix programmable instrument to the IEEE Standard 488 Bus, make sure each instrument is set to a different address. For most Tektronix instruments, address checks can be done with a front-panel button. Pressing the button causes the address to appear on the instrument's display. Some instruments also display their message terminator setting.
The primary address links the controller to a specific instrument. For example, when using a Tektronix 4041 System Controller with 4041 BASIC Software, just primary addresses are used. 4041 BASIC automatically converts primary addresses to talk and listen addresses. For example, a 4041 BASIC statement to send VPOS 5 to a PS 5010 Programmable Power Supply with a primary address of 22 would have the following format:

PRINT \#22:"VPOS 5"
PRINT is the 4041 BASIC statement for sending a message to an instrument. The instrument's primary address, 22 in this case, is always preceded in the statement by an \# symbol and followed by a colon. The instrument message, VPOS 5 , follows the colon and is always enclosed in quotes. Since the instrument will be receiving the message, PRINT causes the primary address to be automatically incremented to a listen address.
Keep in mind, though, PRINT \#22:"VPOS 5" is a statement format specific to 4041 BASIC. Other instrument controllers and software packages may use different statement formats, however the device dependent message is always the same. For example, in TEK SPS BASIC the following statement would be used: PUT "VPOS" into \#22.

We Interrupt This Message For a Brief Program

In addition to being easy to program, Tektronix programmable instruments are friendly and informative in respect to sending SRQ interrupts.
With the basic message format in mind, you are ready to begin sending messages to your instruments. However, you should be aware that your instruments can occasionally interrupt what you are doing by asserting what is called an SRQ (Service Request).
On some Tektronix programmable instruments, a front-panel button can also be programmed to generate an SRQ when pressed. This manually generated SRQ is a convenient way for you to interrupt and interact with a measurement program while it is running.

This can be done with a serial poll, which is demonstrated in the following 4041 BASIC program example:

```
100 ON SRQ(1) THEN GOSUB SRQHAN
110 PRINT #16:"ACV"
120 PRINT #10:"TR HOLDNEXT ON"
130
140
150
1000 SRQHAN: POLL STATUS, ADDRESS;
16;}1
1010 RESUME
```

Line 100 in the above example sets up a condition that calls the SRQ handler routine "SRQHAN" whenever an SRQ is asserted. In the absence of an SRQ, the normal path of the program is taken. However, on an SRQ, the program branches to the SRQHAN subprogram, which contains a Poll statement. The Poll statement checks each instrument in the order of listed addresses to find the one asserting SRQ. When it finds the instrument with SRQ asserted, it services the SRQ by reading the instrument's status message into the status variable (STATUS in line 1000). Also, the instrument's address is placed in variable ADDRESS. (From these two variables, you can then tell which instrument asserted SRQ and why.) When the Poll completes, the Resume in line 1010 causes program execution to return to where it was when the SRQ caused the interrupt.

In an actual programming situation, you may want to check the status code variable, STATUS, and base some action on its value before returning to the main programs. To make this easier, Tektronix programmable instruments all use the same status codes for universal conditions. For example, no matter what Tektronix programmable instrument you are using, 66 is the code for operation complete. A full list of status codes and their meanings is provided in each instrument manual.
Tektronix programmable instruments also have an error code scheme that allows individual instruments to expand on the universal system status codes. This expansion is the result of an extensive message decoding system that checks for syntax errors, illegal combinations, etc., before messages are allowed to affect instrument operation. Illegal setups are prevented, and specific, rather than generalized, error codes are available for each instrument. These error codes can be read over the IEEE Standard 488 Bus by sending the instrument an error query message (ERR?) or the event query message (EVENT?). Together, SRQs, polling, and event queries are an extremely powerful set of programming tools for assessing and controlling measurement systems.

Queries Keep You Posted

Specific information about instrument settings, measurement modes, etc., can be obtained with various instrument query messages. All Tektronix Standard Codes and

Formats queries take the form of a keyword followed by a question mark. You send the query to the instrument as a message, and the instrument answers the query by returning a message over the bus.
For example, here's a query sequence in 4041 BASIC statements to obtain the trigger setting of a 7D20 Programmable Digitizer:
INPUT \#22 PROMPT "TRIG?":TRSET\$
The statement starts by asking: "What are your trigger settings?" The instrument answers by getting the settings and putting them onto the bus as a message: TRSET\$. The Input statement is the means of receiving the message and storing it in string variable TRSET\$. When a string variable (variable name followed by $\$$) is used with the Input statement, the entire message is stored in the variable.
Perhaps you are interested in all the control settings of an instrument. SET?, a universal query for all Tektronix Standard Codes and Formats instruments, causes the queried instrument to send a message that lists all of its current settings. This entire settings message can then be stored in a string variable. You can acquire and store a number of instrument configurations in different string variables. Then, just by sending the appropriate string variable to an instrument, the instrument can be reset at any time to any of the stored configurations. (Since the settings message can be several hundred characters long, it may be necessary with some software packages to extend or dimension the string variable to a length capable of holding the message.)
In essence, SET? is a "learn mode" of operation. It allows you software to "memorize" instrument setups for later use. If you would like to experiment with this, set your instrument to a familiar measurement configuration. Using 4041 BASIC, enter the following statements (20 is assumed here to be the address of a 7D20 Programmable Digitizer and SET\$ is dimensioned to a length of 700 characters to be sure to accommodate all of the instrument's settings):

DIM SET\$ TO 700
INPUT \#20 PROMPT "SET?":SET\$
Now change several of the control settings. Then enter the following statement:

PRINT \#20:SET\$

The instrument will switch its control settings back to those stored in SET\$.

To see what is in SET\$, just enter SET\$. The entire settings message will be printed out on the terminal screen for your inspection.
Each Tektronix programmable instrument responds to a variety of queries, each query consisting of a keyword specific to the information desired. If you would like to know what measurement function your DM 5010 Programmable Digital Multimeter is set up for, just send it "FUNC?". The DM 5010 will prepare to send back DCV, OHMS, DIODE, ACV, or ACDCV and the measurement range the function is set for. Send the same query to your FG 5010 Programmable 20 MHz Function Generator, and it will prepare to send back FUNC SINE, FUNC SQUARE, or FUNC TRIANGLE, depending on the waveform it is generating; another example of how Tektronix Standard Codes and Formats instruments work with you in plain English.
A significant added value in a Tektronix system is support-software, interfacing, training, service, and application support. Whatever your support needs, for individual programmable measurement instruments or for complete systems, we can help. And it's all available from one sourceTektronix.

TEKTRONIX INSTRUMENTATION SOFTWARE LIBRARY

The Tektronix Instrumentation Software Library provides software and application information to aid in the planning, design, and implementation of measurement solutions using programmable measurement instruments and systems. Currently it contains three types of software-and more are planned.

Measurement Software

Provides solutions to measurement problems using programmable measurement instruments or systems. Measurement Software is user-friendly and ready to run, requiring minimal software integration or modification. Measurement Software is provided only on media*1.

Instrument Utility Software

This is a set of subroutines and subprograms that perform common instrument functions. A single instrument/controller combination is addressed by each subroutine or subprogram. Instrument Utility Software is well documented and presented in a consistent format so it can be easily modified and integrated into application programs that you develop. Instrument Utility Software is provided only on media*1.

User-Exchange Software

Developed by users to perform specific measurements or functions with programmable measurement instruments or systems. User-Exchange Software is available either on media*1 or as listings at no charge.

The Tektronix Instrumentation Software Library Catalog

Contains abstracts and ordering information for available software. For a copy of the latest catalog, ask your Tektronix sales representative for Tektronix literature number 45W-5570.

* Contact your local Tektronix sales representative for complete ordering information and prices.

INTERFACING AND OPERATING SUPPORT

Tektronix provides documentation to help build and use your measurement system. Whether it's interfacing, programming, operation, or maintenance, you'll find what you need in documentation from Tektronix.

Instrument Interfacing Guides

These serve as a system integration guide by aiding in instrument configuration, connection, and operation with a controller. Specific information on the GPIB operation of the instrument along with programming examples are provided. Designed to supplement the operator's manual, they are supplied free of charge with the instrument.

Controller Programming Guides

Supplying an additional aid to GPIB system integration, these programming guides provide specific information and guidelines on a controller's GPIB operating capabilities, as well as suggestions for getting the best performance from your instrument/controller combination. Sample programs are used to demonstrate various aspects of GPIB operation and to show the processing power of the controller.

Operator's and Service Manuals

A standard accessory with each Tektronix instrument and system, these documents provide complete and comprehensive information so you can operate and service your Tektronix measurement system.

PROGRAMMABLE INSTRUMENTS NEWSLETTER

HANDSHAKE

This applications newsletter is for signal processing and programmable instrument control. Published quarterly, it contains technical articles on measurement processes, techniques, and instruments. Subscriptions to HANDSHAKE are free upon request from your Tektronix sales representative.

TM NOTES

This is a quarterly publication addressing TM 5000 and TM 500 users. Designed to keep readers informed on new products, new measurement techniques, and new applications for existing products, TM NOTES keeps existing and potential TM 5000/ TM 500 users up to date on programmable and manual test instrumentation. Subscriptions are free upon request from your local Tektronix sales representative.

ONGOING SUPPORT

Tek's system support doesn't stop when you receive your programmable measurement instrument or system. Our support continues throughout its lifetime through training, application assistance, software support, and service.

Training

To help operators better understand their equipment and get the most out of their systems, training is available both at the home office and at selected sites around the world. In addition, in-depth service training is available for those companies who want to learn to service their own Tek equipment.

Application Assistance

To help solve unique measurement problems our applications assistance is as near as your telephone. If your measurement needs are not answered by our standard software and documentation, Tektronix applications assistance is available in many areas of the U.S. and around the world to help design a solution just to fit your need.

Software Support

To keep your software current and up-todate, our software support is available at no charge during the warranty period. Postwarranty software support is available on a subscription basis.

Service

For your programmable measurement instrument or system, service is available from Tektronix Service Centers at strategic locations throughout the world. You'll always receive expert assistance from some of the most highly trained and qualified personnel in the world.
For more information on any of the support available for Tektronix programmable measurement instruments or systems, contact your local Tektronix sales representative for details.

A Controller to Match Your Instrumen－ tation System Needs

The one common element that binds both large and small instrumentation systems to－ gether is the system controller．Tektronix offers a number of IEEE Standard 488 Con－ trollers to fit your system needs．The sys－ tem，or instrument controller，is in reality just a computer that has been designed to optimize the interaction and communication between the controller and a wide variety of programmable instruments and peripherals．This interaction is enhanced by instrument control commands in a high－lev－ el programming language such as BASIC， eliminating the need for the user to under－ stand the IEEE Standard 488 Interface pro－ tocol in detail．The user only needs to sup－ ply the instrument address and the function to be performed．The controller automati－ cally takes care of the rest－interface handshaking，bus states and transitions， etc．
The ideal controller for a particular use de－ pends upon the specific requirements of the application．Such varied applications as laboratory automation，manufacturing test， QA／QC，service／repair，and environmental data acquisition／analysis each have unique controller requirements．Some applications require little or no operator interaction and perform repetitive tasks over and over again．For these cases，a tamper－proof exe－ cute－only controller capable of running un－ attended with little or no display require－ ments is often very desirable．
The other end of the application spectrum may require a large amount of operator in－ teraction for developing programs，provid－ ing operator prompts and instructions，re－ viewing intermediate or final test results， and making changes in the test setup based upon test results．Where graphics are helpful as an analysis tool，a controller with an integrated display screen may be the best choice．
Expandability and flexibility is another im－ portant consideration in choosing an instru－ ment controller．For example，controllers without an integral CRT for display allow
you to select the exact display features which best suit the requirements of the ap－ plication．For program development，a low－ cost alphanumeric－only terminal may be best．However，for interactive applications or data analysis and interpretation，a graph－ ics terminal，perhaps with color，would be a better choice．This ability to choose screen size，resolution，number of lines，color，and other display parameters greatly enhances the controller＇s capability．
Likewise，the ability to add memory，pro－ gram ROMs，system peripherals，etc．， greatly enhances a system controller＇s ca－ pabilities．This expandability will allow you to reconfigure your system to meet future measurement needs as applications change．
Whatever your current or future instrumen－ tation system needs，Tektronix controllers provide a choice to allow systems to be configured with the right operator interface， memory，display，hardware interfaces，and peripheral support．

4041 System Controller

$|$| GPE－488 |
| :---: | :---: |

The 4041 complies with IEEE Standard 488－1978 and with Tektronix Standard Codes and Formats．

Easy to Use Extended BASIC

512 kbytes Memory Standard
ROM Packs Enhance the $\mathbf{4 0 4 1}$ in the Areas of Graphics and Signal Processing，Other Utilities are Also Available
Easy to Configure with any IEEE Standard 488 Instrument
Execute Only Mode for Program Security on the Production Floor
Detachable Keyboard（Option）
Modular Design—Rackmount or Portable
Flexible and Hard Disk Support with the NEW 4041 Disk Drive Unit

The Tektronix 4041 System Controller is a powerful and flexible IEEE Standard 488 （GPIB）Controller．It is designed to work with

Tektronix and other GPIB instruments．The 4041 System Controller standard configura－ tion has an execute only mode that en－ hances program security in a production en－ vironment．Interface，port，and ROM pack options increase the flexibility of the 4041. The standard 4041 is equipped with a GPIB interface port and an RS－232C serial inter－ face port that is compatible with most termi－ nals，including the full line of Tektronix graphics and alphanumeric terminals．The Extended BASIC Language，also included with the 4041，is easy to use while maintain－ ing the required depth needed for complex programs．

4041 Hardware

The 4041＇s main processor is the powerful 16－bit 68000 with 512 kbytes of standard memory．The versatile front panel of the 4041 is ideal for standalone applications．It includes a 20 －character alphanumeric dis－ play， 18 key keyboard，DC100 tape drive， and 20 －character thermal printer．On the rear panel is the standard GPIB interface port and an RS－232C serial port．
Several options are available to increase the 4041＇s capabilities．Option 01 adds another RS－232C serial interface and a second GPIB interface port，which can be configured for DMA transfers，allowing fast data transfers across the GPIB bus．Option 03 provides an interface to the NEW 4041 Disk Drive Unit and a second RS－232C interface．
Optional ROM packs expand the existing Basic language by providing commands for creating graphics and processing digitized waveforms－capabilities ideal for signal pro－ cessing systems．The list of options include：

Optional DMA GPIB interface port／
RS－232C interface port（Option 01）
8 －bit parallel TTL interface port （Option 02）
Mass storage disk interface／RS－232C port interface（Option 03）
ROM packs 4041R01，4041R02， 4041R03，4041R04，installed inter－ nally（Option 10）
Program development ROMs and ROM carrier（Option 30）
Program development／debug keyboard （Option 31）
Option 30 is required for program develop－ ment．Its inclusion as a ROM pack makes it easy for a test engineer or system develop－ er to convert an execute only 4041 into a development station for debugging，editing， or adding program statements，and then converting back to an execute only system for operation after the desired program changes have been made．
For extensive program development，the 4041 can be configured so that its RS－232C port is the console．This allows a separate terminal to be used for program develop－ ment and execution．The 4041 has a com－ plete line editor to allow insertion，deletion and movement in the line．

The mechanical package of the 4041 is ideal for integration into a system environment. Its small size and ability to be rackmounted allows for easy installation into a system. Combining a 4041 with a TM 5003, 7D20T, or 4041 Disk Drive Unit into a standard 19 inch wide rackmount package results in a compact system with powerful capabilities.

4041 BASIC

4041 BASIC is a powerful, easy to use language, excellent for instrument control. It has easy to use high level GPIB commands in addition to low level commands required for the most complex applications. Englishlike syntax and interpreted environment are combined to provide an easy to use, friendly, programming language. To improve selfdocumentation the 4041 has the following features.

> Variable names up to eight characters
> FORTRAN-like subprograms calls
> Variable passing from main programs to subprograms
> Local and global variables

Other powerful features include optional data types (integer, short floating point and long floating point); a proceed mode which allows I/O and processing operations to run independently for maximum speed; logical unit number and stream specifications to define and characterize I/O oriented tasks; and 512 kbytes of directly addressed memory (without use of expensive overlays or paging techniques).

4041 ROM Packs

Option 10 incorporates the function of the ROM packs (4041R01, 4041R02, 4041R03, and 4041R04) internally, allowing the ROM tray to be used as a ROM program loader.
The 4041R01 Graphics ROM pack provides high level commands to easily construct graphic images, symbol, charts and diagrams into system applications.
The 4041R02 Plotting ROM Pack plots data, draws the axis and tic marks, and draws and scales graphs with very little programming knowledge. The 4041R01 is required for this ROM pack to operate.
The 4041R03 Signal Processing ROM Pack provides high level commands for signal processing applications which include the following functions:

```
Fast Fourier Transforms (FFT)
Inverse Fourier Transforms (IFT)
Integration
Differentiation
Correlation
Convolution
```

Combine these capabilities with those of the graphics and plotting ROM packs and processing and displaying complex waveforms becomes easier and faster. Because the commands are in machine language, they run much faster than the equivalent Basic programs.
The 4041R04 adds even more capabilities to the 4041. It is a general purpose ROM pack with the following capabilities:

> One line error messages
> Timers
> Loading Soft ROMs
> Using a ROM pack as a reading only storage device for fast program loading
> Listing ROM pack commands

Test and Measurement Orientation

The 4041 was developed to complement the TM 5000 line of programmable instruments. It follows Tektronix Standard Codes and Formats to allow easy communication with Tektronix instruments. 4041 Basic has high level commands to control GPIB instruments, allowing easy communication. For special cases the 4041 provides low level language commands for virtually complete control of the GPIB. The 4041 uses a powerful concept called stream specification. This allows a user to have virtually complete control of all the 4041s I/O devices.
Extensive error handling capabilities allow programs to recover gracefully from most errors, either operator or equipment. Errors can be trapped and execution of the program can be diverted to an error handling routine to allow recovery or if it is a nonrecoverable error, clean up the system before program shutdown. When the extensive I/O and error handling capabilities of the 4041 are combined with the self-diagnostic and error reporting feature of Tektronix programmable instruments an extremely effective combination results.

CHARACTERISTICS FRONT PANEL KEYBOARD SYSTEM KEYS

AUTO-LOAD - Causes the internal magnetic tape to rewind and find the "AUTOLD" program. This program is then loaded into memory and execution begins.
ABORT - Halts program execution if no userspecified handler routine is called by the program. If a handler routine is specified for the ABORT key, program control is passed to that routine.

PROCEED - Performs one of the following functions depending on equipment or program state:

1. Causes program execution to start at the next program line if a Pause was encountered.
2. Resumes execution after an ABORT. If a program is loaded from the tape, execution starts from the first program line.
3. Delimits user input when requested from an Input statement.
CLEAR - Clears the alphanumeric display. Does not clear user-defined prompts or the input cursor from an INPUT statement.
EEX - Causes the number requested by an \mathbb{N} PUT statement to be entered in scientific notation. Numbers entered after pressing the EEX (Enter Exponent) key are considered part of the exponent.
PAUSE - Halts the program after executing the current line. If the current program line is an \mathbb{N} PUT statement, the program stops before the execution of INPUT.

USER-DEFINABLE FUNCTION KEYS
Numeric user-definable function keys, $0-9$, can be assigned subroutines by the applications program. The keys may be redefined by the program during execution to allow for unlimited user routines. The function keys can be enabled or disabled under the control of a program.
Numeric values are assigned to these keys for entering information requested by an INPUT statement. When input has been completed, user functions assigned to these keys are re-enabled. The other two keys on the front-panel keyboard are the decimal key (".") and the minus ("-") key. The decimal key is provided for decimal point entry associated with numeric and the minus key is used to enter negative numbers associated with numeric.
Keyboard overlays may be used for labeling the function keys with a number or an abbreviation of the user routines.

FRONT-PANEL DISPLAY

The front-panel display communicates test procedures and operator prompts and displays intermediate or final program results. The display is fully programmable.

ALPHANUMERIC DISPLAY

Alphanumeric Line - Twenty characters.
LED - Sixteen segments.
Size - Height: $3.8 \mathrm{~mm}(0.15 \mathrm{in})$. Width: 2.8 mm (0.11 in).

Characters Per Cm - 1.6 characters/cm (4 characters/in).
Character Symbols - 64
Message Viewing Time - Programmable.
Scrolling Rate - Programmable.
SYSTEM INDICATORS
LEDS - Located on the display front panel indicate the status of the system.
BUSY - Indicates that a program is running. A blinking BUSY light indicates that the system has PAUSED (temporarily halted).
POWER - Indicates the machine is on.
I/O - Indicates that an Input/Output operation is being performed.
FN - Indicates that the user-definable function keys are enabled.

MAGNETIC TAPE DRIVE

Magnetic tape drive is used to store user's programs and data. The tape is the primary means of loading programs, particularly for execute-only applications; in addition, the tape drive provides for long-term unattended data logging.
File Structure - 48 named files (maximum).
Capacity (Physical Records) - 650 typical (600 minimum).
Physical Record - 256 bytes (typical tape ca-
pacity is 166,400 bytes)
Average Transfer Rate - 13,324 bits/s.
Search Speed - $1520 \mathrm{~mm} / \mathrm{s}(60 \mathrm{in} / \mathrm{s})$.
Tape Rewind - $1520 \mathrm{~mm} / \mathrm{s}(60 \mathrm{in} / \mathrm{s})$.
Tape Cartridge - 100A Certified Data Cartridge from Tektronix.

PRINTER

The printer produces hard copies of the intermediate or final program results, operator prompts, and changes in variables or system status. Messages longer than 20 characters are printed on succeeding lines where the user can specify the appropriate indentatior for better delineation and readability.
Printing Method - Thermal, fixed head.
Capacity - 20 -character alphanumeric line.
Font -5×7 dot matrix printed.
Character Size - 2.5 mm high $\times 1.8 \mathrm{~mm}$ wide (0.10 in high $\times 0.07$ in wide).
Line Spacing - 4.23 mm (6 lines/in).
Printing Speed - 2.0 lines $/ \mathrm{s}$.
Feed Speed - $8.46 \mathrm{~mm} / \mathrm{s}(0.34 \mathrm{in} / \mathrm{s})$.
Character Set - 26 Uppercase letters 26 Lowercase letters
10 Numeric digits
34 Special characters
32 Control characters
$\overline{128}$ Total
Paper Size $-60 \mathrm{~mm} \times 25 \mathrm{~m}(2.36 \mathrm{in} \times 82 \mathrm{ft})$.
CONTROLLING THE BUS
When using BASIC high level print and input commands, the 4041 automatically controls all bus management signals in the proper sequence for the desired interface task and instrument interaction. A bus management function program that uses direct IEEE Standard 488 mnemonic commands to accommodate differences in implementation of GPIB on other equipment. Virtually all legal bus states can be programmed this way, which affords a high degree of flexibility for addressing various system applications.

BUS INTERRUPTS

The 4041 has the ability to detect and respond to various types of interrupt conditions that can be generated on the GPIB. User-specified software handlers can be written to perform various tasks when these conditions occur. Interrupts can be programmably ENABLED or DISABLED.
Interrupt Conditions

Mnemonic	Message
SRQ	Service Request
EOI	End or Identify
IFC	Interface Clear
DCL	Device Clear
TCT	Take Control
MTA	My Talk Address
MLA	My Listen Address

BUS COMMUNICATION

Interface and bus device addressing are programmable. This allows the user to direct message and data flow to and/or from the appropriate interface and GPIB peripheral. Information such as primary and secondary addressing, along with pertinent device-dependent information, can be attached to a specific Logical Unit number. Subsequent communication with that GPIB device can be directed to the Logical Unit, eliminating the need for redundant or repetitious statement programming.
TRANSFER RATES (IEEE STANDARD 488)
Transfer Rates for the Standard Interface

	Input	Output
Normal Mode	Exceeds $5 \mathrm{kbytes} / \mathrm{s}$	Exceeds $5 \mathrm{kbytes} / \mathrm{s}$
Fast Mode	Exceeds $16.5 \mathrm{kbytes} / \mathrm{s}$	Exceeds $19.5 \mathrm{kbytes} / \mathrm{s}$

SERIAL INTERFACE

The 4041 comes with a standard serial asynchronous RS-232C interface. The 4041 can support applications requiring terminals, modem/host communication, or instrumentation with this interface protocol.
In addition to standard transmission rates from 75 to 9600 baud, transmission rates are programmable to any integer ranging from 2 to 9600 baud.
Full Duplex - Full capability (half duplex not supported).
Transmit/Receive - Matched rate only.
Bits Per Character - 5, 6, 7, or 8 bits.
Stop Bits - 1 or 2 .
Parity - Even, Odd, High, Low, None.
ERROR AND INTERRUPTS
Conditions such as parity, framing and overrun errors can all be programmably captured. User routines or handlers can then direct what action should be taken, depending on the particular condition.
The end of message delimiter (EOM) can be programmed to any one or two character ASCII string. This enables the 4041 to communicate with most hosts or peripherals via the serial interface.

CLOCK/TIMER

One clock provides date and time of day which is programmably set. The timer clock returns the time in seconds since power up. The timer has 10 millisecond resolution.

SELF TEST

An integral part of the 4041 is the self-test feature, which assures the user of reliable operation. Self-test is executed automatically on power-up and performs extensive hardware and operating system tests.

DYNAMIC RANGE

Short Floating Point - Maximum ± 3.40282 $\mathrm{E}+38$; Minimum $\pm 2.93874 \mathrm{E}-39$.
Long Floating Point - Maximum $\pm 1.7976931348623 \quad E+308$; Minimum $\pm 5.562684646269 \mathrm{E}-309$.
Integer - -32768 to +32767 .
Character String Length (Maximum) - 32767.
Array Elements (Real, Integer or Character
Arrays) - 32767 elements maximum per row (or column); limited by total memory installed.

AC POWER REQUIREMENTS

Line Voltage - 100 V ac to 120 V ac, 200 V ac to 240 V ac $\pm 10 \%$.
Line Frequency - 48 Hz to 66 Hz .
Power Consumption - 120 W (maximum).
ENVIRONMENTAL CHARACTERISTICS
Operating Temperature - Without Data Cartridge or Printer Paper: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$. With Data Cartridge or Printer Paper: $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+113^{\circ} \mathrm{F}\right)$.
Storage Temperature - Without Data Cartridge or Printer Paper: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $+167^{\circ} \mathrm{F}$).
Humidity - Relative noncondensing $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+113^{\circ} \mathrm{F}\right)-20 \%$ to 80% condensing.
Altitude - Operating: 4600 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
EMC - Meets FCC Part 15, Subpart J, Class A and VDE 0871 Class B.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	213	8.5
Height	180	7.2
Depth	520	20.8
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net	7.8	17.3
Net (with options)	8.7	19.3

ORDERING INFORMATION

4041 System Controller
\$4,950
Includes: Power cord (161-0066-00); blank overlays for FP keyboard (334-4074-00); system verification tape (062-5828-03); blank DC 100 Tape Cartridge (119-1350-00); RS-232C male loop back connector ($013-0198-00$); roll of printer paper (006-3557-00); Controller (GPIB) Programming Guide ($070-3917-00$); operator manual (070-3917-01).

OPTIONS

Option 01 - Second GPIB and RS-232C ports. $\mathbf{+ \$ 1 , 2 0 0}$
Option 02 - TL Interface (8Bit Parallel Interface).
$+\$ 800$
Option 03 - Disk Interface and RS-232C port. + \$1,000
Option 10 - Combination of 4041R01 through 4041 R04 ROM Packs.
\$1,500
Option 30 - Program Development ROMs and ROM Carrier.
$+\$ 995$
Option 31 - Program Development Keyboard. $+\$ 550$

CONVERSION KITS

Cabinet-to-Rackmount - Equipped with slide-out assembly to rackmount a 4041 to the left of a TM 5003. Order 040-0984-01
Cabinet-to-Rackmount - Equipped with slide-out assembly to rackmount a 4041 to the right of a 7D20T. Order 016-0827-00

ROM PACKS

4041R01 - Graphics ROM Pack.
$\$ 495$
4041R02 - Plotting ROM Pack.
4041R03 - Signal Processing ROM Pack.
4041R04 - Utility ROM Pack.
$\$ 495$

Accessory Package Kit - For use with 4041R04's PROM file system. Order 020-0102-00
\$160
EPROM Kit - For 4041R04.
Order 020-0101-00

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.

FIELD INSTALLED MODIFICATIONS

4041F01 - Same as Option 01	$\mathbf{\$ 1 , 8 0 0}$
4041F02 - Same as Option 02	$\$ 1,000$
4041F03 - Same as Option 03	$\mathbf{\$ 1 , 6 0 0}$
4041F30 - Same as Option 30	$\$ 995$
4041F31 - Same as Option 31	$\mathbf{\$ 5 5 0}$

Note: Contact your local Tektronix sales engineer before ordering field memory additions.

OPTIONAL ACCESSORIES

Blank ROM Carrier - Order 013-0215-00
$\$ 180$

4041DDU
Disk Drive Unit
Contains Hard Disk/Flexible Disk Drive
$51 / 4$ inch Winchester Disk Drive
10.6 Mbyte Hard Disk Formatted Capacity
$51 / 4$ inch High Capacity Flexible Disk Drive
320 kbyte Flexible Disk Formatted Capacity
Interface Directly to 4041 with Option 03
Benchtop, Rackmount or Stack with 4041

The 4041DDU (Disk Drive Unit) package includes a 10.6 Mbyte hard disk drive and a 320 kbyte flexible disk drive which can be optionally rackmounted. The 4041DDU provides additional mass storage, operating efficiency, and flexibility for the 4041 System Controller equipped with Option 03 disk interface.

The 4041DDU provides local access to high volume mass storage that adds capacity for a large number of applications programs and a high degree of program flexibility. The high capacity Winchester hard disk lowers the cost per Mbyte and provides the level of local data storage and fast access time that interactive graphics, waveform processing or instrumentation systems require. The maximum number of directory entries de-
faults to 256 and can be expanded to a maximum of over 1,000 entries. Sealed drive heads provide improved reliability, environmental protection and reduced maintenance.

The 4041DDU can be used in conjunction with the 4041's DC100 tape drive or operate as the primary mass storage device for your instrument system controller. The flexible disk media is the standard 48 tracks per inch, double sided, and double density diskette. The 4041DDU is enclosed in a cabinet and contains two disk drives, a power supply, controller card, and interface hardware.

CHARACTERISTICS

Capacity - Hard Disk: Formatted 10.6 Mbytes. Flexible Disk: Formatted 320 kbytes including directories.
Recording Format - 512 bytes/sector.
Tracks - (Flexible Disk only) 40 tracks per side, double-sided, 48 tracks per inch.
Track Density - Hard Disk: 17 sectors per track. Flexible Disk: 8 sectors per track.
Interfacing - Interfaces directly to the 4041 with Option 03 (disk interface and RS-232C) installed.

POWER REQUIREMENTS
Line Voltage Ranges - 90 V ac to 132 V ac at 2 A .180 V ac to 264 V ac at 1 A . Line Frequency -47 Hz to 63 Hz .
Maximum Power Consumption - 140 W , 510 BTU/hour.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	214.3	8.4
Height	195.3	7.7
Depth	539.8	21.3
Weight	$\mathbf{k g}$	lb
Net	8.2	20.0

ORDERING INFORMATION

4041DDU Disk Drive Unit

Includes: Power cable (161-0066-00); disk interface cable (012-1117-00); DDU checkout DC100 tape ($062-8554-00$) ; $5^{1 / 4}$ flexible diskette ($119-1870-00$); instruction manual.

CONVERSION KITS

Cabinet-to-Rackmount - Slide-out assembly to rackmount a 4041DDU. Order 016-0806-00
Cabinet-to-Rackmount - Slide-out assembly to rackmount a 4041 to the right of a 4041DDU. Order 016-0807-00

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

OPTIONAL ACCESSORIES

Diskettes - Package of ten.
Order 119-1583-01

TEK SPS BASIC

Versatile Instrument Control
Powerful Signal Processing Operations
Full Graphics Capability
Flexible Peripheral Handling
Multi-Level Program and Instrument Tasking
Control

Extensive Support and Documentation

Tek SPS BASIC is a comprehensive, general purpose programming language with numerous enhancements for instrument control, waveform processing, peripheral handling, and graphic display.

Modular in design, it provides an optimum balance between flexibility, programming efficiency and computing power; yet retains the easy-to-learn, easy-to-use, easy-to-remember characteristics of traditional BASIC. This makes it an ideal tool for beginners as well as expert programmers.
TEK SPS BASIC runs on any Tektronix CP1100 Instrument Controller or any DEC PDP-11 minicomputer. It consists of a resident monitor and an expandable library that lets you configure a software system to meet your unique measurement needs.
TEK SPS BASIC requires a minimum system consisting of a controller with two hard-disk drives or two flexible-disk drives, and a terminal.

Versatile Instrument Control

- High-level GPIB driver for easy interaction with GPIB-compatible instruments.
- Low-level GPIB driver to permit line-level access to all IEEE Standard 488 features as well as custom-tailored instrument communica- tions.
- Specialized drivers to control Tek's digitizing products.
- Specialized commands to process and log instrument data.
- BASIC extensions to let the user handle interrupts.
The high-level GPIB driver allows easier communication with Tektronix instruments. Information is sent in either ASCII or binary formats using simple commands. The driver does the line-toggling and address translation, enabling easy interaction with up to 14 instruments on each of (1 to 4) GPIB interfaces; 56 instruments maximum.
Though the high-level driver is not limited to Tektronix instruments, it can automatically translate codes and formats used by Tektronix to efficiently send data.

The low-level driver provides the capability to send and receive data one byte at a time, to toggle individual GPIB control lines, and to obtain detailed status information about the bus, the interface, or the instruments in the system. This driver gives fast, precise, complete GPIB control while saving controller memory space.
When an instrument chooses to use its asynchronous interrupt capability to send a signal to the controller, TEK SPS BASIC gives the user complete control over the response. Using the high-level GPIB driver, the user can simply direct program control to specific subroutines while the driver handles the GPIB housekeeping.
Plus, raw data transformation from Tek's digitizing instruments is done quickly and easily with specialized commands. Other commands permit fast logging and averaging of waveform data.

Powerful Signal Processing

- Single-command array and waveform manipulation.
- Powerful mathematical transformations including Fourier analysis.
- String processing capability.

TEK SPS BASIC goes beyond what other programming languages offer in waveform processing convenience. A simple command, "get", accesses waveform array data from our digitizer, complete with sampling intervals, horizontal, and vertical scaling factors.
The waveform created can then be used in arithmetic expressions, and the scaling factors will be automatically updated to reflect the operations performed on the waveform.
The operations available for waveform arrays include standard arithmetic operators $(+,-, \times, \div)$ as well as the trigonometric, logarithm, and exponential functions. In addition, TEK SPS BASIC features array functions for providing minimum, maximum, RMS, size, and mean values, plus the time at which a waveform crosses a user specified threshold.
The package includes commonly used mathematical transformations such as integration, differentiation, Fast Fourier transforms (direct and inverse), convolution, and correlation. For a more detailed waveform analysis, subarray processing is also possible. With this capability, any specified portion of an array can be accessed with the same convenience as full arrays.

Full Graphics Capability

- Single command waveform displays and $X-Y$ plots.
- Seventeen commands for personalized graphics.
- Graphic input.
- Variety of Tektronix graphic peripherals

Usually, processing software stops where graphics begin. Once again, TEK SPS BASIC helps you significantly with its capability to generate comprehensive, easy to create graphic displays. A single command displays your waveforms with graticule and scale factors in conventional formats. You can also position your graph anywhere on the screen, select tic marks, and generate waveforms with selected symbols.
In addition, TEK SPS BASIC offers the capability of identifying a point on the screen which can then be transferred to your program.
Graphics are not restricted to waveform or array display. Point to point line drawings enable you to generate any kind of representation you may want; bar charts, pie charts, three dimensional functions.
Hard copy units are available for all Tektronix graphic terminals. See page 76

Flexible Peripheral Handling

- Variety of compatible peripherals.
- Device independent communication protocol.
- Random and sequential access files.
- Direct access data-logging from instruments.
- File compatible with DEC RT-11 operating system.
TEK SPS BASIC communication is fast and easy, with a complete choice of peripherals including graphic and alphanumeric terminals, floppy disk, hard disks, cassette and magnetic tapes, paper tape reader and punch, and line printers. Its peripheral interfacing code is written to be device independent. Hardware can be updated without program modification.
Simple commands exist for creating, labeling, listing, modifying, copying, writing into or reading from files. Formats are selectable, so you can extend this compatibility to the hardware or software of you choice. Random-access files are also a standard feature of TEK SPS BASIC, allowing you to easily access selected portions of a file.

Multilevel Program and Instrument Control

- Control of execution and scheduling of routines.
- Multi-tasking for error tracking.
- User-specified error-handling.
- Support for user-written BASIC drivers including interrupt processing.

TEK SPS BASIC offers numerous advanced features for those who need to push beyond the limits of conventional high-level language programming.
For instance, you have complete access to the mechanism used to decide which routines to execute. Organized into a "ready job" queue, a "current job" packet and a "suspended job" stack, this mechanism, "The Scheduler", makes sure that system resources are given to the most important routine ready to run at any given time.
BASIC commands permit you to enter routines into the "ready job" queue at a given time, after a given time, or on occurrence of a real-time event. Other commands or keywords allow you to assign a priority to each routine. Programming can be setup to automatically invoke control tasks, such as scans and self-check, while responding to asynchronous real-time events, such as instrument interrupts.
The Scheduler also stops all routines affected by a fatal error. You can control the impact of errors by linking together associated routines and assigning them a common task number.
Features normally accessible only through assembly-language level programming are offered by TEK SPS BASIC through the optional high-level support package. Memory addresses can be individually examined and changed; individual bits and bit patterns can be set, cleared, or tested; variables can be located in memory and manipulated at the bit level; values can be read or written in octal or hexadecimal as well as decimal representations. All these sophisticated operations are available in BASIC's "easy to learn, easy to use" format.
The high-level support package also offers an interrupt vector driver, which lets the programmer invoke special routines to handle instrument interrupts. This capability is particularly valuable in development of user-written instrument drivers.

In addition, BASIC offers many special commands and capabilities for custom-tailored programs. Using immediate mode commands new program lines can be entered during execution of a program. Typed input can be accepted and held until needed, or the keyboard can be "locked".

Software Maintenance

Customers receive a periodic newsletter containing programming hints and responses to user questions. Many system errors can be corrected by customer-applied "patches." These short code sequences are published in the newsletter with instructions for adding them to established systems. Specific problems which appear to be possible software defects, may be addressed by submitting a Software Performance Report (SPR) which will be responded to in writing. (Category B support.)
New packaged TEK SPS BASIC V03XM is configured for the DEC MICRO/PDP-11 and contains the following: Monitor, Signal Processing Module, Graphics Module, 7912AD Special Commands Module, 7612D Special Commands Module, GPIB High Level Driver Module, new disk driver, and line printer driver.

ORDERING INFORMATION		
SOFTWARE PACKAGES		
CP57000 TEK SPS BASIC (Monitor)	$\$ 2,190$	
CP57001** Signal Processing	$\$ 950$	
CP57002*1 Graphics	$\$ 700$	
CP57003 R7912 Transient Digitizer		
Driver	$\$ 950$	
CP57004 Digitizing Oscilloscope		
(DPO) Driver	$\$ 500$	
CP57005 DPO Envelope Command	$\$ 350$	
CP57006*1 7912AD Special Com-		
mands Driver	$\$ 650$	
CP57007*1 High Level Support	$\$ 350$	
CP57008 Assembly Level Support	$\$ 1,000$	
CP5700*** GPIB High Level Driver	$\$ 500$	
CP57010*1 7612D Special Commands	$\$ 300$	
CP57500*1 Extended Memory		
(V02XM) TEK SPS BASIC (Monitor)	$\$ 3,190$	
CP575XX*1 Extended Memory Soft-		
ware (V02XM) are priced the same as		
V02 modules above, except for		
CP57500.		
CP58000 (V03XM) TEK SPS BASIC		
Software for MICRO/PDP-11	$\$ 4,000$	

For additional information or a demonstration of the TEK SPS BASIC software family, call the Tektronix sales office in your area and ask for your sales engineer.

4100 SERIES TERMINALS SELECTION GUIDE

	4104A	4105A	$\begin{gathered} \text { 4106A/ } \\ \text { CX4106A } \end{gathered}$	$\begin{gathered} \text { 4107A/ } \\ \text { CX4107A } \\ \hline \end{gathered}$	$\begin{gathered} \text { 4109A/ } \\ \text { CX4109A } \end{gathered}$
Display Size	13-inch	13-inch	13-inch	13-inch	19-inch
Color Palette	64	64	64	64	4096
Displayable Colors: Graphics Alphanumeric	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$	$\begin{gathered} 16 \\ 8 \end{gathered}$
Resolution	480×360	480×360	640×480	640×480	640×480
VT-100 compatible commands	yes	yes	yes	yes	yes
Expanded segment support	no	no	yes	yes	yes
Ability to draw arcs	no	no	yes	yes	yes
Pixel operations	yes	yes	yes	yes	yes
Two-way port communications	no	no	yes	yes	yes
Enhanced color copier support	yes	yes	yes	yes	yes
Fast monochrome copier support	yes	yes	yes	yes	yes
4958 Tablet support	no	no	yes	yes	yes
Option 21 memory	no	no	no	yes	yes
Prices Begin At	\$2,995	\$3,495	\$5,995/6,995	\$6,995/7,995	\$8,995/9,995

4695 Color Graphics Copier
Unprecedented Image Quality in its Price Range

Clear Transparency Capability
Quiet, 20 Character/Second Printing
Small, Compact Package
Choice of Roll or Sheet Paper
See page 76 .

EZ-TEST

Generate Complex Test Programs without Programming Skills

Multilevel Menus Guide you Through Test Development Procedures

Color Graphics Plotting of Test and
Waveform Data
Translates Generated Procedures into an
Easily Modified BASIC Program

TEK EZ-TEST Software is a Tektronix 4041 System Controller software package designed to help you produce automated test and measurement system programs quickly and easily, without computer programming skills.
With TEK EZ-TEST software, the 4041 learns your test procedure as you implement it manually through front panel instrument control. The software actually queries the instruments for the settings you have selected, and includes them in the program for recall and use during test execution.

TEK EZ-TEST software checks for instrument command errors as you develop your procedure and prevents you from entering incorrect settings. The software is comprised of two programs, a TPG (Test Procedure Generator) and a TRANSLATOR. The TPG is used to produce procedures using programmable test instruments physically attached to the IEEE Standard 488 Bus (GPIB). Once the procedure has been entered into the computer, it can be run and data results obtained. The procedure can be stored on tape as a data base and retrieved later for re-execution or modification by the TPG.

The TRANSLATOR program is used to convert the TPG procedure into actual 4041 BASIC code. This 4041 BASIC code is executable as a stand-alone program; faster, more efficient, more modifiable, and requiring less 4041 memory than the TPG program with its data base. Translated programs provide the flexibility required by most users who need to implement functions not provided by the TPG, such as special math functions to operate on acquired data, or acquire waveforms and operate on them via utilities from the Tektronix Instrumentation Software Library.

Menu Driven

TEK EZ-TEST software menus provide easy access to all levels of procedure generation and test execution. All interaction with the system is through labeled user keys or operator keyboard entry. Your software development time and costs are greatly reduced, since there are no complicated codes or keywords to learn. If you need guidance when using TEK EZ-TEST software, a HELP key is included with each menu to provide detailed instructions on the use of the current menu keys. TEK EZ-TEST software menu selections are shown in the following examples.

Figure 1.
The first step in developing a test procedure with TEK EZ-TEST, after selecting NEW STEP from the Edit menu, is to select the instrument to be used from the Instrument Selection Menu. In this example, the AA5001 Distortion Analyzer will be used.

Figure 2.
Next, the user manually sets the controls on the front panel of the AA 5001 to the appropriate state. Then the "LEARN SETNG" (Learn Instrument Settings) key is pressed and TEK EZ-TEST acquires the AA 5001's settings. The AA 5001 will be used as the measurement device.

Figure 3.
Now TEK EZ-TEST is instructed to make 30 measurements. Above is shown the TEST EXECUTION MENU where "PLOT LOOPS" is selected to cause the data to be graphed.

Figure 4.
The data is next plotted on a semi-log scale in figure 4 illustrating the frequency response characteristics of the selected signal. The data can be displayed in tabular form, directed to a line printer or stored on a mass storage device (tape, floppy disk, or hard disk).

Instrument Support

A wide variety of IEEE Standard 488 programmable test and measurement instruments from Tektronix is supported. These include all TM 5000 modular instruments, 2400 Series portable scopes, 7D20, 390AD, and 7854 digitizing scopes, 490P Series spectrum analyzers, and DAS 9100 Series logic analyzers. TEK EZ-TEST software also supports most non-Tektronix IEEE Standard 488-1978 compatible instruments which use ASCll coded commands, and LF/EOI message termination. Up to 28 instruments can be supported with the 4041 's Option 01 second GPIB port.

Equipment Required

4041 System Controller
Version 2.0 Firmware
Option 25 - 160 kbytes memory
(minimum)
Option 30 - Program Development ROMS
RS-232C Terminal (recommended, or ANSI 3.64 compatible)

Optional Hardware

Option 01 (4041) - Dual IEEE Standard 488 and RS-232C Ports
4041R01/4041R02 Graphics ROM Packs 4041R03 Signal Processing ROM Pack 4041R04 Utility ROM Pack 4695 Color Graphics Copier

ORDERING INFORMATION

TEK EZ-TEST 4105A Terminal Software. Order S45F010 Option 04

TEK GURU

GPIB User's Resource Utility
Menu-Driven Test Procedure Generator
Library of Commonly Used Subroutines
Graphics Capability
Flexible Peripheral Handling
Tutorial Manual
Instructional GPIB Programming Examples
TEK GURU (GPIB User's Resource Utility) is a low cost hardware/software package for instrument control, waveform acquisition and display. GURU supplies the important communications link between an IBM PC (or PC compatible) and GPIB instrumentation integrating the separate hardware units into a system designed to solve your application needs. GURU's software is written in IBM's Advanced BASIC (Microsoft's BASICA language) thus providing maximum flexibility to customize GURU for a specific application.
Menu-Driven Test Procedure Generator GURU's Test Procedure Generator (TPG.BAS) is an excellent low cost tool for users who want fast results and do not want to learn to program their own test software. System users need only know which test instrumentation is required and which tests are required to be performed.
The TPG.BAS is best suited to nondigitizer applications where testing of devices is required using programmable power supplies, signal sources, digital voltmeters and frequency counters.
The TPG.BAS is a self-explanatory menu driven program (Figure 1).

Figure 1. To create a test procedure, enter the main menu and select an appropriate menu item. Pressing the "1" key selects "Creating a new procedure." The test equipment is then listed on the terminal screen and the user proceeds to the Function Menu (Figure 2).

The Function Menu is the primary tool for developing a test procedure program. This menu contains all the important components of any test procedure.
Two other menus are also accessible from the Main Menu. A menu to modify a procedure (add, delete or replace individual

Figure 2. Pressing the "W" key adds "wait for operator input" message step to the test procedure. GURU automatically asks for the required parameters at each procedure step
steps), and a utility menu (enable, display or summarize the error \log and to list the error log or current procedure to the printer).

Figure 3. Users appreciate the speed with which an application program can be built using the subroutine library.
Library of Commonly Used Subroutines
This library (Figure 3) contains subroutines to do low level communications with GPIB devices, store/recall waveforms on a floppy disk, calculate waveform parameters and graph the waveform on the terminal. They are written in assembly language to facilitate maximum performance when sending or receiving commands or data. Waveform acquisition performance is further enhanced by the DMA transfer of waveforms to the controller's memory.
Figure 4 shows a sinewave captured and displayed by a GPIB controlled 7D20 Programmable Waveform Digitizer. The waveform may be also sent to a printer and notations added before printing.

Figure 4. To plot a waveform, select number 14 from the Subroutines Menu, (with prompts for vertical and horizontal scaling). Waveform data is automatically graphed on the terminal screen.

Tutorial Manual

The GURU user manual is a well organized, clearly written, concise document and an extremely valuable GPIB reference.
It includes many examples of GPIB programs, which are very valuable when interfacing to various types of new GPIB instrumentation.

Required Software

IBM PC DOS 2.0/2.1/3.0 or higher with Advanced BASIC (BASICA), or
MS-DOS 2.0x/2.1x or higher with Advanced BASIC (BASICA)

Optional Hardware

1. Multifunction card with clock/calendar, serial/parallel ports and up to 384 k RAM, such as the AST SixPak Plus or QUADRAM Quadboard, or
2. I/O and clock calendar card such as the AST I/O Plus II with serial/parallel ports and clock calendar functions.

Printers Supported

IBM Graphics Printer or equivalent Epson, RX, FX Family, Toshiba P1340/P1350 Series. For the Toshiba P1340/P1350 Series only, GURU requires the Paper Screen utility from M.A.P. Systems, Inc., to obtain printer copies of screen graphics.

Required Hardware

GURU runs on an IBM PC, XT, Portable PC, PC AT (or compatible) and the members of the COMPAQ computer family.
Minimum Requirements-128k memory, 1 DSDD floppy disk drive, parallel or serial port for printer.
GURU also requires either graphics/display card combination 1 or 2, listed below:

1. IBM Color/Graphics Adaptor (or compatible card) and the IBM Color Display (Model 5153 or equivalent such as the Princeton Graphics Systems HX-12) or a composite video monitor (color or monochrome).
2. Hercules Graphics Card (or equivalent) and IBM Monochrome Display (Model 5151 or equivalent, such as the Amdek $310 / 310$ A). Also required, for the Hercules Graphics Card only: GRAPH X utility from Hercules Computer Technology, to obtain printer copies of screen graphics.

Additional Hardware Requirements for 062-8369-00

Choose one of the following: National Instruments Interfaces, GPIB-PC, GPIB-PC2, GPIB-PC2A, or IBM PC GPIB adaptor.

[^35]
DIGITIZERS CONTENTS

Abstract

2430 Portable Digital Storage Oscilloscope .. 307 2220 Portable Digital Storage Oscilloscope .. 310 2230 Portable Digital Storage Oscilloscope .. 311 336 Portable Digital Storage Oscilloscope ... 313 7D20/7D20T Programmable Digitizers 315 7854 Waveform Processing Oscilloscope 318 7612D Programmable Waveform Digitizer ... 321 7A16P Programmable Amplifier 323 7912AD Programmable Waveform Digitizer .. 324 7B90P Programmable Time Base 325 390AD Programmable Waveform Digitizer ... 326 5223 Digital Storage Oscilloscope 328 5B25N Digital Time Base 329

IEEE STANDARD 488 COMPATIBLE

This section brings together high performance digitizing mainframes, stand-alone digitizers and portable digital storage oscilloscopes designed for precise automatic waveform measurements in demanding applications in R\&D and production environments.

Digital Storage

Digital storage utilizes a digitizing and reconstruction process. "Digitizing" consists of "sampling" and "quantizing." Sampling is the process of obtaining the value of an input signal at discrete points in time; quantizing is the transformation of that value into a binary number by the analog-to-digital converter (ADC). How often digitizing occurs is determined by the time base which uses a digital clock to time the analog-to-digital (A/D) conversion and to store the data in memory. This rate is the digitizing rate (or

DIGITAL OSCILLOSCOPES AND WAVEFORM DIGITIZERS

Type	Analog Digitizing BW	Maximum Digitizing Rate	Vertical Resolution	Data Words Per Waveform	Maximum Stored Waveforms	Useful* ${ }^{1}$ Storage BW (SS)	Equiv*2 Storage BW (rep)
5223	10 MHz	1 MHz	10 Bits	1016/plug-in	2 to 4	100 kHz	10 MHz
336	50 MHz	1 MHz	8 Bits	1024 each channel	$\begin{array}{\|c\|} \hline 2 \\ (16 \text { with option) } \end{array}$	100 kHz	50 MHz
2220	60 MHz	20 MHz	8 Bits	2048 dual channel 4096 single channel	2	2 MHz	60 MHz
2230	100 MHz	20 MHz	8 Bits	2048 dual channel 4096 single channel	8 (52 with option)	2 MHz	100 MHz
7854	$400 \mathrm{MHz}^{* 3}$	500 kHz Ext Clock	10 Bits	Up to 1024	Up to 40	50 kHz	400 MHz
$\begin{array}{\|l} \hline 7 \mathrm{D} 20 / \\ \text { 7D20T } \\ \hline \end{array}$	70 MHz	40 MHz	8 Bits	Up to 1024	6	10 MHz	70 MHz
2430	150 MHz	100 MHz	8 Bits	1024	6	40 MHz	150 MHz
390AD	15 MHz	30 MHz dual channel 60 MHz CH 1	10 Bits	2048 dual channel 4096 CH 1 only	2	15 MHz	15 MHz
7612D	80 MHz	200 MHz	8 Bits	Up to 2048	2 to 16	80 MHz	80 MHz
7912AD	500 MHz	100 GHz	9 Bits	512	1	500 MHz	500 MHz

* ${ }^{1}$ Useful Storage Bandwidth is a measure of the highest frequency sinewave that can be stored in a single sweep and displayed in a visually useful manner. This is dependent on both the maximum digitizing rate as well as the display reconstruction technique used.
*2 Equivalent Storage Bandwidth indicates the highest frequency repetitive signal that can be stored and displayed with less than $3 d B$ loss of signal amplitude using equivalent time digitizing techniques.
*3 14 GHz with sampling.
sampling rate). Once the data is in the digital memory, it can be read out and reconstructed for displaying or further waveform processing.
The high performance digitizing mainframes offer a wide choice of performance capabilities to capture high or low speed signals that are repetitive or single shot. Configure mainframes to your needs from a choice of plug-ins. The 7854 combines outstanding analog and digital performance with microprocessor-based waveform processing whereas the 7612D and 7912AD combine, outstanding analog and digital performance with full programmability. The 7D20T incorporates a 7D20 into its own power module but without a display. The 7D20T is the ideal high performance digitizer in automated systems applications where visual display of the acquired signals is not required.

SONY/TEKTRONIX offers two portable digitizers, the 390AD and 336. The 390AD features dual-channel and dual-time-base operation. The 336 displays both analog and digitized waveforms simultaneously and can store up to 16 digitized waveforms for recall and display. It is microprocessor controlled and incorporates alphanumeric CRT readouts of the scale factors and cursor positions. The 5223 Digitizing Oscilloscope is capable of displaying real time and stored waveforms simultaneously and accesses the digital storage functions by using the 5B25N Time Base.
The NEW 2230 and 2220 each feature 4 K record lengths, 100 ns peak detection, and optional GPIB or RS-232C interfaces. The NEW 2430 brings the best features of the industry standard 2400 Series into a digital storage oscilloscope. Tek's new patented feature "Save on Delta" provides unattended pass/fail testing.

2430
 Digital Oscilloscope

The 2430 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.
150 MHz Bandwidth at Probe Tip
$5 \mathrm{~ns} /$ div Sweep Speed
$100 \mathrm{MS} / \mathrm{s}$ Sample Rate
Simultaneous Acquisition of Two Channels
Envelope Mode with 2 ns Glitch Capture
8 Bit Resolution Over 10 Divisions
Save on Delta (Tek Patented Feature) Provides Unattended Pass/Fail Testing and Babysitting Against a User Defined Reference or Envelope
Extensive Trigger Capability such as Delay by Time, Delay By Events, Two External Trigger Inputs Provide Flexibility for Use in TTL, ECL, and Analog Circuit Applications
Save up to Six Waveforms for Later Display, Analysis and Comparison

Full Screen Readout and Extensive Cursor Functions for Easy Operation and Measurements
Fully GPIB Programmable for Systems and Automated Test Applications
Three Year Warranty-Five Years Optional

Power and Flexibility in an Easy-To-Use Portable Digital Oscilloscope
With the NEW Tek 2430 we've brought the best features of our industry standard 2400 Series into the digital world. Capture complex wideband signals for TTL, ECL, and analog research, design and test.
The 2430 has a 150 MHz bandwidth, $5 \mathrm{~ns} /$ div maximum sweep speed, a digitizing rate of $100 \mathrm{Megasamples} / \mathrm{sec}$ with 8 bit resolution, and dual channel simultaneous acquisition. With its advanced feature set, the 2430 can meet your general purpose measurement needs while offering the advantages of a digitized waveform-including long term storage for future reference, data transfer, and waveform analysis-making the 2430 a powerful systems component. Features of the 2430 include: 1024 point per channel record length; Average Mode for increased resolution and noise reduction on repetitive signals; Envelope Mode providing a unique ability to capture events as fast as 2 ns at any sweep rate; Save on Delta to capture and save events that deviate from
user selected limits; Delay by Time and Delay by Events for detailed examination of complex waveforms.
With on screen readout, cursor functions, and front panel layout similar to other Tek 2400 Series instruments, the 2430 provides an easy to use tool. With its single level menu format and powerful measurement features, the 2430 will become the keystone of your instrumentation needs.

CHARACTERISTICS
 VERTICAL SYSTEM

Bandwidth - Dc: to $150 \mathrm{MHz}(-3 \mathrm{~dB})$. Ac: $<10 \mathrm{~Hz}$ to 150 MHz .
Bandwidth Limit - 20 MHz and 50 MHz ; selectable (reduces -3 dB point to between 13 MHz to 24 MHz and 45 MHz to 55 MHz respectively).
Channels - Two with simultaneous acquisition.
Vertical Accuracy - $\pm 2 \%+1 \mathrm{DL}$ (DL $=$ digitizing level. 25 DL's per division).
Deflection Factor -2 mV to 5 V in 1-2-5 sequence, continuously variable between ranges.
Auto Scale Factor - Probe tip deflection factors for $1 \mathrm{X}, 10 \mathrm{X}, 100 \mathrm{X}$, and 1000X indicated by on-screen readout. Scale factor available over GPIB Bus. Probe identification available via onscreen readout.
Delay Matching $- \pm 250$ ps.
Channel Isolation - 100:1 or greater attenuation of the deselected channel at $100 \mathrm{MHz}, 50: 1$ or greater at 150 MHz for a 10 div input signal from $2 \mathrm{mV} /$ div with equal VOLTS/DIV switch settings on both channels.

TEK

Maximum Input Voltage－
1 M ：Dc，Ac，GND Coupled： 400 V （dc＋peak ac） $800 \mathrm{~V} \mathrm{p-p} \mathrm{ac} \mathrm{at} 10 \mathrm{kHz}$ or less．
$50 \Omega: 5 \mathrm{~V} \mathrm{rms} ; 0.5 \mathrm{~W} \mathrm{sec}$ for any 1 second interval for instantaneous voltages from 5 V to 50 V ．
Input R and C－1M $\pm 0.5 \%$ paralleled by 15 pF $\pm 2 \mathrm{pF}$ ． $50 \Omega \pm 1 \%$ paralleled by $15 \mathrm{pF} \pm 2 \mathrm{pF}$ ．
VSWR－$\leqslant 1 \cdot 3: 1$（Dc to 150 MHz ）．
Vertical Postion Range $- \pm 10$ div（ $\pm 1 / 3$ div）．
CMRR－At least 10：1 at 50 MHz for common－ mode signals of 10 div or less，with VAR VOLTS／ DIV adjusted for best CMRR at 50 kHz at any VOLTS／DIV setting from 5 mV to 5 V ．

HORIZONTAL SYSTEM

Display Modes－A ，A Intensified，B ．
A and B Delayed Sweep Range－ $5 \mathrm{~ns} /$ div to $5 \mathrm{~s} / \mathrm{div}$ in 1－2－5 sequence．
Accuracy－ 0.1% ．
External Clock Repetition Rate－Min： 1 MHz ．Max： 100 MHz ．Events Max Rep Rate： 100 MHz ．
Signal Levels Required for EXT Clock or Events－

Coup－ ling	CH 1 or CH 2 Source	EXT 1 or EXT 2 Source Gain＝1
Dc	0.70 div from dc to 20 MHz in－ creasing to 2.0 div at 100 MHz 3.0 div at 100 MHz in ADD mode	35 mV from dc to 20 MHz increasing to 100 mV at 100 MHz
Noise Rej	$\geqslant 2.4$ div from dc to 20 MHz ； increasing to 6.0 div at 100 MHz .9 .0 div at 100 MHz in ADD mode．	$\geqslant 120 \mathrm{mV}$ from dc to 20 MHz ；increasing to 300 mV at 100 MHz
Ac	0.7 div from 60 Hz to 20 MHz ； increasing to 2.0 div at 100 MHz ； 3.0 div at 100 MHz in ADD mode．Attenuates signals below 60 Hz ．	35 mV from 60 Hz to 20 MHz ；increasing to 100 mV at 100 MHz ； Attenuates signals below 60 Hz ．
$\begin{aligned} & \hline \mathrm{HF} \\ & \mathrm{Rej} \end{aligned}$	2.0 div from dc to 30 kHz ．At－ tenuates signals above 30 kHz ．	50 mV from dc to 30 kHz ．
$\begin{aligned} & \overline{\mathrm{LF}} \\ & \mathrm{Rej} \end{aligned}$	2.0 div from 60 kHz to 20 MHz ； increasing to 4.0 div at $100 \mathrm{MHz} ; 3.0$ div at 100 MHz in ADD mode．Attenuates signals below 80 kHz ．	50 mV from 80 kHz to 20 MHz ；increasing to 100 mV at 100 MHz ．

Signal Levels Required for EXT clock or EVENTS； GAIN $=+5$ ：Amplitudes are 5 times those specified for Ext．Gain＝1．
Delay By Time and Delta Delay－On screen readout will display time delay between mea－ sured events．
Delay By Time and Delta Delay Maximum Delay－（ $0.04 \times \mathrm{B}$ sec／div）to $(65,536 \times 0.04 \mathrm{~B}$ sec／div）．
Delay Time Resolution－The greater of（0．04 $\times \mathrm{B} \mathrm{sec} / \mathrm{div}$ ）or 20 ns ．
Delay By Events－Delays the A or B sweep by a user selected number of B trigger events after the normal A trigger occurs．On screen readout indicates number of events selected．the maxi－ mum number of events selectable is 65,536 with one event resolution．

ACQUISITION SYSTEM

Maximum Single Event Useful Storage Band－ width－ 40 MHz （using internal Modified Sine X／X interpolator）．
Maximum Sample Rate－ $10 \mathrm{MS} / \mathrm{s}$ on two si－ multaneous channels．
Vertical Resolution－ 8 bits（1 to 256 over 10.24 vertical div）．

Record Length－ 1024 points per channel．

ACQUISITION MODES

Normal Mode－Repetitive and nonrepetitive acquisitions．
Envelope Mode－Records and displays mini－ mum and maximum waveform values over 1 or more sweeps．Number of waveforms recorded before reset is user selectable in binary sequence from 1 to 256 or continuous．

Envelope Mode Pulse Response

（glitch capture）－

Pulse Duration	\％of Amplitude Capture	Confidence Level
2 ns	50%	$>85 \%$
4 ns	50%	100%
8 ns	$>90 \%$	100%

Average Mode－Averages continuously for a number of acquisition from 2 to 256 in binary se－ quence（user selectable from front panel）．Aver－ aging of 256 acquisition effectively increases ver－ tical resolution to 11 bits and vertical sensitivity to $200 \mu \mathrm{~V} / \mathrm{div}$ ．Average mode will do Stable Averag－ ing for the user selected number of acquisitions， then switch to Exponential averaging for a weighted averaging of the display until there is a control change or other reset of the instrument．
Save on Delta Mode－Incoming waveforms will be compared against a user definable wave－ form envelope and SAVED if the waveform is out－ side reference limits．

MEMORY

Save Memory－ $8 k$ of waveform memory avail－ able． 4 display waveforms（ 1 k each），and 4 Ref－ erence waveforms（ 1 k each）．Reference memory number 4 is user selectable for waveform data storage or to store 4 user definable front panel settings．Capacitive backed waveform data re－ tention time，from last power on，of more than 120 hours at $26 \mathrm{C}, 24$ hours at 50 C ．
Nonvolatile Memory－Approximately 2 k of memory containing calibration data，readout infor－ mation，an initial front panel setting，power down front panel setting，and 1 user definable front panel setting．Nonvolatile memory retention time of more than 3 years using a Lithium battery backup．

DISPLAY

Display Modes－CH 1，CH 2，Invert，Add，Mul－ tiply，X／Y（CH 1 vs CH 2 ，Ref 1 vs Ref 2）Refer－ ence displays 1 through 4.
Ground Reference Display－A plus symbol $(+)$ is displayed at left of screen，tracking ground location．If ground is located off screen，plus（ + ） remains at screen perimeter indicating off screen location．
Trigger Reference Display－A＂T＂symbol ap－ pears on waveform displays，tracking location of trigger．If trigger point is located off screen in any direction，＂T＂symbol remains on screen at

perimeter．

Waveform Expansion－10X vertical expan－ sion of SAVED waveforms，in 1－2－5 sequence． 100X horizontal expansion of SAVED waveforms， in 1－2－5 sequence．
Readout－Readout characters are displayed on screen to indicate instrument＇s current vertical channel selection，input coupling and termination， volts／div，time base and sec／div，trigger level and trigger source configuration，as well as，menu se－ lections，and cursor functions．
Horizontal Expansion of Saved Waveforms －Up to 100X expansion．Horizontal positioning of saved waveforms．

ON SCREEN CURSORS

Functions－Volts，Time，Volts at Time，1／Time， Slope．These settings can be selected for delta or absolute time／volts with reference to trigger point or ground respectively．Delta delay will make dif－ ferential time measurements by utilizing dual de－ layed sweep．
Units－Volts，Percent， dB ，in absolute or delta time，percent，degrees in absolute or delta slope， percent．

TRIGGERING

Following is a summary of triggering functions．
A Mode－Auto Level，Auto／Roll，Normal，Single Sequence．
B Mode－Triggerable After Delay，Runs After Delay．
A and B Source－Vertical，CH 1，CH 2，Line（A only），Ext 1，Ext 2，A B（A sweep only），Word（17－ bit word recognizer probe optional accessory）．
A and B Coupling－Dc，Noise Reject，HF Re－ ject，LF Reject，Ac，TV（option：A coupling only）．
A and B Trigger Position－Pre＞post．
A and B Slope（ \pm ），A and B Level，External Clock，Manual Trigger，Variable Holdoff， Trigger Status，Minimum P－P Signal Ampli－ tude for Stable A Trigger
Dc Coupled： 35 div from dc to 50 MHz increasing to 1 div at 150 MHz ．
Noise Reject Coupled：$\leqslant 1.2$ div from dc to 50 MHz increasing to 3 div at 150 MHz ．
Ac Coupled： 35 div from 60 Hz to 50 MHz in－ creasing to 1.0 div at 150 MHz ．
LF Reject： 0.5 div from 80 kHz to 50 MHz increas－ ing to 1.0 div at 150 MHz ．
HF Reject： 0.50 div from dc to 30 kHz ．Atten－ tuates signals above 30 kHz ．
Minimum P－P Signal for Stable B Trigger－ Two times those required for stable A trigger．
Minimum P－P Signal for Stable Trigger for Ext 1 and Ext 2 －Ext．Gain： 1.
Dc Coupled： 17.5 mV from dc to 50 MHz ，in creasing to 50 mV at 150 MHz ．
Noise Reject Coupling：$\leqslant 60 \mathrm{mV}$ from dc to 50 MHz ，increasing to 150 mV at 150 MHz ．
Ac Coupled： 17.5 mV from 60 Hz to 50 MHz ，in－ creasing to 50 mV at 150 MHz ．
LF Reject Coupled： 25 mV from 80 kHz to 50 MHz ，increasing to 50 mV at 150 MHz ．
HF Reject Coupled： 25 mV from dc to 30 kHz ．
Ext $\div 5$ ：Amplitudes are five times those given for Ext Gain＝1．

Ext 1 and Ext 2 Inputs－

Resistance： $1 \mathrm{M} \Omega \pm 1 \%$ ．
Capacitance： $15 \mathrm{pF} \pm 3 \mathrm{pF}$ ．
Maximum Input Voltage： 400 V （dc＋peak ac），
800 V p－p ac at 10 kHz or less．
Trigger Level Control Range－
CH 1 and CH 2 Source：± 18 div $\times \mathrm{V} /$ div．
Ext 1 and Ext 2 Source Gain $=\div 1: \pm 0.9 \mathrm{~V}$ ．
Ext 1 and Ext 2 Source Gain $=\div 5: \pm 4.5 \mathrm{~V}$ ．
A and B Trigger Position：（pre $>$ post） $1 / 8$ to $7 / 8$ of acquisition record，user selectable in $1 / 8-1 / 4-1 / 2-3 / 4 / 4$ $7 / 8$ sequence．User selectable in 32 sample inter－ vals using GPIB．

REAR PANEL OUTPUTS／INPUTS
Output Voltage－ $20 \mathrm{mV} /$ div $\pm 10 \%$ into $1 \mathrm{M} \Omega$ ． $10 \mathrm{mV} / \mathrm{div} \pm 10 \%$ into $50 \Omega .-3 \mathrm{~dB}$ bandwidth is dc to $>50 \mathrm{MHz}$ ．
A Trigger，Record Trigger，and Word Recog－ nizer Output－
Logic Polarity：Negative true trigger occurence indicated by a HI to LO transition．
Output Voltage HI：$\leqslant 400 \mu \mathrm{~A}$ load is 2.5 V to $3.5 \mathrm{~V} .50 \Omega$ Load to Ground is $\leqslant 0.15 \mathrm{~V}$ ．
Output Voltage LO：$<4 \mathrm{~mA}$ Load is $\leqslant 0.5 \mathrm{~V} .50 \Omega$ Load to Ground is $\leqslant 0.15 \mathrm{~V}$ ．
Direct Hard Copy Output－Sends waveform data，cursor measurements，and instrument con－ figuration over GPIB to a Hewlett Packard HP 2225A printer．In Save On Delta mode，when discrepancy is detected，send hard copy output and then reinitialize Save On Delta Mode．

Plotter Output -

X Output and Y Output: Output Resistance is $1 \mathrm{k} \Omega \pm 10 \%$.
Output Range/Scale Factors: Y is $390 \mathrm{mV} / \mathrm{div}$. $X(Y-T)$ is $195 \mathrm{mV} /$ div.
$X(X-Y)$ is $390 \mathrm{mV} /$ div.
Effective slew rate is $<8 \mathrm{~V} / \mathrm{s}$.

Penlift, SPST Relay -

Contact to Ground:

Polarity is Menu selectable.

Maximum Applied Open-Circuit Voltage is $\pm 25 \mathrm{~V}$.
Maximum Closed-Circuit Resistance is $\leqslant 0.25 \Omega$.
Maximum Closed-Circuit Current is $\leqslant 0.25 \mathrm{~A}$.
AC POWER REQUIREMENTS
Line Voltage Ranges - $115 \mathrm{~V}: 90 \mathrm{~V}$ to 132 V . $230 \mathrm{~V}: 180 \mathrm{~V}$ to 250 V .
Line Frequency - 48 Hz to 440 Hz .
Power Consumption - Typical (standard instruments): $160 \mathrm{~W}(250 \mathrm{VA}$). Maximum (fully optioned instrument): $200 \mathrm{~W}(300 \mathrm{VA})$.

GPIB PROGRAMMABILITY
Standard on all instruments. Full talk-listen modes available, control all front panel settings. Transmit and receive waveform data. Sixteen lines of prompting messages or computed results can be displayed on screen via GPIB (40 characters per line) using Tek Codes and Formats.
Data Transfer Rate - 140 kybtes per sec maximum typical in Fast Transmit Mode.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T5, L3, SR1, RL1, DC1, DTØ, PPØ, C \emptyset.

ENVIRONMENTAL AND SAFETY
The 2430 meets the environmental requirements of MLL-T-28800C for Type III, Class 3, Style D equipment, with humidity and temperature requirements defined in paragraphs 3.9.2.2, 3.8.2.3, and 3.9.2.4.
Ambient Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Altitude - Operating: To $4600 \mathrm{~m}(15,000 \mathrm{ft})$. Maximum operating temperature decreases $1^{\circ} \mathrm{C}$ for each $1,000 \mathrm{ft}$ above $5,000 \mathrm{ft}$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of three axes at a total displacement of 0.025 inch p-p (4 g at 55 Hz), with frequency varied from 10 Hz to 55 Hz in one-minute sweeps. Held ten minutes at each major resonance, or if none existed, held ten minutes at 55 Hz (75 minutes total test time).
Humidity - Operating and Nonoperating: Stored at 95% relative humidity for five cycles (120 hours) from $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, with operational performance checks at $+30^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}$.
Shock - Operating and Nonoperating: 50 g 's, half-sine, 11 ms duration, three shocks on each face, for a total of 18 shocks.
Drip Proof - Front cover meets MLL-T-28800C paragraph 4.5.5.5.3.
Safety - Certified by CSA, Electronic Bulletin No. 556B and UL 1244 and complies with IEC 348. PHYSICAL CHARACTERISTICS

Dimensions	Cabinet		Rackmount	
	mm		in	mm
in				
Width (with handle)	330	13.0	483	19.0
Height			178	7.0
(with feet \& pouch)	190	7.5		
(without feet \& pouch)	160	6.3		
Depth	479	16.5		
(with front cover)	479	18.9		
(with handle extended)	550	21.7		
Weights	$\mathbf{k g}$	lb	kg	lb
Net			4.0	8.8
(w/ accessories \& pouch)	12.8	28.1		
(w/o accessories \& pouch)	10.9	23.9		
Shipping	16.4	36		

Option 05

TV Waveform Measurement System

GPIB
IEEE-488

The Option 05 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.
All of the High-Performance Characteristics of the Standard 2430 Oscilloscope Plus Television Waveform Assessment Capabilities
Selectable System-M and Nonsystem-M Protocols
Selectable Triggering on Any Line Within a Field, with Line-Number Readout
GPIB-Controllable Functions for Use in Automatic Measurement Systems

Compatible with Composite Video

Television Blanking-Level Clamp (BackPorch)
Optimized Vertical Response Comparable to High-Performance Television Waveform Monitors

CHARACTERISTICS

The set of characteristics is the same as specified for the standard 2430 Oscilloscope and includes the following additions:

VERTICAL SYSTEM

(CHANNEL 1 AND CHANNEL 2)
Frequency Response - For Volts/Div switch settings between 5 mV and 0.2 V , with Var Volts/ Div calibrated and using a five-division, 50 kHz reference signal from a 50Ω system, with external 50Ω termination on $1 \mathrm{M} \Omega$ input.

	Frequency Response	
Frequency Range	With Full BW	With BW Limiting
50 kHz to 5 MHz	$\pm 1 \%$	$+1 \%,-4 \%$
$>5 \mathrm{MHz}$ to 10 MHz	$+1 \%,-2 \%$	-
$\geq 10 \mathrm{MHz}$ to 30 MHz	$+2 \%,-3 \%$	-

Squarewave Flatness - $\pm 1 \%, 1 \% p-p$ for both 60 Hz and 15 kHz squarewaves, using a 0.1 V input with Volts/Div settings between 5 mV and 20 mV and using a 1.0 V input with Volts/Div setting of 50 mV . Setup with $1 \mathrm{M} \Omega \mathrm{dc}$ input coupling, external 50Ω termination, Var Volts/Div in calibrated and fast-rise input signal (risetime $\leqslant 1 \mathrm{~ns}$). Exclude first 20 ns following step transition and exclude first 30 ns when 20 MHz BW LIMIT is set. For signals with risetimes $\leqslant 10 \mathrm{~ns}$, add $2 \% \mathrm{p}-\mathrm{p}$ between 155 ns and 165 ns after step transition.
Note: Although flatness and frequency response are verified using a 50Ω system, similar performance can be expected when using 75Ω systems.
Television Blanking-Level Clamp (BackPorch) 60 Hz Rejection (Channel 2 Only) $\geqslant 18 \mathrm{~dB}$ at 60 Hz , with Volts/Div settings between 5 mV and 0.2 V , Var Volts/Div control set to calibrated and a six-division reference signal.
Television Blanking-Level Clamp (BackPorch) Reference - Within 1.0 division of ground reference.

TRIGGERING

Sync Separation - Stable sync separation from sync-positive or sync-negative compositive video on systems with 525 to 1280 lines per frame, 50 Hz or 60 Hz field rate, interlaced or noninterlaced scan.
Trigger Modes - LINES, FLD 1, FLD 2, AND ALT (FLD 1, FLD 2) coupling.

Input Signal Amplitude for Stable Triggering Channel 1 and Channel 2 - 2.0 division for composite video and 0.6 division for composite sync signals (dc + peak video-signal amplitude must be within 18 divisions of input ground reference).
External 1 and External 2 - 60 mV division for composite video and 30 mV division for composite sync signals (dc + peak video-signal amplitude must be within nine divisions of input ground reference).

ORDERING INFORMATION

2430150 MHz Digital Oscilloscope $\quad \$ 8,900$

Includes: Two P6131 10X 1.3 m probes with accessories (010-6131-11); snap accessory pouch (016-0692-00); ziploc accessory pouch ($016-0537-00$); 5 A, ACG/3AG, 250 V fuse ($159-0014-00$); blue plastic CRT filter, installed ($378-0199-00$); clear plastic CRT filter ($378-0208-00$); front cover (200-2742-00); user reference guide (070-5497-00); operator manual ($070-4918-00$); users GPIB interface guide (070-5705-00).

OPTIONS
Option 1R — Configure oscilloscope for rackOption 05 - TV Waveform Measurement System.
Includes: Same as 2430 plus CCIR graticule CRT filter (378-0199-01); NTSC graticule CRT filter.
Option 11 - Probe Power. $+\$ 165$
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

WARRANTY-PLUS SERVICE PLANS SEE PAGE 457
 41 (2430) 2 Calibrations 457 ,

M1 - (2430) 2 Calibrations	$+\mathbf{\$ 2 4 0}$
M2 - (2430) 2 Years Service	$+\mathbf{3 4 0}$
M3 - (2430) 2 Years Service and 4 Calibrations	$+\$ 785$
M4 - (2430) 5 Calibrations	$\mathbf{+ \$ 6 1 0}$
M5 - (2430) 9 Calibrations +2 Years Service	$\mathbf{+ \$ 1 , 4 3 0}$

OPTIONAL ACCESSORIES
 kmount Conversion Kit -

Rackmount Conversion Kit -
Order 016-0825-00 \$320
Word Recognizer Probe -
Order 010-6407-01.
\$285
ECL Probe - Order 010-6230-01 \$395
Protective Cover - Blue vinyl.
Order 016-0720-00
\$22
Carrying Strap — Order 346-0058-00 \$15
Viewing Hoods -
(Polarized, Collapsible) Order 016-0180-00
$\$ 40$
(Folding, Light Shielding) Order 016-0592-00 \$13
(Binocular, Collapsible) Order 016-0566-00
$\$ 18.50$
Camera - C-30BP. See page 412

RECOMMENDED CARTS

K212 - Portable Instrument Cart. See page 423
K117 - Instrument Shuttle. See page 423 \$265
Service Manual — Order 070-4917-00 \$30
Customer Training is available on this product. See page 452 for futher details.
$+\$ 1,050$
\qquad

\qquad

路
OPTIONS .

TEK
 100 MHz and 60 MHz DIGITAL STORAGE OSCILLOSCOPES

2230/2220

The 2230 Option 10 and 2220 Option 10 comply with IEEE Standard 488-

GPIB
LEEE-488 1978 and use Tektronix Standard Codes and Formats. The 2230 Option 12 and 2220 Option 12 features Standard RS-232-C and use Tektronix Standard Codes and Formats.

100 MHz Digital Storage and Nonstorage (2230)

60 MHz Digital Storage and Nonstorage (2220)

Cursors for Time and Voltage Measurements (2230)

Signal Averaging

100 ns Glitch Capture
4 K Record Length
Post Acquisition Expansion, Compression, and Positioning

GPIB or RS-232-C Optional
26 K Battery-Backed Save Reference
Memory (2230 Option 10 or 12)

TYPICAL APPLICATIONS

* Digital Design and Troubleshooting
* Power Supply Design
* Electro-Mechanical
* Stress/Vibration Analysis

The NEW Tektronix 2230 and 2220 are the answer for general purpose storage applications. These high perfomance portable scopes have storage and nonstorage bandwidths of 100 MHz (2230) and 60 MHz (2220).

These scopes are designed with many features which enhance their usefulness in your applications. The 2230 offers cursors and CRT readout enabling you to measure time or voltage differences easily and accu-
rately. Save Reference memory allows you to view both stored and current waveform acquisitions on screen simultaneously. Signal averaging can be used to remove random noise from a signal and improve measurement accuracy.
100 ns glitch capture can be accomplished with the use of Peak Detect mode. This mode digitizes and stores, in acquisition memory as a data pair, the minimum and maximum levels of the input signal. The resulting display can be used to catch glitches, view frequency drift and amplitude modulation, or detect aliasing. Unlimited storage time; expandable, compressible, repositionable stored traces; save reference memory; pre/post trigger viewing; roll mode; standard X-Y plotter output; and optional interfaces make the 2230 and 2220 the most sensible digital storage oscilloscopes to own.

CHARACTERISTICS

The following characteristics are common to the 2230 and 2220 except where indicated.

DIGITIZER AND MEMORY
Speed - Digitizing rates from 20 samples/s at $5 \mathrm{~s} / \mathrm{div}$ to $20 \mathrm{MS} / \mathrm{s}$ at $5 \mu \mathrm{~s} / \mathrm{div}$ and faster. Digitizing rate changes proportionate to sweep speed (100 data words/horizontal div) for sweep speeds of $5 \mathrm{~s} / \mathrm{div}$ to $5 \mu \mathrm{~s} / \mathrm{div}$. CHOP/ALT modes effectively halves the digitizing rate/waveform. The effective sampling rate in Repetitive Storage mode is 2 GS/s.
Useful Storage Bandwidth - Single Shot: Dc to 2 MHz (single channel). Useful storage bandwidth is defined as the frequency where there are 10 samples per signal period at the maximum sampling rate. Repetitive Storage mode: Dc to 100 MHz (2230); Dc to 60 MHz (2220).
Resolution - Vertical: 8 bits, 25 levels per division. Horizontal: 10 bits.
Acquisition/Process Modes - Sample, Peak Detect, Accumulated Peak Detect, Average, Smoothing.
External Clock - Provides an input for EXT CLOCK signals, dc to 1 kHz , to the storage acquisition system.
Peak Detect (Envelope) Mode - 100 ns minimum pulse width for 100% probability of 50% signal amplitude capture. $10 \mathrm{MS} / \mathrm{s}$ sampling rate.
Average Mode - (2230) Normalized Average weight is selectable from $1 / 1,1 / 2,1 / 4,1 / 8,1 / 16,1 / 32$, $1 / 64,1 / 128,1 / 256$. Number of sweeps averaged is adjustable from 1 to 2047 or the default condition of NO LIMIT can be selected. (२२2) Average is active in. Repetitive Storage mode only ($2 \mu \mathrm{~s}$ to $0.05 \mu \mathrm{~s} / \mathrm{div})$. Normalized Average weight is $1 / 4$.

Pre/Post Trigger - (2२30) $7 / 8$ (PRETRIG) or $1 / 8$ (POSTTRIG) of waveform acquisition window prior to the trigger event. Trigger position is adjustable over the entire acquisition record by menu selection. (22२0) PRETRIG: 7/8 of waveform acquisition window prior to the trigger event. POSTTRIG: $1 / 8$ of waveform acquisition window prior to the trigger event. MIDTRIG: $1 / 2$ of the waveform acquisition window prior to the trigger event.
Record Length - (2230) 4 K or 1 K record length selectable. (2220) 4 K record length.
Save Reference Memory - (2230) One 4 K or three 1 K acquisitions may be saved in reference memory. Options 10 and 12 offer 26 K of additional battery-backed reference memory. (2220) One 4 K acquisition may be saved in reference memory.
Cursor Accuracy - Voltage difference is within $\pm 3 \%$ of the delta voltage readout value. Time difference is within \pm [1 display interval (+1 display interval if in ACC PEAK or PEAK DETECT)] for sweep speeds of 5μ s to 5 s/div and within \pm [2 display intervals + (2 display intervals if in ACC PEAK) +500 ps] for sweep speeds of $0.05 \mu \mathrm{~s}$ to $2 \mu \mathrm{~s} / \mathrm{div}$.
X-Y Plotter Output - Standard on both the 2230 and २२२०.

VERTICAL SYSTEM
 (2 Identical Channels)

Bandwidth (-3 dB) and Risetime (NonStore) - (2230) 100 MHz and 3.5 ns , derated to 80 MHz and 4.4 ns at $2 \mathrm{mV} /$ div and outside $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. (2220) 60 MHz and 5.8 ns , derated to 50 MHz and 7.0 ns at $2 \mathrm{mV} / \mathrm{div}$ and outside $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Bandwidth Limit - (2230) $20 \mathrm{MHz} \pm 10 \%$. (2220) $10 \mathrm{MHz} \pm 15 \%$.

Nonstore Deflection Factor and Accuracy 2 mV to $5 \mathrm{~V} /$ div $1-2-5$ sequence, accuracy is $\pm 2 \%$. Accuracy derated to $\pm 3 \%$ outside $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Uncalibrated: Continuously variable between steps to at least 2.5:1.
Store Deflection Factor and Accuracy 2 mV to $5 \mathrm{~V} / \mathrm{div}$. Displayed signal amplitude is within $\pm 3 \%$ of the true input voltage over the dynamic range of the A/D converter.
Vertical System Operating Modes - CH 1, CH 2, CH 2 Invert, ADD, ALT, CHOP, (500 kHz nonstore).
Common-Mode Rejection Ratio - For signals of 6 div or less, at least 10:1 (at 50 MHz).
Input R and $C-1 M \Omega, 20 \mathrm{pF}$.
Maximum Input Voltage (Ac and Dc Coupled) - 400 V (Dc + peak Ac) or 800 V (p-p to 10 kHz).
Channel 1/Channel 2 Isolation - 100:1 at 50 MHz .
Ac-Coupled Lower Cutoff Frequency 10 Hz or less at -3 dB .
Automatic Scale Factor - (2230) Probe tip deflection factors for coded probes are automatically indicated in the CRT readout.

HORIZONTAL SYSTEM

A Time Base - $0.05 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} / \mathrm{div}$ in $1-2-5 \mathrm{se}-$ quence. 10X magnifier extends the maximum sweep speed to $5 \mathrm{~ns} /$ div. In STORE mode, lower sweep speed is extended to $5 \mathrm{~s} /$ div.
B Time Base (2230) - $0.05 \mu \mathrm{~s}$ to $50 \mathrm{~ms} / \mathrm{div}$ in $1-2-5$ sequence. 10X magnifier extends the maximum sweep speed to $5 \mathrm{~ns} / \mathrm{div}$.

Variable Sec/Div Control - In storage mode has no effect. In Non-Storage mode, uncalibrated variable extends sweeps by at least 2.5:1.
Sweep Linearity - $\pm 5 \%$ over any two of the center eight divisions.
Time Base Accuracy - Storage Mode: 0.1% over full 10 cm (or div).
Nonstorage Mode

	$+15^{\circ} \mathbf{C}$ to $+\mathbf{3 5}{ }^{\circ} \mathbf{C}$	$\mathbf{0}$ to $+5 \mathbf{0}^{\circ} \mathbf{C}$
Unmagnified	$\pm 2 \%$	$\pm 3 \%$
Magnified	$\pm 3 \%$	$\pm 4 \%$

Horizontal Operating Modes - (2230) Nonstorage: A, Alternate with A intensified by B, and B; Storage: A, A intensified by B, and B.

DELAYED SWEEP

Delayed Sweep Delay Times - (2230) Continuously variable with 10 -turn control from less 0.5 divisions plus 300 ns to greater than 10 divisions.
Differential Delay Time Accuracy - (2230) $\pm 1 \%\left(0^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}, \pm 2 \%\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Delay Jitter - (2230) 5,000:1 (0.02\%), nonstore mode only.

TRIGGERING
A Trigger Sensitivity

$\mathbf{2 2 3 0}$	Internal	External
$\mathbf{1 0 \mathrm { MHz }}$	0.35 div	40 mV
$\mathbf{1 0 0 \mathrm { MHz }}$	1.5 div	200 mV
$\mathbf{2 2 2 0}$	Internal	External
$\mathbf{5 \mathrm { MHz }}$	0.3 div	40 mV
60 MHz	1.0 div	120 mV

B Trigger (Internal Only) Sensitivity - (2२३०) 0.35 div at $10 \mathrm{MHz}, 1.5$ div at 100 MHz .

Trigger System Operating Modes - Normal, P-P Automatic, TV Line, TV Field, and Single Sweep. HF REJ triggering attenuates signals above 40 kHz . Lowest useable frequency for P-P Automatic is 20 Hz .
Trigger Coupling - Automatic coupling with internal signal sources: Ac with P-P Automatic and TV Field; Dc with Normal and Single Sweep.
Trigger Sources - A trigger: internal, external, and line. B trigger (2230): internal only.
External Trigger Input - Input Coupling: Ac, dc, or dc divide by 10. Bandwidth: 100 MHz (2230), 60 MHz (2220); Ac-coupled lower cutoff frequency is 10 Hz or less at -3 dB . Maximum safe input voltage same as scope's vertical channels.

X-Y MEASUREMENTS

Deflection Factors - Same as scope's vertical system with the Volts/Div switch in calibrated detent.
Accuracy - Storage Mode is same as digital storage vertical deflection system.

2230 Nonstorage	Y-Axis	X-Axis
$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\pm 2 \%$	$\pm 3 \%$
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$\pm 3 \%$	$\pm 4 \%$

Storage Mode Bandwidth - (2230) dc to 100 MHz . (2220) dc to 60 MHz . Bandwidth changes proportionate to sweep speed.
Nonstorage Bandwidth - Y -axis same as scope's vertical system, X -axis: 3.0 MHz .
Nonstorage Phase Difference - Between X and Y amplifiers: $\pm 3^{\circ}$ from dc to 150 kHz .
Storage Mode Phase Difference - Time difference between Y -axis and X -axis is no more than 100 ns . The X-axis is sampled before the Y-axis. Between X and Y amplifiers: less than $\pm 2^{\circ}$ referenced to a 10 division signal period.

CRT AND DISPLAY FEATURES
CRT $-8 \times 10 \mathrm{~cm}$ display; internal graticule, unilluminated, Accelerating potential is $14 \mathrm{kV}, \mathrm{GH}$ (P31) phosphor standard.
Controls - Beam finder, focus, separate A and B sweep intensity (2२30), Storage/Readout intensity (2230), trace rotation.
Z-Axis - Sensitivity: 5 volts causes noticeable modulation, positive voltage decreases intensity. Usable frequency range is dc to 20 MHz (2230), to 10 MHz (2220). Maximum safe input voltage is $30 \mathrm{~V}(\mathrm{dc}+$ peak ac) or 10 V ac p-p at 1 kHz or less. Input resistance is approximately $10 \mathrm{k} \Omega$.

OTHER CHARACTERISTICS

Probe Adjustment Signal - $0.5 \mathrm{~V} \pm 5 \%$ square wave at $1 \mathrm{kHz} \pm 20 \%$.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T6, L3, SR1, RL2, PPØ, DC1, C $\emptyset, D T \emptyset$.

POWER REQUIREMENTS
Line Voltage Range - 90 V ac to 250 V ac. Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - $85 \mathrm{~W}, 2.0 \mathrm{~A}$, at 250 V (slow blow).

ENVIRONMENTAL AND SAFETY

Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: to 4500 meters ($15,000 \mathrm{ft}$), maximum operating temperature decreased $1^{\circ} \mathrm{C}$ per $1,000 \mathrm{ft}$ above $5,000 \mathrm{ft}$. Nonoperating: to $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Humidity - Operating and Nonoperating: 5 cy cles (120 hours) referenced to MLL-T-28800C, for Type III, Class 5 instruments.
Radiated and Conducted Emission - Requirements per VDE-0871. Meets Class B.
Vibration - Operating: 15 minutes along each of three axes at a total displacement of 0.015 inch p-p (2.4 g's at 55 Hz) with frequency varied from 10 to 55 to 10 Hz in one minute sweeps; hold for 10 minutes at 55 Hz in each axis; all major resonances must be above 55 Hz .
Shock - Operating and Nonoperating: 30 g 's, half-sine, 11 ms duration, 3 shocks per axis for a total of 18 shocks.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width (with handle)	360	14.2
Width (without handle)	237	9.3
Height (with feet and handle)	137	5.4
Depth (with front cover)	445	17.5
Depth (without front cover)	440	17.3
Depth (with handle extended)	511	20.1
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net (without cover, accessories, and pouch)	8.3	18.0

Option 10 for both the 2230 and 2220 adds the ability to communicate over the General Purpose Interface Bus. The 2230 Option 10 also includes 26 K of battery backed reference memory.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SHI, AHI, T6, L3, SRI, R12, TPØ, DCl, DT $\emptyset, C \emptyset, E 2$.

Option 12 RS-232-C Interface

Option 12 for both the 2230 and 2220 adds RS-232-C Interface ability. The 2230 Option 12 also includes 26 K of battery backed reference memory.

ORDERING INFORMATION

2230100 MHz Dual Time Base Digital Storage Oscilloscope
\$5,150
Includes: Two P6121 10X voltage probes (010-6121-01),
front panel cover (200-2520-00), accessory pouch ($016-0677-02$), operator manual ($070-4998-00$), 2230 user's reference card (070-5370-00).
222060 MHz Single Time Base Digital Storage Oscilloscope
\$4,150
Includes: Two P6122 10X voltage probes ($010-6122-01$), front panel cover (200-2520-00), accessory pouch ($016-0677-02$), operator manual ($070-5301-00$), 2220 user's reference card (070-5681-00).

OPTIONS

Option 10 - (2230) GPIB IEEE-488 Interface. $\quad+\$ 850$ Includes: 26 K of Battery-Backed Reference Memory.
Option 12 - (2230) RS-232-C Interface $\quad+\$ 850$ Includes: 26 K of Battery-Backed Reference Memory.
Option 10 - (2220) GPIB IEEE-488 Interface. $+\$ 550$ Option 12 - (2220) RS-232-C Interface. $+\$ 550$

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0859-00.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0860-00.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0862-00.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Order 020-0862-00.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 020-0863-00.

WARRANTY-PLUS SERVICE PLANS SEE PAGE 457

M1 - (2230) 2 Calibrations. $\quad+\$ 215$
M1 - (२२२०) 2 Calibrations. $\quad+\$ 205$
$\mathbf{M 2}-(2230)+2$ Years Service. $\quad+\$ 250$
$\mathbf{M 2}-(2220)+2$ Years Service. $\quad \mathbf{+ \$ 2 3 5}$
M3 - (२230) 4 Calibrations \& 2 Years Service. $+\$ 640$
M3 - (२२२०) 4 Calibrations \& 2 Years Service. $+\$ 610$
M4 - (2230) 5 Calibrations.
$+\$ 555$
M4 - (२२२०) 5 Calibrations.
$+\$ 535$
M5 - (२230) 9 Calibrations \& 2 Years Service. $+\$ 1,240$
M5 - (२२२०) 9 Calibrations \& 2 Years Service. $+\mathbf{\$ 1 , 1 8 5}$

OPTIONAL ACCESSORIES

2230 Service Manual - Order 070-4999-00
2220 Service Manual - Order 070-5302-00
\$25

Rackmount Adaptor Kit -
Order 016-1003-00
\$25

Carrying Strap - Order 346-0199-00 \$17
Carrying Case - Order 016-0792-01 \$340
Viewing Hood -
(Binocular) Order 016-0677-02
$\$ 42$
(Collapsible) Order 016-0592-00
$\$ 13$
(Polarized) Order 016-0180-00
$\$ 40$
A6902B Isolator - For floating measurements see page 437 for complete description.
Current Probes - A6302/AM503. See page 443.
CRT Light Filter - (Clear). Order 337-2775-01 \$1.95
1107 Mounting Kit — Order 016-0785-00
Recommended Probes - See page 426.
RECOMMENDED CARTS
K212 - Portable Instrument Cart
\$330
K117 - Instrument Shuttle
RECOMMENDED CAMERAS
C-5C Option 04 - See page 416.
C-7 Option 02 - See page 410.
C-30BP - See page 412.
Customer Training is available on this product. See page 452 for further details.

The 336 with Option 01 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

1 MS/s, 140 kHz Useful Storage Bandwidth
Cursors for Time and Voltage Measurements
Signal Averaging
Envelope Mode
GPIB and 8 Screen Memory Option (16 k)
50 MHz Nonstorage Bandwidth

CRT Readout

TYPICAL APPLICATIONS

* Medical Systems

* Communication Equipment Service

* Electronic Design

* X-Ray Equipment Maintenance

The SONY/TEKTRONIX 336 is a combination nonstorage and digital storage portable oscilloscope. It is capable of displaying analog and digitized waveforms simultaneously, and can store up to 18 digitized waveforms for recall and display. The 336 is a microprocessor controlled instrument that incorporates alphanumeric CRT readouts of the vertical and horizontal scale factors, the delay time position, and voltage and time readouts of the cursor positions. Many of the oscilloscope features and modes are chosen from a menu displayed on the CRT rather than from hard-wired front-panel switches. Also included is an Auto mode for both vertical volts per division and horizontal time per division, allowing "hands off" operation in many applications.

The 336 has a dual-channel, dc-to- 50 MHz vertical deflection system for both nonstorage and equivalent-time digitizing. Storage bandwidth for single sweep events (waveforms acquired as the result of a single triggering event) is dc-to- 140 kHz . The vertical channels have calibrated deflection factors from 5 mV to 10 V per division with a choice of either ac or dc input coupling. In the Nonstore mode, the 336 operates like a conventional oscilloscope.

GPIB (talker only) is optional on the 336. Included in the option is a memory backup of up to eight screens (two 1 k waveforms each) of information.

CHARACTERISTICS
 DIGITIZER AND MEMORY

Speed - Digitizing rates up to 1 megasample/s.
Useful Storage Bandwidth - Real Time Sampling: Dc to $140 \mathrm{kHz}(-3 \mathrm{~dB})$. Equivalent Time Sampling: Dc to $50 \mathrm{MHz}(-3 \mathrm{~dB})$.
Resolution - Vertical: Eight bit. Horizontal: Ten bit.
Memory Size - Standard: 2 kbyte (one frame of two waveforms). Option 01: 16 kbyte (up to eight frames of two 1 k waveforms each storage capacity). Data Retention: At least 3 days (after 8 hours of operation).

VIEW DISPLAY MODE

This is the saved "store" waveform (saved from Store display mode). Process functions are the same as Store display mode.

NONSTORED AND STORED DISPLAY MODES

The following characteristics apply to both modes unless otherwise indicated.

VERTICAL SYSTEM

(2 IDENTICAL CHANNELS)
Bandwidth and Risetime*1

$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Dc to at least 50 MHz	Dc to at least 40 MHz

${ }^{\text {*1 }}$ At all deflection factors from a 50Ω source.
Deflection Factor - Range: $5 \mathrm{mV} / \mathrm{div}$ to 10 $\mathrm{V} / \mathrm{div}$. Accuracy is $\pm 3 \%$. Uncalibrated, continuously variable between steps, and to at least $25 \mathrm{~V} /$ div.
Vertical Modes - Stored Mode: CH 1, CH 2, Chop, Dual and Trigger View. Nonstored Mode: CH 1, CH 2, Chop and Dual.
Normal Mode (Store Mode Only) - Acquired displayed signal.
Envelope Mode (Store Mode Only) - 1, 8, 16, 32, 64, 128, 256 sweeps, or continuous at s/div settings of $2 \mathrm{~ms} /$ div to $0.2 \mathrm{~s} /$ div.
Average Mode (Store Mode Only) - 8, 16, 32, 64, 128 or 256 sweep averages.
Process Mode (Store and View Mode Only) -
Waveform: $\mathrm{CH} 1+\mathrm{CH} 2$ is within 6%. $\mathrm{CH} 1-$ CH_{2} is within 6%. $\mathrm{CH} 1 \times \mathrm{CH}_{2}$ is within 7%. Parameters (Selectable): RMS is within $3 \%+6 \%$ of $\mathrm{V} /$ div setting. Mean is within $3 \%+4 \%$ of $\mathrm{V} / \mathrm{div}$ setting. $P-p$ is within $3 \%+4 \%$ of $\mathrm{V} /$ div setting. Store or view waveforms must acquire initial ground reference level.
Common-Mode Rejection Ratio - At least $10: 1$ at 10 MHz (5 MHz storage).
Input R and C $-1 \mathrm{M} \Omega \pm 2 \%$ paralleled by 33 pF .
Maximum Input Voltage - 200 V (dc + peak ac) or 200 V p-p ac to 1 kHz .

HORIZONTAL SYSTEM
 (NONSTORE MODE ONLY)

Time Base A - $0.2 \mathrm{~s} /$ div to $0.1 \mu \mathrm{~s} /$ div in a 1-2-5 sequence. X10 MAG extends the maximum sweep rate to $10 \mathrm{~ns} / \mathrm{div}$. (At sweep speeds slower than 0.2 s the scope automatically goes to Roll mode.)
Time Base B — $50 \mathrm{~ms} /$ div to $0.1 \mu \mathrm{~s} /$ div in a $1-2-5$ sequence. X10 MAG extends the maximum sweep rate to $10 \mathrm{~ns} /$ div.
Variable Time Control - Continuously variable between calibrated settings of the A s/div switch. Extends the slowest sweep rate to at least $0.5 \mathrm{~s} / \mathrm{div}$.

Time Base Accuracy

	$+20^{\circ} \mathrm{C}$ to $+\mathbf{3} 0^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Unmagnified	$\pm 2 \%$	$\pm 3 \%$
Magnified	$\pm 3 \%$	$\pm 4 \%$

Horizontal Display Modes - Nonstore: A sweep, B delay, alternate, X-Y. Storage: A sweep, B delay, $X-Y$.

CALIBRATED SWEEP DELAY

Differential Time Measurement Accuracy (Nonstore Mode)

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	within 1% of indicated value
$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	within 2.5% of indicated value

Delay Time Jitter (Nonstore Mode) $\leqslant 1$ part in 10,000.
Delay Time Resolution (Store Mode) 14 bit.
Cursor Accuracy (Store Mode) $-\Delta \mathrm{V}$: Within 3%. $\Delta \mathrm{T}$: Real time sampling is $\pm 0.1 \%$ of full scale. Equivalent time sampling from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ is $\pm 3 \%$; from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ is $\pm 4 \%$.

TRIGGERING A AND B
A Trigger Modes - Normal: Sweep generator requires a trigger to generate a sweep. Automatic: Sweep generator free runs in the absence of a trigger. Single sweep: One sweep is initiated by the first trigger after reset.
Trigger Sources - Internal, CH 1, CH 2, composite or external.
Sensitivity and Coupling

Coupling	To 10 MHz	To 50 MHz
AL	0.3 div above 30 Hz	1.5 div
LF Rej	0.5 div above 50 kHz	1.5 div
HF Rej	0.5 div, 30 Hz to 50 kHz	--
Dc	0.3 div	1.5 div
External	70 mV	350 mV
TV	Stable video rejection and sync separation from sync-negative NTSC or PAL composite video	

Trigger Jitter - Nonstore Mode: 1 ns or less at 50 MHz . Storage Mode: ± 1 sample period.
External Trigger View - Deflection Factor: Ext is $100 \mathrm{mV} / \mathrm{div}$. Ext $\div 10$ is $1 \mathrm{~V} / \mathrm{div}$.
External Trigger Input $-R$ and $C=1 \mathrm{M} \Omega$ paralleled by $33 \mathrm{pF}(200 \mathrm{~V}$ dc + peak ac) maximum input.
Acquisition Window Trigger Point - Pretrigger: $7 / 8$ of waveform occurs before trigger point. Midtrigger: $1 / 2$ of waveform occurs before trigger point. Posttrigger: $1 / 8$ of waveform occurs before trigger point.

X-Y OPERATION (NONSTORE)

Full Sensitivity X-Y (CH 1 Horizontal, CH 2 Vertical) $-5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ with bandwidth of dc to 1 MHz . Phase difference is 3° from dc to 50 kHz .

CRT AND DISPLAY FEATURES

CRT - 8×10 div ($0.6 \mathrm{~cm} /$ div) display, GH (P31) phosphor. 12 kV operating potential.
Graticule - Internal. Vertical and horizontal centerlines marked in 5 minor div/major $0.6 \mathrm{~cm} /$ div.
Z-Axis Input - Range +3 V to +25 V with 1 MHz usable frequency range. Input resistance of at least $10 \mathrm{k} \Omega$.

ENVIRONMENTAL CHARACTERISTICS

Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Nonoperating: $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Option 01: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Altitude - Operating: To 4600 m ($15,000 \mathrm{ft}$). Decrease maximum operating temperatures $1^{\circ} \mathrm{C}$ for each 1000 ft above 5000 ft . Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration $-0.025 \mathrm{p}-\mathrm{p}(4 \mathrm{~g}$'s at 55 Hz) displacement, 15 minutes along each axis from 10 Hz to 55 Hz .
Humidity - 120 hrs of MLL STD 202D, method 106C, minus freezing and vibration.
Shock - 30 g 's half sine, 11 ms duration on each axis.

OTHER CHARACTERISTICS

Chart Output - Clock Rate: Fast or slow. Amplitude: $500 \mathrm{mV} / \mathrm{div}$. Output Impedance: 220Ω.
Calibrator - Output Voltage: $0.3 \mathrm{~V} \pm 1 \%$. Output Resistance: 5Ω. Frequency: $\approx 1 \mathrm{kHz}$.
Ac Power Requirements - Line Voltage Ranges: 90 V ac to $132 \mathrm{~V} \mathrm{ac}, 180 \mathrm{~V}$ ac to 250 V ac . Line Frequency: 48 Hz to 440 Hz . Power Consumption: 50 W maximum.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	237	9.3
Height	112	4.4
Depth (Handle Not Extended)	370	14.6
Depth (Handle Extended)	482	19.0
Weight	$\mathbf{k g}$	lb
Net	5.0	11.1
Shipping	10.5	23.1

gpig Option 01

GPIB Interface/Extended Memory

Option 01 provides a GPIB interface (talk only) and extended memory. The GPIB interface transfers waveforms and scale factor information to a listener or controller. 16 K total extended memory stores 16 additional waveforms at 2 waveforms per screen.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T1, L \emptyset, SR1, RL $\emptyset, ~ D C 2, ~ D T \emptyset, ~ P P \emptyset, ~ C \emptyset . ~$

ORDERING INFORMATION

336 Digital Storage Portable Oscilloscope
\$4,960
Includes: Two 10X P6148 Attenuator probes (010-6148-13); accessory pouch (016-0718-00); front panel cover ($016-0719-00$); CRT filter (378-0225-00); operator manual (070-4421-00) and service manual (070-4420-00).
Option 01 - GPIB Interface/Extended
Memory.
$+\$ 875$

OPTIONAL ACCESSORIES

Camera - Order C-30BP Option 01
\$1,524
Camera Mounting Adaptor -
Order 016-0327-01
$\$ 170$
Carts - Order K212 or K117. See page 423
for complete description.
The SONY $/ T E K T R O N I X * 336$ is manufactured and marketed in Japan by Sony/Tektronix Corporation, Tokyo, Japan. Outside of Japan the 336 is available from Tektronix, Inc., its marketing subsidiaries and distributors.

The 7D20 is used with 7000 Series oscilloscopes, such as the R7603, shown here, for rack installations. See pages 246 through 254 for details.

7D20/7D20T

The 7D20 and 7D20T comply with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.
Digital Storage for 7000 Series Mainframe (7D20)

70 MHz Bandwidth for Repetitive Signals
10 MHz Single-Shot Bandwidth
Two Channels Simultaneous Acquisition
Totally Programmable
Storage of Six Independent Waveforms
Enveloping and Signal Averaging
Cursor Measurements
Pretrigger and Posttrigger

TYPICAL APPLICATIONS

* Ultrasonics
* Digital Design
* RF Modulation

* Automated Production Testing

The 7D20 brings state-of-the-art digital performance to Tektronix 7000 Series mainframes and rackmounts.

The 7D20 is a GPIB programmable plug-in that is compatible with all 7000 Series mainframes (including the USM 281C) except the 7104. When combined with a 7000 Series mainframe, this plug-in creates a fully programmable, digitizing oscilloscope.
The 7D20T is the ideal high performance digitizer for automated systems applications not requiring a complete oscilloscope mainframe.

The 7D20T is supplied with its own power module, but without a display. Rear panel connectors provide X, Y, and Z output data for use with an external $X-Y$ monitor.

Four feedthrough cables permit routing of input/output signals from the front panel of the 7D20T to the rear in rack-mounted applications. The GPIB cable may be connected to either the front or the rear of the 7D20T.

For those users who already own a 7D२0 and would like to convert this 7000 Series plug-in into the 7D20T configuration, the power module itself is available as a 7D20T Option 01.
The capabilities and characteristics described for the 7D20 also apply to the 7D20T.
The 7D20 can accurately measure the amplitude of a 50 ns wide transient event. Dual samplers simultaneously acquire two channels as if it were a "dual-beam" scope.
Beyond basic acquisition, the 7D20 offers signal averaging to reduce uncorrelated noise, envelope displays to compare dynamic characteristics of changing signals, pretrigger for viewing prior to the trigger event, storage of six independent waveforms plus a reference waveform, cursors for more accurate two-dot measurements, and user prompting and menu displays to improve user interface effectiveness.

Digital Storage

A 40 MHz maximum sampling rate provides approximately 10 MHz single-shot bandwidth and up to 70 MHz bandwidth with repetitive signals.

Storage and Recall Front Panel Settings

Up to six different front panel set-ups can be stored and recalled as desired. These settings, plus the last panel setup, are saved in nonvolatile memory and are restored automatically when power is applied.

Fully Automated Measurements

Since the 7D20 is completely programmable, fully automated measurement and test-

The 7D20 is ideal for system applications of all sorts and supports many levels of automation, from menu driven to fully automated.
ing is possible. Tektronix programmable signal sources, multi-function interface, and RF scanner provide and control the test signals while the 7D20 acquires waveforms for the computer or controller.

TekMAP Software Support

Tektronix Measurement and Application Programs (TekMAP) help you to tap the full potential of the 7D20. The 7D20/Tek 4041 software package supports the 7D20 when used in conjunction with the Tek 4041 Controller. It provides automated pulse parameter analysis and storage and retrieval of waveforms on DC-100 tape. Data results are available in graphic or tabular form.
The 7D20/HP Series 200 software package supports the 7D20 when used with the HP Series $200(216,226,236)$ Technical Computers. It provides automated pulse parameter analysis, propagation delay measurements, FFT, and storage and retrieval of front panel settings and waveforms. Data results are available in graphic or tabular form.
Additional TekMAP products will be available early 1986. Contact your local sales office for information.

press returve for menu:
Archival hard copies can be produced by a system consisting of a 7D20 and mainframe, the Tektronix 4041 System Controller, 4105A Computer Display Terminal, and the 4695 Color Graphics Copier.

Measurement Flexibility

View and compare two different portions of the same waveform or of two different waveforms. All of these waveforms have been repositioned and vertically compressed. The two upper waveforms, two pulses from a single pulse train, are magnified portions of the lowest waveforms. The time (ΔT) between the two cursors indicates the time between the leading edges of two pulses in the pulse train.

Hands Off Operation With Probe Identify Feature

Recommended for use in interactive, com-puter-coordinated tasks, the Tektronix P6053B Probe allows computer routines to be sequentially activated at the 7D20's probe tip. This probe's "Identify" button signals the GPIB Interface via an input channel coded request. This capability allows the operator to work at a short distance from the 7D20 without the need to touch front panel controls. Two such probes may be used, one for each vertical channel.

Automated Testing

For interactive test procedures, text messages, wave forms, and front panel set-ups may be transmitted and received from the 7D20 to a controller or computer. The procedure in this display informs the operator of the next task. Upper and lower tolerance limits are displayed as a single envelope. This envelope was initially constructed using the 7D20's envelope feature while a test signal was varied to its allowable limits. The waveform was then transferred and saved by the controller to serve as the test reference or overlay.

Signal Averaging

Averaging reduces uncorrelated noise to improve measurement accuracy and display quality. Continuous and self-terminating averaging are provided. The self-termit nating averaging processes a fixed number (N) of waveforms and then holds the result in memory. The N value is selectable from 8 to 256 in powers of 2 . The top waveform in this display is the result of averaging the bottom waveform 128 times.

Enveloping

Enveloping reveals subtle variations in signals by recording maximum and minimum values of recurring sweeps while vectors "paint" in the envelope. The effects of frequency shift are dramatically displayed.

X-Y Waveform Display and Time Reference

Unique display capability allows viewing Y versus X events and Y versus time simultaneously. $X-Y$ channels are matched at 10 MHz with $<2^{\circ}$ of phase shift.

Cursor Measurements

Accurate amplitude measurements (referenced to ground) and time measurements (referenced to trigger position) are made using one cursor. Point-to-point difference (Δ) measurements are made using two cursors.

Master Menu

DSU	1	$\begin{aligned} & \text { 200mV } \\ & \text { STORE } 6 \end{aligned}$	$\begin{array}{r} 200 n s \\ \text { tpos } 0 \end{array}$
		MAStER MENU	
	1.* STORE PANEL * 2, * RECALL PANEL * 3 DISPLAY CAL PATTERN 4 UTILITIES		
csu	1	290mV 200ns	VZR-4.84
		$V=-392.0 \mathrm{mV} \quad \mathrm{T}=$	$408.8 n s$

The master menu offers a convenient way to enable special functions such as the Store and Recall of front panel settings and also allows you to branch-out to other menus.

The 7D20T consists of the 7D20 and its own dedicated power module, for use in applications not requiring local visual display of acquired signals.

CHARACTERISTICS
 VERTICAL SYSTEM

Input - Two channels, simultaneous sampling, BNC connectors.
Acquire Modes - CH 1, CH 2, Add, Both (dual channel).
Sensitivity -5 mV to $5 \mathrm{~V} /$ div; 1-2-5 sequence.
Bandwidth -70 MHz maximum. (Ac Coupled Low Frequency Response: 10 Hz or less.)
Step Response -5 ns or less.
Input Impedance - $1 \mathrm{M} \Omega$ paralleled by $\approx 20 \mathrm{pF}$. Maximum Input Voltage - Dc Coupled: 250 V , 1 kHz or less (dc + peak ac). Ac Coupled: 400 V , 1 kHz or less (dc + peak ac).
Signal Isolation - 100:1 dc to 20 MHz .
Vertical Resolution - 8 bits, 256 levels, 0.04 div/level.

