
Charles Duff

John Leahy
William Bliss
Rich Kimmel

With: Mark Achier
Bruce Newburger
Nick Howard

Copyright (C) 1987, The Whitewater Group, Inc. All rights reserved.

ACTOR
Language Manual

Copyright (c) 1987by The Whitewater Group, Inc. All rights reserved. First Printing
February 1987.

Copying or duplicating this manual or any part thereof is a violation of United States
copyright law. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including but not limited to photocopying,
without express written perrriission from The Whitewater Group, Inc.

The Whitewater Group, Inc.
TechnolOgy Innovation Center
906 University Place
Evanston, IL 60201

Appendices E and F reproduced from the Microsoft Windows Developer's Toolkit
Manual, with permission from Microsoft. Portions Copyright Microsoft Corp., 1985. All
rights reserved. Microsoft Windows and Microsoft are trademarks of Microsoft
Corporation; Unix is a trademark of AT&T; Turbo Pascal and Sidekick are trademarks of
Borland International; Hercules is a trademark of Hercules Computer Products; IBM is a
trademark of International Business Machines Corp.

The Whitewater Group Support Policy

Because the needs of an ACTOR user vary with the complexity of the tasks that the
user aims to accomplish, The Whitewater Group has created a support plan to handle all
of our registered users' needs. The Whitewater Group is committed to providing the
highestquality customer service we possibly can. After all, our success with Actor relies
on your success with Actor. The Whitewater Group will provide to all REGISTERED
users (to be a registered user you MUST send back your warranty card):

+ FREE access to The Whitewater Group Electronic Bulletin Board System
(BBS), which will allow our users to share applications, messages and files.
A special section for Technical Support is also on the bulletin board system
so that our users have access to our support staff.

+ The BBS phone number is 312-491-3873. The BBS operates 24 hours per day
(except for maintenance) and supports 300/1200/2400 baud. The
communication settings for the BBS are 8 data bits, no parity, and 1 stop bit
(8-N-1).

+ Three (3) FREE phone calls to The Whitewater Group Technical Support
Hotline at 312-491-3871.

+ All mailed inquiries will receive prompt service. Please remember to
document the problem in detail and submit a diskette with the information
whenever possible.

+ There never will be any penalty or charge for bug reports or fixes.

For those whose support needs are larger, The Whitewater Group has the Level One
Support Plan. For a $100 fee (renewable every 20 calls), a registered user can join this
plan. Level One Customers will receive:

+ Twenty (20) phone calls per annum to The Whitewater Group Technical
Support Hotline.

+ Discounts of up to 20% on future products and releases.
+ FREE access to maintenance releases and small system enhancements via a

special section on The Whitewater Group Electronic Bulletin Board System.
+ Up to three (3) representatives, all registered, who can share the benefits of

the Level One Support plan. (Note: the customer cannot register more
representatives than units purchased.)

There are users whose needs dictate an open line to our support staff. For these
customers, The Whitewater Croup has the Level Two Support Plan. At a $250
annuany.:renewable fee, the Lev~I Two Support Plan is the ideal plan for all serious
users of ACTOR. The added benefits of the Level Two plan are:

+ UNLIMITED phone support from The Whitewater Croup Technical Support
Hotline.

+ A Special Users Croup conference on The Whitewater Croup Electronic
Bulletin Board System where The Whitewater Croup technical support staff
will maintain a developers workshop to help developers with questions
about their applications (specifically as they relate to ACTOR). As the need
arises, separate conferences will be added for all the various Special Interest
areas that our users have questions about.

+ Up to five (5) representatives, all registered, who can share the benefits of the
Level Two Support Plan.

The Whitewater Croup Technical Support Staff intends to increase the benefits that
our users receive as we grow. We welcome your comments.

The Whitewater Croup also has a special support plan for acadeqlic sites. Please
contact us for further information.

Service & Support Registration Card

Phone Number

Support plan: Level 1($100) Level 2($250)
~~- -~~

Product Serial Number
~~~~~~~~~~~~~~~~ 

Hardware Configuration~~~~~~~~~~~~~~~~ 

Visa or Mastercard Number 
~~~~~~~~~~~ 

Please send to: The Whitewater Group, Inc., Technology
Innovation Center, 906 University Place, Evanston, IL
60201

Replacement Order Form

Please use this form when ordering a replacement for a
defective diskette.

A. If ordering within thirty days of purchase:
If a diskette is reported defective within thirty days of

purchase, a replacement diskette will be provided free of charge.
This card must be totally filled out and accompanied by the
defective diskette(s) and a copy of the dated sales receipt. In
addition, please complete and return the Limited Warranty
Registration Card.

B. If ordering after thirty days of purchase but within one
year:

If a diskette is reported defective after thirty days but
within one year of purchase and the Warranty Registration Card
has been properly filed, a replacement diskette will be provided
to you for a nominal fee of $50 (send check only). This card
must be totally filled out and accompanied by the defective
disk(s) and a copy of the dated sales receipt and a $50 check
made payable to The Whitewater Group, Inc.

Country~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Phone Number(

Original Purchase Date~~~~~~~~~~~~~~~~~~~~~

Please send all requests to: The Whitewater Group, Technology
Innovation Center, 906 University Place, Evanston, IL 60201.

Contents

Getting Started . xi

Chapter 1. Introducing Actor: A Tutorial 1

1 .1 Starting Actor . 2
1.2 The Actor Environ111ent • . . • . . • . . • . . • • . . • . • • 2

1.2.1 MS-Windows Basics •••••••••••••••••
1.2.2 The Actor Workspace •
1.2.3 The Actor Display •••

1.3 Turde Graphics • • • • • • • • •
1.4 Object-Oriented Programming ••

1.4.1 Object-Oriented Lingo • • • • • • • • • • • ••
1.4.2 Inheritance: Ancestors and Descendants • •

15 The Inspector • • • • • • •
1.6 Programming in Actor • • •

1.6.1 Actor Methods •••
1.6.2 True and False • • . • •
1.6.3 Assignment Statements •
1.6.4 Control Structures •••••

.•• 3
. .. 4
. .. 6

. 7
. ... 9

. • 10
.17

•• 18
24
24
28
28
29

. ••..••. 33 1.65 Blocks •••••••••
1.6.6 Actor Applications •• 35

1.7 The Browser • • • • • • • • • • • • •
1.8 An Introduction to Actor Oasses • •

1.8.1 Indexed Collections •
1.8.2 Sets •••••••••
1.8.3 Keyed Collections ••••••••••••••••

.38
SB
.58

• 60
.61

1.8.4 Windows . 62

Chapter 2. Guide to the Actor Oasses 75

2.1 Using the System-Wide Methods: The Object Class •••••••••••••• 75
2.1.1 Categorizing Objects • • • • • • • • • • • • • • • 76
2.1.2 Boolean Qualities of Objects • • • 77
2.1.3 Basic Properties of Objects • • • • • • • • • • • • • • • • 79
2.1.4 Displaying Objects. • • • • • • • •• 82
2.1.5 Error Handling Within Actor Programs ••••••••••••••••• 84
2.1.6 System Methods • 86

viii Contents

2.1 .7 Much Ado About Nothing: Using NilOass • • • • • • • • • • • • • • • 93
2.2 The Magnitude Oass -~~~ . 94
2.3 U~b1g Characters: The Char Class • 95
2.4 Billionths and Billions: The Number Classes • • • • • • • • • • • • • • • • • 98
2.5 Using ·the Association Oass • .104
2.6 Using Classes as Objects: The Behavior Class • • • • • • • • • • • • • • • • .106
2.7 Using Collections of Objects: The Collection Oass • • • • • • • • • • • • • .112

2.7.t Creating and Initializing New Collections ••••••••••••••• 112
2.7.2 The lndexedCollection Class • , • 118
2.7.3 Using the OrderedCollection Oass • • • • • • • • • • • • • • • • • • • 122
2.7.4 More Ordering: The SortedCollection Class • • • • • • • • • • • • • • 125
2.7.5 Collections of Strings: The TextCollection Class • • • • • • • • • • • • 128
2.7.6 The ByteCollection Cla5s • • • • • • • • • • • • • • • • • • , • • , • • 132
2.7.7 Using Strings: The String Oass • 132
2.7.8 Using the Symbol Class • 139
2.7.9 Objects Meet the Real World: The Struct Class •••••••••••• .141
2.7.10 Intervals Of Numbers: The Interval Oass • • • • • • • • • • • • • • .142
2.7.11 Intervals of Characters: The Charlnterval Oass • • • • • • • • • • • ,148
2.7.12 Collections of Unique Elements: The Set Oass • • • • • • • • • ••• 149
2.7.13 ''Sets" With Multiple Occurrences: The Bag Oass • • • • • • • • • • .151
2.7.14 Using the KeyedCollection Oass • • • • • • • • • . • • • • • • • • • • 152
2.7.15 Using the Dictionary Class • .156
2.7.16 Equivalence Returns: Using the MethodDictionary Class •••••• 160

2.8 Collections With a Position: The Stream Oass • • • • • • • • • • • • • • • • 162
2.9 Accessing Files in Actor • 165
2.10 Using Graphics Objects • .169
2.11 Working with Windows: The Window Oasses • • • • • • • • • • • • ••• 179

2.il.1 Creating Windows in MS-Windows •••••••••••••••••• 179
2.11.2 The Window Oass: Creating Window Objects •••••••••••• 179
2.11.3 Oearing the Screen: The Display Context •••••••••••••• .183
2.11.4 Getting Messages from MS-Windows • • • • • • • • • • • • • • • • .184
2.11.S Printing Text: The TextWindow Oass • • • • • • • • • • • • • • • • .188
2.11.6 Text Editing: The EditWindow Oass ••••••••••••••••• 191
2.11.7 The PopupWindow Class • , • 195
2.11.8 Window Styles 196

2.12 The Control Classes • .198
2.12.1 Creating Controls ·198
2.12.2 Control Methods •••••••••••••••••••••••••••• 199
2.12.3 The UstBox Oass 201
'2·.12.4 The ScrollBar Class ••• , •••••••••••••• , .••• , •••• 204
2.12.S The Button Oass • • • • • • • • • • • • • • • • • , • , • • • • • • • • 207
2.12.6 Other Controls 209

2.13 The. ModalDialog Class • 210

Contents ix

Chapter 3. Advanced Topics . 221

3.1 Memory Management in Actor •••••••••••..•.••••••••• 221
3.1.1 Static and Dynamic Memory • • • . • • • • • • • • • • • • • • • • • • 221
3. 1 .2 What Makes an Object Accessible? . • • • • • • • • • • • • • • • • • . 222
3.1.3 How Much Memory to Allocate ••••.•••••.••••••••• 222
3.1.4 Static Garbage Collection •••••••••••••••••••••••. 223
3.1.5 Stacks • • • • . • • • • • • • . • • • • • • • • • . • . • . • • • . • • • 223

3.2 Calling Library Procedures • • • • • • • • • • • • • • • • . • • • • . . • • • 224
3.3 Calling MS-OOS • • • • • . • • • • • • • • • . . • • • • • • • . • • . • • • . 226
3.4 Actor and Windows • . ~ • . • • • • • . . • • • • . • • • • • . • • . • • • . 227
3.5 Parsing and Lexical Analysis • • • • • • • • . • • • • • • • • • . • • • . • . 240

Chapter 4. Building Actor Applications 254

4.1 Designing the Application •••••••••••••••••••••••.•• 254
4.2 Writing the Application • 258
4.3 Debugging Techniques • • • • • • • • • • • • • • • • • • . • • • • • . • • • 268
4.4 Optimizing the Application • • • • • • • • • • • • • • • • • . • • • • • • • . 273
4.5 Installing Your Actor Application •••••••.••••••••••.••• 177

Chapter 5. Oass Reference . 287

Chapter 6. Appendicies 387

Appendix A: Actor Language Description • • • • • • . . • • . • . • • • • • • . 387
A. 1 Introduction • • • . • • . • • . • • • • . . • . • • • . • • . • . • • • • .387
A.2 Objects • . • • • . • • . • 387
A.3 Classes • • • • • • . • • . • • • • • • • • . • • • . • • • • • • • • • • • 387
A.4 Method.s • • • • • • . . • . • • • • • • • . . • • • • • • • • • • • • • • .388
A.5 Blocks • • • • • • • • . • . • • • . • . . . • • • . • • • • • • • • • • • . 388
A.6 Messa.ges • • • • • • • • • • • • • • • • . • • . • . . • • • • • • • • • . 389
A.7 Syntax • • • • • • • • • • • • • • • • • • • . II • • • • • • • • • • • • • • 389
A.8 Form.al Grallllllar . • • • • • • • • • . • . . • . • • • • • • • • • . • • . 401

Appendix B: Glossary of Terms . • • • • • • • • • • • • • . • • . • • • . • • • .406

Appendix C: Gasses by Method ..•..•.••.......•.•...... 413

Appendix D: List of Global Variables .•.•.•.••..••••••••••••. 428

x Contents

Appendix E: Windows Functions • •.••• 432

Appendix F: MS-Windows Messages • • • • .463
F.1 Window Messages . • • • • • • . • • • • • • • . . • • A63
F.2 Control Messages . 468
F.3 \\Jindow Message Numeric List. • . • . , , . • • , • • , . , , • • , • 471

AppendiX G: Ust of Errors . 412
G.t Primitive Errors •• • 472
G.2 High-level Errors , .473

Index479

Getting Started

1. Hardware Requirements

Actor is a Microsoft Windows (MS-Windows) application. As such, you can use
Actor on any computer which will run Microsoft Windows. This includes (but is not
limited to) an IBM PC, PC/Xf, PC/ AT, or compatible. To use Actor, your computer
must have the following equipment:

Hard disk
640KRAM
Graphics display and adapter
Mouse (or other pointing device)

A printer is optional. All peripherals, including the mouse, graphics
display/adapter, and printer (if any) are supported via MS-Windows. This means that
if your peripheral is supported by MS-Windows, it will work with Actor. For example,
MS-Windows supports almost all the IBM graphics adapters, as well as many other
kinds. MS-Windows also supports a variety of mice and other pointing devices. The
complete list of supported devices is displayed when you run the MS-Windows Setup
program.

MS-Windows, and thus Actor, will work with MS-OOS versions 2.0 and above only.

2. Backing Up Your Actor Disks

Carefully read the Actor license agreement on the envelope containing the Actor
disks. If you agree to accept it, open the envelope and remove the disks.

Before you do anything else, you should back up these disks. Actor is not copy
protected, and you can make up to two (2) copies of the disks for backup purposes. To
back up your Actor disks, you should use the MS-OOS DISKCOPY command. If you
have two floppy disk drives, place each original Actor disk in your A: drive and a blank
floppy in the B: drive. Then type:

DISKCOPY A: B:

(In upper or lower case; DOS is not case-sensitive.)

xii Getting Slatted

If you have one floppy drive, you can use the same command, but every so often
you wiU l\ave to swap disks back. and forth. Repeat this process for all seven disks, and
then place your backups in a safe place.

3. Runtime MS-Windows

Examine your seven disks. They will be numbered 1 of 7, 2 of 7, etc. Disks 1-3
contain the Actor system itself. Qisks 4-7 contain a special version of MS-Windows,
which we usually refer to as "Runtime MS-Windows". It's siiililar to the version of MS
Windows you can buy commercially, except that it's tailor made to run Actor and
doesn't include most of the MS-Windows applications you receive with the commericial
version.

If you have already installed the commercial version of Microsoft Windows, then
you can continue to step 4, but do not lose disks 3-7, because they contain some files
which you may need later. If you purchased Microsoft Windows with Actor, please
open its box now and follow the installation instructions inside to install it. Then
continue with step 4.

If you are still with us at this point, then we will assume that you do not have a
commercial version of Microsoft Windows, and instead plan on using our special
Runtime version on disks 4-7.

Disks 4-7 are labeled Setup, Build, Utilities, and Fonts, respectively. Insert disk 4,
the MS-Windows Setup disk, into drive A:, close the drive door, and type

A:SETUP

The MS-Windows Setup program will load and start running. Follow the directions in
the Setup program and install the Runtime version of MS-Windows.

4. Inst~ling Actor

Assuming that MS-Windows is now installed, either the commercial version or our
Runtime version, you are now ready to install Actor. Place disk 3, the one labelled
ACIOR3, in drive A: or B: and close the drive door. Next, assuming you placed disk 3
in drive A:, type

A:INSTALi.

(Type B:INSf ALL instead if you want to install it from the B: drive.)
"'

Getting Started xiii

The WINJNI File

The Actor Install program will load and ask you, "Alter WIN.INI in which
directory?" WIN.INI is an ASCII text file containing initialization data for Microsoft
Windows, and it has to be altered for Actor. If WIN.INI is found either in the current
directory or somewhere along the DOS path, then the name of the directory in which it
was found is displayed as the default. Otherwise, type in the name of the directory in
which your WIN.INI file is located. WIN.INI is always located in the same directory in
which MS-Windows is located. If you just installed the Runtime version of MS
Windows, then type in the name of the directory you installed Runtime MS-Windows
in. (The reason that the Install program asks in the first place is that some people may
have more than one version of MS-Windows installed on their hard disk. Install can't
assume that the first WIN.INI it finds is the one it should alter.)

Once you've chosen a directory, Install alters WIN.INI for Actor, renaming the old
WIN.INI to WININl.BAK in the process. Next, Actor will ask you which disk drive will
contain the Actor system disks. Answer accordingly (most likely, you will want to place
them in drive A:).

Choosing The Actor Subdirectory

Next, Install will ask you which directory you want to be your Actor directory (the
default is \ACfOR). The Install program will copy its files to and make subdirectories
in this directory. If you have the commercial version of Microsoft Windows, you should
probably specify a different directory your MS-Windows directory so that you won't
clutter it up with all the Actor files. If you have our Runtime version instead, this
probably isn't a concern.

However, in either event, please note that if you have Actor installed in a different
directory than MS-Windows (either the commercial or Runtime versions), you must
have the MS-Windows directory included in the DOS path. This is because you will
always be starting Actor from the Actor directory, and if the MS-Windows directory
isn't included in the DOS path, then you will get a "Bad command or file name" message
when you try to load Actor. The Install program may have notified you of this fact
when it asked you in which directory to alter WIN.INI. If the directory in which
WIN.INI is located is not included in the current DOS path, you will get a message to
this effect. If this situation affects you, please consult your DOS manual to see how to
change the current path using the PATH command.

Whew! Now Install is ready to start creating the necessary subdirectories and
copying the files from your Actor system disks to your Actor directory. Follow the
directions that the Install program gives you and after a little while, Actor will be
completely installed. The Install program prints the name of the the file which is
currently being copied on your screen.

xiv Getting Staned

5. Starting Actor

To start Actor, simply change to your Actor directory. Assuming you called it
\ACTOR, type

CD\ACTOR

and Actor should load. Tum to page 1 of the Actor Tutorial. It will repeat some of the
instructions you see here, and start explaining Actor. Even if you are an experienced
programmer, you should at least look at the Tutorial, skimming over the parts that are
review for you.

If Actor doesn't load, the most likely reason is that you don't have enough memory
to run Actor. You should get a message to that effect, and then read the list below for
possible solution(s).

1) Remove any memory resident programs you may have installed. For
instance, if Sidekick from Borland International is installed, then Actor won't
have enough memory. This sort of pop-up memory resident program
doesn't work well, if at all, with MS-Windows anyway. Consult the
documentation of your memory resident program to find out how to remove
it from memory. If it doesn't explicitly explain how to remove the program
from memory, you may have to reboot your computer.

2) You may have to remove device drivers, too. Check your CONFIG.SYS file
if you have RAM disks, enhanced memory (EMS or EEMS) drivers, network
drivers, etc., you may have to change your CONFIG.SYS file with a text
editor to remove the lines which say DEVICE=xxxx. Remember that any
changes you make to yo~r CONFIG.SYS file won't take effect until you
reboot your computer.

Even if Actor does load, you may notice at some point later on that Actor slows
down to a crawl and every time you move the mouse your hard disk light flashes. This
is a signal that MS-Windows is running short of memory. To find out for sure, if you
have tJte commercial version of MS-Windows, select the disk icon of the MS-DOS
Executive with the mouse, press Alt-Spacebar to bring up the system menu, and select
the About ... menu item. Windows will report how much memory it has left. If you
don't ha ye at least lOK, then Windows is running critically short of memory and could
crash. l.Qok at steps 1) and 2) above for hints on getting more memory for Windows.
Unfortu~ately, if you have our Runtime version of MS-Windows, there's no way at this
point to find out how much memory MS-Windows has.

Getting Started xv

6. Using Install to AlterWIN.INI
'

When you installed Actor, the Install program was also copied to your hard disk.
You can use it even after you install Actor to alter WIN.INI again.

Two of the lines which I~stall added to WIN.INI were

Static=x
Dynamic=y

where xxx and yyy are numbers. These two lines control how much memory MS
Windows allocates to Actor for its static and dynamic memory (both terms are defined
in the Actor documentation). Later, you may wish to change these values to something
else. You can use a text editor and change WIN.INI manually, or you can use the Actor
Install program in Update mode. Make sure you are in the Actor directory, and then
type the following from the DOS command line:

INSTALL S=x D=y /U

The x and y represent numbers, the order of the three arguments is not important, and
you can use upper or lower case. If you leave out the S=x, then the line in WIN.INI will
be changed to the default static value (92). If you leave out D=y, then the default
dynamic value will be used (52). If you leave out the /U, you will have to go through
the entire Install process, although you can press Ctrl-C to quit when it says you can.

7. Using the Control Panel

If you have the commercial version of MS-Windows, you can change the MS
Windows defaults by running the CON1ROL.EXE application directly from the MS
DOS Executive. However, Runtime MS-Windows users don't have the ability to run
any program other than ACTOR.EXE, so we have to fool MS-Windows slightly.

The file CONT.BAT, which was copied to your hard disk when you installed the
Runtime version of MS-Windows, will do the trick. When you want to change the
system defaults, type

CONT

from the DOS command line. CONT temporarily renames CONTROL.EXE and then
runs WIN.COM. Adust the controls the way you want them, and then close the Control
window. The files will be renamed to their old names, and rou can start Actor again.

\

1 Introducing Actor: A Tutorial

Get ready. You're about to learn how to use an entirely new kind of programming
system that just might be an easier and faster way to produce advanced applications for
personal computers than anything you've used before.

ACIOR1M.
Actor is an object-oriented programming language. What this means is that instead

of separating the active programming instructions from the passive data, Actor
integrates the two into a unit called an object. An object can do things by itself because
the code to do things is part of the object. This arrangement allows the objects
themselves to become the active agents in the execution of the program.

There are many benefits to this approach, as you'll see, but mainly, object-oriented
programming makes it easier to develop, change, and debug advanced programs. And
it's more fun, too.

Actor is also a complete programming environment. It uses all the power of
Microsoft Windows (MS-Windows) to help you organize and analyze your work. So
you can see all of your work at the same time and trace the influence of one part on

\another as you make changes. This makes programming in Actor a fluid, natural
)extension of the way you think-entirely unlike conventional programming.

Best of all, windows in Actor are objects, just like all other objects. You manipulate
them about as easily as you manipulate numbers. If you're an MS-Windows developer,
this is exactly what you need.

We developed a few conventions for this manual to keep it clear. Here's the list of
the ~onventions you need to know now:

1. There is a key on your keyboard called Carriage Return, Return, or Enter,
depending on who you ask. We'll use <CR>, for Carriage Return, to
symbolize this key and whenever you see <CR> in this manual, you should
press the Carriage Return/Return/Enter key.

2. Any time you see text which looks like this, we are referring to an
Actor object, an Actor method, or an Actor reserved word. You'll soon learn
what all these terms mean.

3. In Actor and MS-Windows, the left mouse button is the only button which
does anything. The right mouse button doesn't do anything. The same goes
for the middle button, if you have a three button mouse. Unless we say
otherwise, when we say the mouse button, we mean the left mouse button.

2 Chapter 1: Introducing Actor: A Tutorial

4. The term parameter will be used interchangeably with the term argument. If
you don't know what either term means, that's OK-you'll see them soon
enough.

1.1 Starting Actor

If you haven't backed up your Actor disks yet or installed Actor, please do so before
you go on. Follow the directions in Getting Started.

First you should change subdirectories so that you are in the Actor subdirectory (the
subdirectory in which Actor is installed). Assuming you called your subdirectory
\ACTOR when you installed Actor, you would do this by typing:

CD \ACTOR <CR>

at the DOS prompt, in upper or lower case-DOS doesn't care. Of course, if you called
your Actor subdirectory something else, you would change to that directory instead.

Once you are in the Actor subdirectory, you can start Actor by typing:

ACT<CR>

at the DOS prompt in upper or lower case. Alternatively, if you have the commercial
version of MS-Windows, you can load Actor by double clicking on the file ACTOR.IMA
from the MS-DOS Executive. After waiting for Actor to load, the two Actor windows
will appear, the Workspace and the Display. Also the Actor copyright box will appear,
which you can get rid of by pressing the space bar, <CR>, or clicking on OK inside the
copyright box, and then you're ready to go! The Actor Workspace will contain a few
lines of Actor code which you'll l(?arn about later, but before you do, let's find out what
you're looking at.

1.2 The Actor Environment

If you're familar with MS-Windows, then what you see will be relatively familiar.
The Display window is a regular tiled window, so it can be made into an icon by
choosing Icon from its system menu. The Workspace is a popup window, which can be
resized or moved. You can skim over the next section if you want, or perhaps use it to
review some MS-Windows basics.

1.2: The Actor Environment 3

1.2.1 MS-Windows Basics

If you are not familiar with Windows, this is a brief introduction. Many times in the
text below you will be asked to do something by clicking or double clicking on something.
What does this mean? First, let's see what it means to click on something. The
'''something" that you have to click on can be a number of different things-menu items,
text, etc. However, the basic action remains the same. Maneuver the mouse pointer
until it is over whatever you are told to click on. Then click the left button, i.e. press the
button and release it once. As you might expect, double clicking on something is just
like single clicking except that you press the button twice in relatively rapid succession
(the time interval between the first and second click in a "double click" is adjustable
using the Control Panel application).

As we mentioned, the Display window is what Microsoft calls tiled, which is just a
fancy way of saying that it can't overlap with other windows. To move a window
around, point with the mouse arrow, called the cursor, to the horizontal title bar at the
top of a window. Press the mouse button, and you'll see your cursor change into an
icon-the Actor icon, to be exact. If there is more than one tiled window on the screen,
you can move a tiled window around by moving its icon to an edge of your screen.

You can't move the Display window around because it's the only tiled window on
the screen. Later on, however, you'll be making other tiled windows, and you'll be able
to experiment with some of the techniques described above. However, you can make

"any tiled window, including the Display, disappear temporarily by moving its icon to
he icon bar at bottom of the screen, and bring it back again by doing the reverse. Often

"you'll see this process referred to as making a window iconic. If you make the Display
iconic, the Workspace will disappear, too-you'll see why below.

The Workspace window, on the other hand, is a popup winduw. A popup window is
a lot like a tiled window, except it doesn't have an icon and it can overlay other
windows. If you click the mouse in the title bar area, instead of getting an icon, you get
an outline of the window, which you can then move around the screen. When you let
the mouse button up, the window will be moved to the new position. In addition, a
popup window is always attached to a parent window, whereas a tiled window can
stand all by itself. Because of this, any po pup windows attached to a tiled window will
disappear temporarily if the tiled window is made iconic. Because the Workspace is
attached to the Display, it disappears if you make the Display iconic.

You may also notice that the cursor changes shape when you move the mouse
pointer into the bottom portion of the Workspace. That's called an edit cursor, because
it's easier to edit text with that shape of cursor instead of the arrow shape. Since this
kind of cursor is sort of shaped like the letter 'I', it's called an I-beam cursor. You'll learn

'why the cursor changes from an arrow to an I-Beam later on in this tutorial.
The tiny box at the upper right hand comer of a window is called the size box. You

can use it to resize a window by clicking on it and holding the left mouse button down.
But before you can make a window smaller you first have to move the sire box above
and/or to the right of its current position. If you do so, you'll notice the outline of your
new window appear so you can get an idea of how big it will be when you let the mouse
button up. Since the Display is the only tiled window on the screen, there's no way to

4 Chapter 1: Introducing Actor: A T4toria/

move its size box above or to the right of it's present position, so it's useless unless you
have another tiled window on the screen. Try manipulating the size box of the
Workspace-it will respond quite nicely.

The other tiny box, at the upper left hand comer of a window, is called system menu
box, or sometimes just the system box. If you click on it, you get a menu which allows
you to do various things, including making the window iconic if it's a tiled window, and
closing the window. You can instantly close a window by double clicking on this box,
too. Closing either the Workspace or Display windows will quit Actor. In addition,
you'll note that at the bottom of the system boxes for both windows is the option About
Actor. Selecting this will display the Actor copyright box you see every time you load
Actor.

You select, or activate, a particular window by clicking the mouse anywhere within
the window. Also, pressing Alt-Tab will select alternating windows. If you've been
experimenting, you may have noticed that the title bar of the currently selected window
looks a bit different from other title bars. (Exactly what "different" means is dependent
on your display, but it should be readily apparent which window is active.) We say that
when a window is selected, or active, that it has the input focus, or sometimes just the
focus.

When a window has the focus, you may notice a small flashing vertical bar, called
the caret. Not all windows you can make have carets, but both the Workspace and the
Display do. It is important to remember the difference between the caret and the cursor.
The cursor is the mouse pointer but the caret marks the place where text will appear if
you type something. In Actor terms, the caret marks the current text insertion point.

If you drag the mouse across editable text, it will tum a different color. We say that
it's highlighted or selected, and any new text replaces the highlighted text.

1.2.2 The Actor Workspace

First, if it isn't already selected, select the Actor Workspace window by clicking the
mouse anywhere in the window. In it will be six lines that won't mean much to you
until you read further. For now, position the mouse to the end of the last line, hold
down the Control key and press <CR>. This will give you an empty line on which you
can enter the commands that we are about to describe. The other lines allow you to do
some useful things without having to type in the text, so keep them around.

The Workspace is a command environment; if you type something in it and then
press <CR>, you'll immediately get results. If you've ever used a BASIC interpreter,
then you've seen a command environment before. To see how the command
environment works, type this:

3*4 <CR>
12

1.2: The Actor Environment 5

This example shows another convention we have established: Any text not followed by
<CR> signifies what is returned by Actor (the 12 above, for instance). You shouldn't
attempt to type anythiilg in this manual that isn't followed by <CR>.

You will note that the 12 is highlighted. This is true of anything that Actor returns
\ it will always be highlighted. If something is highlighted, or selected, and you don't
; want it to be, click anywhere with the mouse. The highlight will go away, and the caret

will appear where you clicked.
You can also select text by moving the cursor to where you want to start and

pressing the mouse button. Then hold the mouse button down and move the mouse
around. You'll see the text appear highlighted as you move the mouse, which signifies
that the text is selected. Contunue to move the mouse until all the text you want is
highlighted, and then let the mouse button up. If you make a mistake, start over from
the beginning.

There are a few more text editing basics which you should get used to right away.
Whenever something is highlighted in the Workspace window, the Backspace key erases
it instantly. On the other hand, if nothing is highlighted, then Backspace backs up the
caret and erases one character at a time each time you press it. Incidentally, you do not
even have to press Backspace in order to erase highlighted text, because once
something's selected, you can just start typing; what you type will replace it.

In addition, you can utili2.e the facilities of the Edit menu on the Workspace menu
bar. At the top, you see Undo, which does not do, or undo, anything in this release of

\.Actor. The next three items, Cut, Copy, and Paste, utilize the MS-Windows Oipboard, a
/ handy mechanism which holds data temporarily so that you can use it later in another

application. Cut erases the selected text and copies it the the Oipboard. Copy does the
same thing, except it doesn't erase the selected text. Paste will return any text which is
currently in the Clipboard. Oear will clear any highlighted text.

On the Edit menu you will also see Ins, gray +, and Del. These are called accelerator
keys for their respective menu items-pressing those keys while in the Workspace is the
same as opening the Edit menu and selecting an option.

At the very bottom of the Edit menu is the Select All menu option. It simply selects
all the text in the window. Its accelerator key is Ctrl-A. Now you might want to practice
highlighting and deleting text and using the Oipboard before we go on.

Right now, you know that you can press <CR> to execute a command in the
Workspace. More correctly, if nothing is highlighted, then <CR> executes whatever line
the blinking caret is in. The caret needs not be at the end of the line, just in it
somewhere. But if something is highlighted, <CR> executes it. Another way to execute
something in the Workspace is to select the text using the mouse, and then click on Doit
in the menu bar at the top of the Workspace. When there is selected text, clicking Doit

" does the same thing as <CR>. Try executing the following command by using the Doit
./method and see what happens:

15+82

(You should get 97back from Actor.)

6 Chapter 1: Introducing Actor. A Tutorial

If you simply want to start a new line, even for a single command that's just too
long, don't press <CR>, as you might on a typewriter, because that would execute
something in Actor. Instead, you have to position the caret at the end of a line, usually
the last one in the Workspace;. and press Ctrl-<CR>. See what happens if you press Ctrl
<CR> when the caret is in the llliddle of a line instead. Ctrl-<CR> acts like a carriage
return on a typewriter.

You lll8Y occasionally wind up with a command that's split over two or more lines.
That's OK, because Actor doesn't mind extra spaces or lines. Be sure to select the entire
statement, and nothing extraneous that might have been left over from something else,
before you press <CR> or click Ooit. Otherwise, Actor will send you an error message.

You may find yourself with more lines in the Workspace than will fit in the window
at one time. If this happens, you can scroll the text up and down by clicking on the
appropriate arrows on the scrollbar on the right border of the Workspace. Alternatively,
you can scroll text with the little square box in the scrollbar by dragging the box-also
called a thumb-up or down.

If you do get an error ~ge, it will be in the form of a dialog box, which you can
get rid of by pressing <CR> or by clicking on the OK button that you'll see. Dialog
boxes, or Sometimes simply dialogs, are used everywhere in Actor system. A dialog is a
specialldild of window that pops up to notify you of something, request confirmation
for an actlon, or get input data. You've already seen a dialog box-the Actor copyright
notice is a dialog. Don't worry about anything else inside the error dialog for the time
being. After you get rid of the error box, you may see a highlighted error message stuck
in your work near the place where Actor figures the mistake probably is. You can get
rid of that with Backspace or Delete. Then you can figure out what you did wrong and
·~ .

Another Workspace menu option is Show Room!. Click on it and see what it gives
you. It's the amount of static memory that you have left to work with. You'll learn
more about static and dynamic memory later. For now, static memory is where
compiled Actor code resides.

1.2.3 The Actor Display

Until now, you haven't seen too much action in the Display window. Now we will
see what it can do. While you're in the Workspace, type the following:

print("Hello") <CR>

Perhaps unexpectedly, "Hello" appears in the Display rather than in the
Workspace. That's one of the purposes of the Display window-it's the default
destination of Actor output. You'll also see various kinds of messages from Actor. Try
prlntinj a number:

print(14) <CR>

,/

File Edit
Show Roo111!

P.oad(De111os)
cleanup()
inspect(Actor)
load(De111os(ftturtle])
koch(Sa111. 31. 4)
load(De111osCftfileEditorJ)

Figure 1·1: The Actor Workspace window as it looks
when you start Actor.

§ Kitchen Floor :'I

Figure 1-2: Turtle Graphics. Sam, the Turtle object (in
the center) has just drawn a Koch curve in the Kitchen
Floor window.

1.2: The Actor Environment 7

Note that the 14 appears on the same line as the first item you printed. That's because
unless you tell it to, Actor will keep printing on the same line. To cause subsequent
output to appear on the next line, you can do this:

printLine(" ") <cR>

The Actor printLine statement is like a writeln statement in Pascal or a printf("\n")
statement in C.

Select the Display as the active window. Then try typing:

15/3 <CR>

As you can see, you can type Actor commands in the Display, too. However, you can't
use the mouse other than to select the window, and you can't edit a line except to press
Backspace. You can't edit a line at all after you have pressed <CR>, either. However, it
is nice sometimes to have the capability to enter simple commands in the Display and
not clutter up the Workspace.

Here's something you may not have noticed yet. Whenever a dialog box or popup
window appears on top of text in the Display, the covered text will not regenerate itself
when whatever was obscuring it goes away. More sophisticated windows, however,

'\will redraw themselves after they have been covered up. Later, you'll find out why
/other windows do redraw themselves but the Display doesn't.

1.3 Turtle Graphics

So far your experience with Actor has been rather dry. Let's exploit your newfound
skills with something more interesting than arithmetic-turtle graphics. The name comes
from early experiments by Seymour Papert of MIT in using computers to teach children.
At that time he had a device that could roll around under computer control on a paper
covered floor, with a pen that could be automatically lowered to leave a trail, or raised
to leave none. The device couldn't do very much. It could tum left or right a specified

, number of degrees, and it could move forward or back a specified distance. But with
that limited repertoire, it could draw the most intriguing patterns. And in the process, it

/ forced you to see geometry from a new point of view. The device was plain, just a
hemisphere on wheels. But it reminded people so much of a turtle, that's what they
called it.

8 Chapter t: Introducing Actor: A Tutorial

Our turtle is even plainer than the original MIT version; he's just a little triangle on
the screen. But he can tum left or right a specified number of degrees, and move
forward or backward a specified distance, just like MIT's turtle. His pen is only
metaphorical, but it also can be ''raised" or '1owered" on command. He'll even place
himself at specified coordinates, or tum to a specified heading if you like, which the
original turtle couldn't do. And on command, he will make himself invisible.

To see the Actor turtle, you have to load the turtle graphics files. We have provided
some helpfullines of text in the Workspace that you can use to load the turtle demo by
highlighting them and selecting Doit!. Or, you can a~ways type them in again:

load(Demos) <CR>
load(Demos[#tuxtle]) <CR>

in either the Display or the Workspace. Ignore anything that Actor returns. Actor is
case sensitive, which is why it is so picky about how you typed in the above line. If you
had typed demos or dEmOs, for example, then you would have seen an error message.
Note: !4any Actor demonstration programs are loaded in the same manner, so this isn't
the last you'll see of this technique. '

Eventually, after compiling tile turtle graphics source code, a popup window should
appear on your screen with the title Kitchen Floor. This is where the Actor turtle, Sam,
runs around. And there's a little' triangle representing Sam in the middle. The Kitchen
Floor win<low is now a full-fledged MS-Windows window, so you can change its size
and move ~t around the screen. But note that any tracks Sam has left will be erased if
you do so.·· In fact, you should probably move the Kitchen Floor window right away
because it's lying partially on top of the Workspace, where you need to go next.

Now, get ready to type a new command. Select the Workspace window, where Sam
gets his instructions from your commands. Typer (120) <CR>, and Sam turns 120
degrees to the right. Type f (15) <CR>, and he moves forward again, this time by 15
units, leaving a trail behind. If you don't like the last line, you can typeb(15) <CR>,
and back up to where you were. Tum him left 90 degrees with 1 (90) · <CR>.

After Actor executes each command, the highlighted phrase <A Tuxtle> appears.
That's because everything executed in Actor returns something. In this case, the thing
retun\ed was Sam, and Sam is, of course, <A 'luxtle>.

As you have noticed, when our turtle backs up, he erases. To back him up without
erasing, you have to tum him 180 degrees around-about face-and then move him
forward.

You can clear the screen, and put Sam back to the center by typing home (Sam)
<CR>. ~n you can run him through his paces again by dragging across the statements
you want ~th the mouse and pressing <CR>. But be careful you don't include any
messages returned by Actor that appeared earlier, because they aren't executable
statements, and Actor will send you an error message.

To review: You make SamJn()ve forward with f (n) (where n is any number), tum
right wi.th, r (n), tum left with 1 (n), and back up with b (n). You erase everything and
bring hini back to the center with home (Sam).

'·f~ i;_ \

1.3: Turtle Graphics 9

If you don't want Sam to leave a trail as he moves around, you can raise his pen with
the instruction up (Sam). Then he won't draw anything while he moves. If you want to
start him drawing again, down (Sam) lowers the pen.

The statement hide (Sam) makes him invisible, and show (Sam) makes him
visible again.

Also, face (n) points Sam in the specified direction, measured in degrees
· clockwise from straight up (due north), and go'l'o (x, y) moves him directly to the

specified coordinates. You'll have to experiment to get a sense of scale. But we think
using these last two instructions is cheating. It seems more sporting to use the left, right,
forward, and back instructions.

And now, we have a special treat for you. Have you heard of fractal curves? If not,
don't worry-you'll see one soon, because Sam knows how to draw a few of them. If you
type koch (Sam, size, n) <CR>, then Sam will draw an approximation of a specific
type of fractal curve called a Koch curve. Here, size is the size of the figure to be
drawn; we suggest around 20 or 30. Try it with n anywhere from 1 to 7, at which point
you may not see anything. If that happens, you will still have to wait until Actor returns
from the koch (Sam, size, n) statement. If you recall, one of the lines on the
Workspace when you start Actor is koch (Sam, 30, 4) . If that line is still in the
WorkSpace, you can just click on the line and press <CR> and you'll see the Koch curve.

For a different kind of Koch curve, try sqKoch (Sam, size, n) <CR>, with a
size of about 35.

1.4 Object-Oriented Programming

OK, now that you've played around some, we're ready to find out what's really
going on. So far we've seen a little bit of arithmetic and some turtle graphics, but so
what? Anything we've done so far could just as easily been done in Pascal, C, or almost
any other computer language. In fact, for all you know, what you've seen so far could
have actually been Pascal or C, except for some of those cryptic things that Actor
returns, such as <A Turtle>, perhaps.

That's intentional. Although on the surface Actor looks like a regular procedural
language with procedures, functions, and the like, actually something rather
revolutionary is going on. Behind the scenes there are thousands of objects sending
messages to each other. The messages are then matched up with methods, which are
then executed. Whew! What does all that gobbledygook mean, and why do we want to
mess with success? After all, a lot of neat things have been done with regular computer
languages. In this section, you'll learn the answers to both questions.

' At first, you may find the object-oriented philosophy a radical departure from the
way you are used to thinking about programming. Later you will wonder how you ever
got by without it. Some things about object-oriented programming are very new and
different, while others will seem familiar, but with a new terminology. This section will

10 Chapter 1: Introducing Actor: A Tutorial

get you oriented in the world of objects. We'll start with an explanation of some of the
terms with which you will soon become intimately familiar. You may also wish to
consult Appendix B, a Glossary of Terms.

1.4.1 Object-Oriented Lingo

Some of the researchers on object-oriented languages noticed that their way of
approaching computer programming was not adequately described by existing
terminology. So they invented their own terminology, which has now become a
trademark of object-oriented languages.

1.4.1.1 Classes, Instances, and Instance Variables

We'll start with a familiar example. Consider an employee by the name of Joe
Smith. Besides his name, Joe Smith has other things about him which are important to
know, such as his address, his employee number, and his phone number, for example.
Of course, Joe Smith is just one particular employee. There could be other employees
too, each with a name, phone number, etc. All employees, then, are just examples of the
generic, abstract idea of the Employee.

Object-oriented programming isn't too different. In object-oriented terms, we
would say that there is an abstract class of Employee. Each particular employee is an
instance of this abstract class. For example, the employee Joe Smith is an instance of the
class Employee. Each instance of Employee has information of its own, such as the
employee's name, address, etc. This information is stored in instance variables which are
called that because every instance of the class has its own copy of them. .

If you are familiar with Pascal and/ or C, or other procedural languages, there is a
rough parallel you may relate to. (If you're not too familiar with either of them, you can
skip the rest of this paragraph.) A class is sort of like a Pascal record or a C struct when
it is declared; an instance of a class is a particular instance or example of the Pascal
record or C struct; and the instance variables correspond to the fields within the record
or struct. The record/struct analogy is nowhere near perfect, however, as you will soon
see.

Actor is called an object-oriented language because everything is an object.
Everything. And every object has a class, just as we promised above. The number 2, for
example, is an object. It is a particular instance of the class Int, which is short for
integer. The letter 'c' is an instance of class Char. Sam is an instance of class Turtle.
The string object "Hello" is an instance of class String. And so on. Even complicated
objects, such as windows, are objects. The Actor Display is an instance of a class
WorkWindow, and even Actor itself is an instance of class ActorApp. The programs
you create with Actor will be other instances of class ActorApp.

The above paragraph ommitted any mention of instance variables on purpose. To
refre~hydur memory, instance variables are just packets of data that are carried around
with each instance of a particuJar class. Some objects have, no !nstance variables because

Two kinds of data I

NAMED:

INDEXED:

Figure 1-3: On a physical level, objects may have
named data (instance variables) or Indexed data,
or both, or neither.

Instance
variables

elements of
a collection

1.4: Obj8ct-orisntsd Programming 11

they don't need any. For example, take the number 15, an instance of class Int. What
else needs to be carried around with 15 to make it a full fledged integer? Nothing. As a
result, instances of class Int have no instance variables. Neither do instances of class
Char. (By the way, can you now spot one of the flaws in the record/struct analogy?
There can be no records/structs without fields, but there can be instances of classes
without any instance variables.) However, more interesting objects such as windows
can have around 15 instance variables. And what are these instance variables? Why,
other objects, of course. The program you call Actor, as you now know, is an instance of
class ActorApp. It has two instance variables-can you guess what they are? The
Workspace and Display windows! The Workspace and Display are themselves
instances of classes, with their own instance variables.

Let's bring this abstraction down to earth. Type the following code in the
Workspace and see what you get back. Try to predict wllat Actor will return before you
press <CR>. Note: omit the first example if you have quit Actor since you loaded the
turtle graphics program.

claaa(Sam) <CR>
claaa(lC) <CR>
claaa("Badford ralla") <CR>
claaa('h') <CR>
claaa(Int) <CR>

Were you surprised by the last one? One thing that you'll learn about object
oriented programming is that it's irritatingly consistent. As a result, even classes are
objects. Int is an instance of IntClaaa-the only instance, to be exact. likewise, Char
is an instance of CharClaaa, and so on. Even IntClaaa is an instance of a class too, as
is CharClaaa, but we won't get into that here.

That explains the class business, but how do you get at an object's instance
variables? It's really pretty simple. You just specify the name of the object and the name
of its instance variable, separated by a period. But first we have to find an object with
instance variables, because as we mentioned above, the simplest ones don't have to have
any. One of the simplest objects which does have instance variables is an instance of
class Point. There are many ways to create a Point object, but the easiest way is to
create a special kind of Point called a literal Point. Here's how to create a literal
Point:

3C867 <CR>

The Point created above has an x value of 34, and a y value of 67. This information
./ is kept in the instance variables of the Point object, in variables called x and y,

respectively. Now, we're going to create a new variable called Pt. When you type in
the line, you will get a message from Actor telling you that Pt is undefined. That's OK,
just click on Yes in the dialog box that will appear (or hit space bar or <CR>) and Pt will
be made a global variable:

~ Chapter 1: Introducing Actor: A Tutorial

Pt :• 34@'7 <CR>
t>t.x <CR>
34
l't.y <CR> ,.,

Note that an Actor assignment statement uses the same format as Pascal's, namely, : =.
·Also note that from now on, if we ask you to create a variable and you get the
Undefined dialog box, it's all right to click on OK to make it a global variable. We won't
explicitly mention that dialog box again.

If an instance variable has instance variables of its own, you just continue with the
Object. instance Variable technique. For example, the instance of class ActorApp
that you are working with now is an object called TheApp. Why don't you try typing
this:

TheApp.workspace.workText <CR>

You should see the current text of the Workspace window! Here's what happened
above: Tiie object TheApp has an instance variable called workspace, which is a
window t)bject in its own right. The workspace object has instance variables too, one of
which is workText, and you examined the contents of that object when you typed the
above line. ·

How does Actor know when an instance of a class has instance variables, and how
does it know how many of them there are and what their names are? Well, all that
information is stored in an object's class. Remember when we said above that an
object's class is an instance of a class, too? As such, then, it also can have instance
variables. One of the instance variables of an object that is a class is called. variables:

Point.variables <CR>
Array (Ix #y)

In this exa,_mple, you see that the Point class is an object that has an instance variable
called variables. The contents ()f variables is Array (Ix ly) -the list of instance
variables that any instance of Point will have. When a new Point is created, the class
knows that along with the Point object itself, two instance variables called x and y
have to be created too. Don't worry about why the x and y have # signs in front of them
for the moment. ·

What happens if instances of a class don't have any instance variables? Let's see:

Int.variables <CR>
nil

For now, you can think of nil meaning empty or none, but later on you'll learn a lot
more aboQ.t this nil object. At any rate, here nil means that whenever an instance of

. "··· ' . .., ,,.. . ,

the In1;: class is created, no i~f~"J? variables are creat~ a)~ng with Jt.
/' .•. ,--, . . ' ' ':t .·: ,~. . ' '

\

/

OBJECT I

Letter1

'g.

Figure 1-4: Letter1 Is an object of class Char with a
value of 'g.' It Is surrounded by some of its methods.

1.4: Object-oriented Programming 13

Hopefully you have some understanding about instances and instance variables.
Formally stated, it's like this: Most objects can have two kinds of data-named and
indexed. Some objects, such as Point objects, have only named data-the Point object's
instance variables, x and y. Some objects, such as String objects, have only indexed
data. Some other kinds of objects can have both. Here's the rule: if an object has

/ indexed data, it's considerec;I a collection. If it only has instance variables, it's considered
an atomic object. There are a few other kinds of atomic objects, such as instances of :i:nt,
Char, and Real, but don't worry about them now.

1.4.1.2 Methods and Messages

We now know that everything in Actor is an object. More accurately, we know that
every object is an instance of a class, and that instances of some classes carry around
with them some of their data in the form of their instance variables. No mention has
been made of how work actually gets done in an object-oriented language, however.
We know all about objects, but how do they interact and do useful things? The answer
to this question, and more, is found in this section.

Let's say you have an number stored in a variable called x, and you want to
compute the square root of that number. In a procedural language such as Pascal,
Fortran, or C, you would send x to a routine, perhaps called sqrt. The sqrt function

\ would compute the square root of x and then return it. Keep in mind that the data, x, is
always physically and conceptually separated from the code, sqrt, that will work on it.

The model is different for object-oriented languages such as Actor, because in an
object-oriented language, the data and the code that will work on it are kept together.
Code is executed by sending a message to an object. For our square root example above,
the task is accomplished, in effect, by saying, "Hey, x, do a square root on yourself!"
When x receives the message, it asks itself, "Do I know how to compute the square root
of myself?" If yes, the x object chugs through its own square root routine and returns ·
the answer.

So, here's what happens. When you want something done, you send a message to
an object. The object looks to see if it knows how to do what you've asked, and if it
does, it executes the the correct function or procedure. In Actor, however, we don't call
them functions or procedures-we call them methods. More formally, then,
programming in Actor is a process of sending a message to an object. The message is
then matched up with a method, which is then executed.

How do you send a message? It's so simple, it's almost a letdown. In fact, you've
\ been doing it all along. You simply state the name of the method you want executed,
· followed by the object to which you are sending the message, surrounded by

/ parentheses:

print("Bello") .<CR>

14 Chapter 1: Introducing Actor: A Tutorial

Often you'll see other objects following the receiver, separated by commas. Those are
the arguments to the message. Obviously, the print message here doesn't have any,
but you'll see some that will soon. It looks just like a procedure or function call in a
procedural language, doesn't it? We made it look that way on purpose, to make Actor
easy to learn. However, we aren't sending a parameter to a procedure at all-instead, we
are sending a print message to "Bello", a String object. "Bel.l.011 looks to see if it
has a method defined by the name of print, and if it does, it executes that method. We
call the object that gets the message the receiver of the message.

One thing we would like to mention is Actor's convention for upper and lower case:
Global variables, including class names and object names that you created, such as Sam,
begin with an upper case letter. Method names like print and instance variables like x
are lower case. Also, inside any name, the letter beginning a new English word is
capitalized-WorkWindow is one example. One exception to this convention is a group
of messages that are received from MS-Windows, where they are predefined to be
uppercase.

You should keep it clear in your mind the difference between messages and
methods. Often the terms are used interchangeably, but although they are intimately
related, they are two different concepts. Here's why. Note the examples below:

print(15) <CR>
print("Bello") <CR>

In boih cases, we are sending a print message to an object. What is different is that
in the first case, the receiver is 15, an instance of class Int. In the second case, the
receiver is "Bel.lo", an instance of class String. Although we are sending the same
print message, different print methods will be executed in each case.

The fact that the same message can result in the execution of different methods,
depending on what the receiver is, is called polymorphism. It's a very powerful concept,
because it more closely parallels the way we think. For instance, if someone walked up
to you with something in his hands and said "Invert this thing," what would you do?
Well, you would look at whatever the person gave you and figure out what invert
meant, based on what the object is. If it's a triangle, then invert probably means to
physically turn it upside down. If it's a matrix, then invert probably means to do matrix
inversion on the object. (If you don't know or don't remember what matrix inversion is,
don't worry. We'll never walk up to you and ask you to do one!). In a conventional
language, you would have to write lnvertTriangle and InvertMatrix routines. In Actor,
you would just write two invert methods, then send the same invert message to
either type of object, and Actor would take care of the rest.

Now we are ready to state the two cardinal rules of programming in Actor. You
already know one of them, but it's included here for the sake of completeness.
Whenever you find yourself confused about what's going on, remember these two rules,
and you'll hopefully get a clearer picture. Here they are:

lo EVERYTHING in Actor is an object. Numbers, characters, arrays, strings,
~pplications, windows, methods, and so on-all are objects.

!objects have two parts I

private parts

shared part

Figure 1-5: Each object has two parts. One part is its
private value and the other is the list of methods shared
with other objects of the same class.

\

1.4: Object-oriented Programming 15

2. Every action which occurs in Actor (except for calling MS-Windows or MS
DOS) is the result of sending a message to an object, which responds to it by
executing a method. There are no other exceptions besides those mentioned
above.

Because of rigid adherence to the above rules, we say that Actor is a pure object
oriented language. There exist hybrid computer languages that don't always follow
these two rules. The second statement may seem rather innocuous, but it actually
implies a great deal. For instance, consider the Actor statement:

4*8 <CR>

You may be surprised to learn that the * symbol is a message to an object, too. So are
/, -, +, =, >,and a few others. Yet they don't follow the pattern we explained above,
with the method name followed by the receiver in parentheses. That's because the *
message is specially handled so it works in what we call infix format. It turns out that in
the example above, 8 is the object receiving the * message, but that's not too important
here. What is important, however, is that rule two above still holds. (You'll learn more
about infix messages later, in the Guide to the Actor Classes, chapter 2.)

1.4.t.3 What Else Do Clas!JeS Do?

We've told you already that classes themselves are objects in their own right. But so
far we haven't really given any concrete reasons why this is so. True, it provides a
degree of theoretical consistency, but you're a programmer, not a philosopher. Rest
assured, however, there are a number of very important roles that classes play in object
oriented programming. This section will cover two of the major roles: creating new
instances and storing methods.

One thing you may have been wondering is how new objects are created. Some
objects are created quite simply. For example, you can type

3856 <CR>

and instantly the Point object is created. You can also do the same thing for any object
which can be specified literally, such as Int, Char, and String objects. However, that
won't cover all our bases. Sometimes we want to create a variable and we don't know

• its value when we create it, so a literal form is useless. And some objects are too
/ complicated to be specified literally. Whereas it's easy to type:

"Hello" <CR>

arid know that it is an instance of the String class, how would you represent a literal
window object?

16 Chapter 1: Introducing Actor: A Tutorial

The answer to the question of how objects are created is that each class knows how
to make instances of itself. And t>ecause in Actor, all we do is send messages to objects,
we seqd the class a message saying, in effect, "Create ari instance of yourself and return
it." The class, which in essence contains a mold used tO shape instances of itself, will
create the new object with all the required instance variables, if any, initialize it, and
return it.

The message used to ask a class to create instances of itself is called new. For
example, another way to create a Point object is to send the Point class a new
message: ·

Pt :• new(Point) <CR>
nil@nil

Creating ne~ objects in Actor with the new method is somewhat like the situation in
traditional languages. In most modem languages, before using using a variable, you
mus~ declare the type of variable as well as the name of the variable itself. It's much the
same in ~ctor, but since objects are the active agents in the program, you ask a class to
create an instance of itself.

We mentioned above that messages can have arguments specified after the receiver,
listed in the parentheses of~ message statement. Here's the first example you'll see of
this technique. Often a new message will take one or more arguments. Note that you'll
still be sending a new message to a class. As an example of a class's new method
requiring an argument, creating an Array object with room for 15 elements would look
like this:

Saa :• new(Array, 15) <CR>

With this example, you note that Saa can be anything you want it to be. Whereas Sam
used to be a Turtle, now it's an Array. There's nothing stopping you from now
saying Saa : • 14, if you had a mind to.

Thars the first major responsibility of classes-to create new instances of themselves.
However, there's one more which we are going to learn about nexL As you probably
know quite well by now, object-oriented programming consists of instances of classes
objects--being sent messages, which are matched up with methods, which are then
executed. Where exactly do those lllethods reside? One solution would be to have
every instance of a class carry arQund the parcel of methods that it can respond to. That
scheme might be made workable, but there are some big problems with it, too. First,
huge amounts of memory would be wasted because there would be duplicate methods
all over the place .. Second, if you added, updated, or deleted a method that an instance
of a class could respond to, you would have to visit every instance of that class and
change its parcel of methods.

You may have already guessed the scheme Actor uses instead. We have.already
noted Uia,t every object is an i~stance of a class, and that an object's class contains the
mold for creating new instances of itself. What we didn't mention is that after an object
is creat~· the class an object ''belOngs" to is easily determinec.t~ This means, for example,

/

Inheritance I

prlnt(Letter1) between(Letter1, 'd', 'm')

Figure 1-6: Messages to object Letter1 of class Char
activate the first available method. Class Char inherits
all of the methods of its ancestor classes (Magnitude
and Object), but chooses to redefine some of them.

1.4: Object-orisnted Programming 17

that every instance of the String class knows it's a String. So, it seems natural to use
the object's class as the respository for a class's methods because when we send a
message to an object, it can look in its class to find the appropriate method. '.This, in fact,
is exactly what Actor does.

\ It shouldn't be too surprising to learn where a class's methods are kept-in an
) instance variable of the class itself called methods. Take a look at the methods for class

Int:

Int.methods <CR>

The object that appears is called a method dictionary-an instance of a class called
Method.Dictionary. It's called a method dictionary because it's a dictionary of
methods. Before we go on, why don't you try looking at some other classes' method
dictionaries, such as Window, Real, Array, and Collection. Don't be surprised if
you see some of the method dictionary listings cut short with " ... ". That's just how Actor
signifies that there's more stuff than there is room to show all of it.

1.4.2 Inheritance: Ancestors and Descendants

The sections above were an introduction to the basics of object-oriented
\ programming. However, you're probably not convinced that the object-oriented

i approach is really anything special. U what you knew now was the whole story, you'd
be right-after all, so far it just sounds like a different way of doing the same old thing.

What makes object-oriented programming special is a concept called inheritance.
You already are no doubt familiar with the concept of inheritance. After all, you are a
consequence of inheritance-your brown eyes, blonde hair, big nose, or whatever. Your
ancestors determine what you look like and in some cases what you are good at doing.
In like manner, your descendants will inherit (or have inherited) characteristics from
you and your ancestors.

Actor objects are not much different. The Actor classes are arranged in a
hierarchical fashion which we call the class tree. A class tree for the Actor classes is
Figure 2-1 in the Gulde to the Actor Classes. The class hierarchy stems the properties
and characteristics of the classes. For example, integers and real numbers are both
special kinds of numbers. As a result, the Int and Real classes descend from a class
called Humber. Humber, on the other hand, is a descendant of a more general class,
Magnitude, and so on. For those who are familiar with Smalltalk, ancestor class means

\ the same thing as superclass; descendant class is synonomous with subclass.
, The inheritance analogy isn't perfect, of course. A class doesn't have to have a

/ spouse in order to have descendants, for example. And we don't call classes with the
same parent brothers or sisters. We usually refer to them as peers or siblings. We don't
try to assign labels to the relationship between classes with different parents, either. It's
meaningless to say that one class is a "cousin" of another class, for example.
Nonetheless, the family tree model gives us an easy way to represent the class hierarchy.

18 Chapter 1: Introducing Actor. A Tutorial

Note, however, that the class trees in this manual show only the predefined classes
that come with Actor-both standard classes and more specialized ones. But Actor's
class'"f~ly" is dynamic. It's still growing. Your function as a programmer is to foster
the growth of the class tree by defining new, more speciCl~ized classes.

At the top of the class tree is the most generic class, Object. The classes at the
botto.m are the most specialized. The classes aren't just ordered this way for
convenience's sake, however. The real reason for the class hierarchy is that objects
inherit methods and instance variables from their ancestors. This means that when you
send a message to an object, iflt can't find a matching rriethod in its class, it will look in
its class's ancestor to see if it can find a match there. Only when a match cannot be
found in class Object does Actor give up and generate an error.

It als<> means that each instance of a class has all the instance variables of its class's
ancestors, as well as the instance variables it obtained from its class directly. For
example, you might want to declare a class whose instances were three-dimensional
points~ Such a class might be called Point3D, and it would have to have three instance
variables-let's call them x, y, and z. As a result of inheritance, however, all you
would have to do is define a class called Point3D as a descendant class of Point and
give it Ol\e more instance variable, z. Instances of Point3D would get their first two
instance variables from Point. Later, in section 1.7.10, when you learn about the Actor
developm,ent tool called the Browser, you will create a Point3D class.

So far, you haven't seen muc::h practical reinforcement of this abstract material. In
the next section, we'll take an aside from the theory to learn about the
debugging/learning/snooping tool named the Inspector. Inspectors let you peer into
some pretty complicated objectras well as the simpler kind-and see what makes them
tick. Using an Inspector gives you a very clear idea of how objects are put together, and
snooping can be more stimulating than just reading and typing. So get out your
magnifyi~g glass, and let's start inspecting.

1.5 TI,te Inspector

An Actor Inspector is very easy to use. All you have to do is select any object in the
Workspace and click on Inspect! in the menu bar. Or, you can type
inspect (SomeObject) <CR>. Then a window will pop up with the title,
"Inspector:className,limit=n". Here, className will be the name of the class of the
object you want to inspect. The value for n will be the number of elements, if the object
is a collection like a 5-element array. Otherwise, the limit will be shown as zero. ·

Just~ with any popup window, you can drag an Inspector window around the
screen by its title bar, change its size by dragging its size box, and close it by clicking
twice on its system box. ·

Try a few examples. As you might guess, one of the simplest Actor objects is an
integer. If you select the number 1 in the Workspace, and then click on Inspect!, an
Inspec!:or window will come up with the caption, "Inspecior: Int,limit=O." Nothing is
pres¢nt~ in either of the two 1~.t ~xes (explained below), because an Int object is

I Ii'

\

x

Point
y

Polnt3D

z

Figure 1-7: A class adds its own instance variables to those of its
ancestors.

1.5: The Inspector 19

nothing more than a value. If you want, you can close this Inspector window, or you
can keep it around for a while-you can have as many Inspectors active simultaneously
as memory will permit.

Now try inspecting a string, such as "Thie is a test." You have to select the
entire string, including the quotes, before you click on Inspect!. Now you see numbers
in the upper-right list box, corresponding to the characters of the string. Then try

/ inspecting a class, such as the Inspector class itself, the class whose instances are
Inspectors. Type in the word Inspector, select it, and then click on Inspect! to see
what happens. For each inspector, the object that you are inspecting is called the target
or target object.

1.5.1 The Inspedor's Windows

The Inspector lets you examine the target object in as much detail as possible, and
even lets you send messages to it or otherwise modify it. To review, every object
contains data in one form or another, depending on its class. Sometimes the data is in
the form of one or more named instance variables, specified by the class of the object
and/ or one of its ancestor classes. Other times the object is a collection of some kind,
such as a string or dictionary, having one or more elements. Some objects have both
kinds of data.

"'· An inspector window contains three smaller windows. In fact, these windows have
~ a special name, indicating their relationship to the inspector window: they are the child

windows, and the Inspector window is their parent window. One of the characteristics of
child windows is the way they move with the parent when you move it with the mouse.
You'll learn more about this child-parent window relationship when we talk more about
making window objects later on in this tutorial. The most important thing is that by
defining windows this way, it is easy to make a "manager" window such as the
Inspector and to create the windows inside it for it to manage.

But back to the issue at hand. The Inspector's upper left window displays the target
object's instance variable names, if any. This kind of child window is called a list box,
which is a scrollable list of names that allows selection of one or more of them using the
mouse pointer. The upper right window is another list box that displays something
special if the target class is a collection. Briefly, a collection is a group of elements that
are referred to by an index or key. These indicies or keys appear in the upper right list
box.

If you click on any of these items, its corresponding value in the collection will be
displayed in the bottom window, which is the Inspector's edit window. In this way, the

\ Inspector lets you check the values of any object's variables or elements, as well as
./ identify its class, right in the middle of your work. You can inspect any kind of object,

including classes themselves.

20 Chapter 1: Introducing Actor: A TutO(ial

1.5.2 More About Instance Variables

If yo1:1 inspect an object will\ several instance variables, you might wonder at the
order they are presented in the instance variable list box.·. As you know, the typical
object usually accumulates its set of instance variables from several classes, from its own
and all of its ancestor classes. In the Inspector's variable list box, the instance variables
are listed i'n the order they are defined, starting from instance variables defined by the
"oldest" a)lcestor (the ancestor nearest to class Object in the class hierarchy). The list
ends with the instance variables defined by the target's own class. The Object class
doesn't happen to define any instance variables so there won't be any contributed by
class Object.

For an example of this, let's consider an object of the BditWindow class. The
ancestor of Edit Window is Text Window, whose ancestor is Window, whose ancestor is
Object, and that's as far as you can go. The first instance variable listed by the
Inspector for an Edit Window object is hWnd, which is the first defined by class Window.
Follo}Virig hWn.d in the list are several more instance variables defined by Window, and
then come four or five more from TeztWindow, and the rest are from Edit Window. If
you'd like to verify this, you need to make an instance of BditWindOw, which is easily
done: ·

Sam := new(BditWindow, nil, "Sample") <CR>
<a BditWindow>

Remember, Actor doesn't care that Sam used to be a Tu:r:tle object and a few other
kinds. Now you can inspect Sam and see what its instance variables are and in what
order they are listed. Then, inspect (in order) the classes Window, Text Window, and
EditWindow to see what is contained in their respective variables instance variables.
You should see the same names in the same sequence. After you verify this, close all of
the Inspector windows.

We Will cover the subject of window objects in more detail soon, but you probably
would like to see what you have just created. Well, you can see Sam by sending the
message show (Sam, 1). Do this now, in the Workspace, and then we can inspect Sam
a little more to see just what the Inspector can do.

After sending the show message, you will see a new tiled window on your screen,
with the name "Sample" in the caption bar. Now you can practice some of the
techniques of manipulating tiled windows, because there are two of them on the screen
now--the Sam window object and the Actor Display. Move Sam around to a new
position, i, necessary, so that you can see it. Then click the mouse anywhere in the
window. You should see a blinking caret in the upper left corner, showing where text
will appear if you start to type. Type in anything you like, pressing <CR> after each line
if you want to enter several lines. Now go back to the Workspace, and start an inspector
on s~ as you did before. This time, we'll look at the contents of some of the instance
variables. · ·

J

\

Figure 1-8: An Inspector window. Here, an Int object
is being inspected. The instance variable listbox is the
upper left corner, the key listbox is in the upper right,
and the bottom window is the Inspector's edit window.

I

e roe
paintStruct
hltlenu

Figure 1·9: Sam, an EditWindow object, is being
inspected. Its hWnd instance variable, representing
the MS-Windows handle to the window, is selected and
displayed.

1.5: The Inspector 21

You can click on any of the instance variables to see what they contain. If you select
the first one, hWnd, you will see displayed in the edit window the value of the handle to
the window Sam. As you'll see when we talk more about windows, a window handle is
a number that MS-Windows provides us to refer to a particular window, once it is is
created. If you scroll down a little in the variable list box, you will see xPos and yPos.

) Select these, one at a time, and see if you can tell what they are. They indicate the
current position of the caret for Sam. Wherever you stopped entering text, yPos will
hold the value of the line, counting from 0 being the first line, and xPos holds the
character position on that line.

Near the end of Sam's instance variables, you'll see one called workText. Select
this, and you'll see exactly what you entered in Sam reprinted right in the Inspector edit
window! The workTezt instance variable holds a collection of text strings that serves
as an "edit record" for an EditWindow object. Now you see again how instance
variables can hold any kind of Actor objects, from simple integers and points to text
collections like workTezt.

The Inspector is a tool that can reveal much about how Actor is put together, as this
exploration into instance variables clearly shows. The Inspector can shed light on many
other aspects of object-oriented programming in the same way. It is also a very
powerful aid as you develop new methods and classes as part of a new application.

Try inspecting some of the objects that we discussed earlier:

\ 34867
:Int.methods

With the first example, you can visually see the instance variables of the Point object.
With the second, you get to see the :Int class's method dictionary.

1.5.3 Editing in the Inspector

The Inspector is a full editing window. Under the Edit pull-down menu are the
familiar Cut, Copy, Paste and Oear options. These allow passing information via the
Clipboard and are standard all edit windows in Actor. Edit windows have full editing
capabilities. You can issue Actor commands from it. An Inspector edit window behaves
just like the Actor Workspace, so you can type a message and press <CR> to execute it.
And, as in the Worlcspace, if you want to skip to a new line without executing anything,
press Ctrl-<CR>.

/ 1.S.4 Inspecting More Deeply

Once you've opened an Inspector window, you can inspect still further. In an open
Inspector, click on any instance variable name, a key or index from the right listbox, or
select anything in the edit window pane. Then pull down the Inspect menu from the
menu bar, and choose Variable, Key, or Selection, respectively. Another inspector will

22 Chapter 1: Introducing Actor: A Tutorial

pop up over the first for the appropriate target. You can drag this one around on the
screen, change its size, and inspect objects in it, too.

We haven't mentioned this yet, but there is an object called Actor, too. It's the
system dictionary which holds all of Actor's global variables such as the various classes.
To inspectthis object, type Actor into the Workspace, select it with the mouse, and then
click on Inspect!. After a slight delay, owing to the large number of elements in Actor,
you'll see a popup window with the title "Inspector:Dictionary,limit=245" (the number
shown may not be 245, however). And in the upper right list box will be the list of all
the keys to the global objects in the dictionary Actor. Incidentally, Actor is the first
keyed collection you've looked at so far. Choose one key, say, Compiler. You'll see in
the edit window that it's a method dictionary. Pull down the Inspect menu and choose
Key. A new inspector opens up showing you the instance variables of Compiler.
Select them to see their values.

It als0 might interest you to inspect Sam the Turtle. Of course, for you to do this,
the turtle graphics routines must be loaded. If you've quit Actor or closed the Kitchen
Floor window since you've played with Sam the turtle, you'll have to load the turtle
programs again. Refer to the directions above in section 1.3 to see how to do this. At
any rate, after you've moved Sam around some, inspect him and his instance variables,
to see how they change. You might also inspect the Kitchen Window (one of the
instance variables of Sam) to see how its variables change as you move the window
around.

Another interesting exploration can begin by inspecting a class. Try inspecting class
Xnspector itself. The instance variables that show up include ancestor, variables,
and methods. As you know by now, this is the same for any class. If you select
ancestor, you learn that the Inspector class descends from ToolWindow, which has
its own ancestor, PopupWindow, and then back through the Window class and finally
Object. You can trace the lineage of any class in this manner, inspecting each ancestor
along the way.

If you look at a class's variables instance variable, you can see what instance
variables an instance of the class will have. Of course, any instance of a class will also
have the instance variables defined by ancestor classes, too, but instance variables
defined by ancestors won't appear when inspecting the object's class. The methods
instance variable, if selected, will list the names of all the methods the class being
inspected defines for its objects. As was the case with variables, though, this is not
the complete list of methods that the object could respond to, because some are inherited
from the ancestor classes.

As another exercise, consider the example above when we asked you to type:

TheApp.workspace.workText <CR>

Now that you know about inspecting deeply into instance variables, why don't you try
inspecting TheApp. Then, select the workspace instance variable in the left listbox of
the Inspector window. Choose Inspect Variable from the menu bar, and then you can
see work!ext in the list of instance variables of the inspector window for workspace.

Figure 1·10: Inspecting the system Dictionary object, Actor. Note that the key Sam, a
Turtle, is selected.

1.5: The Inspector 23

By going through this process, you can see the relationship between the "dot technique"
of accessing an object's instance variables and examining an object using Inspector
windows.

/ 1.5.S The Use of "self'' in a~ Inspector

When an Inspector first appears, the edit window will be empty. The caption bar
specifies the class and size of the target, but not the target itself. One reason is that some
objects, especially the collections, have such lengthy representations that they would
never fit into a caption bar, but the class names always will. If you want to deal with the
target directly as an object, you can refer to it as self in an Inspector edit window.
Later, in section 1.6.1, you'll be learning the exact meaning of the word self. However,
for now just think of it as a special word that, when you're in an Inspector window,
means the target object being inspected.

For example, if you want to see the target's Actor representation, just type self in
the edit window and press <CR>. You can also send messages to the target in the edit
window. Try limit (self) and see that the value returned is the same as shown in the
caption bar.

The Inspector can take you one step further, by allowing you to actually change the
object. This would naturally happen by sending any message to self that would

\ change the data of the object in any way. For example, if you were inspecting a String
' object, you could execute erase (self) in the Inspector edit window and fill the string

with blanks. The power to do this sort of thing makes the Inspector a potentially
dangerous tool, since you could easily send a message that would bring Actor to a
grinding halt. But you could do this in the Workspace just as easily.

The In$pector also lets you get access to and even change the objects contained in the
target's instance variables. When we were inspecting Sam before, when it was an
instance of Ed.itWindow, we saw that xPos and yPos held the location of the caret.
You could change the location by executing the following two assignment statements in
the Inspector edit window:

xPos :• 1;
yPos :• O;

If you do this and then give Sam the input focus by clicking on the caption bar, you will
see the caret blinking on the first line, right after the first character. Oicking anywhere

"" else in Sam would reset xPos and yPos immediately to wherever you clicked, denying
you the fruits of your labors.

/

1.5.6 ~en an Error Occurs

When Actor pops up with an error window, there's a list of statements, which, in
order from the bottom up, gives you a history of the activities (i.e. messages sent) that
led up to the error. When you know a little more about how Actor works, you'll be able
to use this window to do in-depth detective work and find the exact cause of your error.
For now, you can use this error dialog to see where in your application the error
occurred.· In each line, you'll see the name of a method to the left of the arrow, and the
receiver to the right. The method is shown as dassName:methodName, the class being
the one that the method is defined in. When you're done looking at the dialog, hit OK,
and Actor will stop what it's doing and wait for your next command.

You'll find more complete infonnation about errors and debugging in section 4.3.
Now, we'll move on to some of the other tools that you have at your disposal, and show
you how to develop a small, but genuine, appli~ation.

1.6 Programming in Actor

Now that you've got some background in object-oriented programming, you're
going to learn what it's really like to program in Actor. As you know, Actor programs
consist of objects sending messages to each other. Writing Actor programs is just a
matter of designing the layout of the objects and writing the methods that the objects
will execute.

This section will explain some of the basic details of Actor syntax, as well as
illustrate some examples of writing Actor methods. You may feel that some of the ways
we are telling you to do things are a bit awkward. But don't worry too much about it
because the next section will teach you to use a tool we call the Browser, a specialized
text editor specially designed to write and maintain Actor source code. At any rate, it's
time to learn how to program in Actor, so let's go!

1.6.1 Actor Methods

You've already seen a lot of examples of how to send messages to objects, but what
we haven't shown you is the other side-the methods that these messages are matched up
with during the course of running a program. That's what this section ls for. You'll
learn the fonnat of an Actor method, as well as write one of your own.

Every Actor method has the same general format:

I* Method comment */
Def methodName(self,arg1,arg2, •.•
(statementl; I* Comment */

statement2;
statement3; /* Comment */

statementH;
)

1.6: Programming In Actor 25

loc1,loc2, •••)

There's a lot of information packed in those few lines, so let's look at everything
very carefully, starting at the top. The line that reads I* Method comment *I is just
that-an optional, but highly recommended, piece of text that explains to anyone who
reads the code what the method is supposed to do. Those who know C will recognize
that the Actor way of delimiting comments is identical to C's. Anyway, anything
between the /* and the *I will be ignored by the compiler. You can be very free with
where you put comments-to illustrate, we have placed a few examples inside the text of
the above method fonnat.

Below the comment is the method header. First, note the Actor keyword Def, which
prepares Actor to compile a method. Next is the name of the method. Although it is not

\ enforced, all methods begin with lower case letters by convention. Within the method
1 name, every English word after the first is captalized.

You've seen the word self before when we were discussing the Inspector, a_lthough
we were vague about what it meant. Now you will learn the true meaning of this word
self. It refers to the receiver of the message. Because the receiver is not known when
the method is written, the word self represents the object that will eventually be sent
the message. Thus when you use self as a variable inside the method, it will refer to
the receiver object. The first thing in a method header, after the method name and the
left parenthesis, is always the word self. If you forget, you will get a syntax error.

Following self, the items argl, arg2, etc. are the arguments, or parameters, if any,
which are sent along with the receiver. A method can have up to 8 arguments.
Admittedly, when you see a message like new (Array, 15), it's tempting to think of
Array as the first argument and 15 as the second argument, especially if you are a
Pascal or C programmer. But Array is the receiver object, and 15 is the first, and only,
argument.

Following an:y arguments is the upright character. When it's printed in this manual,
\ it looks like this: I . On your keyboard or in the Actor source code it's usually the shift
/' backslash(\) character. After the upright character are the local variables of the

method, if any. You can have up to 8 of them, too. Now you should be able to see the
correspondence between a method header and a message. Except for the Def, the I
character, and any local variables, the method header defines what the message will
look like.

26 Chapter 1: Introducing Actor: A Tutorial

The left curly bracket, {,signifies the beginning of the method code. Next, Actor
statements comprise the guts of the method. Note that an statements are separated by
semicolons(;). You haven't had to type the semicolon before because when you're in
the Workspace, it's been obvious to Actor when you were done with a statement--you
pressed <CR> or selected Doil! from the menu. Within a method, however, Actor
requires semicolons between statements. The semicolon after the last statement is
optional. And, as you probably guessed, the right curly bracket,) , marks the end of the
method.

We mentioned before that every method returns a value. Unless overridden, an
Actor method returns self (the receiver) as a value. That's why when you were
manipulating Sam,, the Turtle, you saw <a Turtle> returned after a statement.

But returning self isn't always sufficient. For example, a sqrt (sqare root) method
would be useless if it returned the number you sent it to, the receiver. Rather, it should
return the square root of the receiver. When an explicit value needs to be returned, we
use the "' character, sometimes known as the caret character (not to be confused with the
caret for entering text in a window). Whenever Actor encounters a A in a method, it
immediately exits the method and returns whatever follows the A character. You can
have more than one A character inside a method-in fact, you can have as many as you
want. You'll see examples of this technique below. Until you learn the control
structures of Actor (if, etc.), it is hard to imagine having more than one A character in a
method. (C programmers might recognize the A technique, because irs quite similar to
the return statement in C. Although standard Pascal has nothing equivalent, you can do
the same sort of thing in Turbo Pascal 3.0 from Borland International by using the Exit
statement immediately after setting the function equal to something.)

There is only one more thing to know before you can write your first Actor method.
Remember that every class has a method dictionary which keeps that class's repository
of methods. That's important because when you compile a particular method, Actor
needs to know what class to put it in. Thus, before you compile an Actor method, you
need to use the now message. For example, before compiling methods for the String
class, you would send this message:

now(String);

This method changes the value of curClass, an instance variable of Compiler, an
Actor object that compiles Actor code. The variable curClass specifies where to put
the method. Try inspecting the Compiler object to see what curClass is.

OK, now we're ready to write a simple method. It will be a method of class Int that
will return the square of the receiver. First, we have to use the now method:

now(Int) <CR>

Because our square method will return something other than the receiver, we use
the A character. What should follow the A character? Well, we want our square
method to return the receiver multiplied by itself. Keeping this in mind, why don't you

1.6: Programming In Actor 27

try typing the lines below. Remember that in the Workspace, you have to press Ctrl-
<CR> to go to the next line with9ut executing anything.

Def square(self)
(""'self*self
}

Highlight all three lines with the mouse and press <CR> or select Doit! from the
Workspace menu. If you get any errors, try again, but if you didn't, you'll see a message
in the Display indicating that Actor is compiling your new method.

Once it's compiled, send square messages to Int objects, which now know what
square means. Send the following messages: square (14), square (-7),
square (25).

Before we go on, there are a few loose ends that we need to tie up. First, you are not
allowed to have self alone on the left hand side of any expression. For example, this
statement would generate a syntax error:

self :• 3; /* Invalid statement */

However, if self is a collection, such as an Array, String, etc., individual elements of
self may be changed. For example,

self[4] :• 3

is a valid statement
All arguments are passed by value only. This means that if you change the value of

an argument within a method, the original object passed in the message remains
unchanged. (For Pascal programmers, this means that there is no equivalent to a var
statement in front of a procedure/function parameter). Note above that if self is a
collection, you can change the elements of self within a method. You might be
tempted to think that self is a variable parameter (passed by reference rather than
value). But keep in mind that self is not an argument at all-it receives the message.

We have this restriction_ on self, because if you were in the middle of a String
method and you executed a statement like self : • 3, you would be executing a
String method on an Int object. On the other hand, altering an element of self, if
self is a collection, doesn't change the class of self, only its elements.

Pascal programmers are used to placing semicolons just about everywhere,
, including after procedure/function headers and after the end statement of a procedure

or function. So that Pascal programmers won't get strange syntax errors, semicolons are
/ allowed in the equivalent places in Actor methods. You won't see any of these extra

semicolons here or in the Actor system.

28 Chapter 1: Introducing Actor: A Tutorial

1.6.2 True ~d False

We are just about ready to explain the control structures that you can use in Actor
methods, such as if, if I else, etc. However, first you have to know about boolean
expressions. ·

In section 1.4.1.1 we briefly introduced the object nil. We said then that it meant
empty, or npne. And you also know that when an object is created, its instance variables
are initialized to nil (remember when we sent a new message to the Point class?). But
nil also means a lot more. It is the only object in the Actor system that is logically false.
Everything else, even the number 0, is logically true. The nil object is itself an instance
of a class, HilClaaa. However, even NilClaaa is logically true.

Here's a short quiz. If we executed the following statement

Pt := new(Point) <CR>
nil@nil

Is Pt true or false? The answer is that Pt is logically true. Why? Pt is not nil-ifs an
instance of class Point. On the otl)er hand, is Pt .x logically true? Or Pt .y? You
guessed right if you said no for both of them. Since both are equal to nil, Pt . x and
Pt • y are both logically false.

1.6.3 A;ssignment Statements

You've seen quite a few assignment statements already. For example,
\

Pt := new(Point);

is an assignment statement. Actor allows you to use it to set the value of more than one
variable at a time by chaining as5ignment statements. For example, the following
statement would assign the value zero to x and y:

x := y := 0;

There is no practical limit to the amount of objects you can initialize by chaining
assignment statements together in this manner.

Assignment statements also have a value. The rule is that an assignment
statemenf s value is the same as the value of the object on the right of the assignment
statement. For example, the following statement would print the number 3 in the
display: ·

pr~nt(x := y := 3);

\
/

1.6: Programming In Actor 29

Since an assignment statement has a value, it also has boolean significance, i.e. it is
true or false. This fact is often used to make assignment statements do double duty as
boolean expressions as well. You'll see an example of this technique below.

1.6.4 Control Structures

Every language has constructs that control the execution of the program. You're
probably familiar with most of them--if, if/else, repeat/until, and a few others. Actor
provides all these, plus an added control structure (actually, it's a message) that you'll
learn about in the next section.

All the Actor control structures are available to you under the Templates menu on
the Workspace, Browser, and Inspector menus. When you select one of the items on the
Templates menu, a generic version-a template-of the structure is inserted at the current
text insertion point (caret). You can then edit the template into the code you really need.
As you read through the following sections, select the control structure from the
Templates menu and al~er it to match the examples.

The following sections will hopefully tell you all you need to know about the control
statements. Some of the more nitpicky details are in the formal Actor Language
Description, Appendix A.

, 1.6.4.1 Actor Conditional Statements

Every computer language has conditional statements. Sometimes they will be called
''if' statements or "if/then" statements instead. Actor has three kinds of conditional
statements, two of which are very similar. The first one is an if statement, and its
general form looks like this:

if (cond)
then (stmtList);
endif;

In English, it reads like this: '1f the expression, (cond), evaluates to true (not nil),
then the statement(s) between the then keyword and the endif keyword are executed.
Execution continues at the statement following the endif keyword. On the other hand,
if (cond) evaluates to false (nil), then execution continues at the statement following
the endif keyword."

'\ The general form of the second kind of conditional statement, which we will call
./ if I else for short, looks like this:

if (cond)
then (stmtList);
else (stmtList);
endif;

30 Chapter 1: Introducing Actor: A Tutorial

In English, it reads: "If the expression, (cond), evaluates to true, then the
statelllent(s) between the then keyword and the elae keyword are executed.
Otherwise, the statements between the elae keyword and endif keyword are
executed. Execution then continues after the endif keyword in either event."

C programmers may appreciate the fact that in both the if and if/elae
conditiOnal statements, the then keyword is optional. We will use it in all of our source
code.' ·

There are a few things you sho.uld know about the (cond) part and (stmtLiat)
part of the two conditional statements. The (cond) is just a boolean expression, such as
x > 3, etc. But what makes things interesting is the fact that every object in Actor has
boolean significance. For example, the following statement is perfectly valid:

if 3
then print("I'm. true!");
endif;

Now, admittedly you would probably never do this. However, it's very common to
do something like the following, which initializes the two instance variables of a Point
object to zero:

Pt :• new(Point);
if not(Pt.x) and not(Pt.y)
then Pt.x :• Pt.y :• 0;
'endif;

Remember above where we said that assignment statements have boolean
significance? Here's an example of how you might exploit that fact:

if (a :• b)
then (atmtLiat);
endif;

The list of statements in (atmtLiat) will be executed if bis anything but nil. This
has the added benefit of initializing a so that it can be used within (atmtLiat), too.
Note that we have placed parentheses around the assignment statement. While not
required, it is good programrriing practice, because

if a :• b

looks a lot like

if a • b

1.6: Programming in Actor 31

and you might not catch the fact that an assignment statement is going on rather than
just a simple comparison.

The last thing you need to know about an if/else statement is that it has a value,
too. For example, the following code would return the minimum of a and b:

c :• (if a < b
then a
else b
enclif);

Note that only if/else statements have a value, not if statements.
The third type of conditional statement allows conditional selection of one of several

cases, based on arbitrary boolean expressions. It's similar, but not identical, to the case
statement in Pascal or the switch statement in C. Here's the general form:

select
case (cond)
is (stmtList);
endCase
case (cond)

\ is (stmtList);
endCase

/

default (stmtList);
endSelect;

Although here we show only two, you can have as many case/endCaae pairs as
you need. So that you can get a sense of what the select statement does, here's an
example that prints whether a number is positive, negative, or zero: ·

select
case num > 0
is print("Poaitive");
endCaae
case num < 0
J.a print("Negative");
endCaae
default print("Zero");

endSelect;

There are a number of things that you should note about the above example. First,
note that, unlike C or Pascal, you can have arbitrary boolean conditions after caae--the
fact that we used num in both of our case statements above is purely coincidental.
Second, note that there is no need for a break statement like there is in C. If a condition

32 Chapter 1: Introducing Actor: A T~otial

is true, then that caee statement's etmtLiet is executed and execution continues at the
statement that follows the endSelect keyword.

Although the default clause is optional, it is highly recommended.. If there isn't
one, and oone of the caee conditions are true, then execution continues after the
endSelect. The ia keyword is optional, and if you want to, you can place a semicolon
after an endCaee keyword.

A eelect statement is equivalent to a series of nested if statements, so in certain
time-critical situations it may be wise to place the caee/endCaae most likely to be
executed nearest the top.

1.6.4.2 Indefinite Iteration

Many times you want to execute a series of statements only while a particular
condition is true. Pascal, for instapce, allows you to do this two different ways. One
way, using Pascal's repeat/until statements, allows you to repeat a statement until a
partkular condition is true, but ~lways at least once. Pascal's while loop, on the other
hand, Will execute only while a particular condition is true, and sometimes not at all.

Actor lets you do both witlt with one, flexible constnlct, the loop statement. Here's
its general fonn:

loop (etmtListl);
while (cond)
beg.in (stmtList2);
endLoop;

If (stmtLietl) is empty (i.e. no statements), then the effect is a while-type loop. If
(stmtList2) is empty, the effect is an until-type loop. You can have both
(stmtListl) and (stmtList2), and test for a condition in the middle. This is a
facility no.t provided in many languages. Note that if you do so, (atmtLietl) is still
executed repeatedly until the (cond) is false.

If you are writing an until loop, i.e. if (stmtLiat2) is empty, then you may wish to
omit the begin keyword for clarity. Use of it is always optional, but it can make your
code clearer when (atmtLiat2) is not empty.

Here are some examples of the above concepts. The following loops will all print
the numbers from l to 10, but each in a slightly different way:

i :• O;
loop i := i + 1;
while i <• 10
begin print(i);
endLoop;

i :• 0;
loop i :• i + 1;

print(i);
while i < 10
begin
endLoop;

i :• 0;
loop
while i <• 10

i :• i + 1;
print(i);

endLoop;

1.6: Programming in Actor 33

\ 1.6.S Blocks
/

/

If you are an experienced programmer, you know that most loops are spent
traversing (stepping through) a data structure such as an array or string. In other
languages, you would use either of the two types of loops described above or a third
kind (a "for/next" loop) to traverse the data structure.

In Actor, almost all the traversals of data structures are handled by do methods.
However, understanding how a do method works means that you first have to know
what blocks are and how to use them.

The best way to think of a block is that it is a normal Actor method without a name.
Blocks are used in situations where we know in advance what the framework of a given
operation is, but need to tailor the specifics at a later time. For instance, in a sort routine,
the basic framework is the same whether we sort in ascending or descending order. A
block allows us to "plug in" the middle portion of the operation by sending the block as
an argument in a message. In the receiving method, we omit the middle portion of the
operation, and use whatever the caller provided in the block argument instead.

Blocks don't have receivers-they only have arguments, which are called,
predictably, block arguments. Here's the format of a block:

34 Chapter 1: Introducing Actor: A Tutorial

(uaing(arg1,arg2, .•.

}

· atatement2;
atatement3;

atatementH;

11,12,13 ..•) atatementl;

Since you already know about methods, describing a block isn't too difficult. The
using (~rgl, •••) is the hea<ter for the block, and the statements are normal Actor
statements. If you use a A symbol to return a value, you will not only exit the block, but
also the method that the block is being located in, so be careful! A block returns the
value of the statement last executed in it, so the A is not usually necessary or desirable.
Just like methods, blocks can have anywhere from zero to eight arguments, although the
most common number is one or two. The block from the Templates menu is a one
argument block, for example. Blocks can also have up to eight local variables. Here are
some exa~ple blocks:

{uaing(i) print(i);
}

{uaing(a, b) a > b;
)

(uaing(z, y I z) z :• z + y;
aqrt(z);

)

Blocks are objects, too-instances of class Bl.ockContext, to be exact. However,
there's only one Bl.ockContext method that you'll ever have to use, called eval..
When a block is sent an eval. message, it executes itself. You send an eval message to
a block object, along with the correct number of arguments. Here is an example
illustrating the use of eval:

eval({uaing(a,b) a> b;},3,4) <CR>
nil

What happened here was that 3 and 4 were substituted for arguments a and b,
respectively. Since the expression 3 > 4 is false, the eval method returned nil.
You'll rarely use eval in this manner. Most of the time you'll set a variable equal to a
bloc1' in~ead and send a message to the variable:

Blk := {uaing(a,b) a> b;} <CR>
eval(Blk,3,4) <CR>
nil
eval(Blk,7,4) <CR>
0

Remember, 0 is logically true. Here's another example:

Blk := {uaing(x, y I z) z := x + y;
aqrt(z);

} <CR>
eval(Blk,9,16) <CR>
5.0

1.6: Programming In Actor 35

Since blocks are objects just like anything else, they provide a great deal of
flexibility. As we mentioned, there are complex algorithms that only need to be altered
a little bit to do something completely different. Exploiting the power of blocks, you can
put that little bit into a block, leaving the rest in normal Actor code. In the sorting
example, the block describes the part that compares two objects together. Simply by
changing the block, you can change the sorting order at will. You'll see this exact
technique used with the Actor class SortedCollection, the class whose instances
always maintain their elements in sorted order.

1.6.6 Actor Applications

By now, you hopefully have a pretty good idea of what little chunks of Actor code
look like. But what is an object-Oriented program ?

In a well designed, modular program written in a traditional language, there is
usually a relatively short main module of code that oversees the process, and contains
the dominant algorithm. In Pascal, it's the code in between the very last begin and end
statements. In C, it's in the main() procedure. The data has been declared, execution
begins at a specific spot, and the flow of execution from one procedure or function to
another is usually fairly clear.

In Actor the flow of control may not be quite as obvious. Objects tend to give
programming a different flavor because they "decentralize" the design-they delegate
responsibility. Each object is almost a small application in itself, and the overall
application results from the objects communicating with each other. Each object takes

· ... care of its own area of expertise. But what gets the ball rolling?
As we have said before, objects are the active agents in the execution of an Actor

program So, the basic idea in producing an Actor application is to define a class whose
instances can utilize the methods you write to get the work done. Once you have

36 Chapter 1: Introducing Actor: A Tutorial

defined t)\e class and methods, you simply create an instance of that class and then send
it messages. Many times you only have to send it one message and the object takes care
Of itself; . I

That one message is probably a good deal less complex than the C main procedure
that we compared it to. In fact, methods are almost always quite short as compared to
procedures in traditional languages. There are a couple of reasons for this. The object
oriented model encourages short methods, and some significant benefits are the result.
In section 4.1, we'll go into these issues a lot more deeply. For now, the point is that a
single message starts everything off, and this can be thought of like a C main procedure.

1.6.6.1 An Actor File Editor

Clear as mud, right? To clarify things, we'll take a look now at an object-oriented
implementation of a classic application-a text editor. Since we said that objects are the
active agents in the execution of a program, the question becomes one of deciding which
object gets the honor of being the "centerpiece" that is sent all the messages.

A logical guess is to make the text the centerpiece and send all our messages to the
text. In Actor, a much better choice for "head object'' is the window that the text is
displayed in. This approach is much more compatible with MS-Windows. Most of the
applications you will write will center around a particular window object, and running
your application will consist of sending messages to that object.

So, we have decided that our text editor will be a window. Where does the text
come in? That's easy too-we'll just make the text an instance variable of the window
object. (You've seen this technique before when you examined the instance variables of
'l'heApp. Workspace.)

Now that we've decided that a window, with some text as an instance variable, is
going to be our centerpiece, we need to come up with a class whose instances fit the bill
-we'll call it the FileWindow class. Also, we need to write methods to support some
standard text editing operations; such as loading and saving files. What about things
like inserting and deleting lines, using the mouse, Cut, Copy, Paste, and all the rest?
Fortunately, we don't have to worry about any of that.

The reason why we don't il~ustrates the true power of object-oriented programming.
In the Workspace, you've been able to Cut, Copy, and all the rest. That's because the
Workspace is an instance of the Workspace class, which descends from the WorkEdit
class, which descends from the Edit Window class. The BditWindow class provides the
support for inserting and deleting text, using the Oipboard, etc.

Now, all we have to do for our l'ileWindow class is have it descend from
EditWindow, add some file-handling methods, and that's about it. Inheritance takes

· care of all the rest! (Actually, instances of WorkEdit have the ability to execute Actor
source code via the Doitl menu item, which might be nice, so we'll make l'ileWindow
descend from WorkEdit instead.)

The l'ileWindow class is not just a hypothetical example. It's a real class, waiting
for you to use it. Remember the six lines of code in the Workspace when you first
started Actor? One of them is set up to load the the l'ilew111~0~ ~ni-application. If

\.

/

File Edit Doit!
.-.0111(Turtle); ! !

I• Dra111s a five-pointed star with no intersecting 1i 1.r11
Def star1(self .side I A.H.degs.a.h.c.d) u1~ {A:=position; ·~
H:=heading; '
degs:=Pi/181; ~
a:=side/(2•(1+sin(18•degs))); ~11
b:=a•sin(18•degs); 'II 1

c:=b/tan(36•degs); .,
d:=b/tan(18•degs); :1111~
up(self); ~·
left(self. 36); ~
forward self b/sin 36•de s ~

Figure 1-11: A FileWindow object, used for editing text files from within
Actor. Here, we are editing the file STARS.ACT in the ACT directory,
the source code for the methods that tell a Turtle how to draw stars.

1.6: Programming In Actor 37

you have already executed the line below in the current session, do not type it again.
Otherwise, execute the following statement:

load(Demos) <CR>

) Now, execute the following line:

load(Demos[ffileBditor]) <CR>

Wait while the methods compile. Now, select Edit ..• under the File menu on the
Workspace. An instance of l'ileWindow will appear, as well as a dialog box with a list
of possible filenames (if you have a lot of files on the current directory, the dialog may
take some time to come up).

You can select a file from the list, or you can double click on any of the directory
names surrounded by square brackets, e.g. [ACT). This will change directories and
display the files in the directory you have chosen. When you find the file you want to
edit, either click on the filename and click on the Open box, or double click on the
filename itself. The file will load and you11 be able to edit the file you have chosen. If
the file contains Actor source code, you'll be able to execute it by highlighting it and
selecting Doit!.

Although we didn't explicitly plan it this way, you can have as many l"ileWindow
·\ objects open as memory will allow. Each active l'ileWindow will just respond to the
) messages it receives-it doesn't know, or care, how many other instances of the

· rileWindow class are on the screen at the same time. This is another powerful and
welcome fringe-benefit of object-oriented programming. It required absolutely no extra
effort on our part.

1.6.6.2 .ACT Files

Very soon, you will read about the Browser, a specialized file editor that maintains
Actor source code. Most of the code used to write Actor is included in the CLASSES
directory created when you installed Actor. Each file in the CLASSES directory
corresponds to a predefined Actor class.

However, there is another directory called ACT which contains files ending in .ACT.
Most of these are demonstration programs used to illustrate programming in Actor.
There is no way to edit the .ACT files with the Browser, so you have to use some sort of
text editor. Since a rileWindow object has the ability to execute Actor code via Doit!,

\ it's a natural choice. If you want, now might be a good time to look at some of the files
/ in the ACT directory using a l'ileWindow object. The turtle graphics files

(TURlNUM.ACT, TURTLE.ACT, KOCH.ACT, STARS.ACT) may be of particular
interest, since you've seen them work before.

38 Chapter t: Introducing Actor: A Tu,torial

1.7 The Browser

The Browser is one of Actor's most useful and powerful tools. It's a viewing
mechanism for the entire sys~m, including your own wo,rk-and you can even use it to
change t~ system.

The Browser allows you to examine, edit, and add to Actor source code, and in the
process, Actor is changed to reflect any chang~ in the code. The Browser is actually a
highly specialized file editor designed especially for manipulating the class source files.
These files include the 100 or so classes supplied with Actor and the ones you create as
you build'your applications. Each class has its own source file containing the statements
that create the class and its methods. These statements are arranged in a way that the
Browser understands.

To open a Browser window, click once on Browse! in the Workspace menu bar. You
will see a window that greatly resembles the Inspector. This is no accident. Just as there
is a class called Inspector that produces inspector windows, there is a Browser class
for browser windows. Inspector and Browser have the common ancestor,
'.roolWixuiow, which produces popup-style window objects with the three-window
arrangement and behavior that browsers and inspectors each inherit.

The browser window that pops up can be moved around the screen like any popup
window; you drag it by its title bar with the mouse. You can also change its size with
the size box in its upper right hand comer. (The way the two list boxes and the edit
window resize themselves is governed by methods defined in '.roolWindow.) And you
can close it by clicking twice on its system menu box, or selecting Close from its system
menu.

1.7.1 Selecting a Class in the Browser

The Browser's upper left list box contains the names of the Actor classes. This is the
class list box, or class list, for short. You can scroll it like any list box, by clicking in the
scroll bar, clicking on the up or down arrows, or by dragging the elevator box.

~e class list is initially presented in hierarchical order, so that the classes are
arranged in an way that corresponds to their ancestry. Object is at the top of the list,
left-justified, indicating its place at the top of the class tree. Oasses that are indented
one space are immediate descendants of Object, and are listed in alphabetical order.
These can be thought of as "first generation" classes. Under same of these are names
that are indented two spaces, to show that they descend from the first generation classes.
The number<>f spaces before a class name shows how far it is descended in the class
hierarchy.

You can change the format by pulling down the Options menu and selecting
Alphabetical instead of Hierarchical. Notice that a checkmark indicates the current
choice. Then the class list is simply the list of all the classes in alphabetical order.
Somet(mes this is an easier way to find a class if you don't know where it fits in the
hier~rcfly. ·

. ~·

Figure 1-12: A Browser. Here, we have selected the Char
class. The class listbox is located at the upper left, the method
listbox is located at the upper right, and the edit window is
located at the bottom.

1.7: The Browser 39

Oick on any class name in the class list to select it The title bar at the top of the
Browser window now says "Browser:className" just as a reminder (className will be
the name of whatever class you select). After you select a class from the list, you can
switch from alphabetical to hierarchical mode (or vice-versa) to see its place in the class
tree. The selected class will be re-selected in the new list.

1.7.2 The Class Definition Dialog

Before we continue exploring the other two windows in the Browser, you should
learn one of the Browser's most useful secrets. After selecting a class name from the list,
pull down the Options menu from the menu bar, and select the first entry, About the
Class. Immediately a new window pops up, called the ''Class Definition."

The Class Definition Dialog gives you indispensable information about the class you
have selected in the Browser class list box. In the upper left corner is the class name
again, followed by the name of its immediate ancestor, which every class has except
Object. Below that is an indication of whether an object of this class holds pointers to
other objects or non-object binary data (as in descendants of ByteCollection). You can
find out more about this in the Advanced Topics section. Further down is an indication
of whether or not objects of this class have indexed elements (most collections do).

In the upper right box are the names of the instance variables defined by this class, if
\ any, usually accompanied by explanatory comments. This information is read directly
) from the class source file on the disk. And at the bottom is a class comment, also from

the disk, that describes the class structure and purpose.
You can change anything in the class dialog except the class name itself, although

this dialog is usually used to get information rather than change it. If you click on the
Accept button, your changes will be incorporated into the class definition in Actor, and
your changes will also be stored into the class source file on disk. It's not such a good
idea to do that with built-in Actor classes. It is possible to bring the system to a grinding
halt by changing the ancestor of :Int to Window, for example. For the time being, click
on the Cancel button to erase the dialog after you have gotten the information you need
about a class. This will bring you back to the Browser itself, without making any
changes.

There are a number of classes in the Actor system for which we have not supplied
class source files. You will find this out if you select About the Class after selecting a
class such as J:fNoda. An error window will pop up indicating that the class source file
cannot be found. These classes, because they have to do with the Actor compiler and

\ related "behind the scenes" machinery, are proprietary and not of much interest or use
while you are developing new programs.

/

40 Chaptsr 1: Introducing Aaor: A Tutorial

1.7.3 Selecting a Method

Whe~ver you select a class, the upper right list box is immediately filled with
several riaines. This is the method liSt box, and it lists alphabetically the names of all of
the methods that instances of the selected class (and deS<:endant classes) can use. For
example, if you select Rect in the class list box, then method names starting with (
bottom and draw and on through width appear in the method list box.

F,or instance, if the global variable HyRect is an instance of class Rect, you can
send the messages bottom, draw and width to it, as well as any other messages whose
names a~ listed. For example, width (HyRect) will return the width, in pixels, of the
rectangle object MyRect. The Browser, among other things, provides this quick method
to learn what messages you can send to objects of any class. Of course, to get the
complete list, you need to browse all of the ancestors of the class, too.

You can select any method by clicking on its name with the mouse. There will be a
short pause, some disk access, and then the source code for the method will appear in
the bottom window. During the pause, Actor is finding the source code for the method
on disk, and then fonnatting it in a standard way.

This is the actual code that was compiled to ge~erate the method in the selected
class. Try this with any class/method combination that looks interesting to you. You
will see a great variety of methods, from small to large, from very simple to more
complex. If you need to, feel free to change the size of the Browser so that you get a
good view. ·

Many of the methods contribute to the functionality of the Browser itself. Most of (
this code is contained in class Browser. If you select it in the class list and look at the
code for its methods, you are using the Browser to see the code that makes the Browser
work.

The code you'll see most of the time, as it appears in the edit window, follows the
general fonnat of a method:

/* Method comment */
Def methodHame(self,arg1,arg2, .•• I 11,12, •••)
(statementl;

statement2;

statementH;
)

Let's review this basic method format. The first line is a comment for the method,
which can be several lines long. The word Def is used to define a regular Actor method.
The meth.od name comes next, and self is indicated as the receiver. The incoming
arguments (argl, a~g2, etc.) are listed next, and then after the vertical bar come the
local ".:ariables (11, 12, etc.). The body of the method follows, a series of Actor
statements contained within the curly brackets. This is the same form we used earlier in

Class Definition ·- -

Hame: Uariables:
I Point I x I• The x value of the Point. e.g. ..

3 in 3@2 •I p
Ancestor: y I• The y value of the Point. e.g. I Object I 2 in 3@2 •I I ~Format

QWord @Ptr I QByte

I 0 Indexed (Accept) (cancel)
Comment: ...
I• Point objects are atomic objects with two instance ~
variables. x and y. They hold the x and y coordinates of

I the Point. respectively.
Points are displayed in the for111 x@y. such as 4la@33. -23@2.
etc. You can specify literal points this way. too. •I ...

Figure 1-13: About class dialog box. This dialog shows the class definition for the
Point class. The class comment is at the bottom, and the instance variable list is at the
upper right corner.

(
\

1.7: The Browser 41

the Tutorial when we added some methods to Int and Real by typing them directly
into the Workspare, exrept that we didn't bother with the comment. As you may
remember, text between the"/•" and "• /" symbols is always ignored by the compiler.

1.7.4 Primitive Methods

If you experiment a little, you will sooner or later notice something about the source
code for some of the methods that you select. Instead of the standard method format
shown above, you'll see something like this:

/* Primitive method COllllll8nt */
Prim methodHame(aelf,arq1,arg2, •••):returnObject

This is a special form of method description that exists for documentation purposes
only. It describes what is called a primitive method, which has no high-level Actor
source code. Primitive methods (or primitives) are written in assembler, and perform
the most basic operations required by Actor objects. Although many primitive methods
could be implemented in the style of programming that you are now getting used to,
Actor would be much less efficient. We call high-level methods functions to distinguish
them from primitives.

As you see, for primitive methods, Prim replaces the Def used to define normal
j methods. Then the method name is shown, again with self as the receiver, and the

incoming arguments (arql, arq2, etc.) follow. After the right parenthesis is a colon,
follwed by a description of the object returned by the method. This information,
together with the comment, is usually enough to know how to make use of the method.
Since the actual implementation is not shown, there is no need to show the local
variables. If more information is required for a primitive method, look in the Guide to
the Actor Classes.

You can use these primitive methods freely, just as you would a function. They
behave in the same way from a programming standpoint. Some classes, such as String
or Int, have mostly primitive methods, while many, such as the window classes, have
none.

1.7.5 Class Methods and Object Methods

For every cla5s, there are really two varieties of methods (primitives and functions
are considered the same from this perspective). Under the Options pull-down menu are
the two choices, Oass Methods and Object Methods.

Sometimes it is hard to keep in mind that classes themselves are objects, because
they happen to be able to produce instances of themselves. But as objects, classes can be
sent messages too, just as you send messages

42 Chapter 1: Introducing Actor: A Tutorial

to the objects they make. The Oasa Methods/Object Methods "switch" under the
Options menu is how the Brow~ keeps track of which methods are for messages sent
to the class itself and which are for messages sent to the class's instances.

If we stay with the Rect example a little longer, perhaps we can clarify this a little.
Select Rect in the class list if you haven't already. Now see what happens to the
method list as you switch from Object Methods to Oass Methods. There is one class
method for Rect, namely, new, and there are several object methods. We can send a
new message to Rect, and we can send a bottom or set Top message to an •nstance of
Rect. In fact, we have to send a new message to Rect to get such an object in the first
place. For example:

HyRect :• new(Rect) <CR>
Rect(OL OL OL OL)

MyRect is an instance of class R.ect. When it is first made by Rect, its four coordinates
are all set to 0. (The ''L" after each zero means it is a long integer, which can be much
bigger than a regular integer.) Now that we have the object, we can send messages such
as bOttom (MyRect) or top (MyRect) • These you recognize as object method names
from the list when you have selected Object Methods.

This can be extremely confusing at first. To sort it out, remember that class methods
are invoked when the class itself (such as Rect) is the receiver of a message. Object
methods are invoked when an object created by the class (such as myRect : •
new (Rect)) is the receiver. Oass methods are generally involved in the creation of
new objects. For example, class :Interval has several class methods that give it
different ways to create new Interval objects.

1.7.6 Class Source Files

When you installed Actor, the Actor installation program created three
subdirectories for the purpose of keeping track of Actor source code in the form of class
source files. Such a file contains the complete definition for an Actor class, including the
statement that creates the class and the statements that create all of the class's methods,
both the Class Methods and Object Methods. The names of the subdirectories are
CLASSES, WORK, and BACKUP. As you use the Browser, it generally looks in the
CLASSES subdirectory for the class source file with the right class name,
<CLASSNAME>.ClS. All cla5' source files have the .ClS extension.

In order for the Browser to be able to find what it needs, the class source files have a
special format. You can edit them with any text editor, including l'ileWindow, to see it,
but be careful not to change anything.

If you wish to do this now, here is what you'll see: First, there is the class comment,
the same thing you see at the bottom of the Class Definition dialog. The second item is
an inhe~it statement, which, when executed, will create the class if it doesn't already
exist in the specified form. The third item is a now message that tells the compiler that
the~~ definitions that foll(9~, are the Class Methods for ~his cl~s, if there are any.

ruu.tiue
Strea111

I• Print the Point in x@y for•at onto the
specified strea111. •/

Def printOn(self. aStr111)
{ printOn(x. aStr111);

nextPutAll(aStr111.•@•);
printOn(y. aStr111);

}

Figure 1·14: A Browser. Here, we are examining the source
code for the printOn method of the Point class.

1.7: The Browser 43

After these method definitions, another now message tells the compiler that the rest of
the methods, if any, are the Object Methods for this class. The rest of the class source file
contains these object method definitions.

One of the important aspects of the class source file format is that it enables the file
--, to be loaded directly, using either a load message or using the Load ... choice under the

File pull-down menu in the Workspace. This is very useful. It means that you can
upgrade Actor very quickly by just loading new class source files, wherever you get
them. As new classes are developed by generous Actor users or by the Whitewater
Group, their class source files will be made available on the Whitewater Bulletin Board
System.

The details of the class source file format are hidden by the Browser, so that you
don't have to think about them while you use Actor. This is especially convenient when
you use the Browser to make changes in the system, which we will explain how to do
shortly. First, however, we're going to take a little aside and talk about some memory
issues.

1.7.7 Static and Dynamic Me-.iory and Garbage Collection

We've told you before that every method returns a value. Even something as trivial
as moving the mouse creates some objects, because the methods that handle that sort of
thing return values, too. That's not to mention all the temporary variables that you may

/ create when you're inside a method. Well, all these objects are basically useless once the
method is done executing, but nevertheless many of the objects are still floating around
somewhere taking up space.

These objects which just sit around taking up space are called garbage. If this
garbage wasn't handled somehow, then it would accumulate and rather soon you
would be out of memory. Actor constantly searches for this kind of garbage and collects
it whenever it can. All of this goes on behind the scenes, so you never have to worry
about it. In fact, Actor's garbage collection scheme is so efficient that you'll hardly
notice it.

However, this is only half of the story. Actor's memory is actually divided into two
parts, static and dynamic. The dynamic memory space is what's constantly skimmed for
garbage, because the dynamic portion is the memory that these temporary objects are
allocated from.

The other part of Actor's memory is called static because it doesn't change too
much, at least compared to the dynamic portion. Basically the static memory is used to
hold compiled Actor methods, and you can always tell how much you have left by

\ selecting the Show Room! menu option from the Workspace. However, it can
/ accumulate garbage, too. For example, when you re-compile a method, the old version

of that method is still sitting in the static space, unusable by anything. So that static
memory can be reclaimed, there is a method of class Object that does a static garbage
collection. Every so often, especially if you are compiling different versions of the same
method over and over again, you should do a static garbage collection. All you have to
do is type:

44 ChEJPI.'" 1: Introducing Actor: A Tutorial

cleanup() <CR>

in the W()rkspace or Display. Wait a little while, and Actor will return, telling you how
much memory was reclaimed. You should always do a c1eanup () before you do a
Snapshot (Note: you may be wondering what object the cleanup message is being (
sent to. If you prefer, you can think of the cleanup message being sent to the Actor
system itself. There are a few other methods, all in class Object, for which the receiver
is irrelevant. Actor permits you to omit the receiver in these cases. We'll discuss these
in chapter 2.)

1.7.8 Snapshots and Images

Before we start using the Browser to make changes in Actor, we are going to digress
a bit to discuss the concept of an Actor "session." You have been working with Actor for
a while now, trying different things: creating objects, sending messages, using the
Inspector, looking at source code with the Browser. In the process, you may have made
changes to the system. For example, if you have created some object, say an
Edit Window, and used the global variable Sam to hold the object, then Sam has become
a part of the system. If you now decide to have some lunch and exit the system by
closing either the Workspace or Display windows, you would lose Sam and any other
changes or additions you have made since starting Actor this time around.

This is often not desirable; you may find that each time you bring Actor up you have
to initialize it in some way so that you can continue with your work. For example, there
may be some constants that you always need, or objects such as the window Sam, or
even new classes and methods that are part of a developing application. .

This is why you take a snapshot every now and then. Doing so saves the system
exactly as it exists in memory, so that all of your changes can be saved. Each time you
bring up Actor, or in other words, start an Actor session, you are starting with the
system as it was saved at the last snapshot. If you change the system in a way that
seems to be an improvement, that's a good time to take a snapshot. If things don't go so
well, you can always start over by exiting Actor without taking a snapshot, and re
starting.

It's really easy to take a snapshot. Under the File menu of the Workspace is the
Snapshot menu option; all you have to do is click on that menu item. Doing so will take
a "snapshot" of Actor object memory at that point and write it to disk. The file that Actor
saves the snapshot in is called an image. The file that anapahot wiU use is kept in a
global variable called VImage. For example, you can look at VImage to see what file
name it's attached to:

VImage <CR>
l'ile("J\CTOR.IMA")

(
\

ong
Real

tring

ModalDialo "'
V• Return the maximum of two Ints. For t

instance. max(l.4) returns 4. •I
Prim •ax(self • y): Int !llj!

•!!:;
!jlj!

~1~~
.11Pi
•I.~!
.r~1.; .!iii

....
Figure 1-15: A Browser. Here we have selected the max
method for the Int class. Since it is a primitive method, note its
special format.

1.7: The Browser 45

If you do a snapshot without changing VImaga, Actor will overwrite the old
ACI'OR.IMA file. If you don't want to change ACI'OR.IMA, then you can call the image
something else. You should always use a .IMA extension, however, because Actor will
not start up with any other extension. Here's an example:

satHama (VImaga, "!l'BS2'. IMA") <CR>

When you next do a snapshot, the image will be saved in the file TEST.IMA. Loading
TEST.IMA instead of ACTOR.IMA is a simple matter of typing

WIN TEST.IMA

from the DOS command line instead of ACT like you've done before. (If you have the
MS-DOS Executive, you can double click on TEST.IMA instead.) When you load a
different image, VImage will be different, too; it always holds the name of the image that
was initially loaded, unless you change it by sending it a satNama message. For
example, if you were in the middle of an Actor session using TEST.IMA instead of
ACI'OR.IMA, you could type:

VImaga <CR>
r~la("TBST.IHA")

Note: there is no way to load a different image file from within Actor-you can only
specify which image file you want to work with when you start Actor.

Now we are about to use the Browser to make some changes. The major advantage
of using the Browser to make changes, rather than the Workspace, is that the Browser
works with the class source 'files. When you make a change, you not only have a
different system but you have the source code that produced the difference. As you will
see, the Browser has been designed to keep the image "in sync" with the Actor source
code in the class source files.

This synchronization is maintained whether or not you save the changes in a given
session with a snapshot. What is important is that before you exit Actor, you'll have to
decide whether you want to keep the system as it evolved during the session, or throw
the session changes away.

1.7.9 Editing Methods in the Browser

You could conceivably define new classes or ·at least new methods for existing
,/ classes the way we did earlier, by typing everything into the Workspace. As we have

just said, the problem is that there is no permanent record of the code that effected the
changes. If you want to change the way a method works, for instance, you would have
to rewrite It from scratch, and this process would become very time-consuming and
error-prone.

46 ChatJt'-:r 1: Introducing Actor: A Tutorial

The Browser solves this pr,oblem quite nicely. The reason why the bottom window
of the Browser is an edit window is so that you can edit methods in it. When you do,
and then compile the new or revised method by clicking on Accept! in the menu bar, the
method is added to Actor and the source code for the method is saved in the class source
file. ·This is the ideal situation, because if you later come back to look at the method in
the Browser, you will see the 6ource code you typed in, since the Browser will be able to
read it back from the disk. Then you can refine the method a little more, Accept it, and
move al<?ng. ·

Let's do something like we did earlier, when we added the square method to the
Int eta~ Since that method may or may not be in your Actor system at this point,
de~ding on whether or not you took a snapshot, let's add a completely new method,
cube. Since this is going to be an Object Method, make sure that you are in this mode
by checking under the Options pull-down menu.

Since we are going to add the method to Int, select this class in the Browser class
list. Of course, the method list will fill up with the methods for Int objects. Now, look
in the Templates pull-down menu. This is just like the menu by the same name in the
Workspace, but with an important addition: New method. Select this choice now, and
see what happens. A method template appears in the edit window, ready to be
tansfonned by you into a useful method definition.

Using regular editing techniques, change the template into the following method
definition for cube:

I* Return the cube of an integer. */
Def cube(aelf)
(Aeelf*eelf*aelf
)

When the text in the Browser edit window looks like what you see above, click on
Accept! in the Browser menu bar. You will see a message in the Display window,
announc!ng that Actor is compiling this method, and next you will see and/ or hear
some disk activity while the Browser puts this method into the Int class source file. If
there have been no syntax errors, you will be ready to test the cube method. Go over to
the Workspace and try sending a message like cube (10) and see what you get! (You
can also send messages from within the Browser by highlighting it and selecting Doit!
from the Browser menu.)

1.7.10 Saving Your Work

You have just seen how easily you can add methods to Actor. We will soon take this
one step further and add a new class, but first we'll talk a little bit about what happens
will\ the class source files so that you ·can make good descisions about how to save your
work.

1.7: The Browser 47

As we said before, the Browser generally looks in the CLASSES subdirectory to get
the source code for the methods you select in the method list. When you added the
cube method just a moment ago, this is what the Browser did after successfully
compiling the method: First, it found out whether or not the cube method already
existed for the J:nt class. Since it didn't exist, the proper thing to do is to add the cube
method to the end of the J:nt class source file. Otherwise, we would want to replace the
old method with the new one. In either case, the Browser does not modify the J:nt class
source file in the CLASSES subdirectory. Instead, it makes a copy of it, with the new (or
revised) method in it, and puts the copy in the WORK subdirectory.

The reason this is done is that you may or may not want to have the method you
added be a permanent part of your Actor system. If you use the Browser to change any
class source files, as happens when you add a method, you will not be able to quit Actor
without choosing between (1) saving your work with a snapshot, (2) getting rid of your
work altogether, or (3) just saving (for future reference) the modified copies of class
source files that ended up in the WORK subdirectory. These choices are presented to
you in a popup window when you close the Workspace or Display windows.

Let's discuss each choice as it would affect your new cube method. If you have use
for this method, you can make it a part of Actor from here on out, by electing to take a
snapshot of the system. Besides saving the image file, a snapshot will also cause Actor
to move the revised J:nt class source file from WORK into CLASSES, and save the old
J:nt file in the BACKUP directory for safety reasons. Since cube is part of the saved

\ system, the Browser will expect to find its source code by looking in the CLASSES
· subdirectory, and now it will. As we have mentioned, the goal is to keep the image file
and the class source files in CLASSES in sync.

The second choice is the opposite of the first-throw out everything you have done
in the current Actor session. A new image file will not be written to the hard disk, and
in addition, the modified class source file or files in WORK will be deleted. This is the
kind of choice you might make if you are just experimenting and not seriously building
anything as you add new methods and/ or classes. This is probably the choice you will
make as you get started with Actor.

The third choice will not save a new image file, but it will not delete the revised class
source files in WORK either. If you feel that you might like to take a look at some of the
changes you made at a later date, this choice gives you that option. The files that remain ·
in WORK do not reflect the saved system in ACTOR.IMA, but you can manipulate them
using DOS, text editors, the load message, etc. To do this properly requires a good
understanding of the whole synchronization process, which is explained a little more
fully in the Advanced Topics section.

\ In this way, the Browser attempts to coordinate the Actor image and the class source
code so that "what you see is what you get." This system can get pretty confusing if you

/ generate and keep several different images, which you can do by changing the name of
the image file from ACTOR.IMA to something else. In that case you have to maintain
corresponding CLASSES files for them, or your compiled code and corresponding
source code will get hopelessly out of sync. Again, the Advanced Topics section can
help you with this.

48 Chapter 1: Introducing Actor: A TUforial

1.7.11 C~atlng a New Class with the Browser: Polnt1D

The Browser is really much Jl!Ore than a browsing window, as you can already tell.
It's an editor that lets you change methods and create new ones. It also lets you do the
same with classes. Here follows an example of how you can use the Browser to make a
new class.

The new class will be a refinement of the Point class that already comes with Actor.
The objects that Point makes are two-dimensional,. which is fine for most purposes.
Point objects have two instance variables, z and y, to hold any two objects, usually
numbers. Suppose, however, that you need objects that represent three-dimensional
points. How would you do it? By making a new class that could make such objects.
We'll call the new class Point3D.

The first question to ask when considering a new class is what the ancestor class
should be. In this case, the answer is easy, because all we really want to do is improve
on .the Point class a little bit. It already has two-thirds of what we want. In other cases,
it might not be so obvious, and you would need to explore the Actor system carefully to
see if there is a class that already has some of the features you need that would make a
suitable ancestor.

The next question to ask is what instance variables are needed. This is another easy
one in ~his case, because Point suggests the answer with its two, z and y. We want a
third dimension here, which is usually represented with a s, which will be our new
instance variable. Point3D objects will inherit the z and y from Point and have a s
from their own class.

That's all we need to know to make the new class using the Browser. It will take
care oftl;le other details. So, the first thing to do is to select Point in the class list. Then
look at the Options pull-down menu once again. Right under the About the class choice
is Make descendant. Select it, and you will see a large popup window that looks very
much like the About Class Dialog. In fact, that's what it really is, but here it's going to
be about i>oint3D instead of Point. We use the dialog as a "fill-in-the-blanks" template
for defining our new class.

There is a blank space in the box labeled ''Name" in the upper left corner. In this
space type the name of the class, "Point3D." Remember, Actor is case-sensitive. Notice
that the Point class is already indicated as the ancestor. Now use the tab key or the
mouse to switch the input focus to the larger box in the tipper-right comer, labeled
"Variables." Here is where you indicate that you want a Point3D object to have a s
instance variable, in addition to the others it inherits from Point. Type in the "z" and
also put in a comment if you wish. You might try something like this:

z /* Third coordinate */

The comment is optional but strongly recommended. The comment also must be within
the"/'"" and /" symbols. Finally, move to the comment box at the bottom and ad-lib a
class d.eseription for Point3D, such as"/• For 3-dimensional point objects. • /" That's all
you n~ to do to specify the new class. If you click ori. the Accept button, the new class

1.7: The Browser 49

will be created and a new class source file for Point3D will be written into the WORK
subdirectory. The dialog window goes away and the Browser will automatically select
the newly created class, ready for you to add methods.

Before you do, you can check the new class with the About the class choice under
Options. Everything should look just as you typed it in when you were first defining
the class. The information is read back from the new class source file in WORK.

/ Everything that we said in the above section concerning saving your work applies to
making a new class, too. If you take a snapshot now, Point3D will be a permanent part
of your Actor system.

1.7.12 Adding a Method to Polnt3D

If Point3D is the selected class for the Browser you are now working with, then
regardless of whether you are in the Oass Methods or Object Methods mode, you will
not see any methods in the method list. At this point the only difference between a
Point object and a Point3D object is the extra z instance variable that the latter will
have. If the class is going to be of any use, we have to add a few methods, and they will
naturally center on this new piece of data, z.

Let's look a little more closely at Point to get an idea of what we might need. Select
Point in the class list, which is right above Point3D. Notice that among its Object
Methods are the methods z and y, which simply return the values of the instance
variables z and y. (There is no conflict if a class's methods and instance variables have
the same names.) In order to be consistent, we should have a "z" method for Point3D
objects.

Let's add it now, taking the easiest possible route: "cloning" the z method from
Point. Bring the source code for this method into the Browser edit window by clicking
on z in the method list. As you can see, it is a very simple definition. Select the entire
definition with the mouse, comment and all, so that it is entirely highlighted. (You can
also just type Ctrl-A, which you may recall is the accelerator key defined for this
purpose.) Then, select Copy under the Edit pull-down menu (or press the grey+ key,
the accelerator for Copy). This copies the method into the Oipboard. Now select
Point3D in the class list, which you'll notice clears out the edit window-this is why we
have to use the Clipboard. If you now select Paste under the Edit menu, or press the Ins
key, the z method will be copied back into the edit window. Now all we have to do is
edit it slightly to tum it into the desired z method. Make the necessary changes until it
looks like this:

/* Return the z value of the point. */
Def z(self)

("'•
)

50 Chapter 1: Introducing Actor: A Tutorial

All that is necessary to convert the method is to change the letter "x" to "z" in three
places, including the comment. When you have changed it to look like this, click
Accept! to compile the method and add it to the Point3D class file in WORK. Now
you'll also see the name of the method in the method list. If you wantto really make
sure that everything is working properly, select z in the method list and let the Browser
retrieve the source code from the disk. It should be identical to the one you just
compiled.

1.7.13 Representing a Point30 Object

Let's slow down a little and take care of some "dirty work." We have intentionally
gone ahead and added a method to our new class to show how easy it is, but we haven't
even made an instance of the new class yet. How would we? Remember when we were
looking at Rect a little while ago, and we said that you can always send a new message
to a class in order to make an instance of it. In fact, we saw that new was defined as the
one and only class method for Rect. When we say new (Rect), the value that is
returned is a Rect object, which we usually just refer to as a rectangle.

You can easily check to see that there are no class methods for Point3D-we haven't
defined any. However, it turns out we don't need to, because the one we inherit from
Point will work just fine. This is an important concept: just as object methods are
inherited from ancestor classes, so are class methods. In a sense, there are two parallel
systems of methods at work, and the behavior is very similar, but one is dedicated to the
classes as objects, and the other is dedicated to the instances of the classes.