Gain Ratio Accuracy $-<2 \%$. Maximum error throughout the V /div range with acquire gain calibrated at $10 \mathrm{mV} /$ div. Measurement valid with Cursors or GPIB.
Noise - Mean value of 50 measurements taken at 0.02 div increments.

Volts/Div	Full Scale/RMS Noise	Percent of Full Scale
5 mV	52 dB	0.25
10 mV to 5 V	55 dB	0.18

NOTE: Full scale $=10.24$ divisions.
Phase Match X-Y $<2^{\circ}$ from dc to 10 MHz . HORIZONTAL SYSTEM
Time Division Range - External Clock, $20 \mathrm{~s} /$ div to $50 \mathrm{~ns} /$ div in 1-2-5 sequence.
Digitizing Technique Versus Time/Division - Real Time (Rolling Display): External Clock, $20 \mathrm{~s} / \mathrm{div}$ to $0.1 \mathrm{~s} / \mathrm{div}$. Real Time: $50 \mathrm{~ms} / \mathrm{div}$ to $500 \mu \mathrm{~s} / \mathrm{div}$. Extended Real Time: $200 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mu \mathrm{~s} / \mathrm{div}$. Equivalent Time: $1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ns} /$ div.
Note: Single events can be captured as fast as $2 \mu \mathrm{~s} /$ div. For $1 \mu \mathrm{~s} /$ /div to $50 \mathrm{~ns} /$ div, repetitive events are required to build a complete waveform.
Time Measurement Accuracy - One Cursor: 0.1% of reading $+0,-1$ sample interval $\pm 300 \mathrm{ps}$. Two Cursors: 0.1% of reading $\pm 600 \mathrm{ps}$.

Horizontal Resolution

Time/Division	Points/ Waveform	Resolution Points/Division
External, 20 s to $500 \mu \mathrm{~s}$	1024	100
$200 \mu \mathrm{~s}$ to $2 \mu \mathrm{~s}$	$820^{* 1}$	$80^{* 1}$
$1 \mu \mathrm{~s}$ to 50 ns	1024	100

* ' Waveform interpolation to 1024 points is available for transfer over the GPIB Interface.

Trigger Position

Pretrigger: 0 to 10 div in 1 div increments. Posttrigger (delay): 0 to 1500 div in 1 div increments (disabled during Roll with Envelope or Average).

	Frequency Range	Sensitivity	
		External	
Normal	dc to 30 MHz	0.4 div	60 mV
(Dc Coupling)	30 MHz to 70 MHz	1.0 div	150 mV
P-P and	30 Hz to 200 Hz	2.0 div	300 mV
Auto	200 Hz to 30 MHz	0.6 div	90 mV
	30 MHz to 70 MHz	1.2 div	200 mV

[^36]
SIGNAL PROCESSING

Cursors Readout - With one cursor ($\Delta \mathrm{Off}$), vertical and horizontal coordinate values are referenced to zero volts and the trigger position as zero time. With two cursors ($\Delta \mathrm{O} \mathrm{n}$), vertical and horizontal coordinate values are the difference between the two cursors.

Signal Averaging

AVE N: A self-terminating, stable average processing " N " number of waveforms and then holds the result in memory. The " N " value may be selected using the SET N function ($N=8,16,32$, $64,128,256$).
AVE: A continuous, stable averaging process. N waveforms are averaged as in AVEN, then additional waveforms are weighted at $1 / \mathrm{N}$. In Roll mode a running average (smooth) is available to provide high frequency filtering.

Enveloping

ENV N : A self-terminating recording of waveform maxima and minima. When N waveforms are processed, the result is held in memory.
ENV: A continuous (infinite) recording of waveform maxima and minima.

Waveform Modifiers

VPUP \uparrow (Vertical Position Up), VPDN \downarrow (Vertical Position Down): Provide vertical positioning control of any stored waveforms.
VCMP \downarrow (Vertically Compress), VXPD \downarrow (Vertically Expand): Provide vertical display expansion or compression. Two expansions or compressions in $1-2-5$ calibrated steps, from the original V/div are available.
HMAG (Horizontal Magnify): Displays the cursor waveform horizontally magnified by a factor of 10 . HMAG ALL (Horizontally Magnify All Waveforms): Displays all waveforms at 10 times horizontal magnification.
VS (Versus): Creates a Y versus X display of any two waveforms.

GPIB INTERFACE

Interface Function Subsets Implemented:

SH1	Complete source handshake
AH1	Complete acceptor handshake
T5	Complete talker - no secondary address
L3	Complete listener - no secondary address
SR1	Complete service request
RL1	Complete remote local
DC1	Complete device clear
DT1	Complete device trigger
PP0	No parallel poll
C0	No controller
E2	Three state

Programmable Functions - All instrument setting and operating modes are programmable except for Variable V/Div and Horizontal Position. However, these uncalibrated controls can be overridden and forced into the "CAL" position on command from the GPIB Interface. The display of Menu and ID is selectable from the front panel only.
Format - Device dependent commands in ASCII. Waveform data points selectable as BINARY or ASCII.
Waveform Output Time - 250 ms minimum for BINARY and 2.5 s minimum for ASCII. Actual transfer times depend upon the speed of the receiving device.

INPUTS

External Trigger (Front Panel) - Maximum Input Voltage: 250 V (dc + peak ac).
Signal Input Impedance - $1 \mathrm{M} \Omega$, paralleled by $\approx 20 \mathrm{pF}$.
Hold Next (Mainframe Rear Panel) - Initiates Hold Next condition; connected to Single Sweep Reset connector.

OUTPUTS

Hold Next Ready - High level indicates unit is in Hold Next condition; output level remains low when unit is not in Hold Next condition; connected to Single Sweep Ready connector.
+Gate Out - Provides high level output signal for duration of waveform/character readout.

PLUG-IN COMPATIBILITY

The 7D20 is compatible with all 7000 Series mainframes with the exception of the 7104 mainframe. Use with the 7104 will void the 7104 warranty.

PHYSICAL CHARACTERISTICS				
	7D20		7D20T	
Dimensions	mm	in	mm	in
Width	206	8.1	216	8.5
Height	127	5.0	183	7.2
Depth	371	14.6	566	22.3
Weight	kg	$\mathbf{l b}$	kg	lb
Net	3.6	8.1	10.4	23.0
Shipping	8.0	17.8	12.0	26.6

ORDERING INFORMATION

7D20 Programmable Digitizer (Plug-in) \$7,265 Includes: Instruction manual (070-3857-01); pocket reference guide (070-3205-01).
7D20T Programmable Digitizer
\$8,865
7D20T Option 01 Power Module
(Converts Existing 7D20 to 7D20T) -\$7,265

TekMAP SOFTWARE

7D20/HP Series 200 Software

Order S42H201 Option 01
(on $5^{1 / 4^{\prime \prime}}$ media)
$\$ 950$
Order S42H201 Option 02
(on $3^{1 / 2^{\prime \prime}}$ media)
Includes: Operator manual (070-5649-00)
7D20/Tek 4041 Software
Order 062-7732-00 (available on
DC-100 tape only)
\$150
Includes: Operator manual (070-5227-00). For a fully configured Tek 4041 based measurement system, see the MP 2401 on page 333.

UTILITY SOFTWARE
For 7D20/7D20T/4041. Order 062-6959-01
$\$ 150$
For 7D20/7D20T/4052A. Order 062-6961-01 \$150
See page 297 for description and ordering information.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
RECOMMENDED PROBE (7D20 and 7D20T)
P6053B Identify Probe - For remote ser
vice request via probes "Identify" button. 10X attenuation; 200 MHz bandwidth; scale factor coding; 6 ft . Order 010-6053-13

RECOMMENDED MAINFRAME FOR 7D20
R7603 Option 20 - The R7603 mainframe provides a 6 -inch diagonal CRT display and three-wide plug-in compartment in a 5.25 inch high rackmount configuration. Option 20 permits rear panel access to the 7D20's GPIB Interface and includes cable 175-7151-00 required inside 7D20. See page 201 for further information. Order R7603 Option 20 Mainframe

CONVERSION KITS

Cabinet-to-Rackmount - Equipped with slide-out assembly to rackmount a 7D20T to the left of a 4041 or another 7D20T. Order 016-0827-00
\$340
Cabinet-to-Rackmount - Equipped with slide-out assembly to rackmount a 7D20T to the left of a TM 5003. Order 040-0984-01
Cabinet-to-Rackmount - Equipped with slide-out assembly to rackmount a 7D20T to the left of a blank plug-in compartment

OPTIONAL ACCESSORY (R7603)
A field installable kit adds Option 20 to the standard R7603. Intended for use with a previously purchased R7603, this kit provides parts to connect the 7D20's GPIB Interface to the R7603 mainframe. Order 040-1093-00

7854

The 7854 is designed to support other products which comply with IEEE Standard 488-1975.

Waveform Parameters at the Touch of a Key
Dc to 400 MHz Real Time Bandwidth at $10 \mathrm{mV} / \mathrm{div}$

Calibrated Sweep Rates to $\mathbf{5 0 0} \mathrm{ps} /$ div
Stores Repetitive Waveforms Up to 14 GHz with Sampling Plug-Ins

Single Shot Events and Pretrigger Up to $50 \mu \mathrm{~s} / \mathrm{div}$ (with 7B87 Time Base)

Signal Averaging

Resolution Up to $\mathbf{0 . 0 1}$ Div on Stored Data (10 Bits)

Choose 128, 256, 512, 1024 Points/
Waveform
Keystroke Programming
(Up to 2000 Keystrokes with Option 2D)
GPIB Interface (Standard)

TYPICAL APPLICATIONS

* Power Supplies Switching

* Semiconductors

* Fiber Optics

See page 192 for Application Notes

The 7854 Waveform Processing Oscilloscope represents a unique approach to today's test and measurement problems. It combines the features of a high performance real time oscilloscope with digital storage and waveform processing. When integrated with any of a wide variety of 7000 Series plug-ins, it becomes a very powerful measurement system. The 7854 offers programmable measurement routines, GPIB interface for mass data and program storage plus simultaneous display of real time and stored waveforms. The 7854's on-board memory can store up to 40 waveforms and 2000 keystrokes with Option 2D.

Mainframe and calculator keyboard functions provide cursor control and waveform parameter information at the touch of a button, e.g., maximum, minimum, peak-to-peak, rise. Additional features on the calculator keyboard enable arithmetic manipulation of waveforms such as differential, integral, log, and absolute value.

Signal averaging can recover signals buried in random noise and improve measurement accuracy. One or two cursors are selectable for voltage and time measurements. One cursor provides voltage measurements referenced to ground and time measurements

Conventional Scope: In the SCOPE mode, the 7854 provides a complete plug-in scope giving standard displays like other Tektronix high performance scopes.

Storage Scope: Risetime is calculated by pushing a single key. Time and voltage differences between cursors are shown on the line above risetime.

Multiple Storage and Calculation: Volts, current, and power are all shown on the display. Power is a simple two or three keystroke calculation.

Waveform Processing: Keystroke Programming enables the user to design measurement routines tailored to indivia ual tests or experiments.
referenced to time zero. Two cursors enable Δ time and Δ voltage measurements. Cursors may also be used to bracket an area of interest for measurement consideration.

For low frequency single-shot applications, the 7B87 Time Base plug-in allows storage of events that occur prior to a trigger (pretriggering). The amount of pretrigger data may be varied continuously from 0.2 divisions of pretrigger to 9.9 divisions.
The 7854's keystroke programming (simply storing a series of keystrokes to be executed) assures repeatable measurement results and lowers the skill level needed to operate the system. Measurement loops can be written to save time, log results and make pass/fail decisions. Full subroutine and conditional branching capabilities are provided.

TekMAP Software Support

The TekMAP (Tektronix Measurement Application Programs) library of software products support the Tektronix 7000 Series GPIB Programmable Digitizers in automated engineering or research environments.
The 7854/IBM PC Communication and Control Software (COMMUTE) supports the 7854 when used in conjunction with an IBM PC or PC compatible, and a Tek GURU or National GPIB board. Its easy to use com-mand-driven menu provides quick access to basic utilities for instrumentation and control. COMMUTE simplifies 7854 operation plus provides diskette storage for waveform, program, and measurement results.
Additional TekMAP products will be available early 1986. Contact your local sales office for information.

CHARACTERISTICS

VERTICAL REAL TIME SYSTEM

Input - Two plug-in compartments; compatible with 7000 Series plug-ins.
Modes — Left, Alt, Add, Chop, Right.
Mainframe Bandwidth - 400 MHz with 7A29 or 7A19 Amplifier plug-in.
Mainframe Step Response - 0.9 ns or less with 7A29 or 7A19 Amplifier plug-in.
Chopped Mode - Chop rate is $\approx 1 \mathrm{MHz}$.
Delay Line - Permits viewing leading edge of displayed waveform (7B50 Series time bases not recommended for 7854 except 7B50A).
Trace Separation Range - In dual-sweep modes, B trace can be positioned 4 div above or below the A trace.

CRT AND DISPLAY FEATURES
 CRT Display Modes

Scope (Conventional display).
Stored (Digital data display).
Both (Stored display plus real time waveforms).
Program Entry (User program text display).
HORIZONTAL REAL TIME SYSTEM
Input - Two plug-in compartments; compatible with 7000 Series plug-ins. 7000 Series vertical amplifiers and specialized plug-ins may also be used. ${ }^{* 1}$ The 7B87 is recommended for pretrigger and single shot digitizing.
Modes of Operation - A, Alt, Chop, B.
Fastest Calibrated Sweep Rate - $0.5 \mathrm{~ns} / \mathrm{div}$.
Chopped Mode - Rep rate is $\approx 200 \mathrm{kHz}$.
X-Y Mode - Phase shift between vertical and horizontal channels is within 2° from dc to 35 kHz without phase correction, (dc to 1 MHz with phase correction, B horizontal only, Option 02).
${ }^{\text {*/ }}$ See plug-in compatibility for exceptions for digital storage.

PROGRAM STORAGE

Keystroke programming allows the mainframe to remember a sequence of keystrokes (with remote waveform calculator or GPIB*1).
Editing - Line by line editing capability.

* Mainframe vertical and horizontal modes and all other keys except edit commands are programmable.

DIGITAL STORAGE

Equivalent Time Bandwidth - 400 MHz . See 7000 Series system bandwidth specifications. Accuracy - Refer to plug-in specifications.
Acquisition Channels - One or two simultaneous channels (Plug-in Chop mode not valid).
Acquisition Window $- \pm 5$ div from center screen both vertical and horizontal.

Resolution

Vertical: 0.01 div.
Horizontal: Selectable points/waveform on remote keyboard.

Horizontal Resolution (divs)	Points/Waveform
0.01	1024
0.02	512
0.04	256
0.08	128

PLUG-IN COMPATIBILITY Ext Clock $-2 \mu \mathrm{~s} /$ point maximum.

Fastest Sweep (Time/Div)	Points/Waveform
$50 \mu \mathrm{~s}$	128
$100 \mu \mathrm{~s}$	256
$200 \mu \mathrm{~s}$	512
$500 \mu \mathrm{~s}$	1024

[^37]| | MEMORY FORMAT | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| | STANDARD | | | OPTION 2D | | | | | |
| Points Per Waveform*1 | 128 | 256 | 512 | 1024 | 128 | 256 | 512 | 1024 | |
| Maximum Number of Waveforms | 16 | 8 | 4 | 2 | 40 | 20 | 10 | 5 | |
| Maximum Number of Constant Registers | 50 | | | | | 100 | | | |
| Maximum Number of Prog Commands plus lines | 920 | | | | 2000 | | | | |

* 1 Unless otherwise selected, default value is 512 at power-up.

OUTPUTS/INPUTS

+Sawtooth - Positive-going with baseline at 0 $\mathrm{V} \pm 1 \mathrm{~V}$ into $1 \mathrm{M} \Omega$. Voltage is $1 \mathrm{~V} / \mathrm{div}(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 50 \mathrm{mV} / \mathrm{div}(\pm 15 \%)$ into 50Ω. Output R is $\approx 950 \Omega$.
+Gate - Positive pulse of the same duration and coincident with sweep. Output voltage is 10 $\mathrm{V}(\pm 10 \%)$ into $1 \mathrm{M} \Omega, 0.5 \mathrm{~V}(\pm 10 \%)$ into 50Ω. Output R is $\approx 950 \Omega$. Source is selectable from A gate, B gate, or Delayed gate.
Vertical Signal Out - Selected by A Trigger Source switch. Output voltage is $0.5 \mathrm{~V} /$ div into 1 $\mathrm{M} \Omega, 25 \mathrm{mV} /$ div into 50Ω. Output R is $\approx 950 \Omega$. Bandwidth depends upon vertical plug-in.
Remote Single Sweep Reset - Rear panel BNC, ground closure activated.
TTL Output - Rear panel BNC, TTL output under remote keyboard control (SWH and SWL).
External Z-Axis Input -2 V p-p for full intensity range from dc to 1 MHz . Positive signal blanks the trace. Maximum input voltage is 15 V (dc plus peak ac).
Camera Power Output - Three-prong connector to the left of the CRT provides power, ground, and remote single-sweep reset access for the C-50 Series cameras.
Memory Back-Up Power Input - 6.0 V to 6.5 V at 0.7 amp to preserve stored data if mainframe's power is interrupted.

GPIB INTERFACE

Interface Function Subsets Implemented:
SH1 \quad Complete source handshake
AH1 Complete acceptor handshake
T5 Talker function
L3 Listener function
SR1 Complete service request capability
RL1 Complete remote/local capability
DC1 Complete device clear capability
DT1 Complete device trigger capability
PPD No parallel poll z
$\mathrm{CD} \quad$ No controller function z
I/O Records - Waveforms constants, program text, and display text.

End of Message Terminator (Selectable in Talk/Listen Mode for EOI or LF/EOI) - Compatible with Tektronix and other popular controllers.
Device Address - Selectable via rear panel switch.
Remote Operation - All keystroke functions and vertical and horizontal modes can be remotely operated via the GPIB.

CALIBRATOR

Voltage Output - Squarewave, positive-going from ground. Ranges are $40 \mathrm{mV}, 0.4 \mathrm{~V}$, and 4 V into $100 \mathrm{k} \Omega ; 4 \mathrm{mV}, 40 \mathrm{mV}$, and 0.4 V into 50Ω. Amplitude accuracy is within 1%; rep rate is 1 kHz within 0.25%.
Current Output - 40 mA available through Calibrator output with optional BNC to current loop adaptor.

POWER REQUIREMENTS

Line Voltage Ranges - 90 V to 132 V .180 V to 250 V .
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 230 W .
PHYSICAL CHARACTERISTICS

Dimensions, Mainframe	mm	in
Width	305	12.0
Height	348	13.7
Depth	627	24.7
Waveform Calculator	mm	in
Width	277	10.9
Height	69	2.7
Depth	165	6.5
Cord Length (within 76 mm)	1420	56.0
Weights	$\mathbf{k g}$	lb
Net	20.4	45.0
Shipping	28.2	62.0

ORDERING INFORMATION
 (PLUG-INS NOT INCLUDED)

7854 Oscilloscope (Including Waveform Calculator)
Includes: Power cord (161-0066-00); BNC-to-BNC cable (012-0208-00); instruction manual (070-2873-00).

OPTIONS

Option 02 - X-Y Phase Correction. $+\mathbf{2 6 0}$
Option 03 - EMC Modification. $+\$ 395$
Option 2D -4 k Expanded Memory.
$+\$ 265$
Field Option 2D Kit — Order 040-0941-00. $\$ 300$
Option 78 - BE (P11) Phosphor. $\quad+\$ 100$
7B87 Time Base required only for pre-
trigger and single shot digitizing. See page 220 for complete description.

TekMAP SOFTWARE

7854 IBM PC Software

Order S42P101
Includes: Software operator manual.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
OPTIONAL ACCESSORIES
Recommended Plug-ins - See page 190.
Recommended Probes - See page 426.
Recommended Cameras - See page 406
Recommended Cart - The K213 Lab Instrument Cart is recommended for all 7000 Series mainframes. A keyboard tray for the 7854 and a storage area for plug-ins are available as Options 10 and 12 respectively, Option 22 for both. See page 424.

SYSTEMS

The 7854 is also available as an MP 2501 Acquisition/Processing Package. This system is a combination of the Tektronix 7854 Oscilloscope and 4041 Controller. Together, these two instruments automate the entire waveform test and measurement process, from acquisition and calculation to storage and display formatting.
Tektronix offers service training classes on the 7854 Waveform Processing Oscilloscope.
For further training information, contact your local sales/ service office or request a copy of the Tektronix Service Training Catalog.

7612D

GPIB

LEEE-488
The 7612D complies with IEEE Standard 488-1975, and with Tektronix Standard Codes and Formats.

200 MHz Maximum Sampling Rate
Two Channels, Two Time Bases
8 Bit Resolution
2048 Words of Memory per Channel
5 ns to 1 s Selectable Sampling Intervals with Interval Switching Allowed During
Waveform Acquisition

Pretrigger and Posttrigger Operation

Fully Programmable Over GPIB for System Oriented Operation

TYPICAL APPLICATIONS

\author{

* Automated Testing
 * LIDAR
 * EMP
 * Nondestructive Testing
}

The 7612D Programmable Digitizer is a dualchannel, dual time base waveform digitizer for use under computer control. It has a maximum sampling rate of 200 MHz . Each channel has its own analog-to-digital converter, designed by Tektronix for accurate, high-speed waveform digitizing. Each channel also has its own time base operating from a single 200 MHz crystal-controlled clock. The result...two fully independent channels capable of capturing one waveform each, simultaneously, with the same or different vertical sensitivities and time-base settings.
And there's still more flexibility available. The number of samples per waveform (record length) can be selected, from 256 to 2048. The sample rate can be changed during waveform digitizing, for example, using dense sampling on fast transitions and switching to sparser sampling for slow decays. Also, each channel's local memory can be partitioned into one to eight equallength records. You have the choice, too, of looking at waveforms before the triggering event (pretrigger), immediately after the trigger, or delayed from the trigger (posttrigger). Or you can choose to operate the channels dependently by triggering one after the other.
All 7612D functions can be selected manually or operated under program control over the GPIB. Add two 7A16P Programmable Amplifier plug-ins, one for each channel, and you have program control over every waveform acquisition function.
Extracting information from medium-speed signals is a typical application of 7612D systems.

Figure 1. The complete period of a signal (top trace) is recorded at 200 ns ; by changing the sample rate to 10 ns during risetimes and falltimes and 800 ns during the plateau (bottom trace), you can measure risetime, falltime, pulse width and interval accurately on a singleshot signal.

Figure 2. A decaying signal recorded at a 10μ s sampling rate (top trace); the same signal can be recorded at a 100 ns sampling rate during the initial portion and switched back to a $10 \mu \mathrm{~s}$ sampling rate (bottom trace), to capture all information on a single-shot signal.

76120 rear panel: the GPIB connector and outputs for an $X-Y-Z$ monitor (right); clock input/output, trigger inputs, and BNC connectors to feed signals to the front panel (left): remote power ON/OFF is also provided through the two central BNC connectors.

Figure 3. A signal with two echoes recorded at a uniform sampling rate (top trace), the same signal recorded at an increased sampling rate during each echo (bottom trace), to capture each echo with increased resolution.

Figure 4. A transient response of a system at power-up recorded with no pretrigger (top trace); by using the pretrigger the complete response can be digitized (bottom trace).

Figure 5. The initial portion of an exponential decay is recorded on Channel A (top trace); Channel B, set at a higher sensitivity and triggered to record after Channel A has finished, captures the remaining pulse tail with increased vertical resolution (bottom trace).

CHARACTERISTICS VERTICAL SYSTEM

Channels - Two left-hand plug-in compartments compatible with all 7000 Series amplifier plug-ins. Fully programmable when 7A16P plugins are used.
Bandwidth - 80 MHz with 7A16P plug-in.
Modes of Operation - Left channel with Time Base A and right channel with Time Base B.

TIME BASES A AND B
Type - Two built-in digital time bases with a common crystal-controlled clock.
Clock - Internal: $200 \mathrm{MHz} \pm 0.0035 \%$. Stability: Within $10 \mathrm{ppm} /$ year. External: From signal source $\leqslant 200 \mathrm{MHz}$.
Sample Interval - With Internal Clock: Selectable from 5 ns to 1 s in a $1,2,3 \ldots 9$ sequence (excluding 6, 7, 8 and 9 ns). With External Clock: Selectable from 1 to 200×10^{6} times the external clock period in a $1,2,4,6 \ldots 20$ sequence.
Interval Switching - Sample interval can be changed up to 13 times/waveform record with preservation of time relationships.
Time Measurement Accuracy - 0.0035\% (stability $10 \mathrm{ppm} /$ year).
Modes of Operation - Time Base A with left channel and Time Base B with right channel. Independent or B triggerable after A completes its acquisition.

TRIGGERING A AND B
Source - Left or right plug-in, external, manual by push button.
Mode - Single sweep.
Coupling - Ac, dc, ac HF Rej, dc HF Rej.
Slope - Positive or negative.
Level Range - Internal: At least ± 128 LSB in 256 steps. External: At least $\pm 1.28 \mathrm{~V}$ in 256 steps.
Trigger Jitter (Internal) - 0.1 ns or less, dc to 100 MHz .
Triggering Error $- \pm 1$ sample ambiguity in recognizing the trigger, 1 sample maximum recognition error between channels (using same trigger channel for both time bases).
Trigger Sensitivity

	Triggering Coupling	Min Signal Required	
		Internal	External
	40 Hz to 50 MHz	20 LSB	100 mV
Ac	50 MHz to 100 MHz	44 LSB	100 mV
Ac HF Rej	40 Hz to 50 kHz	20 LSB	100 mV
	Dc to 50 MHz	20 LSB	100 mV
Dc	50 MHz to 100 MHz	44 LSB	100 mV
Dc HF Rej	Dc to 50 kHz	20 LSB	100 mV

ARMING A AND B

Push button or computer control.

DIGITIZING AND STORAGE

Method - Continuous, sequential digitizing of the input signals with storage of samples selected by instrument settings.
Resolution - Eight bits.
Dynamic Accuracy*1

Signal Frequency	S/N Ratio	Effective Bits
300 kHz	42.0 dB	7.8
20 MHz	32.0 dB	6.0
80 MHz	20.0 dB	4.0

*1 Signal to noise ratio performance at $25^{\circ} \mathrm{C}$ for a half scale sinewave input signal (an ideal eight bit digitizer would give a S/N ratio of 43.8 dB). For further information refer to HANDSHAKE VOL 5 NO 1, 33-A-4463.
Internal Memory - Type: ECL. Size: 2048 8 -bit/channel, total of 40968 -bit words.
Record Length, A or B $-256,512,1024$, or 2048 samples. Number of Stored Records: Up to eight 256 -word, four 512 -word, two 1024 -word, or one 2048 -word records/channel (each requires a trigger). Trigger is automatically rearmed after each record acquisition.
Pretrigger Delay Range - Selectable in multiples of eight samples. Without Sample Interval Switching: From 0 up to 16 samples less than the record length. With Sample Interval Switching: From 0 up to 16 samples less than the position of the first sample interval change.
Posttrigger Delay Range - Selectable in multiples of eight samples from eight to the record length (requires selection of only one record).

OUTPUTS/INPUTS

X, Y, Z Analog Output - Provides for analog display of data in memory. X and Y level is 1 V p-p into $100 \mathrm{k} \Omega$ or greater; adjustable from 0.75 V to 1.3 V . Z level is 0 to 1 V (full white) into $100 \mathrm{k} \Omega$ or greater.
Clock Out - Provides internal clock signal at ECL level.
External Clock In - ECL levels. $\leqslant 1$ ns risetime and falltime. 2.5 ns minimum pulse width and $\leqslant 200 \mathrm{MHz}$.
\mathbf{L} and \mathbf{R} Trig $\mathbf{I n}$ - Provide external trigger input to the left and right trigger channels $(50 \Omega$ terminated).
1, 2, 3, 4 - Four feed-through connections to the front panel.
Digital Interface - Conforms to IEEE Standard 488-1975.

GPIB INTERFACE

Standard - Conforms to IEEE Standard 4881975.

Interface Function Subsets Implemented:
SH1 Complete source handshake
AH1 Complete acceptor handshake
TE6 Extended talker function
LE4 Extended listener function
SR1 Complete service request capability
RL1 Complete remote/local function
PPD No parallel poll
DC1 Complete device clear capability
C0 No controller function
DTD No device trigger
Response to Interface Control Messages The 7612D responds to the following interface control messages:

GTL	Go to local
LLO	Local lockout
SDC-DCL	Selected device clear and device clear
SPE-SPD	Serial poll enable and disable
IFC	Interface clear

GPIB Addresses - Mainframe and programmable plug-ins share a common primary address and are differentiated through the use of secondary addresses.
Programmable Functions - All instrument settings and operating modes are programmable.
Format - Commands in ASCII, waveform data in binary (range \emptyset to 377_{B}).
Transfer Rate - 710 kbytes/s maximum.
Waveform Transfer Time - To an Infinitely Fast Controller: 8.35 ms for one 2048 points record. Actual transfer time depends on controller and software speed.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 132 Vac , 180 V ac to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Power Consumption (Including Plug-ins) Maximum $400 \mathrm{~W}, 5 \mathrm{~A}$ at 115 V 60 Hz .
Remote Control - Power On/Off capability is provided.

ENVIRONMENTAL

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Altitude - Operating: -76 m to +4600 m (-250 ft to $+15,000 \mathrm{ft}$). Nonoperating: -76 m to +15000 m (-250 ft to $+50,000 \mathrm{ft}$).

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	483	19.0
Height	178	7.0
Depth	703	27.7
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net	25.0	55.0

7A16P

Fully Programmable Plug-In for
7912AD or 7612D Digitizers Only
$10 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div Calibrated Deflection Factors

200 MHz Bandwidth (7900 Family)
50Ω or $1 \mathrm{M} \Omega$ Input Selectable

The 7A16P is designed for use in Tektronix 7000 Series programmable digitizers. All of the normal operational features of a highquality, wide-band 7000 Series plug-in amplifier are provided in the 7A16P. These are available at the front panel for manual selection, or they can be set under program control via a programmable mainframe and the GPIB. Whether operated manually or under program control, the front-panel push buttons light to indicate plug-in status. Plug-in status can also be read over the GPIB by an external controller for input to instrument setup and control routines.
Two switch selected input connectors are also provided for selecting input signal source.

CHARACTERISTICS

Bandwidth - Plug-in Only: 225 MHz . With the 7912AD: 200 MHz . Bandwidth may be limited to $20 \mathrm{MHz} \pm 3 \mathrm{MHz}$ by bandwidth limit switch.
Ac Coupled Lower Bandwidth - 10 Hz or less.
Step Response - 50Ω input plug-in only, 1.8 ns risetime.

Deflection Factor - $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}, 9$ steps in a $1-2-5$ sequence. Accuracy is $\pm 2 \%$ of indicated deflection factor with Gain adjusted at $10 \mathrm{mV} / \mathrm{div}$. Uncalibrated Variable is continuous between steps and extends selected deflection factor to at least 2.5 times the calibrated value.
Input R and C - Selectable: $1 \mathrm{M} \Omega$ within 2% and paralleled by $\approx 20 \mathrm{pF}$ or $50 \Omega \pm 1 \Omega$ with vswr $\leqslant 1.5: 1$ at 200 MHz or less.

Inputs - Selectable A or B signal input connectors.
Maximum Input Voltage - $1 \mathrm{M} \Omega$, Dc Coupled: 250 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less. $1 \mathrm{M} \Omega, \mathrm{Ac}$ Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less. 50Ω : 0.5 W maximum.
Programmable Functions - All functions except Variable, Gain, and Identify are programmable.

ORDERING INFORMATION

7612D Programmable Digitizer
\$28,075
Includes: GPIB cable ($012-0630-03$); set of rack slides (351 1-0375-01); power cord ($161-0066-00$); operator manual (070-2386-00).

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
7A16P Programmable Amplifier
\$2,395

SYSTEMS

The 7612D is also available in MP 1201/MP 2201 Measurement Packages and MS 3201 Acquisition/Processing Measurement System. The measurement system is designed, assembled, tested, and documented to satisfy the demand for speed, automation, accuracy, and repeatability in characterizing devices or phenomena which give rise to waveforms in the second to submicrosecond range. For more information on these systems or packages, contact your local Tektronix sales engineer.

Tektronix offers service training classes on the 7612D Programmable Waveform Digitizer. For further training information, contact your local sales/service office or request a copy of the Customer Service Training Catalog.

7912AD shown with the 7A16P and 7B90P programmable plug-ins.

7912AD

GPIB
LEEE-488
The 7912AD complies with IEEE Stan-488-1975, and with Tektronix Standard Codes and Formats.

Digitize and Store Single-Shot or

Repetitive Signals from Millisecond
to Subnanosecond Duration
500 MHz Bandwidth at $10 \mathrm{mV} /$ div
500 ps/div Fastest Calibrated Sweep Rate
Waveform Digitizing to 9 -Bit Vertical and 9-Bit Horizontal Resolution

Built-In Signal Averaging Capability
Fully Programmable Over GPIB
for System Oriented Operation

TYPICAL APPLICATIONS

* Destructive Testing

* Laser Research
* LIDAR

* Automated Testing

Capturing high-speed waveforms is the 7912AD's forte. Each waveform can be sampled up to 512 times within a selectable time window, ranging from ten milliseconds to five nanoseconds $(50 \mathrm{kHz}$ to 100 GHz equivalent sampling rate).

This performance is accomplished by a Tektronix scan converter which writes the signal onto a silicon-diode target array. In TV mode, the signal information is read from the target and converted to composite video for a bright display on a television monitor. However, in the Digital mode the waveform data is read into an internal memory.

From this memory, the digitized waveform can be transferred via the GPIB to an external controller for processing.

The 7912AD mainframe is programmable over the same GPIB. When the programable plug-ins (one 7A16P Programmable Amplifier and one 7B90P Programmable Time Base) are used, the 7912AD becomes a fully programmable digitizer with a bandwidth of 200 MHz . This is a significant step toward fully automated test and measurement in disciplines such as laser and energy-related research, component or subassembly testing, and other areas requiring information extraction from high-speed waveforms.

CHARACTERISTICS

VERTICAL SYSTEM

Channels - Single plug-in compartment accepts any 7000 Series amplifier plug-in. Fully programmable when 7A16P is used.

Bandwidth (Determined by Amplifier

Plug-In) — 7A16P: 200 MHz . 7A29: 500 MHz .
Delay Line - Permits viewing of leading edge of acquired waveform.

HORIZONTAL SYSTEM

Channels - Single plug-in compartment accepts any 7000 Series time base. Fully programmable with 7B90P
Fastest Calibrated Sweep Rate - $500 \mathrm{ps} /$ div with the 7B90P or 7B92A Time Bases.
Slowest Recommended Sweep Rate $1 \mathrm{~ms} /$ div in Digital mode.

DIGITIZING AND STORAGE

Method - Scan conversion.
Resolution - Nine bits. In the Digital mode, the target is scanned in a 512×512 point matrix offering at least 400 discrete horizontal elements, each with a range of at least $૩ २ 0$ discrete vertical values. In the TV mode, the target is scanned in a standard TV format with a resolution of at least 400 lines at 50% response.
Writing Rate $\left(+10^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$ - TV Mode: Writes an 8 div sinewave of at least 500 MHz in a single sweep. Digital Mode: Stores a single 8 div pulse with a risetime of 1 ns or less.

Target Defects - No more than six points digitized other than those written by input waveform. Built-in firmware allows for defect removal by an external controller.
Memory - Type: Semiconductor. Size: 4096 10 -bit words for data from target and two 512 16 -bit word areas for internally processed and reduced data. Record Length: 512 samples/ waveform maximum.

ELECTRONIC GRATICULE

8×10 div dot matrix written onto the scan converter target immediately after waveform acquisition. Can be displayed simultaneously with the input signal on the TV monitor or digitized and stored.

OUTPUTS/INPUTS

X, Y, Z Analog Output - Provides for analog display of data in memory. X and Y level is 1 V p-p into $100 \mathrm{k} \Omega$ or greater; adjustable from 0.75 V to 1.3 V . Z level is 0 V to 1 V (full white) into $100 \mathrm{k} \Omega$ or greater.
Composite Video Output - Only available in TV mode. Used to drive a TV monitor for displaying signal written on scan-converter target as an aid to setting intensity for complete digitizing. Linear Output: Replica of the signal read from the target with sync added. Binary Output: Two-level output derived from the linear composite video output. Used to indicate on the TV monitor how well a waveform will be digitized. Scale factor readout included in both linear and binary.
Sync Output - At least 4 V into 75Ω. Conforms to EIA RS-170.
Sync Loop - Allows TV mode to be synchronized with external EIA RS-170 sync waveform.
+Gate Output - Provides a positive pulse with a duration equal to and coincident with the time base sweep.
Z-Axis Input $- \pm 1 \mathrm{~V}$ input modulates the writing gun intensity over its full range.
Vert In, Cal In, Trig In - Three internal 50Ω coaxial cables connect signals from the rear panel to the front panel to ease system configuration in rackmounts.
Probe Power - Provides power for Tektronix active probes.

GPIB INTERFACE

Standard - Conforms to IEEE Standard 4881975.

Interface Function Subsets Implemented:

SH1	Complete source handshake
AH1	Complete acceptor handshake
TE6	Extended talker function
LE4	Extended listener function
SR1	Complete service request capability
RL1	Complete remote/local function
PPD	No parallel poll
DC1	Complete device clear capability
CD	No controller function
DT1	Device trigger complete

ENVIRONMENTAL

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: Up to 4600 m ($15,000 \mathrm{ft}$). Nonoperating: Up to $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
EMC (plug-ins inserted) - Meets MIL-STD461A and 462 radiated and conducted interference from 30 Hz to 1 GHz .

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 132 V ac and 180 V ac to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Power Consumption (Including Plug-ins) 360 W maximum.
Remote Control - Remote power On/Off capabilities provided.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	483	19.0
Height	178	7.0
Length	679	26.8
Weight	$\mathbf{k g}$	$\mathbf{l b}$
Net	24.7	54.6

7A16P

Fully Programmable Plug-in for 7912AD or 7612D Digitizers Only
$10 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div Calibrated Deflection Factors

200 MHz Bandwidth (7900 Family)
50Ω or $1 \mathrm{M} \Omega$ Input Selectable
For complete specifications on 7A16P see page 323 .

7B90P

$500 \mathrm{ps} /$ div to $500 \mathrm{~ms} /$ div Calibrated Time Base

Fully Programmable Plug-in
7912AD Digitizer Only
400 MHz Trigger Bandwidth
Single-Sweep Operation

The programmable 7B90P is designed for use with a Tektronix 7912AD Programmable Digitizer. Its operating functions can be manually selected at the front panel or selected under program control via the GPIB. The only nonprogrammable functions are the Sweep Calibration adjustment and the External Trigger Input Terminator Switch.

CHARACTERISTICS

Sweep Rates - $500 \mathrm{~ms} /$ div to $10 \mathrm{~ns} / \mathrm{div}$ in 24 steps. Magnifier extends fastest calibrated sweep rate to $500 \mathrm{ps} /$ div.
Sweep Accuracy - Measured over center 8 div, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, with any 7000 Series programmable mainframe. Derate accuracies by an additional 1% for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Time/Div	Unmagnified	Magnified
$500 \mathrm{~ms} /$ div to $100 \mathrm{~ns} /$ div	2%	3%
$50 \mathrm{~ns} /$ div to $10 \mathrm{~ns} /$ div	3%	4%
$500 \mathrm{ps} /$ div	-	5%

Trigger Holdoff - Programmable in 62 steps between minimum and maximum.

Time/Div	Min (ccw)	Max (cw)
$500 \mathrm{ps} / \mathrm{div}$ to $2 \mu \mathrm{~s} /$ div	$\leqslant 3.5 \mu \mathrm{~S}$	$\geqslant 90 \mu \mathrm{~s}$
$5 \mu \mathrm{~s} /$ div to $20 \mu \mathrm{~s} / \mathrm{div}$	$\leqslant 35 \mu \mathrm{~s}$	$\geqslant 900 \mu \mathrm{~s}$
$50 \mu \mathrm{~s} /$ div to $200 \mu \mathrm{~s} /$ div	$\leqslant 350 \mu \mathrm{~s}$	$\geqslant 9 \mathrm{~ms}$
$500 \mu \mathrm{~s} /$ div to $2 \mathrm{~ms} / \mathrm{div}$	$\leqslant 3.5 \mathrm{~ms}$	$\geqslant 90 \mathrm{~ms}$
$5 \mathrm{~ms} /$ div to $500 \mathrm{~ms} /$ div	$\leqslant 35 \mathrm{~ms}$	$\geqslant 900 \mathrm{~ms}$

Triggering Sensitivity

P-P AUTO MODE

Triggering Frequency Range	Min Signal Required	
	Int	Ext
	2.0 div	500 mV
200 Hz to 50 MHz	0.5 div	125 mV
50 MHz to 400 MHz	1.5 div	375 mV

Coupling	NORM MODE		
	Triggering Frequency Range	Min Signal Required	
		Int	Ext* ${ }^{1}$
Ac	30 Hz to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 250 \mathrm{mV} \end{aligned}$
Ac LF Rej* ${ }^{\text {2 }}$	30 kHz to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 250 \mathrm{mV} \end{aligned}$
Ac HF Rej* ${ }^{\text {a }}$	30 Hz to 50 kHz	0.3 div	100 mV
Dc	Dc to 50 MHz 50 MHz to 400 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 250 \mathrm{mV} \end{aligned}$

${ }^{* 1}$ Ext $\div 10$ operation attenuates ext trigger signal 10 times.
${ }^{* 2}$ Will not trigger on sinewaves or <8 div Internal, or 3 V External, at or below 60 Hz .
*3 Will not trigger on 50 MHz sinewaves 1.5 div or less Internal, or 0.15 V or less External.
Single-Sweep Mode - Same as Norm mode.
Trigger Level - Programmable in 0.05 div steps.
Horizontal Position - Programmable in 0.0125 div step unmagnified, 0.125 div step magnified.
Internal Trigger Jitter - 0.1 ns or less at 400 MHz .
External Trigger Input - Selectable: $1 \mathrm{M} \Omega$ $\pm 5 \%, 20 \mathrm{pF} \pm 10 \%$ or $50 \Omega \pm 5 \%$ with $1.22: 1$ maximum vswr at 400 MHz . Maximum input is 250 V (dc + peak ac) for $1 \mathrm{M} \Omega$ or 1 W for 50Ω. The level range (excluding p-p Auto) for a 1 kHz sinewave input is at least $\pm 3 \mathrm{~V}$ in Ext and at least $\pm 30 \mathrm{~V}$ in Ext $\div 10$.

ORDERING INFORMATION

(PLUG-INS NOT INCLUDED)
7912AD Programmable Digitizer
\$27,025
Includes: Power cord (161-0066-00); set of rack slides (351-0375-01); GPIB cables (012-0630-03); operator manual.
Option 13 - Change TV Scan to 625 lines at 50 Hz .
Option 30 - Delete GPIB Cable.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
7A16P Programmable Amplifier
\$2,395
7B90P Programmable Time Base $\mathbf{\$ 2 , 8 8 5}$ It is recommended that 7912ADs not be purchased or operated without an accompanying 634 Raster Scan Display Monitor. Contact your local sales engineer for details.

SYSTEMS

The 7912AD is also available in the MP 1101/MP 2101 Measurement Packages and the MS 3101 Acquisition/Processing Measurement System. The measurement systems are designed, assembled, tested, and documented to satisfy the demand for speed, automation, accuracy, and repeatability in characterizing devices or phenomena which give rise to waveforms in the millisecond to nanosecond range. For more information on these systems and packages contact your local Tektronix sales engineer.
Tektronix offers service training classes on the 7912AD Programmable Transient Waveform Digitizer. For further training information, contact your local sales/service office or request a copy of the Customer Service Training Catalog.

390AD

GPIB IEEE-488

The 390AD complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

True Dual Channel 30 MHz Sampling Rate (60 MHz in Single Channel Mode)

10-Bit Resolution

2048 Word Memory Per Channel (4096 Single Channel Mode)

Cursor-Based Measurements

Sample-Rate Switching
Direct Plotter Output Capabilty

TYPICAL APPLICATIONS

* Extracting Information from Signals Containing Components from dc to $15 \mathbf{M H z}$
* Ultrasonics/Stress/Strain
* Mechanical/Vibration

* Audio

* ATE

* Laser Spectroscopy

* Biomedical Research

* LIDAR

* Geo-Seismic

Used for low-to-medium-speed signals, the 390AD Programmable Waveform Digitizer provides crystal-controlled, 30 MHz sampling on two channels. Or, a single channel of data may be digitized at up to 60 megasamples per second.
Features include 10 bit vertical resolution, dual-channel synchronized digitizing, pretriggering and posttriggering, sample-
rate switching during acquisition, internal cursors for two-point time or voltage measurements and 2048 words of memory per channel. Excellent dynamic accuracy is achieved using a two-stage flash-conversion process.

Figure 1. Photo showing sample of Rate Switching. In this example switching occurs at the 1024th sample, to extend the display window. The sample rate can be ei ther increased or decreased at the trigger point. A minor time discontinuity may occur at the trigger point under some conditions.

Figure 2. The 390AD display is set to X vs Y mode.
The X versus Y display mode coupled with the shift mode function provides a powerful tool for visual comparison of related phenomena.

To ensure reliable operation and high accuracy, the 390AD includes Auto Cal (self-calibration) and self-test features during operation.

Figure 3. Two cursors may be positioned by the user or controller, at points of interest on either waveform. The voltage difference, time difference, or 1 /time difference, as well as the absolute values may be directly read from the LED display, or sent to a controller. Positioning may be precisely accomplished with the aid of the "zoom" feature.

Figure 4. Complex manual setups may be avoided by recording the desired instrument settings for a particular measurement on a system peripheral device, then send ing the English-like command string to the 390AD.

Figure 5. The 390AD can be easily integrated into wide range of GPIB systems. Shown above is a 4695 Color Hard Copy Unit and a 4105A Color Terminal which is connected to a Tektronix 4041 System Controller.

CHARACTERISTICS VERTICAL

Input Channels - Two, single ended.
Sensitivity - $\pm 100 \mathrm{mV}$ to $\pm 50 \mathrm{~V}$ full scale (200 mV p-p to $100 \mathrm{Vp-p)} 9$ steps, 1-2-5 sequence. Input R and $C-1 M \Omega \pm 2 \%$; paralleled by $\approx 24 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac). Ac Coupled: 500 V (dc + peak ac).
Bandwidth - Dc to $15 \mathrm{MHz}(-3 \mathrm{~dB})$. Lower -3 dB point, Ac Coupled: 10 Hz .
Input Dc Offset Voltage - 0 to $\pm 99 \%$ full scale, 1% step. Accuracy: $<0.5 \%$.
Automatic Calibration - Gain Accuracy: $\pm 0.4 \%$. Dc Drift Accuracy: $< \pm 0.1 \%$.

TIME-BASE A AND B

Sample Rate - Internal: CH 1 Only: 5 Hz to $60 \mathrm{MHz}, 23$ steps, $1-2-5$ sequence except 30 MHz and 60 MHz . Dual: 5 Hz to $\approx 30 \mathrm{MHz}, 22$ steps. External: Dc to 60 MHz .
Clock $-60 \mathrm{MHz} \pm 10 \mathrm{ppm}$, crystal-controlled.

TRIGGERING

Sources - Internal CH 1 and CH 2 or external. Coupling - Ac, dc, HF Rej.
Slope - Positive, negative, both.
Level Range - Internal: 0 to $\pm 99 \%$ full scale, 1% step. External: $\pm 4.95 \mathrm{~V}, 0.05 \mathrm{~V}$ step.

Trigger Sensitivity

	Trigger Coupling	Frequency Range	Minimum Signal Required	
	Internal	External		
Ac	25 Hz to. 15 MHz	30 LSB	$300 \mathrm{mV} \mathrm{p-p}$	
HF Rej	25 Hz to 50 kHz	30 LSB	$300 \mathrm{mV} \mathrm{p-p}$	
Dc	Dc to 15 MHz	30 LSB	$300 \mathrm{mV} \mathrm{p-p}$	

Arming - Auto, Manual, External.

DIGITIZING

Vertical Resolution - 10 bits (1/1024).
Sample Rates - Dual Channel Mode: 30 MHz . CH 1 Only Mode: 60 MHz .
Aperture Jitter (Including Internal Clock) 150 ps , nominal.

Dynamic Accuracy* ${ }^{1}$

Signal Frequency	Effective Bits
$\leqslant 1 \mathrm{MHz}$	$\geqslant 8.75$
$\leqslant 10 \mathrm{MHz}$	$\geqslant 8.25$
$\leqslant 14 \mathrm{MHz}$	$\geqslant 7.75$

* 'Sampling frequency at 30 MHz . For further information refer to HANDSHAKE Vol 5 No 1, 33-A-4463.
Record Length - Dual Channel Mode: 2048 words/channel. CH 1 Only Mode: 4096 words.
Modes - Auto, Norm, Single.
Pretrigger Range - CH 1 Only Mode: 0 to 4092. Dual Channel Mode: 0 to 2046.

Posttrigger Range

Time Base	Vertical Mode	Range
	Dual	0 to 9998
A	CH 1 only	0 to 9998
	Dual	0 to 2046
A + B	CH 1 only	0 to 4092

A Time Base - Recording is taken at one rate (sample frequency A) continuously.
A+B Time Base - Pretrigger Mode: Sample frequency A is switched to B at trigger. Recording stops at delayed trigger. The transition point (switch point) is well defined. Posttrigger: Sample frequency A is switched to B at delayed trig and recording stops after total of 2048 (or 4096) samples.
Stored digital data are addressable by key entry while monitoring cursors on the waveform.
Readout Display - Five digit LED (Reads voltage difference on the same waveform or between CH 1 and CH 2 , absolute voltage, time interval, and $1 / T$.

OUTPUTS

CRT Display - X: 1 V p-p Ramp (changeable to 5 V p-p by internal strap). 8 ms : Dual. $16 \mathrm{~ms}: \mathrm{CH} 1$ only. Mag gain X1 to X10 variable. Y: 1 V p-p (changeable to 5 Vp -p by internal strap). $\mathrm{Z}: 0$ to 1 V (changeable to 0 to 5 V by internal strap), selectable polarity. X-Y Plot: Output Voltage is 0 to 5 V . Plot Speed is $20,50,100 \mathrm{~ms} /$ word: Auto Slow, or Auto Fast modes. (Modes are selected by internal strap.)
Voltage Calibrator - Rectangular 1 kHz $\left(\pm 10^{-5}\right), 4 \vee(\pm 1 \%)$.
Rear Panel Connectors - CRT-X, CRT-Y, CRT-Z, INT CLK-OUT, EXT CLK-IN, EXT ARM-IN, EXT DLY CLK-IN, PLOT-X, PLOT-Y, PLOT-PEN, WRITE END, GPIB.

Standard - Conforms to IEEE Standard 488 1978. Interface Function Subsets Implemented:

SH1	Complete source handshake
AH1	Complete acceptor handshake
T6	Basic talker
L4	Basic listener
SR1	Complete service request capability
RL1	Complete remote/local capability
PP0	No parallel poll
DC1	Complete device clear capability
C0	No controller function
DT1	Complete device trigger capability

Interface Control Message - GTL, LLO, SDCDCL, GET, SPE-SPD, IFC.
Programmable Functions - All instrument setting and operating modes are programmable, except power switch, vertical/horizontal position, horizontal mag, and external clock switch.
Format - Commands in ASCII, Waveform data in 2 byte/point high byte first.

POWER REQUIREMENTS

Line Voltage Range - 90 V ac to 132 V ac $(115 \mathrm{~V})$; 180 V to 250 V ac $(230 \mathrm{~V})$.
Line Frequency - 48 Hz to 440 Hz .
Maximum Power Consumption - 240 W.
ENVIRONMENTAL AND SAFETY
Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Altitude - Operating: Sea level to 4600 m ($15,000 \mathrm{ft}$). Nonoperating: Sea level to 15000 m (50,000 ft).

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	446	17.6
Height	152	6.0
Depth	540	21.3
Weights	kg	lb
Net (without accessories)	15.5	34.0

ORDERING INFORMATION

390AD Programmable Digitizer $\$ 11,400$ Includes: Power cord ($161-0066-00$); two 4 A fast-blow fuses ($159-0017-00$); GPIB cable ($012-0630-03$); 390AD Programming Aid (070-4467-00); operator manual (070-4450-00).
Option 10 - Rackmount 390AD. $+\$ 250$
Utility Software
For 390AD/4041. Order 062-6959-01
For 390AD/4052A. Order 062-6960-01 \$150
See page 297 for description and ordering information.
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
The 620 monitor is recommended for use with the 390AD.

OPTIONAL ACCESSORIES

GPIB Cable - Low EMI.
1m. Order 012-0991-01
2 m . Order 012-0991-00
4 m . Order 012-0991-02
For floating measurements order A6902B Isolator. See page 437 for complete description. Contact your local sales engineer for details.
Recommended Probes - See page 426.
Service Manual - To order, contact your local sales office.
The SONY/TEKTRONIX 390AD is manufactured and marketed in Japan by Sony/Tektronix Corporation, Tokyo, Japan. Outside of Japan, the 390AD is available from Tektronix, Inc., its marketing subsidiaries and distributors.

GPIB
IEEE-488
The 5223 Option 10 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Digital Storage (with 5B25N)

10 MHz Bandwidth Repetitive Store (Up To 1 GHz with a Sampling Plug-In)

100 kHz Bandwidth Single Shot Store

Pretrigger

10 Bit Vertical Resolution
Stored X Versus Y Display

Roll Mode

X-Y Plotter Output with Penlift

The Tektronix 5223 Digitizing Oscilloscope has a real-time bandwidth of 10 MHz . It is capable of displaying real-time and stored waveforms simultaneously (four real-time waveforms and four stored waveforms, if dual channel amplifier units are used); the real-time waveforms need not be related to the stored waveforms. Stored waveforms can be expanded vertically and horizontally up to a factor of ten, using front-panel controls. The left and right stored vertical signals can be displayed against each other in the $X-Y$ mode, using the L vs R front-panel display function. The roll mode is useful for viewing low frequency signals. Rear-panel connectors provide access to the internal analog and control signals to record stored waveforms using associated equipment (e.g., $X-Y$ plotter). The 5223 accepts most 5000 Series plug-in units; the flexibility of the plug-in feature, and variety of plug-in units available, allows the system to be used for many measurement applications. The digital storage functions can only be accessed or enabled by using the 5B25N Time Base.

Display and Save Functions

The Display buttons allows digitization of signals originating from the corresponding vertical compartments (left and right). The digitized display is continuously updated as long as a triggered sweep occurs, or until the Save button is pushed. The Save buttons freeze the memory contents. Up to four channels may be displayed and saved simultaneously.

L vs R Display

This function displays the memory contents of the left compartment versus the right compartment. The left defines the vertical axis and the right defines the horizontal axis.
Since the $X-Y$ display is from memory, the real-time sweep is still in the standard Y-time format and may be displayed simultaneously.

Single-shot data can be captured and stored automatically without the operator's presence. Pretrigger signal portion has an intensified trace for easy reference.

CHARACTERISTICS

VERTICAL REAL TIME SYSTEM
Channels - Two plug-in compartments; compatible with 5000 Series plug-ins.
Mainframe Bandwidth - 10 MHz with 5 A 38 , 5A45 or 5A48.
Mainframe Step Response - 35 ns.
Chop Mode - 100 chopped segments/div unexpanded with 5B25N Time Base.
Delay Line - Permits viewing leading edge of displayed waveform.

HORIZONTAL REAL TIME SYSTEM

Channel - Single compartment compatible with 5000 Series time bases and amplifiers. 5B25N must be used in storage modes.
Fastest Calibrated Sweep Rate - $20 \mathrm{~ns} / \mathrm{div}$.
X-Y Mode - $<2^{\circ}$ phase shift, dc to 20 kHz between either vertical compartment and horizontal compartment.

DIGITAL STORAGE (WITH 5B25N)
Vertical Resolution - 10 bits ($100 \mathrm{pts} / \mathrm{div}$ unexpanded).

Display Memory Size - 1 k points/vertical compartment, shared by multiple trace plug-ins.
Sample Rate - Maximum of $1 \mathrm{MS} / \mathrm{s}(1 \mu \mathrm{~s} / \mathrm{pt})$. Actual sample rate depends on time base setting.

Fastest Single Shot Sweep Speed -

 $100 \mu \mathrm{~s} / \mathrm{div}$.External Clock In - Maximum of $1 \mathrm{MS} / \mathrm{s}$ ($1 \mu \mathrm{~s} / \mathrm{pt}$). TTL compatible.
Equivalent Time Bandwidth - 10 MHz .
Acquisition Window - ± 4 div vertically and ± 5 div horizontally from center screen.
Accuracy - Determined by plug-ins. Refer to plug-in specifications.
X-Y - (Left vs right single channel mode only excluding $100 \mu \mathrm{~s} /$ div sweep range). Maximum of 5° phase shift between vertical compartments up to 10 MHz using two identical 5400 Series vertical plug-ins.

MEMORY CONTROLS

Display and Save - Controls for each vertical compartment. X-Y (left vs right), Data Out, Roll, Vector mode, Horizontal and Vertical positioning, and expansion ($\geqslant 10: 1$).
Data Out - Analog voltage of stored signal. $200 \mathrm{mV} / \mathrm{div} \pm 5 \%$. Output rate variable with rear panel control. Pen lift available on rear panel (normally open).

OUTPUT/INPUTS

Plug-in Signal Outputs - Left, Right Vertical, Horizontal Compartments: $50 \mathrm{mV} /$ div $\pm 5 \%$ from 50Ω. Left, Right Vertical Compartments: Dc $\geqslant 10 \mathrm{MHz}$. Horizontal Compartment: Dc $\geqslant 7 \mathrm{MHz}$. Time Base Gate - TTL compatible, positive going.
Remote Single Sweep Reset - Rear panel BNC closure to ground resets sweep.
External Z-Axis Input - Usable, dc $\geqslant 5 \mathrm{MHz}$ voltage swing of 5 V will fully modulate beam dc $\geqslant 1 \mathrm{MHz}$. Negative voltage will blank trace. Maximum input voltage is 40 V (dc + peak ac).
Calibrator - Voltage Output: Squarewave, positive going from ground. Amplitude is 300 mV $\pm 1 \%$. Current Output: $3 \mathrm{~mA} \pm 1 \%$ available through calibrator output with optional BNC to current loop adaptor.

CRT AND DISPLAY FEATURES

CRT - 8×10 div with $1.22 \mathrm{~cm} /$ div. Internal illuminated graticule.
Phosphor - GH (P31) standard.
Acceleration Potential - 15 kV .
Camera Power - Compatible with Tektronix C-59 Camera.

POWER REQUIREMENTS

Line Voltage Range - 90 V to 117 V , 102 V to $132 \mathrm{~V}, 191 \mathrm{~V}$ to $249 \mathrm{~V}, 204 \mathrm{~V}$ to 250 V maximum.
Line Frequency - 48 Hz to $62 \mathrm{~Hz}(48 \mathrm{~Hz}$ to 440 Hz , Option 05).
Maximum Power Consumption - 145 W at $120 \mathrm{~V}, 60 \mathrm{~Hz}$.

OPTIONS

Option 05 Line Frequency Change (48 Hz to 440 Hz) - Converts the R5223 to 48 Hz to 440 Hz operation.
Option 10 GPIB Interface - For I/O of stored waveforms and control of 5223 digital storage functions (except vertical and horizontal expansion and position controls). Waveform output format is selectable through the interface for BINARY or ASCII.
I/O Records - Waveforms.

Device Address - Selectable via rear panel switch.
Talk/Listen - Full bi-direction transfer of waveforms plus remote manipulation of storage controls.
Talk Only - Continuous output of digitized waveform to maximum sweep of $20 \mathrm{~ms} /$ div (dependent on other instruments on bus).

GPIB INTERFACE

Interface Function Subsets Implemented:

SH1	Complete source handshake
AH1	Complete acceptor handshake
T5	Talker function
L4	Listener function
SR1	Complete service request capability
RL2	Remote/local capability
DC1	Complete device clear capability
PP0	No parallel poll
DT	No device trigger capability
Cø	N controller function

PLUG-IN COMPATIBILITY

All 5000 Series plug-ins are compatible in the standard oscilloscope display mode. The 5L4N, $5 \mathrm{~A} 18 \mathrm{~N}, 5 \mathrm{~A} 26,5 \mathrm{~A} 48$ plug-ins may require modification for optimum use with digital storage operation. The 5 A 14 N is not recommended for use in storage mode.
Dimensions and Weights - See page 240.

5B25N Digital Time Base

Bi-Slope Triggering

$20 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ Calibrated Time Base

Triggering to 15 MHz

The 5 B 25 N is designed specifically for use in the 5223 Digital Storage Oscilloscope. Pretrigger is only available with the 5223. However, the standard analog sweep features including Bi -Slope Triggering and X 10 Mag are compatible with 5400 Series mainframes.

CHARACTERISTICS

Modes - Auto, Normal, Single Sweep.

Single Sweep - Triggering requirements are the same as normal sweep. When triggered, sweep generator produces only one sweep.
External Trigger Input - Maximum input voltage is 350 V -peak. Input R and C is $1 \mathrm{M} \Omega$ paralleled by $\approx 24 \mathrm{pF}$.
External Horizontal Input - Deflection factor is $50 \mathrm{mV} / \mathrm{div} \pm 3 \%$. Dc coupled bandwidth is dc to 2 MHz .
Sweep Rate - $0.2 \mu \mathrm{~s} /$ div to $5 \mathrm{~s} /$ div in 24 calibrated steps($1-2-5$ sequence). $20 \mathrm{~ns} /$ div is fastest sweep rate obtained with X10 magnifier. Uncalibrated, continuously variable between steps and up to $12.5 \mathrm{~s} / \mathrm{div}$.

TRIGGERING			
		Minimum Signal Required	
Slope	Frequency		
	Range	Internal	External
+ or -	Dc to 1 MHz	0.4 div	50 mV
	1 MHz to 15 MHz	0.6 div	200 mV
\pm (Bi-Slope)	$\mathrm{Dc}^{* 1}$ to 1 MHz	± 0.5 div	$\pm 50 \mathrm{mV}$

${ }^{+}{ }^{+} 30 \mathrm{~Hz}$ when ac coupled.
Bislope Triggering - Will trigger on either a positive or negative slope and the threshold or sensitivity is controlled by the trigger level knob. This eliminates the uncertainty of which slope is selected.

CHARACTERISTICS
 (WHEN USED WITH THE 5223 MAINFRAME) Accuracy

Time/Div	Sweep $^{* 1}$	Digitized $^{* 2}$	Digitized to Real Time
$50 \mu \mathrm{~s} /$ div to $0.2 \mu \mathrm{~s} /$ div	3%	3%	3%
$1 \mathrm{~s} /$ div to $0.1 \mathrm{~ms} /$ div	3%	3%	3%
$2 \mathrm{~s} /$ div and $5 \mathrm{~s} /$ div	4%	3%	4%

${ }^{\text {* }}$ Accuracy is specified over the center eight graticule divisions, in 5223 or 5400 Series oscilloscopes. Derate accuracy by 1% for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, or when using X10 magnifier.
*2 Digitized signal accuracy is specified over center eight graticule divisions in 5223 Oscilloscope, excluding first 200 ns or 0.2 div of each waveform.
*3 The digitized signal will match the real time signal within the specified tolerance.
Pretrigger - For viewing events that occur prior to the trigger and is continuously variable from 0% to 100% of full screen. An intensified zone is generated which corresponds to the amount of pretrigger selected. This intensified zone remains with the saved waveform. Pretrigger is available from $5 \mathrm{~s} /$ div to $0.1 \mathrm{~ms} /$ div.
Possible Undersampling Indicator - To aid in eliminating aliasing, an LED indicator illuminates when the ratio of sampling frequency to trigger frequency is less than eight.
Sampling Rate - For single shot acquisition, the 5 B 25 N has a maximum sample rate of 1 MHz at $0.1 \mathrm{~ms} / \mathrm{div}$.
Repetitive Store - For repetitive signals, the $5 B 25 \mathrm{~N}$ controls the equivalent time sampling feature of the 5223 to allow digitizing from $50 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mu \mathrm{~s} / \mathrm{div}$.
External Clock Input - Clock-In pin jack allows the user to introduce an external sampling clock. Maximum input frequency of 1 MHz , with TTL threshold, and 5 V peak input voltage.

ORDERING INFORMATION

5223 Digitizing Oscilloscope
\$5,870
Includes: Power cord (161-0066-00); instruction manual (070-2933-00).
R5223 Rackmount
\$6,045
Includes: Instruction manual (070-2933-00). OPTIONS
Option 05 - Line Freq Change (R5223 Only). $\quad+\$ 210$
Option 10 - GPIB Interface. $+\$ 790$

CONVERSION KITS

Rackmount-to-Cabinet — Order 040-0975-01
Cabinet-to-Rackmount - Order 040-0976-04
\$275
Adds GPIB Interface to Standard 5223 Order 040-0996-01
\$1,160

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
5B25N Time Base
Includes: Instruction manual (070-2814-00).

OPTIONAL ACCESSORIES

Recommended Cart - The K213 Lab Instrument Cart is recommended for all 5000 Series oscilloscopes. A storage area for plug-ins is available as Option 12.

ACQUISITION/PROCESSING SYSTEMS

System Products 330
Software 331
Measurement Packages 332
Measurement System 337

MS 3101 Computer-Based 7912AD System

Precise automatic waveform measurements for demanding applications in research, design, manufacturing and quality assurance

Automatically save hours, days, even months of work
Tektronix measurement systems are specially designed to handle the increasingly complex, expensive, and time-consuming task of waveform characterization.
They're the first measurement systems to offer all the power and flexibility of oscilloscope acquisition, which may be coupled with programmable stimulus sources for fully automatic analysis. They're the first systems to feature signal processing software with extensive control over instrumentation, waveform manipulations, and graphic display.

Compatibility

Tektronix measurement systems provide system compatibility that allows configuration for many types of test and measurement applications. This gives you the flexibility of selecting specialized instruments, integrating them easily and broadening the application potential of your automated testing unit as your requirements grow.

System Building Blocks

No matter whether your application is in scientific research, engineering design or automated manufacturing and quality control, Tektronix provides for each of the functions that comprise virtually every measurement system.

Increase Productivity

Tek measurement systems combine state-of-the-art waveform acquisition capabilities with computer processing and software control. They automatically capture the signals you need, make the measurements you want, then display, store and document your results. Projects are more likely to be completed on time and within budget. We provide each of the major functions that comprise a measurement system.

From today's research and development tasks to tomorrow's production testing, Tek systems give you all the capabilities needed to characterize your waveforms quickly, efficiently, and accurately.

Device Under Test (DUT)

The device that is being tested by the system. The system provides stimulus to the DUT and acquires the results from the test.

Stimulus

Stimulus units, including function generators, signal generators and other sources, provide known control signals to drive the device under test through normal operation patterns or into boundary conditions for performance limits testing.

DUT Interface

The DUT Interface provides a path from the stimulus and acquisition equipment and the Device Under Test. Tektronix provides a number of GPIB compatible products for DUT interfacing.

Acquisition

Tek's growing family of GPIB-compatible waveform digitizers offers the ability to capture signals ranging from seconds to picoseconds in duration, with bandwidths up to 14 GHz . Plus, compatibility with a broad range of 7000 Series plug-ins provides an added dimension of measurement flexibility. Tektronix provides a wide range of GPIB compatible test equipment for measuring an acquired signal.

Processing

Tek minicomputer systems built around the DEC MICRO/PDP-11*1 are designed to handle larger amounts of data and offer considerable flexibility in peripheral selection, processing power and speed, software modularity and extended memory. Systems built around the Tek 4041 feature benchtop convenience with powerful analytical and instrument control capabilities.

Mass Storage

In the form of disk or magnetic tape, mass storage provides permanent storage of raw or processed data for later retrieval, and can also be used to store the test programs.

Input/Output Devices

Keyboards and keypads on terminals, controllers and some instruments provide convenient access to the system.
Graphics terminal and hard copy units provide alphanumeric and graphic presentation of data and programs as well as permanent documentation. Because the quality of the solution is often dependent on the quality of the display, you gain additional advantage by Tek's leadership in high-resolution, reliable graphic and alphanumeric displays.

Software

Tektronix minicomputer controllers can be operated with TEK SPS BASIC, a powerful general purpose programming language which offers convenient control of instruments to acquire, process, store and display waveform data with ease. TEK SPS BASIC combines the advantages of being an interactive language with the high performance of a computer operating system. The Tek 4041 comes with its own version of extended BASIC...providing both the simplicity desired by the beginner and the flexibility and power required by the experienced programmer.
For a complete description and ordering information on SPS BASIC, see pages 301303.

The Choice is Yours

Tektronix offers both factory-integrated measurement systems (MS) and preconfigured measurement packages (MP), the latter which you integrate and install yourself. Individual system configurations are summarized in the chart below. They have been selected to provide a high level of performance and permit maximum flexibility... systems that put you in charge.
*1 DEC and PDP are registered trademarks of Digital Equipment Corporation.

INDIVIDUAL SYSTEM CONFIGURATION

Application	Fastest Singleshot transient digitizer, at highest bandwidth.	High Bandwidth, multi-record, dual channel digitizer for both singleshot and repetitive signals.	Compact dualchannel signal acquisition, for medium bandwidth repetitive and single-shot signals.	Excellent signal acquisition for repetitive signals, high bandwidth.	Extensive signal acquisition capabilities with signal analysis.	Versatile and compact signal stimulus and acquisition for medium and low speed signals.	Makes critical audio measurements consistently, accurately and quickly.	Extensive measurement capabilities for: high resolution video applications, automatic test and measurement applications, or automatic measurements of moderate speed signals.
Acquisition Instrument	7912AD	7612D	7D20T	7854	2430	M1 5010/ MX 5010	$\begin{gathered} \text { SG 50101/ } \\ \text { AA } 5001 \\ \hline \end{gathered}$	2465 DVS or 2465 DMS or 2465 CTS
Your own Controller	$\begin{aligned} & \text { MP } 1101 \\ & \$ 38,695 \end{aligned}$	$\begin{aligned} & \text { MP1201 } \\ & \$ 35,965 \end{aligned}$						
Compact Controller Tektronix 4041 with enhanced instrument control and analysis BASIC software	$\begin{aligned} & \text { MP } \mathbf{2 1 0 1} \\ & \$ 51,985 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MP } 2201 \\ & \$ 49,415 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MP } 2401 \\ & \$ 25,790 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MP } 2501 \\ & \$ 29,475 \end{aligned}$	$\begin{aligned} & \text { MP2601 } \\ & \$ 15,650 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MP } 2901 \\ & \$ 19,890 \end{aligned}$	$\begin{aligned} & \text { MP2902 } \\ & \$ 21,770 \end{aligned}$	$\begin{aligned} & \text { MP2903 } \\ & \$ 21,760 \end{aligned}$
Expandable Controller MICRO/PDP-11 with TEK SPS BASIC control and analysis software	$\begin{gathered} \text { MS } 3101 \\ \$ 71,765 \end{gathered}$	$\begin{aligned} & \text { MS } 3201 \\ & \$ 68.335 \end{aligned}$	- -	- -	- -	- -	- -	- -

MP 1101 (shown above) consists of a 7912AD, 7A16P, 7B90P, 620 and 634. The MP1201 (not shown) consists of a 7612D, two 7A16Ps, and a 620.

The MP 2201 Measurement Package (shown above) consists of 4105A, 4041, special software, plus MP 1201 Measurement Package (described on page 332). The MP 2101 Measurement Package (not shown) replaces the MP 1201 with the MP 1101 (described on page 332) and adds special software.

MP 1101/MP 1201

GPIB The MP 1101 and MP 1201 comply with IEEE-488 IEEE Standard 488-1975.

MP 1101 Features:

Highest Bandwidth Single-Shot Acquisition (up to 500 MHz at $10 \mathrm{mV} / D i v$, Nonprogrammable)

Fully Programmable up to 200 MHz Bandwidth

Codes and Formats Features

MP 1201 Features:

Dual-Channel Signal Acquisition (up to $200 \mathrm{MS} / \mathrm{s}$ Sampling Speed). Signal Bandwidth of $\mathbf{8 0} \mathbf{~ M H z}$

Selectable Record Length from 256 Words to 2048 Words Each Channel

Codes and Formats Features

The MP 1101 is based on the high-bandwidth 7912AD Programmable Transient Digitizer. It is excellent for any signal measurement requirement needing single-shot acquisition (either for computer or operator interpretation of extremely fast signals such as laser-research and high-energy physics phenomena). Without a controller, the MP 1101 may be used as a high bandwidth storage oscilloscope.
The MP 1101 includes a 7912AD Programmable Transient Waveform Digitizer, 7A16P Programmable Amplifier, 7B90P Programmable Time Base, 620 General Purpose X-Y Monitor, 634 High Resolution Video Monitor, and mounting hardware, cables and accessories, and cabinet (shipped unassembled).

In order to achieve 500 MHz bandwidth, a nonprogrammable 7A19 or 7A29 can be substituted for the 7A16P.
The MP 1201 is based on the 7612D Dual Channel Programmable Waveform Digitizer. It features very flexible record partitioning during acquisition, allowing up to 13 changes in sampling rate per record for optimum signal resolution and best memory utilization.

The MP 1201 includes a 7612D dual channel Programmable Waveform Digitizer, two 7A16P Programmable Amplifiers, a 620 General Purpose $X-Y$ Monitor, and the necessary mounting hardware, cables and accessories.

CHARACTERISTICS

The following characteristics are the same for the MP 1101 and MP 1201 unless otherwise indicated.

ENVIRONMENTAL CHARACTERISTICS
Operating Temperature $-0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ $\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$.
Thermal Output - Approximately 1550 BTU/hr.
Operating Altitude -4600 m maximum (15,000 ft).

POWER REQUIREMENTS

Standard Operating Voltage - 115 V (nominal).
Line Frequency - 60 Hz .
Maximum Power Consumption - 450 W (nominal).

PHYSICAL CHARACTERISTICS

See individual component pages for dimensions.

ORDERING INFORMATION

MP 1101 Programmable Digitizer Mea-
surement Package
\$38,695
Option 01 - Delete Plug-ins. $\mathbf{\$ 5 , 2 8 0}$
MP 1201 Programmable Digitizer Mea-
surement Package
\$35,965
Option 01 - Delete Plug-ins. -\$4,790
For additional information on the alternative mounting configurations contact your local Tektronix Sales Office and ask for a sales engineer.

MP 2101/MP 2201/ MP 2401

The MP 2101 and MP 2201 comply with IEEE Standard 488-1975. The MP 2401 complies with IEEE Standard 488-1978. All three comply with Tektronix Stardard Codes and Formats.
High-Performance Waveform Acquisition
Fully Programmable over IEEE Standard 488 Bus for System Oriented Operation

Enhanced BASIC Language-Resident 4041 BASIC with Numerous Extensions

MP 2101 Features:

Ultra High-Speed Single Shot Digital Storage Capability

Up to $\mathbf{2 0 0} \mathbf{~ M H z}$ Bandwidth at $\mathbf{1 0} \mathbf{~ m V} /$ Div and Full Programmablility with 7A16P Vertical Plug-in
Up to 500 MHz Bandwidth at $10 \mathrm{mV} /$ Div with 7A19 Vertical Plug-in

Codes and Formats Features

MP 2201 Features:
200 Megasamples Per Second Maximum Rate, Each Channel

Two Vertical Channels. Two Independent Time-Bases

Eight-Bit Resolution

Codes and Formats Features
MP 2401 Features:
7D20T Programmable Digitizer
70 MHz Bandwidth for Repetitive Signals
10 MHz Single-Shot Bandwidth
Two Channels Simultaneous Acquisition
Store up to Six Independent Waveforms
Enveloping and Signal Averaging

The MP 2401 Measurement Package consists of a display monitor, 7D20T, 4041, 4105A, and software.

The MP 2101 provides the highest bandwidth for single-shot applications, up to 500 MHz in a nonprogrammable configuration (substituting a 7A19 or 7A29 vertical amplifier for the 7A16P), as well as built-in signal averaging. The MP 2201 provides true dual-channel. $200 \mathrm{MS} / \mathrm{s}$ digitizing with up to 80 MHz analog bandwidth. The MP 2201 can also be tailored for different signal characteristics using the 7000 Series plug-ins.
The MP 2101 Measurement Package includes the MP 1101 as its acquisition kernel; the MP 2201 Measurement Package includes the MP 1201. Added to both packages are the 4041 System Controller, 4105A Color Graphics Terminal, special acquisition and analysis software, and cabinet (shipped unassembled). The 4695 Color Graphics Copier is a popular option.
The MP 2401 Package is based on the 7D20T Programmable Digitizer, and provides an ideal general-purpose signal analysis configuration. It combines dual-channel signal acquisition and built-in storage with inherent enveloping, averaging, cursor measurements, and prestored waveform comparison abilities.
In addition to one 7D20T, the standard package includes a 4041 System Controller, 4105A Color Graphics Terminal, 620 General Purpose X-Y Monitor, special MP software, and cabinet (shipped unassembled). An alternative configuration uses a 7D20 installed in a 7000 Series Oscilloscope mainframe. The optional 4695 Color Graphics Copier extends the usefulness of the system.
The special MP software included with each of these three packages enables the operator to acquire, analyze ($\mathrm{min} / \mathrm{max}$, histogram), process (correlate, convolve, FFT, etc.), display, and store waveforms from the system terminal via easy-to-use menus. The software is also designed to accommodate multiple digitizers of the same type in each system (up to 28 digitizers per system with optional second IEEE-488 bus).

CHARACTERISTICS ENVIRONMENTAL

Operating Temperature $-+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ $\left(+50^{\circ} \mathrm{F}\right.$ to $\left.+95^{\circ} \mathrm{F}\right)$.
Thermal Output - MP 2101/MP 2201: Approximately $3750 \mathrm{BTU} / \mathrm{hr}$. MP 2401: Approximately 2900 BTU/hr.
Operating Altitude - 4600 m maximum (15,000 ft).

POWER REQUIREMENTS
Standard Operating Voltage - 115 V (nominal).
Line Frequency -60 Hz .
Maximum Power Consumption - MP 2101/ MP 2201: 1100 W. MP 2401: 850 W.

PHYSICAL CHARACTERISTICS

See individual component pages for dimensions.

ORDERING INFORMATION	
MP 2101 Acquisition/Processing	
Measurement Package	$\$ 51,985$
Option 01 - Delete Plug-ins.	$-\$ 5,280$
MP 2201 Acquisition/Processing Mea--	
surement Package	$\$ 49,415$
Option 01 - Delete Plug-ins.	$-4,790$
MP 2401 Acquisition/Processing Mea-	
surement Package	$\$ 25,790$
OPTIONS	

Option 10 - Substitute Tektronix 4107A Color Graphics Terminal for 4105A Color Graphics Terminal. See page 67. (MP 2101, MP 2201, MP 2401).
$+\$ 3,500$
Option 20 - Add Tektronix 4695 Color Graphics Hard Copy Unit. See page 77. (MP 2101, MP 2201, MP 2401). $+\$ 1,595$

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
For additional information on the alternative mounting configurations contact your local Tektronix Sales Office and ask for a sales engineer.

MP 2501

GPIB
The MP 2501 complies with IEEE Standard 488-1975.

7854 Waveform Processing Oscilloscope Dc to $\mathbf{4 0 0} \mathbf{~ M H z}$ Bandwidth at $10 \mathrm{mV} /$ Div Stores Repetitive Waveforms up to 400 MHz (up to 14 GHz with Sampling Plug-ins)
Single Shot Events and Pretrigger up to $50 \mu \mathrm{~s} / \mathrm{Div}$ with 7B87 Time Base)

Enhanced BASIC Language-Resident 4041 BASIC with Numerous Extensions

The MP 2501 Acquisition/Processing Measurement Package is based on the Tektronix 7854 Waveform Processing Oscilloscope, and is designed for signal acquisition, analysis, and processing of repetitive waveforms up to 400 MHz , or up to 14 GHZ with optional sampling plug-ins. It provides flexibility for making controller-assisted measurements in fiber optic testing environments, using Tektronix sampling plug-in units.
The MP 2501 includes the 4041 System Controller with Extended 4041 BASIC, a 4105A Terminal, and special MP software. The 4695 Color Graphics Copier is a particularly useful option with this package.
The MP software complements the built-in waveform processing and analysis features of the 7854 with menu-driven functions such as CORRELATE, CONVOLVE, FFT, DIFFERENTIATE, INTEGRATE, and TAPER. The MP software also greatly facilitates the storage and retrieval of waveforms and 7854 programs via mass media. The software can control up to 147854 s (up to 28 with the optional second IEEE-488 bus).

CHARACTERISTICS
 ENVIRONMENTAL
 Operating Temperature $-+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ $\left(+50^{\circ} \mathrm{F}\right.$ to $+95^{\circ} \mathrm{F}$).
 Thermal Output - Approximately 2750 BTU/hr.
 Operating Altitude - 4600 m maximum (15,000

ft).

POWER REQUIREMENTS

Standard Operating Line Voltage - 115 V (nominal).
Line Frequency - 60 Hz .
Maximum Power Consumption - 800 W (nominal).

PHYSICAL CHARACTERISTICS

See individual component pages for dimensions.

ORDERING INFORMATION

MP 2501 Acquisition/Processing Measurement Package (Order appropriate 7000 Series plug-ins, such as 7A16A, 7B80, and 7B87.) (See pages 213 and 2२०.)
\$29,475

OPTIONS

Option 10 - Substitute Tektronix 4107A Col-
or Graphics Terminal for 4105A Color Display Terminal. See page 67.
Option 20 - Add Tektronix 4695 Color Graphics Hard Copy Unit. See page 76 . $+\mathbf{1 , 5 9 5}$

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Recommended Cart - (For 7854 and 4041) K213 Option 10 Lab Cart with keyboard drawer for the 7854 and lower shelf for the 4041 . See page 424 for a complete description.

MP2601

The MP2601 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

Two Channels Simultaneous Acquisition
100 MHz Sample Rate for Single-shot Acquisition

150 MHz Bandwidth for Repetitive Signals
Envelope Mode for $2 \mathbf{n s}$ Glitch Capture at Any Sweep Speed.
Signal Averaging to Pull Signals Out of Noise
Extensive Triggering Capabilities
Event Capture on Trigger Events or When Signal Exceeds Predefined Limits
Data Logging Upon Demand, with Each Trigger Event, or When Signal Exceeds Predefined Limits

Extensive Time and Amplitude Measurements

Signal Processing and Data Manipulation to Match Measurement Requirements

Ease of Use via Menu-Driven Control

The MP2601 Portable Measurement Package provides extensive signal acquisition capabilities with signal analysis forming a system directed at measurement solutions.

MP2601 Functions:

Reference waveform to file transfers (46 files).
Files to reference waveforms transfer
Event Capture
20 parameters on waveforms (top, base, distal, mesial, proximal, min, max, peak to peak, mid, mean, top overshoot, base overshoot, rise, fall, width, duty cycle, period, 1/period, RMS, and area)
Waveform mathematics (add, subtract, multiply, divide, integrate, 2-point differentiation, 3 -point differentation, smoothing, FFT, correlate, add scalar, and multiply by scalar).
Application programs
Environmental parameters
The MP2601 consists of a 4041 controller (with a minimum 160 kbytes of memory, signal processing ROM, Utility ROM, and ROM carrier); 2430 Digital Oscilloscope; IEEE-488 Cable, and a S45F601 Software Package.

ORDERING INFORMATION

MP2601 Portable Measurement Package
\$15,650

OPTIONS

Option 05 - Video Trigger. $\quad+\mathbf{\$ 1 , 0 5 0}$
Option 11 - Probe Power. $+\$ 165$
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

MP 2901

MP 2901

GPIB
 IEEE-488

The MP 2901 complies with IEEE Standard 488-1978 and with Tektronix Starclard Codes and Formats.

A General Purpose IEEE-488 Development System

Rapid, Error-Free Software Development by Nonprogrammers

Easy Fixturing to the Device-Under-Test
Compatible with IEEE Standard 488 Equipment from Most Suppliers

The MP 2901 overcomes two of the most difficult hurdles in implementing an automated system-writing the test software and interfacing the IEEE-488 system to the unique device under test.
The task of software development is dramatically reduced with TEK EZ-TEST software. This software is a high-level, menudriven program which allows even nonprogrammers to create test software. The generated BASIC code is error-free and structured (to allow easy long-term maintenance). TEK EZ-TEST is powerful and flexible. It supports "learn mode" found in Tektronix instruments for exceptionally easy instrument set-up. Naturally, TEK EZ-TEST has the ability to accept IEEE-488 instruments from other manufacturers as well. The test programs generated are standalone 4041 BASIC programs so TEK EZTEST generated programs can be tailored to meet even the most unique test requirements.
The MI 5010/MX 5010 provide A/D, D/A, digital I/O, scanning, switching, and other functions using high-level commands. With these functions, the task of stimulating/ measuring/switching the device-under test and the test instruments is made easy because the MI 5010/MX 5010 handle the interface between the device-under-test and the IEEE-488 bus.
The MP 2901 package includes a 4041 System Controller, 4105A Color Computer Display Terminal, and a TM 5006 six-wide mainframe with MI 5010/ MX 5010 Programmable

Multifunction Interface and Extender, and PS 5010 Programmable Triple Power Supply. TEK EZ-TEST software is utilized for test program generation.

CHARACTERISTICS

ENVIRONMENTAL

Operating Temperature $-+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ $\left(+50^{\circ} \mathrm{F}\right.$ to $\left.+95^{\circ} \mathrm{F}\right)$.
Operating Altitude -4600 m maximum (15,000 $\mathrm{ft})$.

POWER REQUIREMENTS

Standard Operating Line Voitage - 115 V

 (nominal).Line Frequency - 60 Hz .
Maximum Power Consumption - 970 W.
PHYSICAL CHARACTERISTICS
See individual components pages for dimensions.

ORDERING INFORMATION

MP 2901 Incoming Inspection Test Station
\$19,890

OPTIONS

Option 03 - Delete M15010, MX5010, PS 5010.*
Option 1A - Add 50M10 AD Converter Card. $+\$ 895$ Option 1B - Add 50M20 D/A Converter Card.
Option 1C - Add 50M30 Digital VO Card.
$+\$ 910$
$+\$ 495$
10 Add 50M40 Relay Scanner Card
Option 1E - Add 50M41 Low Level Scanner Card.
Option 1F - Add M41A1 Low Level Amplifier.
Option 1G - Add 50M50 16 k Buffer Memory Card.
Option 1H — Add 50M70 Development Card
Option 10 - Substitute 4107A Color
Graphics Terminal for 4105A.
Option 19 - Add 4644 printer.* ${ }^{*}$
Option 2A - Add TM 5006 Mainframe w/Option 02 \& 2 m GPIB Cable.
+\$1,275
Option 2B - Add TM 5006 Mainframe w/Option $12 \& 2 \mathrm{~m}$ GPIB Cable.
$+\$ 1,375$
Option 2C — Add DM 50104.5 Digital Multimeter.
+\$2,260
Option 2D - Add FG 501020 Hz Function Generator.
$+\$ 4,500$
Option 2E - Add SG 5010 Oscillator. $\quad+\$ 4,195$
Option 2F - Add PS 5010 ± 32 V Triple
Power Supply.
Option 2G - Add PS 500420 V Precision
Power Supply.
Option $2 H ~-~ A d d ~ D C ~$
$5010 ~$
350 MHz Digital
Option 2H — Add DC 5010350 MHz Digital
Counter.
350 MHz Scanner.
Option $\mathbf{2 K}$ - Add M15010 Multifunction Interface.

Option 2L — Add MX5010 Interface Extender. $\quad \mathbf{\$ 7 4 0}$
Option 2M — Add DC 5009135 MHz Digital
Counter. $\quad \mathbf{+ 2 , 6 5 0}$
Option 20 - Add 4695 Color Graphics Hard
Copy Unit.
Option 22 - Add Option 01 to 4041 (Second
Option 22 - Add Option 01 to 4041 (Second
GPIB Interface and second RS-232C port) This option is not available with Option $23 .{ }^{* 1}$
Option 23 - Add Option 03 to 4041. (Disk Interface and second RS-232C port). This option is not available with Option 22.*1

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16$ A, 50 Hz .
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
*' Contact your local sales office.

NEW MP 2902

| GPIB- |
| :---: | :---: | :---: |
| IEE |

The MP 2902 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

Eleven Comprehensive Audio Tests
Rapid, Error-Free Test Program Development by Nonprogrammers

State-of-the-Art Measurement Performance
Software Supports All IEEE Standard 488 Instruments and Provides for Unique Test Requirements

The MP 2902 Audio Measurements Package makes critical audio measurements consistently, accurately and quickly. The Tektronix Audio Test Program Generator (Audio TPG) produces automated test procedure quickly and easily. This software development tool dramatically simplifies the process of converting manual tests into software. With the Audio TPG, menus guide nonprogrammers through test development. The result is er-ror-free code written in 4041 BASIC. Tests supported in the Audio TPG include: THD vs Frequency, THD vs Output Level, IMD vs Output Level (SMPTE or CCIF), CCIF IMD vs Frequency, Frequency Response, Signal-toNoise, Level (Voltage and Power), Linearity, and External Stimulus. Provisions are made for the user to add any unique testing requirements which are not directly supported in the Audio TPG.

TFK OSCILLOSCOPE MEASUREMENT

Whether the environment is production or R \& D and whether the test requirement is microphone characterization, broadcast station proof-of-performance, or measuring noise and distortion of audiotype machines, the MP 2902 offers accuracy, speed, and consistency.
The MP 2902 includes a 4041 System Controller, 4105A Color Computer Display Terminal, and a TM 5006 six-wide mainframe with AA 5001 Programmable Distortion Analyzer and a SG 5010 Programmable Oscillator. Tektronix Audio Test Program Generator software is utilized for test program generation.

CHARACTERISTICS ENVIRONMENTAL

Operating Temperature $-+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ $\left(+50^{\circ} \mathrm{F}\right.$ to $\left.+95^{\circ} \mathrm{F}\right)$.
Operating Altitude - 4600 M Maximum (15,000 ft).

POWER REQUIREMENTS

Standard Operating Line Voltage - 115 V (nominal).
Line Frequency -60 Hz .
Maximum Power Consumption - 970 W.

PHYSICAL CHARACTERISTICS

See individual component pages for dimensions.

ORDERING INFORMATION
 MP 2902 Audio Measurements Package
 \$21,770
 OPTIONS

Option 1J - Substitute AA 5001. Option 02
(CCIR/DIN) for AA 5001.
$+\$ 410$
Option 10 - Substitute 4107A Color Graphics Terminal for the 4105A Color Graphics Terminal.
$+\$ 3,500$
Option 11 - Substitute 4106A Color Graphics Terminal for 4105A Color Graphics
Terminal. $\quad \mathbf{+ \$ 2 , 5 0 0}$

Option 19 - Adds 4644 Dot Matrix Printer. $\mathbf{+ \$ 1 , 3 5 0}$
Option 2H — Adds DC 5010 Programmable Universal Counter/Timer. $+\$ 4,485$
Option 20 - Adds 4695 Color Graphics Printer.
$+\$ 1,595$
Option 22 - Adds Option 01 to 4041 (Second GPIB Interface and second RS-232C port). This option is not available with Option $23 . \quad+\$ 1,600$
Option 23 - Adds Option 03 to 4041 (Disk Interface and second RS-232C Port). This option is not available with Option $22 . \quad+\$ 1,400$
Option 24 - Adds 4926 Option 25 (10 Mbyte Hard Disk and Dual 5.25 inch Flexible Disk). Requires Option 23.

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

MP 2903

NEW MP 2903

GPIB IEEE-488

The MP 2903 complies with IEEE Standard 488-1978 and with Tektronix Standard Codes and Formats.

2465 DVS Oscilloscope Software Development System

Rapid, Error-Free Test Program Development by Nonprogrammers

300 MHz Bandwidth at Probe Tip
Counter/Timer/Word Recognizer

4.5 Digit DMM

TV Waveform Measurements
Compatible with IEEE Standard 488 Equipment from Most Suppliers

The MP 2903 Oscilloscope Measurement Package ensures rapid implementation of an automated 2465 DVS based measurement system. Whether the driving force for automating is reduced cost, improved documentation, or test repeatability, the MP 2903 can aid in quickly automating your unique application.

The task of software development is dramatically reduced with TEK EZ-TEST software. This software is a high-level, menudriven program which allows even nonprogrammers to create test software. The generated BASIC code is error-free and structured (to allow easy long-term software maintenance). It supports "learn mode" found in Tektronix instruments for exceptionally easy instruments set-up. Naturally, TEK EZ-TEST has the ability to accept IEEE488 instruments from other manufacturers. The test programs generated area standalone 4041 BASIC programs so programmers can tailor the TEK EZ-TEST generated programs to even the most unique test requirements.
The 2465 DVS Oscilloscope provides extensive measurement capabilities including rise/fall time, pulse width, duty cycle, phase shift, propagation delay, delay time, delta time, frequency and period as well as volt-
age, resistance, and current measure-ments-with accuracies previously found only in stand-alone counters and multimeter.
This package includes a 4041 System Controller, 4105A Color Computer Display Terminal and a 2465 DVS Oscilloscope. TEK EZTEST software is utilized for test program generation.

CHARACTERISTICS ENVIRONMENTAL

Operating Temperature $-10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $95^{\circ} \mathrm{F}$).
Operating Altitude - 4600 m maximum (15,000 ft).

POWER REQUIREMENTS
Standard Operating Line Voltage - 115 V (nominal).
Line Frequency - 60 Hz .
Maximum Power Consumption - 440 W.
PHYSICAL CHARACTERISTICS
See individual component pages for dimensions.

ORDERING INFORMATION
 MP 2903 Oscilloscope Measurement Package
 $\$ 21,760$

OPTIONS
Option 08 - Substitute 2465 DMS for 2465 DVS. $\quad-\$ 800$
Option 09 - Substitute 2465 CTS for 2465 DVS.
$-\$ 2,050$
Option 10 - Substitute 4107A Color Graphics Terminal for 4105A.
Option 11 - Substitute 4106A Color Graphics Terminal for 4105A.
$+\$ 3,500$

Option 20 - Adds 4695 Color Graphics Printer.
$+\$ 2,500$
$+\$ 1,595$
Option 22 - Adds Option 01 to 4041 (Second GPIB Interface and second RS-232C port). This option is not available with Option $23 . \quad+\$ 1,600$
Option 23 - Adds Option 03 to 4041 (Disk Interface and second RS-232 port). This option is not available with Option 22. Hard Disk with Dual 5.25 Inch Flexible Disk Drive). Requires Option 23.
$+\$ 5,800$
INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16$ A, 50 Hz .
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

Shown above is the MS 3101．The MS 3201 replaces the 7912AD Programmable Digitizer with a 7612D Programmable Waveform Digitizer（see inset）．Cart not included．＊＇

MS 3101／MS 3201

GPIB The MS 3101 and MS 3201 comply with IEEE－488 IEEE Standard 488－1975．

High－Performance Waveform Acquisition
Control and Data－Analysis Package
Powerful Waveform and Array Processing
128 k Words of Computer Memory
Supported
Flexible Real－Time Instrument Control
Extensive String Processing
Comprehensive Graphics

Codes and Formats Features
＊${ }^{1}$ For specifications and ordering information see page 83.

MS 3101 Features：
Ultra High－Speed Single Shot Digital Storage Capability

Up to 200 MHz Bandwidth at $10 \mathrm{mV} /$ Div with Full Programmability

Up to 500 MHz Bandwidth at $10 \mathrm{mV} /$ Div with a 7A19 Vertical Plug－in

MS 3201 Features：
200 Megasamples Per Second Maximum Rate，Each Channel

Two Separate Vertical Channels．Two Inde－ pendent Time Bases

Eight Bit Resolution

The MS 3101 and MS 3201 Acquisition／ Processing Measurement Systems are self－ contained signal acquisition and waveform processing systems．The MS 3101 is based on the Tektronix 7912AD Programmable Digitizer for excellent single－shot acquisition capability．The MS 3201 is based on the Tektronix 7612 Programmable Digitizer for excellent dual－channel acquisition capabili－ ty．Both utilize the 119－1834－00（DEC MICRO／PDP－11）Instrument Controller which use the MP 1101 Measurement Package or 1201 Measurement Package for the acquisi－ tion kernel．

Both include a 10 megabyte Winchester disk and dual $5 \frac{1 / 4}{}$ inch flexible diskette drives，contained in a compact $5 \frac{1}{4}$ inch controller height configuration．

Shown above is the 7612D contained in the MS 3201. The 7912AD and 7612D are shown and described sepa－ rately on pages 324 and 321 respectively．

They can control up to 56 GPIB instruments， using the TEK SPS BASIC control，data re－ duction，and graphic display language．

Fully assembled and tested in a full bay cabinet，they also include a 4105A Color Display Terminal．The color hard copy unit and cart are optional．

CHARACTERISTICS
 ENVIRONMENTAL

Operating Temperature－Ambient Air：Nomi－ nal is $+20^{\circ} \mathrm{C}$ ．Range is $+16^{\circ} \mathrm{C}$ to $+24^{\circ} \mathrm{C}$ ． Forced Cooling Air：Nominal is $+18^{\circ} \mathrm{C}$ ．Range is $+13^{\circ} \mathrm{C}$ to $+22^{\circ} \mathrm{C}$ ．Thermal Shock：$<1^{\circ} \mathrm{C} /$ minute short term．$<5^{\circ} \mathrm{C} / \mathrm{hr}$ long term．
Humidity — Nominal：45\％relative humidity，non－ condensing．Range： 40% to 60% relative humid－ ity，noncondensing．
Thermal Output－Approximately 3750 BTU／hr．
Operating Altitude -76 m to 2400 m maxi－ mum（ -250 ft to 8000 ft ）．

POWER REQUIREMENTS

Standard Operating Line Voltage－ 115 V （nominal）．
Line Frequency－ 60 Hz ．
Maximum Power Consumption－ 1100 W （nominal）．

PHYSICAL CHARACTERISTICS

Cabinet Dimensions	mm	in		
Height	1833	72.2		
Width	616	24.3		
Depth	1070	42.4		
4105A	Console		Keyboard	
Dimensions	mm	in	mm	in
Height	353	13.9	41	1.6
Width	419	16.5	423	16.6
Depth	492	19.5	180	7.0

ORDERING INFORMATION

MS 3101 Acquisition／Processing Mea－ surement System
\＄71，765
MS 3201 Acquisition／Processing Mea－
surement System
\＄68，335
Option 01 －Delete Plug－ins
（MS3101）
－\＄5，280
（MS3201）
$-\$ 4,790$
Option 10 －Substitute Tektronix 4107A Col－
or Graphics Terminal for 4105A Color Graphics Terminal．（See page 67．）
$+\$ 3,500$
Option 20 －Add Tektronix 4695 Color Graphics Copier．（See page 76．）
$+\$ 1,595$
Customer Training is available on this product．See page number 452 for futher details．

TM 5000 GPIB PROGRAMMABLE INSTRUMENTS

CONTENTS

Designed for Configurability; for Programming Ease; for Productivity.

Test and measurement setup has never been this friendly, has never been this fast. With Tek's line of TM 5000 programmables, you can continue to build on the concept of configurability. You can link together customized, automated test packages with the same plug-in, pull-out ease as found in our TM 500 manual instrument line. The TM 5000 IEEE Standard 488 compatible, fully programmable instruments are among the friendliest and fastest to integrate you can buy.

The 350 MHz DC 5010 Universal Counter/ Timer is the state-of-the-art in high performance universal counter/timers. Its 1 ps time interval averaging resolution is unmatched for the industry.

For lower speeds, the 135 MHz DC 5009 Universal Counter/Timer is the industry's lowest cost, fully programmable counter/ timer. It provides all of the functions of the higher-performance DC 5010 except rise/fall and null.

The DP 501 Digital Prescaler extends the frequency measurement capability of the DC 5010 and DC 5009 to 1.3 GHz under program control.

The DM 5010 Digital Multimeter measures dc and true RMS ac volts, ohms, and provides a diode test function. Internal math capabilities include averaging, nulling, offset, scaling, dB , and $\mathrm{HI} / \mathrm{LO} /$ Pass sorting.

The FG 5010 Function Generator features variable symmetry throughout the full 20 MHz bandwidth of the instrument. Other
important functions include counted burst, phase lock, and the ability to store and recall ten complete front panel setups.

The PS 5010 Power Supply, with its three separately programmable supplies, provides the most widely used voltages, all under complete program control, including current limit, source on/off, and extensive status reporting.

Shown above DM 5010, DC 5009, MI 5010, FG 5010, PS 5010 and 4041 System Controller configured in a benchtop system approximately 15 inches high and 17 inches wide.

The PS 5004 Precision Power Supply provides the high-resolution voltages and currents necessary in the characterization of transistors, ICs, and other semiconductor and hybrid circuits. The actual values of the output voltage, output current, and current limit may be read directly from the $41 / 2$-digit front panel display or are available over the GPIB.

The AA 5001 Programmable Distortion Analyzer and SG 5010 Programmable Oscillator are the world's first truly high-performance programmable audio test instruments. Together, they provide unequaled capability covering the full range of standard audio testing-THD, IMD, (SMPTE, DIN, CCIF difference tone), gain/loss, and signal-to-noise ratio. The AA 5001 is fully automatic in each of its operating modes-no tuning, no nulling, no level setting, no range changingeven with a remotely located signal source.
A complete range of system control and signal routing capabilities are available with the Ml 5010 Multifunction Interface and MX 5010 Multifunction Interface Extender and the SI 5010350 MHz Programmable Scanner. Function cards currently available for the MI 5010/MX 5010 Multifunction Interface System include: D/A converter, A / D converter, 32-channel digital I/O, 16-channel relay scanner, 10 -channel low-level scanner (with a choice of signal conditioning modules), 16 k memory, and a user-configurable development card.

Each TM 5000 instrument (with the exception of the completely automatic AA 5001) is fully programmable-all front panel functions are programmable over the GPIB. Each instrument (again with the exception of the AA 5001) has a front-panel ID button which can be programmed to cause the instrument to generate an SRQ when pushed, to allow operator intervention in an on-going test. Conversely, the SRQ generation capability can be programmed off to prevent inadvertent operator intervention. In addition, the entire front panel of each instrument can be locked out to further prevent operator interference with a test or instrument setup. When used with the execute-only version of the Tektronix 4041 System Controller, this means that you can place a completely operator-proof test system on the manufacturing floor; the operator can intervene only to the extent permitted by the test programmer.
In addition, Tektronix Standard Codes and Formats provides standardized data formats among all TM 5000 instruments, and among all other Tektronix GPIB instruments as well. Standardized instrument data formats open up the lines of bus communication and make your test and measurement system easy to set up and operate. Test and control functions are changed quickly and easily. Common error codes among instruments greatly simplify error-handling routines.

All of the TM 5000 instruments have internal diagnostics capability built right in. Each instrument performs an extensive diagnostic self-test on power-up or on command and, in case of a fault, displays and/or sends over the GPIB an error message indicating the nature of the fault. To further aid in troubleshooting and maintenance of the instruments, each has built-in signature analysis capability; each instruction manual gives a comprehensive list of signatures at nodes throughout the instrument.
The compact, modular TM 5000 instruments operate in the TM 5003 and TM 5006 mainframes to form configurable automated test systems which occupy less than half the rack space of ordinary rackmounted equipment.

All of the current TM 5000 instruments are double-width, with the exception of the sin-gle-width DC 5009 and PS 5004. That is, each (except the DC 5009 and PS 5004) occupy two compartments of the three-compartment TM 5003 or the six-compartment TM 5006 mainframes.
Adherence to standard form and fit means that any TM 5000 product can be replaced in a system without the uncabling, unstacking, restacking, and recabling that is necessary with most instruments. Rebuilding the system for a different task takes seconds, not hours. And, if all instruments in your system need not be programmable, there are almost forty Tek TM 500 manual instruments compatible with TM 5000 mainframes.
All TM 5000 instruments are UL listed.

Programmable Universal Counter/Timer

DC 5010

The DC 5010 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

350 MHz Both A and B Channels

3.125 ns Single-Shot Resolution

9-Digit Display

1 ps Resolution, with Averaging

Measurement Functions Include:

Reciprocal Frequency Measurement; Period; Width; Time A \rightarrow B; Events B During A; Totalize A, A+B, A-B; Ratio; Rise/Fall; Time Manual; Arming; Null;

Auto or Selected Averaging to 10^{9} in All Modes
Duty-Cycle Independent Autotrigger
DVM Mode for Displaying Trigger Level Setting

Shaped A and B Channel Outputs
Hysteresis Compensation

Probe Compensation

See Digital Counter Selection Guide on page 358.

Frequency measurements to 350 MHz (to 1.3 GHz with the Tektronix DP 501 Digital Prescaler), a wide range of time-interval measurement capabilities including risetimes and falltimes, hysteresis compensation, probe compensation, arming, and high resolution on low frequency signals (up to nine digits in one second or less), all combine to make the DC 5010 a true state-of-the-art universal counter/ timer. Selected averaging of up to 10^{9} events provides usable time-interval resolution to 1 ps on repetitive signals. The automatic averaging feature provides a compromise between measurement time and resolution, regardless of input signal frequency. The pseudo-random, phase modulated clock provides increased accuracy by eliminating the possibility of clock-synchronous errors in the time-interval averaging modes. Hysteresis compensation is automatic, further increasing the accuracy of time-interval measurements in the DC 5010. The Null feature permits the nulling of differences in cable lengths in time-interval measurements to provide direct readout of the measurement of interest.

Autotrigger, at the push of a button or upon command over the GPIB, senses the maximum and minimum of the applied signal and sets trigger level to a point midway between the two, regardless of duty cycle. The values of the maximum and the minimum are available over the bus where they can be used by the controller to compute the $p-p$ amplitude of the signal, providing the function of a high-frequency $p-p$ DVM. The value of the trigger level is also available over the bus, and may also be displayed in the ninedigit DC 5010 display. The outputs of both channels' signal shaping circuits are available at the front panel to aid in the proper setting of trigger levels on complex waveforms. The arming input allows measurement of selected events within complex waveforms. The unique Probe Compensation feature permits quick and accurate compensation of attenuator-type probes to provide accurate measurements on signals beyond the amplitude range of the counter itself.

The frequency measurement of the DC 5010 can be extended to 1.3 GHz with the use of the companion DP 501 Digital Prescaler. TM 5000 rear interfacing capability permits the operation of the DP 501 to be controlled over the GPIB through the DC 5010 .

A field-installable modification kit is available to upgrade a manual DC 510 Universal Counter/Timer (page 359) to a GPIB programmable DC 5010 Universal Counter/ Timer.

CHARACTERISTICS

Display - Nine-digit LED display, automatic decimal point positioning, LED indicators for units, and measurement gate, and bus conditions. Overflow is indicated by a blinking display.

CHANNEL A AND CHANNEL B INPUT

Frequency Range

50Ω Termination: 0 MHz to 350 MHz dc coupled. 100 kHz to 350 MHz ac coupled.
$1 \mathrm{M} \Omega$ Termination: 0 MHz to 300 MHz dc coupled. 16 Hz to 300 MHz ac coupled.

Sensitivity

50Ω Termination Dc: 25 mV RMS sinewave to 350 MHz .70 mV p-p pulse.
$1 \mathrm{M} \Omega$ Termination Ac: 25 mV RMS to 200 MHz , 42 mV RMS to 300 MHz .
Attenuation - Selectable 1X, 5X.
Impedance - $1 \mathrm{M} \Omega$ paralleled by $23 \mathrm{pF} \pm 2 \mathrm{pF}$ or 50Ω.
Dynamic Range $-4 \mathrm{Vp}-\mathrm{p} \times$ attenuation.
Trigger Level Range -+2 V to -2 V with 4 mV resolution (X 1). +10 V to -10 V with 20 mV resolution (X5).
Trigger Level Accuracy - $\pm 2 \%$ of reading for a dc input $\mathrm{V}, \pm 40 \mathrm{mV} \times$ attenuator.
Autotrigger Frequency Range -10 Hz to 350 MHz .
Independent Controls - Slope $+/-$, Attenuation $1 \mathrm{X} / 5 \mathrm{X}$, Couple ac/dc, Impedance $1 \mathrm{M} \Omega / 50 \Omega$. Maximum Input Voltage - $1 \mathrm{M} \Omega$ input impedance.
$1 \mathrm{X}: \pm 42 \mathrm{~V}$ (dc + peak ac) to $200 \mathrm{kHz} ; \pm 2 \mathrm{~V}$ (dc + peak ac) to 300 MHz .
$5 \mathrm{X}: \pm 42 \mathrm{~V}$ (dc + peak ac) to $1 \mathrm{MHz} ; \pm 10 \mathrm{~V}$ (dc + peak ac) to 300 MHz .
In 50Ω Input Impedance: Signals $> \pm 2 \mathrm{~V} \times$ attenuator will cause input protection circuitry to switch input to $1 \mathrm{M} \Omega$.
Shaped Out - Shaped replica of signal being measured, aids proper triggering on complex waveforms ($\geqslant 100 \mathrm{mV}$ typically to 350 MHz into 50Ω load).
Arming Input - Permits measurements of complex waveforms. A TTL high allows averaging of selected events within a measurement.

FREQUENCY A

Range $-36 \mu \mathrm{~Hz}$ to 350 MHz .
Resolution -
$\pm L S D \pm 1.4 \times \frac{\text { A Trigger Jitter Error }}{\mathrm{N}} \times(\text { Frequency } \mathrm{A})^{2}$
Accuracy - Resolution \pm (Time Base Error x Frequency A)
PERIOD A
Range -3.125 ns to 7.6 hrs .
Resolution -
$\pm L S D \pm \frac{1.4 \times \mathrm{A} \text { Trigger Jitter Error }}{\mathrm{N}}$
Accuracy - Resolution \pm (Time Base Error) \times Period A.

RATIO B/A
Range -10^{-8} to 10^{9} (Frequency Range: $36 \mu \mathrm{~Hz}$ to 350 MHz).

Resolution -

$\pm \mathrm{LSD} \pm \frac{1.4 \times \mathrm{B} \text { Trigger Jitter Error } \times \text { Frequency } \mathrm{B}}{\mathrm{N}}$
Accuracy - Same as Resolution.
TIME $A \rightarrow B$
Range -2.0 ns to 7.6 hrs.
Minimum Dead Time - 12.5 ns (stop to start). Resolution -
$\pm \mathrm{LSD}+\frac{1}{\sqrt{N}} \times(\pm \mathrm{A}$ Trigger Jitter Error
$\pm B$ Trigger Jitter Error)
Accuracy - Resolution \pm (Time Base Error x Time $\mathrm{A} \rightarrow \mathrm{B})+(\mathrm{B}$ Trigger Slew Error) $-(\mathrm{A}$ Trigger Slew Error) \pm (Channel Delay Mismatch*1).
Channel Delay Mismatch $-<2$ ns between front panel inputs.
Resolution - Best time $\mathrm{A} \rightarrow \mathrm{B}$ Avg resolution $=$ $\pm 1 \mathrm{ps}$.
Repetition Rate - $<70 \mathrm{MHz}$.
${ }^{*}$ + Can be removed with "Null".

EVENTS B DURING A

Range -10^{-8} to 10^{9}.
Maximum B Frequency - 350 MHz .
Maximum A Frequency - 80 MHz .
Minimum A Pulse Width - 4.0 ns .
Minimum Time Between A Pulses - 8.5 ns .
Minimum Dead Time Between Pulses $\leqslant 8.5$ ns.
Resolution -
\pm LSD $+\frac{\text { Frequency B }}{\sqrt{N}}$
\pm (Trigger Jitter Error CH A start edge
\pm Trigger Jitter Error CH A stop edge).
Accuracy - Resolution + Frequency B (Stop Slew Rate Error - Start Slew Rate Error) + Frequency $\mathrm{B} \times(5 \pm 2 \mathrm{~ns})$.

WIDTH A

Range -4 ns to 7.6 hrs .
Minimum Dead Time Between Pulses 1.6 ns.

Resolution -
\pm LSD $+\frac{1}{\sqrt{N}}(\pm$ Start Trigger Jitter Error
Accuracy - Resolution \pm (Time Base Error \times Width A) + (Stop Slew Rate Error - Start Slew Rate Error) $\pm 2 \mathrm{~ns}$.
Repetition Rate -50 MHz .

TIME MANUAL
Range -0 to $3.125 \times 10^{4} \mathrm{~s}(\approx 8 \mathrm{hrs})$.
Resolution - \pm LSD (100 ms).
Accuracy - \pm Resolution \pm (Time Base Error x Time).

TOTALIZE A

Range -0 to 10^{9} counts.
Repetition Rate - 0 to 350 MHz .
TOTALIZE A+B
Range -0 to 10^{9} counts ($A+B \leqslant 10^{9}$).
Repetition Rate - 0 to 350 MHz .
TOTALIZE A-B
Range -1×10^{8} to $+1 \times 10^{9}$ (either $A>10^{12}$ or $B>10^{12}$ will cause overflow).
Repetition Rate - 0 to 350 MHz .
RISE/FALL A
Range -4 ns to $10^{4} \mathrm{~s}(50 \Omega) 5 \mathrm{~ns}$ to $10^{4} \mathrm{~s}$ (1 M Ω).
Repetition Rate - Minimum time between rising (falling) edges is $12.5 \mathrm{~ns}(80 \mathrm{MHz})$.
Input Amplitude $-(1.4 \mathrm{~V}$ to 8 V$) \times$ Attenuation
$(50 \Omega),(0.7 \mathrm{~V}$ to 4 V$) \times$ Attenuation ($1 \mathrm{M} \Omega$).

Resolution -

\pm LSD $+\frac{1}{\sqrt{N}}(\pm$ Start Trigger Jitter Error

$$
\pm \text { Stop Trigger Jitter Error) }
$$

Accuracy - Resolution \pm (Time Base Error x Risetime/Falltime) $\pm 2 \mathrm{~ns} \pm 4 \mathrm{mV} \times$ Slew Rate A Error (near 10%) $\pm 4 \mathrm{mV}$ Slew Rate A Error (near 90\%).

PROBE COMPENSATION

Display - 1 or 0 for each channel.
Accuracy - Probe Attenuation \times Counter Attenuation $\times 0.300(\%)$.