Anyway, let's first look at how we make a Point object, which involves sending a
new message, as you have probably guessed:

Pl := new(Point) <CR>
nilQnil

The object Pl is an instance of Point. As such, it has two pieces of data, the x and y
instance variables. As you know, when Pl is newly created, x and y are initialized to
contain the object nil. The second line above shows how Actor represents a Point
object, by putting a"@" between the values of the instance variables. Let's assign some
integer values to x and y so that we have a better looking point.

Pl.x := 10 <CR>
10
Pl.y .- 20 <CR>
20

Pl <CR>
10820

1.7: The Browser 51

Now let's try to repeat this for Point3D. We'll use P2 as the variable in this case .

.Actor[IP2] := new(Point3D)
nil.8nil

Before we go any further, we see a problem. The nil8nil representation for a
Point3D object is clearly not right, since it only shows two values, and P2 has three, x,
y, and z. We will have to fix this, but we can at least verify that P2 does have a z
instance variable.

P2.z := 30 <CR>
30

We would not have been able to assign the value if :r.: were not an instance variable of
P2. (Try P2 . a : = 30 and you'll see why.) The only real problem is that Actor doesn't
know how to print a 3-dimensional point. Look at this behavior:

:r.:(P2) <CR>
30

P2 <CR>
nil@nil

The reason we get nil@nil rather than nil@nil@30 is that we are relying on a method
inherited from Point that is intended for two-dimensional points. The name of the
method is printOn, and we have to "fix" it for Point3D so that we will see something
like 10820830 for its objects.

1.7.14 Adding a printOn Method to Point3D

What does sending a printOn message do? Where has it been, all this time? Up
until this point in your introduction to Actor, it has been entirely hidden, unless you
happened to notice it in the method list in the Browser; many classes define the
printOn method. However, its existence is very important to the behavior of Actor,
and you have seen the results of it many times by now.

As you know, there is a great variety of objects in Actor: strings, integers, windows,
, rectangles, and so forth. You realize that each of these objects contains data in some

\. form-sometimes just a numeric value, other times hundreds of other objects. Because
/ Actor is an interactive system, using the Workspace to communicate, there has to be

some way to show all of these objects so that you can recogni7.e them quickly. When
you send a message in the Workspace, and Actor returns with some highlighted text,
you are looking at Actor's representation of some object. For example, we know that a
Point object looks like 10820, and a Rect is Rect (10L 20L 30L 40L), and so on.

52 Chapter 1: Introducing Actor: A Tutorial

The printOn method does the job of representing an object as something
recogni~ble. If objects showed up as just a bunch of numeric values, which they
actually are, they would all look alike and be meaningless. The method name printon
will not have much meaning for you until you learn more about streams, another type of
object, which we discuss in detail in the Guide to the Actor Classes. For now, though,
we can still improve on the print<?n method Point defines, and add it to Point3D
very easily.

The first step is to get the source code for the Point version of printOn into the
Browser edit window; by now you should know how to do this. In case you don't have
your computer with you, we~U reprint it for you here:

/* Print the Point in z@y foxmat
onto the specified stream. */

Def printOn(self, aStrm)
(printOn(z, aStrm);

nextPutAll(aStrm, 11@0);

printOn(y, aStrm);
)

If you stare at this code for a little while, you may get a sense of what it does, keeping in
mind that the result is that a Point object looks like 100@200 in the Workspace.
Without ~nderstanding it fully, we can make an educated guess at how to expand it for
the extra piece of data that Point3D objects have.

First,'as when we were defining the z method, you need to select the entire
printOn method you see before you, and copy it to the Oipboard. Now, select
Point3D in the class list, and then paste the printOn method back into the edit
window. (This will soon become a familiar sequence to you.) Because we are simply
expandiitg this method a little for Point3D, everything you have already stays the
same. You can take two different approaches to add to it. You can either type in the
extra two lines it needs, or use ~e mouse to "Cut and Paste" the two lines into place. In
either case, this is what you want when you are finished:

/* Print the Point3D in z@y@z foxmat
onto the specified stream. */

Def printOn(self, aStrm)
{ printOn(z, aStrm);

nextPutlll(aStxm, "@");

)

printOn(y, aStrm);
nextPutlll(aStxm, "@");
printOn(z, aStrm);

I~ you try the first approach, typing in the two lines, you'll probably notice the auto
indent~ature of the Browserajit,window. If you press <CR> at thee~d of a line in the
Bro~r~ the new line will autoRU?tically indent the sa,~e n~111J>er of s~ces as the line

1.7: The Browser 53

before it This is a convenience when you are working on a large method with a lot of
nested control structures.

If you try the "Cut and Paste" approach, you can make use of another feature of the
Browser: automatic method fonnatting. Every time you paste something into the Browser

.. window, you may or ~y not end up with a well-formatted piece of code. You can
· always select Reformat under the Edit menu (or press Ctrl-R, which does the same

thing). The Browser will reformat the method text in a readable, consistent style. If you
would like to see how this works, then follow these steps, starting with the p:rinton
method you copied from Point (the shorter of the two shown above):

t. Select theentire line nextPutAll (aStz:m, "@"); with the mouse and
copy it to the clipboard.

2. Position the caret (with the mouse) at the end of the last line, p:rintOn (y,
aStz:m) ; , right after the semicolon.

3. Choose Paste, which simply appends the line from the clipboard to the end
of the last line.

4. Now select Reformat, under the Edit menu (or use Ctrl-R), and see the first
reformatting of the method take place. Now you have four lines in the
method.

5. Select the third line of the method, p:rintOn (y, aStz:m) ; , and copy it to
the clipboard.

6. Position the caret at the end of the last line, nextPutAll (aStzm, "@") ; ,
right after the semicolon.

1. Choose Paste and then Reformat again, and .see the final reformatting of the
method. Each statement has its own line, and the method is very easy to
read.

Following these steps, you have not yet needed to use the keyboard to repair the
printOn method. There is one additional fix that is necessary, though. Can you figure
it out? You need to change the "y'' in the last line to a "z", so that the method will show
us all three values of a Point3D object. An easy way to change it is to select the "y" with
the mouse, and then just type a "z." Now you should have the expanded version of
printOn shown above. ·

Next, click on Accept! to add the method to the class and the class source file. If
there is an error, you will see a notification of it right in the Browser edit window,
similar to the kind you have seen in the Workspace. Just fix the problem and try Accept!
again. The Browser will not change the Point3D class source file until it is able to

. compile the method successfully.
\ Incidentally, we could have made the printOn method a lot shorter by getting a little

/ fancier. Even though we redefined the printOn method in class Point, we can still use it.
All we have to do is send a message to self (in other words, to the same receiver), and
explicitly state the class that we want the method from:

54 Chapter 1: Introducing Actor: A Tutorial

/* Print the Point3D in x@y@z foxmat
onto the specified stream. */

Def printOn(self, aStz:m)
{ printOn(self:Point, aStz:m);

nextPutAll(aStz:m, "8");
printOn(z, aStz:m);

)

In the first line, we invoked Point's version of the printon method (by sending a
printOn message to self: Point) to do the work of printing the first two coordinates.
Then, we only had to add the extra code for the z coordinate. You'll often find that in
redefining an ancestor's method, you can invoke the old method to do some work, and
then ad<J some custom code. Any time you see the form name: classHama, the code
actually is using a feature known as early binding. A deeper explanation of early binding
is in chapter 3.

1.7.15 Using Point3D

We 1'()W have two object methods in the class Point3D, z and printon. If you
have been following this part of the Tutorial closely, and have not left Actor since you
made a Point3D object and assigned it to P2, then you are in for a little surprise. Try
this:·

P2 <CR>
nil@nil@30

P2 now has '1eamed" how to show itself! It is the same object that we created before,
but now it has a new printon method that Actor uses to display it in the Workspace. It
is not necessary to create a new object to get this power. Any existing Point3D objects
can immediately take advantage of our improvement the moment we add it. This is a
dramatic demonstration of the power of late binding.

You can set the values of the other instance variables of P2 if you like, in order to see
a typical 3-dimensional point representation. For example, you can say P2 . x : • 50
and P2 .y :• 40, and then P2 looks like 50@40@30. You can use the x, y, and z
methods to retrieve these values:

x(P2) <CR>
50

y(P2) <CR>
to

~(P2) <CR>
~o

(

\

1.7: The Browser · 55

Otherwise, there isn't much else you can do with a Point3D object that you can't do
with a Point object. The other object methods in Point communicate with MS
Windows about placing and displaying points, and drawing lines between points, but
all of this is in two dimensions. H you have a scheme for displaying a point in 3
dimensions in a window, then you can define new draw, line, and lineTo methods
for Point3D that use it. That's up to you.

We can make one final improvement, though. You have seen how cumbersome it is
to define a Point or Point3D object, and then assign the values of the coordinates.
Actually, there is a much easier way, at least for 2-D points:

Pl :• point(5, 10) <CR>
5810

1'te point message is sent to an integer object, 5. It has one argument, 10. If you check
in the Browser, you will see that Int does define a point method, although it happens
to be a primitive. However, you can see a similar definition by looking at the point
method in the Number class, the ancestor of Int. Here is a high level method that
shows you how to make convenient methods such as point that will do all of the work
for you. You can send a point message to any number (Int, Long, or Real), and it
will return a Point object with the two coordinates indicated. If you are interested in
keeping the Point3D class around, then naturally you want the same convenience for
Point3D objects.

It is easily done. In fact, if you are looking at point for the Number class in the
Browser edit window, all you have to do is change a few things to get a new method,
point3D, that will let you send a message such aspoint3D (10, 20, 30) and get
back a ready-to-use 3-D point object. We will not go into great detail here, because it is
very straightforward, but we will outline what you have to do to the point method in
the edit window before you Accept it

1. Change the name of the method from point to point3D.
2. Add a s:Val incoming argument after yval.
3. Change Point to Point3D (the receiver of the new message).
4. Add an assignment statement to set the value of s, similar to the one for y.
5. Edit the comment.

If you do all of these things, and then Accept the method, you will now have a
convenient way to produce Point3D objects. In this case, the receiver of the point3D
message must of course be a number, i.e., an integer, real, or long, since that's the class

/ we have added it to. But the 2 arguments can be any Actor objects, because the method
doesn't care what they are, it just assigns them to the instance variables y and s. For
example, you can now say something like:

point3D(12, "Testing", Rect) <CR>
128"Testing"8Rect

56 Chapter 1: Introducing Actor: A Tutorial

This characteristic increases your potential use for the class i>oint3D, since its objects
can ·really hold any three objects together as a unit, and sometimes that's exactly what
you need. ·

1.7.16 The Browser Accelerators

We have mentioned that you can use accelerators for some of the editing steps while
working in the Browser. If you look at the Browser Edit pull-down menu, you will see
that five of the edit functions have accelerator key equivalents. Here is a summary of
these accelerator keys and their actions:

Key Function
Del Equivalent to Cut

gray+ Equivalent to Copy

Ins Equivalent to Paste

Ctrl-A Select all of the text

Ctrl-R Reformat the method

1.7.17 Browser Summary

There are some additional things you should know about the Browser, but in
general, you have seen it do what it is designed to do. We'll now summarize some of
the things you have seen and also some of the things you have not.

1. The Browser is a very useful learning tool for Actor. You can see a great deal
of source code for the ~thods that come with the system while you send the
corresponding messages in the Workspace. You can find out more about a
class by selecting its name in the class list and then choosing About the class
under the Options menu.

2. You can add a meth9'1 to a class by selecting the class in the class list,
choosing New method under Templates, editing the method template, and
then clicking on Accept!. The Browser will compile the method and add its
source code to the class source file.

1. 7: Th9 8rows9r 57

3. You can edit any method by selecting its name in the method list, editing it
in the Browser edit window, and then Accepting it. Again, the Browser will
compile the method, which will then replace the old one in the system, and
the new source code for the method will replace the old in the class source
file.

4. You can create a new class by selecting a class (in the class list) as the
ancestor, choosing Make descendant under Options, and filling in the
information in the dialog window that then appears. When you click on the
Accept button with the mouse, the class is added to Actor, and a new class
source file is created. You can then proceed with (2) and (3) above to add
and/ or refine methods for the class.

5. The Browser lets you look at both the class methods and object methods for a
particular class. If there are any class methods, there will often be only one: a
new method, for producing instances of the class. If there are none, it's
because an ancestor class's new method is sufficient.

6. The Browser provides automatic formatting of methods so that they will be
readable and also fit nicely into the edit window regardless of the size you
have chosen for the Browser. Choose Reformat under the Edit pull-down
menu. If you are looking at very long methods, you may want to make the
Browser fairly wide so that you can see more of the method at once.

7. The Browser will also let you remove a method or class from the system by
selecting the proper choice under the Edit menu. The class or method to be
removed must first be selected in the Browser. If you remove a method, its
source code will also be deleted from the class source file in the WORK
directory. However, if you delete a class, its source file will remain for future
use or reference. You can of course delete the class file itself using DOS (or
the MS-DOS Executive, if you have the commercial version of MS-Windows).
A class source file gets its name by taking the first eight letters of its name
and adding a .CIS extension to it.

8. Anything you do with the Browser, that is, adding or changing methods
and/ or classes, is done on a temporary basis. All changes are recorded in
copies of the affected class source files and stored in the WORK subdirectory.
If you want to save your work, you can take a snapshot of the system. This
action will write the entire system to the hard disk as a new image file with a
.IMA extension, and move all of the modified class source files from WORK
to CLASSES. The old class source files are first copied from CLASSES to
BACKUP for safety reasons. The goal is to keep the system that you work
with in sync with the source code you see in the Browser edit window.

. ···.•

58 Chapter 1: Introducing Actor: A Tutorial

9. After working with the Browser, it is a good idea to do a static garbage
collection, by sending the IJlE?SSClge cleanup () . This is especially important
if you re-compile any ~thods, since you will then want to reclaim the space
tak~n up by the old versio~ of re-compiled methods.

1.8 An Introduction to Actor Classes

In the next chapter of the manual, The Guide to the Actor Classes, there is an
exten,sive discussion of the wide variety of predefined. classes and methods that come
with Actor. However, so that you11 get a sense of what Actor can do, this section will
illustrate the capabilities of a few of the Actor classes. At the end of this section, which
is also the end of this chapter, you can find out a bit about how Actor interacts with MS
Windows. You11 even define a new window class and watch it in action.

1.8.1 Indexed Collections

Although you may never have heard them referred to as such, you're probably
already familiar with the concept of an indexed collection. An indexed collection is just
an opject whose individual elements are accessed by specifying an integer subscript or
offset.' The only kind of indexed collections that most languages define is the array. In
many languages, the individual element of an array is specified by saying the name of
the array, followed by an integer in square brackets. For example, in C, Pascal, Basic, or
Fortran you could have an array called Students, and you could access an element of
Students by saying Students[14].

Actor is not any different, because instances of the Array class behave much like
their counterparts in other languages. In addition, Actor also lets you specify literal
Array objects-much like we specified literal Point objects earlier-as follows:

1(5 7 9 "Bello" 23) <CR>
Array(5 7 9 "Bello" 23)

However, Actor has more kinds of indexed collections than just arrays. There are
Ordered.Collection objects, which maintain chronological ordering in their elements. -
There also Sorted.Collection objects, which maintain all of their elements in some
kind of sorted order. String objects are indexed collections of characters, and you can
communicate with MS-OOS and other languages via an indexed collection of bytes
called a Struct.

1.8: An Introduction to Actor Classes 59

Each of them is alike in the fact that you specify the name of the object, followed by
an integer offset surrounded by square brackets, e.g. Sam [11 J. For example:

Sam := f (10 9 7 "Joe") <CR>
Sam[O] <CR>
10

This example also illustrates another fact about indexed collections: All the indices start
at zero, as in C. The last element of Sam in the example above is "Joe", located at
Sam[3].

Some kinds of indexed collections respond to an add message. To see how add
works, first we must create a new OrderedCollection object and specify how many
elements we need:

Sam := new(OrderedCo1lection,2) <CR>
OrderedCollection()

Now we can send some add messages to Sam, telling it to add some things to itself:

add(Sam, 13) <CR>
OrderedCollection(13)
add(Sam, "I'm a string") <CR>
OrderedCollection(13 "I'm a string")
add(Sam, 1(1 2 5)) <CR>
OrderedCollection(13 "I'm a string" Array(l 2 5))

With the last add message, you should note a few things. First of all, we only
allocated space for two elements when we created Sam, yet Sam didn't object when we
added the third element to it. That's because some kinds of collections will grow if you
try to add more elements than there are room for. Another thing you can note is that we
added an Array object to Sam. There's nothing wrong with adding another collection to
Sam, because OrderedCollection objects, as well as other types of collections, can
have any kind of object as an element

SortedCollection objects are also very handy. Let's create one and add some
things to it:

Sam := new(SortedCollection, 5) <CR>
SortedCollection()
add(Sam, 10) <CR>
SortedCollection(lO)
add(Sam, 25) <CR>
SortedCollection(lO 25)
add(Sam, 4) <CR>
SortedCollection(4 10 25)

ft) Chapter 1: Introducing Actor: A Tutorial

SortedCollection objects will also grow if they need to, although in the example
above, s~ didn't need to. SortedCollection objects have the requirement that their
elemen~s are homogenous, i.e. either all numbers, all strings, etc. You couldn't have a
Sortedcollection with the same elements as the OrderedCollection we made
above, for example. (

1.8.2 Sets

Remember the mathematical definition of a set? It's a collection of items, all unique.
In the set of the months of the year, there aren't two Decembers, for example. At any
rate, the concept of a set is very powerful, but most programming languages, if they
implement sets at all, don't really come close to the mathematical definition of a set.

, Pascal sets, for example, can only contain a certain number of elements, and you're
restricted as to what they can contain.

Actor has a Set class, too, but it's much more powerful and comes close to fulfilling
the mathematical definition of a set. An Actor Set is restricted only by available
memory and the maximum number of elements, 16K-t, allowed for any collection. For
example:

Sam :• new(Set, 10) <CR>
Sat()
add(Sam, 38) <<;:R>
Sat(38)
add(Sam., "Microsoft") <CR>
Set("Hicroaoft" 38)
add(Sam., 38) <CR>

. Set ("Microsoft" 38)
add(Sam., f (3 4 "Joe")) <CR>
Set("Hicroaoft" Array(3 4 "Joa") 38)

Note that you can't add more than one of the same element to a Set, just as it should be.
Also, note that Set objects are inherently unordered, and if you try the above example,
you may very well get a different order of elements than you see above.

The major operation defined· tor Actor Set objects is the membership operation,
defined by the in method. It's a boolean method in infix format that returns logical true
if the specified element is a member of the Set (specifically, it returns the element back

(

\

again). Here are some examples: f

· .. \

./

\

38 in Sam <CR>
38
"Curly" in Sam <CR>
nil
"Microsoft" in Sam <CR>
"Microsoft"

1.8.3 Keyed Collections

1.8: An Introduction to Actor Classes 61

In an indexed collection, you access individual elements by specifying the name of a
collection and an integer offset. Keyed collections, on the other hand, are a bit more
general. They allow any kind of object, not just integers, to be a subscript, or key, to a
collection. For example, you might want to have a keyed collection called Rations
where the subscripts-keys-are the names of nations, and the values are the capital cities
of those countries.

You can do this easily with Actor keyed collections. Let's create a specific ·type of
keyed collection called a Dictionary and add some things to it:

Rations := new(Dictionary, 10) <CR>
Dictionary ()
Rations["France"] := "Paris" <CR>
Dictionary("France")
Rations["USA"] := "Washington, D.C." <CR>
Dictionary("France" "USA")
Rations["USSR"] :• "Moscow" <CR>
Dictionary("France" "USSR" "USA")

In each of these examples, the countries are the keys, e.g. "USSR" and "Franca", and
the values are the capitals of those countries.

Keyed collections are very powerful and used throughout the Actor system. In fact,
there is an object called Actor that you've been using all along, but you haven't noticed
much. The object called Actor is a Dictionary object, and contains all the global
variables-including the Actor classes-for the Actor system.

When you type something in the Workspace, and you see the dialog box that asks if
some symbol should be made into a global variable, it's actually saying something else.
When you see the "Undefined name" dialog box, what it's really asking is "should I
make <symbol> a key in the Dictionary object called Actor?"

For example, when you say

Test := 3 <CR>

and answer ''Yes" to the dialog box's question, what you are really saying is this:

Actor[#Tast] := 3 <CR>

62 Chapter 1: Introducing Actor: A Tutorial

The# sign in front of Teat is there because you are assigning a name to Teat, and
whenever you explicitly refer to an object's name rather than the object itself, you have
to use a# sign in front of it. You'll find out more abou,t this topic in the next chapter of
the manual, but for now this explanation is sufficent.

The reason we bring up this Actor [#Teat J business now is that hereafter in this
documentation, you'll see new objects created in the above manner, rather than the way
you've seen so far. If you prefer, you can keep on doing it the old way, answering the
dialog box occasionally. However, remember when you are doing so that actually you
are assigning a key to a value in' the keyed collection Actor.

In the next section, we'll discuss a subject you probably have been waiting for:
windows, and an introduction to using them in Actor.

1.8.4 Windows

When we talk about a window in Actor, we are, most importantly, talking about yet
another \'ind of object. In addition, we are talking about one of the great variety of
window types that Microsoft\Vindows (MS-Windows) provides. Thanks to object
orien~ programming, the two views can be considered as one and the same.

The underlying differena;? between window objects and most other objects, such as
integers, rectangles, and strings, is that the actual window as you see it on the screen is
"owned" by MS-Windows. In other words, most of the data for the window, including
hll of the graphical information it presents, is kept by MS-Windows, and usually not in
the data area of the Actor window object. The reason for this is efficiency-it would be
wasteful to keep two copies of the same thing, and Ms-Windows already has one.
Regardless of which language you might use to program with MS-Windows, you would
take the same approach to managing windows as far as memory usage is concerned.

Since MS-Windows "owns the window," it provides us with a value, called a handle,
that we use to refer to it. This is the most important value that the window object
contains. It is kept in an instance variable of every Actor window object called hwnd,
which stands for "handle to the Window." It is literally a way for us to "get hold" of the
actual window in MS-Windows.

Hav:ing said this about handles and windows, we can add thaJ you can treat
window objects as if they were the physical windows that you see on your screen. The
handle helps make managing the window object transparent. The methods that are part
of the window classes have been designed to maintain this "disguise," and greatly ease
the process of creating and manipulating windows.

Windows naturally play a very important part in any application designed to run
under MS-Windows. The Actor programming environment itseU is a very good
example. When Actor first starts; the most significant action that takes place is the
creation of the Display and Workspace windows. Once these two windows are created,
ever)'thing else is up to the user-you, the programmer. When you type in the
WorkS~ce or start an inspectt?r, you are communicating thr?.ugh Ms-Windows to the

1.8: An Introduction to Actor Classes 63

Actor windows themselves, as regular Actor objects, and the windows respond. This is
generally the way all Actor applications will begin, by creating one or more windows
and presenting options to the user with menus and controls.

1.8.4.1 Creating Window Objects

There are several window classes in Actor, and the Window class is at the top of this
part of the class hierarchy. If you look at this class with the Browser, in hierarchical
mode, you will see how the other window classes are related. Naturally, as you descend
from Window, the classes produce more and more specialized windows until you come
to the Browser and Inspector classes, which are very specialized. Let's start out with
the most basic kind of window you can make in Actor, an instance of Window itself.
You make such an object by sending a new message to Window. For example:

Actor[#Kind] := new(Kindow, nil, "Test Window") <CR>
<a Window>

Notice that in addition to Window as the receiver, this message includes two arguments.
The first one, nil in this case, could be the name of a menu if you want this window to
have one. If you don't, then nil indicates this. (For now, don't specify anything but
nil for the first parameter. MS-Windows isn't very forgiving when you specify the
name of a nonexistent menu-it crashes.) The second parameter is a string that gives the
title (also called the caption) of the window, which will appear at the top of it in the
caption bar. Now that you have created Kind, all you have to do is show it:

ahow(Kind, 1) <CR>
<a Window>

Now you see how Kind, the newly made window object, displays itself, finding a
space on the screen along with the Actor Display window and any other "non-popup"
windows. In the terminology of MS-Windows, what you have created is a tiled window.
As you know, a tiled window, such as the Actor Display, looks and behaves differently
than popup windows, such as Browsers, Inspectors, and the Workspace. Instances of
Window are always tiled windows.

What can you do with Kind? Not a whole lot. You can't type into it, or draw in it
with the mouse. You can use it to display graphics objects, as we'll see a little later. And
you can move it around or make it iconic (change U into an icon) by pulling down its
system menu and choosing Icon.

There are a couple of things you can find out about Kind by sending it some
messages. If you send clientRect (Kind) you will get back a Rect object that lets
you find out the size of the usable area, or client area, of Kind, or any other window
object you have. The client area is basically the part of the window that isn't.the caption

64 Chapter 1: Introducing Actor: A Tutorial

bar or menu. You can find out what the handle to Wind is with handle (Wind).
· Remember that this is the unique number we use to tell MS-Windows what window

we're talking about.
The Window class is just a starting point for windows in Actor. If you look at it with

the Browser, you'll see that it has a lot of methods, but they generally just provide a base
for its descendant classes, which add more power and let you make windows that can
be very useful. Let's try some of these. (If you want, you can close Wind by double
clicking on the system box in the upper left comer of the window.)

1.8.4.2 Making an EditWindow

The EditWindow class lets you make window objects that you can type into and
use the mouse to edit text. In the new message to BditWindow, we will include the
name of a menu so that the window will be more useful:

EW := new(EditWindow, "editmenu", "Sample EditWindow") <CR>

(Agaht, MS-Windows is very picky about menus. Be careful to type the first parameter
exactly as you see it above.) If you send the same kind of show message to EW that we
sent to Wind, namely show (EW, 1), you will see what EW looks like. Notice that it has a
menu bar, and that it contains a pull-down menu called Edit. If you have used mouse
driven word processors like the MS-Windows Notepad or Windows Write, then you
have seen a menu like this before. If you activate EW by clicking the mouse in it
anywhere, then you can type into it from the keyboard. (The active window is the one
with the highlighted caption bar.) You can use the mouse to select some of the text that
you have entered, and then use the pull-down Edit menu to Cut, Copy, Paste, or Clear it.

When you enter text in an edit window, press <CR> to get to a new line. By now
you have gotten used to the fact that pressing <CR> in the Workspace window will
execute the line you are on. Tilts is special behavior for that window, but EditWindow
objects just move to the next line, just like any text editor would do.

Edit Window objects use the Clipboard when you select Cut, Copy, or Paste, so that
you can pass information to other windows-not only those created in Actor, but even
other MS-Windows applications such as the Notepad window. Try this using EW and
the Workspace. If you select some text in EW, and then copy it to the Clipboard, you can
then activate the Workspace, and paste the text into it. And, of course, you can do the
same in the opposite direction, copying text from the Workspace into EW. Although our
sample edit menu doesn't show it, you can also use certain accelerator keys with edit
windows. Specifically, you can use the Ins key to paste, the Del key to cut, the gray +
key to copy, and Ctrl-A to select all of the text. The Tab key will indent two spaces.

Edit Window objects (and therefore objects of descendant classes) contain a copy of
all of the text that you see displayed. It is stored in a kind of collection that is an
instance of the TextCollection class. This allows edit windows to redraw
themselves if they are moved, or made iconic and then redisplayed. Try making your
EW object ,iconic and then redisplay it to see how this works .

. ' 'J J • · <Le

1.8: An Introduction to Actor Classes 65

You may have noticed that the Actor Display window can't do this. It has no copy
of the information it displays in the window object itself. The reason? For one thing, the
Display window is an instance of the WorkWindow class. If you look at the class
hierarchy, you'll see that WorkWindow is not descended from BditWindow, so

, WorkWindow objects don't inherit the ability to store their text.
The practical reason why the Display window has no ability to redraw is that

1 keeping all of its text around would be very costly in memory, and it would slow
printing down quite a bit. You could easily add to class WorkWindow the ability to
redraw text, if you were willing to live with the consequences. For the current version of
Actor, we felt that not keeping text was an appropriate design decision.

Remember when we used the Inspector to look at an BditWindow object? During
these introductory remarks about windows, you may benefit from using the Inspector to
find out more about what windows are made of. Start an inspector on any window
object and look at its instance variables. If you try this with Wind, from the previous
section, you11 see that it has only a few instance variables, which is one reason why the
wfndow is limited in its capability. If you send the message
inspect (TheApp. Workspace), you can inspect the Actor Workspace window, which
is far more complex.

1.8.4.3 MS-Windows Window Classes

\
· Something else may have caught your eye about edit windows. When you move the

/ mouse cursor over BW, it will change from the arrow pointer to the I-beam type, which is
better for working with text. You have already seen this for other windows ih Actor,
such as the Workspace or the edit windows of the Inspector and Browser. As it turns
out, objects of the BditWindow class or of any of its descendant classes (WorkEdit,
BrowBdit, Workspace) have the I-beam cursor. They actually inherit it, as a property
of the Edit Window class itself. But there is a subtle difference in the way this
inheritance actually works.

It so happens that MS-Windows has its own concept of window "classes" that
vaguely resembles the Actor object-oriented concept. This can be confusing, but most of
the time you only need to think about Actor's window classes. In MS-Windows, a
window class specifies the default properties of a window, which include the window
cursor style and the window icon, among other things. When you create a window by
sending a new message to an Actor window class, the window actually comes into
being by asking MS-Windows to create it. In the request, a MS-Windows window class
name is specified, such as ''ListBox." When MS-Windows creates the window, it looks in

', the window class for the win~ow properties, and makes the window accordingly .
. / When Actor first starts up, before any windows are produced, it registers two new

window classes with MS-Windows, namely "ActorWindow" and "EditWindow" (which
is not the same as the Actor class EditWindow). At this time, the default properties for
the two classes are given to MS-Windows, which keeps track of them in its own
memory. This is where the two different cursor styles (pointer and I-beam) and the
Actor icon are specified. While you move the mouse ~round, one of the many things

66 Chapter 1: Introducing Actor: A Tutorial

that MS-Windows does is keep track of where the mouse cursor is, and when it moves
over a new window, the cursor style is changed to the one specified in the registered
window class for that window.

To find out which registered window class MS-Windows should use for creating a
window, a wndClass message is sent to the Actor window class that was sent the new
message. Look at these examples:

wndClass(Window) <CR>
•• ActorWindow"
wndClass(WorkWindow) <CR>
"ActorWindow"
wndClass(EditWindow) <CR>
"EditWindow"
wndClass(Workspace) <CR>
"Edit Window"

Classes that return "EditWindow" will produce windows that have the I-beam cursor.
This includes EditWindow a.nd all window classes that descend from it. Every other
window in Actor will have the pointer cursor. (You can look at the class methods (as
opposed to object methods) of the window classes with the Browser, and see that only
two classes, Window and EditWindow, define the wndClasa method. Inheritance takes
care of the rest.) If you want to use some other kind of cursor, or some special window
icon, you can register your own window class with MS-Windows in the same way that
Actor does. This process is explained in the Advanced Topics part of this manual.

1.8.4.4 Making a PopupWindow

A popup window, as you have seen, does not "tile" itself onto the screen the way the
previous examples do, but rather it lays on top of any other windows that may exist in
the system, including other popup windows. The active popup window will be the one
on top. The PopupWindow class lets us make one of these. Again, we send a new
message, but there are more arguments this time. We need a valid window object for
one of them-hopefully you still have EW on the screen, for the EditWindow example. If
not, make it again. Then we can send the following message:

PW := new(PopupWindow, EW, "editmenu", "Popup Example",
nil) <CR>

There are two more parameters required for this style of window than for the tiled
kind. You'll notice that we supplied another window object, EW, as the first parameter in
the new message to PopupWindow. This is because of a restraint MS-Windows places
on popup windows: they must have a parent window. The parent window is a window
that exercises some special control over some other window or windows, each of which
is referred to as its child window.

~ .

§ Popup Example :'I
Edit

Figure 1-16: A PopupWindow object with an edit menu.

1.8: An Introduction to Actor Classes 67

A good example of a parent window is the Browser window. Its child windows
include the two list boxes and the edit window underneath. Notice how when you
move the Browser, the three child windows move with the parent window. This is just
one aspect of the child-parent window relationship. The Browser window, since it is a

', popup window, also happens to have its own parent window, the Actor Display
window.

We have said that we are supplying EW as the parent parameter in the new message
we send to PopupWindow. A good way to see the result of doing this is to first show PW
in the usual way, with the message show (PW, 1) • Now you should see it laying on top
of the other windows, including EW. Now make EW iconic, and notice what happens to
PW. When you make EW visible again, PW also reappears. This is simply because EW is
the parent window of PW.

After EW in the new message above, we have "editmenu", which is the name of our
sample Edit pull-down menu. In this example, manipulating the menu will not have
any effect, since a PopupWindow object does not have the technology to respond to
input. Then follows the name of the window, which as usual appears in the caption bar.
The last argtiment in this example is nil, but we could have substituted a Rect object
instead, to tell MS-Window~ where to put the popup window. This information is
necessary, since popups can be anywhere on the screen and don't follow a default tiling
pattern. When you supply nil instead of a rectangle, the new method for
PopupWindow figures out a.reasonable size and location for the window, based on your

\ screen resolution. This is what determines where the Browser window first appears.
Instead of nil, we could have specified another location with a Rect object. There

are several ways to get such an object, as you probably know by now. The easiest is
with the rectangle literal form, using the symbol ' followed by four numbers in
parentheses:

'(20, so, 120, 120) <CR>
Rect(20L SOL 120L 120L)

In this form, the four values must be numbers or constants. The numbers correspond to
the left, top, right and bottom coordinates of the rectangle. If we substitute this
rectangle literal for the nil in the new message to PopupWindow, the window would
appear at the screen location specified by the coordinates. If you would like to try this,
close PW and then create another popup window, using the same new statement except
for the rectangle literal replacing nil. When you send the show message, you'll see the
difference.

/ 1.8.4.5 Displaying Graphics Objects

Earlier we said that although objects of the Window class can't do much, they can be
used to display graphics objects, such as rectangles. Any window can be used for this
purpose, but if that's all you want to do, then Window objects are a good choice. They

68 Chapter 1: Introducing Actor: A Tutorial

are no bigger than they have to be (in terms of the number of instance variables), and the
Window class provides the necessary methods for this purpose.

The first thing to do is to create a window object and show it. Remember the steps?
Here they are again:

Wind:= new(Window,·nil, "Sample") <CR>
ahow(Wind, 1) <CR>

We also need a graphics object, such as a rectangle. We can do this most easily by using
the Rect literal form:

Rl := &(20, 30, 100, 120) <CR>

Before we can draw the rectangle, we need one more thing, called a display context, that
we get from Wind with this statement:

DC := getContext(Wind) <CR>

Now we can display Rl in Wind, by sending the following message to Rl:

draw(Rl, DC) <CR>

The only thing that is not straightfoward about this procedure is the part about the
display context (a feature of MS-Windows), which we have in the variable DC. Briefly,
you need to get a display context for any window that you draw something in, whether
it is text or graphics, before you can do the drawing. Among other things, a window's
display context provides a way for MS-Windows to manage multiple applications'
access to the display screen. Once you have it, you can use the same one to draw as
many things as you want in the window. When you are finished drawing, you should
release the display context, because there is a limit to how many of them can be "checked
out" at one time. You can release the context DC with this message:

releaseContext(Wind, DC) <CR>

The display context has several other qualities and is actually a very powerful device
that facilitates the use of graphics in windows. We cover it in more detail in chapter 3,
Guide to the Actor Classes.

1.8.4.6 A Window's Role in an Application

Earlier, we mentioned that when Actor starts up, the action that "gets the ball
rolling" {s the creation of the two windows, the Display and Workspace. After that,
nothing happens until you interact with the windows in some way. MS-Windows is an
"event driven" environment ~}µit allows a great deal of flexibility to the user and at the

{ i '«t -~: -•'$.>• --~ \";- ,_;'-

1.8: An Introduction to Actor Classes 69

same time can simplify the design of an application. Actor, as an object-oriented
programming language, lets you make the most of this situation.

As you have seen, you can easily create a window object and then display it by
sending the show message to it. Once the window is displayed, you know that you can
send other messages to it, for example handle or clientRect. Well, MS-Windows
can send messages to it also! This is an extremely useful and convenient virtue of

/ window objects.
As you look at the various window classes with the Browser, you will certainly

notice that some of the methods have unusual looking names. As you may have
noticed, the usual convention for naming methods in Actor is that they begin with a
lower-case letter. But many of the window classes have method names like WM_CHAR
and WM_CLOSB. Whenever you see a method with a name like this, starting with a WM_,
you are looking at a method ~esigned to respond to messages from MS-Windows.
There are great many of these (see Appendix F for a complete list), but the Actor
window classes only need to define the ones that are necessary for the window objects to
be'have properly.

For example, the BditWindow class has a WM_ CHAR method, because MS-Windows
sends a 1DI_ CllAR message to an edit window object whenever the window has the input
focus and a key is pressed. (Actually, pressing a function key or an arrow key, for
example, will not generate a WM_CHAR message. Most other keys will, however.) Many
window classes define the WM_SJ:ZB method, because MS-Windows sends this message

\ to a window if its size has been changed. If a menu choice is made in a certain window,
/ a WM_ COMMAND message is sent to the window. And so on.

This is the way that MS-Windows informs the application that something is
happening with a window-it sends a message directly to the window. If the application
needs to respond, all you have to do is write the appropriate method. The Actor
window classes include many good examples, and you can team a lot by looking at
these classes with the Browser. (We've simplified things a bit here. MS-Windows
actually places its WM_ type messages on something called the message queue, and then
Actor takes it from there. It's all covered in the Guide to the Actor Classes, section
2.11.4.)

1.8.4.7 Creating a New Window Class: Scribble

In an effort to bring together several of the ideas that we have just presented about
windows, and to provide a showcase for the Browser as well, we would now like to
show you how to create a new window class, give it a few methods, and then have some

\fun with it. The name of the class will be Scribble, and it will be able to produce
,/ window objects that you can scribble in with the mouse. Considering the small amount

of effort it will require, the Scribble windows can be a lot of fun.
The first thing to do is open a Browser by selecting Browse! from the Workspace

menu. Once your Browser is up, select the Window class. We are going to make a
descendant class of Window, so choose Make descendant under the Options menu.
When you see the About Oass Dialog, do the following three things:

70 Chapter 1: Introducing Actor. A Tutorial

1. Type the new class name Scribble in the blank box labeled ''Name."

2. Click the mouse in the "Variables" box, and type the word dragDC in there.
This is the only additional ipstance variable we need.

3. Click the Accept button.

If eve~hing goes OK, you should see the Browser window again, and the newly
created class, Scribble, should appear as the selected. class. Before we add any
methoos, we can make an instance of Scribble and display it. Execute these two lines
in the Workspace:

SC := new(Scribble, nil, "Scribble") <CR>
show(SC, 1) <CR>

If you hold the left mouse button down while you move the mouse around over the
newly di~played. window, nothing will happen. We could just as well have made an
instance of Window. But when we add a few short methods to Scribble, we'll see a
difference. We'll just add them now, watch them work, and explain how they work
later.

The first methoo is beginI>rag. With the Scribble class selected. in the Browser,
select New method under Templates, and then edit the text until it looks like this:

I* Initialize dragging. */
Def beginDrag(aelf, wP, point)
(Call SetCapture(hllnd);

)

dragDC :• getContext(aelf);
moveTo(point, dragDC);

When you are ready, click on Accept! to add the method to the class. If there is an error
in compilation, it will be detected and Actor will tell you what it is. Fax it and try again.
When you hear the disk access, thaf s the signal that the method compiled safely. For
the next method, you can start from scratch, but it will be easier if you leave the text for
beginDrag in the edit window, and just change it so that it becomes the endDrag

, method:

I* Stop dragging. */
Def endDrag(aelf, wP, point)
(Call ReleaaeCapture(hllnd);

releaaeContext(aelf, dragDC);
)

Scribble Window 1

Hc+o Q
0

Figure 1·17: A Scribble window.

1.8: An Introduction to Actor Classes 71

Accept this method too, and check to make sure that the method list box shows two
method names, beqinDraq and endDraq. Finally, edit the method one more time to
produce the drag method:

/* Track the mouse. */
Def draq(self, wP, point)
(line!ro(point, draqDC);
)

Once you Accept! this final method, you can go back to the Scribble window and see
what happens as you move the mouse across it while holding down the left button.
Here is another example of how objects seem to '1earn" how to do things when you add
methods to their classes.

t.8.4.8 Scribble Explained

How does it work? For the first clue, look at the Window class with the Browser,
and especially the three methods Wll_LBtrr!rONDOWN, WM_MOUSEMOVB, and
Wll _ LBtrr!rONUP. These three methods respond to the messages of mouse activity sent
by MS-Windows to the window object where the activity takes place. The "L" in the first

\ and last method names stands for Left, for the left mouse button. The three methods in
tum send, respectively, the beginDraq, drag and endDraq messages to the window
object. Notice that these three methods are also defined in the Window class, but they
are just "dummy" methods there. If they were not defined, then an error would occur as
you drag the mouse in a Window object, and you see an error message such as "A
Window does not understand beginDrag." Now we ha'Ve redefined them to cause lines
to be drawn from point to point as you drag the mouse around the window.

When you first press the left mouse button, MS-Windows sends a
WM_ LBtrr!rONDOWN message to SC, the Scribble object, which inherits the method by
that name from Window. This method then sends the beginDrag message to SC, and
the method we just defined handles it. The first statement in the method, Call
SetCapture (hWnd), tells MS-Windows that SC, the window whose handle is hWnd, is
going to receive all mouse messages until further notice. This lets you move the mouse
outside of the window boundaries without activating some other window. The Call
word is the way we tell MS-Windows to do something, and it is always followed by the
name of one of the Ms-Windows "window functions." There is list of these in the

\ Appendix F, and we talk more about calling window functions in the Guide to the
· Actor Classes and the Advanced Topics sections.

/ The second line in beginDraq gets a display context, and stores it in the instance
variable dragDC so that we will have it available for the duration of the mouse drag.
Let's jump ahead for a moment and look at what happens when you release the left
mouse button.

. ..

72 Chapter 1: Introducing Actor: A Tutorial

First, MS-Windows sends a WH_LBtrrTOHUP message to the window, which then
sends an endDrag message to ae.lf. We can see that our endDrag method does the
inverse of the first two lines of beginDrag. Namely, it calls ReleaseCapture, letting
MS-Windows send mouse messages to any window again, and it releases the display
context, since for the time being we aren't going to be drawing in the window. Now
we'll get back to the rest of the beginDrag method and the drag method, which is
actually the real workhorse.

MS-Windows passes two arguments in all of its window (WM_) messages to window
objects, and they are usually indicated by wP and lP, which stand for "word parameter''
and '1ong parameter." In the three mouse messages named above, the position of the
mouse cqrsor is passed in the lP parameter. If you send an asPoint message to this
Long value, you get back a Point object. This point is passed with the drag messages
beginDrag, drag, and endDrag. We can then send the moveTo and lineTo messages
to it, since these are methods of the Point class.

In the beginDrag method, the moveTo message sets the current position of an
imaginary pen to the location deJermined by the point argument. This is an
initialization step, in preparation for receiving numerous drag messages as the mouse is
moved around. Did you notice that the WH _MOUSEMOVB message in Window sends the
drag message? Each time a drag message is received, the lineTo message is sent,
which draws a line from the current position up to, but not including, the new location
in the point receiver. Then the current position is reset to point, another drag
message is received, and so on.

1.8.4.9 A Finishing Touch

If you would like to play with the Scribble window and not have any of the other
Actor windows around, you can make the Display window iconic, which makes all of
the other Actor popup windows invisible for the time being. This happens because the
Display is the parent window for all of these windows. However, your scribble
window, SC, has no parent, so it will remain visible and in fact takes up the entire screen
when you get rid of the other windows. ·

Now you have a big screen to play with, but there is a small problem. When you
want to erase the screen, your only recourse is to make the screen iconic and then visible
again. This can get a little tiresome after a few times, and it would be nice if we could
just press the right mouse button, for example, to erase the screen. No problem! Just
add the following method to the Scribble class, and you are in business.

/* Erase the screen when right mouse button
ia pressed. */

Def WH_RBtJ'rTONDOWH(aelf, wP, lP)
f repaint(self);
i

1.8: An Introduction to Actor Classes 73

Now the client area of a scribble window will be cleared any time you press the right
mouse button, even in the middle of dragging. The repaint method, defined in the
Window class, causes the window to be erased and redrawn completely, according to the
behavior of the objecrs paint method. Since a scribble object inherits the "dummy"

-~, paint method from Window, the effect is to simply erase the client area.
As you might have guessed, writing an application under MS-Windows requires

some knowledge of what WM- messages are sent to your application and when. You
can learn a lot from studying our examples, but we would also recommend reading the
Ms-Windows Programmer's Reference and Programmers Guide, available from
Microsoft. Fortunately, Actor insulates you from a lot of the overhead that would
normally be required of a MS-Windows application.

1.8.4.10 Deleting the Scribble Class, Bringing it Back

' You have created a small window class that comprises a self-contained "micro
applicatlon." If you create an instance of this class and show it, you have a window that
behaves in a special way. The Scribble window class is limited to providing mindless
entertainment, but the exercise of creating it is essentally no different from the process of
creating any other window class.

As you begin to develop all kinds of new classes as parts of your applications, it is
\ important for you to realize what your options are once you have a new class written
/ and working well. We'll illustrate a typical approach with Scribble, assuming that

you have created it and succesfully compiled its four methods.
For starters, now is probably a good time to perform a static garbage collection. You

may have had to recompile a couple of methods, and by so doing there may have some
static memory that can be reclai~ed. Even if you haven't, it's harmless to do an
occasional static garbage collection, which you can do by sending the message
cleanup () . You'll see a message in the Actor Display reporting how many bytes of
static memory were reclaimed.

Next, take a snapshot. Now, as you realize, the Scribble class is a part of Actor, so
that when you bring it up, you can immediately create and use scribble windows.
Verify this if you'd like. The class source file for the class, named SCRIBBLE.CIS, is
located in the CLASSES subdirectory, ready to be examined by the Browser and
modified if changes are desired. If the Scribble class were a part of a developing
application, you could proceed to develop the next new class, perhaps a descendant of
String or Ract this time.

, In many case, you may have no immediate need for a class that you have created, or
at least you would like the option of having it in the system or not. You have this

/ option, provided by the Browser. Select Scribble in a Browser, and then under the
Edit menu select Delete class. A few moments pass while the class list is reloaded, and
the Scribble class is not listed! If you take another snapshot, you have saved a system
without the Scribble class. You should do a cleanup() beforehand, though, so that the
memory that Scribble was using can be reclaimed. Exit Actor and start it again, and
note that the word Scribble is undefined.

74 Chapter 1: Introducing AG1or: A Tutor/al

It's not lost forever, though; it can be brought back into the system at any time.
Select LOad under the File pull-down menu ii) the Workspace. Type the word "classes"
in the edit box, and press <CR> (or, equivalently, double click on the item in the list box
that says [CLASSES]). Now you are looking at a list of all the class source files in the
CLASSES subdirectory, and SCRIBBLE.CLS is still there, because deleting a class with
the Browser does nothing to the class source file. Select ~he Scribble class file, and
click on Open to load it.

Now once again you can create and use scribble windows, look at the source code
with the Browser, and change the class in any way you want to. In this way you can
build up a vast number of new class source files, while being selective about which
classes are part of the system at any one time.

1.8.4.11 Windows Summary

In this very brief introduction to windows, you have seen how easily a window can
be created, and a few of the things you can do with the window classes that Actor gives
you. You have seen how to create a new window class, delete it from the system, and
reload it. Most of the original Actor window classes were first created to support the
Actor programming environment, but many of these have general use, as with any good
object-i>Hented design.

In this windows section of the Tutorial, we have covered a variety of topics, but
admi~ly in very little detail. There is much more information regarding window
classes and objects throughout this manual, however. The Guide to the Actor Classes
covers t!te existing window classes in detail, and in particular deals more extensively
with the interaction of MS-Windows and Actor window objects. In the Advanced ·
Topics section you can find out more about using the Call key word to call the MS
Windows Window and GDI (Graphics Display Interface) functions. A summary of all of
these functions, and the windows messages as well, is provided in Appendix F. Finally,
the steps for assembling an Actor application are detailed in chapter 4 of this manual,
Building Actor Applications.

2 Guide to the Actor Classes
Remember when you were a child, and either you or a friend of yours had an

Erector TM set? There were all those nifty pieces, and you could put them together in
different ways to make mittions of new gadgets. In some ways, Actor is like an Erector
set because there are all sorts of ready-made pieces for you to put together any way you
wish. The ready-made pieces are called classes, and the true power of object-oriented
programming is realized when you team how to use each class in the software
development process. This section of the manual, then, is like the instruction booklet for
the Erector set. It will tell you what each class is, how to use it, and when to use it. In
addition, you will get a feel for how and when to define new classes as descendants of
e~sting classes.

Most of the classes in the Actor system, such as Dictionary, are full of methods
and uses. However, other classes seem to not do much of anything, such as
ByteCollection. These classes really don't do too much, but are actually "formal"
classes which do nothing but serve as the unifying class for their descendants. Perhaps
the best example of this is class Collection below-by itself, it's useless. However, not
only does it serve as the abstract, unifying class for its descendants, it also provides
some methods which can be universally used by all collections.

Don't worry too much yet about which classes are important and which are not; that
will become obvious as you read this section. Just remember that if you see a class
which doesn't seem to do much, it is just another example of one of the "formal" classes
mentioned above. In addition, in the course of explaining some classes, we'll have to
refer to classes that haven't been explored yet. Nevertheless, the examples will be fairly
general and won't rely on any specific facts that you haven't learned yet.

Just like a lot of other things in the computer world, the Actor classes are arranged
in the form of a tree. (See figure 2.1) At the top of the tree you see the class Object.
That's where everything started in Actor, so that's where we'll start too.

2.1 Using the System-Wide Methods: The Object Class

As you know, most everything in Actor is an object. That is, the units of data and
the code for processing it are kept together in a single packet called an object. However,

, there is also a class called Object. It basically serves as a starting point (the root) for the
/ class tree. You won't ever work with objects of class Object, because instead you will

work with classes that are descendants of Object. That sounds somewhat confusing,
but it's really pretty simple. The root directory of your hard disk is important because
that's where all your subdirectories come from. However, you don't spend most of your
time in the root directory because you're usually sitting in a subdirectory somewhere.

76 Chaptsr 2: Guids to ths Actor Classss

While no one works directly with instances of class Object, Actor uses methods
from Object all the time. As you know, Actor features inheritance, which means if you
send a message to a class and it doesn't recognize it, Actor will pass the message up the
class hierarchy until it finds a class which can respond to the message. The only time
you get an error is when Actor can't find the method in class Object. As you would
expect, the methods which are valid for all classes are thus found in class Object. For
example, all classes respond to messages such as size, class, print, etc.; if you
examine class Object with the Browser, for example, you'll see these methods as well
as many others. In addition, much of the internal workings of Actor is also found in
class Object, such as inspect (activates the "Inspect" item on the Workspace menu
bar), compile (activates the compilation process), and much more. Some of Actor's
error handling is also found here as well.

The fact that class Object is sort of a "catch-all" class might give you a few clues on
how to use it. If you have a method which you want all objects to be able to respond to,
then place it within Object. However, as a general rule you should consider carefully
what actually goes in Object. Why? As a consequence of inheritance, anything you
put in Object is then available to the whole system, and if you forget that irs there,
then later on you might have a method working on data it's not supposed to!

We mentioned above that your applications won't directly use instances of class
Object. While that's true, you as a developer will use the methods from Object all the
time, although usually it won't be readily obvious. Thars because many of the
messages that don't seem to be "aimed" at a particular class are actually handled within
Object. In the sections that follow, we'll explore some of the methods and concepts
which apply to all objects.

2.1.1 Categorizing Objects

The main goal of this section is to familiarize you with the various formal and
informal categories of objects. In so doing, you will be introduced to some important
concepts, and you will also find out why some classes are where they are on the class
tree.

There are three ways in which you can categorize Actor objects. The first relates to
whether or not the object is a collection, and the distinction is pretty simple. If an Actor
object is not a collection of objects, then it is called an atom. An Actor atom is similar to
nature's atom in that it is an object which cannot be split and still be a valid object of the
original class (e.g. a Real). A collection can contain collections, and so on, but
eventually everything in Actor breaks down into atoms.

The second and third ways to categorize objects are closely related to each other.
The second is probably the most obvious, and that is that an object is categorized by the
physical location of its class on the class tree. As you know, this structure is a result of
more specialized classes inheriting methods and instance variables from their ancestors.
You migltt expect there to be a close correlation between classes' physical location on the
class tree and the ways they are used. In other words, objects of one class should be
used for similar but more specialized purposes than their ancestors would. While this is

Collections and atoms I

collectlon of collectlons

Figure 2-2: Some collections are made up of other collections,
and some collections are made up of atoms, which are not
collections.

2.1: Objed Class 77

certainly a noble goal, and is usually the case, sometimes the circumstances dictate that a
class is used for totally different purposes than its position on the class tree might
indicate. When this is true, it might be more logical to categorize objects the third way-
based on their functional hierarchy.

"" The most obvious example of this is class GraphicsObject. You might expect it to
) be grouped with class Point, for example, but instead it's buried in the Collection

· classes under ByteCollection, of all things. The reason for this is that MS-Windows
requires graphics objects to be in a data structure called Struct (the parent of
GraphicsObject). This d~ta structure is a collection of bytes, and hence the placement
among the collections. Just remember that if you see a class on the tree that doesn't look
like it "fits in" with its neighbors, it's because its functional hierarchy differs from its
physical hierarchy.

2.~.2 Boolean Qualities of Objects

In many computer languages, there is a specific mechanism to support the concept
of true and false. For example, Pascal has a special boolean data type for this purpose.
Other languages, such as C, have a more general custom that the number 0 (zero) is
considered logically false and every other number is considered logically true. Actor
takes that idea one step further because~ object is either true or false. False is

· conveyed by means of a a class called HilClasl!i, whose only instance is an object
. • known as nil. The nil object has special status in Actor, because it is the only object

that is logically false. That means that any object, if it is not nil, is considered logically
true (even the number zero).

Therefore, in your Actor programs, you always use nil to signify false. To signify
true, you can use anything else. However, using numbers (especially zero) to signify
true can cause your code to appear confusing. To remedy this, there is a system-wide
constant named true which can be used anywhere. For example, you may wish to use
it to set a boolean flag named found:

found := true;

There is also a false, but it's just a constant whose value is nil. Since the
possibility of confusion is much less, you probably will use nil itself rather than false.
However, if you are more comfortable with false, then by all means use it!

You can also make everyday assignment statements do double duty as boolean
values. For example, you might have a program which contains the following code:

val := someMethod(someReceiver);
if val
then pz:int(val);
endif;

78 Chapter 2: Guide to the Actor Classes

This is perfectly valid Actor code. However, you can economize by doing the
followi11:g:

if (val := someMethod(someReceiver))
then print(val)r
endif;

This is because an assignment statement does two things. First, the right hand side
of an assignment statement is computed and assigned to the left hand side. If the new
left hand side is anything besides nil, then the assignment statement is logically true.
The two approaches are completely equivalent, but the second way is a bit more
efficient. Note: the parentheses surrounding the assignment statement are completely
optional but strongly encouraged. Without them, it looks like a simple comparison
rather than an assignment statement.

Even if-then-else statements can have a value. If the then portion of an if
then-else gets executed, then the if-then-else will have the result of what follows
the then statement as a value. Otherwise, the result of what follows the else statement
will J:>e the result of the if-then-else statement. For instance, the following statement
will assign to Sam. the maximum of a and b:

Sam. : = if a >= b
then a
else b
endif;

The traditional boolean operators and, or, and not are provided in Actor:

.Actor[ISam.) :•"Bello" <CR>.
Sam. and nil <CR>
nil

~am. and "Volleyball" <CR>
0

Sam. or nil <CR>
0

false or nil <CR>
nil

not(nil) <CR>
0

not(14) <CR>
ni1 I .

Object

File ParseNode Mod•IDiatog

Association Meta SourceFile Actor Parser Empty List Item List Button ScrollBar ClaS60inlog

Collection
Actor·

ClassUst Analyzer DebugOialog

Indexed· Keyed-
Collection Collection Set

OirtyCLD

Context
Bag Symbo/Table

FileDiatog

Charlnterval Frame Slot Winda.v
Debugger tnputOialog

Tex._ Identity-

Error Box CoOection Oictiom .. y

Byte·
Collection

Scan Window WorkWindo.v
Library

String

Magnitude
Browser Inspector

Ni Class

Symbol DosStruct Proc

Numb« Char
BrowEdit WorkSpaee

Point

Int Long Real

Primitive

RndRect

Figure 2-1 · Actor class tree

-· ·~ - _,_ # .. -· .. ~-~

Note that these operations do not provide bit manipulation on integers and long
integers. For this purpose, we have provided the methods bitAnd, bitOr, etc. Please
see section 2.4.5 for details.

Many other methods return boolean results as well. For example, >(greater than)
and< (less than) comparisons return boolean results, as do the various

" equality/equivalence methods (see below).

2.1.3 Basic Properties of Objects

There are a few basic properties of all objects which are important to remember. For
instance, it is important to know the difference between equivalence and equality in
Actor. There are also the concepts of an object's class, species, size, and limit. This and
more will be covered in the sections below.

As an aside, some of the methods of class Object you will read about below cannot
be redefined. Usually you can redefine any method you want in Actor, but some are so
important that redefinition is prohibited. Among these methods are ==, class, and,
or, and not. You can examine the global dictionary BarlyMethods for a complete list
of these special method names.

2.1.3.1 Equality Versus Equivalence

Usually, the terms equal and equivalent are used synonymously. However, there is a
difference, and understanding this difference will enable you to write more efficient
programs. The concept of equal and not equal, represented by== and<>, respectively, is
the familiar one from everyday arithmetic. Two things are equal if their contents are
equal:

Actor[ISam] :== "Bello" <CR>
Actor[#Joe] :== "Bello" <CR>
Joa == Sam <CR>
0

Joa <> Sam <CR>
nil

However, the definitions of equivalent and not equivalent (==and ... ==) are more
restrictive. Two objects that are equal are not neccessarily equivalent. For example, Joe

/ and Sam are equal - their contents are identical - but they aren't the same object:

Joa - Sam <CR>
nil

80 Chaptsr 2: Guids to ths Actor Classss

An object is of course equivalent to itself, as this demonstrates:

Joa = Joe <CR>
0

This distinction between equality and equivalence would be nitpicky if it weren't for
good reason. As you know from above, everything in Actor is maintained as an object
pointer which usually points to that objecrs data or code. This fact might give you a
clue about whars going on. The= method compares two object pointers, and if they
are identical, then it returns logically true. This comparison of object pointers is
extremely fast, which is why the distinction is made.

We said "usually points to" above because an object pointer doesn't always point to
something. Objects of class Char and Int, for example, have their data embedded in
the object pointer itself. This means that when you are comparing instances of these
classes, you can use equivalence instead of equality to speed things up a bit

.Actor[#Sam] := 3 <CR>

.Actor[#Joe] := 3. <CR>

Sam = Joa <CR>
0

.Actor[#Sam] := 'A' <CR>

.Actor[#Joe] := 'A' <CR>
Sam == Joe <CR>
0

Sam -= Joe <CR>
nil

There is another case where equivalence is especially important. In any language,
you ~ave to have unique symbols. For example, in the above examples, you don't want
to have two different Sam objects floating around, each referring to different data. You
want to know that when you say Sam, you mean the one and only Sam.

The class for which this is all relevant is the Symbol class (section 2.7.8). A Symbol
looks exactly like a string except that it has no spaces. In addition, a Symbol will have a
"#" tacked onto the front of it when it is being explicitly represented as a Symbol, i.e.
when you refer to an objecrs name rather than to the object itself (#Sam vs. Sam). At any
rate, whenever you refer to ari Actor symbol, you can be sure that Actor has checked to
see that it is unique. By definition, then, two different objects cannot have the same
name. Since this is true, you can compare two Symbol objects using equivalence, too.

Special tips on when to use equivalence instead of equality are found in the sections
on the ~levant classes. For now, you can use equality if you prefer.

2.1: Object Class 81

2.1.3.2 Class and Species of an Object

There are other basic properties associated with all objects. For example, every
object has a class:

claee(Actor) <CR>
Dictionary

because Actor is an instance of class Dictionary. Even a class has a class:

claee(Dictionary) <CR>
DictionaryClaee

because Dictionary is an instance of class DictionaryClaee (the only instance, to
be exact).

' Closely related to the idea of an object's class is an object's species. Many times you
want to create an object of the same general type as another object. However, sometimes
you want to send messages to the new collection that you just can't send to the old one.
In such cases, you can't just create a new object of the same class. You have to "fudge" a
little, and that's what specie• is for. In most cases, the species of an object is the same
as the class of the object. The only time you have to worry about the distinction is in

'-some of the descendants of class Collection (see section 2.7). For now, you can think
.• of it as another way of saying cl•••·

2.1.3.3 Size and Limit of Objects

Every object also has a size associated with it. The size does not refer to the object's
physical size but rather to the number of elements contained within the object. This is
obviously only useful for collections, where there are elements in the first place. For
example, when you type

aize(Actor) <CR>

the system returns a count of the number of items in the main Actor dictionary. If you
pass a non-collection to size, then you will get "O" as a result.

Whereas size always returns the current number of elements in an object, there
. also is a method called limit which returns the maximum number of elements allowed
)n that object. For some objects, limit will be a constant because instances of some
· classes have a fixed size (Array, for example). However, some objects have the ability

to grow and hence the limit may increase if you add more elements than you originally
allocated space for.

82 Chaptsr 2: Guids to ths Actor C/assss

2.1.3.4 Initializing Objects

In any computer program, initializing variables is one of the first things done. Actor
is no different, but a lot of the time you don't have to wony about it because whenever
you define a new object, the new method itself does a lot of the work. By this we mean
that new sets all of an objecrs data and instance variables to nil in the course of
creating the new object.

Initializing variables isn't always a simple matter of setting everything to nil,
however. Sometimes, initializing a more complex object means much more, such as
setting the object's instance variables a particular way. To handle these special cases,
there is a method called init which is executed automatically whenever a new object of
that class is created. If you have a class which has to be initialized in a special way, then
by all means define a new init method for that class. For a good example of an init
method of this type, see class So:r:tedCol.l.ection in the Browser. For most classes,
however, init is meaningless. In fact, the default init in class Object does
absolutely nothing and is provided just so that any object can respond to an init
message.

The convention in Actor is that most init methods take no parameters. Be on the
lookout, though, for those objects for which init requires extra parameters. For
example, init for class Rect needs to know how big to make the rectangle, so it
requires four parameters to define the comers.

The init method is extremely important for collections because they are among the
most complex objects in Actor and may not behave correctly if not properly initialized.
As a result, there is an informal rule for collection objects that every init method for a
collection object takes no parameters. This may seem picky, but it enables you to send
an init message with no parameters to any collection. In fact, Actor automatically
sends an init message to any collection when it is created. Thus, you can use the init
method to specify the initial state of any collection object.

Note that this only applies to a "real" collections. By this we mean that although
class Rect, for instance, is technically a collection, functionally it's not. As a result, the
init method for Rect objects takes parameters, as indeed it must (see above).

2.1.4 Displaying Objects

In most programming languages, you have almost as many output routines as you
do data types. However, in an object-oriented environment, you can have methods with
the same name do very different things because the system ensures that only the
appropriate methods work on the appropriate data. As a result, almost all of Actor's
output is handled by only five methods: print, printLine, printOn, ayaPrint,
and aysPrintOn.

· Central to understanding output in Actor is the concept of a stream. Stream is a
class i!! its own right and will be explained later (see section 2.8), but the concept is
relativeJy simple. A stream is just an arbitrary collection of objects with an associated
posJltQq. For example, a file i' just a collection of bytes 'J!,th an aSsod~ted file pointer.

2.1: Object Class 83

Outputting information is a simple matter of taking the information, converting it to a
stream, and sending the collection part of the stream to the active output window.

The methods ending in "On" deal directly with streams. Both print and
aysPrint, however, first create streams on the spot, call printOn and sysPrintOn,

~ respectively, and then send the collection to the current output window. In. other words,
'print and sysPrint are special cases of printOn and aysPrintOn. The

· printLina method is identical to print except that any subsequent output starts at
the beginning of the next line. Qt's equivalent to a writeln statement in Pascal or a
printf(" ... \n") statement in C.) The printLina method will not be included in the rest
of this discussion since it's only a special case of print.

OK, now we have a hazy idea of the difference between print and printOn, but
what about their "sys" counterparts? It's easier to define the difference with the help of a
few examples first. For simplicity's sake, we'll use print and sysPrint rather than
printOn and eyePrintOn because at the moment you don't have to know how to
create a stream. Just remember that behind the scenes, everything is being done with
stieams:

print("Ha11o") <CR>
Ba1lo

eyePrint("Ballo") <CR>
"Hallo"

print(l(l 2 3 4)) <CR>
1234

eyePrint(l(l 2 3 4)) <CR>
Array(l 2 3 4)

This should give you an idea of what's going on. While print outputs the contents
of whatever you give it, eyePrint outputs whatever you give it as the system "sees" it.
You also might think of syaPrint as printing the data as an object, rather than just the
contents of that object. You may notice that when Actor returns the result of a method
to the WorkSpace window, it does a syePrint on that object to show you what the
method returned.

Sometimes, you'll find that print/printOn and eyePrint/ sysPrintOn do
exactly the same thing. For example, both

/

print(Objact.methods);
and

eysPrint(Object.methods);

show the exact same thing, the Object class method dictionary. That's because
sometimes there is really no distinction between printing the contents of an object and
printing that object as the system sees it. These are usually cases where you wouldn't

84 Chapter 2: Guide to the Actor Classes

want to view the contents anyway. In the example above, you really aren't interested in
the contents of Object .methods (compiled code), but rather the method dictionary
itself with the names of all the methods.

However, there are cases where you do want to print the contents of an item but it
doesn't seem to work. This will usually happen, in fact, when you create a new class
and then try to print an instance of that class. Instead of printing the contents of your
new object, Actor will default to class Object's print instead. If you had an object of
class Stream, for instance, you might want to print its contents, i.e. the collection and
current position. However, if you try to print an instance of class Stream, instead you
will get:

<a Stream>

If you wanted to see what was inside a specific stream, all you would have to to is
write a new printOn method for class Stream. This goes for all new classes, as well.
The basic rule is that you redefine printOn for the new class. When you do this, all the
other output methods send a message to the new printon routine. For example, if
there isn't a sysPrintOn defined among the ancestors of the new class, the
sysPrlntOn in class Object will send a message to the printOn in the new class.

2.1.5 Error Handling Within Actor Programs

One of the hardest jobs as a programmer is to foresee every possible situation that
can produce an error. While that job will remain tedious, Actor makes your job a bit
easier by providing a general and powerful way to handle errors. In fact, the error
handling for your programs is just a generalized way of ''hooking" into the main Actor
compiler error handling mechanism. However, your error handling will have the
capability to be much more sophisticated.

The key to accessing Actor's error handling routines is a method called,
appropriately enough, error:

error(someObject,stackTop(),#item);

The receiver, someObject, is the object most appropriate to handle the error. A lot of
the time someObject will be self, which means if you are executing a method in class
Char, then self will be a Char, etc. This approach implies that you put error handling
routines for characters within Char, and so on. However, it may be more appropriate to
send the error message to an object other than self. Actor, for example, sends all
syntax error messages to the parser object regardless of what class's method the error
occurred in. The first parameter, stackTop () , is a method which returns a pointer to
the top of the Actor stack. This provides a way for you to reconstruct the events leading
to the ery-or (although most of you won't want to bother with this in your own routines).

2.1: Objsct Class 85

The only requirement for the second parameter, litem., is that it must be a valid Actor
symbol. The system first checks to see if there is a string in the dictionary at
ActorBrrora [litem] (i.e. ActorBrrora [litem] <> nil). Then, one of three
things will happen:

1. The system will first look for a method called item in the method dictionary
of aoma<>bject. If there is one, the string found above (if any) is passed to
item as a parameter, and then item is executed.

2. If no item method is found, but there was a string found, then the normal
Actor error window is placed on the screen with that string as the window's
title.

3. Failing the above, the Actor error window will appear with Actor
error: item as its title.

Of the three options, the first is preferable in most cases, because the other two place
the normal Actor error window on the screen. Although information about the runtime
stack is useful to you as a developer, in general you probably don't want users of your
program to see it.

Here's an example from the Actor system, normally activated when you try· to index
an invalid element of a collection:

error(aelf,atackTop(),lrangeBrror);

In this case ActorBrrora [lrange:a:rror] contains a string which more
adequately explains the error ("index out of range").

You can also simulate an error very easily using the third alternative:

error(aelf,atackTop(),lfakeBrror) <CR>

This causes the usual Actor error box to appear with the window title Actor
error: fakeBrror.

We have cheated a little bit and implied that you can use the above system for all
Actor errors. Thaf snot quite true, because only high level errors (which is to say, most
errors) can be handled this way. Very low level, primitive errors such as passing the
wrong number of arguments (parameters) to a method, have to be handled a bit less
elegantly. How to do this and a more in-depth discussion of the above ls found in
section 4.2.5.

86 Chapter 2: Gulde to the Actor Classes

2.1.6 System Methods

There are a few methods which don't really fit into any of the above categories.
That's l;>ecause they deal with "system" tasks such as copying objects and finding out
how much memory is left, etc. This section will explore these methods and give some
tips on how and when to use them. In some cases, the receiver of the method is
irrelevant. What's important is the function perfonned, and there really isn't any data
involved. An example of this is ataticRoom (), which will be described below. If you
don't specify a receiver, Actor will automatically insert a receiver of class Object to
satisfy the needs of the underlying code. This helps you unclutter your source a bit
when calling these methods.

2.1.6.1 Copying Objects

You might think that the concept of making a copy of something is quite
straightforward. Normally it is, but in computer languages which deal exclusively with
pointers, there are a few extra factors to consider. Actor is one of those languages (as are
Smalltalk and Usp, among others), so it's important to know what exactly is going on
when you make a "copy'' of something. There are actually three ways to make a copy of
an object. The first two are implemented in Actor, and the third will simply be
discussed.

The first type of copy is known as a shallow copy, and happens when two different
objects refer to the same data. In Actor, a shallow copy happens via the normal
assignment operator, :=. In the example below, we create an Array, set it equal to Sam,
and then shallowly copy Sam to Joe:

Actox[#Sam] := 1(10 20 30 40) <CR>
Actox[#Joe] := Sam <CR>

What's important to realize here is that both Sam and Joe now share the same data,
namelyArxay(lO 20 30 40). It'seasytounderstandthiswhenyourememberthat
everything in Actor is handled yia object pointers. This is just a case where two different
object pointers (the object pointers for Sam and Joe) point to the same thing. Thus, if
you change one object, you change the other object too:

Joe[l) := 25 <CR>
pxint(Sam) <CR>
Arxay(10 25 30 40)

As a rule, you should be careful when you use this method to copy an object. Whenever
you do use it, you run the risk of having two or more objects sharing the same data, each
of whom has full access to it. This phenomenon even has a special name, aliasing.

2.1: Object Class 87

Reading the above might lead you to think that any assignment statements could
cause aliasing. However, this doesn't happen-let's see why. For example, let's say you
have two numbers a and b.

b := a;
b := b*b+b;

You might expect the operations on b to affect a somehow, based on the above
discussion. However, the aliasing problem only crops up when an object has instance
variables or is a collection (or both) and numbers have neither. Your arithmetic
operations are safe! Operations with characters are safe, too.

The second type of copy is called a deep copy, and happens when a new variable does
not share the other's data but rather has separate copies of the other's instance variables
and data (if any). In Actor, a deep copy is implemented with the method copy. Note
~t this time there is no shared data between the two objects:

Actor[ISam] := 1(10 20 30 40) <CR>
Actor[IJoa] := copy(Sam) <CR>
Joa[l] :• 25 <CR>
print(Sam) <CR>
Array(lO 20 30 40)

print(Joa) <CR>
Array(lO 25 30 40)

Although this method is slower than a shallow copy, there is much less risk of altering
some other object's data accidentally. Note: in certain classes, copy takes more than one
parameter, but these exceptions will be explained in the relevant sections.

A deep copy works for relatively simple objects such as arrays of integers like the
one above or an atomic object such as a Point. However, what if an object's elements
are collections themselves, or even if the collections contain collections, etc.? In those
cases, aliasing crops up again. Here's an example. We are going to create an
OrderadCollaction of Array objects called S811L Then, we will copy it to a new
object, Joe. What we will find is that although Sam and Joe do not share data, their
elements do:

Actor[#Sam] := new(OrderadCollection,5) <CR>
add(Sam,#(1 1 1)) <CR>
add(Sam,#(2 2 2)) <CR>

/ add(Sam,#(3 3 3)) <CR>
Sam <CR>
Orderedeollaction(Array(l 1 1) Array(2 2 2) Array(3 3 3))

88 Chapter 2: Guide to the Actor Classes

Actor[#Joe] := copy(Sam) <CR>
Joe[l][2J := 3 <CR>
Sam <CR>
OrderedCollection(Array(l l 1) Array(2 2 3) Array(3 3 3))

Joe[2) := #(4 4 4) <CR>
Sam <CR>
OrderedCollection(Array(l l 1) Array(2 2 3) Array(3 3 3))

Note that the first element of Sam was changed when we changed the second
element of the first element of Joe. However, if we totally change one element of Joe,
Sam remains unchanged. You can see from this that a deep copy only goes one level
further in copying one object to another. If an element of a collection is also a collection,
the aliasing problem will crop up again.

The third type of copy is not implemented in Actor (for performance reasons) but
would provide protection against aliasing. The problem with copy in the above
example is that it doesn't check to see if the thing being copied is an atomic object or a
collection. Another copy which would physically copy all the way down until it knew
that atomic objects were being copied would do the trick. You might call something like
this an "atomic copy" or "deepest copy." At any rate, the point of all this is to realize
when aliasing can occur and to give some insights as to how to avoid it.

2.1.6.2 Tuples

What if you wanted to print a whole group of dissimilar objects? For example, let's
say you wanted to print a bunch of information about a person. You could do it like
this:

print ("Name : ") ;
printLine("Mary Smith");
print ("Age: ");
printLine(33);

And so on, ad nauseum. A logical question to ask is why anyone would even try to
do it that way in the first place. After all, you could put everything in one statement
with other languages such as C or Pascal. The answer is that from a strict object oriented
perspective, you might think you don't have a choice. What is happening in each of the
above statements is that you are telling each object ("Name: ",CR, 33, etc.) to print
itself. Every object does know how to print itself, but you can't put everything together
in one statement because a String doesn't know how to print an Integer or a Char,
an Integer can't print a String or a Char, and so on.

What we need here is a way to put everything in a packet and process the packet
instead. Actor lets you do this with the tuple method, which creates an Array on the
spot:

printLine(tuple("Nama: ","Mary Smith")) <CR>
printLine(tuple("Age: ",33)) <CR>
Name: Mary Smith
Age: 33

There is no practical limit to the number of objects you put into a tuple.

2.1: Object Class 89

Although tuple provides an easy way to handle this problem, it can be used in all
sorts of other places, too. Specifically, as you may have noticed from the example above,
what tuple really lets you do is send a variable number of parameters to any method,
including print. To accomplish this, all you have to do is define the method in
question for the Array class (or an ancestor, if you want).

To see why this is true, examine the above example. What is really happening here
is that we are sending a print message to an Array object created by tup,le. The
print in Array then sends a print message to all of its elements in order. You can see
the pattern, then. If you have a method defined for the elements of an Array, you just
write another method for the Array class (or, more generally, for class Collection) with
the same name and instantly you can, in effect, send a variable number of parameters to
the original method.

You may not have discovered this yet, but there's no obvious way to send more than
one object back from a method. However, tuple lets you do this very easily:

Atuple(objectl,object2, •..);

When you get this object back from the method, you can treat it as an Array to get
the values back again. For example, assume a method returns a two-element tuple.
Further, assume objectl was a temporary variable of the method called found and
object2 was a temporary variable called index. In other words, one of the lines of the
method looked like this:

Atuple(found,index);

Then, if a variable called new'l'uple is set equal to the result of this method, found
will be in new'l'uple [0] and index will be in new'l'uple [1].

If someone else was reading your code and saw references to new'l'uple (0),
however, it wouldn't be at all obvious what was going on. To remedy this problem, you
can use constants to index into the tuple:

#define roundl'lag 0;

90 Chapter 2: Guide to the Actor Classes

If you define such a constant, then neW'.ruple [l'oundl'lag] will refer to the variable
you want. For more complex cases of returning multiple values, you might want to
define a new class whose instance variables incorporate all of the values into a single
object.

2.1.6.3 Sending an Arbitrary Message

Unless you explicitly override it, Actor is a late-binding language. In this context,
this means that the exact action which occurs in response to a message is undefined until
runtime. This contrasts with an early-bound language such as C or Pascal in which the
variables and functions which work on them are matched together, or bound, at compile
time.

Late binding lets a given message result in the execution of different methods based
on the class of the object, but thus far the particular message sent has always been fixed
at compile time. However, there is a way to send an arbitrary message, too, as long as
you know how many parameters the message should have at compile time. The method
to do this is called perform, and used correctly can be extremely powerful. The general
syntax is as follows:

perfo:cm(receiver,parameterl,parameter2, ••• ,selector)

The receiver is the object which is to receive the message. 'lhe selector is a
Symbol giving the name of the method which is to be executed.

When selector is a constant, perfo:cm is just a variation on the normal way of
sending messages:

perfo:cm("Bello",#print) <CR>
Hello

Actor[#Sam) := 16 <CR>
perfo:cm(Sam,#sqrt) <CR> /* Square xoot */

'
However, the real power of perfo:cm becomes evident when selector is a

variable, too:

Actor[#Meth) := #sqrt <CR>
Sam := 16 <CR>
perfo:cm(Sam,Meth) <CR>

'
Meth := #print <CR>
perfo:cm(Sam,Meth) <CR>
16

Sam :• "Bello" <CR>
perform(Sam,Meth) <CR>
Bello

2. 1: Object Class 91

So far you haven't seen any complicated examples of perfoxm, such as when the
selector method requires parameters. A hypothetical example in which perform might
be used in this manner is if you had a object named Robot. The Robot knows how to
do certain things, such as move a particular distance forward, backward, left, or
right. If the Robot was to respond to keyboard input, where a user types "forward,10"
or something similar, in most other languages you would have a big job on your hands.
First you would have to parse the input, and then you would have to have a large "case"
type statement to handle all the possible inputs:

case Action of
forward: ...
backward: •..

endcase;

What's worse is that if you added a new action which the Robot could respond to, you
would have to recompile the case statement, at the very least.

In Actor, however, this sort of thing is simple. If you had a string "forward, 10" as
input, all you would have to do is strip off the "forward" part, convert it to a Symbol
(#forward), and send a message to the Robot via perfoxm:

inputStr := "forward";
distance := 10;
perfoxm(Robot,distance,asSymbol(inputSt:r));

And if you defined a new method for the Robot, that would work too because all
Actor cares about is that the method is defined at runtime.

As you learn the Actor system, you may think of a whole bunch of ways to exploit
perfonn. One possible use, in addition to the Robot type application described above,
is to have a collection of Symbol objects, and as long as each required the same number
of parameters, you could choose which Symbol to send as a message based on some
condition.

92 Chaptsr 2: Gulds to the Actor Classes

2.1.6.4 Miscellaneous

As you have discovered, Actor's Inspector is nonnally activated by highlighting
some text and then selecting '1nspect" from the Workspace menu. You can also activate
the Inspector by typing:

inspect (item) ;

where item is the object you want to inspect. For instance, if you have an object of class
SortedCollection which you wanted to look at, and the object is called Sam,. you
could inspect it by typing

inspect(Sam);

When you installed Actor, the MS-Windows initialization file WIN.INI was changed
to add special information that Actor needs when it loads and initiali7.eS. One of the
parameters added was

Static=n

where n is the number of kilobytes to allocate for Actor's static data area. Actor's
dynamic data area is constantly "vacuumed" for garbage, so you generally don't have to
worry about it. However, the static area is the place where your compiled code resides,
and the garbage collector doesn't touch it. As a result, you might want to know how
much room is left in your static area. All you have to do is type

ataticRoom() <CR>

and Actor will return how much many bytes you have left to play with (e.g. 10658L
bytes, where L signifies a long integer). Note that you can also obtain this information
by choosing the "Show Room!" option on the Workspace menu.

You can also run Actor's static garbage collector by typing

cleanup () <CR>

This will reclaim the memory used by unneeded methods so that you can use it again.
However, remember that to do this, the static garbage collector has to copy all of static
memory over to dynamic memory. There is no way for it to tell before it tries that there
is enough dynamic memory to handle the transfer, and if there isn't enough room, then
Actor will tell you so and exit. Make sure that you have saved your work before you try
sending this message.

'\

2.1: Object Class 93

2.1.7 Much Ado About Nothing: Using NilClass

We spent quite a bit of time discussing the universal qualities of objects back in
section 2.1. It was there that you were introduced to the only object in the Actor system
which is logically false-ni1. As we mentioned before, nil is the only instance of
HilClaaa. Since HilClaaa only has one instance, you might think it's a formal class
with little or no use.

However, it turns out that HilClaaa is quite important. An Actor program, as you
· know, is just a sequence of messages sent from objects to other objects. An object

receives the message and will respond to it, if the class of the object or an ancestor has
the correct method in its method dictionary.

As you also know, every object when first created is initialized to nil, or if it is a
collection, its elements are initialized to nil. With all this in mind, what would happen
if you tried to obtain the absolute value of an element of an Array object by doing the
f~llowing?

Actor[fSam.] := new(Array, 10) <CR>
aba(Sam.[C]) <CR> /* absolute value */

You wouldn't get zero, as you might expect. You would get an error dialog box
saying "nil does not understand abs". That's because although Sam[4) might at some
time be an :Ent, if you don't initialize it, it's still nil. The method dictionary in
HilC1aaa doesn't have aba defined, and neither does class Object, the ancestor of
Hi1Claaa, so you get the error dialog.

This will happen whenever an uninitialized object responds to a message. What can
you do about it? There are a couple of things, depending on the situation, but there are
no hard and fast rules. An obvious and recommended solution is to initialize objects
whenever appropriate. In other cases, however, nil is an acceptable value in an object,
so the best thing to do is to use an if statement to "protect" the message:

if (Sam)
then aba(Sam);
end.if;

As a shortcut, you can define the method in HilClaaa, and then whenever nil is
sent a message it can respond to it. You can make the method for HilClasa do
anything you want, but usually it will just do nothing-a "dummy" method. There are a
number of examples of this in the Actor system, as you can verify by looking at the
methods of HilClaaa with the Browser. This technique can result in a considerable
code savings over using an if statement in many different places.

94 Chapter 2: Gulde to the Actor Classes

2.2 The Magnitude Class

· Magnitude is a formal class, but nevertheless it serves a very important purpose in
that it unifies two major classes which otherwise would remain separate. Basically
Magnitude serves as the parent for any class whose objects have some sort of natural
order. If objects of a class have natural order, then it follows that each object has a
magnitude associated with it relative to others in its class.

That probably sounds a bit confusing, but it's just a more formal way of stating a
concept you have been familiar with since childhood. For example, the number 5 has a
magnitude associated with it, as does the number 6. Intuitively you know that 5 is less
than 6, but why? It's simple-the magnitude of a 5 object is "less than" the magnitude of
6. Not surprisingly, then, the part of Actor which handles everything to do with
numbers is a descendant of Magnitude. Characters also have magnitude associated
with them, as a consequence of their ASCII values. For instance, 'a' is less than 'b',
because 'b' has a greater magnitude.

Admittedly, the idea of magnitude may be a bit confusing, mostly because it's
putting a name to something that is so intuitive. However, abstracting the idea of
magnitude from characters and numbers means that both Char and Number objects can
use the same methods from class Magnitude. ·

For example, two of the most common procedures or functions defined by
programmers are ma:z and min. Although simple to write, most systems leave them out.
Actor provides them, and even uses them extensively itself, especially in the text editing
methods. Here are some examples: ·

Actor[#Sam.] :• 14 <CR>
Actor[#Joe] :• -12 <CR>
ma:z(Sam,Joe) <CR>
14
min(Sam,Joe) <CR>
-12

Sam :• 'a' <CR>
Joe := 'h' <CR>
ma:z(Sam,Joe) <CR>
'h'

Another method defined in Magnitude is between. The between method takes
two arguments and if the receiver is in the range specified by the arguments (inclusive),
between returns logical true. Some examples:

Object

Magnitude

l
Number Char

J
Int Long Real

Figure 2-3: Magnitude Class Tree

betwean(3,0,100) <CR>
0
betwaan(3,3,4) <CR>
0
betwean(l,15,100) <CR>
nil.

2.3 Using Characters: The Char Class

2.2: Magnitude Class 95

The first descendant of Magnitude we will discuss is the Char class. As you may
know from programming in other languages, you don't often use characters directly.
When you do use them, it's usually in the context of an element of a String or other
collection. To distinguish Char objects from String objects of length one, they have a
special notation. You can tell the difference because Char objects are surrounded by
single quotes, such as' A',' d', '4', etc. With this convention, you can tell the
difference easily, i.e. "A" <> 'A'·, "d" <> 'd', and so on. However, when you study
class String (section 2.7.7), remember that the methods below can be used by
individual elements of String objects.

2.3.1 Basic Properties

There are only a few things to remember about objects of class Char. The first is
almost trivial and concerns comparing two characters with each other. As you would
expect, comparisons are done on the basis of each character's ASCII value:

'A' < 'a' <CR>
0

'a' > 'c' <CR>
nil.

The second item to remember concerns the distin<;tion between equality and
equivalence in Actor (section 2.1.3.t). If you recall, one of the classes where the
distinction made a difference was in class Char, because it's one of the classes where the
data is actually embedded in an object pointer. Since this is true, you can use the faster
equivalence operator instead of the slower equality operator(= and =,respectively) to
compare two characters with each other:

Actor[fSam) := 'H' <CR>
Actor[IJoa] := 'H' <CR>
Sam = Joa <CR>
0

96 Chapter 2: Guide to the Actor Classes

Sam== Joe <CR>
0

Note that this is another reason to distinguish between String objects of length one
and Char objects: (

Acto:r[#Sam] := "8" <CR>
Acto:r[#Joe] := "B" <CR>
Sam == Joe <CR>
nil

2.3.2 Conversion Methods

There are times when you want to represent a character as an object of another class.
Actor provides three methods in the Char class for this purpose, as Int, as String, and
asSymbol. You can generally tell from their names what kinds of objects are returned.
Here are some examples: ·

asint(' ') <CR>
32

asSt:ring('A') <CR>
"A"

asSymbol('a') <CR>
la

There is another handy method which doesn't really belong with the above three
methods. It computes the decimal representation of a character, given an arbitrary base:

/* What number would the character 'r' :represent
in base 16? */

asDigit('F',16) <CR>
15

asDigit('M',27) <CR>
22

asDigit('z',36) <CR>
35

asDigit('r',10) <CR>
nil

2.3: Char Class 97

Notice that the method is not case sensitive, and that you can use it for bases all the
way up to 36 (10 digits + 26 letters).

The last conversion method to discuss is the asOppexCase method. It converts any
character in the range 'a' to 'r, inclusive, to its upper case equivalent. Any other
character will be unaffected:

aslJppexCaae('c') <CR>
'C'
aalJppexCase(''') <CR>
',,
aslJppexCaae('C') <CR>
'C'

U.3 Grab Bag

There are a few methods which don't fit into either of the above two categories.
Nonetheless, you may find them useful. The method isRexDigit, for instance, returns
logical true if the character you give it is a valid hexadecimal digit (i.e. in the range 'a' -'f
or'A'-'F):

isHezDigit('b') <CR>
0

isHezDigit('K') <CR>
nil

Another handy method, atringOf, generates a string containing num elements of
the Char you give it:

atringOf('a',10) <CR>
"aaaaaaaaaa"

This is useful for, among other things, indenting text. For example, in the Actor
Browser, you notice that every class name is indented based on how far descended from
class Object it is. The Browser uses atringOf with spaces (' ') to properly indent each
class.

98 Chapter 2: Guide to the Actor Classes

2.4 Billionths and Billions: The Number Classes

This section will not only explain the three classes used to represent numbers and
their parent class, Number, but will also explain a bit about arithmetic operations in
Actor. We will start out by discussing the three classes which descend from Number:
Int, Long, and Real. Why do we bother with three of them? After all, the abstract
concept of a number is no doubt very familiar. However, just like other computer
languages, Actor needs to know what class a number is so that it can reserve the proper
amount of space for it. For example, an Int requires only 15 bits, while a Long requires
32 bits.

2.4.1 The Three Number Classes

This section will explain some of the relevant facts about each numeric class, and a
bit about how conflicts among them are resolved. The first descendant of Number is the
Int class. Any integer which can be represented in 15 bits can be represented as an
Int. Since this includes negative integers too, this means any integer in the range -214 to
214-1 inclusive (-16384 to 16383). The reason this range is somewhat smaller than what
you may be used to in other languages is that an Actor Int is maintained in the 16-bit
object pointer itself and only 15 bits are available for the integer data.

A Long is more flexible but obviously takes up more memory. You can tell you are
working with a long integer because it has an 'L' tacked onto the end of it (no spaces),
e.g. 3L, 438L, -3486L. When Actor sysPrints one, the 'L' will always be in upper case,
but when you are writing programs or communicating with Actor directly, it can be
either in upper or lower case. Since a Long has 32 bits to work with, it can represent
integers in the range-231 to -231-1 inclusive (-2,147,483,648 to 2,147,483,647).

Any large integer which isn't explicitly represented as a Long will be automatically
converted:

21040 <CR>
21040L

Both Int and Long numbers may also be written in hexadecimal format. The way
to do this follows the C format where the digits of any hex number are preceeded by
"Ox" (a zero followed by a lowercase letter x). A hexadecimal Long number is followed
by an 'L', as usual:

OxCF3
OxFFD89DL

A Real is designed for very large or very small numbers, or any number with a
fractional part. A Real number is always represented in scientific notation, such as
1.2847E+083, which means 1.2847 times 1083. If you don't remember scientific notation,
it's just a convention where every number is represented as a mantissa between 1.0 and

2.4: Number Classes 99

10.0 (including 1.0 but not 10.0) multiplied by a power of 10. Negative exponents
represent fractions; 0.243 would be 2.43E-001, for example. Actor represents its Real
numbers in 8 bytes, the same way that Microsoft C represents its double type. As such,
you can represent numbers from 1.7E-308 to 1.7E+308 (or their negatives) with Actor

,, Real objects. ·
Class Number enables Actor to bend the rules a bit when doing arithmetic

operations. For example, an Int knows how to add itself to another Int. A Real
knows how to add itself to another Real. Neither knows how to add the other to itself,
however. This is unfortunate because mixed-mode arithmetic, as computer gurus call it, is
very common in everyday life. For instance, if you say 3 + 4.568, you want to get 7.568
back. However, technically you should have typed 3.0 + 4.568, although it is clear that's
what you meant. In addition, you want to say sin (4), although technically a sin
message is only defined for Real objects. Int/Long and Long/Real operations
should likewise be trouble-free.

. This is not a problem unique to Actor; all programming languages have to devise
some conventions for resolving conflicts between data types. The difference is that in
most languages, the mechanism for resolving conflicts is hidden, whereas in Actor it's
visible: the Humber class. It exists to ensure that semantically correct arithmetic
operations proceed smoothly without nitpicky technicalities getting in the way. This
process of resolving conflicts in mixed-mode arithmetic is called coercion, and a section
below explains the process in a bit more detail.

2.4.2 Basic Operators

First and foremost, every number object can respond to the four universal arithmetic
operations: addition, subtraction, multiplication, and division. In Actor, these
operations are represented by the +, -, *,and I operators, respectively. What you
may not notice is that these seemingly innocuous operators are actually methods, too.
However, they don't look like methods because of their infix format (a + b instead of
+(a, b)). The whole precedence and infix notation scheme will be discussed in the next
section. For now, just realize that each operator you will read about in this section is a
normal Actor method, although it may not look like one at first.

The meanings of +, -, and* should be obvious, but there could be some confusion
regarding division. Actor does integer division with integers; i.e. 5/3 is 1 (the
remainder is discarded). If either of the numbers is a Real, however, Actor treats
everything as a Real arid the answer reflects that fact. Related to division is the
modulus operation, mod, which is only defined for integers. The answer to a mod b is
the remainder when a is divided by b. For example:

5 mod 3 <CR>
2 /* 5/3 is 1 with remainder 2 */

1 oo Chapter 2: Guide to the Actor Classes

2.4.3 Precedence and the InfixOps MethodDictionary

As you know, almost all Act~r messages are set by specifying the method name,
followed by the receiver and any arguments in parentheses. However, many of the
arithmetic messages (and some others, too) are not sent that way at all. For instance, a
+ b is a valid message, but the +appears between the receiver and the argument (don't
worry about which is which for now). Such an operator or method is said to be in infix
format, and one of the beauties of Actor is that you can make ANY one-argument
method an infix method!

The heart of it all is a special MethodDictionazy called Infix<>ps. You haven't
learned about MethodDictionazy objects yet, but there isn't much you have to know,
at least for our purposes here. All you have to remember is that it's a special kind of
collection where each element consists of a key and the object associated with that key.
Infiz<>pa has method names as keys, just like almost all MethodDictionazy objects,
but its values contain something new. Each MethodDictionazy entry contains the
precedence associated with that operator, a concept which you may recall from high
school arithmetic. Precedence just states the rules that specify which operations get
done before others. A higher precedence means the operation gets done before another
operation.

Without precedence rules, infix arithmetic expressions are ambiguous; for example,
is 3+5•6 equal to 48 or 337 If you do the addition first, it's 48, otherwise it's 33.
(Incidentally, only infix expressions suffer from ambiguity without precedence rules.
The other two ways of representing expressions, prefix and postfix, do not. However,
infix expressions are much more intuitive to almost everyone, so it's worth the extra
work.)

To eliminate ambiguity, we could put explicit parentheses around everything, but
that gets very tedious (some other object-oriented languages require this). The solution
is to assign precedence to operators so that the order of computation is clear. For
example, multiplication has a higher precedence than addition, so the multiplication is
done before the addition, and hence the right answer is 33 for the above example. Equal
precedence means that expressions are evaluated from right to left, and precedence is
ALWAYS overridden by explicit parentheses. For example, if we did want the above
expression to equal 48, we would say (3+5)•8.

Here's a list of the precedences for the operators (methods) in the Actor system:

Operator Precedence
and,or,zor
-, =, , <>, <, >, <==, >==
bitAnd, bitOr, bitXor
+, -
in, /, *,mod
**

5
6
7
8
9
10

2.4: NumberC/asses 101

In addition, operators of equal precedence right-associate. In English this means that
the right part of an expression will be evaluated before the left, if the precedences of the
operators involved are all the same. For example,

a/b/c

will be evaluated as

a/(b/c)

Now, the neat thing is that all you have to do to make a method an infix method is
to add the name of the method to Infi:xOps, along with its precedence! For example,
let's say you had a method which you wanted to call bo:x, that is used as follows:

:x bo:x y • :x*y*(:x+y)

Define the precedence of bo:x to be the same as that for division and multiplication, 9.
Then, add the name of this (yet undefined) box method to J:nfi:xOps:

add(Infi:xOps,#bo:x,9);

From that point onward, any method by the name of bo:x for any class will be
invoked in infix fashion (and only in infix). Of course, all you've done is assign a
precedence for bo:x; you haven't actually defined the method. Now, though, thars easy:

Def bo:x(self,:x)
{ A(z*self*(:x+self));
}

Note that the object to the right of the infix method, y, is actually the object sent the
message. For a method such ~s bo:x, this is irrelevant, because :x box y is the same as y
bo:x :x. (Math fiends would say that bo:x is a commutative operation.) However, for a
method such as I or mod where order is important, this fact is significant. For example,
if I wasn't a primitive, its header would look like this:

Def /(self,a)

This would mean that if you say a/b, the I message is sent to b with a as an argument.
Now, to see how powerful this approach is, let's look at a practical example. What if

you wanted to write a method which added two files together (concatenated one to
another)? In other languages, you would have to write a procedure called
FileConcatenate or some such. In Actor, you would call it +,which is what you really
mean in the first place. Then you could say fl + £2 and the files would be

102 Chapter 2: Guide to the Actor Classes

concatenated! Of course, this is a case where a+b is not the same as b+a, so you would
have to remember this when yo~ wrote it. Nevertheless, this approach to operators
gives everything a certain elegance in Actor.

2.4.4 Other Arithmetic Methods

There are a whole bunch of miscellaneous methods which don't exactly fit into
precise categories, so this section will serve as a "grab bag" of arithmetic methods.

The absolute value of a number is easily obtained with the abs method:

abs(-48) <CR>
48
abs(32L) <CR>
32L

Actor's random number generator is accessed by sending an integer a random.
message. When you send a random. message to an integer n, Actor will return a
random integer in the range from 0 to n-1, inclusive:

random.(13) <CR>
8

/* Of course, you probably won't get
the same result printed here. */

Actor provides the basic real number routines from which you can derive more
complicated routines if you desire. Here's a list of the scientific Real methods which
are currently defined:

exp(x)
log(x)
pwr(y,x)
sqrt(x)
cos (x)
sin(x)
tan(x)
arcTan(x)
degToRad(x)
radToDeg(x)

/* Exponential of x, ex */
/* Natural logarithm of x (base e) */
/* Another way of saying x**y */
/* Square root of x */
/* Cosine of x (x in radians) */
I* Sine of x (x in radians) */
/* Tangent of x (x in radians) */
/* Arctangent, Tan-l(x) */
/* Converts degrees to radians */
/* Converts radians to degrees */

2.4.5 Manipulating Bits and Bytes

One of the advantages of using a high level language is that you don't have to worry
much about bits and bytes. And no doubt you can be a successful Actor programmer
without ever dealing with the rutty-gritty details. However, when you need to access

2.4: Number Classes 103

things at that level, not being able to is crippling. As a result, Actor provides a host of
low-level methods designed to let you twiddle bits to your heart's content.

One useful group of methods in this category is the bitwise logical operators. They
enable you to take two numbers and perform a given logical operation (and, or, or
exclusive or) on each bit of a number at a time. For instance, the decimal number 5 is
101 in binary, and 12 is 1100. Keeping that in mind, here's some examples of bitAnd,
~itOr, and bitXor in action:

5 bitAnd 12 <CR> /* 0101 AND 1100 ia 0100 (4) */

" 5 bitOr"l.2 <CR> /* 0101 OR 1100 ia 1101 (13) */
13
5 bitXor 12 <CR> /* 0101 XOR 1100 ia 1001 (9) */
9

· There are methods to manipulate things on the word (two bytes) level, too. For
example, Actor has two methods to manipulate :Int and Long integers at this level.
Given an integer argument, high and low return the high and low order words of a
four byte integer, respectively. For a,n :Int, low returns aelf, and high returns 0,
because there is no high order word of an :Int. However, for a Long the results are a bit
more interesting, as you might expect.

For one thing, don't be surprised if when you send a low or high message to a
Long and you get back a negative number. This is because the word is sign-extended to
create a new Long. If the high bit in the word happened to be 1, the result comes out
negative.

As we mentioned above, a Long can represent any integer which will fit in 32 bits.
Not entirely coincidentally, there is a very significant category of numbers which are
represented as 32 bit numbers: the addresses of the computer's memory. To exploit this
fact, Actor provides the word.At method which is similar to the peek statement in BASIC
or accessing the MemW array in Turbo Pascal. The high order two bytes of the Long
you send word.At will be treated as the segment of the address, and the low order two
bytes will be the offset. Here are some examples (remember that the numbers that
word.At returns will not be the same if you try this yourselO:

word.At(Ox345FL) <CR>
34818L

/* The word at 0000:345F */

aaString(34818L,16) <CR> /* Convert to hex
"8802"

*I

word.At(Oxffd3eL) <CR>
3643L

/* The word at OOOF:n>3E */
I* E3B in hex */

Note the use of the aaString method. It will take any number and a base, and then
return that number represented as a String object in the given base.

104 Chapter 2: Gulde to the Actor Classes

2.4.6 Mixed-Mode Arithmetic and Coercion

As we alluded to above, one 'of the main purposes of the Humber class is to handle
the case when messages like 4.4-3 are sent. This type of thing is called mixed-mode
arithmetic, and as we mentioned above, it happens all the time. If you were doing the
above calculation yourself, you would mentally convert the 3 to 3.0 and then proceed
with the calculation.

In computing the answer to the above problem, most people would convert the 3 to
3.0 rather than convert the 4.4 to 4. That's because the latter process is a valid course of
action which would lead to a valid answer. The reason is that 4.4 holds more
information than 4, and if the decimal was dropped, information would be lost.

Actor formalizes the concept of "holds more information" by defining an object's
generality. For example, we say that Real objects are more "general" than Long objects,
which are in turn more "general" than Int objects. (Generality is not related to the class
inheritance scheme.) Only certain kinds of numbers can be represented as Int objects.
Those numbers, and many others, can be represented as Long objects. Real objects can
represent any number that Int and Long objects can, plus a bunch more. Complex
numbers, which are not implemented in Actor, would have an even higher generality.
At any rate, you can see generality in action by typing the following:

generality(S.4) <CR>
2
generality(SL) <CR>
1
generality(S) <CR>
0

All Real objects will respond the same way as 5 • 4 did, and all Long and Int objects
will respond the way SL and 5 did, respectively. To see why, examine the generality
methods for Real, Int, and Long.

Whenever Actor sees a mixed-mode arithmetic expression such as 4.4-3, it examines
both numbers to see which has the highest generality. The object with the lowest
generality (in this case, 3) is converted, or coerced, to an instance of the class with the
highest generality, and the arithmetic operation proceeds. Most of the methods in class
Number exist to handle the coercion required for mixed-mode arithmetic.

2.5 Using the Association Class

In high school algebra you may remember learning the concept of an "ordered
pair." The idea is simple: there are two items, and the second one is always "associated
with" the first Usually this concept was applied to ordered pairs of numbers, such as
(2,4) or (5,6). The notation is arbitrary; ordered pairs can also be expressed as 2->4 or 5-
>6.

2.5: Association Class 105

Although these ordered pairs were generally only explained in terms of numbers, of
course the concept is much more general. You can have an association between any two
things, such as a dog and his master:

Rover->Mr. Smith

In Actor, there is a special construct designed to implement this concept of an "ordered
pair," and as you might guess by the section heading, this construct is known as an
Association. You can think of it like this:

Key-> Value

key is the first item; value is the second item, the one "associated with" the first.
The nice thing about Association objects is that you can have any two objects

a~ated with each other. Of course you can have the dog->master example, but the
true power of Association objects is revealed when you want to associate two
complex objects. For example, you can have an association between a student's name
and his test scores:

Nark->Array(80 80 75 90 44)

Since an object of class Association is just a relationship between two objects, you
can have just about any two things you want be associated with each other.

2.5.1 Accessing an Association

The init method is probably the only method you'll have to worry about when using
an object of class Association. The syntax is as follows:

init(associationObject,key,value)

For instance, the following code will make a new object called Sam representing the
ordered pair (3,5):

Actor[#Sam) := new(Aasociation) <CR>
init(Sam,3,5) <CR>
print(Sam) <CR>
3->5

106 Chapter 2: Guide to the Actor Classes

For the more complicated example above, the code is basically the same:
'

Actor[#Student] := new(Aasociation) <CR>
init(Student,#Ma:r:k,#(80 80 75 90 44)) <CR>
p:r:int(Student) <CR>
Mark->Array(80 80 75 90 44)

What if you tried the following code:

Actor[#Sam] := new(Aasociation) <CR>
init (Sam, "Rover", "Mr. Smith") <CR>
init(Sam,"Rover","Mr. Jones") <CR>

What would happen? The answer is, not much. As you might expect, the only
result is that "Mr. Smith" is no longer associated with ''Rover". "Rover'' is now associated
with "Mr. Jones," as if "Mr. Smith" had never been associated with ''Rover'' at all.

One final note: much of the time you won't be working with instances of class
Association individually. Often you'll find them grouped together in a class called
Dictionary. However, all the collections will be discussed at length later on. Just
remember that this isn't the last you'll see of class Association!

' 2.6 Using Classes as Objects: The Behavior Class

Behavior is a high-level, abstract class which Actor uses behind the scenes a lot.
Basically, Behavior is the place where all methods that treat classes as objects are
placed. For example, to create a new object you usually say new (someClass). As
always, you are sending a message to an object, so you have to treat the class as an
object. The new method is located in class Behavior or one of its descendants,
executed, and an instance of someClass is created.

The Behavior class contains methods to implement class inheritance, too, as well
as some other miscellaneous tasks. Some of this is pretty metaphysical material, and
NOf IN ANY WAY necessary for understanding the rest of Actor. Nevertheless,
although you can probably safely ignore some of the theoretical material, you should
still study this section because there are some handy methods found here. In addition,
you may find some of the theory quite fascinating.

2.6.1 Comparing Classes With Each Other

If you look at the method dictionary for class Behavior, you will find the two
methods< (less than) and > (greater than). Since the idea of one class being greater or
less than another class could be interpreted a couple of different ways, this short section
will explain the Actor convention for comparison between classes.

2.6: Behavior Class 107

The convention is relatively simple. Oass A is considered greater than class B if the
name of class A is alphabetically greater than the name of class B. In other words, it's a
simple alphabetical comparison between class names:

Association < Behavior <CR>
0

Association > Behavior <CR>
nil

Collection < Association <CR>
nil

Collection > ... sociation <CR>
0

In case you might be wondering why anyone would ever use these methods, they
are included because in the Browser and elsewhere we use an alphabetically sorted list
of classes. In general, any class whose instances might be placed in a
SortedCollection should either implement or inherit the methods >, < and -.

2.6.2 Creating New Objects

There are three methods which know how to create objects in Actor. The first
method, inherit, is used to create a new class. The second method, new, is used to
create atomic objects (see section 2.1.33). The third method, variableNew, is used to
create objects which are collections of atoms. Since class inheritance is the key to object
oriented programming, we'll start with the method to create new classes, inherit. Its
syntax is straightforward:

inherit(ancestorClass,
lclassNama,
l(ivarl ivar2 .•.),
nil,
nil);

The receiver, ancestorClass, is just the class you want your new class to directly
descend from. The second parameter, #classNama, is the name of your new class. The
is required because the name of an object is actually a symbol, and what you are doing
here is giving it a name. Next, there is an array of instance variables unique to the new
class. There can be any number of them, and they can hold objects of arbitrary class.
Instance variables can hold objects of classes that haven't even been defined yet; you can
even have an instance variable hold an object of the class you're defining!

108 Chapter 2: Guide to the Actor Classes

The last two inherit arguments are always nil; the Browser uses those items
internally.

For a practical example, let's say we wanted a new class which represented a three
dimensional point. Since we already have a Point class for two-dimensional points,
we'll make our new class descend from Point. Point already has two instance
variables, :a: and y. All we have to do is add another example variable for the third
coordinate, z. The inherit statement for this would be:

inherit(Point,1Point3D,l(z),nil,nil);

Most of the time, however, you won't be creating new classes. Usually, you will be
creating other kinds of objects, namely instances of classes such as File, Window, and
so on. The method used for creating this sort of object is called new. It might seem odd
to see new in class Behavior, but it really does make sense. Consider the syntax of the
new method (for atomic objects only):

new(classHame);

You send a new message to a class (e.g. Point, Char, etc.), and a class itself is an
Object. Since Behavior is the place where messages to classes are located, that's
where the new method is found.

For non-atomic objects such as collections, new objects are actually created with
variableHew. This method differs from new in that it takes not only the class' name,
but also the number of elements to allocate. You won't find too many references to
variableHew per se because we have designed the new method for non-atomic objects
to use variableNew instead. As a result, the new method for collection objects will
take one argument. This means for all practical purposes you can forget that
variableHew exists because on the surface, it looks like non-atomic objects are created
with the same new as that for atomic objects, but with an added parameter. The thing to
know is that the task of creating non-atomic objects is actually done by variableHew in
disguise.

2.6.3 Traversing the Class Tree

So far we've mentioned the class tree and how important it is. The tree is not a
physical object, but rather a concept to convey the inheritance scheme. Nonetheless,
although the tree is not a physical object, Actor needs methods which know how to
exploit the class hierarchy, and this section explains these methods.

You already know that in object-oriented programming, you can make a new class
inherit methods and instance variables from its ancestors. Unfortunately, to those who
don't know what's going on, the whole inheritance scheme can seem like a bunch of
hocus-pocus.

2.6: Behavior Class 109

Of course, there's nothing magic about it. If the class in question doesn't have what
is needed, then the ancestor is searched, and so on up the family tree. Since this
traversing the class tree is so prevalent, Actor has a rich set of methods to utilize the
class tree. And since the objects on the class tree are classes, and class Behavior deals
with classes as objects, this is where you'll find them.

As you've probably guessed, most of the traversals of the class tree are in the
"upward" direction. By "upward" we mean starting with the current class and visiting
the ancestors of that class, all the way to class Objec~ if need be. As a result, there are
more methods which deal with a class's ancestors than methods dealing with a class's
descendants.

2.6.3.1 Exploring Ancestors of a Class

The simplest method in this category is isAncestor. It's just a boolean method
which takes two class names and returns true if the parameter is an ancestor of the
receiver.

isAncestor(Object,Array) <CR>
nil

isAncestor(Array,Collection) <CR>
Collection

Note that iaAncestor will return the second parameter if it is indeed an ancestor of the
first. In addition, from the second example you can see that isAnceator will work
even if the second parameter is not the immediate ancestor of the first.

If you want to simply find out who the ancestors of a given class are, in inheritance
order, you can use the method ancestors:

anceatora(Behavior) <CR>
OrderedCollection(Behavior Object)

The method ancestors is basically a "front end" for another, more general method
called addAncestors. This more general method takes two parameters: a class and a
collection of some sort. It then travels up the class tree, adding the name of the class at
each level to the collection, until it reaches class Object. Although the type of
collection is mostly irrelevant, it must be able to respond to the add message with a
single parameter. The following code, for example, shows how to return a
SortedCollection of the ancestors of class Int, assuming the SortedCollection
object aColl has already been created:

addAncestors(Int,aColl) <CR>
SortedCollection(Int Magnitude Number Object)

11 o Chapter 2: Guide to the Actor Classes

To see why ancestors is a "front end" for add.Ancestors, look at the code for
ancestors in the Browser. You'll see that all ancestors does is create an
OrderedCollection, call add.Ancestors to fill up the Ordered.Collection, and
return it. Using add.Ancestors gives you the greater flexibility of using any collection
that responds to add rather than requiring an object of class OrderedCollection.

To retrieve a class's instance variables, there is method similar to add.Ancestors
called add.Variables. It travels up the class tree too, except lt collects instance
variables rather than the names of ancestors. For instance, using the Point3D class
defined above, and assuming we have an object Sam of type OrderedCollection:

addVariables(Point3D,Sam.) <CR>
OrderedCollection(#z ly lz)

The z came from Point3D itself; the z and y came from the immediate ancestor of
Point3D, Point.

2.6.3.2 Exploring Descendants of a Class

The main method used for traversing the descendants of a given class is called
descendantsDo. Its name is self-explanatory, because it provides a way to "do" over
the descendants of a class. The usual do method does not work within Behavior (not
surprisingly, it is undefined to "traverse" a class) but this specialized do visits all the
descendants of a class. The syntax is as follows:

descendantsDo(aClass,aDictionary,twoArgBlock,level);

The receiver, aClass, is any class name, i.e. Object, Behavior, Collection, etc.
The first parameter is aDictionary, an object of class Dictionary which is in a
specialized format returned by a method called buildClassLists. Since we haven't
explained class Dictionary yet, it's a bit premature to tell you the format of this
dictionary, so don't worry about it just yet. The second parameter is a two argument
block, where the first argument holds the name of a class during execution of the block
and the second is for the current level (the same as the level in the main
descendantsDo block, explained next). The level represents the number to start
counting at. If level is 0, aClass will be at level O; if level is 1, aClass is assumed
to be at level 1. The loop traverses the class tree recursively, and each time the loop
visits a descendant of the class it's currently on, level is incremented by one. In other
words, level will always represent how far the current class has descended from
aClass.

2.6: Behavior Class 111

The following code will print the names of all the classes descending from window
including their level:

descendantsDo(Window,
buildClassLists(Actor),
(using(cls,lev)
printLine(tuple(cls,": ",lev));

),0) <CR>
Window: 0
PopupWindow: 1
'!'oolWindow: 2
Browser: 3
Inspector: 3
'!'ext Window: 1
BditWindow: 2
WorkBdit: 3
BrowBdit: 4
Workspace: 4
WorkWindow: 2

If you specify a level of 1 instead, the counting will start at 1 instead of 0, and all the
numbers printed above would be one greater. Compare this to the class tree to see a
graphical representation of the same thing.

The descendants method is like the ancestors method above, except that it
returns an OrderedCollection of the descendants of a class. For example:

descendants(Humber) <CR>
OrderedCollection(Humber Int Long Real)

This message is particularly handy when you want to browse just a few classes
rather than all of the classes in the Actor system. For example, you can say

browse(descendants(Humber)) <CR>

and a Browser with the above four classes would pop up. It loads quite a bit faster than
a Browser from the Workspace menu bar, because there are fewer classes. Making a
Browser by clicking on the menu bar is the same as typing:

browse(descendants(Object)) <CR>

112 Chapter 2: Guide to the Actor Classes

2.7 Using Collections of Objects: The Collection Class

Class Collection is probably the richest part of the class tree. Its descendants
comprise any data structure which contains a group of other objects (called elements of
the collection). The concept of Collection is almost too simple to explain in other
words because a Collection is just that: a collection of other objects. Mastering the
use of class Collection is half the battle of mastering Actor itself. The situation is the
same in learning a procedural language such as Pascal, although usually it's not thought
of in those terms. Mastering the power of any language lies in mastering the data
structures that it provides for you, and Actor is no different!

As was the case with class Object, you won't be working directly with objects of
class Collection. In fact, if you create an instance of class Collection, you won't
even be able to add anything to it. Its only purpose is to provide universal properties
and methods for all of its descendants. AU the action occurs below, in the descendants
of Collection. For example, an Array in Actor is implemented as a descendant of
Collection, as are Dictionary objects, Set objects, and much more.

Although some descendants of Collection redefine behavior based on their own
unique properties, all of them respond to some basic methods. For example, all
collections know how to traverse themselves in order to alter and/ or do things with
each element. Not all of the methods in this section are actually found in class
Collection, but every collection will respond to the methods explained in this section.

2.7.1 Creating and Initializing New Collections

With all of the classes you have studied thus far, creating a new object of that class
was a simple matter of saying

new(ClassName);

However, with Collection objects, you also have to tell Actor how many elements
you want:

new(CollectionType,n);

where n of course is the number of elements in the collection. (You might remember
from the discussion in class Behavior in section 2.6.2 that the new for Collection
objects is actually implemented using a different method, variableNew, although the
end result is the same.) The number of elements in a collection is not always set in
stone; many collections have the ability to grow if you tell them to store more than they
have room for. As a result, unless you are working with a collection of fixed size, you
don't have to worry too much what number you choose. Be aware, nonetheless, that the
grow method takes some time. If you know in advance that you will need at least 100
elements, don't tell Actor to only allocate space for 8!

Charlnlarval

Symbol

lndaxed
Collactlon

Byta
Collactlon

DoaSlrucl

Function

Polygon

Object

Ordarad
Collectlon

Sortad
Collaction

Frame

Taxt
Collactlon

Proc

Elllpsa RndRact

ldenlily
Dlc:tionary

Figure 2-4: Collection class tree

Symbollabla

Slot

2.7: Cof/9ction C/ass9s 113

'Whenever a new collection is created, an init message is also automatically sent to
the new collection by the class's new method. Every init for a collection object follows
the convention that the init method takes no parameters (e.g. init (Sam), where Sam
is some collection). This is so that init can be used on any collection without getting an
error.

2.7.1.1 Accessing Elements of a Collection

All Collection objects have the universal property that you can access individual
elements by specifying the name of the collection, followed by an object enclosed in
brackets:

aCollection[aomeObject];

When the compiler sees this pattern, it translates it into an at or a put message. An
at is generated if an element of the collection is being retrieved, while a put is
generated if the pattern occurs on the left side of an assignment. The following
illustrates how the above format would translate into an at or a put message:

aCollection[aomeObject] := 3;
put(aCollection,aomeObject,3);

x := aCollection[aomeObject];
x := at(aCollection,aomeObject);

A collection's class determines whether there might be any restrictions on the kind
of elements it can hold. For instance, objects of class Array or its descendants can hold
anything. However, a ByteCollection object, as you might guess from its name, can
only hold byte-sized data. Most collections have no restrictions on their elements.

Some collections have several different ways of getting at their elements. The first
major kind of at method is implemented in class Object. Object's at method provides
access into a collection by index, or physical offset. This includes all the
J:ndexedCollection classes (hence the name), as well as some others. This restricts
the index to being an Int, e.g. aCollection [8]. Even classes that redefine at as a
different kind of access sometimes use Object: at to do the basic level of element
retrieval.

The at operation is redefined in many KeyedCollection classes as an associative
at. That is, the collection associates a value with the argument (or key), and at returns
the value. The precise method used to determine the physical location of key /value
pairs is irrelevant. Only the association of key with value is important. This allows a
much wider range of objects to be used as keys.

114 Chapter 2: Guide to the Actor Classes

For example, you could have a keyed collection of the populations of some of the
various cities of the U.S. called us. Then, you could access the population of Chicago by
referring to us ["Chicago"]. The various KeyedCollection descendants have
unique restrictions as to the acceptable classes of their keys. We'll cover this in more
detail a little later.

2.7.1.2 Enumeration Methods

The most important methods for collections have a special name, enumeration
methods. Webster's defines enumerate as "to name one by one; to specify, as in a list."
That's exactly what enumeration methods are for: they go through a collection, element
by element. You are probably already familiar with one of them, the do method. It's
similar to a "for" or a "while" loop in other languages, although much more powerful.
The other two, collect and extract, are specialized versions of do which enable you
to easily perform some quite complex tasks.

All of the enumeration methods have the same general syntax:

enumerationMethod(aCollection,aBlock);

The receiver, aCollection, is any collection object (that is, any object of a class
descended from class Collection). The first parameter, aBlock, is any one argument
block expression. You can think of a block as a normal Actor method without a specific
name.

To demonstrate each method, we will use a specific example. Let's say you already
have an instance of class Set called workers. Each element in workers is an object of
class Eq>loyee, which was intially defined thus:

inherit(Object,#Employee,#(name age),nil,nil);

Assume that we have already placed four Employees into workers. Also, assume
that currently the data for the employees is:

Name
"John Smith"
"Andrew Oark"
'lanet Abud"
"Betsy Ross"

Age
45
34
34
27

Of the three enumeration methods, do is the most general and the one you are likely
to use the most. In fact, if you look at the code for the other two with the Browser (they
are found in class Collection itselO you'll see that both of them are implemented with
do.

2.7: Collection Classes 115

The hardest thing about learning to use do is that you're likely not to use it enough!
It's so powerful and so easy to use that for a while at least, you'll forget that it's there
and try to do things the hard way (so to speak). A sizable percentage of loops in any
program simply traverse a collection of elements (be it an array, a linked list, or
whatever). In most languages, however, you have to worry about where to start and
where to end; in Actor it's all taken care of for you. All you have to do is send the
collection a do message and let it do all the work.

To understand what do does, we'll take a simple do message and analyze it.

do(aColl,
(ua.:l.ng(element) atatementl;
atatement2;

atatementH;
)) ;

The receiver, aColl, is any collection object (i.e. an instance of any of the
descendants of Collection). The block's argument, element, is replaced by each
element as the collection is traversed. For example, this code will print each element of a
collection:

do(aColl,
(uaing(element) print(element);
)) ;

Remember also that the name of the block argument used inside the block is
arbitrary, as long as it is consistent within the block. To see this, let's say we want to
print the names of all the people in our above worker• example:

do(workera,
(uaing(emp) printLine(emp.name);
)) <CR>

John Smith
Andrew Clark
Janet Abud
Beta:y Ro••

The second enumeration method, collect, provides a way to map one collection to
another. First, collect creates a new collection of the receiver's apeciea (section
2.1.3.2). Initially, it's empty. Then collect evaluates its block expression once for each
element in the original collection. The result of this expression is added to the new
collection, and when the original collection has been traversed, the new collection is
returned. Note that by definition, the new collection will have the same number of
elements as the original.

116 Chapter 2: Guide to the Actor Classes

Using the example above, to construct a Set with only the employees' ages:

collect(workers,
(using(empl) empl.age
)) <CR>

Set(45 34 34 27)

Last, but not least, there is extract. This method is similar to collect in that it
first creates a new collection of the same species as the one you give to it. Then,
e:x:tract traverses the collection and if an element satisfies the condition you specify,
that element is added to the newly created collection. The new collection is then
returned.

Consider the workers example above. Lef s say we want to write some code which
extracts those employees who are a certain age:

extract(workers,
{using(enp) enp.age = 34;
}) <CR>

Assuming the data above, this would return a Set containing two objects: the
Eq>loyee objects for "Andrew Oark" and "Janet Abud". If you wanted to retrieve
those employees whose age was not 34, then you would change the= to<> instead.
(Actually, if you knew that an employee's age was always going to be an integer, you
could use == or and extract would execute somewhat faster. Why? Refer to the
discussion of equality and equivalence in section 2.1.3.t for details.)

When collect and extract receive a collection to work on, they create new
collections of the same species. In addition, both methods use add to place elements in
the new collection. However, not all collections respond to the add message, such as
Array. Since we would like all collections to be able to use collect and extract,
obviously the new collection that collect and extract creates must be ~ble to
respond to add.

Remember in section 2.1.3.2 where we said that the class of an object is usually the
same as the species of an object? We said "usually" because the situation described
above requires an exception. If you look at the code for species in class Collection
and some of its descendants, you'll find that some collections will reply that Set is their
species. Since a Set object understands add, this lets a Dictionary, for example,
utilize extract and collect. This makes intuitive sense, as well; class Set is the
most general type of collection and comes closest to representing the intuitive concept of
a collection.

At any time, you can redefine what species a class is by either altering the species
method (if there is one) or adding one to that class' methods.

2. 7: Collection Classes 117

2.7.1.2.1 Making Other Messages Enumerative

There is an elegant and powerful technique that you can use to make any message
enumerate over collections. We'll use an actual example to show you how it works.

At some point in our development of Actor, we got tired of typing in
load ("f ilenama") every time we wanted to reload one of a group of files. We
wanted to be able to say, load(tuple ("filel", "file2", "file3")) and have
the load message sent to each of the strings in the tuple. All we had to do was define
the method load in class Collection as follows:

Def load(self)
(do(self, (using(element)

load(element)
)) i

)

In other words, Collection passes the message that it was sent along to each of its
elements. This allows a collection of objects to be used in place of any atomic object as
the receiver of that particular message.

We could have defined the load message in class Array, since tuples are actually
arrays. Defining it in Collection gives it a rather amazing property. You can send
the load message to an arbitrarily complex tree of collections, and at each stage, the
collection will simply "pass the message along" to its elements. Ultimately, an atomic
object receives the message, and actually does something. For instance, you know that
you can load a group of files by saying load (Demos [lgroupName]) . Well, because of
this property that we are discussing, you could also say load (Demos) and cause all of
the demonstration files to be loaded. Demos is just a collection, albeit a rather
specialized one.

Thus, if you want to be able to send a message to a collection of objects, you can
cause it to enumerate by using the simple technique we have just described. In general,
Actor's collection classes bring together such features as late-binding, enumeration and
inheritance in a very powerful and general way.

2.7.1.3 Conversion Methods

Since Collection. is by definition the "lowest common denominator" of all
collections, you should place in this class methods which you want all collections to be
able to use. A prime example of this besides the enumeration methods are the
conversion methods. It is extremely useful to be able to convert a collection of one class
into a collection of another.

All the conversion methods work the same way. You send a collection a message
with no parameters and it returns the original object as a collection of the new class. For
example:

118 Chapter 2: Guide to the Actor Classes

aaSet(aColl);
/* returns aColl aa a Set */

Some of the conversion methods included in addition to asset are
asOrderedCollection,aaSortedCollection,andaaArray. Defininga
conversion method is a simple matter of making an empty collection of the class you
need, and sending a do message to the old class and telling it to add all the elements of
itself to the new collection.

2.7.2 The IndexedCollection Class

:rndexedCollection is one of the formal classes we mentioned above. As such,
you will never use objects of class :rndezedCollection; it merely serves as the
unifying class for Array and ~yteCollection. Basically, an IndexedCollection is
a collection of objects in which the individual elements are referenced by integer values.
In this sense they are sort of like arrays in other programming languages. However,
some of the classes which descend from IndexedCollection are much more
powerful than the simple array you may be used to. As a result, while
IndexedCollection objects may behave like traditional arrays, they can really do a
whole lot more. ·

Defined more formally, IndexedCollection objects access individual elements
by an integer subscript which represents the index or offset into the collection:

anindexedCollection[aomeinteger];

Note that :rndexedCollection objects are also distinguished by the fact that
elements are accessed by the at and put methods of class Object. Note also that the
indices of an IndexedCollection always start at 0 (zero). For example, if you have
an object of class Array named Joe, the first element is located at Joe [0].

2.7.2.1 Miscellaneous Methods For Indexed Collections

There are a few methods which can be used by all IndexedCollection objects,
i.e. any instance of a descendant of IndexedCollection. They are described below.

As we mentioned above, both collect and extract return collections which
respond to add. However, the map method is provided especially for indexed
collections, not all of whom respond to a.dd. Basically, map returns an
IndexedCollection of the same class and size of the receiver. Each element in the
collection that it returns is the result of evaluating the one-argument block with the
receiver's elements. For instance, the following message will return a String where all
the'!' characters in the receiver String have been converted to '@' characters:

Interval

Charlnterval

Symbol

Object

lndexed
Collectlon

Byte
CollecUon

DosStruct

Polygon

Function

Sorted·
Collection

Proc

Ellipse RndRecl

Figure 2-5: lndexedCollection class tree

Text
Collection

An Indexed collection

collectlonName

anObject 0

anObject 1

anObject 2

an Object 3

an Object 4

an Object •

an Object •

an Object •

an Object •

an Object size - 1

Figure 2-6: On a logical level, descendants of .
lndexedCollection are accessed by element Index.

map (n ! ! Hallo I thi• i• a teat atring ! 55 .. I
(uaing(ch) if ch...,.'!'

than '8';
endif;

)) i
"@@Hello, thia ia a teat atring855"

2. 7: Collection Classes 119

There might be times when you want to reverse an Inde:x:edCollaction. That is,
return the Inde:x:adCollaction with all of its elements in the reverse order. The
ravaraa method does the trick:

ravaraa("ABCDEl'G") <CR>
"Gl'EDCBA"

Note that ravaraa directly alters the collection-it does not return a copy.