> RESOLUTION AND ACCURACY DEFINITIONS Trigger Jitter Error (Seconds RMS) $\frac{\sqrt{\left(e_{n} 1\right)^{2}+\left(e_{n} 2\right)^{2}(\text { Volts RMS })}}{\text { Input Slew Rate at trigger point (V/s) }}$

Where: $e_{n 1}=140 \mu$ VMS typical counter input noise for $1 M \Omega$ filter on; $250 \mu V R M S$ typical for $1 M \Omega$, filter off and $340 \mu V$ RMS typical for 50Ω. $e_{n 2}=$ RMS Noise Voltage of input signal at trigger point measured with 350 MHz bandwidth.

${ }^{* 1}$ Trigger level error $=$

All functions except Width and Events B During A	Positive Slope	Trigger accuracy times ATTN factor
	Negative Slope	(Trigger accuracy $\pm 10 \mathrm{mV}$) times ATTN factor
Width A \sim r	Start Edge stop edge Start Edge Stop Edge	Trigger accuracy times ATTN factor (trigger accuracy + hyst) times ATTN factor (Trigger accuracy + hyst) times ATTN factor Trigger accuracy times ATTN factor
Events B During A	Same as Width, except each number is multiplied by (Frequency B)	
Note: Input hysteresis is typically 50 mV p-p x attenuation. $N=$ Number of events averaged.		

The minimum number of averages is selected by the Averages button and the $\uparrow \downarrow$ buttons in decade steps from 1 to 10^{9}. At Channel A repetition rates above $\approx 250 \mathrm{~Hz}$, the actual number of averages will be:
$\mathrm{N}=[$ Frequency $\mathrm{A}(\mathrm{Hz}) \times 4 \mathrm{~ms}]+$ Averages.
$N=$ Averages setting (below 250 Hz).
This calculation typically leads to better than expected resolution in the displayed answer for small N with only minimal impact on measurement time. It does mean, however, that Arming must be used where only $\mathrm{N}=1$ is desired for signals $\geqslant 250 \mathrm{~Hz}$.
In the Auto mode, the counter measures with a fixed measurement time of about 300 ms (or the time for one event, whichever is greater).
$\mathrm{N}=$ Frequency $\mathrm{A}(\mathrm{Hz}) \times 0.3 \mathrm{~s}$
(N always $\geqslant 1$).
Time Base Error - The sum of all errors specified for the time based used.

STANDARD TIME BASE

Crystal Frequency - 10 MHz .
Temperature Stability $- \pm 5 \times 10^{-6}, 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Aging Rate $-\leqslant 1 \times 10^{-6} /$ year.
Setability - Adjustable to within $\pm 5 \times 10^{-8}$.
HIGH STABILITY TIME BASE (OPTION 01)
Crystal Frequency - 10 MHz .
Temperature Stability $- \pm 2 \times 10^{-7}, 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Warm-Up Time $- \pm 2 \times 10^{-7}$ of final frequency in <10 minutes when cold started at $25^{\circ} \mathrm{C}$.
Aging Rate $-\leqslant 1 \times 10^{-8} /$ day at time of shipment, $4 \times 10^{-8} /$ week after 30 days of continuous operation, $4 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability - Adjustable to within $\pm 2 \times 10^{-8}$.

REAR INTERFACE

Inputs - Arming; reset; external time base ($1 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz), prescale.
Outputs -1 MHz clock.

OTHER CHARACTERISTICS

Power Consumption - $14.5 \mathrm{~W}(\approx 19$.. W or Option 01).
GPIB Data Output Rate $-\approx 10$ readings/s maximum.
TM 5000 Power Module Compatibility - The DC 5010 is not compatible with TM 500 Series mainframes.

ORDERING INFORMATION

DC 5010 Programmable Universal

Counter/Timer

\$4,485
Includes: Shaped output cable ($012-0532-00$); instruction manual (070-3897-02); instrument interfacing guide (070-4611-00); reference guide (070-3553-00).

OPTIONS

Option 01 - High Stability Time Base. $+\$ 325$
Field Option 01 Kit — For DC 510/5010.
Order 040-0966-00
Utility Software
For TM 5000/4041. Order 062-6958-01 \$150 See page 297 for description and ordering information.

RECOMMENDED PROBE

P6125 - 5X Passive Probe. Order 010-6125-01

DC 5009

Programmable Universal Counter Timer
DC 5009

The DC 5009 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

135 MHz Both A and B Channels
10 ns Single-Shot Resolution
8-Digit Display
5 ps Resolution, with Averaging
Measurement Functions Include:
Reciprocal Frequency Measurement
Period
Width
Time A \rightarrow B
Events B During A
Totalize A \rightarrow B
Ratio
Time Manual
Arming
Auto or Selected Averaging to 10^{8} in All Modes

Duty-Cycle Independent Autotrigger

Shaped A and B Channel Outputs
Probe Compensation
The DC 5009 single-width Universal Counter/Timer provides all of the measurement functions of the higher performance DC5010 except risetime/falltime, null, and totalize $\mathrm{A} \pm \mathrm{B}$. This makes it the lowest cost fully programmable universal counter/timer available at the present time.
The powerful reciprocal frequency measurement technique allows up to eight digits of resolution of low frequency signals in one second or less of measurement time. The DC 5009 has the same automatic averaging

See Digital Counter Selection Guide on page 358.
feature as the DC 5010; selected averaging of up to 10^{8} events provides usable timeinterval resolution of 5 ps .
Like the DC 5010, the frequency measurement capability of the DC 5009 can be extended to 1.3 GHz with the use of the DP 501 Digital Prescaler. The TM 5000 rear interfacing capability allows the operation of the DP 501 to be controlled over the GPIB through the DC 5009.
A field-installable modification kit is available to upgrade a manual DC 509 Universal Counter/Timer (page 359) to a GPIB programmable DC 5009 Universal Counter/ Timer.

CHARACTERISTICS

Display - Eight-digit LED display, automatic decimal point positioning, LED indicators for units, and measurement gate. Overflow is indicated by a blinking display.

CHANNEL A AND B INPUT

Frequency Range - 0 MHz to 135 MHz dc coupled, 10 Hz to 135 MHz ac coupled.
Sensitivity - 20 mV RMS sinewave to 100 MHz , 40 mV RMS sinewave to $135 \mathrm{MHz}, 115 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at minimum, pulse width of 3 ns .
Attenuation - Selectable 1X, 5X.
Impedance - $1 \mathrm{M} \Omega$ paralleled by $\leqslant 30 \mathrm{pF}$.
Trigger Level Range -+3.200 V to -3.175 V with 25 mV resolution (X1). +16 V to -15.875 V with 125 mV resolution (X5).
Trigger Level Accuracy - $\pm 45 \mathrm{mV}$ $\pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to $25^{\circ} \mathrm{C}$.
Dynamic Range - V p-p $\leqslant 3 \times$ Attenuation, tr $\leqslant 5 \mathrm{~ns}$. V peak $\leqslant 3.2 \times$ Attenuation.
Autotrigger Frequency Range -20 Hz to 100 MHz ($\mathrm{V}_{\text {in }} \geqslant 125 \mathrm{mV} \mathrm{p}-\mathrm{p}$).
Independent Controls - Slope +/-, attenuation 1X/5X, Couple ac/dc, Source Internal/ External.

Maximum Input Voltage

$1 \mathrm{X}: 200 \mathrm{~V}$ peak; 400 V p-p from dc to 50 kHz , derate to 15 V p-p at 135 MHz .
$5 \mathrm{X}: 200 \mathrm{~V}$ peak; 400 V p-p from dc to 5 MHz , derate to 25 V p-p at 135 MHz .
Shaped Out - Shaped replica of signal being measured, aids proper triggering on complex waveforms. Amplitude 0 V to $\geqslant+0.3 \mathrm{~V}$ from 50Ω.
Trigger Level Out - A dc level corresponding to the actual trigger level. Accuracy within $\pm 30 \mathrm{mV}$ of internal trigger level.
Arming Input - Permits measurements of complex waveforms. A TTL high allows averaging of selected events within a measurement.

FREQUENCY A

Range - $100 \mu \mathrm{~Hz}$ to 135 MHz .

Resolution -

\pm LSD $\pm 1.4 \times \frac{\text { Trigger Jitter Error }}{\mathrm{N}} \times(\text { Frequency } \mathrm{A})^{2}$
Accuracy - Resolution \pm (Time Base Error x Frequency A)

PERIOD A
Range -7.40 ns to 3.05 hrs .

Resolution -

$\pm L S D \pm 1.4 \times \frac{\text { A Trigger Jitter Error }}{N}$
Accuracy - Resolution \pm (Time Base Error x
Period A).

RATIO B/A

Range -10^{-7} to 10^{8} (Frequency Range: CH A to 135 MHz ; CHB to 125 MHz .)
Resolution -
$\pm L S D \pm 1.4 \times \frac{\text { B Trigger Jitter Error } \times \text { Frequency } \mathrm{B}}{\mathrm{N}}$
Accuracy - Same as Resolution.
TIME $A \rightarrow B$
Range - 15 ns to 3.05 hrs .
Minimum Dead Time - 15 ns (stop to start).
Resolution -
\pm LSD $+\frac{1}{\sqrt{N}} \times(\pm A$ Trigger Jitter Error

$$
\pm \mathrm{B} \text { Trigger Jitter Error) }
$$

Accuracy - Resolution \pm (Time Base Error \times
Time A $\rightarrow \mathrm{B})+(\mathrm{B}$ Trigger Slew Error - A Trigger Slew Error) \pm (Channel Delay Mismatch).
Channel Delay Mismatch $-<2 \mathrm{~ns}$ between front panel inputs and <3 ns between rear interface inputs.
Repetition Rate - $<35 \mathrm{MHz}$.

EVENTS B DURING A

Range -10^{-7} to 10^{8}.
Maximum B Frequency - 125 MHz .
Minimum A Pulse Width - 15 ns .
Minimum Time Between A Pulses - 15 ns .
Minimum Time Between "A" Start Edge and
First "B" Event - 15 ns .

Resolution -

\pm LSD $+\frac{\text { Frequency B }}{\sqrt{N}}$
\pm Trigger Jitter Error CH A start edge
\pm Trigger Jitter Error CH A stop edge.)
Accuracy - Resolution + Frequency B (Stop
Slew Rate Error - Start Slew Rate Error).
WIDTH A
Range - 15 ns to 3.05 hrs .
Minimum Dead Time Between Pulses - 15 ns .
Resolution -
\pm LSD $+\frac{1}{\sqrt{N}}$
(\pm Start Trigger Jitter Error
\pm Stop Trigger Jitter Error)
Accuracy - Resolution \pm (Time Base Error \times Width A) + (Stop Slew Rate Error - Start Slew Rate Error) $\pm 5 \mathrm{~ns}$.

TIME MANUAL
Range - 0 to 3.05 hrs. May be extended with GPIB.
Resolution - \pm LSD (100 ms).
Accuracy $- \pm$ Resolution \pm (Time Base Error \times Time).
totalize A
Range -0 to 1.09×10^{12} counts. May be extended with GPIB.
Repetition Rate - 0 MHz to 135 MHz .
PROBE COMPENSATION
Display - 1 or 0 for each channel.

Accuracy -

Probe Attenuation $\times 50 \mathrm{mV} \times 100(\%)$
Vin at Probe
(2.5\% nominal for X5 probe with 10 V p-p at the probe).

RESOLUTION AND ACCURACY DEFINITIONS

Trigger Jitter Error (Seconds RMS) -
$\sqrt{\left(e_{n} 1\right)^{2}+\left(e_{n} 2\right)^{2}(\text { Volts RMS })}$
Input Slew Rate at trigger point (V/s)
Where: en1 $=120 \mu \mathrm{~V}$ RMS typical counter input noise $e_{n 2}=R M S$ Noise Voltage of input signal at trigger point measured with 150 MHz bandwidth.
Slew Rate Error (Seconds) -
Input Hysteresis/2
Input Slew Rate at trigger point $(\mathrm{V} / \mathrm{s})$
Note: Input hystersis is typically 20 mV p-p.
$N=$ Number of Events Averaged
The minimum number of averages is selected by the averages control in decade steps from 1 to 10^{8}. At Channel A repetition rates above $\approx 250 \mathrm{~Hz}$, the number of events averaged will be:
$\mathrm{N}=$ [Frequency $\mathrm{A}(\mathrm{Hz}) \times 4 \mathrm{~ms}$]
+Averages.
$\mathrm{N}=$ Averages setting (below 250 Hz).
In the Auto mode, the counter measures with a fixed measurement time of about 300 ms .
$N=$ Frequency $A(H z) \times 0.3 \mathrm{~s} .(N$ is always $\geqslant 1$).
Time Base Error - The sum of all errors specified for the time base used.

STANDARD TIME BASE

Crystal Frequency - 10 MHz .
Temperature Stability $- \pm 5 \times 10^{-6}, 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Aging Rate $=1 \times 10^{-6}$ per year.
Setability - Adjustable to within $\pm 1 \times 10^{-7}$ or better.
HIGH STABILITY TIME BASE (OPTION 01)
Crystal Frequency -10 MHz .
Temperature Stability $- \pm 2 \times 10^{-7}$ after warm-up, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Warm-up Time - Within 2×10^{-7} of final frequency in <10 minutes when cold-started at $25^{\circ} \mathrm{C}$.
Aging Rate $-1 \times 10^{-8} /$ day at time of shipment, $4 \times 10^{-8} /$ week after 30 days of continuous operation, $1 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability - Adjustable to within 2×10^{-8}.

> REAR INTERFACE

Inputs - Channel A and Channel B input to 50 MHz (50Ω impedance, maximum input 3.6 V peak); arming; reset; external time base (1 MHz , 5 MHz , or 10 MHz), prescale.
Outputs - Channel A and Channel B shaped outputs; Channel A and Channel B trigger level outputs; 10 MHz clock; gate out.

OTHER CHARACTERISTICS

Power Consumption - $\approx 12 \mathrm{~W}(\approx 15 \mathrm{~W}$ with Option 01).
GPIB Data Output Rate $-\approx 10$ readings/s maximum.
TM 5000 Power Module Compatibility - The DC 5009 is not compatible with TM 500 Series mainframes.

ORDERING INFORMATION
 DC 5009 Programmable Universal

Counter Timer

\$2,650
Includes: Tip jack to BNC adaptor cable (175-3765-01); instruction manual ($070-3888-00$); instrument interfacing guide (070-4612-00); reference guide (070-3560-01).

OPTIONS

Option 01 - High Stability Time Base.
Field Option 01 Kit - For DC 509.
Order 040-0966-00
Utility Software
For TM 5000/4041. Order 062-6958-01
\$150
See page 297 for description and ordering information.

RECOMMENDED PROBE

P6125 - 5X Passive Probe. Order 010-6125-01

DP 501

Extends Frequency Measurement
Capability to 1.3 GHz
Compatible with Most TM 5000
and TM 500 Counters

AGC

Low Level Indicator
The DP 501 Digital Prescaler adds 1.3 GHz frequency counting capability to the Tektronix DC 509/5009, DC 510/5010, and DC 503A Universal Counter/Timers while still allowing full use of all counter/timer functions. There is no need to change input connections as with counters which use the conventional C-Channel input.
The DP 501 is placed in the signal line between the signal source and the counter's input connector such that the signal to be measured passes through the DP 501. Two operating modes are available, Prescale and Direct. In the Prescale mode, the DP 501 divides the input signal frequency by 16 and the associated counter's display to be multiplied by 16 (so that the counter will display the correct frequency). In the Direct mode the signal is simply looped through the DP 501 and applied directly to the counter's input; the counter's display is not affected. This loop-through capability eliminates the need for external switching of the input signal when changing from high frequency measurements to low frequency or time-interval measurements.
The prescaling function can be activated in either of two ways: manually, with a frontpanel pushbutton; or, by the "Prescale On" command to the counter when using a GPIB programmable DC 5009 or DC 5010.
Input sensitivity in the Prescale mode is 20 mV RMS to 1 GHz and 30 mV RMS to 1.3 GHz . A Low-Level indicator alerts the user if the input signal amplitude is too low for error-free counting.
An automatic gain control circuit provides optimum immunity to signal noise in the Prescale mode.
The DP 501 and the DC 509/DC 5009 or DC 510/DC 5010 Universal Counter/Timers can be used with the Tektronix 7L14 Spectrum Analyzer (see page 166) and TR 502 Tracking Generator (see page 172) to pro-

DP 501

Digital Prescaler

vide counter accuracy measurements of swept-frequency signals from 100 kHz to 1.3 GHz .

The DP 501 operates in a single compartment of either a TM 500 or TM 5000 mainframe.

CHARACTERISTICS

Prescale Mode

Input - Frequency range is $\leqslant 100 \mathrm{MHz}$ to $\geqslant 1.3 \mathrm{GHz}$.
Sensitivity - 100 MHz to 1 GHz is $\leqslant 20 \mathrm{mV}$ RMS (-21 dBm). 1 GHz to 1.3 GHz is $\leqslant 30 \mathrm{mV}$ RMS (-17 dBm).
Impedance - 50Ω ac coupled; vswr $\leqslant 2.2: 1$.
Output - Amplitude into 50Ω is $\geqslant 200 \mathrm{mV}$. Unterminated is 2 X terminated value.

Direct Mode

Input - Connected directly to output.
Frequency Range - 0 MHz to $>350 \mathrm{MHz}$.
Impedance - Loop through characteristic impedance is 50Ω; nonterminated capacitance $\approx 20 \mathrm{pF}$ (no connection to output).
Output - Connected directly to input. $<1 \mathrm{~dB}$ insertion loss up to 350 MHz . Powers up in direct mode.
Overload Protection - Prescale: Input disconnects when input signal exceeds +20 dBm $\pm 5 \mathrm{dBm}$ for a period of $\approx 0.5 \mathrm{~s}$ or more.
Damage Level - Prescale: Input may be damaged if signal level exceeds +25 dBm .
Direct: 42 V peak maximum. Maximum current is 250 mA .
Input Attenuation - Automatic: Up to 40 dB range.
Low Level Indicator - Lights when input signal is below that required for error-free counting.
Tracking Generator Compatibility - Outputs will drive two standard TTL loads. Inputs represent two standard TTL loads. Requires arming input to associated counter.

ORDERING INFORMATION

DP 501 Digital Prescaler
\$575
Includes: Instruction manual (070-4332-00).

DM 5010

Programmable Digital Multimeter

DM 5010

 IEEE-488The DM 5010 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.
$41 / 2$ Digit, Autoranging
Dc Volts, Ohms, True RMS (ac or ac + dc)

Diode Test

Comprehensive Math Functions:
dB Calculations; Averaging; Offset; Scaling; Hi/Lo/Pass

The DM 5010 Programmable Digital Multimeter measures dc voltage, resistance, true RMS ac voltage, and true RMS ac + dc voltage. The internal math capability of the DM 5010 provides most of the calculations normally required for reducing raw measurements to decision-supporting information without controller assistance. These calculations include averaging (up to 19,999 measurements), offset and scaling, conversion to dBm or reference dB , and $\mathrm{Hi} / \mathrm{Lo} /$ Pass comparisons. User-selectable constants required for calculations may be supplied either through the front-panel keypad or via the GPIB.
The internal math capability of the DM 5010 permits such specialized measurements as: ac or dc current measurements, through the use of an external shunt resistor and a scaling factor equal to the ohmic value of the resistor; comparison against a percent tolerance (as opposed to an absolute value tolerance) through the combined use of the scaling and Hi/Lo/Pass functions.
The low voltage (0.2 volt) ohms function allows in-circuit resistance measurements without turning on parallel diode and transis-

See DMM Selection Guide on page 363.
tor junctions. A Diode Test function is provided for forward and reverse testing of diode and transistor junctions.
The versatile TM 5000 rear interfacing capability allows signals to be applied to the DM 5010 via the rear interface connector as well as via the front panel input jacks. This front-rear selection capability allows the rapid comparison of two signals or voltage levels, such as the input and the output of a device, without the need for external switching of the signal. Selection of front or rear signal input may be made under bus control or by front-panel pushbutton.
The DM 5010 is fully guarded, with the Guard connector automatically connected to the Low input when there is no Guard signal lead inserted.
The Null function eliminates much of the requirement for four-wire ohms connections by allowing the operator, or the system, to null out lead resistance in resistance measurements. The Null function also allows the difference between two measurements to be displayed, either directly or as a dB difference.
A special Low Frequency Response function permits stable readouts of low frequency ac voltages.
Range selection is either automatic or manually incremented. Measurements and calculations may be triggered by internal circuitry, a front-panel pushbutton, a rear interface signal, or a GPIB command.
Calibration of the DM 5010 is greatly simplified through the use of internal micro-processor-computed nonvolatile calibration constants.

CHARACTERISTICS

DC VOLTS
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$. Accuracy*1

$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$		
Voltage Ranges	Normal Conversion \qquad	Fast Conversion Rate
200 mV	$\pm[0.015 \%$ of reading $+0.01 \%$ of full scale (2 counts)]	$\pm[0.05 \%$ of reading $+0.05 \%$ of full scale (1 count)]
$\begin{aligned} & 2 \mathrm{~V} \text { through } \\ & 200 \mathrm{~V} \end{aligned}$	$\pm[0.015 \%$ of reading $+0.005 \%$ of full scale (1 count)]	$\pm[0.05 \%$ of reading $+0.05 \%$ of full scale (1 count)]
1000 V	$\pm[0.020 \%$ of reading $+0.010 \%$ of full scale (2 counts)]	$\pm[0.05 \%$ of reading $+0.1 \%$ of full scale (2 counts)]
$0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
200 mV	$\begin{aligned} & \pm[0.06 \% \text { of reading } \\ & +0.035 \% \text { of full scale } \\ & (7 \text { counts })] \\ & \hline \end{aligned}$	$\pm[0.1 \%$ of reading $+0.1 \%$ of full scale (2 counts)]
$\begin{aligned} & 2 \mathrm{~V} \text { through } \\ & 200 \mathrm{~V} \end{aligned}$	$\pm[0.06 \%$ of reading $+0.03 \%$ of full scale (6 counts)]	$\begin{array}{\|l} \pm[0.1 \% \text { of reading } \\ +0.1 \% \text { of full scale } \\ (2 \text { counts })] \\ \hline \end{array}$
1000 V	$\pm[0.065 \%$ of reading $+0.035 \%$ of full scale (7 counts)]	$\pm[0.1 \%$ of reading $+0.15 \%$ of full scale (3 counts)]

[^38]Common-Mode Rejection Ratio (With $1 \mathrm{k} \Omega$ Imbalance) - Unguarded: $\geqslant 130 \mathrm{~dB}$ at dc. $\geqslant 80 \mathrm{~dB}$ at 50 Hz to 60 Hz .
Guarded: $\geqslant 140 \mathrm{~dB}$ at dc. $\geqslant 100 \mathrm{~dB}$ at 50 Hz to 60 Hz .
Normal-Mode Rejection Ratio $-\geqslant 40 \mathrm{~dB}$ at 50 Hz or $60 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$.
Maximum Resolution - $10 \mu \mathrm{~V}$.
Step Response Time (To Rated Accuracy)
Run Mode - Normal conversion rate is $\leqslant 0.53 \mathrm{~s}$. Fast conversion rate is $\leqslant 0.08 \mathrm{~s}$.
Triggered Mode - Normal conversion rate is $\leqslant 0.33 \mathrm{~s}$. Fast conversion rate is $\leqslant 0.06 \mathrm{~s}$.
Input Resistance - 200 mV to 20 V Range: $>10^{9} \Omega$.
200 V to 1000 V Range: $10 \mathrm{M} \Omega \pm 0.25 \%$.
Maximum Input Voltage - 1000 V peak
TRUE RMS AC VOLTS (ACV AND AC+DC)
Input Signal - Must be between 5\% and 100\% of full scale.
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 700 \mathrm{~V}$.
Accuracy*1
Ac Volts and Ac Volts + Dc Volts

$+\mathbf{1 8}{ }^{\circ} \mathrm{C}$ to $+\mathbf{2 8}^{\circ} \mathrm{C}$	Normal and Fast Conversion		
Voltage Ranges	$\mathbf{2 0 ~ H z}$ to $\mathbf{1 0 0 ~ H z}$	$\mathbf{1 0 0 ~ H z ~ t o ~}$ $\mathbf{2 0 ~ k H z}$	$\mathbf{2 0 ~ k H z}$ to $\mathbf{1 0 0} \mathbf{~ k H z}$
200 mV	$\pm(0.8 \%$ of $\mathrm{rdg}+0.2 \%$ of full scale $)$	$\pm(0.2 \%$ of $\mathrm{rdg}+0.2 \%$ of full scale $)$	$\pm(1.0 \%$ of rdg $+0.5 \%$ of full scale $)$
through	200 V		

$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

200 mV through 200 V	$\begin{aligned} & \pm(1.25 \% \text { of } \\ & \text { rdg }+0.35 \% \\ & \text { of full scale) } \end{aligned}$	$\begin{aligned} & \pm(0.65 \% \text { of } \\ & \text { rdg }+0.3 \% \\ & \text { of full scale) } \end{aligned}$	$\begin{aligned} & \pm(1.45 \% \text { of } \\ & \text { rdg }+0.65 \% \\ & \text { of full scale }) \\ & \hline \end{aligned}$
700 V (15 kHz maximum)	$\begin{aligned} & \pm(1.25 \% \text { of } \\ & \text { rdg }+0.95 \% \\ & \text { of full scale) } \end{aligned}$	$\begin{aligned} & \pm(0.65 \% \text { of } \\ & \text { rdg }+0.95 \% \\ & \text { of full scale }) \end{aligned}$	

Ac Volts + Dc Volts Only	
$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$	
Voltage Ranges	Normal and Fast Conversion Rates 10 Hz to 20 Hz
200 mV through $200 \mathrm{~V}$	\pm (0.8% of rdg $+0.3 \%$ of full scale)
700 V	\pm (0.8% of rdg $+0.9 \%$ of full scale)
$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
$\begin{aligned} & 200 \mathrm{mV} \text { through } \\ & 200 \mathrm{~V} \\ & \hline \end{aligned}$	\pm (1.25\% of rdg $+0.45 \%$ of full scale)
700 V	\pm (1.25\% of rdg $+1.25 \%$ of full scale)

${ }^{* 1}$ Valid for six months or 1000 operating hours, whichever occurs first.
Common-Mode Rejection Ratio - Unguarded: Typically $\geqslant 80 \mathrm{~dB}$ from dc to 60 Hz . Guarded: Typically $\geqslant 100 \mathrm{~dB}$ from dc to 60 Hz .
Maximum Resolution - $10 \mu \mathrm{~V}$.
Response Time - <1.2 s (except for Low Frequency Response mode)
Input Impedance - $2 \mathrm{M} \Omega \pm 0.1 \%$ paralleled by $<150 \mathrm{pF}$
Maximum Input Voltage - 1000 V peak ac, 500 V dc.
Crest Factor - Four (subject to maximum peak input voltage).

DIODE TEST

Operation - A 1 mA current is generated and the resultant voltage is measured on the 2 V dc range. This produces a voltage sufficient to turn on diode and transistor junctions.

RESISTANCE

Ranges - $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega$, $20 \mathrm{M} \Omega$.
Accuracy*1

$+\mathbf{1 8}{ }^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$		
Resistance Range	Normal Conversion Rate	Fast Conversion Rate
200Ω	$\pm[0.015 \%$ of reading $+0.015 \%$ of full scale (3 counts) (using null) ${ }^{* 2}$	$\pm[0.05 \%$ of reading $+0.05 \%$ of full scale (1 count) $]$ (using null) ${ }^{* 2}$

* ${ }^{1}$ Valid for six months or 1000 operating hours, which ever occurs first.
*2 When the null function is not used add $\pm 0.2 \Omega$ to all readings.
Maximum Resolution - $10 \mathrm{~m} \Omega$.
Step Response Time (To Rated Accuracy)
Run Mode - Normal conversion rate is $\leqslant 1.24 \mathrm{~s}$. Fast conversion rate is $\leqslant 0.33 \mathrm{~s}$.
Triggered Mode - Normal conversion rate is $\leqslant 0.73 \mathrm{~s}$. Fast conversion rate is $\leqslant 0.19 \mathrm{~s}$.
Maximum Input Volts - 400 V peak.
Maximum Open Circuit Voltage Developed $-<5 \mathrm{~V}$.

OTHER CHARACTERISTICS
Overrange Indication - For Ohms and Diode Test, "OC" is displayed; for ACV, DCV, ACV + DCV, the display blinks.
Measurement Rate - ACV, DCV, ACV + DCV, Diode Test: $3 / \mathrm{s}$ at 4.5 digits; $26 / \mathrm{s}$ at 3.5 digits. Ohms: $1.6 / \mathrm{s}$ at 4.5 digits; $7.1 / \mathrm{s}$ at 3.5 digits.
Power Consumption - $\approx 20 \mathrm{VA}$.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T5, L4, SR1, RL1, PPØ, DC1, DT1, C \emptyset

ORDERING INFORMATION DM 5010 Programmable Digital Multimeter
\$2,260 Includes: One set test leads ($003-0120-00$); instruction manual ($070-2994-01$), instrument interfacing guide ($070-4603-00$); reference guide (070-3542-00).

Utility Software

For TM 5000/4041. Order 062-6958-01 \$150 See page 297 for description and ordering information.

OPTIONAL ACCESSORIES
 Test Lead - Black, 4 ft .
 Order 012-0425-00
 Test Lead - Red, 4 ft .
 Order 012-0426-00
 Test Lead - Black, 4 ft .
 Order 012-0426-01
 Test Lead Set — Includes 012-0425-00,
 012-0426-00, and 013-0107-05.
 Order 012-0427-00
 High Voltage Probe - To 40 kV (com-
 plete information page 366).
 Order 010-0277-00
 P6420 RF Probe - 2 m cable included (complete information page 441). Order 010-6420-03
 Female BNC to Dual Banana Adaptor - Order 103-0090-00
 FG 5010

The FG 5010 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

0.002 Hz to 20 MHz

Up to 20 V p-p from 50 Ohms
Sine, Square, Triangle, Pulse, and Ramp Waveforms
10 ns Rise/Fall
10\% to 90% Variable Symmetry in 1\% Steps
Trigger, Gate, Counted Burst
Phase Lock, with Autoscan

AM, FM, VCF

Waveform Complement

The FG 5010 Programmable 20 MHz Function Generator is a highly versatile GPIB programmable instrument and also extremely easy to operate in the manual mode as well. All functions are addressable via the lighted front-panel pushbuttons with nomenclature and functionality clearly designated. The ability to store ten complete front panel setups and recall them with only two keystrokes or by a single command over the GPIB reduces GPIB programming time and enhances stand-alone bench applications.

FG 5010

Programmable $\mathbf{2 0} \mathbf{~ M H z}$ Function Generator

The FG 5010 provides the conventional sine, square, triangle, pulse, and ramp waveforms. Variable symmetry, which is usable throughout the entire frequency range, extends pulse and ramp capabilities beyond those of conventional generators. The FG 5010 also provides trigger, gate, counted burst, phase lock, AM, FM, and VCF modes. Variable phase enhances the trigger, gate, burst, and phase lock modes.
The wide frequency range assures its usefulness in radio and other communicationoriented applications as well as in low frequency applications, such as biological, geophysical, and mechanical simulations.
The FG 5010 maintains frequency accuracy within 0.1% over its full 0.002 Hz to 20 MHz frequency range. Automatic phase lock to an external signal is possible from 20 Hz to 20 MHz . Waveform complement and $+/-$ trigger slope allow interfacing to circuits with the proper waveform phase, especially important in pulse and digital applications. Waveform hold can freeze the output voltage of any 200 Hz or less waveform at its instantaneous value. With the output amplitude set to zero volts, the dc offset can be programmed to provide a dc voltage source of 0 volts to ± 7.5 volts in 10 mV steps.

CHARACTERISTICS

Waveform - Sine, Square and Triangle with variable Symmetry providing Pulses and Ramps.
Symmetry - 10% to $90 \%, 1 \%$ steps, $\pm 2 \%$ accuracy. Range above 4 MHz is limited by 25 ns minimum triangle transition time (decreases to 50% at 20 MHz).
Frequency - Range: 0.002 Hz to 20 MHz . Accuracy: Continuous mode, $\pm 0.1 \%$. Trigger, Gate, Burst Modes: Frequency $\leqslant 200 \mathrm{~Hz}, \pm 0.1 \%$; frequency $>200 \mathrm{~Hz}, \pm 5.0 \%$. Resolution: Continuous mode, 4 digits, Trigger, Gate, Burst modes. Frequency $\leqslant 200 \mathrm{~Hz}, 4$ digits. Frequency $>200 \mathrm{~Hz}, 3$ digits.
Amplitude - Range: 20 mV to $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ from 50Ω into open circuit.

Accuracies*1

Frequency	Sine	Square	Triangle
0.002 Hz to 1 kHz	$\pm 3 \%$	$\pm 2 \%$	$\pm 2 \%$
1 kHz to 100 kHz	-	-	$\pm 3.5 \%$
1 kHz to 1 MHz	$\pm 3.5 \%$	$\pm 3.5 \%$	-
100 kHz to 1 MHz	-	-	$\pm 4 \%$
1 MHz to 5 MHz	$\pm 5 \%$	-	$+4 \%,-5 \%$
1 MHz to 10 MHz	-	$\pm 5 \%$	-
5 MHz to 20 MHz	$\pm 5 \%,-10 \%$	-	$+4 \%,-20 \%$
10 MHz to 20 MHz	-	$\pm 10 \%$	-
${ }^{2} 1 \mathrm{Measure}$			

*1 Measured at $+25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ into 50Ω load at 50% symmetry. Resolution: 20 mV from 2.02 V to 20.00 V p-p, 2 mV from 202 mV to 2.000 V p-p, 0.2 mV from 20.0 mV to $200.0 \mathrm{mV} \mathrm{p}-\mathrm{p}$.

Offset - Range: -7.5 V to +7.5 V from 50Ω into an open circuit. Maximum peak signal plus offset cannot exceed $\pm 15 \mathrm{~V}$ open circuit. Accuracy: All waveforms except squarewave $>2 \mathrm{MHz}$ $\leqslant \pm(1 \%$ of the selected offset, $+2 \%$ of the signal p-p amplitude, +20 mV). Squarewave $>2 \mathrm{MHz}< \pm$ (1% of the selected value $+5 \%$ of the signal p-p amplitude +20 mV). Resolution: 10 mV open circuit, 5 mV into 50Ω load. 0 V is also provided.
Output Impedance - 50Ω.
Sinewave Distortion - 20 Hz to 19.99 kHz , $\leqslant 0.5 \% ; 20.0 \mathrm{kHz}$ to $99.99 \mathrm{kHz}, \leqslant 1.0 \%$; 100 kHz to 20.0 MHz , harmonics $>30 \mathrm{~dB}$ down from 100 kHz to 20 MHz . Valid from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ into 50Ω load with 0 V offset, continuous mode, 50% symmetry, and AM, FM, VCF, and Complement off.
Squarewave Response - Risetime and falltime are $\leqslant 10 \mathrm{~ns}$. Aberrations are $\leqslant 5 \% \mathrm{p}$-p +20 mV .
Typical Triangle Linearity (10% to $\mathbf{9 0 \%}$) 0.002 Hz to $200 \mathrm{~Hz}, \leqslant 1 \% ; 200 \mathrm{~Hz}$ to 100 kHz , $\leqslant 1 \% ; 100 \mathrm{kHz}$ to $2 \mathrm{MHz}, \leqslant 2 \% ; 2 \mathrm{MHz}$ to $20 \mathrm{MHz}, \leqslant 10 \%$.
Trigger Output $-0 \mathrm{~V} \pm 100 \mathrm{mV}$ to $\geqslant+2 \mathrm{~V}$ from 50Ω source impedance into an open circuit.
TRIG, GATE, BURST, AND PH LOCK INPUT
Input Impedance - $1 \mathrm{M} \Omega$ or 50Ω, internally selectable.
Trigger Threshold -0 V or +0.5 V , internally selectable.
Amplitude Sensitivity $-\leqslant 250 \mathrm{mV}$ p-p.
Slope - Plus or minus, plus only in Ph Lock.
Minimum Pulse Width - 25 ns .
Maximum Frequency -20 MHz .
Maximum Input Amplitude - $\pm 5 \mathrm{~V}$ peak into $50 \Omega, \pm 20 \mathrm{~V}$ peak into $1 \mathrm{M} \Omega$.
Burst Range - 1 cycle to 9999 cycles.
Phase Lock Range - Automatic capture from 20 Hz to 20 MHz .
Phase Lock Time - Typically 8 ms to 88 s , de-
pending on final frequency and start frequency.

AM INPUT

Input Impedance - $10 \mathrm{k} \Omega(\pm 5 \%$ when AM is selected).
Sensitivity - 5 V p-p produces $\geqslant 100 \%$ modulation.
Distortion - $<2 \%$ at 70% modulation and $\leqslant 2 \mathrm{MHz} ;<4 \%$ at 70% modulation and $>20 \mathrm{MHz}$.
Bandwidth - Dc to $\geqslant 100 \mathrm{kHz}$.
Maximum Input Amplitude - $\pm 20 \mathrm{Vpk}$.

FM INPUT
Input Impedance - $10 \mathrm{k} \Omega$.
Sensitivity $-0 \vee$ to $\pm 1 \mathrm{~V}$ modulates to $\geqslant \pm 1 \%$ deviation from center frequency.
Distortion $-\leqslant 2 \%$.
Bandwidth - Dc to $\geqslant 100 \mathrm{kHz}$.
Maximum Input Amplitude - $\pm 20 \mathrm{~V}$ peak.
VCF INPUT
Input Impedance - $10 \mathrm{k} \Omega \pm 5 \%$.
Sensitivity - 0 V to 10.0 V produces $\mathrm{a} \geqslant 1000: 1$ frequency change, positive going voltage increases frequency.
Slew Rate $-\geqslant 0.063 \mathrm{~V} / \mu \mathrm{s}$.
Bandwidth - Dc to $\geqslant 100 \mathrm{kHz}$.
Maximum Input Amplitude - $\pm 20 \mathrm{~V}$ peak.
OUTPUT HOLD MODE
Range -0.002 Hz to 200 Hz . (Output holds at instantaneous value).
PHASE (TRIG, GATE, AND BURST MODES)
Range $-\leqslant 90^{\circ}$ to 1 MHz , decreasing to $\leqslant 80^{\circ}$ at 20 MHz .

Accuracy -

$\pm 3^{\circ}$ to $500 \mathrm{kHz} ; \pm\left[7^{\circ}+\left(\frac{\text { freq }}{20 \mathrm{MHz}} \times 28 \% \times|\Phi|\right)^{\circ}\right]$ for freq $>500 \mathrm{kHz}$. At $25 \pm 10^{\circ} \mathrm{C}$ VCF off, output in Normal and symmetry at 50%.
Resolution - 1°.
PHASE (PH LOCK MODE)
Specifications apply for ambient temperature of $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
Range $-\leqslant 90^{\circ}, 20 \mathrm{~Hz}$ to $\leqslant 10 \mathrm{MHz} ; \leqslant 45^{\circ}$ to $\geqslant 10 \mathrm{MHz}$ (Complementing the output extends effective 0 range to $\pm 180^{\circ}$).
Accuracy $- \pm\left(2^{\circ}+5 \%\right.$ of selected value $)$.
Resolution - 1°.

OTHER CHARACTERISTICS

Power Consumption - 60 W.

IEEE Standard 488-1978 Interface Function

 Subsets Implemented - SH1, AH1, T6, L4, SR1, RL1, PPØ, DC1, DT1, C \emptyset.
ORDERING INFORMATION

FG 501020 MHz Function Generator $\$ 3,995$
Includes: Instruction manual (070-3467-01), instrument interfacing guide ($070-4613-00$), reference guide (070-3561-00),

Utility Software

For TM 5000/4041 Order 062-6958-01 \$150
See page 297 for description and ordering information.
OPTIONAL ACCESSORIES
Rear Interface Signal Cable Kit -
Order 020-0701-00
\$35
Service Kit - Order 067-1041-00

PS 5004

Programmable Precision Power Supply

PS 5004

The PS 5004 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.
0 V to 20 V Floating Output
0.01\% Accuracy
$500 \mu \mathrm{~V} / 0.1 \mathrm{~mA}$ Resolution
Constant Voltage or Constant Current with Autocrossover

Voltage and/or Current Monitoring Display
Remote Sensing

The single-width PS 5004 Precision Power Supply provides the high-resolution voltages and currents necessary in the characterization of transistor, IC, and other semiconductor and hybrid circuits and in the operation of high-performance strain gages and other transducer systems. Its entire 0 V to 20 V output is covered with a coarse and fine adjustment to provide rapid setability and $\pm 500 \mu \mathrm{~V}$ resolution without the necessity of changing ranges. Setability resolution over the GPIB is also $\pm 500 \mu \mathrm{~V}$. The supply output is available at the rear interface as well as from the front panel terminals. Overall accuracy is $\pm 0.01 \% \pm 2 \mathrm{mV}$.
The PS 5004 operates in either a constant voltage or constant current mode with autocrossover between the two. Front panel annunciators indicate the mode at all times. The operating mode is also reported over the bus and the PS 5004 may be programmed to assert SRQ whenever operating conditions cause it to change from one mode to the other.

The $41 / 2$ digit display shows actual output voltage, selected current limit, or actual output current. The actual output voltage is shown even when the PS 5004 is operating in the current-limited or unregulated mode. Display resolution is 1 mV or 0.1 mA .
The buffered high-impedance sense terminals allow proper regulation of the supply with up to 3Ω of resistance in either of the sense leads.

CHARACTERISTICS
 CONSTANT VOLTAGE MODE

Range - 0 V to 20 V in 0.5 mV steps.
Overall Accuracy (Total Effect) - $\pm 0.01 \%$ +2 mV from $+15^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$, derating to $\pm 0.035 \%+3 \mathrm{mV}$ at $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$. Source Effect: $500 \mu \mathrm{~V}$. Load Effect: 1 mV for a no load to full load change in load current measured at sense terminals.
Step Size Accuracy - $0.5 \mathrm{mV} \pm 0.2 \mathrm{mV}$.
PARD*1 $-\leqslant 2 \mathrm{mV} p-\mathrm{p}, 10 \mathrm{~Hz}$ to 5 MHz .
Load Transient Recovery*1 *2 $-<200 \mu \mathrm{~S}$ to recover within 5.0 mV of final value for a 100 mA load change.

* ' Characteristics measured at front panel terminals without using remote sense.
*2 Without external energy storage components.
CONSTANT CURRENT MODE
Range - 10 mA to 305 mA in 2.5 mA steps.
Overall Accuracy - $\pm 2 \%+5 \mathrm{~mA}$.

DIGITAL METER

Configuration - True $41 / 2$ digit free running voltmeter. Meter can be selected by front panel controls or via GPIB to monitor output voltage, current or current limit setting. Measurements are displayed on the front panel and are available over the GPIB.
Resolution - 1 mV or 0.1 mA .
Accuracy - Output Voltage: $\pm 0.15 \%+6 \mathrm{mV}$. Output Current: $\pm 1.5 \%+1 \mathrm{~mA}$. Current Limit: $\pm 1.5 \%+5 \mathrm{~mA}$.
Reading Rate $-\approx 5 / \mathrm{s}$.

OTHER CHARACTERISTICS

Isolation Voltage (Maximum Allowable Voltage Between Any Output or Sense Terminal and Chassis Ground) - 42 V peak $\mathrm{ac}+\mathrm{dc}$.
TM 5000 Power Module Compatibility - The PS 5004 is not compatible with TM 500 mainframes.

Power Consumption - Marketing

IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T6, L4, SR1, RL1, PPØ, DC1, DT1, C \emptyset.

ORDERING INFORMATION

PS 5004 Precision Power Supply $\mathbf{\$ 1 , 8 5 0}$ Includes: Instruction manual (070-4442-00); instrument interfacing guide (070-4789-00); reference guide (070-4596-00).

Utility Software

For TM 5000/4041 Order 062-6958-01 \$150
See page 297 for description and ordering information.

PS 5010

Whenever a load change causes a supply to change modes from constant voltage to constant current (or vice versa), the corresponding display also changes to show the known current or voltage value. This condition can be reported over the GPIB via an interrupt when the PS 5010 is in the remote state.

CHARACTERISTICS
 POSITIVE AND NEGATIVE FLOATING SUPPLIES

Configuration - Dual floating with shared common terminal.
Isolation - 150 V peak front panel, 42 V peak from rear interface, $0.015 \mu \mathrm{~F}$ typical shunt capacitance to ground.

Constant Voltage Mode

Range - Positive: 0 V to +32.0 V . Negative: 0 V to -32.0 V .

Programmable Triple Power Supply

PS 5010

GPIB
IEEE-488
The PS 5010 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Dual Floating Supplies 0 V to 32 V , to 0.75 A (1.6 A to 15 V)

Logic Supply +4.5 V to 5.5 V , to 3 A
0.5\% Accuracy

Programmable Current Limits
Three Independent Digital Displays
Automatic Crossover

The PS 5010 Programmable Power Supply provides a complete and rapid high performance solution for many system power supply applications. Its three supplies provide the most commonly used voltages, and the three digital displays automatically indicate all six voltage and current limit parameters. Automatic crossover from voltage to current limit and a powerful set of GPIB status reporting messages allow the user to be constantly aware of the PS 5010's status.

The PS 5010's dual floating supply provides 0 V to +32 V and 0 V to -32 V , both with respect to a common front-panel terminal. Or 0 V to 64 V across the terminals of both supplies together-with currents up to 0.75 A throughout the total voltage range and 1.6 A below 15 V . The logic supply provides +4.5 V to +5.5 V with respect to ground, with currents to 3 A . The user can program the outputs on and off, and can lock out the front panel controls with GPIB commands.
The three supplies can be independently programmed for separate voltage and current limits, and displayed in the LED display.

Overall Accuracy - Total Effect: $\pm(0.5 \%+$ $20 \mathrm{mV})$. Source Effect: \pm ($0.01 \%+2 \mathrm{mV})$. Load Effect: $\pm 10 \mathrm{mV}$ for 1 A load current change (1 mV when using rear interface output with remote sensing).
PARD (Ripple and Noise) - 10 mV p-p; 20 Hz to 20 MHz .
Resolution - $10 \mathrm{mV} \pm 10 \mathrm{mV}$ (typically $\pm 2 \mathrm{mV}$) to $10.0 \mathrm{~V} .100 \mathrm{mV} \pm 40 \mathrm{mV}$ (typically $\pm 10 \mathrm{mV}$) $>10.0 \mathrm{~V}$.
Load Transient Recovery - 500μ s to recover within 20 mV of nominal value for a 1 A change.
Change Response Time - 1 ms for up or down change with maximum load, 20 ms for down change with no load.

Constant Current Mode

Range - 50 mA to $0.75 \mathrm{~A}(1.60 \mathrm{~A}$ at 15 V and below) in high power compartment; 50 mA to $400 \mathrm{~mA}(0.750 \mathrm{~A}$ at 15 V and below) in two standard power compartments.
Overall Accuracy - $\pm(5 \%+20 \mathrm{~mA})$ Source Effect: $\pm 1 \mathrm{~mA}$ line regulation. Load Effect: $\pm 10 \mathrm{~mA}$. Output impedance is typically $5 \mathrm{k} \Omega$ shunted by $20 \mu \mathrm{~F}$.
PARD (Ripple and Noise) - $10 \mathrm{~mA} p-\mathrm{p}, 20 \mathrm{~Hz}$ to 20 MHz .
Resolution - $50 \mathrm{~mA} \pm 15 \mathrm{~mA}$.
Change Response Time - 20 ms up or down.

LOGIC SUPPLY

Constant Voltage Mode
Range -+4.50 V to +5.50 V , ground referenced.
Overall Accuracy - $\pm 50 \mathrm{mV}$. Source Effect: $\pm 1 \mathrm{mV}$. Load Effect: $\pm 10 \mathrm{mV}$ for 1 A load current change (1 mV when using rear interface output with remote sensing).
PARD (Ripple and Noise) - 10 mV p-p, 20 Hz to 20 MHz .
Resolution - $10 \mathrm{mV} \pm 10 \mathrm{mV}$ (typically $\pm 2 \mathrm{mV}$).
Load Transient Recovery - 500μ s to recover within 20 mV of nominal value.

Constant Current Mode

Range - 100 mA to 3.0 A (Foldback characteristic below 4.5 V , maximum short circuit current is $<1.5 \mathrm{~A}$).

Overall Accuracy $- \pm(5 \%+20 \mathrm{~mA})$.
Resolution - $100 \mathrm{~mA} \pm 30 \mathrm{~mA}$.
Scaled Output - $10 \mathrm{~mA}=1 \mathrm{mV}$ $\pm(2 \%+2 \mathrm{mV})$ available at rear interface (not ground referenced).
Overvoltage Protection - SCR crowbar typically trips at 6 V to 7 V .

OTHER CHARACTERISTICS

TM 5000 Power Module Compatibility - The PS 5010 is not compatible with TM 500 mainframes.
Power Consumption - 250 VA maximum in high power compartment, 200 VA in standard compartment.
IEEE Standard 488-1978 Interface Function Subsets Implemented Same as PS 5004.

ORDERING INFORMATION

PS 5010 Power Supply $\$ 3,050$
Includes: Instruction manual (070-3391-00); instrument interfacing guide (070-4610-00); reference guide (070-3402-00).

Utility Software

For TM 5000/4041 Order 062-6958-01 \$150 See page 297 for description and ordering information.

SG 5010/AA 5001

GPIB
IEEE-488

The SG 5010 and AA 5001 comply with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Fast, Accurate, Repeatable Measurements
Easy to Use, Minimizes Training Needs
Automatic Low-Cost Documentation of Test Results

Automated Audio Test System Advantages

Tektronix SG 5010 and AA 5001 programmable instruments in a computer-controlled test system will make critical audio measurements consistently, accurately, and in two to four seconds each. Even complex tests can be made by technically unskilled operators since the procedures are controlled by software in the controller. And, permanent graphic or tabular records of test results can be produced at very low cost.

SG 5010

AA 5001

Programmable Audio Test System

An SG 5010/AA 5001 based system will automatically perform such industry-standard tests as harmonic distortion to IHF A202, intermodulation distortion to SMPTE TH 22.51, DIN 45403, IEC 268.3, and IHF A202, frequency response to IHF A202, and noise or signal-to-noise ratio to IHF A202 ("A" weighting filter complies with ANSI specification S1.4 and IEC specification 179 for sound level meters). With the Option 02 capability of the AA 5001, noise measurements may be made to CCIR 468-2 and DIN 45405 standards. The SG 5010 also generates the burst signal necessary for dynamic headroom tests per IHF A202.

A basic automated system consists of the SG 5010 Programmable Oscillator, the AA 5001 Programmable Distortion Analyzer, and an IEEE Standard 488 controller such as the Tektronix 4041 System Controller. Frequency counters, signal switchers, interface devices, disc storage, and hard copy units or plotters may be optionally added to the system.

The MP 2902 is a measurement package offering a total solution to your audio measurement requirements. It includes an automatic test program generator which dramatically reduces software development time and allows program development by nonprogrammers. See page 335.

Other Measurement Capabilities

Features and flexibility of the SG 5010 and AA 5001 permit a variety of other measurements to be easily automated. SMPTE-like IMD measurements may be made at a variety of lower frequencies and any value of upper frequency, and at 1:1 amplitude ratios in addition to the standard 4:1 ratio. A

CCIF test with the frequencies selected near the upper band limit of the device under test has been shown to be a very effective and simple-to-implement test for transient or dynamic intermodulation (TIM and DIM). Burst signals of any desired duty cycle may be generated for IHF dynamic headroom measurements and to test compressors and limiters; the between-bursts level may be selected as Off or 20 dB below the burst level. Power measurements are made by a controller computation from a voltage measurement across a known load resistance. SINAD measurements of sensitivity of FM communications receivers are a standard capability of the AA 5001 plus an appropriate RF signal generator. The SG 5010 features an amplifier mode in which an external signal can be converted to the high level, multiple impedance, balanced and floating capability of the SG 5010 output circuitry. Fully programselectable filters in the AA 5001 allow various choices of bandwidth for distortion measurements and weighting for noise measurements, or rejection of interfering signals. Phase measurements can be added to the system by use of the DC 5009 or DC 5010 Universal Counter-Timer.

SYSTEM CHARACTERISTICS

HARMONIC DISTORTION FUNCTION Measurement Settling Time - Typically $\leqslant 2.5 \mathrm{~s}$ above 100 Hz , increasing by $1 \mathrm{~s} /$ octave below 100 Hz .
Residual THD $+\mathbf{N}-V_{\text {in }} \geqslant 250 \mathrm{mV}$, RMS response, all distortion, noise, and nulling resources combined. 20 Hz to $20 \mathrm{kHz} \leqslant 0.0032 \%$ (-90 dB) with 80 kHz filter. 10 Hz to $100 \mathrm{kHz} \leqslant 0.01 \%$ (-80 dB) no filters.
TYPICAL SYSTEM RESIDUAL THD + NOISE Vin $\geqslant 250 \mathrm{mV}$ with 80 kHz filter, RMS response.

INTERMODULATION

 DISTORTION FUNCTIONMeasurement Settling Time - Typically $\leqslant 2 \mathrm{~s}$. Residual IMD - $V_{\text {in }} \geqslant 250 \mathrm{mV}$, RMS response. SMPTE and DIN Tests $-\leqslant 0.0032 \%$ (-90 dB) for 60 Hz and 7 kHz or 250 Hz and 8 kHz , 4:1 ratio.
CCIF Difference Frequency Test $\leqslant 0.0018 \%$ (-95 dB) with 14 kHz and 15 kHz .

LEVEL FUNCTION

Measurement Settling Time - Typically $\leqslant 2 \mathrm{~s}$.
Flatness - $\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz .

SG 5010 CHARACTERISTICS AVAILABLE FUNCTIONS

Sinewave, squarewave, SMPTE/DIN 4:1, SMPTE DIN 1:1, CCIF, Sinewave Burst, IHF Burst (-20 dB or Off between bursts), External Input (Amplifier Mode).

FREQUENCY RANGE AND ACCURACY

Sinewave, Sinewave Burst

SMPTE/DIN: 10 Hz to $163.80 \mathrm{kHz} \pm 0.01 \%$.
CCIF Center Frequency: 2.500 kHz to 163.80 kHz $\pm 0.01 \%$.
Squarewave: 10 Hz to $16.380 \mathrm{kHz} \pm 0.01 \%$.

Resolution in Above Functions

10.00 Hz to $163.80 \mathrm{~Hz}: 0.01 \mathrm{~Hz} .163 .9 \mathrm{~Hz}$ to $1.6380 \mathrm{kHz}: 0.1 \mathrm{~Hz}, \quad 1.639 \mathrm{kHz}$ to $16.380 \mathrm{kHz}:$ 1.0 Hz .16 .39 kHz to $163.80 \mathrm{kHz}: 10.0 \mathrm{~Hz}$.

SMPTE Lower Tone, CCIF Offset From Center Frequency - Selectable From: 40 Hz , $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 80 \mathrm{~Hz}, 100 \mathrm{~Hz}, 125 \mathrm{~Hz}, 250 \mathrm{~Hz}$, 500 Hz , all $\pm 2 \%$.

Sine Distortion (Load $\geqslant 600 \Omega$, THD Including

 2nd Through 5th Harmonics) - 20 Hz to $20 \mathrm{kHz}: 0.001 \%$ (-100 dB). 20 kHz to 50 kHz : 0.0032% (-90 dB). 10 Hz to 20 Hz and 50 kHz to $100 \mathrm{kHz}: 0.01 \%$ (-80 dB). 100 kHz to 163.8 kHz : $0.032 \% ~(-70 \mathrm{~dB}$) any individual harmonic.SMPTE, DIN or CCIF Distortion - See System Specifications.

Sine Flatness - 20 Hz to $20 \mathrm{kHz}: \pm 0.05 \mathrm{~dB}$. 10 Hz to $163.8 \mathrm{kHz}: \pm 0.2 \mathrm{~dB}$.
Squarewave Risetime - $1.5 \mu \mathrm{~S} \pm 10 \%$.
Burst Range - 1 cycle to 65535 cycles On. 1 cycle to 65535 cycles Off. Off level either -20 dB or zero. All switching at sinewave zero crossing. Triggered, gated, or free-running burst modes available.

OUTPUT LEVEL RANGE AND ACCURACY

Balanced - Into Open Circuit: $200 \mu \mathrm{~V}$ to 21.2 V RMS. Into 600Ω : -72.45 dBm to +28.05 dBm . ${ }^{* 1}$
Unbalanced - Into Open Circuit: $200 \mu \mathrm{~V}$ to 21.2 V RMS. Into 600Ω : -72.45 dBm to +22.05 dBm .*1
Resolution -0.05 dB in dBm mode, 0.25% or better in volts mode.
Level Accuracy (Sinewave) - 20 Hz to 20 kHz $\pm 2 \%(0.2 \mathrm{~dB}) .10 \mathrm{~Hz}$ to $163.8 \mathrm{kHz} \pm 3(0.3 \mathrm{~dB})$.
${ }^{*}{ }^{1} R_{S}=50 \Omega$. For $R_{S}=150 \Omega$, subtract 1.25 dBm ; for R_{S} $=600 \Omega$, subtract 5.35 dBm .
OUTPUT IMPEDANCE AND CONFIGURATION $50 \Omega \pm 3 \%, 150 \Omega \pm 2 \%$, or $600 \Omega \pm 1 \%$, balanced or unbalanced, floating or grounded.

EXTERNAL INPUT

A floating single-ended input is provided for accessing the variable gain stage and high level output amplifier, enabling the use of custom test signals. Input impedance is $20 \mathrm{k} \Omega$; a 2 V RMS input (2.83 V peak maximum) provides a calibrated output.

SYNC OUTPUT

A ground referenced TTL compatible signal is provided which allows stable oscilloscope display of all functions. In sine and squarewave modes the output is at the signal frequency. In the IM modes the sync output is at the lower or offset frequency. In both burst modes the sync signal follows the burst envelope.

SWEEP MODE

Linear or logarithmic sweep of amplitude or frequency in any function. Sweep is composed of discrete steps. The following sweep functions are programmable via GPIB or from the front panel: swept parameter (frequency or amplitude), linear or \log sweep, number of steps up to 99 , time per step from 0.1 s to 25 s , start frequency or voltage, and stop frequency or voltage. Start and stop frequencies or voltages may be anywhere within the range of the generator, and sweep direction may be upward or downward. Pen lift and ramp outputs are available for interface to an analog plotter.

STORED SETUPS

Ten different complete front panel setups may be stored in the nonvolatile internal memory and recalled from front panel push buttons or via the GPIB. Additionally, the front panel settings at power down are retained and used at power up.

PROGRAMMABILITY

All functions, parameters, and modes may be controlled over the GPIB using simple English-like commands. All settings may be interrogated, with the resulting response usable as a command to return the instrument to that setting (Learn mode). The GPIB address may be displayed and changed from the front panel.

GPIB Interface Function Subsets Implemented - SH1, AH1, T6, L4, SR1, RL1, PP $\emptyset, D C 1$, DT1, C0.

AA 5001 CHARACTERISTICS

 HARMONIC DISTORTION FUNCTIONFundamental Frequency Range -10 Hz to 100 kHz , automatically tuned to input frequency.
Distortion Ranges - Auto (100%), 20\%, 2%, 0.2%, and dB (autoranging).
Accuracy - 20 Hz to 20 kHz is $\pm 1 \mathrm{~dB} .10 \mathrm{~Hz}$ to 100 kHz is $+1,-2 \mathrm{~dB}$. (Accuracy is limited by residual THD +N and filter selection.)
Fundamental Rejection - At least 10 dB below specified residual THD +N or actual signal THD, whichever is greater.
Minimum Input Level $-60 \mathrm{mV}(-22 \mathrm{dBm})$.

LEVEL FUNCTION

Autoranging digital voltmeter displays input signal level in volts, dBm , or dB ratios.
Modes - Volts, dBm (600Ω), or dB ratio with push-to-set 0 dB reference.
Level Ranges - $200 \mu \mathrm{~V}$ full scale to 200 V full scale in ten steps, manual or autoranging.
Accuracy

Frequency	Volts	dBm or dB Ratio
20 Hz to 20 kHz	$\pm 2 \%$	$\pm 0.3 \mathrm{~dB}^{* 1}$
	± 1 count	$+0.5 \%$ of reading
10 Hz to 100 kHz	$\pm 4 \%$	$\pm 0.5 \mathrm{~dB}{ }^{* 1}$
	± 2 counts	$+0.5 \%$ of reading

${ }^{* 1} V_{\text {in }} \geqslant 100 \mu \mathrm{~V}$, level ranging indicators extinguished. $\pm 0.2 \mathrm{~dB}$ at 1 kHz only. Flatness is $\pm 0.1 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz , and $\pm 0.3 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 100 kHz .

Bandwidth $-\geqslant 300 \mathrm{kHz}$.

Residual Noise -

$\leqslant 3 \mu \mathrm{~V}(-108 \mathrm{dBm})$ with 80 kHz and 400 Hz filters, RMS response.
$\leqslant 1.5 \mu \vee(-114 \mathrm{dBm})$ with " A " weighting filter, RMS response (standard instrument only).
$\leqslant 5 \mu \mathrm{~V}(-104 \mathrm{dBm})$ with CCIR weighting filter, quasi-peak response (Option 02 instrument only).

INTERMODULATION DISTORTION FUNCTION

Fully automatic SMPTE, DIN, and CCIF difference tone measurements. Minimum input level 60 mV (-22 dBm). Accuracy $\pm 1 \mathrm{~dB}$.
SMPTE and DIN Tests - Lower Frequency Range: 50 Hz to 500 Hz . Upper Frequency Range: Usable from 3 kHz to 163.8 kHz . Level Ratio Range: 1:1 to $4: 1$ (lower:upper). Residual IMD: See System Specifications.
CCIF Difference Frequency Test - Frequency Range: Usable from 4 kHz to 163.8 kHz . Difference Frequency Range: 80 Hz to 1 kHz . Residual IMD: See System Specifications.

ALL FUNCTIONS

Display - $3^{1 / 2}$ digits resolution at ≈ 3 readings/s.
Detection - Average or true RMS for waveforms with crest factors $\leqslant 3$. Option 02 replaces average detector with quasi-peak detector complying with CCIR Recommendation $468-2$ and DIN 45405.

Filters -

400 Hz High Pass: -3 dB at $400 \mathrm{~Hz} \pm 5 \%: 18 \mathrm{~dB}$ octave slope, at least 40 dB rejection at 60 Hz . 80 kHz Low Pass: -3 dB at $80 \mathrm{kHz} \pm 5 \%$; $18 \mathrm{~dB} /$ octave slope.

Audio Bandpass: -3 dB at 22.4 Hz and 22.4 kHz , both $\pm 5 \%$. Complies with CCIR Recommendation 468-2 and DIN 45405.
" A " Weighting: Meets specifications for Type one sound level meters (ANSI S1.4, IEC Recommendation 179). Option 02 replaces " A " weighting filter with CCIR weighting filter complying with CCIR Recommendation 468-2 and DIN 45405.
Ext: Allows connection of external filters.
Input Type - Balanced (full differential).
Input Impedance - $100 \mathrm{k} \Omega \pm 2 \%$, each side to ground.
Maximum Input - 300 V peak, 200 V RMS either side to ground or differentially. Fully protected on all ranges.
Common-Mode Rejection $-\geqslant 50 \mathrm{~dB}$ at 50 Hz or 60 Hz . Typically $\geqslant 40 \mathrm{~dB}$ to 300 kHz .

PROGRAMMABILITY

Function (Level or THD or IMD). Level Mode (Volts or dBm). Input Level and Distortion Ranges (Autorange or default to range selected by front panel switches).
Detector Type (RMS or AVG; or RMS or Q-PK on Option 02).
Filter Selection (400 Hz Hi Pass, 80 kHz Low Pass, 22.4 Hz to 22.4 kHz Band-Pass, "A" Weight (or CCIR WTG on Option 02, Ext Filter).
GPIB Interface Function Subsets Implemented - SH1, AH1, T6, L4, SR1, RL1, PPØ, DC1, DT \varnothing, C \emptyset.

FRONT PANEL SIGNALS

Input Monitor - Provides constant amplitude version of signal applied to input. Output Voltage: 1 V RMS $\pm 10 \%$ for input signals $>50 \mathrm{mV}$. Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Function Output - Provides a scaled sample of selected function signal. Output Voltage: 1 V RMS $\pm 3 \%$ for 1000 count display. Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Auxiliary Input - Provides input to detector circuit when Ext Filter button is depressed. Sensitivity: 1 V RMS $\pm 3 \%=1000$ count display. Impedance: $100 \mathrm{k} \Omega \pm 5 \%$, ac coupled.

REAR INTERFACE SIGNALS

Duplicates of all front panel inputs and outputs are provided to allow external filter connections or oscilloscope monitoring within same mainframe without exposed cables. Detector outputs with specified scale factors also available to drive analog chart recorders, storage oscilloscopes, or similar devices.

ORDERING INFORMATION

SG 5010 Programmable Oscillator $\$ 4,195$ Includes: Instruction manual (070-4331-00); instrument interface guide ($070-4790-00$); reference guide ($070-4330-00$).
AA 5001 Programmable Distortion

Analyzer

\$3,450
Includes: Instruction manual (070-4598-01); instrument interface guide ($070-4788-00$); reference guide ($070-4597-00$).
Option $02-$ CCIR/DIN. $\quad+\$ 410$
Audio Test Program Generator Software -
Order S45F902
\$1,995

Utility Software

For TM 5000/4041 Order 062-6958-01 \$150
See page 297 for description and ordering information.

Multifunction Interface System

MI 5010/MX 5010

The MI 5010 and MX 5010 comply with

GPIB
 IEEE-488

 IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.Wide Range of System Interfacing Functions
Up to Six Functions at One Address
D-to-A, A-to-D Conversion
Low-Level Signal Scanning

Digital I/O

Digital Word Acquisition and Generation
Built-In Time-of-Day and Pacing Clock
Command Buffer for Controller-Free Operation

Thermocouple Scanning

The MI 5010/MX 5010 Multifunction Interface System consists of the MI 5010 Multifunction Interface, the MX 5010 Multifunction Interface Extender, and seven different types of function cards. These cards are capable of a variety of functions typically required in automated test system interfacing, data acquisition and generation, and process control.
The MI 5010 and MX 5010 each house up to three function cards, in any combination. The MI 5010 provides the means of communication between the system controller and the function cards. The MX 5010 is always used in connection with an MI 5010, extending its control to six function cards at one GPIB address.
The function cards presently available for the MI 5010/MX 5010 Multifunction Interface System are: 50M10 Analog-to-Digital Con-
verter, 50M20 Digital-to-Analog Converter, 50M30 Digital I/O, 50M40 Relay Scanner, 50M41 Low-Level Scanner (with M41A1 through M41A8 Signal Conditioners), 50M50 Memory, and 50M70 Development card. Each function card contains its own ROM with the specific firmware and its own unique set of commands required for its particular function. Each card may be operated in any slot of the MI 5010 and/or MX 5010 regardless of the other cards in the system.
In addition to providing the interface between the function cards and the system controller, the MI 5010 also has its own intelligence and a built-in command buffer. This buffer is capable of storing up to 300 system commands and executing them in sequence, paced by the on-board time-of-day and pacing clock or by signals from the system under test. It requires no interference from the system controller, thus freeing the controller to direct activity elsewhere in the system.
IEEE Standard 488-1978 Interface Function Subsets Implemented - SH1, AH1, T6, L4, SR1, RL $\emptyset, ~ P P \emptyset, ~ D C 1, ~ D T 1, ~ C \emptyset . ~$

ORDERING INFORMATION

MI 5010 Multifunction Interface

\$1,760
Includes: Instruction manual (070-3712-00); instrument interface guide ($070-5187-00$); reference guide ($070-3882-00$).
MX 5010 Interface Extender $\$ 740$

Includes: Same as above.

Utility Software

For TM 5000/4041 Order 062-6958-01
See page 297 for description and ordering information. This utility software supports all of the 50 Mxx Series function cards also.

50M10
Programmable A/D Converter
12-Bit Resolution
32μ s Conversion Time
Four Voltage Ranges $\pm 100 \mathrm{mV}$ to $\pm 100 \mathrm{~V}$
Data Transfer via GPIB or Front Panel Connector

The 50M10 uses a 12-bit successive approximation conversion technique with a track-and-hold amplifier to achieve a total conversion time of 32 microseconds or less (approximately 30,000 conversions per second). Using the front panel connector, conversion values may be sent over the GPIB (via the MI 5010) or to external memory devices (such as the 50M50 Memory card). In either case, data is transferred in two eightbit bytes. The lower six bits contain the converted value, high byte followed by low byte. The seventh bit is a high-low byte indicator. The eighth bit is unused.
Four voltage ranges are provided, manually selectable by on-board jumpers: +100 mV , $+1 \mathrm{~V},+10 \mathrm{~V}$ and +100 V . The total span for each range is divided into 4096 parts (12-bits). The front panel analog input connections (high and low) may be elevated to a potential of +340 volts, dc plus peak ac.
Two handshaking modes are provided, one for communication with devices faster than the 50M10 (the device can accept data as fast as the 50M10 can provide it), and the other for communication with devices slower than the 50M10 (the 50M10 must be clocked by the external receiving device). Front panel control lines permit the 50M10 conversions to be triggered, gated, or triggered within a gate. Through the use of a gateable function generator, such as the Tektronix FG 501A, and a digital delay generator, such as the Tektronix DD 501, a counted burst of conversions at a selected rate can be gated.

CHARACTERISTICS

Maximum Conversion Rate - $32 \mu \mathrm{~S}$.
Maximum Aperture Time $-\leqslant 400 \mathrm{~ns}$.
Accuracy

Range	$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
100 mV	$\pm 0.15 \%^{* 1}$	$\pm 0.25 \%^{* 1}$
1 V and 10 V	$\pm 0.075 \%^{* 1}$	$\pm 0.125 \%^{* 1}$
100 V	$\pm 0.125 \%^{* 1}$	$\pm 0.2 \%^{* 1}$

* 1 Full scale.

Amplifier Settling Time - 100 mV Range: $\leqslant 150 \mu \mathrm{~s}$. 1 V Range: $\leqslant 25 \mu \mathrm{~s}$. 10 V Range: $\leqslant 10 \mu \mathrm{~s} .100 \mathrm{~V}$ Range: $\leqslant 30 \mu \mathrm{~s}$.
Input Impedance - $100 \mathrm{mV}, 1 \mathrm{~V}$ and 10 V Ranges: $\geqslant 10^{10} \Omega .100 \mathrm{~V}$ Range: $\geqslant 1 \mathrm{M} \Omega$.
Digital Data Transfer Format - 12-bit word transferred in two bytes, high byte first. Lower six bits of each byte contain data, seventh bit is high byte/low byte indicator, eighth bit is unused.

ORDERING INFORMATION

50M10 Analog-to-Digital Converter Card \$895 Includes: Interfacing cable ($015-0430-00$); instruction manual (070-4495-00); reference guide (070-4491-00).

50M20
Programmable D/A Converter
12-Bit Resolution
Voltage or Current Mode
$20 \mu \mathrm{~s}$ (Maximum) Conversion Time
250 V RMS Isolation
Mnemonic Instructions
Self-Test and Error Indicators
UL 1244 Listed
The 50M20 converts digital data to either analog voltage or current. The voltage or current mode is selectable manually via an on-board switch.
Data format is 12 bits, sent in two sequential 7 -bit words. Data may be sent via the IEEE Standard 488 (GPIB) using the MI 5010 as the interface, or from an external (front connector) bus for high speed data transfer (with appropriate handshake lines). Onboard firmware will convert commands and data to the proper format to perform the required digital-to-analog conversion. Two lines at the front panel connector are provided to handshake data into the 50 M 20 from the user's external system.
Programming of the 50 M 20 is via the IEEE Standard 488 (GPIB) Bus. System commands sent to the M1 5010 microprocessor, along with specialized programming commands unique to the 50 M 20 , control the source and the format of the digital data. The 50M20 may be programmed to respond to either external or internal system triggers.

CHARACTERISTICS

VOLTAGE MODE
Range --10.240 V to +10.235 V
Accuracy $- \pm 10.0 \mathrm{mV}$ ($+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$) $\pm 15 \mathrm{mV}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Resolution (1 LSB) -5 mV .
Total Conversion Time (Maximum) - $20 \mu \mathrm{~s}$.
Output Ripple and Noise $-<5 \mathrm{mV}$ p-p at 5 MHz BW.
Output Current Range -0 mA to $\pm 5 \mathrm{~mA}$.

CURRENT MODE

Range -20.48 mA to +20.47 mA .
Accuracy $- \pm 20 \mu \mathrm{~A}\left(+20^{\circ} \mathrm{C}\right.$ to $\left.+30^{\circ} \mathrm{C}\right)$ $\pm 40 \mu \mathrm{~A}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Resolution (1 LSB) - $10 \mu \mathrm{~A}$.
Total Conversion Time (Maximum) - $20 \mu \mathrm{~s}$.
Output Ripple and Noise $-<15 \mu \mathrm{~A}$, p-p, at 5 MHz BW.
Compliance Voltage $- \pm 11 \mathrm{~V}$.
Isolation - 250 V RMS maximum to ground.
Digital Data Transfer Format - 12-bit word transferred in two bytes, high byte first. Lower six bits of each byte contain data, seventh bit is high byte/low byte indicator, eighth bit is unused.

ORDERING INFORMATION

[^39]50M30
Programmable Digital Input/Output Card
16 Digital Input and 16 Digital Output Lines
Data Entry/Output Formats in Decimal, Binary, or Hex

Triggered Externally or On Command
Mnemonic Instructions
Self-Test and Error Indicator
UL 1244 Listed
The 50 M 30 provides 16 digital input and 16 digital output lines. The digital inputs accept data from pushbuttons, switches, contact closures, and most digital devices capable of supplying TTL output levels. The digital outputs provide TTL levels to control various types of test and measurement instruments, relays, indicators, etc. The digital outputs can be configured for open-collector outputs by positioning internal jumpers and using power supplied by the user.
Programming of the 50 M 30 is via the IEEE Standard 488 (GPIB) Bus. System commands sent to the MI 5010 Microprocessor, along with specialized programming commands unique to the 50 M 30 , control the selection of the data input/output channels and the arming/trigger functions of the card.
Four lines at the front panel connector operate as input/output pairs to handshake data with the user's external system. One handshake pair allows the user's data source to be synchronized with the 50M30 data input register and the other handshake pair allows the user's data storage device to be synchronized with the 50M30 data output register.

CHARACTERISTICS

Data Outputs Using Internal Supply -
16 open-collector TTL with $2 \mathrm{k} \Omega$ pullup resistors. Logical "1": $+5 \mathrm{~V} \pm 2 \%$ (open circuit). Source current is $-2.5 \mathrm{~mA} \pm 7 \%$ maximum. Logical " 0 ": 0.2 V . Sink current is -40 mA maximum.

Data Outputs Using External (User) Supply - Maximum Voltage: +15 V . Pullup Resistors: $2 \mathrm{k} \Omega$. Logical "1" equal to external supply voltage (open circuit). Source current is $7.5 \mathrm{~mA} \pm 5 \%$ plus external supply tolerance. Logical " 0 ": 0.2 V . Sink current is 40 mA maximum.
Data Inputs - Input Buffers: 16 Schmitt triggers. Logical "1" (+V Threshold): $+1.6 \mathrm{~V} \pm 25 \%$. Source current is -0.14 mA nominal, -0.16 mA maximum. Logical " 0 " (-V Threshold): +0.8 V $\pm 40 \%$. Source current is -0.18 mA nominal, - 0.21 mA maximum.

ORDERING INFORMATION

50M30 Digital Input/Output Card \$495
Includes: Interfacing cable (015-0430-00); instruction manual (070-3722-00); reference guide (070-3884-00).

50M40

Programmable Relay Scanner Card
16 Mercury Wetted Relay Contacts
User Configurable 1, 2, 4 Groups
Triggered Externally or On Command
Mnemonic Instructions
Self-Test and Error Indicators
UL 1244 Listed

The 50M40 provides 16 independent, nor-mally-open relay contacts. The relay contacts may be used as switch closures to supply power to several external points from one source, or scan several sources and supply various inputs to a single measurement device.

The desired relay switch pattern is configured by the user with internal jumpers. When the configuration has been established, the relay scanning sequence, open and close operations, and triggering events are programmed over the IEEE Standard 488 GPIB Bus.
Two logic signal lines on the front panel connector are provided for externally controlling the 50 M 40 -one as an output (Ready) to indicate to the user when the relays have settled, and the other as an input (Ext Trig) to tell the Ml 5010 Microprocessor that the user is ready for the relay switch configuration to close. Three possible configurations are:

4 groups of 4 individual relays
2 groups of 8 individual relays
1 group of 16 individual relays
Scanning sequence and relay closure is accomplished under program control. Two logic signal lines on the front panel connector are provided for externally controlling the 50 M 40 -one as an output (Ready) to indicate to the user when the relays have settled, and the other as an input (Ext Trig) to tell the MI 5010 Microprocessor that the user is ready for the relay switch configuration to close.

CHARACTERISTICS

Type of Relays - Mercury wetted reed.
Possible Configurations (Jumper Selectable) - 1 of 4,4 each. 1 of 8,2 each. 1 of 16,1 of 12 and 1 of 4,1 each.
Maximum Applied Voltage - 40 V dc plus peak ac.
Maximum Carry Current - 1 A .
Breakdown Voltage - 100 V dc plus peak ac. Contact Resistance - 0.15Ω nominal (end of life).

ORDERING INFORMATION

50M40 Relay Scanner Card $\$ 695$
Includes: Interfacing cable ($015-0430-00$); instruction manual ($070-3723-00$); reference guide ($070-3885-00$).

50M41
Programmable Low-Level Scanner
10 Differential Contact Pairs Plus Guard
$<1 \mu \mathrm{~V}$ Low Thermal Offset
User Configurable
Handshake Lines to Permit External Control

Isothermal Amplifiers Available for Thermocouple Applications

The 50M41 provides ten pairs of guarded, normally open relay contacts with less than one microvolt of thermal offset in each channel. Each differential pair of contacts is accompanied by a third contact to switch the shield or guard connection. The ten sets of relay contacts can be configured as two groups of five individual relays with two commons, or as one group of ten individual relays with one common. The desired relay switch pattern is configured by internal jumpers. A tree relay can be included in the 1 of 10 configuration to reduce capacitive loading and potential noise problems when using more than one 50 M 41 in a system. Two handshake lines are provided for externally controlling the 50M41.
A family of high-gain, low-noise signal conditioning modules-M41A1 through M41A8-is available to condition low-level signals for specialized applications with the 50M41.

CHARACTERISTICS

Type of Relays - 10 sealed low-thermal-EMF relays configurable as one 10 -to-1 switch or two 5-to-1 switches.
Thermal Offset $-<1 \mu \mathrm{~V}$ differential; $<2 \mu \mathrm{~V}$ differential with tree switch.
Maximum Scan Rate $-\geqslant 200$ cycles/s.
Maximum Applied Voltage (High, Low or Guard of Any Channel to Chassis) - 350 V dc + peak ac.
Maximum Switched Voltage - 150 V dc + peak ac (not to exceed VA rating).
Maximum Carry Current - 250 mA .
Maximum Switched Current - 10 mA .
Maximum Switched VA -0.15 VA .

ORDERING INFORMATION

50M41 Low Level Scanner Card \$995 Includes: Interfacing cable ($015-0430-00$); instruction manual ($070-4557-00$); reference guide ($070-4556-00$).

M41A1
Low Level Amplifier for 50M41
10 Differential Inputs plus Guard
Selectable Gains of 1, 10, 100, and 1000
Software Selectable Filter
External Handshake Lines
50M41 Low Level Scanner Required

The M41A1 is a general purpose amplifier with switchable gain in decade steps from 1 to 1000. Provision is made for a guarded input that can be driven by the amplifier's guard driver or by an external signal source. A software selectable low-pass filter with a corner frequency of approximately 4 Hz provides more than 60 dB of normal mode rejection at 60 Hz . The frequency response with the filter turned off is approximately -3 dB at 10 kHz .

CHARACTERISTICS

Gain Ranges

Overall Gain (A)	Input Gain (A)	Buffer AMPL Gain	Output Dynamic Range
1000	1000	1	10 V
100	1000	0.1	1 V
100	100	1	10 V
10	100	0.1	1 V
10	10	1	10 V
1	10	0.1	1 V

Gain Accuracy $- \pm 0.1 \%$ from $+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C} ; \pm 0.2 \%$ from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Maximum Input Voltage (Respect to System

 Ground) - 250 V ac RMS (350 V dc + peak ac) Input Resistance Differential —>10 M Ω paralleled with $0.05 \mu \mathrm{~F}$ capacitor.RMS Noise (Referred to the Input) $<60 \mathrm{nV} / \sqrt{\mathrm{Hz}} \quad \mathrm{A}=1000 .<200 \mathrm{nV} / \sqrt{\mathrm{Hz}} \quad \mathrm{A}=100$. $<500 \mathrm{nV} / \sqrt{\mathrm{Hz}} \mathrm{A}=10$.

FILTER
Bandwidth Filter On $-\mathrm{f}(-3 \mathrm{~dB}): \leqslant 6 \mathrm{~Hz}$. $\mathrm{f}(-60 \mathrm{~dB}): \leqslant 60 \mathrm{~Hz}$.
Bandwidth Filter Off —> 10 kHz .
Settling Time - Filter On: $\leqslant 400 \mathrm{~ms}$. Filter Off: $\leqslant 150 \mu \mathrm{~s}$.

ORDERING INFORMATION

M41A1 Low Level Amplifier
\$550 Includes: Instruction manual (070-4605-01).

M41A2 trrough M41A8
 Thermocouple Amplifiers for 50M41

10 Guarded Inputs
Selectable Hardware or Software Temperature Compensation
Software Selectable Filter
External Handshake Lines
50M41 Low Level Scanner Required

Signal conditioning modules M41A2 through M41A8 are thermocouple amplifiers, each designed to operate with a specific thermocouple type (J, K, E, T, S, R, and B, respectively). The thermocouple amplifier provides isothermal connections for up to ten guarded or unguarded thermocouple pairs. Each amplifier provides hardware compensation for its specific thermocouple type; provision for software compensation is made where all thermocouples are not of the same type. Thermocouples are available from your local supplier.

CHARACTERISTICS

Maximum Thermocouple Wire Resistance $10 \mathrm{k} \Omega$.
Linearity Error - $\pm 0.02 \%$ or $1 \mu \mathrm{~V}$ referred to input (whichever is greater).
Common Mode Rejection Ratio - Incremental Dc: $\geqslant 100 \mathrm{~dB} .60 \mathrm{~Hz}: \geqslant 100 \mathrm{~dB}$.
Input Dynamic Range (Common Mode) $\pm 10 \mathrm{~V}$.
Incremental Input Resistance (High to LO) $>10 \mathrm{M} \Omega$ paralleled by $0.05 \mu \mathrm{~F}$ capacitor.

FILTER
Bandwidth Filter On $-f(-3 \mathrm{~dB}): \leqslant 6 \mathrm{~Hz}$. $\mathrm{f}(-60 \mathrm{~dB}): \leqslant 60 \mathrm{~Hz}$.
Setting Time - Filter On: $\leqslant 400 \mathrm{~ms}$. Filter Off: $\leqslant 150 \mu \mathrm{~S}$.

ISOTHERMAL BLOCK

Temperature Gradient $-<0.1^{\circ} \mathrm{C}$ between any two terminals or any terminal and temperature sensor.
Hardware Compensation $- \pm 0.014$ ($\mathrm{V}-\mathrm{V}$ iso) A (${ }^{\circ} \mathrm{C}$) and $0.35^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ or 0.25 C $\left(+18^{\circ} \mathrm{C}\right.$ to $+28^{\circ} \mathrm{C}$).
Software Compensation - $0.35 \mathrm{C}\left(0^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$) or $0.25 \mathrm{C}\left(+18^{\circ} \mathrm{C}\right.$ to $\left.+28^{\circ} \mathrm{C}\right)$

ORDERING INFORMATION	
The following thermocouple amplifiers each include in-	
struction manual 070-4605-01.	
M41A2 Type J	$\$ 625$
M41A3 Type K	$\$ 625$
M41A4 Type E	$\$ 625$
M41A5 Type T	$\$ 625$
M41A6 Type S	$\$ 625$
M41A7 Type R	$\$ 625$
M41A8 Type B	$\$ 625$

50M50

Programmable Memory Card
16 kbyte Digital Input/Output
Single 16-Bit or Dual 8-Bit Channels
Independent Dual-Channel Operation
200 kHz Acquisition or Generation Rate
TTL Levels
External Handshake Lines

The 50M50 is a 16 kbyte digital input/output device which can be configured, under program control, as a single 16-bit input/output port or as two 8 -bit input/output ports. These ports can be connected to any of 16 data buffers which can be programmed to different lengths. The total memory of all the buffers cannot exceed 16 kbytes of storage.
The 50M50 is intended to be used as a digital word generator and/or as a fast, digital data acquisition buffer. As a digital word generator, the 50M50 can be used with a digital-to-analog converter, such as the Tektronix 50 M 20 , to function as an arbitrary waveform generator. As a high speed data acquisition buffer, the 50M50 can be used with an analog-to-digital converter, such as the Tektronix 50M10, as an off-line, highspeed analog signal measurement system or as a waveform digitizer.
The 50M50 can be programmed to input or output data on two different channels simultaneously, or to input data on one channel while outputing data on the other channel. System commands to the 50M50 control the selection of input/output channels, the control of the data buffers, and the arming functions of the card.
Four handshake lines are provided at the front panel to permit synchronization with the user's external system (one pair for each channel). Other external control lines permit pacing and control of data output and disabling of data input.

CHARACTERISTICS

Data Outputs - 8 or 16 low-power Schottky TTL lines. Logical "1": $+5 \mathrm{~V} \pm 2 \%$ (open circuit). Source current is $2.5 \mathrm{~mA}+2 \%-7 \%$ maximum. Logical " 0 ": $\leqslant 0.7 \mathrm{~V}$. Sink current is 40 mA maximum.
Data Inputs - 8 or 16 low-power Schottky TTL lines. Logical "1" (+V Threshold): +1.5 V to +2 V . Source current is -0.16 mA maximum. Logical "0" (-V Threshold): +0.6 V to +1.1 V . Source current is -0.21 mA maximum.
Maximum Data Transfer Rate - 8-Bit Bytes: $200 \mathrm{kHz} \pm 2 \%$. 16 -Bit Bytes: $125 \mathrm{kHz} \pm 2 \%$.

ORDERING INFORMATION

50M50 Memory Card
$\$ 995$
Includes: Interfacing cable (015-0430-00); instruction manual (070-4550-00); reference guide (070-4554-00).

50M70

Programmable Development Card

32 Data I/O Ports

Interrupt and Trigger Lines
Vector Board Development Region

Mnemonic Instructions

Self-Test and Error Indicator

The 50 M 70 provides the user with the means of developing his own unique circuit and interfacing it to the GPIB without the need for designing and building the GPIB interface itself. With the 50M70, the user may create a specialized function card to be used in the MI 5010/MX5010 Multifunction Interface System. When completed, the circuit can be programmed in high level language over the GPIB.
The 50M70 contains two 68B21 16-bit interface logic registers (PIAs), address and data buffers, its own firmware, and a 4×4 inch breadboard area for circuit development. The 32 data lines of the PIAs can be individually programmed as inputs or outputs. The PIAs also provide three sets of programmable two-wire handshake lines to permit triggering of the external system by the 50 M 70 or of the 50 M 70 by the external system.
Typical 50M70 applications are specialized A/D and D/A converter functions, counter/ timer applications, special communication interface functions, keyboard and display functions, digital comparators for triggering and interrupt functions, etc.

CHARACTERISTICS

Data Input/Outputs and Handshake Lines Output High Level: +2.4 V minimum, +5.5 V maximum. Maximum Load Current: $-200 \mu \mathrm{~A}$. Output Low Level: 0 V minimum, +0.4 V maximum. Maximum Sink Current: 3.2 mA . Input Load Current: 1.3 mA nominal, 2.4 mA maximum.
Dc Voltage Sources Available on the Card +26 V and $-26 \mathrm{~V} \pm 9 \%, 100 \mathrm{~mA}$ maximum; +8 V $\pm 5 \%, 600 \mathrm{~mA}$ maximum; $+5 \mathrm{~V} \pm 5 \%, 1.5 \mathrm{~A}$ maximum. Total Combined Power Limit: 7.5 W.

MULTIFUNCTION INTERFACE SYSTEM

 OPTIONAL ACCESSORIESInterfacing Cable - 50-conductor flat ribbon cable with connector to mate with front panel connector of any Multifunction Interface System function card. Other end of the 48 -inch cable terminates in bare tinned leads. (This cable is a standard accessory with 50 M 20 , $50 \mathrm{M} 30,50 \mathrm{M} 40$, and 50 M 70 cards.)
Order 015-0430-00
Single-Width Interfacing Adaptor - Mates with any single Multifunction Interface System function card to permit customized interface wiring between cards or to external system under test. Will accommodate up to five screw terminal blocks (131-3083-00 below). Order 015-0466-00
Screw Terminal Block - Mounts in 015-0466-00 Interfacing adaptor above to permit wiring changes without soldering (ten terminals per block). Order 131-3083-00

Triple-Width Interfacing Adaptor - Mates with up to three Multifunction Interface System function cards in an MI 5010 or MX 5010 to permit interface wiring among cards or to external system under test. Contains two 131-3083-00 screw terminal blocks. Order 015-0473-00
Multifunction Interface System Card Extender - Permits operation of a function card while extended from the front of an MI 5010 or MX 5010. Order 067-1066-00
Function Card Access Shield - Dummy function card of insulating material to protect against possible electrical shock or damage in partially filled MI 5010 or MX 5010 .
Order 020-0836-00

SI 5010

Programmable Scanner

SI 5010

The SI 5010 complies with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Software Configurable as:
1 Group of 16 Channels
2 Groups of 8 Channels
4 Groups of 4 Channels

350 MHz Bandwidth in 4-Channel Configuration

External Handshake Lines
Built-In Time-of-Day and Pacing Clock
Command Buffer for Controller-Free Operation

The SI 5010 Programmable Scanner provides the capability of switching and routing up to 16 high frequency input and/or output signals. It always maintains a clean 50 -ohm environment through the use of 50 -ohm coaxial reed relays. The software-configurable basic four-channel arrangement allows the SI 5010 to be used for point-to-point switching (any connector to any other connector), or to be used in a wide variety of fan-in and/ or fan-out configurations.
The SI 5010 has its own intelligence and a built-in command buffer capable of storing up to 300 system commands and executing them in sequence. It is paced by the onboard time-of-day and pacing clock or by signals from the system under test. This requires no interference from the system controller, thus freeing the controller to direct activity elsewhere in the system.

Two handshake lines are provided for externally controlling the SI 5010. An Ext Trig line is provided to allow the SI 5010 switching to be initiated by the external system under test, and a Ready line indicates to the external system when the relays have settled.

CHARACTERISTICS

RF Connectors - 20 BNC connectors, 16 channels and four commons.
Control Input (Ext Trig) - External Trigger: TTL compatible
Control Output Data Accepted (Ready) - TTL compatible. Output goes high when relays have settled.
Channel Configuration (Software Selec-
table) - $1,2,3$, or 4 groups of 4 channels. 2 groups of 8 channels. 1 group of 16 channels.
Frequency Response - Any 1 Group of 4: -3 dB at 350 MHz , decreasing to -6 dB at 500 MHz or greater. Any 1 Group of $8:-3 \mathrm{~dB}$ at 175 MHz or greater. Any 1 Group of 16 : -3 dB at 80 MHz or greater.
Port (Channel) Isolation - 40 dB at 100 MHz.
Characteristic Impedance (Each Chan-
nel) - 50Ω. See vswr specification.
Risetime (Each Channel) - <1 ns.
Voltage Standing Wave Ratio (vswr) -
Any 4 Channel Group: 1.25:1 at 100 MHz , increasing to $1.8: 1$ at 350 MHz . Any Other Combination: $1.5: 1$ at $100 \mathrm{MHz} .2: 1$ at 225 MHz .
Insertion Loss - <1 dB at 100 MHz .
Channel Delay Matching - Any Group of
4: 50 ps . Any Group of $8: 110 \mathrm{ps}$. Any Group of 16: 310 ps .
Type of Relays - 16 Form A, EAC
05 Y 21 A 140 BAB , or equivalent. 4 Form " C ", TO-5, Teledyne 712-6, or equivalent. Pull In Time: 3 ms . Release Time: 3 ms . Breakdown Voltage: 350 V (dc + peak ac). Series Path Resistance (End of Life): 0.5Ω.
Peak Carry Voltage - Unterminated:
40 V maximum. 50Ω Terminated: 12.5 V maximum.
Peak Contact Current -0.25 A maximum.
Peak Switching Voltages - Unterminated: 15 V maximum. 50Ω Terminated: 3.73 V maximum.
Peak Switching Current -0.01 A maximum.

ORDERING INFORMATION

SI 5010 Scanner

Includes: Instruction manual (070-3721-00); instrument interface guide ($070-4615-00$); reference guide ($070-3881-00$).

Utility Software

For TM 5000/4041 Order 062-6958-01
\$150

Programmable Signal Multiplexer

1360P/ 1360 S

The 1360P/1360S comply with IEEE Standard 488-1978, and with Tektronix Standard Codes and Formats.

Signal Bandwidth to 300 MHz
50Ω Environment
Selected Pole Readout
Flexible Switch Configuration
Rackmount or Benchtop

The 1360P/1360S Programmable Signal Multiplexer is a microprocessor-based, GPIBcompatible system instrument which is used to multiplex electrical signals. The 1360P/1360S system includes two separate chassis: the 1360P Programmable Switch Controller and the 1360S Switch Matrix. The $1360 \mathrm{P} / 1360$ S is not part of the TM 5000 Family and thus does not require a TM 5000 mainframe for operation.
The 1360P Programmable Switch Controller is controlled via the GPIB and provides all the signals required for control of up to four 1360 S Switch units. The 1360P is housed in an 8.5 -inch wide (half-rackwidth) rackmount chassis, with right or left slider assemblies for rackmounting.

The 1360 S Switch Matrix contains four 9-to-1 switches which can be cascaded to provide two 17-to-1 switches; a 25 -to- 1 switch and a 9 -to-1 switch; or a 33 -to-1 switch. Up to four 1360S Switch units can be controlled by one 1360P Controller unit to provide up to 129-to-1 multiplexing. In the 9-to-1 configuration, the 1360 S has a signal bandwidth of 250 MHz ; make/break time in all configurations is $<1 \mathrm{~ms}$. The switches in the 1360S can also be ganged together to provide simultaneous and synchronized multiplexing of several groups of signals.

The 1360 S is housed in a 5.75 -inch high, 19 -inch wide rackmount chassis 3 -inches deep.

CHARACTERISTICS

Bandwidth (3 dB-Through One Switch

 Only) - Dc to 300 MHz .Maximum Input Voltage -250 V dc + peak ac (not to exceed 10 VA).
Maximum Carry Current - 250 mA (not to exceed 10 VA).
Vswr (Through One Switch Only) - 5.0 at $450 \mathrm{MHz} ; 3.9$ at 400 MHz ; 1.9 at 250 Hz ; 1.2 at 100 MHz .
Characteristic Impedance $-50 \Omega \pm 1 \Omega$.
Scan Rate Variability 一 $>10 \mathrm{~s}$ to $<3 \mathrm{~ms}$.
Make/Break Time $-\leqslant 1 \mathrm{~ms}$.

ORDERING INFORMATION	
1360P Switch Controller	$\$ 2,695$
Includes: Instruction manual (070-3476-00).	
1360S Switch Matrix	$\$ 1,695$
Includes: Same as above.	

TM 5003/TM 5006

Power Module Mainframes

GPIB	
IEEE-488	IEEE Standard 488

The TM 5000 mainframes extend the convenience of the TM 500 concept into the programmable instrument/IEEE Standard 488 area. The TM 5003 accepts up to three instruments at one time; the TM 5006 accepts up to six instruments at one time. These two TM 5000 mainframes were designed specifically for use with the Tektronix TM 5000 line of programmable, IEEE Standard 488 compatible test and measurement instruments, but all of the TM 500 manual plug-in instruments will also operate in these same mainframes allowing manual and programmable instruments to be mounted together in adjacent slots. This capability permits unique compact combinations of test instruments to be assembled for specific test applications.
Any of the mainframes may be operated with less than a full complement of plug-in instruments installed. TM 5000 instruments cannot be operated in TM 500 mainframes.

Benchtop or Portability

The two benchtop mainframes are the TM 5003 and the TM 5006. The TM 5003 is the most compact, accommodating three single-wide plug-ins. The TM 5006 includes a high-power compartment at the right-hand end to supply higher current levels to instruments that provide higher performance or higher output levels. Both the TM 5003 and TM 5006 incorporate a quiet fan for optimum cooling; have feet, tilt-bails, handles, and front-panel power switches. Both operate from 110 V ac or 220 V ac.
All benchtop models have carry handles for portable applications.

TM 5003 and TM 5006 mainframes shown above.

Rackmount

The TM 5006 Option 10 is electrically identical to the standard TM 5006 and features a slide assembly and handles, plus a higherpower fan than the bench version to accommodate the higher ambient temperatures often found in enclosed racks and consoles. Kits are available to rackmount a TM 5003 with a 4041 System Controller.

Rear Interface Capability

Most TM 5000 plug-in modules contain a duplication of the front-panel input and output connections in the back. Some plug-in modules also have additional signal or control lines that are present only at the back of the instrument. These signals are available at the rear edge-card connector of each plugin. Any module can be internally connected through the mainframe and also can be externally interfaced out the back panel. Using Option 02 for either mainframe provides the rear interfacing capability.

Economy

TM 5000 mainframes represent a most economical approach in test and measurement instrumentation. Relatively fixed packaging costs for frames, covers, primary power circuits, unregulated secondary power circuits, and other items are a significant portion of the cost of a typical instrument. Since these fixed costs associated with packaging are shared by many functional instruments in the TM 5000 line, the cost-per-function may be lower than comparable, one or two-function monolithic instruments. Because of its modularity, expandability, and versatility, the modular concept represented by TM 5000 may provide the lowest cost-per-test/measurement when you are considering multifunction usage.

Reduced cabling costs made possible by the rear-interface capability, the requirement for fewer GPIB cables for an equal number of instruments in the TM 5000 line; and the reduced space requirements for a measurement system all contribute to unprecedented economy for test and measurement requirements.

CHARACTERISTICS

POWER REQUIREMENTS

All of the mainframes have manually selectable taps on the power transformer which permit operation on $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V} \pm 10 \%$.
Power Line Frequency Range -48 Hz to 66 Hz .
Maximum Power Consumption - Shown in Mainframes Dimensions and Weights chart.

PHYSICAL CHARACTERISTICS

	TM 5003		TM 5006	
Dimensions	mm	in	mm	in
Width	230	9.0	445	17.5
Height	194	7.6	194	7.6
Depth	488	19.2	488	19.2
Weights \approx	kg	lb	kg	lb
Net	8.6	19.0	14.5	32.0
Shipping	12.0	26.5	20.9	46.0
Maximum Power Consumption* ${ }^{1}$	300 VA		650 VA	

${ }^{* 1}$ Actual power consumption depends on plug-in selec tion and operating modes.

ENVIRONMENTAL CHARACTERISTICS

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude Range - Operating: Sea level to 4600 m ($15,000 \mathrm{ft}$). Nonoperating: Sea Level to $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

ORDERING INFORMATION
TM 5003 Power Module Mainframe
Includes: Instruction manual (070-2955-00).
TM 5006 Power Module Mainframe \$995
Includes: Instruction manual (070-2950-00).

OPTIONS (TM 5003/TM 5006)

Option 02 - (TM 5003) Rear Interface. (TM 5006) Rear Interface.
Option 10 - (TM 5006 only) Rackmount.
$+\$ 100$
Option 12 - (TM 5006 only) Option 02 and Option 10 Combined.

OPTIONAL ACCESSORY
Rear Interface Data Book Order 070-2088-04.

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American 240 V/15 A, 60 Hz .
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

CONVERSION KITS

Cabinet-to-Rackmount Conversion Kit -
(TM 5006 only) Equipped with slide out assembly, to convert a TM 5006 to rackmount capability. Order 040-0982-01

Rackmount-to-Cabinet Conversion Kit -
(TM 5006 only) Equipped to convert a TM 5006 with rackmount capability to cabinet style. Order 040-0983-00

Cabinet-to-Rackmount Conversion Kit (TM 5003 only) Equipped with slide-out assembly to rackmount a 4041 Instrument Controller to the left of a TM 5003. Order 040-0984-01

FLEXIBLE PLUG-IN EXTENDER CABLE

Designed to couple a TM 500 or TM 5000 Plug-in with the mainframe rear interface board connection extender, cables provide a completely flexible connecting point outside the mainframe for plug-in operation during test or check-out.
GPIB Extender Cable for TM 5000 mainframes. Order 067-0996-00
\$110
Extender Cable for TM 500 mainframes.
Order 067-0645-02
GPIB INTERCONNECTING CABLES
GPIB Cable - 0.5 m . Order 012-1015-00
GPIB Cable - 2 m . Order 012-0630-01
GPIB Cable - 2 m , Double Shielded.
Order 012-0630-03
For additional accessories, see pages 390-392.

TM 500 MODULAR TEST AND MEASUREMENT INSTRUMENTS

Manual Instruments that Perform in Hundreds of Combinations
Configurability is the watchword for TM 500 instruments and mainframes. For a range of test and measurement needs, choose from almost forty ready-to-go, compact plug-ins to create multifunction packages for a wide diversity of applications, or to solve one unique application problem.
TM 500 Instruments include digital counters, pulse generators, function generators, amplifiers, signal processors, audio oscillators, a distortion analyzer, ramp generators, calibration instruments, power supplies, oscilloscopes, digital delay, and a digital latch. Plus three different blank plug-in kits for customizing special functions.

Combine your instruments with the mainframe that meets your environment. There's a travel mainframe for service work and field testing; a rackmount model for production and test; or standard mainframes, compact and convenient for bench or desk, that accept one to six instruments. Rollabout carts are available for lab configurations with Tek oscilloscopes.
All TM 500 instruments and mainframes are electrically and mechanically compatible. So, through interfacing, you can configure an instrument system more powerful than the sum of its parts: an audio lab with distortion analyzer and storage scope, for example.

CONTENTS

Digital Counters 358
Digital Multimeters 363
Pulse Generators 367
Function Generators 370
Power Supplies 375
Audio Products 377
Signal Conditioners 379
Oscilloscopes 381
Oscilloscope Calibration Instruments 385
TM 500 Mainframes 389
TM 500 Accessories 390

All of the TM 500 manual instruments may be used in TM 5000 mainframes side-byside with the TM 5000 GPIB programmable instruments for cost effective solutions to system application where not all functions or measurements need to be programmed. Cost efficiency is as important a part of the TM 500 concept as solving applications problems. You add on performance capabilities when you need them. And when you do add them, you can still use the same mainframe and power supply you started with.

Application and Construction Notes

The TM 500 instrument line is supported by an on-going program to communicate up-todate technical information.
Application Notes outline the steps necessary to solve complex problems, or achieve optimal performance and versatility from your TM 500 instruments. Subjects include integration through v to f conversion, generating delayed pulses, and transducer measurements.
Construction Notes provide information necessary to build custom circuits using a blank plug-in kit and standard components. These notes are developed from the actual construction of more common special circuits and include parts lists, schematics and other construction details. Some of the available TM 500 blank plug-in construction notes include: power supply circuits, thermal true RMS converter, and analog multipliers.
TM NOTES is a quarterly newsletter designed to keep TM 500 and TM 5000 users up to date on new products and new applications of existing products.

A Counter for Every Purpose

The TM 500 Family of digital counters provides a selection of four counters, each with its own performance and price niche, plus a prescaler which adds 1.3 GHz frequency measurement capability to the line.
The 350 MHz DC 510 and the 135 MHz DC 509 Universal Counter/Timers feature reciprocal frequency measurements and an especially wide range of other measurement functions; plus autotrigger, autoaveraging, arming, probe compensation, and more. And IEEE Standard 488 compatibility can be added as a field modification.
For versatility in counting, the DC 503A 125 MHz Universal Counter/Timer features eight measurement functions, including period, width, and time-interval averaging. Both input channels have the full 0 MHz to 125 MHz frequency range, 20 mV RMS sensitivity, and separate controls for input coupling, attenuation, trigger level, and trigger slope. The 10 MHz clock provides 100 ns resolution of single-shot time-interval measurements, and 10 ps resolution with averaging.
The 100 MHz DC 504A features autorange, period and width averaging, and a 100X resolution multiplier to provide high resolution of low frequency signals.
The DP 501 Digital Prescaler adds 1.3 GHz frequency counting capability to all of the above counters except the DC 504A.

Microprocessor-Based High

Performance

Both the DC 510 and DC 509 are micro-processor-based, and contain features available only in high performance, micro-processor-based instruments. Both use a powerful dual-register architecture to obtain high-resolution counting of low frequency signals. The DC 510 provides nine digits of
resolution in about a third of a second; the DC 509 provides eight digits of resolution in about a second. The DC 510 provides 3.125 ns single-shot resolution for time-interval measurements. The DC 509 provides 10 ns resolution. With averaging the DC 510 can provide 1 ps resolution on time-interval measurements (the best available today); the DC 509,5 ps resolution.
Other features available in both instruments include autotrigger, autoaveraging, probe compensation, and diagnostic self-test. At the push of a button, the autotrigger feature senses the top and bottom of the applied signal and automatically sets the trigger point midway between the two.
Autoaveraging provides the optimum combination of resolution and measurement time, regardless of the frequency of the signal. Both autotrigger and autoaveraging can be overridden to allow manual (or pro-
grammable, in the case of the GPIB versions) control of averaging, measurement time, and triggering levels.

The probe compensation feature on both instruments allows the user to quickly and accurately compensate a high-impedance probe to the instrument input impedance directly. Improperly compensated probes are a common source of timing errors when using counters without this feature.
Both instruments include an arming input and shaped outputs for added versatility when measuring selected parts of complex waveforms.
Both feature a phase-modulated time base to eliminate clock synchronous errors in all time averaging modes.
In addition to all the features of the DC 509, the DC 510 permits direct measurement and display of risetime and falltime.
The addition of the GPIB interface board (a field modification) converts both the DC 510 and DC 509 into their fully programmable, fully GPIB-compatible versions, the DC 5010 and DC 5009, respectively. See pages 340-343 for more information on these and other fully-programmable, GPIBcompatible products in the Tektronix TM 5000 product line.

Accessory Probe

An optional accessory probe, the Tektronix P6125, has been especially designed for use with digital counters. The 5 X attenuation provides an optimum match between the counter input characteristics and the voltage levels of all common logic families. Low input capacitance permits acquisition of high-frequency signals with minimum loading of the circuits under test.

DIGITAL COUNTERS SELECTION GUIDE

APPLICATION/FEATURE	DC 510/DC 5010	DC 509/DC 5009	DC 503A	DC 504A
Frequency Range	350 MHz	135 MHz	125 MHz	100 MHz
Number of Digits	9	8	8	6
Ratio Architecture	\checkmark	\checkmark		
Period Averaging	\checkmark	\checkmark	\checkmark	\checkmark
Width Averaging (Single Input)	\sim	\checkmark	\checkmark	\checkmark
Time Interval Averaging	\checkmark	v	\checkmark	
Autotrigger	\checkmark	\checkmark		
Gated Events Averaging	B during A	B during A	A during \mathbf{B}	
Ratio Averaging	\checkmark	\checkmark	\checkmark	
Other	High stability time base, trigger level and shaped outputs, self-test, phase modulated clock, probe compensation, time manual, totalize.	High stability time base, trigger level and shaped outputs, self-test, phase modulated clock, probe compensation, time manual, totalize.	High stability time base trigger level and shaped outputs, time manual, totalize.	Autorange, 100X resolution multiplier
IEEE Standard 488	v*1	v*1		
Mainframe Compatibility	DC 510 TM 500/TM 5000 DC 5010 TM 5000 only	DC 509 TM 500/TM 5000 DC 5009 TM 5000 only	TM 500/ TM 5000	TM 500/ TM 5000
Page	359/340	359/342	359	362
Prices Begin At	\$3,985/\$4,485	\$2,150/\$2,650	\$1,295	\$950

${ }^{* 1}$ Included with DC 5010/DC 5009. Conversion kit required to add IEEE Standard 488 capability to the DC 510/DC 509.
For compatible accessories - see page 408.

Universal Counter/Timers

DC 510/DC 509

350 MHz Both A and B Channels (DC 510) 135 MHz Both A and B Channels (DC 509)
3.125 ns Single-Shot Resolution (DC 510)

10 ns Single-Shot Resolution (DC 509)
9-Digit Display (DC 510)
8-Digit Display (DC 509)
1 ps Resolution, with Averaging (DC 510)
5 ps Resolution, with Averaging (DC 509)
With the exception of programmability and IEEE Standard 488 compatibility, the characteristics and specifications of the DC 510/DC 509 Universal Counter/Timers are identical to those of the DC 5010/ DC 5009 Universal Counter/Timers. The detailed specifications of the DC 5010/ DC 5009 Universal Counter/Timers are given on pages 340-343.
A conversion kit is available to owners of DC 510's and DC 509's who desire IEEE Standard 488 capabilities. The field modification kit easily converts a DC 510 to a DC 5010 or a DC 509 to a DC 5009.

ORDERING INFORMATION

$\begin{array}{lr}\text { DC 510 Universal Counter/Timer } & \$ 3,985 \\ \text { Includes: Instruction manual (070-3552-01). } & \\ \text { DC 509 Universal Counter/Timer } & \$ 2,150 \\ \text { Includes: Instruction manual (070-3464-00). } & \\ \text { Option 01 - High Stability Time Base. } & +\$ 325 \\ \text { CONVERSION KITS (DC 510/DC 509) } \\ \text { High Stability Time Base - } & \\ \text { Order 040-0966-00 } & \mathbf{\$ 2 5 0} \\ \text { IEEE Standard 488 Capability - } & \\ \text { (DC 510) Order 040-1023-04 } & \$ 290 \\ \text { (DC 509) Order 040-0957-04 } & \$ 290 \\ \text { RECOMMENDED PROBE } & \\ \text { P6125 5X - Passive Probe. } & \$ 70 \\ \text { Order 010-6125-01 } & \end{array}$

DC 509

DC 503A

DC 503A

125 MHz Both A and B Channels
10 ps Resolution in Time Interval
Average with 10^{8} Averages

Measurement Functions Include:

Frequency; Period and Period Average; Width and Width Average; Time $A \rightarrow B$ and Time $A \rightarrow B$ Average; Events A During B and Events A During B Average; Totalize; Time Manual; Ratio A/B Average
40 MHz Rep Rate in Time Interval Average
Simplified Width Measurement
Trigger Level Outputs for Accurate Trigger Setting
Shaped Outputs for Ease of Triggering
Designed for True Probe Compatibility

The DC 503A offers a broad range of measurement features at an affordable price. The instrument has two input channels, A and B, each with 125 MHz capability. Each channel has separate triggering level, triggering slope, attenuator, and coupling mode controls. Eight measurement functions are available with the DC 503A and an averaging feature allows averaging of 1 to 10^{8} occurrences of the signal of interest. Signals to be counted or timed can be applied to channels A and B via front panel BNC connectors, or through rear interface connections. The DC 503A features an easy access front panel and an LSI based design for increased instrument reliability.
The DC 503A can be equipped with an optional temperature controlled 10 MHz crystal oscillator (Option 01) to obtain a highly stable and precise internal time base. Both the
optional oscillator and the standard 10 MHz crystal oscillator provide 100 ns resolution of single-shot time intervals.

CHARACTERISTICS

Display - Eight digit LED; indicators for units, gate open, and overflow.
Display Time - $\approx 0.2 \mathrm{~s}$ to 5 s and hold.
CHANNEL A AND B INPUT
Frequency Range - 0 MHz to 125 MHz , dc coupled. 10 Hz to 125 MHz , ac coupled.
Sensitivity -20 mV RMS sinewave to 100 MHz . 60 mV p-p at minimum pulse width (of 5 ns to 100 MHz). 35 mV RMS sinewave to 125 MHz . 100 mV p-p (minimum pulse width of 4 ns to 125 MHz).
Attenuation - Selectable 1X, 5 X .
Impedance $-1 \mathrm{M} \Omega$ paralleled by $\approx 27 \mathrm{pF}$.
Dynamic Range - $\vee \mathrm{p}-\mathrm{p} \leqslant 3 \vee \times$ attenuation. V peak $\leqslant 3.5 \times$ attenuation.
Trigger Level Range - Adjustable $\pm 3.5 \mathrm{~V} \times$ attenuation.
Trigger Level Accuracy - $\pm 0.5 \%$ of reading for a de input $\mathrm{V}, \pm 20 \mathrm{mV} \times$ attenuator.
Independent Controls - Slope $+/-$, Attenuation $1 \mathrm{X} / 5 \mathrm{X}$, Coupled $\mathrm{ac} / \mathrm{dc}$, Source Internal/External.

Maximum Input Voltage

$1 \mathrm{X}: 200 \mathrm{~V}$ peak; 400 V p-p from dc to 50 kHz , derate to 15 V p-p from 1.33 MHz to 125 MHz .
$5 \mathrm{X}: 200 \mathrm{~V}$ peak; 400 V p-p from dc to 5 MHz , derate to 20 V p-p from 100 MHz to 125 MHz .
Shaped Out - Shaped replica of signal being measured, aids proper triggering on complex waveforms. $\geqslant 200 \mathrm{mV}$ p-p from 50Ω.

FREQUENCY A

Range -0 MHz to 125 MHz .
Resolution -0.1 Hz to 10 MHz in decade steps.
Accuracy $- \pm 1$ count \pm Time Base Error x Frequency A.

PERIOD B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~s}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy - ± 1 count \pm Time Base Error \times
Period $B \pm 1.4 \times$ Channel B Trigger Jitter Error.
Frequency Range - 0 MHz to 125 MHz .

PERIOD B (Average)

Range - 8 ns to 10 s .
Resolution - 1 fs $\left(10^{-15}\right)$ to 100 ns in decade steps.
Events Averaged (N) - 1 to 10^{8}.
Accuracy $- \pm \frac{100 \mathrm{~ns}}{\mathrm{~N}} \pm$ Time Base Error \times Per-
$\operatorname{iod} B \pm \frac{1.4 \times \text { Channel B Trigger Jitter Error }}{N}$
Frequency Range - 0 MHz to 125 MHz .

RATIO A/B

Averaged over 1 to 10^{8} cycles of Channel B signal.
Frequency Range - 0 to 125 MHz (both Channel A and Channel B).
Accuracy $- \pm \frac{\text { Frequency } B}{\text { Frequency } A \times N}$
$\pm \frac{1.4 \times \text { Channel B Trig Jitter Error } \times \text { Frequency A }}{N}$
$\pm \frac{\text { Frequency A }}{0.3 \times 10^{8}}$
TIME A \rightarrow B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~s}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy -
± 1 count \pm Time Base Error \times Time A \rightarrow B
\pm Channel A Trigger Jitter Error
\pm Channel B Trigger Jitter Error
\pm (Channel B stop Trigger Slew Error
-Channel A start Trigger Slew Error) ± 4 ns.
TIME A \rightarrow B (AVERAGE)
Range -12.5 ns to 10 s .
Minimum Dead Time - 12.5 ns (stop-to-start).
Resolution - $\frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}}$
Events Averaged (N) - 1 to $10^{\mathbf{8}}$ in decade steps.
Accuracy -
$\pm \frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}} \pm$ Time Base Error x Time $\mathrm{A} \rightarrow \mathrm{B}$
$\pm \frac{\text { Channel A Trigger Jitter Error }}{\sqrt{N}}$
$\pm \frac{\text { Channel B Trigger Jitter Error }}{\sqrt{N}}$
+(Channel B stop Trigger Slew Error
-Channel A start Trigger Slew Error) ± 4 ns
EVENTS A DURING B (AVERAGE)
Maximum A Frequency - 125 MHz .
Minimum B Pulse Width -5 ns .
Events Averaged (N) - 1 to 10^{8} in decade steps.

Accuracy -

$\pm \frac{\text { Period } A}{\text { Width } B \times \sqrt{N}} \times$ Events A during B
$\pm \frac{\text { Channel B start Trigger Jitter Error }}{\sqrt{N}}$
\times Frequency A (in MHz)
$\pm \frac{\text { Channel B stop Trigger Jitter Error }}{\sqrt{N}}$
\times Frequency A (in MHz)
+(Channel B stop Trigger Slew Error
-Channel B start Trigger Slew Error)
\times Frequency A (in MHz)
WIDTH B (SINGLE SHOT)
Range - 100 ns to $10^{9} \mathrm{~s}$.
Resolution - 100 ns to 10 s in decade steps.
Accuracy -
± 1 count \pm Time Base Error \times Width B \pm Channel B start Trigger Jitter Error \pm Channel B stop Trigger Jitter Error + (Channel B stop Slew Rate Error-Channel B start Slew Rate Error).

WIDTH B (AVERAGE)
Range - 5 ns to 10 s .
Resolution - $\frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}}$
Events Averaged (N) -1 to 10^{8} in decade steps.
Accuracy -
$\pm \frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}} \pm$ Time Base Error x width B
$\pm \frac{\text { Channel B start Trigger Jitter Error }}{\sqrt{N}}$
$\pm \frac{\text { Channel B stop Trigger Jitter Error }}{\sqrt{N}}$
+(Channel B stop Slew Rate Error -Channel B start Slew Rate Error)
Frequency Range - 0 MHz to 100 MHz . TIME MANUAL
Electronic stopwatch, accumulates and displays time between activation of front panel start/stop button or rear interface signal line. Clock rates selectable from 100 ns to 10 s in decade steps. Range 100 ns to $10^{9} \mathrm{~s}$.

TOTALIZE A

1 count to $99,999,999$ counts at maximum rate of 125 MHz . Start, stop and reset controlled by front panel pushbuttons or rear interface signal lines.

RESOLUTION AND

 ACCURACY DEFINITIONSTime Base Error is the sum of all errors specified for the time base used.
N is the number of periods averaged in Period B (AVGS) mode, the number of intervals averaged in the Time $\mathrm{A} \rightarrow \mathrm{B}$ (AVGS) mode, the number of widths of B averaged in Width B (AVGS) and Events A During B modes, and the number of periods of B in the Ratio A / B mode.

Trigger Jitter Error (in $\boldsymbol{\mu s}$) $=$ $\sqrt{(\mathrm{en} 1)^{2}+(\mathrm{en} 2)^{2}(\mathrm{~V})}$
Input Slew Rate at Trigger Point ($\mathrm{V} / \mu \mathrm{s}$)
Where: en $1=100 \mu V$ RMS typical internal noise.
$e n 2=R M S$ noise of signal input at trigger point for a 125 MHz bandwidth.
Trigger Slew Rate Error (in $\mu \mathbf{s}$) = Input hysterisis (V)/2
Input Slew Rate at set Trigger Point $V / \mu \mathrm{S}$
Where: Input hysterisis $=20 \mathrm{mV}$ peak-to-peak typical.

OTHER CHARACTERISTICS

STANDARD TIME BASE

Crystal Frequency - 10 MHz .
Temperature Stability $-< \pm 5 \times 10^{-6}, 0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Aging Rate $-<1 \times 10^{-6}$ per year.
Setability - Adjustable to within 5×10^{-8}.
HIGH STABILITY TIME BASE OPTION 01 Crystal Frequency - 10 MHz .
Temperature Stability $-< \pm 2 \times 10^{-7}$ after warm-up, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Warmup Time - Within 2×10^{-7} of final frequency in <10 minutes when cold started at $25^{\circ} \mathrm{C}$.
Aging Rate $-1 \times 10^{-8} /$ day at time of shipment, 4×10^{-8} week after 30 days of continuous operation, $1 \times 10^{-6} /$ year after 60 days of continuous operation.
Setability - Adjustable to within 2×10^{-8}.

REAR INTERFACE

Inputs - Direct count input to $50 \mathrm{MHz},(50 \Omega$ impedance, resistor may be removed for $1 \mathrm{M} \Omega$ impedance, remote start/stop, reset; external time base.
Outputs - BCD serial-by-digit, decimal point, overflow, scan clock; trigger level; time base reference.

ORDERING INFORMATION

DC 503A Universal Counter/Timer
\$1,295
Includes: Instruction manual ($070-2971-00$).
Option 01 - High Stability Time Base.
$+\$ 325$
CONVERSION KITS
High Stability Time Base -
Order 040-0966-00

DP 501

Digital Prescaler
DP 501
Extends Frequency Measurement Capability to 1.3 GHz

Compatible with Most TM 500 and TM 5000 Counters

AGC
Low Level Indicator

The DP 501 Digital Prescaler adds 1.3 GHz frequency counting capability to the Tektronix DC 503A, DC 509, DC 5009, DC 510, and DC 5010 Universal Counter/ Timers.
The DP 501 is placed in the signal line between the signal source and the counter's input connector such that the signal to be measured passes through the DP 501. Two operating modes are available, Prescale and Direct. In the Prescale mode, the DP 501 divides the input signal by 16 and causes the associated counter's display to be multiplied by 16 , so that the counter will display the correct frequency. In the Direct mode, the signal is simply looped through the DP 501 and applied directly to the counter's input; the counter's display is not affected. This loop-through capability eliminates the need for external switching when input signal frequencies occur in both the Prescale and Direct frequency ranges.
The prescaling function can be activated in either of two ways: manually, with a frontpanel push button; or, when used with the GPIB programmable DC 5009 or DC 5010, by a Prescale command to the counter. Thus, the DP 501 adds programmable frequency measurements to 1.3 GHz to the Tektronix TM 5000 Family of GPIB programmable instruments.

Input sensitivity in the Prescale mode is 20 mV RMS to 1 GHz and 30 mV RMS to 1.3 GHz . A Low-Level indicator alerts the user if the input signal amplitude is too low for error-free counting. An automatic gain control circuit provides optimum immunity to signal noise in the Prescale mode.
The DP 501 and DC 509 or DC 510 can be used with the Tektronix 7L14 Spectrum Analyzer and TR 502 Tracking Generator to provide counter accuracy measurements of swept-frequency signals from 100 kHz to 1.3 GHz .

CHARACTERISTICS

Prescale Mode - Input: Frequency range is $\leqslant 100 \mathrm{MHz}$ to $\geqslant 1.3 \mathrm{GHz}$. Sensitivity: 100 MHz to 1 GHz is $\leqslant 20 \mathrm{mV}$ RMS (-21 dBm). 1 GHz to 1.3 GHz is $\leqslant 30 \mathrm{mV}$ RMS (-17 dBm). Impedance: 50 Ω, ac coupled; vswr $\leqslant 2.2: 1$. Output: Amplitude into 50Ω is $\geqslant 200 \mathrm{mV}, \mathrm{p}-\mathrm{p}$. Unterminated is 2 X terminated value.
Direct Mode - Input: Connected directly to output. Frequency Range: 0 MHz to $>350 \mathrm{MHz}$. Impedance: Loop through characteristic impedance is 50Ω; nonterminated capacitance $\approx 20 \mathrm{pF}$ (no connection to output). Output: Connected directly to input. $<1 \mathrm{~dB}$ insertion loss up to 350 MHz . Powers up in direct mode.
Overload Protection - Prescale: Input disconnects when input signal exceeds $+20 \mathrm{dBm} \pm 5$ dBm for a period of $\approx 0.5 \mathrm{~s}$ or more.
Damage Level - Prescale: Input may be damaged if signal level exceeds +25 dBm . Direct: 42 \checkmark peak maximum. Maximum current is 250 mA .
Input Attenuation - Automatic: $U p$ to 40 dB range.
Low Level Indicator - Lights when input signal is below that required for error-free counting.
Tracking Generator Compatibility - Outputs will drive two standard TTL loads. Inputs represent two standard TTL loads. Requires arming input to associated counter.

ORDERING INFORMATION

DP 501 Digital Prescaler
\$575 Includes: Instruction manual. (070-4332-00).

P6125 counter Probe

The P6125 is a low-capacitance, 5 X attenuation passive probe specially designed for use with counter/timers. It makes possible more accurate time interval measurements of high speed logic signals. Five-times attenuation provides an optimum match between the counter input characteristics and the voltage levels of all common logic families. The low input capacitance permits acquisition of high frequency signals with minimum loading of the circuits under test.

CHARACTERISTICS

Attenuation - 5 X .
Input Resistance - $5 \mathrm{M} \Omega$ input.
Capacitance - $\approx 20 \mathrm{pF}$.
Bandwidth - Dc to 200 MHz .
Voltage Rating - 250 V (dc + peak ac) derated to 35 V at 100 MHz .
Cable Length - 1.5 meters.

ORDERING INFORMATION

P6125 Counter Probe, $5 \mathrm{X}, 1.5 \mathrm{~m}$.
Order 010-6125-01
\$70
Includes: 8 cm ground lead (175-0263-01); accessory pouch (016-0521-00); two miniature alligator clips (344-0046-00); IC tip tester* , two 13 cm ground lead probe ${ }^{* 2}$ tips (175-0124-01); retractable hook tip (013-0107-03); probe holder (352-0351-00); insulating sleeve (166-0404-01); instruction sheet (070-3617-00).
*1 Available in packages of 10 (015-0201-04) or 100 (015-0201-05).
*2 Available in packages of 10 only (206-0191-03).

DC 504A

Counter/Timer

DC 504A

Dc to 100 MHz
Period and Period Averaging
Width and Width Averaging
Autoranging
100X Resolution Multiplier

The easy-to-use DC 504A Counter/Timer measures frequency from dc to 100 MHz , with an internal prescaler being used for frequencies above 10 MHz . Both direct and prescaled counting are done through the same input connector; no need to change connectors when changing frequency range. Autoranging permits virtual hands-off operation for most measurements. The 100X resolution multiplier automatically provides 0.01 Hz resolution in one second-or 0.001 Hz resolution in ten seconds-on signals from 10 Hz to 25 kHz .
The DC 504A features period and width averaging of up to 1000 events. Selectable dc coupling of the input eliminates the potential errors associated with making width measurements on signals of varying duty cycle with counters that are only ac coupled. Input trigger sensitivity is 30 mV RMS across the entire 100 MHz frequency range. The triggering level range of ± 2 volts and the selectable 5 X attenuator provides a triggering range of up to ± 10 volts.
The totalize mode permits totalizing up to 999,999 events-and beyond, with overflow-with a Display Update-Run/Hold control to hold the display while the internal counter continues to advance.

CHARACTERISTICS

Display - Six-digit LED readout with automatic decimal point positioning and leading zero suppression. LED annunciators indicate gate open, resolution multiplier lock, and display overflow.

INPUT

Frequency Range - Front Panel: Dc Coupled is 1 MHz to 100 MHz . Ac Coupled is 10 Hz to 100 MHz . Rear Interface: Dc Coupled is 0 MHz to 50 MHz . Ac Coupled is 10 Hz to 50 MHz .
Sensitivity - 1X Attenuation: 30 mV RMS sinewave to $100 \mathrm{MHz} ; 85 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (at a minimum pulse width of 5 ns). 5 X attenuation accuracy is within 2% at dc.
Attenuation - Selectable 1X, 5X.
Impedance - Front Panel, 1X, 5X: $1 \mathrm{M} \Omega$, paralleled by $\approx 25 \mathrm{pF}$. Rear Interface, 1X, 5X: 50Ω $\pm 10 \%$ at dc.
Dynamic Range $-1 \mathrm{X}: \pm 2.0 \mathrm{~V}$ peak, 4 V p-p. 5X: $\pm 10 \mathrm{~V}$ peak, 20 V p-p.
Trigger Level Range $- \pm 2.0 \mathrm{~V}$ attenuation minimum.
Maximum Input Voltage - Front Panel: 1 X is 200 V peak; 400 V p-p from dc to 50 kHz , derate to 15 V p-p from 1.33 MHz to 100 MHz . 5 X is 200 V peak; 400 V p-p from dc to 50 MHz , derate to 20 V p-p at 100 MHz . Rear Interface: $\leqslant 4 \mathrm{~V}$ peak.

FREQUENCY TO 10 MHz

Range - Dc Coupled: 0 Hz to 10 MHz . Ac Coupled: 10 Hz to 10 MHz .
Resolution - Multiplier Off: 100 Hz to 0.1 Hz , selectable in decade steps or autoranging (100 Hz to 1 Hz only). Multiplier On: 1 Hz to 0.001 Hz , selectable in decade steps or autoranging (1 Hz to 0.01 Hz only). Lock Range: 10 Hz \leqslant Frequency $\leqslant 25 \mathrm{kHz}$. Multiplication: 100 X . Lock Time: $\leqslant 5 \mathrm{~s}$. Resolution multiplier automatically increases resolution by 100 when locked; may be defeated by an internal jumper.
Accuracy $- \pm 1$ count \pm Time Base Error \times Frequency. See page 360 for example.
Gate Time - 10 ms to 10 s , selectable in decade steps; or autoranging (10 ms to 1 s only).

FREQUENCY TO 100 MHz

Range - Dc Coupled: 0 Hz to 100 MHz . Ac Coupled: 10 Hz to 100 MHz .
Gate Time (Resolution) - 10 ms to $10 \mathrm{~s}(1 \mathrm{kHz}$ to 1 Hz), selectable in decade steps; or autoranging (10 ms to 1 s only).
Accuracy - ± 1 count \pm Time Base Error x Frequency.
Prescale Factor $-\div 10$.

PERIOD AVG

Range - Dc Coupled: 0 Hz to 2.5 MHz . Ac Coupled: 10 Hz to 2.5 MHz .
Resolution - 100 ns to 100 ps , selectable in decade steps; or autoranging (100 ns to 1 ns only). Events Averaged (N) - 10° to 10^{3}, selectable in decade steps; or autoranging (10° to 10^{2} only).
Accuracy -
$\pm \frac{100 \mathrm{~ns}}{\mathrm{~N}} \pm$ Time Base Error \times Period

$$
\pm 1.4 \times\left(\frac{\text { Trigger Jitter Error }}{\mathrm{N}}\right)
$$

WIDTH AVG
Range - Dc Coupled: 0 Hz to 2.5 MHz . Ac Coupled: 10 Hz to 2.5 MHz .
Resolution $- \pm \frac{100 \mathrm{~ns}}{\sqrt{\mathrm{~N}}}$
Events Averaged (N) - 10° to 10^{3}, selectable in decade steps; or autoranging (10^{0} to 10^{2} only).

Accuracy -

$\pm \frac{100 \mathrm{~ns}}{\sqrt{N}} \pm$ Time Base Error \times Width.
$\pm \frac{\text { Start Trigger Jitter Error }}{\sqrt{N}}$
$\pm \frac{\text { Stop Trigger Jitter Error }}{\sqrt{N}}$
+(Stop Slew Rate Error - Start Slew Rate Error) $\pm 10 \mathrm{~ns}$

TOTALIZE
Frequency Range - Dc Coupled: 0 Hz to 10 MHz . Ac Coupled: 10 Hz to 10 MHz . Overflows above 999,999. Display update Run/Hold will hold display while counter continues to advance. Releasing Run/Hold will update display to new value.

TIME BASE
Frequency (At Calibration) $-10 \mathrm{MHz} \pm 1 \mathrm{x}$ 10^{-7}.
Temperature Stability $- \pm 5 \times 10^{-6}(\pm 5 \mathrm{ppm})$, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Adjustment Resolution $- \pm 5 \times 10^{-8}$.
Aging Rate $-\leqslant 1 \times 10^{-6} /$ year ($\leqslant 1 \mathrm{ppm} /$ year).
EXTERNAL TIME BASE INPUT
10 MHz . Must drive 1 LSTTL load. $\mathrm{V}_{\mathrm{IH}}=$ $2.0 \mathrm{~V} / 20 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} /-400 \mu \mathrm{~A}$.

RESOLUTION AND ACCURACY DEFINITIONS

Same as DC 503A except DC 504A has 100 MHz bandwidth and input hysteresis $=30 \mathrm{mV}$ p-p typical.

ORDERING INFORMATION

DC 504A Counter/Timer
$\$ 950$
Includes: Instruction manual (070-4291-00).

OPTIONAL COUNTER ACCESSORIES

P6101 X1 Probe - Dc to 34 MHz .
Order 010-6101-13
P6106 X10 Probe - Dc to 300 MHz . Order 010-6106-13
P6201 FET Probe - Dc to 900 MHz . Order 010-6201-01
P6230 Bias/Offset Probe - Dc to 1.5 GHz . Order 010-6230-01
\$395
P6056 50Ω, X10 Probe - Dc to 3.5 GHz .
Order 010-6056-03
\$185
Power Divider - GR, 50Ω.
Order 017-0082-00
\$375
Adaptor - GR to BNC female.
Order 017-0067-00
Adaptor - GR to BNC male.
Order 017-0064-00
Cable Adaptor - BNC to tipjack (DC 503A, DC 509,DC 5009). Order 175-3765-01
Cable Adapator - BNC to RF (DC 510, DC 5010). Order 012-0532-00

PRODUCT SUMMARY

The TM 500 Digital Multimeter line consists of two general purpose instruments, the DM 501A and DM 502A. Both provide exceptional versatility in function and range. In addition to the usual ac and dc voltage, resistance, and ac/dc current functions, both meters offer a dB function and a platinum-resistance temperature-measurement function, which provides digital readout of the surface temperature in degree Centigrade.
The DM 501A and DM 502A each measure dc voltage to 1000 V , ac voltage to 500 V , both ac and dc current to 2 A , true RMS voltages, and resistance to $20 \mathrm{M} \Omega$. The most significant differences are increased resolution provided by the extra digit on the DM 501A, increased temperature measurement range of the DM 501A and autoranging on the DM 502A.
TM 500 digital multimeters offer a compact solution to your measurement needs without compromising wide performance range. The DM 501A and DM 502A provide accuracy and flexibility in laboratory bench, field service, and maintenance applications.

DIGITAL MULTIMETER SELECTION GUIDE

Application Feature	DM 501A	DM 502A	DM 5010
Number of Digits	$41 / 2$	$31 / 2$	$31 / 2 / 41 / 2^{* 1}$
Dc Volts Ranges	$\begin{gathered} 200 \mathrm{mV} \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 200 \mathrm{mV} \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 200 \mathrm{mV} \text { to } \\ 1000 \mathrm{~V} \end{gathered}$
Dc Volts Accuracy	$\pm 0.05 \%$	$\pm 0.1 \%$	$\pm 0.015 \%$
Dc Volts Best Resolution	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$
Ac Volts Ranges	$\begin{aligned} & 200 \mathrm{mV} \\ & \text { to } 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{mV} \\ & \text { to } 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{mV} \\ & \text { to } 700 \mathrm{~V} \end{aligned}$
Ac Volts Accuracy	$\pm 0.6 \%$	$\pm 0.6 \%$	$\pm 0.2 \%$
Ac Volts Best Resolution	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$
Ac or Dc Current Ranges	$\begin{aligned} & 200 \mu \mathrm{~A} \\ & \text { to } 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 200 \mu \mathrm{~A} \\ & \text { to } 2 \mathrm{~A} \end{aligned}$	N/A
dB Ranges	$\begin{gathered} +54 \mathrm{~dB} \text { to } \\ -60 \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} +50 \mathrm{~dB} \text { to } \\ -60 \mathrm{~dB} \\ \hline \end{gathered}$	Calculated
Resistance (HI-LO) Ranges	$\begin{gathered} 200 \Omega \text { to } \\ 20 \mathrm{M} \Omega \\ \hline \end{gathered}$	$\begin{gathered} 200 \Omega \text { to } \\ 20 \mathrm{M} \Omega \\ \hline \end{gathered}$	$\begin{gathered} 200 \Omega^{+2} \text { to } \\ 20 \mathrm{M} \Omega \\ \hline \end{gathered}$
Temperature Range	$\begin{gathered} -62^{\circ} \mathrm{C} \text { to } \\ +240^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ +200^{\circ} \mathrm{C} \end{gathered}$	N/A
True RMS	\checkmark	\checkmark	\checkmark
Autorange	\checkmark		\checkmark
IEEE Standard 488			v*3
Mainframe Compatibility	$\begin{aligned} & \text { TM } 500 \\ & \text { TM } 5000 \end{aligned}$	$\begin{aligned} & \text { TM } 500 \\ & \text { TM } 5000 \\ & \hline \end{aligned}$	TM 5000
Page	363	364	344
Prices Begin At	\$795	\$750	\$2,260

${ }^{* 1}$ Measurement rate of 3 readings/s at 4.5 digits, and 26 readings/s at 3.5 digits resolution.
*2 Low Ω plus diode test.
*3 Fully programmable, IEEE Standard 488 compatible. See page 344 for complete description.

DM 501A

Digital Multimeter
DM 501A

0.05% dc Voltage Accuracy

7 Functions Including Temperature and $d B$
$41 / 2$ Digits of Readout Resolution

True RMS Capability

The DM 501A Digital Multimeter measures dc and ac voltage, dc and ac current, resistance, dB and temperature. The DM 501A gives $4 \frac{1}{2}$ digits of readout resolution. All with 0.05% accuracy and true RMS capability. True RMS allows accurate measurement of distorted waveforms. DB is useful when making critical audio and communication measurements. Fast accurate temperature measurements to $240^{\circ} \mathrm{C}$ come from the Tektronix P6601 platinum film temperature sensing probe. The P6601 reaches 90% of final reading in 1.5 seconds.

CHARACTERISTICS

DC VOLTS
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 1000 V . Accuracy*1
$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$

Voltage Ranges	Normal and Fast Conversion Rate
200 mV	$\pm[0.05 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$
2 V to 200 V	$\pm[0.05 \%$ of reading $+0.01 \%$ of full scale (2 counts) $]$
1000 V	$\pm[0.05 \%$ of reading $+0.02 \%$ of full scale (2 counts) $]$

$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+\mathbf{2 8}{ }^{\circ} \mathrm{C}$ to $+\mathbf{5 0}{ }^{\circ} \mathrm{C}$	
200 mV to 200 V	$\pm[0.1 \%$ of reading +0.025 of full scale (5 counts) $]$
1000 V	$\pm[0.1 \%$ of reading $\pm 0.05 \%$ of full scale (5 counts) $]$

[^40] first.

Common-Mode Rejection Ratio $-\geqslant 100 \mathrm{~dB}$ at dc. $\geqslant 80 \mathrm{~dB}$ at 50 Hz and 80 Hz with $1 \mathrm{k} \Omega$ imbalance.
Normal-Mode Rejection Ratio - $\geqslant 60 \mathrm{~dB}$ at 50 Hz or $60 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$.
Maximum Resolution - $10 \mu \mathrm{~V}$.
Step Response Time $-<1 \mathrm{~s}$.
Input Resistance - $10 \mathrm{M} \Omega$.
Maximum Input Voltage - 1000 V peak.

TRUE RMS AC VOLTS

Input Signal - Must be between 5\% and 100\% of full scale.
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 500 V (ac coupled).
Accuracy*1

$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$			
Voltage Ranges	20 Hz to 40 Hz	40 Hz to 10 kHz	10 kHz to 20 kHz
$\begin{aligned} & 200 \mathrm{mV} \\ & \text { to } 200 \mathrm{~V} \end{aligned}$	$\pm[1 \% \text { of }$ reading $+0.05 \%$ of full scale (10 counts)]	$\begin{aligned} & \pm[0.6 \% \text { of } \\ & \text { reading } \\ & +0.05 \% \text { of } \\ & \text { full scale } \\ & (10 \text { counts })] \end{aligned}$	$\pm[1 \% \text { of }$ reading $+0.05 \%$ of full scale (10 counts)]
500 V	$\begin{aligned} & \pm[1 \% \text { of } \\ & \text { reading } \\ & +0.2 \% \text { of } \\ & \text { full scale } \\ & \text { (10 counts) }] \end{aligned}$	$\begin{aligned} & \pm[0.6 \% \text { of } \\ & \text { reading } \\ & +0.2 \% \text { of } \\ & \text { full scale } \\ & (10 \text { counts })] \end{aligned}$	$\begin{aligned} & \pm[1 \% \text { of } \\ & \text { reading } \\ & +0.2 \% \text { of } \\ & \text { full scale } \\ & \text { (10 counts) } \end{aligned}$

Voltage Ranges	20 Hz to 40 Hz	40 Hz to 10 kHz	10 kHz to 20 kHz
$\begin{aligned} & 200 \mathrm{mV} \\ & \text { to } 200 \mathrm{~V} \end{aligned}$	$\pm[1.3 \%$ of reading $+0.075 \%$ of full scale (15 counts)]	$\pm[0.8 \%$ of reading $+0.075 \%$ of full scale (15 counts)]	$\pm[1.3 \%$ of reading $+0.075 \%$ of full scale (15 counts)]
500 V	$\begin{aligned} & \pm[1.3 \% \text { of } \\ & \text { reading }+0.3 \% \\ & \text { of full scale } \\ & (15 \text { counts })] \\ & \hline \end{aligned}$	$\begin{aligned} & \pm[0.8 \% \text { of } \\ & \text { reading }+0.3 \% \\ & \text { of full scale } \\ & \text { (} 15 \text { counts) }] \\ & \hline \end{aligned}$	$+[1.3 \%$ of reading $+0.3 \%$ of full scale (15 counts)]

*1 Valid for six months or 1000 hours whichever occurs first.
Common-Mode Rejection Ratio - $\geqslant 60 \mathrm{~dB}$ at 50 Hz to 60 Hz with $1 \mathrm{k} \Omega$ imbalance.

Maximum Resolution - $10 \mu \mathrm{~V}$.

Response Time - <2s.
Input Impedance - $10 \mathrm{M} \Omega$ paralleled by 160 pF .
Maximum Input Voltage - 500 V ac RMS, 600 V dc , not to exceed 1000 V peak.
Crest Factor - 4 (at full scale).
dB (TRUE RMS)
Zero dB Reference - 1 mW in $600 \Omega(0.775 \mathrm{~V})$ (dBm) Internal jumper change for 0 dB reference of 1.0000 V (dBV).
Accuracy*1
$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$

20 Hz	2 kHz	10 kHz	20 kHz
+50 dB to -50 dB	0	$\pm 0.5 \mathrm{~dB}$	
-50 dB to -60 dB	$\pm 0.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	Typically $\pm 2.5 \mathrm{~dB}$

${ }^{* 1}$ From $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, add 0.6 dB to above accuracy specifications.
Maximum Resolution - 0.1 dB .
Response Time - <2 s.
Input Impedance - $10 \mathrm{M} \Omega$ paralleled by <160 pF.
Maximum Input Voltage - 500 V RMS, not to exceed 1000 V peak. Equivalent to +54 dBV or +56.2 dBm .
Crest Factor - 4 (at full scale).
RESISTANCE
Response Time - <2 s in 200Ω to $2000 \mathrm{k} \Omega$ ranges; $<10 \mathrm{~s}$ in $20 \mathrm{M} \Omega$ range.
Maximum Input Volts - 250 V peak.
Maximum Resolution - $10 \mathrm{~m} \Omega$.
HI-LO Ohm Operation - A low voltage is userselectable for making in-circuit ohms measurements without turning on silicon diode and transistor junctions. A high voltage is also available for testing junctions for forward and reverse resistance.

Maximum Open-Circuit Voltage Developed

 - < 6 V.Ranges - $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2000 \mathrm{k} \Omega$, and $20 \mathrm{M} \Omega$.
Accuracy* 1

$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$		
Resistance Ranges	Normal and Fast Conversion Rate	
200Ω	LO Ω	$\pm[0.15 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$
$2 \mathrm{k} \Omega$ to $2000 \mathrm{k} \Omega$	$\mathrm{HI} \Omega$	$\pm[0.15 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$
$2 \mathrm{k} \Omega$ to $200 \mathrm{k} \Omega$	LO Ω	$\pm[0.15 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$
$2000 \mathrm{k} \Omega$	LO Ω	$\pm[0.3 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$
$20 \mathrm{M} \Omega$	$\mathrm{HI} \Omega$ only	$\pm[0.5 \%$ of reading $+0.015 \%$ of full scale (3 counts) $]$

DC AND TRUE RMS AC CURRENT
Input Signal - Must be between 5\% and 100\% of full scale (ac only).
Ranges - $200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$, and 2000 mA.
Dc Current Accuracy $-+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$: $\pm[0.2 \%$ of reading $+0.015 \%$ of full scale (3 counts)]. $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}$ and $+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: \pm[0.3 \%$ of reading $+0.025 \%$ of full scale (5 counts)].
Ac Current Accuracy From 20 Hz to 10 kHz $-+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}: \pm[0.6 \%$ of reading $+0.05 \%$ of full scale (10 counts)]. $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}$, $+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: \pm[0.7 \%$ of reading $+0.075 \%$ of full scale (15 counts)]. Usable to 20 kHz .
Response Time $-<1 \mathrm{~s}$ dc current, $<2 \mathrm{~s}$ ac current.

Input Resistance -

Ranges	Approximate Resistance
$200 \mu \mathrm{~A}$	$1.0 \mathrm{k} \Omega$
2 mA	100.0Ω
20 mA	10.2Ω
200 mA	1.2Ω
2000 mA	0.4Ω

Maximum Open-Circuit Input Voltage (mA to LOW) - 250 V peak, fused with 2 A fast blow.
Maximum Floating Voltage - 1000 V peak.
Maximum Resolution - 10 nA .
TEMPERATURE
Range $-62^{\circ} \mathrm{C}$ to $+240^{\circ} \mathrm{C}$.
Resolution $-0.1^{\circ} \mathrm{C}$.
Accuracy*1

Temperature to be measured $-62^{\circ} \mathrm{C}$			$+150^{\circ} \mathrm{C}$
P6601 and DM 501A			
calibrated as a pair	$\pm 2^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $-6^{\circ} \mathrm{C}$	
P6601 and instrument			
not calibrated as a pair	$\pm 4^{\circ} \mathrm{C}$	$+2^{\circ} \mathrm{C}$ to $-8^{\circ} \mathrm{C}$	

${ }^{* 1}+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$ ambient temperature. For $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ambient temperatures, add $1.5^{\circ} \mathrm{C}$ to above limit in each direction.

OTHER CHARACTERISTICS

Overrange Indication - Blinking display (except on 1000 V dc and 500 V ac ranges).
Measurement Rate - $31 / 3 / \mathrm{s}$.
Power Consumption - $\approx 9 \mathrm{~W}$.
Inputs - Maximum input voltage is 1000 V . The front panel Volts $/ \Omega$, or Low, or mA terminals can be floated to 1000 V peak maximum above ground, the rear input only 200 V peak. For the rear input, ac volts, ohms, and maximum input specfications are derated.

ORDERING INFORMATION

DM 501A Digital Multimeter $\$ 795$

Includes: One pair of test leads (003-0120-00); P6601 Temperature Probe ($010-6601-01$); instruction manual (070-2749-00).
Option 02 - (Deletes P6601 Temperature
Probe and temperature measurement capability). $\quad-\$ 100$

DM 502A

Digital Multimeter
DM 502A

True RMS

Autoranging
7 Functions Including Temperaiure and dB

0.1% Dc Volts Accuracy

$31 / 2$ Digit Display

The DM 502A Digital Multimeter measures seven different functions with pushbutton convenience. Autoranging, in all modes except current, eliminates any need for operator selected ranges. The DM 502A measures dc and ac voltage, dc and ac current, dB , resistance and temperature. True RMS provides more accuracy in ac measurements on distorted, noisy, random or other nonsinusoidal ac waveforms. The resistance mode features HI -LO voltage (2 V to 0.2 V). The low voltage is user-selectable for making in-circuit ohms measurements without turning on diode and transistor junctions. The high voltage is available for testing junctions for forward and reverse resistance. The LED indicators provide a bright, readable $3^{1 / 2}$ digit display.
*1 Valid for six months or 1000 hours whichever occurs first.

CHARACTERISTICS
 DC VOLTS

Ranges - $2000 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 1000
V . Automatic or manual ranging.
Accuracy* 1
$-18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$

Voltage Ranges	Normal and Fast Conversion Rate
20 mV to 200 V	$\pm[0.1 \%$ of reading $+0.05 \%$ of full scale (1 count)]
1000 V	$\pm[0.1 \%$ of reading $+0.1 \%$ of full scale (1 count)]
$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Voltage Ranges	Normal and Fast Conversion Rate
$\begin{aligned} & 200 \mathrm{mV} \text { to } \\ & 200 \mathrm{~V} \end{aligned}$	$\pm[0.2 \%$ of reading $+0.1 \%$ of full scale (2 counts)]
1000 V	$\pm[0.2 \%$ of reading $+0.2 \%$ of full scale (2 counts)]

Common-Mode Rejection Ratio $-\geqslant 100 \mathrm{~dB}$ at dc. $\leqslant 80 \mathrm{~dB}$ at 50 Hz to 60 Hz with $1 \mathrm{k} \Omega$ imbalance.
Normal-Mode Rejection Ratio - $\geqslant 50 \mathrm{~dB}$ at 50 Hz or $60 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz}$.
Maximum Resolution - $100 \mu \mathrm{~V}$
Step Response Time - 1 s within a range, +1.5 s for each range change in autoranging mode.
Input Resistance - $10 \mathrm{M} \Omega$.
Maximum Input Voltage - 1000 V peak.
TRUE RMS AC VOLTS
Ranges - $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$, and 500 V .
Automatic or manual ranging (ac coupled).
Accuracy* 1

$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}$	Normal and Fast Conversion Rate	
Voltage Ranges	20 Hz to $\mathbf{4 0 ~ H z}$	$\mathbf{4 0 ~ H z}$ to $\mathbf{2 0 ~ k H z}$
200 mV to	$\pm[1.5 \%$ of reading	$\pm[0.6 \%$ of reading
200 V	$+0.3 \%$ of full scale	$\pm 0.3 \%$ of full scale $(6$ counts $)]$
500 V	$\pm[1.5 \%$ of reading	$\pm[0.6 \%$ of reading
	$+1.2 \%$ of full scale	$+1.2 \%$ of full scale
	$(6$ counts $)]$	$(6$ counts) $]$

$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		
	Normal and Fast Conversion Rate	
Voltage Ranges	20 Hz to 40 Hz	40 Hz to 20 kHz
$\begin{aligned} & 200 \mathrm{mV} \text { to } \\ & 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm[1.8 \% \text { of reading } \\ & +0.35 \% \text { of full scale } \\ & (7 \text { counts })] \end{aligned}$	$\pm[0.8 \%$ of reading $+0.35 \%$ of full scale (7 counts)]
500 V	$\pm[1.8 \%$ of reading $+1.4 \%$ of full scale (7 counts)]	$\pm[0.8 \%$ of reading $+1.4 \%$ of full scale (7 counts)]

* 1 Valid for six months or 1000 hours whichever occurs first. Typically usable to 100 kHz .

Common-Mode Rejection Ratio - $\geqslant 60 \mathrm{~dB}$ at
50 Hz to 60 Hz with $1 \mathrm{k} \Omega$ imbalance.
Maximum Resolution - $100 \mu \mathrm{~V}$.
Resolution Time - 1 s within a range, +1.5 s for each range change in autoranging mode.
Input impedance - $10 \mathrm{M} \Omega$ paralleled by $<100 \mathrm{pF}$.
Maximum Input Voltage - 500 V ac RMS, 600 V dc , not to exceed 1000 V peak.
Crest Factor - 4 (at full scale all ranges), $\leqslant 2$ on 500 V range.

dB (TRUE RMS)

Zero dB Reference - 1 mW in $600 \Omega(0.775 \mathrm{~V})$ (dBm). Internal jumper change for 0 dB reference of $1,000 \vee(\mathrm{dBV})$.

Accuracy*1

$+18^{\circ} \mathrm{C}$ to $+\mathbf{2 8}{ }^{\circ} \mathrm{C}$	$\mathbf{2 0 ~ H z}$	$\mathbf{2 k H z}$	$\mathbf{1 0} \mathbf{~ k H z}$	$\mathbf{2 0} \mathbf{~ k H z}$
+50 dB to -50 dB	$\pm 0.5 \mathrm{~dB}$			
-50 dB to -60 dB	$\pm 0.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	Typically $\pm 2.5 \mathrm{~dB}$	

${ }^{*}$ From $Q^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C}+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, add 0.6 dB to above accuracy specifications. For example, at $0^{\circ} \mathrm{C}$ the accuracy in the +50 dB to -50 dB range from 20 Hz to 20 kHz would be $\pm 1.1 \mathrm{~dB}$.
Noise Level - Typically -75 dB.
Maximum Resolution - 0.1 dB .
Response Time $-\leqslant 1 \mathrm{~s}$ within a range, $\leqslant 1.5 \mathrm{~s}$ for each range change in autoranging mode.
Input Impedance - $10 \mathrm{M} \Omega$ paralleled by <100 pF.
Maximum Input Voltage - 500 V RMS, not to exceed 1000 V peak.
Crest Factor - 4 (at full scale), $\leqslant 2$ above 40 dB.

RESISTANCE

Ranges - $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2000 \mathrm{k} \Omega$, and $20 \mathrm{M} \Omega$. Automatic or manual ranging
Accuracy*1

$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$	
Resistance Ranges	
200Ω to $2000 \mathrm{k} \Omega$	$\pm[0.5 \%$ of reading $+0.05 \%$ of full scale $(1$ count $)+0.2 \Omega]$
$20 \mathrm{M} \Omega$	$\pm[1 \%$ of reading $+0.05 \%$ of full scale $(1$ count $)]$
$0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Resistance Ranges	
200Ω to $2000 \mathrm{k} \Omega$	$\pm[0.8 \%$ of reading $+0.1 \%$ of full scale $(2$ counts $)+0.2 \Omega]$
$20 \mathrm{M} \Omega$	$\pm[1.3 \%$ of reading $+0.1 \%$ of full scale $(2$ counts $)]$

*1 Valid for six months or 1000 hours whichever occurs first.
Response Time $-\leqslant 1 \mathrm{~s}$ within a range, $\leqslant 1.5 \mathrm{~s}$ for each range change in autoranging mode.
Maximum Input Volts - 130 V dc or ac RMS indefinitely. 230 V dc or ac RMS for 30 minutes maximum.

HI-LO Ohm Operation - A low voltage is userselectable for making in-circuit ohms measurements without turning on silicon diode and transistor junctions. A high voltage is also available for testing junctions for forward and reverse resistance.
Maximum Resolution - 0.1Ω.
Maximum Open-Circuit Voltage Developed $-\approx 14 \mathrm{~V}$.

DC AND TRUE RMS AC CURRENT

Ranges - $200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$, and 2000 mA . Manual ranging only.
Dc Current Accuracy $-+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}: \pm$ [0.2% of reading $+0.05 \%$ of full scale (1 count)]. $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: \pm[0.3 \%$ of reading $+0.1 \%$ of full scale (2 counts)].
Ac Current Accuracy (From $\mathbf{4 0 ~ H z}$ to $\mathbf{1 0} \mathbf{~ k H z) ~}$ - Usable to $20 \mathrm{kHz} .+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}: \pm[0.6 \%$ of reading $+0.3 \%$ of full scale (6 counts)]. $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: \pm[0.7 \%$ of reading $+0.5 \%$ of full scale (10 counts)].
Response Time - $\leqslant 1 \mathrm{~s}$.
Input Resistance

Ranges	Approximate Resistance
$200 \mu \mathrm{~A}$	$1.0 \mathrm{k} \Omega$
2 mA	100.0Ω
20 mA	10.2Ω
200 mA	1.2Ω
2000 mA	0.4Ω

Maximum Open Circuit Input Voltage (mA to LOW) - 250 V peak, fused with 2 A fast blow.
Maximum Floating Voltage - 1000 V peak.
Maximum Resolution - $0.1 \mu \mathrm{~A}$.
TEMPERATURE
Range $--55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
Resolution $-0.1^{\circ} \mathrm{C}$.
Accuracy*1
$+18^{\circ} \mathrm{C}$ to $+28^{\circ} \mathrm{C}$

Temperature to be Measured	$-\mathbf{5 5}{ }^{\circ} \mathrm{C}$	$+\mathbf{1 5 0}{ }^{\circ} \mathrm{C}$	$+200^{\circ} \mathrm{C}$
P6601 Probe and DM 502A calibrated as a pair			
P6601 and instrument not	$\pm 2.5^{\circ} \mathrm{C}$	$\pm 3.5^{\circ} \mathrm{C}$	
calibrated as a pair	$\pm 4.5^{\circ} \mathrm{C}$	$\pm 5.5^{\circ} \mathrm{C}$	

${ }^{*}{ }^{1}$ For $0^{\circ} \mathrm{C}$ to $+18^{\circ} \mathrm{C},+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ambient temperatures, add $\pm 1.5^{\circ} \mathrm{C}$ to accuracy specifications.

OTHER CHARACTERISTICS
Overrange Indication - Blinking display (except 1000 V dc and 500 V ac).
Measurement Rate - Three per second.
Power Consumption - $\approx 8 \mathrm{~W}$.
Inputs - Maximum input voltage is 1000 V . The front panel V / Ω, or Low, or mA terminal can be floated 1000 V peak maximum above ground, the rear input 200 V peak. For the rear input, ac volts, ohms and maximum input specifications are derated.

ORDERING INFORMATION

DM 502A Digital Multimeter
\$750
Includes: One pair test leads (003-0120-00); P6601 Temperature Probe ($010-6601-01$); instruction manual (070-2693-00)
Option 02 - (Deletes temperature probe and capability.)
-\$100

DIGITAL MULTIMETER PROBES \& OPTIONAL ACCESSORIES

 High Voltage Probe

The High Voltage Probe will measure dc voltages from 1 kV to 40 kV with an accuracy of 1% at 25 kV . The division ratio is 1000:1. Common uses include measuring anode voltages on monitors or oscilloscopes. Probe plugs directly into the front end of the multimeter.

CHARACTERISTICS

Voltage Range - 1 kV to 40 kV dc.
Input Resistance - $1000 \mathrm{M} \Omega$.
Division Ratio - 1000:1.
Overall Accuracy - 20 kV to $30 \mathrm{kV} 2 \%$.
Upper Limit Accuracy - Changes linear from 2% at 30 kV to 4% at 40 kV .
Lower Limit Accuracy - Changes linear from 2% at 20 kV to 4% at 1 kV . Input \mathbf{Z} at Meter - $10 \mathrm{M} \Omega$ required.

ORDERING INFORMATION
High Voltage Probe. Order 010-0277-00 \$165

The P6420 RF Probe is compatible with DMM's that have an input impedance of $10 \mathrm{M} \Omega$ and comes with a two meter cable.

CHARACTERISTICS

Voltage Range - 5 V to 25 V RMS $(70.7 \mathrm{Vp}-\mathrm{p})$. Ac to Dc Transfer Ratio Accuracy - 0.5 V to 5 V RMS $\pm 10 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) .5 .0 \mathrm{~V}$ to $25 \vee$ RMS $\pm 5 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right)$.
Frequency Response - 100 kHz to 300 MHz $(\pm 0.5 \mathrm{~dB}), 50 \mathrm{kHz}$ to $500 \mathrm{MHz}(\pm 1.5 \mathrm{~dB}), 10 \mathrm{kHz}$ to $1 \mathrm{GHz}(\pm 3.0 \mathrm{~dB})$.
Input Capacitance - $\approx 3.7 \mathrm{pF}$.
Maximum Input Voltage - 42.4 V (peak ac + dc).

Length - Probe only 96 mm . Cable only 2 meters.

P6601 Temperature Probe

The P6601 Probe is a temperature measuring device designed to operate with the DM 502A and DM 501A Digital Multimeters. The temperature sensing element consists of a thin-film platinum resistor on the tip of the probe. Measurements are made by touching the probe tip to the surface whose temperature is in question. The thermal signal is transmitted to the associated digital multimeter through a two-conductor cable.

The thermal time constant on the P6601 Probe is 0.5 seconds ± 0.2 seconds. The P6601 is totally immersible except in liquids that are not compatible with Dow Corning 308 molding compound, BeO , silicone rubber, or epoxy adhesives. The sensor and tip are limited to a maximum of $+240^{\circ} \mathrm{C}$, and cable is limited to a maximum of $+140^{\circ} \mathrm{C}$.

ORDERING INFORMATION
 P6601 Temperature Probe

Order 010-6601-01
$\$ 210$ Includes: Instruction manual (070-2620-00).

DMM OPTIONAL ACCESSORIES

The following accessories may be ordered as options for use with any of the three TM 500/TM 5000 Digital Multimeters.

The TM 500 Pulse Generator family offers a wide variety of capabilities suitable for most pulse testing applications. Whether testing wide-band systems, simulating data transmission signals, or driving a laser, the versatile TM 500 Pulse Generators have the capabilities to meet your needs.
Particularly important in today's digital world is the capability to generate a variety of pulse signals compatible with the key logic families.
The PG 507 features complementary dual outputs making it ideally suited for digital applications. The dual output feature is particularly useful when working with ECL logic families.

Similar to the PG 507 Pulse Generator is the 50 MHz PG 508 featuring independently variable risetimes and falltimes. The PG 508's high level performance and versatility cover a broad range of test and measurement applications.
The accurate 50 ohm output impedances of the PG 507 and PG 508 deliver clean signals into logic families, reactive loads, or at the end of an unterminated cable. These 50 MHz multipurpose generators are also designed for high level performance on high impedance circuits (MOS, HTL, and CMOS logic).

In 50 ohm systems, the PG 501 and PG 502 are designed to be compatible with common digital integrated-circuit families (TTL, DTL and ECL), in repetition rates, amplitudes and transition times.

The TM 500 Pulse Generators' wide range of features afford you ease of operation even on the most challenging test and measurement problems.

PULSE GENERATORS SELECTION GUIDE

APPLICATION/FEATURE	PG 507	PG 508	PG 501	PG 502
Pulse Period	$\leqslant 20 \mathrm{~ns}$ to $\geqslant 200 \mathrm{~ms}$ (50 MHz to 5 Hz)		$\leqslant 20 \mathrm{~ns}$ to $\geqslant 200 \mathrm{~ms}$ (50 MHz to 5 Hz)	$\leqslant 4 \mathrm{~ns}$ to $\geqslant 100 \mathrm{~ms}(250 \mathrm{MHz}$ to 10 Hz$)$
Pulse Duration Duty Factor	$\leqslant 10 \mathrm{~ns}$ to $\geqslant 100 \mathrm{~ms}$		$\leqslant 10 \mathrm{~ns}$ to $\geqslant 100 \mathrm{~ms}$	$\leqslant 2 \mathrm{~ns}$ to $\geqslant 50 \mathrm{~ms}$
	$\geqslant 70 \%$ to 0.2μ speriod, $\geqslant 50 \%$ at 20 ns period			$\geqslant 50 \%$
Squarewave Mode	\checkmark	\checkmark		\checkmark
Pulse Delay Duty Factor	$\leqslant 10 \mathrm{~ns}$ to $\geqslant 100 \mathrm{~ms}^{* 1}$	$\leqslant 10 \mathrm{~ns}$ to $\geqslant 100 \mathrm{~ms}^{* 1}$	Fixed, 20 ns from external trigger	Fixed, 17 ns from external trigger
	$\geqslant 70 \%$ to 0.2μ s period, $\geqslant 50 \%$ at 20 ns period			
Double Pulse	\checkmark	\checkmark		
Transition Times	Fixed, $\leqslant 3.5 \mathrm{~ns}, \leqslant 4 \mathrm{~ns} @>5 \mathrm{~V}$	$\leqslant 5.5 \mathrm{~ns}$ to $\geqslant 50 \mathrm{~ms}$, Independently variable up to 100:1	Fixed, $\leqslant 3.5$ ns	Fixed $\leq 1.0 \mathrm{~ns}$
Aberrations	$\leqslant 5 \% \mathrm{p}-\mathrm{p}+25 \mathrm{mV}$ into 50Ω load	$\leqslant 5 \% \mathrm{p}$-p +50 mV for pulse within $\pm 5 \mathrm{~V}$ into 50Ω load	Within 3.5% at 5 V into 50Ω load	Within 5% at $5 \mathrm{Vp}-\mathrm{p}$ (durations $\geqslant 5 \mathrm{~ns}$)
Amplitude: Into 50Ω	$\geqslant 7.5 \mathrm{~V}$ p-p, $\pm 7.5 \mathrm{~V}$ window	$\geqslant 10 \mathrm{p}-\mathrm{p}, \pm 10 \mathrm{~V}$ window	$\geqslant 5 \mathrm{~V}$	$5 \mathrm{~V}, \pm 5 \mathrm{~V}$ window
Open Circuit	$\geqslant 15 \mathrm{~V}$ p-p, $\pm 15 \mathrm{~V}$ window	$\geqslant 20 \mathrm{p}$-p, $\pm 20 \mathrm{~V}$ window	Not specified	$5 \mathrm{~V}, \pm 5 \mathrm{~V}$ window
Source Impedance	50Ω	50Ω	Not specified	$1 \mathrm{k} \Omega$ or 50Ω
Simultaneous Outputs	\checkmark, complementary		ν, positive and negative	
Pulse Coincidence	$\leqslant 1$ ns at 50% amplitude	NA	$\leqslant 1$ ns at 50% amplitude	NA
Output Controls	Independent pulse top and	bottom, normal or PRESET	Independent amplitude controls for + and - outputs, no offset	Independent pulse top and pulse bottom
Normal/Complement	ν, both outputs	\checkmark		\checkmark
Remote Amplitude	Rear interface inputs	Rear interface inputs		
Locked On Mode			v	
Back Termination	Always back terminated	Always back terminated		\checkmark, switchable
External Input	$1 \mathrm{M} \Omega$ to 50Ω input impedance	$1 \mathrm{M} \Omega$ or 50Ω input impedance	50Ω input Z	50Ω input Z
Trigger Level	$\begin{array}{r} -3 \mathrm{~V} \text { to }+3 \mathrm{~V}, 80 \mathrm{mV} \\ 250 \mathrm{mV} \text { p-p to } 50 \mathrm{mr} \\ \hline \end{array}$	p-p sensitivity to 10 MHz z TRIG'D/GATED light	+1 V required	+1 V required
Slope	+ or -	+ or -	+ Only	+ Only
Trigger Mode	\checkmark	\checkmark	\checkmark	\checkmark
Manual Trigger	\checkmark	\checkmark		\checkmark
Duration Mode	v	\checkmark	v	\checkmark
Gate Mode	v	\checkmark		
Counted Burst	\checkmark, with DD $501 * 2$	ν, with DD $501 * 2$		
Trigger Output (50\% Squarewave or Follows External Signal)	$\geqslant+2 \mathrm{~V}$ from 50Ω approxim (23 ns in squarewa	tely 35 ns prior to pulse output or EXT DUR modes)	$\geqslant+2 \mathrm{~V}$ from 50Ω, approximately 8 ns prior to pulse output	$\geqslant+2 \mathrm{~V}$ from 50Ω, approximately 10 ns prior to pulse output
Custom Timing Positions	User installed capacitors	User installed capacitors	No	No
Control Error Light	\checkmark	\checkmark		
Mainframe Compatibility	TM 500/TM 5000	TM 500/TM 5000	TM 500/TM 5000	TM 500/TM 5000
Page	368	368	369	369
Prices Begin At	\$2,525	\$2,325	\$850	\$3,045

[^41]

50 MHz Dual Output Pulse Generator

PG 508

50 MHz Pulse Generator

PG 507

Dual Outputs with Tracking Level Controls
Normal or Complement Pulse Output on Both Channels

15 V Output in a $\pm 15 \mathrm{~V}$ Window into High Impedance, 7.5 V into 50Ω

3.5 ns Risetime/Falltime

The PG 507 is a high performance, 50 MHz pulse generator designed specifically for logic design applications.
The PG 507 features complementary dual outputs which greatly increase its applicability in logic design areas, especially interfacing within systems or to peripherals. For instance, the complementary outputs allow simulation of line drivers or opposite phase clocks.

The PG 507 also offers versatility to the design engineer in an analog environment. For example, the dual outputs can be used to test differential input amplifiers or multiplexers.
The PG 507 features four output modes: normal complement mode (Channel A output positive going, Channel B output negative going), opposite phase complement mode (Channel A output negative going, Channel B output positive going), simultaneous negative mode (Channel A output negative going, Channel B output negative going), and simultaneous positive mode (Channel A positive going Channel B output positive going).
In addition, the Output High Level and Low Level voltage controls track between channels, making amplitude settings easy.

This unique output flexibility within the normal and complement modes is particularly useful in logic design or control applications requiring simultaneous signals.

ORDERING INFORMATION

PG 50750 MHz Pulse Generator $\mathbf{\$ 2 , 5 2 5}$ Includes: Instruction manual (070-2962-00).

P6062B, P6108A and P6122 Probes are recommended, see pages 432, 430 and 431 respectively.

PG 508

Independently Variable Risetimes and Falltimes to 5 ns

20 V Output in a $\pm \mathbf{2 0} \mathrm{V}$ Window to Hi Impedance, 10 V into 50Ω
Normal or Complement Output

The PG 50850 MHz Pulse Generator is a highly versatile, general purpose pulse generator. The circuitry of the PG 508 is designed so that rise and fall waveforms closely simulate real world waveforms. This capability is particularly useful in research and development applications demanding versatility in risetimes and falltimes like testing of amplifiers, slew rate testing, comparator simulation and logic circuitry performance tests.
For example, controllable risetimes and falltimes are extremely desirable when working with CMOS where logic power consumption increases with slower risetimes. Also, variable risetimes and falltimes are used to reduce ringing (transient distortion) problems associated with too fast a pulse.

The PG 508 features a vernier control on the risetimes and falltimes controllable from 100 to 1 . This completely overlaps the next decade range and increases the PG 508's versatility in applications simulating different risetimes and falltimes, especially the output of nonlinear devices. This overlap feature can also be used to generate a ramp signal or simulate unequal slew rates in an amplifier.
Also adding to the simplicity of using the PG 508 is the capability of changing output amplitude while variable risetimes and falltimes remain constant.

P6062B, P6108A and P6122 Probes are recommended, see pages 432,430 and 431 respectively.

The Manual (one-shot) Trigger Generator is used for manually initiating a pulse or complete train of events with instruments which do not have a manual trigger button or where a remote operation capability is desired, such as with some oscilloscopes and the PG 501.
The internal trigger generator circuitry eliminates contact bounce, but will generate pulses as rapidly as the operator can manually cycle the pushbutton.

The output pulse is nominally 2 ms in width and 3 V in amplitude (from 50Ω) with a rapid risetime and falltime.

ORDERING INFORMATION

Trigger Generator 016-0597-00
\$170

PG 501

50 MHz Pulse Generator

5 Hz to 50 MHz
Simultaneous Plus and Minus Outputs
5 V and 3.5 ns into 50Ω
Independent Period and Duration Controls
Trigger Out

The PG 501 is a 50 MHz Pulse Generator featuring simultaneous plus and minus outputs, a wide range of pulse-period durations and duty factors, trigger output and external trigger/duration input. Its performance and ease of operation make it well-suited to basic digital and analog applications.

ORDERING INFORMATION

PG 50150 MHz Pulse Generator $\$ 850$

PG 502

250 MHz Pulse Generator

PG 502

10 Hz to 250 MHz
1 ns Risetime
5 V Output $\pm 5 \mathrm{~V}$ Window
Independent Pulse Top and Bottom Level Controls

Selectable Internal Reverse Termination

Manual Trigger Button

The PG 502 features fast risetimes and falltimes, independent top and bottom pulse levels, and adjustable pulse duration. The fast rep rate makes the instrument ideal for design and testing of fast logic and switching circuits.

ORDERING INFORMATION
PG 502250 MHz Pulse Generator $\mathbf{\$ 3 , 0 4 5}$
Includes: Instruction manual (070-1598-01).

50Ω Precision Coaxial Cable

For use with the PG 502, PG 506, and SG 503. These instruments are internally calibrated for use with this $3 \mathrm{ft} 50 \Omega$ coaxial cable into a 50Ω load.

ORDERING INFORMATION
50Ω Cable Order 012-0482-00

When your test and measurement problems require more waveforms for more applications, the high performance TM 500 Function Generators are a versatile solution singly or in combination with one another.
For applications demanding logarithmic or linear sweep the FG 507 offers an accurate and versatile solution. The low distortion, combined with log and linear sweep, is particularly useful in audio and linear com-munications-oriented applications.
For low-frequency function generator applications, set the FG 501A, FG 502, FG 503, or FG 507 to work on biological, geophysical and mechanical simulations or on servo systems.

Applying an external ramp to the VCF input allows any of the TM 500 function generators to double as sweep generators. Applying a suitable modulating signal can produce a frequency-modulated carrier. In addition, the FG 504 and FG 507 can supply internally generated linear or logarithmic sweeps with convenient two-dial control of start and stop frequencies.
Sweeping wide frequency ranges (up to 1000:1) with logarithmic sweep allows you to spread out lower octaves, sweep a full range in less time, and produce easy-toread Bode plots and graphs.

You can control the starting phase of a waveform in the gated burst or triggered mode with the FG 501A, FG 504, FG 507 and the FG 5010. A gated or triggered waveform efficiently tests tone-controlled systems, loud speaker transient response characteristics, automatic gain control circuits, or other amplitude sensitive systems.

The FG 504's phase lock mode feature lets you convert digital signals to high or low voltage sinewaves, pulses, or triangles; ideal for locking the function generator's output to a house or system frequency standard. With the DD 501 Digital Delay Generator in the "divide by n " mode, the FG 504 can be locked to your frequency reference at a lower frequency.

* $1+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ambient
$*^{2}+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ ambient
$* 320 \mathrm{~Hz}$ to 20 kHz modulation frequency
${ }^{* 4}$ FG 504 requires forced air circulation above $+40^{\circ} \mathrm{C}$.
*5 Percent of indicated frequency
${ }^{*}{ }^{6}$ Absolute voltage accuracy
${ }^{* 7}$ Separate FM function provided (1\%N)

FUNCTION GENERATORS

APPLICATION/ FEATURE	FG 501A	FG 507
Waveforms	Sine, Square, Triangle, Pulse and Ramp with variable symmetry	
Symmetry	$\leqslant 5 \%$ to $\geqslant 95 \%$ Variable	\$5\% to > 95% Variable
Frequency Range	0.002 Hz to 2 MHz $200 \mathrm{kHz} \pm 10 \%$ with variable symmetry on	0.002 Hz to 2 MHz $200 \mathrm{kHz} \pm 10 \%$ with variable symmetry on
Dial Accuracy (\% of Full Scale) (except FG 5010)	Within 3\%	Within 3% Within 5% in sweep mode*2
Custom Frequency Range	No	No
Frequency Stability (\% of Full Scale)	$\leqslant 0.05 \%$ for $10 \mathrm{~min} ., \leqslant 0.1 \%$ for 1 hour, $\leqslant 0.5 \%$ for 24 hours, constant temperature	
	30 V p-p	30 V p-p
	15 V p-p	15 V p-p
Attenuator	0 to -60 dB in 20 dB steps $>20 \mathrm{~dB}$ additional with AMPL control	
Offset: $\begin{aligned} & \text { Open Circ } \\ & \text { Into } 50 \Omega\end{aligned}$	$\pm 13 \mathrm{~V} \mathrm{dc}$, step attenuator decreases offset	
	$\pm 6.5 \mathrm{~V} \mathrm{dc}$, step attenuator decreases offset	
Pk Sig + Offset:Open CircuitInto 50Ω	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
	$\pm 7.5 \mathrm{~V}$	$\pm 7.5 \mathrm{~V}$
Output Impedance	50Ω	50 ת
Amplitude Sine- Flatness Wave (10 kHz ref, 50Ω load) 	$\begin{aligned} & \pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB} 20 \mathrm{kHz} \text { to } 1 \mathrm{MHz} \\ & \pm 1 \mathrm{~dB} 1 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \pm 0.5 \mathrm{~dB} 20 \mathrm{kHz} \text { to } \mathrm{MHz} \\ & \pm 1 \mathrm{~dB} 1 \mathrm{MHz} \text { to } 2 \mathrm{MHz} \\ & \hline \end{aligned}$
	$\begin{aligned} & \pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz} \text { to } 200 \mathrm{kHz} \\ & \pm 2 \mathrm{~dB} 200 \mathrm{kHz} \text { to } 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz} \text { to } 200 \mathrm{kHz} \\ & \pm 2 \mathrm{~dB} 200 \mathrm{kHz} \text { to } 2 \mathrm{MHz} \\ & \hline \end{aligned}$
	$\pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to 2 MHz	$\pm 0.5 \mathrm{~dB} 20 \mathrm{~Hz}$ to 2 MHz
Sinewave Distortion (Maximum Output, 50Ω load)	$\leqslant 0.25 \% 20 \mathrm{~Hz}$ to $20 \mathrm{kHz}^{* 2}$ $\leqslant 0.5 \% 20 \mathrm{kHz}$ to 100 kHz Harmonics: $\leqslant-30 \mathrm{~dB}, 100 \mathrm{kHz}$ to 2 MHz	$\begin{array}{\|l} \hline \leq 0.25 \% 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}^{* 2} \\ \leq 0.5 \% 20 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ \text { Harmonics: } \\ \leqslant-30 \mathrm{~dB}, 100 \mathrm{kHz} \text { to } 2 \mathrm{MHz} \\ \hline \end{array}$
Squarewave Response	$\leqslant 25 \mathrm{~ns}$ rise/fall $<3 \%$ p-p aberrations	$\leqslant 25 \mathrm{~ns}$ rise/fall $<3 \%$ p-p aberrations
Triangle Linearity (10% to 90%)	$\begin{aligned} & \geqslant 99 \% 20 \mathrm{~Hz} \text { to } 200 \mathrm{kHz} \\ & \geqslant 97 \% 200 \mathrm{kHz} \text { to } 2 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \geqslant 99 \% 20 \mathrm{~Hz} \text { to } 200 \mathrm{kHz} \\ & \geqslant 97 \% 200 \mathrm{kHz} \text { to } 2 \mathrm{MHz} \end{aligned}$
Trigger Output	$\geqslant+4 \mathrm{~V}$ from 50Ω	$\geqslant+4 \mathrm{~V}$ from 50Ω
External Input	Impedance $\approx 2 \mathrm{k} \Omega$ Trigger threshold level $+1 \mathrm{~V} \pm 20 \%$	Impedance $\approx 2 \mathrm{k} \Omega$ Trigger threshold level $+1 \mathrm{~V} \pm 20 \%$
Trigger	$\pm 90^{\circ}$ variable start phase control	$\pm 90^{\circ}$ variable start phase control
Gate Phase Lock	$\pm 90^{\circ}$ variable start phase control	$\pm 90^{\circ}$ variable start phase control
	No	No
Counted Burst	With DD 501	With DD 501
Internal Sweep Duration	No	Logarithmic or Linear, Separate Start/Stop Dials
	NA	1 ms to 100 s
External Trigger		$\pm 1 \mathrm{~V} \pm 20 \%$ trigger level $\approx 2 \mathrm{k} \Omega$ input impedance
Ramp Output		$\leqslant 0.3 \mathrm{~V}$ to 10 V from $1 \mathrm{k} \Omega \pm 5 \%$
Gate Output		$\geqslant+4 \mathrm{~V}$ from 50Ω
Other Modes		Manual Sweep Trig Manual Sweep Sweep and Hold
Amplitude Modulation	No	No
Voltage Controlled Frequency (FM) Nominal Hz/Volt Sensitivity	Up to 1000; 1 Frequency change with 10 V external signal Slew rate $\geqslant 0.3 \mathrm{~V} / \mu \mathrm{s}, 10 \mathrm{k} \Omega$ input impedance	
	$2 \times$ Frequency Multiplier setting	$2 \times$ Frequency Multiplier
Output Hold Mode	No	No
Temperature*4	$0^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$ Operating, $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ Nonoperating	
IEEE Standard 488	No	No
Mainframe Compatibility	TM 500/TM 5000	TM 500/TM 5000
Page	372	373
Price	\$925	\$1,850

TM 500

SELECTION GUIDE

[^42]FG 501A

2 MHz Function Generator
FG 501A
0.002 Hz to 2 MHz

30 V Peak-to-Peak, ± 13 V Offset
5\% to 95\% Variable Symmetry
Trigger or Gate, \pm Slope
60 dB Step Attenuator
$\leqslant 0.25 \%$ Sinewave Distortion
$\leqslant \mathbf{2 5} \mathbf{n s}$ Rise/Fall
The FG 501A provides low-distortion outputs from 0.002 Hz to 2 MHz . It is capable of generating five basic waveforms-sinewave, squarewave, triangle, ramp, and pulse-at output levels up to 30 V peak-to-peak with up to $\pm 13 \mathrm{~V}$ of offset from a 50Ω source. Waveform triggering and gating are provided with a variable phase control to permit up to $\pm 90^{\circ}$ of phase shift for generating haver-sines, $\sin ^{2}$ pulses, and haver triangles. A step attenuator provides 60 dB of output signal attenuation in 20 dB steps with an additional 20 dB of variable attenuation. Variable symmetry from 5% to 95% provides ramps and pulses. Pulse risetime is $\leqslant 25 \mathrm{~ns}$. Audio sinewave distortion is $\$ 0.25 \%$ and audio amplitude flatness is within 0.1 dB .
Because of its ability to generate low distortion sinewaves, the FG 501A is uniquely appropriate for applications demanding audio signals.
Also useful in audio applications is the 0 dB to 60 dB attenuator designed into the FG 501A.
The wide range variable symmetry of the FG 501A is useful for generation of pulses and ramps.

ORDERING INFORMATION

FG 501A 2 MHz Function Generator \$925

Includes: Instruction manual (070-2957-00)

FG 502

11 MHz Function Generator
FG 502
0.1 Hz to 11 MHz

Five Waveforms
VCF and Gated Burst

The FG 502 Function Generator provides low-distortion sine, square, and triangle waveforms, and positive or negative ramps and pulses. Output frequency is continuously variable from 0.1 Hz to 11 MHz . The high frequency range from 1 MHz to 11 MHz permits the versatility of the function generator to be extended into the medium radio frequency range. VCF input permits the FG 502 to be used as a sweep generator or as an FM generator.
The external gate input permits the FG 502 output in any of its modes to be controlled by an externally supplied pulse to generate bursts of various output waveforms. This feature has application in wireless or radio remote control equipment and in certain phases of the telephone industry.

[^43]FG 503

3 MHz Function Generator

FG 503

1.0 Hz to 3 MHz

Three Waveforms
VCF
The FG 503 Function Generator provides high-quality low-distortion sine, square, and triangle waveforms. Six decade frequency multipler steps, a custom position for userdetermined frequency multiplication, a dial calibrated from 1.0 to 30 (uncalibrated from 0.1 to 1.0), and a frequency vernier control work together to select frequencies in overlapping ranges from 1 Hz to 3 MHz . The output frequency may be swept over a 1000:1 ratio by an external voltage. Output amplitude and offset controls are provided. A trigger output is available for controlling external devices or equipment. Amplitude up to 10 V peak-to-peak can be developed across a 50Ω load (20 V peak-to-peak open circuit). Selectable offset up to 3.75 V dc across $50 \Omega(7.5 \mathrm{~V}$ dc open circuit) is also featured.

ORDERING INFORMATION

FG 5033 MHz Function Generator
\$675
Includes: Instruction manual (070-1727-01).

FG 504

40 MHz Function Generator

FG 504

0.001 Hz to 40 MHz

Three Basic Waveforms,
Plus a Wide Range of Shaping
with Variable Risetimes and Fallimes and Symmetry Controls

Logarithmic or Linear Sweep

Up to 30 V P-P Output

Built-in Attenuator

AM and FM

Phase Lock Mode

External and Manual Trigger or Gate

Counted Burst with DD 501

The output of the FG 504 may be phase locked, gated, or triggered by a reference signal, letting you convert from one waveform to another, such as pulses to sinewaves, as well as adjust phase relationships. Post attenuator offset enables use of the full $\pm 7.5 \mathrm{~V}$ offset range with small signals. And the FG 504 output can be swept, or amplitude or frequency modulated by external signals. In addition, the FG 504 can supply internally generated linear or logarithmic swept frequencies of up to 1000:1 range with convenient control of start and stop frequencies.
The FG 504 also provides trigger output, external voltage control input, and sweep output.

ORDERING INFORMATION

FG 50440 MHz Function Generator $\quad \$ 3,225$ Includes: Instruction manual (070-2655-00).
FG 504T 40 MHz Function Generator $\mathbf{\$ 3 , 6 4 0}$ Includes: FG 504, TM 503 Mainframe, and 016-0195-03 Blank Panel.

FG 507 triggered sweep mode with output gated on by sweep gate.

FG 507 in logarithmic sweep with sweep ramp and gate outputs.

True four quadrant multiplier permits normal am or double sideband suppressed carrier modulation.

FG 50430 volt output with 6 ns risetime and falltime for superior pulse waveforms.

FG 507

2 MHz Sweeping Function Generator

FG 507

0.002 Hz to 2 MHz

Includes All FG 501A Features
Logarithmic or Linear Sweep
Separate Start/Stop Frequency Dials
Sweep Up or Down
Sweep and Hold
Manual Sweep
The FG 507 features the same basic performance as the FG 501A and adds flexible, easy-to-use log and linear sweep capability. The log sweep of the FG 507 is mathematically correct and allows accurate frequency plots when using log scales, log paper, or a storage oscilloscope like the SC 503. Separate start and stop frequency dials make frequency settings easy to adjust and interpret. The instrument can be internally or externally swept up or down. A third frequency control allows you to manually sweep between the preset start and stop frequencies without disturbing their settings. This is especially convenient for examining frequency and amplitude anomalies of a circuit under test or in setting start and stop points. The sweep generator can be swept and the sweep gate output can be used to gate (burst) the generator on for swept bursts. The sweep hold mode allows the generator to sweep to the stop frequency and remain there until released.
The accurate log/linear sweep capability of the FG 507 plus the low distortion (0.25% over the audio range) make it ideally suited to audio testing.

ORDERING INFORMATION

FG 5072 MHz Sweeping Function
Generator
Includes: Instruction manual (070-2986-00).

284

Pulse Generator
284
70 ps or Less Risetime Pulse
Sinewave and Squarewave Outputs

CHARACTERISTICS

Pulse Output - 70 ps or less risetime with a pulse width of more than $1 \mu \mathrm{~S}$ and a repetition rate of $\approx 50 \mathrm{kHz}$. Aberrations immediately following positive-going transitions are $< \pm 3 \%, 3 \%$ total p-p; after $2 \mathrm{~ns}< \pm 2 \%, 2 \%$ total p-p. Pulse amplitude is more than +200 mV into 50Ω. Source resistance is 50Ω.
Squarewave Output - Periods of $10 \mu \mathrm{~s}, 1 \mu \mathrm{~S}$, or 100 ns . Amplitude is $10 \mathrm{mV}, 100 \mathrm{mV}$, or 1 V into 50Ω.
Sinewave Output - Periods of 10 ns or 1 ns . Output amplitude is 100 mV into 50Ω.
Trigger Output - Squarewave, sinewave, or pretrigger pulse output, depending on the selected main signal output. Amplitude is 200 mV , accurate within 40%. When Pulse Output is selected, the trigger can be switched to arrive 5 ns $\pm 5 \mathrm{~ns}$, or $75 \mathrm{~ns} \pm 5 \mathrm{~ns}$ ahead of the main pulse. Risetime is 3 ns or less; pulse width is 10 ns or greater.

			Timing		
Output	Period		$\mathbf{1 V}$	100 mV	10 mV
Pulse	$20 \mu \mathrm{~s}$				
Square- wave	$10 \mu \mathrm{~s}$	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 1.5 \%$
	$1 \mu \mathrm{~s}$				
	100 ns	$\pm 0.05 \%{ }^{* 1}$	$\pm 2 \%^{* 2}$	$\pm 2.5 \%^{* 2}$	$\pm 3 \%^{* 2}$
Sinewave	10 ns				
	1 ns	$\pm 1 \%$		$\pm 20 \%$	

${ }^{*}$. Crystal controlled.
${ }^{*} 20$ ns after transition.
The 284 is not part of the TM 500 Series, and does not require the use of a separate mainframe.

ORDERING INFORMATION

284 Pulse Generator
\$2,310
Includes: Instruction manual (070-0754-01).

DD 501

Digital Delay
DD 501
Digital Events Delay
Delay to 99,999 Events
Divide by N up to 20 MHz
Pulse Counting to 65 MHz
Time Delay with External Clock
Compatible with Most Attenuator Probes
The DD 501 Digital Delay is an events-counting device which can be used with pulse, function and clock generators in such applications as precise digital delay between two related events, divide-by- N frequency divider, precision gate generator, counted burst output from a gated pulse or frequency generator, etc.
The DD 501 has basically two modes of operation. In the gating mode, the DD 501 generates a gate which starts with the application of a start pulse and continues until a selected number of event pulses have occurred. It can be used for generating a counted burst of N pulses when used with a pulse generator capable of being gated. Tektronix generators capable of being gated by the DD 501 are the FG 501A, FG 502, FG 504, FG 507, FG 5010, PG 507, and PG 508.
In the delayed trigger mode, the DD 501 generates a trigger pulse after the selected number of event pulses have occurred. Besides being used strictly for generating precision delays, the delayed trigger mode can also be used as a frequency count-down divider for any frequency up to 65 MHz . In both modes, the desired number of events (from 0 to 99,999) is selected by front-panel thumbwheel switches.

Trigger slope and level controls for both the Start and Events inputs permit use with a wide variety of applied signals. Both inputs are compatible with Tektronix attenuator probes. In special applications, the trigger levels may be remotely set by application of analog voltages through the front-panel Level In/Out jacks.

CHARACTERISTICS
 EVENTS DELAY

Count - 10 to 99,999 events.
Maximum Count Rate - 65 MHz .
Insertion Delay - 30 ns or less from final event to trigger output pulse.
Recycle Time - 50 ns or less.
Reset - Manually resets delay counter.

INPUT CHARACTERISTICS

(All characteristics apply to both events and start inputs).
Input Impedance - $1 \mathrm{M} \Omega, 20 \mathrm{pF}$.
Slope - Either + or -, selectable.
Sensitivity - 85 mV p-p at 30 MHz .
Frequency Response - Up to 65 MHz at 120 mV sensitivity.
Minimum Detectable Pulse Width -5 ns ,
Threshold Level Range - From - 1.0 V to $+1.0 \mathrm{~V}(-10 \mathrm{~V}$ to +10 V with 10 X probe). Can be externally programmed or monitored at front panel jacks.
Trigger View Out - Threshold detector output, at least 0.5 V (200Ω or less source impedance).
Events Triggered Light - Visual indication that events are being detected.
Start Triggered Light - Visual indication that delay is in progress.

TRIGGER OUTPUT

Pulse Width - Width of events pulse plus 6 ns or less.
Voltage Swing -+0.8 V or less to at least +2.0 V with 3 TTL loads ($\approx 5 \mathrm{~mA}$).
Light - Indicates output trigger.

ORDERING INFORMATION

DD 501 Digital Delay
\$1,600
Includes: Instruction manual (070-1818-01).

PRODUCT SUMMARY

Design engineers require power supplies that are flexible enough to meet their needs...and compact enough to allow a complete, custom-designed test system to fit neatly on a crowded workbench. To assure versatility and convenience in your test system, the TM 500 power supplies can be rear interfaced with other instruments to reduce front panel clutter while providing capabilities not otherwise available. For example, the output level can be monitored via the rear interface by a companion TM 500 digital multimeter without the need for extra cabling at the front of the instrument. Re-
mote sensing terminals available at the rear panel allow sensing of the applied voltage at the load, thereby minimizing the effects of loading on the supply. In addition, the plus and minus floating outputs of the PS 503A can be programmed remotely, by either voltage programming or resistance programming, via the rear interface.
The PS 501-1 supplies 0 volt to 20 volt (floating) and adjustable current limiting to 400 milliamps, with constant current operation above the limit setting. A multiturn dial with mechanical digital readout provides accurate setting of the output voltage. The fixed 5 volt supply supplies up to 1 amp .

The PS 503A provides a floating dual -20 volt to 0 volt and 0 volt to +20 volt variable supply, plus the 5 volt 1 amp supply. The two variable supplies can be set individually and then varied in a tracked mode with a single control. By grounding one of the two outside terminals of the variable supply you can have a 0 volt to 40 volt supply with up to 1 amp of current when the PS 503A is operated in the high-power compartment of a TM 504, TM 506, RTM 506, or TM 5006. Full descriptions of the IEEE Standard 488 compatible PS 5004 and PS 5010 appear on pages 346 and 347 .

POWER SUPPLIES SELECTION GUIDE

For recommended accessories see page 448.

PS 501-1

Floating Output, 0 V to 20 V
0 mA to $\mathbf{4 0 0} \mathrm{mA}$
Precise Regulation
Low Ripple and Noise
Fixed Output + 5V at 1 A
$31 / 2$ Digit Ten Turn Dial
The PS 501-1 features precise regulation and better than 2 mV resolution (setability) over a 0 V to 20 V range.

CHARACTERISTICS

Output - 0 V to 20 V dc.
Maximum Rated Current 400 mA to $+30^{\circ} \mathrm{C}$ derating to 300 mA at $+50^{\circ} \mathrm{C}$.
Accuracy - $\pm(0.5 \%+10 \mathrm{mV})$.
Current Limit - $<40 \mathrm{~mA}$ to 400 mA
Line Regulation - Within 5 mV for $\mathrm{a}+10 \%$ line voltage change.
Load Regulation - Within 1 mV for a 400 mA load change.
Ripple and Noise - 0.5 mV p-p or less; 20 Hz to 5 MHz .
Temperature Coefficient - Typically $<(0.01 \%$ $+0.1 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$.
Minimum Resolution - Typically 1.6 mV .
Transient Recovery Time - $\leqslant 20 \mu$ s to recover within 20 mV of final output voltage after a 400 mA change in output current.

ORDERING INFORMATION

PS 501-1 Power Supply
\$595
Includes: Instruction manual (070-1301-02).

PS 503A

Independent + and - Controls
Dual Tracking Voltage Control
0 V to $\pm 20 \mathrm{~V}$ at 1 A (in High-Power Compartment)

Fixed Output +5 V at 1 A
Remote Resistance Programming
Over-Voltage Protection Standard
The PS 503A features superior dual tracking performance, over-voltage protection, and remote resistance programming of voltage. When operated in the high-power compartment of a TM 504 or TM 506 mainframe, the PS 503A provides up to 1 A from both 0 V to 20 V supplies.

CHARACTERISTICS

$\pm 20 \mathrm{~V}$ FLOATING SUPPLIES
Outputs - 0 V to $\pm 20 \mathrm{~V}$ dc with respect to the common terminal or 0 V to 40 V dc across the + and - terminals. Outputs can be varied independently or at a constant ratio.
Maximum Rated Current - 400 mA (1 A in high power compartment to $+30^{\circ} \mathrm{C}$ derating to $300 \mathrm{~mA}(750 \mathrm{~mA})$ at $+50^{\circ} \mathrm{C}$.

PS 501-1

Power Supply

PS 503A

Triple Power Supply

Tracking Mode Offset Error - If the two supplies are set independently to any given voltage ratio and then varied by use of the Volts Dual Tracking control, the two supplies will maintain the same voltage ratio as initially set within $\pm 50 \mathrm{mV}$.
Current Limit - Adjustable from $<100 \mathrm{~mA}$ to 1 A (high-power compartment) or $<40 \mathrm{~mA}$ to 400 mA (standard compartment) on each supply.
Load Regulation - Within 3 mV for 1 A change (high-power compartment) or 1 mV for 400 mA change (standard compartment).
Ripple and Noise -3 mV p-p or less at 1 A load (high-power compartment). 0.5 mV p-p or less at 400 mA load (standard compartment).
Indicators - Individual voltage indicators and current limiting indicators for both + and - supplies. Standard compartment (400 mA) indicator.

ORDERING INFORMATION

PS 503A Power Supply
\$750
Includes: Instruction manual (070-1834-01).

COMMON CHARACTERISTICS
 (PS 501-1, PS 503A)

20 V FLOATING SUPPLIES
Primary Power Input - Determined by mainframe (TM 501, TM 503, etc).
Output - Floating, isolated for $350 \mathrm{~V} \mathrm{dc}+$ peak ac above ground.
Stability - Typically ($0.1 \%+5 \mathrm{mV}$) or less drift in 8 hrs of constant line, load, and temperature.
Indicator Lights - Voltage variation and current limit.
+5 V GROUND-REFERENCED SUPPLY Output -5 V nominal, $\pm 0.25 \mathrm{~V}$ at 1 A .
Load Regulation - Within 100 mV with a 1 A load change.
Line Regulation - Within 50 mV for a 10% line voltage change.
Ripple and Noise (1A) -5 mV p-p or less, 20 Hz to 5 MHz .
Stability - Typically 30 mV or less drift in 8 hrs . Overload Protection - Automatic current limiting and over-temperature shutdown.

AA 501 Option 02

Distortion Analyzer

AA 501

Fully Automatic: No Level Setting, Tuning or Nulling

Level, Total Harmonic Distortion, and dB
Ratio Measurements
Total System Harmonic Distortion Plus Noise (THD+N) $<\mathbf{0 . 0 0 2 5 \%}$
$\leqslant 3.0{ }_{\mu} \mathrm{V}$ Residual Noise
Digital Readout Plus Analog-Like "Bar Graph" for Peaking and Nulling
IMD to SMPTE, DIN, and CCIF (Option 01)
The AA 501 Distortion Analyzer provides completely automatic measurement of level, total harmonic distortion plus noise $(T H D+N)$, and (with Option 01) Intermodulation Distortion. Automatic set level, automatic tuning, automatic nulling of the fundamental, and autoranging of the display all combine to permit completely hands-off operation once the mode is selected. Just apply the signal of interest and read the $3^{11 / 2}$-digit display. A novel analoglike bar graph simulates an analog meter to assist in peaking and nulling of applied signals.
With Option 01, intermodulation distortion measurements can be made to any of the three common standards: SMPTE, DIN, or CCIF. Internal circuitry automatically identifies the signal being used and selects the proper filtering circuits to perform the measurement.
DB ratio measurements may be referenced either to 774.6 millivolts (1 milliwatt in 600 ohms) or to a selected applied signal. The 0 dB reference memory remembers the selected level, and all subsequent measurements are referenced to that level.

The AA 501 allows readings to be expressed in true RMS or average response, RMS calibrated. Although true RMS is more accurate in most applications, the average response permits comparisons with measurements previously taken with older instrumentation.
The fundamental frequency range is 10 Hz to 100 kHz , with harmonics measured out to 300 kHz .
Any one of four built-in frequency-weighting filters may be switched into the signal paths for preconditioning of the signal to be measured. Provision is also made to permit the use of a user-selected filter as well.
A dc level, which is a function of the display readout, is available at the rear panel of the AA 501.
An Input Monitor connector and a Function Output connector are provided to permit oscilloscope display of the input signal or the result of the filter in the THD +N measurement.
The Option 02 version of the AA 501 is especially designed for use in accordance with CCIR recommendation 468-2 and DIN 45405 (typically used in Europe). In the Option 02 version, the 30 kHz filter and the " A " weighting filter of the standard unit are replaced by a $22.4-\mathrm{Hz}-\mathrm{to}-22.4-\mathrm{kHz}$ filter and a CCIR-weighting filter, respectively, and the average responding detection circuit is replaced by a quasi-peak detection circuit. The Option 02 also contains the intermod measurement capability of the Option 01.
The AA 501 Distortion Analyzer and the SG 505 Oscillator were designed to be used together as the heart of a state-of-the art audio analysis system. Used together, the two provide total system harmonic distortion of 0.0025% or less.
It should be noted that the automatic frequency tuning of the AA 501 does not depend upon the manual tuning of a companion oscillator. The AA 501 will automatically tune itself to its input signal whether the signal originates from an SG 505 alongside it in a TM 500 mainframe, or from some other signal source miles away.

CHARACTERISTICS

The following characteristics are common to the standard AA 501, Option 01 and Option 02 unless otherwise noted:

HARMONIC DISTORTION FUNCTION Fundamental Frequency Range -10 Hz to 100 kHz automatically tuned to input frequency.
Distortion Ranges - Auto (100%), $20 \%, 2 \%$, 0.2%, and dB (autoranging).

Accuracy (Readings $\geqslant 4 \%$ of Range) 20 Hz to $20 \mathrm{kHz} \pm 1 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $100 \mathrm{kHz}+1$, -3 dB . (Accuracy is limited by residual THD +N and filter selection.)
THD - Complete Automatic Total Harmonic Distortion (THD) measurements to specified accuracy in seven seconds or less.
AA 501/SG 505 System Residual THD+N Vin $\geqslant 250 \mathrm{mV}$, (all distortion, noise, and nulling error sources combined). 20 Hz to 20 kHz : $\leqslant 0.0025 \% ~(-92 \mathrm{~dB})$ Average Response with 80 kHz filter (standard and Option 01 only). $\leqslant 0.0032 \%$ (-90 dB) RMS Response with 80 kHz filter. 10 Hz to $50 \mathrm{kHz}: \leqslant 0.0071 \% ~(-83 \mathrm{~dB}) \mathrm{RMS}$ Response. 50 kHz to $100 \mathrm{kHz}: \leqslant 0.010 \%$ (-80 dB) RMS Response.

> TYPICAL THD + N

Typical Fundamental Rejection - At least 10 dB below specified residual THD +N or actual signal THD, whichever is greater.
Minimum Input Level - $60 \mathrm{mV}(-22 \mathrm{dBm})$.
NOISE (OPTION 02)
Noise measurements to CCIR recommendation 468-2 and DIN 45405. True RMS or quasi-peak response. Total system THD $+N=0.0032 \%$ (90 dB) RMS response. Balanced input.

LEVEL FUNCTION

Autoranging digital voltmeter displays input signal level in volts, dBm , or dB ratios.
Modes - Volts, $\mathrm{dBm}(600 \Omega)$, or dB ratio with push to set 0 dB reference.
Level Ranges - $200 \mu \mathrm{~V}$ full scale to 200 V full scale in ten steps, manual or autoranging.

Accuracy*1

Frequency	Volts	dBm or dB Ratio
20 Hz to 20 kHz	$\pm 2 \%$	$\pm 0.3 \mathrm{~dB}$
10 Hz to $100 \mathrm{kHz}^{* 2}$	$\pm 4 \%$	$\pm 0.5 \mathrm{~dB}$

${ }^{*}{ }^{1}$ Vin $\geqslant 100 \mu \mathrm{~V}$, level ranging indicators extinguished.
${ }^{\star 2}$ On the $200 \mu \mathrm{~V}$ range, accuracy above 50 kHz is $+4 \%$,

$$
-6 \%(+0.5 d B,-0.7 d B)
$$

Bandwidth $-\geqslant 300 \mathrm{kHz}$.

Residual Noise - $\leqslant 3.0 \mu \mathrm{~V}$ (-108 dBm) with 80 kHz and 400 Hz filters. $\leqslant 1.5 \mu \mathrm{~V}(-114 \mathrm{dBm})$ with " A " weighting filter.

INTERMODULATION DISTORTION FUNCTION (OPTION 01/02)

Fully automatic SMPTE, DIN, and CCIF difference frequency test measurements.
SMPTE and DIN Tests - Lower Frequency Range: 50 Hz to 250 Hz . Upper Frequency Range: 3 kHz to 100 kHz . Level Ratio Range: $1: 1$ to $5: 1$ (lower:upper). Residual IMD: $\leqslant 0.0025 \%$ (-92 dB) for 60 Hz and 7 kHz or 250 Hz and $8 \mathrm{kHz}, 4: 1$ level ratio.

CCIF Difference Frequency - Frequency Range: 4 kHz to 100 kHz . Difference Frequency Range: 50 Hz to 1 kHz . Residual IMD: $\leqslant 0.0018 \%$ (-95 dB) with 14 kHz and 15 kHz . Minimum Input Level: $60 \mathrm{mV}(-22 \mathrm{dBm})$.
Accuracy - $\pm 1 \mathrm{~dB}$.

ALL FUNCTIONS

Detection - Average or true RMS for waveforms with crest factors $\leqslant 3$.

Filters

400 Hz High Pass: -3 dB at $400 \mathrm{~Hz} \pm 5 \%$; at least -40 dB rejection at 60 Hz .
80 kHz Low Pass: -3 dB at $80 \mathrm{kHz} \pm 5 \%$.
30 kHz Low Pass: -3 dB at $30 \mathrm{kHz} \pm 5 \%$ (standard and Option 01 only). "A" Weighting: Meets specifications for Type 1 sound level meters (ANSI S 1.4, IEC Recommendation 179) (standard and Option 01 only). Ext: Allows connection of external filters. 22.4 Hz to $22.4 \mathrm{kHz}:-3 \mathrm{~dB} \pm 5 \%$ (Option 02 only). CCIR WTG: CCIR Recommendation 468-2 and DIN 45405, functional only with QPK detector (Option 02 only).
Input Impedance - $100 \mathrm{k} \Omega \pm 2 \%$, each side to ground, fully differential.
Maximum Input - 300 V peak, 200 V RMS either side to ground or differentially. Fully protected on all ranges.
Common Mode Rejection - $\geqslant 50 \mathrm{~dB}$ at 50 Hz or 60 Hz . Typically $\geqslant 40 \mathrm{~dB}$ to 300 kHz .

FRONT PANEL SIGNALS

Input Monitor - Provides constant amplitude version of signal applied to input. Output Voltage: 1 V RMS $\pm 10 \%$ for input signals $>50 \mathrm{mV}$. Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Function Output - Provides a scaled sample of selected function signal (1000 count display $=$ $1 \vee$ RMS $\pm 3 \%$). Source Impedance: $1 \mathrm{k} \Omega \pm 5 \%$.
Auxiliary Input - Provides input to detector circuit when Ext Filter button is depressed. Sensitivity: 1 V RMS $\pm 3 \%=1000$ count display. Impedance: $100 \mathrm{k} \Omega \pm 5 \%$, ac coupled.

REAR INTERFACE SIGNALS

Rear INTFC Input - Front panel selected. Same as main Input except, maximum signal input is limited to 42 V peak, 30 V RMS. (Potential crosstalk at rear interface may degrade noise and distortion on performance).
Monitor - Same as front panel Input Monitor.
Function Output - Same as front panel Function Output.
Auxiliary Input - Same as front panel Auxiliary Input.
Converter Output - Dc output of selected response converter. $1 \mathrm{~V} \pm 5 \%$ for 1000 count display. Source Z: $500 \Omega \pm 5 \%$.
dB Output - Dc output of logarithmic dB converter. $10 \mathrm{mV} \pm 5 \%$ per 1 dB of display. Source Z : $1 \mathrm{k} \Omega \pm 5 \%$.

ORDERING INFORMATION

AA 501 Distortion Analyzer $\mathbf{\$ 2 , 5 2 5}$
Includes: Instruction manual (070-2958-00).

OPTIONS

Option 01 - Intermodulation Distortion. $\quad \mathbf{\$ 7 5 0}$
Option 02 - CCIR/DIN (Includes Option 01). $\mathbf{+ \$ 1 , 1 5 0}$

SG 505 Option 01

Oscillator

SG 505/option 01/Option 02

10 Hz to 100 kHz Sinewave Output
Ultra-Low Distortion: <0.0008\% THD (Typically 0.0003%)

Floating or Grounded Output
600 Ohm Source Impedance
Vernier Frequency Control
Fully Balanced Output (Option 02)
Calibrated Output to $\mathbf{+ 2 8 d B m}$ (Option 02)
Selectable Source Impedance (Option 02)
Intermodulation Test Signal (Option 01 \& 02)

The SG 505 Oscillator generates an ultralow distortion sinewave over the frequency range from 10 Hz to $100 \mathrm{kHz}(<0.0008 \%$ THD, typically 0.0003% between 20 Hz and 20 kHz). In the standard and Option 01 units the output can be floated or referenced to chassis ground. In the Option 02 unit, the output is fully balanced and floating with a center tap which may be attached to system ground or to either side of the output signal. The oscillator also provides a fixed amplitude ground referenced sinewave at the Sync Out connector, which is identical in frequency to the signal from the Output connector.
Option 01 adds an intermodulation test signal function. This signal consists of a selectable 60 Hz or 250 Hz mixed with the selected frequency in a $4: 1$ amplitude ratio.

For communications and broadcast applications, the Option 02 provides a fully balanced output of +28 dBm into 600 ohms from 50 ohms. A ten-position step attenua-

SG 505 Option 02

Oscillator
tor (10 dB per step) and a variable attenuator provide continuous attenuation of signal amplitude to below -78 dBm into 600 ohms.
A front panel switch allows the selection of three different source resistances: 50 ohms for low impedance applications (improves measurement accuracies on long cable runs and reduces loading effects), 150 ohms for matching microphone circuits, and 600 ohms for complying with audio/ communication industry standard and general purpose applications.
Option 02 also includes the intermodulation test signal capability of the Option 01.

CHARACTERISTICS MAIN OUTPUT

The following characteristics are common to the standard SG 505 and Option 01.
Frequency Range - 10 Hz to 100 kHz in four overlapping bands. Accurate within 3\% of dual setting (with Vernier at center). Vernier Range is at least $\pm 1 \%$ of frequency setting.
Calibrated Output - Selectable from +10 dBm to -60 dBm into 600Ω in eight 10 dB steps. Accurate to within 0.2 dB at +10 dBm and 1 kHz . Step accuracy is $\pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step. An uncalibrated control provides continuous variation from at least +2.2 dB to $<-10 \mathrm{~dB}$ from calibrated positon.
Amplitude Response - Level flatness $\pm 0.1 \mathrm{~dB}$ from 10 Hz to 20 kHz (1 kHz ref); within 0.2 dB from 20 kHz to 100 kHz (excluding $>50 \mathrm{kHz}$ on -60 dB output level range).
Harmonic Distortion - $<0.0008 \%$ (-102 dB) THD from 20 Hz to 20 kHz (typically 0.0003%); 0.0018% (-95 dB) THD from 10 Hz to 20 Hz , and from 20 kHz to $50 \mathrm{kHz} ; 0.0032 \%$ (-90 dB) THD from 50 kHz to $100 \mathrm{kHz}(\mathrm{RL} \geqslant 600 \Omega)$.
Output Impedance - $600 \Omega \pm 2 \%$; floating or grounded through $\approx 30 \Omega$. Output impedance does not change with Output On/Off selection. Maximum floating voltage $\pm 30 \mathrm{~V}$ peak.

Maximum Output Voltage - At least 6 V RMS open circuit; 3.16 V RMS (+10 dBV or $+12.2 \mathrm{dBm})$ into 600Ω.

SYNC OUTPUT

Signal - 200 mV RMS $\pm 20 \%$ sinewave to 20 kHz , at least 120 mV RMS at 100 kHz .
Frequency - Same as main output.
Impedance - Nominally $1 \mathrm{k} \Omega$, ground referenced and isolated from main output.

REAR INTERFACE SIGNALS

Buffered Main Output - Buffered version of actual output signals from front panel connector. $\approx 300 \Omega$ Output impedance.
Sync Output - Same as front panel Sync Output except output impedance is $\approx 50 \Omega$.

Option 01 im Test Signal

Selecting the IM Test Signal causes a LF sinewave to be mixed with the normal oscillator signal in a 4:1 amplitude ratio.
LF Frequency - Internally selectable 60 Hz ($\pm 1 \mathrm{~Hz}$) or $250 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$.
Main Output - Composite p-p output within 0.2 dB of normal oscillator mode output.

Residual IMD - Typically $<0.0005 \%$ from 2.5 kHz to 10 kHz .

Sync Output - LF signal component only, 200 mV RMS $\pm 20 \%$.

Option 02 oscillator

MAIN OUTPUT

Calibrated Output - Selectable from +22 dBm to -68 dBm into 600Ω in ten 10 dB steps. Accurate to within 0.2 dB at +22 dBm and 1 kHz . Step accuracy is $\pm 0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step or 20 dB step change. An uncalibrated control provides continuous variation from $<-10 \mathrm{~dB}$ to +0.3 dB from calibrated position.
Harmonic Distortion - $<0.0008 \% ~(-102 \mathrm{~dB}$) THD from 20 Hz to 20 kHz (typically 0.0003%); 0.0018% (-95 dB) THD from 10 Hz to 20 Hz , and from 20 kHz to $50 \mathrm{kHz} ; 0.0056 \%$ (-85 dB) THD from 50 kHz to $100 \mathrm{kHz}(\mathrm{RL} \geqslant 600 \Omega)$.
Output Impedance - Selectable $600 \Omega \pm 2 \%$, $150 \Omega \pm 2 \%$ or $50 \Omega \pm 3 \%$ floating or grounded through $\approx 30 \Omega$. Output impedance does not change with Output On/Off selection. Impedance to CT is $1 / 2$ the selected impedance. Maximum floating voltage $\pm 25 \mathrm{~V}$ peak.
Maximum Output Voltage - At least 21 V RMS open circuit; 19.45 V RMS (+28 dBm) into 600Ω from 50Ω.
Balance - $\leqslant 0.5 \%$ mismatch of output opencircuit voltages referenced to CT for $\mathrm{f} \leqslant 20 \mathrm{kHz}$ with output grounded.

ORDERING INFORMATION

SG 505 Oscillator	$\$ 875$
Includes: Cable assembly for sync output (175-1178-00);	
instruction manual (070-2823-00).	$+\$ 220$
Option 01 - IM Test Signal.	$+\$ 15$
Option 02 - Oscillator (Includes Option 01).	$+\$ 71$

PRODUCT SUMMARY

The TM 500 Signal Conditioners offer unique capabilities for solving electrical measurement and analysis problems. Compact portability and plug-in flexibility allow complete lab instrumentation set-ups, within stringent space and budget limitations.
These versatile signal alteration devices are applicable to a broad range of measurement needs including: preamplification of low level signals, addition or removal of dc offset, integration, differentiation, or summing of multiple signals; impedance transformation; or amplification (to 80 V peak-topeak).
The AM 503 is specifically designed to work with the A6303/A6302 Current Probes (dc to 50 MHz), and incorporates a feature that limits the bandwidth to 5 MHz , to eliminate transients or noise. An illuminated knob skirt indicates calibrated current per division.
The A6302/AM 503 and A6303/AM 503 Current Probe Systems have a wide variety of applications from SCR and power supply measurements to medical applications. These probes use inductive coupling to minimize interference with the circuit under test.
The versatile AM 502 Differential Amplifier lets you control gain, dc offset and low-frequency and high-frequency response for maximum rejection of unwanted signals. Adjustable dc offset allows high amplification even when low-level signals have a dc component of up to 1 V . High performance features of the AM 502 are a dc to 1 MHz bandwidth and 100 dB common-mode rejection ratio.

The AM 501 Operational Amplifier's output power ($\pm 40 \mathrm{~V}$ and $\pm 50 \mathrm{~mA}$ across 800Ω loads) is more than adequate for most electronic and electro-mechanical applications. This high-output unit has front panel connectors that let you change configurations by selecting feedback components. The AM 501 is easily set up for differentation, integration, summing and impedance transformation problems.

AM 503

Displays Current Signals on an Oscilloscope
Current Range, Maximum Current, and Bandwidth Determined by the Probe Used

The AM 503 Current Probe Amplifier allows display of current on any oscilloscope with $10 \mathrm{mV} / \mathrm{div}$ sensitivity, 50Ω or $1 \mathrm{M} \Omega$ input, and (for performance to full bandwidth specifications) at least 75 MHz when using the A6302 or 50 MHz when using the A6303. The amplifier attenuator is calibrated in 12

AM 503

Current Probe Amplifier

steps with a 1-2-5 sequence, and the knobskirt is illuminated to indicate current per division. The current range, maximum current rating, and bandwidth are determined by the particular probe in use. Bandwidth can be set to Full (where it is limited by the probe in use) or to 5 MHz . Coupling may be switch selected to ac or dc. Ac coupling offers a convenient means of measuring low-amplitude ac signals on a high-level dc current. A front-panel indicator warns of input current overload.

CHARACTERISTICS

The AM 503 characteristics when used with the A6302 or A6303 Current Probes.
Maximum Input Current - 20 A (dc + peak ac) for A6302. 100 A (dc + peak ac) for A6303.
Maximum Voltage for Current Under Test (Bare Conductor) -500 V (dc + peak ac) for A6302. 700 V (dc + peak ac) for A6303.
Bandwidth (-3 dB) - Dc to at least 50 MHz with A6302. Dc to at least 15 MHz with A6303.
Risetime (Full Bandwidth) -7 ns or less with A6302. 23 ns or less with A6303.
Deflection Factor - $1 \mathrm{~mA} /$ div to $5 \mathrm{~A} /$ div for A6302. $20 \mathrm{~mA} /$ div to $50 \mathrm{~A} /$ div for A 6303 . In a 1-2-5 sequence for both probes.
Attenuator Accuracy - Within 3\% of indicated Current/Div for both probes.

ORDERING INFORMATION

AM 503 Current Probe Amplifier $\$ 1,125$ Includes: 50Ω cable with BNC ($012-0057-01$); 50Ω terminator (011-004901); instruction manual (070-2052-01).

A6303Current Probe

Ac and Dc Current Measurements to 100 A
Dc to 15 MHz Bandwidth

Peak Pulse Measurements to 500 A

Ac or Dc Coupling

One Inch by 0.830 Inch Jaw Opening
One-Hand Operation

This clamp-around probe satisfies requirements for current measurements to 100 A from dc to 15 MHz . Equipped with a convenient pistol grip, the A6303 can easily be clamped to cables up to 0.830 inch. Other measurement parameters of the probe include: 100 A continuous and 500 A peak.
By combining an oscilloscope, like the SC 504, with the A6303/AM 503 Current Probe Amplifier in a TM 500/TM 5000 mainframe you will have a convenient and compact high current amplification/measurement system.

ORDERING INFORMATION

A6303 Current Probe $\mathbf{\$ 1 , 0 7 0}$

Includes: Carying case (016-0622-00); instruction manual (070-3906-01).

1 mA to 20 A Current Measurement Range
50 A Peak Pulse Measurements
Dc to 50 MHz Bandwidth

When a A6302 Current Probe is used with the AM 503 Current Probe Amplifier, the current range is from 1 mA to 20 A . Maximum current is 20 A (dc + peak ac). Peak pulse maximum is 50 A , not to exceed a product of $100 \mathrm{~A} \mu \mathrm{~s}$. The probe operates through inductive coupling with no electrical contact. A flick of your forefinger operates the sliding jaw in the insulated probe tip. Just put the probe tip around the conductor under test for immediate current readings.

ORDERING INFORMATION

A6302 Current Probe

\$565
Includes: Five inch ground lead (175-0124-01); three inch ground lead (175-0263-01); two alligator clips (344-0046-00); instruction manual (070-3905-01).

AM 501

Operational Amplifier
AM 501
$\pm 40 \mathrm{~V}, 50 \mathrm{~mA}$ Output
Open Loop Gain 10,000
$50 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
Symmetrical Differential Design
The AM 501 Operational Amplifier features high input impedance (FET), high slew rate, a wide range of input and output voltage, and high output current. Applications include: amplification; impedance transformation; integration; differentiation and summing. It is well-suited as a post-amplifier or offset-generator for signal sources, including the TM 500 modules. Components may be added externally or internally making it ideal for teaching operational amplifier theory.

CHARACTERISTICS
 AMPLIFIER

Open Loop Gain - At least 10,000 at 60 Hz into 800Ω load.
Unity Gain Bandwidth - At least 5 MHz into 800Ω load.
Common-Mode Rejection Ratio - Typically $>20,000$ to 1 at 60 Hz for common-mode signals up to $\pm 40 \mathrm{~V}$.
Slew Rate - At least $50 \mathrm{~V} / \mu \mathrm{s}$ into an 800Ω load.

> INPUT

Input Bias Current - Typically $<500 \mathrm{pA}$ at $25^{\circ} \mathrm{C},<2 \mathrm{nA}$ at $50^{\circ} \mathrm{C}$.
Drift $-<100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Noise $-<10 \mu \mathrm{~V}$ RMS.
Maximum Differential Input Voltage -80 V . OUTPUT
Voltage Range - At least $\pm 40 \mathrm{~V}$ into $2 \mathrm{k} \Omega$.
Current Limit - At least $\pm 50 \mathrm{~mA}$.
Open Loop Output R $-\approx 150 \Omega$.
ORDERING INFORMATION
AM 501 Operational Amplifier
Includes: Instruction manual (070-1616-01).

Auxiliary Circuit Board Kit

The Auxiliary Circuit Board Kit attaches to the input and output terminal plugs on the front of the AM 501 Operational Amplifier. The kit is a pc board that has six terminal studs for attachment to the amplifier's banana jacks and is approximately 2.5 inches square. This permits the designer to build a circuit of resistors, capacitors, and other components for use in conjunction with the AM 501's input, output, or feedback circuits. With several boards, the AM 501 Op Amp circuit can be changed instantly in configuration from integrator to differentiator to amplifier and does not interfere with the other connectors on the face of the AM 501.

ORDERING INFORMATION
 Auxiliary Circuit Board Kit
 Order 013-0146-00

AM 502

1 to 100,000 Gain
100 dB CMRR
Selectable Upper and Lower - 3 dB Points
Dc to 1 MHz Maximum Bandwith

Adjustable Dc Offset

The AM 502 Differential Amplifier features wide bandwidth, high CMRR, and selectable calibrated gain and filtering. Wellsuited for general purpose or laboratory work, it can drive oscilloscopes, monitors, chart recorders, displays, or processing devices. In the unity gain mode, it can be used as a signal conditioner. Input dc offsetting to $\pm 1 \mathrm{~V}$ is provided.

AM 502

Differential Amplifier

CHARACTERISTICS AMPLIFIER

Gain - 100 to 100,$000 ;$ 1-2-5 sequence; accurate within 2%. 1 X gain obtained by 100X attenuation.
HF $\mathbf{- 3} \mathbf{d B}$ POINT - Selectable in 9 steps (1-3 sequence) from 100 Hz to 1 MHz . Upper -3 dB point reduces to 500 kHz at 50 k gain; 250 kHz at 100 k gain.
LF - $\mathbf{3}$ dB POINT - Selectable in 6 steps from 0.1 Hz to 10 kHz ; ac coupling limits -3 dB point to 2 Hz or less.
Variable Dc Offset - At least $\pm 1 \mathrm{~V}$.
Common-Mode Rejection Ratio - Normal Mode: At least 100 dB , dc to $50 \mathrm{kHz} \div 100$ Mode: At least 50 dB , dc to 50 kHz .

INPUT

Input Gate Current $- \pm 100 \mathrm{pA}$ for $\mathrm{T} \leqslant 30^{\circ} \mathrm{C}$.
Maximum Voltage Drift - $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to input Normal mode.
Maximum Noise - $\leqslant 25 \mu \mathrm{~V}$ or less (tangentially measured) referred to input Normal mode.
Maximum Input Voltage - Normal Mode Dc Coupled: 15 V (dc + peak ac). $\div 100$ Mode Dc Coupled: 350 V (dc + peak ac). Ac Coupled: 350 V (dc + peak ac) with coupling capacitor precharged.
Input R and C - $1 \mathrm{M} \Omega$ paralleled by $\approx 47 \mathrm{pF}$. Input impedance can be increased to a FET input via a simple internal jumper change.

OUTPUT

Maximum Output $- \pm 5 \mathrm{~V}, \pm 20 \mathrm{~mA}$, output resistance is 5Ω or less.
Minimum Load Impedance - 250Ω
Over Range - Front-panel lamp indicates most over-range conditions.

ORDERING INFORMATION

AM 502 Differential Amplifier
$\$ 1,400$
Includes: Instruction manual (070-1582-01).

PRODUCT SUMMARY

The ubiquitous cathode-ray oscilloscope is the world's most useful and versatile electronics test and measurement instrument. Tektronix, long identified with the oscilloscope, could hardly develop the TM 500 line of modular instrumentation without including CRT display capability.

Four choices of performance level and display size are available to add waveform display to the digital measurement capability of the TM 500 digital multimeters and counters, ranging from the high-performance, dual-trace, 80 MHz SC 504 to the single-trace, single-width, 5 MHz SC 501. The 15 MHz SC 502 adds moderate dualtrace performance to the line, and the 10 MHz , dual-trace SC 503 adds CRT storage capability.
All of the oscilloscopes feature automatic triggering, and the SC 504, SC 503, and SC 502 also provide trigger view and variable trigger holdoff. All of the oscilloscopes have provisions to permit instrument-to-instrument rear interfacing within a mainframe and to external devices of a test system.
With a compact TM 500 oscilloscope and a multi-compartment TM 500 mainframe, it is now possible to carry an oscilloscope and companion instruments to and from a test site in one convenient package.

TM 500 OSCILLOSCOPE SELECTION GUIDE

FEATURE	SC 504	SC 503	SC 502	SC 501
Number of Channels	2	2	2	1
Bandwidth (MHz)	80	10	15	5
Highest Sensi- tivity (mV/Div)	5	1	1	10
Fastest Sweep Rate (ns/Div)	5	50	20	200
Storage	No	Yes	No	No
Page	382	383	384	381
Prices	$\$ 3,895$	$\$ 4,095$	$\$ 2,795$	$\$ 1,495$

SC 501

5 MHz Oscilloscope
SC 501
5 MHz Bandwidth
Single Compartment Size
6.4 cm (2.5 in) CRT

Versatile Operating Features

The SC 501 is a single-channel, 5 MHz plugin unit oscilloscope with a 2.5 inch CRT display that occupies a single TM 500 Series plug-in compartment. Oscilloscope capability significantly enhances the application range of the multifunctional TM 500 Series test and measurement instruments.

With the SC 501 a multitude of versatile test systems may be structured from the TM 500 Series to suit specific needs for time and frequency response, modulating waveforms, power for devices under test, stimulus and response studies and voltage, current, and temperature measurements. Since the SC 501 fits any TM 500 or TM 5000 mainframe, it can be used on the bench, in a rack, or on the road. The single-channel SC 501 has a calibrated vertical deflection range from $10 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$, selectable in decade steps. A variable control extends this range to at least $10 \mathrm{~V} / \mathrm{div}$.
Calibrated sweep rates are selected by push-button logic in decade steps from $1 \mu \mathrm{~s} /$ div to $100 \mathrm{~ms} / \mathrm{div}$. A variable control extends the slowest sweep rate to at least $1 \mathrm{~s} / \mathrm{div}$ and a fixed magnifier extends the fastest sweep rate to $200 \mathrm{~ns} /$ div.

A 0 V to 10 V ramp for all sweep rates (excluding the X5 magnification) is provided at a rear interface connector. This capability may be used for many auxiliary functions, for example sweeping a voltage-controlled frequency oscillator.

The triggering circuits allow stable triggering from either internal or external sources. An Autotriggering mode and manual Level/Slope selection is combined in a single control. It is useful above 10 Hz and provides a bright baseline at all sweep rates.

For X-Y operation an internal switch converts the horizontal deflection system of the SC 501 to an external horizontal amplifier which is internally calibrated for $100 \mathrm{mV} / \mathrm{div}$ deflection factor with a bandwidth of 100 kHz .

CHARACTERISTICS VERTICAL DEFLECTION

Bandwidth - Dc to $>5 \mathrm{MHz}$.

Deflection Factors - $10 \mathrm{mV} / \mathrm{div}$, $100 \mathrm{mV} / \mathrm{div}$, and $1 \mathrm{~V} /$ div. Accuracy, within 3%. Uncalibrated: Variable is continuous between steps (10:1) and to at least $10 \mathrm{~V} / \mathrm{div}$.
Input Coupling - Ac or dc.
Input Impedance - $1 \mathrm{M} \Omega$ paralleled by 47 pF .
Maximum Input Voltage - 350 V (dc + peak ac).

HORIZONTAL DEFLECTION

Time Base - Calibrated Sweep Rates: $1 \mu \mathrm{~s} /$ div to $100 \mathrm{~ms} /$ div in decade steps. Uncalibrated (Variable) Range: Extends slowest calibrated rate to $\geqslant 1$ s/div. X5 Magnifier (Fixed): Extends fastest calibrated sweep rate to $200 \mathrm{~ns} /$ div. Accuracy (over center eight division): g5\% for all sweep rates. Linearity (any two division portion within center eight division): $\geqslant 5 \%$.
External Horizontal Amplifier - Bandwidth: Dc to 100 kHz . Input Impedance: $\geqslant 100 \mathrm{k} \Omega$ paralleled by 25 pF . Maximum Input Voltage: $\pm 3 \mathrm{~V}$.

TRIGGER

Normal Trigger Sensitivity (Trigger Level/Slope $\mathbf{I n}$) - Internal: Dc coupled, 0.4 major div of deflection at dc; increasing to 1.0 major div of deflection at 5 MHz . External: Dc coupled, 1 V minimum to 5 V maximum from dc to 5 MHz . External Trigger Input Impedance: $22 \mathrm{k} \Omega$ paralleled by $\approx 150 \mathrm{pF}$.
Auto (Trigger Level/Slope Out) - Sweep free-runs without trigger signal, or for trigger repetition rates below 10 Hz .