2.7.2.2 Using Arrays of Objects: The Array Class

The most generic type of indexed collection is the one most familiar to
programmers, the humble Array. Just as in most other programming languages, the
number of elements in an Array is fixed once you create one. For example, to create a
new Array with room for 11 elements:

.Actor[ISam] := naw(Array,11);

This new Array can never hold more than 11 objects.
Elements of an Array are always accessed by the array name, a left bracket, an

index, and then a right bracket, i.e. Sam[OJ, Sam[l], etc. In addition, you always add
or remove objects from the array by directly referring to these elements, such as Sam [O]
: = 1 or Sam [0] : = nil. This is one of the main differences between Array objects
and other collections. Array objects are distinguished by the fact that this is the only
way to access, add, and remove elements, whereas for other collections there are many
ways.

2.7.2.2.1 Creating Array Objects

The most obvious way to create an Array is demonstrated above with the new
method. However, there are a few others which come in handy, too. For instance, it is
easy to instantly create an Array if you know in advance what its contents are:

f (1 2 3 4) <CR>
Array(l 2 3 4)

120 Chapter 2: Guide to the Actor Classes

This kind of array is called a literal array because every element in the array has to be
defined at compile time. In English, this means that only literal constants, not variables,
may be in one of these instant Array objects. For example:

Actor[IJoe] :• 1 <CR>
#(Joe 2 3 4) <CR>
Array(#Joe 2 3 4)

Notice that the symbol IJoe was placed in the new array rather than the current value
of Joe (1) because that's what Joe, considered as a literal constant, actually is.

Remember in class Object when we told you about the tuple method? To refresh
your memory, tuple is an easy way to gather a bunch of objects together into a
collection. For all practical purposes, you can consider a tuple an Array. In fact,
creating a tuple returns an Array:

tuple(l 2 3 4 5) <CR>
Array(l 2 3 4 5)

In the above example we noted that creating a literal array meant that you couldn't
specify that you wanted to use the value of an object. Instead, the object's name was
taken as a literal constant. However, tuple has no such restriction because the Array
is generated at runtime. Thus, to generate an Array with the value of Joe as the zeroth
element:

tuple(Joe,2,3,4) <CR>
Array(l 2 3 4)

2.7.2.2.2 Miscellaneous Methods

There really aren't a whole lot of methods to learn in the Array class. Of course, all
the enumeration methods work, but those were explained in the previous section. There
are a few handy ones, however. One which you may find useful is fill. It fills up an
array with the value you give it:

Actor[#Sam] :• new(Array,4) <CR>
fill(Sam,1) <CR>
Array(l 1 1 1)

Just so you can get a better idea of how to use enumeration methods, the above fill
message is equivalent to the following do loop:

Array class I
Sam

offset:

2 0

'a' 1

nll 2

2@3 3 • Sam[3]:=2@3;

nil 4

nil 5

nll 6
.., Sam[&];

-----11..,~ nll

"Whitewater" 7

nil 8

nll 9

rzzzzzLLZ ~

1~
fixed size

Figure 2-7: An object of Array class is an indexed
collection of fixed size. This Array has a size of 1 o
and is named Sam. When created, it is filled with nil.
Later, elements are accessed by their corresponding
index values. ·

do (size (Sam) ,
(ueing(i) Sam[i) := 1;
)) <CR>

Array(l 1 1 1)

2.7: Collection Classes 121

The method copyrrom. is a nice way to get back just part of an array. All you have
to do is tell it what index to start and end at, and it will return that portion of the array:

copyrrom.(f(S 6 7 8 9),1,3) <CR>
Array(6 7)

Note that the index you tell it to end at is actually one greater than what you might
expect. This is because copyrrom.(arrayObjact, start, atop) actually only returns
the elements from arrayObject [start) to arra:yObject [etop-1). This behavior
is consistent with similar methods found below in the String class and also with the do
method for Interval objects.

Another method you might want to use, find, sequentially searches an array for a
given target and then reports back where in the array it is found. If it isn't, the method
returns nil. For example:

find(I ("Bill" "Sandy" "Rich" "Loia"), "Rich") <CR>
2
find(l("Bill" "Sandy" "Rich" "Loie"),"Ron") <CR>
nil

A related method, indexOf, does the about the same thing as find except that it
uses equivalence for its comparisons rather than equality:

indexOf(f("Bill" "Sandy" "Rich" "Loie"),"Rich") <CR>
nil
indexOf(f(l 2 3 4),3) <CR>
2

2.7.3 Using the OrderedCollection Class
An Array object is used for purposes in which you want total control over where

new objects are placed. There are no restrictions or conventions on adding new
elements because you can put elements in at the beginning, the middle, or the end.
There are times, however, when you want to preserve the chronological order in which
items are added or removed. The most obvious case of this is in the case of a stack. A
stack, as you might know, is basically an array with the restriction that additions and
removals only take place on one end of the stack (usually called the top of the stack).

This sort of requirement is perfect for objects of the OrderedCollection class. In
some ways they are just fancy arrays in that you can randomly access elements like you
can with arrays. However, each element generally has a chronological order associated
with it, i.e. the second element was added after the first, and so on. You can defeat this
arrangement if you need to - there is a way to insert or remove somewhere in the
middle-but generally this ordering is in effect.

OrderedCollection is also the first collection class in which an object's instance
variables play a big role. Every OrderedCollection object has two instance
variables, firatElement and laatElement. The convention is that if
firstElement = lastElement, the collection is considered to be empty. For
example, let's say we have an OrderedCollection called oc. By definition, oc is
empty when oc. firstElement = oc. lastBlement. When an object is·added to
the collection, it is placed at oc [oc. lastElement J and then oc. lastBlement is
incremented by one. This in tum implies that oc [oc. lastBlement J is always
undefined.

Note that this does not imply that firatElement is always equal to 7.ero.
Although when an OrderedCollection is first created, it will be 7.ero, later on it can
be anything, as long as it is less than or equal to lastBlement. This also means that
the number of elements in a collection is not simply the value of lastElement, it is
actually calculated by subtracting firstElement from lastElement.

2.7.3.1 Adding Elements

To preserve the chronological ordering of elements, additions to an
OrderedCollection are almost always done by sending it an add message. With
add, you tell the collection what to add to itself, and it places the new object on the end
(or top, if you prefer) of the OrderedCollection. For example:

OrderedCollectlon class

Joe

.lastElement -----
NAMED:

.flrstElement --

stack bottom

L. 29 0

INDEXED: "Hello" 1

'a' 2

nil 3

nil 4

stack top

Figure 2-a: The OrderedCollection class can be used to
represent a stack. It has two instance variables which
keep track of the collection start and end. OrderedCollection
Joe has a size limit of 5, but now holds only 3 elements.

2.7: Collection Classes 123

Actor[IJoe] := new(OrderedCollection,5) <CR>
add(Joe,3) <CR>
OrderedCollection(3)
add(Joe,"Bello") <CR>
OrderedCollection(3 "Hello")
add(Joe,'a') <CR>
OrderedCollection(3 "Bello" 'a')

If you try to add more elements than the collection has room for, then the collection
will expand itself in order to accomodate the new objects.

There may be times in which you want to defeat the chronological ordering. For
these purposes, you can use the insert and insertlll methods. The first inserts one
object at the index you specify, and the second inserts an entire collection (any kind) into
the OrderedCollection at the index you specify. Both methods will generate an
error if you try to insert at an invalid index (i.e. index < firstElement or index >
lastElemant). Note that insertlll of a collection at lastElement is functionally
equivalent to appending the collection to the OrderedCollection. Some e.xamples:

insert(Joe,"World",2) <CR>
OrderedCollection(3 "Hell.011 "World" 'a')

inaertlll.(Joe,1(100 200 300),2) <CR>
OrderedCol.l.ection(3 "Bell.011 Array(lOO 200 300) "Worl.d" 'a')

We mentioned above that one of the possible uses of OrderedColl.ection objects
is to simulate a stack. There are two operations associated with stacks, and both of them
are also implemented as methods within OrderedCollection. The method which adds
something to a stack is called push. A push is identical in form and function to what
we call add, and in fact push is implemented with add. Which you use is up to you,
although push might convey more strongly the idea that you are simulating a stack.

2.7.3.2 Removing Elements

The counterpart of add used to remove the last element in an
OrderedCollection is called removeLast. It removes the last element from the
coll~tion and then returns that element:

removeLast(Joe) <CR>
I a'

Its counterpart for the stack paradigm is the pop method, and again it is functionally
identical to and implemented with its Actor counterpart, removeLaet. Both methods
will generate errors if you try to remove an item from an empty OrderedCollection.

124 Chapter 2: Guide to the Actor Classes

You can also remove an arbitrary element from a collection with the remove
method:

ayaPrint(Joe) <CR>
OrderedCollection(3 "Hello" 'a')
remove(Joe,1) <CR>
"Hello"

ayaPrint(Joe) <CR>
OrderedCollection(3 'a')

The remove method will generate an error if the index you pass it is invalid, which in
this case is if index < firatElemant or index >= laatElement. Note that this is
not exactly the same as in insert above. This is due to the fact that you can insert at
lastElement (appending to an OrderedCollection) but you can't delete because
the element there is undefined.

2.7.3.3 Accessing Elements

The easiest way to access the elements of an OrderadCollection is the same as
that used for Array objects:

sysPrint(Joe) <CR>
OrderedCollection(3 "Hello" 'a')
aysPrint(Joe[2]) <CR>
, a'

Note that this way of accessing objects does not protect you from accessing elements
that are undefined. For example, with the Joe object above, Joe [4] is undefined
(equal to nil), because 4 is greater than laatElement, which is currently 2. However,
you can use Joe [4) in an expression, and it won't generate an error. Accessing
elements in this fashion, while not recommended, is certainly allowed and will not
generate an error unless the index is greater than or equal to the limit of the collection.

There are special methods for returning the first and last elements of an
OrderedCollection. Assuming the example immediately above:

firat(Joe) <CR>
3
last(Joe) <CR>
, a'

Both of these methods will generate errors if the collection is empty.

2. 7: Collection Classes 125

2.7.4 More Ordering: The SortedCollection Class

In many cases, maintaining a chronologically ordered collection is not enough. For
example, if you have a collection of strings, you may want to keep them in either
ascending or descending alphabetical order, or you may have more complicated
elements for which the ordering is arbitrarily complex. In any event, you can use
SortedCollection objects and Actor will ensure that the elements are maintained in
the proper order.

A SortedCollection is a normal OrderedCollection except for whenever
you tell one to add an element to itself, it searches itself to find out where to add the new
element so as to maintain the sorted order. Just as with OrderedCollection objects,
if you try to add more elements than the collection has room for, it will expand itself. In
addition, you can re-sort the collection at any time in a different order by sending the
appropriate message to the it.

2.7.4.1 Adding and Removing Elements

You add to and remove elements from SortedCollection objects almost the
same way you did with OrderedCollection objects above, with the add and
remove methods. In fact, add is identical in usage to its OrderedCollection
counterpart:

Actor(#Sort) := new(SortedCollection,5) <CR>
add(Sort,20) <CR>
SortedCollection(20)
add(Sort,3) <CR>
SortedCollection(3 20)
add(Sort,200) <CR>
SortedCollection(3 20 200)
add(Sort,99) <CR>
SortedCollection(3 20 99 200)

The remove method, however, is slightly different. With the remove of
OrderedCollection, you had to know what index the element was at. With
SortedCollection objects, however, all you have to know is what the object is and
the collection will figure out where it is and delete it:

reinove(Sort,99) <CR>
SortedCollection(3 20 200)

If you try to remove an object that is not in the collection, an error will be generated.

126 Chapter 2: Guide to the Actor Classes

2.7.4.2 Determining the Order of Elements

Each SortedCollection obje"ct has an instance variable which determines the
order in which the elements will be sorted. The instance variable, compareBlock, is a
normal two-argument block initialized when you create a new SortedCollection.
As you may have noticed from the above example, by default a SortedCollection
will add elements to itself in ascending order, i.e. 1, 2, 3, ... or' A','B','C', ... The default
compareBlock looks like this (see the init method in the Browser):

(uaing(item1,item2) iteml < item2);

When this compareBlock is evaluated, iteml will hold the object being searched for
(the target), and item2 will hold the element in the array the target is currently being
compared with.

By changing the compareBlock with the aetCompareBlock method, you can
change the order of the elements. This method creates a new SortedCollection, sets
the new collection's compareBlock to whatever you have passed it, and then adds all
of the old collection's elements to the new collection using the new compareBlock.
From that point on, anything you add to the collection will be placed according to the
new compareBlock. For example, for the above Sort object, you might want to have
the elements sorted in descending order:

aetCompareBlock(Sort,(uaing(alem1,elem2) eleml > elem2))
<CR>
SortedCollection(200 99 20 3)
add(aort,38) <CR>
SortedCollection(200 99 38 20 3)

So far we have seen only integer objects as elements in SortedCollection objects.
In fact, as long as both objects compared in the compareBlock respond to the< or >
messages, they can be elements. However, what if you had a bunch of Point objects,
for example, that you wanted to sort? Well, you wouldn't have much luck because
Point objects cannot respond to< or> messages. However, a Point has two instance
variables, x and y, which can respond to < and >. As a result, you might decide to sort
the Point objects on the basis of ascending x value. In this case, you could specify a
new compare block: ·

aetCompareBlock(pointColl,(uaing(p1,p2) pl.z < p2.z));

Note that you cannot compare elements of two radically different classes. For
instance, you could not have a SortedCollection which contained both Int and
String objects. That's because although both classes have< and> methods defined,
they are different methods. Hence a String doesn't know how to compare itself to an
Int and vice versa. Of course, this isn't a big restriction in the first place. How would
you define a String being "greater than" an Int anyway? This restriction does not

SortedCollectlon class

default value

Sort

NAMED:

3 0

20 1

INDEXED: 99 2

200 3

nll 4

Figure 2-9: The compareBlock instance variable defines
the sorting convention for the SortedCollection object
named Sort. In this example, the collection elements
are sorted in ascending order with the first, or lowest
element at the zero offset.

2.7: Collsction Classes 127

mean that objects of two similar classes cannot be placed in a SortedCollection,
however. For example, you can combine Int and Long objects, or String and Symbol
objects.

You might think that a logical alternative would be to directly define< and> in the
required class. For example, in the Point class you might define a < method like this:

Def <(self, item)
(self.x < item.x
)

If you implemented a > method in the same way, then you definitely could maintain a
sorted Point collection in ascending or descending x order (for ascending, you could
even use the default compaz:eBlock). However, what if you decided to sort in
ascending or descending y value? You would have to use the Browser to edit the Point
cl~ file, edit the method, recompile, save the class file, and then save the new image.

However, if you were defining things with compaz:eBlock instead, all you would
have to do is send pointColl the following message:

setCompaz:eBlock(pointColl,(usinq(p1,p2) pl.y > p2.y});

You could even sort elements based not on their contents per se, but based on some
other criterion. For instance, if you wanted to sort a collection of points based on the
descending value of sine of x rather than the x value itself, you could send the following
message to pointColl:

setCompaz:eBlock(pointColl,(usinq(p1,p2) sin(pl.x) >
sin (p2 .x)));

2.7.4.3 Locating Elements in a SortedCollection

Whenever you add or remove an element from a Soz:tedCollection, the
collection has to search itself for whatever element you specify. This searching process
is implemented in the finditemindex method, and can be used in other places too.
The syntax is as follows:

finditemindex(sortedColl,taz:qet);

The method returns two pieces of information in a tuple. The first is a boolean
variable that is true if the target is found and false if isn't. The second variable is an
index into the collection, but its exact meaning is dependent on whether or not the target
was found. If it was found, the index is naturally where the target is located. If it
wasn't, it is the index at which the target would be inserted. Obviously this last piece of
information is irrelevant if you are simply searching for the target, but if you are looking

128 Chapter 2: Gulde to the Actor Classes

for the index at which to add the target to the collection, this information is crucial. An
example will help clarify things. We will use the above Sort example:

Sort <CR>
SortedCollection(3 20 99 200)
finditemindez(Sort,20) <CR>
A:r:ray(O 1)

finditemindez(Sort,50) <CR>
A:r:ray(nil 2)

In the first example, 20 is located at element 1. As a result, finditemindez
reported that 20 was found by returning O Oogical true) in the first element of the tuple,
and returning 1 in the second. In the second example, SO is not in the collection at all. If
it was to be inserted, however, tt would be at element 2.

Actually, if you think about it, this approach lets the second element in the tuple
represent where the target object would be inserted, whether the target is found or not.
This enables the add method to always insert the target at the index returned in the
second element of the tuple.

There may be times in which you would not want duplicate elements in a
So:rtedCollection. If that is true, you may want to define a descendant of
SortedCollection which would be kind of like a sorted Set. Creating it would only
involve writing a new add method which doesn't allow insertion of duplicate elements:

Def add(aelf,newElement I foundidzTuple)
(foundidzTuple := finditemindez(aelf,newElement) <CR>

if not(foundidzTuple[O])

)

then inaert(aelf,newBlemant,foundidzTuple[l]);
endif;

2.7.5 Collections of Strings: The TextCollection Class

It may seem sort of odd to introduce collections of strings before we have even
introduced the String class itself, but the idea of a string is familiar enough and this
class is simple enough so it won't be too much of a problem. Basically this class is just a
collection of everyday strings with some special methods designed to exploit this fact.

The major use of objects of this class is for text editing. A text editor, from the object
oriented perspective, consists of several different parts, two of which are the text itself
and the window that processes the commands. So, one easy way to implement a text
editor in Actor is to define a window, one of whose instance variables is an object of

NAMED:

INDEXED:

TextCollectlon class

Text

·llili:lliJlllllllllllllillllllllllllljllllllllllllllilllllllllllllllljllllllllllllllllllll:lllliljillllllllllllli:lliii:illl. .lastElement -------.

·111111111111iilllllllllllllllllll!llilllll:11111111:1111111111111111 .flrstElement ---.

''This Is llne O" 0

''This Is llne 1" 1

''This Is llne 2" 2

"This Is llne 3" 3

nil 4

Figure 2-10: The object Text is a TextCollection. It is an
ordered collection that has strings as elements. In this
case, each line of text Is one element. New text can be
added as a new element or inserted Into an existing
element.

2.7: Col/sc(ion C/ass9s 129

class TextCollection. In fact, this is actually what's done in the Actor system. You
can verify this by inspecting TheJ\pp. workspace. workText, the variable which
contains the text for the WorkSpace window.

The purpose of some of the methods in this class is related to the MS-Windows
Clipboard. With 'fextCollection objects, it is obvious where one line ends and
another begins because each element of the collection is a separate line of text.
However, the MS-Windows Oipboard expects one giant string where each line is
separated by a carriage return and line feed (a two byte string constant represented in
Actor by CR_ LI'). At any rate, this class is responsible for translating between the two
formats.

2.7.S.1 Inserting Text

, The inaertString method provides an easy way to insert text into an existing
TextCollection object. Here is its syntax:

inaertString(textColl, aStr, line, poa);

where aStr is the string to be inserted, and line and poa represent the line and
position at which aStr is to be inserted. It returns the string in the collection that was
altered. For instance, assume we have the following TextCollection named Text:

A.ctor[IText] :• new('fextCollection,4) <CR>
add(Text,"Thia ia line 011) <CR>
add(Text,"Thia ia line 1") <CR>
add(Text,"Thia ia line 2") <CR>
add(Text,"Thia ia line 3") <CR>
Text <CR>
'fextCollection("Thia ia line 0"

"Thia ia line 1"
"Thia ia line 2"
"Thia ia line 3")

Let's say we want to insert the string·-• 1be new string,.....,.. .. at line 2, character 3
(remember all collections start at the zeroth element). We would send the following
message:

inaertString(Text,"*** The new string ***",2,3) <CR>
"Thi*** The new string ***a ia line 2"
Text <CR>
TextCollection("Thia ia line 0"

"Thia ia line 1"
"Thi*** The new string ***a ia line 2"
"Thia ia line 3")

130 Chapter 2: Gulde to the Actor Classes

The insertText method, on the other hand, is designed to convert from the
Clipboard format to the TextCol1ection format. In fact, insertText is very similar
to insert String except for the fact that aStr is expected to be in the Oipboard
format and can handle multiple lines. In addition, it returns a Point object where the x
and y instance variables contain the character and line position, respectively, after the
insertion. Consider the original text example above. We will insert into text again at
line 2, character 3:

insertText(TeXt,"** Hew string one **" +
CR. LI' +
"** Hew string two **",2,3) <CR>

2083
Text <CR>
TextCollection("This is line 0"

"This is 1ine 1"
"Thi** Hew string one**"
"** Hew string two **s is 1ine 2"
"This is line 3")

Note that insert Text returned the Point 2083, which represents line 3, character 20
(the second 's' in line 3). In case you are wondering what use this information is,
generally after inserting text in a text editor, the cursor is placed just after the inserted
text. The Point contains this information so you can easily update the cursor position.

2.7.S.2 Deleting Text

There are two methods used to delete from TextCollection objects. The first
deletes just a single character at a given line and position and returns the altered string.
For example, for the original text object, the following message would delete the first
character of the first line:

deleteChar (Text, 0, 0) <CR> .
"his is line 0"

The second method, deleteText, is much more powerful. You give it the starting
line and position, the ending line and position, and it will delete everything in between.
The syntax is:

deleteText(textColl,startLine,startChar,endLine,endChar)
<CR>

The last character, textColl [endLine] [endChar], will not be deleted, as the
following shows:

deleteText(Text,1,3,3,5) <CR>
TextCollection("Thia ia line 0"

"Thiiai line 3")

- 2.7: Collection Classes 131

The last character, Text [3] [5] (an 'i'), was not deleted and eventually became the
second 'i' in '"lbiis". While this convention may seem sort of strange, there is a good
reason. It turns out that when you are highlighting text, the cursor position at that point
is one greater than the position of the last character you have highlighted. With this
convention, you can just pass the current cursor position to deleteText and the correct
number of letters will be deleted.

There is one more thing to remember about deleteText. Even if you specify that
it should start deleting at position 0 in the starting line, it will never delete the starting
line itself. For example, deleteText (Text, 1, 0, 2, 1) would leave the empty string
('"') as the first element of the collection. Among other things, this saves you from
testing for the special case of a line being nil.

2.7.5.3 Miscellaneous Methods

There are times where you know you want to move forward in a TextCollection
a certain amount, but you aren't exactly sure where you will end up. The 11.dvance
method does the work for you and takes a starting position and how far forward you
want to go:

advance(textColl, atartLine, atartChar, incr);

It returns a Point where the x and y values represent the character and line values,
respectively. For instance, to find out where the character is that is located 15 characters
ahead of the the one at line 1, character 2:

advance(Text,1,2,15) <CR>
3@2

The method makeString is provided to make one giant string out of all the strings
in a TextCollection object:

makeString(Text) <CR>
"Thia ia line OThia i• line lThi• ia line 2Thia ie line3"

Last, but not least, is the method which converts TextCollection strings into
Oipboard format, aubText. It basically returns all the lines you specify, with each line
separated by the required CR_LF string. Just as with many of the methods in this class,
you have to specify the starting and ending positions:

132 Chapter 2: Guide to the Actor Classes

aubText (textColl, ata:r:tLine, atartChar_, endLine, endChar) ;

Every character from textColl [atartLina] [atartChar] to
textColl [endLina] [end.Char] inclusive is returned in one large string, ready to be
sent to the Oipboard.

2.7.6 The ByteCollection Class

As was mentioned above, ByteCollection is a formal class which exists only to
unify some of its descendants. One descendant class, String, has already been used
extensively, although only in general terms. The other major descendant, Struct,
exists as a collection purely as a result of its physical structure. At any rate, as its name
suggests, every object whose class has descended from BytaCollaction is indeed a
collection of bytes and hence can be exploited as such.

2.7.7 Using Strings: The String Class

Just as in other programming languages, an Actor String is a collection of
characters. However, while other languages limit string length to 80 or 255 characters,
the limit to the number of characters in a String object is the maximum size of any
object, 16K-1 elements. That fact, combined with the powerful methods provided in this
class, makes String one of the most useful classes in the Actor system.

2.7.7.1 Basic Operations

All the basic operations you would expect for strings are available, including
equality (but not equivalence), greater than/less than string comp;irisons, and
concatenation. You have seen equality and comparisons before:

.Actor [#Sam] : = "Miami" <CR>

.Actor[#Joe] := "Miami" <CR>
Sam = Joe <CR>
0
"Alpha" < "Beta" <CR>
0
"Charlie" > "Zulu" <CR>
nil

The comparisons are strictly on the basis of the ASCII values of the individual
characters, and as a result are case sensitive.

String

Symbol

Object

Collection

Indexed
Collection

Byte
Collection

DosStruct

l
Polygon

Struct

Graphics
Object

Ellipse

l
Rect

l

Figure 2-11 : ByteCollection class tree

1
Proc

1
RndRect

:;· . .•. . .

2. 7: Collection Classes 133

Concatenation (combining two or more strings into one) is achieved via the addition
operator, +:

"He11o" + "Wor1d" <CR>
"He11oWor1d"
"Thia" + " ia" + " a" + " sentence." <CR>
"Thia ia a sentence."

2.7.7.2 Conversion Methods

Since a String is one of the most generic ways to represent data, there are a lot of
methods designed to convert String objects to other types of objects. Some of them are
vecy straightforward, such as asRea1 and aaSymbol:

aaRea1("12345678901") <CR>
1.2345678901a+010

aaS:ymbo1("a8ymbol") <CR>
f aS:ymbol

On the other hand, the methods to convert from strings to Xnt and Long objects
need a bit more information. You have to tell them what numerical base the string is in.
The base can be any number from decimal 2 to 36:

aalnt("l'l'",16) <CR>
255
aaint("3a6",16) <CR>
998
aalnt("56J",22) <CR>
2571

As you can tell, the method is not case sensitive. The counterpart for Long integers is
aaLong, and behaves exactly the same.

Just as there was for characters, there is an astJpparCasa method for String
objects, too. If any character in the string is in the range 'a' to 'z' inclusive, it will be
converted to its upper case equivalent. Note that this method directly alters the String

', object which receives the message-it does not work on a copy. Here is an example:

astJpperCaaa ("abcD678$* () &eoutd") <CR>
"ABCD678$* () &EOU'lD"

134 Chapter 2: Guide to the Actor Classes

There are two methods which are primarily used in communicating with MS
Windows. The first one, aaBandle, first copies the receiver over to the MS-Windows
data area and then returns the handle to that String for future reference. Handles are
discussed more completely in section 2.11, but basically a handle is just an address
independent key for data that belongs to MS-Windows. The second method, aaciiz,
converts from Actor String format into the ASCIIZ string format used by MS
Windows and other programming languages. The ASCIIZ format is simply a normal
String object with a null character (ASCII value zero) tacked onto the end.

aaBandle("Liberty") <CR>
418L

asciiz("Liberty") <CR>
"Libertyll"

The block character, •, is how Actor displays a character with an ASCII value of less
than 32, such as the null character.

We have mentioned the concept of a Stream a few times before, but to refresh your
memory, a Stream object is an object which consists of some collection and an
associated pointer into the collection. To attach a Stream to a String, you can use the
atreamOver method:

at:reamOver("Liberty") <CR>
<a Stream>

The Stream object in this case has the string ''Liberty" as its collection and its associated
pointer has been reset to zero.

Lastly, there is a conversion method that doesn't do any conversion at all, but is
included for completeness' sake. Other classes need to know how to convert instances
of themselves to String objects, so they contain as String methods. String also
contains an asString method which simply returns itself.

2.7.7.3 String Manipulation Methods

AU of the traditional string manipulation operations are implemented in Actor, such
as insertion, deletion, and returning part of a string. These methods will be explained
shortly, but first you should know one fact about most String methods: they usually
will not alter the data they are working on but rather work with copies instead. This
means, for example, that if you delete part of a string, the original will not be altered but
rather a copy with the requested deletions will be returned. This minimizes aliasing
problems (see section 2.1.6.1) that can occur when nultiple variables share a single copy
of an object.

Insertion of one string into another is accomplished via the insert method. Its
usage is relatively standard:

String manlpulatlon

Actor[#Sent]:="My name Is Mark" <CR>

lulvl 1+1+11· H lul+ H 11
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

replace(Sent, "Bill", O, slze("Blll"), 11, slze(Sent)) <CR>

L1111
0 1 2 3 4 5

0 1 2 3 4 . 5 6 7 8 9 10 11 12 13 14 15 16

result:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2-12: The replace method. First, the target range ("Mark")
Is deleted. Then, the source range ("Bill") Is Inserted. The
result Is a new string (the receiver is unaffected).

2.7: Collection Classes 135

inaert(tar:getString,atringToinaert,indexToinaertAt);

An example:

Actor[IStr] := "Be1lo" <CR>
inaert(Str,"* Bello *",2) <CR>
"Be* Bello*llo"
Str <CR>
"Bel1o"

Note that as we said above, the original Str was not altered. If we did want to alter
Str, we cou14 use an assignment statement:

Actor[IStr] := "Be1lo" <CR>
Str := inaert(Str,"* Bello *",2) <CR>
Str <CR>
•He* Hello*llo"

Concatenation is just a special case of insertion at the end of a string. If we didn't
have the + operator, we could define it easily:

Def +(aelf,newStr)
{ inaert(aelf,newStr,aize(aelf));
)

(Note: + will always be an infix operator, just like it is for 3+4, even though here we're
talking about strings instead of numbers. To find out why, see section 2.4.3).

Deletions are implemented with the delete method. Its syntax is as follows:

delete(tar:getString,beginindex,endindex);

One important thing to remember about delete is that endindex is always one greater
than the last character you want to delete. In other words, delete actually deletes from
targetString [beginindex] to targetString [endindex-1). For instance:

delete(Str,1,2) <CR>
"B.llo"

If you wanted to delete to the end of the string, including the last character, the easiest
way is to use the size method:

de1ete(Str,2,aize(Str)) <CR>
"He"

136 Chapter 2: Guide to the Actor Classes

This works because size returns tbe number of elements in a collection, and in this case
Str contains 5 characters. You can use a number larger than size (Str), too-delete
doesn't care.

The method which returns part of a string is called substring. A substring
message looks like this:

subString(targetString,beginindex,endindex);

This looks a lot like delete, and in fact they are closely related. The substring
method returns the part of the string that delete would delete:

subString(Str,1,3) <CR>
"el"

delete(Str,1,3) <CR>
"Hlo"

You can return the whole string with the following message:

subString(Str,O,size(Str)) <CR>
"Hello"

Again, you can use a number larger than size (Str) if you want-substring doesn't
care either.

You may remember the copyl'rom method from the Array class. In some ways, a
String is similar to an Array of Char objects, and you may wish to use copyJ!'rom on
String objects too. As a result, we have implemented the copyJ!'rom method in the
String class, too. It is identical to substring in all respects except for its name.

The leftJustify method is a convenient way to trim the leading blanks (spaces)
from a string:

leftJustify(" This is a sentence.") <CR>
"This is a sentence."

All of the above methods are actually implemented with one general method, an
assembly language primitive named replace. You may never need to use replace
directly, but if you ever need to manipulate a string in a unique way, replace can
probably handle it. The syntax is as follows:

replace(target,source,
sourceBegidx,sourceEndidx,
targetBegidx,targetEndidx);

2. 7: Collection Classes 137

The actual replace algorithm is complicated and is best explained by example, but
you can think of replace as deleting the target range (from targetBegidx to
targetBndidx-1) and then replacing it with the source range (from aourceBegidx
to sourceBndidx-1). As a result, if the source range is longer than the target range,
the string grows. If the source range is shorter, then the string shrinks.

For example, the delete (self, begidx, endidx) message is implemented with
this replace message:

replace(self,"",0,0,begidx,endidx);

Let's see what happens here. All the characters from self [begidx] to
self [endidx-1 J are deleted. Then all the characters from "" [O] to "" [-1] (i.e. none
of them) are inserted. Since we are inserting an empty string into a string which has had
characters deleted, the net result is a deletion from self.

For another example, insert (self, aStr, idx) is implemented like this:

replace(self,aStr,O,size(aStr),idx,idx);

Here, all the characters from self [idx] to self [idx-1] (zero characters) are deleted
from self. Then, at idx, all the characters of aStr are inserted into self. The net result is
that aStr is inserted into self, which is of course what we wanted in the first place.

With a little bit of thought, you can make replace do some pretty powerful things.
For instance, if you had the sentence "My name is Mark", you could change the "Mark"
to ''Bill" with the following message:

Actor[ISent] := "Hy name is Hark" <CR>
replace(Sent,"Bill",

O,size("Bill"),
11,size(Sent)) <CR>

"Hy name is Bill"

In the next section you will learn about the string search methods which would enable
you search for an index to start inserting at instead of knowing it in advance:

Actor[ISent] := "Hy name is Hark" <CR>
replace(Sent,"Bill",

O,aize("Bill"),
find(Sent,"Hark",0),
size(Sent)) <CR>

"Hy name is Bill"

138 Chapter 2: Gulde to the Actor Classes

There are two methods which you may find useful but are not implemented with
replace and hence are not quite as general. The erase method, for example,
completely erases a string. The difference between erasing a string and deleting all of its
characters is that instead of deleting the characters, erase merely replaces them with
spaces.

erase(Str) <CR> .. "

A related method, fill, replaces all the characters within a string with an arbitrary
character:

fill(Str,'*') <CR>
"*****"

You may notice that erase is just a fill with spaces:

Def erase (Str)
(fill(Str,' ');
)

NOfE: Both fill and erase are exceptions to the rule of working only with copies
of the string. They alter it directly, mostly because it is very easy and very fast to change
individual characters in a string. However, it would be relatively trivial to implement a
more general fill and/ or erase with replace, in which case you would have control
over the range of fill/ erase, too.

2.7.7.4 String Search Methods

One of the most common operations on a String is to search for something
contained within it. There are two methods provided for this purpose, indeXOf and
find. Of the two, find is much more general because it can search for an entire
substring within a string. In contrast, indeXOf searches for a single character. Both of
them take as a parameter the starting point for the search, so you can search repeatedly
for the same target string simply by incrementing the starting point. Both also return
nil if the target is not found. Here's the general syntax for the two methods:

indeXOf(source,aChar,startidx);
find(aource,targetStr,atartidx);

Here are some examples:

indazOf("Bello, llill",'l',0) <CR>
2
indazOf("Bello, llill",'l',5) <CR>
9
indax<>f("Bello, llill",'a',3) <CR>
nil

2.7: Collection Classes 139

find("l'ourscore and seven years ago","eara",3);
21
find("l'ourscore and seven years ago","noae",3);
nil

2.7.8 Using the Symbol Class

Every so often in the preceding material you see what looks like an ordinary string
but with no spaces and a "#" in front of it. These are instances of the Symbol class, and
they have special status in the Actor system. The reason that there is a Symbol class in
the first place is because every global object in Actor has a name associated with its
object pointer. (Non-global objects do not have names, such as instance variables and
objects which exist only on the Actor stack.) While Actor deals exclusively with object
pointers, humans prefer symbolic names such as printOn, Actor, and Set. Objects of
the Symbol class basically provide an interface between the two.

In any programming language, you want symbols to be unique, because it would
w~ak havoc if all of a sudden a symbol could refer to two or more different things at
the same time. For example, suppose we were using another, hypothetical computer
language where symbols were not unique. Further, suppose we had an object named
Sam in that language which referred to an integer and a string at the same time. This
language would be useless because we could never be sure whether we were referring
to Sam the string or Sam the integer. To avoid these problems, Actor ensures that a
Symbol objects are unique by forcing a Symbol to be associated with one and only one
object pointer at a time. As a result, each Symbol can refer to only one object at a time.
'An important benefit of enforced uniqueness means that you can use the faster
equivalence operator with symbols rather than equality. For example:

Actor[#Sam] := #print <CR>
#print == Sam <CR>
0

OK, we may have explained why there are symbols in the first place, but a
legitimate question is "Why all this # business?" Why should you have to refer to #Sam
sometimes rather than just Sam? The answer lies in the fact that there is a distinction

140 Chapt9r 2: Guid9 to the Actor Classes

between an object and its name. In most cases, when you refer to Sam, it is obvious that
you are not referring to the collection of letters '$', 'a', and 'm'. Rather, you are referring
to the object named Sam, whether it be a method, a class, a String object, or whatever.
Given that Actor ensures uniqueness of symbols, this convention works fine.

However, sometimes instead of referring to the object itself, you explicitly need to
refer to the object's name. That's what the I sign in front means - it signifies that you
are referring to the object's name rather than the object itself. For instance, before you
create an object, it doesn't have a name, so you have to give it one explicitly. That's why
the inherit statement requires a I in front of the new class name, because you are
explicitly associating the new class with its name, a Symbol. In most of the examples
above, we created new objects by saying Actor [#Sam] : = "Bello" or something
similar. In these cases, we are just explicitly associating the String ''Hello" with the
name Sam in the main Actor dictionary. Along the way Actor made sure that even if
Sam previously referred to the number 8 or the letter 'H', it now only refers to the
String "Hello".

There are other times in which you need to explicitly refer to an object's name rather
than the object itself. Method dictionaries (section 2.7.16), for example, are full of
symbols because that's one case where the object's name is used to find the object itself.
As a result, methods which search for or look things up in method dictionaries, such as
senders and implementors, require Symbol arguments. These methods are
discussed in the section below.

2.7.8.1 Important Methods

Two methods which take Symbol arguments are closely related to each other,
senders and implementors. The senders method scans the Actor system and
returns the set of methods which send a particular message. If you wanted to know
which methods contained an insert message, for example, you could enter the
following:

senders(#insert) <CR>
Set(Window:getMenuString SortedCollection:add

OrderedCollection:insertAll WorkBdit:insertSelection
String:+ BditWindow:charinput
TextCollection:insertString TextCollection:insertText
Browser:accept)

This is obviously a great way to poke around in Actor because you can see which classes
use a method, and with this information you can use the Browser to find out how the
methods are used. (Note: senders (aSymbol) only finds the late-bound senders of a
message. Early-bound callers of a method with that name will not be found, since the
caller's code has the object pointer of the called method itself, as opposed to a symbolid
name. You can use senders(aMethod) to find early-bound callers of the method.)

2.7: Coll9Ction Classes 141

The "inverse" of senders is implementors, because it enables you to see which
classes define a particular method rather than use it. For example, there are four classes
which implement a load method. To find out what they are, you could enter:

implementors(lload) <CR>
Set(Sourcerile String rile Collection)

This information enables you to determine exactly which class responds to the message
you send to an object. If the method is not defined in the class of the object you are
sending it to, the message is obviously answered by an ancestor. All you have to do is
find the nearest ancestor of the object you are sending the message to in the set returned
by implementors. For instance, if you sent a load message to an
OrderedCollection object, it would obviously be handled by class Collection,
because that is the nearest ancestor in which load is defined. This is especially useful
information for a method which is redefined often, such as printOn.

2.7.9 Objects Meet the Real World: The Struct Class

We would like to think that everything in Actor ts completely object-oriented.
Unfortunately, there are times when Actor has to communicate with the outside world.
This outside world deals in bytes, words, and segments rather than objects, classes and
inheritance, so there has to be a way to i~terface the two. That's what the Stxuct class
does-it provides a way to represent binary (non-object-pointer) data as Actor objects so
that the two worlds can meet. '

A Stxuct is simply a fixed-si7.e, indexed collection of binary data. What would you
use one for? As we mentioned above, it's the perfect way to communicate with non
object-oriented languages and systems. If you want to use C or Pascal code in your
Actor programs, you would communicate with it via a Stxuct (or, more likely, a
descendant).

In particular, MS-Windows represents geometric objects as binary data where each
offset into the data represents something about the shape, such as size, color, location,
etc. of the object. Therefore, if you want to use geometric objects in Actor, you have to
do it the MS-Windows way, and that means using a Stxuct object. There is no doubt
about it-Stxuct complicates things. The fact that a Stxuct is best represented as a
Collection class and hence geometric objects are technically collections makes
matters worse. Logically, they should be in a class by themselves. Nonetheless,
although a Stxuct may be "dirty'' from the object-oriented perspective, it provides an
easy, compact, and very efficient way to represent data in certain cases.

One thing you may notice about Stxuct objects is that most instances of the
descendants of Stxuct are fixed in si7.e at compile time. This is because most Stxuct
objects have a fixed si7.e which is ''hard-coded" into their class's new method. For

. example, when you create a new Rect, although technically it's a collection, you don't
have specify how many elements it has because the new method for Rect says to

142 Chapter 2: Guide to the Actor Classes

allocate 8 bytes. This means that the new method for Rect does not take any
parameters, which incidentally is another reason why it is not really a collection.
Nonetheless, it is possible to define a Struct which is more like an Array in that it has
a definite size only when you create it. Using the default new method for Struct
objects enables you to do this, since it requires a parameter specifying the number of
bytes to allocate.

You will see some of the various descendants of Struct and their methods in the
Advanced Topics (sections 3.2, 3.3). At any rate, there are only a few methods which
you should be concerned with at the moment, and each of them deals with getting
binary data in and out of Struct objects. Here's the list:

longAt(aStruct,offSet); /*Returns a Long*/
putLong(aStruct,offSet,aLong);
wordAt(aStruct,offSet); /*Returns a word (Int) */
putWord(aStruct,of£Set,aWord);

The next four methods deal with the Least Significant Byte (1SB) and the Most
Significant Byte (MSB) of a word in a Struct. The "at" methods return the MSB and
LSB of aStruct [off Set], respectively. The "put" rne~hods place value into the MSB
and LSB of aStruct [offset], respectively.

atMSB(aStruct, offSet);
putMSB(aStruct, value, offset);
atLSB(aStruct, offset);
putLSB(aStruct, value, offset);

The off Set of course starts at zero, just as everything else does in Actor. Note that
there is nothing to prevent you from treating a Struct as a collection of words at one
point and long integers at another. This is because the off Set in the methods for class
Struct is ALWAYS in terms of bytes. The methods don't check to see that off Set is
valid, either. For example, lonqAt (aStruct, 3) will work, but the Long it will return
will actually be the last byte of one Long inside the Struct and the first three bytes of
the next Long inside the Struct. Incidentally, you can use at and put to maintain
consistency with other collections, but they are implemented in Struct as wordAt and
wordPut, respectively, so you really aren't gaining anything by doing so. This means,
for instance, that at (aStruct, n) is the same as wordAt (aStruct, n).

2.7.10 Intervals Of Numbers: The Interval Class

As we mentioned above when we first discussed the enumeration methods, the sole
purpose of many definite iteration loops ("for" loops in other languages) is to traverse a
data structure. Definite iteration in Actor is usually a trivial matter of sending an object
a do message. However, some loops don't traverse a data structure at all but rather

2. 7: Collection Classes 143

iterate a specified number of times. For example, if you wanted to print all the numbers
from 100 to 200, each on a separate line, it would be easy in most languages:

10 REM BASIC Example
20 FOR I = 100 TO 200: PRINT I: NEXT I

{Pascal example}
for i := 100 to 200 do writeln(i);

/• C example• I
for(i=100; i <= 200; i++) printf("%d\n",i);

It is not at all obvious how to do this type of thing "the Actor way" in a case like this
because there is no object to send a do message to. However, instead of thinking of the
above task as doing the same thing 100 times, think of it as enumerating over the
interval from 100 to 200. Once the problem is phrased in these terms, it is just a simple
matter of creating an object that defines a numeric interval and then sending a do
message to it.

2.7.10.1 Creating Intervals

The class which knows how to do all this is called the Interval class. Interval
objects are somewhat unusual in they are not often created with a new message. Of
course, there is a new method for Interval objects which actually does the creation,
and you can definitely use it, but Interval objects are generally "created" by sending
an Int a message which then calls the new in Interval. The four methods, over,
overBy, incluaiveOver, and incluaiveOverBy, each return a different kind of
:Interval. The differences among the four is best explained by example. For example,
the above example would be implemented using over like this:

do(over(l00,201),
(uaing(i) printLine(i);
)) ;

To find out why the ending index is one greater than you might expect, see below.
When you want to create a new Interval object, you send one of the following

four messages: '

over(beginHumber,endHumber);
overBy(beginHumber,endHumber,atep);
incluaiveOver(beginHumber,endNumber);
incluaiveOverBy(beginHumber,endNumber,atep);

144 Chapter 2: Guide to the Actor Classes

Note that the two "over" methods are equivalent to the "overBy" methods with a step
size of 1. In fact, they are implemented as such, but Interval objects with a step size
of 1 are so common that a method is dedicated to creating them. Also note that
traversing a series "backwards" (i.e. 200,195,190, ...) is a simple matter of making step
negative.

You already have seen an example of the first method, over. The second method,
overBy, is used in situations like when you have to print the numbers from 100 to 200
in increments of 5 (100, 105, 110, ... ,200). It is used almost exactly like over but takes a
second parameter which specifies the increment or step value: ·

do(overBy(l00,201,5),
{using(i) printLine(i);
}) ;

The third and fourth messages will be explained shortly.
From the above examples, you might think that endNumber is always one greater

than the number you actually want to stop at. For instance, in the above examples we
really wanted to stop at 200 but we specified 201 for endNumber instead. This is only
true in the special case of over, where the step value is 1. The formal rule is as follows:
the last number in an Interval is actually the greatest integer multiple of step that is
less than endNumber. For ·example, in the second example, since endNumber was 201,
and 200 is the last integer multiple of 5 (the step value) which is less than 201, 200 was
the last number in the Interval. This implies, for example, that the following
Interval objects all define the same thing:

overBy(l00,201,5);
overBy(l00,202,5);
overBy(l00,203,5);
overBy(l00,204,5);
overBy(l00,205,5);

OK, now that we know how overBy works, we can explain inclusiveOver and
inclusiveOverBy. First of all, note that inclusiveOver and inclusiveOverBy
are not loaded in the default image, ACTOR.IMA. If you want to use them, you have to
load them first ("INCLUSIV.ACT"). Basically, inclusiveOver creates an Interval
which includes endNumber:

do(inclusiveOver(0,5),
(using(i) print(i);
}) <CR>

012345

(As you would expect, its counterpart, inclusi veOverBy, is identical except for being
able to specify an arbitrary step value.) Here's how inclusiveOver works: An
Interval object has three instance variables, start, stop, and step. With the non-

2.7: Co/lsction Classes 145

inclusive methods over/ overBy, the three variables are equal to beginNumber,
endHumber, and etep, respectively. However, the inclusive methods set the stop
value equal to endHumber + etep, which ensures that endNumber is included in the
J:nterval.

You may not have discovered this yet, but there is another easy way to perform
something a specific number of times. This is done by sending a do message to an
integer. For example, if you wanted to print the string "Hello" 200 times, you could say:

do(200,
(ueing(i) print ("Bello")
)) ;

Although sending a do message to an Int may not seem to relate to this subject, it
actually is very relevant. The above do method is implemented by creating and
enumerating over the Interval object over (0, num), where num is the integer
receiver. Note that we didn't have to say 201 in this case because there are 200 numbers
in the Interval over (0, 20 0) since 0 is the starting point.

2.7.10.2 More About Interval Objects

It is possible to define an empty Interval. All you have to do is define the
endHumber to be less than beginHumber + step and the Interval will contain
nothing. This is easy to see; for instance, how many numbers are there from 10 to -5?
None, of course, although if you switched the two or made the step negative it would
be a different story. Just as with any collection, you can find out how big an Interval
is with the size method:

eize(over(l0,-5)) <CR>
0
eize(overBy(l0,-5,-1)) <CR>
15
eize(overBy(5,24,3)) <CR>
7

At any rate, assuming that the interval is non-empty, the convention followed for
Interval objects is that the first number in the Interval is always beginNumber.

'\ While this convention is simple and intuitive, unfortunately it means that two intervals
which look like they should be inverses of each other really aren't:

do(overBy(0,5,2),
(ueing(i) print(i);
)) <CR>

024

146 · Chapter 2: Gulde to the Actor Classes

do(overBy(5,0,-2),
(using(i) print(i);
}) <CR>

531

2.7.10.3 What Exactly Is an Interval?

One intuitive way of creating an Interval object might be to create an
OrderedCollection or Array, fill it with the numbers in the interval, and then
enumerate over that collection. However, this approach is wasteful of both space and
time. Fortunately, though, an Interval has a highly regular structure. Because of this,
an Interval doesn't have to actually have any elements, although technically it is a
collection and behaves like one. An Interval, then, has no indexed data of its own but
only the three instance variables, start, stop, and step.

Knowing this, you can create an Interval object and then change its behavior by
changing its instance variables:

Actor[#Sam] := over(0,5) <CR>
do(Sam,

(using(i) print(i)
)) <CR>

01234

Sam.step := 2 <CR>
do(Sam,

024

(using(i) print(i)
)) <CR>

Sam.stop := 10 <CR>
do(Sam,

(using(i) print(i)
)) <CR>

02468

If you prefer, you can create an Interval object directly the way the four Int
methods do. This approach is slightly more time-efficient because it eliminates the
message send to an integer:

Sam := new(Interval,start,stop,step);

2.7: Collection Classes 147

2.7.10.4 More Uses For Interval Objects

One other way of looking at an Interval is as an arithmetic series. As you might
remember from algebra, an arithmethic series is just a sequence of numbers from a to b,
where each number in the sequence is related to the one immediately before and
immediately after it by a constant. For example, one arithmethic series is (5,10,15,20, ...).

· Of course, this is the definition of an Interval itself, so you could define an Interval
object and use it to represent an arithmetic series.

What are the sort of things you would do with an arithmetic series? Well, one might
be to generate the series itself. Examples of that are found above where each item in an
interval was printed. Another thing you could do is define a method for Interval
objects which returns the sum of all the terms in a series:

Def aum(aelf I tot)
(tot :• O;

do(aelf,

)

(uaing(i) tot :• tot + i;
)) ;

"tot;

This is the brute force way of doing things. A more elegant way to find the sum of a
series is to add the first and last term in the series, divide by two, and multiply by the
number of terms.

Another common operation on an arithmetic series is to find out the nth term. For
instance, the 4th term of the series (5,10,15, ...) is 20. However, remember that in Actor
the counting always starts at 0, so 20 would actually be the 3rd term in an Actor
Interval. The method which is used to determine the nth term in a series is the
familiar at method. For a large series, this method could come in handy:

at(overBy(lS,3000,7),38) <CR>
281

If you try to find the nth term in an Interval, n ~ust be less than the number of
numbers in the Interval or else you will get an "out of range error."

In some cases, it might be useful to treat an Interval as a set. You can do this by
using the in method. For example, if you want to print the value of a number x if it
was in the range 18 to 24, you would say:

if x in over(18,24)
then print(x);
enclif;

... ·

148 Chapter 2: Guide to the Actor Classes

If you wanted to see if x was an even number in that range instead, you would just
change the message a bit to:

if x in overBy(18,24,2)
then print(x);
endif;

2.7.11 Intervals of Characters: The Charlnterval Class

There may be times in which you want to have an interval of characters instead of
integers, and that's what this class is for. Although this class is not defined in any of the
images included with the Actor system, you can load its class file at any time
("CHARINTE.CLS") if you need it. However, if you want to create Charinterval
objects by sending messages to Char objects, you must load the "CHARINTE.ACT'' file,
as well. It includes the method definitions for over, overBy, incluaiveOver, and
incluaiveOverBy. If you want to create Charinterval objects by using the new
message instead, then you don't have to load the "CHARINTE.ACT file.

The Charinterval class is almost identical in form and function to its ancestor,
Interval except for the fact it deals with characters instead of numbers. However, you
might use inclusi veOver more often with Charinterval than you will with
Interval because it may be a less awkward. This is because Charinterval objects
are at heart regular Interval objects which use ASCII codes. This in tum implies that
if you want to include endChar (the analog of endNumber) in the Charinterval, you
have to know what character has an ASCII code one greater than that of endChar. For
example, if you wanted to print all the characters from 'a' to 'z' using over, you would
have to know which character is next in the ASCII sequence above 'z'. It happens to be
the'(' character, but in general, unless you have memorized the ASCII table, this isn't
known. Since incluaiveOver and incluaiveoverBy are more important for
Charinterval objects than they were for Interval objects, they are included in
"CHARINTE.CLS" rather than in a separate file.

An example will help clarify things:

do(over('a','z'),
(uaing(i) print(i);
)) <CR>

abcdefghijklmnopqrstuvwxy

do(incluaiveOver('a','z'),
(uaing(i) print(i);
)) <CR>

abcdefghijklmnopqrstuvwxyz

If you want, you can skip letters by using overBy:

do(overBy('a','z',5),
{uaing(i) print(i);
)) <CR>

afkpu

2. 7: Collection Classes 149

2.7.12 Collections of Unique Elements: The Set Class

The mathematical concept of a set is pretty simple. It's just a collection of objects
where every object is unique, which means that you cannot have more than one instance
of the same object in the same set. The mathematical concept of a set has no restrictions

. on the number of elements and no restrictions on the contents. Unfortunately, most
languages which implement sets restrict them so much as to be virtually useless. The
best known language of this type is Pascal; most implementations restrict the number of
elements to 256, and the elements are constrained to be scalar values such as characters.

Except for the global restriction of 16K-1 elements in any collection, an Actor Set
object conforms pretty well to the mathematical kind. In fact, you can even do things
with Set objects which you can't do with the mathematical kind, like enumerate over
the elements. The cardinality of the set (the number of elements) is even defined-it's in
the tally instance variable of every Set object.

Internally, Set objects are just like other collections-their elements are located at
physical offsets or indices. However, as you'll see below, the physical location of a Set
element, while important to Actor, is irrelevant to you.

2.7.12.1 Adding and Removing Elements From Set Objects

A Set, like many other collections, implements the add message. Remember that if
you try to add an element to the set which already is a member, it will ignore the add
message:

Actor[#mySet] := nev(Set,10) <CR>
add(mySet,"Bello") <CR>
Set("Bello")
add(mySet,18) <CR>
Set(18 "Bello")
add(mySet,#(1 2 3)) <CR>
Set(18 Array(l 2 3) "Bello")

150 Chapter 2: Guide to the Actor Classes

add(mySet,"Hello") <CR> /*Try to add duplicate */
Set(18 Array(l 2 3) "Hello") /* Didn't work */
add(mySet,copy(mySet)) <CR> /*Adding a Set to a Set */
Set(18 Set(18 Array(l 2 3) "Hello") Array(l 2 3) "Hello")

Note: if you tried this code yourself, you will likely get a different order than that
shown here because ordering in a Set is undefined. In addition, note that while adding
a Set object to itself is allowed, you can't print it once you do (try it and see). For
simplicity's sake, we added a copy of mySet instead.

Removing objects from a Set is likewise straightforward, but if you try to remove
an object which is not an element of the Set, you will get an "Element not found" error
(see Appendix E). Here are some examples:

remove(mySet,18) <CR>
Set(Set(18 Array(l 2 3) "Hello") Array(l 2 3) "Hello")
remove(mySet,"Goodbye") <CR>
/* Error message/dialog box */

2.7.12.2 Accessing Elements In a Set

Since a Set is a collection, you can access elements just like any other collection:

mySet["Hello"] <CR>
"Hello"
mySet ["My name"] <CR>
nil
at(mySet,"Hello") <CR>
"Hello"

In addition, there is an in operator similar to Pascal's which tests for Set
membership:

"Hello" in mySet <CR>
"Hello"
184 in mySet <CR>
nil

If you have to find out where a Set element is physically located in the collection,
you can use the find method for class Set:

find(mySet,18) <CR>
2

2.7: Collection Classes 151

This means that the third cell in mySat is occupied by the number 18. However, since
ordering in a Sat is undefined, two similar Sat objects with 18 as an element will most
likely report two different physical locations for 18.

2.7.13 "Sets" With Multiple Occurrences: The Bag Class

Sets are wonderful and very useful tools, but one of their greatest features is also
one of their biggest limitations: the fact that they only can contain one of each element.
It would be nice if we had a set-like collection where we could have more than one of
any element, but still keep them together so that we know how many of each element
we had.

It would be sort of like a row of bins; each element would have its own bin, and if a
new element came along it would get its own bin, but if one we already had came along
it would get placed in the same bin as others of its kind. The keyed collection which
implements this idea is called the Bag class, after the Smalltalk class by the same name.
Note: the Bag class is not loaded in the ACTOR.IMA file we have provided for you, so
you will have to load it first (BAG.CLS).

A perfect example of when you might want to use a Bag object is for a word
counting program. In this case, all you would have to do is add every word in a file to a
Bag object, and when you were done, each unique word would have its own bin. At
that point, counting the number of elements in the bin gives you the number of times
that word appeared in the file. Such a task in other languages would be not at all trivial,
but in Actor, irs a snap!

Another use for Bag objects is for gathering system statistics, e.g. profiling. For
instance, you could make a Bag where each element is a method, and for every time the
method was executed you could add the name of the method to the Bag. Then when
you were done, you could examine the Bag to see which method were executed the
most and therefore which methods need optimization. The file PROF.ACT contains an
actual use of class Bag in this way.

2.7.13.1 Using Bag Objects

As we said before, a Bag is like a Sat with multiple occurrences. This means for the
most part, you can treat it as such:

Actor[#Sam] := naw(Bag) <CR>
add(Sam,"Ballo") <CR>
add(Sam,"Ballo") <CR>
Bag("Hello" "Hallo")

152 Chapter 2: Gulde to the Actor Classes

If you want, you can add the same element to a Bag more than once at the same
time with the add.Times method. For instance, instead of two separate add messages
like we had above, we could have used add.Times:

add.Timea(Sam,"Hello",2);

To find out how many occurrences there are of a particular element, you can use the
occurrences method:

occurrencea(Sam,"Hello") <CR>
2

There is also a handy method which returns a SortedCollection of
Association objects where each key is a bag element and each value is the number of
occurrences of that element. For instance, if you sent a sorted message to a Bag which
contained the word counts for a file, it would return a sorted collection of
Association objects where each key would be the word and each value would be the
number of times the word occurred in the file. The associations would be sorted based
on the frequency of each word in the file.

2.7.13.2 What Exactly Is a Bag?

The most intuitive way to implement a Bag is to actually keep multiple copies of the
element and to count them when neccessary. However, that makes things more
complicated than they need to be, and is also very inefficient in terms of space. As a
result, a Bag only keeps one occurrence of an element, just like a Set object However,
it also maintains a count of how many occurrences of each element there currently are.
That way, when you add an element it is just a matter of increasing the counter for that
element by one.

This scheme is implemented using an instance variable called contents, a
Dictionary object (see section 2.7.15). Each key in contents is the actual Bag
element, and each value in contents contains the current count for the Bag element.
In the example above, "Hello" is the key in contents, and 2 is the element of
contents corresponding to "Hello".

2.7.14 Using the KeyedCollection Class

So far we have only discussed indexed collections, such as Array and
SortedCollection objects. All these classes share the property that individual
elements are accessed by an integer subscript which serves as an index, or offset, into the
collection.

Bag class I
actual representation:

,_ .contents-----.
logical

representation:

a dictionary
"Hello"

bag element

"Hello"

'w'

29

3@44

key

count "Hello"

3 "Hello"

1 'w'

2 29

1 29

value 3@44

"Hello" 'w' 29 3@44

Figure 2-13: A Bag object is a collection of elements
(which are also objects) which keeps a count for each
element. The elements are stored in the collection part
of the Bag and the count is kept in the instance variable
contents. This variable is a dictionary that has bag
elements for keys and the elements' count for the values.
The elements are stored as the keys in the dictionary.

Object

Collection

l
Keyed-
Collection

I
J

Bag Dictionary

1 1
Method-

Frame Dictionary Slot

Identity-
Dictionary

Figure 2-14: KeyedCollection class tree

2.7: Collection Classes 153

While this may be the most intuitive way of representing a collection, it is inherently
limited in the sense that it does not lend itself to rapid retrieval of specific elements. If
you want to look for an element of a collection, you basically have to sequentially search
for the element until you find it.

Granted, you can retrieve elements from a SortedCollection object rapidly
because the elements are sorted and thus you can use a binary search. String objects
have very efficient search methods, too. However, SortedCollection objects can
only hold objects for which < and >methods are defined, and even then can only hold
one general kind of object at one time. (J:nt and Long objects are technically instances
of different classes, but you can mix and match them in a SortedCollection because
they are the same kind of objects. You can't, however, mix String objects with J:nt
objects in a SortedCollection.) And String objects by definition can only hold
characters. So, then, we have a problem. We want a way to have collections of objects
where we can simultaneously retrieve specific elements quickly but yet retain the
flexibility to mix and match elements of various classes.

The classes which implement this idea are the various KeyedCollection classes,
such as Dictionary, Set, and MethodDictionary. Don't worry too much about the
mechanics of this "instant retrieval" mechanism, because the details are mostly
irrelevant (For those who are interested, the physical location of an element is
determined by something known as a hash function). At any rate, you should know that
KeyedCollection is a formal class, as is IndexedCollection, and as a result you
will never use an instance of class KeyedCollection. Don't even try to create one-it will
be useless because KeyedCollection lacks some important methods. In the sections
that follow, the generic term "keyed collection" is meant to mean an instance of one of
the descendants of KeyedCollection.

Any keyed collection is internally just like any other collection-elements are located
at physical offsets within the collection-but the way it accesses its elements is totally
different. If you had an indexed collection named Sam, the only way you can access
elements is by specifying an integer index:

x := Sam[aomeint];

For example, using Sam [2] would set x equal to the third element of Sam (remember,
indices start at zero). However, if Sam was a keyed collection instead, you could say
something like:

Sam["Hallo"] := 3;

In this case, the subscript "Hallo" obviously cannot serve as an index; after all,
what is meant by the "Hello"th item of a collection? Rather, Sam knows that it is
supposed to use the "Hallo" object as a key and somehow find out where 3 is
supposed to go. You might remember that this has to do with whether an object uses
"Object at" (like indexed collections) or another kind of at. Keyed collections, as you
may have guessed, use the other kind of at.

154 Chapter 2: Guide to the Actor Classes

Note that this means while an integer can certainly still be a subscript in a keyed
collection, it won't mean the same thing. For instance, if Sam is a keyed collection, a
reference such as:

Sam[14]

does not imply that we are dealing with the fifteenth element of Sam. Rather, we are are
dealing with whichever element the key, 14, corresponds to.

An example of when you might want to use a keyed collection is if you wanted to
keep track of the major cities in the states of the United States. You would have a keyed
collection (as it turns out, an instance of class Dictionary would be best) called
States. Each key in the collection would be a state, and each element of the collection
would be a SortedCollection of the major cities of that state. If we had such a
collection, then we could do the following:

print(States["Washington"]) <CR>
SortedCollection("Olympia" "Seattle" "Spokane" "Tacoma")

Note: Frequently you will see the term value used almost interchangeably with the
term element. A value always refers to the object which corresponds to a particular key
in a keyed collection. Usually element means the same thing, but occasionally element
may mean both the key and the value together, considered as a unit. The exact meaning
of one of these terms should be clear by the context in which it is used.

2.7.14.1 More Facts About KeyedCollection Objects

Every instance of any class which descends from KeyedCollection inperits an
instance variable named tally which is defined in KeyedCollection. As the name
implies, tally always contains the current number of elements in the keyed collection.
This means that instead of using the size method, you can find out how many elements
one has directly:

print(Sam.tally);

As we have mentioned previously, whenever Actor sees something like Sam[3) or
Sam["Hello"] it generates an at or a put message. By default, the at and put
methods within the class of the object will respond to the messages. In the case of keyed
collections, the at and put methods will treat the subscript (or first parameter if
at/put are used directly) as something to be hashed. As was explained above,
however, the result of the hash function is used to determine the index at which the
element is located and then the at/put in class Object is used to access the element.

KeyedCollectlon class

Figure 2-15: A KeyedCollection object is a collection
of elements (depicted as steer) with no ordering convention.
Each element is accessed by its key, not by some ordering
off set.

2. 7: Collection Classes 155

This sort of thing is accomplished by overriding the message send mechanism and
explicitly specifying which class is to receive the message. Here's an example. Let's say
we have a keyed collection of some sort called Sam. Assume further that we want to
know what the fourth element of the conection is. To explicitly specify Object at, we
would say this:

at(Sam:Object,3);

2.7.14.2 A New Kind of Enumeration Method

Just as with any collection, you can enumerate over the elements of a keyed ,
collection by sending one a do message. However, there may be times when we need to
enumerate over the subscripts of all the elements in a collection. When we were using
indexed collections, there was never any reason to enumerate over their indices because
they were just integers-we could do that anyway with Interval objects. However,
with keyed collections, anything can serve as a subscript-or key-to a collection. As a
result, we occasionany have a need to enumerate over the keys of a conection,.and for
this we use the keyaDo method.

It works exactly like a normal do method:

keyaDo(aKeyedCollection,
(uaing(aKey) /* statements */
)) ;

The difference between keyaDo and do is that inside the block, aKey will hold a key
from the collection rather than the element itself.

2.7~14.3 Common Protocol for KeyedCollection Classes

Every keyed collection must know how to respond to certain messages. This set of
messages, or protocol, includes messages which ten a keyed collection to add or remove
something from itself, as wen as some others. If you define a new conection, you should
make sure that the universal protocol for keyed collections is implemented correctly for
your new kind of keyed conection. To be sure, you may never define a new keyed
conection class, and even if you do, the methods that it inherits from its ancestors might
provide most of what your class needs to use. Nonetheless, this section will summarize
the common protocol for keyed conections just in case.

156 Chapter 2: Guide to the Actor Classes

Here is the list of messages and any required arguments:

add(aKeyedCollection, key, value);
put(aKeyedCollection, value, key);
remove(aKeyedCollection, key);
find(aKeyedCollection, key);
at(aKeyedCollection, key);
do(aKeyedCollection, oneArgumentBlock);
keysDo(aKeyedCollections, oneArgumentBlock);
fixUp(aKeyedCollection);

The add and put methods do mor:e or less the same thing-place an element into a
keyed collection-but the order in which their arguments appear differs. You yourself
will probably use add most of the time; put is usually used by the Actor system. The
remove method removes whatever element is associated with the given key from the
collection. The find method returns the physical index (i.e. an integer offset) in the
collection where the specified key is located.

The at method returns the element assocated with the specified key. If there is no
element associated with that key, then nil is returned. The do method is the familiar
method which enumerates over the elements of the keyed collection, and you read about
the keysDo method above. A fixup message is always sent after a remove. Since
keyed collections are based on a hashing scheme, fixup basically re-hashes the
collection after a remove so that the correct order is maintained. If you think you may
need to re-define a fixup method-an unlikely occurrence, unless you depart radically
from the keyed collections we have provided-you should look at the existing fixup
methods in the Browser.

2.7.15 Using the Dictionary Class

You might think of Dictionary as the "typical" keyed collection class. In fact, it's
the only direct descendant of KeyedCollection in the Actor system, although there's
no reason you can't make others.

You may recall back in class Association (section 2.5) where we said that you
would see Association again in class Dictionary. Well, here we are, and
Association objects definitely play a big role in this class. A di~tionary is essentially a
collection of Association objects, where the key portion of the association is the key of
the Dictionary element, and the value at that key is the value part of the
Association object.

What is unique about a Dictionary object? Aside from the fact that its elements
are Association objects, there are two major differences. First, a key (subscript) of a
Dictionary can be anything: a String, Array, another Dictionary, anything. The
second difference relates to the find method for class Object. You may recall that the
find method for each keyed collection uses the key itself to locate the physical index of

2.7: Collection Classes 157

the key. However, the key isn't always located at the first place it looks (the index
returned by the hash function). The find method actually uses this number as a
starting point to search for the key.

The find method for class Dictionary uses equality to search for the key, and
therein lies the difference. It works like this: the hash function returns an index to start
the search. The find method first looks at the key located at this index and asks "Is the
key located here equal to what I'm looking for?" That is, if the target key is I (1 2 3
4), is the key located there an Array with the same contents? From that point on, it's a
normal search. The important thing to realize is that find uses equality to determine
whether or not a match has been found.

The second difference is intimately related to the first, although the relationship is
not immediately obvious. We noted that a key for a Dictionary can be any kind of
object. However, this implies that equality has to be the criterion for the search. If it
used equivalence, the comparison would be on the basis of object pointers. This would
mean that two otherwise identical keys would always end up in different places in the
Dictionary.

Why? Since their object pointers would be different, it would treat them as two
completely different objects, regardless of whether or not their contents were the same.
In case you are wondering why we are making such a big deal out of the exact way
find works, it's because HethodDictionary, the direct descendant of Dictionary,
~use equivalence as its find criterion, and the results are drastically different (see
section 2.7.16). Even in Dictionary, the keys must be objects that are capable of
responding sensibly to the = message, which does limit the possible domain somewhat.

2.7.15.1 Dictionary Basics

Although each element of a Dictionary is an Association, this fact is usually
quite transparent. However, it does mean that the add method takes one more
parameter than you may be used to. With most other collections, the add method only
needs the name of the collection and the element to be added. However, an add
message to a Dictionary needs two parameters in addition to the receiver: the key
value, and the. value to be associated with that key.

Here are some examples of using Dictionary objects:

Actor[IDict] := naw(Dictionary,10) <CR>
add(Dict,"Bello","I am a string") <CR>
Dictionary ("Bello")

at(Dict,"Ballo") <CR>
"I'. am a string"

Dict[#(l 2 3 4)) := "I am an array" <CR>
Dictionary(Array(l 2 3 4) "Bello")

158 Chapter 2: Guide to the Actor Classes

at(Dict,"Nonexistent key") <CR>
nil

keysDo(Dict,
(using(key) print(tuple(key,' '));
)) <CR>

.Array(l 2 3 4) "Hello"

Removing an object from a Dictionary is done by sending the object a remove
message with the key value as an argument:

remove(Dict,#(1 2 3 4)) <CR>
Dictionary ("I am a string")

-------2.7.15.2 Specialized Enumeration Methods

In addition to do and keysDo, Dictionary implements a few new enumeration
methods. One of them, assocsDo, is sort of a combination of do and keysDo. With a
do message to a Dictionary, the block argument (the i in using (i), for example) is
set equal to each element of the Dictionary in tum. Likewise, the block argument in
keysDo is set equal to each key. The difference between the two is that keysDo uses the
key value of each Association, while the do uses the value. However, there may be
times when you want to have access to both the key and the value together. Thars what
you use assocsDo for:

assocsDo(aDict,
(using(assoc)
/* Within this block we can reference

assoc.key and assoc.value */
)) ;

There is also an enumeration method which enumerates over all the classes defined
in a dictionary, classesDo. The only Dictionary object for which this is relevant is
the main Actor dictionary, Actor, so thars what we'll use for our examples. Keep in
mind, though, that classesDo will work for any Dictionary in which classes are
elements. The basic syntax will look familiar:

classesDo(aDict,
(using(cls)
/* Within this block, els will be a class,

such as Object, SortedCollection, etc. */
)) ;

2. 7: Collection Classes 159

The claaaeaDo method can be used, for instance, to ~onstruct a set of all the
classes:

Def claaaea(aDict I aSet)
(aSet := new(Set,100);

claaaeaDo(aDict,

"aSet;
}

(uainq(cla) add(aSet,cla);
} ;

The classes method for class Dictionary is actually implemented this way, as you
can tell by looking in the Browser.

2.7.15.3 Contructing the Class "Tree"

From the outset, we have referred extensively to the class tree. In fact, if you haven't
already tried it, you can see a graphical representation of the tree by loading the file
"CLASSES.ACT" and then typing tree (Object). What exactly is this class tree? Does
it really exist?

The answer is, not really, at least not in the traditional sense with nodes, parents,
children, and so on. Although it is convenient to represent the class hierarchy in a tree
fashion, Actor was designed in such a way that a physical tree structure is not necessary.
So, since there is no real tree in memory, how does Actor draw it on the screen? Well, it
so happens that a tree type structure can be represented when necessary by using -- you
guessed it - a Dictionary.

The buildClaaaLiata method generates such a dictionary, where each key is a
class, and each element is a SortedCollection of the immediate descendants of the
class. For example:

Actor[#aDict] := buildClaaaLiata(Actor) <CR>
aDict[OrderedCollection] <CR>
SortedCollection(SortedCollection TextCollection)

From this information, Actor knows who descended from whom and can draw the
lines from class to class.

160 Chapter 2: Guide to the Actor Classes

2.7.16 Equivalence Returns: Using the MethodDictionary
Class

Even though we have preached at length about the fine points of the difference
between equivalence and equality, you may still think that it is a topic of at most
academic interest. Well, HethodDictionary is a class for which the difference
between the two is one of the sole reasons for its existence. We sort of hinted above as to
why this is true, but in this section we will go into more detail.

As you might guess by its name, a MethodDictionary is generally used to hold all
the methods defined for a class. Every class has one, and when you send a message to a
particular object, it looks in its class's MethodDictionary to find the right method.
This of course is something which happens every instant in Actor, so it's important for
the process to be efficient in terms of time. Since memory is not infinite, either, It's
important for MethodDicti.onary objects to be efficient in terms of space, too.
However, don't think that MethodDi.cti.onary objects are only good for holding
methods. Their compact si7.e and efficient lookup process makes them ideal for other
applications as well.

2.7.16.1 The Importance of Equivalence

As with any keyed collection, when you want to access an element, you specify a
key and then the object uses that key to translate to a physical location in an indexed
collection. Since elements in various MethodDictionary objects have to be located
thousands of times every second, this means the lookup process must be made as
efficient as possible. If you think back to our original discussion of equality versus
equivalence, you may recall that we mentioned equivalence in Actor was implemented
as the comparison of two object pointers. We also mentioned that this comparison was
extremely fast. So, the goal was to somehow exploit this fact in implementing the
MethodDictionary class.

The result is that the find method for MethodDictionary objects uses
equivalence as its searching criterion. When find searches for a target, it doesn't search
for a key equal to the target, it searches for a key with an identical object pointer. This
implies that the only possible type of key for a MethodDictionary is one for which
equivalence is meaningful, i.e. an Int, Char, or Symbol object (see section 2.1.3.1,
equality vs. equivalence). However, the elements of a MethodDictionary can still be
any~hing, as with with Dictionary objects.

MethodDlctlonary class

.tally

.values

an array

nll 0 0 nil

#Sam 1 1 100

nll 2 2 nil

nll 3 3 nil

#Joe 4 4 250

keys values

Figure 2-16: A MethodDictionary is a special dictionary
designed for quick access. MethodDictionary keys are
stereo in its indexed elements, while their corresponding values
(usually Function or Primitive objects) are stored in a
parallel array. The instance variables hold a tally of
entries and the parallel array.

2.7: Co/19Clion Classes 161

2.7.16.2 Inside a MethodDictlonary

As we mentioned above, it is also important for MethodDictionary objects to take
up as little memory as possible. This means that the structure of a normal Dictionary
is not suitable. Every element of a Dictionary, as you know, is an Association, and
each Association has two instance variables, too. This means that there are three
object pointers allocated for every value in the collection. This layout allows for great
flexibility, which is why it ls used for Dictionary, but it consumes too much memory
to be useful for method dictionaries. Another scheme is to maintain two parallel arrays
where the physical index of the key in one array correspo~ds to the physical index of the
value associated with that key, which is kept in the other array.

This is the approach actually used by MethodDictionary. The keys are kept in
the MethodDictionary itself, and the index of a key in the MethodDictionary
corresponds to an index in the parallel array, an instance variable named values. If the
MethodDictionary really does contain methods as elements, then the name of the
method is the key and the item in values is the compiled method. Of course, the
elements of a MethodDictionary can be anything, not just methods.

2.7.16.3 Memory Considerations

The key to using MethodDictionary objects is that if you want to use one, make
sure you want to keep it for a while. That sounds sort of cryptic, but it really does make
sense. Remember that Actor has two data areas, static and dynamic. All the other times
you have created new objects, they were allocated from the dynamic area, which is
constantly scanned for garbage. This means that if you don't need some of the objects
you have created anymore, Actor will know and de-allocate the memory for them so
some other objects can use the memory. If the object has been around a long time,
however, Actor moves it over to the static area, where things that have been around a
long time reside.

MethodDictionary, however, is different because when an instance is created, it
is immediately placed in the static area. This is because MethodDictionary objects
usually hold compiled methods, and having the garbage collector continually scan them
is inefficient. If you create a HethodDictionary for some other reason than to hold
methods, it will reside in the static area, too. As long as you will be using the object for a
while (throughout your application, for example), don't worry about it too much.
However, as a rule, don't create MethodDictionary objects "on the fly" because you
can't reclaim the memory they use without running the static garbage collector.

There is an alternative, however. There is a class called IdentityDictionary
which is identical to MethodDictionary in all respects except for the case that
IdentityDictionary is allocated from dynamic memory rather than from static. You
can treat it just like a MethodDictionary, except that you don't have to worry about
how long you'll be using it. IdentityDictionary is not located as part of the default
Actor image, so if you want to use it you should load it first ("IDENTITY .CLS").

162 Chapter 2: Gulde to the Actor Classes

2.8 Collections With a Position: The Stream Class

We have mentioned the concept of a stream a few times so far, without really
explaining more about it. Well, the time has come to finally learn about Stream.objects.
They are actually very simple things, but since one of their instance variables is an
indexed collection, you needed to learn about those before Stream objects would be
meaningful. •

As we mentioned above, one of the instance variables in a Stream is an indexed
collection-it's named collection, in fact. The other instance variable is an integer
named position which acts as a pointer into the collection. The reason that the
collection has to be indexed rather than keyed is that Stream objects are primarily used
to process data sequentially, and sequential access implies indexed collections.

Stream objects are used extensively in Actor, especially in the compilation process,
because it provides an elegant model for certain types of tasks. For example, the lexical
analysis process (the step immediately before parsing a computer language)' must carry
out the transformation of a stream of characters into a stream of tokens. Actor Stream
objects fit the bill perfectly.

2.8.1 Creating Stream Objects

There are a couple of different ways to create Stream objects, depending on the
situation. You can always create a Stream the usual way by sending Stream a new
message:

Actor[#Sam] := new(Stream);

However, this of course will leave you with just an object with two instance
variables, and you have to initialize them somehow. Initializing the collection is easy
all you have to do is set the collection instance variable to be equal to some indexed
collection. Initializing position is a simple matter of sending your new Stream object a
reset message:

reset(aStream); /* aStr~am.poaition :• 0 *I

However, this traditional way of creating a Stream is a bit awkward. Since the
most important part of the Stream is the collection, you may wish to send a message to
a collection telling it to attach itself to a new Stream. We have written such a method,
called streamOver, for class String. However, you could define a streamOver
method for any indexed collection--you could even use the same code:

Def streamOver(self I aStream)
(aStream := (new(Stream)) .collection :=self;

"reset (aStream);
)

Stream class I
a Stream

!lllllllllllllllll!lllill~~lllllllllllllllllllllllillllllll!lll\1·111 .collection

•lllllllllilllllllllllllllllllllilllllllllllilll\jj[ll.llllilll·lllllll··~lllllll!lllllllllllllllllllllll[lll!lll!lll!ll .posl tio n

String

'H'

1 'e'

2 'I'

3 'I'

4 'o'

I I

6 'S'
prlnt(aStream.collectlon); <CR>
"Hello Sam" 1 'a'

8 'm'

9 nll

Figure 2-17: The Stream class has two instance variables:
position and collection. The variable collection contains
the elements of the Stream and position is the current
offset value for the associated collection.

2.8: Streams 163

2.8.2 Important Methods

Although the concept of a Stream may be a bit foreign to you, its methods are
conceptually quite simple. For instance, the atllnd method returns true if
aSt:r:m. position >= size (aSt:r:m. collection). The copyl'rom method for the
Stream class is identical to the other copyl'rom methods we have seen so far:

copyl'rom(aSt:r:m,start,stop);

Just like the others, it will return all the elements in the Stream object's collection from
aSt:r:m. collection [start] to aSt:r:m. collection [stop-1], inclusive.

The next four methods enable you to access elements in the collection. The next
method returns the element of the collection currently pointed to by position and then
increments position:

Actor[fSam] := streamOver("Bello") <CR>
print(Sam.position) <CR>
0
nezt.(Sam) <CR>
'B'
print(Sam.position) <CR>
1

The next.Put method does exactly the opposite. You specify an element for the
collection, and it places that element at the place pointed to by position. For instance:

reset(Sam) <CR>
nezt.Put(Sam,'J') <CR>
print(Sam.collection) <CR>
"Jello"
print(Sam.position) <CR>
1

A related method, nextPutlll, does the same thing but instead of taking only one
element, it takes a collection of elements and places them into collection. To
understand nextPutlll, here is an example of its syntax and an equivalent construct
using a do message:

nextPutlll(aSt:r:m,aColl);
I* llquivalent do message */
do(aColl,

(using(elem) nezt.Put(aSt:r:m,elem)
)) ;

164 Chapter 2: Guide to the Actor Classes

The put method deviates a bit from the traditional sequential nature of streams
because it enables you to place an element into the Stream.object's collection at any
point. The syntax is as follows, with an equivalent construct shown below:

put(aStJ:m, anl!llement, offset);
I* Bquivalent to the following */
aStJ:m.collection[offSet] := anElement;

Before we go on, here are some things to remember about the above methods. First,
note that the put method does not modify the position instance variable. Secondly,
note that with all of the above methods, if you try to access elements of the collection
that don't exist, i.e. if the index you specify is greater than or equal to
size (aStJ:m. collection), then you will get an "Index out of bounds" error.

The putBack method simply decrements position by one. It checks to see if
position is z.ero or not, and if it is, then it does nothing. This way position will
never be negative after a putBack message.

The word method is very handy, although its usefulness is limited to Stream
objects with String objects as their collection. Here's how you use it:

word(aStJ:m,delimiterChar);

Here's the basic algorithm for word:

1. Starting at the current position, aStJ:mis scanned until the first character
which is not a delimiter is reached.

2. The word method then continues looking along the Stream until it finds
another delimiterChar.

3. The characters in between-a word-are returned.
4. The position variable is updated to the point found in step 2.

For example:

Sam := streamOver("This
word(Sam,' ') <CR>
"This"
word(Sam,' ,) <CR>
"i•"
word(Sam,' ,) <CR>
·"•"
word(Sam,' ').<CR>
"sentence."

is a sentence.") <CR>

(

2.8: Streams 165

Note: the word method does not check to see if it is looking at valid elements of the
Stream-if asked, it will blindly search past the end of the string looking for
delimitaz:Char. As a result, you should "protect" a word message to keep it from
looking past the end of the stream:

if not(atBnd(aSt%m))
than word(aSt%m,delimitaz:Char);
andif;

2.9 Accessing Files in Actor

In the Unix operating system, the concepts of a stream and a traditional file are
nearly identical. And it is true that from one perspective, the two are very similar-you
can easily view a file in terms of a collection of bytes and an associated file pointer.
However, as you now know, the collection part of a stream is primarily accessed
sequentially. Since many applications process files both sequentially and randomly,
depending on the task at hand, files are best viewed in a different context than streams.
As a result, we have separated the l'ila and Stream classes. However, as you will see
in this section, we have duplicated many of the methods used in class Stream for File
so that you can treat a rile object as a stream when doing sequential access.

At any rate, each l'ila object has two instance variables. One of them is the file's
fileNama (including a path, if any), an ASCIIZ string (a normal string with a null byte
at the end). The second is a handle to the file, which is assigned by DOS when you
open or create it.

2.9.l Stream-like Methods

We have already explained the methods used for class Stream, but here is a list of
the File methods which enable you to treat a rile as a Stream. Assume f is a File
object:

atBnd(f); /*True if fie at end of file (eof) */
copyFrom(eelf, etart, atop); /* eama ••always*/
nezt(f); /*return• the nezt character in the file*/
neztPut(f, aChar); /*writes a character to the file*/
neztPutAll(f, aColl); /*writes a String to the file*/

166 Chapter 2: Guide to the Actor Classes

2.9.2 Error Checking

It is very important to check for file errors after sending any message which causes a
file to be opened, closed, created, read from, or written to. If you don't, then you will
never know when an error has occurred. The way to do this is by sending one of two
messages-getError or checkError-after doing any of the above. The difference
between the two is that getBrror just returns the error number, and checkError goes
through the entire normal error process (see section 4.2.5). Each will return 0 if no error
occurred. Here is a list of all the numbers that getError and checkError can return,
and what each number means:

Number Meaning
0
2
3
4
5
15

No error
File not found
Path not found
No handle available: all in use
Access denied
Invalid drive specification

You'll see some examples of how to use getBrror aµd checkError below.

2.9.3 Creating, Opening, and Closing Files

. Creating an Actor File object is nothing new:

Actor[#Sam] := new(l'ile) <CR>
l'ile("nil")

The "nil" signifies that the file does not yet have a name. Note that this just creates
the Actor File object-it hasn't created or opened any physical files. In fact, OOS knows
nothing about it yet. First you have to set the file's name:

setName(Sam,"test.dat") <CR>
l'ile("teat.dat")

Note that aetName handles the ASCIIZ conversion for you, so you don't have to worry
about it.

If the file already exists on the disk, you can now open it. You also have to specify
what you want to do with the file, i.e. read or write to it. The general syntax is this:

open(f, mode);
getError(f); I* or checkError(f) */

2.9: Files 167

The mode can be one of three numbers, depending on what kind of access to the file you
want to have. Here is a table explaining the meaning of each possible value for mode;

Mode Type of access allowed
0
1
2

Read only
Write only
Read or write

If you try to read from file which is write only or try to write to a file that is read
only, you will get an error (assuming you catch it with getError or checkli:rror, of
course). Note that if you try to open a file in modes 1 or 2 but DOS says the file is read
only, then the open message will generate an error. If the open works OK, it will return
the handle which DOS assigned to the file; otherwise it will return nil.

If the file hasn't been created yet, then you use create. You can use create with
an existing file, too, but be careful. If you send a create message to a file that already
exists, the existing file is deleted. You will get an error if you try to create a file which
already exists only if it is marked read-only by DOS. Also note that create effectively
does an open, too, so there is no need to send an open message after a create. For
instance:

create(Sam);
checklilrror(Sam);

.
Note: the create message has nothing to do with sending a new message to class

rile. There are two phases involved in using files in Actor-making an Actor rile
object by sending the rile class a new message, and sending the l'ile object a create
(or open, for existing files) message. The create message actually tells DOS to create a
physical file, whereas new tells Actor to create a new rile object. (It's basically the
same situation as in Pascal or C-you have a variable in your program which you use to
refer to the actual physical file.)

After you are done reading or writing to the file, you have to close it:

close(Sam);
getBrror(Sam);

Although not closing a file which you have only read from will not physically hann any
data, you should do it anyway. That's because it frees up a handle so that DOS can use
it for another file.

You can also delete a file (if it's not read-only):

delete(Sam);
getlilrror(Sam);

168 Chapter 2: Guide to the Actor Classes

You can also rename a file. Not only does the rename method change the filename
on the disk, but it also updates the File object's fileName instance variable.

rename(Sam,"test2.dat");
getError(Sam);

You can also copy an unopened file to another with the copyAll. method. The
following will take the file "test.dat" and copy it to the file "test2.dat":

Actor(#l'ilel] := new(l'ile);
setName(l'il.el,"test.dat");
Actor[#l'ile2] := new(l'ile);
setName(l'ile2, "test2.dat");
copyAll(l'ilel, l'ile2);

2.9.4 Moving Around in a File

There are three methods used to move a file's file pointer. The move method moves
the file pointer a specified number of bytes relative to the current position:

move(al'ile, numBytes);

The moveTo method, on the other hand, always moves relative to the beginning of
the file:

moveTo(al'ile, numBytes);

Both are actually implemented as particular cases of !seek. The lseek method is
very powerful, but you may not wish to use it all the time. If you want to, you can write
your own methods which use lseek, like we did for move and moveTo. At any rate,
the general syntax for l.seek is as follows:

lseek(al'ile, numBytes, mode);

The first argument, numBytes, is the number of bytes to move. (Always make sure
that numBytes is a Long integer or the method will not work properly. You can do this
by sending an asLong message numBytes, if you wish.) The mode parameter specifies
how exactly the move is to take place:

Mode
0
1
2

Relative to ...
Beginning of file
Current position
End of file

2.9: Files 169

All three methods will return the value of the file pointer (a long integer) after the
move has taken place. This fact means that writing a length method (also defined for
class rile) is trivial:

Def length(self)
(Alseek(self, OL, 2);
)

It is likewise easy to write a method to return the current value of the file pointer ..
Here is the position method, as it is defined in FILE.CIS:

Def position(self)
(Alseek(self, OL, 1);
)

2.9.5 Reading and Writing to Files

Assming a file has been opened or created and properly positioned, you can read or
write to it with the methods in this section. You can read and write characters to a file
with readChar and writeChar, respectively:

readChar(Sam);
writeChar(Sam,aChar);

For larger amounts of data, you can use read and write. The read method has
one argument, a Long, which specifies the number of bytes to be read. It ~ill return the
data read from the given file, in the fonn of a String:

read(Sam, 1000L); /*returns 1000 bytes as a String*/

The write method takes as its argument any String object. You can imbed as
many lines as you want in one write by separating each line by the Actor String
constant ca_ LI':

write(Sam, aString)

2.10 Using Graphics Objects

The Actor classes which implement graphics objects, Point, Polygon, R.ect,
RndRect, and Ellipse, are discussed together in this section because they logically
belong together. However, looking at the class tree gives an entirely different
impression. For instance, Point objects are isolated in the sense that they aren't in the

170 Chapter 2: Gulde to the Actor Classes

same place as Rect and the other graphics classes, which all descend from class
GraphicsObject. This ts an unfortunate result of the way MS-Windows represents
graphics objects. For any geometric object more complicated than a Point, MS
Windows requires that its data be stored in binary format. This is why most graphics
objects are physically collections, although you would never think of one as such. At
any rate, regardless of its physical location on the class tree, a Point is indeed logically
grouped with its graphics cousins and will be discussed as such.

2.10.1 Using Point Objects

An Actor Point object is very simple-it's just an atomic object which has two
instance variables, z and y. You can recognize a Point object whenever you see the
x@y format (e.g. 312, 568-128). Of course, Point objects are great for specifying
geometric points on the screen. However, there are other uses, some of which will be
explained here, which you may also exploit.

Although literal (defined at compile time) :Point objects are easy created using the
I character, literal Point objects are inherently limited. For example, if you wanted to
make a Point out of two Int objects, Joe and Sam, you couldn't do it. If you tried
Joe@Sam, you would get a Point where the z instance variable is IJoe (Joe
considered as a literal constant) and y is Isam. This obviously is rather useless in this
context. To remedy this situation, we have provided another way of generating a
Point-the point method. For example, the following code would return a Point
where z is equal to the contents of Joe and y is equal to the contents of Sam, which is
what we wanted in the first place:

point(Joe,Sam);

Note that this is actually a message to Joe. As such, Joe must be an Int because the
point method is defined in the Int class.

Since Point is a geometric object, drawing one on the screen requires you to know
just a bit about MS-Windows manages graphics using the Graphical Device Interface
(GDI). Crucial to this discussion is the concept of a display context. Most of this material
will be covered in greater depth in section 2.11, but for now, here's a quick introduction.

MS-Windows has to ensure that data for one window doesn't end up in some other
window. Thus, MS-Windows doesn't allow anyone to draw something directly to the
screen. Instead, each window has a "screen" of its own to which it can output data. This
"screen" is manipulated using a set of parameters known as its display context. At any
rate, this display context, along with the window it belongs to, is "owned" by MS
Windows. Whenever the data is owned by MS-Windows rather than the application,
the data has to be manipulated via a handle. So, drawing something on the screen is a
matter of talking to a window's display context via its handle. Many of methods
described in the section below use a handle to a particular display context to do their
stuff.

l

Object

Collection

Indexed
Collection

Byte
Collection

Struct

Graphics
Object

Polygon

Ellipse

l
Rect

I
l

RndRect

Figure 2-18: GraphicsObject class tree

2.10: Graphics Classes 171

Before we delve into the methods for the Point class, one more thing needs to be
mentioned. MS-Windows requires that the x and y instance variables be integers when
it draws a Point on the screen. However, you may wish to maintain greater precision
when calculating geometric coordinates. To remedy this dilemma, Actor allows you to
have Real numbers as the x and y values, but before any calls to MS-Windows graphics
routines, Actor rounds them off for you. However, while Actor protects you, MS
Windows doesn't. If you make any direct calls to MS-Windows routines with a Point
object containing anything but integer values, then your program will crash. Make sure
to round off any Real x and y values before you send them to MS-Windows.

2.10.1.1 Important Methods

Some graphics-related methods you can use with for Point objects are draw,
move'l'o, line'l'o, and line. It requires that a handle to a display context has already
been obtained and in fact takes that handle as an argument. For example, the following
would draw a point at 29830, assuming hDC is an already-defined handle to a display
context:

draw(29830,hDC);

The move'l'o method tells Windows to update the current position in the display
context. For instance, the following would update the x coordinate of a window to be 4
and they coordinate to be 53:

move'l'o(4853,hDC);

The line'l'o method draws a line from the current position of the window up to, but
not including, the receiver Point. It also resets the current position in the window to the
receiver Point as a side effect. For instance, assuming that 4853 is the current position
of the window, the following would draw a line up to 24@80:

line'l'o(24@80,hDC);

The line method is a bit more general. It draws a line from the receiver Point to
another, and in the process sets the current point to be the second point. As with
line'l'o, the line extends to, but does not include, the second point. For instance, to
draw a line from 40827 up to 78878:

line(40827,78878);

We mentioned above that most Actor graphic objects are maintained as Struct
objects. As you know, elements of Struct objects are often Long objects (or can be
treated as such). Since this is true, there is a need for a method to convert Long integers
to Point objects. The convention for this method, asPoint, is that the high order bytes

172 Chapter 2: Gulde to the Actor Classes

of the Long will be the y instance variable of the returned Point, and the low order
bytes will be the z instance variable. An easy way to remember which is which is that
''high" sounds like "height," which is normally associated with a y coordinate. For
example:

asPoint(34567000000L) <CR>·
4032@3162

Most of the time, of course, you will be using asPoint on an element of a Struct
rather than to a Long by itself like in the example above.

2.10.1.2 Other Uses for Point Objects

Although Point objects are certainly useful when used as geometric objects, they
are also handy whenever you need an ordered pair of any type. For instance, certain
TextCollection methods return a Point where the z and y values represent the line
and column of a chunk of text. A Point could also return the location of an element in
a matrix of some sort.

Since both Point and Association objects are ordered pairs, there is a legitimate
question about which to use in these general cases. Although technically there is really
no difference, because objects of both classes are atomic with two instance variables,
there may be semantic arguments to consider. For instance, it may be more clear in
some instances to use a Point. This would be true especially if the object represented a
row,column pair or something similar. However, whichever you use is up to you.

2.10.2 Using Polygon Objects

As you know from geometry, a polygon is just a geometric figure with an arbitrary
number of sides. The simplest polygon is of course a triangle, with three sides. There
are all sorts of interesting things about polygons, as you may recall-things like whether
the polygon is convex or concave, regular or not, etc. However, MS-Windows doesn't
go into that much detail, and in fact it's up to you or your program to ensure that the
figure is a true polygon. Here's why: the way MS-Windows draws a polygon is to take a
collection of points and connect lines between them from beginning to end. Nowhere
does it check to see that the ending point is the same as the beginning point, so the
figure may or may not be a valid polygon. (In the interest of fairness, the MS-Windows
routine used to draw Actor Polygon objects is called PolyLinea, so it never pretends
to draw polygons in the first place.)

The way to create a Polygon object in Actor is to include a collection of Point
objects when you create one. The Point objects in the collection will define the vertices
of the Polygon. So, the general way to create a Polygon object is like this:

aPoly :• new(Polygon,aCollection);

2.1 O: Graphics Classes 173

For a practical example, let's say you wanted to create a triangle with vertices at
080, 384, 084, and 080. (You need four points to define the triangle because you have
to explicitly specify that the last point is the same as the first). To create it, you would
say:

Actor[ISam) := new(Polygon,1(080 384 084 080)) <CR>

Of course, you could have used a variable containing an Array instead:

Actor[IJoe] := 1(080 384 084 080) <CR>
Actor[ISam) := new(Polygon,Joe) <CR>

And while here we have used only Array objects, almost any collection of Point
objects could have been used. By now you should have a sense of what collections
might be appropriate for this sort of thing, however. For example, a
HethodDictionaz:y is inappropriate because equivalence won't work for Point
objects, and a SortedCollection won't hold Point elements unless you change its
coq>areBlock instance variable.

In fact, if you look at the code for new for class Polygon in the Browser, you don't
actually have to have Point objects as elements in the collection, either. The actual
methods used to obtain the x and y coordinates are x (i) and y (i), where i is an
element of the collection. It so happens that currently those methods are only defined
for Point objects, but there is no reason that you couldn't define them for other classes
where it might be appropriate. This implies that objects of any class for which x and y
methods are valid can be elements of the collection used to define a Polygon object. Of
course, objects of any class which descends from Point fall into this category by
default.

Just like any graphics object, you can print and draw a Polygon, too. The syntax
and usage are identical to that for Point above.

The fact that an Actor Polygon isn't a true polygon without explicitly specifying an
additional point is actually not as restrictive as it sounds. An open geometric shape or a
collection of connected lines is conveniently represented as a Polygon. However, if you
really want all your Actor Polygon objects to be true polygons, there is an alternative.
All you would have to do is define a new class called RaalPolygon or someth~ng .
similar whose new method would allocate space for one more point than the number of
Point elements in the collection and then make the last vertex of the Polygon equal to
the first.

174 Chapter 2: Guide to the Actor Classes

2.10.3 Special Polygons: Using the Red Class

A rectangle is just a special case of a polygon, so you may wonder why the
distinction is made. The reason is that rectangles are so prevalent in MS-Windows that
all sorts of methods are defined for them, and in fact Rect is a descendant of
GraphicsObject in its own right. Why all the fuss about rectangles? Well, if you \
think of a window as what it is-a rectangle with fancy trimmings-the reason becomes
obvious.

Rectangles are defined by four numbers. The first two represent the coordinates of
the upper left hand comer, called the origin, of the rectangle. The second two numbers
are the coordinates of the lower-right hand comer, usually referred to as the corner or far
corner. The following illustrates how to define a literal rectangle with origin at 3@4 and
the far comer at 38@40:

'(3 4 38 40)

There are the same limitations with literal Rect objects as with literal Point objects.
As a result, we have defined a rect method for class Int. In the example below,
assume Joe is an Int equal to 3 and Sam is an Int equal to 4. Then the code below
generates the same Rect object as that created with the literal mechanism:

rect(Joe,Sam,38,40)

There may be cases where it is more appropriate to create Rect objects.the "normal"
way, i.e. with a new method. However, the init method for Rect objects is a bit more
interesting than usual in that it takes four arguments (you can probably guess what they

· are!). The following example illustrates the creation of a Rect named Otis:

J\ctor[#Otis] := new(Rect) <CR>
init(Otis,Joe,Sam,38,40) <CR>

2.10.3.1 Manipulating Rect Objects

Once you create a Rect, all of its data is contained within a .Struct. This means
that the data defined for the origin and the comer are obtained at various offsets within .
the Struct. So that you don't have to worry about the details of all this, we have
defined a set of methods which let you manipulate Rect objects without worrying
about byte offsets and such.

The edges of a Rect are defined by four integers-the top, bottom, left and right.
Together, the top and left define the origin, and the bottom and right define the far
corner. There are four methods designed to return these numbers, called, predictably,
top, bottom, left, and right. Here are some examples of using them:

top(,(1 2 3 4)) <CR>
2
bottom(,(1 2 3 4)) <CR>
4
left(,(1 2 3 4)) <CR>
1
right(,(1 2 3 4)) <CR>
3

2.10: Graphics Classes 175

There are two methods which do some simple arithmetic for you and return the
width (right - left) and height (top - bottom) of a Rect. Here are some examples:

vidth(,(10 20 40 60)) <CR>
30
height(,(10 20 40 60)) <CR>
40

I* 40 - 10 */

I* 60 - 20 */

Once a Rect is defined you can change its boundaries with the setBottom,
sat Top, setLeft, and setRight methods. Their usage is straightforward:

setTop(aRect,anint);
setBottom(aRect,anint);
setLeft(aRect,anint);
setRight(aRect,anint);

You can set the origin or comer by using a Point as an argument with the
setOrigin and setCorner methods. For instance, the following would define the
origin of a Rect object named Samas 181:

setOrigin(Sam,181);

The usage of setcorner is identical.

2.103.2 More Rect methods

MS-Windows also can calculate the intersection and union of two rectangle objects.
The union of two rectangles is the smallest rectangle which contains both rectangles, and
the intersection is the largest rectangle which belongs to both rectangles. For instance:

176 Chapter 2: Guide to the Actor Classes

Actor[ISam.] := '(10 20 30 40) <CR>
Actor[IJoe) := '(5 15 25 35) <CR>
union(Sam.,Joe) <CR>
Ract(5L lSL 30L 40L)
interaect(Sam.,Joe) <CR>
Ract(lOL 20L 2SL 35L)

The intersection of two rectangles which share no area is the null rectangle, Ract (OL
OL OL OL).

Two other methods do the work of determining new coordinates when you want to
move or resize a rectangle. Both methods, offset and inflate, take two integer
arguments which enables you to control the x and y coordinates separately. Beware that
both methods do not return a new Rect with the new coordinates-they alter the
original. With this in mind, here are a few examples:

offaet(,(10 20 30 40),5,3) <CR> /*Move by 5,3 */
Ract(15 23 35 43)
inflate(,(10 20 30 40),5,3) <CR>/* Xnflate by 5,3 */
Ract(5 17 35 43)

The last two methods are related, much in the way that print and draw are. The
paint method is like print in the sense that it manages the device context business for
you, while fill requires a handle to a device context. Filling or painting an object
requires that we introduce to another concept, that of a brush. A brush determines
which pattern MS-Windows will use to fill the shape-total black, polka dots, triangles,
whatever. MS-Windows has a whole set of defined brushes, and you can define your
own, too. At any rate, brushes are manipulated via handles, too, but we won't go into
any of that. In the examples below, we will refer to a variable called hBruah-just
assume it's a handle to a brush. The following will give you an idea of how fill and
paint are used:

paint(aRact,hBruah);
fill(aRact,hBruah,hDC);

Again, hDC is a handle to a device context. More information on device contexts and
brushes can be found in the MS-Windows manuals.

2.10.4 Rectangles With Round Comers: The RndRect Class

Some rectangles you see in MS-Windows have rounded corners. For example, a
button such as "OK" or "Cancel" is actually a rectangle, but with rounded comers. The
Actor class RndRact has been provided so that you can define RndRect objects too. It
has not been loaded in the default Actor image, ACI'OR.IMA, so you have to load it first
(''RNDRECT.CLS").

2.10: Graphics Classes 177

A RndRact is defined almost exactly like a normal Rect except that it has two more
pieces of information, called the x and y curvature. The x and y curvature is a bit hard
to define precisely, but it's easy to understand: make an oval x pixels wide and y units
tall, and then cut it into quarters along its axes. Those comers will be the comers of the
RndRact.

You'll probably haye to experiment to see how changing the x and y curvature
changes the appearance of the RndRact, but it's not too hard to derive the pattern. If
x=y, then the oval that the comers are made from will actually be a circle, and the
comers will be symmetrical. If x>y, then the oval will have a football shape, and if y>x,
then the oval will have the shape of a football on its end.

2.10.4.1 Important Methods

Most of the methods for class Rect can be used with RndRact as well, such as
aetOrigin, aetCorner, set Top, etc. Three new methods have been added to
support the x and y curvature of the RndRact, however: aetXCurve, aetYCurve, and
aetCurve. Here's how to use them, assuming Joe is a RndRect object:

aetCurve(Joe, 10820);

aetXCurve(Joe, 10);
aetYCurve(Joe, 20);

The aatCurva method sets the x curvature to the x instance variable of its Point
argument, and they curvature to the y instance variable of the Point. The last two,
aetXCurve and aetYCurve, sets the x and y curvature independently.

The init method is similar to that for class Rect, but with two more arguments:

init(left, top, right, bottom, xCurve, yCurve);

2.10.S Using Ellipse Objects

You can also draw elliptical objects on the screen with objects of the Ellipse class.
Ellipse is another one of the classes, like RndRect, which is not defined in the default
Actor image file; as a result you have to load it first ("ELLIPSE.CLS"). At any rate, once
you do you can draw ellipses to your heart's content.

Although it may seem somewhat odd to have Ellipse be a descendant of Rect,
the scheme is actually quite logical. In mathematics, ellipses are usually defined in
terms of their center point along with their major (long) and minor (short) axes.
However, there is another way to represent an ellipse, too, which you may not have
thought of.

178 Chapter 2: Guide to the Actor Classes

Given an ellipse, you can define the smallest rectangle that encloses the ellipse by
requiring that the each edge of the rectangle be tangent to the ellipse. This process is
called circumscribing the rectangle around the ellipse, and the process is just as easy in
reverse. That is, given a rectangle, you can circumscribe an ellipse inside that rectangle.
That's how ellipses are defined in MS-Windows-by the rectangle that circumscribes
them.

Note that none of the traditional information about ellipses is lost with this scheme.
The width and height of the rectangle are the lengths of the major and minor axes (not

·necessarily in that order, however). The center of the ellipse is of course the intersection
of the major and minor axes. However, the center of the ellipse also happens to be the
midpoint of the line which connects the origin of the rectangle and the far comer. This is
easily computed-the x value of the center is (left+right)/2, and they value is
(top+bottom)/2.

Just as a square is a special case of a rectangle, a circle is a special case of an ellipse.
In fact, they directly correspond, because a circle is just an ellipse circumscribed inside a
square. It would be easy, then, to define a Circle class as a subclass of Bllipae. You
could define two instance variables, one for the center point and the second for the
radius, but inside it would still be implemented as a descendant of Rect (and hence
Struct).

There really aren't any new methods for class Ellipse-the methods for Rect will
work just as they are. However, some of them will have different meanings (e.g., width
and height), and of course draw will draw an ellipse instead of a rectangle.

2.11 Working with Windows: The Window Classes

An essential part of the Actor language is a powerful yet easy to use interface with
Microsoft Windows (MS-Windows). Actor includes several classes dedicated to this
cause. Three of the most fundamental of these are Window, Control, and
llodalDialog. Almost all of the display elements that comprise the Actor
programming environment are objects of these classes or their descendants. When we
talk about windows, we include (in part) regular tiled windows, popup windows, list
boxes, scroll bars, dialog boxes, even push buttons. We look now at the way the Window
class and three of its descendants, 'l'eztWindow, ZditWindow, and PopupWindow, can
be used to create window objects of great power and flexibility.

2.11.t Creating Windows in MS-Windows

Every kind of window that you can make, from a tiled window to the humble push
button, comes into being by asking MS-Windows to create it. In fact, this is done by
"sending a message" to Ms-Windows in a way that resembles sending messages to
objects. In the Tutorial, the Call statement is introduced as the way we ask MS
Windows to do something. To create a window, we say Call CreateWindow with the
appropriate parameters (eleven of them!) to produce the kind of window desired. This
happens whenever a new window object is made-you will never have to use
CreateWindow explicitly.

When putting together the Actor classes used to create window objects, we make
use of the fact that MS-Windows actually "owns" the window. This means that once the
window is created, Actor needs only to keep track of the reference, called a handle, that
Call CreateWindow returns. The handle is used in any communication with MS
Windows regarding the window. This approach helps keep window objects relatively
small in size.

2.11.2 The Window Class: Creating Window Objects

The Window class, while able to produce working window objects, is another one of
Actor's formal classes. Window is a large class, that is, with several methods, but an
instance of Window can't do very much more than show itself. Most of the methods
provide the basic communication with MS-Windows that all window objects depend on.

As usual, a new message is used to create a new window object. The first thing the
new method of class Window does is to create the new object. Then, before it returns, it
sends a create message to the object. The create method uses the CreateWindow
function to create a window in MS-Windows, and stores the handle in the window

180 Chapter 2: Guide to the Actor Classes

object's instance variable hWnd. Many of the methods associated with window objects
use hWnd to tell MS-Windows which window they are talking about.

An object of class Window can be produced with a statement of the form:

Actor[IWl] := new(Window, menuName, windowName);

The window object .Wl (which would not yet be visible) will be of the Tiled style (non
overlapping), like the Actor Display window. It features the standard system menu,
allowing the window to be made iconic, zoomed, or closed. There is also a sizebox in
the upper-right comer. Wl will have the menu specified by the String object
menuName, and the window name, appearing in the caption bar, given by the String
object windowName. If menuNama is nil, there will be no menu.

[A window's menu is easily produced by using the Resource Compiler. The details
for this procedure are outlined in section 3.4.1 of the Advanced Topics section.
Alternatively, a menu can be produced dynamically, using the technique employed in
the addAbout method of the Window class to add menu elements one at a time. In this
way, a "smart menu" can be created and updated to reflect changing conditions in an
application.)

2.11.2.1 Displaying Window Objects

To produce an actual window object, we can say:

Actor[IWl] := new(Window, nil, "A Hew Window")

A window object needs a ahow message in order to be displayed:

ahow(Wl, val);

The val parameter is an integer value which determines how the window should first
appear. Some of the values and their results are as follows:

Object

Window

Popup-
TextWlndow Window

1
ToolWindow Scan Window EditWindow Work Window

l 1
Browser Inspector WorkEdit

1
Brow Edit File Window Workspace

Figure 2-19: Window class tree

-__..,.,_
·;:.,~

Net11

File Edit
Show Roon! Tenolates

Actorl#W1l :=new(Window,nil, 11A Hew Window");
<a Window>
Actor[ltuall:=1; 1 . .
show(W1 • ual) ;
I

Figure 2-20: A new Window has been created. It is of the tiled variety.

If val is ..•
1

2

3

hwndX

2.11: The Window Classes 181

MS-Windows will ...
Display Wl for the first time. This is
the "nonnal" mode for showing tiled
windows.

Display Wl if it is iconic. Otherwise
displays the window as an icon in the
icon bar.

Use the entire screen to display Wl.

If hwndX is some other window's handle,
Wl replaces it on the screen.
The previous window is made iconic.

If val = 1, the new window will be displayed horizontally on the screen, underneath
any other window or windows that may already be there. This is the default tiling
behavior. It will use the whole screen, except for the icon bar at the bottom, if there are
no other windows displayed. It is also possible to have the window be displayed
vertically, either to the right or left of another window. Try either of the values OxFF7E
(right) or OxFF7F (left), to see how this works.

2.11.2.2 Additional Window Methods

The messages sent to Window objects fall into two categories: the "nonnal" kind sent
by the application and those sent by Ms-Windows. We say "normal" because the
application can actually send either kind of message. The distinction is easy: the kind
sent by the application have normal Actor method names, like show. The MS-Windows
methods have names like 1Dl _ CBAR and WM_ SETl'OCUS. The WM_ prefix stands for
Window Message. We'll talk about the "nonnal" methods first.

One of the most important of the nonnal Window methods retrieves the value of the
handle contained in the instance variable hWnd To get the handle of the Window object
Wl, we send the message:

handle(Wl);

The integer value returned by this message is essential whenever it is necessary to
communicate with MS-Windows about Wl, since the window handle is the way MS-

/ Windows refers to the different windows in its domain. We'll find out that the handle
method also works with controls and dialogs and in fact facilitates all three kinds of
objects (windows, control and dialogs) working together.

182 Chapter 2: Gulde to the Actor Classes

Once the window is shown, you can determine the size of its usable space, or client
area. This is useful to know in the case of almost any kind of window. There may be
any number of windows already on the screen, so there is no way to predict what size
Wl will be. Window has a method for this purpose:

clientRect(Wl);

Sending this message returns a Rect object whose coordinates give the size of the
client area. The rectangle will always have the point (0,0) for its top left comer, so the
bottom-right comer will tell you how high and wide the window is. You can use
methods of the Rect class to get these values explicitly:

height(clientRect(Wl));
width(clientRect(Wl));

There are only a few more normal (application-sent) messages that can be sent to Wl,
as an instance of the largely formal class Window. One allows you to change its window
name, which appears in the caption bar. This example will change the name in the
caption bar to 'New Title":

setText(Wl, "New Title");

There are many times in an application when some activity that is initiated from a
window will take a lot of time. It is good practice to display the Wait Cursor (it looks
like an hourglass) for the duration of the activity, at least as a tip-off that·some legitimate
action is taking place. Window provides two methods to handle this, so that all
windows have the ability to switch cursors. Using Wl as an example:

showWaitCurs(Wl);
showOldCurs(Wl);

The first line will replace the current cursor with the hourglass cursor, and the
second will restore the window's default cursor, whatever it happens to be. By placing
these methods in Window, every window object, regardless of its class, inherits the
ability to display a Wait Cursor.

2.11.3: Windows: The Display Context t 83

2.11.3 Clearing the Screen: The Display Context

There is a useful method defined in Window that is hard to demonstrate. Its syntax
is easy:

invalidate(Wl);

The invalidate method is like a Cl.S command in BASIC: it will "clear the screen"
or erase the window Wl, in this case. The name of the method comes from the
terminology used by MS-Windows. If a window's contents are out of date and need to
be updated, this is indicated by "invalidating'' part or all of the window's client area. It
is hard to demonstrate the invalidate method because it is hard to get something into
a Window object in order to erase it. Thars the penalty of working with a formal class.
However, the problem provides a nice lead-in to an important subject: the display
context. Don't let the term intimidate you-this device will allow us to put something in
Wl.

The idea of "clearing the screen" in a non-windowing BASIC makes sense as a way
to get rid of everything on the entire display screen. In a windowing environment such
as MS-Windows, an application cannot be permitted such screen-wide control. The
display context is a way to limit an application's control of the display device to that of
its own windows. Before drawing something in a window, it is mandatory to "get the
display context" for the client area of the window. The context, represented by a
numerical value, is used when asking MS-Windows to draw something in the window.
This way, only the given window can be modified.

The Window class defines two methods for properly utilizing the display context.
We will use them in the following sequence, used to draw a short line in Wl. This is one
of the easiest ways to draw something in a Window object:

Actor[IBDCJ := getContezt(Wl);
line(point(20, 20), point(lOO, 100), HDC);
releaaeContezt(Wl, BDC);

The getContezt message, which can be sent to any window object, returns a handle
to the display context (hence HDC) for the window's client area. The line method from
the Point class requires, in addition to the starting and ending points, a valid handle to
a display context. In this case the line will be drawn in Wl because we have passed HDC,
the handle to its display context. It is actually more accurate to say that we have drawn
the line in the windows display context itself.

After drawing the line, it is necessary to "release the display context," which we do
with the releaaecontezt method. Note that we supply HDC as the parameter in the
releaaeContezt method. This is because it is possible to get up to five display
contexts at a given time, and we want to release the right one. After drawing into a
display context, it is a good idea to release it immediately, allowing other windows to
get contexts for their own drawing.

t 84 Chapter 2: Gulde to the Actor Classes

The display context, which allowed us to draw the line, is required any time it is
necessary to draw in windows, whether we are drawing lines, arcs, rectangles, or even
text. Now, at least, there is something in Wl that we can erase with the invalidate
method. Before we move on, we'll look briefly at this method's definition:

Def invalidate(aelf)
{Call InvalidateRect(hwnd, O, 1);
)

The InvalidateRect window function allows us to tell MS-Windows which part
of a window needs repainting. Repainting can mean any way of updating the graphic
content of a window, whether it has text or some other kind of graphics. Notice how the
instance variable hWnd is used to specify the window associated with the window
·object. The O parameter indicates that the entire client area should be "marked" for
repainting. If only some smaller area of the window needed to be marked, a Rect object
could be used here to define the area. For instance, a Rect object identical to
clientRect (Wl) except having half the width would specify just the left half of the
window. The 1 parameter specifies that the marked area should be erased when it is
marked. Therefore this function alone is enough to erase the entire window.

2.11.4 Getting Messages from MS-Windows

As you may know, everything in Ms-Windows revolves around the MS-Windows
message queue. Every time someone presses a key, clicks the mouse button, or almost
anything else, a message is placed on the queue, where it will remain until removed by
an application. That means that instead of responding to events directly, a Ms
Windows application instead responds to a message placed on the message queue by
MS-Windows. This way of doing things enables MS-Windows to be multitasking, but it
means that writing a Ms-Windows application is a bit different-and sometimes more
complicated-than many programmers are used to. The situation is complicated by the
fact that with most programming languages, MS-Windows applications have to
constantly monitor each message on the message queue to determine if the message is
something that the program needs to respond to. We say most programming languages
because Actor is different '

These are more than 80 messages which MS-Windows can send directly to a
window object (any window object-not just the Actor kind). The MS-Windows
Programmer's Reference refers to a window's function as the receiver of these messages.
In the object-oriented world of Actor, however, this function is the window object. This
equivalence greatly simplifies your job in handling these MS-Windows messages.
Having an Actor window object respond to a MS-Windows message is as easy as
defining a method in the window's class with the same name as the MS-Windows

2.11.4: Messages from MS· Windows: Scan Window t 85

message! Once you do that, all you have to do is create the window object, and from
that point on that window respond with the method you just defined whenever MS
Windows places the corresponding message on the message queue.

Of course, somewhere the message queue must be monitored the hard way-there's
no such thing as a free lunch. However, the key is that Actor monitors the MS-Windows
message queue for us and then it looks for an Actor method with the same name as the
MS-Windows message. If it finds one, it removes the message from the queue and sends
it to the appropriate Actor object.

An important difference between the 'NH_-style methods and the regular kind, in
terms of how message sending works in Actor, is that there is no error if MS-Windows
tries to send a message for which no method has been defined. For each window there
is a default window procedure, supplied by MS-Windows, that will respond predictably if
the window class (or an ancestor class) does not define the message. Actor insures the
proper handling of this special kind of message.

The Window class does not include methods to handle all 80 or so MS-Windows
messages. Only ten or so of the basic mesSCJges are defined. For example, the Window
class defines the 'NH_ SETli'OCUS method. Quoting from the MS-Windows Programmer's
Reference: "This message is sent after a window gets the input focus." The input focus is
just a fancy way of saying that the user has selected the object. For instance, you can tell
that a tiled window has the input focus when its caption bar is a solid bar rather than
having stripes across it. At any rate, the action taken by this method in the Window class
is to set the Actor global variable, ThePort, equal to the window object itself. This
action will let other parts of the application determine which window has the input
focus.

However, the Window class does not define the 'NH_ CREATE method. There is
nothing to be gained at the Window class level by processing this message, which is sent
''before the CreateWindow call returns and before the window is made visible." On the
other hand, you may have a·good reason to process this message for one of your
window objects, perhaps to do some initialization, and in this case all you have to do is
define the method in the object's class.

There is no default window procedure indicated in the Programmer's Reference for
either 'NH_ SETl'OCUS or 'NH_ CREATE. This means that had we not defined
'NH_ SETli'OCUS, then nothing at all would happen if this message was sent. And of
course nothing happens when a 'NH_ CREATE message is sent.

Another way of looking at window messages is that whenever it is necessary to do
something other than the default window procedure, then you need to define a method
to ''intercept" the message from MS-Windows. We'll get right back to this topic when
we talk about the next window class, Te:xt.Window. First, however, we will present a
specific example of creating a window and illustrating how MS-Windows messages are
sent to it.

186 Chapter 2: Guide to the Actor Classes

2.11.4.1 Responding to MS-Windows Messages: An Example

Whenever you press a key in MS-Windows, a WM_ KEYDOWN message is sent by MS.
Windows to whatever window has the input focus. If you leave the key depressed, this
message is sent again, until you release it, when a WM_KEYUP message is sent. As we
explained above, if we create a method for a window class with the name WM_ KEYDOWN,
then every time a key is depressed while an instance of that window class has the input
focus, the Actor method named WM_ KEYDOWN will be executed. The same goes for the
WM_ KEYUP message, too.

As with all MS-Windows messages, the WM_KEYDOWN and WM_KEYUP messages are
sent from MS-Windows with two arguments, wP and lP. The names stand for "word
Parameter" (2 bytes) and '1ong Parameter" (4 bytes). Depending on the message, these
are used to convey all different kinds of information. In the WM_ KEYDOWN and
WM_ KEYUP methods, the information contained in wP and lP is described below:

1. The virtual key value of the key you pressed will be in wP. Most of the time the
virtual key value will be the ASCII value of the character corresponding to
the pressed key.

2. Bits 1-16 of lP, i.e. low (lP) , contain the repeat count. As we mentioned
above, the WM_ KEYDOWN message will be sent regularly as long as you keep
the key depressed, and the repeat count reflects how many WM_KEYDOWN
messages are currently on the queue.

3. Bits 17-25 of lP, i.e. high (lP) bitAnd Oxll'I', contain the scan code of the
key pressed. Each key on the keyboard has a unique scan code, which means
that you can differentiate between different keys with the same ASCII value.
For instance, the various IBM and compatible keyboards have two '+' keys
one above the'=' key and the grey one on the numeric keypad. You can tell
which key was pressed because they will have different scan codes.

There is some other information contained in lP, such as what Microsoft calls the
context code, the previous key state, and the transition state, but we don't care about
those here. That's why we masked this information out by bitwise ANDing high (lP)
with Oxll'I'.

So with this in mind, we can write a WM_ KEYDOWN method:

Def WM_KEYDOWN(self, wP, lP)
(print(tuple("WM_ICEYDOWN message: character[",

asChar(wP),"] repeat[", low(lP),

"0
)

"] scan code[", high(lP) bitAnd Oxll'l'L,
,] I ,CR));

2.11.4: Messages from MS-Windows: ScanWindow 187

If we add this method to a window class, then objects of that class will intercept
WM_ DYDOWH messages whenever a key is pressed (if they have the input focus). Which
window class should we associate with this method?

2.11.4.2 The Scan Window Class

We want to define a new class which will use this method because if we wrote this
method for one of the existing classes, such as 'l'e:xtWindow, it would affect all existing
'l'e:xtWindow objects such as the Display (see below). Since we don't necessarily want
to do this, we will define our WM_ DYDOWH and IDl _ DYUP methods for a new class.
Our new class, which we'll call ScanWindow, will be a descendant of 'l'e:xtWindow.
You haven't learned about the 'l'extwindow class yet, but the reason why we choose it
to be the ancestor of ScanWindow is that 'l'extWindow objects know how to print text.
Don't bother typing the following code yourself-it's in the file SCANWIND.CLS, which
you can read and/ or load at any time. Here it is:

inherit('l'extWindow, IScanWindow, nil, nil, nil);

now(ScanWind);

Def WM_DYDOWH(self, wP, lP)
(print(tuple("WM_DYDOWH message: character[",

aaChar(wP),"] repeat[", low(lP),

•

"] scan coda[", high(lP) bitAnd OzlrrL,
']',CR));

Def WM_DYUP (self, wP, lP)
(print(tuple("WM_DYUP meaaage: character[",

aaChar(wP),"] repeat[", low(lP),

"0

•

"] scan coda[", high(lP) bitAnd OzlFFL,
,] , ,CR));

Now all that's left is to create a new Scanwindow object and tell it to do its stuff:

Actor[ISam] := new(ScanWindow, nil, "ScanWindow") <CR>
show(Sam, 1) <CR>

Your new ScanWindow will appear, and you can see what it does when you press a key
while the ScanWindow has the input focus.

188 Chapter 2: Guide to the Actor Classes

Incidentally, we mentioned that you shouldn't define a WM_ DYDOWN message for
the Text Window class itself. Why not, and what would happen if you did? Try it and
see what happens when you press keys while in the Display. As long as you don't take
a Snapshot, none of the changes you make will be permanent.

2.11.5 Printing Text: The TextWindow Class

Real things begin to happen with the next window class, 'l'extwindow, an
immediate descendant of Window. As the name suggests, this class produces window
objects that can print text. The window is created and displayed in the same way:

Actor[#TW] := new('l'extWindow, nil, "'l'ext Output");
ahow(TW, 1);

'l'W is a tiled window with no menu, and with the title "Text Outpuf' displayed in its
caption bar. In appearance, the window cannot be distinguished from an instance of
Window itself. However, Text Window adds several instance variables and methods for
printing characters and strings, plus three new Window Message methods.

Although 'l'extwindow objects can display text, they will not respond to keyboard
input. Text can be displayed in TW only by sending the appropriate messages to it.

2.11.5.1 Getting the Input Focus In a TextWlndow

Two of the instance variables, xPoa and yPoa, keep track of the text insertion point,
indicated by a blinking caret when the window has the input focus. These instance
variables refer to a character position, not client area coordinates. The value in yPoa is
the current text line number, starting at the top with O. The xPoa instance variable
indicates the character position in the current line, with the left-most character position
beingO.

If you have created and displayed a new Text Window object, TW, by executing the
two lines above in the Workspace, you will be able to set the focus to either window by
clicking the mouse in it or by pressing Alt-Tab. Notice that when a 'l'extWindow object
has the focus, the caret is visible. When it loses the focus, the caret disappears.

\

This mode of behavior is new for this classs of windows. The difference is in the
definition of the WM SE'l'FOCUS method in '.rextwindow. Recall that this method, as
defined in the Window class, merely sets 'l'hePort equal to the window object (self).
For 'l'extwindow, we follow the advice of the MS-Windows Programmer's Reference (
regarding WM_ SE'l'l'OCUS: "If an application wants to display a caret, it should call the
appropriate caret functions at this point." ·

The first action taken by WM_ SE'.rl'OCUS is to calculate the value of x:Max, the
'l'extwindow instance variable which holds the number of characters that can fit in one
line for the current window width. Then it uses the Createcaret window function
(courtesy of MS-Windows) to produce a caret for the window. The next step is to

Object

Window

TextWlndow

J 1
Scan Window EditWindow WorkWlndow

WorkEdit

1 1
Brow Edit File Window Workspace

Figure 2-21: TextWindow class tree

-~'::

Text Output •

File Edit Doit! Browse! Inspect!
Show Room! Te111Plates

Actor[#TWl:=new(TextWindow,nil,•Text Output•);l1'
<a TextWindow>
show(TW, 1) ;
<a TextWindow>
TW.xPos • TW.yPos •

Figure 2·22: A TextWindow object has been created. It is a tiled window. In this figure, the title bar of the new
window "Text Output" is darkened, indicating that the window has the input focus. The instance variables xPos
and yPos show that the new window's caret position is at (0,0), the upper left comer.

2.11.5: The TextWindow Ola11 189

execute moveCaret (self) , which will move the caret to the current text insertion
point indicated by xPos and yPos. Then the caret is made visible using the ShowCaret
window function. Finally, this early-bound message is sent:
WM SETl'OCUS (self :Window, wP I lP) • This will add to the current WM SETFOCUS
method all of the activities of the ancestor's method of the same name, whichln this case
sets ThePort equal to self.

TextWindow also defines a WM _KILLl'OCUS method, which first hides and then
destroys the caret, using the BideCaret and DestroyCaret window functions. The
caret disappears when a TextWindow object loses the input focus because MS-Windows
sends the WM_ltILLl'OCUS message at that point.

The only other Window Message method defined in Te:x:tWindow is the WM_ SIZE
method. This message is sent whenever the size of a window has been changed. The
only action taken by the WM_SIZE method is to erase the window. It achieves this by
sending the message els (self). We'll explain this method more fully in the next
section.

2.11.S.2 Additional TextWindow Methods

The following statements show how to use many of the methods for printing text.
They can be entered and executed in the Workspace window to see what happens. As
long as the focus remains in the Workspace, no caret will show in TW.

printChar(TW, 'A');
bs(TW);
printString(TW, "Thia is a text string.");
eol(TW);
home(TW);
moveCaret (TW)
els(TW);

The printChar method will print a single character at the text insertion point. You
can back up one space with the be (backspace) method. The printString method
takes a string object as the parameter, and prints it at the insertion point. A carriage
return (CR) is produced by the eol (end of line) method.