CRT

Phosphor - GH (P31) is standard.
Graticule $-6 \times 10 \mathrm{div}$ ($0.203 \mathrm{in} / \mathrm{div}$).

ORDERING INFORMATION

SC 5015 MHz Oscilloscope
\$1,495
Includes: Instruction manual (070-1700-01).

RECOMMENDED PROBES

P6101A 1X, P6102A 10X, P6062B 1X/10X. See pages 430 and 432.

SC 504

80 MHz Oscilloscope
SC 504

80 MHz Bandwidth
$5 \mathrm{mV} /$ div Maximum Sensitivity
$5 \mathrm{~ns} /$ div Maximum Calibrated Sweep Rate
Enhanced Automatic Triggering
True X-Y Capability
Switchable Rear Interface Capability

The SC 504 is a general purpose, dualtrace, non-delayed-sweep oscilloscope. It has a high writing speed with a maximum sensitivity of $5 \mathrm{mV} / \mathrm{div}$, and a maximum sweep rate of $5 \mathrm{~ns} / \mathrm{div}$ (with magnifier). This oscilloscope features Add (CH 1 plus CH 2), differential (CH 1 minus CH 2), and "true" $X-Y$ modes, and also includes rear interfacing capability (switchable $\mathrm{CH} 1, \mathrm{CH} 2$ and ext trig inputs). Enhanced autotriggering, trigger view, and variable trigger holdoff make this oscilloscope very versatile and easy to use. The Tektronix P6108, P6122 and P 6062 B probes are recommended for use with the SC 504.

CHARACTERISTICS VERTICAL DEFLECTION

Bandwidth at -3 dB Points - Dc to at least 80 MHz from $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; dc to at least 70 MHz from $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Risetime -4.4 ns or less from $0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; 5 ns or less from $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Ac Low Frequency Response (Lower -3 dB Points) - Without probe, 10 Hz ; with 10X probe, 1 Hz .
Deflection Factors - Calibrated Range: 5 mV to $10 \mathrm{~V} / \mathrm{div}, 11$ steps in a $1-2-5$ sequence.
Accuracy $- \pm 2 \%,+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} ; \pm 3 \%$, $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Uncalibrated: Variable is continuous between calibrated steps. At least 2.5:1 range. Extends maximum deflection factors to at least $25 \mathrm{~V} / \mathrm{div}$.
Modes - $\mathrm{CH} 1, \mathrm{CH} 2$, Alt., Chop, CH 1 minus $\mathrm{CH} 2, \mathrm{CH} 1$ plus $\mathrm{CH} 2, X-Y$. Chop rate at least 250 kHz .
Input R and C-1M $\mathbf{~ C ~} 1 \%$ paralleled by $\approx 20 \mathrm{pF}$.
Maximum Input Voltage - 250 V (dc + peak ac), 500 Vp -p ac at 1 kHz or less.
Common-Mode Rejection Ratios - At least 50:1 up to 1 MHz , and 10:1 from 1 MHz to 10 MHz when using the same attenuator settings; common-mode signal 5 div or less
Position Range - ± 6 div.
Delay Line - Permits viewing leading edge of displayed waveform.
Calibrator - $0.6 \mathrm{~V}, \pm 1 \%, \approx 1 \mathrm{kHz}$ frequency.

HORIZONTAL DEFLECTION

Sweep Generator - Calibrated Sweep Rates: 0.2 s to $50 \mathrm{~ns} / \mathrm{div}, 21$ steps in a $1-2-5 \mathrm{se}-$ quence, plus a X10 magnifier for sweep rates of $5 \mathrm{~ns} /$ div. Uncalibrated (Variable) Range: The Cal (variable) control provides sweep rates that are continuously variable between the calibrated rates, and extends the slowest sweep rate to at least 0.5 s/div.
Sweep Rate Accuracy - Measured over center 8 divisions, excluding first 50 ns and all after the first 100 divisions of magnified sweep. Derate accuracies by an additional 1% from $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C},+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

$+15{ }^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	X 1	X 10
$20 \mathrm{~ms} /$ div to $0.2 \mu \mathrm{~s} / \mathrm{div}$	$\pm 2 \%$	$\pm 3 \%$
$0.2 \mathrm{~s} /$ div to $50 \mathrm{~ms} / \mathrm{div}$	$\pm 3 \%$	$\pm 4 \%$
$0.1 \mu \mathrm{~s} /$ div to $50 \mathrm{~ns} /$ div	$\pm 3 \%$	$\pm 4 \%$

X-Y Mode - Bandwidth: Dc to at least 2 MHz . Deflection factor, selected by CH 2 controls and horizontal mag $\mathrm{X} 1, \mathrm{X} 10$ with 5% accuracy. X and Y amplifier phase difference, less than 3° at 50 kHz or less. Input parameters same as CH 2.

TRIGGER

Trigger Modes - Auto, Norm, and Sgl Swp.
Enhanced Auto Trigger - The trigger circuit automatically adjusts to spread the p-p signal over most of the range of the triggering level control. This provides more convenient triggering, especially on low amplitude signals.
Trigger Sources - CH 1, CH 2, Line, Ext, Int. Trigger Coupling - Ac, ac LF Rej, ac HF Rej, dc.

Trigger Sensitivity - Minimum p-p signal required.

Coupling	Source	Dc to $\mathbf{3 0 ~ M H z}$	30 MHz to 80 MHz
Dc	CH 1, CH 2 External	0.4 div 60 mV Typically 50 mV	1.0 div 150 mV Typically 100 mV to 50 MHz
Interface	Requirements increase below $\approx 50 \mathrm{kHz}$		
Ac LF Rej	Requirements increase below $\approx 10 \mathrm{kHz}$		
HF Rej	Requirements increase above $\approx 50 \mathrm{kHz}$		

External Triggering Level Range $-\geqslant$ $\pm 1.4 \mathrm{~V}$.
External Triggering Input - Input R and C: $1 \mathrm{M} \Omega \pm 10 \%$ paralleled by approximately 24 pF . Maximum Input Voltage: 250 V (dc + peak ac); 250 Vp p at 1 kHz or less.
Auto Mode - Sweep free runs in the absence of a triggering signal. Trigger Level range is reduced to approximately the $p-p$ range of the triggering signal.
Single Sweep - Triggering requirements are as for normal sweep. When triggered, sweep generator produces one sweep only.
Trigger Holdoff - At least 20 to 1 range. The variable control is internally selectable between the Variable Sweep or Variable Holdoff functions.

CRT

Phosphor - GH (P31) is standard.
Acceleration Potential $-\approx 12 \mathrm{kV}$.
Graticule - Scale, 8×10 div with $0.25 \mathrm{in} / \mathrm{div}$ internal graticule lines.

REAR INTERFACE

CH 1 and CH 2 Vertical Inputs - Selected by CH 1 and CH 2 coupling in Int (interface) position. Input Impedance: 50Ω. Can be customer-modified for input impedance of $1 \mathrm{M} \Omega$ paralleled by $\approx 60 \mathrm{pF}$
Trigger Input - Selected by Trigger Source switch in Int (interface) position. Input Impedance: 50Ω when selected, 25Ω when not selected. Can be customer-modified for input impedance of $1 \mathrm{M} \Omega$ paralleled by $\approx 40 \mathrm{pF}$.
Z-Axis Input - Input Impedance: $\approx 1.5 \mathrm{k} \Omega$. +5 V turns beam On from Off condition, -5 V turns beam Off from On condition.
Channel 1 Output - At least $50 \mathrm{mV} / \mathrm{div}$. Bandwidth: At least 30 MHz . Output Impedance: $<50 \Omega$.
Ramp Output - 0 V to +10 V ramp. Output resistance $\approx 500 \Omega$.

[^44]
SC 503

10 MHz Dual Trace Storage Oscilloscope

SC 503

10 MHz Bandwidth, Dual Trace
$50 \mathrm{~ns} /$ div Maximum Calibrated Sweep Rate
$1 \mathrm{mV} / \mathrm{div}$ Maximum Sensitivity
Bistable Storage Autoerase
Trigger View
Variable Trigger Holdoff
Switchable Front/Rear X and Y Inputs
Rear Z-Axis Input
True X-Y Capability
The SC 503 is a nondelayed sweep, general purpose storage oscilloscope which can be used to store and display waveforms after the input signal is removed. This feature is particularly useful when measuring slow repetition rates or single-shot signals, important in the biomedical and mechanical measurements fields. Low frequency signals at heart or respiration rates can be stored for detailed analysis. In the mechanical measurements field the SC 503 can "freeze" fast or transient signals from transducers, which is especially useful in pressure-and velocity-versus-time analysis and shock testing.
Other important storage applications of the SC 503 include measurements of signals in computer peripherals, communication terminals and industrial control systems.
The SC 503 also features an auto-erase mode that erases the stored signal and automatically retriggers the oscilloscope, and $X-Y$ capability. The $X-Y$ capability allows creation of Lissajous patterns in many cause and effect testing relationships including: acoustic speech testing, nerve potential testing, and optical stimulus response testing. The Tektronix P6108 and P6062B probes are recommended for use with the SC 503.

CHARACTERISTICS

VERTICAL DEFLECTION
Bandwidth at $\mathbf{- 3} \mathbf{d B}$ Points - Dc to at least 10 MHz , ($5 \mathrm{mV} /$ div to $20 \mathrm{mV} /$ div); dc to at least $7 \mathrm{MHz}(2 \mathrm{mV} / \mathrm{div})$, dc to at least 5 MHz ($1 \mathrm{mV} /$ div).
Risetime - 5 mV to $20 \mathrm{~V} / \mathrm{div}$, typically 35 ns or less.
Ac Low-Frequency Response (Lower -3 dB Points) - Without probe, 10 Hz ; with $10 X$ probe 1 Hz .
Deflection Factors - Calibrated Range: $1 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div, 14 steps in a $1-2-5$ sequence. Accuracy: 5 mV to $20 \mathrm{~V} /$ div $\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) \pm 3 \%, 1 \mathrm{mV} /$ div and $2 \mathrm{mV} /$ div $\pm 5 \%$; (derate accuracy by additional 1% for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$). Uncalibrated: Variable is continuous between steps to at least 2.5:1. Extends maximum uncalibrated deflection factor to at least $50 \mathrm{~V} /$ division.
Modes - $\mathrm{CH} 1, \mathrm{CH} 2$, Alt, Chop, CH 1 minus $\mathrm{CH} 2, \mathrm{CH} 1$ plus $\mathrm{CH} 2, X-Y$. Chop rate at least 250 kHz .
Input Impedance - $1 \mathrm{M} \Omega \pm 1 \%$ paralleled by $\approx 47 \mathrm{pF}$.
Maximum Input Voltage - 350 V (dc + peak ac), 700 Vp -p ac at 1 kHz or less. Above 1 kHz recommended $\mathrm{p}-\mathrm{p}$ ac limit is 250 V to 10 kHz derating to 25 V above 100 kHz .
Common-Mode Rejection Ratio - At least $50: 1$ at 1 MHz when using same attenuator setting, in CH 1 minus CH 2 mode.
Delay Line - Permits viewing leading edge of displayed waveform.
Calibrator $-0.6 \mathrm{~V}, \pm 1 \%, \approx 1 \mathrm{kHz}$ frequency.
Position Range - ± 6 div.
Channel Isolation - 2% or less display related crosstalk to 10 MHz .
Displayed Noise $-<0.2 \mathrm{mV}$ p-p at $1 \mathrm{mV} /$ div.
HORIZONTAL DEFLECTION
Sweep Generator - Calibrated Sweep Rates: $2 \mathrm{~s} / \mathrm{div}$ to $0.5 \mu \mathrm{~s} / \mathrm{div}$, 21 steps in a 1-2-5 sequence, plus a X10 magnifier for sweep rates to $50 \mathrm{~ns} / \mathrm{div}$. Uncalibrated (variable) range provides continuously variable sweep rates, between the calibrated rates, and extends the slowest rate of at least $5 \mathrm{~s} / \mathrm{div}$.
Sweep Rate Accuracy*1

$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$	$\mathbf{X 1}$	$\mathbf{X} 10$
$2 \mathrm{~s} / \mathrm{div}$ to $0.5 \mathrm{~s} / \mathrm{div}$	$\pm 4 \%$	$\pm 5 \%$
$0.2 \mathrm{~s} / \mathrm{div}$ to $5 \mu \mathrm{~s} / \mathrm{div}$	$\pm 3 \%$	$\pm 4 \%$
$2 \mu \mathrm{~s} /$ div to $0.5 \mu \mathrm{~s} / \mathrm{div}$	$\pm 4 \%$	$\pm 5 \%$

* Derate accuracy by an additional 1% from $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C},+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
X-Y Mode - Bandwidth: Dc to at least 500 kHz . Deflection Factor: Selected by CH 2 controls and Horizontal Mag X1, X10. Phase Difference: $<3^{\circ}$ at 50 kHz or less.

TRIGGER

Trigger Modes - Auto (enhanced), Norm, and Sgl Swp (single sweep).
Enhanced Auto Trigger - The trigger circuit automatically adjusts to spread the p-p signal over most of the range of the triggering level control. This provides more convenient triggering, especially on low amplitude signals.

Trigger Sources - CH 1, CH 2, Line, Ext, Int (rear interface).
Trigger Coupling - Dc, ac, ac LF Rej.
Trigger Sensitivity*1 - Minimum p-p signal required.

Source	dc to 5 MHz	$\mathbf{5} \mathbf{~ M H z}$ to $\mathbf{1 0} \mathbf{M H z}$
$\mathrm{CH} 1, \mathrm{CH} 2$	0.4 div	1.0 div
External	60 mV	150 mV
Interface	Typically 35 mV	Typically 80 mV

* With ac coupling requirements increase below $\approx 50 \mathrm{~Hz}$. With ac LF Rej coupling requirements increase below $\approx 10 \mathrm{kHz}$.
Triggering Level Range - External: At least $\pm 1.2 \mathrm{~V}$. Internal: At least -6.0 div.
External Triggering Input - Input Impedance: $1 \mathrm{M} \Omega$, paralleled by $\approx 47 \mathrm{pF}$. Maximum Input Voltage: 350 V (dc + peak ac), $350 \mathrm{Vp-p}$ at 1 kHz or less. Above 1 kHz recommended $\mathrm{p}-\mathrm{p}$ ac limit is 100 V to 10 kHz derating to 10 V above 100 kHz .
Auto Mode - Sweep free-runs in the absence of a triggering signal. Level control range automatically varies with the triggering signal amplitude for frequencies above 100 Hz .
Single Sweep - Triggering requirements same as for normal sweep. When triggered, sweep generator produces one sweep only.
Trigger Holdoff - At least 20 to 1 range. The variable control is internally selectable between the Variable Sweep or Variable Holdoff functions.

STORAGE SYSTEM
Stored Writing Speed (Center 6×8 Divisions) - At least $80 \mathrm{div} / \mathrm{ms}(50 \mathrm{~cm} / \mathrm{ms})$.
Erase Time - 400 ms to 600 ms .
Autoerase Viewing Time - Continuously variable from $\leqslant 0.5 \mathrm{~s}$ to $\geqslant 5 \mathrm{~s}$.
Maximum Recommended Storage Time $\approx 4 \mathrm{hrs}$.
Phosphor - GX (P44)
CRT Graticule $-8 \times 10 \mathrm{div} ., 0.25 \mathrm{in} / \mathrm{div}$ ($0.64 \mathrm{~cm} / \mathrm{div}$). Internal graticule lines.

REAR INTERFACE

Channel 1 and Channel 2 Vertical Inputs Selected by CH 1 and CH 2 coupling in Int (interface) position. Input Impedance: 50Ω. Can be customer-modified for input impedance of $1 \mathrm{M} \Omega$ paralleled by $\approx 100 \mathrm{pF}$.
Trigger Input - Selected by Trigger Source switch in Int (interface) position. Input Impedance: 50Ω, when selected, 25Ω when not selected. Can be customer-modified for input impedance of $1 \mathrm{M} \Omega$ paralleled by $\approx 60 \mathrm{pF}$.
Z-Axis Input - Input Impedance: $\approx 1.5 \mathrm{k} \Omega$. +5 V turns beam On from Off condition, -5 V turns beam Off from On condition.
Channel 1 Output - At least $50 \mathrm{mV} / \mathrm{div}$. Bandwidth: At least 4 MHz . Output Impedance: 50Ω.
Ramp Output - 0 V to +10 V ramp Output impedance $\approx 500 \Omega$.

ORDERING INFORMATION

SC 50310 MHz Storage Oscilloscope $\$ 4,095$ Includes: Instruction manual (070-3438-00).

RECOMMENDED PROBES

P6101A 1X, P6102A 10X, P6062B 1X/10X. See pages 430 and 432 .

15 MHz Dual-Trace Oscilloscope
SC 502
15 MHz Bandwidth, Dual Trace
$20 \mathrm{~ns} / \mathrm{div}$ Maximum Calibrated Sweep Rate
$1 \mathrm{mV} /$ div Maximum Sensitivity
Delay Line
Trigger View
Variable Trigger Hold-off
Enhanced Automatic Triggering

The SC 502 is a compact general-purpose 15 MHz dual-trace oscilloscope designed to operate in any two adjacent compartments of a TM 500 power module/mainframe. It has a high writing speed, a wide range of sweep rates, a wide range of deflection factors, and versatile triggering, including trigger view and enhanced automatic triggering.
As with many Tektronix products, the SC 502 features circuits, subcircuits, and components designed and built by Tektronix to fulfill the special design capabilities of the instrument. Among its many recommended uses, the SC 502 is intended to be a powerful tool in the field servicing of digital equipment, where it would be used in association with disk memories, key-to-tape, printers, plotters, punches, readers, and terminals. The CRT of the SC 502 offers a high writing speed as an advantage in the display of digital information, while stable, clean triggering is assured by incorporating well proven circuits. Thus, the SC 502 offers the engineer a unique combination of performance, compactness, and systems capability.

The SC 502 makes many new instrumentation systems feasible, especially in the areas of QA, production testing, maintenance, and field servicing. The rear interfacing capability of the SC 502 and all TM 500 instrumentation suggests exceptional applicability to systems of built-in test equipment or rackmounted installations. The TM 515 Traveler mainframe with the SC 502, forms a nucleus for sophisticated, compact field service "packages." The Tektronix P6062B and P6108 are recommended for use with the SC 502.

CHARACTERISTICS

VERTICAL DEFLECTION

Bandwidth at -3 dB Points -5 mV to $20 \mathrm{~V} / \mathrm{div}$, dc to at least $15 \mathrm{MHz} ; 2 \mathrm{mV} / \mathrm{div}$, dc to at least $10 \mathrm{MHz} ; 1 \mathrm{mV} / \mathrm{div}$, dc to at least 5 MHz .
Risetime - 5 mV to $20 \mathrm{~V} / \mathrm{div}$, 23 ns or less.
Ac Low-Frequency Response (Lower - 3 dB Points) - Without probe, 10 Hz ; with probe (10X), 1 Hz .
Deflection Factors - Calibrated Range: 1 mV to $20 \mathrm{~V} /$ div, 14 steps in a 1-2-5 sequence. Accuracy: 5 mV to $20 \mathrm{~V} / \mathrm{div}\left(+15^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}$) within $2 \%,\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ within $3 \% ; 1 \mathrm{mV}$ and $2 \mathrm{mV} /$ div within 5%. Uncalibrated (Variable) Range: At least 2.5:1. Continuously Variable $\mathrm{Be}-$ tween Calibrated Steps: Extends maximum attenuator step to at least $50 \mathrm{~V} / \mathrm{div}$.
Modes - CH 1, CH 2, Alt, Chop, CH 1 Minus CH 2. Chop rate at least 250 kHz . Triggering waveform is displayed instead of selected display when desired.
Input Impedance - $1 \mathrm{M} \Omega$ within 1% paralleled by $\approx 47 \mathrm{pF}$.
Maximum Input Voltage -350 V (dc + peak ac), 700 V p-p at ac 1 kHz or less.
Common-Mode Rejection Ratio (CH 1 Minus
CH 2 Mode) - At least $50: 1$ at 1 MHz when using same attenuator setting.
Channel Isolation - 2% or less display related crosstalk to 15 MHz .
Displayed Noise $-\leqslant 0.2 \mathrm{mV}$ p-p at $1 \mathrm{mV} /$ div. Position Range - ± 6 div.
Calibrator - Voltage, $0.6 \mathrm{~V} \pm 1 \%$. Frequency, twice the power line frequency.

HORIZONTAL DEFLECTION

Sweep Generator - Calibrated Sweep Rates: 0.5 s to $0.2 \mu \mathrm{~s} / \mathrm{div}, 20 \mathrm{steps}$ in a $1-2-5$ sequence, plus a $\times 10$ magnifier for sweep rates to $20 \mathrm{~ns} / \mathrm{div}$. Uncalibrated (Variable) Range: The Cal (variable) control provides sweep rates that are continuously variable between the calibrated rates, and extends the slowest sweep rate to at least $1.25 \mathrm{~s} /$ div.
Sweep Rate Accuracy - Within 3\% unmagnified, 4% magnified, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$. Derated by an additional 1% for $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

External Horizontal Amplifier - Bandwidth: Dc coupled, dc to at least 2 MHz ; ac coupled $<50 \mathrm{~Hz}$ to at least 2 MHz . Deflection Factor: 50 $\mathrm{mV} /$ div within $5 \% . X$ and Y Amplifier Phase Difference: $<3^{\circ}$ at 50 kHz or less. Input Impedance: $1 \mathrm{M} \Omega$ within 2% paralleled by $\approx 47 \mathrm{pF}$. Maximum Input Voltage: $350 \mathrm{~V}(\mathrm{dc}+$ peak ac); $350 \mathrm{Vp}-\mathrm{p}$ at 1 kHz or less.

TRIGGER

Trigger Modes - Auto (enhanced), Normal (auto button out), Single Sweep.
Enhanced Automatic Triggering - In the automatic mode, the trigger circuit automatically adjusts to spread the p-p signal over most of the range of the triggering level control. This provides more convenient triggering, especially on low amplitude signals.
Trigger Sources - CH 1, CH 2, Line Ext.
Trigger Coupling - Dc, ac, ac LF Rej.
Trigger Sensitivity*1

Source	dc to $\mathbf{5} \mathbf{~ M H z}$	$\mathbf{5} \mathbf{~ M H z}$ to $\mathbf{1 5} \mathbf{~ M H z}$
$\mathrm{CH} \mathrm{1} CH 2$,	0.4 div	1.0 div
External	60 mV	150 mV

${ }^{* 1}$ Minimum p-p signal required.
With ac coupling requirements increase below $\approx 50 \mathrm{~Hz}$. Ac LF Rej coupling requirements increase below $\approx 5 \mathrm{kHz}$.
Triggering Level Range - Internal: At least ± 8 division. External: At least $\pm 1.2 \mathrm{~V}$.
External Triggering Input - Input Impedance: $1 \mathrm{M} \Omega$ within 2% paralleled by $\approx 47 \mathrm{pF}$. Maximum Input Voltage: 350 V (dc + peak ac); 350 V p-p ac at 1 kHz or less.
Auto Mode - Sweep free-runs in the absence of a triggering signal. Trigger Level range is reduced to approximately the $p-p$ range of the triggering signal.
Single Sweep - Triggering requirements same as for normal sweep. When triggered, sweep generator produces one sweep only. Auto push button must be in the Out position for operation and for setting triggering controls.
Trigger Holdoff - At least 20 to 1 range. The Variable control is internally selectable between the Variable Sweep or Variable Holdoff functions.

CRT

Phosphor - GH (P31) is standard.
Deflection - Electrostatic.
Acceleration Potential - $\approx 12 \mathrm{kV}$.
Graticule - Scale, 8×10 division with $0.25 \mathrm{in} /$ div internal graticule lines.

ORDERING INFORMATION

SC 50215 MHz Oscilloscope
Includes: Instruction manual (070-1878-01).
RECOMMENDED PROBES
P6101A 1X, P6102A 10X, P6062B 1X/10X. See pages 430 and 432.

PRODUCT SUMMARY

The CG 5001 is the computerized solution to large-scale scope calibration needs. The CG 5001 can be used as part of a comput-er-based system to calibrate and verify all major oscilloscope parameters, and is specifically designed for use where many oscilloscopes are maintained. Its programmability, combined with state-of-the-art performance, helps to minimize calibration lab labor while maximizing accuracy of verification checks.

In addition to the CG 5001, TM 500 offers a complete set of calibration instruments that can be configured into a portable test set for in-field oscilloscope service and calibration. These TM 500 oscilloscope calibration instruments offer the widest range of standard amplitude squarewaves, fastest risetimes, lowest aberrations, fastest time marks and widest frequency range of leveled sinewaves available today.
The TG 501 Time Mark Generator provides crystal-controlled time marks from 5 s to 1 ns , plus a variable mode of operation which allows you to read the oscilloscope's timing error directly in percent from the digital display.

The PG 506 Calibration Generator provides clean, fast-rise squarewaves for checking oscilloscope transient response and cali-brated-amplitude squarewaves for checking and setting the vertical amplifier gain of the oscilloscope. Like the TG 501, the PG 506 has a variable mode of operation which allows you to read the oscilloscope's calibration error directly in percent from its digital display.
The SG 503 and SG 504 generators provide leveled sinewaves for bandwidth checks (-3 dB points) and triggering performance checks. The SG 503 is a general-purpose leveled sinewave oscillator providing variable output from 250 kHz to 250 MHz . The SG 504 provides a leveled sinewave output that is variable from 245 MHz to 1050 MHz in two bands. The SG 502 Oscillator benefits calibration applications where verification of low frequency rolloff in ac modes and performance measurement of low-fre-quency-reject triggering modes is required.

CG 5001

Programmable Oscilloscope Calibration Generator

OSCILLOSCOPE CALIBRATION SELECTION GUIDE

	Primary Functions	Secondary Functions
CG 5001 Programmable Calibration Generator	Amplitude Calibration $40 \mu \mathrm{~V}$ to 200 V Time Base Calibration 0.4 ns to 5 s	Testing risetime and transient response, attenuator compensation, oscilloscope nonlinearity
PG 506 Calibration Generator	Amplitude Calibration $200 \mu \mathrm{~V}$ to 100 V	Testing risetime and transient response, attenuator compensation
TG 501 Time Mark Generator	Time Base Calibration 1 ns to 5 s	Testing oscilloscope nonlinearity
SG 503 Signal Generator	Bandwidth Calibration 250 kHz to 250 MHz	General leveled RF signal source
SG 504 Signal Generator	Bandwidth Calibration 245 MHz to 1050 MHz	General leveled RF signal source with frequency modulation capability

CG 5001

GPIB
 LEEE-488

The CG 5001 is designed to support other products which comply with IEEE Standard 488-1978

The Tektronix CG 5001 Programmable Oscilloscope Calibration Generator is a micro-processor-based generator that can be used as part of a computerized system for the calibration and verification of major oscilloscope parameters, including:

Vertical Gain
Horizontal Timing and Gain
Vertical Bandwidth/Pulse Characteristics
Probe Accuracy and Compensation
Current Probe Accuracy
Calibrator Output Accuracy CG001's front panel features a wide range of functions, many of which represent a new state-of-the-art in calibration performance. All these functions are programmable by a controller via the GPIB (General Purpose Interface Bus). A "Learn" mode allows any manually-set function or range to be acquired by a controller. Subsequent use of the resulting program requires a minimum of operator skill and makes data logging an automatic operation.
This computer-assisted test and calibration system can provide step-by-step instructions to the operator, thus significantly reducing the skill level required.
Many of the calibration and test steps previously performed by the operator can now be transferred to a computer which executes them in a consistent and error-free manner. To calibrate a particular oscilloscope, the computer's program can send control-setting information to the CG 5001, which then sends the appropriate calibration signals to the oscilloscope. At the same time, a series of operator instructions can be placed on a terminal to automatically coordinate the operator with the calibration signals being sent from the CG 5001. The operator follows these instructions to make the necessary settings of the oscilloscope controls as the calibration or test procedure progresses. The CG 5001 returns error or deviation information to the controller, where it can be compared with preprogrammed reference values for the oscilloscope. A permanent record of the entire maintenance procedure can be stored by the controller and can be printed via peripherals such as a hard copy unit or line printer. Throughout the process, all calibration settings are determined by the computer's program. All front panel settings on the oscilloscope are specified in detail for the operator. Calculations of error percentages are performed automatically.

The CG 5001 is designed to greatly reduce your maintenance costs. Built-in self test routines and hardware check the operation of all major circuits each time the power is turned on.

Modular construction means that all circuit boards unplug (except the Main Interconnect) for easy exchange if service is required. A signature analysis mode is included to facilitate troubleshooting of the digital portion of the instrument.

CHARACTERISTICS

VOLTAGE (AMPLITUDE MODE)

The standard voltage is used to calibrate vertical display accuracy.
Range $-40 \mu \mathrm{~V}$ to 200 V (1-2-5 steps with multiplier).
Multipliers - 1, 2, 3, 4, 5, 6, 8, 10 divisions.
Polarity - Positive from ground.
Accuracy $-+0.25 \% \pm 1 \mu \mathrm{~V}$.
Frequency - 40 mV to 80 mV : 10 Hz to 100 kHz .100 mV to 10 V : dc or 10 Hz to 100 kHz .12 V to 200 V : dc or 10 Hz to 10 kHz .

Variable Range - $\pm 9.9 \%$.

CURRENT (AMPLITUDE MODE)

The standard current is used to calibrate current probes.
Range -1 mA to 100 mA (1-2-5 sequence).
Multipliers - $1,2,3,4,5,6,8,10$.
Accuracy $- \pm 0.25 \% \pm 2 \mu \mathrm{~A}$.
Frequency - Dc or 10 Hz to 1 MHz (decade steps).
Droop - $\leqslant 1 \%$.
Variable Range - $\pm 9.9 \%$.
LOW EDGE (AMPLITUDE MODE)
The Low Distortion Pulse obtained in this mode is used to test oscilloscope input amplifier and attenuator compensation.
Range - 20 mV to 1 Vp p (50Ω load only) (1-2-5 steps with multipliers).
Multipliers - 1, 2, 3, 4, 5, 6, 8, 10.
Polarity - Positive or negative transitions to ground.
Risetime (Falltime) $-\leqslant 1.3 \mathrm{~ns}$.
Abberrations - $\pm 2 \%$.
Long Term Flatness - $\pm 0.5 \%$ after first 10 ns .
Frequency - 10 Hz to 1 MHz (decade steps).
Variable Amplitude Range $-> \pm 9.9 \%$ from nominal.

HIGH EDGE (AMPLITUDE MODE)
The Low Distortion Pulse obtained in this mode is used to test oscilloscope input amplifier and attenuator compensation.
Range -1.2 V to $100 \mathrm{~V} \geqslant 1 \mathrm{M} \Omega$ load (1-2-5 steps with multipliers).
Polarity - Positive transition only (negative voltage to ground).
Risetime - < 100 ns.
Aberrations - $\pm 2 \%$ of squarewave amplitude.
Long Term Flatness - $\pm 0.5 \%$ after first 500 ns.
Frequency - 10 Hz to 100 kHz (decade steps).
Variable Amplitude Range $-> \pm 9.9 \%$ from nominal.

MARKERS (TIMING MODE)
The markers obtained in this mode are used to calibrate oscilloscope time bases.
Range - 10 ns to 5 s ($1-2-5$ steps).
X10 Magnifier - Increase marker rate by a factor of ten ($0.1 \mu \mathrm{~s}$ to 5 s range).
Accuracy - $\pm 0.01 \%$ (optional TCXO $\pm 0.0003 \%$).
Amplitude - 1 V minimum into 50Ω.
Variable Range - $\pm 9.9 \%$.

SLEWED EDGE (TIMING MODE)

Slewed Edges are used to calibrate the very fastest ranges found on oscilloscope time bases.
Range -0.4 ns to 100 ns (1-2-5 steps plus 0.4 ns).

X10 Magnifier - Increases Slewed Edge rate by a factor of ten (5 ns to 100 ns range).
Accuracy $- \pm 0.01 \%$ (Optional TCXO $\pm 0.0003 \%$).
Edge Position Uncertainty $- \pm 40 \mathrm{ps}$.
Amplitude - >1 V into 50Ω.
Variable Range - $\pm 9.9 \%$.

TRIGGER OUTPUT

The oscilloscope under test is normally triggered externally from this source.
Output Amplitude - 1 V minimum into 50Ω.
Trigger Rate (Marker Mode) - Normal: Slaved to marker rate from 100 ns to 5 s ; remains at 100 ns for faster markers. Divided by 10: Reduces normal trigger rate by a factor of ten. Divided by 100: Reduces normal trigger rate by a factor of one hundred.
Slewed Edge Mode - One trigger per slewed edge.
All Other Modes - Normal: Slaved to output frequency. Divided by 10: One-tenth output frequency. Divided by 100: One-hundredth output frequency.

TIMING REFERENCE OUTPUT

EXTERNAL TIMING REFERENCE
Input Frequency - Any integral multiple of 1 MHz up to 5 MHz .
Required Accuracy - $\pm 0.001 \%$.
Input Amplitude - 1 V to 10 V RMS.
Input Resistance - $10 \mathrm{k} \Omega$ (nominal).

ENVIRONMENTAL

Meets or exceeds MIL-T-28800B, Class 5 requirements.
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: $4500 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: Displacement ($p-\mathrm{p}$), 0.015 inch. Vibration Frequency: 10 Hz to 55 Hz . Total time: 75 minutes.
Relative Humidity - 90% to 95% at $+50^{\circ} \mathrm{C}$ for 5 days.
Shock - Nonoperating: 30 g's, $1 / 2$ sine, 11 ms duration, three shocks in each direction along three major axes; total shocks, 18.
Bench Handling - Operating: $45^{\circ} 4$ inches or point of balance, whichever occurs first.

PHYSICAL CHARACTERISTICS*1

Dimensions	mm	in
Width	203	8.0
Height	124	4.9
Depth	305	12.0
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Standard	3.9	8.5
Option 01	4.0	8.7

* 1 Maximum Overall Dimensions (triple compartment plug-in).

PULSE HEAD (STANDARD ACCESSORY)

 FAST EDGE (AMPLITUDE MODE)The Pulse Head is used to generate fast rise, low distortion pulses for testing higher bandwidth vertical amplifiers.
Polarity - Positive or negative transitions from ground.
Risetime - $\leqslant 200$ ps.
Aberrations - $\pm 3 \%$ of pulse amplitude; not to exceed 4\% p-p for adjacent peaks.
Frequency - 100 Hz to 100 kHz (decade steps).
Amplitude - 1.1 V peak $\pm 5 \%$ into 50Ω.
Variable Range - $\pm 10 \%$.

ORDERING INFORMATION

CG 5001 Programmable Calibration

Generator

\$14,995
Includes: Output cable assembly ($012-0884-00$); pulse head ($015-0311-01$); instrument interface guide ($070-4616-00$); program CAL GEN ($070-4768-00$); instruction manual (070-4767-00).
CG 551AP Programmable Calibration Generator
\$14,995

OPTIONS

Option 01 - Adds High Accuracy Time Base (TCXO) CG 5001/CG 551AP.
$+\$ 650$
Option 02 - Deletes Pulse Head
CG 5001/CG 551AP.
-\$1,100
Utility Software
For TM 5000/4041. Order 062-6958-01 \$150
See page 297 for description and ordering information.

CONVERSION KIT

CG 551AP - Field Modification Kit to convert to CG 5001. Order 040-1041-02

MAINFRAMES

CG 5001 requires either a TM 5003 or TM 5006. The CG551AP is a TM 500 version of the CG 5001 and requires a TM 506 Mod JB, TM 515 Mod UB or RTM 506 Mod JB. The CG 5001 is not compatible with TM 500 power module mainframes.

OPTIONAL ACCESSORIES

Comparator Head - Used to calibrate builtin oscilloscope calibrators against the signals available from the CG 5001. Both the oscilloscope calibrator and CG 5001 standard amplitude signals are applied to the Comparator Head and simultaneously displayed on the oscilloscope CRT. The CG 5001 signals are then varied to obtain congruent displays. Errors are then displayed on the CG 5001 readout. Order 015-0310-01
Remote Variable - Permits remote operation of the following front panel controls: Units/ Div, Variable-Fixed Button, Continue Pushbutton and the VAR. Order 015-0309-01
Pulse Head - (When purchased separately.) Order 015-0311-01
Rigid Circuit Board Extender -
Order 067-0975-00
Flexible Circuit Board Extender -
Order 067-0974-00

PG 506

Three Squarewave Output Modes
10 Hz to 1 MHz
Direct Readout of Oscilloscope Deflection Error

The PG 506 Calibration Generator provides three modes of squarewave output, selectable dc outputs, and a vari-able-amplitude output with front-panel digital indication of oscilloscope deflection error. Simultaneous plus and minus low-level, fast-rise (1.0 ns) squarewaves or high amplitude (60 V), extremely clean squarewaves are available at frequencies from 10 Hz through 1 MHz for checking oscilloscope transient response. A 5 mA calibration current loop is useful for current probe calibration. A 1 kHz squarewave can be generated in the amplitude calibration mode. Its amplitude may be varied around the calibrated level until the squarewave aligns with the oscilloscope vertical graticule divisions. Scope deflection error then can be read directly off the PG 506 digital display in percentage high or low, permitting rapid verification of oscilloscope performance.

CHARACTERISTICS

AMPLITUDE CALIBRATOR MODE
Period - Fixed at $\approx 1 \mathrm{~ms}$ or dc .
Amplitude - From $200 \mu \mathrm{~V}$ p-p to 100 V p-p in 1 -$2-5$ sequence, accurate within $\pm 0.25 \%$ into $1 \mathrm{M} \Omega$. $100 \mu \mathrm{~V}$ p-p to 5 V p-p into 50Ω.
Error Readout - Range: $\pm 7.5 \%$. Resolution: 0.1\%.

PULSE MODES

Period - $1 \mu \mathrm{~s}$ to 10 ms (within 5%) in decade steps with the variable control in Cal position. Variable extends period to at least 100 ms .
Symmetry - $\approx 50 \%$ duty cycle.
HIGH AMPLITUDE OUTPUT
Risetime - Unterminated: 100 ns or less. Terminated into 50Ω : 10 ns or less.
Amplitude Range - Unterminated: 6 V or less to at least 60 V . Terminated into $50 \Omega: 0.5 \mathrm{~V}$ or less to at least 5 V .
Leading Edge Aberrations - Within 2\% or $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$, whichever is greater, when terminated into 50Ω.
Polarity — Positive going from a negative potential to ground.
Output Resistance Source - 600Ω within 5%.

FAST-RISE OUTPUTS

Risetime (Terminated Into $\mathbf{5 0 \Omega}$) $-<1.0 \mathrm{~ns}$.
Amplitude Range (Terminated Into 50Ω) 100 mV or less to at least 1.0 V .
Leading Edge Aberrations - Within 2% or $10 \mathrm{mV} \mathrm{p}-\mathrm{p}$, whichever is greater, during first 10 ns .
Flatness - Within 0.5% after first 10 ns .
Polarity - Simultaneous positive and negative going. Positive going is from a negative rest po-

PG 506

Calibration Generator

TG 501

Time Mark Generator
tential to ground. Negative going is from a positive rest potential to ground.
Output Resistance Source - 50Ω within 3% at + and - output connectors.
Trigger Output (Terminated into 50Ω) — Pos-itive-going signal of at least 1 V .

ORDERING INFORMATION

PG 506 Calibration Generator
\$2,995
Includes: Instruction manual (070-3383-00).

Tunnel Diode Pulser

The Tunnel Diode Pulser provides a clean, fast-rise pulse for adjusting the transient response of high-frequency oscilloscopes and other instruments. It can be driven by the PG 506 at repetition rates exceeding 50 Hz . Output amplitude of the pulse is approximately 250 mV into 50Ω, while risetime is $\leqslant 125 \mathrm{ps}$; aberrations are $<1 \%$ in a 1 GHz system.

ORDERING INFORMATION
 Tunnel Diode Pulser Order 067-0681-01 \$185

Precision Voltage Divider

Designed for use with the PG 506 in the Standard Amplitude mode, this 0.4 divider allows your oscilloscope to display a constant four divisions when checking amplitude calibration from $20 \mu \mathrm{~V} /$ div through $1 \mathrm{~V} /$ div. It also allows the PG 506 to be more conveniently used with oscilloscopes that cannot display five divisions of amplitude.

CHARACTERISTICS

Input $\mathbf{Z}-50 \Omega$ with output load $\geqslant 100 \mathrm{k} \Omega$.
Maximum Input - $\leqslant 5 \mathrm{~V}$ RMS.
Output - $0.4 \times$ PG 506 amplitude.
Voltage Accuracy $- \pm 0.4 \%$.
ORDERING INFORMATION

Precision Voltage Divider

Order 015-0265-00
\$140

Compatible accessories begin on page 448.

TG 501

Marker Outputs, $1 \mathbf{n s}$ to $5 \mathbf{s}$

Direct Readout of Oscilloscope Timing Error
External Trigger Output

The TG 501 Time Mark Generator provides marker outputs from one nanosecond to five seconds. A unique feature on the TG 501 is a variable timing output with a front-panel two-digit LED display. The display indicates percentage of timing error between the normal time interval and a variable interval set to line up the marker pulse with graticule or division mark on the display. This feature not only provides direct readout in terms of percent error, but also helps eliminate errors associated with visually estimating error from a display.

CHARACTERISTICS

Markers - 1 ns through 5 s in a 1-2-5 sequence.
Marker Amplitude $-\geqslant 1 \mathrm{~V}$ peak into 50Ω on 5 s through 10 ns markers. $\geqslant 750 \mathrm{mV}$ p-p into 50Ω on 5 ns and 2 ns markers. $\geqslant 200 \mathrm{mV}$ p-p into 50Ω on 1 ns markers.
Trigger Output Signal - Slaved to marker output from 5 s through 100 ns . Remains at 100 ns for all faster markers.

Internal Time Base	Standard	Option 01
Crystal Frequency	1 MHz	5 MHz
Stability $\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$) after $1 / 2$ hour	within 1 part in 10^{5}	within 5 parts in 10^{7}
Long-Term Drift	1 part or less in 10^{5} per month	1 part or less in 10^{7} per month
Setability	adjustable to within 1 part in 10^{7}	adjustable to within 5 parts in 10^{9}

External Reference Input - Available with internal changes. Acceptable frequencies, 1 MHz , 5 MHz , or 10 MHz . Input amplitude must be TTL compatible.
Timing Error Readout Range - To $\pm 7.5 \%$.
Timing Error Measurement Accuracy - Device under test error is indicated to within one least significant digit (to within one displayed count).

ORDERING INFORMATION

TG 501 Time Mark Generator $\$ 2,495$
Includes: Instruction manual (070-1576-02).
Option 01 - 5 MHz Time Base. $\quad+\$ 325$

Oscillator

SG 503

Signal Generator

Signal Generator

SG 502

5 Hz to 500 kHz Sinewaves and Squarewaves

Low Distortion Sinewave
5 V RMS Open Circuit-600 Ω Source
0 dB to $\mathbf{4 0} \mathrm{dB}$ Output Variable Plus 0 dB to 70 dB in 10 dB Steps

The SG 502 Oscillator features a wide frequency range of 5 Hz to 500 kHz with low distortion (0.035% between 20 Hz and 50 kHz) and is desirable for general test purposes. Other SG 502 features include 70 dB amplitude control plus a simultaneous fixed amplitude squarewave.

CHARACTERISTICS SINEWAVE

Frequency Range - 5 Hz to 500 kHz in 5 decade steps. Accurate within 5% of dial setting from 5 Hz to 50 kHz ; within 10% of dial setting from 50 kHz to 500 kHz .
Amplitude Response (1 kHz Reference) Flatness is 0.3 dB over entire range.
Attenuation - Selectable from 0 dB to 70 dB in $10 \mathrm{~dB}, 20 \mathrm{~dB}$, and 40 dB steps with push buttons. Accurate within 0.2 dB for each step selected, additive. An uncalibrated control provides continuous variation from 0 dB to -40 dB .
Harmonic Distortion - $<0.035 \% ~(-70 \mathrm{~dB}$) from 20 Hz to $50 \mathrm{kHz} .<0.15 \%$ from 50 kHz to $500 \mathrm{kHz}(\mathrm{RL} \geqslant 600 \Omega)$.
Maximum Output Voltage - 5 V RMS open circuit; 2.5 V RMS into 600Ω.
Output Impedance - 600Ω, grounded.

SQUAREWAVE

Frequency Range and Accuracy - Same as sinewave. The squarewave switches on the 0° phase of sine out.
Risetime and Falltime - 50 ns or less.
Amplitude -+5 V , fixed, open circuit.

Output Impedance - 600Ω, grounded.

SYNC INPUT

Oscillator can be synchronized to external signal. Sync range, the difference between sync frequency and set frequency, is a linear function of sync voltage.
Input Impedance - $10 \mathrm{k} \Omega$.

ORDERING INFORMATION

SG 502 Oscillator

$\$ 995$
Includes: Instruction manual (070-1430-01).

SG 503

250 kHz to 250 MHz
Leveled, Variable Output
Digital Readout of Frequency
The SG 503 Signal Generator provides a leveled output that is variable in frequency from 250 kHz to 250 MHz . The selected frequency is indicated by a built-in autoranging frequency counter with a three-digit LED read-out on the front panel. Accurately calibrated output voltage is variable from 5 mV to 5.5 V peak-to-peak into 50 ohms .

CHARACTERISTICS

Frequency Range - 250 kHz to 250 MHz , plus 50 kHz reference frequency.
Frequency Accuracy - Within ± 0.7 of one count of the least significant digit of indicated frequency.
Amplitude Range -5 mV to 5.5 V p-p into 50Ω termination in three decade ranges.
Amplitude Accuracy (50 kHz Reference) Within 3\% of indicated amplitude on (X1) range, 4% on (X.1) range, and 5% on (X.01) range.
Flatness (P-P) - From 250 kHz to 100 MHz , output amplitude will not vary more than 1% of the value at 50 kHz except that up to $+1.5 \%$,
-1% variation may occur between 50 MHz and 100 MHz on amplitude multiplier X. 1 and X. 01 ranges only. From 100 MHz to 250 MHz , amplitude variation is within 3% of the value at 50 kHz .
Harmonic Content - Second Harmonic: At least 35 dB down. Third Harmonic and All Higher Harmonics: At least 40 dB down.
Rear Card Edge Connection - Address the leveling circuit.

ORDERING INFORMATION

SG 503 Signal Generator $\mathbf{\$ 2 , 4 0 0}$
Includes: Three foot precision 50Ω cable ($012-0482-00$); instruction manual (070-1622-01).

SG 504

245 MHz to 1050 MHz
Leveled, Variable Output
Frequency Modulation Capability
The SG 504 Signal Generator provides a leveled output amplitude that is variable from 245 MHz to 1050 MHz in two bands. Frequency is indicated by a high-resolution tape dial that expands each band over 28 inches. The accurately calibrated output voltage is variable from 0.5 V to at least 4.0 V p-p into 50Ω.

CHARACTERISTICS

Frequency Range - Low Band: 245 MHz to 550 MHz . High Band: 495 MHz to 1050 MHz , plus 50 kHz or 6 MHz reference frequency (internally selected).
Frequency Accuracy $- \pm 2 \%$ of dial indication.
Amplitude Range -0.5 V to at least $4.0 \mathrm{~V} \mathrm{p}-\mathrm{p}$. Amplitude Accuracy (At Reference) - Within 3% of indicated amplitude.
Flatness - $\pm 4 \%$ of amplitude at reference frequency.
Harmonic Content - Second Harmonic: At least 25 dB down. Third Harmonic and All Higher Harmonic: At least 40 dB down.
FM Input - Frequency Range: Dc to 100 kHz . Deviation Sensitivity: $\pm 9 \mathrm{~V}$ produces from $\pm 0.05 \%$ to $\pm 0.5 \%$ deviation of carrier, depending on output frequency.
Frequency Monitor Output $-\geqslant 0.3 \mathrm{~V}$ p-p into a 50Ω load from 245 MHz to 1050 MHz .
Rear Card Edge Connections - Address FM input, frequency monitor output, and amplitude control.

ORDERING INFORMATION
 SG 504 Signal Generator (Includes
 Leveling Head)
 $\$ 3,995$
 Includes: Instruction manual (070-1632-01).

Replacement Leveling Head
Order 015-0282-00
$\$ 450$

[^45]

Shown above are the TM 515, TM 504, TM 506, RTM 506, TM 501 and TM 503 mainframes

The TM 500 mainframes and plug-ins allow the multifunctionality of a package of instruments. Hundreds of instrumentation packages for specific tasks can be configured.
The TM 500 plug-ins operate in any of six mainframes. One single-width plug-in instrument is accommodated by the TM 501. Up to six instruments can be accommodated in the TM 506 bench-top mainframe and the RTM 506 rackmount mainframe. Three and four-wide mainframes are also available and the five-wide Traveler Mainframe provides for applications that require portability.

Benchtop

Four benchtop mainframes are available. The TM 501 is the most compact. The TM 503 accommodates three single-wide plug-ins. The TM 504 and TM 506 each include a high-power compartment at the right-hand end to supply higher current levels to instruments that provide higher performance or higher output levels. The TM 506 incorporates a quiet fan for optimum cooling. All benchtop models have feet, till-bails, handles, front-panel power switches and operate from 110 V ac to 220 V ac.

Portability

All benchtop models have carry handles, sturdy cordwrap rear feet plus optional protective front covers to further enhance portable applications. The TM 515 Traveler Mainframe, designed for superior, multi-instrument portability, is a handsome piece of
luggage with molded feet on the bottom and a comfortable, luggage-type handle. It is extremely moisture and dust resistant and designed to withstand the rigors of transport in car trunks and pickup trucks. The rear cover pops off to access the power cord, power switch and allow airflow for the built-in fan.

Rackmount

The RTM 506 rackmount mainframe is electrically identical to the TM 506. It features a slide assembly and handles, plus a higherpower fan to accommodate the higher ambient temperatures often found in enclosed racks and consoles. It is also possible to convert two TM 503's into a rackmount assembly with a kit. This kit has the advantage of requiring four inches less depth than the RTM 506 for space-critical applications, but lacks the fan and the high-power compartments. Other kits are available to rackmount a single TM 503 or a TM 503 with a monitor.

Rear Interface Capability

Most TM 500 plug-in modules contain a duplication of the front-panel input and output connections in the back. Some plug-in modules also have additional signal or control lines that are present only at the back of the instrument. These signals are available at the rear edge-card connector of each plugin. Any module can be internally connected through the mainframe and also externally interfaced out the back panel.

	TM 501		TM 503		TM 504		TM 506		RTM 506		TM 515	
Dimensions	mm	in										
Width	99	3.9	221	8.7	305	12.0	442	17.4	483	19.0	381	15.0
Height	152	6.0	152	6.0	152	6.0	152	6.0	133	5.3	173	6.8
Depth	389	15.3	432	17.0	508	20.0	508	20.0	480	18.9	508	20.0
Weight \approx	kg	lb										
Net	2.4	5.4	4.3	9.5	8.4	18.5	13.2	29.0	14.4	32.0	10.2	22.5
Shipping	5.9	13.0	7.7	17.0	11.8	26.0	18.6	41.0	21.0	46.0	13.6	30.0
Max Power Consumption* ${ }^{1}$												

The TM 515 traveler mainframe is available with the Option 05 interface which includes everything in the Option 02 except the rear panel multi-pin connector, the mating cable connector, and the BNC connector.

Economy

Reduced cabling costs made possible by the rear-interface capability, and the reduced space requirements for a measurement system all contribute to unprecedented economy for test and measurement requirements.

CHARACTERISTICS ENVIRONMENTAL

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude Range - Operating: Sea level to 4600 m ($15,000 \mathrm{ft}$). Nonoperating: Sea level to $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

POWER REQUIREMENTS

All of the mainframes have manually selectable taps on the power transformer which permit operation on $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V} \pm 10 \%$.
Power Line Frequency Range - TM 501/ TM 503: 48 Hz to 440 Hz . TM 504/TM 506/ RTM 506/TM 515: 48 Hz to 66 Hz . TM 515 (Purchased with Option 06): Extends upper power line frequency range to 440 Hz .
Maximum Power Consumption - See table

N	
TM 501 Power Module Mainframe Includes: Instruction manual (070-1304-01).	\$425
Option 02 - Rear Interface.	+\$60
TM 503 Power Module Mainframe Includes: Instruction manual (070-1305-01).	\$390
Option 02 - Rear Interface.	+\$90
TM 504 Power Module Mainframe Includes: Instruction manual (070-1716-02).	\$480
Option 02 - Rear Interface.	+\$120
TM 506 Power Module Mainframe Includes: Instruction manual (070-1786-02).	\$660
Option 02 - Rear Interface.	+\$180
RTM 506 Rackmount Power Module Mainframe Includes: Instruction manual (070-1786-02).	\$725
Option 02 - Rear Interface.	+\$190
TM 515 Power Module Mainframe Includes: Instruction manual (070-2020-02).	\$690
Option 05 - Rear Interface.	+\$90
Option $06-48 \mathrm{~Hz}$ to 440 Hz Fan.	+\$170

OPTIONAL ACCESSORIES Rear Interface Data Book Order 070-2088-04

MAINFRAME RACKMOUNT-TO-CABINET AND CABINET-TO-RACKMOUNT CONVERSION KITS

Cabinet-to-Rackmount Conversion Kit -

Equipped with slide-out assembly, required to rackmount a single TM 503 in a standard rack width. This includes securing hardware and a blank front panel when only one instrument is used. Order 040-0617-02
Cabinet-to-Rackmount Conversion Kit Equipped with slide-out assembly, required to rackmount two TM 503's side-by-side in a standard rack width. Order 040-0616-02
Rackmount-to-Cabinet Conversion Kit Equipped to convert a rackmount TM 503 to a cabinet style. Order 040-0618-01
Cabinet-to Rackmount Conversion Kit Equipped with slide-out assembly, required to convert a TM 506 (cabinet style) to an RTM 506. Order 040-0761-04

Rackmount-to-Cabinet Coversion Kit Equipped to convert an RTM 506 to cabinet style TM 506. Order 040-0762-00.

Mainframe Rear Interface

TM 5000/TM 500 mainframes offer the unique ability to have separate modular instruments interconnected through the rear interface board of each mainframe. For example, the rear trigger output of a signal source can be interconnected to the rear input of a counter for instant frequency checks at the touch of a front-panel switch. Or, a digital multimeter and power supply may be interconnected to speed precise voltage set-ups without any need to move test leads. Any module can be internally connected through the mainframe and can also be externally interfaced out the back panel.
TM 5000/TM 500 plug-in modules contain a duplication of the front panel input and output connections in the back. These interface lines are built into the rear-edge circuit card connector of each plug-in. Some modules also have additional signal or control lines which are present only at the back of the instrument. In either case, different modules may be interconnected by the user to reduce front panel clutter or to perform functions not otherwise available.

Mainframes can be interfaced a variety of ways. A user can solder together the appropriate connector pins on a standard mainframe, or can order the mainframe with the Option 02. The Option 02 version of the mainframe comes equipped with square pin connectors on the rear interface circuit board and a special wire kit consisting of standard wires and coaxial cables with mating square pin receptacles. Option 02 also provides a rear-panel male connector, mating cable connectors, and one BNC connector per plug-in compartment.
The square pin connectors eliminate the need to hand-solder connections to the interface circuit board, extending the life of the mainframes. The remaining Option 02 components offer a variety of interfacing alternatives limited only by the user's ingenuity and imagination.

The TM 515 mainframe is available with an Option 05 interface that includes everything in the Option 02 except for the rear panel male connector, mating cable connector and the BNC connectors.

Tektronix has published a Rear Interface Data Book that contains information on the interfacing capability of each instrument "family." This book is available through Tektronix by filling out a card included in each mainframe package.

Tektronix also makes a low-cost "do-it-yourself" Rear Interface Modification Kit. It enables those who don't need the full flexibility of factory installed interface pins at every connector to install a limited rear interface on any TM 5000/TM 500 mainframe except the TM 501. The kit includes fourteen square pins, and three coaxial cables, all with female pin receptacles. Installation instructions also included. For "do-it-yourself" modification kit:

ORDERING INFORMATION Mainframe Rear Interface
 Order 040-0846-01

NEW Electrical/Optical Optical/

 Electrical ConvertersThe OT501/502/503 Transmitters and OR501/502 Receivers are designed to transmit and receive signals across fiber. The receivers can be used to convert most instruments to optical instruments (e.g., the optical scope).

Designed as a TM 500 plug-in, they may be used in any TM 500 mainframe.

OT501/502/503 Transmitters			
	OT501	OT502	OT503
Wavelength	$825 \pm 15 \mathrm{~nm}$	$850 \pm 10 \mathrm{~nm}$	$1300 \pm 25 \mathrm{~nm}$
FWHM*	$<2 \mathrm{~nm}$		$<4 \mathrm{~nm}$
Output Power, Dc	+3 dBm		0 dBm
Mod Input	50Ω		
Mod Input Level Max w/100\% Mod	$\begin{gathered} +20 \mathrm{dBm} \\ <0 \mathrm{dBm} \\ \hline \end{gathered}$		
Mod Freq Response	. 03 to 1700 MHz		$\begin{gathered} .03 \text { to } \\ 1500 \mathrm{MHz} \end{gathered}$
Mod Flatness	$\pm 1 \mathrm{~dB}(.05$ to 1000 MHz)		
	$\begin{gathered} \pm 2 \mathrm{~dB} \\ (.03 \text { to } 1700 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \pm 5 \mathrm{~dB} \\ (.03 \mathrm{to} \\ 1500 \mathrm{MHz}) \\ \hline \end{gathered}$
OR501/502 Receivers			
	OR501		OR502
Wavelength	700 to 1500 nm		
Photo Element	Ge-APD		
Max Linear Input	$-20 \mathrm{dBm}$	$+10 \mathrm{dBm}$	
Frequency Response	$\begin{gathered} .03 \text { to } \\ 1500 \mathrm{MHz} \pm 2 \mathrm{~dB} \\ .05 \text { to } \\ 1000 \mathrm{MHz} \pm 1 \mathrm{~dB} \end{gathered}$		
Noise Floor	$\leqslant-110 \mathrm{dBm} / \mathrm{Hz}$		
Output 50Ω	-15 dBm typical for -20 dBm optical input		$\begin{gathered} -12 \mathrm{dBm} \text { typical } \\ -20 \mathrm{dBm} \\ \text { optical input } \\ \hline \end{gathered}$
Optical Attenuator	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$		$2.5 \mathrm{~dB} /$ step (Nom) 37.5 dB (Max)

* Full wave half maximum.

ORDERING INFORMATION

OT501 - 825 nm E/O Converter.	$\$ 5,900$
OT502 - 850 nm E/O Converter.	$\$ 5,900$
OT503 - 1300 nm E/O Converter.	$\$ 9,500$
OR501 - O/E Converter.	$\$ 4,300$
OR502 - O/E Converter.	$\$ 6,500$
OPTIONS	
Option 20 - AT\&T Biconic Connector.	NC
Option 21 - Diamond 3.5 Connector.	NC
Option 22 - FC Connector.	NC
Option $\mathbf{2 3}$ - SMA Connector.	NC

The mainframe retainer bar modification kit comes complete with the retainer bar, all necessary parts and instructions.
You may modify the TM 504 or RTM 506/ TM 506 mainframe; each has a separate kit. Initial installation requires replacement of an existing bottom member of the mainframe with a new part supplied in the kit. Then, the retainer bar can be simply added or removed with four screws accessible from the bottom of the mainframe.

A snap-on front cover, molded of high impact plastic, is available for the TM 503 (shown above), TM 504, and TM 506 mainframes. The cover adds 45 mm (1.75 in) to the length of the TM 503, TM 504, and TM 506 mainframes, and clears the longest knob projections on any of the instruments.

ORDERING INFORMATION

TM 503 Front Panel Cover.
Order 200-1566-00
TM 504 Front Panel Cover. Order 200-1727-00 \$17
TM 506 Front Panel Cover. Order 200-1728-00 \$20

Accessory Pouch

While the TM 501, TM 503, TM 504, and TM 506 TM 5003/TM 5006 mainframes were designed primarily for bench use, they are frequently carried away for service elsewhere. Taking along the probes, cables, terminators, and other accessories usually required can then be a problem. The soft vinyl accessory pouch neatly solves this problem; sturdy snap-around straps let the pouch be secured to the carrying handle of any TM 5000/TM 500 mainframe or Tektronix Oscilloscope, or the straps may be snapped together to form a carrying handle for the pouch to be used independently. A convenient side zipper lets accessory items be removed or stored without removing the pouch from the mainframe handle. Dimensions $\approx 91 / 4$ in long $\times 53 / 4$ in wide $\times 2$ in high.

ORDERING INFORMATION Accessory Pouch. Order 016-0351-00
 $\$ 25$

1105 Battery Power Supply

TM 500 instruments in their mainframes may be operated with the 1105 Battery Power Supply when suitable ac line power is not available. The 1105 is rugged and portable, operating on internal batteries or an external dc source. Operating time is dependent on the number and type of plug-ins being powered, and their operating mode. The following table shows estimated operating time for a full mainframe in a typical situation.

TM 501	5.0 hours
TM 503	1.6 hours
TM 504	1.3 hou
TM 506	0.9 hou
TM 515	1 ho

TM 515 .. 1 hour

ORDERING INFORMATION

1105 Battery Pack \$1,650
Option $01-230 \vee$ Operation
NC

TM 500 Carrying Case

These luggage-type carrying cases for TM 500 equipment are molded of high strength glass-epoxy. The TM 503 model weighs 12 pounds empty and measures $23^{1 / 2}$ inches long by $81 / 2$ inches thick by $1531 / 2$ inches high, including rubber feet, lockable latches, and handle. Inside, the resilient polyurethane foam is molded to accept a TM 503 (with or without the protective front cover) plus either a spare TM 500 family module or a 200 Series miniscope. A third compartment in the foam accepts miscellaneous cables, accessories, or small tools.
The TM 504 case has a molded foam insert that will accept the TM 504 (with or without the protective front cover) but has no provisions for spare modules or tools. It is 610 mm long $\times 216 \mathrm{~mm}$ thick $\times 445 \mathrm{~mm}$ high, (24 in long by 8.5 in thick by 17.5 in high) and weighs ≈ 14 pounds empty.

ORDERING INFORMATION

TM 503 Carrying Case.
Order 016-0565-00
TM 504 Carrying Case.
Order 016-0608-00
TM 515 Carrying Case.
Order 016-0643-00 $\$ 450$

Rain Covers

These soft, weather-proof, vinyl-coated Rain Covers come in sizes for TM 503 and TM 504 instrumentation packages and include adequate space for protective front covers, as well. They feature heavy-duty zippers that open from either end, and include their own carrying handles, offset to compensate for the off-center balancing point of TM 500 instrumentation packages. The color is Tek blue.

ORDERING INFORMATION
TM 504 Rain Cover.
Order 016-0621-00
TM 503 Rain Cover.
Order 016-0620-00

K213 shown with 436-0132-01 optional shelf.
This Lab Cart is especially designed for a rollabout configuration combining TM 5000/ TM 500 Instrumentation with the Tektronix oscilloscope of your choice. It features pis-tol-grip tilt control and a large accessory drawer in the base. The top tray accepts all TM 5000/TM 500 Series mainframes which accept up to four plug-in modules, or any Tektronix 7000 Series, 5000 Series, or portable oscilloscope. The K213 comes standard with one lower shelf. Additional shelves are available as optional accessories. The power distribution module on the rear underside of the top tray provides four power outlets and a 15 foot line cord.
International modification (Option 01) deletes power distribution module.
See page 424 for additional information.

ORDERING INFORMATION

K213 Lab Instrument Cart
Option 05 - Delete Power Strip NC
Additional Lower Shelf -
Order 436-0132-01 \$50
Safety Belt to secure oscilloscopes or TM 5000/TM 500 to top tray or lower shelves (not needed for 5000 Series or 7000 Series on top tray). Order 346-0136-01

When operating TM 5000/TM 500 instruments with less than the full complement of plug-ins, the blank plug-in panel can be used to cover unused compartments.

ORDERING INFORMATION Blank Plug-in Panel
 Order 016-0195-03

Plug-in Storage Compartment

An electronic engineer or technician away from their bench seldom has enough storage space for probes, cables, "tees", accessories, and small tools. The plug-in storage compartment is a useful adjunct to many rollabout and Travel Lab configurations. If all five compartments in your TM 515 Traveler mainframe are not used for a particular field application, add a plug-in storage compartment for extra convenience. Even a rackmount TM 500 installation might profit by readily-available terminators or attenuators in a presently unused compartment. Compatible with all TM 500 mainframes and 5000 Series oscilloscope mainframes; inside dimensions $250 \mathrm{~mm} L \times$ $51 \mathrm{~mm} \mathrm{~W} \times 106 \mathrm{~mm} \mathrm{H},\left(9^{7 / 8}\right.$ in $L \times 2$ in $\mathrm{W} \times$ $4 \frac{1}{4}$ in H).

ORDERING INFORMATION

Plug-in Storage Compartment
Order 016-0362-01
\$125

TM 500 Custom Plug-in Kits

Single and Double Compartment Sizes
A complete test and measurement set-up for many typical jobs requires at least one nonstandard item. Such items commonly include relay circuits or manual switches for routing signals; test oscillators at pre-set frequencies for alignment purposes and markers; digital logic circuits for sequencing, timing, and control; special processors or converters such as log amps, multipliers, and analog-to-digital converters; and
a variety of other system elements which are usually not available or economical as complete commercial instruments. The construction and packaging of these special items is always a problem, and the sheet metal work and provision for necessary power supplies often far exceeds the cost of the functional elements. This is why the TM 500 line includes custom plug-in kits. The kits provide perforated main circuit boards that allow rapid construction and wiring of circuits using both discrete components and integrated circuits. Also included are top and bottom rails, side cover, front sub-panel, and a blank dress panel, and the latch mechanism. An instruction sheet details the voltages and currents available in the power module. Standard voltage regulator ICs can be used to provide exact voltages for most individual power supply requirements. The finished special-purpose circuitry or instrument is physically compatible with other TM 500 instrumentation.
Single Compartment with Power Supply A blank plug-in kit complete with power supply parts and circuit board layout is now available. A single-wide compartment, this plug-in kit saves set up and build time as the power supply circuitry is designed and kitted for you.
Specifically, the supplies parts are:
(1) A ground-referenced positive supply, capable of +7 V to +20 V at up to 400 mA . (Adjustment is centered at 15 V ; change of resistor values required for total 7 V to 20 V range).
(2) A ground-referenced negative supply, identical to supply No. 1 except for polarity.
(3) A ground-referenced supply nominally 5 V , not adjustable, with current capability up to 1 ampere.

A series of TM 500 construction notes provide direction for building custom circuits using the TM 500 Blank Plug-in Kits and standard components. Among the construction notes available are: Suggested Power Supply Circuits and Thermal True RMS Converter:

[^46]
CURVE TRACERS

Tektronix Curve Tracer Systems deliver comprehensive information for accurate design, analysis, and evaluation for a multitude of semiconductor devices and integrated circuits. These dynamic parametric testers quickly measure and display the characteristic curves of a wide variety of two and three terminal devices including diodes, transistors, thyristors, and optoisolators, and the full range of linear ICs including operational amplifiers, comparators, differential amplifiers, and voltage regulators.

The 576 and 577 Curve Tracers use standard plug-in test fixtures for a variety of low or high current applications. The 172 Programmable Test Fixture and the 176 Pulsed HighCurrent Fixture are designed for use in the 576. The 178 Linear IC Test Fixture is designed for use in the 577.
The 5CT1N and 7CT1N plug-in units are designed for use in the 5000 Series and 7000 Series oscilloscopes respectively.

TEST FIXTURES SELECTION GUIDE

APPLICATION/FEATURE	172	176	177	178	5CT1N	7CT1N
Programmable Test Fixture-Up to 11 different tests	\checkmark					
Pulsed High Current Fixture-1000 Watt capability		v				
Standard Test Fixture for 577			v			
Linear IC Test Fixture				v		
Curve Tracer Plug-ins-Test devices up to 0.5 w					\checkmark	v
Pulsed collector operation to 200 A Peak		v				
Tests single, dual or quad operational or differential amplifiers, comparators, regulators, etc.				v		
Test Linear IC under low current conditions				\checkmark		
Test small signal transistors under pulsed collector breakdown conditions without over dissipation		ν				
Mainframe Compatibility: 576	v	v				
577			v	v		
5000 Series oscilloscopes					\checkmark	
7000 Series oscilloscopes						\checkmark
Page	396	397	398	400	402	402
Prices	\$5,225	\$5,760	\$1,390	\$3,475	\$1,050	\$1,740

CONTENTS

576 Curve Tracer System 394
172 Programmable Test Fixture 396
176 Pulsed High-Current Fixture 397
577/177 Curve Tracer System 398
178 Linear IC Test Fixture 400
Socket Adaptors ... 401
5CT1N \& 7CT1N Curve Tracer Plug-Ins 402

The following Curve Tracer System descriptions will help you choose the system that best meets your requirements. Additional information is available. Contact your local sales engineer or use the reply card in the back of this catalog.

576

Tests Two- and Three-Terminal Discrete Semiconductors

Power Capability Up to 220 Watts
Convenient Scale Factor Readout
Other Test Fixtures for
Semiautomated Testing and Testing
Power Devices to 1000 Watts

TYPICAL APPLICATIONS

* Semiconductor R \& D
* Production Device Testing

The Tektronix 576 Curve Tracer System continues to hold the title "standard of the industry". The 576 accepts three different test fixtures: the Standard Test Fixture, 172 Programmable Test Fixture (see page 396), and the 176 Pulsed High-Current Fixture (see page 397). The 576 is an excellent general purpose curve tracer system that performs well in applications where high-current testing is required.

With the Standard Test Fixture, the collector supply of the 576 delivers up to 220 watts peak to the device under test. The step generator can deliver up to two amps in both its current and voltage modes of operation. With the 176 High-Current Fixture, the 576 is capable of pulsed collector operation up to 200 amps peak.

One of the features that sets the 576 apart from the Tektronix 577 Curve Tracer System is the display area adjacent to the 576's CRT. These alphanumeric indicators provide readout of vertical and horizontal deflection factors, step amplitude, and Beta/div or $\mathrm{gm} / \mathrm{div}$. The Beta or gm_{m} readout saves the operator from the arithmetic usually necessary to arrive at these parameters. These indicators also provide a permanent record of major knob settings in 576 CRT photographs.

Another unique feature of the 576 is the Calibrated Display Offset. Combining a calibrated position control and a display magnifier, the Display Offset increases resolution and allows the operator to make more precise measurements.

Other features of the 576 Curve Tracer include: adjustable current limiting in the step generator; either 300μ s or 80μ s pulse width in pulsed base operation; pushbuttons to check display zero and calibration; and an illuminated graticule.

A safety interlock protects the operator from dangerous voltages. For collector voltages greater than 15 V , a plastic protective safety shield must be in place over the test terminals and its lid closed before collector voltage can be applied.

Standard Test Fixture

CHARACTERISTICS

COLLECTOR SUPPLY
Modes／Polarity — Norm：Ac（at line frequency）； positive or negative full－wave rectified ac．Dc： Positive or negative dc．Leakage：Emitter current rather than collector current measurements． 1000X increase in vertical deflection sensitivity （ $1 \mathrm{nA} /$ div）．
Voltages＊${ }^{*}$

Range	15 V	75 V	350 V	1500 V
Max Continuous Peak Current	10 A	2 A	0.5 A	0.1 A
Peak Pulse Current	$\geqslant 20 \mathrm{~A}$	$\geqslant 4 \mathrm{~A}$	$\geqslant 1 \mathrm{~A}$	$\geqslant 0.2 \mathrm{~A}$

＊${ }^{1}$ Peak open circuit voltages within $+35 \%$ and -5% of indicated range．
Series Resistance－From 0.3Ω to $6.5 \mathrm{M} \Omega$ in 12 steps，all within 5% or 0.1Ω ．Peak Power Limit Setting： $0.1 \mathrm{~W}, 0.5 \mathrm{~W}, 2.2 \mathrm{~W}, 10 \mathrm{~W}, 50 \mathrm{~W}, 220 \mathrm{~W}$.
Safety Interlock－Protects operator from dan－ gerous voltages．

STEP GENERATOR

Current Mode－Step／Offset Amplitude Range： $5 \mathrm{nA} /$ step（with X0．1 Mult）to $200 \mathrm{~mA} /$ step，1－2－5 sequence．Maximum Current（Steps and Aiding Offset）：X20 amplitude setting，except X10（2 A） at $200 \mathrm{~mA} /$ step and $\mathrm{X} 15(1.5 \mathrm{~A})$ at $100 \mathrm{~mA} /$ step． Maximum Voltage（Steps and Aiding Offset）：At least 10 V ．Maximum Opposing Offset Current： X10 amplitude setting or 10 mA ，whichever is less．Maximum opposing voltage is limited at 1 V to 3 V ．
Voltage Mode－Step／Offset Amplitude Range： $5 \mathrm{mV} /$ step（with X 0.1 Mult）to $2 \mathrm{~V} /$ step，1－2－5 se－ quence．Maximum Voltage（Steps and Aiding Off－ set）：X20 amplitude switch setting， 40 V maxi－ mum．Maximum Current（Steps and Aiding Off－ set）：At least 2 A at 10 V ，derating to 10 mA at 40 V ．Short Circuit Current Limiting： 20 mA ， $100 \mathrm{~mA}, 500 \mathrm{~mA}+100 \%,-0 \% ; 2 \mathrm{~A}+50 \%$ ， -0% ．Maximum Opposing Offset Voltage：X10 amplitude setting．Maximum Opposing Current： Limited between 5 mA and 20 mA ．
Accuracy－Incremental：Within 5\％，between steps，within 10% with X1．0 Mult．Absolute：Within 2% of total output including offset，or 1% of am－ plitude setting，whichever is greater．Offset Multi－ plier：Continuously variable from 0 to X 10 the am－ plitude setting，either aiding or opposing the step polarity．
Step Rates－Selectable at X1，X2 or X4 line frequency．
Pulsed Steps－$\approx 80 \mu$ s or 300μ s width．
Step／Offset Polarity－Same as Collector Sup－ ply polarity and positive in ac position．Polarity can be independently inverted with Step／Offset Polarity control or from the test fixture．
Step Family－Repetitive or single family．
Number of Steps－Selectable from 1 to 10.
Vertical Deflection Factor－Collector Current： $1 \mu \mathrm{~A} / \mathrm{div}$ to $2 \mathrm{~A} /$ div， 20 steps in 1－2－5 sequence （ $0.1 \mu \mathrm{~A} /$ div with X 10 magnification）．Emitter Cur－ rent： $1 \mathrm{nA} /$ div to $2 \mathrm{~mA} /$ div， 20 steps in $1-2-5$ se－ quence．Step Generator： 1 step／div．
Horizontal Deflection Factor－Collector Volts： $50 \mathrm{mV} /$ div to $200 \mathrm{~V} / \mathrm{div}$ ， 12 steps（ $5 \mathrm{mV} /$ div with X 10 magnification）．Base Volts： $50 \mathrm{mV} /$ div to $2 \mathrm{~V} /$ div， 6 steps（ $5 \mathrm{mV} /$ div with X 10 magnification）． Step Generator： 1 step／div．

DEFLECTION CONTROLS

Display Accuracies＊${ }^{*}$

Display Modes		Offset and Magnified with Centerline Value from：		
Normal and Dc Modes	Normal （unmag－ nified）	$\begin{gathered} 100-40 \\ \text { div } \end{gathered}$	$\begin{gathered} 35-15 \\ \text { div } \end{gathered}$	$\begin{gathered} 10-0 \\ \text { div } \end{gathered}$
Vertical Collector Current	3\％	2\％	3\％	4\％
Horizontal Collector Volts	3\％	2\％	3\％	4\％
Horizontal Base Volts	3\％	2\％	3\％	4\％
Leakage Mode				
Vertical Emitter Current				
$10 \mathrm{nA} /$ div to $2 \mathrm{~mA} /$ div	$3 \% \pm 1 \mathrm{nA}$	NOT APPLICABLE		
$1 \mathrm{nA} /$ div to $200 \mu \mathrm{~A} / \mathrm{div}$	－	$\begin{gathered} 2 \% \pm \\ 1 \mathrm{nA} \end{gathered}$	$\begin{gathered} 3 \% \pm \\ 1 \mathrm{nA} \end{gathered}$	$\begin{gathered} 4 \% \pm \\ 1 \mathrm{nA} \end{gathered}$
$5 \mathrm{nA} / \mathrm{div}$ ， $2 \mathrm{nA} / \mathrm{div}$ ， 1 nA／div	$5 \% \pm 1 \mathrm{nA}$	NOT APPLICABLE		
Horizontal Collec－ tor Base Volts w／ Emitter Current of：				
$\geqslant 1 \mu \mathrm{~A} /$ div	3\％	2\％	3\％	4\％
$100 \mathrm{nA} / \mathrm{div}$ ， $10 \mathrm{nA} / \mathrm{div}$ ， 1 nA／div	$\begin{aligned} & 3 \%+ \\ & 25 \mathrm{mV} / \\ & \text { Vert div } \end{aligned}$	NOT APPLICABLE		
$200 \mathrm{nA} / \mathrm{div}$ ， 20 nA／div， 2 nA／div	$\begin{aligned} & 3 \%+ \\ & 50 \mathrm{mV} / \\ & \text { Vert div } \end{aligned}$	NOT APPLICABLE		
$500 \mathrm{nA} /$ div， $50 \mathrm{nA} / \mathrm{div}$ ， $5 \mathrm{nA} / \mathrm{div}$	$\begin{gathered} 3 \%+ \\ 125 \mathrm{mV} / \\ \text { Verti div } \end{gathered}$	NOT APPLICABLE		
Step Generator Mode				
Vertical	4\％	3\％	4\％	5\％
Horizontal	4\％	3\％	4\％	5\％

${ }^{\text {＊1 }}$ As a percentage of highest on－screen value ． Displayed Noise ${ }^{* 1}$

Range	15 V	$\mathbf{7 5} \mathrm{~V}$	350 V	1500 V
Vert Collector	$1 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	$2 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$
Vert Emitter	1 nA	1 nA	1 nA	5 nA
Horiz Base	5 mV	5 mV	5 mV	5 mV
Horiz Collector	5 mV	5 mV	20 mV	200 mV

＊1 1% or less，or the values shown．
Position Controls－Fixed 5 div increments within 0.1 div．Continuous fine control over 5 div or less．
Display Offset -21 calibrated positioning in－ crements，vertically or horizontally，of 0.5 div or 5 div with X10 Magnifier．

CRT

CRT－ 165 mm （ 6.5 in ）rectangular with $10 \mathrm{~cm} \times$ 10 cm division（ 12 cm usable horizontal）parallax－ free，illuminated graticule GH（P31）phosphor standard．Accelerating potential is 4.0 kV ．
Readout－The readouts，adjacent to CRT，are digital indicators of the following parameters：Per Vert Div from $1 \mathrm{nA} /$ div to $2 \mathrm{~A} / \mathrm{div}$ ；Per Horiz Div from $5 \mathrm{mV} /$ div to $200 \mathrm{~V} /$ div；Per Step from $5 \mathrm{nA} /$ step to $2 \mathrm{~A} /$ step， $5 \mathrm{mV} /$ step to $2 \mathrm{~V} /$ step；β（Beta） or 9 m ，Per Div from 1μ to 500 k calculated from Current／Div，X10 Mag，Step Amplitude，and X0．1 Mult．

POWER REQUIREMENTS

Voltage Ranges－ 90 V ac to 136 V ac or 180 V ac to 272 V ac（six positions）．
Line Frequency－ 48 Hz to 66 Hz ．
Maximum Power Consumption（Including DUT Power）－ 305 W．Standby Power：≈ 60 W． ENVIRONMENTAL AND SAFETY
Ambient Temperature－Operating：$+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ．Nonoperating：$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ ．
Altitude－Operating：To $3000 \mathrm{~m}(10,000 \mathrm{ft})$ ． Nonoperating： $15000 \mathrm{~m}(50,000 \mathrm{ft})$ ．
Vibration－Operating： 15 minutes along each of the three major axes． $0.04 \mathrm{~cm}(0.015 \mathrm{in})$ p－p dis－ placement 10 Hz to 50 Hz to 10 Hz in one minute cycles．Held for three minutes at 50 Hz ．
Shock－Nonoperating： 30 g ＇s， $1 / 2$ sine， 11 ms duration in each direction along each major axis． Total of six shots．
Safety－CSA Certified（CSA 556 B）．

> PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	299	11.8
Height	381	15.0
Depth	591	23.3
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net	32.0	70.5
Shipping \approx	48.5	107.0

STANDARD TEST FIXTURE（650－0459－01）
Description－A plug－in fixture with two sets of five pin test terminals，the Emitter Grounded or Base Grounded switch，Left－Off－Right switch， Step Gen Output，Ext Base or Emitter input，and the Safety Shield．The test terminals accept either the six pin universal adaptors，three pin adaptors， or the high－power transistor adaptors with Kelvin contacts．

ORDERING INFORMATION

576 Curve Tracer with Standard

Test Fixture

\＄12，420
Includes：Standard test fixture（650－0459－01）；transistor adaptor（013－0098－02）；FET adaptor（013－0099－02）；TO3 adaptor（ $013-0100-01$ ）；TO66 adaptor（013－0101－00）；axial lead diode adaptor（013－0111－00）；stud diode adaptor （013－0110－00）；Kelvin sensors for large and small plastic transistors（013－0138－01）；safety shield（337－1194－01）； power cord（ $161-0066-00$ ）；instruction manual（ $070-0905-01$ ）．

OPTIONS

Option 01 －Deletes the auto scale－factor readout module but maintains provisions for in－ sertion of the module（020－0031－00）at any time．

CONVERSION KIT

Auto Scale－Factor Readout Module－
Order 020－0031－00

INTERNATIONAL POWER PLUG OPTIONS

Option A1－Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A2－UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A3－Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．
Option A4－North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$ ．
Option A5－Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$ ．

OPTIONAL ACCESSORIES

Test Setup Chart－Package of 250
Order 070－0970－01
172 －Test Fixture．See page $396 . \quad \$ \mathbf{5 , 2 2 5}$
176 －Test Fixture．See page $397 . \quad \$ 5,760$
Socket Adaptors－See page 401.
Camera－C－59A and adaptor．（See page 415．）
\＄1，335 $\$ 495$

172
Semiautomated Test Fixture
Tests Up to 11 Parameters
Reduces Total Test Time

TYPICAL APPLICATIONS

* Production Device Testing
* Incoming Inspection

The 172 Programmable Test Fixture, when used with the Tektronix 576 Curve Tracer, permits the operator to quickly perform a sequence of tests on FETs, transistors, and diodes.

The 172 can greatly reduce total test time in applications when more than one measurement is made on a batch of many devices. Without the 172, all devices in the batch must be repeatedly inserted in the test fixture, once for every measurement. However, the 172 Programmable Test Fixture performs as many as eleven different tests on each device.

The 172 sequences through the various tests either automatically or manually. A

CHARACTERISTICS

VERTICAL AND HORIZONTAL AMPLIFIERS
Display Accuracies - The same as the 576 Curve Tracer with its included Standard Test Fixture.
Vertical Deflection Factor - Tests 1 and 2 (Collector or Emitter Current): $1 \mu \mathrm{~A}$ to 2 A /div in 20/steps. Tests 3, 4, and 8, 9, 10, 11 (Collector or Breakdown Current): $1 \mu \mathrm{~A}$ to $0.5 \mathrm{~A} /$ div in 18 steps. Tests 5, 6, 7 (Leakage Current): 1 nA to 0.5 A/div in 27 steps. All steps are in a 1-2-5 sequence.
Horizontal Deflection Factor - Test 1: $0.05 \mathrm{~V} /$ div to $200 \mathrm{~V} /$ div in 12 steps. Test 2 (Base Voltage): $100 \mathrm{mV} / \mathrm{div}$ to $2 \mathrm{~V} /$ div in 5 steps. Input Z for Test 2: At least $100 \mathrm{M} \Omega$ at $100 \mathrm{mV} / \mathrm{div}$ and $200 \mathrm{mV} /$ div. $1 \mathrm{M} \Omega$ (within 2%) at $0.5 \mathrm{~V} / \mathrm{div}, 1 \mathrm{~V} / \mathrm{div}$, and $2 \mathrm{~V} /$ div. Tests 3 and 4 (Collector Voltage): $100 \mathrm{mV} /$ div to $2 \mathrm{~V} /$ div in 5 steps. Tests 5 through 11 (Breakdown or Leakage Voltage): $100 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$ in 9 steps. All steps are in a 1-2-5 sequence.
Collector Sweep Voltage - At least 2 V open circuit, or 1.5 A short circuit, at $100 \mathrm{mV} /$ div and $200 \mathrm{mV} / \mathrm{div}$. At least 5 V open circuit, or 2 A short circuit, at $500 \mathrm{mV} /$ div. At least 20 V open circuit, or 150 mA short circuit, at $1 \mathrm{~V} /$ /div and $2 \mathrm{~V} / \mathrm{div}$.
Current Supply Accuracy - $0.1 \mu \mathrm{~A}$ to 11 mA , accurate within $2 \% \pm 30 \mathrm{nA}$ with up to 500 V compliance. 10 mA to 110 mA , accurate within $2 \% \pm 30 \mathrm{nA}$ with up to 50 V compliance. Increments of Current Are: $0.1 \mu \mathrm{~A}$ (from $0.1 \mu \mathrm{~A}$ to $11 \mu \mathrm{~A}$), $1 \mu \mathrm{~A}$ (from $10 \mu \mathrm{~A}$ to $110 \mu \mathrm{~A}$), $10 \mu \mathrm{~A}$ (from $100 \mu \mathrm{~A}$ to 1.1 mA), $100 \mu \mathrm{~A}$ (from 1 mA to 11 mA) and 1 mA (from 10 mA to 110 mA).
Voltage Supply Accuracy - 1 V to 500 V , accurate within $3 \% \pm 300 \mathrm{mV}$ with at least 0.5 mA compliance.
Test Display Time Range (Automatic) 400 ms to 1.5 s continuously variable. Manual operation from a front-panel switch or optional foot switch.

ENVIRONMENTAL

Ambient Temperature - Operating: $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Altitude - Operating: 3000 m ($10,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) \mathrm{p}$-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minute at 50 Hz .
Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	200	7.9
Height w/shield	165	6.5
Depth	315	$\mathbf{1 2 . 4}$
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net	5.2	11.5
Shipping \approx	8.2	$\mathbf{1 8 . 0}$

ORDERING INFORMATION

172 Programmable Test Fixture $\mathbf{\$ 5 , 2 2 5}$ Includes: Safety shield ($337-1194-01$); five programming cards ($016-0198-00$); 250 programming card pins (214-1633-00); five CRT overlay limit cards (016-0510-00); instruction manual (070-1170-01).

176

The 176 Pulsed High－Current Fixture pro－ vides the 576 Curve Tracer with pulsed col－ lector operation to 200 amps peak and pulsed base steps to 20 amps peak．When selected，the step offset is also pulsed．The pulsed operating mode allows many tests previously considered impossible．For exam－ ple，small signal transistors can be tested under pulsed collector breakdown condi－ tions without overdissipation．The 176 Test Fixture fits in place of the 576 Standard Test Fixture．The collector pulse is slaved to the step generator in regard to width and repeti－ tion rate．

The pulse width is selected by pressing the $300 \mu \mathrm{~s}$ or $80 \mu \mathrm{~s}$ pushbutton on the 576 main－ frame．The repetition rate is automatically set when the 176 is inserted in the main－ frame．Repetition rate is also dependent on power－line frequency．The five highest Verti－ cal Current／Division settings（ 0.1 A ／div to 2 A／div）of the 576 can be multiplied X10 by actuation of the X10 Vert pushbutton on the 176．This feature enables viewing of up to a 200 amp peak display．The five highest Step Generator Amplitude base current steps of the $576(10 \mathrm{~mA}$ to 200 mA$)$ can be multiplied X10 by actuation of the X10 Step push－ button on the 176．This feature enables the pulsed base step generator on the 176 to provide up to a 20 amp base step（tenth step）．Both X10 Vert and X10 Step pushbuttons provide inputs to the fiberoptic readout in the 576 to display actual values．

Step／Offset Polarity－Same as Collector Sup－ ply polarity．Polarity can be independently invert－ ed with Step／Offset Polarity control．

COLLECTOR SUPPLY（PULSED）

CHARACTERISTICS
Width－ $300 \mu \mathrm{~s}$ or $80 \mu \mathrm{~s}$ determined by 576 ．
Repetition Rate－Power－line frequency．
Polarity -+ or - determined by 576 polarity control．
Amplitude－Ranges： $15 \mathrm{~V}, 75 \mathrm{~V}, 350 \mathrm{~V}$ nomi－ nal，controlled by Max Peak Volts switch on 576. Current（minimum available at low line into short－ ed load）： 15 V range， 200 A ； 75 V range， 40 A ； 350 V range， 8 A ．
Maximum Peak Watts－Three illuminated pushbuttons select $10 \mathrm{~W}, 100 \mathrm{~W}, 1000 \mathrm{~W}$ maxi－ mum peak power．

STEP GENERATOR

Current Ranges（X10 Step Selected）－ Step／Offset Amplitude Range： 100 mA to 2 A ， 5 steps，1－2－5 sequence．Maximum Current （Steps and Aiding Offset）： 200×576 Amplitude setting or 20 A ，whichever is less．Maximum Volt－ age（Steps and Aiding Offset）：At least 5 V up to 10 A and 2 V up to 20 A ．
Accuracy（Current Steps Including Offset） －Incremental：Within 5\％between any two steps；within 10% with X0．1 Step Mult．Absolute： Within 3% of total output $\pm 1 \%$ of one step or within 3% of one step，whichever is greater．
576 Offset Multiplier -0 to 100×576 Ampli－ tude switch setting．
Step Rate－Power－line frequency．
Pulsed Steps－ 300μ s or 80μ s wide．

VERTICAL AMPLIFIER

Deflection Factor（X10 Vert Selected）－ 1 A ／div to 20 A ／div， 5 steps in a 1－2－5 sequence．

ENVIRONMENTAL

Ambient Temperature－Operating：$+0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ．Nonoperating：$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ ．
Altitude－Operating： 5000 m （ $15,000 \mathrm{ft}$ ）．Non－ operating： $15000 \mathrm{~m}(50,000 \mathrm{ft})$ ．
Vibration－Operating： 15 minutes along each of the three major axes． 0.04 cm （ 0.015 in ）p－p dis－ placement 10 Hz to 50 Hz to 10 Hz in one minute cycles．Held for three minutes at 50 Hz ．
Shock－Nonoperating： 30 g ＇s， $1 / 2$ sine， 11 ms duration in each direction along each major axis． Total of six shocks．

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	200	7.9
Height w／shield	196	7.7
Depth	290	11.4
Weights	$\mathbf{k g}$	lb
Net	5.8	12.8
Shipping \approx	8.2	18.0

ORDERING INFORMATION

176 Pulsed High－Current Fixture $\mathbf{\$ 5 , 7 6 0}$ Includes：TO36 adaptor（013－0112－00）；stud diode adap－ tor（ $013-0110-00$ ）；safety shield（ $337-1194-01$ ）；instruction manual（070－1073－00）．

577／177

Test Two－Terminal and Three－Terminal Discrete Semiconductors

Storage Capability（Option 10）
Power Capability Up to $\mathbf{1 0 0}$ Watts

TYPICAL APPLICATIONS

＊Incoming Inspection
＊Semiconductor R \＆D

177 Standard Test Fixture

The 577 Curve Tracer System，when used with the 177 Standard Test Fixture，is a smaller and lighter configuration that retains many of the important features and perfor－ mance of the 576．The 577 also accepts the 178 Linear IC Test Fixture．The major fea－ tures that separate the 577 from the 576 are a storage CRT（optional）and the emphasis on low current measurements with the 577.
The 577＇s storage CRT may be used to overlay the characteristic curves of one de－ vice on top of the stored characteristics of another．Dot displays（generated during high current pulsed testing or during very low current testing under dc conditions）can be transformed into complete characteristic curves by simply moving them across the CRT while in the storage mode．A good ex－ ample of a dot display occurs in op amp testing because the open－loop， 3 dB band－ width of many op amps is so low that the curves must be plotted slowly．Linear ICs such as op amps may be tested with the 577 by using the 178 Linear IC Test Fixture （see page 400）．

178 Linear IC Test Fixture

Standard Op Amp Card for 178 Test Fixture

Three－Terminal Regulator Card for 178 Test Fixture

Other innovations in the 577/177 Curve Tracer are an emitter-base breakdown position on the lead selector switch, availability of approximately 95 steps from the step generator, an uncalibrated bias supply, independent magnifiers that increase resolution on either or both CRT axes, and a beam finder.
A safety interlock protects the operator from dangerous voltages. For collector voltages greater than 15 V , a plastic protective safety shield must be in place over the test terminals and its lid closed before collector voltage can be applied.

CHARACTERISTICS

All characteristics are for the 577 Curve Tracer Mainframe operating with a 177 Standard Test Fixture.

COLLECTOR SUPPLY

Modes/Polarity - Norm: Ac (at line frequency); positive or negative full-wave rectified ac. Dc: Positive or negative dc.

Voltage*1

Range	6.5 V	25 V	100 V	400 V	1600 V
Max Continuous Peak Current	10 A	2.5 A	0.6 A	0.15 A	0.04 A
Peak Pulse Current	20 A	5 A	1.25 A	0.30 A	0.08 A

* Peak open circuit voltages within $+35 \%$ and -5% of indicated range.
Series Resistance - From 0.12Ω to $8 \mathrm{M} \Omega$ in 14 steps, all within $15 \%, \pm 0.1 \Omega$. Peak Power Limit Setting: $100 \mathrm{~W}, 30 \mathrm{~W}, 9 \mathrm{~W}, 2.3 \mathrm{~W}, 0.6 \mathrm{~W}, 0.15 \mathrm{~W}$.
Safety Interlock - Protects operator from dangerous voltages.

STEP GENERATOR

Current Mode - Step/Offset Amplitude Range: $5 \mathrm{nA} /$ step (with X0. 1 Mult) to $200 \mathrm{~mA} / \mathrm{step}$, 1-2-5 sequence. Maximum Current (Steps and Aiding Offset): X20 amplitude setting, except X10 (2A) at $200 \mathrm{~mA} /$ step and X15 (1.5 A) at $100 \mathrm{~mA} / \mathrm{step}$. Maximum Voltage (Steps and Aiding Offset): At least 7 V. Maximum Opposing Offset Current: X10 amplitude setting or 10 mA , whichever is less. Maximum opposing voltage is limited at 1 V to 5 V .
Voltage Mode - Step/Offset Amplitude Range: $5 \mathrm{mV} /$ step (with X0.1 Mult) to $2 \mathrm{~V} /$ step, 1-2-5 sequence. Maximum Voltage (Steps and Aiding Offset): 20 times amplitude switch setting. Maximum Current: At least 100 mA at 0 V. Short Circuit Current Limiting: Not more than 200 mA . Maximum Opposing Offset Voltage: X10 amplitude switch setting. Maximum Opposing Current: Limited between 10 mA and 20 mA (derating to 0 mA at 20 V).
Accuracy - Incremental: Within 2% between steps. Absolute: Within 3\% of total output or amplitude setting, whichever is greater. Within 4% with X. 01 mult. Offset Multiplier: Continuously variable from 0 to X 10 the amplitude setting, either aiding or opposing the step polarity.
Step Rates - Selectable at X1, X2, or X4 line frequency.
Pulsed Steps - $\approx 300 \mu$ s width.
Step/Offset Polarity - Same as Collector Supply polarity and positive in the ac position. Polarity can be independently inverted with Step/Offset Polarity control or from the test fixture.
Step Family - Repetitive or single family.

Number of Steps - Selectable from 1 to 10 fullamplitude steps. Selectable up to ≈ 95 steps when using Step X0.1 multiplier.

DEFLECTION CONTROLS
Display Accuracies* ${ }^{*}$

| Display Mode |
:---		Normal	
(unmagnified)	\quad Magnified	Norm and Dc Modes	
:---	:---:		
Vertical Collector Current	$3 \% \pm 1 \mathrm{nA}$		
Horizontal Collector Volts	$3 \% \pm 1 \mathrm{nA}$		
Horizontal Base Volts	3%		
Step Generator Mode Horizontal Mode	4%		
${ }^{* 1}$ As a percentage of highest on-screen value.			

Vertical Deflection Factor - Collector Current: $2 \mathrm{nA} /$ div to $2 \mathrm{~A} / \mathrm{div}$, 28 steps in 1-2-5 sequence ($0.2 \mathrm{nA} /$ div to $0.2 \mathrm{~A} /$ div with X10 magnification).
Horizontal Deflection Factor - Collector Volts: $50 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{~V} / \mathrm{div}, 12$ steps in $1-2-5$ sequence (5 mV /div to 20 V div with X 10 magnification). Base Volts: $-50 \mathrm{mV} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$, 6 steps in 1-2-5 sequence ($5 \mathrm{mV} /$ div to $0.2 \mathrm{~V} /$ div with X10 magnification). Step Generator: 1 step/ div (0.1 step/div with X10 magnification).

Displayed Noise*1

Range	$\mathbf{6 . 5 ~ V}$	$\mathbf{2 5 ~ V}$	$\mathbf{1 0 0} \mathrm{V}$	$\mathbf{4 0 0} \mathrm{V}$	$\mathbf{1 6 0 0} \mathbf{V}$
Vert Collector	0.5 nA	2.5 nA	8 nA	20 nA	50 nA
Vert Emitter	0.5 nA	2.5 nA	8 nA	20 nA	50 nA
Horiz Base	5 mV				
Horiz Collector	5 mV	5 mV	-	-	-

Automatic Scale Factor Readout - Change in deflection factor is indicated by lights behind the knob skirt when using X10 Mag.
Automatic Positioning - Trace (or spot) is automatically positioned when Collector Supply polarity is changed when using the 177
Display Invert - Single control inverts display and repositions trace.
Display Filter - Selectable low-pass filter reduces vertical noise for easier high sensitivity measurements.

CRT

CRT - Rectangular $165 \mathrm{~mm}(6.5 \mathrm{in})$ with an $8 \times$ 10 div ($1.27 \mathrm{~cm} /$ div) parallax-free internal graticule. Two display modules are available for the 577. The D1 display unit has a split-screen storage CRT with phosphor similar to GJ (P1). The D2 display unit has a nonstorage CRT with GH (P31) phosphor standard. Accelerating potential is 3.5 kV.

Beam Finder - Compresses off-screen trace to within graticule area.

POWER REQUIREMENTS

Line Voltage Ranges $(\pm 10 \%)-100 \mathrm{Vac}$, 110 V ac, 120 V ac or 200 V ac, 220 V ac, 240 V ac.
Line Frequency - 50 Hz to 60 Hz .
Power - 155 W max at 110 V ac, 60 Hz .
ENVIRONMENTAL AND SAFETY
Ambient Temperature - Operating: $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$. Nonoperating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Altitude - Operating: To 3000 m ($10,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in}) p$-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz .

Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
Safety — CSA certified (CSA 556 B).

PHYSICAL CHARACTERISTICS				
	577		177	
Dimensions	$\mathbf{m m}$	in	$\mathbf{m m}$	in
Width	224	8.8	201	7.9
Height	503	19.8	102	4.0
Depth	584	23.0	152	6.0
Weights	$\mathbf{k g}$	lb	kg	lb
Net	18.1	40.0	1.1	2.5
Shipping \approx	22.7	50.0	2.7	6.0

Note: When the 577 and 177 are ordered together their combined shipping weight is: domestic $\approx 24 \mathrm{~kg}$ or $\approx 53 \mathrm{lb}$.

177 Standard Test Fixture

CHARACTERISTICS

Device Lead Selection - Switch provides six different lead configurations. Three positions for Emitter Grounded measurements provide Step Gen, Open (or Ext), and Short base terminal connections. Two positions for Base Grounded measurements provide Step Gen and Open (or Ext) emitter terminal connections. One position provides for Emitter Base Breakdown or leakage measurements up to 25 Volts.
Left-Right Switch - Selects left or right test connections. Off in center position. Test connection area accepts all Tektronix Curve Tracer adaptors and protective cover. Kelvin connections are provided for emitter and collector terminals.
Looping Compensation - Reduces display loops due to test adaptor capacitance and some device capacitance.
Variable Voltage Supply - Continuously variable bias supply from -12 V to +12 V . Source resistance is $10 \mathrm{k} \Omega$ or less.

ORDERING INFORMATION

577/D1 Storage Curve Tracer Mainframe (w/o Test Fixture)
\$6,750
Includes: Transistor adaptor for most bipolar transistors and some MOS FETs (013-0098-02); axial lead diode adaptor with Kelvin sensing terminals (013-0111-00); safety shield for test connection area (337-1194-01); instruction manual (070-1436-00).
577/D2 Nonstorage Curve Tracer
Mainframe (w/o Test Fixture)
\$5,835
Includes: Same as 577/D1.

OPTIONS

Option $10-10 \mathrm{~cm} \times 10 \mathrm{~cm}$ graticule. $\quad+\$ 95$ TEST FIXTURES
177 - Standard Test Fixture \$1,390
178 - Linear Test Fixture. (See next
page.)
$\$ 3,475$

OPTIONAL ACCESSORIES

Test Setup Chart - Package of 250.
Order 070-1639-00
Device Adaptor Sockets - (See page 401.)
Camera - C-5C. (See page 416).
Cart - K213. (See page 424).

178

Tests Single, Dual, or Quad:
Operational Amplifiers, Comparators
Differential Amplifiers, Regulators and More
Since linear ICs are typically tested under very low current conditions, the 577/178 Curve Tracer System is ideally suited to the task. The 178 Linear IC Test Fixture provides the necessary and accurate low-current measurement capability. Test cards set up the measurement function, and the 577's storage CRT allows the operator to transform the dot display (usually seen under low current dc conditions) into a complete characteristic curve by slowly sweeping the dot across the CRT while in the Storage Mode. A 577/178 Curve Tracer System is composed of a 577 mainframe, 178 Linear IC Test Fixture, appropriate test cards (choose from three op amp cards and two regulator cards), and the proper socket adaptor that interfaces the system to the device under test.
Test cards, which slide into the 178, define the measurement function of the 178 Test Fixture. Two families of test cards are available: op amp cards and regulator cards. Op amp cards are used for testing standard and special op amps, comparators, differential amplifiers, video amplifiers, etc. Regulator cards are used for testing positive and negative three-terminal voltage regulators.

OP AMP CARDS

The Standard Op Amp Card is designed to test devices that require single or dual power supplies, have two (differential) high-impedance inputs, and a single output. Common measurements include: offset voltage, positive and negative input current, CMRR, gain, positive and negative PSRR, positive and negative supply current, and collector supply current.
The Hardwire Card is designed for those applications where there is an advantage in preparing individual cards for specific devices so that they may be quickly switched to accommodate a change in the type of device under test. The Hardwire Card also offers a greater degree of freedom to the knowledgeable designer in testing special devices.
The Multiple Op Amp Card allows the operator to test up to four devices in a single package by simply operating a four-position switch. The four-position switch selects the op amp (in a multiple op amp package) or the selection of a linear IC to be tested. The measurements performed are the same as those available with the Standard Op Amp Card.

Socket Adaptors for Op Amp Cards

The device-under-test socket on the Standard and Multiple Op Amp Cards accepts several types of socket adaptors using the Amphenol-Barnes Adaptor System. This
system accepts most of the standard package configurations (TO5, DIP, flat pack, etc). Sockets for these cards are shown on the next page.

REGULATOR CARDS

There are two types of Regulator Cards, positive and negative. These cards are used primarily in measuring parameters of threeterminal voltage regulators. Parameters measured include: output voltage, load regulation, line regulation and ripple regulation, and quiescent and common terminal current.

Socket Adaptors for Regulator Cards

Socket adaptors for both positive and negative three-terminal regulators are the same as the Kelvin Sensing Adaptors used on the standard curve tracer. (See next page.)

CHARACTERISTICS		
VERTICAL AMPLIFIER		

*1 1-2-5 sequence.
*2 Percentage of highest on-screen values.

POWER SUPPLIES

Voltage - Positive and negative supplies are adjustable from 0 V to 30 V . Voltage of both supplies can be adjusted from a single calibrated control. Accuracy is within $2 \% \pm 100 \mathrm{mV}$. Negative supply can be independently adjusted by an uncalibrated control.
Current - At least 150 mA with adjustable current limiting.

SWEEP GENERATOR

Frequency Range - Adjustable from 0.01 Hz to 1 kHz . Sinusoidal signal controls output, com-mon-mode input, or power supply voltages of device under test.
Amplitude - Adjustable from 0 V to 30 V peak.

SOURCE RESISTANCE

Resistor Values - Two each, $50 \Omega, 10 \mathrm{k} \Omega$, $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, or external resistors. When vertical deflection factor is in 1 mV through $50 \mathrm{mV} /$ div position, add 550Ω to all values.

LOAD RESISTANCE

Resistor Values - One each, $100 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega$, $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, or external resistors.

OTHER CHARACTERISTICS

DUT Supplies Disconnect - A single switch disconnects all power to the device under test; both plus and minus power supplies, collector supply, and step generator.
Function Switch - Selects vertical and horizontal deflection signals and connection of the test signal to the device under test.

Zero - Single pushbutton provides a zero reference to the CRT display and in certain functions, nulls out oftset voltage in order to measure Δ input V on the vertical display axis.

COLLECTOR SUPPLY

The 25 V and 100 V ranges of the collector supply (located on 577 mainframe) are available to the 178 Test Fixture. Supply output is located on the 178 front-end panel and on the device card. Automatic positioning with supply polarity is inoperative when using the 178 Test Fixture. (See 577/177 characteristics for collector supply performance.)

STEP GENERATOR
All the capabilities of the step generator (located on 577 mainframe) are available to the 178 Test Fixture. Generator output is located on the 178 front-end panel and on the device card. (See 577/177 characteristics for step generator performance.)

THREE-TERMINAL REGULATOR TEST CARD

 CHARACTERISTICSDevice Under Test Input Supply - Input Voltage (Two Ranges): 0 V to 30 V is within 2% $\pm 200 \mathrm{mV}$ of dial setting. 0 V to 60 V is within $2.5 \% \pm 300 \mathrm{mV}$ of dial setting.
Regulation: Within 200 mV .
Input Sweep Frequency: Dc to 1 kHz .
$300 \mu \mathrm{~s}$ Pulsed Current: 5 mA to 2 A .
Short Duration Dc Current**

Supply Voltage	Current
0 to 10	700 mA
10 to 20	350 mA
20 to 40	350 mA
40 to 60	120 mA

${ }^{* 1}$ One minute duration.
Device-Under-Test Current Load - 5 mA to 2 A within $\pm 3 \%, \pm 1.25 \mathrm{~mA}$.
Device-Under-Test Comparison Output Dc Voltage Accuracy - 0 V to 10 V Range: Within $1 \% \pm 20 \mathrm{mV} .0 \mathrm{~V}$ to 100 V Range: Within 1% $\pm 150 \mathrm{mV}$.

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	201	7.9
Height	114	4.5
Depth	198	7.8
Weights	$\mathbf{k g}$	lb
Net	1.5	3.3
Shipping \approx	3.6	8.0

ORDERING INFORMATION

178 Linear IC Test Fixture $\mathbf{\$ 3 , 4 7 5}$ Includes: 16 DIP IC sockets ($136-0442-00$); standard Op Amp Card with cover and ten patch cords (013-0149-02); interchangeable nomenclature panel for function switch ($333-1770-00$); instruction manual (070-1977-00).

OPTIONAL ACCESSORIES

Standard Op Amp Card - One included with 178. Order 013-0149-02
Hardwire Card - Order 013-0150-02
Multiple Op Amp Card - Order 013-0155-01
Positive Regulator Card -
Order 013-0147-00
Negative Regulator Card -
Order 013-0148-00
Paich Cord - Package of 10.
Order 012-0200-00.
$\$ 4.50$

DUAL WIDTH ADAPTORS

The following accessories fit the side-byside terminals on test fixtures of the 576 , 576/172, and 577/177 Curve Tracers.
A. Transistor Adaptor - Useful for most single and dual bipolar transistors and some MOS FETs. Order 013-0098-02
B. FET Adaptor - Useful for most single and dual FETs. Order 013-0099-02
C. Long Lead Transistor Adaptor - Accepts dual or single transistors with untrimmed leads. Order 013-0102-00
D. Long Lead FET Adaptor - Accepts dual or single FETs with untrimmed leads. Order 013-0103-00
E. Integrated Circuit Adaptor - Allows connection to multipin device packages. The appropriate multilead socket is plugged into the integrated circuits adaptor. The pins are then connected to the collector, base, or emitter terminals by means of the patch cord. A tie point is also provided so that an external power supply or signal source may conveniently be patched to the IC pins. Order the appropriate multilead socket listed separately. Includes ten each 4 inch test leads (012-0310-00). Order 013-0124-03.

KELVIN SENSING ADAPTORS

The following accessories fit the test fixtures of the $576,576 / 172,576 / 176$, and 577/177 Curve Tracers.
A. Transistor Adaptor - Accepts long or short transistors. Can be rewired to accommodate nonstandard configurations. Order 013-0127-01
B. In-Line Adaptor - Accepts large and small transistors with in-line leads. The adaptor will accept devices with approx spacing between terminals of 0.06 in up to 0.18 in . It is $\$ 205$ wired for a B-C-E terminal configuration but may be easily rewired for the C-B-E configuration.
Order 013-0138-01
C. TO36 Adaptor - Order 013-0112-00
D. TO3 Adaptor - Can be rewired to accommodate nonstandard configurations. Order 013-0100-01
E. TO66 Adaptor - Order 013-0101-00
F. Axial Lead Diode Adaptor Order 013-0111-00

G. Stud Diode Adaptor -

Order 013-0110-00
$\$ 100$
H. Blank Adaptor - For mounting special sockets. Order 013-0104-00
I. Power Transistor Adaptor -

Order 013-0163-00

MULTILEAD SOCKETS

These sockets are used with the Integrated Circuit Adaptor (013-0124-03) listed under Dual Width Adaptors, and with the 178 Test Fixture.

A. 8 Lead TO Package -

Order 136-0444-00
B. 10 Lead TO Package Order 136-0441-00
C. 14 Lead Dual-in-line Package Order 136-0443-00
D. 16 Lead Dual-in-line Package -

Order 136-0442-00
These four sockets are the most commonly required in curve tracer applications. Additional socket configurations, including zero insertion style, are available from Textool Products, Inc., 1410 W. Pioneer Dr., Irving, TX 75061.

3-PIN ADAPTORS

The following 3 -pin adaptors may be used with any of the Tektronix curve tracer products. They do not have Kelvin sensing contacts.
A. TO5 or TO18 - Transistor Adaptor. Order 013-0128-00
B. Blank Adaptor - For mounting special sockets. Order 013-0073-00
C. TO3 or TO66 - Transistor Adaptor. Order 013-0070-01
D. Diode Test Adaptor - Holds axial-lead diodes. Order 013-0072-00

5CT1N/7CT1N

Tests Semiconductor Devices to 0.5 Watts
$10 \mathrm{nA} /$ div to $20 \mathrm{~mA} /$ div Vertical Deflection Factors
$0.5 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ Horizontal Deflection Factors

Easy to Operate

The 5CT1N and 7CT1N are oscilloscope plug-ins for displaying the characteristic curves of small-signal semiconductor devices to power levels up to 0.5 watts. The 5 CT 1 N is designed for use in any Tektronix 5000 Series oscilloscope and plugs into one of the vertical compartments (a 5000 Series amplifier or time base must be installed in the horizontal compartment). The 7CT1N is designed for use in any Tektronix 7000 Series oscilloscope and plugs into either a vertical or horizontal compartment (a 7000 Se ries amplifier or time base must be installed in the corresponding horizontal or vertical compartment).

CHARACTERISTICS				
COLLECTOR/DRAIN SUPPLY				
	$\mathbf{x 1}$		$\mathbf{x 1 0}$	
Horizontal				
Volts/Div	0.5	2	5	20
Voltage	0 to	0 to	0 to	0 to
Range	7.5 V	30 V	75 V	300 V
Maximum				
Current	240 mA	60 mA	24 mA	6 mA

Maximum Open Circuit Voltage - Within 20%. Maximum short circuit current within 30%.
Series Resistance - Automatically selected with horizontal V/div switches. Peak Power: 0.5 W or less depending upon control settings.
High Voltage Warning - When the horizontal V/div switch is in the X10 position, a flashing warning light appears on the front panel indicating that dangerous voltages may exist at the test terminals.

STEP GENERATOR

Transistor Mode - Step Amplitude Range: $1 \mu \mathrm{~A} /$ step to $1 \mathrm{~mA} / \mathrm{step}, 1-2-5$ sequence. Maximum Current (Steps Plus Aiding Offset): X15 amplitude setting. Maximum Voltage (Steps Plus Aiding Offset): At least 13 V . Maximum Opposing Offset Current: At least X5 amplitude setting.
FET Mode - Step Amplitude Range: $1 \mathrm{mV} /$ step to $1 \mathrm{~V} /$ step, $1-2-5$ sequence. Voltage Amplitude (Steps Plus Aiding Offset): X15 amplitude setting, 13 V maximum. Source Impedance: $1 \mathrm{k} \Omega \pm 1 \%$.
Accuracy - Incremental: Within 3\% between steps. Absolute: Within $(3 \%+X 0.3$ amplitude setting).
Step Polarity - The step generator polarity is the same as the collector/drain supply in the transistor mode and opposing in the FET mode.

5CT1N

Curve Tracer

Number of Steps - Selectable in one-step increments between 0 and 10.
Offset - Selectable from 0 to 5 steps. Polarity aids or opposes the step polarity.
Vertical Deflection Factors - $10 \mathrm{nA} /$ div to $20 \mu \mathrm{~A} /$ div with the $\div 1000$ control activated. $10 \mu \mathrm{~A} /$ div to $20 \mathrm{~mA} /$ div in the X 1 mode.
Vertical Display Accuracy - Within 5\% in the X1 mode. Within $5 \% \pm 0.2 \mathrm{nA}$ per displayed horizontal V when in the $\div 1000$ mode.
Horizontal Deflection Factors - Selectable, $0.5 \mathrm{~V}, 2 \mathrm{~V}, 5 \mathrm{~V}$, or 20 V .
5CT1N Horizontal Display Accuracy - Within 5% plus the deflection factor accuracy of the plug-in being driven. The plug-in would be a vertical or horizontal amplifier (such as the Tektronix 5000 Series plug-ins) with a $50 \mathrm{mV} /$ div deflection factor and an input R of at least $50 \mathrm{k} \Omega$ and would be used in the horizontal compartment of a 5000 Series oscilloscope mainframe.
7CT1N Horizontal Display Accuracy - Within 5% plus the deflection factor accuracy of the plug-in being driven. The plug-in would be a vertical or horizontal amplifier (such as the Tektronix 7000 Series plug-ins) with a $100 \mathrm{mV} /$ div deflection factor and an input R of at least $50 \mathrm{k} \Omega$ and would be used in the horizontal compartment of a 7000 Series oscilloscope mainframe.