The text insertion point can be brought back to the "home" position, the upper-left
comer, by the home and moveCaret methods. The text will not be erased, however.
The els (TW) message will home the cursor and erase the screen.

Let's examine how a few of these methods work. In almost every case, the approach
is the same. Some calculations take place in high-level Actor code so that we can make a
request to MS-Windows to change the window in some way. The only exception is the
home method, which simply sets the instance variables :xPos and yPos to 0. It does not
even move the caret.

190 Chapter 2: Guide to the Actor Classes

That's the job of the moveCaret method. It's definition is a one-liner:

Def moveCaret(self)
(Call SetCaretPos(x(self), y(self));
)

The x and y methods used in this call may remind you of methods from the Point
class. They do refer to coordinates, but in TextWindow they are used to convert the
values of xPos and yPos into. the actual window coordinates used by MS-Windows to
refer to locations in the client area.

The els method is defined this way:

Def cls(self)
{ home(self);

invalidate(self);
)

We know what the home message does, and the invalidate message, inherited
from window, uses the InvalidateReet MS-Windows function to erase the entire
window. The method name els was chosen because of the similarity, noted before, to
the CLS function used in BASIC and some other languages.

2.11.5.3 Using the TextOut Function to Print Text

The printChar and printString methods indirectly rely on the MS-Windows
TextOut function. The MS-Windows literature makes a distinction between two kinds
of functions, namely, Window Functions and GDI (Graphics Display Interface)
Functions. TextOut is one of the GDI Output functions.

The printChar and printString methods use another Text Window method,
drawstring, which in tum uses the TextOut function to draw the text in the window.
The two print methods first check to see if it is time to move to the next line (xPos >=
xMax), and adjust xPos and yPos accordingly before sending a drawstring message.
The call to TextOu:t in the drawstring method looks like this:

Call TextOut(hde, x(self), y(self), aStr, size(aStr));

The hdc parameter is a handle to the window's display context. Again, the
x (self) and y (self) methods convert the text insertion point to window coordinates
for MS-Windows. The string to be printed can be conveniently passed as a String
object, and the size of the string is also required.

In the preceding discussion, we have gone into some detail to illustrate the way a
specialized window class like TextWindow interacts with MS-Windows. There is much
more that could be said about the function of this class, but its vir.tues can be appreciated
even more when we see what it "hands down" to the BditWindow class.

(
\

2. t 1.6: The EditWindow Class t 91

2.11.6 Text Editing: The EdltWlndow Class

The BditWindow class is a direct descendant of 'l'eztWindow. It has the distinction
of being Actor's largest class. (Not only does it have the most methods, but it has some
of the largest individual methods in the system.) The large size is well just~fied. The
BditWindow class produces a window object that behaves like a small word processor,
without the file 1/0. When an BditWindow object has the focus, it will print keyboard
input at the text insertion point, indicated by the caret. It allows cut-and-paste activities,
using the mouse. BditWindow is the parent class of all the edit style windows in the
Actor system (woz:Jc:Bdit, BrowBdit, workspace).

Creating an instance of BditWindow is exactly the same as with its ancestors. In
fact, all of the major window classes that produce tiled windows have the same style
new method. In order to increase the utility of windows of this class, a small edit menu
resource is included with the Actor system. The name of the menu is "editmenu", which
is included as the first parameter in the window creation statement.

Actor[fBW] :• new(EditWindow, "editmenu", "Editor")
ahow(BW, 1)

2.11.6.1 Text Editing in an EdltWindow

The window object BW will accept keyboard input when it has the input focus.
Pressing the Return key will move to the start of a new line. The Edit pull-down menu
offers the typical Cut, Copy, Paste and Clear choices. When text is either Cut or Copied,
is is written into the Oipboard in the standard text format, so that it may be copied to
other windows or applications. In the same way, you may Paste from the Clipboard
into an edit window any text that has been put there, either from inside or outside an
Actor application. The menu selections are always enabled, but only produce results
when appropriate.

This text editing capability of objects of the Editwindow class relies heavily on the
powers of the collection class, 'l'eztCollection (see section 2.7.5). At window
creation time, an instance of 'l'eztCollection is produced and stored in an edit

· window's instance variable, workTezt. A Paste menu selection causes an EditWindow
object to send this message:

inse:r:t'l'ezt(workTezt, atring, ll:Pos, yPos)

Similarly, the Cut or Oear choices result in the following message:

deleteTezt(workTezt, ata:r:tLine, ata:r:tChar, endLine,
endChar)

192 Chapter 2: Guide to the Actor Classes

All four parameters in this message are actually instance variables of BditWindow
objects. When text is selected using the mouse, the "start" and "end" variables are set
accordingly. This prepares the window for proper responses to a user's requests.

Note that EditWindow also supports text scrolling via the scroll bar (you'll find
more about scrolling in the Controls section, 2.12). This feature also takes advantage of
the fact that workText is an ordered collection of sb'ings. If there are more lines in
workText than can fit in the client area, only a subset of the entire collection is printed.
The position of the "thumb" (the little square) in the scroll bar is used to set the value of
yet another instance variable, topLine, which is used as the starting index for printing
the sb'ings in workText.

Finally, workText can be thought of as an edit record that can be used in a
convenient way for reading and writing to disk files. A simple file editor is a matter of
combining the input and output facilities of class rile With the EditWindow class. In
fact, this is exactly what we did to create the l'ileWindow class.

2.11.6.2 Menu Management in an EditWindow

As we talk about new window classes such as TextWindow and EditWindow, we
are gradually getting around to explaining all of the methods that are defined in the
Window class. It makes more sense to talk about them when they can actually do
something. We could have specified "editmenu" as the menu for a Window object, but
using the menu would have had no effect. Now that you have seen the menu work,
we'll explain how it does.

If a window has a menu, and the user selects something from it, MS-Windows sends
a WM_ COMMAND message directly to the window object. This method is not defined in
Window or TextWindow, so nothing happens in windows of these two classes if they
have a menu. The Edit Window class does define it, so it can receive and process menu
events.

The two parameters for this method, wP and lP, represent the standard notation for
all of the messages sent to windows from MS-Windows. The names stand for "word
Parameter'' (2 bytes) and '1ong Parameter" (4 bytes). Depending on the message, these
are used to convey all different kinds of information. In the 11M_COMMAND message, if
the long parameter lP is equal to 0, then MS-Windows is telling the window that the
user has made a menu selection.

The menu resource (defined using the Resource Compiler), which defines the menu
choices by name, also associates with each name a unique constant value which MS
Windows passes to us in the 1111 _COMMAND message. If we find that there is a menu
request (lP • 0), then the wP parameter is the associated value and therefore tells what
the menu choice is.

!
\

(

Display

Editor •
Edit

This is an example of a window used as a text editor. In it you can cut, copy, paste 11'
and llllllillliliD text.

-®

File Edit
Temolates

Actor [ttEW] : =new(Edi tWindow, 11 edi tmenu" , •Edi tor•) ;
<a EditWindow>
show(EW, 1);
<a EditWindow>

Figure 2-23: An EditWindow object, which supports text editing operations, has been created • The Edit menu
allows Cut, Copy, Paste and Clear functions, and text can be highlighted with the mouse.

I
i
\;

\

i
\

2.11.6: The EditWindow Class 193

The specific menu resource identified by "editmenu" includes the menu choice
names Cut, Copy, Paste and Oear. The associated constants for these menu choices are
called, somewhat predictably, BDI'!_CUT, BDI'!_COPY, EDI'!_PAS'!B, and
BDI'!_CLBAR. Using a select statement on wP, which will be one of these values, allows
us to execute the proper code based on the menu choice:

Def Wll_COMMAND(self, wP, lP)
(select

)

/* See below for the purpose of this statement */
case lP <> 0
ia "'0;
endCase

case WP == EDI'!_CUT
is cut(self);
endCase

case WP == BOI'!_COPY
is copy(self);
endCase

case wP == BOI'!_PAS'!B
is paste(self);
endCase

case WP == BDI'!_CLBAR
is clear(self);
endCase

endSelect;
"'0;

Now, to be honest, 'llH_COHMAHD event handling isn't usually quite this simple,
because menu selection isn't the only type of action that triggers a WM_ COMMAND
message. For instance, a user can also select a menu item by pressing an accelerator key,
if one has been defined in the menu resource. We have defined the Del key as an
accelerator for the Clear menu item, for example. In addition, if a window has children
windows such as scroll bars, and the user does something to one of these child
windows, then the parent will receive a WM_ COMMAND message. The whole issue of

194 Chapter 2: Guide to the Actor <;lasses

accelerators and controls just obscures the issue at hand, so at this point we will only
deal with menu choices. That's why the first case statement above "filters out" the
menu methods; nothing else is of interest for the time being.

We discuss menu handling in greater detail in part 3, Advanced Topics, section
3.4.1. Controls are discussed in section 2.12, coming up.

2.11.6.3 How Text Selection Works in an EditWindow

A considerable portion of the code for the Edit Window class exists just to support
text selection using a mouse. Text selection is performed by pressing the left or right
mouse button down while you "drag" the cursor over some text. As you do, the text
becomes inverted, so that you get visual feedback as you select. How does all of this
work?

MS-Windows provides an EDIT control window (see the section on Controls,
coming up) that provides some text-editing capabilities. At one point in the
development of the Edit Window class, this control was used as its basis. However, the
Edit Window class today is completely self-contained, so that everything about the
behavior of its objects results from high-level Actor code in the class.

When the left mouse button ls clicked in any window, MS-Windows sends a
WM_ LBtnTONDOWN message to the window. The "L" stands for the left button; a

(

WM_ RBtnTONDOWN message is sent for the right button. The Window class defines both (
of these messages (we were saving the good part for last).· The message for the the right \
button is translated immediately to the left button message so that the buttons work the
same way. The action taken by the WM_ LBtnTONDOWN method is very simple. First it
checks to see if the buttonDn instance variable is "true." If it is, it means that the button
has already been pressed, and that no further action is necessary. If buttonDn is nil,
then it is set to true and then a beginDrag message is sent to sel:f, the window
object. The beginDrag method is also defined at the Window class level, but it doesn't
do anything except prevent an error when you click the mouse in an instance of class
Window.

The EditWindow class redefines the beginDrag method to do the set-up for
selecting text. We'll summarize the actions it takes here; you can see how it is
implemented by using the Browser to examine the method. The steps taken by
beginDrag, in order, are the following:

1. The input focus is set to the window.
2. The caret is hidden.
3. The mouse is "captured" by the window.
4. A "drag display context" (dragDC) is obtained.
S. Any previously selected text is re-inverted.
6. The selection color is set to black.
7. The mouse position is used to set :xPos and yPos.
8. · The text selection parameters are initialized.
9. The starting mouse position is saved in instance variables.

(
\

2.11.6: The EditWindow Class 195

Whew! All of these events happen every time the mouse button is pressed in an
EditWindow. And this is just the set-up for text selection. Sometimes the mouse is
clicked in a window just to set the focus and text insertion point, which the beginDrag
method handles as part of its job. But if the button is being pressed and the mouse is
then moved, a lot more happens.

The Window class also defines a WM_ MOUSEMOVJ: method, which you'll recognize as
another message from MS-Windows, sent whenever the mouse is moved over a
window. This method checks the buttonDn instance variable to see if it is true. If it
isn't, no action takes place, but if it is, a drag message is sent to the window object,
aelf. The drag method in the J:ditWindow class manages the entire text-selection
process as the mouse is dragged around, until the button is finally released. We're not
done yet, though.

The final two mouse methods given to us by the Window class are WM_LBUT'l'ONUP
and WM_RBU'l''l'OHUP. Again the right button message is translated to the left. The left
button-up message, as you might guess, checks the buttonDn instance variable first. If
it is nil, nothing happens, but if it is true, it is set back to nil and an endDrag
message is sent to aelf. In the J:ditWindow class, the endDrag message wraps up the
text selection process, setting the text selection parameters to mark the selected text, and
redisplaying the caret if no text has been selected.

It would requires several pages to describe in detail how the above is implemented.
However, it is all there in the J:d1tWindow class, and you can use the Browser to pore
over the dragging methods to uncover their secrets. On the other hand, you can just
take advantage of the fact that they do their jobs, and create subclasses of Edit Window
for your own use.

2.11.7 The PopupWindow Class

The last window class under consideration in this section is another descendant of
Window, called PopupWindow. This is the class of the Browser, Inspector, and
WorkSpace windows. In fact, all the windows you will see in Actor, with the exceptions
of the Display and some demonstration programs, are popup windows rather than tiled.
As you have seen, this window style varies greatly from the tiled style. Popups appear
to lie on top of the other windows on the screen. They allow you to change their size
with the size box, but cannot be zoomed or made iconic. To create a Popupwindow
object, more parameters are needed:

Actor[#PN] := new(PopupWindow, 'l'N, "editmenu", "Popup",
&(40, SO, 200, 150))

196 Chapter 2: Guide to the Actor Classes

In this example, we are making use of the previously defined text window, TW, to act
as the new window's parent. MS-Windows requires that a parent window be specified
in the creation of popup windows. The windows have a special relationship. For
example, if TW is made iconic, then PW will become hidden, but will reappear once TW is
shown as a tiled window again. (

By specifying "editmenu" as the second parameter, we have chosen the same edit .
menu for the new popup as we did for the previous edit window example, even though
there will be no response to the selections. The point is that the second parameter names
the optional menu name.

The "Popup" parameter is the window name, which as with tiled windows will
appear in the popup window's caption bar.

You may recognize the last parameter as the literal form of a Rect. The coordinates
determine the location of PW when it first appears on the ~n. The first two are the x
and y coordinates of the top-left comer, and the last two are the coordinates of the
bottom right comer. The coordinates are screen coordinates, and are not relative to the
parent window.

We can show a popup window with the method we inherit from the Window class:

ahow(PW, 1)

As we stated earlier. PopupWindow is a descendant of Window. In fact, the only
difference between the two classes is the new method (the only method of
Popupwindow). Everything else is inherited from Window. Because of this, the only \
difference in the behavior of the two kinds of window objects produced by these classes
is that one is a tiled window and one is a popup. You can treat them in exactly the same
way in every other respect.

2.11.8 Window Styles

How does a window class's new method determine the style? Recall that the new
method sends a create message to the newly created window object, and that it is this
create method which actually tells MS-Windows to make a new window. The
create method, defined in class Window, has been designed to handle every style of
window that the various window class are to produce. Here is an example of the
create message sent by the new method of the PopupWindow class:

create(theWnd, parent, wName, rect,
WS_POPUP + ws_CAPTION + ws_SYSMEHU + WS_SIZEBOX)

The receiver, theWnd, is a local variable in the new method used to hold the newly
created popup window object. The parent parameter is "passed through" by the new
method, and so is identical with the value supplied as the parent window object in the
new message itself. The same is true for wName and rect. The last parameter certainly
stands out: it is the value that results from adding four "window style" constants defined

(

- ~ 0 ::

I I
I I ,, /

Actor

File Edit Doit! Browse! Insoect! Show Room!
ActorUTWJ :=new(lextWindow,nil, "Text Output">;
show(TW, 1) ;
<a Text Window> l,1fiil
Actor[#PWJ :=new(PopupWindow, TW,nil, 11 Popup• ,8:(41,51,211, 151)); ~if
show(PW, 1); .!l!!!I
<a PopupWindow> · - ·;1~11

Figure 2·24: A PopupWindow object has been created and displayed. The window PW is a child window of the
parent window TW, a TextWindow object

(

/
\

'

(
\

2.11.6: The EditWindow Class 197

by MS-Windows. The result is a style value that the create method passes to MS
Windows in the Call CreateWindow function. This is the value that makes all the
difference in the window style.

Suppose it is desirable to have a popup window with all the features of
Edit Window objects. We would design a class just like PopupWindow except for two
things: the ancestor class would be Edit Window rather than Window, and the name of
the class would be something like PopupEditWindow. It is possible by defining very
small window classes in this way-relying on inheritance-to create a wide variety of
window types with little expense.

..
There are several other window classes in Actor. Most of them exist to support the

needs of the windows in the Actor programming environment. ToolWindow, a
descendant class of PopupWindow, was created to build the specialized popup style
windows for the Browser and Inspector. WorkBdit is a subclass of Edit Window.
that combines text editing capabilities with an interface to the Actor interpreter. The
Workspace class descends from WorkBdit, as does the edit window class for the
Browser, BrowBdit. All of these are good examples of how to use window classes to
build entire pieces of an application such as the Actor programming environment itself.

198 Chapter 2: Guide to the Actor Classes

2.12 The Control Classes

A control, in the Actor language as well as in the Microsoft Windows framework, is a
predefined type of window that can be used for certain kinds of input and output. If
you have used any mouse-driven word processor or drawing programs, you are already
familiar with controls from the user standpoint. Generally, controls include things like (
buttons, list boxes, and scroll bars. Controls can aid tremendously in making your
applications easy to use.

Actor's Control class is another example of a "formal" class, with methods that all
controls can use, but without the ability to produce objects. In fact, the Control class
has no new method. You use one of the descendants of Control to create usable
objects. There are three of these supplied with Actor: LiatBox, Button, and
ScrollBar. The EditWindow class, which we have already talked about, has control
like features and can be used as such, but it is a descendant of class TextWindow for
practical reasons.

The Control class's main virtue is that it simplifies as much as possible the
complex interactions with MS-Windows that are necessary when dealing with controls.
Control is a great example of an object-oriented solution to this kind of problem, and
of Actor's approach to windows in general. Control classes in Actor rely on the fact that
MS-Windows has defined precisely what each control is and what it can do. The control
classes tend to be small because most of the work is handled by MS-Windows,
particularly the control's behavior. Most of a control object's methods serve to (
communicate with MS-Windows about some aspect of itself. . 1\

Controls are windows, strictly speaking, just like the tiled and popup windows
discussed in the previous section. However, it doesn't make sense to make the Control
class a subclass of Window. Control objects would be needlessly large, carrying
around useless instance variables that Window objects need but Control objects do not.
Again, this is because controls are predefined in MS-Windows.

2.12.1 Creating Controls

Creating a control is very similar to creating a window. The new methods for
ListBox, Button, and ScrollBar create the new control object and then sends a
create message to it. The create message uses the CreateWindow function to
generate the control in MS-Windows, and stores the handle in the control's instance
variable hCntl. This handle is one of two control references used when communicating
with MS-Windows. (We'll see the other one in a moment.)

MS-Windows requires all control windows to be child windows. This means that a (
control is displayed within the client area of another window, referred to as its parent
window. There is a well-defined relationship between parent and child windows. The
Inspector window is a good example. The Inspector window's entire client area is filled
with child windows and controls. The two list boxes and the edit area are the "children"
of the parent Inspector window. As a parent window, the Inspector window needs to be

Object

Control

J l
Button List Box Scroll Bar

Class list

Figure 2-25: Control class tree

(

/

\

. (

2.12: The Control Classes 199

able to communicate with its child windows, and the child windows need to know who
their parent is. Certain actions within the child windows will cause messages to be sent
to the parent window by MS-Windows.

With this in mind, it is easy to understand the way a new control is created in Actor.
For example, a new list box control for the Inspector can be created with the Actor
statement:

new(ListBox, 200, aninspector);

The first parameter, 200, specifies an identifier value for the new control. Each
child control of a given parent window must have a unique value, also called the control
ID. The second parameter, aninspector, specifies the parent window object.

The control ID is stored in the control's instance variable, cont ID. When MS
Windows communicates with the parent window about one of its child windows, it
indicates which control by using this ID. A parent window such as the Inspector will
typically store its child control objects in instance variables. If it needs to know the
control's ID, it can use an expression like listl. contID. More often, the ID may
already be defined by a constant, such as INSP _ VARLIST.

2.12.2 Control Methods

To display a control, we use a show message, just as with other windows. When the
parent window needs to, it can display the child window with the statement:

show(controll, 1);

The value 1 indicates that the control is to be made visible. A 0 (zero), the only other
legitimate value for Control objects, will cause the control to be hidden but not
destroyed. This means that a control can be "flip-flopped" in and out of view if
necessary by use of the show method. Usually the control is sent a single show message
with 1 as the parameter. It will remain visible until the parent window is closed.

The handle method retrieves the value of hCntl. A handle message may also be
sent to to window and modal dialog objects (see sections and 2.11and2.13). This
provides uniformity in getting the handle from any kind of window object in Actor,
even though the instance variables have different names. There are methods in the
Actor system that need to know the handle of a window object, regardless of what kind
of window it actually is-window, control or modal dialog. They can simply send the
message:

handle(windowObject);

200 Chapter 2: Guids to ths Actor Classss

Sometimes it is important for an application to set the input focus to a particular
window or eontrol, rather than have it be completely up to the user. This is especially
true when first displaying a window with one or more controls. For instance, in the
Browser window, the input focus is always passed to the edit window beneath the two
list boxes. Whenever a WM_ SETl"OCUS message is sent to a Browser window, it sends a (
setrocus message to the edit window. The control class defines the same method \.
for control objects. Regardless of which window or control has it, the input focus can be
given to a control object with the statement:

setrocua(aControl);

Finally, the Control class has a method that allows you to send the Control
Messages defined by MS-Windows. These messages are like the window messages sent
to window objects by MS-Windows, but they are sent by the application instead. To
facilitate this, the Control class defines the sendMessage method. It has the format

sendMessage(controlObj, message, wP, lP);

The receiver is any control object: ListBox, ScrollBar, or Button. The massage
parameter is an MS-Windows supplied constant indicating which message is to be sent.
For list boxes, the names start with an LB_ prefix: LB_ ADDSTRING, LB_ GETTEX'l!, etc.
For buttons, we have message names like BM_GETSTATB and BM _SBTCBECK. The wP /
and lP parameters are just like the parameters that accompany window messages from "-
MS-Windows. The values provide additional information to the control when sending
the message. The Appendix includes a summary of all Window and Control messages.

The sendMessage method works by passing the three parameters directly to MS
Windows in a call to the SendMessage function. The actual defintion of sendMessage
is:

Def sendMessage(aelf, wMsg, wP, lP)
(ACall SendMessage(hCntl, wMsg, wP, lP);
}

The remaining control methods will be illustrated in the discussion of the
descendant classes, starting with the ListBox class.

2.12.3: The ListBox Class 201

2.12.3 The ListBox Class

Let's look at the LiatBox class as an example of all we've been saying about
controls. We will go through the process of creating a parent window and then creating
a LiatBox object as one of its controls. First, the parent:

Actor[IPar] := new(Window, nil, "Parent");
ahow(Par,1);

Now we can create a LiatBox for it.

Actor[ILiat] := new(ListBox, 200, Par);

We can't show it just yet. We need to set the size of the new list box. With popup
windows, remember, we actually gave the size in the form of a Rect in the new method
itself. This doesn't work as well with controls and child windows in general. The user
will constantly change the size of the parent window to make room for other windows.
We need a way to maintain the relative sizes of the controls in the parent as its own size
is changed. First, we can set Liat to an arbitrary size, and then display it:

aetCRect(List, '(0, O, 75, 75));
moveWindow(Liat);
ahow(Liat, l);

The first line will set the Liat instance variable cRect (for control Rectangle) to the
Rect object created by the literal. The coordinates are relative to the client area of the
parent, so this case specifies a small rectangle in the upper-left comer of the parent~
While the cRect instance variable has now been changed, MS-Windows doesn't know
anything yet. We tell it with the moveWindow message. This method uses the
coordinates of cRect to tell MS-Windows the desired location (origin, width and
height) of the list box. Now, when we show the list box, it is where we told it to be.
These three methods are inherited from the Control class.

A better way to size Liat is to relate its size to that of its parent. These statements,
using some methods of Rect, will move List to the bottom-right quadrant of the
parent's client area:

aetCRect(Liat, clientRect(Par));
aetLeft(List.cRect, width(Liat.cRect)/2);
setTop(Liat.cRect, height(Liat.cRect)/2);
moveWindow(List);
invalidate(Par);

The first line alone would make Liat as big as its parent! The next two lines adjust
the top and left coordinates of cRect to half its size. The move Window method informs
MS-Windows about the change. The list box will then be redrawn at its new position.

202 Chapter 2: Guide to the Actor Classes

Finally, it is necessary to send an invalidate message to the parent. Before this
message is sent, there will appear to be two list boxes in the window, even though only
one of them is the "real" one. In an actual application, such as the Browser window, we
would recalculate the size of all of the child windows, move them with movewindow
messages, and then send an invalidate message to the parent (Browser) window. By (
invalidating the parent window, we insure that its appearance will be up to date.

2.12.3.l Loading a ListBox

Most of the methods for list boxes relate to its purpose in life: presenting a list of
items for selection. We can add items to List easily:

addString(Liat, "l'rank");
addString(Liat, "Joe");
addString(Liat, "Chet");

Note that addString adds items to the list in alphabetical order. We can also insert
items into the middle or at the end of the list:

inaertString(Liat, "Iola", 1);
inaertString(Liat, "Callie", -1);

The last argument in the inaertString message is the index of the insertion point
into the list, with the first item as O. If the index is given as -1, the string is added to the
end of the list. After executuing all five of the statements, the names would appear in
this order: Chet, Iola, Frank, Joe and Callie. The entire list box can be cleared with this
message:

clearLiat(Liat);

The three methods just discussed each make use of the aendMaaaage method
inherited from Control. The names of the control messages are, respectively,
LB_ADDS'lRING, LB_lNSERTS'lRING, and LB_RBSETCONTENT. Using the
aendMeasage method allows the LiatBox class, and any other descendant of
Control, to avoid having to communicate with MS-Windows directly. When possible,
it is best to use the Call statement in the furthest removed appropriate ancestor class
for a given kind of object.

(

..
I ...

-w ~; ~

File Edit Doit! Browse! Insoect! Utilit
Actor[#Parl:=new(Vi0dow,nil, 0 Parent•);
show(Par,1);
Actor[#List]:=new(ListBox,218,Par);
setCRect(List, &(B,B,75,75));
moueWindowCList);
show(List,1);

..

Figure 2·26: A ListBox object has been created as a child of window Par. Its size is 75x75 pixels and it contains
no list items.

File Edit Doit! Browse! Inspect!
Show Room! Temolates

setCRect(List,clientRect(Par)); I
setleft(list .cRect ,width (list .cRect) 12); l!i!i
setTo~(list.~Rect,height(List.cRect)/2); II
moueW1ndow(List) ; mii
inualidate(Par);
addString(list,•Frank0);

=11addString(list,•Joe•);
- addString(List,°Chet");

insertString(List, "Iola",1);
insertString(List, "Callie",-1);
la

e .. Iola
Frank
Joe
Callie

~ii:

-$

Figure 2·27: The ListBox has been repositioned to the lower right hand comer of Parent and filled with a list of
names. The male names appear in alphabetical order in this example because they were entered using the
addString method. The female names, however, were enetered using insertString, and were specifically placed.
Note that Callie is last on the list because of the -1 in the insertString message.

,,.r~---, / r'\

...

2.12.3: The listBox Class 203

2.12.3.2 Selecting ListBox Items

You can use the mouse to select one of the items in List, which will then be shown
as inverted. Of course in this example nothing else apparently happens at this point. In

,. fact, when an item is selected in List, a WM_COMMAND message is sent to Par. This
behavior is part of the parent-child window relationship. Parent windows are informed
when selections occur in child list boxes. If the user selects any item in List, MS
Windows sends this message:

WM_COHMAND(Par, 200, selCode)

The receiver is Par, the parent window. The first parameter, 200, is simply the
control ID of List. The selCode parameter is a Long value that may contain more
than one piece of information. What we are interested in here is the upper 16 bits of this
32-bit value, obtained by sending a high (selCode) message. If this value is 1, we
know an item has been selected in List. If it is 2, we know that the item has been
double-clicked, or that Return has been pressed after an item has been selected (but not
double-clicked).

In our example, the parent window has no WM_ COMMAND method, because there is
none defined in Window, the class of Par. In a typical application, the parent window
would be an instance of a descendant class of Window or PopupWindow that defines a
WM_COHMAND method to manage the activity of the child controls (and menu selections-
another story). In this method a case structure could be used to pick out the important
events:

Def WM_COHMAND(self, wP, lP)
{
select

Case wP = 200 and high(lP) = 1
is /* get the selection */
endCase

endSelect;
}

All that's left is to do the (get the selection) part to find out what item has been
picked. This could be done by sending this message:

getSelString(List)

The getSelString method returns a String object which is identical in spelling
with the selected item. There is also a getSelicbc method, which returns the index of
the item, which is sometimes more useful than the item name itself.

'204 Chapter 2: Guide to the Actor Classes

2.12.4 The ScrollBar Class

The ScrollBar class is actually not used as often as you might think. Most of the
scroll bars you see along the sides of windows are there because that's part of the
window's style. Recall the create message used with window objects. The last (
parameter is the style parameter. Getting a window with a scroll bar along the right-
hand side is simply a matter of adding the MS-Windows constant ws _ VSCROLL to the
other style constants. There is no need to create a ScrollBar object in this case-it's
free!

However, you need the ScrollBar class if you want to place a scroll bar in a
window somewhere other than along one of its borders. And it is useful to acquaint
yourself with some of the scroll bar methods. They illustrate techniques of scroll bar
management that you will need when working with any scroll bars, including the "free"
ones.

2.12.4.1 Creating ScrollBar Objects

As with other controls, a ScrollBar is a child window. The new method includes
the same parameters: an ID and the parent window object. Depending on the type of
scroll bar desired, there are three different new methods. Here is the way lo create, size
and show a horiz.ontal ScrollBar object:

Actor[ISB] := newHorz(ScrollBar, 201, Par);
setCRect(SB, &(20, 20, 200, 35));
moveWindow(SB);
show(SB,1);

SB is a horiz.ontal scroll bar located in the client area of the window Par at the
coordinates given by the Rect literal. The coordinates give the left, lop, right and
bottom locations, respectively. SB will be 180 units long and 15 units wide. Fifteen units
is the standard width for scroll bars. You can make a ScrollBar any size that you
want, unlike the ones that are part of a window. You can also make a vertical scroll bar:

Actor[ISBx] := newVert(ScrollBar, 202, Par);
setCRect(SBx, &(100, 20, 115, 220));
moveWindow(SBx);
show(SBx, 1);

There is a more general new method allowing you to specify the style exactly. The
_equivalent of the above newVert message is:

Actor[ISBx] := new(ScrollBar, 202, Par, SBS_VER~);

(

)

lhsplay

File Edit Doit! Browse! Inspect!
Show Room! Temolates

Actor[#Parl:=new(Window,nil, 0 Parent•); lt-
show(Par,1);
Actor[#SBl:=newHorz(ScrollBar,281,Par);
setCRect(SB, &(28,28,288,35));
mueWindow(SB);
show(SB,1);
Actor[#SBxl:=newUert(ScrollBar,282,Par);
setCRect(SBx, &(188,28,115,228));
~oueWindow(SBx);
show(SBx,1);
1

Figure 2-28: Two ScrollBar objects are created and shown as child windows of the parent window. Object SB is a
horizontal ScrollBar and SBx is a vertical ScrollBar.

\

2. 12.4: The Scrol!Bar Class 205

The SBS _VERT parameter is a Scroll Bar Style constant given by MS-Windows. You
can add SBS values together to get different results. For example, the sum SBS _VERT +
SBS _ RIGHTALIGN will cause the vertical scroll bar to be aligned along the right edge of
the rectangle given in the aetCRect message. When you create these kind of scroll
bars, their width will be the default width for system scroll bars, regardless of the width
of the control rectangle.

2.12.4.2 ScrollBar Methods

You can move a scroll bar from its original position with themoveWindow method,
just as with list boxes. If the ScrollBar instance variable cRect is changed, then the
message moveWindow (SB) will inform MS-Windows of the change. As with list boxes,
the parent window should be invalidated after moving scroll bars.

The "thumb position" of a scroll bar is indicated by the small box that initially
appears at one end of the bar. The default range of values corresponding to the relative
position of the thumb is from 0 to 100. You could move the thumb to the middle of SB
with this message:

aetPoa(SB, 50);

The current position of the scroll bar can be obtained with a getPoa (SB) message.
It is also handy to be able to alter the range of values, to avoid extra math in the
application. If a scroll bar is used to adjust a Farenheit thermostat, for instance, an
appropriate range could be set with this statement:

aetRange(SB, 32, 212);

Finally, the current range of the scroll bar can be retrieved with the converse
method:

Actor[#Range] := getRange(SB);

The value returned, Range, is a Point object. The coordinates, ::ii: (Range) and
y (Range), are the respective minimum and maximum values of the current scrolling
range.

206 Chapter 2: Guide to the Actor Classes

2.12.4.3 Getting ScrollBar Messages

An attempt to move the thumb with a mouse will have no effect in our example.
The parent window is responsible for handling scrolling requests and updating the
scroll bar. When the thumb is moved in the horizontal scroll bar SB, then the parent
window Par receives this message: (

1Dl_BSCROLL(Par, code, hBar_pos);

The code parameter specifies the scrolling request. The user may want to scroll to
the next line or page, or may drag the thumb to an absolute position. The last parameter
is a Long value with two pieces of data. The high part is the handle of the scroll bar,
and the low part is the new position of the thumb if it is being set to an absolute
position. This is an example of the method as it might be defined in Par:

Def 1Dl_VSCROLL(self, code, hBar_pos I handle, pos)
{
handle := high(hBar_pos);
pos:= low(hBar_pos);
select

hand;J.e(SB)

case code = SB_LINEUP and handle = handle(SB)
is /* scroll up one line */
end.Case
case code = SB_PJ\GEUP and handle = handle(SB)
is /* scroll up one page */
end.Case
case code = SB_TBUMBPOSITION and handle =
is /* scroll to pos */
end.Case•

endSelect;
)

If there is only one horizontal scroll bar in the parent window, then it is not
necessary to check the handle. If the scroll bar exists as part of the parent window's
style, there is no handle for the scroll bar. The only time the handle is of interest in a
1DI _ BSCROLL message is when there is more than one horizontal scroll bar. The same is
true for vertical scroll bars as well, except that they are associated with a WM_ VSCROLL
message.

2. 12.4: The Scrol/Bar Class 207

Scrolling a window can be handled in a variety of ways, depending upon the
window's function. For details, please refer to the Advanced Topics section of this
manual. Whatever method is used, the thumb position on the scroll bar must be
updated by the application, using the aetPoa method or some similar means. That is
why it is not possible to move the thumb in our example--Par doesn't take care of it.

2.12.S The Button Class

The Button control class is similar to the ScrollBar class in that you may never
actually need to create Button objects in order to make use of buttons. Along with all
other types of controls, buttons are frequently defined as part of a dialog resource, and
in this case, the only Actor object needed is the dialog itself. However, the Button class
is needed if you want to put buttons in a regular window.

You can create any kind of button supported by MS-Windows. There are four
specialized new methods and one general new method. A standard push button is
created just like any other control, except the button name is also supplied:

Actor[#PB) := newPuah(Button, 202, Par, "Cancel");

You can set the control rectangle and move a button just as with list boxes and scroll
bars, using the aetCRect and moveWindow methods. When you send the message
show (PB, 1), the button PB will appear at the coordinates of cRect relative to the
parenrs client area, and the word "Cancel" will be centered inside the button. There are
three other custom button creation methods:

Actor[#PBx] := newDefPush(Button, 203, Par, "OK");
Actor[#PBy] := newRadio(Button, 204, Par, "Start");
Actor[#PBz] := newCheck(Button, 205, Par, "Stop");

A default push button looks like a normal push button except that its edges are
thicker (to indicate that it is a default choice, hence the name). A radio push button is a
circular button in which a solid circle appears if the button is selected. A check box is a
square box in which an "X" mark appears if you select it.

In the case of Radio buttons or check boxes, the control rectangle cRect must be
. large enough to contain the button or box itself, which is left-justified, and the button
name, which follows immediately to the right.

Then there is a more general new method for Button objects, allowing you to set
the style explicitly, using MS-Windows style constants. This is the way it is used:

Actor[#PBl] := new(Button, 205, Par, "User", style);

208 Chapter 2: Guide to the Actor Classes

The style parameter must be one of the Button Style constants, such as
BS_ PUSHBU'l'TON, BS_ AU'l'OCHECI<BOX or BS_ 3STATE. A complete list is included in
the Windows Defines section of the Appendix. More information on the different
button styles can be obtained from the MS-Windows Programmer's Reference.

2.12.5.1 Button Methods

The behavior of Button objects is the responsibility of the parent window. Buttons
behave just like scroll bars in that nothing happens when you use one unless the
application explicitly handles it. You can at least cause the button to change state if you
specify one of the AUTO button styles with the general new method. An AUTOCHECKBOX
will change state every time you click it with the mouse, whether or not the application
responds to it.

In any case, the application can use one of the following methods to maintain
Button objects. Assume that a push Button object PB and a check box Button object
CB have been created.

setState(PB, true);
setState(PB, nil);
flipState(PB);
state := getState(PB);

setCheck(CB, true);
setCheck(CB, nil);
flipCheck(CB);
state := getCheck(CB);

A true argument in the setState or aetCheck methods shows the button in the
selected state, and nil sets it back to the deselected state. The flip methods simply
change the state of the button or box, and return a boolean value that is the new state.
The getState or getCheck methods will retrieve the current button state.

2.12.5.2 Managing Buttons

As with other controls, the parent window receives a message notifying it when
some button action occurs. In this case, the message is the WM_ COMMAND message,
the same message used with list boxes. If the user selects the push button PB, defined as
above, the parent window receives this message:

WM_COMMAND(Par, 202, code)

File Edit
Show Room! Temolates

setCRectCPB,a(28,28,80,40)); 1'
moueWindow(PB) ; !!!!!Ii
show(PB, 1); Ii!!'
ActorUPBx] :=newDefPush(Button ,203 ,Par, "OK"); ';;rn
setCRect(PBx,&(108,20,160,40)); N•
moueWindowCPBx); li!m
showCPBx,1); Ii!!
ActorC#PBy] :=newRadio(Button ,204,Par, •start•); !l:m
setCRect(PBy ,8:(20,68,80,80)); !il!1

1

·

moueWindowCPBy); !l!!!i,
showCPBy, 1); !!lii!I
Actor[#PBz] :=newCheck(Button ,205 ,Par, •stop"); 1m1
setCRectCPBz ,&(100,68, 168,88)); !i!l!il
moueWindow(PBz); !!!!Ii
show(PBz, 1); mm1

~

(Cance!) (OK)

0 Start D Stop

Figure 2·29: This is an example of creating Button objects. All four standard, predefined Button types are present:
push button, default push button, radio push button, and check box.

(

\

2.12.5: Th8 Button Class 209

In the case of most buttons, it is enough to know the cont.rol ID, given in the first
parameter. In this example, the parent window would typically send a flipState
message to PB to change its state, in addition to whatever adjustments are required .
within the application itself as a result of the user request. Recall that each child control
or window of a given parent window must have a unique ID. Since many of the
different controls notify the parent with the WM_COMMAND message, the ID is the only
way to tell which control has been changed.

2.12.6 Other Controls

If you need any of the other predefined controls supported by MS-Windows, use the
three control classes ListBoz, ScrollBar and Button as models. The MS-Windows
Programmer's Reference has all of the additional information necessary. The create
message sent to a newly created control object is of the form:

create(control, controlName, className, style);

The coritrolName parameter, a String object, is usually nil except for buttons or
text controls. The classNa.me parameter, also a String object, is the most important: it
names the predefined control class in MS-Windows. It can be one of these: BUTION,
EDIT, STA TIC, List Box, or ScrollBar (case is important). The style parameter is similar
to those used with the general new methods for Button and ScrollBar objects. This
is the value passed in the CreateWindow function. For child controls, be sure to add
thews_ CHILD constant to the other control style constants. MS-Windows does not
assume this attribute.

21 o Chaptsr 2: Guids to ths Actor Classss

2.13 The ModalDialog Class

As you may know, graphical user interfaces such as MS-Windows, the Macintosh,
and others often present information to the user in the form of dialog boxes. You've
seen them before-you get a dialog box when you start Actor, when you load files, or
when you click on Show Room! from the Workspace. MS-Windows supports two
different kinds of dialogs, modal and modeless. A modal dialog takes control from the
application (or an application's window-see below) as soon as it is created. The modal
dialog keeps control until it is removed, usually by some action on the part of the user.
A modeless dialog will not take over, but will allow other windows and parts of an
application to function normally.

The Actor class ModalDialog is the class that allows you to create modal dialog
objects. This class is similar to the and window control classes just discussed in terms of
its relationship to MS-Windows. The behavior of a modal dialog is predefined by MS
Windows, although there is an unlimited number of ways a dialog can be constructed
and made to respond to user activity.

A modal dialog is similar to a popup window in that it appears to lie on top of
existing windows. Also like popup windows, a modal dialog must have a parent
window. The modal dialog, while operational, really only takes control from this parent
window. If an application has more than one main window, the other windows can
function normally. You have seen an example of this behavior. When the Actor system
first starts up, the "About Actor" dialog box, an instance of ModalDialog, is started
with the Actor Display as its parent window. If you attempt to do something in the
Display window, an error beep sounds, and there is no other response. However, you
can use the Workspace window as usual.

2.13.1 Defining a Modal Dialog

One of the differences between dialogs and other windows and controls is that in
order to completely define a dialog, you must create a dialog template. The template is a
list of a dialog's attributes, which include its size, style, and all of the controls that are
part of it. You do not need to create any control objects when using a dialog, since they
can all be defined in the template. The class ModalDialog, or one of its descendants,
will define the way a dialog behaves. In other words, the methods of the dialog class
handle the events while the dialog is "alive." The class and template together define the
complete dialog.

The templates for all of an application's dialogs, as well as its menus, icons, and
other resources, are put into a single ASCII file called a resource script file. A resource
compiler is used to translate this file into a resource file, or to add the compiled resources
to the application's executable file.

The Actor programming environment itself requires a resource script file to define
the various dialogs and menus in the system. This file, named ACTOR.RC, has been
included for your inspection and modification. You will probably want to use parts of it
when building your own resource script file. More information on this process is given

*

Object

Modal Dialog

~ Class Dialog

1-- Debug Dialog

t-- DirtyCLD

t-- File Dialog

i- lnputDialog

Figure 2-30: ModalDialog class tree

2.13: The Mada/Dialog Class 211

·in the Building Actor Applications part of this manual. We include here only what is
necessary to understand how to create new dialogs using the ModalDialog and
descendant classes.

2.13.2 Creating a ModalDialog Object

ModalDialog is for the most part a formal class. It can produce and run a very
basic dialog, such as the "About Actor" dialog box, which has no real function other than
to get rid of itself when the user clicks the OK button. For more specialized functions, a
descendant class must be defined.

Creating an instance of ModalDialog looks exactly like creating a LiatBox or
other control. Assume that a window object Wl exists in the system. Then the "About
Actor" dialog can be produced with this statement:

new(ModalDialog, ABOUT_BOX, Wl);

Executing this statement will create and display the "About Actor" dialog box, and it
will stay on the screen until the OK button is clicked with the mouse, or the space bar is
pressed. This is the simple mode of dialog behavior that ModalDialog supports. The
ABOUT J'OX parameter, an Actor constant, is the resource ID of this dialog, as specified
in the About Actor dialog template in Actor's resource script file. (If you look at the
ACl'OR.RC file, you will see how this dialog template is put together.) The value
ABOUT_ BOX is used by MS-Windows to find this dialog resource on the disk, as part of
the ACTOR.EXE file, when it is needed. The last parameter, Wl, is simply the dialog's
parent window or dialog object.

The new method first creates an instance of ModalDialog which it stores in a local
variable, thaDlg. It then calls the DialogBox dialog function, instructing MS
Windows to create and run a modal dialog. The DialogBox function includes among
its parameters the resource ID (ABOUT_ BOX) and the handle of the parent window,
obtained by sending the message handle (Wl). Recall the discussion about the univeral
handle method for the three kinds of objects. The hanclle (Wl) message in the new
method covers all possibilities.

The DialogBox function and thus the new message itself will not "return" until the
dialog is terminated, reflecting the nature of modal dialogs. The value returned by the
new message is therefore not a dialog object, unlike window and control new methods,
since by the time the message returns the dialog no longer exists, and there is no need to
refer to it. The new method for ModalDialog therefore simply returns O. Some of the
descendant classes return other values, such as l'ileDialog, which returns a string
indicating the name of a file.

212 Chapter 2: Guide to the Actor Classes

2.13.3 Initializing Modal Dialogs

The question you might now want to ask is, ''How does the new method manage the
entire operation of the dialog?" The answer is: That's the way MS-Windows planned it.
The action starts with the call to the DialogBox function. Immediately before the
dialog is to be displayed, MS-Windows sends a WM_INITDIALOG to the dialog object.
By defining this message in the dialog class, we can take care of any initialization before
the dialog appears. For instance, if a dialog is to present a list of names in a list box, the
list can be pre-loaded when the WM_ INITDIALOG message is sent.

The only instance variable defined by ModalDialog is handle. This is analogous
to the hWnd instance variable for window objects and the hCntl instance variable for
controls. However, the way it gets set is different. Remember that the Createwindow
function returns the window handle, and hWnd or hCntl is conveniently set at that
time. Since DialogBox doesn't return until the dialog is finishe<\ (and it doesn't return
the handle in any case), Actor takes care of setting handle when MS-Windows sends
the WM_ INITDIALOG message. As long as you use ModalDialog as the ancestor class
for your dialog classes, directly or indirectly, you can rely on handle to be set by Actor.

In the ModalDialog class, the only action taken by the WM_ INITDIALOG method is
to return to MS-Windows the integer value 1 (any non-zero integer will do). This
informs MS-Windows to set the input focus to the first "appropriate" control item in the
dialog. Exactly which control item this means depends on the dialog resource template.
In the case of the About Actor dialog, for example, it is the OK button.

A more elaborate definition of WM_ INITDIALOG is found in the descendant class,
FileDialog. This class produces a dialog that presents a list of files from which one
can be selected for any purpose. The Actor Workspace window uses it to allow selection
of Actor source files for editing or compilation. The WM_INITDIALOG method pre-loads
the list box with files before the dialog is displayed. The l'ileDialog class will be
discussed in great detail later in this chapter.

2.13.4 Dialog Event Handling: Introduction to Nesting

Once the dialog is displayed, MS-Windows sends WM_ COMMAND messages to the
dialog object when the user activates one of its controls or makes a choice from the
dialog's menu, if any. Recall that this is exactly what happens in the case of a parent
window with child controls. For all practical purposes, the dialog is the parent window
for all of its controls. The only unusual part is that these WM_ COMMAND messages are
being sent, and we still haven't returned from the new method that started the dialog in
the first place. With a regular window, the new method returns immediately, and it
seems more obvious that the application is in a "waiting" mode.

There actually is nothing strange about this situation. Frequently, a message is sent
in Actor which itself sends a message to MS-Windows, which causes MS-Windows to
send a message to an Actor object, etc., before the first message sent ever returns. The
name given to this kind of behavior is nesting, and each time it happens we say that are
nesting another level. Both Actor and MS-Windows must keep track of all messages

2.13: Th9 Moda/Dlalog Class 213

that have been sent until each returns, so that nesting can occur whenever necessary. To
do this, each maintains a stack of messages, with the top of each stack representing the
last message sent. The DialogBox function is one of several that doesn't return to
Actor until first sending at least one message to an Actor object and getting an answer
back.

In fact, even the WM_ INITDIALOG message that is sent is an example ol nesting. It is
the first message sent by MS-Windows to Actor as a result of sending a new message to
ModalDialog. All the rest will be WM_COMMAND messages. Eventually, a WM_COMMAND

. message will be sent with parameters that will signal that the time has come to end the
dialog. Then it is necessary to call the EndDialog dialog function, and doing so will
end the dialog and finally let the DialogBox function return, de-nesting a leveL We
will return to the subject of dialog event handling when we look at the FileDialog
class in detail, later in this chapter.

2.13.S Stock Dialogs: The ErrorBox Class

MS-Windows provides a very simple way to produce a dialog box, using the
MessageBox window function. This function is actually characterized by MS-Windows
as an Error Function, and is used as the basis of the Actor ErrorBox class. While not
actually a descendant of ModalDialog, BrrorBox is mentioned here as one of the
stock dialog classes that you will probably find very useful. Its ease of use has been
enhanced by adding the BrrorBox method to the String class. It can be used any
time a short message needs to be displayed, not necessarily related to an error. The
syntax is:

errorBox("Caption", "message");

Sending this message puts up a dialog box with the string receiver ("Caption") as the
caption, and the string parameter ("message") as the text message inside the dialog. The
dialog box is automatically sized to fit the message. An OK button is provided as the
only selectable control. The dialog can be terminated by clicking OK or by pressing the
space bar. The errorBox message will not return until then.

Providing a method in one class (String) to actually create another kind of object
(BrrorBox) is a very common technique in object-oriented programming, and the
ability to do so it one of its unique virtues. Other examples of this are the point and
rect methods of the Int class, which produce Point and Rect objects. If we look at
the definition of errorBox in class String, we see how to create the same dialog as we
did with the errorBox method, with a new message to the class ErrorBox:

new(ErrorBox, ThePort, "message", "Caption", 0);

214 Chapter 2: Guide to the Actor Classes

Recall that the Actor global variable ':rhePort is always set to the window object
that currently has the focus. It is commonly passed in a message where a "parent"
window is required for the creation of a dialog or popup window. The two string
parameters are obviously the message text and caption, just like the parameter and
receiver strings for the errorBox method of String.

2.13.6 ErrorBox Variations and Retum Values

The last parameter in the new message, 0 in the example, actually specifies what the
dialog will look like, in addition to having the given caption and text. The most basic is
the one we get with the errQrBoz (Strl, Str2) method, with the single OK button.
By using different values, you can add a Cancel button, or just have Yes and No push
buttons, add an exclamation point icon, etc. These values can be found in the Windows
Defines section of the Appendix. You'll recognize them by an MB_ prefix. Adding
together the values will produce a combination of the indicated features.

Unlike the HodalDialog class, the new method for the ErrorBox class does return
a useful value. It is an integer value equal to one of the following constants: IDOK,
IDCANCEL, ID.ABORT, IDRE'?P.Y, IDIGNORB, IDYES, IDHO (1 through 7, respectively).
For instance, if an ErrorBox is created by sending the MB_ OKCAHCEL style value as the
last parameter in the new message, then the user can choose either the OK or CANCEL
button to terminate the resulting dialog. The value then returned from the new message
can be compared with IDOK and IDCAHCEL, and then appropriate action can be taken.

2.13.7 Stock Dialogs: The FileDlalog Class

Let's get back to the HodalDialog class and in particular, one of its direct
descendants, l'ileDialog. You see instances of l'ileDialog whenever you try to
load a file via a menu in Actor, such as Load ... under the File menu of the workspace.
We will take the approach of showing how to use l'ileDialog, and then showing how
some of it works. Throughout the following discussion, it will be helpful to look at the
dialog template in the ACTOR.RC file, identified by the Actor constant l'ILE_BOX. The
Actor statement that will ''put up" an instance of this class is:

new(l'ileDialog, parent, file)

Note that the parameters do not correspond with those used with the new method
described for the HodalDialog class. Most dialog classes must redefine the new
method, since the one inherited from HodalDialog will not suffice. Here, the parent
parameter can be any window, control, or dialog object. The file argument is a
String object specifying the file name, or all the files of a given extension, and so on. In
other words, these String objects are all legitimate file parameters:

(

tor Display •

File Edit Doit! Browse! Inspect! Show Room! Templates
errorBox("ErrorBox Generation11 ~"lsri 1titeasy to create an ErrorBox?")~

-&

Isn't it easy to create an ErrorBox?

(Ok)

"'

Figure 2-31 : An ErrorBox object is created easily by sending an errorBox message to a string, in this case, to
•errorBox Generation.• Here, the Workspace is the parent of the ErrorBox dialog, because it had the input focus
when the dialog was created. OK must be pushed before any work in the Workspace resumes.

"*·*"
"*.act"
"Actor.*"
"l'ileDial.cla"

2.13.5: Stock Dialogs 215

The only restriction is that the file parameter should not include directory or path
specifications. The l'ileDialog object will first look in the current directory for the
indicated file(s), load these into the list, and then become visible. The user can then
enter any other directory and/ or file specification into an edit control, one of the
elements of the dialog specified in its template. The list will be cleared and reloaded,
based on the new information.

An interesting thing happens with this file parameter in the new method. The
first order of business for any dialog new method is to create the dialog object, which is
always stored in the method's local variable, theDlg. Before calling the DialogBox
function, most dialog new methods do some additional initialization. In the
l'ileDialog case, the following statement is executed:

theDlg.fileSpec := file;

As we'll see, fileSpec is one of several l'ileDialog instance variables. This
statement sets it equal to the incoming file parameter, using the reference to the newly
created object, theDlg. We'll soon see why it is necessary to do this before calling
DialogBox.

A file can be selected by double-clicking on its name in the list box, or by clicking
once on it and then clicking the c;:>pen button. The Cancel button allows the user to
terminate the dialog without selecting a file. Regardless of which other directories were

. visited during the process, the original directory will be restored when the dialog ends.
Finally, the new message (unlike that of ModalDialog) returns something useful-a
String object naming the file specification, including the path. For example,
"C:\ WINDOWS\ACI'OR\CLASSES\BUTION.CLS" might be returned if the user
wanted to edit or compile the current source code of the Button class. (Of course, the
path would be different if you installed Actor in a different subdirectory).

2.13.8 lnitlalizlng ModalDialogs: An Example

As we have already said, a dialog can send two messages while it is operational, the
NM_ INI:TDI:ALOG message, which it sends right away, and the NM_ COMMAND message,
which is sent while the dialog is displayed in response to user requests. We have
already mentioned what the l'ileDialog initialization procedure is. We'll cover it now
in a little more detail, to illustrate an approach to dialog set-up.

The discussion will make more sense if we first note that the l'ileDialog class
defines the following list of instance variables, excerpted from its inherit message:

216 Chapter 2: Guide to the Actor Classes

startDir
loadrile
fileSpec
pathSpec
editl'ocus

/* flag, initial path spec */
/* file to load, nil if cancelled */
/* filter for files */
/* directory info */
/* flag, tz:ua if in edit control */

The startDir variable is used to hold a string specifying the current directory
when the dialog first starts. Its only purpose is to allow us to restore this directory later.
Switching directories away from the starting Actor directory can make it impossible for
the Browser to find the class source files. Other applications could experience the same
difficulty. ·

The loadrile instance variable is the value returned by the new method (see
above). It is set in response to selecting a file name. Since it is nil at first, it is proper to
return it even if the Cancel button is pushed.

The fileSpec instance variable is simply the value supplied in the new message.
This value is used to look for files on the disk and also to fill in the text for the edit
control. Notice that the text is inverted for easy editing when the dialog first appears.
Next, pathSpec holds a string indicating the current search path, e.g.,
"C:\ WINOOWS\ACTOR". Its value changes as the dialog is used.

Finally, the editl'ocus flag is set to t:rue if the focus is switched to the edit control
at any time while the dialog runs. If the Enter key is pressed while editl'ocus is true,
the dialog will not exit, but will instead reload the list box according to the newly
entered file specification.

Now we can look at the definition of WM_ INI'l'DI.ALOG for the l'ileDialog class. It
will illustrate several points.

Def WM_INI'l'DI.ALOG(self, wP, lP lpStr, hnd)
{ editl'ocus := t:rue;

)

hnd := aaBandle(fileSpec);
lpStr :=Call GlobalLock(hnd);
Call DlgDirList(handle, lpStr, l'ILB_LB, l'ILB_l)IR, 0);
Call GlobalUnlock(hnd);

atartDir := pathSpec := getitemText(aelf, l'ILB_DIR);
aetitemText(aelf, l'ILB_EDIT, fileSpec);
"1;

2.13.8: Initializing Modal Dialogs 217

The first line in the method sets the editl'ocua flag to true so that it is in sync
with the way the dialog box first appears, with the focus in the edit box. The next four
lines show how to get and lock a handle to an Actor String object when necessary before
it can be transmitted to MS-Windows. When MS-Windows specifies lpStr (long pointer
to a string) as a parameter for a Window Function, supplying an Actor String object
itself will not always work. Such is the case for DlgDirLiat, and then we must go
through the process shown above for fileSpec: get its handle with
aaHandle (filehSpec), then '1ock" the handle get the long pointer to it with Call
GlobalLock (hnd) . The lpStr value thus derived is what DlgDirLiat needs.
Immediately after, we "unlock" the handle. This whole issue of Actor String objects, MS
Windows, and handles is covered in greater detail in section 3.4.2.2 of Advanced Topics.

DlgDirLiat is a highly specialized function, as you might guess, given its name
and parameters. It is designed to facilitate the functioning of a dialog box that presents a
list of files for selection, i.e., l'ileDialog. It is assumed that such a dialog will include
several controls: a list box for the files (l'ILE _LB); a text control to indicate the directory
(l'ILE_DIR); and an edit control for entering the name of the file
specification(l'ILE _EDIT). The l'ILE _parameters are defined as global contants in
order to identify these controls both in Actor and in the dialog template.

Briefly, the DlgDirLiat function uses the file specification lpStr to look on the
disk for the files, loads the list box (l'ILE_LB) with the file names, and puts the name of
the directory into the text control (l'ILE_DIR). The 0 in the call above specifies that
regular files, as opposed to read-only or some other kind, should be listed.

The next line of the WM_ INITDIALOG method recovers the name of the directory
(path) from the l'ILE _DIR text control, and sets it to the instance variables pathSpec
and atartDir, using the getitemText method inherited from ModalDialog.
Finally, we set the edit control (l'ILE_BDIT) to contain the filaSpac string, using the
aetitemText method, also from ModalDialog.

The dialog is now ready to be displayed. We return the integer value 1 to MS
Windows, telling it to set the focus to the edit control. How does it do that? Another
long story. The value returned from Actor to MS-Windows from window messages is
rarely important, but WM_ INITDIALOG is an exception. If we want to set the focus
explicitly while handling this message, we can do so with the Setl'ocua window
function, and then return a 0 from WM_INITDIALOG, which prevents MS-Windows
from doing it. Otherwise, as in the l'ileDialog example, we return a 1, which tells
MS-Windows to set the focus to the first appropriate item, as defined in the dialog
template.

Perhaps the most important point regarding dialog object initialization is the use of
instance variables. The DialogBox function used to start and run a dialog does not
allow us to pass to MS-Windows any extra parameters or pointers to additional
information. We rely on instance variables for this purpose. When we pass information
in the new message that the dialog will need access to, as with the file specification
parameter for l'ileDialog, we must set the instance variable(s) before we call the
DialogBox function. Calling this function sends theWM_INITDIALOG message back to
the object, and this method counts on the instance variables having been initialized.

218 Chapter 2: Gulde to the Actor Classes

2.13.9 Dialog Event Handling: An Example

Recall that while a dialog is running, MS-Windows sends WM_ COMMAND messages to
the dialog object, just as it doe5 to parent window objects, and the information it conveys

. is exactly the same. We'll now talk about some of the 'NM_ COMMAND messages that (
l'ileDialog objects receive, and how they respond to them.

We have already mentioned three of the controls that are part of a l'ileDialog
object, and the three constants used to identify them; the file list box (l'ILB_LB), the
path text control (l'ILB _DIR), and the edit control (l'ILB _EDI'?). In the llrrorBox class
discussion above, we described the use of the constants IDOIC, ZDCANCBL, etc. We
advise the use of these constants in a dialog template, when appropriate, to identify
button controls. Memory is saved by not defining new constants every time a button is
needed, and there are less new names to remember. In the l'ileDialog template, we
follow this advice: the constant IDOK is associated with the Open button, and IDCANCBL
with the Cancel button. Now we know the constants for all of the controls defined in the
l'ileDialog template.

Recall that the WM_COMMAND message has the form: WM_COMMAND (self, wP,
lP) • The WM_ COMMAND method in the l'ileDialog is a case statement that compares
the incoming word parameter (wP) with the five constants just mentioned. For instance,
if the cancel button is selected, then wP is equal to the constant IDCANCBL. The action
taken in this case is to execute these statements:

resetDir(aelf);
Call BndDialog(handle, 1);

The reaetDir method uses the path specification put into atartDir by the
WM_ INI'!DIALOG method to restore the original directory. The llndDialog window
function is what tells MS-Windows that the dialog is finished and causes the
DialogBox function to finally reh!m· This use of the handle instance variable is at
least one reason why it is necessary for Actor to set it as soon as possible, as we said
earlier. The 1 parameter used in this call is the value that DialogBox returns-a useful
way to pass information if you don't want to use an instance variable. The 1 in this case
is a dummy parameter because we don't use the value that DialogBox returns.

A 'NM_ COMMAND message is sent every time the edit control either gets or loses the
input focus. In this case, wP is equal to l'ILB_EDI'? and the value high (lP) is equal to
one of the two Edit Control Notification Message constants, EN_ SB'?l'OCUS or
EN _KILLl'OCUS. These conditions are tested in the case statement, and the·
editli'ocua instance variable is then set equal to true or nil, as required.

A 'NM_COMMAND message is also sent if the Open button is selected, or if the Enter
key is pressed. The wP parameter in either case has the value IDOK. If this message is
sent when the edit control has the input focus (editl'ocua =true), the fileSpec
instance variable is reset to the string in the edit control, and the list box is reloaded.
These are the statements which bring this about:

2. 13.9: Dialog Event Handling 219

if aise(fileSpec
then fileSpec :=
endif;
loadLiat(aelf);

:= getitemTezt(aelf, l'ILB_EDIT)) = 0
"*·*";

Notice that if the user leaves the edit control blank, so that the getitemTezt
method returns an empty string, the default file specification is supplied. The
load.List method is similar to the WM_ INITDIALOG method in the way it uses the
DlgDirLiat function to load the list with files.

Finally, if wP is equal to IDOK and the editl'ocua instance variable is nil, this
means the user clicked the Open button or pressed Enter to signify selection of a file.
The user may also double-click a file name in the list box itself. If so, then wP =
l'J:LI!: LB and high (lP) = 2 = LBN DBLCLK. In either case, these three statements
are e:irecuted: · -

getLoadl'ile(aelf);
reaetDir(aelf);
Call BndDialog(handle, 1);

The getLoadl'ile method makes sure that a selection has been made in the list
box, since the user could click the Open button without first choosing a file name. If
there has been a selection, then the loadl'ile instance variable is set to a string
produced by this concatenation:

loadl'ile := pathSpec + "\" + selection;

The rest of the action is just like the Cancel button case, but since loadl'ile is now
some meaningful string, when the new method returns we have the information we
need.

2.13.10 Summary

The methods in the ModalDialog class are very general and allow information to
pass between the dialog object and the dialog itself and its controls. These methods
include: aetl:temTezt, getl:temTezt, getLBTezt, aetTezt (to change the dialog's
caption), toggle (to change the state of a button), and flash (used to signify an error).
It is almost always necessary to create a descendant class and a dialog template for each
new dialog that you need. In addition, the new class can rarely make use of the new
method inherited from ModalDialog.

220 Chapter 2: Gulde to ths Actor Classes

From the object-oriented point of view, dialogs behave differently from other
windows and controls because the MS-Windows dialog function DialogBox does not
return to Actor until the dialog has terminated. Special initialization techniques are
necessary to set the instance variables, and it is important to understand the use of the
WM_IHHDIALOG and WM_ COMMAND messages sent from MS-Windows while the dialog
is operational. The preceding treatment of the l'ileDialog class has hopefully
illustrated these essential points.

3 Advanced Topics

By now you are hopefully comfortable with object-oriented programming and fairly
well versed in utilizing the power of Actor's predefined classes. Actor, and MS
Windows, however, are both rather complex. This section will address some of the
questions you may have come up with, as well as inform you about some issues which
will help you more fully exploit the power of Actor.

3.1 Memory Management in Actor

In this section we'll discuss garbage collection and memory allocation in Actor.
In a language like C, the programmer has the burden of explicitly allocating and

freeing data. Disastrous consequences can result from freeing a datum before a routine
is done with it, as most C programmers know very well. Such an arrangement is not
suitable for a sophisticated language such as Actor. In particular, manual memory
management can greatly increase the complexity of many tasks germane to artificial
intelligence programming. ,

For this reason, Actor contains an automatic garbage collector. You have probably
noticed that while there is a new message to create objects, there is not a way to delete an
object from object memory. This task is managed by Actor automatically. In fact, it is
going on constantly, interleaved with the normal execution of code. Actor's garbage
collector has been carefully designed so that it never pauses for more than a very short
time (a fraction of a second) to do its work. Thus, time-critical operations in your
program can execute free from any lengthy interruptions. Many other languages that
have garbage collectors can suddenly pause for seconds or even minutes, which is
disruptive to your program as well as your concentration.

3.1.1 Static and Dynamic Memory

Actor's object memory is split up into static and dynamic regions. Static memory is
used for objects that are likely to stay around for a long time, such as classes, methods
and symbols. Dynamic memory is used for more volatile objects that tend to have short
lifetimes. Some of the primary users of dynamic memory are strings and long integers.

Certain types of objects are automatically created in static memory, such as classes
and functions. These are known as "permanent objects," although they can be removed
later if necessary. All of the objects that you would normally create in an application are
created in dynamic memory. You can cause any dynamic object to be made static by
using the static method of class Object.

222 Chapter 3: AdvanO«J Top/QI

The purpose of having two types of object memory is that the garbage collector
normally ignores static memory, 5() it hai; to do less work. The garbage collector
operates by constantly copying the dynamic objects that are accessible to your program
from one place to another. "Dead" objects are left behind, and their memory is re-used.

The values that you have for Static= and Dynamic= in your WIN.INI file are the
number of kilobytes that Actor allocates for each type of region. Since Actor allocates
two dynamic regions, it actually uses twice the amount that you specify for dynamic.

For this reason, it pays to place any large objects that you know will be around for
the life of your application into static memory. Actor would have to allocate twice as
much dynamic memory to manage the same object, and it would be constantly taking
time to copy the object. Your goal should be to use as little dynamic as possible in your
final application.

3.1.2 What Makes an Object Accessible?

Being accessible means that you would have some way of referring to the object if
you wanted to. Ultimately, every accessible object can be traced back to the Actor
dictionary or to the stack. The stack is where a function's temporary variables are kept,
as well as objects that are accumulated while evaluating arguments for a message. The
garbage collector works by traversing the Actor dictionary and the stack, copying each
object that it finds to the other dynamic semispace. Each of those objects is then
examined, until objects that do not point to other objects are reached, such as numbers
and strings.

The upshot of all this is that any object that can be reached through a global variable
will stay alive forever. For this reason, as well as some others, it is a good idea to
minimize global variables in your programming. Use instance variables and locals to
store objects that you create, and you will allow the garbage collector to do a better job
of freeing up dynamic memory as quickly as possible.· Globals are mostly useful when
you are in the Workspace, experimenting and playing with the system.

Another useful technique, if you know that a relatively large object is no longer
needed, is to set the variable that it is stored in to nil. Again, this allows the garbage
collector to work more effectively. Of course, the object wouldn't be reclaimed if
another variable happened to be pointing to it; that's the advantage of automatic
garbage collection.

3.'J.3 How Much Memory to Allocate

We have found that in normal interactive use, Actor works well with about 50 or 60
as the dynamic setting. The compiler tends to build some large parse trees, and is a
heavy user of dynamic memory. Your application may take much less, or much more.
The installation process removes about 15K of dynamic memory overhead, consisting of

3. 1: Memory Management in Actor 223

objects used exclusively by the compiler. Thus, if your application works at a given
dynamic value in interactive use, you can get by with at least 15K less dynamic after
installation. See section 4.5 on memory estimation for an installed application.

The static setting that you use is determined by how much you need and how much
you give to MS-DOS Executive for itself and other applications. You will find that
Windows performs very slowly if there is less than tOK or so left. You can see how
much is left for Windows by choosing About in the MS-DOS Executive system menu.

3.1.4 Static Garbage Collection

In the normal course of using an interactive system like Actor, you might recompile
methods and even classes several times before you get them right. This would be a
problem if there were no way of reclaiming the static memory occupied by those classes.

Actor contains a staHc garbage collector that has to be manually invoked via the
cleanup () message. It runs all at once, rather than incrementally like the dynamic
garbage collector. Normally, you would not do static garbage collection during the
operation of your application, only during the compile and install process. There is
nothing to prevent you from calling it at run time, however. It wouldn't make sense
unless you were creating static objects at run time, which is unlikely. You might choose
to create certain objects in static memory and then collect them when it's alright for the
application to pause for several seconds.

During interactive use, you will probably invoke the static collector fairly often to
get rid of old static objects and free up room for compilation. To do this, you must have
a certain minimum amount of dynamic memory allocated, because Actor uses dynamic
memory during static garbage collection. A good rule of thumb when using Actor
interactively is to set dynamic to at least half of static. For example, 90 static and 50
dynamic is a workable combination.

Before doing a static garbage collection, you may want to do a snapshot beforehand
just in case you might lose some valuable work. Although the static garbage collector is
very reliable, especially if your dynamic is above 50 or so, this protects you in case Actor
does run out of dynamic memory, which is an unrecoverable error. After garbage
collection is complete, it will report how many bytes were reclaimed.

Static memory is useful for storing objects whose address must be passed to MS
Windows, library procedures, or DOS. Since these objects normally don't move, there is
no danger of a stored address being invalidated. Remember, though, to update stored
addresses whenever a static garbage collection is performed.

3.1.5 Stacks

Most languages use a stack at run time to keep track of the temporary variables for a
function activation. When a function is executed, it allocates a region on the stack, called
an activation record. Even if the function calls itself, a new activation record is created,
which makes recursion possible.

224 Chapter 3: Advanced Topics

Microsoft Windows expects any Windows application to have its own stack. When
you call MS-Windows, the routine must create an activation record on the application's
stack. This allows a single copy of Windows to interleave service to several applications
at once.

Actor's garbage collector must periodically check the stack for objects that exist only
on the stack, to ensure that they are not destroyed. Because the Windows stack uses
binary data that would be difficult to distinguish from object pointers, Actor keeps an
internal stack separate from the one that Windows knows about. Each time Windows
calls or returns to Actor, Actor switches stacks so the garbage collector doesn't get
confused.

As an Actor programmer, this is all transparent to you. The only thing that might
possibly be of concern is the size of each of the stacks. The size of the Windows stack is
set when the application is linked, and determined from a number in the .DEF file for
the application. Actor's Windows stack size is set at 8192. This should be adequate for
the great majority of applications.

The size of the internal Actor stack is approximately 5500 bytes. This allows for a
recursion depth of approximately 350. Again, this should be adequate for most needs.
If the size of either stack is inadequate for your application, you will have to make
special arrangements with The Whitewater Group to obtain a modified copy of the
ACTOR.EXE file.

3.2 Calling Library Procedures

MS-Windows has a feature known as dynamic linking that allows applications to
import procedures from other modules without being linked together. This is a very
important and useful facility that makes it possible for Actor programmers tO call library
procec:lures from Microsoft languages, including C, Fortran, Pascal and Assembler.

We have provided two Actor classes that support dynamic linking with a simple
object-oriented interface. Calling library procedures with these classes is very much like
calling MS-Windows procedures, only you have to define the procedure names and
argument protocol.

You can create a dynamically linkable library with any Microsoft language compiler.
Procedures must conform to the FAR PASCAL calling protocol, and must be exported
by ordinal rather than name. Instructions for creating libraries are available in the MS
Windows Programmer's Guide. This section will assume that you have a working
library, and tell you how to define and call the library from within Actor.

3.2: CaUlng lbrary Procedures 225

3.2.1 Defining a Library

You received two class files on your disbibutlon disks that we will be discussing
here: LIBRARY.CLS and PROC.CLS. Oass Library allows you to create an object that
associates a logical name with a physical file, and defines a dictionary of prOcedures.
You should define an object of class Library for each physical library module that you
want to call.

The first step in using a Library is to set its filename. You can just set the
Library's name instance variable directly, for instance:

lib.name := "musia.eze"

Then you must add procedure enbies for each library procedure that you wish to
call. Library creates an instance of class Proa for each entry, based on the following
information:

1. The name of the procedure. This is its name as it is defined to whatever
language compiler you used to create it. Be aware that some compilers map
all characters to upper case. Actor will automatically look in the library's
.EXE file to determine the procedure's ordinal number so that you can refer
to it by name, even though Microsoft has decreed that it must be exported by
ordinal.

2. The type of the return value. This is a 1 if the procedure returns a long value
(32 bits), or 0 if a word.

3. The types of the arguments. This is an array of zeros and ones indicating the
long/word type of each argument, in order from left to right. For instance,
the argument array for the Windows routine DialogBoz would be I (O 1
0 1).

Here is an example of defining a new library with two procedures:

Actor[ILib] := new(Library);
Lib.name := "musia.eze";
add(Lib, lsetT~, 0, 1(0 l));
add(Lib, lsetEnvelope, 1, 1(1 0 l));
load(Lib);

The add method of class Library accepts three parameters: the name, return type,
and argument array as described above. It creates an entry in the proas instance
variable of the library, which is a MethodDiationary, with the procedure's name as
the key, and a Proa object as the value. We will later use this dictionary to find the
Proa object when we want to call the procedure.

226 Chapter 3: Advanced Topics

The last statement causes Actor to actually load the library module into memory,
and to call GetProcAddress to find the memory address of each of the procedures that
we have defined (set Tempo and set:&:nvelope). The library is now ready to be used.

To call a procedure, you just send a pcall message to the Proc object that defines
it. A procedure's Proc object can be found as a value in the library's procs dictionary.
Parameter conversion follows the same model as the MS_Windows Call mechanism.
For example:

pcall(Lib.procs[lsetTempo], 100, 50);

You can store the Proc for a frequently called procedure in a variable or constant as
an efficiency measure: ·

Constants[lsetTempo] := Lib.procs[lsetTempo];
pcall(setTempo, 100, 50);

You should note that, while a library can be defined and its procedures added at
compile time, it must be loaded every time your application executes. This can be
accomplished by sending the load message in your application object's init method.

The file TESTER.ACT provides an example of calling an actual library. It requires
the file MUSIC.EXE, which is a sample library application available from Microsoft or
the Actor bulletin board. As you can see, calling library procedures is very simple in
Actor. This opens up an extremely wide range of preexisting code that you can exploit

3.3 Calling MS-DOS

Class File contains several primitives that call MS-OOS. Actor also has a general
way that you can get at the many other DOS functions for which primitives do not exist.
The file OOSSTRUC.ClS defines a class that serves as an intermediary between your
application and those OOS services available through interrupt 33 (21 hex).

DosStz:uct is quite simple to use. It is a St:ruct with room for 8 words of data,
corresponding to the registers SI, DI, AX - DX, DS and BS. To pass a register to
OOS, you load the corresponding word with data. You send the Dosstz:uct a call
message, and it returns the values of all 8 registers as they came from OOS. If an error
occurred, it can be retrieved by sending the DosSt:ruct a get:&:rror message.

Passing addresses is a little less obvious than passing values. To get the address of
an Actor object into a St:ruct, you have two choices. The putLong method uses the
same conversion rules as the MS-Windows Call mechanism: that is, Int and Long
objects are passed by value, while everything else is passed by address. If you give
putLong something other than an Int or a Long, the offset portion of the object's
address is placed at the byte position that you specify, while the segment portion is
placed at the position + 2.

3.3: Calling MS-DOS 227

This works out very conveniently for the many DOS calls that require an address in
DS : DX. In the DosStxuct, DX is at byte 10, while DS is at byte 12. This means you can
get the address of a non-integer object into DS : DX with putLong (DOS, object,
DOS_DX).

It's a little tougher for cases in which the segment and offset registers are not
physically adjacent. One easy way to handle it is to define a temporary 4-byte Stxuct,
do a putLong into it, and then move the individual words to the Doastxuct.
Remember that any Actor code that is executed after an address calculation can
invalidate the address of a dynamic object. For this reason, irs safest to only pass static
addresses to DOS or library procedures.

Here are some examples. For reference, you should have a good book on MS-DOS,
such as Peter Norton's Programmer's Guide to the IBM PC, or an MS-DOS Technical
Manual.

Actor[IDOS] := new(DosStxuct);

Get the current date:
setCall(DOS, Ox2a);
call(DOS);

Set the current date:
setCall(DOS, Ox2b);
putWord(DOS, year, DOS_CX);
putMSB(DOS, month, DOS_DX); /*DB*/
putLSB(DOS, day, DOS_DX); /* DL */
call(DOS);

Remove a directory:
setCall(DOS, Oz3a);
putLong(DOS, atatic(asciiz(dirName)), DOS_DX);
call(DOS);

3.4 Actor and Windows

This section presents further information regarding the interaction between Actor
and Ms-Windows. The Tutorial and the Guide to the Actor Classes introduce some of
these topics. In order to gain complete control of MS-Windows through Actor, it is very
helpful to have access to the MS-Windows Programmer's Reference. Even without this,
a lot can be gained from familiarizing yourself with the way Actor handles windows, as
described in the following sections.

228 Chapter 3: Advanced Topics

3.4.1 Menus

A menu for a window or a dialog is usually defined in the resource script file, an
ASCII file that defines an application's menus, dialogs, accelerator keys, icons, etc. A
menu can be defined as an independent resource, identified by its menu name. When it
is to be part of a dialog, it is specified in the dialog template by the expression ''MENU
menuname." For windows, either the menu name is specified when the window is
created in the new message to the window class, or the menu is loaded independently
and its handle is used to associate it with a window.

3.4.1.1 Sample Menu Resource

Below is a copy of the Inspector menu resource, taken from Actor's resource script
file, ACTOR.RC. This is a very basic menu resource, but it illustrates the important
points.

Inap.Menu MENU
BEGIN

POPUP "Bdit"
BEGIN

MENUITBH "Cut\tDe1", BDIT_CU'l
MBNUITBH "Copy\tGrey +", BDIT_COPY
MBNUITBH "Paate\tina", BDIT_PASTB
MBNUITBH "C1ear", BDIT_CLEAR

BND
MBNUITBH "Doit!", INSP_DOIT
POPUP "Inspect"

BEGIN
MENUJ:TBH "Variab1e", INSP_IVAR
MENUITBH "Key", INSP_IKBY
MBNUITBH "Selection", INSP_ISEL

END

The resource identifier for this menu is the string InapMenu. This is also the string
that is passed as the menu name parameter to the new method for the Inspector
window. The elements of the menu resource are delimited by the BBGIN and BND
statements. Menu and popup menu items that are to appear on the menu bar are listed (
in the desired order. BEGIN and BND are also used as delimiters for the individual '
menu items for a popup menu. Notice the way the accelerator keys are indicated for the
Edit menu's Cut, Copy and Paste choices. The "\t" indicates a tab.

3.4: Actor and Windows 229

3.4.1.2 Menu Event Handling

Associated with each MENUITBH is the item's name in quotes and the corresponding
constant value which is to be sent, when the item is selected, in a WM_ COMMAND message
to the window that owns the menu. These constants should be defined in the ASOI file
which is used to define all of an application's constants. In Actor, the file ACTOR.His
used for this purpose. ·

The number of constants should be kept to a minimum for reasons of memory space
as well as for simplicity. For example, the constant values such as EDIT_ CUT and
EDIT_PASTB can and should be used throughout an application wherever an Edit menu
is used. There is no conflict as long as the constant values for the menu items of a
particular menu are unique.

There are at least two benefits to using a menu resource rather than building a menu
dynamically. One is a considerable memory savings since MS-Windows will load
resources into memory if needed, and dispose of them if not needed. Another benefit is
that the menu can be modified without changing the application code. This allows users
to modify the menu names, even translate them to another language, without changing
the way the menu works. The constant values must not be changed, since they
determine the response of the application. In order for the user to have this option, the
following files must be distributed with the application: the application's resource script
file, a file defining the constant values (such as ACTRC.H in the Actor system), and any
other required data files. The resource script file can be modified and recompiled with a
resource compiler.

In the application's code, the WM_ COMMAND method compares the incoming wP
value with the various menu constants to see which choice has been made. If the
message is being sent in response to a menu selection, the lP parameter is equal to 0.
For example:

Def WM_COMMAND(self, wP, lP)
(select

case lP = 0 and wP == INSP_SELI'
is ...
endCase
case lP = 0 and wP == EDIT_CUT
is ...
andCasa

andSelect
)

The wP parameter can be tested for equivalence with the integer constants. This
produces more efficient code both in space and time. For very large menus, it is
sometimes necessary to delegate menu handling to another method. The WM_COMMAND

230 Chapter 3: Advancsd Topics

method in the Browser class, for example, not only has to handle menu requests but
respond to list box notification messages. It passes the wP parameter through in a
doMenuChoicea message, which takes care of the menu requests.

3.4.1.3 Accelerators

Defining and responding to aceelerator keys is very simple. The definition is
handled in the resource script file, where the keys are listed in an accelerator table. Here
is a copy of Actor's accelerator table (from ACTOR.RC):

Actor ACCELERATORS
BBGJ:N

VK_J:NSBR'l, BDJ:'l_PAS'l:&:, VJ:R'lDY
VK_DBLBTB, BDJ:T_CU'l, VJ:R'lDY
VK_ SUB'lRACT, BDJ:T _ CU'l, VJ:RTDY
VK_ADD, BDJ:T_COPY, VJ:R'lDY
VK_TU, BDJ:'l_TU, VJ:R'lDY
VK_PRJ:OR, BDJ:'l_PRIOR, VJ:RTDY
VK_NBX'l', BDI'l_NBr.r, VJ:R'lDY
VK_LBFT, BDJ:'l_LBF'l', VJ:R'lDY
VK_UP, BDI'l_UP, VJ:R'l:KBY
VK_RJ:GB'l, BDJ:'.f_RJ:GB'l, VJ:R'lDY
VK_DOWN, BDI'l_DOWN, VJ:RTKBY

BND

This table simply associates virtual keys with constants. The first entry, for example,
associates the Ins key with BDJ:'l_PAS'l:&:. This constant is defined in two places, the
ACI'RC.H file and the ACTOR.H file. The two files are generally duplicates of each
other, but ACI'RC.H is used by the resource compiler and ACTOR.H is loaded directly
by Actor. The only difference between the two is the occasional chunk-mark ! ! in
ACTOR.H that Actor requires. Actor's load buffer size (in SrcBufLen) is set at 3500
bytes, so a chunk-mark must be placed periodically in a long file.

When one of the accelerator keys is pressed, the key is translated into a
WM_COMMAND message in which the high-order word of lP is equal to one. The value of
wP is simply the constant value, such as EDIT _PASTE, just as with menu selections. The
example of a WM_ COMMAND method above could be modified to respond to accelerator
keys as well as menu choices in this way:

(

(

Def Wll_COMMAHD(self, wP, lP)
(select

case lP = 0 and wP == INSP_SBLI'
is •••
end.Case

case lP <> 0 or high(lP) <> 1
iS AQ

end.Case
case WP == EDIT_CUT
is •.•
end.Case
case WP == EDIT_PASTB
is ...
end.Case

endSelect
)

3.4: Actor and Windows 231

In the above method, after handling the cases that are strictly menu choices, the case
statement "early exits" if the event is not a menu choice or an accelerator. Otherwise, the
action taken for a given value of wP will be the same, whether a menu choice or
accelerator. Of course, it is possible to handle the cases independently. The
IOI_ COMMAND method in the BditWindow class is another good example for responding
to accelerator keys.

3.4.t.4 Modifying Menus

The Window class provides methods that allow a window's menu items to be
changed in response to changing conditions. Here are some sample messages:

check(Window<>bject, menuConstant);
uncheck(self, BR_ZOOM);
enable(Wl, EDIT_PASTB);
disableMenuitem(Wl, EDIT_CUT);
gray(Wl, EDIT_COPY);

The check method simply puts a checkmark in front of the menu item identified
with the menuconstant parameter. The second line is identical to a method sent in the
Browser window to remove the checkmark in front of the "Zoom Edit" menu choice.
The last three lines show how an Edit menu might be updated to reflect whether there is

232 Chapttr 3: Advanctd Topics

anything in the clipboard or anything selected in the window for cutting, copying, or
clearing. The diaableMenuitem method inactivates the menu choice but does not
gray it, while the gray method does both.

3.4.1.S Adding or Switching Menus

The Window class defines the hMenu instance variable to hold the handle of the
window's menu, if any. If the menuHame parameter supplied in a window's new
method is not nil, the menu resource will be loaded and hMenu will be set to its handle.
The handle is set prior to calling the CreateWindow function, which includes hMenu as
one of its parameters. If the menuHame parameter is nil or the resource cannot be
loaded, hMenu is set to 0, and the window will have no menu.

The Window class defines the l.oadMenu method to take care of loading the menu
resource and setting hMenu, usually prior to window creation. It can also be used
together with the aetMenu method to change the menu of a window. For example, if a
window object Wl already exists, its menu can be set to the editmenu defined in
AC10R.RC by executing these statements: ·

loadMenu(Wl, "editmenu-");
aetMenu(Wl, Wl.hMenu);

The aetMenu method takes a menu handle as its parameter, even though it could have
been written to use the value of hMenu. This adds more flexibilty to the method. A
menu handle can be obtained without using the loadMenu method and then passed as
the handle in aetMenu (Wl, handle). One way to get the handle is to use the MS
Windows LoadMenu System Resource Function to load it directly:

Call LoadMenu(Binatance, aaciiz(menuHame));

The first parameter, &Instance, is defined in Actor as a global variable. To use MS
Windows terminology, it is actually "the instance handle of the module whose
executable file contains the menu." You can use &Instance every time a window or
resource function specifies hlnstance as a parameter. The second parameter is just the
name of the menu as a string with a 0 byte at the end.

Another way to get a menu handle is to create one with the CreateMenu function,
which has no parameters and returns a menu handle: handleMenu : = Call
CreateMenu () . The new menu is empty, but it can be filled using another window
function, ChangeMenu, by adding one element at a time. The ChangeMenu function
allows menu items to be added or deleted at any time. Its use is somewhat involved,
and is described in complete detail in the MS-Windows Programmer's Reference. An
example of it can be found in the add.About method of the Window class. This method
adds the About Actor ... menu choice to the system menu.

/
\

3.4: Actor and Windows 233

3.4.2 Communication Between Actor and MS-Windows

In chapter 2, the Guide to the Actor Oasses, there are several examples of the way in
which Actor and MS-Windows communicate. This section willsummari7.e the
important aspects of this communication. As noted before, MS-Windows has some
properties of an object-oriented system. In the MS-Windows manual, there is talk of
"sending messages" to windows, of ''window classes," and much more. While this has
actually created the basis for a very nice interface between Actor and MS-Windows, it is
sometimes possible to get caught up in the terminology of the two systems. Confusion
can usually be avoided by being aware of and adhering to the naming conventions of
both Actor and MS-Windows.

3.4.2.1 The Functions of MS-Windows

The word function as used in this manual refers to one of two things: (1) the Window
or GDI Functions supplied by MS-Windows, or (2) a high-level method written in Actor
as opposed to a low-level language, such as Assembler.

Window Functions are further categorized into Window Creation Functions, Dialog
Box Functions, and so on, while GDI Functions break down into Output Functions,
Display Context Functions, etc. All of the MS-Windows function names start with an
upper-case letter, and suggest the action that will occur if they are called:
CreateWindow, GetWindow'lezt, Dest:r:oyWindow. The Actor syntax for the call is:

Retu:r:nValue := C&ll Windowl'unction(pa:r:aml., pa:r:am2, pa:r:am3,
...)

When a Call is being compiled, Actor checks to make sure that the function name
is legitimate, otherwise an error is flagged. The function parameters and return value
for the call are exactly those that are indicated for each function in the MS-Windows
Programmer's Reference. There is also a summary of these functions in Appendix F.

Actor will convert each of the parameters, which are objects, into values of the
correct data type as required by MS-Windows. All object parameters will be converted
into either a long (32-bit) or word (16-bit) value. One of six conversions will take place
for each parameter, depending on what is supplied and what is required for the
function. This table summarizes the possibilities:

I. Long value is required by MS-Windows:
A. Actor Int (or Char) supplied in call.

The Int is extended to a Long.
B. Actor Long supplied in call.

No conversion.
C. Other Actor object supplied in call.

Long address is supplied.

234 Chapter 3: Advanced Topics

II. Word value is required by MS-Windows:
· A. Actor Int (or Char) supplied in call.

No conversion.
B. Actor Long supplied in call.

The low~rder word is passed.
C. Other Actor object supplied in call.

An error is generated.

Because of this conversion process, it is not necessary to convert Long or Int objects
with as Int or aaLong for calls. It is necessary to convert Real values, however. For
example, an application may deal with Point objects having Real coordinate values.
Before these values are used in a call to a GDI function such as Move'lo, the x and y
values must be converted with aaLong or as Int. This is already done in the exisitng
and relevant Actor methods of classes Point and Rect, but any new methods must do
th~ same. For an example, see the move'lo method in the Point class.

Actor automatically converts Char objects to their Int values when passed to
Windows. This makes aaint (char) unnecessary for Windows calls. In the table
above, use the Int cases for a Char. Passing an object other than an Int, Char or Long
when Windows expects a word parameter produces an error.

3.4.2.2 Passing String Objects to MS-Windows

String objects present a problem because there is an inconsistency as to what the
string pointer must be for Ms-Windows to get at the string data. For instance, it is
sometimes enough to use aaciiz (StringObject) in a call when MS-Windows
specifies lpStr as the parameter. In the case of the GDI 'lextOut function, it is not even
necessary to append the 0 byte with the aaciiz message, since it also takes a byte count
parameter for the string length.

In other cases, MS-Windows needs the handle to a string, obtained by sending an
aaHandla message to it. For example, the clipboard function SatClipboardData
specfies hMem as the second parameter; in this case there is no ambiguity. In this
particular case, the data pointed to by the handle parameter becomes the property of
the clipboard, and the application can no longer use the handle to access the data. The
data is retrieved using the handle returned by the GatClipboardData function. The
satClipTe:xt and gatClip'le:xt methods of the Edit window class are good
examples.

The aaBandla method uses the Globalllloc function to allocate memory from
the global heap for the string and get its handle. In most cases after using asBandle,
the Globall'ree function eventually should be called to free the handle created by
calling Globalllloc.

3.4: Actor and Windows 235

Finally, there are several cases where it is necessary to use a two-step process to
develop the lpStr parameter for MS-Windows functions, The SetWindowText function
specifies the lpStr parameter, and the definition of the set Text method from the
Window class illustrates how to get this value from an Actor String object:

Def setText(self, aStr I hnd, lpStr)
(hnd := asHandle(aStr);

)

lpStr :=Call GlobalLock(hnd);
Call SetWindowText(hWnd, lpStr);
Call GlobalUnlock(hnd);
Call GlobalFree(hnd);

The GlobalLock function returns an absolute address for the block of data pointed to
by the handle returned from the asHandle method, and also locks the block into
memory. In order that this method not result in a net reduction of available global
memory or handles, it is necessary to unlock the memory and then free the handle, as
this method d~s. In most cases (the clipboard is one exception), a GlobalFree call
should be used every time a handle is obtained using asHandle.

Unfortunately, we cannot be specific about when this technique is necessary. We
found out the hard way that certain MS-Windows functions make assumptions about
the string's segment actually being a block of global memory. Since Actor objects do not
each occupy a separate block of global memory, the system crashes when object
addresses are passed to these routines. We have seen this occur principally in the
functions that set window or dialog text. This will explain why we sometimes deal with
strings this way and sometimes do not.

3.4.2.3 Window Messages

Messages can be sent, through the SendMessage function, between objects in Actor
or from MS-Windows to Actor window objects, or from Actor objects to windows and
controls in MS-Windows. The convention is that an Actor method name always starts
with a lower-case letter unless it is the name of an MS-Windows message. For example,
the show method in the Window class is executed exclusively from within Actor. The
WM_ SETFOCUS message is sent to window objects by MS-Windows, and Actor sends the
message LB_J:NSERTSTRl:NG to a ListBox with the statement: Call
SendMessage (hCntl, LB _J:NSERTSTRJ:NG, wP, lP). The difference between the
two MS-Windows message types is who sends the message.

An attempt to send a regular Actor message to an object will result in an error if the
method is not defined by that object. When MS-Windows sends a message to an object,
there may or may not be a method to handle the message. Actor will look up the
object's ancestor chain for the method, but failing the search will return to MS-Windows
with the instruction that the message's default window procedure, if any, should be
executed,

236 Chapter 3: Advanced Topics

Most of the messages MS-Windows sends are not intercepted by Actor window or
control objects. For instance, every time the user clicks in the caption bar of a popup
window, four messages are sent: 'llM_.IC'l'IVA'l'B, WH_MOVJ:, WH_SIZB, and
WH _ SBTl'OCUS. Most Actor window classes define the latter two methods. Many
control classes define the 1IM MOVE method.

If an Actor object sends one of these messages directly to an object, there will be an
error if a method can't be found~ The message could be sent using the SendMeaaage
function, avoiding the error, although this is not an efficient way to send it. However,
SendMesaage is the only way to send messages such as LB_ ADDSTRJ:NG, which would
never be implemented as an Actor method because it is used to cause some response in
MS-Windows, not in Actor.

MS-Windows requires that an integer value be returned from a window message
that it sends to an application. In almost every case, the value itself is not important.
For this reason, Actor guarantees that the value returned to MS-Windows is an integer,
whether or not one is explicity returned. As noted in the following section, every Actor
method normally returns self unless some other value is returned by placing a caret in
front of the desired expression: "0, "substring (aStr, O, 23), etc. In the case of a
message sent by MS-Windows, the value returned is first examined by Actor, and
integer values are returned unchanged. Otherwise, the integer value 0 is substituted as
the value returned from the message.

One of the only messages sent by Ms-Windows whose return value matters is the
WM_ INITDIALOG message. In that case, different actions occur depending on whether a
zero or non-zero integer value is returned, and it is therefore important to return the
correct value for proper initialization of the dialog. For an example, see the
WM_ INITDIALOG method of ClaaaDialog. This method sets the focus explicity to one
of two dialog controls, depending on the use of the dialog, before returning a 0 to MS.
Windows. Other Actor dialogs usually return a 1, which tells MS-Windows to set the
focus according to the dialog resource definition.

3.4.3 Window Classes and Registration

Ms-Windows makes use of vaguely object-oriented principles in its own use of
"window classes." It even refers to windows as "instances" of the window class. This
makes it possible to confuse an MS-Windows window class with the Actor kind. In fact,
in the following discussion we are going to be referring to "window classes" many times,
but the context will make the meaning clear. On the positive side, the Ms-Windows
design naturally benefits the implementation of Actor window classes in many ways.

MS-Windows uses its window classes to define the default properties of windows,
which include the class style, the class cursor style, the class icon, the background brush,
and the class menu name, among other things. There are several predefined windows
classes such as UstBox, Button, and ScrollBar (there are also matching Actor window
classes). An application can create its own window classes and register them with MS-

3.4: Actor and Windows 237

Windows for its own use. In either case, the C:r:eateWindOw function requires a
legitimate window class name to be passed as the first parameter. If an application will
be making its own kinds of windows it needs to register its window classes first.

Since Actor itself must do this, it provides a good example of the registration
process. The techniques can be easily adapted for your own needs. As part of Actor's
initialization, it simply sends a :r:egieter message to the two classes, Window and
BditWindow, which results in the registration of two window classes with MS
Windows, called ActorWindow and EditWindow. The two classes happen to be
identical except that the EditWindow class specifies the I-beam cursor and
ActorWindow uses the arrow. The effect of this can be seen every time you use Actor.
Ms-Windows switches the cursor whenever the mouse moves from one kind of window
to another.

The first step in registering a new window class with MS-Windows is to choose a
name. The class names should be defined as static strings, since their addresses are
passed to MS-Windows and thus shouldn't change. In Actor, for example, the following
statements add its window class names to Constants:

add(Conetante, fActorWClaee, etatic(aeciiz("ActorWindow")))
add(Conetante, fl:ditWClaee, etatic(aeciiz("BditWindow")))

Two Actor window classes, Window and BditWindow, define the class method,
wndClaee, that returns the respective string. This is crtical; in addition to facilitating
the registration process, it allows the Actor window objects to inherit not only the
properties defined in the Actor window classes themselves, but in the MS-Windows
window classes, as if there were no diffmence. The data for the default properties of a
major window class such as BditWindow is actually shared by both the Ms-Windows
and the Actor window classes.

If you examine the create method in the Window class, you11 see that it sends the
message wndCla•• (claee (self)) , and passes the returned string in the call to
CreateWindow. If you are creating an instance of Edit Window or any of its
descendents, the wndClaee message will return the string "EditWindow." For any other
Actor window class, the returned object will be the string "ActorWindow." MS
Windows looks in its own memory for the information that was originally supplied to it
by Actor when it started up.

The class information itself is given to MS-Windows in the form of a 26-byte
· instance of Struct. The Window class method newWClaee returns this struct, already
initialized with the default data for ActorWindow. The information for writing this
method comes directly from the MS-Windows Reference, chapter 5.3, Window Data
Structures, in the WNDCLASS section.

Examine the newWClaee method to see how ·the various default properties are
specified. For example, to specify the arrow cursor, a handle to the cursor is written into
the struct at byte offset 14 as a word value (2 bytes). The handle is obtained by the call:

Call LoadCursor(O, IDC_ARROW)

238 Chapter 3: Advanced Topics

The first argument, 0, indicates that the cursor is one of the predefined types supplied
with MS-Windows. IOC_ARROW is a constant specifying the arrow cursor. Similarly,
the handle for the background brush is obtained by calling GetStockObject for a
white brush, and put into the struct at byte offset 16.

Next, look at the regiater method for Window, which sends the newWClaaa
message. The two arguments sent in the newWClaaa message are the class name and
the icon name. As stated above, the class name associated with the window class is
ActorWindow, which is the sbing returned by sending the message
wndClaaa (Window) . The String object "work" is given as the name of the icon.

The actual data for the icon is contained in the resource part of the AC10R.EXE file.
In the AC10R.RC file, the name "work" is associated with the data for the Actor icon,
the one that the Display window uses when it is made iconic. The icon graphical data
itself is contained in the file WORI<.ICO. Such a file can be produced with an icon
editor, which can be obtained from the GEnie information service, an electronic bulletin
board administered by General Electric. There is also another icon included with Actor,
called "browser," which is only seen when the About Actor dialog is brought up. A
window class can very easily be associated with a different icon. Replace the string
"work" with "browser'' in the regiater method, take a Snapshot, and quit Actor. Then
start it again, and make the Display iconic. Now it uses the "browser'' icon instead.

The register method in the window class calls the MS-Windows
RegiaterCla•• function, passing the Struct object returned by newWClaaa. If the
call returns a non-zero result, then the class was ·registered successfully. From then on,
the application can use the name of the newly registered class when creating new
windows, passing it as the first argument in Createwindow function.

The register method of the Zditwindow class is written slightly differently. The
message newWClaaa is sent, and the returned struct is stored in a local variable. At this
point, the struct is the same as that passed for the ActorWindow class, with one
important exception: The string "EditWindow" is passed as the class name in the
newWC,laaa message, so the struct contains the long pointer to that string rather than
"ActorWindow" for the class name (byte offset 22). Then the data for the handle of the
arrow cursor is overwritten with the handle for the I-beam cursor, obtained in the same
way as for the arrow. That is the only other change needed, so the struct is then passed
in the RegiaterClaaa function. .

In most cases, this technique will be an efficient way to specify a new window class.
In cases where the default window class will vary widely from th~ one defined by the
newWCla•• class method in Window, it may provide better control to completely
redefine the method, installing the different values directly rather than overwriting them
as EditWindow does.

3.4: Actor and Windows 239

3.4.4 Closing Windows, Quitting Applications

When an Actor window is closed, the window object still exists unless it is explicitly
removed from the system. One approach to handling windows and window objects is
to maintain a set of open window objects. For example, the Actor Workspace window
contains an instance variable called browsers, which is the set of open browser
window objects. When a browser window is created, the object returned from the new·
message sen,t to Browser is added to the set. When a browser window is closed, MS
Windows sends a 'llH _ CLOSB message to it. The 'llH _ CLOSB method of the Browser
class sends the message: remove (TheApp. workspace. browsers, self) • There is
now no longer any reference to the window object in the system, and it will be garbage
collected. On the other hand, when a window is created and assigned to a global
variable, Windl for example, then closing the window alone will not permit the window
object to be collected. A statement such as remove (Actor, IWindl) is required.

The 'llH _ CLOSB message is sent to a window before it is closed because there may be
unfinished business to take care of before closing the window. If a window class (or
ancestor) does not define a 1IM_ CLOSB method, then its windows will always .. be closed.
The reason for this is that the MS-Windows default window procedure for this message
is to call DestroyWindow.

Again, the Browser method is a good example. If the "dirty" flag is set in a
browser's edit window, meaning that the text has been changed in some way, then a
"Dirty Work" dialog is presented if the user attempts to close the browser window. If
the user selects Cancel in this dialog, then the 'llH _ CLOSB method returns without calling
DestroJWindow, and the window stays open. In every other case, the call is made,
closing the window.

The DestroyWindow function removes a window from the screen, and then sends a
11H _DBSTROY message to the window. This gives the application the ability to have the
closing of a window terminate the application. If this is desired, then a llMJ>ESTROY
method for the window class should be defined and should call PostQuitMessaqe.
For example, closing either the Workspace or Display windows in Actor will end the
Actor session, because the window classes Workspace and WorkWindow define a
HM _DESTROY method with the statement Call PostQuitMessaqa(). Since there is no
default action for 'llH_DBSTROY messages in MS-Windows, none of the other Actor
window classes need to define the method.

Finally, an application should also handle the case when a user attempts to quit MS
Windows itself and there is a need to finish some business in the application. In this
case, MS-Windows sends a llM _QUERYENDSBSS ION message to each application
window in the system. This is one of the few messages whose return value is
significant. If an application is ready to quit, it can return a non-zero value to the
llM_QUERYENDSBSSIOH messaqe. If all of the applications do this, then MS-Windows
can terminate. If any of the applications return a zero, however, it effectively cancels the
request to end the MS-Windows session.

240 Chaptsr 3: Advancsd Topics

In Actor, the "clean-up" work that has to be handled if the user tries to quit Actor or
MS-Windows is the same. The Workspace class defines a WM_QUERYENDSESSI:ON
method that merely sends a WM_CLOSE message to the Workspace window. The
WM_ CLOSE method of Workspace checks to see if there are any classes in the set
DirtyClasses, which means that changes have been made to the system and the user
should decide whether or not to take a Snapshot. The WM_ CLOSE method returns a 0 or
a 1, not because it has any significance to MS-Windows, but because it is occasionally
called by the WM_QUERYEBDSESSI:ON method, where the returned value returned does
matter.

3.5 Parsing and Lexical Analysis

Often, programmers need to include small languages in their applications as a way
of allowing the user to do repetitive or specialized tasks. Parsing and compiling these
languages can be tedious, involving a lot of complex and hard-to-maintain code. Actor
uses a very elegant, data-driven parser that is easy to maintain. We designed the parser
in such a way that you would be able to write your own descendant classes and easily
construct parsers for other languages.

The cornerstone of Actor's parsing support is a parser generator called yacc (for Yet
Another Compiler Compiler) that should be familiar to Unix programmers. Yacc takes
as input a formal grammar, and produces tables that can be used to run a data-driven
parser. The beauty is that the parser need only be written once, and all changes are
made via the formal grammar. The Actor class YaccMachine comes with knowledge
of how to parse using the tables output by yacc. Since we have already done most of the
work, you can very quickly write descendant classes that will parse specific languages of
your design.

Yacc is now available for the IBM PC at a nominal cost from The Austin Code
Works.

We will present a detailed example involving a mini-language called TCL, for Turtle
Command Language. TCL gives you a simplified, Logo-like language that speaks
directly to Sam, the turtle. Our example will take you from construction of the formal
grammar to writing Actor classes that do the lexical analysis, parsing and compilation.
When we are finished, you will be able to use this model to generate a new language, or
modify TCL to be more to your liking. You can load the TCL example files by executing
this in the workspace:

load(Demos[#turtle]) <CR>
load(Demos[#tcl]) <CR>

For more background on the theory of LALR parsers and parser generators, see any
of the excellent books by Aho, Hopcraft, and Ullman (especially Principles of Compiler
Design).

3.5: Parsing and Lexical Analysis 241

3.5.1 Lexical Analysis

Parsing is normally divided into two phases: lexical analysis, and parsing proper, or
the detection of patterns of tokens that represent syntactical elements according to the
rules of the grammar. The lexical analyzer has the responsibility of consuming a stream
of characters, and grouping them into tokens which are passed on to the parser. This
greatly simplifies the design of the parser, and can mask some grammatical pecularities
that might otherwise make automatic parser generation difficult.

In Actor, for example, the lexical analyzer converts the input stream to a series of
keywords, identifiers, and literal objects. The parser can then work at a relatively high
level to make sense of these elements. The lexical analyzer converts all literal forms,
such as I (20 30 40), to objects before the parser even sees them.

Yacc demands that the lexical analyzer return two things-a token and a value. The
token is a number that represents a classification of the value into broad categories that
make sense to the parser, such as NUMBER, LIHRAL, mzmil'IBR, and so on. The
value is the actual data described by the token. For instance, an mEN'lil'IBR token
would have a symbolic value composed of the characters in the identifier, while a
NUMBER value would be the number object.

3.S.1.1 Class Analyzer

To do lexical analysis in Actor, we make use of the properties of streams. Oass
Analyzer descends from Stream, adding some methods that are generally useful to
anyone doing lexical analysis. These include skipping delimiters in the input stream,
scanning for certain classes of characters, and reporting an error when undefined
characters are discovered.

A Char object responds to the message classify (self) by returning a symbol
that describes that character's role in the Actor language. For instance, numeric
characters such as ' 1' and ' 9' are classified as #digit. The classification is
determined by looking up the Char in a global array, '!rokenClasses. The Analyzer
uses this classification to determine what type of token to continue scanning for.

The scan'llhile method causes the Analyzer to advance over the collection as
long as a block argument evaluates to true. Thus, you can scan for a token of arbitrary
complexity by placing the classification logic inside the block. Here is an example that
scans for a token whose components are either alpha characters or digits:

scan'llhile(self, (using(ch)
classify(ch) == lalpha or
classify(ch) ==#digit });

To produce a token, we could mark the current position, do scan'llhile, and then
return copyl'rom (collection, mark, position). You will see this technique
used frequently in our examples.

242 Ch~'" 3: Advanc9d Topics

The getChar method is like next, but it handles end~f-stream gracefully. If
getChar is called when atBnd(self) is true, it returns asChar (0) as an end~f
stream marker; TokenClasses accordingly has the symbol leoa at position 0. After
getChar, the instance variable ch is set to the character found.

The akipDelim method advances until the next character that does not classify as
#delimiter is met. The return value of skipDelim is the classification of the non
delimiter, and the instance variable ch is set to the character itself.

3.5.1.2 Building a Real Analyzer

In or~er to create a real lexical analyzer, we must define a descendant of .Analyzer
that understands the tokens peculiar to our language. For exaµiple, class
Actor.Analyzer knows how to scan Actor source and convert it to tokens. Before we
can do that, we should decide what we want TCL to look like.

3.5.2 The TCL Language

Our goal with TCL is a language that simplifies commanding Sam, the turtle. As a
language, TCL will be far from sophisticated, but it more than serves our requirements
as an example. After you finish this section, you should be able to add more features to
TCL, or design a new language of your own creation.

TCL programs consist of the following elements: primitives, functions, and
numbers. For convenience, Sam will be the ultimate receiver of all primitives and
functions. TCL functions return a single value, just as Actor does. At the surface, TCL
does not appear to be object~riented, since there are no explicit receivers. We will
"compile" TCL by converting it to Actor, so actually the result will be object~riented.

3.5.2.l Primitives

TCL primitives will consist of the most often-used function of class Turtle. Here is
a list of the TCL primitives and their Actor equivalents:

up -> up (Sam)
down -> down (Sam)
show -> show(Sam)
hide -> hide (Sam)
f n -> f(Sam,n)
b n -> b(Sam,n)
1 n -> l(Sam,n)
r n . -> r(Sam,n)
z + y -> z + y
(other infiz operators: -, *, /)

3.5: Parsing and Lexical Analysis 243

3.5.2.2 Functions

TCL allows you to define functions that can make use of arguments and local
variables. Here is a sample TCL function definition:

TO poly :sides length: :len
LOCALS :angle
:angle := 360/:sides;
do :sides

repeat

r :angle
f :len

The keyword TO begins the function definition, followed by the name of the new
function. All arguments and variables in TCL begin with a colon, which makes the
parsing job simpler. The function poly takes two arguments, : sides and : len. All
arguments after the first one are preceded by descriptive keywords. We could have
preceded the first one by a keyword as well, but it is attractive to be able to simply say f
5 instead off length: 5. Anyway, you can and should change it to suit your
preference.

The LOCALS keyword marks the list of local variables. We can have up to 8,
separated by spaces. The body of the function follows, delimited by the END keyword.
In this function we see an example of TCL's only control structure, do-repeat. This
very simple construct allows us to repeat its contents a certain number of times, in this
case for whatever the value of : sides turns out to be. If you haven't yet figured it out,
poly draws a : sides-sided polygon with each side of length : len.

TCL as we have defined it has no conditionals or other essentials that we are
accustomed to seeing in a language, and the only type of data is numeric. These areas
could be extended very easily to make TCL a "real" language.

3.5.2.3 Numbers

TCL only understands integer numeric literals. This, as we will soon see, lies in the
domain of the lexical analyzer, which could be extended to accept literals of class Real,
for instance.

244 Chaptt1r 3: Advanc9d Topics

3.5.2.4 TCL Function Calls

A TCL function call consists of the name of the function, followed by the value of its
first argument, if any, and then the keyword arguments, if any. For example, we could
invoke the poly function in the following way:

poly 5 length: 50

This would produce a pentagon with each side of length 50. Here is a mo~ complex
expression that uses the values returned by other primitives and function calls:

poly sides length: :1 * 2

This calls the 0-argument function sides and uses its value as the value of poly's
first argument. The length: argument is calculated from the variable : 1 times 2.

3.S.2.5 TCLAnalyzer

Now we can build a lexical analyzer that can tokenize TCL input. Getting a token
will consist of the following operations:

1. Skip delimiters and find the next character.

2. Use the classification of the character to determine what kind of token to
look for. For instance, if the first character is a digit we would scan for a
number.

3. Set the instance variable token to the proper token number, and set val to
the string that we copied from the input stream.

Because we made the simplifying assumption that we would "compile" TCL into
Actor source, the lexical analyzer needn't actually tum literals into objects. The Actor
anlyzer will do that when it is truly compiled.

You may now want to refer to the source code for class TCLAnalyzer, which you
can find in your classes directory. If you examine the get Token method, you will see
that it is quite simple. It first checks to see if it is at the end of the input stream, in which
case token and val are both set to 0, the end-of-stream marker. Then skipDelim is
called to classify the next non-blank character. The variable sym now contains the
classification symbol, and this is used to perfonn the handler method for the
appropriate token type. In other languages, we might have used a case statement in this
situation, but perfonn is more elegant and flexible.

3.5: Parsing and Lexical Analysis 245

3.S.2.6 Processing Tokens

Let's look at one of the token handlers in TCLAnalyzer. The colon method is
performed when the first character of the token is classified as #colon. The token could
tum out to be either the assignment operator, : =, or an argument, such as : len.

The first thing, then is to check the next character to see if it is ' =', and if so, return
the token TCL ASSIGN. (We'll cover the various token numbers a bit later). Otherwise,
the token must be an argument, so we scan for an alphanumeric identifier, and return
TCL _ ARG as the token number. The val is set to the identifier without the colon, so the
parser doesn't have to strip the colon later on.

You'll find that all of the token handlers use a similar model, as should any that you
write. That's all there is to building the lexical analyzer, so let's move on to the parser.

3.S.3 YaccMachlne

The job of YaccMachine is to make sense of the arcane tables produced by yacc,
and detect patterns of tokens as fitting various grammatical rules. Most of· the methods
of YaccMachine are for dealing with the tables, and not immediately relevant to us.
This is just an object-oriented translation of the C routine yyparse () that is generated
every time you run yacc.

How does yacc produce these strange tables from a formal grammar? For most of
us mere mortals, this process can be considered magic. Knowledge of how yacc really
works has been handed down as verbal tradition in a long line of necromancers who
wear funny pointed hats. (Actually it's boringly scientific, as you would soon gather
from reading Aho, Ullman).

Don't attempt to gather any meaning from the tables themselves, as they are the
product of an elaborate compression algorithm. It's best to think of YaccMachine as a
little computer whose "program" is your formal grammar, and the tables are the
machine code. We'll describe a logical model of how the machine works, and then use it
to build the parser for TCL.

3.S.3.1 The Formal Grammar

The input grammar for TCL is listed at the end of this section. The %token
expressions assign symbolic names to the various token types returned by the lexical
analyzer. All upper-case names in the grammar are considered terminals, that is,
atomic elements that come from the lexical analyzer. Lower-case names refer to non
terminals, or grammatical constructs that are built up within the grammar from the
terminals. Non-terminals are built by defining rules, the left side of which is a name,
and the right side a pattern of terminals and non-terminals. Ultimately, every non
terminal must be defined on the left side of a rule within the grammar.

246 Chapter 3: Advanced Topics

For instance, the first rule in TCL defines the non-terminal prim, which we use to
refer to the various primitive functions in the language. The TCL_ *names are
keywords that were identified by the lexical analyzer, and value is any of a set of things,
as we shall see later. Forward referencing non-terminals is allowed.

A rule has the form:

name : <patternl>
I <pattern2>

;

(actionl)
(action2)

A colon precedes the first alternative pattern (read "is defined as"), and vertical bars
(read "or") precede other patterns, if any. Each clause of a rule can have an associated
"action" that will be executed when the rule fires (the pattern is recognized).
Theoretically, the actions are supposed to be C code, but we use them to refer to Actor
methods, as you will soon see.

Defining a grammar consists of building up rules for all of the valid syntactical
elements in the language, starting from terminals produced by the lexical analyzer. It is
a bit tricky at first, but soon becomes quite obvious after you have done it a few times.
There are some fringe benefits that come with defining a formal grammar, and using a
table-driven parser. The process of writing the grammar tends to point out any
inconsistencies in the design of the language. Also, changes are very easy to make after
you use the language for a while and start to critique it. These advantages make it
worth the initial effort.

3.5.3.2 Hints in Building Rules

Space permits us to cover grammars only lightly in this manual. There are many
special features of yacc that will remain unsaid, and can be discovered in the yacc
manual (available in the Unix Programmer's Guide).

We will briefly discuss a couple of useful tricks in building yacc grammars. You
will notice that some rules contain a clause that says "I* nothing */"or "/ * empty
* /". This is telling the parser that a particular syntactical element is optional. For
instance, in a TCL function definition, the LOCALS statement is optional, so it has an
empty clause in the grammar.

Another trick is the use of recursive definitions for lists. As an example, the locals
rule consists of the word LOCALS, followed by one or more local variable names. We
need a way to say "a variable number of' in our rules. This is accomplished by stating
the rule as follows:

l.oca TCL ARG
-, l.oca TCL_ARG .

I

3.5: Parsing and Lexical Analysis 247

This says that a loos item is defined as a single argument, or a loos item followed
by a single argument. Thus, when the parser sees its first TCL_ARG, it will recognize the
first clause, which qualifies as a locs item. If another TCL _ ARG follows, the second
clause will fire, and continue to fire until something other than TCL_ ARG is seen. This
arrangement is very convenient when it comes time to write the action handlers, as we
shall see. Yacc prefers that we write so-called '1eft-recursive" rules, in which the
recursive element is the first part of the pattern.

3.53.3 The YaccMachine Functional Model

Now we will get into the class YaocMaohine and how you can use it to parse your
grammar. This is where the going gets a bit rough, because what we have to talk about
is very abstract. The best way to understand this material is to do it yourself, that is,
study the examples we have provided, write a small grammar, and build a parser. You
will find the concepts deceptively simple once you see them in action.

YaocMaohine is a classic example of a state machine, a pervasive concept in
computer science. It starts out in a particular state, and each stimulus (input token)
causes a transition to another state. In this case, the states represent different sets of
expectations about what tokens should be seen from the lexical analyzer. For instance,
after seeing the token ' +', the parser would expect to see some sort of value rather than
another operator.

Because a grammar defines rules within rules, YaocMaohine has to use a stack to
represent the state of each level of partially completed rule. For instance, in the Actor
phrase:

10 + size(self)

size (self) would be recogni7.ed as a normal message, the whole of which serves as
the right hand side of an infix expression. Thus, after seeing the '+', the parser would
be in "expect right side of infix" state. After parsing size (, however, the parser would
have to tum its attention to completing the message pattern, and forget about the infix
expression for the moment. The old state would be pushed on the stack, and the current
state becomes "expect remainder of message expression."

3.53.4 Shift and Reduce

There are two basic operations that YaocMaohine can perform when it gets a new
token from the analyzer. A shift operation occurs when information on the current rule
is still incomplete. Shift is like saying, '1et's defer judgement on this until we know
more." It places the parser in a new state based on what has already occurred.

248 Chapter 3: Advanced Topics

The reduce operation occurs when the parser has received all of the elements
specified on the right side of a rule. An action is executed when the corresponding rule
for the action is reduced. Reduction of a rule may cause other rules to be reduced
farther down on the stack, or it may trigger a "goto" operation. Goto is like shift, only it
occurs when a non-terminal is received as the result of a reduction.

If requested ("verbose" option), yacc produces a file, usually given the extension
.output or .I, that contains information about the state tables. This is a very informative
listing of what occurs in each state u a given terminal is received or a non-terminal is
reduced. You can use this file in conjunction with print statements to "debug" your
grammar. We have included the file TCL.I on the distribution disks that you can use as
an aid in understanding the TCL parser.

3.5.3.5 Action Methods

The "actions" named in the curly braces in each rule are the means by which we
actually do something with the parsed input. Without the actions, YaccMachine
would proceed blissfully through all of its states as it parsed, but nothing would
happen. An action is performed at the point when its associated rule has just been
recognized. For instance, the TCL action doAaagn would be executed just after the
parser had seen an occurrence of an argument, the assignment operator, and a value.

An action's goal in life is to produce a single value that is somehow representative of
the rule that just fired. What that value is depends upon what the parsing process is
designed to accomplish. In parsing Actor and TCL, we build a parse tree. Each action
generates a node of the tree, and the leaves are all terminals. A parse tree is a very
convenient structure for compilation and optimi7.ation, and we will discuss it more a
little later.

3.5.3.6 The Value Stack

Just as YaccMachine uses a state stack to keep track of the nested states that it has
traversed, it has a value stack to hold the values produced by each action. When a rule
is reduced, the parser pops from both stacks the number of elements contained on the
right side of the rule. These elements are available to the action method as "items," and
it can use them or not at its discretion. After the action returns, YaccMachine pushes
the contents of the instance variable yyVal to the value stack. The action can, and
usually does, modify yyVal to control what is pushed to the value stack.

The net effect is that the right side of the rule is "replaced" on the value stack with
whatever is in yyVal. The action may create a composite object to hold the important
items from the right side of the rule, and place this object in yyVal. This, in tum, might
become an item for another rule that was pushed on the stack.

3.5: Parsing and Lexical Analysis 249

Two methods of YaccMachine are used very heavily by actions. The first,
item(aalf, n) returns the nth item down on the value stack. This corresponds to the
ordering of items on the right side of a rule, from left to right. For example, in the
following rule:

val : ' (' val ')' (doParen)

The doParan action might consist of simply:

yyVal := item(aalf,1);

This would replace a parenthesized value by the contents of the value itself, whatever
that might be. The parser would then proceed as though the parentheses had never
existed, but they already serve<;t. their purpose in explicit grouping of their contents.

The pass method places item 0 in yyVal. This can be used as a default in rules that
have a single item on the right side, or only the 0th item is interesting. This would be
useful in rules such as the following:

value : prim

I . ,

3.5.3.7 Pane Tree Nodes

fcall ';'
NUMBER

For more complex rules, we store in yyVal composite objects that hold all of the
items that are important from the right side when the rule is reduced. Because some of
the items are themselves composite objects created at previous rule reductions, this
creates a parse tree that we can traverse by following the instance variables of the nodes.

For instance, in Actor we have nodes for normal messages, infix messages, if
statements, loop statements, and so on. Each non-terminal corresponds to a given type
of node, although some very general node types, such as lists, may be able to handle
several different non-terminals. In cases where left-recursive rules define variable lists
of items, we use nodes that have variable-length lists as instance variables.

In an object-oriented language like Actor, building the parse tree from nodes and
using it to compile is a beautiful demonstration of the benefits of an object-centered
approach. We can compile the parse tree by simply sending a compile message to the
root of the tree (that is, :yyVal at the end of the parse). Each node compiles by sending
compile messages in tum to its elements in the proper order. Eventually, the compile
messages reach the leaves, where objects compile themselves in an appropriate manner.

250 Chapter 3: Advanced Topics

This has all been very abstract, so let's tie it together with an example. Given this
very small grammar:

(0) val
(1)

(2) infbc

. ,

;

HUMBER
inf be

val INl'IX_OP val

(pass }
(pass)

(doinf ix)

Let's define the doinfbc action method, and then parse a real example and see
what happens. Here's the definition of dolnfix:

Def doinfix(self)
(yyVal := init(new(InfixHode), item(self,0),

item(self,2), item(self, 1));
)

This method creates a new InfixHode object, and initializes it with the left and right
operands and the operator from the infix message. The node is assigned to yyVal, so it
will be preserved as the value of the reduced infix rule. .

Class InfixHode has instance variables left, right, and operator. The init
method just stores these values as they are received from the value stack. Let's see what
happens when a real infix expression is parsed. Here's an example:

10 * 30 + 4

Tok~n Val OPeration
NUMBER 10 reduce (0) (10 is a val)
INl'IX_OP * shift (expect right side)
NUMBER 30 reduce (0) (30 is a val)
INl'IX_OP + shift (expect right side)
NUMBER 4 reduce (0) (4 is a val)

reduce (2) (30 + 4 is infix)
reduce (1) (infix is a val)
reduce (2) (10 * (30+4) is infix)
reduce (1) (infbc is a val)

When rules 0 and 1 fire, pass is called, so the 0th (and only) item is placed in yyVal.
The val rule thus leaves either a number or an InfixHode on the stack.

lnfixNode:

left right op

Infix Node:

left right op

Figure 3-1: Example of a parse tree.

3.5: Parsing and Lexical Analysis 251

Note in the above sequence that when 30 is received, the parser could reduce rule
2, because 10 * 30 is a valid infix pattern. This is known as a shift/reduce conflict,
because it could also defer (shift) and wait to see what comes next. All shift/reduce
conflicts are resolved by shifting unless explicitly overridden, and this is almost always
what we want. In this example, the effect of this decision is to group nested infix
expressions from the right, which is generally not what we would expect. There are
mechanisms for handling operator precedence in yacc, but that is beyond the scope of
this discussion.

Each time rule 2 fires in this example, an instance of class InfixNode is created to
hold the 3 items on the right. The right variable in one of the InfizHodes is set to the
other InfizHode, and the expression is parsed as follows: 10 * (30 + 4). The
resulting parse tree is in Figure 3.1.

Now, let's define a compile method for InfixNode. It's really quite simple:

Def compile(aelf)
(compila(left);

compile(right);
compila(op);

)

This compiles the operands and operator in post-order, just as you would enter them on
a Hewlett-Packard calculator. This is how Actor compiles infix expressions, and how
Forth source represents them. TCL maintains the infix order, because compilation
consists of generating Actor source, which uses infix for arithmetic expressions.

The leaves of the tree must respond to the compile message by actually doing
something. In Actor, numbers and all literals compile themselves by adding.the object
pointer of the literal to the compile stream (which streams over a l'unction). In TCL,
we simply add a string representing the token to the compile stream (which streams
over a String). Note that, although compilation is radically different in the two
languages, the definition of compile in many of the parse nodes is virtually identical.

. 3.5.4 Compiling TCL

Let's look at a sample TCL compile method. Each node has to make the TCL rule
that it represents into a sensible sequence of Actor code. For instance, the do-repeat
rule, which creates a doHode, can generate an Actor do message over an Interval:

Def TCLCompile(aelf)
(TCLCompile("do(");

TCLCompile(count);
TCLCompile(", uaing(i) ");
TCLCompile(body);
TCLCompile(")); ");

)

2Q2 Chapter 3: Advanced Topics

As you can see, this generates an Actor do message to the expression held in count,
with the statement list held in body as the block argument. All terminals in TCL are
ultimately strings, so we need only define TCLCompile in class St.ring to add the
string to the TCL compile stream by using p.rinton or nextPutAll.

The result of compiling TCL is Actor source code. This could either be saved for
later execution, or executed immediately. The foxmatLines function can be used to
''pretty-print" an Actor source string into a series of properly indented lines.

3.5.S Building a Compiler: Overview

Let's summarize the steps required to build a compiler using Actor's parser
generator facilities.

1. First, you should define a formal grammar for your language. Decide on a
clean division of labor between the lexical analyzer and the parser. You will
find it helpful to read the yacc manual at this stage.

2. Run your grammar through yacc using the verbose option. This will
generate a file, FILENAME.C, that will consist of C source for the parser.

3. On the Actor disks, we have provided a file called TCL.M that is a Brief
macro source file for converting the output of yacc to a form acceptable to
Actor. (Brief is a text editor from Underware, Inc.) You can also do it by
hand, using search and replace in any good program editor. The file TCL.C
is representative of what your output should look like. ·

4. Create a descendant of Analyzer that does the lexical analysis for your
application. It interfaces to the parser via the get Token method.

5. Create parse nodes for every non-terminal in your grammar. Some non
terminals might be handled by existing classes, such as EmptyList or
ListHode. Each node must have instance variables corresponding to the
important items on the right side of the corresponding rule. Each node must
also have init and compile methods, and possibly others, depending on
your application.

6. Create a descendant of YaccMachine containing the action methods named
in your formal grammar. These methods will use the parse nodes to create a
parse tree, and the highest-level rule sends a compile message to the root of
the tree.

3.5: Parsing and Lexical Analysis 253

1. Finally, you must define compile methods for the various kinds of objects
(numbers, strings, etc.) that can appear as leaves (terminals) on the parse
tree. This is where the actual work of compilation occurs. You will find it
useful to define a global Stream object that serves as the compilation stream.

8. Create an object of your parser class, and initialize its lez instance variable
to an object of your analyzer class. Set the analyzer's collection to a
source string, and you are ready to begin parsing.

9. To debug your parser, place a print (tuple (st,' ')) statement in the
parse method of your parser class. This will print the history of the various
states as they are traversed, and you can look in the verbose output file from
yacc to see what each state expects and should be doing.

3.5.6 On Your Own

We hope that Actor's unique and powerful parsing facilities will lead to the creation
of a variety of specialized. grammars for various tasks. Hopefully, some of these efforts
will enter the public domain and allow others to benefit from them. Some interesting
possibilities that come to mind are translators between Actor and languages such as C,
Pascal and Smalltalk; specialized grammars for manipulating frames and expert system
rules; non-procedural, fourth-generation languages and application generators; and
whatever else the infinite talent and imagination of the Actor user community can
produce.

4 