ENVIRONMENTAL CHARACTERISTICS

Shock - Nonoperating: 30 g 's, $1 / 2$ sine, 11 ms duration in each direction along each major axis. Total of six shocks.
Ambient Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: 5000 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Vibration - Operating: 15 minutes along each of the three major axes. $0.04 \mathrm{~cm}(0.015 \mathrm{in})$ p-p displacement 10 Hz to 50 Hz to 10 Hz in one minute cycles. Held for three minutes at 50 Hz .

7CT1N

Curve Tracer

PHYSICAL CHARACTERISTICS				
	5CT1N		7CT1N	
Dimensions	mm	in	mm	in
Width	66	2.6	71	2.8
Height	127	5.0	127	5.0
Depth	305	12.0	368	14.5
Weights	$\mathbf{k g}$	lb	kg	lb
Net	0.8	1.8	1.1	2.5
Shipping \approx	1.8	4.0	2.7	6.0

5CT1N Curve Tracer
\$1,050
Includes: Test adaptor with two sets of test terminals, one with TO5 basing and the other with TO18 basing (013-0128-00); instruction manual (070-1246-00).
7CT1N Curve Tracer
$\$ 1,740$
Includes: Same as 5CT1N but with instruction manual 070-1247-00.

See 3 -pin adaptors on preceding page.

2N3904 transistor characteristic generated by the 7CTIN. Control Settings are indicated on front panel of TCTIN. Vertical: $2 \mathrm{~mA} / \mathrm{div}^{2}$.
Horizontal: $0.5 \mathrm{~V} / \mathrm{div}$.
Base Current: $10 \mu \mathrm{~A} /$ step.

ACCESSORIES

THE ABCs OF PROBES

This comprehensive booklet on signal acquisiton probes contains sections on understanding probe specifications and applications and sections on how to select the best probe for your application. Easy to use charts and tables speed the selection process.

For your free copy, ask your Tektronix Sales Engineer for Literature 60W-6053 or call tollfree in the USA 1-800-426-2200. In Oregon, call collect (503) 627-9000.

CONTENTS
Cameras \& Adaptors 404
Digital Photometer/Radiometer 417
Carts .. 422
Probes .. 425
Isolation Accessories 436
Probe Accessories 446
Adaptors and Connectors 448
Mounting Accessories 450
Viewing Accessories451

SヨI4OSSヨOOV

CONTENTS
Reference 404
Camera/Adaptor Selection/ Comparison Guides 406, 407
C-4 408
C-7 410
C-30 Series 412
C-50 Series 413
C-59A 416

A camera can be a key part of your measurement system. It allows you to capture single events and document your results, and it helps you communicate your results with clarity and credibility. The following pages give information to help you select a camera well suited to your needs.

MOUNTING ADAPTORS

The table on page 406 indicates the camera adaptors required for most Tektronix instruments and a few by other manufacturers. In some cases, adaptors are available from Hewlett-Packard or others to mount Tektronix cameras to their instruments.

VIEWING

The C-30 Series and the C-50 Series are hinge mounted and can be swung aside to allow a wide-angle view of the CRT. The light-weight C-5C and C-7 can easily be removed to view the CRT or you can use the viewing door in the flash unit. C-5C's and C-7's without a flash have a large lift-up viewing door in its place. The C-50 Series cameras have an off-axis viewing hood that can accommodate eyeglasses for a comfortable binocular view of the CRT display while excluding ambient light.

GRATICULE LIGHTING

Most scopes have graticule illumination. For those that do not, an image of the graticule may be obtained by using the flash on the $\mathrm{C}-5 \mathrm{C}$ or C-7 Cameras, or a storage scope's background illumination (flood guns).

LENSES

Tektronix camera lenses differ mainly in light gathering ability, magnification, and field of view.

Speed

The f-number of a lens inversely signifies its aperture area and light gathering ability. For example: the aperture area of an $\mathrm{f} / 1.4$ lens is four times that of an $f / 2.8$ lens of the same magnification and gathers four times the light. The relative light gathering ability of all lenses used in Tektronix cameras is referenced to the $f / 1.9,0.85$ magnification lens which is arbitrarily rated at 1.0 . For recording a stored or stable recurrent CRT display, a lens as slow as the $\mathrm{f} / 16$ type used in the C-5C and the C-7 Cameras is adequate. However, to record a fast, dim, sin-gle-sweep trace, you may need a lens as fast as the $\mathrm{f} / 1.2$ types used in the $\mathrm{C}-31 \mathrm{~B}$ and C-51 Cameras.

Field of View

The description for each camera includes a statement of its field of view; this signifies how large a CRT display the camera can fully record. It is determined by the combined effects of the magnification and angular field of view of the lens, any fieldlimiting apertures in the camera adaptor, camera body, film holder, and the image area of the film. (See "Maximum Magnification" chart on this page.)

Magnification

The rated magnification of a lens signifies its image-to-object ratio. For example, if a scope has a magnification of 0.85 then for every square centimeter on the CRTs face the camera would record 0.85 square centimeter of image on the film.
Modern optical technology has made possible wide-aperture, wide-angle, flat-field lenses with short focal length for more compact cameras. To realize their inherent low distortion, high resolution, and uniform focus, these fixed focal length lenses must be used at their design center magnification.
Operating such lenses at a different magnification tends to compromise their important performance characteristics. For this reason, most Tektronix cameras are designed for use at one lens magnification. One exception is the C-30B Camera which has a magnification range of 0.7 to 1.5 (at some increase in distortion at the magnification extremes) to accommodate several portable oscilloscopes that have displays ranging in size from $3.8 \mathrm{~cm} \times 6.3 \mathrm{~cm}$ to $8 \mathrm{~cm} \times$ 10 cm .

For maximum resolution, the lens should produce the largest complete image possible within the image area of the film. The film most widely used for oscilloscope trace recording is Polaroid Type 667 pack film which has an image area of $73 \mathrm{~mm} \times$ 95 mm . In most cases, the magnification is selected to provide the largest possible complete image of a particular display. An exception is in high writing speed applications where a 0.5 magnification lens is usually used to achieve higher writing speed by concentrating the trace light in a smaller area of the film. See chart below.

SHUTTERS

Of the two available types of shutters, mechanical shutters are simple to operate and are economical. They are actuated by pressure on a release mechanism. Electrical shutters permit remote, automatic, or manual release and offer higher reliability. They may be actuated by an insulated switch closure.

POWER REQUIREMENTS

C-5C

The C-5C uses four AA alkaline batteries.

C-7

There are three choices of power with the C-7: battery pack that holds eight AA alkaline batteries; ac power supply; or remote power.

C-50 Series

The C-51 and C-53 electric shutters require +15 volts, normally supplied by a 7000 Series oscilloscope. An optional battery pack (016-0270-02) is available for situations where one of these cameras is used on a non-7000 Series instrument. These shutters can be actuated by a switch closure to ground. The C-59A has internal batteries or uses power from the 7000 Series mainframe.

FILMS

Polaroid films are the most convenient to use. They offer the advantages of development in seconds to a finished dry print with wide spectral response, good resolution, and high sensitivity. ASA ratings do not necessarily give a true indication of how a film will respond in CRT recording due to the narrow spectral output range of most phosphors and different spectral sensitivity of various film types. See table on page 405 for listing of Polaroid films. Wet process, roll, or cut films can be used if the proper back is selected. (See the respective camera for optional backs.)
Manufacture of Polaroid 410 ROLL film, ASA 10,000, has been discontinued. Polaroid 612 PACK film, ASA 20,000, is now available for most high speed applications. 612 film requires a PACK FILM BACK, see "Optional Accessories" section of the camera for part numbers.
Technical assistance with Polaroid film and back questions or problems is available directly from The Polaroid Corporation. Call 1-800-225-1618 toll free within U.S.

MAXIMUM MAGNIFICATION NEEDED TO RECORD ENTIRE SCREEN				
Screen Size	$5 \mathrm{~cm} \times 6.3 \mathrm{~cm}$	$7.2 \mathrm{~cm} \times 9 \mathrm{~cm}$	$8 \mathrm{~cm} \times 10 \mathrm{~cm}$	$9.76 \mathrm{~cm} \times 12.2 \mathrm{~cm}$
Polaroid $31 / 4$ in $\times 41 / 4$ pack and roll film	1.0	1.0	$0.85^{* 1}$	$0.67^{* 1}$
4 in $\times 5$ in films				

${ }^{* 1}$ Preferred magnification ratio for the screen size, and to fill most of the usable image area of the film type.

FILM BACKS

Depending on your application you can choose from a wide variety of cameras and backs．Backs within a series are inter－ changeable．（See the specific camera for information on a particular back．）
STANDARD AND OPTIONAL FILM BACKS AND HOLDERS AVAILABLE FROM TEK

Tek Modified	C－30 Series	C－50 Series	C－4， C－5C，C－7
$31 / 4$ in $\times 41 / 4$ in pack	Std on ＂P＂ models	Std on ＂P＂ models	Noninter－ changeable （C－5C \＆C－4）
Roll＊1	Yes＊1	Yes＊1	NA
4 in $\times 3$ in AutoFilm＂	NA	NA	C－7 Only
Graflok－Type＊2 Interface	Optional＊2 Back	Std on＊2 ＂G＂ Models	NA
Polaroid $31 / 4$ in $\times 41 / 4$ in pack holder	Yes	Yes	
Polaroid 4 in $\times 5$ in single sheet holder	Yes	Yes	
Polaroid 4 in $\times 5$ in pack holder＊3	$* 3$	$* 3$	
120 mm roll	Yes	Yes	
70 mm roll	Yes	Yes	
4 in $\times 5$ in cut film holder＊4	＊4		

＊1 Polaroid is gradually reducing the number of its roll films．Replacement roll backs are available in limited quantities from Tektronix．
＊2 Requires one of the film holders listed in order to be useable．
＊3 Will work but available only from Polaroid．
＊4 Will work but not available from Tek，see your local camera store．

PHOTOGRAPHIC WRITING SPEED
Photographic writing speed signifies the ability of a particular oscilloscope／camera system to provide a useful photographic record of a fast single－sweep trace．It is stated as an oscilloscope performance characteristic and is expressed in $\mathrm{cm} / \mu \mathrm{s}$ or $\mathrm{cm} / \mathrm{ns}$ ．It is designed to answer the ques－ tion，＂What is the speed of the fastest sin－ gle－sweep trace the system can record？＂All statements of writing speed must specify the measurement conditions，including the CRT phosphor and film used，and the defini－ tion of a readable trace image．

WSEN（Writing Speed Enhancer）diffuser with control box．

Increasing Writing Speed

Film fogging is a technique for increasing the maximum sensitivity of photographic
film by giving it a short exposure to dim， diffuse light．The Tektronix Writing Speed Enhancer（WSEN）is designed to fill this need．
The enhancer installs in minutes，and can be triggered in three ways；by a pushbutton on the control box；remotely，with a switch closure to ground（such as provided by the camera－shutter x－sync switch）；or by the os－ cilloscope－sweep＋gate．The WSEN is powered by two 9 V batteries（not included） which are inside the control box．
The film can be fogged before，after，or while the sweep occurs．The techniques are respectively called prefogging，postfogging， and simultaneous fogging．Of these modes， simultaneous fogging provides the greatest gain in writing speed．Automatic，simulta－ neous fogging is easily achieved by trigger－ ing the enhancer with the oscilloscope－ sweep＋gate．
For more information on photographing high speed signals request Application Note 42W－5335－1．

POLAROID FILM		RELATIVE FILM WRITING SPEED	
ASA Equiv－ alent Speed	Type	Unfogged	Using a WSEN Fogged
3,000	667,107, 084,47	1 （Reference）	$3^{* 2}$
20,000	$612^{* 4}$	>2	$>3.5^{* 2}$

＊1 Polaroid 612 PACK film，ASA 20，000，is now available with faster writing rate than previous 410 ROLL film．
＊2 Value depends on film，scope，CRT，camera and the operator．

The more commonly used Polaroid films for each type of camera back are listed below．Shaded text indicates preferred films．

		Development				CRT Recording Uses						
Film Type	ASA Equivalent Speed	Time （Seconds at $75^{\circ} \mathrm{F}$ ）	Format	Resolution （Line Pairs／mm）	Characteristics	Repet－ itive	Stored	Single Sweep	Video Dis－ play（Gray Medical）	Scintilla－ tion Type Displays	Color Displays	Scanning Electron Microscope

611＊1	200	45	Positive Print	20	Low Contrast，Wide Gray Scale				\checkmark	\checkmark		\bullet
612	20，000	30	Positive Print	20 to 25	High Contrast			\checkmark				
$665 * 4$	75	30	Negative	160 to 180	Medium Contrast，Wide Gray Scale	$\bullet \times 4$	$\bullet \cdot 4$		＊＊4			v
			Positive Print	14 to 20								
107	3000	15	Positive Print	16 to 20	Medium Contrast	－	－	－	－			
084	3000	15	Positive Print	16 to 22	Medium Contrast	\bullet	ν		－	ν		
$667^{* 1}$	3000	30	Positive Print	11 to 14	Medium Contrast	\checkmark	r	－	－	v		\checkmark
669	80	60	Color Positive Print	11 to 14	Balanced for Color－Electronic Flash	\bullet			－		\checkmark	

$\overline{\mathrm{T}-331_{* 5}^{*}+3}$	400	60	Positive Print	20	Medium Contrast， Extended Gray Scale	－	－		\checkmark	\checkmark		\checkmark
T－336＊1＊6	100	60	Negative Transparency	40 to 100	Medium Contrast， High Resolution				\checkmark			－
T－339＊＊2	640	>60	Color Positive Print＊2	7 to 9	Medium Contrast， High Speed Color				$\bullet 2$		v＊2	
SHEET FILMS－Actual Image Area $9.0 \mathrm{~cm} \times 11.4 \mathrm{~cm}(31 / 2 \mathrm{in} \times 41 / 2 \mathrm{in})$												
55			Positive Print	22 to 25								
$55 \mathrm{P} / \mathrm{N}$	50	20	Negative	150 to 160	Medium Contrast，Wide Gray Scale	－	－		－			
57	3000	15	Positive Print	16 to 20	Medium Contrast	\checkmark	\checkmark	－	－			
$\begin{aligned} & 552 \\ & (8 \text { Pack) } \end{aligned}$	400	20	Positive Print	20 to 25	Medium Contrast	\bullet	\bullet		\checkmark			v

Polaroid Roll Film Backs are no longer available from Tektronix on new cameras．Polaroid still manufacturers some roll films．．．Call their toll free number 1－800－225－1618 for film availability．

[^47]＊4 Allow prints to be made from negative，good for documentation or publications．
${ }^{* 5}$ Available from Tektronix．See page 411.
${ }^{* 6}$ Available in 1986.

CAMERA AND MOUNTING ADAPTOR SELECTION GUIDE

Where two or more cameras are recommended, compare features and specs to optimize for your application.

OSCILLOSCOPE OR DISPLAY DEVICE	RECOMMENDED CAMERAS			MOUNTING ADAPTOR PART NUMBERS			
	HIGH WRITING RATE	GENERAL PURPOSE	LOW COST	C-4*11	$\stackrel{C-5 C}{C-7}$	$\begin{gathered} \text { C-51, C-53, C-59A, } \\ \text { C-27, C-28 } \end{gathered}$	$\begin{aligned} & \mathrm{C}-30 \mathrm{~B}^{* 13}, \\ & \mathrm{C}-31 \mathrm{~B}^{* 13} \end{aligned}$
5000 Series							
5100 Series Nonstorage***3 i.e.; 5110, 5112, D10, D12, 577/D1, 5116		C-59A	$\begin{gathered} \mathrm{C}-4 \text { Opt } 02^{* 11} \\ \text { C-5C; C-7, }-7 \text { Opt } 01 \\ \hline \end{gathered}$	122-0895-01*11	016-0357-01	016-0249-06	Not recommended
$\begin{aligned} & \hline 5100 \text { Series Storage }{ }^{*+* 4} \text { i.e.: } \\ & 5111,5111 \mathrm{~A}, 5113,5115 \\ & \text { D11, D13, D15, 577/D2 } \\ & \hline \end{aligned}$		C-59A	$\begin{aligned} & \text { C-4 Opt 02**11 } \\ & \text { C-5C } \\ & \text { C-7. C-7 Opt } 01 \\ & \hline \end{aligned}$	122-0895-01*11	016-0357-01	016-0249-06	Not recommended
$\begin{aligned} & \text { 5400 Series Nonstorage }{ }^{* * *} \text { i.e.; } \\ & 5403 / D 40,5440,5444, D 40 \\ & \hline \end{aligned}$		C.59A	C-4 Opt 02: C-5C; C-7, C-7 Opt 01	122-0895-01*11	016-0357-01	016-0249-06	$\begin{aligned} & \text { Not } \\ & \text { recommended } \end{aligned}$
$\begin{array}{\|l\|} \hline 5400 \text { Series Storage }{ }^{* 2+4} \text { i.e.; } \\ 5403 / D 41,5441, \text { D41 } \\ \hline \end{array}$	C-51	C-53	$\begin{gathered} \mathrm{C}-4 \mathrm{Opt} 02 \\ \mathrm{C}-5 \mathrm{C} ; \mathrm{C} 7, \mathrm{C}-7 \text { Opt } 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	016-0248-01
5223*1		C-59A	$\begin{gathered} \text { C-4 Opt } 02 \\ \text { C-5C; C-7, C-7 Opt } 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	Not recommended
7000 Series							
$8 \mathrm{~cm} \times 10 \mathrm{~cm}$ Display*${ }^{13}$ i.e. 7104,7503 , R7103, 7504, 7514, 7613N, 7623, $7633,7704(A), 7834,7844,7854$, R7903, 7904, 7904A, T922R*2	$\begin{gathered} \text { C-51 } \\ \text { C-31B Opt 01••10 } \end{gathered}$	$\begin{gathered} \text { C-53 } \\ \text { C-30B Opt } 01 * 10 \\ \hline \end{gathered}$	C-4 Opt 02 C-5C C.5C Opt 01 C.7. C. 7 Opt 01	122.0895-01	016-0357-01	016-0249-06	016-0248-01
Large Screen Display i.e.;* $7403,7603,7603 \mathrm{~N}$		C-59A	C-4 Opt 02 C-5C; C-5C Opt 01 C-7, C-7 Opt 01	122-0895-01	016-0357-01	016-0249-06	$\begin{gathered} \text { Not } \\ \text { recommended } \end{gathered}$
Portables ${ }^{\text {+5 }}$							
Older with 0.8 cm Graticule i.e:; 422, 453, 454, 485	C.31B	C-30B	C-4	122-0894-01	No adaptor	No adaptor*5	016-0306-01
Newer w/1 cm Graticule i.e.,*7 2235 Option 01; 455, 464, 465, 465B, 465M,466, 468, R468, 475, 475A, $432,434,442$	C-31B Opt 01	C-30B Opt 01	C-4; C-7 Opt 02; C-7 Opt 03 C-5C Opt 02 C-5C Opt 04	122-0894-01	016-0359-01	No adaptor*5	016-0269-03
1 cm Nonilluminated Graticule; $2213(\mathrm{~A}), 2215(\mathrm{~A}), 2220,2230,2235,2236$			$\begin{gathered} \hline \text { C- } 7 \text { Opt } 02 \\ \text { C. } 5 \mathrm{C} \text { Opt } 04 \\ \hline \end{gathered}$		016-0359-01	No adaptor*5	016-0269-03
$\begin{array}{\|l\|} \hline 1 / 4 \text { inch Graticule i.e.. }{ }^{* *+12} \\ 305,314,326,335,336,1501,1502 \\ \hline \end{array}$		C-30B Opt 01*10	C-4 Opt 03*4		No adaptor	No adaptor*5	016-0327-01
TM 500 i.e.; SC 502, SC 503, SC 504*4		C-30B Opt 01*10			No adaptor	No adaptor*5	016-0327-01
Nonilluminated Graticule:*8 2335 , 2336, 2336YA, 2337			$\begin{gathered} \mathrm{C}-7 \mathrm{Opt} 02^{* 8} \\ \mathrm{C}-5 \mathrm{C} \text { Opt } 04^{* 8} \\ \hline \end{gathered}$		016-0359-01	No adaptor*5	No adaptor
Display Monitors							
$\begin{array}{\|l\|} \hline 8 \mathrm{~cm} \times 10 \mathrm{~cm}^{22 \times 3} \text { i.e.; } \\ 601,602,605,606,606 B, 607 \\ \hline \end{array}$		C.59A	$\begin{gathered} \mathrm{C}-4 \text { Opt } 02 \\ \mathrm{C}-5 \mathrm{C} ; \mathrm{C}-7, \mathrm{C}-7 \text { Opt } 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	016-0248-01
Large Screen $10 \times 12 \mathrm{~cm}$ i.e..* 603, 604, 608, 620, 624, 634		C-59A	$\begin{gathered} \mathrm{C}-4 \text { Opt } 02 \\ \mathrm{C}-5 \mathrm{C} ; \mathrm{C}-7, \mathrm{C}-7 \mathrm{Opt} 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	Not recommended
Older 5 Inch Round* ${ }^{\text {2 }}$							
$\begin{aligned} & \begin{array}{l} 502,503,504,515,516,519,530 \text { \& } \\ 540 / 550 / 580 \text { Series, } 575 \end{array} \\ & \hline \end{aligned}$	C-51***	C-53 ${ }^{+2 \times 10}$	C-59A* ${ }^{10}$		No adaptor	016-0225-04	016-0243-00
Older 5 Inch Rectangular* ${ }^{2}$							
560 Series i.e:**2 561, 564, 567, 568		C-53 ${ }^{2+10}$	C-59A* ${ }^{10}$		No adaptor	016-0224-01	016-0244-00
Television Products							
380, 381		C-30B Opt 01*10	C-4 Opt 03	122.0896-01	No adaptor	No adaptor	016-0327-01
520, 520A, 521, 521A, 522A*1		C-59A* 10			No adaptor	016-0295-01	No adaptor
1480 C		C-53*10	C-59A*** 10		No adaptor	016-0342-00*9	No adaptor
528A*2, 1420, 1421, 1422, 1424**2		C-59A	$\begin{gathered} \mathrm{C}-4 \mathrm{Opt} 02 \\ \mathrm{C}-5 \mathrm{C} ; \mathrm{C}-7, \mathrm{C}-7 \mathrm{Opt} 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	016-0248-01
$\begin{aligned} & 1710 \mathrm{~B}, 1711 \mathrm{~B}, \\ & 1740,1741,1742,1750 \\ & \hline \end{aligned}$		C-30B Opt 01	C-4; C-7 Opt 02; C-7 Opt 03 C-5C Opt 02; C-5C Opt 04	122-0894-01	016-0359-01	No adaptor*5	016-0269-03
Spectrum Analyzers							
491*5		C-30B			No adaptor	No adaptor*5	016-0306-01
492, 492P, 494, 494P, 496, 496P		C-59A	$\begin{gathered} \text { C-4 Opt } 02 \\ \text { C-5C: C-7, C-7 Opt } 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	016-0249-06	016-0248-01
Others							
576, 5030, 5031		Only C-59(A) ${ }^{+10}$			No adaptor	$\begin{gathered} 016-0288-01 \\ \text { [C-59(A) only] } \\ \hline \end{gathered}$	No adaptor
OF150, OF151, OF152, OF235 TDR			$\begin{gathered} \mathrm{C}-4 \mathrm{Opt} 02 \\ \text { C-5C: C-7, C-7 Opt } 01 \\ \hline \end{gathered}$	122-0895-01	016-0357-01	$\begin{gathered} \text { Not } \\ \text { recommended } \end{gathered}$	Not recommended
1240***8			C-4 Opt 11	122-0898-01	$\begin{gathered} \text { Not } \\ \text { recommended } \end{gathered}$	Not recommended	Not recommended
T900 Series, excluding T922R, (see 7000 Series)**8			$\begin{aligned} & \hline \text { C-5C Opt } 03 \\ & \text { C- } 7 \text { Opt } 04 \\ & \hline \end{aligned}$		016-0358-01	No adaptor*5	No adaptor
308			C-4 Opt 03	122-0896-01			

* Only cameras with <0.7 magnification can record the entire screen area of a $10 \times 12 \mathrm{~cm}$ display.
${ }^{*}{ }_{2}$ These scopes do not have camera power. The C-51 and C-53 may be used only if powered with 016-0270-02 battery pack
${ }^{*}{ }_{3}$ These scopes do not have illuminated graticules w/o mod.
*4 Though these scopes do not have illuminated graticules the graticule may be photographed using storage flood guns on storage models.
*s Due to physical configuration the C-50 Family cannot be mounted.
${ }^{-6}$ Must use f/22 or f/32 to get enough depth of field for good focus
* ${ }^{7}$ A corrector lens is required to increase cameras field of view so that the full $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRT display area can be recorded. The camera should be changed from standard to Option 01. To do this order 016-0301-01 for the standard C-30B or 016-0269-04 for the standard C-31B. These kits include the mounting adaptor and corrector lens.
${ }^{* 8}$ These scopes have no CRT bezel, therefore a camera cannot be mounted. A hand held C-5C, C-7, or C-4 can obtain a
\therefore The C-59A may be used with 016-0224-01, however the image size is reduced.
* 10 Adaptor not included with camera. Order adaptor separately.
*" Use on scopes with graticule illumination or bistable storage.
* ${ }^{12}$ Scopes do not have graticule illumination.
${ }^{*}$ I3 C-30 Series may cut off the first and last small graticule "tick" marks on some scopes.

Camera	C-51	C-53	C-59A	C-30B	C-31B	C-5C	C-4	C-7
Features	Fastest writing speed Adjustable film \& shutter speed Built-in view port Remote shutter actuation interchangeable film backs Single sweep mode	General purpose for instruments with $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRTs Adjustable film \& shutter speed Built-in view port Remote shutter actuation Interchangeable film backs Single sweep mode	General purpose for CRTs up to $61 / 2$ inches; low cost Adjustable film \& shutter speed Built-in view port Internal batteries Interchangeable film backs	Continuously variable magnification Dual swingaway hinge for viewing the CRT Easy operation Interchangeable film backs Compact size	Max writing speed for portable scopes Dual swingaway hinge for viewing the CRT Easy operation Interchangeable film backs Compact size	Low cost, mounts on most scopes Graticule illuminator Viewing door Easy to use Fixed focus OEM pricing available	Lowest priced Tek camera, hand held Easily interchangeable hoods Scope and video hoods Easy to use Fixed focus OEM pricing available	Motorized film back Auto developing prints. Uses Polaroid AutoFilms Audible indicators Remote shutter activation Fixed focus OEM pricing available
Lens Apertures	$\mathrm{f} / 1.2$ to f/11	f/1.9 to f/16	$\mathrm{f} / 2.8$ to f/16	$\mathrm{f} / 1.9$ to f/16	$\mathrm{f} / 1.3$ to f/16	f/16 fixed	$\mathrm{f} / 4.5$ to f/32	f/16 fixed
Magnification	0.5	0.85	0.67	Variable: 0.7 to 1.5 (0.8 w/Opt 01)	0.5 (0.43 w/Opt 01)	0.67 or 0.85	$0.80,0.70,0.85$ depending on hood used	0.67 or 0.85
Relative light gathering	3.0	1.0	0.65	$\begin{gathered} 1.0 \\ \text { (0.9 w/Opt 01) } \\ \hline \end{gathered}$	$\begin{gathered} 2.7 \\ (2.9 \text { w/Opt 01) } \\ \hline \end{gathered}$	0.02	$\begin{aligned} & 0.14(0.85 \mathrm{mag}) \\ & 0.18(0.70 \mathrm{mag}) \end{aligned}$	0.02
Field of view with Polaroid pack (cm)	8×10 (Opt 01)		10.2×12.7	$\begin{gathered} 8 \times 10 \\ 7 \times 9 \text { std } \end{gathered}$		$\begin{gathered} 9.8 \times 12.2 \text { or } \\ 8 \times 10 \end{gathered}$	$\begin{gathered} 9.1 \times 11.87(\mathrm{std}) \\ 10.4 \times 13.5(\mathrm{Opt} \mathrm{O}) \\ 8 \times 10(\mathrm{Opt} 03) \end{gathered}$	$\begin{aligned} & 8.1 \times 10.7 \text { or } \\ & 10.3 \times 13.8 \end{aligned}$
Resolving Power: at center: lines/mm	30 or better		10 or better	at $1: 1$ 25 or better	30 or better	6 or better		
at corners: lines/mm	15 or better		4 or better	10 or better	15 or better	3 or better		
Shutter Type	Electrical, $1 / 60$ to 4 s (bulb, time, single sweep), remote shutter actuation, x-sync, scope " + gate" input		Mechanical, $1 / 125$ to 1 s (bulb and time) x-sync			Electrical, $1 / 10$ to 5 s , (Time Mode)	Mechanical $1 / 125 \mathrm{~s}$ to 1 s (bulb), x-sync	Electronic Actuated $1 / 10$ to 5 s , (Time Mode)
Film backs	Polaroid pack standard with " P " models, Graflok back standard with " G " models			Polaroid pack standard with "P" models, Graflok back available (016-0487-00)		Polaroid pack Noninterchangeable		Polaroid AutoFilmT Noninterchangeable (CB-33)
Options			Adaptor frame \& corrector lens kit for 576 \& 5030, reduces magnification to 0.5 , order 016-0288-01.	01 Provides the corre (016-0269-03) for with $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ Also includes a co for optical correct	ct adaptor ek portables displays. rector lens n.	See page 416 for specific selections of options.	01 (0.85 mag) 02 (0.80 mag) 03 (0.70 mag) 11 (8.3 in diagonal) 12 (12.5 in diagonal) See page 409 for specific selections	See Page 411 for specific selections.
Optional Accessories	Mounting adaptors, battery pack (for C-51, C-53), writing speed enhancer (one for each model), Polaroid pack film back, Graflok 4 in $\times 5$ in back and film holders, x-sync connector, carrying case, foot switch (for C-51 and C-53).			Mounting adaptors, writing speed enhancer, Polaroid pack film back, Graflok 4 in $\times 5$ in back and film holders, and carrying case x-sync cable, portra lens (for C-30B only)		Mounting hood adaptors, flash unit, viewing door	Scope and video adaptor hoods, color filter kit (122-0909-00)	Film, foot switch Mounting hood adapt ors, flash unit, battery pack, 110 ac or 220 ac power supplies
Page	413	413	415	412	412	416	408	410
Price Begin At	\$2,360	\$1,940	\$1,335	\$1,480	\$1,700	\$495	\$370	\$595

CAMERA MOUNTING ADAPTOR AND HOOD PART NUMBER AND PRICES

016-0217-00
016-0223-01
016-0224-01
016-0225-04
016-0226-01
016-0228-01
016-0243-00
016-0244-00
016-0248-01
016-0249-06*
016-0263-00 016-0269-03
016-0269-04*

016-0295-01 016-0295-01 016-0299-00 016-0301-01*3 016-0306-01*4 016-0327-01 016-0342-00 $016-0357-01 * 5$ 016-0358-01*6 016-0359-01*7 122-0894-01*8 122-0896-01*9 $122-0896-01^{* 10}$
* 1 Included with C-50 Series Cameras
*2 Adaptor \& lens included with C-31 B Option 01 Cameras.
*3 Adaptor \& lens kit included with C-30B Option 01 Cameras.
*4 Included with Standard C-30B, C-31B Cameras.
*5 Included with C-5C and C-5C Option 01 Cameras
* 6 Included with C-5C Option 03 Cameras.
*7 Included with C-5C Option 02 and Option 04 Cameras.
${ }^{*}$ Included with C-4 (Standard).
*9 Included with C-4 Opt 02.
* 10 Included with C-4 Opt 03.

POLAROID REPLACEMENT ROLLER

ASSEMBLIES FOR PACK FILM BACKS

If your roller assembly is solid gray or two-tone gray. Order 401-0304-00
If your roller assembly is red and black
Order 401-0303-00
Note: Because of mechanical differences, both roller as semblies are incompatible with each other's back.

ACCESSORIES FOR OLDER TEKTRONIX CAMERAS

C-12, C-19, C-13, C-27
These cameras are no longer produced by Tektronix. However due to customer need for a Pack Film Back these are now available. The Pack Film Back accepts the Polaroid pack film. ($31 / 4$ inch $\times 4 \frac{1 / 4}{}$ inch). Order 122-0671-01
Mounting Adaptors for C-12
C-12 to 7000 Series and 5000 Series.
Order 016-0299-00
C-12 to $530,540,550$ Series.
Order 016-0226-01
C-12 to 560 Series rectangular CRTs
Order 016-0217-00
Writing Speed Enhancer for C-12, C-27
Provides controlled film fogging to increase writing speed by $3 X$ for 3000 ASA film and $>3.5 \mathrm{X}$ with 20,000 ASA film. Installs in minutes. Order 016-0280-02
Carrying Case for C-12, C-27
Order 016-0208-01

Standard C-4 Hand-Held Camera

Hand-Held Operation

No Focusing Required
Four Element f/4.5 Glass Lens System
Mechanical Shutter
Adapts to Most Tektronix and Non-Tektronix Scopes and CRT Displays

Five Easily Interchangeable Scope Hoods
Two Large Hoods for Video Screens
OEM Pricing Available

A camera can be a key part of your measurement system. It allows you to capture events, document the results, and it helps to communicate the results with clarity and credibility.
The C-4 is a high quality CRT documentation camera at an affordable price. The C-4 is an easy-to-use hand-held camera system that uses Polaroid instant pack films which develop in seconds, giving you immediate results. The C-4 is ideal for the lab, classroom, medical facility, TV studio, or design bench. Two video hoods allow instant prints to be made from many common video CRTs.

A Snap to Use

Anyone can take sharp, quality instant pictures after just a few minutes of familiarization with the camera and manual. No photographic skill or training is required!

Portable

The C-4 is hand-held, thus easily moved between test locations without having to remove mounting hardware.

For easy handling, the contoured pistol grip includes a trigger button for the shutter release.

Tektronix and Non-Tektronix Product Compatibility

The five easily interchangeable hoods allow the C-4 camera to fit most Tektronix and non-Tektronix oscilloscopes and CRT displays.
The C-4 is recommended for scopes with either illuminated graticules or bistable storage displays. On nonilluminated graticule scopes the C-4 will only record the waveform.*1
For Tektronix products compatibility see page 406.
For other Tektronix products not listed on page 406, and non-Tektronix oscilloscopes and CRT-based products, refer to mechanical and field of view compatibility below.
${ }^{* 1}$ The Tektronix C-5C Camera, with flash, is recommend ed for scopes that do not have an illuminated graticule.

Hood Selection

The hood is a key part of the C-4 system since it places the camera at the correct distance from the CRT screen, blocks out ambient light, and has a built-in corrector lens to properly focus the image and sets the magnification ratio. Each hood has two snap locks to insure quick interchangeability.

Mechanical Compatibility

It is suggested that the hood's front lip dimensions be used as a guide when determining physical compatibility (see Adaptor Hood Selection Guide on next page). Note: Hoods can fit around the CRT bezel or they can fit against the CRT's face, inside the bezel.

Field of View Compatibility
Check to see that the hood selected provides a large enough field of view (how large a CRT display the camera will fully record). Refer to Scope Hood Selection Guide on the next page.

C-4 VIDEO PRODUCT COMPATIBILITY GUIDE

Ths following lists compatibility currently tested. Please refer to page 409 for determining compatibility on products not listed.

DISPLAY	C-4 VIDEO HOOD	
	Opt 11	Opt 12
Tektronix: 4104(A), 4105(A), 4106(A), 4107(A)		\checkmark
Ann Arbor Ambassador ${ }^{+1 * 4}$		\checkmark
Apple II Monitor G0905	\checkmark	
Apple MacIntosh Display	v	
Compac "Plus" ${ }^{2}$	\checkmark	
DEC VR-241*1		\checkmark
DEC MATE II VR-201A*2*3*4		\checkmark
Heathkit H-19*2		v
IBM PC Jr. Monitor 4863*1		\checkmark
IBM Color PC Monitor 5153		\checkmark
IBM PC Portable	v	
NEC JB-1201M Monitor		\checkmark
Panasonic TR-930 Monitor	\checkmark	
Quad Chrome Color Monitor		\checkmark
Sony KV1217 Color Monitor		\checkmark
Tandy Color Monitor 16-230	\checkmark	
Zenith ZVM-122*2	\checkmark	
Zenith ZVM-121*2*4		\checkmark
Zenith ZVM-135		\checkmark

${ }^{*}$ ' Cuts off some of the CRT.

* 2 Tends to have soft focus.
${ }^{* 3}$ Possible light leaks since CRT has less curvature than the hood.
*4 Optical distortion more noticeable.
Note: Will not work on:
- Tek: 4025, 4027, or 4050 Series.
- Tandy Computers with built-in CRTs.
- Apple llc Monitor A2M2010.

For additional hoods see next page.

Special pricing terms and conditions are available fo qualified OEMS. Contact your local Tektronix representative for complete information.

C-4 Camera Body with Hoods; (Left to Right) Option 12, Option 11, Option 02, standard and Option 03.

CHARACTERISTICS

Aperture - $\mathrm{f} / 32$ to $\mathrm{f} / 4.5$ (continuously variable).
Lens - Four glass elements.
Focal Length - 105 mm nominal (without hood).
Magnification - Dependent on hood. See Adaptor Hood Selection Guide at right.
Resolving Power - At Center: At least 6 lines $/ \mathrm{mm}$. At Camera: At least 3 lines $/ \mathrm{mm}$.
Relative Light Gathering Ability - See Adaptor Hood Selection Guide on this page.
Field of View - Dependent on hood. See Adaptor Hood Selection Guide on this page.
Shutter - Mechanical; $1 / 125 \mathrm{~s}$, to 1 s , and bulb.
Synchronization - X-sync switch closure occurs when the shutter reaches its fully open position.

PHYSICAL CHARACTERISTICS

Dimensions	mm	in
Width	180	7.4
Height (w/pistol grip	236	9.3
Height (w/out pistol grip	119	4.7
Depth (w/std hood)	363	14.3
Depth (w/out std hood)	185	7.3
Weights \approx	kg	lb
Net w/std hood	1.0	2.1
Net w/out std hood	0.8	1.8

ORDERING INFORMATION

(One hood included, additional hoods must be purchased separately. See chart at right.) C-4 Camera
Includes: Body; Pistol Grip (122-0901-00); hood (122-0894-01); operator manual ($070-5000-01$).

OPTIONS

Option 01 - Delete Hood (Body only).
-\$45
Option 02 - Substitute 122-0895-01 Hood.
NC
Option 03 - Substitute 122-0896-01 Hood.
Option 11 - Substitute 122-0898-01 Hood.
NC

Option 12 - Substitute 122-0899-01 Hood.

ADDITIONAL C-4 ADAPTOR HOODS
Extend the C-4's flexibility with additional snap-on Hoods

Scope Hoods												
	Dimensions*1						Relative Light Gath- ering	Field of View ${ }^{* 1}$ (cm)	Magni- fication	Hood Net Weight		Hood Price only
	Nominal Front Lip				HoodLength*2*5							
Scope Hood	Height*3		Width*3									
Part Number	mm	in	mm	in	mm	in				kg	Ib	
$\begin{aligned} & \text { 122-0894-01 } \\ & (\mathrm{w} / \mathrm{Std} \mathrm{C}-4) \\ & \hline \end{aligned}$	108	4.2	122	4.8	178	7.2	0.15	9.1×11.87	0.8	0.1	0.3	\$45
$\begin{aligned} & \text { 122-0895-01 } \\ & \text { (w/ Opt 02) } \\ & \hline \end{aligned}$	132	5.2	143	5.6	206	8.1	0.18	10.4×13.5	0.7	0.2	0.4	\$55
$\begin{aligned} & \text { 122-0896-01 } \\ & \text { (w/Opt 03) } \\ & \hline \end{aligned}$	80	3.2	100	3.9	171	6.8	0.14	$8.0 \times 10.0 * 2$	0.85	0.1	0.3	\$55

Video Hood Part Number	Video Hoods													
	Dimensions*1										Magni- fica- tion	Hood Net Weight		Hood Price only
	Nominal Front Lip				Diagonal				$\begin{gathered} \text { Hood } \\ \text { Length*5 } \end{gathered}$					
	Height		Width		Inside		Outside							
	mm	in		kg	lb									
$\begin{aligned} & \text { 122-0898-01 } \\ & \text { (w/Opt 11) } \\ & \hline \end{aligned}$	$127^{* 3}$	$5.0 * 3$	$168{ }^{* 3}$	$6.6 * 3$	211	8.3	213	8.4	257	10.1	0.55	0.3	0.7	\$79
$\begin{aligned} & \text { 122-0899-01 } \\ & \text { (w/Opt 12) } \end{aligned}$	$186 * 4$	$7.3^{* 4}$	$262 * 4$	$10.3 * 4$	318	12.5	323	12.7	404	15.9	0.35	0.6	1.4	\$98

${ }^{\text {* } 1}$ Nominal dimensions.
${ }^{* 2}$ I mage size is limited by front opening of the hood.
${ }^{* 3}$ For outside dimensions add $0.30 \mathrm{~cm}(0.12 \mathrm{in})$ to each value. Each wall thickness nominally is $0.15 \mathrm{~cm}(0.06 \mathrm{in})$.
${ }^{* 4}$ For outside dimensions add 0.14 in to each value. Each wall thickness nominally is 0.07 in.
${ }^{* 5}$ From mounting surface to front lip.

OPTIONAL ACCESSORIES
Split-Image Focus Plate - Fits into the pack film back (with no film loaded, useful to determine if image is properly in focus and entirely within the camera's field-of-view. Order 387-0893-02
Color Filter Kit - Consists of 40.5 mm screw-in 85B filter, corrects the color film balance for most color CRTs. Order 122-0909-00
For recommended films, see page 405.

C－7
Motorized Back
Automatic Print Ejection and Development
Uses New Integral AutoFilm＂from Polaroid
No Focusing Required
Reliable，Electronically Activated Remote or Manual Shutter

Audible Indicators
Protective Circuitry
Battery or AC Power Supply Operation
Snap－on Print Holder
Graticule Flash on Some Versions
OEM Pricing Available

The Tek C－7 Auto－eject Camera deliv－ ers hands－off hard copies in seconds．
This new general purpose CRT camera in－ corporates Polaroid＇s new AutoFilm＇m system that includes a motorized camera back， three new integral films and a snap－on hold－ ing chamber．
The camera automatically ejects the film af－ ter each exposure．Once ejected，the film develops in about 60 seconds to a clean， dry，print or transparency．No trimming， peeling or coating is necessary．Prints or transparencies can be collected in the snap－on holder（which is required for the first 30 seconds of transparency film development）．

The C－7 was designed so that the user will not have to handle prints until they are com－ pletely developed．This is especially impor－ tant in medical or clean room applications where film handling may cause chemical contamination．Another benefit is that the rollers will not have to be cleaned as often since the chemicals are contained inside the print．

The Lens／Shutter System is a snap
 to use．

Shutter speed is the only control which re－ quires adjustment on the C－7．The fixed－fo－ cus glass $\mathrm{f} / 16$ lens system delivers sharp prints．The reliable electronic shutter as－ sures accurate exposures．Some versions of the camera have a flash in the hood to illuminate displays that do not have graticule illumination．
The camera is externally powered by a de－ tachable battery pack（held by two velcro strips），an AC power supply，or your own power source．

An advanced feature set brings a new standard of convenience to photo－ graphic recording．

The C－7 has audible indicators that beep af－ ter last exposure，and after each exposure when the input voltage is low．
The camera can be operated by the manual shutter or by an optional foot switch via the remote shutter input jack．
Protective features include：voltage regula－ tion，overcurrent foldback protection and under voltage warning（buzzer）．

Magnification can be changed by reversing the lens／shutter module and the spacer modules positions．
Mounting and dismounting is easily accom－ plished on instruments with Tek－style bezels．
You＇ll find the built－in CRT viewing door handy when setting up for a picture．
There is even a built－in exposure counter in the camera back！

Polaroid AutoFilm＂

The Tektronix C－7 Camera System uses Po－ laroid＇s AutoFilm＂＇exclusively．These integral films were especially developed to work in Polaroid＇s motorized AutoFilm＂back which the C－7 uses：
（Note：the AutoFilm＂＇film packs do not con－ tain internal batteries as Polaroid consumer films）．
Type 331 （ASA 400）is a black－and－white extended gray－scale film for video image re－ cording，providing prints that reproduce the full range of black－and－white densities dis－ played on video monitors and scope CRTs． Type 331 film is available from Tektronix－ see＂optional accessories＂section．
Presently there is not a high－speed film available，therefore the C－7＇s applications may be slightly limited．（Faster film（s）may be available from Polaroid in 1986．）
Type 336 （ASA 100）is a black－and－white high resolution negative transparency film． （It is scheduled for availability in 1986．）
Type 339 （ASA 640）is a high－speed color print film for reproducing color CRT dis－ plays．（The color film provides a print with a reversed or mirror image unless the CRT screen image is electronically reversed be－ fore making the exposure．This is a function of the film design，not the C－7．）
The AutoFilm＂＇s usable image area is 4 in x 3 in，though the actual image size will de－ pend on the magnification and the size of the display．
The 10 exposure film packs mean fewer film changes for you．When the C－7 ejects the last print，the camera will automatically pro－ duce an audible tone for about 1 second．

Product Compatibility

The C－7 camera can be mounted on most models of Tektronix oscilloscopes and small monitors，using the same hoods as the C－5C．See page 406 for compatiblity chart．
Non－Tek displays can be photographed if the product uses a Tek style bezel，or if the camera is held up to the CRT．
Your local Tek representative has selected listings of non－Tek products that are com－ patible with the C－7．The best test is to actu－ ally try one on your display．

[^48]

Shown above: C-7 and options. Rear left to right: Standard C-7, with Option 01, with Option 02, with Option 03, with Option 04, with Option 05, with Option 20, OEM camera with view ports. Front left to right: Print holding chamber, foot switch, battery pack, service manual, 220 V ac power supply, 110 V ac power supply.

CHARACTERISTICS Optional/Mechanical

Relative Aperture - Fixed at $f / 16$.
Magnification Factor - 0.67 or 0.85 .
Lens - Three glass elements.
Relative Light-Gathering Ability - 0.02
Field of View (Nominal) $-8.1 \mathrm{~cm} \times 10.7 \mathrm{~cm}$ (13.4 cm diagonal) at 0.85 mag ; or $10.3 \mathrm{~cm} \times$ 13.8 cm (17.3 cm diagonal) at 0.67 mag.

Shutter - Electronic Actuated: $1 / 10$ to 5 s , open shutter mode.
Remote Shutter Jack - Open collector TTL compatible (for use with foot switch).
Time Between Shots $-\approx 4 \mathrm{~s}$ (plus shutter time).
Audible Indicators (Buzzer) - Out-of-Film Warning: After tenth print is ejected, buzzer will sound for approximately one second. Low or High Voltage Warning: Buzzer will sound during the film-eject cycle when the batteries start to get weak.
Status Outputs - Various status outputs (switch closures and openings) such as "end of film," "dark slide," etc., are available only as a modified product.

POWER REQUIREMENTS

The C-7 requires external power from an ac power supply, battery pack, or a customer supplied source via a Lemo connector.
Voltage -8 V to 12 V . (Can be configured for 5 V to 12 V , see service manual.)
Current - Idle: $\approx 1 \mathrm{~mA}$. Maximum: 3 A for 10 s .
Mechanical Interface - Lemo type connector (cable end connector, Tektronix part number 131-0778-00).

POWER SUPPLIES (OPTIONAL)

110 V (119-1847-02) — Output Voltage: 9.5 V nominal. Output Current: 1.5 A nominal, 3 A peak. Line Voltage: 90 V ac to $132 \mathrm{~V} \mathrm{ac}, 50 \mathrm{~Hz}$ to 60 Hz nominal.
220 V (119-1847-03) - Output Voltage: 9.5 V nominal. Output Current: 1.5 A nominal, 3 A peak. Line Voltage: 180 V ac to 250 V ac, 50 Hz to 60 Hz nominal.

Battery Pack (016-0799-01) - Number of Cells: Eight. Type of Cells: Alkaline or NiCad AA. (Batteries not included, velcro strips included.)

PHYSICAL CHARACTERISTICS		
Std C-7 $\mathbf{w} /$ Flash Dimensions \approx	mm	in
Width	180	7.1
Height to top of flash	196	7.7
Height with Chamber	264	10.4
Depth	251	9.9
Weights \approx	$\mathbf{k g}$	lb
Net	1.3	3.7
Shipping	2.6	5.8

Hoods - Uses C-5C adaptor hoods. Refer to hood's dimensions on page 416.

[^49]
OPTIONS

Option 01 - 016-0357-01 Hood and no Flash. $\quad-\$ 30$
Option 02 - 016-0359-01 Hood and Flash.
NC
Option 03 - 016-0359-01 Hood and no Flash. \quad - $\$ 30$
Option 04 - 016-0358-01 Hood and Flash. NC
Option 05 - 016-0358-01 Hood and no Flash.
Option 20 - Camera Body Only, no Flash or Hood.
-\$30
$-\$ 20$
Option 30*2 - With 016-0799-01 Battery Pack (batteries not included).
$+\$ 20$
Option 31*2 - With ac Power Supply (110 V).
Option 32*1*2 - With ac Power Supply $(220 \mathrm{~V})$.
$+\$ 50$
*' Requires a power cord (not included) which will have the correct plug for the particular country. See right.
${ }^{*}{ }^{2}$ One of each power source can be ordered.

INTERNATIONAL POWER PLUG OPTIONS

(Required for 220 V Ac Power Supply)
Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 161-0066-09
$\$ 6.50$
UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$. Order 161-0066-10 $\mathbf{\$ 1 1}$
Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 161-0066-11
Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Order 161-0154-00

OPTIONAL ACCESSORIES

Type 331 Film
Bundle, 3 twin packs (60 prints).* ${ }^{* 1}$
Case, 10 twin packs (200 prints).*
Extra Print Holding Chamber -
Order 122-1039-00
$\$ 5.00$
Foot Switch with 8 ft Cable -
Order 260-1189-02
\$22.50
Extra Battery Pack with Lemo Connector Batteries not included. Order 016-0799-01
Lemo Connector for Power-In -
Order 131-0778-00
Ac Power Supplies - 8 ft cable with Lemo Connector.

$110 \mathrm{~V} \mathrm{ac} \mathrm{Version} .\mathrm{Order} \mathrm{119-1847-02}$	$\mathbf{\$ 5 0}$
220 V ac Version. Order 119-1847-03*2	$\mathbf{\$ 5 5}$

Service Manual - C-7 Camera Order 070-5051-00*1

* ${ }^{1}$ Contact your local sales office.
*2 Requires power cord from list at top of column.
FOR ADDITIONAL HOODS, GRATICULE FLASH UNIT, OR Large viewing door see c-5C Optional accessoRIES SECTION ON PAGE 416.

OEM terms available on this product.

C-30 series

Adaptable to Many Instruments
Standard Models Cover $0.8 \mathrm{~cm} /$ div CRTs
Optimized for $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRTs (Option 01)
Continuously Variable Magnification (C-30B)
Writing Speed Enhancer Available
Reduced Image Size with C-31B (0.5 Mag) Interchangeable Backs
Swings Away for CRT Viewing
The standard versions of the C-30B and C-31B are primarily for use on the older 400 Series portables that have $0.8 \mathrm{~cm} / \mathrm{div}$ CRTs. (Mounting adaptor, 016-0306-01, is included.)
The Option 01 models are the same cameras except that a slip-on corrector lens is used for coverage of $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ displays, and a different mounting adaptor (016-026903 for 2400 Series, 465 , etc.) is included.
The C-30B/C-31B cameras can be used on some 7000 and 5000 Series lab scopes (with $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ displays); 300 Series; Sony/Tek portables; as well as some 600 Series monitors. See Camera Selection Guide on page 406 for compatibility information.
Dual swing-away hinges allow the camera to be swung out of the way, either to the left or right, for direct viewing of the CRT. The cameras are focused, using a split-image focus plate placed inside the Polaroid back. Graflok back cameras use the back's (Graflok) built-in viewing glass.

C-30B

The C-30B is a versatile, general purpose camera for scopes that have $0.8 \mathrm{~cm} / \mathrm{div}$ CRTs. The C-30B offers a highly reliable mechanical shutter and an f/1.9 lens. It is the only Tektronix oscilloscope camera that features continuously variable magnification
(from 0.7 to 1.5) giving you greater photographing flexibility. This version is recommended for the 453, 454, 485 and 491.

C-30B option 01

The C-30B Option 01 offers an expanded field of view. The $\mathrm{f} / 1.9,0.8$ magnification lens covers an $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRT screen without vignetting. This camera is recommended for the 2400 Series, $455,464,465,465 B, 466,468$, 475, and 475A oscilloscopes.
NOTE: The C-30B w/corrector lens is optimized for use at 0.8 mag only.

C-30B CHARACTERISTICS

Specifications are the same for the $\mathrm{C}-30 \mathrm{~B}$ and C-30B Option 01 unless otherwise noted.
Aperture - Variable from $\mathrm{f} / 1.9$ to $\mathrm{f} / 16$.
Magnifications - Variable from 0.7 to 1.5 , (0.8 magnification on Option 01 with $\mathrm{C}-30 \mathrm{~B}$ set to 1.0 magnification).

Resolving Power - (at 1:1 magnification). Center: At least 25 lines $/ \mathrm{mm}$. Corners: At least 10 lines $/ \mathrm{mm}$.
Relative Light-Gathering Ability - 1.0 (0.9 on Option 01).
Shutter - Mechanical; $1 / 125$ to 1 s ; bulb and time. Synchronization Output - X-sync contact closure.
Field of View - Standard: $7.0 \mathrm{~cm} \times 9.0 \mathrm{~cm}$. Option 01: $8.0 \mathrm{~cm} \times 10.0 \mathrm{~cm}$.

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	191	7.5
Height	130	5.1
Depth	254	10.4
Weights \approx	kg	lb
Net	2.2	4.8
Shipping	4.1	9.0

C-31B

This camera's $\mathrm{f} / 1.3,0.5$ magnification lens offers the fastest writing speed for 2400 and 400 Series oscilloscopes. The 0.5 magnification means that the image size on the print will be approximately one half of the C-30Bs. The C-31B is for $0.8 \mathrm{~cm} / \mathrm{div}$ CRTs (453, 485, 491, 454).

C-31B option 01

The C-31B Option 01 offers an expanded field of view. This $f / 1.2,0.43$ magnification lens system has a relative light-gathering ability of 2.9 covering CRT screens up to $8 \mathrm{~cm} \times 10 \mathrm{~cm}$. It is recommended for the 2400 Series, 455, 464, 465, 465B, 466, 468, 475, and 475A oscilloscopes.

C-31B CHARACTERISTICS

Specifications are the same for the $\mathrm{C}-31 \mathrm{~B}$ and C -31B Option 01 unless otherwise noted.
Aperture - Variable from $\mathrm{f} / 1.3$ to $\mathrm{f} / 16$.
Lens Speed - f/1.3
Resolving Power - At Center: At least 30 lines $/ \mathrm{mm}$. At Corners: At least 15 lines $/ \mathrm{mm}$.
Magnification - Fixed at 0.5 (0.43 on Option 01)
Relative Light-Gathering Ability - 2.7 (2.9 on Option 01).
Shutter - Mechanical; 1/125 to 1 s ; bulb and time. Synchronization - X-sync contact closure.
Field of View - Standard: $7 \mathrm{~cm} \times 9 \mathrm{~cm}$. Option 01: $8 \mathrm{~cm} \times 10 \mathrm{~cm}$.

PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	231	9.1
Height	140	5.5
Depth	269	10.6
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	3.1	6.8
Shipping	5.4	11.0

ORDERING INFORMATION

(" P " denotes that the camera has a 3 in $\times 4$ in pack film back. All models include Polaroid pack film back)
C-30BP Camera
$\$ 1,480$
Includes: Polaroid pack film back (122-0752-02); splitimage focus plate (387-0893-02); mounting adaptor (016-0306-01); instruction manual (070-2825-00).
Option 01 - Expanded Field of View.
Includes: Sames as C-30BP except it comes with 016-0269-03 mounting adaptor instead, plus corrector lens (352-0341-01).
C-31BP Camera $\$ 1,700$
Includes: Same as C-30BP, except instruction manual 070-2869-00 instead
Option 01 - Expanded Field of View.
$+\$ 44$
Includes: Same as C-31BP except it comes with 016-0269-03 mounting adaptor instead, plus corrector lens (122-0980-00).

CONVERTING OPTION 01 MODEL

 TO STANDARD MODELThe Option 01 versions of the $\mathrm{C}-30 \mathrm{~B}$ and $\mathrm{C}-31 \mathrm{~B}$ Cameras can be converted to standard models by simply slipping off the corrector lens, removing the mounting adaptor, and adding an 016-0306-01 mounting adaptor. Refer to pages 406-407 for compatibility and price.

CONVERTING STANDARD MODEL TO OPTION 01 MODEL

A standard-model C-30A/B or C-31B can be converted to an Option 01 model by means of a conversion kit which contains a mounting adaptor (016-0269-03) plus the appropriate corrector lens (see Option 01's "Included Accessories").
Standard C-30A/B to Option 01
Order 016-0301-01
Standard C-31B to Option 01. Order 016-026904

Writing Speed Enhancer - (For C-30A/B and $\mathrm{C}-31 \mathrm{~B}$) Increases effective film speed about 3 X for 3000 speed film. Now supports 20,000 ASA (612) film. Installs in minutes. See page 405. Order 016-0284-02
Polaroid Pack Film Back - Accepts Polaroid 3 in $\times 4$ in pack film for $\mathrm{C}-30 \mathrm{~A}$ and C -30B. Included with "P" models. (Focus plate included.) Order 122-0752-02
Split-Image Focus Plate - Included with " P " models. Order 387-0893-02
Graflok Type 4 in $\times 5$ in Back - Accepts Polaroid Land 4 in $\times 5$ in film holders, standard cut film holders, filmpack adaptors, roll film holders (except heavy motorized roll film holders). Order 016-0487-00
See below for film holders which are required for operation.
Carrying Case - Molded high-impact plastic case with polyurethane foam liners to protect your camera in transit. 18.5 in $\times 14.5$ in $\times 8$ in. Order 016-0587-00
X-Sync Cable — Order 012-0364-01
Portra Lens - A slip-on auxiliary lens which extends the focus distance of the camera so it can be used for off-scope photography of scenes such as test set-ups. At a maximum distance of 21 in the camera covers 19 in \times 21 in. Usable with either the C-30B or C-30B Option 01(but not with the C-31A or C-31B). Order 016-0246-02
\$35

OPTIONAL FILM HOLDERS FOR GRAFLOK TYPE BACKS
 (C-50 Series " G " Models

or C-30 Series with Graflok Back)
Cameras with Graflok type backs must have a film holder in order to be functional.
Here are several holders*1 that allow the use of roll film, or 4 in $\times 5$ in Polaroid films. Order these holders from Tek, the manufacturer, or from your local camera store.

Polaroid Land \#545 4 in x 5 in Film Holder

- For Polaroid 4 in $\times 5$ in Single Exposure Film

Packets. Order 016-0201-01
RH/10 120 Roll-Film Holder - Ten exposures $21 / 4$ in $\times 23 / 4$ in for 4 in $\times 5$ in Graflok backs. Order 122-0736-01
RH/50 $\mathbf{7 0} \mathrm{mm}$ Holder - Fifty exposures, $21 / 4$ in $\times 21 / 4$ in for 4 in $\times 5$ in Graflok backs only. Order 122-0967-00
Roll film holders are also manufactured by several other companies.

* 1 Other film holders and adaptors ($4 \mathrm{~cm} \times 5 \mathrm{~cm}$ cut film, pack film, or roll film) are available at local camera store.
The following film holders are available only through Polaroid (1-800-225-1618 in the U.S.).
Polaroid \#550 Film Holder - For Polaroid 4 in $\times 5$ in pack films. Holder fits most 4×5 cameras and instruments equipped with Graflok backs, which accept conventional 4 in $\times 5$ in film holders.
Polaroid \#405 Film Holder - For Polaroid $31 / 4$ in x $41 / 4$ in pack films. Holder fits most 4 in $\times 5$ in cameras or instruments equipped with Graflok backs, which accept conventional 4 in $\times 5$ in film holders.

C-50 Series Features

Electronic-Actuated Shutter (C-51, C-53)
High Resolution Images
Photometer Exposure Aid
Range-Finder Focusing
Interchangeable Film Backs
Swings Away from Scope

The Top of the Line

The three C - 50 Series cameras are designed for use with all Tektronix 7000 Series oscilloscopes, and can be adapted to fit most 5000 Series oscilloscopes as well as other Tek instruments. Full selection of film backs, and adjustable film and shutter speeds give you the flexibility you need to best record your measurements. The photometer exposure aid, similar to light meters used in conventional photography, provides an easy way to approximate the correct exposure for repetitive or stored traces.

X-sync connectors allow the camera shutter to trigger the event. And the camera's builtin viewing tunnel lets you see what's on the display when the camera is in place.
The camera shutter ($\mathrm{C}-51$ and $\mathrm{C}-53$) is electrically actuated, open and close, by shutter button, or remotely through a remote input connector located on the side control panel.
When the C-50 Series camera is used with the Tektronix 7000 Series oscilloscopes, a three-pin connector in the oscilloscope bezel applies power to the camera and receives from the camera a pulse for resetting the oscilloscope sweep when the oscilloscope and camera are both in single-sweep modes. Also, when the oscilloscope and camera (C-51 and C-53 only) are in the sin-gle-sweep mode, the "+ gate" output from the oscilloscope can be applied to the "+ gate" input connector on the camera to close the shutter five seconds after the end of the oscilloscope sweep.

The C-51 and the C-53 are available in ruggedized versions. Contact your Tektronix sales office for further details.

C-51

Fastest Writing Speed
Reduced Image Size (0.5 Mag) On Print
Remotely Controllable Shutter
Foot Switch Available
Writing Speed Enhancer Available

This camera offers the fastest writing speed of any Tektronix oscilloscope camera. The $\mathrm{f} / 1.2$ lens shoots images at 0.5 magnification, clearly capturing fast transients or single sweeps, although at some expense to the image size on the film. The C-51's electric shutter can operate at speeds ranging from $1 / 60$ to 4 seconds, and offers bulb, time, and single sweep modes by manual or remote control.

C-51 CHARACTERISTICS

Aperture - Variable from f/1.2 to f/16.
Magnification - 0.5 .
Resolving Power - Center: At least 30 lines $/ \mathrm{mm}$. Corners: At least 15 lines $/ \mathrm{mm}$.
Field of View $-8 \mathrm{~cm} \times 10 \mathrm{~cm}$ (with pack film).
Relative Light-Gathering Ability - 3.0.
Shutter - Electric; $1 / 60$ to 4 s , bulb, time, and single sweep modes, manual or remote control. Scope's "+ gate" is used for shutter actuation.

Power Requirement - + 15 V from 7000 Series oscilloscopes, or an optional battery pack for non7000 Series instruments (see next page).
Synchonrization — X-sync switch closure.

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Width	248	9.8
Height	292	11.5
Depth	273	10.8
Weights \approx	$\mathbf{k g}$	lb
Net	4.3	9.5
Shipping	6.8	15.0

C-53

Medium Speed
General Purpose Camera with 0.85 Mag
Remotely Controllable Shutter
Foot Switch Available
Writing Speed Enhancer Available

The C-53, with a 0.85 mag lens, provides the largest practical image of an $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRT display on Polaroid $3^{1 / 4} \times 4^{1 / 4}$ pack film. Its $\mathrm{f} / 1.9$ lens and 0.85 magnification offer somewhat slower writing speed than the C-51. This camera's electric shutter offers speeds ranging from $1 / 60$ to 4 seconds, and can be operated manually or remotely in bulb, time, or single sweep mode.

C-53 CHARACTERISTICS

Aperture - Variable from f/1.9 to f/16.
Magnification - 0.85 .
Resolving Power - Center: at least 30 lines $/ \mathrm{mm}$. Corners: at least 15 lines $/ \mathrm{mm}$.
Field of View - $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ (with pack film). Relative Light-Gathering Ability - 1.0 .
Shutter - Electric; 1/60 to 4 s , bulb, time, and single sweep modes, manual or remote control. Scope's "+ gate" is used for shutter actuation.
Power Requirement - + 15 V from 7000 Series oscilloscopes, or an optional battery pack for non7000 Series instruments (see next page).
Synchronization Output Jack - X-sync switch closure output.
Field of View - $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ (with pack film).
PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	191	7.5
Height	292	11.5
Depth	273	10.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	2.4	7.5
Shipping	5.4	12.0

For Ordering Information see next page.

C-59A

For Larger CRTs (0.67 Mag)
Mechanical Shutter
Lowest Priced C-50 Series
Writing Speed Enhancer Available
Photometer Exposure Aid
Range-Finder Focusing
Internal Battery or External Power

This camera is designed for CRTs up to $6^{1 / 2}$ inches ($10.2 \mathrm{~cm} \times 12.7 \mathrm{~cm}$ field of view with Polaroid pack film). With the use of an adaptor frame/corrector lens optional accessory, the camera's field of view can be expanded to fully cover the $61 / 2$ inch CRT and adjacent scale readout characters of the Tektronix 576 Curve Tracer and the 5030 Series oscilloscopes. It is the only C-50 Series camera for the 7603. Many of the features of the high-priced C-50 Series cameras are standard on the C-59A: photometer exposure aid, range-finder focusing, bulb and time operating modes, x-sync contacts, and film back interchangeability.

C-59A CHARACTERISTICS

Aperture - Variable from $\mathrm{f} / 2.8$ fo $1 / 16$.
Magnification - 0.67 .
Field of View - $10.2 \mathrm{~cm} \times 12.7 \mathrm{~cm}$ (wider with optional 016-0288-01 adaptor frame/corrector lens).
Relative Light-Gathering Ability -0.65 .
Resolving Power - Center: At least 10 lines/ mm . Corners: At least 4 lines $/ \mathrm{mm}$.
Shutter - Mechanical; $1 / 125$ to 1 s ; bulb and time.
Synchronization - X-sync switch closure.
Power Requirement - Receives power (+15 V) from a 7000 Series oscilloscope, or from an internal battery pack, 8 AA size alkalines, (12 V) if used on a non-7000 Series oscilloscope.

PHYSICAL CHARACTERISTICS

PHYSICAL CHARACTERISTICS		
Dimensions	$\mathbf{m m}$	in
Width	193	7.7
Height	292	11.5
Depth	273	10.8
Weights \approx	$\mathbf{k g}$	$\mathbf{l b}$
Net	3.2	7.0
Shipping	5.0	11.0

ORDERING INFORMATION

" P " Models accept only Polaroid pack film. "G" Models have a Graflok type back that requires a film holder (see page 413 for film holders). C-59 does not include 8 AA size alkaline batteries.

C-51G

\$2,360
Includes: Mounting adaptor for all 7000,5000, and small 600 Series (016-0249-06); camera visor (337-0411-02); Graflok film back (122-0931-01) with intregral focusing screen; instruction manual (070-1011-03).
C-51P Camera
\$2,360
Includes: Same as C-51G except it has a Polaroid pack film back (122-0926-02) instead of Graflok film back, and a focus plate (387-0893-02).
C-53P Camera
\$1,940
Includes: Same as C-51P.
C-59AG Camera
Includes: Sames as C-51G except instruction manual (070-3632-00).
C-59AP Camera
Includes: Same as C-59AG.
C-59A Adaptor Frame w/Corrector
Lens Kit - Expands the field of view to fully cover the $61 / 2$ inch CRT and adjacent scale readout characters of the 576 Curve Tracer and 5030 Series oscilloscopes. The slip-on corrector lens (352-0293-00) reduces the effective magnification of the C-59 from 0.67 to 0.5 so it can record the entire display on Polaroid $31 / 2$ in $\times 41 / 2$ in film (for the C-59A camera only.) Adapts camera to 576,5030 , and 5031 . Order 016-0288-01

C-50 SERIES

OPTIONAL CAMERA ACCESSORIES
Mounting Adaptors - See page 406.
Battery Pack - Provides auxiliary +15 V power source for using the C-51, C-53 Cameras with oscilloscopes without camera power. A three-position mode switch on the battery pack also allows the camera to be powered from a 7000 Series oscilloscope or an external +15 V source. Includes three pin female connectors for external power in (131-0716-00). Net weight, including batteries, is 1.2 lb . Requires 8 AA size alkaline batteries (not included). Order 016-0270-02
Writing Speed Enhancer - Provides controlled film fogging to increase writing speed by $3 X$ for 3000 ASA film and $\geqslant 3.5 X$ with 20,000 ASA film. Installs in minutes. See page 405 for more information.
For C-51 Order 016-0279-02
For C-53 Order 016-0300-02
For C-59A Order 016-0290-02
X-Sync Connector Plug - Not shown. Order 134-0079-00
Foot Switch - For Remote Shutter Actuation of the $\mathrm{C}-51, \mathrm{C}-53$, with 8 ft cable. Order 260-1189-02
Carrying Case - Holds a complete C-50 Series camera with extra film backs and accessories. Order 016-0177-00
Polaroid Pack Film Back - Included with "P" models. Order 122-0926-02
Focus Plate - Included with "P" models. Order 387-0893-02

Graflok Type Film Back - Included with " G " models (see page 413 for film holders), accept Polaroid 4 in $\times 5$ in film holders, standard cut-film holders, film-pack adaptors, rollfilm holders* ${ }^{*}$ (except heavy motorized models). Includes integral focusing screen. Order 122-0931-01
${ }^{* 1}$ Other film hodlers and adaptors ($4 \mathrm{~cm} \times 5 \mathrm{~cm}$ cut film, back film, or roll film) are available at local camera stores.

Standard C-5C (with flash)
C-5C
Low Cost
Easy to Use
Mounts Onto Many Scopes and CRT-Based Instruments

Covers $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ or $9.8 \mathrm{~cm} \times 12.2 \mathrm{~cm}$ CRT Displays
Fixed Focus
Lightweight and Compact
Interchangeable Adaptor Hoods
Built-In Flash on Some Models
OEM Pricing Available

Maximum Performance at Minimum Cost

If your application does not required specialized photographic techniques, such as the capability to record single sweeps, this gen-
eral purpose camera may fill your needs at a low cost. The $\mathrm{C}-5 \mathrm{C}$ is lightweight and modular, with a reliable electronically activated shutter. The three-element $f / 16$ lens offers both 0.67 and 0.85 magnifications, either of which you can easily change by reversing the lens/shutter module and the spacer module positions.

Flash

A variable-intensity xenon flash that evenly lights CRTs with nonilluminated graticules comes on the $\mathrm{C}-5 \mathrm{C}$ and Options 03 and 04. It can be easily retrofitted on $\mathrm{C}-5 \mathrm{C}$ s that do not have it.

Viewing Door

Flash models have a small built-in door. Nonflash models replace the flash unit with a large lift-up viewing door ($016-0630-00$).

Adaptor Hoods

Comes standard with camera (see below), and additional hoods can be ordered separately. Easily changed by removing four screws inside hood.

Features	Standard C-5C		C-5C Option 01		$\begin{gathered} \text { C-5C } \\ \text { Option } 02 \end{gathered}$		$\begin{gathered} \text { C-5C } \\ \text { Option } 03 \end{gathered}$		$\begin{gathered} \text { C-5C } \\ \text { Option } 04 \end{gathered}$	
Flash Unit	\checkmark						\checkmark		\checkmark	
Large Viewing Door										
Adaptor Hood	016-0357-01		016-0357-01		016-0359-01		016-0358-01		016-0359-01	
Dimensions*1	cm	in								
Height Inside Outside	$\begin{aligned} & 13.0 \\ & 13.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.13 \\ & 5.38 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.7 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.13 \\ 5.38 \\ \hline \end{array}$	$\begin{aligned} & 10.5 \\ & 11.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.13 \\ 4.40 \\ \hline \end{array}$	$\begin{array}{r} 9.5 \\ 11.2 \\ \hline \end{array}$	$\begin{aligned} & 3.74 \\ & 4.41 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.13 \\ 4.40 \\ \hline \end{array}$
Width Inside Outside	$\begin{aligned} & 14.2 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 5.60 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 5.60 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 4.74 \\ & 4.99 \end{aligned}$	$\begin{aligned} & 11.8 \\ & 13.1 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 5.14 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 4.74 \\ & 4.99 \end{aligned}$
Compatibility	577, 600 Series with nonilluminated graticule, 1420 Series, 5100 Series		528, 600 Series without graticule or with illuminated graticule, 5400 Series, 7000 Series, T922R, Telequipment D83		$\begin{aligned} & 432,434,455,464, \\ & 465 B, 465 \mathrm{M}, 466, \\ & 468,475,475 \mathrm{~A}, \\ & 2400 \text { Series } \end{aligned}$		T900 Series(except T922R)		2200 Series with nonilluminated graticule	

[^50]Film
Uses Polaroid pack film, i.e., 667, 665 etc. See page 405 for other films.
Note: The C-5C and C-7 are separate camera systems, therefore a C-5C cannot be converted into a C-7 and vise versa. However, they do use the same hoods and flash assemblies.

OEM Quantities

The low-cost C-5C Oscilloscope Camera is available in OEM quantities.
Special pricing, terms and conditions are available to qualified OEMs. Contact your local Tektronix representative for complete information.

CHARACTERISTICS

Aperture - Fixed at $\mathrm{f} / 16$.
Lens - Three glass elements.
Magnification - 0.67 or 0.85 .
Field of View $-9.8 \mathrm{~cm} \times 12.2 \mathrm{~cm}$ (0.67 magnification) or $8.0 \mathrm{~cm} \times 10.0 \mathrm{~cm}$ (0.85 magnification). Relative Light-Gathering Ability -0.02 .
Shutter - Electronic; $1 / 10$ to 5 s ; time.
Power - The C-5C requires (4) AA alkaline batteries (not included). Battery holder inside camera.

PHYSICAL CHARACTERISTICS*1		
Dimensions	$\mathbf{~ m m}$	in
Width	168	6.6
Height	140	5.5
Depth	257	10.1
Weights \approx	$\mathbf{k g}$	lb
Net	1.4	3.0
Shipping		
* ${ }^{1}$ Standard C-5C.		
ORDERING INFORMATION		
C-5C Camera		

Includes: Adaptor hood (016-0357-01); flash unit (016-0642-02); instruction manual (070-2824-00).

OPTIONS

Option 01 - 016-0357-01 adaptor hood,
no flash
Option 02 - 016-0359-01 adaptor hood, no flash
Option 03 - 016-0358-01 adaptor hood with flash
Option 04 - 016-0359-01 adaptor hood with flash

OPTIONAL ACCESSORIES

Large Viewing Door - Fits all three mounting adaptor hoods. (Included with C-5C Options 01 and 02.) Order 016-0630-00
Graticule Flash Unit - Fits all three mounting adaptor hoods. (Included with C-5C and C-5C Options 03 and 04.) Order 016-0642-02
Additional Mounting Adaptor Hoods Requires flash unit or large viewing door. (C-5C and C-5C Option 01.) Order 016-0357-01
(C-5C Options 02 and 04.) Order 016-0359-01
(C-5C Option 03.) Order 016-0358-01

GLOSSARY

Photometry - The measurement of light visible to the human eye.
Radiometry - The measurement of light within the total optical spectrum.
Color Temperature - The temperature of a blackbody whose radiation has the same visible color as that of a given nonblackbody radiator. Usually expressed in ${ }^{\circ} \mathrm{K}$.

Foot-candle - Unit of incident illumination.
Foot-lambert - A unit of illumination emitted or diffusely reflected by a source.
Two additional units are commonly used-the lux (the metric unit of illuminance) and the nit (the metric unit of luminance).
1 foot-candle $=10.76$ lux
1 foot-lambert $=3.426$ nits
Illuminance - The amount of luminous flux through a unit of surface area and is usually measured in foot-candles (lumens/ft²).
Inverse Square Law - The decrease of light intensity with increasing distance. Twice the distance, reduces the illumination to one-quarter.

Irradiance - The amount of radiant flux received by a unit of surface area and is usually measured in watts/cm ${ }^{2 \star 1}$.
${ }^{* 1}$ Other units of irradiance such as $\mu W / \mathrm{cm}^{2}$ and W / m^{2} are also used extensively.
Lambert's Law - Describes the spatial characteristics of a perfectly diffusing surface which may be either emitting or reflecting light. The light emitted or accepted by such a surface decreases with angle (from perpendicular) according to the cosine of the angle.
Luminance - The amount of light emitted or scattered by a surface and is usually measured in foot-lamberts.
Photopic - Spectral (color) sensitivity of the average human eye, predominantly peaked in the yellow-green region.
Steradian - A unit of area on the surface of a sphere equal to the radius squared. There are 12.6 steradians total area on a sphere.
Spatial - The directional characteristics of light in space.
Spectral - The distribution of light by wavelength within an electromagnetic spectrum.

Note that each radiometric unit has a photometric equivalent differing only in spectral response of the sensor. However, the units are not interchangeable.

PROBE CHARACTERISTICS

Application		Illuminance		Irradiance	Luminance		Uncorrected	Red LED
Probe		J6501	J6511	J6502/J6512	J6503	J6523	J6504	J6505
Range	US*2	0.001 to 1999 footcandles* ${ }^{*}$	0.001 to 1999 footcandles	0.001 to 1999 microwatts/cm ${ }^{2}$	0.1 to 199,900 footlamberts*1	0.1 to 19,990 footlamberts* ${ }^{*}$	Relative response only	0.001 to 1999 footcandles* ${ }^{*} \dagger$
	Metric (Opt. $02)^{* 2}$	$\begin{aligned} & 0.01 \text { to } 19,990 \\ & \text { lumens } / \mathrm{m}^{2} \\ & \text { (lux) }{ }^{*+1} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \text { to } 19,990 \\ & \text { lumens } / \mathrm{m}^{2} \\ & \text { (lux) } \end{aligned}$	0.01 to 19.990 milliwatts/m²	$\begin{aligned} & 1 \text { to } 1,999,000 \\ & \text { candelas } / \mathrm{m}^{2} \\ & \text { (Nits)* }{ }^{*} \end{aligned}$	$\begin{aligned} & 1 \text { to } 199,900 \\ & \text { candelas } / \mathrm{m}^{2} \\ & (\text { Nits })^{* 1} \end{aligned}$	Relative response only	$\begin{array}{\|l} 0.01 \text { to } 19,990 \\ \text { lumens } / \mathrm{m}^{2} \\ \text { (lux) }{ }^{*} 1 \\ \hline \end{array}$
Accuracy (Including J16)		Within 5% of NBS standards and ± 1 digit in last place. Calibrated with a $3100^{\circ} \mathrm{k}$ tungsten halogen light source traceable to NBS		Same as J6501, except calibrated with a 762 nm filter	Within 5% of NBS standards and ± 1 digit in last place. Calibrated with a $3100^{\circ} \mathbf{k}$ tungsten halogen light source traceable to NBS		Probe-to-probe accuracy $\pm 5 \%$ with tungsten light source	Same as J6501, except calibrated with a 656 nm filter
Spec Resp		Within 2\% (integrated) of CIE photopic curve		Flat within $\pm 7 \%$ from 450 to 950 nm	Within 2% (integ photopic curve	rated) of CIE	UV enhanced silicon spectral curve (250 to 1200 nm)	Within 2\% (integrated) of CIE photopic curve from 600 to 710 nm
Acceptance Angle		50\% sensitivity at 48° off axis	Cosine corrected (180 ${ }^{\circ}$)	50\% sensitivity at 48° off axis	8°	1°	50\% sensitivity	t 48° off axis
Stability and Repeatability		Within 2\% per year						
Linearity		Within 2% over entire range enabling single point calibration						

${ }^{\text {*1 }}$ An additional decade of sensitivity is included and is
usable if the J 16 is carefully zeroed and used at a relatively stable temperature.
$\dagger 0.00001$ to 199.9 candelas when used with 014-0047-00 LED adaptor or at 3.8 inches source-to-sensor spacing. Luminous intensity readings of higher intensity light sources may be easily made at correspondingly greater distances using the formula: Footcandles $\times d^{2}=$ candelas where d is the distance from the source to the sensor in feet. (For metric readings use lux $\times d^{2}=$ candelas where d is distance from the source to the sensor in meters.) Request J16 Application Notes 58A-2635 and 58A-2704-1 for further information.

	U.S.METRIC CONVERSIONS		
	U.S. to Metric	Metric to U.S.	
Illuminance	$F C \times 10.764=$ Lux	Lu $\times 0.0929=F C$	
Luminance	$F 1 \times 3.426=$ Nits	Nits $\times 0.2919=F I$	

TYPICAL PROBE SPECTRAL CHARACTERISTICS

NOTE: C.I.E. stands for the International Commission on Illumination.

J-16 PROBE SELECTION GUIDE

The following flowchart is an aid in selecting J -16 probes. The applications for the probes are too numerous to list, but this should help in your selection.

J6511/J6501

Illuminance Probes
Typical Applications: Measurement of roadway illumination, office lighting, illumination of work surfaces, studio lighting, camera setup, and yellow and green LED testing.

The J6511 is an illuminance probe with readout in footcandles (lumens $/ \mathrm{m}^{2}$ (lux) for the J6511 Option 02). A multi-element glass filter and silicon photo-diode insure a close match to the CIE photopic curve (color corrected). The silicon-sensor recovery time is virtually instantaneous; low light levels can be measured immediately after exposure to bright sunlight.
The angular response is accurately cosine corrected, simulating an ideal 180° field-ofview detector. The low-profile probe has a leveling indicator to assure accurate measurements where a significant proportion of the illumination comes from sources at low angles to the horizon.
A 25 -foot cable between the probe head and J16 allows the user to be out of the field of view while making measurements.
Where cosine correction is not necessary, a standard probe is available (J6501) with the same photopic correction and units as the J6511. The J6501 with the LED adaptor can be used to measure green and yellow LEDs.

J16-TV System with J6502 being used for color monitor setup.

J6502/J6512
 Irradiance Probes

Typical Applications: Laser research experiments, measurements of radiant efficiency, color CRT set-up, and infrared LED testing.

The J6502/J6512 measure irradiance in microwatts $/ \mathrm{cm}^{2}$ (millwatts $/ \mathrm{m}^{2}$ with Option 02). The spectral response is flat from 450 nanometers to 950 nanometers, $\pm 7 \%$. The response is typically down 50% at 400 nm and 1030 nm .
An optional filter holder is available for the J6502 to mount standard 1 inch diameter customer-supplied filters of up to $3 / 8$ inch thickness. Where high intensity sources are used (over 1990μ watts $/ \mathrm{cm}^{2}$), neutral density filters can be used to extend the range
of the J16. (An ND 1 filter has 10% transmission, an ND 2 filter has 1%, etc.). These filters may be held with an optional filter holder.

Where the 1 sq cm sensor is not completely filled by the source for example with a laser beam, the reading obtained represents μ watt instead of μ watts $/ \mathrm{cm}^{2}$ or milliwatts $\times 10^{-4}$ instead of milliwatts $/ \mathrm{m}^{2}$ (Option 02). Small variations in sensor uniformity may add $\pm 5 \%$ uncertainty to this measurement.
The J6512 has a low-profile detector head that is at the end of a six foot cable. Longer cables can be ordered as a special modification.

J6503 8° Luminance Probe

Typical Applications: Measuring brightness of video screens, street signs, light reflected from work surfaces, and movie screens

The J6503 measures luminance in footlamberts (candelas $/ \mathrm{m}^{2}$ (nit) with Option 02) where light scattered or emitted by a surface must be measured. The probe is pointed at the emitting surface.
The probe's response is closely matched to the CIE photopic curve, assuring accurate results even when measuring spectrally different light sources.

The acceptance angle is approximately 8°, which is determined by internal field stop apertures. Providing that the 8° field is uniformly filled, the probe can be held at any distance from the source. At 21 inches from the front of the probe, the field of view is approximately three inches in diameter. The footlambert or candelas $/ \mathrm{m}^{2}$ (nit) (Option 02) indicator automatically lights when the J6503 is connected.

Measuring Luminance with the Tektronix J16/J6523.
J6523 1° Luminance Probe
Typical Applications: Measuring highway lighting, video displays, photographic equipment, and lighting equipment.

The J6523 will measure the luminance in foot-lamberts (candelas $/ \mathrm{m}^{2}$ with Option 02) of a spot as small as 0.32 inch in diameter. By using commercially available 55 mm stackable diopters, areas as small as 0.035 inch (+10 diopters) can be measured. These 55 mm diopters are physically similar to threaded 55 mm filters, and are available from most photography stores. (See application note 58AX-3252).
The 1° angle represents 0.21 inch per foot of distance from the probe to the source. Thus at 10 feet, the J6523 measures a 2.1 inch diameter spot.

The probe includes an optical sighting system with a 9° viewing field. The focusing range is 18 inches to infinity, closer with 55 mm close-up diopters. The spectral response is closely matched to the CIE photopic curve (color-corrected) for accurately measuring all commonly used light sources.
The J6523 may be attached to the J16 or used with an optional probe extension cable. A standard $1 / 4$ in $\times 20$ threaded socket allows it to be used on a tripod or an optical bench.

J6505 red LED Test Probe

Typical Applications: Measurement of light-emitting diodes (LED) having spectral outputs in the red region (600 nm to 710 nm).
Note: For yellow or green LEDs use the J6501 probe, for infrared LEDs use the J6502 probe.

The J6505 measures illuminance in footcandles (lumens $/ \mathrm{m}^{2}$ (lux) with Option 02), which can easily be converted into luminous intensity in candelas. (See application notes 58A-2635 and 58A-2704-1.)
An adaptor supplied with the probe provides a controlled spacing between the sensor and the LED under test. The adaptor excludes ambient light, and has internal baffles to prevent stray reflections during the measurement. Three inserts are supplied with the adaptor to fit common sizes of LEDs (0.080 inch, 0.125 inch, and 0.200 inch in diameter). These inserts are made of soft plastic that can be easily modified by the user.
With the adaptor in place, a reading of 1 footcandle on the J 16 represents 100 millicandelas of luminous intensity. With a metric version of the $\mathrm{J} 16 / \mathrm{J} 6505$ (Option 02), 1 lumen $/ \mathrm{m}^{2}$ represents 10 millicandelas. A 10X increase in sensitivity is available on special order.
In the J6505, the silicon photodiode-filter combination provides an excellent match to the photopic curve in the region 600 nm to 710 nm . This close match requires compromising in the 380 nm to 600 nm region making this probe unsuitable for general illuminance measurements. For LED measurements in the yellow or green region, the LED adaptor must be used with the J6501 and the same conversion factor for luminous intensity applies.

16504 Uncorrected Probe

Typical Applications: Checking light sources used in photoresist or photoprocessing applications, and comparisons of ultraviolet light sources.

This probe is designed for applications where only relative measurements need be made. The J6504 has the widest spectral range, and is the most sensitive probe. Use is made of a UV-enhanced silicon sensor and a UV-transmitting window rather than spectral-correction filters.
No units are indicated on the three front panel indicators when using the J6504, since it provides relative readings only.
An optional filter holder may be used to mount standard 1 -inch diameter filters on standard-configuration probes. Ultraviolet, visible, or near infrared filters can be used to select the wavelength of interest and exclude ambient light.
$J 16$ WITH ANALOG BCD OUTPUT (OPTION 07)

Option 07 sco/Analog output

The $\mathrm{J}-16$ is equipped with a 25 -pin connector on the unit's top. This provides parallel TTL logic anc BCD outputs, a "hold" input line (TTL), and an analog signal output (0 to -2 V or 0 to -6 V), depending on the range, for a full-scale readout. The analog bandwidth is approximately 0.8 Hz .
A cable-end connector and cover have been added to the accessories complement.

J16 probe used to measure pulsed light source.

CHARACTERISTICS

J16 Mainframe

(See Probes on previous pages)
Display - $3^{1 / 2}$-digit LED readout and three LEDs automatically indicating correct units for probe in use. Metric version readout is also available (Option 02).
Stability - Within 2\% per year.
Linearity - Within 2% over the entire range, enabling single point calibration.
Integration Time - $\approx 100 \mathrm{~ms}$.
Calibration - Electrical calibration of the J16 mainframe is performed by use of a calibrated voltage source or DVM traceable to NBS. Calibrated probes can be used with any J16 without additional calibration.

POWER REQUIREMENTS

Standard and Option 01 - Has internal rechargeable NiCad batteries that require 16 hours for a full charge. The J16 will operate nominally four hours continuously on a charge. The J 16 cannot be operated from the battery charger for continuous operation since the charging rate is $\approx 200 \mathrm{~mA}$, while the J 16 draws $\approx 400 \mathrm{~mA}$. For continuous operation an ac power supply is recommended.
Option 03 and Option 04 - Ac only operation, no internal batteries.

J-16 AND PROBES
 ENVIRONMENTAL CHARACTERISTICS

Ambient Temperature - Nonoperating: $-50^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Operating: $-15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Altitude - Nonoperating: To $15,000 \mathrm{~m}(50,000$
$\mathrm{ft})$. Operating: To 4600 m ($15,000 \mathrm{ft}$).
Humidity - Operating and Storage: Five cycles (120 hour) to 95% relative humidity at $40^{\circ} \mathrm{C}$. Referenced to MIL-E-16400F.
Vibration - Operating: 15 minutes along each of the three major axes at a total displacement of 0.025 in p-p (4 g 's) from 10 Hz to 55 Hz to 10 Hz in one minute cycles. Hold for three minutes at 55 Hz . All major resonances must be above 55 Hz .

| PHYSICAL CHARACTERISTICS
 WITH PROBE AND | |
| :--- | :---: | :---: |
| BATTERY PACK INSTALLED | |

J16 APPLICATION NOTES

These can be obtained from your local Tektronix representative.

DESCRIPTION	REQUEST NO
Photometry/Radiometry primer, and standardizing CRT measurements.	$60 \mathrm{~W}-5750$
Luminous intensity and visible LED measurements with the Tektronix J16 Photometer.	$58 \mathrm{~A}-2635$
Measuring pulsed light sources with the J16 and an oscilloscope.	$58 \mathrm{~A}-2702-1$
Radiant intensity and infrared emitting diode measurements.	$58 \mathrm{~A}-2704-1$
Television station applications for the J16 Photometer.	$58 \mathrm{AX}-2764-1$
Practical lighting measurements with the Tektronix J16.	$58 \mathrm{~A}-2912$
TV picture monitor color temperature adjustment using the Tektronix J16.	$58 \mathrm{~A}-2926-1$
Photographic exposure measurements with the Tektronix J16.	$58 \mathrm{AX}-3060-1$
Measuring the luminance of small areas of light with the J16 and J6523.	$58 \mathrm{AX}-3252$
Optical communications measurements.	$58 \mathrm{AX}-3602$

OPTIONAL ACCESSORIES

42 in Probe Extender Cable - Connects J16 to probe. Order 012-0414-02
\$105
Probe Extender Cables - Up to 30 ft in length are available on special order through your local Tektronix sales office.
Light Occluder - For TV color CRT balancing. Order 016-0305-00
Filter Holder - Mounts 1 in diameter filters, of up to $3 / 8$ in thickness ${ }^{* 1}$, to probes (except J6511, J6512, J6523). Order 016-0527-00
LED Adaptor - With 3 LED Holders (included with J6505). Order 014-0047-00
Tripod — Order 016-0253-00 \$135
${ }^{* 1}$ Filters available from vendors such as: ORIEL (203) 377-7877 or CORION CORP. (617) 429-5065 and others.
50 Hz to 400 Hz charge. $\quad \mathrm{NC}$ Includes: Same as J16/J16-TV except battery charger 119-0375-03 is substituted.
Option 02*1 - Metric Readout.
Option 03 - 115 V ac Only Operation, 50 Hz to 400 Hz .

NC
Includes: Ac power pack (119-0404-00); shoulder strap (346-0104-00); nonmetric version instruction manual (070-1879-00); or with Option 02, metric version instruction manual (070-1880-00).
Option $04-230 \mathrm{~V}$ ac Only Operation,
50 Hz to 400 Hz .
NC
Includes: Same as Option 03 except it has ac power supply 119-0404-01 substituted.
Option 07 - BCD/Analog Output. $\$ 80$

* 1 Option 02 must also be ordered for probes.

PROBES

J6501 Illuminance Probe
J6502 Irradiance Probe
J6503 8° Luminance Probe
J6504 Uncorrected Probe
J6505 LED Probe, Includes LED Adaptor and 3 LED Holders
J6511 Illuminance Probe, Cosine Corrected (with 25 ft cable)
J6512 Irradiance Probe (with 6 ft cable)
$J 65231^{\circ}$ Luminance Probe

PROBE OPTIONS

Option 02 - Metric probes required for metric readout J16s (Option 02).
Option 05 - Actual spectral curve of any probe (available on initial order).

(PROBES NOT INCLUDED UNLESS NOTED)

ORDERING INFORMATION

J16 Photometer/Radiometer Battery
Version, with $115 \mathrm{~V} \mathrm{ac}, 50 \mathrm{~Hz}$ to
400 Hz
\$1,260
includes: Battery charger (119-0375-02); shoulder strap (346-0104-00); battery pack (016-0539-01); nonmetric version instruction manual (070-1879-00); or with Option 02 metric version instruction manual (070-1880-00)

Photometer/Radiometer Pack-
age for TV Color CRT Set-up $\$ 1,880$
ars. Same as 116 plus J6002 irradiance probe light occluder ($016-0305-00$), 42 inch probe extension cable (012-0414-02).
\$590
$\$ 590$
\$590 \$590
$\$ 570$
\$575
\$1,670
$+\$ 40$
Spare Battery Pack — Order 016-0539-01
\$155
Battery Chargers

When ordering a battery pack for your ac-powered J16, also order one of the following chargers.
Battery Charger - 115 V ac, 50 Hz to 400 Hz . (Included with Standard J16.) Order 119-0375-02
Battery Charger - 230 V ac, 50 Hz to 400 Hz . (Included with Option 01.) Order 119-0375-03

Within the basic limitations of the silicon sensors and the J16 design, a number of modifications are possible. Contact your local Tektronix Sales Office or Representative regarding special application requirements.

The Tektronix SCOPE-MOBILE ${ }^{\circ}$ Cart Family
Tektronix SCOPE-MOBILE ${ }^{\bullet}$ Carts give the quality and versatility needed by many test instrument users.

Tek carts free up your valuable table space and make sharing equipment between work benches easy. They are designed for easy integration into your instrument systems. OEM pricing is available for most models.
Whatever your requirements, Tek has a cart to fit your needs.
DIMENSIONS/LOAD CAPACITY/WEIGHTS

	K117		K212		K213		K217		206	
Dimensions	17×33		13×17		$\begin{gathered} 13.7 \times 20 \\ 13 \times 20 \text { (shelf) } \end{gathered}$		18×27		27.6×22	
Load Capacity	kg	lb	kg	Ib	kg	lb	kg	lb	kg	lb
Handle/Workshelf	11	25	-	-	-	-	-	-	-	-
Tool Shelf	18	40	-	-	-	-	-	-	-	-
Frame	36	80	-	-	-	-	-	-	-	-
Top Tray	-	-	36	80	34	75	45	100	45	100
Base	-	-	45	100	11	25	45	100	45	100
Hanging Shelf	-	-	-	-	18	40	-	-	-	-
Total	54	120	82	180	77	170	90	200	90	200
Weight										
Net	14	30	9	20	26	57	20	43	14	30
Shipping	17	38	13	28	34	75	26	57	17	38
Page	423		423		424		424		423	
Prices	\$265		\$330		\$595		\$495		\$235	

INSTRUMENT/CART

 COMPATABILITY| | K117 | K212 | K213 | K213
 Shelf | K217 | 206 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Terminals/Copiers/Monitors | | | | | | |
| 4000 Series | | | | | | \checkmark |
| 4611/4612 | | | | | | \checkmark |
| 4631/4632 | | | | | | \checkmark |
| 4634/4635 | | | | | | \checkmark |
| 4644 | | | | | | \checkmark |
| 4660 Series | | | | | | \checkmark |
| 4695 | | | | | | ν |
| 4900 | | | | | | \checkmark |
| 4926/4970 | | | | | | \checkmark |
| 606B/608/620 | x | x | | x | | |
| 650 HR Series (Cabinet) | | | | | \checkmark | x |
| 670 Series | | | | | v | x |
| Logic Analyzers | | | | | | |
| 1240/1241 | v | \checkmark | X | | | |
| 308/318/338 | x | x | | x | | |
| DAS 9100/9200 | x | | | | v | x |

Television/Spectrum Analyzers/Cable Testers

1410R Series	x				\checkmark	x
1420 Series	x	v				
1430/1440	x				\checkmark	x
1450/1470 Series	\times				\checkmark	\times
1480 Series Cabinet	x	v		x		
1480 Series Rackmount	x				v	\times
1740/1750 Series	x	\checkmark		x		
1910 (Cabinet)	x				\checkmark	\times
380	x	\checkmark		x		
528A	x	v		x		
R140 Series	x				\checkmark	x
R520 Series	x				\checkmark	x
1500 Series	\checkmark	\times				
OF150 Series	\checkmark	x				
490 Series	\checkmark	\checkmark				

Oscilloscopes/Digitizers/Controllers

7000/5000 Series (Cabinet)			\checkmark			
7000/5000 Series (Rackmount)	x				\checkmark	
$\begin{aligned} & 530 / 540 / 550 / \\ & 560 \text { Series } \\ & \text { (Cabinet) } \end{aligned}$			\checkmark			
$\begin{aligned} & \text { 530/540/550/ } \\ & 560 \text { Series } \\ & \text { (Rackmount) } \\ & \hline \end{aligned}$					\checkmark	
$\begin{aligned} & \text { 2200/2300/ } \\ & 2400 \text { Series } \end{aligned}$	x	\checkmark	X			
305/314/336	x	\times		x		
400 Series	x	\checkmark	\times			
T900 Series	x	\checkmark				
390AD	X				\checkmark	x
7612D/7912AD	x				\checkmark	\times
7D20T	x	\sim		\checkmark		
4041	x	\checkmark		v		
TM5000/TM500 Series						
TM5003/TM503/ TM504 TM5006/	\checkmark	x	x	\checkmark		
TM5006/ TM506/TM515	\sim				\checkmark	x
Curve Tracers						
576/577			x		v	x

K117 Instrument Shuttle

Recommended For:

Medical; telecommunications; electronic equipment service; mobile test systems; in-ter-site mobility of instrumentation, tools, parts kits; on-site workstations.

The K117 Instrument Shuttle transports instruments and accessories in a self-contained unit, is easily moved between sites, and doubles as a work-station once on-site. Features include adjustable handle/workshelf, wheel brakes, and optional pouch and rain cover.
K117 Data Sheet 56W-5694-1 is available.
CHARACTERISTICS

Construction - High strength polycarbonate structural foam with textured vapor polish finish.
Color - Smoke tan.

ORDERING INFORMATION

K117 Instrument Shuttle
Includes: Two 2 in $\times 6 \mathrm{ft}$ securing straps (346-0208-00); instruction sheet (070-5109-00).

OPTIONAL ACCESSORIES

Rain Cover - Smoke-gray water-repellant nylon cover with pull cord. Covers and protects a loaded K117. Order 200-3051-00
Pouch — Black nylon, two-zippered pouch attaches to the K117 support with four snaps. Convenient access and storage for small items. Order 016-0800-00.
Securing Strap - Black nylon webbed, 2 in $\times 6 \mathrm{ft}$. Order 346-0208-00.

K212 Portable Instrument Cart

Recommended For:

On-site mobility of all portable instruments.
The K212 provides a stable yet mobile platform for all Tek portable oscilloscopes and most other portable instruments. This cart is well suited for on-site mobility in medical facilities, labs, computer rooms, manufacturing areas, and other work areas.
Tilting top tray, large locking front casters, and wide track base are standard features. Two bolt assembly required.
K212 Data Sheet 56W-5835 is available.
CHARACTERISTICS

Construction - Base of thermoset polyester. Column and top of tray made of high-strength aluminum.
Color - Base and tray are Tek blue. Column and yolk are silver gray.

ORDERING INFORMATION

K212 Portable Instrument Cart
$\$ 330$
Includes: Two 1 in $\times 5 \mathrm{ft}$ securing straps (346-0049-04); retaining bar (650-1881-00); two $3 / 16^{\prime \prime}$ bolts; $3 / 16^{" \prime}$ Hex key; instruction sheet (070-5554-00).

OPTIONAL ACCESSORIES

Securing Strap - Black nylon webbed,
1 in $\times 5 \mathrm{ft}$. Order 346-0049-04
\$2.85

Model 206/206D utility cart

Recommended For:

General instruments, computer peripherals, laboratory and office use.
The 206 and 206D are for general purpose use and mobility of instruments.
Features include a vinyl laminate on both surfaces and brakes on front casters.

CHARACTERISTICS

ORDERING INFORMATION
206 Light Gray Finish
\$235
Includes: Instruction sheet (062-1408-02).
206D Brown Vinyl Finish
\$235
Includes: Instruction sheet (062-6617-00).

Special terms, conditions and discounts are available to qualified OEMs on the K117, K212, and K217 carts. Contact your local Tek sales office.

K217 Rack instrument Cart

Recommended For:

Most rackmountable or rack-width instruments.
The K217 directly replaces the 205/205D carts. It provides mobility for most rackmountable or rack width instruments (ears of rackmountable instruments hang over sides of tray).

Standard features include a tilting top tray, storage drawer under the top tray, a four outlet power strip, and front locking casters.

CHARACTERISTICS

Color - Tek blue with silver-gray legs.

ORDERING INFORMATION

K217 Rack Instrument Cart
\$495
Includes: Instruction sheet (070-5653-00).
Option 01 - Brown Finish

OPTIONAL ACCESSORIES
 (Fits K217 and 205/205D Carts)

Securing Strap - Nylon webbed, $11 / 2$ inch $\times 53$ inch to secure instruments to top tray.
Blue for K217. Order 346-0070-01
Brown for K217 Option 01. Order 346-0070-03
OEM terms available on this product.

K213 shown with Option 22.

K213 Lab instument Cart

Recommended For:

5000 Series and 7000 Series Oscilloscopes.
K213 directly replaces Model 3 Lab Cart. It is especially well suited for laboratory and manufacturing environments.

Standard features include tilting top tray, brakes on all casters, lockable drawer in the base, four outlet power strip, 7000 Series scope lock-down bar, mounting hardware for TM 500 equipment and older scopes, a hanging shelf and a securing strap.

The hanging shelves are supported underneath and tilt with the top tray. These shelves are large enough to carry a TM 504 system or other small-to-medium sized test instruments. Slots in the shelves allow instruments to be secured with straps.
Option 10 provides a sliding drawer for use with the 7854 keyboard. The keyboard drawer mounts underneath the top tray and reduces available hanging shelf space by approximately three inches.

Option 12 gives an enclosure mounted on the standard shelf for storage of unused 5000 or 7000 Series plug-ins. The storage cabinet mounts on or under a shelf, but the option and kit do not include a shelf. Up to two storage cabinets are installable at a time.

K213 shown with a 2430 and 4041 system. CHARACTERISTICS

Color - Tek blue with silver-gray legs.

ORDERING INFORMATION

K213 Lab Instrument Cart

Includes: Securing strap, $11 / 2$ in $\times 42$ in (346-0136-01): shelf (436-0132-01); miscellaneous mounting adaptors; four outlet, 115 V ac power strip; instruction sheet.

OPTIONS

Option 05 - Delete Power Strip.
Option 10 - 7854 Keyboard Drawer
Option 12 - 5000/7000 Series Plug-in
Storage Cabinet.
$+\$ 120$
Option 22 - Combines Options 10 and 12. $+\$ 285$
OPTIONAL ACCESSORIES
(Fits K213 and Model 3 Carts)
Securing Straps - Black nylon webbed, for use on top tray, shelves, or base.
$1 \frac{1}{2}$ in $\times 42$ inch. Order 346-0136-01
$11 / 2$ in $\times 57$ inch. Order 346-0156-01
Extra Shelf - Mounts below top tray. Order 436-0132-01
7854 Keyboard Drawer Kit - (Option 10 in kit form) Mounts under top tray. Order 436-0197-00
Plug-in Storage Cabinet Kit - (Option 12 in kit form) Mounts on or under hanging shelves. Does not include shelf. Order 436-0196-00
Retaining Bar - Used to prevent sliding of portable oscilloscope on top tray or shelf when secured by straps. Mounting hardware included. Order 650-1881-00

THE STRONGEST LINK BETWEEN YOUR TEK INSTRUMENT AND RESULTS

Tek instruments are designed for users who place a premium on equipment quality and on reliability of results. Tek probes are engineered, assembled and tested to provide the most compatible link possible between tests instruments and the circuits under test.

THE ABCs OF PROBES
This comprehensive primer on signal acquisiton probes contains sections on understanding probe specifications and applications and how to select the best probe for your application. Easy to use charts and tables speed the selection process.
For your free copy, ask your Tektronix Sales Engineer for Literature 60 W - 6053 or call tollfree in the USA 1-800-426-2200. In Oregon, call collect (503) 627-9000.

PROBES: SELECTION CRITERIA

 No factor is more critical to optimized system performance than proper probe selection. A probe that's not right for your application can mean a significant loss in measurement results, plus costly delays and errors.
For over 35 years, Tektronix has been designing probes that are matched not only to our scopes, but to your own in-

 strument and application needs. They minimize circuit loading, while extending and enhancing system performance.By extending our resistive-wire, center-conductor cable technology, Tek 10X Passive probes can transfer a signal frequency that exceeds 300 MHz and presents only an added 3 pF per meter of cable to a circuit.
Tek probe products include active voltage probes, active and passive current probes, high voltage probes, low impedance/high frequency probes, and differential probes.
Bandwidth/risetime, input voltage, input impedance and limiting aberrations are all characteristics to evaluate in terms of your own application.
While electrical considerations are of major importance in your selection, physical parameters, such as probe length and proper tip adaptor, can be equally crucial. Unnecessary cable length, for example, will decrease bandwidth and increase the loading capacitance of the probe

You'll find a wide variety of adaptors and probe tips available which feature Tek's special alloy coating that minimizes low current conduction problems. All are inherent to the Tek modular probe concept that lets you snap tips and other probe parts together without tools, so maintenance and repair of damaged probes is of minimal expense

Quick Delivery

NEW The following probes are now ready to ship within 24 hours:

P6101A 1X, 2m. Order 010-6101-13
P6105A 10X, 2m. Order 010-6105-13
P6106A 10X, 2m. Order 010-6106-13
P6122 10X, 1.5m. Order 010-6122-01
P6131 10X, 1.3m. Order 010-6131-01
See pages 430-431, 433 .
To order call 1-800-426-2200.

CONTENTS

Probe Reference .. 428
Passive Voltage Probes 429
Active Probes .. 434
Isolation/Floating Measurement Products.. 436
Differential Probes 439
High Voltage Probes 440
Specialty Probes ... 441
Current Probes ... 442
Accessories/Adaptors 446

A PROBE FOR VIRTUALLY EVERY APPLICATION

Usually there are several probes from which to select. We've indicated in this guide those probes which offer the best performance match, along with other compatible combinations.

THE ABCs OF PROBES

This comprehensive booklet on signal acquisiton probes contains sections on understanding probe specifications and applications and sections on how to select the best probe for your application. Easy to use charts and tables speed the selection process.

For your free copy, ask your Tektronix Sales Engineer for Literature 60 W -6053 or call toll-free in the USA 1-800-426-2200. In Oregon, call collect (503) 627-9000.

\checkmark Indicates recommended combinations of probe and instrument.

+ Indicates usable combinations where probe bandwidth exceeds that of instrument.
- Indicates combinations where probe limits system bandwidth.

See the Difference

The photos at right show signals measured with Tek probes and their commodity counterparts. To get the best performance from your measurement system use Tek probes!

GLOSSARY

Aberrations - Deviation from a theoretically correct response to an input signal. Measured in + and - deviation from the final level (flat top).
A-S Product (Amp Second) - A figure of merit applied to current probes when operated under pulse-type conditions. When the peak current times the pulse width exceeds the A-S rating, the core will tend to saturate and clip portions of the displayed signal.
Bandwidth - Tektronix probe bandwidth specifications assume scope bandwidth "at the probe tip" unless otherwise noted. The specified probe bandwidth must be equal to or greater than the specified scope bandwidth. (All BW figures refer to the -3 db point).
Compensation Range - The range of the scope input amplifier input capacitances for which you can compensate your probe.
Circuit Loading - A function of total probe impedance at a specific frequency. Probe tip capacitance becomes the major contributor to circuit loading as frequencies increase or risetimes decrease.
CMRR (Common-mode Rejection Ratio) - A description of a probe/differential amplifier's ability to reject common-mode signals. At a system CMRR of $10,000: 1$, a 10 V common-mode input signal will be attenuated to 1 mV at the output, while the differential (desired) signal will be amplified times the system gain.
Derating - Passive voltage probes maximum input voltage is derated after some specific upper frequency. Ac current probes upper and lower frequency derating points are specified for maximum continuous currents.
Dynamic Range - Applies to Active (FET) probes. Specified as the maximum linear as operating range in volts.
Insertion Impedance - Associated with current probes describing the loading effect in ohms (Z) at some specific frequency.
Maximum Input Voltage - Maximum allowable input at the probe tip. Specified as $\mathrm{dc}+$ peak ac.
Maximum Ac Current (CW) - Maximum continuous current handling ability of a current probe. Derated with frequency.
Maximum Peak Pulse Current - Maximum peak current handling ability of a current probe. Always greater than the maximum continuous current rating. Controlled by the Amp-Second product.
Maximum Peak Pulse Voltage - Maximum peak voltage handling ability of high voltage probes. Specification carries pulse width and duty cycle restrictions.
Risetime - A probe's 10% to 90% response to a step function.
Ringing - Damped oscillation response usually caused by inductive effects of poor probe grounding techniques.
Tangential Noise - A practical method of specifying probe generated noise (active probes). Tangential noise figures are approximately two times RMS noise.

Optimum Performance With Tek

Bandwidth: Tek probe faithfully transmits 300 MHz signal.

Frequency Response: Tek probes evenly matched for clear response.

Probe Tip Accessories: By choosing the appropriate ground lead from Tek probe accessories, ringing does not exist.

Environmental: Tek offers superior performance. No signal degradation after five days in high humidity.

Loss With Commodity Probe

Commodity probe limits same signal to 200 MHz .

Commodity probe peaked resulting in aberrations.

Commodity probes may not have the right selection of accessories to make a faithful measurement.

Commodity probe shows "hook" after same humidity test.

PASSIVE PROBES

For amplitude measurements, the capacitance and resistance of the probe form a voltage divider with the circuit under test. For low frequency (about 5 MHz and below), the resistive component is of primary importance in most probes and should be at least two orders of magnitude greater than the circuit source impedance. For frequencies higher than 30 MHz), the importance of the capacitance increases drastically and will become the prime consideration.

For general-purpose use, these probes offer a wide probe selection for a variety of applications for $1 \mathrm{M} \Omega$ inputs.
Modular probes are an exciting concept in probe design. The P6101A, P6102A, P6104A, P6105A, P6106A, P6107A, P6108A, P6121, P6122, P6130, P6131, P6148 and P6149A probes divide into three modules (probe heads, cables, and connector/compensation boxes.)

Quick Delivery

NEW The following probes are now available for shipping within 24 hours:
P6101A 1X Probe, 2m. Order 010-6101-13
P6105A 10X Probe, 2m. Order 010-6105-13
P6106A 10X Probe, 2m. Order 010-6106-13
P6122 10X Probe, 1.5m. Order 010-6122-01
P6131 10X Probe, 1.3m. Order 010-6131-01
See pages 430, 431, 433.
To order call 1-800-426-2200.

TYPE	ATTEN	LENGTH*1	PACKAGE NUMBER	LOADING		$\begin{gathered} \text { BW } \mathrm{MHz}^{* 2 * 4} \\ \text { at }-3 \mathrm{~dB} \end{gathered}$	$\begin{gathered} \text { DC } \\ \text { MAXIMUM } \end{gathered}$	SCOPE C IN pF	READOUT	PAGE
P6006	10X	$\begin{array}{rl} 3.5 \mathrm{ft} \\ 6 & \mathrm{ft} \\ 9 & \mathrm{ft} \\ 12 & \mathrm{ft} \end{array}$	$\begin{aligned} & 010-0127-00 \\ & 010-0160-00 \\ & 010-0146-00 \\ & 010-0148-00 \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{gathered} 7.5 \mathrm{pF}^{* 2} \\ 8.5 \mathrm{pF} \\ 11.0 \mathrm{pF} \\ 15.0 \mathrm{pF} \\ \hline \end{gathered}$	$\begin{aligned} & 35.0 \\ & 25.0 \\ & 25.0 \\ & 12.0 \end{aligned}$	600 V	15 to 55	NO	-
P6007	100x	$\begin{array}{rl} 3.5 & \mathrm{ft} \\ 6 & \mathrm{ft} \\ 9 & \mathrm{ft} \\ 12 & \mathrm{ft} \\ \hline \end{array}$	$\begin{aligned} & 010-0150-00 \\ & 010-0165-00 \\ & 010-0152-00 \\ & 010-0154-00 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{aligned} & 2.0 \mathrm{pF}^{* 2} \\ & 2.2 \mathrm{pF} \\ & 2.4 \mathrm{pF} \\ & 2.6 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & 25.0 \\ & 20.0 \\ & 15.0 \\ & 13.0 \\ & \hline \end{aligned}$	1.5 kV	15 to 55	NO	440
P6008	10x	3.5 ft	010-0129-00	$10 \mathrm{M} \Omega$	7.5 pF	100.0	600 V	12 to 47	NO	-
P6008(Environmentalized)P6		6 ft	010-0129-01 $10 \mathrm{M} \Omega$Environmentalized $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			100.0	600 V	12 to 47	NO	441
P6009	100X	$\begin{array}{ll} \hline 9 & \mathrm{ft} \\ 9 & \mathrm{ft} \\ \hline \end{array}$	$\begin{aligned} & \hline 010-0170-00 \\ & 010-0264-01 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{aligned} & 2.5 \mathrm{pF} \\ & 2.5 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 120.0 \\ & 100.0 \end{aligned}$	1.5 kV	12 to 47	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	440
P6010	10x	3.5 ft	Furnished with S-5. For other uses see P6105A or P6106A.							
P6015	1000x	10 ft	010-0172-00	$100 \mathrm{M} \Omega$	3.0 pF	75.0	20 kV	12 to 47	NO	440
P6028	1 X	$\begin{array}{rl} 3.5 \mathrm{ft} \\ 6 & \mathrm{ft} \\ 9 & \mathrm{ft} \\ 12 & \mathrm{ft} \\ \hline \end{array}$	$\begin{aligned} & 010-0074-00 \\ & 010-0075-00 \\ & 010-0076-00 \\ & 010-0077-00 \\ & \hline \end{aligned}$	$1 \mathrm{M} \Omega$	$\begin{array}{r} 50.0 \mathrm{pF} \\ \text { 67.0 pF } \\ \text { 90.0 pF } \\ \text { 112.0 pF } \\ \hline \end{array}$	$\begin{array}{r} 17.0 \\ 10.0 \\ 7.0 \\ 4.0 \\ \hline \end{array}$	600 V	ANY	YES	-
P6048	10x	6 ft	010-0215-00	$1 \mathrm{k} \Omega$	1.0 pF	100.0	20 V	15 to 20	NO	431
P6053B	10x	3.5 ft 6 ft 9 ft	$\begin{aligned} & 010-6053-11 \\ & 010-6053-13 \\ & 010-6053-15 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{array}{r} 9.5 \mathrm{pF} \\ 12.5 \mathrm{pF} \\ 13.5 \mathrm{pF} \\ \hline \end{array}$	$\begin{aligned} & 200.0 \\ & 200.0 \\ & 115.0 \\ & \hline \end{aligned}$	500 V	15 to 24	YES*5	432
P6055*3	10x	3.5 ft	010-6055-01	$1 \mathrm{M} \Omega$	10.0 pF	60.0	500 V	20 to 47	YES	439
P6060	10X	$\begin{aligned} & 3.5 \mathrm{ft} \\ & 6 \mathrm{ft} \\ & \hline \end{aligned}$	$\begin{aligned} & 010-6060-01 \\ & 010-6060-03 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{aligned} & 7.5 \mathrm{pF}^{* 2} \\ & 8.5 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 35.0 \\ & 25.0 \\ & \hline \end{aligned}$	500 V	15 to 55	YES	-
P6062B	10 X or 1 X 10 X or 1 X 10 x or 1 x	$\begin{array}{ll} 3.5 & \mathrm{ft} \\ 6 & \mathrm{ft} \\ 9 & \mathrm{ft} \end{array}$	$\begin{aligned} & 010-6062-11 \\ & 010-6062-13 \\ & 010-6062-15 \end{aligned}$	$\begin{array}{r} 10 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 13.5 \mathrm{pF} \\ 100.0 \mathrm{pF} \\ 14.0 \mathrm{pF} \\ 105.0 \mathrm{pF} \\ 17.0 \mathrm{pF} \\ 135.0 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100.0 \\ 8.0 \\ 100.0 \\ 6.0 \\ 95.0 \\ 4.5 \\ \hline \end{array}$	500 V	15 to 47	YES	432
P6063B	$\begin{aligned} & 10 x \text { or } 1 x \\ & 10 x \text { or } 1 x \end{aligned}$	3.5 ft 6 ft	$\begin{aligned} & 010-6063-11 \\ & 010-6063-13 \end{aligned}$	$\begin{array}{r} 10 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \\ \hline \end{array}$	$\begin{array}{r} 11.0 \mathrm{pF} \\ 80.0 \mathrm{pF} \\ 14.0 \mathrm{pF} \\ 105.0 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 200.0 \\ 12.0 \\ 200.0 \\ 6.0 \\ \hline \end{array}$	500 V	15 to 24	YES	432
P6101A	1X	$\begin{aligned} & 1.0 \mathrm{~m} \\ & 2.0 \mathrm{~m} \\ & 3.0 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & 010-6101-11 \\ & 010-6101-13 \\ & 010-6101-15 \end{aligned}$	$1 \mathrm{M} \Omega$	32.0 pF 54.0 pF 78.0 pF	$\begin{array}{r} 34.0 \\ 15.5 \\ 8.0 \\ \hline \end{array}$	500 V	ANY	-	430
P6102A	10x	2.0 m	P6102A	$10 \mathrm{M} \Omega$	13.2 pF	60.0	500 V	36 to 55	YES	430
P6104A	10x	2.0 m	010-6104-11	$10 \mathrm{M} \Omega$	11.2 pF	100.0	500 V	15 to 35	YES	
P6105A	10X	$\begin{aligned} & 1.0 \mathrm{~m} \\ & 2.0 \mathrm{~m} \\ & 3.0 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 010-6105-11 \\ & 010-6105-13 \\ & 010-6105-15 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{array}{r} 8.7 \mathrm{pF} \\ 11.2 \mathrm{pF} \\ 13.2 \mathrm{pF} \\ \hline \end{array}$	$\begin{array}{r} 100.0 \\ 100.0 \\ 90.0 \\ \hline \end{array}$	500 V	$\begin{aligned} & 15 \text { to } 35 \\ & 15 \text { to } 35 \\ & 15 \text { to } 30 \\ & \hline \end{aligned}$	YES	430
P6106A	10X	1.0 m 2.0 m 3.0 m	$\begin{aligned} & 010-6106-11 \\ & 010-6106-13 \\ & 010-6106-15 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	$\begin{array}{r} 8.7 \mathrm{pF} \\ 11.2 \mathrm{pF} \\ 13.2 \mathrm{pF} \end{array}$	$\begin{aligned} & 250.0 \\ & 250.0 \\ & 150.0 \end{aligned}$	500 V	$\begin{aligned} & 15 \text { to } 35 \\ & 15 \text { to } 35 \\ & 15 \text { to } 30 \end{aligned}$	YES	430
P6107A	10x	2.0 m	010-6107-13	$10 \mathrm{M} \Omega$	13.0 pF	100.0	500 V	20 to 51	YES	430
P6108A	10X	1.0 m 2.0 m 3.0 m	$\begin{aligned} & \hline 010-6108-11 \\ & 010-6108-13 \\ & 010-6108-15 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$		$\begin{array}{r} 100.0 \\ 100.0 \\ 90.0 \\ \hline \end{array}$	500 V	$\begin{aligned} & 15 \text { to } 35 \\ & 15 \text { to } 35 \\ & 15 \text { to } 30 \\ & \hline \end{aligned}$	NO	430
P6121	10x	1.5 m	010-6121-01	$10 \mathrm{M} \Omega$	11.0 pF	100.0	500 V	20 to 26	YES	431
P6122	10x	1.5 m 2.0 m 3.0 m	$\begin{aligned} & 010-6122-01 \\ & 010-6122-03 \\ & 010-6122-05 \end{aligned}$	$10 \mathrm{M} \Omega$		$\begin{array}{r} 100.0 \\ 100.0 \\ 90.0 \end{array}$	500 V	15 to 35	NO	431
P6125	5X	1.5 m	010-6125-11	$5 \mathrm{M} \Omega$	20.0 pF	200.0	250 V	15 to 33	NO	361
P6130	10x	1.5 m 2.0 m 3.0 m	$\begin{aligned} & 010-6130-01 \\ & 010-6130-03 \\ & 010-6130-05 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$	12.7 pF 13.2 14.5 pF	$\begin{aligned} & 250.0 \\ & 250.0 \\ & 150.0 \\ & \hline \end{aligned}$	500 V	$\begin{aligned} & 15 \text { to } 35 \\ & 15 \text { to } 35 \\ & 15 \text { to } 30 \\ & \hline \end{aligned}$	YES	433
P6131	10x	$\begin{aligned} & 1.3 \mathrm{~m} \\ & 2.0 \mathrm{~m} \\ & 3.0 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 010-6131-01 \\ & 010-6131-03 \\ & 010-6131-05 \\ & \hline \end{aligned}$	$10 \mathrm{M} \Omega$		$\begin{aligned} & 300.0 \\ & 250.0 \\ & 150.0 \end{aligned}$	500 V	14 to 18	YES	433
P6133	10x	$\begin{aligned} & 1.3 \mathrm{~m} \\ & 2.0 \mathrm{~m} \\ & 3.0 \mathrm{~m} \\ & \hline \end{aligned}$	P6133 Opt 01 P6133 P6133 Opt 03	10Ω	$\begin{aligned} & 10.8 \mathrm{pF} \\ & 13.5 \mathrm{pF} \\ & 14.5 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 150.0 \\ & 150.0 \\ & 120.0 \end{aligned}$	500 V	$\begin{aligned} & 13 \text { to } 30 \\ & 13 \text { to } 30 \\ & 13 \text { to } 25 \end{aligned}$	YES	433
P6148A	10x	2.0 m	010-6148-13	$10 \mathrm{M} \Omega$	13.0 pF	50.0	500 V		NO	430
P6149A	10x	2.0 m	010-6149-13	$10 \mathrm{M} \Omega$	13.0 pF	50.0	500 V	20 to 51	NO	430

*' All lengths are nominal and measured electrically for optimum performance.
${ }^{* 2}$ Rating varies with scopes having other than 20 pF inputs.
${ }^{* 3}$ Designed for use with scopes having differential inputs.
*4 25Ω source.
*5 Trace identification button.

For 1 M Ω Input
Simplified, Faster Maintenance and Repairs
High Fidelity Signal Acquisition at Low Cost
Available in Three Lengths
Rugged for Greater Reliability

Hybrid Circuitry For Improved
 Performance

Modular probes are an exciting new concept in probe design. They divide into three modules (probe heads, cables, and connector/compensation boxes). The modules snap or screw together making maintenance and repair less expensive, faster, and easier. Snap-on replacement modules eliminate soldering irons and tools, and modular probes do not have to be sent in to be repaired because spare modules can be ordered and stocked. Strain relief and modular component design make these probes rugged for greater reliability.
The P6102A is a miniature 10X passive probe specially designed to be fully compatible with all scopes employing $1 \mathrm{M} \Omega$ 47 pF inputs. These include all 5100 Series amplifier plug-ins, TM 500 Series SC 501, SC 502 and SC 503, and all other scopes having nominal 47 pF inputs.
The P6101A, P6102A, P6105A, P6106A, P6107A, P6108A, P6149A probes are used to acquire high fidelity signals from low source-impedance circuits. The P6102A, P6105A, P6106A, and P6107A are designed for oscilloscopes equipped vertical scale or CRT readout. These probes will automatically scale the readout by a factor of ten. The P6149A and P6107A feature a right angle BNC connector.

Dc to $60 \mathrm{MHz}, 10 \mathrm{X}$ with Readout

P6105A

Dc to $100 \mathrm{MHz}, 10 \mathrm{X}$ with Readout
P6106A
Dc to $250 \mathrm{MHz}, 10 \mathrm{X}$
with Readout
P6108A
Dc to $100 \mathrm{MHz}, 10 \mathrm{X}$

Tektronix modular probes are designed for specific Tektronix instruments, but may be purchased for all Tektronix oscilloscopes with $1 \mathrm{M} \Omega$ and appropriate pF inputs capacitance as indicated in the chart on the preceding page.

For electrical characteristics see the table on the preceding page.

Compatability Between Previous Versions and Improved Versions

All cables are compatible between the previous and " A " version probes. Compensation boxes and probe heads are not compatible between the two versions due to the hybrid circuitry used in the new probes. A complete reference listing for replacement parts is on page 447.

CHARACTERISTICS

ENVIRONMENTAL CHARACTERISTICS
Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $\left(+5^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$.
Altitude - Operating: 4600 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Humidity - Operating and Nonoperating: Five cycles (120 hrs) at 95% to 97% relative humidity.

ORDERING INFORMATION
 P6101A 1X Probe

Includes: Retractable hook tip (BB, 013-0107-05); insulating (BP, 166-0404-01); 130 mm ground lead (DD, 175-0124-01); 300 mm ground lead (DD, 175-0125-01); three pair, black, white and silver gray marker bands, available in packages of nine sets of different colors (016-0633-00); miniature alligator clip (AS, 344-0046-00); accessory pouch (016-0521-00); instruction manual (070-5299-00).
1m Cable. Order 010-6101-11 \$67 $2 m$ Cable. Order 010-6101-13 \$67 3m Cable. Order 010-6101-15 \$67

P6102A 10X Probe

Includes: Same as P6101A except two black marker bands (334-2794-00), two white marker bands (334-2794-01), and two silver-gray marker bands (334-2794-02); plus adjustment tool (003-1364-00); instruction manual (070-5824-00).
$2 m$ Cable. Order P6102A

P6105A 10X Probe

Includes: Same as P6101A, plus adjustment tool (003-1364-00); instruction manual (070-5516-00). 1 m Cable. Order 010-6105-11
\$110 2m Cable. Order 010-6105-13 \$110 3m Cable. Order 010-6105-15 \$110

P6106A 10X Probe

Includes: Same as P6101A, except 75 mm ground lead (DD, 175-0263-01) instead of 130 mm ground lead, plus adjustment tool (003-1364-00); instruction manual (070-5517-00).
1 m Cable. Order 010-6106-11 \$140 2m Cable. Order 010-6106-13 \$140 3m Cable. Order 010-6106-15 \$140

P6107A 10X Probe

Includes: Same as P6101A without marker band, plus adjustment tool (003-1364-00); instruction manual (070-5518-00).
2m Cable. Order 010-6107-13

P6108A 10X Probe

Includes: Same as P6101A, plus adjustment tool (003-1364-00); instruction manual (070-5519-00).
1 m Cable. Order 010-6108-11
2 m Cable. Order 010-6108-13
\$100
3m Cable. Order 010-6108-15

$\$ 100$

\$100
P6149A 10X Probe
Includes: Same as P6102A.
2 m Cable plus adjustment tool (003-1364-00); instruction manual (070-5510-00).
Order 010-6149-13

P6121 Dc to $100 \mathrm{MHz}, 10 \mathrm{X}$ with Readout
P6122 Dc to $100 \mathrm{MHz}, 10 \mathrm{X}$

For $1 \mathrm{M} \Omega$ Input
Lightweight Tip
Flex Lightweight Cable
100 MHz Bandwidth

UL Listed

The P6121 and P6122 probes are miniature, 10X passive probes and are fully compatible with the Tektronix family of miniature probe accessories. The P6121 with readout capability is specifically designed for use with the Tektronix 2236 portable oscilloscope to provide close tolerance reading when using the 2236 DMM functions. The P6122 general purpose probe accommodates oscilloscopes with bandwidths up to 100 MHz . These probes feature modular, easily replaceable parts, easy to use configuration, and hybrid circuitry. The hybrid probe tip circuitry proves more uniform probe tip compensation for better high frequency response with reduced aberration and also extremely good environmental characteristics (see Electrical Characteristics table).

CHARACTERISTICS
ELECTRICAL CHARACTERISTICS

	Probe Length	P6121	P6122
Attenuation		$10 \mathrm{X} \pm 0.2 \%$	$10 \mathrm{X} \pm 3 \%$
Loading	1.5 m	$11 \mathrm{pF} / 10 \mathrm{M} \Omega$	$11 \mathrm{pF} / 10 \mathrm{M} \Omega$
Bandwidth	1.5 m	100 MHz	100 MHz
Dc Max		500 V	500 V
Scope Compati- bility		Designed to be used only with the Tektronix 2236.	May be used w/ any Tektronix $100 \mathrm{MHz}, 1 \mathrm{M} \Omega$, 15 to 35 pF scope (1 M Ω input)

* Typical applications include the Tektronix T935A, T922R, T921, 2213, 2215, 2235, 2335, 2336, 2337, $5 A 38,5 A 48,7 A 15 A$, and the 7A18A.

ENVIRONMENTAL

Temperature Range - Operating: $-15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Humidity - Five cycles (120 hrs) 95% to 97% at $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. MIL-E-16400F, Class 4 .
Altitude - Operating: 4600 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

ORDERING INFORMATION

P6121 10X, Probe
1.5 m Cable. Order 010-6121-01
$\$ 100$
Includes: Protective pouch ($016-0708-00$); retractable hook tip (013-0107-05); ground cover sleeve (166-0404-01) alligator ground lead ($195-1870-00$); IC test tip (015-02-1-03); bayonet ground lead (195-6176-00); gray marker band (334-2794-02); miniature alligator clip ($344-0046-00$); instruction sheet ($070-5511-00$).
P6122 10X Probe
Includes: Same as P6121 plus instruction sheet (070-5512-00).

1.5 m. Order 010-6122-01	$\$ 77$
2 m. Order 010-6122-03	$\$ 77$
3 m. Order 010-6122-05	$\$ 77$

P6125 Dc to 250 MHz , 5X

For 1 M Ω Input

Counter Probe

The P6125 is a low-capacitance, 5 X attenuation passive probe specially designed for use with dc to 250 MHz digital counter/ timers. It makes possible more accurate time interval measurements of high speed logic signals. Five-times attenuation provides an optimum match between the counter input characteristics and the voltage levels of all common logic families. The low input capacitance permits acquisition of high frequency signals with minimum loading of the circuits under test.

CHARACTERISTICS

Attenuation - 5 X .

Input Resistance - 5 M 2 input.
Capacitance $-\approx 20 \mathrm{pF}$.
Bandwidth - Dc to 200 MHz .
Voltage Rating - 250 V (dc + peak ac) derated to 35 V at 100 MHz .
Cable Length - 1.5 meters.

ORDERING INFORMATION

P6125 5X, Counter Probe

1.5 m Cable. Order 010-6125-01
$\$ 70$
Includes: 8 cm ground lead (175-0263-01); accessory pouch (016-0521-00); two miniature alligator clips (344-0046-00); IC tip tester* ${ }^{*}$, two 13 cm ground lead probe*2 tips (175-0124-01); retractable hook tip (013-0107-05); probe holder (352-0351-00); insulating sleeve (166-0404-01); instruction sheet (070-3617-00).
*1 Available in packages of 10 (015-0201-04) or 100 (015-0201-05).
${ }^{* 2}$ Available in packages of 10 only (206-0191-03).

P6048 Dc to 100 MHz , 10X

For 1M 2 Input

Minimum Loading 1 pF to $1 \mathrm{k} \Omega$
Ac/dc Switch
The P6048 is a miniature low capacitance probe for use with $1 \mathrm{M} \Omega 20 \mathrm{pF}$ oscilloscopes. The probe input impedance of $1 \mathrm{k} \Omega$ paralleled by 1 pF is intended for applications where capacitor loading may distort the circuit waveforms. Ac or dc coupling switch is available to extend the measurement range.

CHARACTERISTICS

Attenuation - 10X.
Input Resistance - $1 \mathrm{k} \Omega$.
Input Capacitance - 1 pF or less.
Maximum Input - Dc 20 V ; ac 200 V .
Ac Low Frequency - 7 kHz or less.

Bandwidth -

100 MHz with 150 MHz bandwidth scope; 175 MHz with 250 MHz bandwidth scope.
Typical Probe Risetime - 1.95 ns .

ORDERING INFORMATION

P6048 10X, Probe

6 ft Cable. Order 010-0215-00
\$205
Includes: Bayonet probe tip (BM, 013-0085-00); retractable probe hook tip (CA, 013-0090-00); two electrical insulating sleeves (BP, 166-0404-01); two alligator clips (AS, $344-0046-00$); 13 cm (5 in) ground lead ($175-0124-01$); insulating sleeve ground lead (CN, 166-0433-00); probe tip hook (BU, 206-0114-00); 7.5 cm (3 in) ground lead (DD, 175-0263-01); probe holder ($352-0090-00$); instruction manual (070-0675-01).

P6062B Dc to $100 \mathrm{MHz}, 1 \mathrm{x} / 10 \mathrm{X} \mathbf{w} /$ Readout P6063B Dc to 200 MHz , 1X/10X w/Readout

For 1 M Ω Input
1X to 10X Selectable Attenuation
Switch on Probe Body
The P6062B and P6063B are passive dual attenuation probes designed for Tektronix oscilloscopes with bandwidths to 100 and 200 MHz . A sliding switch on the probe body selects 1X or 10X attenuation. The probe provides readout coding and a pushbutton for actuating a ground reference in the 1X or 10X position. The ground reference can be used as a means of trace identification for a multitrace display. The 1 X position of the probe allows the use of the full instrument sensitivity. This is valuable when evaluating small signals of 10 MHz or less. The $1 \mathrm{X}-10 \mathrm{X}$ switch allows the user to switch in and out a decade of sensitivity without returning to the oscilloscope. The user may also arbitrarily switch from 1X to 10X in order to evaluate the effects of loading by the oscilloscope.
The P6063B is a fast-rise dual attenuation, passive probe designed for Tektronix oscilloscopes with bandwidths greater than 100 MHz .

CHARACTERISTICS

	Nominal Probe Length	P6062B		P6063B	
Attenuation		1X	10x	1X	10X
Accuracy		Same as Scope	3\%*1	Same as Scope	3\%*1
Input Resistance		Same as Scope	$10 \mathrm{M} \Omega^{* 1}$	Same as Scope	$10 \mathrm{M} \Omega^{* 1}$
Input Capacitance	$31 / 2 \mathrm{ft}$ 6 ft 9 ft	$100 \mathrm{pF}$ $105 \mathrm{pF}$ $135 \mathrm{pF}$	13.5 pF 14 pF 17 pF	$\begin{gathered} 80 \mathrm{pF} \\ 105 \mathrm{pF} \\ \mathrm{NA} \end{gathered}$	11 pF 14 pF NA
Bandwidth	$\begin{gathered} 31 / 2 \mathrm{ft} \\ 6 \mathrm{ft} \\ 9 \mathrm{ft} \\ \hline \end{gathered}$	8 MHz 6.7 MHz 4.5 MHz	100 MHz 100 MHz 100 MHz	$\begin{gathered} 12 \mathrm{MHz} \\ 6 \mathrm{MHz} \\ \mathrm{NA} \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{MHz} \\ 200 \mathrm{MHz} \\ \mathrm{NA} \\ \hline \end{gathered}$
Maximum Voltage		100 V peak	$\begin{aligned} & 500 \mathrm{~V} \\ & \text { peak } \end{aligned}$	100 V	500 V
Derated Above		450 kHz	3.5 MHz	450 kHz	4.5 MHz
Derated to Frequency		$\begin{aligned} & 35 \mathrm{~V} @ \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~V} @ \\ & 50 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 35 \mathrm{~V} @ \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~V} @ \\ & 50 \mathrm{MHz} \end{aligned}$
Aberrations		$\pm 3 \%$	<5\% p-p	$\pm 3 \%$	<5\% p-p
Risetime			3.5 ns		1.7 ns
Compensation Range		15 pF to	o 47 pF	15 pF	24 pF

P6053B Dc to 200 MHz , 10X
with Readout/Trace Identify Functions

For 1 M Ω Input

Miniature

Fast Risetime
The P6053B is a miniature fast-rise 10X probe designed for Tektronix instruments having a nominal input capacitance of 15 pF to 24 pF . The probe has a pushbutton for actuating the trace-identify function of the oscilloscope mainframe and readout capability.

CHARACTERISTICS

Attenuation - 10X

Input Resistance - $10 \mathrm{M} \Omega$.
Input Capacitance - 9.5 pF with 3.5 ft probe. 12.5 pF with 6 ft version, 13.5 pF with 9 ft version. Bandwidth (with $\mathbf{2 2 5} \mathbf{~ M H z}$ or Greater Oscilloscope) $-\approx 200 \mathrm{MHz}$ for 3.5 and 6 ft versions, $\approx 115 \mathrm{MHz}$ for the 9 ft version.
Voltage Rating - 500 V (dc + peak ac). Peak voltage derating is necessary for cw frequencies higher than 5 MHz . At 10 MHz , the maximum allowable peak voltage is $275 \mathrm{~V} ; 23 \mathrm{~V}$ at 100 MHz ; 18 V at 150 MHz .

ORDERING INFORMATION

P6062B Switchable Attenuation Probe

Includes: Probe holder ($352-0351-00$); electrical insulating sleeve (BP, 166-0404-01); retractable hook tip (BB, 013-0107-05); probe tip hook (BU, 206-0114-00); accessory pouch ($016-0521-00$); 13 cm (5 in) ground lead ($175-0124-01$); 30 cm (12 in) gound lead (DD, 175-0125-01); two alligator clips (AS, 344-0046-00); instruction sheet (062-2927-00).
6 ft . Order 010-6062-13 \$175
3.5 ft . Order 010-6062-11 \$175

9 ft . Order 010-6062-15 \$175
P6063B Switchable Attenuation Probe
Includes: Same as P 6062 B , plus instruction sheet (062-2928-01)
6 ft . Order 010-6063-13
\$215
3.5 ft . Order 010-6063-11
\$215

P6053B Miniature 10X Probe

Includes: Same as P6062B plus bayonet ground assembly (BM, 013-0085-00); 7.5 cm (3 inch) ground lead (DD, 175-0263-01); instruction sheet (070-1594-00).
6 ft . Order 010-6053-13
3.5 ft . Order 010-6053-11 \$170
9 ft . Order 010-6053-15 \$170

P6056 Dc to $3.5 \mathrm{GHz}, 10 \times 500 \Omega$ P6057 Dc to $1.4 \mathrm{GHz}, 100 \mathrm{X} 5000 \Omega$

For 50Ω Input
Low Capacitive Loading, 1 pF or Less

<70 ps Probe to Probe Variation

The P6056 and P6057 are miniature low-capacitance probes for use with 50Ω wide-band oscilloscopes. Bandwidth is dc to 3.5 GHz . This probe can also be used with 50Ω sampling systems, with an appropriate BNC adaptor. The P6056 is equipped with a special BNC connector that provides trace identification and CRT readout information when used with plug-in units and mainframes that have these features. A convenient button on the probe activates the trace identification function.

CHARACTERISTICS

	$\mathbf{P 6 0 5 6}$	$\mathbf{P 6 0 5 7}$
Risetime	$<100 \mathrm{ps}$	$<250 \mathrm{ps}$
Input R @ Dc	500Ω	$5 \mathrm{k} \Omega$
Input R @ 1 GHz	300Ω	1500Ω
Maximum Dc + Peak Ac	16 V	50 V
Derated Above	800 MHz	500 MHz
Maximum Peak @ 1 GHz	9 V	21 V
Maximum Peak Pulse	$500 \mathrm{~V}<1 \mathrm{~ms}$	$500 \mathrm{~V}<1 \mathrm{~ms}$

ORDERING INFORMATION

P6056 10X, 50Ω Probe

Includes: Alligator clip (AS, 344-0046-00); 75 mm (3 in) ground lead (DA, 195-6176-00); hook probe tip (BU, 206-0114-00); probe bayonet tip (BM, 013-0085-00); electrical contact (BQ, 214-0283-00); instruction sheet (070-1224-00).
6 ft . Order 010-6056-03
9 ft . Order 010-6056-05
\$185
P6057 100X, 50Ω Probe
Includes: Same as P6056.
6 ft . Order 010-6057-03
9 ft . Order 010-6057-05

Included Accessories with double alpha codes are pictured on pages 448 and 449.

Dc to $250 \mathrm{MHz}, 10 \mathrm{X}$ with Readout P6131
Dc to $300 \mathrm{MHz}, 10 \mathrm{X}$ with Readout
NEW P6133
Dc to $150 \mathrm{MHz}, 10 \mathrm{X}$ with Readout

For $1 \mathrm{M} \Omega$ Input

Lightweight Tip

Flex Lightweight Cable
250 MHz Bandwidth
UL Listed

The P6130, P6131 and P6133 are 10X subminiature passive probes. These probes have a springloaded coding pin on the BNC output connector which activates the volts/division readout-encoding circuit of the oscilloscope to include the 10X attenuation of the probe.
The P6130 general purpose probe accommodates scopes with bandwidths up to 250 MHz . Choose 1.5 meter, 2 meter, or 3 meter lengths. The P6131 is specifically designed to be used only with the Tektronix 2465 and the 7A42. 1.3 meter, 2 meter, and 3 meter lengths are available. The P6133 is specifically designed for use with the Tektronix 2445.
These probes feature small size, a low-mass probe tip, and an extremely flexible probe cable. The unique reversible ground lead system provides versatile grounding methods. The hybrid probe tip circuitry provides a rugged lightweight tip, more uniform probe tip compensation for better high frequency response with reduced aberrations, and extremely good environmental characteristics. The modular construction allows easy repair without tools for lower cost of ownership.
A subminiature-to-miniature probe tip adaptor (013-0202-00) is also available. It allows the subminiature probe family to use the wide variety of probe accessories that Tektronix already provides for its miniature probe product line.

CHARACTERISTICS

ELECTRICAL				
	Probe Length	P6130	P6131	P6133
Attenuation		$10 \mathrm{X} \pm 3 \%$	$10 \mathrm{X} \pm 1 \%$	$10 \mathrm{X} \pm 1 \%$
Loading	$\begin{aligned} & 1.3 \mathrm{~m} \\ & 1.5 \mathrm{~m} \\ & 2.0 \mathrm{~m} \end{aligned}$	$12.7 \mathrm{pF} / 10 \mathrm{M} \Omega$ $13.2 \mathrm{pF} / 10 \mathrm{M} \Omega$ $14.5 \mathrm{pF} / 10 \mathrm{M} \Omega$	$10.8 \mathrm{pF} / 10 \mathrm{M} \Omega$ $13.5 \mathrm{pF} / 10 \mathrm{M} \Omega$ $14.5 \mathrm{pF} / 10 \mathrm{M} \Omega$	$\begin{aligned} & 10.8 \mathrm{pF} / 10 \mathrm{M} \Omega \\ & 13.5 \mathrm{pF} / 10 \mathrm{M} \Omega \end{aligned}$
Bandwidth	$\begin{array}{\|l\|} \hline 1.3 \mathrm{~m} \\ 1.5 \mathrm{~m} \\ 2.0 \mathrm{~m} \\ 3.0 \mathrm{~m} \\ \hline \end{array}$	250 MHz 250 MHz 250 MHz 150 MHz	300 MHz 150 MHz	$\begin{aligned} & 150 \mathrm{MHz} \\ & \mathbf{~} \mathrm{MHz} \\ & 120 \mathrm{MHz} \end{aligned}$
Dc Max		500 V	500 V	500 V
Scope Compati- bility		May be used with Tektronix 2235, 2236, 464, 465, 466, 475, 485 and any 7000 Series $1 \mathrm{M} \Omega$ plug-in such as 7A15, 7A16, 7A18 and 7A26.	Designed to be use with the Tektronix 2465 and the 7A42. (1 M Ω input)	Designed for use with the Tektronix 2445

ENVIRONMENTAL

Temperature Range - Operating: $-15^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Humidity - Five cycles (120 hrs) 95% to 97% at $+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. MIL-E-16400F, Class 4.
Altitude - Operating: $4600 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

ORDERING INFORMATION

P6130 Subminiature 10X Probe
Includes: Alligator ground lead (195-1870-00), microhook ground lead (195-4104-00); low inductance ground lead (195-4240-00); white marker band (334-2794-01); gray marker band (334-2794-03); red marker band ($334-2794-06$); green marker band ($334-2794-07$); probe connector (131-2766-03); probe holder (352-0687-00); protective pouch ($016-0708-00$); retractable hook tip (013-0208-00); instruction sheet (070-5513-00).
$\begin{array}{ll}1.5 \text { m Cable. Order 010-6130-01 } & \$ 130 \\ 2 \text { m Cable. Order 010-6130-03 } & \$ 130 \\ 3 \text { m Cable. Order 010-6130-05 } & \$ 130\end{array}$
P6131 Subminiature 10X Probe
Includes: Same as P6130, except instruction sheet (070-5514-00).
1.3 m Cable. Order 010-6131-01
$\$ 140$
2 m. Order 010-6131-03
\$140
3 m. Order 010-6131-05 \$140
P6133 Subminiature 10X 2 m Probe
Includes: Alligator ground lead (195-1870-00); retractable hook tip (013-0208-00); probe connector with socket; probe adjustment tool (003-1364-00); probe connector (131-2766-03); instruction sheet.
Option 01*1 - 1.3 m length
Option 03*1 - 3.0 m length

* 1 Contact your local sales office.

P6130 shown with 013-0202-00 adaptor in place.

SUBMINIATURE PROBE ACCESSORIES

KLIPKIT - Provides hands-free connection to integrated circuits. The P6130, P6131 and P6230 are used directly, other probes must use the supplied pins and attach via a retractable hook tip. Up to 16 pin DIP may be connected. Four supplied pins make signals accessible at the top of the KLIPKIT, or invert the pins for pin signal connection to a common connection strap inside the clip. (Particularly useful when common ground connection is desired).
Includes: Two IC clips, 4 signal ground pins and information sheet. Order 013-0197-00
Signal/Ground Pins - Packets of four. Order 131-3288-02
Probe to BNC Adaptor - Order 013-0195-00 $\$ 9.00$
TEST POINT

PROBE-TO-GR
$017-0520-00$
:---:
$136-0352-02$
:---:
$013-0202-00$

50Ω Probe to GR Adaptor -
Order 017-0520-00
100 ECB Test Connectors - Outer Shell.
Order 131-2766-01
100 Probe ECB Test Connectors -
Center. Order 136-0352-02
Subminiature-to-Miniature Adaptor Order 013-0202-00

MINIATURE PROBE ACCESSORIES

Miniature Probe Tip-to-Dual Lead
Adaptor - Order 015-0325-00

Miniature Probe-to-BNC Adaptor -
Order 013-0084-01
$\$ 8.00$
Miniature Bayonet Tip Adaptor -
Order 013-0085-00
50Ω Miniature-to-GR Adaptor -
Order 017-0088-00

Active probes have high input resistance and low input capacitance without loss of signal. The dynamic range and measurement capability are substantially increased through the voltage offset control.
Since active probes have a selectable 50Ω output impedance, the distance from the probe tip to the instrument is only limited by the bandwidth limit of the 50Ω coaxial cables between the probe and instrument. Active probes are used in measurements where high input resistance and low input capacitance is needed and where frequencies above 250 MHz are encountered.

Type	Attn	Nominal Length	Input Limits						Read-Out	Page	Prices
			Loading		Risetime	Maximum Dc + Pk Ac	Linear Dynamic Range	$\begin{gathered} \hline \text { Dc } \\ \text { Offset } \\ \text { Range } \end{gathered}$			
P6046 Diff/Amp	$\begin{array}{r} 1 x \\ 10 x \\ \hline \end{array}$	6 ft	$\begin{array}{r} 1 \mathrm{M} \Omega \\ 10 \mathrm{M} \Omega \end{array}$	$\begin{aligned} & 10 \mathrm{pF} \\ & 3 \mathrm{pF} \end{aligned}$	3.5 ns	$\begin{aligned} & \pm 25 \mathrm{~V} \\ & \pm 250 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 5 \mathrm{~V} \\ & \pm 50 \mathrm{~V} \end{aligned}$		No	439	\$1,750
	$\begin{array}{\|c\|} \hline 1 x \\ 100 \\ 100 x \\ \hline \end{array}$	6 tt	$\begin{array}{r} 100 \mathrm{k} \Omega \\ 1 \mathrm{M} \Omega \\ 1 \mathrm{M} \Omega \end{array}$	$\begin{aligned} & 3 \mathrm{pF} \\ & 1.5 \mathrm{pF} \\ & 1.5 \mathrm{pF} \\ & \hline \end{aligned}$	0.4 ns	$\begin{aligned} & \pm 100 \mathrm{~V} \\ & \pm 200 \mathrm{~V} \\ & \pm 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.6 \mathrm{~V} \\ & \pm 6 \mathrm{~V} \\ & \pm 60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 5.6 \mathrm{~V} \\ & \pm 56 \mathrm{~V} \\ & \pm 200 \mathrm{~V} \end{aligned}$	YES	435	\$1,220
$\begin{array}{\|l\|} \hline \text { P6202A } \\ \text { FET } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 x \\ 100 x \\ \hline \end{array}$	2 m	$\begin{aligned} & \hline 10 \mathrm{M} \Omega \\ & 10 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{pF} \\ & 2 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.7 \mathrm{~ns} \\ & 0.7 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \pm 200 \mathrm{~V} \\ & \pm 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 6 \mathrm{~V} \\ & \pm 60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 55 \mathrm{~V} \\ & \pm 200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$	435	\$680
$\begin{array}{\|l\|} \hline \text { P6230 } \\ \text { Bias/Offset } \\ \hline \end{array}$	10x	1.5 m	450Ω	1.3 pF	230 ps	$\pm 30 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	YES	434	\$395

The P6230 acts as a standard 500Ω passive voltage probe with the additional capability of having an adjustable tip "nulling voltage." This feature reduces the dc-loading effects of the probe when it is used to measure signals whose mid-voltage value is other than zero volts, or in circuits where the termination impedance is returned to other than ground level. The Input Bias/Offset Voltage may be adjusted so that at a particular test-signal voltage both ends of the probe input-resistor are at equal potentials and no current is flowing through the resistor.
ECL logic is most commonly operated from a -5.2 V supply with Vcc connected to ground. The output of an ECL gate is the emitter of an NPN emitter follower stage. The output is pulled down to a negative supply (about -2 V) with an external resistor (50Ω to 100Ω). Since speed is a major consideration in ECL designs, the interconnections between gates are often transmission lines, and the pull-down resistor doubles as a line termination.
If a standard $500 \Omega, 10 \mathrm{X}$ probe without the Input Bias/Offset feature were used to examine an ECL output, the probe's 500Ω resistance to ground would form a voltage divider with the gate's output-termination resistor. This divider can cause distortion of the output signal levels, shift the dc-operation point of the output transistor, and reduce the gate's noise margin.
The dc-load nulling capability of the P6230 helps to solve this problem. By adjusting the Input Bias/Offset Voltage to the ECL low level or to the termination voltage, the only effect of the probe resistance will be a small decrease in the ECL output-termination resistance. The effect of the probe on output voltage levels is negligible.
The probe derives its power from the probe power jack on many Tek scopes, a 1101 or 1101A Power Supply (see next page).

CHARACTERISTICS ELECTRICAL CHARACTERISTICS

Attenuation - $10 \mathrm{X} \pm 3 \%$.
Loading - $1.3 \mathrm{pF} / 450 \Omega$.
Bandwidth - 1.5 GHz .
Dc Offset Range --5 V to +5 V .
Dc Maximum - 10 V .

ENVIRONMENTAL CHARACTERISTICS

Temperature Range - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$.
Humidity - Five cycles (120 hrs) 95% to 97% at $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. MIL-E-16400F, Class 4 .
Altitude - Operating: 4600 m ($15,000 \mathrm{ft}$). Nonoperating: $15000 \mathrm{~m}(50,000 \mathrm{ft})$.

ORDERING INFORMATION

P6230 10X, Bias/Offset Probe

1.6 m Cable. Order 010-6230-01

Includes: Alligator ground lead (195-1870-00); microhook ground lead (195-4104-00); low inductance ground lead (195-4240-00); two white marker bands (334-2794-01); two gray marker bands (334-2794-03); protective pouch (016-0708-00); retractable hook tip (013-0208-00); two red marker bands (334-2794-06); two green marker bands (334-2794-07); probe connector (131-2766-03); probe holder (352-0687-00); instruction manual (070-4211-00).

OPTIONAL ACCESSORIES

Probe to BNC Adaptor - Order 013-0195-00 $\$ 9.00$
50Ω Probe to GR Adaptor -
Order 017-0520-00
100 ECB Test Connectors - Outer Shell. Order 131-2766-01
100 ECB Test Connectors - Center.
Order 136-0352-02
Subminiature to Miniature Adaptor -
Order 013-0202-00
THE FOLLOWING ARE USED WITH 013-0202-00
Miniature to BNC Adaptor -
Order 013-0084-01
50Ω Miniature to GR Adaptor -
Order 017-0088-00 \$50
Miniature to Square Pin Adaptor -
Order 015-0325-00
Microcircuit Pincer Tip -
Order 206-0222-00
onsaion box houses an active cuit which provides a variable voltage at the probe tip. This voltage is used to minimize probe-loading effects. The voltage available at the tip spans the range from minus five volts to plus five volts, allowing the probe to minimize loading effects on most logic families that are in use today.

For 50Ω or $1 \mathrm{M} \Omega$ Inputs
Unity Gain, Low Input Capacitance
Two Plug-on Attenuator Heads that Maintain Scope Readout Factor
Dc Offset, Ac-Dc Coupling Switch
The P6201 is an active (FET) probe providing unity gain and dc to 900 MHz bandwidth. The P6201 is the best general-purpose probe within its voltage range from the standpoint of electrical performance. Very low input capacitance permits acquisition of high frequency signals with minimum loading of circuits under test while high input resistance minimizes low frequency and dc loading. Plug-on attenuator heads provide higher input resistance and reduced input capacitance.
The probe derives its power from the probe power jack on many Tek scopes, a 1101 or 1101A Power Supply.

CHARACTERISTICS		
	P6201	P6202A
Risetime	<0.4 ns	<0.7 ns
Bandwidth (verified by risetime)	$>900 \mathrm{MHz}$	$>500 \mathrm{MHz}$
Attenuation	X 1	X10
Attenuation Accuracy	$\pm 3 \%$	$\pm 4 \%$
Input Resistance	$100 \mathrm{k} \Omega$	$10 \mathrm{M} \Omega$
Input Capacitance	3 pF	2 pF
Input R with Attenuator	$1 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega^{* 1}$
Input C with Attenuator	1.5 pF	$2 \mathrm{pF}^{*}$
Dynamic Range	$\pm 0.6 \mathrm{~V}$	$\pm 6.0 \mathrm{~V}$
Dynamic Range with Attenuator	$\pm 6 \mathrm{~V}$ or $\pm 60 \mathrm{~V}$	$\pm 60 \mathrm{~V}$ *
Dc Offset Range	$\pm 5.6 \mathrm{~V}$	$\pm 55 \mathrm{~V}$
Noise	$300 \mu \mathrm{~V}$	$150 \mu \mathrm{~V}$
Maximum Input Probe Only	$\pm 100 \mathrm{~V}$ peak	$\pm 200 \mathrm{~V}$ peak
Derated above	60 MHz	2 MHz
Derated to-at Frequency	$\begin{gathered} 5 \mathrm{~V} \text { at } \\ 500 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{~V} \text { at } \\ 300 \mathrm{MHz} \end{gathered}$
Maximum Input with Attenuator	200 V peak	200 V peak*1
Derated above	50 MHz	$150 \mathrm{MHz*}{ }^{\text { }}$
Derate to-at Frequency	$\begin{gathered} 5 \mathrm{~V} \text { at } \\ 500 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 70 \mathrm{~V} \text { at } \\ 400 \mathrm{MHz}^{* 1} \\ \hline \end{gathered}$
Ac Coupling-3 dB Low Frequency	10 Hz	16 Hz

[^51]
ORDERING INFORMATION

P6201 1X, FET Probe

6 ft Cable. Order 010-6201-01 \$1,220 Includes: Retractable probe tip (CG, 013-0135-00); 10X attenuator head ($010-0376-00$); 100X attenuator head ($010-0377-00$); 3 probe tips ($\mathrm{CO}, 206-0200-00$); probe tip (CJ, 103-0164-00); 30 cm (12 inch) ground lead (DB, 175-0848-02); ground contact (CM, 131-1302-00); alligator clip (AS, 344-0046-00); electrical insulating sleeve (CK, 166-0557-00); ground contact insulator (CL, 342-0180-00); carrying case ($016-0156-02$); instruction manual (070-1306-00).
P6202A Dc to 500 MHz , 10X

For 50Ω or $1 \mathrm{M} \Omega$ Inputs

Dc Offset, Small Probe Size

High Input Impedance through Freq Range

With its standard Tektronix power connector the P6202A can be used on any instrument that has standard probe power. Low input capacitance permits acquisition of high frequency signals with a minimum loading of circuits under test while the high input resistance minimizes low frequency and dc loading. The dc offset feature offsets any dc component within the range of the control to bring the signal into the dynamic range of the probe.
The P6202A derives its power from the probe power jack on many of Tek scopes, a 1101 or 1101A Power Supply.

ORDERING INFORMATION

P6202A 10X, FET Probe
$\$ 680$ 2 m Cable. Order 010-6202-03
Includes: Retractable probe tip (CB, 013-0097-01); two alligator clips (AS, 344-0046-00); probe holder (352-0351-00); 7.5 cm (3 inch) ground (DC, 175-084900); probe adjustment tool (CP, 003-0675-01); carrying case ($016-00378-00$); 13 cm (6 inch) ground lead (DE, 175-1017-00); two replaceable probe tips ${ }^{*}$; electrical insulating sleeve (BP, 166-0404-01); instruction manual (070-3642-00).
${ }^{\text {* }}$ Available in package of 10 only. Order 206-0230-03 (CF).

OPTIONAL ACCESSORIES

10X Attenuator - For total 100X attenuation. Order 010-0384-00
$\$ 70$

1101A Power Supply

The 1101A Accessory Power Supply provides power for active probes such as the Tektronix P6201, P6202A and P6230 when they are used with oscilloscopes that do not have a probe power supply.
The 1101A will provide power for up to two probes. Output power features short-circuit protection.

CHARACTERISTICS

Output Voltages - +15 V dc $\pm 2 \% ;-15 \mathrm{~V}$ dc $\pm 2 \% ;+5 \mathrm{~V}$ dc $\pm 5 \%$.
Output Currents - 300 mA each supply (shortcircuit protected). $+15 \mathrm{~V},-15 \mathrm{~V}$ supplies: $\leqslant 1 \mathrm{mV}$ RMS with 300 mA load.
Ripple $-+5 \vee$ Supply: $\leqslant 5 \mathrm{mV}$ RMS with 300 mA load.
Ac Input Voltages - Selectable, 87 V ac to 128 V ac or 174 V ac to 250 V ac.
Line Frequency - 48 Hz to 440 Hz .
Power - 30 W maximum at 115 V ac.
PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Width	157	6.2
Height	89	3.5
Depth	165	6.5
Weight	$\mathbf{k g}$	$\mathbf{~ b}$
Net	$\mathbf{1 . 7}$	3.8

ORDERING INFORMATION

1101A Accessory Power Supply

Includes: Instruction sheet 070-5126-00.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

ISOLATION ACCESSORIES FOR FLOATING MEASUREMENTS

In the world of oscilloscope use, the ability to make floating measurements is a pressing need.
This often causes users to employ questionable and often unsafe practices to allow the oscilloscope chassis to float at some potential other than ground. Such practices are parts of a larger problem concerning equipment grounding.
"Floating the scope" is the usual technique that is used in such measurements. It is the technique of defeating the protective grounding system-disconnecting the "signal common" from ground-and allowing accessible oscilloscope parts, such as the chassis, enclosure, connectors, and controls to assume the potential of the point at which the ground lead is connected. This is dangerous for two reasons.

First, and most obvious, is the possibly high voltages on exposed metal parts of the oscilloscope that present a shock hazard to the operator.
Second, and not so obvious, is the cumulative stresses on the oscilloscope power transformer insulation. Such stresses can cause future failure, with attendant shock and fire hazard, even after the oscilloscope is returned to properly grounded operation.
From a measurement standpoint the "floated scope" has the problem of imposing a ed loading is caused by capacitance between the floating scope chassis and the power line which may be considered at ac ground.
The A6901 and A6902B provide the means to make floating measurements without defeating protective grounding systems, and with minimum risk of operator injury, test equipment damage or signal degradation.

Both meet worldwide safety standards; including UL 1244, VDE, CSA Electronics Bulletin 556B, IEC 348 and BS 4743.

COMMON FLOATING MEASUREMENT TECHNIQUES

Floating measurements are made using various techniques, each having advantages and limitations. Some are unsafe, others distort the waveform measurement. Following are three preferred techniques.

Differential Techniques

The most popular solution for a floating measurement is the A minus B quasi-differential technique. Most general-purpose dual-trace oscilloscopes (such as the Tektronix 2445) have an Add Mode in which the two channels (invert CH 2) can be electrically subtracted, giving a display of the difference signal. This can be a problem when attempting to examine lowlevel control signals in the presence of high common-mode voltages. Also, the com-mon-mode dynamic range is severely limited (± 6 divisions beyond screen height) and CMRR is low-approximately 100:1.
True differential amplifiers are specifically designed to have good rejection of the common-mode signal and display only the difference signal. Because these amplifiers are basically two ground-referenced amplifiers, limited floating or common-mode capability is provided. Further, the ability to display a small signal in the presence of a large common-mode signal changes as a function of the absolute magnitude of the common-mode signal, as well as the ratio of the common-mode signal to the difference signal. Also, there are bandwidth limitations. The Tektronix 7A13 provides 500 volts of common-mode dynamic range at $0.1 \mathrm{~V} /$ div with a CMRR of at least 1000:1 and a bandwidth up to 105 MHz .

Isolation Amplifiers

The isolating amplifier is connected between the signal under investigation and the oscilloscope. With respect to the signal, the amplifier is completely insulated, with no accessible conductive parts. The signal is coupled across an insulating barrier to the oscilloscope. Use of the isolation amplifier maintains the usability of all scope functions.
The Tektronix A6902B Isolator is an isolation amplifier consisting of two identical amplifiers, isolated from each other, from accessible parts, from the mains, and from ground. It enables an oscilloscope to measure potentials from $\pm 20 \mathrm{mV}$ to ± 1500 volts. Each signal common lead can be independently connected to separate voltages up to plus or minus 1500 volts. The A6902B can measure two such signals simultaneously, in combination with any dual trace oscilloscope.

Isolator/Differential Amplifier

Using both A6902B channels as a differential input to a 7A13, 7A22, or A plus B invert scope, provides an extra measure of com-mon-mode performance. To use the isolator as a three-wire probe, the common leads are tied together and not connected to the circuit under test. The signal leads are then used as plus and minus differential inputs. This technique provides the isolator's protection and CMRR, as well as the amplifier's CMRR capabilities, and is particularly useful in circuits where the common-to-ground slew rate is high (i.e., above $50 \mathrm{~V} / \mu \mathrm{s}$).

Indirect Grounding

Safety standards specify indirect grounding as an alternative to direct grounding. All of the grounding requirements apply, except that the grounding circuit need not be completed until the available voltage or current exceeds a prescribed amount.

Ground Isolation Monitor

The Tektronix A6901 Ground Isolation Monitor is an indirect grounding device. It is connected between the mains and the test instrument. When activated, it disconnects the protective grounding system and monitors the voltage and current of the isolated ground. If this voltage exceeds 40 volts peak, the A6901 disconnects the power to the test instrument, sounds an alarm, and re-connects the protective grounding conductor.
The A6901 can be used with any grounded test instrument. It also tests ground continuity of the mains and will not activate if the mains ground is inadequate. It solves the problems of defeating the protective ground and provides the means for valid measurements.

NEW A6902B

For 50Ω or $1 \mathrm{M} \Omega$ Inputs
Two Independently Isolated Channels

High Voltage/High CMRR

UL Certified to 3000 V/Channel (6000 V Maximum Channel Differential)

Dc to 20 MHz Bandwidth

A dual-channel, optical- and transformercoupled voltage isolator, the A6902B allows safely grounded test instruments to make floating measurements at high sensitivity levels in the presence of large commonmode signals.
The A6902B acts as a buffer between the test instrument and the system under test and extends the range of the test instrument to 3000 V (dc plus peak ac) with the larger industrial probe and to 500 V (dc plus peak ac) with the smaller signal probe. Both probes are quickly interchangeable at the cable connectors. The two pairs of probes and output cables are stored in removable side pouches for availability and convenience.
Designed for use with any dual-channel oscilloscope, the A6902B permits simultaneous observation of two signals at two dif-
ferent points in the same circuit; or signals in two different circuits without respect to common lead voltages.
The two channels can also be combined to function as an input to a differential amplifier.
Separate, calibrated controls for volts per division on each channel provide for precise floating measurements. The all-plastic case and external controls protect the user during control settings and other operations. Other than probe tip connections, the user is never in close proximity to hazardous voltages.

CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

Deflection Factor - Probe Tip Sensitivity: $20 \mathrm{mV} /$ div to $500 \mathrm{~V} /$ div in $1-2-5$ sequence with oscilloscope set to $10 \mathrm{mV} /$ div. Accuracy: $\leqslant \pm 5 \%$ of indicated V/div switch setting.
Frequency Response - Bandwidth: Dc coupled (to -3 dB points) is $\geqslant 20 \mathrm{MHz}$. Ac coupled (to lower -3 dB point) is $\leqslant 5 \mathrm{~Hz}$.
Transient Response - Risetime: 17.5 ns (calculated from bandwidth).

Maximum Working Voltage

Large Probe - Probe Center Tip to Earth Ground: UL 3000 V. Probe Center Tip to Probe Common: UL 3000 V (dc + peak ac) to 450 kHz . See Figure 1 for voltage derating above 900 kHz . Probe Common to Earth Ground: UL 3000 V (dc + peak ac) to 250 kHz . See Figure 2 for voltage derating above 250 kHz .

Small Probe (500 V) - Probe Center Tip to Earth Ground: 500 V (dc + peak ac). Probe Center Tip to Probe Common: 500 V (dc + peak ac) to 3 MHz . See Figure 2 for voltage derating above 3 MHz . Probe Common to Earth Ground: 500 V (dc + peak ac) to 6 MHz . See Figure 2 for voltage derating above 6 MHz .

Figure 1. Maximum working voltage between probe input and probe common (all temperatures).

FREQUENCY (IN MHZ)
Figure 2. Maximum working voltage between probe common and earth ground.
Maximum Input $\mathbf{d V} / \mathrm{dt}$ - $100 \mathrm{~V} / \mathrm{ns}$.
Input Impedance - Resistance: $10 \mathrm{M} \Omega \pm 3 \%$. Capacitance: $\approx 19 \mathrm{pF}$ with either probe.
Output Impedance - $50 \Omega \pm 5 \%$.
Output Drive - 4 V p-p into $1 \mathrm{M} \Omega$.
Common-Mode Capacitance - 100 pF from probe common to earth ground.

Maximum Common to Ground Slew Rate -

 $500 \mathrm{~V} / \mu \mathrm{s}$.Tangential Noise - 20.0 mV . Dc Drift With Temperature: $\leqslant 10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}\left(0.1 \mathrm{div} /{ }^{\circ} \mathrm{C}\right)$ at output. Range of Output Dc Level: At least +5 div from center screen.
Channel Isolation - Maximum Voltage: Using two $3,000 \mathrm{~V}$ UL probes is 6000 V (dc + peak ac) UL. Using two 500 V probes is 1000 V (dc + peak ac).
Delay - $51 \mathrm{~ns} \pm 3 \mathrm{~ns}$ (large probe), $52 \mathrm{~ns} \pm 3 \mathrm{~ns}$ (small probe), from probe input to instrument input. $\mathrm{CH} 1, \mathrm{CH} 2$ delay difference is $\leqslant 4 \mathrm{~ns}$.
Common Lead Signal Feedthrough --106 dB from probe input to output BNC to 500 Hz . See Figure 3 for derating above 500 Hz .

Figure 3. Common-lead feedthrough characteristics. POWER SOURCE CHARACTERISTICS
Line Voltage Ranges - Low: 90 V to 132 V . High: 180 V to 250 V .
Line Frequency Range -48 Hz to 440 Hz .
Maximum Power Consumption - 24 W at $115 \mathrm{~V}, 60 \mathrm{~Hz}$.

ENVIRONMENTAL CHARACTERISICS
Temperature - Operating: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Altitude - Operating: To $4600 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$.
Humidity (Operating and Nonoperating) - Five cycles (120 hr total) with equipment tested nonoperating to MIL-STD-810C Method 507.1, at 90% to 95% relative humidity and $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

PHYSICAL CHARACTERISTICS

Dimensions	mm	in
Height	136	5.4
Width	394	15.5
Depth	344	13.5
Weight	$\mathbf{k g}$	$\mathbf{1 b}$
Net w/Accessories	6.2	13.7
Shipping	8.0	17.7

ORDERING INFORMATION

A6902B Isolator*1

Includes: Two 500 V isolation probes ($010-0411-10$); 0.15 ASB 250 V fuse ($159-0054-00$); 0.1 ASB 250 V fuse (159-0029-00-Europe); right angle power cord (161-0117-00); two $2 \mathrm{~m}, 50 \Omega$ output cables ($012-0204-00$); operator manual ($070-5614-00$).

OPTIONS

Option 02 - Additional two large probes.*1
Option 09 - Additional two large probes plus two 4 mm banana adaptors.*1

INTERNATIONAL POWER PLUG OPTIONS
Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A4 - North American $240 \mathrm{~V} / 15 \mathrm{~A}, 60 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
${ }^{*}{ }^{1}$ Contact your local sales office for price.

OPTIONAL ACCESSORIES

BNC to Probe Tip Adaptor -
Order 013-0084-02
BNC to Probe Tip Adaptor -
Order 015-0405-00
Isolation Probe - 3000 V .
Cable Marker Bands
(White) Order 334-2794-01
(Green) Order 334-2794-07

A6901
Permits Elevation of Test Instrument Chassis to $\mathbf{4 0}$ V Peak (28 V RMS)

Aids in Circuit Analysis or Circumventing Ground Loop Noise Problems

UL and VDE Safety Certification

The A6901 is placed between a measurement instrument and its power source and acts as an indirect grounding device, allowing floating measurements to be made with operator protection.
The A6901 monitors the voltage on the isolated system. When the voltage exceeds 40 V peak (28 V RMS) the power source to the instrument is interrupted, the isolated grounding system is connected to the power source grounding system, and an audible alarm is sounded. Before power is supplied to the measurement instrument, the A6901 tests the power source for a functional ground ${ }^{\star 1}$. If a functional ground is not established, the ground isolation monitor will not go into isolated mode.

Applications for the A6901 include elevating a test instrument chassis to logic reference voltages for more accurate logic level measurements, and isolating a test instrument chassis from common-mode voltages present on ground systems to eliminate undesirable noise from signal measurements.
The A6901 also can be used to test power outlets for proper wiring.
*1 If the A6901 is used in conjunction with a GA (Ground Fault Indicator), consult the GF manual for compatibit ity information.

Service Manual - Order 070-5615-00

CHARACTERISTICS
ELECTRICAL CHARACTERISTICS
Trip Voltage (Dc) - 40 V peak (28 V RMS) or + and -40 V (within 5%).
Trip Current $-0.5 \mathrm{~mA}, 3.5 \mathrm{~mA}$ to 5 mA selectable.
Neutral-to-Ground Continuity - Between 3 V and 10 V RMS (8.5 V and $28.3 \mathrm{~V}-\mathrm{p}$), 50 Hz .
Dc Voltage Trip Delay $-<20 \mathrm{~ms}$.
Line Voltage Ranges - 90 V to 128 V RMS, 180 V to 250 V RMS.
Line Frequency Range - 48 Hz to 66 Hz .
Maximum Power Consumption (No External Load) - 12 W at $115 \mathrm{~V}, 60 \mathrm{~Hz}$.
Load Power - 500 W maximum
ENVIRONMENTAL CHARACTERISTICS
Temperature - Operating: $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ $\left(+5^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$. Nonoperating: $-62^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$. Meets MIL-T28800B, Class 3.
Altitude - Operating: To $4600 \mathrm{~m}(15,000 \mathrm{ft})$. Nonoperating: To $15000 \mathrm{~m}(50,000 \mathrm{ft})$. Exceeds MIL-T-28800B, Class 3.
Humidity - Exceeds MIL-T-28800B, Class 3.
PHYSICAL CHARACTERISTICS

Dimensions	$\mathbf{m m}$	in
Height	87	3.4
Width	206	8.1
Depth	153	6.0
Weights	$\mathbf{k g}$	$\mathbf{l b}$
Net (without accessories)	1.4	3.0
Shipping	2.3	5.0

ORDERING INFORMATION

A6901 Ground Isolation Monitor

Includes: Operator manual (070-3618-00.

INTERNATIONAL POWER PLUG OPTIONS

Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 60 \mathrm{~Hz}$.
(North American 240 V not available. Neutral not grounded in 240 V North American Systems.)

DIFFERENTIAL PROBES

Tek support four modes of differential measurements: the differential amplifier probe; the matched pair of probes; the isolation amplifier; and the ground interrupt monitor.
The P6046 is a 100 MHz differential amplifier in probe form. It connnects into one channel of a standard scope amplifier.
A matched pair of P 6055 probes can produce CMRR ratios up to 20,000:1 with differential amplifiers. A single 10X probe has accuracy of 1% or less giving a scope-toprobe CMRR of no better than 50:1.
The A6902B provides differential capabilities for signals to 20 MHz , while rejecting up to 3,000 Volts of common mode.
The A6901 allows floating measurements within safe limits. It first checks for a good ground, then breaks the ground connection and continuously monitors the level of voltage elevation, and reconnects the ground if safe limits are exceeded.
P6055
20,000:1 CMRR 10X with Readout

High CMRR

Compact Size
Low Capacitance
Dc to 60 MHz
The P6055 is a miniature, low-capacitance, 10X probe designed for use with Tektronix differential amplifiers with nominal input capacitances from 20 pF to 47 pF . The attenuation ratio is adjustable to compensate for differences in input resistance of the amplifier (the amplifier input resistance must be $1 \mathrm{M} \Omega \pm 2 \%$). A special locking type readout connector allows the probe to be used with instruments with or without readout capability.

When two P6055 Probes are used to drive the two inputs of a differential amplifier, the ability to change the attenuation ratio of one probe versus the other is helpful in maintaining the CMRR of the system. The use of a matched pair of P6055 differential probes provides the best possible system CMRR.

CHARACTERISTICS

CMRR - 20,000:1 from dc to 1 kHz derating to $100: 1$ at 20 MHz .
Attenuation - Adjustable to 10X.
Input Resistance - $1 \mathrm{M} \Omega \pm 0.5 \%$.
Input Capacitance - $\approx 10 \mathrm{pF}$ when used with instrument that has 20 pF input capacitance; 12.5 pF when used with instrument that has 47 pF input capacitance.
Maximum Useful Bandwidth -60 MHz .
Typical Probe Risetime - 5.8 ns .
Maximum Voltage -500 V (dc + peak ac) from dc to 12 MHz , p-p V derated to 100 V at 70 MHz .

ORDERING INFORMATION
 P6055 10X, Differential Probe
 3.5 ft Cable. Order 010-6055-01
 \$275
 Includes: Retractable hook tip (BB, 013-0107-05); 13 cm (5 inch) ground lead ($175-0124-01$); probe holder ($352-0090-00$); two electrical insulating sleeves (BP, 166-0404-01); two alligator clips (AS, 344-0046-00); adjustable tool (CP, 003-0675-01); hook tip (BU, 206-0114-00); 13 cm (6 inch) electrical ground lead (DF, 175-1256-00); 30 cm (12 inch) ground lead (175-0125-01); instruction manual (070-1115-00).
 Matched Pair of Two P6055 Probes. Order 015-0437-00
 $\$ 485$

See page 446 for probe accessories.
P6046
Dc to 100 MHz 1X Differential

For 50Ω or $1 \mathrm{M} \Omega$ Inputs
1000:1 CMRR at 50 MHz
± 250 V Maximum Voltage with 10X Attenuator
Dual Probe Tips for Greater CMRR at High Frequencies

The P6046 Differential Probe and P6046 Amplifier Unit provide unique measurement capabilities with all Tektronix oscilloscopes. The differential-signal processing takes place in the probe itself, resulting in high common-mode signal rejection at higher frequencies. Differential probe-tip signal processing minimizes the measurement errors caused by differences in probes, cable lengths, and input attenuators.

CHARACTERISTICS

CMRR - With deflection factors of $1 \mathrm{mV} /$ div to $20 \mathrm{mV} /$ div: at least $10,000: 1$ at $50 \mathrm{kHz}, 5,000: 1$ at 1 MHz , and $1,000: 1$ at 50 MHz .
Common-Mode Linear Dynamic Range $\pm 5 \mathrm{~V}, \pm 50 \mathrm{~V}$ with 10 X attenuator.
Bandwidth - Dc to $100 \mathrm{MHz}(-3 \mathrm{~dB})$. Risetime - 3.5 ns or less.
Deflection Factor Range $-1 \mathrm{mV} /$ div to $200 \mathrm{mV} / \mathrm{div}$ in 8 calibrated steps, 1-2-5 sequence, accurate within 3% (with an oscilloscope deflection factor of $10 \mathrm{mV} / \mathrm{div}$).
Input RC-1 M Ω paralleled by 10 pF or less.
Input Coupling - Ac or dc, selected by a switch on the probe. Low frequency response accoupled is -3 dB at $20 \mathrm{~Hz}, 2 \mathrm{~Hz}$ with 10 X attenuator.
Displayed Noise - $280 \mu \mathrm{~V}$ or less (tangentially measured).
Maximum Input Voltage - $\pm 25 \mathrm{~V}$ (dc + peak ac), $\pm 250 \mathrm{~V}$ with 10 X attenuation, derated with frequency.
Output Impedance - 50Ω through a BNC-connector. 50Ω termination supplied with amplifier for use with $1 \mathrm{M} \Omega$ systems.
Probe Cable - 6 ft long, terminated with special nine-pin connector.

ORDERING INFORMATION

P6046 1X, 6 ft . FET Differential Probe with Amplifier and Power Supply Order 010-6046-02
Includes: 50Ω termination (BR, 011-0049-01); amp and power supply ($015-0106-00$); 50Ω coaxial cable ($012-0076-00$); hanger assembly ($014-0029-00$); carrying case ($016-0111-01$); 10X attenuator ($010-0361-00$); dual attenuator head ($010-0419-00$); swivel probe tip; spring ground contact; connector test point jack; instruction manual (070-0756-00).
Without Amplifier and Power Supply
Order 010-6046-01
Power Supply with Amplifier
Order 015-0106-00

P6007 Dc to 25 MHz , 100X

For $1 \mathrm{M} \Omega$ Inputs

1500 V Dc
Low Capacitance Loading
The P6007 is a low input capacitance, highvoltage (1.5 kV) probe. It can be compensated to match all Tektronix plug-ins and oscilloscopes with nominal input capacitances of 15 pF to 55 pF and input resistance of $1 \mathrm{M} \Omega$.

ORDERING INFORMATION

P6007 100X, High Voltage Probe
Includes: Banana tip (AK, 134-0013-00); 0.055 inch diameter straight tip (AA, 206-0015-00); retractable hook tip (AN, 013-0071-00); 13 cm (5 inch) ground lead (175-0124-01); 30 cm (12 inch) ground lead (175-0125-01); hook tip (AG, 206-0105-00); probe holder (352-0090-00); two alligator clips (AS, 344-0046-00); instruction manual (070-0388-01).
3.5 ft Cable. Order 010-0150-00

6 ft Cable. Order 010-0165-00
9 ft Cable. Order 010-0152-00

P6009 Dc to $120 \mathrm{MHz}, 100 \mathrm{X}$

For 1 M Ω Inputs
1500 V Dc
Dc to 120 MHz
Low Capacitance-2.5 pF
The P6009 is a low input capacitance, highvoltage (1.5 kV) probe designed for use with Tektronix dc to 150 MHz oscilloscopes. The probe can be compensated to match Tektronix plug-ins and oscilloscopes with nominal input capacitances of 12 pF to 47 pF and input resistance of $1 \mathrm{M} \Omega$.
A version of the P6009 is equipped with a special BNC connector that provides CRT Readout information when used with plug-in units and mainframes that have these features.

[^52]

For $1 \mathrm{M} \Omega$ Inputs

Measure up to 40 kV Peak Pulse
Up to $\mathbf{2 0}$ kV Dc + Peak Ac
75 MHz Useful Bandwidth
The P6015 Provides 1000X attenuation for oscilloscope measurements up to 40 kV peak. Voltage or duty cycle derating is necessary for RF voltages at frequencies over 100 kHz , or in temperatures above $25^{\circ} \mathrm{C}$.
The probe can be compensated for instruments with nominal input capacitance of 12 pF to 47 pF and input resistance of $1 \mathrm{M} \Omega$.

ORDERING INFORMATION

P6015 1000X, High Voltage Probe
10 ft Cable. Order 010-0172-00
\$650
Includes: BNC compensating box ($015-004900$); highvoltage dielectric fluid can (AU, 252-0120-00); alligator clip (AQ, $344-0005-00$); carrying case ($016-0128-02$); probe holder ($352-0056-00$); instruction manual ($070-0373-02$).

CHARACTERISTICS

	Attenuation	Accuracy	Input Resistance	Input Capacitance			Probe Risetime	Aberrations	Bandwidth	Nominal Cable Length (ft)	Maximum Dc Voltage	Derated Above	Derated to @ Frequency	$\begin{gathered} \text { Compen- } \\ \text { sation } \\ \text { Range }(\mathrm{pF}) \\ \hline \end{gathered}$
				$31 / 2 \mathrm{ft}$	6 ft	9 ft								
P6007	100x	3\%	$10 \mathrm{M} \Omega$	2 pF	2.2 pF	2.4 pF	14.0 ns	± 3	25 MHz	$31 / 2,6,9,12$	1.5 kV	200 kHz	2 kV @ 5 MHz	15 to 55
P6009	100x	3\%	$10 \mathrm{M} \Omega$		2.5 pF		2.9 ns	± 3	120 MHz	9	1.5 kV	200 kHz	300 V @ 20 MHz	15 to 47
P6015	1000X	Adjustable	$100 \mathrm{M} \Omega$	3 pF (10 ft only)			4.0 ns	± 5	75 MHz	10	20.0 kV	100 kHz	$2 \mathrm{kV} @ 20 \mathrm{MHz}$	12 to 47

Included Accessories with double alpha codes are pictured on pages 446 and 447

P6008 (Environmental)
100 MHz , 10X

For $1 \mathrm{M} \Omega$ Inputs

$-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Temperature Range
The P6008 Environmental Probe is designed to operate over $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for the probe body and cable; the compensation box operates from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. It is designed for use with Tektronix dc to 100 MHz oscilloscopes. The probe can be compensated to match Tektronix plug-ins and oscilloscopes with nominal input capacitance of 12 pF to 47 pF and input resistance to $1 \mathrm{M} \Omega$.

CHARACTERISTICS

Attenuation - 10X.
Input Resistance - $10 \mathrm{M} \Omega$.
Input Capacitance - $\approx 7.5 \mathrm{pF}$ when used with an instrument having a 20 pF input capacitance.
Bandwidth - Dc to 100 MHz .
Voltage Rating - 600 V dc , ac peak, or dc and ac peak combined. P-p voltage derating is necessary for cw frequencies higher than 20 MHz . At 40 MHz , the maximum allowable p-p voltage is 300 V .
Cable Length $-1.8 \mathrm{~m}(6 \mathrm{ft})$.

ORDERING INFORMATION

P6008 10X, 6 ft Environmental Probe Order 010-0129-01
Includes: Banana tip (AK, 134-0013-00); 300 mm (12 in) ground lead (BD, 175-0125-01); alligator clip (AR, 344-0045-00); retractable hook tip (AP, 013-0071-00); instruction manual (070-0362-01).

Included Accessories with double alpha codes are pictured on pages 446 and 447.

Illuminated Probe Tip Indicates Logic Level
The small, lightweight, hand-held P6401 indicates the state of logic levels in TTL, DTL, or any other system with threshold between 0.7 and 2.15 volts. A strobe input can be used to detect the coincidence of logic signals at two points. An indication of whether a logic pulse has or has not occurred can be obtained in a "store" mode.
Power may be obtained from the unit under test or any five volt supply.
Two bright lights in the probe tip indicate condition of the logic signal.

CHARACTERISTICS
 POWER SUPPLY

Low State Input Voltage Range -0 V to $+0.7 \mathrm{~V} \pm 0.125 \mathrm{~V}$.
High State Input Voltage Range -2.175 V $\pm 0.125 \mathrm{~V}$ to V cc.
Miminum Recognizable Pulse Width - 10 ns .
Impedance - $\approx 7.5 \mathrm{k} \Omega$ paralleled by $\approx 6 \mathrm{pF}$.
Miminum Circuit Resistance for Open Circuit Indication - $10 \mathrm{k} \Omega$.
Maximum Safe Input - $\pm 150 \mathrm{~V}$ (dc or RMS).
Mimimum Recognizable Strobe Pulse Width - 20 ns .

Maximum Safe Strobe Input $- \pm 30 \mathrm{~V}$ (dc or RMS).
Strobe Input Impedance - $5.6 \mathrm{k} \Omega$ within 20%.
P6401 1.5 m Logic Probe
Order 010-6401-01
\$170
Includes: Probe tip hook (BU, 206-0114-00); strobe lead (175-0958-01); strobe lead (175-0958-00); probe tip to 0.025 inch square pin adaptor (AH, 206-0137-01); white plug (348-0023-00); two alligator clips (AS, 344-0046-00); accessory pouch (016-0537-00); data sheet (062-1693-00).

P6420 rF Probe

For $10 \mathrm{M} \Omega$ Inputs
10 kHz to 1 GHz Bandwidth
Dc V Output/RMS of Sine Input
The P6420 RF probe measures high frequency ac voltage from 10 kHz to 1 GHz . It provides a dc output voltage proportional to the RMS value of a sinewave input compatible with any DMM with an input resistance of $10 \mathrm{M} \Omega$.

CHARACTERISTICS

Voltage Range -0.5 V to 25 V RMS ($70.7 \mathrm{Vp-p}$).
Ac to Dc Transfer Ratio Accuracy - 0.5 V to 5 V RMS $\pm 10 \%\left(+15^{\circ} \mathrm{C}\right.$ to $\left.+35^{\circ} \mathrm{C}\right) .5 .0 \mathrm{~V}$ to 25 V RMS $\pm 5 \%\left(+15^{\circ} \mathrm{C}\right.$ to $+35^{\circ} \mathrm{C}$).
Frequency Response - 100 kHz to 300 MHz $(\pm 0.5 \mathrm{~dB}) .50 \mathrm{kHz}$ to $500 \mathrm{MHz}(\pm 1.5 \mathrm{~dB}), 10 \mathrm{kHz}$ to $1 \mathrm{GHz}(\pm 3.0 \mathrm{~dB})$.
Input Capacitance - $\approx 3.7 \mathrm{pF}$.
Maximum Input Voltage - 42.4 V (peak ac + dc).

Temperature Range - Nonoperating: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Operating: $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Length — Probe Only: 96 mm . Cable Only: 2 m .

ORDERING INFORMATION

P6420 2 m RF Probe

Order 010-6420-03
\$145
Includes: Retractable probe tip (CB, 013-0097-01); two alligator clips (AS, 344-0046-00); two replaceable*1 probe tips; electrical insulating sleeve (BP, 166-0404-01); 75 mm (3 in) ground lead (DC, $175-084900$); 130 mm (6 in) ground (DE, 175-1017-00); probe holder ($352-0351-00$); BNC female to dual banana adaptor ($103-0090-00$); data sheet (062-2764-00).

* 'Available in packages of ten (order 206-0230-03) or 100 (order 206-0230-04) (CF).

OPTIONAL ACCESSORIES
Probe cables usable with the P6420 (does not change electrical specifications)
1 m - Order 175-9419-00
$\$ 15$
2 m - Order 175-9409-00
3 m - Order 175-9410-00

P6602 Temperature Probe

For DMM Input

UL Listed

The P6602 Temperature Probe is a temperature measuring device designed to operate with the 2236 Digital Multimeter. The temperature sensory element consists of a thinfilm platinum resistor in the tip of the probe. Measurements are made by touching the probe tip to the surface under test. The resulting resistor value is measured by the multimeter through a two-conductor cable. The tip and cable assembly are replaceable.

CHARACTERISTICS

Operating Temperature Range - Probe Head and Cable: $-62^{\circ} \mathrm{C}$ to $+230^{\circ} \mathrm{C}\left(-80^{\circ} \mathrm{F}\right.$ to $+446^{\circ} \mathrm{F}$). Banana Jack Style Connector: $-15^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Voltage - 400 V peak.

ORDERING INFORMATION	
P6602 Temperature Probe	
1.5 m Cable. Order 010-6602-00	$\$ 225$
Includes: Instruction manual ($070-4377-00$).	

1.5 m Cable. Order 010-6602-00

Includes: Instruction manual (070-4377-00).

CURRENT PROBES

Current probes provide a method to measure the current flowing in a circuit from dc to 1000 A . For instance, their use can eliminate the calculations that would be required to determine the current from the voltage drop across a current sampling resistor.
Two types of current probes are available, the traditional ac only probe and the "Hall effect" type. Ac only current probes use a transformer to convert current flux into ac signals and have a frequency response from a few hundred hertz to 100 MHz . Hall effect current probes include semiconductors to provide a frequency response from dc to 50 MHz .
Current probes can be used where low loading of the circuit is necessary. Loading is typically in the $\mathrm{m} \Omega$ to low Ω range. Current probes can be used for differential measurements; where the probe measures the results of two opposing currents in two conductors in the jaw of the probe.

A current waveform may be very different from a voltage waveform in a current-dependent circuit. Measuring only the voltage will not show this difference. A measurement of the current waveform is necessary to obtain the total picture.

A current probe is used by clipping its jaws around the wire that is carrying the current to be measured. Because it is "noninvasive", a current probe imposes less loading than other probes (typically less than a few nanohenrys in series with the wire at a capacitance of less than 1 pF). Differential current measurements are made by passing the two wires (in correct phase) through the current probe jaws.
The CT-5 increases the high-current measuring capability of most current probes by either 20:1 or 1000:1.

CURRENT PROBE SELECTION GUIDE

Type	Bandwidth Hz to MHz	Displayed Current/Div	Maximum Current					Saturation		Page	Prices
			Peak Pulse	$\mathrm{Dc}+$pk Ac	Ac P-P	Derate		Dc	Amp-S Product		
						Below	Above				
$\begin{array}{\|l\|l} \hline \text { A6302/ } \\ \text { AM } 503 \end{array}$	Dc 50	1 mA to $5 \mathrm{~A}^{* 1}$	50 A	20 A	40 A		20 kHz	20 A	100×10^{-6}	443	\$1,690
with CT-5	0.520	20 mA to $5 \mathrm{kA}^{*}$	50 kA		40 kA	20 Hz	1.2 kHz		0.1	445	\$2,890
$\begin{array}{\|l\|} \hline \text { A6303/ } \\ \text { AM } 503 \end{array}$	Dc 15	10 mA to $50 \mathrm{~A}^{*}$	500 A	100 A	200 A		20 kHz	100 A	$10,000 \times 10^{-6}$	443	\$2,195
P6021 w/Passive Term.	12060	20 mA or $100 \mathrm{~mA}^{* 1}$	250 A		15 A	300 Hz	5 MHz	0.5 A	500×10^{-6}	444	\$430
$+ \text { CT-5 }$	$120 \quad 20$	$\begin{aligned} & 400 \mathrm{~A} \text { or } \\ & 100 \mathrm{kA}^{* 1} \end{aligned}$	50 kA		2000 A	300 Hz	1.2 kHz	20 A	0.5	445	\$1,630
with 134	1238	1 mA to $1 \mathrm{~A}^{*}$	250 A		15 A	230 Hz	5 MHz	0.5 A	500×10^{-6}	444	\$1,105
+ CT-5	$12 \quad 20$	20 mA to $1 \mathrm{kA}^{*}$	15 kA		2000 A	230 Hz	1.2 kHz	20 A	0.5	445	\$2,305
P6022 w/Passive Term.	935120	10 mA or $100 \mathrm{~mA}^{* 1}$	100 A		6 A	3 kHz	10 MHz	0.2 A	9×10^{-6}	447	\$475
with 134	10065	1 mA to $1 \mathrm{~A}^{*}$	100 A		6 A	1.3 kHz	10 MHz	0.2 A	9×10^{-6}	447	\$1,150
CT-1	25 k 1000	$\begin{gathered} 0.5 \mathrm{~mA}^{* 1} \\ (5 \mathrm{mV} / \mathrm{mA}) \\ \hline \end{gathered}$	12 A		1.4 A			0.2 A	1×10^{-6}	445	\$175
CT-2	1.2 k 200	$\begin{gathered} 0.1 \mathrm{~mA}{ }^{* 1} \\ (1 \mathrm{mV} / \mathrm{mA}) \end{gathered}$	36 A		7 A			0.2 A	50×10^{-6}	445	\$200

${ }^{* 1}$ Scope set at $10 \mathrm{mV} / \mathrm{div}$.
${ }^{2}$ Scope set at $50 \mathrm{mV} / \mathrm{div}$.

A6302 Current Probe
20 A Ac and Dc Current Measurements
Dc to $50 \mathbf{M H z}$ Bandwidth
Peak Pulse Measurements to 50 A, 50,000 A with the CT- 5 Current Probe
Ac or Dc Coupling
Small Loading- 0.1Ω Insertion Z at 1 MHz , 0.5Ω at 50 MHz

The Tektronix A6302 and A6303 Current Probes are designed to be used with the AM 503 Current Probe Amplifier, any TM 500 Power Module and an oscilloscope. Both probes are used to make SCR, power supply, industrial control and motor start-up current measurements. The A6303 is especially recommended for measuring current in x-ray tubes to ensure compliance with PL90-602, the Radiation Control for Health and Safety Act of 1968 .
The A6302 and A6303 are valuable measurement tools when low loading is important, as when testing high impedance points or with current dependent devices.
Both probes make ac or dc coupled current measurements by the simple act of opening their sliding jaws and placing them around the conductor to be measured. For differential or sum measurements just place properly phased conductors in the probe jaw.
Suggested measurements for the A6302 and A6303 Current Probes include:
X-ray tube currents
SCR currents
Power supply currents
Motor start-up currents
Industrial control currents
Relay currents
Common-mode rejection of dc and ac currents

A6303 Current Probe

100 A Ac and Dc Current Measurements
Peak Pulse Measurement to 500 A

Ac or Dc Coupling

25 in $\times 21 \mathrm{~mm}$ (1 in $\times 0.83$ inch) Jaw Opening
Minimal Loading- 0.02Ω Insertion at 1 MHz , 0.15Ω at 15 MHz

	A6302 \& AM 503	A6303 \& AM 503
Sensitivity: Scope @ $10 \mathrm{mV} / \mathrm{div}$ Accuracy 3\%	$1 \mathrm{~mA} /$ div to $5 \mathrm{~A} / \mathrm{div}$	$10 \mathrm{~mA} / \mathrm{div}$ to $50 \mathrm{~A} / \mathrm{div}$
Bandwidth	Dc to 50 MHz	Dc to 15 MHz
Risetime	7 ns	23 ns
Max Ac Current CW	40 A p-p	200 A p-p
Derated above	$\begin{gathered} 20 \mathrm{kHz} \\ 2.5 \mathrm{~A} @ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{kHz} \\ 12 \mathrm{~A} @ 10 \mathrm{MHz} \end{gathered}$
Maximum Current Peak Not to Exceed A-S product	50 A	500 A
A-S Product	100×10^{-6}	$10,000 \times 10^{-6}$
Insertion Z	$\begin{aligned} & 0.1 \Omega @ 5 \mathrm{MHz} \\ & 0.5 \Omega @ 50 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 0.02 \Omega @ 1 \mathrm{MHz} \\ 0.15 \Omega @ 15 \mathrm{MHz} \end{gathered}$
Max Hardware Volts	500 V	700 V
Max Conductor Diameter	0.15 inch	0.83 inch
System Prop Delay	$\approx 30 \mathrm{~ns}$	$\approx 40 \mathrm{~ns}$
Cable Length	2 m	2 m
Tangential Noise	0.3 mA	3 mA
Aberrations	$\pm 5 \%$	$\pm 5 \%$
Magnetic Susceptability	$250 \mu \mathrm{~A} /$ Gauss	$25 \mathrm{~mA} /$ Gauss
Operating Temp	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Note: A6302/AM 503 or A6303/AM 503 calibrated as a set.

ORDERING INFORMATION

A6302 2 m Current Probe
 \$565

Includes: Miniature alligator clips (AS, 344-0046-00); 130 mm (5 in) probe ground lead (DD, 175-0124-01); 75 mm (3 in) probe ground lead (DD, 175-0263-01); instruction manual (070-3905-01).

A6303 2 m Current Probe

\$1,070
Includes: Carrying case (016-0622-00); instruction manual (070-3906-01).

AM 503 Current Probe Amplifier For $50 \Omega / 1 \mathrm{M} \Omega$ Inputs

The AM 503 operates in any one of the TM 500 power modules and is connected to either the A6302 or A6303 probes through a multipin connector.
It is calibrated in 12 steps; the knob skirt is illuminated to indicate current per division. Bandwidth can be limited to 5 MHz to eliminate unwanted transients. Both ac and dc coupling are provided. Ac coupling allows the measurement of low amplitude signals on a high-level dc current. A front-panel light warns of input currents above 100 A dc with the A6303 or 20 A dc with the A6302. A push button allows degaussing of probe when it is removed from the circuit and locked in operating position.
The output of the A6303/AM 503 can be displayed on any oscilloscope that has at least a 50 MHz bandwidth and a 10 mV sensitivity. The A6302/AM 503 can be used on a 75 MHz oscilloscope with 10 mV sensitivity to display the probe's full bandpass. The AM 503 output can be plugged directly into a 50Ω recording instrument, or a 50Ω termination which is supplied. See page 379 for a complete description of the AM 503.

ORDERING INFORMATION

AM 503 Current Probe Amplifier $\$ 1,125$
Includes: 50Ω BNC cable (012-0057-01); 50Ω BNC termination (BR, 011-0049-01); instruction manual (070-2052-01).
The AM 503 Current Probe Amplifier requires one of the TM 500 Series power modules listed below. The number of plug-ins the module will accept is designated by the last digit in the part number. The optional interface allows connections between plug-ins to be made through the rear panel of the power module.

P6021 with Termination

For $1 \mathrm{M} \Omega$ Input with Passive Termination
For $50 \mathrm{M} \Omega / 1 \mathrm{M} \Omega$ Input with 134
Clip-on Capability
Shielded Probe Heads
The P6021 and P6022 Current Probes and 134 Current Probe Amplifier provide versatility in a user-assembled ac current measurement system. Both probes provide accurate current measurements over a wide range of frequencies and are used with real-time oscilloscopes. They can be used with $1 \mathrm{M} \Omega$ input instruments with their passive terminations, or with 50Ω and $1 \mathrm{M} \Omega$ input instruments with the 134 Amplifier. Both avoid breaking a circuit by clipping onto a conbreaking a circuit by clipping onto a con-
ductor. Just open the spring-loaded slide, place the conductor into the slot and release the slide. No electrical connection is required. current measurements over a wide range of

P6022 with Termination

Shielded probe heads are not grounded
when the slides are in their open positions,
Shielded probe heads are not grounded
when the slides are in their open positions, eliminating accidental grounding of the circuit under test.

P6021 Current Probe

For general purpose applications the P6021 provides wide-band performance with excellent low-frequency characteristics. Bandcellent low-frequency characteristics. Band-
width is 120 Hz to 60 MHz . Passive termination is switchable from $2 \mathrm{~mA} / \mathrm{mV}$ to $10 \mathrm{~mA} / \mathrm{mV}$.

P6022 Current Probe

The extra small size of the P6022 makes it ideally suited to measure current in comideally suited to measure current in com-
pact semiconductor circuits. Bandwidth is 935 Hz to 120 MHz . Passive termination is switchable from $1 \mathrm{~mA} / \mathrm{mV}$ to $10 \mathrm{~mA} / \mathrm{mV}$.

PERFORMANCE CHARACTERISTICS

Accuracy 3\% Sensitivity	P6021 with Passive Termination		P6022 with Passive Termination		Probe with 134 Amplifier	
	$2 \mathrm{~mA} / \mathrm{mV}$	$10 \mathrm{~mA} / \mathrm{mV}$	$1 \mathrm{~mA} / \mathrm{mV}$	$10 \mathrm{~mA} / \mathrm{mV}$	P6021	P6022
					1 mA to $1 \mathrm{~A} / \mathrm{div} @ 50 \mathrm{mV} / \mathrm{div}$	
Bandwidth Low -3 dB High -3 dB	$\begin{gathered} 450 \mathrm{~Hz} \\ 60 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 120 \mathrm{~Hz} \\ & 60 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 8.5 \mathrm{kHz} \\ 100 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 935 \mathrm{~Hz} \\ 120 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 12 \mathrm{~Hz} \\ 38 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 100 \mathrm{~Hz} \\ 65 \mathrm{MHz} \end{gathered}$
Risetime	5.8 ns	5.8 ns	2.7 ns	1.7 ns	9.2 ns	5.4 ns
Droop TC	0.35 ms	1.3 ms	$18.7 \mu \mathrm{~s}$	0.17 ms	13 ms	1.6 ms
Maximum Ac CW From To	$\begin{gathered} 15 \mathrm{~A} \text { peak } \\ 1.2 \mathrm{kHz} \\ 5 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 15 \mathrm{~A} \text { peak } \\ 300 \mathrm{~Hz} \\ 5 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 6 \mathrm{~A} \text { peak } \\ & 10 \mathrm{kHz} \\ & 10 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 6 \mathrm{~A} \text { peak } \\ 3 \mathrm{kHz} \\ 10 \mathrm{MHz} \end{gathered}$	$\begin{gathered} 15 \mathrm{~A} \text { peak } \\ 230 \mathrm{~Hz} \\ 5 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 6 \mathrm{~A} \text { peak } \\ & 1.3 \mathrm{kHz} \\ & 10 \mathrm{MHz} \end{aligned}$
Maximum Peak Current	250 A	250 A	100 A	100 A	250 A	100 A
Amp/Second Product	500×10^{-6}	500×10^{-6}	9×10^{-6}	9×10^{-6}	500×10^{-6}	9×10^{-6}
Maximum Dc	0.5 A					
Insertion Z (Ω)	$\begin{aligned} & 0.03 @ 1 \mathrm{MHz} \\ & 1.0 @ 60 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.03 @ 1 \mathrm{MHz} \\ & 0.2 @ 120 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 0.03 @ 1 \mathrm{MHz} \\ & 1.0 @ 38 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 0.03 @ 1 \mathrm{MHz} \\ & 0.2 @ 65 \mathrm{MHz} \end{aligned}$
$\begin{aligned} & \text { Propagation Delay (ns) } \\ & 5 \mathrm{ft} \\ & 9 \mathrm{ft} \\ & \hline \end{aligned}$	$\begin{array}{r} 9 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{array}{r} 9 \\ 15 \end{array}$
Maximum Voltage Barewire	600 V					
Net Weight	$\approx 1 \mathrm{lb}$		$\approx 1 \mathrm{lb}$		$\approx 5 \mathrm{lb}$	
Maximum Conductor Size	0.15 in dia		0.1 in dia		0.15 in dia	0.1 in dia
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	

134 Current Probe Amplifier

The 134 is used to extend the measurement capabilities and sensitivity of the P6021 or P6022 Current Probes. A Current/Div switch provides calibrated current steps from $1 \mathrm{~mA} /$ div to $1 \mathrm{~A} /$ div (with the oscilloscope or plug-in unit adjusted for a deflection factor of $50 \mathrm{mV} / \mathrm{div}$). A passive termination is not required when using a 134 with a P6021 or P6022.
The 134 can also be used as an auxiliary voltage amplifier by placing the Current/Div switch in the Volts position.

ORDERING INFORMATION
 \section*{P6021 Current Probe}

Includes: 13 cm (5 inch) ground lead (DD, 175-0125-01); two alligator clips (AS, $344-0046-00$); 7.5 cm (3 inch) ground lead (DD, 175-0263-01); instruction manual (070-0947-00).
With 5 ft . Cable and Termination Order 015-0140-02
With 9 ft . Cable and Termination Order 015-0140-03
With 5 ft . Cable and no Termination
Order 010-0237-02
With 9 ft . Cable and no Termination Order 010-0244-02 \$370
P6022 Current Probe
Includes: Same as P6021.
With 5 ft . Cable and Termination
Order 015-0135-00
With 9 ft. Cable and Termination
Order 015-0135-01
Order 015-0135-01
With 5 ft . Cable and no Termination
Order 010-0238-00
With 9 ft . Cable and no Termination Order 010-0238-02
134 Current Probe Amplifier
Includes: Hanger assembly (014-0029-00); cable assembly ($012-0104-00$); instruction manual ($070-0990-01$).
For 110 V ac. Order 015-0057-02
\$625
For 230 V ac. Order 015-0057-03
\$675

OPTIONAL ACCESSORIES
 (for P6021, P6022, and 134)

Carrying Case - For P6021 or P6022, and a
134 Amplifier. Order 016-0087-01
Passive Termination -
(P6021) Order 011-0105-00
(P6022) Order 011-0106-00
Power Supply -
110 V ac. Order 015-0058-01
230 V ac . Order 015-0059-01

CT-1/CT-2 Current Probes

The 1 GHz CT- 1 is Used with 50Ω Systems, or Wide Band Oscilloscopes, It has a Minimum Loading Effect on a 50Ω Environment

The CT-2 is Used with Oscilloscopes Up to 100 MHz Bandwidth, It is Insulated for Limited Space Applications

The CT-1 and CT-2 Current Probes are designed for permanent or semi-permanent incircuit installation. Each probe consists of a current transformer, an interconnecting cable and a termination. The current transformers are traversed by a small hole through which a current carrying conductor is passed during circuit assembly.
One probe cable can be used to monitor several current transformers that have been wired into a circuit.

CHARACTERISTICS

	CT-1	CT-2
Sensitivity	$5 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{mV} / \mathrm{mA}$
Accuracy	$\pm 3 \%$	$\pm 3 \%$
Risetime	350 ps	500 ps
Frequency Response Low: -3 dB High: -3 dB	$\begin{gathered} 25 \mathrm{kHz} \\ 1 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 1.2 \mathrm{kHz} \\ 200 \mathrm{MHz} \end{gathered}$
Insertion Impedance: at 10 MHz at 100 MHz	$\begin{gathered} \approx 1 \Omega \\ 2 \Omega \\ \hline \end{gathered}$	$\begin{aligned} & 0.1 \Omega \\ & 0.5 \Omega \\ & \hline \end{aligned}$
Capacitive Loading Barewire	1.5 pF for \# 14	1.8 pF for \#16
Maximum Barewire Voltage	1000 V	1000 V
Dc Saturation Current: Current to Reduce L/R by X2	75 mA	175 mA
Pulse Current Rating*1	12 A	36 A
Not to Exceed: Amp S Product* ${ }^{1}$	1×10^{-6}	50×10^{-6}
Maximum CW Current*1	450 mA	2.5 A
Cable Length	18 inch	42 inch
Prop Delay	3.25 ns	6.1 ns
Cable Connector	GR874	BNC
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	

${ }^{* 1}$ With 50Ω termination. Values are reduced by a factor of 2 if unterminated.

CT-1 with Probe Cable

The CT-1 Probe Cable (010-0133-00) provides the connection between the CT-1 current transformer and a GR scope input. This cable can also be used with other test point connectors such as Amphenol Series 27 Sub-Minax or Sealectro Sub-Miniature RF connectors.

CT-2 with Probe Cable

The CT-2 Probe Cable (010-0164-00) is used to connect the CT-2 current transformer with a BNC oscilloscope input. A 50Ω termination is used to terminate the cable at the high impedance input of an oscilloscope.

ORDERING INFORMATION

CT-1 Current Probe

Includes: Instruction manual (070-0375-01).
Current Transformer and Probe Cable. Order 015-0041-00
Current Transformer Only.
Order 015-0040-00
P6040 Probe Cable Only.
Order 010-0133-00
CT-2 Current Probe
Includes: 50Ω termination (BR, 011-0049-01); instruction manual (070-0406-01).
Current Transformer, Probe Cable,
Termination. Order 015-0047-00
Current Transformer Only.
Order 015-0046-00
P6041 Probe Cable Only.
Order 010-0164-00
\$200

1.5 Inch Diameter Conductors

Measurements on Bare Conductors to 3000 V
Nullifies Dc Effects to 300 A w/Dc Bucking Coil

Pulsed Currents to 50 kA

The CT-5 is a clip-on high-current transformer that extends the measurement capability of the Tektronix P6021 and A6302 clip-on current probes. Maximum low-frequency performance is obtained using the A6302/AM 503 Dc Current Probe. Pulse current to $50,000 \mathrm{amps}$ may be measured using the P6021 and passive termination, provided the 0.5 A -s rating is not exceeded. The P6021 and 134 Current Probe Amplifier may also be used for measurements at nor-
mal line frequency and above. (The P6022 and CT-5 are not compatible with each other.) The CT-5 has receptacles for current probes in either 20:1 or 1000:1 step-down ratios. The 1.5 inch square opening makes it possible to clip onto large conductors without breaking the circuit under test. The core and shield assembly are insulated from the windings and the handle. This allows measurements on bare wires to 3000 V , and to 10 kV RMS with a high voltage bushing.
A dc bucking coil assembly allows up to 300 A of dc to be tolerated without appreciably degrading measurements. This is very useful for measuring ac signals on top of a dc voltage level.

CT-5 CHARACTERISTICS

The following are characteristics of the CT-5 using either the A6302/AM 503 or P6021/134 combinations.
Risetime - 17.5 ns or less.
Insertion Impedance $-\leqslant 20 \mu \Omega$ at 60 Hz ; $20 \mathrm{~m} \Omega$ at 1 MHz .
Current Range - $20 \mathrm{~mA} /$ div to $100 \mathrm{~A} /$ div with A6302/AM 503, and $20 \mathrm{~mA} /$ div to $20 \mathrm{~A} /$ div with P6021/134 (20:1 step down ratio); 1 A/div to $5 \mathrm{kA} /$ div with $\mathrm{A} 6302 / \mathrm{AM} 503,1 \mathrm{~A} / \mathrm{div}$ to $1 \mathrm{kA} /$ div with P6021/134, (1000:1 step down ratio).
Accuracy - $\pm 4 \%$. Maximum Current is 1000 A peak cw .* ${ }^{*}$
Maximum Voltage - Of circuit test is 3000 V (barewire).
Maximum Dc Bucking Current - 300 mA to buck out 300 A dc (using dc bucking coil).
*' Maximum current 1000 A peak from 20 Hz to 1.2 kHz derating to 100 A peak at 1 MHz .

CT-5 CURRENT MEASUREMENT COMBINATIONS

COMBINATIONS				
Product			Maximum Current	
CT-5/A6302/AM 503	Band- width	A-s Product 20 Hz to	RMS	Peak Pulse
CT-5/P6021/134	12 Hz to 20 MHz	0.1	700 A	50 kA
CT-5/P6021/Term	120 Hz to 20 MHz	0.5	700 A	15 kA

PHYSICAL CHARACTERISTICS		
Dimensions	mm	in
Weidt	57	2.3
Height	241	9.5
Depth	266	10.5
Weight	$\mathbf{k g}$	lb
Net	1.8	4.0

ORDERING INFORMATION

CT-5 Current Probe

Includes: Carrying case (016-0191-03); 12 in wide, 4 ft long high voltage bushing (015-0194-00); instruction manual (070-1130-00).
Includes Dc Bucking Coil.
Order 015-0189-01
\$1,200
Without Dc Bucking Coil.
Order 015-0189-00 \$1,100

OPTIONAL ACCESSORIES

Dc Bucking Coil — Order 015-0190-00
$\$ 300$
High-Voltage Bushing -12 in wide, 4 ft
long. Order 015-0194-01

SCREW－ON PROBE TIP AND ACCESSORIES
The following tips and adaptors can be used on all Tektronix Probes that accept a \＃6－32 screw－on tip，including the P6006， P6007，P6008，P6009，P6028，and P6060 Probes and others with 6－32 adaptor．
CODE DESCRIPTION PART NUMBER PRICE AA Probe straight tip（ 0.055 in dia）．206－0015－00 \＄1．25 AB Probe spring tip（ 0.080 in dia）．．．．206－0060－00 $\$ 2.00$ AC Probe spring tip（accepts 0.065 in dia pin）．．． \qquad 206－0061－00
$\$ 1.50$
Probe spring tip (accepts 0.068
in dia pin)..
206-0168-00
AE IC test tip 206-0203-00 \$1.50
AF Probe long straight tip
(0.032 in dia)...
\qquad
206-0104-00 $\$ 1.15$
AG Probe hook tip 206-0105-00 \$1.15
AH Probe ground lead adaptor (\#6-32
Probe ground lead adaptor (\#6-32
to 0.025 in square pin closing) ... 206-0137-01 $\$ 2.50$
AI Probe right angle hook tip 206-0185-00 \$1.50
AJ Bayonet ground assembly 013-0052-00 $\$ 8.50$
AK Probe banana tip 134-0013-00 \$1.00
AL Probe ground cover (for P6009) 166-0428-00 $\$ 1.35$
AM Probe calibration tip (0.063 in dia) $206-0100-00 \$ 10.50$
AN Probe retractable hook tip 013-0071-00 $\$ 3.50$
AP Probe retractable hook tip
(for P6008E)
\qquad ．．013－0071－01 $\$ 3.00$ AQ Alligator clip ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．344－0005－00 $\$ 4.00$ AR Alligator clip ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．344－0045－00 $\$ 0.80$ AS Miniature alligator clip ．．．．．．．．．．．．．．．．344－0046－00 \＄2．15 AT Probe tip to BNC adaptor ．．．．．．．．．．013－0054－00 $\$ 15.00$ AU High－voltage dielectric fluid 3 oz ．252－0120－00 $\$ 5.00$ AV Probe pin tip（accepts 0.025 in IBM SLT in）．．．．．．．．．．．．．．．．．．．．． AW Probe tip to BNC adaptor （for P6028） \qquad 206－0134－03 $\$ 4.50$ （for P6028）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．013－0056－00 \＄17．25

CODE DESCRIPTION

PART NUMBER PRICE
BA Retractable hook tip（for all miniature probes） \qquad 013010500

BB Retractable hook tip（for P6053B，
P6055，P6062B，P6063B，P6101A
P6105A，P6106A，P6108，P6149，
P6120，P6121，and P6122）．．．．．．．．．．．013－0107－05 \＄3．25
BC Probe tip，IC Grabber ．．．．．．．．．．．．．．．．．．．013－0191－00 $\$ 6.50$ Miniature retractable hook tip ．．．．．．206－0222－00 $\$ 3.50$ Probe tip flexible，adapts miniature
probe to retractable hook tip（BD）．103－0177－01 \＄6．50 Probe tip flexible for 0.025 square
pin ．．206－0193－00 \＄8．00
BG Miniature probe to \＃6－32 adaptor
（for all miniature probes except P6045 and P6202）
．．．．．．．．．．．．．．．．．．．．．．
103－0051－01 \＄4．00
BH Miniature probe to \＃6－32 adaptor
with ground connection ．．．．．．．．．．．．．
Probe pin tip（accepts 0.025 in
IBM SLT pin）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．206－0209－00 \＄3．50

CODE DESCRIPTION

BJ Miniature probe tip to GR adaptor \qquad PART NUMBER PRICE

Miniature probe tip to GR 50Ω Subminiature probe tip to GR 50Ω termination adaptor ．．．．．．．．．．．．．．．．．．．．．
BL Chassis mount test jack（for mini－
ature probes）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．131－0258－00 \＄3．65
BM Bayonet ground assembly ．．．．．．．．．．．013－0085－00 $\$ 8.50$
BN Miniature probe tip cover，IC tester，
Package of 10 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．015－0201－04 \＄7．00 Package of $10 \ldots . ~ 015-0201-04 ~$
Package of 100 ．．．．．．．．．．．．．．． $\mathbf{0 1 5} 57.00$
$\$ 18.00$
BO Replaceable probe tip，pkg of 10 ．
All miniature probes except P6202 and P6420 ．．．．．．．．．．．．．．．．．．．．．．．．
BP Miniature probe tip ground cover， insulating sleeve ．．．．．．．．．．．．．．．．．．．．．．．．．166－0404－01 \＄1．00
BQ Electrical contact ．．．．．．．．．．．．．．．．．．．．．．．．．．214－0283－00 \＄1．00
BR Termination， 50Ω \qquad 011－0049－01 \＄25．00

CODE DESCRIPTION

PART NUMBER PRICE
BS Miniature probe tip to BNC
adaptor ．．
Subminiature probe tip to
BNC adaptor \qquad 013－0084－01 \＄8．00 Miniature probe tip to BNC adaptor
for all except P6202 ．．．．．．．．．．．．．．．．．．．．．013－0084－02 \＄10．00 BU Miniature probe tip hook ．．．．．．．．．．．．．．206－0114－00 \＄2．95
BV Miniature probe tip straight ．．．．．．．．．．206－0114－01 \＄2．95
BW Miniature probe tip to dual lead
adaptor．．015－0325－00 \＄15．00
BX Subminiature retractable hook tip 013－0208－00 \＄1．75
BY Subminiature to miniature probe tip
adaptor（allows use of miniature accessories with subminiature probes）．．．．．．．．．．．．013－0202－00 \＄4．00
BZ Circuit board probe test point outer case ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Circuit board pr
inner connector \qquad （need to order both for one test point）
BAA Miniature probe tip to BNC female 103－0096－00 \＄12．75

PROBE ACCESSORIES

OTHER ADAPTORS

CODE DESCRIPTION
PART NUMBER PRICE
CA Retractable hook tip (for P6010 and P6048) hook tip (for S-3A........................... 013-0090-00 \$5.00 CB Retractable hook tip (for S-3A, P6202, and P6420)
Retractable hook tip (for 7A11 and P6401)
213, 214, 221) 013-0107-02 \$3.25
CE Miniature probe to \#6-32 adaptor
(for P6045, P6046, P6202,
7A11, S-3A)
Replaceable probe tip for
P6202 and P6420, pkg of 10 206-0230-03 \$17.00
 CODE DESCRIPTION PART NUMBER PRICE CG Retractable probe tip.................... 013-0135-00 \$5.25 CH P6201 probe tip to GR 50Ω termination adaptor 017-0094-00 \$70 CI Probe tip to BNC adaptor 013-0145-00 \$18 CJ Probe tip to test point jack 103-0164-00 $\$ 7.50$ CK Insulating sleeve, electrical 166-0557-00 \$1.00 CL Ground contact insulator …........... 342-0180-00 $\$ 1.00$ CM Ground contact 131-1302-00 \$1.15 CN Ground lead, insulating sleeve 166-0433-00 \$1.00 CO Replaceable probe tip 206-0200-00 $\$ 1.00$

CABLE MARKER SETS (Not Pictured)

DESCRIPTION	PART NUMBER	PRICE
For $1 / 8$ in dia cable	P................. $01660130-00$	$\$ 7.00$
For 3/16 in dia cable	$016-0127-00$	$\$ 6.00$
For all modular cables		

Probe	Length (m)	Connector/Comp Box		Probe Cable		Probe Head		Probe Tip/Hybrid Tip	
P6101A	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 103-0189-00 \\ 103-0189-00 \\ 103-0189-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 18.50 \\ & \$ 18.50 \\ & \$ 18.50 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9419-00 \\ 175-9409-00 \\ 175-9410-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 15.00 \\ & \$ 17.00 \\ & \$ 19.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0223-02 \\ 206-0223-02 \\ 206-0223-02 \\ \hline \end{array}$	$\begin{aligned} & \$ 22.00 \\ & \$ 22.00 \\ & \$ 22.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 206-0191-03^{* 1} \\ & 206-0191-03^{* 1} \\ & 206-0191-03^{*} \end{aligned}$	$\begin{aligned} & \$ 17.00 \\ & \$ 17.00 \\ & \$ 17.00 \\ & \hline \end{aligned}$
P6102A	2	206-0352-00	\$22.00	175-9409-00	\$17.00	206-0302-00	\$18.00	206-0338-01*2	\$25.00
P6104A	1	206-0332-00	\$43.00	175-9419-00	\$15.00	206-0303-00	\$17.00	206-0336-01*2	\$25.00
P6105A	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$206-0331-00$ $206-0334-00$ $206-0320-02$	$\begin{aligned} & \$ 53.00 \\ & \$ 53.00 \\ & \$ 53.00 \end{aligned}$	$175-9419-00$ $175-9409-00$ $175-9410-00$	$\begin{aligned} & \$ 15.00 \\ & \$ 17.00 \\ & \$ 19.00 \end{aligned}$	$206-0328-00$ $206-0301-00$ $206-0302-00$	$\begin{aligned} & \$ 18.00 \\ & \$ 18.00 \\ & \$ 18.00 \end{aligned}$	$206-0336-01^{\circ 2}$ $206-0337-01^{\circ} 2$ $206-0338-01^{\circ}$	$\begin{aligned} & \$ 25.00 \\ & \$ 31.00 \\ & \$ 25.00 \end{aligned}$
P6106A	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0313-01 \\ 206-0319-01 \\ 206-0320-01 \\ \hline \end{array}$	$\begin{aligned} & \$ 80.00 \\ & \$ 80.00 \\ & \$ 80.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9419-00 \\ 175-9409-00 \\ 175-9410-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 15.00 \\ & \$ 17.00 \\ & \$ 19.00 \\ & \hline \end{aligned}$		$\begin{aligned} & \$ 18.00 \\ & \$ 18.00 \\ & \$ 8.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 206-0336-01^{* 2} \\ & 206-0337-01^{2} \cdot 2 \\ & 206-0338-01^{*} \end{aligned}$	$\begin{aligned} & \$ 25.00 \\ & \$ 31.00 \\ & \$ 25.00 \\ & \hline \end{aligned}$
P6107A	2	206-0247-02	\$50.00	175-9409-00	\$17.00	206-0217-02	\$18.00	206-0339-02***	
P6108A	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0332-01 \\ 206-0318-02 \\ 206-0333-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 53.00 \\ & \$ 45.00 \\ & \$ 53.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9419-00 \\ 175-9409-00 \\ 175-9410-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 15.00 \\ & \$ 17.00 \\ & \$ 19.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0303-00 \\ 206-0304-00 \\ 206-0305-00 \\ \hline \end{array}$	$\begin{aligned} & \$ \$ 7.00 \\ & \$ 17.00 \\ & \$ 17.00 \end{aligned}$	$\begin{aligned} & 206-0336-01^{* 2} \\ & 206-0337-01^{2} \cdot 2 \\ & 206-0338-01^{*} \end{aligned}$	$\begin{aligned} & \$ 25.00 \\ & \$ 31.00 \\ & \$ 25.00 \\ & \hline \end{aligned}$
P6121	1.5	206-0311-00	\$50.00	175-9411-00	\$15.00	206-0323-00	\$25.00	206-0341-01*2	\$25.00
P6122	$\begin{aligned} & 1.5 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0312-00 \\ 206-0318-00 \\ 206-0318-01 \\ \hline \end{array}$	$\begin{aligned} & \$ 45.0 \\ & \$ 45.00 \\ & \$ 45.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9411-00 \\ 175-9412-00 \\ 175-9413-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 15.00 \\ & \$ 17.00 \\ & \$ 19.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|} \hline 206-0324-00 \\ 206-0325-00 \\ 206-0326-00 \\ \hline \end{array}$	$\begin{aligned} & \$ \$ 7.00 \\ & \$ 17.00 \\ & \$ 17.00 \end{aligned}$	$\begin{aligned} & 206-0342-01^{* 2} \\ & 206-0343-01^{2}+2 \\ & 206-0344-01^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 25.0 \\ & \$ 25.00 \\ & \$ 25.00 \end{aligned}$
P6125	1.5	206-0335-00	\$45.00	175-9411-00	\$15.00	206-0256-02	\$35.00	206-0191-03*1	\$17.00
P6130	$\begin{aligned} & 1.5 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0313-00 \\ 206-0319-00 \\ 206-0320-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 80.00 \\ & \$ 80.00 \\ & \$ 80.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9415-00 \\ 175-9416-00 \\ 175-9417-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 19.00 \\ & \$ 23.00 \\ & \$ 27.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0270-00 \\ 206-0270-02 \\ 206-0270-01 \\ \hline \end{array}$	$\begin{aligned} & \$ 12.0 \\ & \$ 12.00 \\ & \$ 12.00 \end{aligned}$	$\begin{aligned} & 206-0270-00^{* 3} \\ & 206-0270-02^{* 3} \\ & 206-0270-01^{* 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 12.00 \\ & \$ 12.00 \\ & \$ 12.00 \\ & \hline \end{aligned}$
P6131	$\begin{aligned} & 1.3 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0314-000 \\ 206-0321-00 \\ 206-0322-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 85.0 \\ & \$ 85.00 \\ & \$ 85.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 175-9414-00 \\ 175-9416-00 \\ 175-9417-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 19.00 \\ & \$ 23.00 \\ & \$ 27.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0265-00 \\ 206-0265-02 \\ 206-0265-01 \\ \hline \end{array}$	$\begin{aligned} & \$ \$ 2.00 \\ & \$ 12.00 \\ & \$ 12.00 \end{aligned}$	$\begin{aligned} & 206-0265-00^{* 3} \\ & 206-0265-02^{+3} \\ & 206-0265-01^{+3} \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 12.00 \\ & \$ 12.00 \\ & \$ 12.00 \\ & \hline \end{aligned}$
P6133	$\begin{aligned} & 1.3 \\ & 2 \\ & 3 \end{aligned}$	$206-0349-00$ $206-0350-00$ $206-0351-00$	$\begin{aligned} & \$ 22.00 \\ & \$ 22.00 \\ & \$ 22.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 174-0075-00 \\ 174-0073-00 \\ 174-0074-00 \end{array}$	$\begin{aligned} & \$ 19.00 \\ & \$ 23.00 \\ & \$ 27.00 \end{aligned}$	$206-0265-00$ $206-0265-02$ $206-0265-01$	$\begin{aligned} & \$ 12.00 \\ & \$ 12.00 \\ & \$ 12.00 \end{aligned}$	$206-0265-00$ $206-0265-02$ $206-0265-01$	$\begin{aligned} & \$ 12.00 \\ & \$ 12.00 \\ & \$ 12.00 \end{aligned}$
P6148A	2	206-0288-02	\$50.00	175-9409-00	\$17.00	206-0217-02	\$18.00	206-0339-01*2	\$25.00
P6149A	2	206-0255-02	\$50.00	175-9409-00	\$17.00	206-0217-02	\$18.00	206-0339-01*2	\$25.00
P6101	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 103-0189-00 \\ 103-0189-00 \\ 103-0189-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 18.50 \\ & \$ 18.50 \\ & \$ 18.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 175-1661-00 \\ & 175-1661-01 \\ & 175-1661-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 27.00 \\ & \$ 27.00 \\ & \$ 27.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0223-00 \\ 206-0223-00 \\ 206-0223-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 20.00 \\ & \$ 20.00 \\ & \$ 20.00 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 206-0191-03^{*} \\ 206-0191-03^{* 1} \\ 206-0191-03^{*} \end{array}$	$\begin{aligned} & \$ 17.00 \\ & \$ 17.00 \\ & \$ 17.00 \\ & \hline \end{aligned}$
P6104	1	206-0244-03	\$29.00	175-1661-00	\$27.00	206-0244-03	\$29.00	206-0191-03**	\$17.00
P6105	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	206-0219-02 $040-1164-00$ $206-0221-02$	$\begin{aligned} & \$ 48.00 \\ & \$ 48.00 \\ & \$ 33.00 \end{aligned}$	$\begin{aligned} & 175-1661-00 \\ & 175-1661-01 \\ & 175-1661-02 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 27.00 \\ & \$ 27.00 \\ & \$ 27.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 206-0216-00^{* 4} \\ & 206-0217-00 \\ & 206-0218-00^{* 4} \end{aligned}$	\$48.00	$\begin{aligned} & 206-0191-03^{*}{ }^{206} 0191-03^{* 1} \\ & 206-0191-03^{*} \end{aligned}$	$\begin{aligned} & \$ 17.00 \\ & \$ 17.00 \\ & \$ 17.00 \\ & \hline \end{aligned}$
P6106	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 206-0237-02 \\ & 040-167-00 \\ & 206-0239-02 \end{aligned}$	$\begin{aligned} & \$ 65.00 \\ & \$ 70.00 \\ & \$ 70.00 \end{aligned}$	$\begin{aligned} & 175-1661-00 \\ & 175-1661-01 \\ & 175-1661-02 \end{aligned}$	$\begin{aligned} & \$ 27.00 \\ & \$ 27.00 \\ & \$ 27.00 \end{aligned}$	$\begin{aligned} & 206-0216-00^{* 4} \\ & 206-0217-00 \\ & 206-0218-00^{*} \end{aligned}$	\$48.00	$\begin{aligned} & 206-0191-03^{*}+1 \\ & 206-0191-03^{*} \\ & 206-0191-03^{*} \end{aligned}$	$\begin{aligned} & \$ 17.00 \\ & \$ 17.00 \\ & \$ 17.00 \end{aligned}$
P6107	2	206-0247-00	\$42.00	175-1661-01	\$27.00	206-0217-00	\$48.00	206-0191-03*1	\$17.00
P6108	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 206-1629-00 } \\ & 206-0228-03 \\ & 206-0229-03 \end{aligned}$	$\begin{aligned} & \$ 30.00 \\ & \$ 44.00 \\ & \$ 35.00 \end{aligned}$	$\begin{aligned} & \mid 175-1661-00 \\ & 175-661-01 \\ & 175-1661-02 \end{aligned}$	$\begin{aligned} & \$ 27.00 \\ & \$ 27.00 \\ & \$ 27.00 \end{aligned}$	$\begin{array}{\|l\|l\|l} 206-0224-000 \\ 206-0225-00 \\ 206-0226-00 \end{array}$	$\begin{aligned} & \$ \$ 1.00 \\ & \$ 41.00 \\ & \$ 41.00 \end{aligned}$	$\begin{aligned} & 206-0191-03^{*}{ }^{2} \\ & 206-01911.03^{*} \\ & 206-0191-03^{*} \end{aligned}$	$\begin{aligned} & \$ 17.00 \\ & \$ 17.00 \\ & \$ 17.00 \end{aligned}$
P6148	2	206-0288-00	\$45.00	175-1661-00	\$27.00	206-0234-00	\$38.00	206-0191-03*1	\$17.00
P6149	2	206-0255-00	\$40.00	175-1661-01	\$27.00	206-0234-00	\$38.00	206-0191-03*1	\$17.00

${ }^{* 1}$ Probe tips in packages of ten.
${ }^{* 2}$ Probe hybrid tip assemblies in packaqes of five.
*3 Probe hybria tip assembly in quantities of one.
*4 Contact your local sales engineer for information.

CODE DESCRIPTION

CP Adjustment tool, probe (0.025 inch square end) (0.025 inch square en
(For P6202A only)...

CQ Probe tip extractor

CODE DESCRIPTION
CR Adjustment tool, probe (blade end)
(For P6055 only) 003-1364-00 \$2.90
CS Adjustment tool, probe (blade end)
(General purpose) 003-0675-00 \$0.75

CS

DJ

TEK $\begin{aligned} & \text { ADAPTING ACCESSORIES } \\ & \text { CONNECTING ACCESSORIES }\end{aligned}$

TEST LEADS

Test Lead, Black, 4 ft	012-0425-00	\$12.00
Test Lead, Red, 4 ft	012-0426-00	\$22.00
Test Lead, Black, 4 ft	012-0426-01	\$22.00
Test Lead set includes 012-042 012-0426-00, and 013-0107-05	012-0427-00	\$29.00
LOGIC PROBE 16 pin low profile dip clip (can be used with 14 or 16 pin ICs)	ST LEADS $015-0330-00$	\$40.00
10 wide comb set (grabber tips not included)	012-0747-00	\$50.00

PERSONALITY MODULE TEST LEADS

40 Pin Dip Clip-10 cm cable
(order M/F adaptor below)
40 Pin Dip Clip- 30 cm cable
Male Adaptor for 40 Pin
(order M/F adaptor below)
015-0339-00 \$44.00

Low Profile Dip Clip
Female Adaptor for 40 Pin
Low Profile Dip Clip
380-0647-01
$\$ 36.00$

The P6130, P6131 and P6230 are used directly, other probes must use the supplied pins and attach via a retractable hook tip. Up to 16 pin DIP can be connected. Four supplied pins make signals accessible at the top of the KLIPKIT, or invert the pins for pin signal connection to a common connection strap inside the clip. Two IC clips, 4 signal ground pins and information sheet included.
Klipkit
013-0197-00 \$40.00
IC CLIP
$\begin{array}{lll}16 \text { pin dip, clothes pin style } & 003-0709-00 & \$ 11.75 \\ 24 \text { pin dip, clothes pin style } & 003-0823-00 & \$ 30.00 \\ 40 \text { pin dip, clothes pin style } & 003-0801-00 & \$ 43.00\end{array}$

50Ω AIR LINE

The $20 \mathrm{~cm} 50 \Omega$ air line is useful as a time-delay device and as an absolute impedance in a time-domain reflectometer system. The characteristic impedance is $50 \Omega \pm 0.4 \%$. Time delay is $0.6698 \mathrm{~ns} \pm 0.4 \%$.
50Ω Air Line 017-0084-00 \$165.00

PATCH CORDS

BNC to BNC, 18 in

Black, 18 in $\quad 012-0182-00$
COAXIAL CABLES BNC
Coaxial, $50 \Omega, 42$ in 012-0057-01 Coaxial, $75 \Omega, 42$ in 012-0074-00 Coaxial, $93 \Omega 42$ in 012-0075-00 012-0076-00 Coaxial, $50 \Omega, 18$ in Coaxial, $50 \Omega, 18$ in,
Male to Female
012-0104-00 Coaxial, $50 \Omega \pm 1 \%$ Precision, 36 in 012-0482-00

BSM Female to BNC Male Coaxial, 10 in, RG58 BSM Female to BNC Male Coaxial, 18 in, RG58

012-0128-00
012-0127-00

GR 50Ω

Coaxial 10 ns RG58A/U Coaxial 5 ns RG213/U Coaxial 1 ns RG58A/U* Coaxial 2 ns RG58A/U Coaxial 5 ns RG58A/U Coaxial 10 in RG213/U Coaxial 20 in RG213/U * Connector on one end only

N 50Ω
Coaxial N Connectors, $6 \mathrm{ft} \quad 012-0114-00 \quad \$ 25.00$

Coaxial, 2 ns , Male to Female $015-1005-00 \quad \$ 90.00$ Coaxial, 5 ns , Male to Female $\quad 015-1006-00 \quad \$ 140.00$ Coaxial semirigid 500 ps , 4.5 in male only
Coaxial semirigid $750 \mathrm{ps}, \quad$ 015-1017-00 $\quad \$ 35.00$ Coaxial, 1 ns 015-1019-00 \$120.00

ADAPTORS

Coaxial, 2 ns , Male to Female	015-1005-00	\$90.00
Coaxial, 5 ns, Male to Female	015-1006-00	\$140.00
Coaxial semirigid $500 \mathrm{ps}, 4.5$ in male only	015-1015-00	\$25.00
Coaxial semirigid 750 ps ,	015-1017-00	\$35.00
Coaxial, 1 ns	015-1019-00	\$120.00
ADAPTORS		
$\begin{aligned} & 103-0028-00 \\ & 103-0029-00 \end{aligned}$	$103-0031-$	
BNC Female to BNC Female	103-0028-00	\$5.00
BNC Male to BNC Male	103-0029-00	\$5.50
BNC T	103-0030-00	\$8.00
BNC Elbow Male to Female	103-0031-00	\$7.50

Minimum acceptable order is $\mathbf{\$ 2 5 . 0 0}$.
$\$ 20.00$
$\$ 23.00$
$\$ 85.00$
$\$ 175.00$
$\$ 100.00$
$\$ 120.00$
$\$ 90.00$
$\$ 80.00$
$\$ 95.00$

$\$ 17.00$

GR to BNC Female	$017-0063-00$	$\$ 43.00$
GR to BNC Male	$017-0064-00$	$\$ 75.00$
50Ω termination, thru-line		
(GR to BNC Male)	$017-0083-00$	$\$ 85.00$

Accessory housing without electrical components is useful for applications requiring special circuitry.
Accessory Housing 011-0081-00 \$30.00

ATTENUATORS-TERMINATIONS

$50 \Omega \pm 0.1 \%$ precision feed-through termination (dc -100 kHz ,
11 V RMS maximum)
50Ω feed through termination* ${ }^{\circ}$ $50 \Omega 10 \times(20 \mathrm{~dB})$ attenuator*2 $50 \Omega 5 \mathrm{X}(14 \mathrm{~dB})$ attenuator*2 $50 \Omega(6 \mathrm{~dB})$ attenuator*2 $50 \Omega 2.5 \mathrm{X}(8 \mathrm{~dB})$ attenuator* ${ }^{2}$ 50Ω feedthrough termination $(5 \mathrm{~W})^{* 3}$
vswr
${ }^{*}{ }^{*}<1.1 d c-250 \mathrm{MHz}$ and $<1.2 d c-500 \mathrm{MHz}$.
${ }^{* 2}<1.1 \mathrm{dc}-1.0 \mathrm{GHz}$ and $<1.2 \mathrm{dc}-2.0 \mathrm{GHz}$.
${ }^{* 3} 1.1 d c-100 \mathrm{MHz}$.
Characteristics - Dc resistance is $50 \Omega \pm 1 \Omega$. Attenuation accuracy is $\pm 2 \%$ dc, $\pm 5 \%$ at 2 GHz . Power rating (except 011-0099-00) is 2 W average.
75Ω feedthrough termination 93Ω feedthrough termination 50Ω to 75Ω minimum loss attenuator
50Ω to 93Ω minimum loss attenuator
75Ω 10X attenuator $93 \Omega 10 \mathrm{X}$ attenuator 600Ω feedthrough termination (1 W , dc to 1 MHz) 75Ω to 50Ω minimum loss attenuator (ac coupled) 011-0112-00 \$60.00
Characteristics - Accuracy of indicated attenuation ratio is $\pm 2 \%$ at dc. Power rating of attenuators is $1 / 2 \mathrm{~W}$ and terminations 1 W . Voltage standing wave ratio (vswr) not specified.

Characteristics - Frequency range is dc to 12.4 GHz . Power rating is 2 W average, 300 W peak. Impedance is 50Ω $\pm 1.0 \mathrm{~dB}$.

SMA (3 mm) 50Ω							
$50 \Omega 2 \mathrm{X}$ attenuator			015-1001-00		\$120.00		
$50 \Omega 5 \mathrm{X}$ attenuator			015-1002-00		\$120.00		
$50 \Omega 10 \mathrm{X}$ attenuator			015-1003-00		\$120.00		
50Ω termination Female			015-1004-00		\$60.00		
Short-Circuit termination Male			015-1020-00		\$17.50		
Short-Circuit terminationFemale			015-1021-00				
			\$24.00				
50Ω termination Male					015-1022-00		\$32.00
Characteristics							
	$\begin{array}{r} \mathrm{Dc}- \\ 12.40 \end{array}$		$\begin{array}{r} 12.41 \\ 18.00 \\ \hline \end{array}$		Power		
	Attenua		Attenua				
	Accuracy	Vswr	Accuracy	Vswr	uous		
Termination	$\pm 1 \Omega$	1.15	$\pm 1 \Omega$	1.15	0.5 W		
$2 \mathrm{X}(6 \mathrm{~dB})$	$\pm 0.75 \mathrm{~dB}$	1.40	$\pm 1.00 \mathrm{~dB}$	2.00	1.0 W		
5 X (14 dB)	$\pm 0.75 \mathrm{~dB}$	1.40	$\pm 1.00 \mathrm{~dB}$	1.60	1.0 W		
$10 \times(20 \mathrm{~dB})$	$\pm 0.75 \mathrm{~dB}$	1.40	$\pm 1.00 \mathrm{~dB}$	1.60	1.0 W		

50Ω POWER DIVIDERS

This coaxial tee is designed for use in broad-band 50Ω systems where the mismatch introduced by ordinary "Tee" connectors is undesirable. Load isolation is nominally 6 dB while the voltage attenuation ratio is nominally 2 X (input to either load arm, other load arm terminated in a standard 50Ω termination). Maximum vswr is 1.50 from dc to 12.00 GHz and 1.90 from 12.01 to 18.00 GHz .

Power Divider SMA $(3 \mathrm{~mm}) \quad 015-1014-00 \quad \$ 200.00$

This coaxial tee has a 16.67Ω resistor in each leg, connected so that the tee looks like 50Ω if two legs are terminated in 50Ω. It is designed for use in broad-band 50Ω systems where the mismatch introduced by ordinary "Tee" connectors is undesirable. It is especially useful in a time-domain reflectometer set-up where test line, pulser, and oscilloscope must be coupled with a minimum of reflection-producing discontinuities.
Power Divider GR 017-0082-00 \$375.00
50Ω COUPLING CAPACITOR

The coupling capacitor is a short length of coaxial line with a disk capacitor ($4700 \mathrm{pF}, \pm 20 \%$) in series with the inner conductor. Reflection ratio (in 150 ps tdr system), is 0.03 maximum. Voltage rating is 200 V .
Coupling Capacitor SMA
(3 mm)
015-1013-00 \$200.00
The coupling capacitor is a short length of coaxial line having a disk capacitor (4700 pF) in series with the inner connector. High frequencies are transmitted with small reflection, but dc and low frequencies are blocked. Voltage rating is 500 V . Coupling Capacitor GR $\quad 017-0028-00 \quad \$ 100.00$

CT-3 Signal Pickoff

Design for use with high-frequency oscilloscopes, the CT-3 Pickoff provides a convenient means of picking off a signal in a 50Ω system. Used with any of the Tektronix sampling instruments, the CT-3 provides the link for use as a trigger source.
Sensitivity - 10% of the voltage under test, into a 50Ω load. Decay Time Constant - $4.5 \mu \mathrm{~s}$ at 0 dc current.
Risetime $-<0.4 \mathrm{~ns}$.
Frequency Response - 50 kHz to 875 MHz at 0 dc current. Insertion Impedance - With 50Ω termination is 1Ω shunted by $4.5 \mu \mathrm{H}, 2 \Omega$ shunted by $4.5 \mu \mathrm{H}$ without a 50 M termination. Vswr $-<1.2$ at 1.5 GHz .
Voltage Rating - At 0 V dc is 25 V RMS. 1 kV pulse peak. The V's product is $100 \mathrm{~V} \mu \mathrm{~s}$. If exceeded, the L/R decay will decay rapidly toward zero.

ORDERING INFORMATION

CT-3 Signal Pickoff
Order 017-0061-00
$\$ 170.00$

	H		L		F		G		E		RF		RR		T		C	
PRODUCT	in	cm																
R485*1	7.0	17.8	16.2	41.1	1.8	4.6	3.5	8.9	19.3	49.0	10.9	27.7	7.9	20.1	9.3	23.6	6.8	17.3
$\begin{aligned} & \hline \text { R5100 } \\ & \text { R5400*1 } \\ & \hline \end{aligned}$	5.3	13.5	19.0	48.3	1.1	2.8	1.8	4.6	24.6	62.5	-	-	-	-	-	-	5.3	13.5
R5223	7.0	17.8	20.8	52.9	1.3	3.3	-	-	-	-	-	-	-	-	-	-	7.0	17.8
R7103	7.0	17.8	27.7	70.4	1.5	3.8	-	-	29.0	73.7	-	-	-	-	-	-	7.0	17.8
R7704*1	7.0	17.8	22.4	56.9	2.3	5.8	1.8	4.6	33.3	84.6	15.3	38.9	10.7	27.2	18.5	47.0	7.0	17.8
R7313* R7603* R7613* R7623*1	5.3	13.5	22.3	56.6	2.0	5.1	1.8 -	-	25.2	64.0	-	1 -	- -	-	18.5 -	1 -	5.3	13.5
R7844*1	7.0	17.8	24.8	63.0	2.3	5.8	1.75	4.4	-	-	-	-	-	-	-	-	7.0	17.8
R7903**	5.3	13.5	22.8	57.9	2.3	5.8	-	-	25.3	64.3	-	-	-	-	-	-	5.3	17.8
R7912*1	5.3	13.5	26.9	68.3	1.8	4.6	-	-	26.9	68.3	-	-	-	-	-	-	5.3	13.5
7912AD	7.0	17.8	26.0	66.0	1.95	5.0	-	-	30.7	78.0	-	-	-	-	-	-	6.9	17.5
RTM506	5.25	13.3	18.9	48.0	1.82	4.7	-	-	-	-	-	-	-	-	-	-	5.25	13.3
016-0015-00	5.1	13.0	16.3	41.4	1.8	4.5	-	-	-	-	-	-	-	-	-	-	-	-
016-0115-05	5.3	13.5	16.3	41.4	0.3	0.8	-	-	-	-	-	-	-	-	-	-	5.3	13.5
016-0466-00	5.1	13.0	16.3	41.4	1.8	4.5	-	-	-	-	-	-	-	-	-	-	-	-
016-0468-00	5.2	13.3	14.9	37.8	2.0	5.1	-	-	-	-	-	-	-	-	-	-	-	-
016-0675-00**	8.8	22.4	19.7	50.1	1.5	3.9	3.5	8.9	24.3	61.6	-	-	11.9	30.1	13.3	33.8	8.5	21.6
016-0676-00*1	7.0	17.8	19.7	50.1	1.9	4.8	3.5	8.9	24.3	61.6	11.1	28.2	11.2	28.4	13.3	33.8	6.9	17.5
016-0691-01*1	7.0	17.8	18.3	46.5	1.5	3.9	3.5	8.9	20.4	51.9	11.8	30.0	-	-	9.5	24.1	6.6	16.7
040-0551-01	14.0	35.6	22.4	56.9	0.6	1.5	-	-	30.9	78.5	-	-	-	-	-	-	-	-
040-0600-00	5.25	13.3	18.3	46.5	0.7	1.8	-	-	-	-	-	-	-	-	-	-	5.25	13.3
040-0601-00	5.25	13.3	18.3	46.5	0.7	1.8	-	-	-	-	-	-	-	-	-	-	5.3	13.5
040-0616-02	5.3	13.5	16.5	41.9	1.1	2.8	1.8	4.6	24.6	62.5	-	-	-	-	-	-	5.25	13.3
040-0617-02	5.3	13.5	16.5	41.9	1.1	2.8	1.8	4.6	24.6	62.5	-	-	-	-	-	-	5.3	13.5
040-0624-01	5.25	13.3	18.3	46.5	0.7	1.8	-	-	-	-	-	-	-	-	-	-	5.3	13.5
437-0031-00	8.8	22.4	9.5	24.1	0.3	0.8	-	-	-	-	-	-	-	-	-	-	5.25	13.3
437-0071-00	7.0	17.8	13.4	34.0	1.4	3.6	-	-	-	-	-	-	-	-	-	-	7.1	18.0
437-0126-03	5.3	13.5	22.3	56.6	2.0	5.1	-	-	25.2	64.0	-	-	-	-	-	-	6.6	16.8

*1 These instruments mount with sliding tracks to a standard 19-inch wide rack. Rear support for sliding tracks is required, such as an enclosed rack.

RACK ADAPTORS

For rackmounting the 7000 Series oscilloscopes in a standard 19 in wide rack. Rack adaptor includes slideout assemblies. 7000 Series mask finish is light gray.
For 7704A, 7104, 7834 and 7854, rack height is 15.75 in, rack depth is 21.38 in, shipping weight is $\approx 41 \mathrm{lb}$. Order $040-0611-01$
For 455 and 465 M , includes cradle mount, rack height 7 in, rack depth 18.75 in. Order 040-0825-01
\$535
For 2445 and 2465. Order 016-0691-01
For 2335. Order 016-0468-00
For 2213A, 2215A and 2235.
Oder 016-0466-00
For 2236. Order 016-0015-00 $\$ 110$

For 464 and 466. Order 016-0676-00
For 485. Order 016-0558-00
$\$ 230$
$\$ 430$
$\$ 470$
\$300

STORAGE CABINETS

For 7000 Series Plug-in Units - Holds 6 plug-in units, for mounting in a 19 in rack, 5.25 in high. Order 437-0126-03

CRADLE MOUNTS

For rackmounting 7000 Series cabinet-type oscilloscopes in a standard 19 in wide rack. Cradle mount consists of a cradle (or "shelf") without slide-out assemblies and a mask to fit over the regular instrument panel. 7000 Series mask finish is light gray.
For 7704A, rack height is 15.75 in, rack depth is 22 in , shipping weight is $\approx 16 \mathrm{lb}$.
Order 040-0560-00
$\$ 445$

OSCILLOSCOPE PROTECTIVE COVERS

The cover provides protection for the oscilloscope during transport or storage. Made of waterproof blue vinyl, the covers are available for both laboratory and portable instruments. The covers for 500,5000 , and 7000 Series laboratory oscilloscopes have clear vinyl frontal areas.

PROTECTIVE COVERS

| INSTRUMENT | | PART NUMBER |
| :--- | :---: | ---: | PRICE

PLUG-IN UNIT CARRYING CASES
3-Wide Carrying Case for 7L14, 7L5 Option
25, 7D20, 7L18. Order 016-0626-00
2-Wide Carrying Case for 7L12, 7L5. Order 016-0625-00
$\$ 315$

CRT MESH FILTERS

The mesh filter improves display contrast for oscilloscope viewing under high ambient light conditions.
A fine metal screen with a matte black surface is utilized to reduce light reflections. Although light transmission from the CRT is reduced to approximately 28%, the high attenuation of external reflections allows viewing low-intensity displays in room light or other bright surroundings.
The mesh filter also serves as an EMC filter. Installed on the instrument, the metal frame of the filter is grounded, providing effective filtering of the EMC spectrum.

INSTRUMENT*1	PART NUMBER	PRICE
$314,326,335$	$378-0063-00$	$\$ 23.00$
432,434	$378-0682-00$	$\$ 55.00$
$422,491,453 \mathrm{~A}, 454 \mathrm{~A}, 485$	$378-0648-00$	$\$ 34.00$
$465,465 \mathrm{~B}, 475,464,466,434$	$378-0726-01$	$\$ 75.00$
7400,7603	$378-0696-00$	$\$ 65.00$
$7100,7500,7700,7800,7900$	$378-0603-00$	$\$ 65.00$

${ }^{* 1}$ For both cabinet and rackmount instruments.

VIEWING ACCESSORIES

The viewing accessories listed normally mount on the oscilloscope graticule cover. In many cases, they will also fit camera-mounting bezels. If you intend. using a camera on your oscilloscope, check with your Tektronix sales engineer for be-zel-viewer compatibility before ordering.

View Hood (Folding) -
For 576. Order 016-0259-00
$\$ 25$
For 577, 5000, and 7000 Series.
Order 016-0260-00
For 326, 314, 335, SC 502, SC 503, SC 504
(not pictured). Order 016-0297-00
$\$ 2.10$

Polarized Viewers - For Tektronix older 5 inch oscilloscopes. The viewers reduce troublesome reflections and glare under high ambient light conditions.
Rectangular Viewer. Order 016-0039-00
Plastic Round Viewer. Order 016-0053-00
Viewing Hood - For Tektronix older 5 inch round oscilloscopes. Includes molded rubber eyepiece and separate tubular light shield.
Order 016-0001-01
75

Collapsible Viewing Hood - For oscilloscopes with rectangular CRTs. Blue vinyl material, folds flat for convenient storage.
For 422, 453A, 454A, 485, 491.
Order 016-0082-00
For 422, 453A, 454A, 485, 491.
Order 016-0274-00
For 464, 466, 455, 465, 465B, 475, 2200
Series, 2445, 2465. Order 016-0592-00
Folding Binocular Viewing Hood - For
434, 455, 464, 466, 465B, 475, 475A, and 2200 Series. Order 016-0566-00
Polarized Collapsible Viewing Hood - To reduce reflections and glare under high ambient light conditions.
For 432, 434, 455, 465, 465B, 475, 464,
466, 2445, 2465. Order 016-0180-00

Viewing Hood - Molded gray polystyrene with polyurethane eyepiece.
For 576. Order 016-0153-00
For 5000 and 7000 Series, 601, 602, 603,
604, 528 and 577. Order 016-0154-00

CATHODE RAY TUBE LIGHT FILTERS

INSTRUMENT**	COLOR	PART NUMBER	PRICE
200 Series	Blue	378-0691-00	\$1.50
314, 335	Blue	378-2016-01	\$1.70
434	Blue	378-0678-01	\$2.25
455, 465M	Blue	337-2122-00	\$5.75
$\begin{aligned} & 465,465 B, 475, \\ & 464,466 \end{aligned}$	Blue Clear Smoke-gray filter	$\begin{array}{\|l\|} 337-1674-00 \\ 337-1674-01 \\ 337-1674-07 \\ \hline \end{array}$	$\begin{aligned} & \$ 6.00 \\ & \$ 5.75 \\ & \$ 5.75 \\ & \hline \end{aligned}$
$\begin{aligned} & 540,550 \text { Series } \\ & 565,575 \end{aligned}$	Smoke-gray \dagger Green Blue Amber	$\begin{array}{\|l\|} 378-0567-00 \\ 378-0568-00 \\ 378-0569-00 \\ 378-0570-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 9.00 \\ & \$ 5.75 \\ & \$ 5.75 \\ & \$ 5.75 \end{aligned}$
576	Bluet	378-0616-00	\$5.75
603, 604	Clear (603 \dagger) Green Amber Blue Gray Graticule (8x10 div)	$\begin{array}{\|l\|} \hline 337-1440-00 \\ 337-1440-01 \\ 337-1440-02 \\ 337-1440-03 \\ 337-1440-04 \\ 331-0303-00 \end{array}$	$\begin{array}{\|r\|} \hline \$ 3.00 \\ \$ 3.00 \\ \$ 3.50 \\ \$ 3.50 \\ \$ 4.50 \\ \$ 15.00 \end{array}$
605, 606, 607	Blue Graticule Clear Shield Gray \dagger Graticule (8x10 div)	$\begin{array}{\|l\|} \hline 337-1674-00 \\ 337-1674-10 \\ 337-1674-13 \\ 337-1674-06 \\ 331-0391-00 \end{array}$	$\begin{array}{\|r\|} \hline \$ 6.00 \\ \$ 10.00 \\ \$ 11.50 \\ \$ 5.00 \\ \$ 9.00 \end{array}$
608	Amber Graticule \dagger	$\begin{array}{\|l\|} \hline 378-0704-00 \\ 337-2126-02 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \$ 10.00 \\ \$ 10.00 \\ \hline \end{array}$
2200 Series	Blue \dagger Clear TV Graticule	$\begin{array}{\|l\|} \hline 337-2775-00 \\ 337-2775-01 \\ \hline \end{array}$	$\begin{aligned} & \$ 3.40 \\ & \$ 1.75 \end{aligned}$
2300 Series	Blue Implosion Shield \dagger Clear Implosion Shield \dagger	$\begin{array}{\|l} 337-2760-00 \\ 337-2781-00 \end{array}$	$\begin{aligned} & \$ 1.65 \\ & \$ 4.40 \end{aligned}$
2400 Series	Blue \dagger Clear Implosion Shield \dagger	$\begin{array}{\|l} \hline 378-0199-03 \\ 378-0208-00 \\ \hline \end{array}$	$\begin{aligned} & \$ 2.25 \\ & \$ 1.50 \\ & \hline \end{aligned}$
5100 and 5400 Series (except 5441)	Clear Green Amber Blue Gray	$\begin{aligned} & 337-1440-00 \\ & 337-1440-01 \\ & 337-1440-02 \\ & 337-1440-03 \\ & 337-1440-04 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 3.00 \\ & \$ 3.00 \\ & \$ 3.50 \\ & \$ 3.50 \\ & \$ 4.50 \end{aligned}$
5441	Clear \dagger Gray Graticule ($8 \times 10 \mathrm{div}$)	$\begin{array}{\|l\|} \hline 337-1674-01 \\ 337-1674-06 \\ 331-0391-00 \end{array}$	$\begin{aligned} & \$ 5.75 \\ & \$ 5.00 \\ & \$ 9.00 \end{aligned}$
7603	Blue Amber Gray Green Spectrum Analyzer Graticule Blue Implosion Shield \dagger Clear Implosion Shield	$378-0684-00$ $378-0684-01$ $378-0684-02$ $378-0684-03$ $337-1439-01$ $337-1700-01$ $337-1700-04$	$\$ 7.00$ $\$ 7.00$ $\$ 7.00$ $\$ 5.00$ $\$ 8.50$ $\$ 5.50$ $\$ 5.50$
$\begin{aligned} & 7613,7623 \\ & 7623 A, 7633 \end{aligned}$	Spectrum Analyzer Graticule Green (UV)	$\begin{array}{\|l\|l\|} \hline 378-0625-07 \\ 378-0625-08 \\ \hline \end{array}$	$\begin{array}{r} \$ 14.50 \\ \$ 5.00 \\ \hline \end{array}$
7844, 7313 7700 Series 7613, 7623 7100 Series 7900 Series	Blue \dagger Amber Gray Green Gray TV Graticule NTSC Clear Shield Spectrum Analyzer Graticule	$378-0625-00$ $378-0625-01$ $378-0625-02$ $378-0625-03$ $378-0625-06$ $337-1159-02$	$\$ 5.75$ $\$ 5.00$ $\$ 5.00$ $\$ 5.00$ $\$ 12.00$ $\$ 8.50$

*1 For both cabinet and rackmount instruments unless rackmount version is listed.
\dagger Standard filter supplied with instrument.

CUSTOMER SERVICES AND INFORMATION

CONTENTS

Sales Information and Assistance 452
User Assistance 452
Product Characteristics 453
Terms of Sale 453
Warranty Statement 454
Worldwide Service Support 455-456
Warranty-Plus Service Plans 457-458
OEM Information 459
Highlights of the Past 40 Years

\qquad 460
Sales and Service Offices Inside Back Cove

Tektronix Means . . . Fast, Flexible Worldwide Support

The people behind the product are friendly and ready to help you.

Get sales information and assistance to evaluate and order the products you want.
Ask for a Customer Service Representative the first time you contact Tektronix. The CSR can give you information on products and the names of the Sales Engineers assigned to serve your product interests. Tektronix Sales Engineers will respond to your technical and business inquiries.
Sales Engineers can give you information on dozens of products, so that you can select the one model best suited to your present and future applications, and will be happy to arrange a demonstration of that product.
Your Customer Service Representative or Sales Engineer can provide you with information on prices, terms, delivery dates, shipping estimates and best means of shipping.

Customer-site installations are thorough.

Tektronix provides on-site installation for most computer graphics products and most Tek-configured systems for computer graphics, semiconductor test, microprocessor development, and acquisition/ processing. The Tektronix service specialist will make sure your equipment is set up properly with all functions operating to specifications, and will walk you through the basics of its performance.

Training and assistance gets users up

 to speed, fast.Your Tektronix product is most useful to you when you're thoroughly familiar with it. Ask your Sales Engineer for a demonstration.

Tektronix also offers formal classes and self-study aides. Ask your Sales Engineer for details about Customer Training.

Test and Measurement Seminars

Tektronix instruments and programmable instrument systems represent the upper limits of productivity potential. Tektronix has designed seminars to help enhance your understanding of the capabilities of your equipment.
Customer Training Seminars naturally complement the Tektronix commitment to help you achieve optimum utilization of your equipment-A commitment that begins with engineering excellence and continues through training-helping you to develop new and more productive applications, fast!
These fast-paced courses, conducted at key locations throughout the U.S., combine classroom lectures with supervised, hands-

on laboratory sessions. Participants receive manuals and workbooks containing detailed course notes and lab exercises.
If you are interested in registering for one of these seminars or would like more information on a particular seminar, call instrument group customer training at (503) 642-8013 or write:
Tektronix, Inc.
Customer Training
P.O. Box $500 \mathrm{M} / \mathrm{S} 54-074$

Beaverton, Oregon 97077
For your convenience, Tektronix also offers private seminars conducted at your company. Call us for more information.
The following products have customer training available:

7854	2230
2465	2220
2445	MS3101
2430	$M S 3201$

Reliability Standards Second to None
Tek products are engineered for high reliability from the initial stages of design. Components and assembled products of every prototype and preproduction model are subjected to "accelerated-life" reliability tests in our Labs. If any fall short of Tek Standards, changes are made.
Manufactured products are thoroughly tested before they're fitted in custom-designed, lab-tested shipping cartons.
Product Specifications to Meet Your Environment
In Tek's Environmental Labs, field conditions are taken to extremes. Shock, vibration, high humidity, electromagnetic radia-
tion, electrostatic discharge, power line surge, high/low temperature and altitude tests are conducted.
The environmental characteristics listed among the product specifications in this catalog may include some or all of the above types. The specification limits for humidity, vibration, shock and transportation are intended to be beyond what is expected in use. Operation at these extremes may cause minor physical deterioration but should not cause electrical performance to deteriorate outside specifications. Continual use at the specified limits of temperature and altitude should not cause significant short-term deterioration. Higher temperature will reduce long-term reliability. The EMC test is completely nondestructive.

Security and Lease terms are not invoiced. Reminders of each installment are sent to the customer 10 days prior to the due date. The due date of each monthly payment on an installment term will be approximately 30 days from the date of shipment and every 30 days thereafter until completion of the contracted term. Failure to receive any reminder notice from Tektronix shall not affect customer's obligation to pay charges when due.
Except for standard warranty, maintenance is not provided under either a Security Agreement or a Lease Agreement. Additional maintenance is not provided under either a Security Agreement or a Lease Agreement. Additional maintenance coverage may be purchased where offered as an option to the instrument or may be purchased as a separate transaction. Maintenance ordered as an option may be financed along with the product.
The customer is required to pay applicable property taxes, licenses, etc. and furnish adequate insurance to Tektronix for loss and damages for both Leases and Security Agreements.

Security Agreement

An advance payment equal to approximately 10% of the purchase price of the equipment desired is required for a Security Agreement. Installment terms covering the balance of the contract price are available for $6,12,18,24,30$, or 36 months.
Minimum balance amounts may be financed, ranging from $\$ 1000$ for six months to $\$ 2000$ for thirty-six months. Longer terms of 48 months to 60 months are available by quotation for fi nanced balances of more than $\$ 25,000$. There are no maximum finance balances. Upon completion of the term of the Security Agreement and prescribed payments, the customer owns the equipment.

Lease Agreement (Minimum is $\mathbf{\$ 1 , 0 0 0}$)

A standard lease term of $6,12,18,24,30$, and 36 months is offered. Longer terms are negotiable. Under a Lease Agreement the customer
pays for the use of the product for the term of agreement. It is not a month-to-month rental . . it is a non-cancellable, fixed-term lease requiring no advance payment. At the expiration of the lease there is the opportunity to update the instruments, to renew the existing lease, or to return the equipment at the expense of Tektronix, Inc. The customer may exercise an option to purchase the equipment at any time during the term of the lease, provided he gives thirty days written notice. A portion of the installments will be credited toward the purchase price. Not available for Information Display Products.

Information Display Products

Information Display Computer Graphics Products are available under 3 expanded Leasing programs. Terms vary from 90 days to 4 years.
Comprehensive Lease - This full service lease provides 7 features ensuring customer flexibility. Key features include maintenance, product upgrade, and purchase credits. Basic Lease Customers can use this program to acquire Information Display Products at our lowest monthly rates. Ownership Lease - This even payment plan ensures title transfer at the lease end. No down payment or ending balloon payment is required.
In addition to these standard programs, specialized leasing programs answer customer needs in the areas of new product evaluation, short term rental, supplying interim products for delayed items, credit acceptance, and others Custom Leases can also be structured, providing a tailored solution for individual customer requirements.

Minimum Order

The minimum acceptable order is $\$ 25.00$.

Shipment

All prices, quotations, and shipments are FOB Beaverton, Oregon, unless otherwise specified.
Unless otherwise specified, shipment will be made via most economical method and air shipments will be insured at full valuation unless your order instructs otherwise.

60, 90 and 120 Days Extended Terms of Sale

Extended terms of 60 to 120 days are available on the same single payment basis as standard terms. Since the cost of extended terms is not included in catalog prices, a service charge is added to the invoice. The amount of the service charge depends upon the number of days the terms are extended. Request for extended terms must be made at the time of order placement.

Installment Purchases-Security and Lease

 AgreementsThis program provides monthly installment payment terms while Tektronix Products are in use. Accessories and parts are not available unless they are associated with the products being purchased. New and used products may be purchased with a deduction for applicable quantity discounts.

Tektronix warrants to its Customers that the products that it manufactures and sells will be free from defects in materials and workmanship for the periods set forth in the table below. If any such product proves defective during the applicable warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor or will provide a replacement in exchange for the defective product.
In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Tektronix will provide such service at Customer's site for certain categories of products, as indicated in the table below, if Customer's site is within the normal onsite service area. Tektronix will provide on-site service outside the normal on-site service area only upon prior agreement and subject to payment of all travel expenses by Customer. In all other cases, Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the service center is located. Customer shall be responsible for paying all shipping charges, duties and taxes, if the product is returned to any other location. The locations at which the ser-
vices will be provided for different categories of products or product groups are set forth below.
This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modifified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.
this warranty is given by tektronix with respect to the listed PRODUCTS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE A DEFECTIVE PRODUCT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX has advance notice of the possibility of such damages.

PRODUCT CATEGORIES	WARRANTY PERIOD	SERVICE LOCATION
Oscilloscopes (except 2200, 2300, 2400 Series) and Plug-ins; TM 500/TM 5000 Series; Communications Network Analyzers (except 834 Series, 835 \& 836); Logic Analyzers; Spectrum Analyzers (except 494 and 494P); Television Products (except 1980 and 650 and 690 Series); Waveform Digitizers; Curve Tracers; Photometers/Radiometers; Cameras; Carts; Probes; CRTs; and Isolators	1 year from date of shipment	Service Center designated by Tektronix
Oscilloscopes: 2200, 2300, 2400 Series; Spectrum Analyzers: 494 and 494P; Monitors: 650 and 690 Series; Communications Network Analyzers: 834 Series, 835, 836 and 067-0986-00	3 years from date of shipment	Service Center designated by Tektronix
Monitors: 606B, 608, 620,634	3 months, except 1 year from date of shipment for CRT	Service Center designated by Tektronix
Computer Graphics Products (except those listed below); Intelligent Graphics Workstations; Monitors: GMA 201, 1980 ANSWER; 4041 Controller; Software Development Products (except V-Systems, 856140 Series); Artificial Intelligence Machines	3 months, except 1 year from date of shipment for CRT	Customer's site if within normal on-site service area
Computer Graphics Products: 4104A, 4105A, 4106A, 4107A, 4109A, CX4106A, CX4107A, CX4109A	1 year from date of shipment	Customer's site if within normal on-site service area
Acquisition/Processing Systems; Semiconductor Test Systems; Software Development Products: V-Systems, 856140 Series	3 months, except 1 year for CRT, beginning on the date of installation by Tektronix, or one month from date of shipment, whichever is earlier	Customer's site if within normal on-site service area
Parts, Assemblies, Supplies and Test Fixtures: All 9-digit part numbered items except Probes, CRTs, and 067-0986-00	3 months from date of shipment	Service Center designated by Tektronix
Service	3 months from date of shipment or date of completion if performed on-site	Location where original service was performed

SOFTWARE WARRANTY SUMMARY

Tektronix warrants that any software product for which Tektronix publishes a corresponding "Software Product Description" will conform to the specifications set forth in the Software Product Description, when used properly in the specified operating environment, for a period of three (3) months. The warranty period begins on the date of shipment, except that if the program is installed by Tektronix, the warranty period begins on the date of installation or one month after the date of shipment, whichever is earlier. If any such software product does not conform as warranted, Tektronix will provide the remedial services specified in the applicable Software Product Descriptions. Tektronix does not warrant that the functions contained in the software product will meet Customer's requirements or that operation of the programs will be uninterrupted or error-free or that all errors will be corrected. Software products for which Tektronix does not publish a Software Product Description, or for which Tektronix does not set forth specifications in the Software Product Description, are provided "as is" without warranty of any kind, either express or implied; except that, Tektronix warrants that the media on which such software products are provided will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If any such medium proves defective during this warranty period, Tektronix will provide a replacement in exchange for the defective medium.
In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for such service in accordance with the instructions received from Tektronix. If Tektronix is unable, within a reason-
able time after receipt of such notice, to provide the remedial services specified in the applicable Software Product Description, when such services are indicated, or provide a replacement that is free from defects in materials and workmanship, Customer may terminate the license for the software product and return the software product and any associated materials to Tektronix for credit or refund.
This warranty shall not apply to any software product that has been modified or altered by Customer. Tektronix shall not be obligated to furnish service under this warranty with respect to any software product a) that is used in an operating environment other than that specified or in a manner inconsistent with the User's Manual and documentation or b) when the software product has been integrated with other software if the result of such integration increases the time or difficulty of analyzing or servicing the software product or the problems ascribed to the software product.
this warranty is given by tektronix with respect to the listed PRODUCTS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN SPECIFIED, REPLACE DEFECTIVE media, or refund customer's payment is the sole and exclusive REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENtal, or consequential damages irrespective of whether tEKTRONIX HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

PROTECTION FOR TEK PRODUCTS

Solid Support

To ensure maximum uptime and top performance, every Tektronix product is backed by our worldwide service organization.
Fast, on-site response and quick turnaround are provided by almost 60 service points in the USA alone, plus service offices in over 60 other countries.

Service Professionals

Over 1,400 Tek-trained personnel, including Customer Service Representatives, Specialists, and other members of your local Tek Service team, have one objectivemaximize customer uptime.
We back our specialists with regional and factory support, specialized diagnostic tools, updated documentation, and the world's best service instruments.
No one can match our large, local inventories of latest version Tek modules, assemblies and other parts.

A Lifetime of Service

A Comprehensive Warranty, as specified on page 454, accompanies every new, serialized product.
Warranty-Plus Options provide low-cost extended coverage for selected products. See page 457.
Annual Support Agreements, described here and on page 456, ensure maximum uptime.
Other Service Offerings include "Per-incident", FIRM PRICE, "Per-Call", self-maintenance support, Installation, and Time-andMaterial services.
Our Long-Term Support Program provides full service support for products long out of production. Following a product's support phase, we will use our best efforts to continue support if experienced technicians and the necessary parts are available.

Ready to Help You

Custom services available at selected offices are not included in this catalog. Likewise, not all USA programs described here are offered in every country. For prices and specifics in your area, call the Tektronix Sales, Service or Distributor Office nearest you.

CUSTOMER-SITE SUPPORT

For design and graphics products, we offer fast, on-site service to eliminate downtime. It's available through Cus-tomer-Site Support Agreements or on a "Per-Call" basis.
Annual Customer-Site Support Agreements. Our fastest response is reserved for agreement holders. All travel, parts and labor are covered. To maximize uptime, preventive maintenance is included to inspect, clean, and adjust your equipment to peak performance. Many available engineering upgrades, also performed at no extra charge, will update performance, safety, and reliability with current production versions of your product.

Per-Call Service. Dependable on-site service is also available for design and graphics products at time-and-material rates plus travel expense. Repairs are warrantied for 90 days.
Installation/Relocation Services. Tek offers expert moving and system set-up services at fixed-fee or "Per-Call" rates.
Software Update Agreements provide current releases of Tektronix licensed software and updates to software documentation. Call 1-800-835-6100 to order agreements on IGW, PLOT 10, AIM, and LoPro software. Call your Tek sales engineer for agreements on SDP software.

Technical Assistance Services may be obtained by calling your local Tektronix applications engineer for help in implementing Tek software, training users, or solving applications problems. The scope of assistance can be defined before costs are incurred.

Our eight-workhour response target means "one-day service" for virtually all customer sites in the contiguous USA during normal business days. For even faster response, multi-shift or weekend coverage, ask about our Customer-Site Agreement Options. Contact your local Tek office or call 1-800-835-6100 for prices and details.

SERVICE CENTER SUPPORT

For instrumentation products, there are several support alternatives summarized in the charts below. Discounts are available. There are some eligibility requirements and exclusions. Call your local Tek office for complete information.

Annual Service Center Support Agreements

Annual agreements are available in five levels of support. All provide top priority turnaround. Coverage usually costs less than a single repair and calibration. Discounts are available and Tek pays one-way shipping.

"Per Incident" Service
Remedial service performed at a Tektronix Service Center is available for most instrumentation products.
Time and Material Service restores performance to most damaged or discontinued products. Obsolete products may require a written quote which you approved to initiate repair.
The FIRM PRICE Program gives you, in advance, the exact cost to repair and/or calibrate your instruments. Mini-fees may apply when the repair requires less than an hour's labor. Contact your local Tek office for complete FIRM PRICE information.

SELF-MAINTENANCE SUPPORT

For customers who choose to perform their own maintenance, Tek Service offers the following support service.
Parts and Supplies are available. To order, call your nearest Tektronix office and give the part name, product model and serial number to the Parts Order Desk.
Module Repair and Return Services for specified modules of graphics and design products are obtained through our Module Repair Center, Factory Service, Beaverton, Oregon. For complete details, request a copy of our Module Service Price List, 81-A-6032.
Provisioning (Service Sparing) can be arranged by your Tek sales engineer. Tek will recommend the appropriate spares for your products and provide them to your specifications.
Test Fixtures and Calibration Aids can be purchased through your local Tek office. Consult this catalog for product-specific test fixtures and aids which are identified under most product listings or request a copy of the current Logistics Data Book, 99-W-5859.
Our Service Training Program includes classes and self-study aids in a variety of electronic, service-related subjects. Formal classes are offered at various Tek locations and, in some cases, are conducted at customer sites. For a listing of audio, video, and printed study aids in our training library, obtain a copy of the Customer Service Training Catalog, 81-A-5779, from your local Tek office or by completing the reply card in this catalog.
Service Publications available to customers include Service Manuals (circuit schematics, parts lists, operating maintenance, trouble-shooting information), TEKNOTES Newsletter, and Microfiche Service Manuals with updates. Order printed manuals as you would any part. Request a subscription to TEKNOTES through your Tektronix representative. Microfiche manuals (all ANSI standard $105 \mathrm{~mm} \times 148 \mathrm{~mm}$) and yearly subscriptions to new or revised service information on microfiche may be ordered by product, entire group or product line series, or as a full set of all Tektronix products. Contact your local Tek office for a Microfiche Products Files Catalog, 81-W-5678.

WARRANTY-PLUS COVERAGE COSTS LESS

For select Tektronix products, you may order Warranty-Plus Service Plans at the time of product purchase. Warranty-Plus offers comprehensive coverage at the lowest cost.

With Warranty-Plus, the full value of your equipment investment is ensured from the start. Coverage is continuous, beginning the moment your New Product Warranty expires.
By paying one, upfront charge at the time of product purchase, you can forget about maintenance cost for at least one full year or, in some cases, up to five years. Nothing makes budget planning easier. And, you are protected against increases in service rates.
Warranty-Plus means maximum uptime. You receive priority service. Approval or pa-per-work delays are eliminated. Preventive maintenance and scheduled calibrations are included in plans, as appropriate, at no additional cost.
And, unlike annual support agreement pricing, there is only one Warranty-Plus Service charge per product, with no added charges for the extra equipment options you may select. And because WarrantyPlus Service Plans are purchased as a product option, quantity discounts apply to save you even more.
Complete coverage descriptions and prices are available from your Tektronix sales engineer.

WARRANTY-PLUS FOR DESIGN AND GRAPHICS PRODUCTS

Installation and Set-Up OPTION NØ

 Under Warranty-Plus Installation Plan N \emptyset (N "zero"), Tektronix will install, set-up, and verify performance at the customer's site. All labor and travel within 75 miles of a Tek Service Office is included. Installation at end-user sites is also available for OEM purchases under Warranty-Plus Option N4. Ask your sales engineer for literature and prices.

First Year Coverage OPTION N1

For about the cost of one customer-site service call, you can extend 90-day service coverage on most design and graphics products and systems to a full year. Warranty-Plus Customer-Site Support covers travel, modules, all parts (including CRT), and labor to keep your equipment functioning to published specifications. It includes the appropriate number of preventive maintenance calls to inspect, test, clean, and adjust your equipment to optimum performance. Many available engineering updates are performed at no extra charge to enhance performance, safety, and reliability. With quick response to your call, a Tek specialist will perform remedial repairs as well as maintain mechanically-based copiers, plotters and disk drives, fully test Tek-configured systems, and adjust CRTs.
Option N1 is only available with standard end-user sales of most Information Display products and Tek-configured systems, and only at the time of product purchase. Specify "Option N1" when ordering. First year service coverage is also available for OEM purchases under Warranty-Plus Option N3.

Month of Ownership	1	2	3	4	5	6	7	8	9	10	11
12											
Warranty	Warranty										
Only	Coverage										
Warranty-Plus	Warranty	Warranty-Plus									
Option N1	Coverage	Coverage									

Three Year Coverage OPTION N2

Tek 4104A through 4109A (and -CX versions) Color Terminals carry a one year New Product Warranty. With Warranty-Plus Customer-Site Option N2, service coverage is extended for two additional years at very little cost. In fact, coverage for the 2nd and 3rd years costs less than one average on-site service call. Less than a one-year annual support agreement you may purchase later. Option N2 is only available on the 4104A through 4109A (and -CX versions) terminals and only at the time of product purchase. Specify "Option N2" when ordering.

Year of Ownership	1	2	3
Warranty	Warranty		
Only	Coverage		
Warranty-Plus	Warranty Coverage	Warranty-Plus Cption N2	

First Year Software Update Coverage OPTION N9

Option N9 maintains Tek-licensed software at its highest revision level during the first year of ownership, at no charge. It provides (1) appropriate media and documentation, (2) access to Tek's software development process, and (3) price protection against damage to original media. Specify "Option N9" prior to product shipment.

Month of Ownership	1	2	3	4	5	6	7	8	9	10	11
12											
Warranty	Warranty										
Coverage											

WARRANTY-PLUS FOR SELECTED INSTRUMENTATION AND COMMUNICATIONS PRODUCTS

Service Center Support 'M' Options

As strong testimony to the incomparable reliability of the 2000 Series of Tektronix portable oscilloscopes and the 494/494P Spectrum Analyzers, Tektronix offers a three year warranty-the first offered by any major instrumentation manufacturer to do so. Now, beyond the "basic three years"Tektronix will extend service coverage up to five years, offering you a choice of three practical Warranty-Plus Service Center Support Options to meet your needs.

One Up-Front Fee Pays for Itself and More. Warranty-Plus costs less than annual contracts for the same service you may purchase later. And far below standard repair or single calibration costs.

You also save money because your contract will limit your costs, no matter how much service rates may increase.

You'll get more uptime, too, because with a Warranty-Plus Service Plan, you won't experience delays in needed service because of unplanned expense, approvals, or paperwork.

Tektronix helps you manage your maintenance costs with just one known, up-front charge.
Optional Warranty-Plus Plans are only available on 2000 Family portable oscilloscopes and the 494/494P Spectrum Analyzers, and only at the time of product purchase. Specify "Option M1, M2, M3, M4, or M5" when ordering.

ANNUAL MAINTENANCE COST

THREE OR FIVE YEAR COVERAGE OPTIONS M1-M5

Year of Ownership		1	2	3	4	5
Warranty		Warranty Coverage	Warranty Coverage	Warranty Coverage	-	-
Optional Warranty Plus Service	$\begin{aligned} & \text { Plan } \\ & \text { M1 } \end{aligned}$	-	1 Calibration	1 Calibration	-	-
	Plan M2	-	-	-	Remedial Coverage	Remedial Coverage
	$\begin{aligned} & \text { Plan } \\ & \text { M3 } \end{aligned}$	-	1 Calibration	1 Calibration	1 Calibration + Remedial Coverage	1 Calibration + Remedial Coverage
	Plan M4	1 Calibration with Certification	2 Calibrations with Certification	2 Calibrations with Certification	-	-
	$\begin{aligned} & \text { Plan } \\ & \text { M5 } \end{aligned}$	1 Calibration with Certification	$\begin{gathered} 2 \\ \text { Calibrations } \\ \text { with } \\ \text { Certification } \end{gathered}$	$\begin{gathered} 2 \\ \text { Calibrations } \\ \text { with } \\ \text { Certification } \end{gathered}$	2 Calibrations with Certification + + Remedial Coverage	2 Calibrations with Certification + Remedial Coverage

WARRANTY-PLUS CONDITIONS

International Warranty-Plus Options, Customer Responsibilities and Coverage Exclusions.
Warranty-Plus is available in most countries, but service is only provided in the country where the product and plan are purchased. Warranty-Plus Service purchased in the United States is only valid within the United States.
In the United States, service is performed during normal business hours. For most Information Display Products or Tek-configured Systems, service is provided at the customer's site with no travel charges, within eight work hours of notification, if the site is within 75 miles of a Tektronix Service Center. If not, response may be longer.
Our 2000 Family portable oscilloscopes and the 494/494P Spectrum Analyzers receive priority service at a Tek Service Center. Under Options M1, M2, M3, M4, and M5, it is the customer's responsibility to deliver the product for servicing at the service center designated by Tektronix, with shipping charges prepaid. Return shipping is paid by Tektronix.
Outside the United States, response and turnaround times may be different. Consult the Tektronix subsidiary or approved distributor in your country.
As you may expect, service under a War-ranty-Plus Agreement does not apply if the failure is caused by misuse or inadequate care or maintenance, such as:
a) damage from repair attempts by nonTektronix personnel;
b) improper use or connection to incompatible equipment; or
c) modification or integration that increases time or difficulty in servicing your product.

OEM COMPONENTS

Special Information for OEM

At Tektronix we offer many products with terms, conditions, and pricing for OEMs. Computer graphics components, small screen displays, certain cameras, tv signal test and measurement instrumentation-we offer these and other products on a special basis to the original equipment manufacturer.

But terms and conditions tell only part of the Tektronix OEM story. Our products have the quality, reliability, and top performance per dollar that the OEM needs to stay competitive.

Choose the Performance Level

 to Match Your SystemIn many product areas our wide range of OEM components allows you to select just the optimal performance you need for the system you are
building. When your systems demand highest performance, Tektronix will provide the quality products to meet your standards.
In price-sensitive situations, the wide Tektronix selection usually lets you select exactly the performance level you need-no more, no less.

Special OEM Terms and Pricing

Help Keep You Competitive
Ask your local Tektronix representative about the special OEM terms and pricing available to you.

Service and Support-

When and Where You Need It

Tektronix has service centers throughout the U.S. and in many countries around the world. We offer long term parts support to protect your investment.

If you need applications assistance, we're ready to help. Our OEM specialists are trained to help solve interface problems. That's solid support when you need it.

You and Tektronix:

A Quality Partnership
Explore the advantages of working with Tektronix: excellence in products, support, and service.

Your local Tektronix representative can help you obtain full details on how you can profit from a quality partnership with Tektronix.
See how our OEM expertise can add value to your system.

POWER SOURCE CONSIDERATIONS

Most Tektronix instruments provide wide-range regulated supplies, or quick change line-voltage selectors for convenient selection of line-voltage operating ranges. Transformer taps in other instruments can be changed to accommodate specific line-voltage operating ranges or can be factory wired for a specific range if specified on the purchase order.
Many Tektronix instruments are designed to operate from a power source that will not apply more than 250 Volts RMS between the supply conductors or between either supply conductor and ground.

Standard North American
120 V/15 A Plug

Option A1 Universal Euro Universal Euro
220 V/16 A Plug

Many Tektronix instruments can be fitted with one of the power cord/plug options listed below and wired for the voltage as indicated, if specified on the purchase order.

North American	120 V	Standard
Universal Euro	220 V	Option A1
United Kingdom	240 V	Option A2
Australian	240 V	Option A3
North American	240 V	Option A4
Switzerland	220 V	Option A5

The power cord/plug options may become available on instruments not specified in this catalog. Refer to the individual product ordering information for those products offering these options as of publication date.

Except for some double-insulated instruments, most Tektronix instruments are equipped with either a three-conductor attached power cord or a three-terminal power-cord receptacle. The third wire or terminal is connected directly to the instrument chassis to protect operating personnel.
Power-cord coding follows one of the two following schemes:

Scheme 1

Line
Neutral
Ground
Black (safety earth)

Scheme 2
Brown
Light blue Green-yellow

Option A2 UK
240 V/13 A Plug

Option A3 Australian 240 V/10 A Plug

Option A4 North American 240 V/15 A Plug

1956 Introduction of the Kobbe/Polits passive probe. Development of distributed vertical amplifier (Kobbe/Polits)

1962

Development of direct-view, bistable storage-tube (Anderson Tube) or DVST. 564 oscilloscope: first scope to use DVST. Introduction of automatic sweep device. 567 oscilloscope: first Tektronix digital readout oscilloscope.

1968
 Decision to produce information display products (IDP).

 601/611 Storage display units; alphanumeric and graphic information display for computers. 323 portable oscilloscope introduced from Sony/Tektronix. 410 Physiological monitor S-3100 Series: programmable measurement system. Development of Wilson current source.1974
21/31 Series programmable calculators. 4023 Series: first refresh terminals. 200 Series oscilloscopes: ultra-miniaturized scope. Liquid crystal color shutter (LCCS) picked as key technology.

1980
300 Series Logic Analyzers from Sony/Tektronix. Software Center established to insure quality \& productivity of Tektronix-produced software.

1946Tektronix, Inc., an Oregon corporation certified 2/2/46: 200 shares @ \$100 par. Shareholders: Murdock, Vollum, McDowell, Tippery \& Bave (Castles)

1951
Tektronix decided to produce its own cathode ray tubes (CRT).

1957Patent infringement occurred which resulted in the 1961 U.S. Court of Claims case. 316 oscilloscope: wideband, DC coupled portable. RM16 oscilloscope: 3 inch rackmounted scope. 575 curve tracer: first "transistor curve tracer".

1963

Policy changes by U.S. Govt. result in decentralization of sales function of Tektronix, Inc. producing reorganization of Tektronix:

- Tektronix Ltd. formed to sell Tektronix products to distributors in Europe, Africa \& the Middle East (March)
- Tektronix U.K. Ltd. formed for sales and service (June).
1969
7000 Series introduced with the 7704 oscilloscope: accommodated 4 plug-ins; interface capacity; high speed DVST; CRT readout. T4000 Series graphic computer terminals: first largescreen storage device. 4500 Series scan converter units.

4050 Series: small desk-top systems. WP1100 Series oscilloscope: digital processing scope. S3400 Series test systems. 2200 Series portable oscilloscopes: the entry of Tektronix into low-end scope manufacture. 7D02 logic anlayzer for the 7000 Series. 8550 microcomputer development lab. DAS9100 digital analysis system.

1947511 oscilloscope: first "triggered" scope. First scope sold to the University of Oregon Medical School, 511 (May)

1952 514 oscilloscope; general purpose scope 517 oscilloscope: special scope for atomic energy program; for observation and photography of fast-moving waveforms made possible by widest bandwidth available. 315 oscilloscope: first scope to use a "linear ramp" to develop sweep.
19588^{502} socallosocoee ctual haea and high sensitivity.

1964 N. Winningstad advanced idea that Tektronix develop information display devices now possible because of DVST.
Howard Vollum personally launched the 7000 oscilloscope project.

Development of Gilbert gain cell. small portables. WP1205 Series oscilloscope: digital processing oscilloscope (DPO). 414 Portable patient monitor.

1948511A oscilloscope: first application of high-frequency power supply. 512 oscilloscope: low-frequency direct coupled with unblanking circuitry. 104 Series voltage calibrator. 105 Series square wave generator: first wide-range wave generator.

1953 First year Tektronix patented its own circuit designs. 530 Series oscilloscope: first plug-in scope; contained innovative sweep circuitry, trigger circuit and hold-off circuit (Kobbe sweep circuit). Introduction of the 50 Series plug-ins. First patent filed by Tektronix: No. 2,752,527 sweep magnification (Ropiequet) Development of ceramic terminal strip technology.

1959Robert Anderson, eventual inventor of the storage tube, joins Tektronix. 580 Series oscilloscope: faster risetime plug-in. 526 oscilloscope: first "vectorscope" provided precise TV color signal analysis. N-unit: first sampling plug-in.

19653A5 Plug-in: first triggered dual trace plug-in unit. Decision to produce integrated circuits. 491: first general purpose "portable spectrum analyzer". Introduction of tilt bail handle for portable scopes.

1971U.S. Court of Claims rules in favor of Tektronix in the 1961 suit vs. U.S. Government et al. Annual Report stated that 110 new products were "announced or introduced" this year, among them: 1701/1702 machine control units, and the 4601 hard copy unit. Decision to add intelligence to Tektronix hardware led to acquisition of CINTRA.

4081 Interactive graphics system. 670A Color TV monitor. Applied Research Group established (October). scope. First Ga-As circuits. 4100 Series "Unicorn" graphics terminals. 4115B Series color graphics terminals: top dollar new product in Tek history.

Tektronix began to produce its own transformers and inductors.

1954 315D oscilloscope: first portable scope, integrating the new Tektronix flat-faced CRT. 524D oscilloscope: specifically designed for television industry; triggered from television signal.

1960321 portable oscilloscope: first solid-state scope; battery powered. Introduction of first oscilloscope camera. 519 oscilloscope: 1 GHz bandwidth.

1966 453 oscilloscope: small portable in response to needs of IBM for small portable. Type 263 Programmer: enabled 1 to 6 programmed functions on an oscilloscope.

197236 oscilloscope: dual trace miniaturized scope. 4010 computer display terminal. S3002/3206 automated test systems. Tek-Labs established (August).

634 Raster scan display. 4020 Series graphics systems for alphanumerics. Decision to produce Ga-As circuits, faster, lower-powered than silicon.

1984494 Series 325 GHz spectrum analyzers. 4404: First Artificial Intelligence (Al) product. Received Emmy award from National Academy of Television Arts and Sciences for engineering excellence in television test, measurement, and monitoring technology.

1950

1955540 Series oscilloscope: fastrising plug-in scope with vertical amplifier. 310 small portable oscilloscope. 515 oscilloscope: DC coupled general purpose scope. 360 oscilloscope for hospital use.

1961Tektronix filed suit against the U.S. Government, et al, over patent infringement: U.S. Court of Claims case (Tektronix won judgment in 1971). Tektronix adopted patent policy (amended March 1962). Development of ceramic CRT envelope. 661 oscilloscope: first sampling oscilloscope.

1967
Decision to produce computer terminals. 454 oscilloscope: first "video bandwidth portable" scope.

TM 500 Test and Measurement Systems.

19794027 color graphics display terminal. 4600 Series plotting devices. S3200 Series automated semiconductor test systems. 492 Series spectrum analyzer. 7104 oscilloscope: first gigahertz general purpose scope, fastest writing speed in the world.

1985New CAE System Division formed: announces ability to tie computer-aided design to test and measurement. 3 new digital storage oscilloscopes. Computer Based Instruments features new architecture which blends computer and instrument functions.

For customers outside listed countries, contact your nearest area office:

Asia, Central \& South America
Tektronix, Inc., Americas
Pacific U.S. Export Sales
P.O. Box 500, MS 51-297

Beaverton, Oregon 97077
U.S.A.

Phone: (503) 643-8868 or
(800) 547-1165

Telex: 4742103 TEKWSGT
Africa, Middle East and
Western Europe
Tektronix Limited
P.O. Box 36

Guernsey, Channel Islands
Phone: 44 (481) 711211,35781
Telex: (851) 4191193 TEKGNY G

Eastern Europe

Tektronix Ges.m.b.H
Doerenkampgasse 7
A-1100 Vienna
Austria
Phone: 43 (222) 68-66-02
Telex: (847) 111481 TEK A

ALGERIA

Product Information
Tektronix, Bureau de Liaison-

Algerie

Bureau N5, Niveau C
Hotel El-Aurassi
BD Frantz-Fanon
Alger
Phone: 213 () 648252, Ext-665
Telex: 51243 TEK DZ

Service

Entreprise Nationale Des
Industries Electroniques
Unite de Maintenance et Calibration
des Equipements Electroniques
MCE 1, BP 121
Route de Mascara - Zone Industrielle
Side Bel-Abbes
Phone: 213 () 242269
Telex: 16021 MCE1 DZ

Sales Office

Tektronix Limited
P.O. Box 36

Guernsey, Channel Islands
Phone: 44 (481) 35781,711211
Telex: (851) 4191193 TEKGNY G

ARGENTINA

Coasin Computacion S.A.
(IDG Products Only)
Moreno 490
1091 Buenos Aires
Phone: 54 (1) 33-0195/0402/0405
Telex: (390) 17016 COCOM AR
Coasin S.A.
(T\&M Products Only)
Buenos Aires Office
Virrey del Pino 4071
1430 Buenos Aires
Phone: 54 (1) 552-3185/5248/3485;
Telex: (390) 22284 COASN AR
Cordoba Office
25 de Mayo No. 1930
Cordoba
Phone: 54 (51) 3037

AUSTRALIA

Tektronix Australia

Pty. Limited
Sydney Office
80 Waterloo Road
North Ryde, N.S.W. 2113
Phone: 61 (2) 888-7066
Telex: (790) 24269 TEKTRNX AA

Adelaide Office

128 Gilles Stree
Adelaide, South Australia 5000
Phone: 61 (8) 223-2811

Canberra Office

7 Dundas Court
Townsend Street
Phillip
Canberra, Austr. Capital Terr. 2606
Phone: 61 (62) 82-3655
Melbourne Office
CNR, Russell and Council Sts.
Hawthorn East,
Melbourne, Victoria 3123
Phone: 61 (3) 813-1455
Telex: (790) 35880 TEKMEL AA

Perth Office

66 Wellington Street
East Perth, West Australia 6000
Perth
Phone: 61 (9) 325-8433

Brisbane Office

737 Logan Road
Greenslopes Brisbane 4120
Queensland
Phone: 61 (7) 394-1155

AUSTRIA

Tektronix Ges.m.b.H.
Doerenkampgasse 7
A-1100 Vienna
Phone: 43 (222) 68-66-02
Telex: (847) 111481 TEK A
Fax: 43 (222) 68-66-02-52
Graz Office
Foellingerstrasse 9E
A-8044 Graz
Phone: 43 (316) 39-18-10

BAHRAIN

Basma W.L.L
P. O. Box 5701

Manama
Phone: 973 () 25-1364/-6097
Telex: 9003 BSMCO

BANGLADESH

A. Q. Chowdhury \& Co.
(T\&M Products Only)
Mail: P.O. Box 118 Dacca-2
Site: 33 Tophkana Road
Phone: 252329, 312492
Telex: (950) 642418 DCCI BJ

BELGIUM

Tektronix nv/sa
Zoning Keiberg
Excelsiorlaan 3
1930 Zaventem
Phone: 32 (2) 720-80-20
Telex: (846) 26713 TEKBEL B

BOLIVIA

Coasin Bolivia S.R.L.
(T\&M Products Only)
Mail: Casilla 7295 La Paz
Site: Avda 6 de Agosto 2300
Phone: 591 (2) 340962,363365
Telex: (336) 3233 COALAP BV
BRAZIL
Tektronix Industria e
Comercio Ltda.
Rua Nebraska 459-4 ${ }^{\circ}$ and
CEP 04560
Sao Paulo, SP
Phone: 55 (011) 543-1911
Telex: (391) 01121440 TEKX BR

Rio de Janeiro Office

Avenida Marechal Camara 160 Gr 605
20020 Rio de Janeiro, RJ
Phone: 55 (021) 240-7370
Telex: (391) 02130120 TEKX BR

CANADA

Tektronix Canada Inc.
Barrie Office
Mail: P.O.Box 6500,
Barrie, Ontario L4M 4V3
Site: 50 Alliance Blvd.
Phone: (705) 737-2700
Telex: 06875672 TEKTRONIX BAR

Calgary Office

Suite 106
3016, 19th Street NE
Calgary, Alberta T2E 4 Y3
Phone: (403) 250-7583
Telex: 03821730 TEKTRONIX CGY
Edmonton Office
6025103 A Street
Edmonton, Alberta T6H 2.57
Phone: (403) 434-9466
Telex: 0372795 TEKTRONIX EDM

Halifax Office

Burnside Commercial Centre
60 Thornhill Drive
Dartmouth, Nova Scotia Unit 7
B3B 1S1
Phone: (902) 469-9476
Telex: 01931534 TEKTRONIX DRT

Montreal Office

900 Selkirk Street
Pointe Claire, Quebec H9R 353
Phone: (514) 697-5340
Telex: 05821570 TEKTRONIX MTL
Ottawa Office
1642 Woodward Drive
Ottawa, Ontario K2C 2B8
Phone: (613) 225-2850
Telex: 0534119 TEKTRONIX OTT
Toronto Office
89 Galaxy Boulevard
Unit 20-21
Rexdale, Ontario M9W 6A4
Phone: (416) 675-3865
Telex: 06989324 TEKTRONIX TOR
Vancouver Office
4519 Canada Way
Burnaby, B.C. V5G 1K1
Phone: (604) 438-4321
Telex: 04354602 TEKTRONIX VCR

Winnipeg Office

Unit 6, Border Place
1313 Border Street
Winnipeg, Manitoba R3H OX4
Phone: (204) 632-4447/-4448
Telex: 0755584 TEKTRONIX WPG

CHILE

Equipos Industriales S.A.C.I.
(T\&M Products Only)
Mail: Casilla 13550
Santiago
Site: Moneda 812, Of. 912
Phone: 56 (2) 382-942, 725-388
Telex: (359) 241282 FLOBR CT

CHINA, PEOPLE'S REPUBLIC OF

Tektronix China Limited
Xiyuan Hotel, Room 102
Erligou, Western Suburb
Beijing
Phone: 890721 Ext. 102
Telex: 22831 XYH CN

COLOMBIA

Selectronica, Ltda.
(T\&M Products)
Mail: Apartado Aereo 25124
Bogota
Site: Carrera 71 \#55-98
Phone: 57 () 263 2874/-1220
Cable: SELECTRONICA
COSTA RICA
Electro-Impex, S.A.
(T\&M Products)
Mail: Apartado 620-1000
San Jose
Site: Paseo Colon
Calle 26 \#305
Phone: 506 () 21-59-54
Telex: (303) 2645 ELEPEX CR

DENMARK
Tektronix A/S
Mail: Post Box 144
DK-2750 Ballerup
Site: Lautrophus 1-3
Phone: 45 (2) 97-56-22
Telex: (855) 35239 TEKAS DK
Fax: 45 (2) 68-00-70

ECUADOR

Proteco Coasin Cia Ltda.
(T\&M and IDG Products)
Quito Office
Mail: Apartado 228-A Quito
Site: Avda. 12 de Octubre 2285
y Orellana
Edificio Jericho,
Planta Baja
Phone: 593 (2) 52-6759/9684
Telex: (393) 22865 PROTEC ED
Guayaquil Office
Mail: P.O. Box 9733
Guayaquil,
Site: Calderon \#103 y Malecon
Phone: 593 (4) 526093

EGYPT

Giza Systems Engineering Co.
(IDG Products Only)
P.O. Box 1913

2 Medan El Mesaha
Dokki, Cairo
Phone: 20 (2) 48-7605/-7588/-4200/

$$
-5174 /-7640
$$

Telex: 92096 EKA UN

Alkan

(T\&M Products)
P.O. Box 1913

2 Medan El Mesaha
Dokki, CAiro
Phone: 20 (2) 48-7605/-7588/-4200/
Telex: 93644 ALKAN UN

FINLAND

Tektronix Oy
Larin Kyostin tie 4,
SF-00650 Helsinki 65
Phone: 358 (0) 722-400
Telex: (857) 123435 TEKOY SF
Fax: 358 (0) 7520033

FRANCE

Tektronix S.A.

Orsay Office

Z.I. Courtaboeuf, Av. du Canada
B.P. 13

91941 Les Ulis Cedex
Phone: 33 (69) 07-78-27
Telex: (842) 690332 TEKOR A
Fax: 33 (69) 070937
After Sales Service - France
Z.I. Courtaboeuf Av. du Quebec
B.P. 13

91941 Les Ulis Cedex
Phone: 33 (69) 077827
Telex: (842) 691012 TEKSAV
After Sales Service - Paris West
39, Bd. des Bouvets
92000 Nanterre C
Phone: 33 (17) 761353
Telex: (842) 613737 TEKNANT
Aix-en-Provence Region Center
Immeuble Tertia 1-Z.I.D'AIX
13763 Les-Milles Cedex
Phone: (42) 244503
Telex: 440045
Bordeaux Region Center
Avenue J.F. Kennedy
Parc Club Cadera BT T
33700 Merignac
Phone: 33 (56) 342703
Telex: (842) 570247
Lyon Region Center
163, Bd. des Etats-Unis
69008-Lyon
Phone: 33 (78) 764003
Telex: (842) 300150 TEKLYON

Rennes Region Center
103A, Avenue de Crimee
35000 Rennes
Phone: 33 (99) 512116
Telex: (842) 740829 TEKREN
Strasbourg Region Center

1. Rue du Marechal Lefebvre 67100 Strasbourg
Phone: 33 (88) 394935
Telex: (842) 890470 TEKSTBG
Toulouse Region Center
Peri-Sud 2, Z.I. du Palays
13 Rue Villet Bat. 1
31400 Toulouse
Phone: 33 (61) 802569 Telex: (842) 530243 TEKTOUL F

GERMANY, FEDERAL
REPUBLIC OF
Tektronix GmbH
Cologne Office
Mail: P.O. Box 101544 D-5000 Cologne 1 Site: Sedanstrasse 13-17 Phone: 49 (221) 7722-0 Telex: (841) 8885417 ATEK D Fax: 49 (221) 7722-362

Berlin Office
Ernst-Reuter-Platz 3-5 D-1000 Berlin 10 Phone: 49 (30) 313-9081 Telex: (841) 185804 TEKB D

Cologne Service Center Schoenhauser Strasse 64 D-5000 Cologne 51 Phone: 49 (221) 37981 Telex: (841) 8885541 TEKC D

Hamburg Office

Kieler Strasse 407 D-2000 Hamburg 54 Phone: 49 (40) 54830 Telex: (841) 213749 TEKH D

Karlsruhe Office

Kriegsstrasse 39
D-7500 Karlsruhe 1
Phone: 49 (721) 37210
Telex: (841) 7825301 TEKK D
Fax: 49 (721) 374810
Munich Office
Ehrenbreitsteiner Strasse 36
D-8000 Munich 50
Phone: 49 (89) 14851
Telex: (841) 522953 TEKM D
Fax: 49 (89) 148-5250

Nuremburg Office

Donaustrasse 36
D-8500 Nuremberg 60
Phone: 49 (911) 646081
Telex: (841) 626255 TEKN D

GREECE

Eltronics, Limited
2, Alopekis Street
Athens 139
Phone: 30 (1) 721-0669/-1860, 724-9511/2/3/4/5
Telex: (863) 216435 DALM GR
(863) 216589 RADX GR

GUERNSEY

Tektronix Limited
Mail: PO. Box 36 Guernsey. Channel Islands
Site: The Albany
South Esplanade
St. Peter Port
Phone: 44 (481) 26411, 711211 Telex: (851) 4191193 TEKGNY G Fax: 44 (481) 35403

HONG KONG

Schmidt \& Co. (H.K.) Limited
18th Floor, Great Eagle Centre
23 Harbour Road,
Wanchai
Phone: 852 (5) 833-0222
Telex: (780) 74766 SCHMC HX

ICELAND

Kristjan O. Skagfjord Limited (KOS)
Holmaslod 4
P.O. Box 906

121 Reykjavik
Phone: 354 (1) 24120
Telex: 2133 KOS I
INDIA
Hinditron Services
Pvt. Limited
Bombay Office
69/A, L. Jagmohandas Marg
Bombay 400006
Phone: 91 (22) 812-1316/-1615/-5344 822-1529
Telex: (953) 0112326 HSPL \mathbb{N}
Bangalore Office
33/44A Raj Mahal Vilas Extension
3th Main Road
Bangalore 560080
Phone: 91 (812) 33139
Telex: (953) 0845741 HSPL IN
Calcutta Office
5 th Floor
Castle House
5/1-A Hungerford Street
Calcutta 700017
Phone: 91 (33) 432628, 447541
Telex: (953) 0214153 HSPL IN
Madras Office
223 Shivalaya Apt. B, 2nd Floor
Commander-In-Chief Road
Madras 600105
New Delhi Office
204-5-6 Hemkunt Tower
98 , Nehru Place
New Delhi 110019
Phone: 91 (11) 641-0380/-4493
Secunderabad Office
Srinath Complex Limited.
th Floor
Emerald House
Sarojini Devi Road
Secunderabad 500003
Phone: (0842) -823751/-821117
Telex: 1556-973 HCPL IN

INDONESIA

P.T. Dwi Tunggal

Jaya Sakti

Mail: PO. Box 4435
Jakarta
Site: Wisma Harapan Bldg., 14th FI
Jalan Sudirman Kav 34 Jakarta
Phone: 62 (021) 584-685/-686 587-001 Ext 334
Telex: (796) 45356 HARAPAN IA
IRELAND
Tektronix U.K. Limited
Deans Grange Estate
Kill Lane
Black Rock
County Dublin
reland
Phone: 44 (1) 850-166/-874
Telex: (852) 90478 TEKX EI

ISRAEL

Eastronics Limited
Mail: P.O Box 39300
Tel Aviv 61392
Site: 11 Rozanis Street Tel-Baruch
Phone: 972 (3) 475151
Telex: 342610 DATIX IL (922) 33638 RONIX IL

ITALY
Tektronix S.p.A.
Milan Office
Via Lampedusa 13
20141 Milan
Phone: 39 (2) 8466-946/-446
Telex: (843) 315217 TEK MIL I
Fax: 39 (2) 8490-665
Rome Office
Piazza Antonio Baldini 45
00141 Rome
Phone: 39 (6) 8278-041/-044
Telex: (843) 616018 TEKROM I
Via Cardinal M. Fossati 5
10141 Turin
Phone: 39 (11) 3351143,372163
Telex: (843) 212543 TEKTOR I
JAPAN
Sony/Tektronix
Corporation
Mail: P.O. Box 5209 Tokyo Int'I, Tokyo 100-31
Site: 9-31, Kitashinagawa - 5 ,
Shinagawa-ku
Tokyo 141
Phone: 81 (3) 448-4611
Telex: (781) 2422850 STTYO J
Fax: 81 (3) 444-0318
Atsugi Field Office
Green Kaikan
1-8-14 Asahi-cho
Atsugi 243
Phone: 81 (462) 28-6768
Fukuoka Office
Nihon Seimei Hakataekimae Bldg
2-1 Hakataekimae-3,
Hakata-ku
Fukuoka 812
Phone: 81 (92) 472-2626
Nagoya Office
Sanko Building
21-7 Meieki 3-Chome.
Nakamura-ku
Nagoya 450
Phone: 81 (52) 581-3547
Osaka Office
Osaka Ohbayashi Building
3-Kyobashi, Higaski-ku
Osaka 450
Phone: 81 (6) 947-0321
Sendai Office
Yamato Seimei Sendai Bldg.
1-30 Ichibancho-1
Sendai 980
Phone: 81 (222) 67-2181
Tama Field Office
2-45-10 Fujimidai
Kunitachi Tokyo 186
Phone: 81 (425) 73-2111
Tsuchiura Office
Sumitomo Seimei Tsuchiura Bldg.
16-12 Sakuracho-1
Tsuchiura 300
Phone: 81 (298) 24-2602

JORDAN

Consult-Tel
P.O. Box 35055

Amman
Phone: 962 (6) 636668
Telex: 22345 CONSLT JO

KOREA

Myoung Corporation
Mail: CPO Box 8892 Seoul
Site: Rm 1501 Singson Bldg.
25-4 Yoido-Dong
Youngdeungpo-Ku
Phone: 82 (2) 784-9942
Telex: (787) 24283 MYOUNG K

KUWAIT

Tareq Company Limited
P.O. Box Safat 20506

Phone: 965 () 243-6100/-6045 244-8100/-8101
Telex: 22315 ZUAITER KT
JAPAN
Corporation
awa -5

LEBANON
Projects S.A.L.
P.O. Box $11-5281$

Beirut
Phone: 961 () 331680
Telex: 20466 LE

MALAYSIA

Mecomb Malaysia Sdn. Bhd.
(All Products Except IDG)
Mail: P.O. Box 24
Selangor
Site: No. 20 Jalan 225
Petaling Jaya
Phone: 60 (3) 743422
Telex: (784) 37764 MECOMB MA

Sime Darby Systems

(IDG Products Only)
Wisma Sime Darby
Jalan Raja Laut
Kuala Lumpur
Phone: 60 (03) 939322
Telex: (784) 30038 SDMAL MA

MEXICO

Tektronix S.A. de C.V.
Viena No. 71-Piso 1
Col. Del Carmen, Coyoacan
04100 Mexico, D.F.
Phone: (905) 658-6211
Telex: (383) 1772962 TEK ME
THE NETHERLANDS
Tektronix Holland N.V.
Mail: P.O. Box 226
2130 AE Hoofddorp
Site: Planetenweg 99
2130 HL Hoofddorp
Phone: 31 (2503) 13300
Telex: (844) 74898 TEKSO NL
NIGERIA
Obodex Nigeria Limited
Mail: P.O. Box 6352
Lagos
Site: 21A Airport Road
Ikeja Lagos
Phone: 234 (1) 962125
Telex: 26744 DATA NG
NEW ZEALAND
Northrop Instruments

Systems Limited

(T\&M and IDG Products)
Mail: P. O. Box 9464 ,
Newmarket
Auckland 1
Site: 459 Kyber Pass Road,
Phone: 64 (9) 501-801/-219,

$$
545-065
$$

Telex: (791) 21570 THERMAL NZ

Wellington Office
 Wellington Office

Mail: P.O. Box 2406 Wellington
Site: 5th Floor, Westbrook House 189-191 Willis Street
Phone: 64 (4) 856-658
Telex: (791) 3440 CONSULT NZ

NORWAY

Tektronix Norge A/S
Brobekkveien 53
P.O. Box 106 Risloekka

0516 Oslo 5
Phone: 47 (2) 645770
Telex: (856) 77690 TEK N
Fax: 47 (2) 644704
OHI Telecommunications LLC
P.O. Box 889

Muscat
Phone: 968 () 603-606/-607/-608
Telex: 5052 TELECOM ON
ne: 23411962125
elex: 26744 DATANG
Phone: 64 (9) 501-801/-219,

OMAN, SULTANATE OF

\qquad
\qquad
-

PAKISTAN

Pak－Land Corporation Limited
（T\＆M Products Only）
Central Commercial Area
Igbal Road
P．E．C．H．Society
Karachi－29
Phone： 92 （21）43－7315／－8084
Telex：（952） 25230 JALAL PK

PANAMA

Executive Marketing Corp．
Apartado 4929
Panama 5
Phone： 507 （）636－613／－644
Telex：（368） 3483 ELECTRON PA
PERU
Importaciones y
Representaciones
Electronicas S．A．
（IRE Ingenieros）
（T\＆M Products Only）
Avda．Franklin D．Roosevelt 105 Edificio Rimac
Lima
Phone： 51 （14）28－86－50，27－20－76
Telex：（394） 25663 IREING PU

PHILIPPINES

Philippine Electronic Industries，Inc．
Mail：P．O．Box 498
Makati Commercial Centre
Makati，Metro Manila 3117
Site：3rd Floor，Rose Industries Bldg．
11 Pioneer Street
Pasig，Metro Manila
Phone： 63 （2）637－4321
Telex：（742） 43109 PEI PM

PORTUGAL

Decada Espectral

Equipamentos

De Electronica

E Cientificos，SARL
Mail：Miraflores／Alges
1495 Lisbon
Site：Av．Bombeiros Voluntarios，Lote 102B
Phone： 351 （19） 2103420
Telex： 15515 ESPEC P

QATAR

Business Communications
Qatar
P．O．Box 3656
Doha
Phone： 974 （）325－851／－164
Telex： 4454 BCQ DH
SAUDI ARABIA，KINGDOM OF
Al Rushaid Trading Co．

Al Khobar Office

Mail：P．O．Box 540
Dhahran Airport 31932
Site：Al Rushaid Building
Opposite Royal Hotel
Prince Hamoud Street
Akrabiya，Al Khober
Phone： 966 （3）898－0027／－0028
Telex： 670723 RUSH SJ
Riyadh Office
Mail：P．O．Box 58791
Riyadh 11515
Site：Suite 4302
4th Floor，3rd Pavillion
The New Akaria Building
Sitteen Street
Riyadh
Phone： 966 （1）478－5327／－8328
Telex： 206434 RUSHID SJ

SINGAPORE

Mecomb Singapore Limited
（All Products Except IDG）
Sime Darby Centre
896 Dunearn Road，\＃04－02
Singapore 2158
Phone 65 （）469－88 33
Telex：（786）RS－23178

Sime Darby Systems

（IDG Products Only）
Sime Darby Centre \＃04－05
896 Dunearn Road
Singapore 2158
Phone： 65 （）469－8822
Telex：（786） 28450 SDCOMP RS

SOUTH AFRICA，

REPUBLIC OF
Protea P．N．I．Pty．Limited
Johannesburg Office
Mail：P．O．Box 39127
Bramley 2018
Transvaal
Site： 746 6th Street
Wynberg，Sandton 2199
Phone： 27 （11）786－3547
Telex：4－24409 SA
Capetown Office
P．O．Box 12
Goodwood 7460
Cape
Phone： 27 （21）98－3439
Telex：5－77551 SA
Durban Office
Mail：P．O．Box 47031

Greyville 4023

Natal
Site： 3 Florida Centre
273 Florida Road
Freyville 4001
Durban
Phone： 27 （31）39－1100
Telex： 60981 SA
SPAIN
Tektronix Espanola S．A．
Madrid Office
Calle Condesa de Venadito $1-5^{\circ}$
28027 Madrid
Phone： 34 （1）404－1011
Telex：（831） 46014 TKME E
Fax： 34 （1）404－0997
Barcelona Office
Gran Via Carlos III， 97 G
08028 Barcelona
Phone： 34 （3）330－2008
Telex：（831） 97398 TKBE E

SRI LANKA

Computerlink Data Systems，

Limited

（T\＆M and IDG Products）
294 Union Place
Colombor 2
Phone： 94 （1）2864－1／－2
Telex：（954） 21321 INLINK CE

SWEDEN

Tektronix AB
Stockholm Office
Mail：Box 4205
S． 17104 Solna
Site：Anderstorpsvagen 12
Phone： 46 （8） 830080
Telex：（854） 17831 TEKSWED S
Fax： 46 （8） 839430
Gothenburg Office
Sveagaten $3-9$
S－413 14 Gothenburg
Phone： 46 （031） 427035

SWITZERLAND

Tektronix

International A．G．
Mail：P．O．Box 2142
$\mathrm{CH}-6300$ Zug 2
Site：Gubelstrasse 11
Phone： 41 （42） 219192
Telex：（845） 868808 TEKZ CH
Fax： 41 （42） 217784

SYRIA

General Trading Co．
（T\＆M and IDG Products）
Mail：P．O．Box 798
Damascus
Site：Sanaa Street No． 3 Salhieh
Phone：114807， 224170,445678
Telex：GITCO 411283 SY

TAIWAN

Heighten Corporation
11th Floor
342 Min Sheng East Road
P．O．Box 46－65
Taipei，Taiwan 104
Phone：551－9916（10 lines）
542－0591／－0592
Telex：（785） 21472 HEIGHTEN
THAILAND
Dynamic Supply
Engineering R．O．P．
（T\＆M Products Only）
12 Soi Pasana 1，Ekamai
Sukhumvit 63
Bangkok 10110
Phone： 66 （2）392－5313／－8532．
Telex：（788） 82455 DYNASUP TH

TUNISIA

Societe EI Eslek
3 Rue de la Monnaie
1001 Tunis
Phone： 216 （1） 244372.342003
Telex：（934） 13664 ESLEK TN

TURKEY

Erkman Elektronik Aletler
（T\＆M and IDG Products）
Istanbul Office
Ticaret Anonim Sirketi
Necatibey Caddesi 92／3
Karakoy，Istanbul
Phone： 90 （11） 44 1546／－7651
Telex： 24399 MSE TR

Ankara Office

Hatay Sok．20－3
Kizilay，Ankara
Phone： 90 （41）17－1512

UNITED ARAB EMIRATES

Mideast Data Systems U．A．E．
Mail：P．O．Box 7899

Abu Dhabi

Site：Ahmed Bin Ghannoum Bldg．
Salam Street
Abu－Dhabi
Phone： 971 （2）724－700
Telex： 24325 MDSUAE EM

UNITED KINGDOM

Tektronix U．K．Limited
Fourth Avenue
Globe Park
Marlow，
Bucks SL7 1YD
Phone： 44 （6284） 6000
Telex：（851） 847277,847378 TEKMAR G
Fax： 44 （6284） 74799

Harpenden Office
Mail：P．O．Box 69
Harpenden
Herts AL5 4UP
Site：Beaverton House
36－38 Coldharbour Lane
Phone： 44 （5827） 63141
Telex：（851） 25559 TEKHPN G
Manchester Office
Sovereign House
232／234 Stockport Road
Cheadle，Stockport SK8 2EA
Phone： 44 （61）428－0799
Telex：（851） 668409 TEKMCR G

Scotland Office

Pentland House
Almonvale South
Livingston，
West Lothian，EH54 6NG
Scotland
Phone： 44 （506） 37266
Telex：（851） 727056 TEKLIV G

URUGUAY

Coasin Uruguaya S．A．
（T\＆M and IDG Products）
Mail：Casilla De Correos 1400
Correo Central
Montevideo
Site：Libertad 2529
Phone： 598 （2）78－9015／－9204
Telex：UY 23010 COAUR
VENEZUELA
Equilab，C．A．
（T\＆M and IDG Products）
Caracas Office
Mail：Apartado 76609
Caracas 1070－A
Site：Centro Sequros La Paz，Of．E－61 Avda Feo de Miranda，Boleita Caracas 1070
Phone： 58 （2）34－4626／－1777／－5068
Telex： 21860 EQUIX VENEZUELA

Maracaibo Office

Mail：Apartado 1949
Maracaibo 4001－A
Site：Centro Comercial Montielco
Oficina 4，Piso 5
Avda 5 de Julio con calle 72 Maracaibo
Phone： 58 （61）52－4578／－7490
Telex： 62154 EQUIX
ZIMBABWE
Protea Medical Services
（Pvt）Limited
Mail：P．O．Box 2766 Harare
Site： 111 Kelvin Road South Graniteside Harare
Phone： 263 （0） 704094
Telex： 4102 PROTAZW

BUSINESS REPLY MAIL
FIRST CLASS PERMITNO. 1 BEAVERTON, OR
POSTAGE WILL BE PAID BY ADDRESSEE
Tektronix, Inc.
Attn: Fulfillment
P.O. Box 1700
Beaverton, Oregon 97075

```
NO POSTAGE NECESSARY
IF MAILED IN THE UNITED STATES
```


BUSINESS REPLY MAIL

FIRST CLASS
PERMIT NO. 1
BEAVERTON, OR
POSTAGE WILL BE PAID BY ADDRESSEE
Tektronix, Inc.
Attn: Fulfillment
P.O. Box 1700

Beaverton, Oregon 97075

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1 BEAVERTON, OR
POSTAGE WILL BE PAID BY ADDRESSEE
Tektronix, Inc.
Attn: Fulfillment
P.O. Box 1700

Beaverton, Oregon 97075

(Please type, print or write legibly.)	
Send me information on:	
$\square \ldots$ Product Applications	Also, please: \square Add me to your mail list.
\square Customer Training for__ Products	
\square Tektronix Service Programs for _ Products	\square Drop me from your mail list.
	\square Send me the 1986 Catalog of all Tektronix products.
Name	ㅁ Send me the 1985/86 Television Products Catalog.
Title__	
Firm Phone ()	
Address	
City__ State__ Zip_	D836-11-AXX
Please have a Sales Representative contact me regarding	
(Please type, print or write legibly.)	
Send me information on:	
\square Product Applications	Also, please:Add me to your mail list.Drop me from your mail list.Send me the 1986 Catalog of all Tektronix products.Send me the 1985/86 Television Products Catalog.
\square Customer Training for__ Products	
\square Tektronix Service Programs for __ Products	
Name	
Title	
Firm	Tektronix
Address	
City__ State ___ Zip__	D836-11-AXX

Please have a Sales Representative contact me regarding

(Please type, print or write legibly.)

Send me information on:	
$\square \ldots$ Product Applications	Also, please: \square Add me to your mail list. Drop me from your mail list. Send me the 1986 Catalog of all Tektronix products.
\square Customer Training for ___ Products	
\square Tektronix Service Programs for_P Products	
Name	
Title	
-irm	
Address	
Sity__ State __ Zip_	D836-11-AXX

ALABAMA
Huntsville 35805
4900 Corporate Drive
Suite H
Phone: (205) 830-9212

ARIZONA

(Phoenix)
3015 S. 48th Street, Suite 100
Tempe 85282
Phone: (602) 438-1011
Tucson Area: (602) 790-3099
Mailing Address:
P.O. Box 29540

Phoenix 85038

CALIFORNIA

(Concord)
3451 Vincent Road
Pleasant Hill 94523
Phone: (415) 932-4949
From Oakland/San Francisco: (415) 254-5353
From Sacramento: (916) 447-5072
From Fremont/Milpitas: (415) 490-7067
From Livermore: (415) 449-5176
Mailing Address:
P.O. Box 4040

Concord 94524-2040

Irvine 92714

17052 Jamboree Blvd
Mailing Address:
P.O. Box 19523

Irvine 92713
Phone: (714) 660-8080
TELEFAX: (GP1)(714) 660-8080 X311
(Los Angeles)
21300 Erwin Street
Service Center
20920 Victory Blvd.
Woodland Hills 91367
Phone: (818) 999-1711
Mailing Address:
P.O. Box 8500

Woodland Hills 91365
San Diego 92123
5770 Ruffin Road
Phone: (619) 292-7330
Santa Clara 95054-1196
3003 Bunker Hill Lane
Phone: (408) 496-0800
TELEFAX: (GP 1) (408) 496-0800

COLORADO

(Denver)
393 Inverness Drive South
Englewood 80112
Phone: (303) 799-1000
Telex: (Infocom) 45-4455
From Colorado Springs: (303) 634-3933

CONNECTICUT

Milford 06460

40 Commerce Park Road
Phone: (203) 877-1494

FLORIDA

Fort Lauderdale 33309
2003 N.W. 62nd Street
(known as) Cypress Creek Road
Phone: (305) 771-9700
From Miami: (305) 947-6053
Also serves Puerto Rico and
U.S. Virgin Islands

Oriando 32803
3657 Maguire Blvd.. Suite 100
Phone: (305) 894-3911
From the Cape Kennedy Area:
(305) 636-0343

Pensacola 32503
4700 Bayou Blvd., Bldg. 1
Phone: (904) 476-1897

GEORGIA

(Atlanta)
Technology Park/Atlanta
650 Engineering Drive
Norcross 30092
Phone: (404) 449-4770
Mailing Address:
P.O. Box 6500

Norcross 30091
HAWAII
Honolulu Service Center 96819
EMC Corporation
550 Paiea Street
Phone: (808) 836-1138 (Service)
(800) 538-8125/6 (Sales)

ILLINOIS

(Chicago)
5350 Keystone Court
Rolling Meadows 60008
Phone: (312) 259-7580
TELEFAX: (GP 1) (312) 259-7580

INDIANA

Indianapolis 46268
8751 Wesleyan Road
Phone: (317) 872-3708

KANSAS

(Kansas City)
10580 Barkley, Suite 62
Overland Park 66212
Phone: (913) 341-3344
Omaha, Lincoln, Wichita
ENterprise 6537
LOUISIANA
(New Orleans)
1940 1-10 Service Rd.
Concourse Place
Kenner 70065
Phone: (504) 466-4445

MARYLAND

(Baltimore)
102 Lakefront Dr.
Cockeysville 21030
Phone: (301) 628-6400
DC
700 Professional Drive
P.O. Box 6026

Gaithersburg 20877
Phone: (301) 948-7151
TELEFAX: (GP 1) (301) 948-7151 X321

MASSACHUSETTS

(Boston)
482 Bedford Street
Lexington 02173
Phone: (617) 861-6800

MICHIGAN

(Detroit)
24155 Drake Road
Farmington 48024
Phone: (313) 478-5200
MINNESOTA
St. Paul 55126
4660 Churchill Street
Phone: (612) 484-8571

MISSOURI

(St. Louis)
2318 Millpark Dive
Maryland Heights 63043
Phone: (314) 429-7707

NEW JERSEY

Woodbridge 07095
40 Gill Lane
Phone: (201) 636-8616
TELEFAX: (GP 1) (201) 636-8616 X266

NEW MEXICO

Albuquerque 87108
1258 Ortiz Drive, S.E.
Phone: (505) 265-5541
Southern N.M. Area: ENterprise 678
Southern Nevada Area:ENterprise 678
EI Paso, TX ENterprise 678
TELEFAX: (GP 1) (408) 358-3421

NEW YORK

Albany 12205
26 Computer Drive West
Phone: (518) 458-7291
(Long Island)
100 Crossways Park West
Woodbury, L.I. 11797
Phone: (516) 364-9060
NYC Customers (718) 895-9215
Poughkeepsie 12601
Beechwood Office Park
385 South Road
Phone: (914) 454-7540
Rochester 14623
1210 Jefferson Road
Phone: (716) 424-5800
(Syracuse)
1 Northern Concourse
North Syracuse 13212
Phone: (315) 455-6661

NORTH CAROLINA

Raleigh 27612
3725 National Drive, Suite 104
Phone: (919) 782-5624

OHIO

(Cleveland)
7830 Freeway Circle
Middleburg Heights 44130
Phone: (216) 243-8500 (Sales)
(216) 243-8505 (Service)

Dayton 45449-2396
501 Progress Rd.
Phone: (513) 859-3681
OKLAHOMA
Oklahoma City 73108
4400 Will Rogers Parkway
Suite 220
Phone: (405) 943-8127
Oklahoma Wats Only
Phone: (800) 522-8196

OREGON

10220 S.W. Nimbus Drive
Suite K-4
Portland 97223
Phone: (503) 620-9100
Factory Service Center
Tektronix Industrial Park
Beaverton 97077
Phone: (503) 642-8600
TWX: (910) 467-8708
TLX: 15-1754

PENNSYLVANIA

(Philadelphia)
450 Sentry Parkway
Blue Bell 19422
Phone: (215) 825-6400
Pittsburgh 15221
1051 Brinton Road, Suite 300
Phone: (412) 244-9800
TENNESSEE

Knoxville 37923

9041 Executive Park Drive
Suite 411
Phone: (615) 690-6422
From Oak Ridge (615) 482-7349

TEXAS
(Dallas)
1551 Corporate Drive
Irving 75038
Mailing Address:
P.O. Box 165027

Irving 75016
Phone: (214) 258-0525
Metro: (214) 256-5534
TELEFAX: (GP 1) (214) 258-0525 $\times 256$
Houston 77099
10887 S. Wilcrest Drive
Phone: (713) 933-3000
Mailing Address:
P.O. Box 4309

Houston 77210
San Antonio 78232
14800 San Pedro Avenue
Suite 112
Phone: (512) 496-1161
Kelly 78226
Billy Mitchell Center
227 Billy Mitchell Road
Phone: (512) 432-1341

UTAH

Salt Lake City 84115
Timesquare Park
300 Mercer Way
Phone: (801) 486-1091

VIRGINIA

(Crystal City)
Hayes Building
Suite 1004
2361 S. Jefferson Davis Hwy
Arlington 22202
Phone: (703) 920-7770
Newport News 23602
606 Denbigh Blvd., Suite 703
Phone: (804) 874-0099
WASHINGTON
(Seattle)
3709 157th Avenue NE
Redmond, WA 98052
Phone: (206) 575-0180

CORPORATE OFFICE

Tektronix, Inc..
P.O. Box 500

Beaverton, Oregon 97077
Telephone: (503) 627-7111
PRINCIPAL PLANT
Tektronix Industrial Park,
Beaverton, Oregon 97077

DIRECT ORDER

For Continental United States, Alaska,
Hawaii, Virgin Islands and Puerto Rico.
Contact our National Marketing Center:
Phone: (800) 426-2200
For State of Oregon,
call collect (503) 627-9000.

ADDITIONAL
 LITERATURE

or Tektronix Sales Office serving you:
P.O. Box 1700 ,

Beaverton, Oregon 97075
Phone: (800) 547-1512
Oregon only: (800) 452-1877
TLX: 151754,
TWX: (910) 467-8708
TEKTRONIX BEAV.

Sales Office Listing on 462-Inside Back Cover
Functional Index on pages 2-9
Alphanumeric Index on pages 10-12

[^0]: E
 Events Delay
 Extender, Multifunction Interface ..TM 5000 Series
 Extender, Multifunction Interface ..TM 5000 Series 350

[^1]: ${ }^{* 1}$ Remotely controllable.
 *2 Fully programmable.

[^2]: *1 Remotely controllable.
 *2 Fully programmable.

[^3]: ${ }^{*}{ }^{1}$ Remotely controllable.

[^4]: * ${ }^{1}$ Remotely controllable.

[^5]: For further information, call:
 ICO Marketing
 Tektronix, Inc.
 P.O. Box 500, D.S. 59-420

 Beaverton, OR 97077
 (503) 627-2515

[^6]: ORDERING INFORMATION
 6130571 Technical Data Analysis System \$11,475
 $6130 \mathrm{S73}$ Technical Data Analysis and Presentation System \$13,720
 Complete system descriptions, option listing and pricing are available through your local Tektronix Sales Office.

[^7]: ORDERING INFORMATION
 4107A Computer Display Terminal \$6,995 Includes: 8 ft power cord ($161-0066-00$); 12 ft host port RS-232 cable (012-0911-00); pkg of six keyboard overlays (334-5164-00); standard keyboard (119-1592-00); operator manual (070-4981-02); supplement (to be ordered with A version) (070-5723-00); reference guide (070-4892-02).

 ## OPTIONS

 Option 21 - 1MB of RAM memory.
 +\$2,000
 Option 4A - United Kingdom Keyboard.
 NC
 Option 4B - French Keyboard.
 NC
 Option 4C - Swedish Keyboard.
 NC
 Option 4F — Danish/Norwegian Keyboard. NC
 Option 4G - German Keyboard.

 ## INTERNATIONAL POWER PLUG OPTIONS

 Option A1 - Universal Euro $220 \mathrm{~V} / 16 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A2 - UK $240 \mathrm{~V} / 13 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A3 - Australian $240 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.
 Option A4 - North American 240 V/15 A, 60 Hz .
 Option A5 - Switzerland $220 \mathrm{~V} / 10 \mathrm{~A}, 50 \mathrm{~Hz}$.

 ## WARRANTY-PLUS SERVICE PLANS SEE PAGE 457

 | N0 - Installation and Set-up. | $\mathbf{+ \$ 1 5 0}$ |
 | :--- | :--- |
 | N2 - Service Plan +2 Years Service. | $\mathbf{+ \$ 3 7 5}$ |
 | N3 - OEM Service Plan +12 Months Ser- | |
 | vice. | $\mathbf{+ \$ 2 5 0}$ |
 | N4 - OEM On-Site Installation \& Set-up. | $\mathbf{+ \$ 1 5 0}$ |

[^8]: ORDERING INFORMATION
 Please contact your local sales engineer.

[^9]: * ${ }^{1}$ Not available with these options.

[^10]: ${ }^{*}{ }^{1}$ For most of the above processors, either P6460 or P6462 Data Acquisition probes can be used.
 *2 P6460's are required if you're using a CMOS version of the processor.

 * 3 P6460's are always required.

[^11]: Timing displays include analysis tools such as measurements between cursors, variable grouping, memory search and glitch display.

[^12]: Newly enhanced, the 1450-1 SYSTEM M DEMODULATOR now has BTSC Multichannel sound capabilities.

[^13]: ## ORDERING INFORMATION

 836 Programmable Data
 Communications Analyzer
 \$4,650
 835 Programmable Data
 Communications Analyzer $\$ 3,350$
 834 Programmable Data
 Communications Analyzer
 \$2,450
 Rackmount Version Available
 (835/836 only)
 $+\$ 300$

[^14]: ${ }^{*}$ To 1.8 GHz .
 *2 Dependent on 7000 Series mainframes. See page 190.

[^15]: * 1 The SC 502 and SC 504 are oscilloscopes that must be plugged into a TM 500/TM 5000 mainframe for operation.

[^16]: ${ }^{\text {＊}}$＇Bandwidths are real time．Sampling plug－ins that extend bandwidths to 14 GHz are available for most mainframes．
 ${ }^{2}$ The SC 503 is an oscilloscope that must be plugged into a TM 500／TM 5000 Mainframe for operation．Please turn to page 383 for more information．
 ${ }^{* 3}$ View times are at full stored display intensity．They may be increased by using reduced intensity in the save display mode．
 ${ }^{*}$ Save intensity at minimum．

[^17]: ＊${ }^{1}$ Not applicable for plug－ins with＂N＂suffix．

[^18]: 10 MHz .
 ${ }^{*}{ }^{3}$ Bandwidth is 325 MHz at $10 \mathrm{mV} / \mathrm{div}$.
 ${ }^{* 4}$ Bandwidth is 200 MHz at $10 \mathrm{mV} / \mathrm{div}$.
 ${ }^{* 6}$ Fully programmable mainframe. 7A16P Programmable Amplifier recommended. See pages 321-325.
 *7 R7903 with 7A29 Tr is 0.8 ns.

[^19]: * High gain differential amplifiers offer very high gain at lower bandwidths.

[^20]: ${ }^{* 1}$ At tip of 10X probe with readout compensation.

[^21]: To order, call your local Tektronix Sales Office, or call Tek's National Marketing Center, toll free: 1-800-426-2200; Ext 99. In Oregon call collect: (503) 627-9000, Ext 99.

[^22]: ${ }^{* 1}$ Full capabilities of 7854 not achievable with this time base.
 *2 No trace separation on R7704.

[^23]: * Smoothed
 *2 Unsmoothed

[^24]: ${ }^{*}{ }^{1}$ Length in feet except where specified.

[^25]: ## ORDERING INFORMATION

 ## 7S14 Dual-Trace Delayed Sweep

 Sampler for 7000 Series Oscilloscopes $\$ 6,095$
 Includes: Two X10 attenuators (011-0059-02); two 42 in 50Ω coaxial cables ($012-0057-01$); instruction manual (070-1410-00).
 5S14N Dual-Trace Delayed Sweep
 Sampler for 5000 Series Oscilloscopes $\mathbf{\$ 6 , 3 5 5}$ Includes: Same as 7S14 with instruction manual (070-1409-00).
 *1 5S14N for 5000 Series mainframes shown on page 252.

[^26]: ORDERING INFORMATION
 7S11 Sampling Unit without Sampling Head
 \$2,090
 Includes: Instruction manual (070-0987-00).

[^27]: ORDERING INFORMATION
 7M11 Delay Line
 \$1,585
 Includes: Two 2 ns GR cables (017-0505-00); ten inch BNC cables (012-0208-00); instruction manual (070-0987-00).

[^28]: *1 The 5116 must be used with 5D10 to obtain color display.
 *2 Plug-ins with an " N " suffix do not implement the readout feature of the 5440 and 5441 .
 *3 Only 5B25N implements the digital storage feature of the 5223 .

[^29]: * ${ }^{1}$ CRT readout not functional in 5223.

[^30]: * 1 Three-color display requires a 5D10 with serial number B020000 or higher. A field installable kit is available to upgrade earlier 5D10's. Contact your local Tektronix representative for details.

[^31]: For recommended probes see pages 240 and 426.

[^32]: ORDERING INFORMATION
 5A21N Differential Amplifier
 Includes: Instruction manual (070-1139-01).
 Option 01 - (Includes P6021, 5 ft current probe). $+\$ 315$
 The 5A21N and 5A22N Differential Amplifiers are available with CRT readout at additional cost (CRT readout functional in 5400 Series mainframes only). Contact your local Tektronix sales engineer for details.

[^33]: * Mounting adaptor comes with camera/option listed, others are optional.
 *2 Mounting adaptor must be ordered in addition to the camera/option listed.
 *3 2235 Opt 01 Order C-5C Opt 02 or C7 Opt 03.
 * ${ }^{4}$ Camera listings recommended for 2235 Opt 01 only.
 *5 Highlighted probes are preferred for typical general purpose use and/or are shipped as included accessory to the instrument.

[^34]: OPTIONAL ACCESSORIES
 1107 Mounting Kit for 2445 and
 2465 Oscilloscopes－Order 016－0783－00
 1107 Mounting Kit for 2335，2336，2336YA and 2337 Oscilloscopes－ Order 016－0786－00
 1107 Mounting Kit for 2200 Series
 Oscilloscopes－Order 016－0785－00
 1106 Mounting Kit for 2445 and
 2465 Oscilloscopes－Order 016－0797－00

[^35]: ORDERING INFORMATION
 062-8369-00 GURU Software and Documentation only package $\$ 395$ Includes: GURU user's manual ($070-5543-00$) GURU software.
 021-0396-00 GURU Hardware/ Software Package
 \$595
 Includes: In addition to the above, a GPIB cable (012-0991-00) and a GPIB interface board.

[^36]: * The ac coupling low frequency limit is 30 Hz . In Time/ Div settings of 1μ s to 50 ns , when using P-P or Auto, low-frequency limit is 300 Hz .

[^37]: All 7000 Series plug-ins are compatible in the standard oscilloscope display mode. The 7 L 5 and 7 L 18 Spectrum Analyzers require factory modifi-
 cation for optimum use with digital storage opera7 L 18 Spectrum Analyzers require factory modifi-
 cation for optimum use with digital storage operation. The 7D01, 7D02 and 7T11 are not compatible in Stored mode.
 The 7B87 provides pretrigger for the 7854. Pretrigger allows you to view what has occurred before the trigger event in single shot applications. The amount of pretrigger time is determined by
 the Acquire-Stop delay time setting. The total The amount of pretrigger time is determined by
 the Acquire-Stop delay time setting. The total amount of pretrigger is 0.2 to 9.9 times the time/ div setting.
 Single Shot Performance - Using 7B87 with 7854 Internal clock.

[^38]: * ${ }^{1}$ Valid for six months or 1000 operating hours, whichever occurs first.

[^39]: 50M20 Digital-to-Analog Converter Card \$910
 Includes: Interfacing cable ($015-0430-00$); instruction manual ($070-3724-01$); reference guide ($070-3883-00$).

[^40]: * ${ }^{1}$ Valid for six months or 1000 hours, whichever occurs

[^41]: ${ }^{*}{ }^{1}$ Add 60 ns for delay from external trigger.
 *2 Exact count to 20 MHz , usable to 50 MHz

[^42]: Compatible accessories begin on page 448.

[^43]: ORDERING INFORMATION
 FG 50211 MHz Function Generator $\$ 1,095$ Includes: Instruction manual (070-1706-01).

[^44]: ORDERING INFORMATION
 SC 50480 MHz Oscilloscope
 \$3,895
 Includes: Instruction manual (070-2296-00).
 For Floating Measurements, order A6902A Isolator. See page 436 for complete description.

 ## RECOMMENDED PROBES

 P6101A 1X, P6102A 10X, P6062B 1X/10X. See pages 430 and 432.

[^45]: Tektronix offers service training classes on the TM 500 Calibration Systems Package. For further training information, contact your local Sales/Service Office or request a copy of the Customer Service Training Catalog on the return card in the back of this catalog.

[^46]: ORDERING INFORMATION
 Custom Plug-in Kit - Single Compartment with Power Supply.
 Order 040-0803-02
 Custom Plug-in Kit - Single Compartment. Order 040-0652-05
 Custom Plug-in Kit - Double Compartment. Order 040-0754-07
 Custom Plug-in Kit — Single Compartment Without ECB.
 Order 040-0821-03

[^47]: \checkmark Preferred film for application．
 －Acceptable performance．
 ${ }_{\star 1}$ No coating required．
 ＊2 Requires electronic scan reversal to yield a correct reading image．
 ＊3 Similar to Type 611.

[^48]: Technical assistance with AutoFilm is available from Polar－ oid．In U．S．call 1－800－225－1618．Outside U．S．contact local Polaroid dealer．

[^49]: ORDERING INFORMATION
 C-7 requires a power source (does not come as a standard accessory). Order Opt 30, Opt 31, or Opt 32 or use your own power via Lemo connector. ${ }^{* 2}$
 C-7 Camera with Flash
 \$595
 Includes: Adaptor hood (016-0357-01); print holding chamber ($122-1039-00$); circuit board covers for 0.67 mag (200-3074-00); for $0.87 \mathrm{mag}(200-3031-00)$; operator manual (070-5127-00).

[^50]: ${ }^{\text {* } 1}$ All dimensions are approximate since each hood has additional plastic notches and grooves for mounting.

[^51]: ${ }^{*}$ Optional accessory.

[^52]: ORDERING INFORMATION
 P6009 100X High Voltage Probe
 Includes: 30 cm (12 inch) ground lead (175-0125-01); 13 cm (5 inch) ground lead (175-0124-01); 7.5 cm (3 inch) ground lead (DD, 75-0263-01); probe holder (352-0090-00); 0.080 inch diameter spring tip (AB, 206-0060-00); two alligator clips (AS, 344-0046-00); banana tip (AK, 134-0013-00); 0.055 inch diameter straight tip (AA, 206-0015-00); retractable hook tip (AN, 013-0071-00); hook tip (AG, 206-0105-00); bayonet ground assembly (AJ, 013-0052-00); instruction manual (070-0401-01).
 9 ft w/Readout. Order 010-0264-01

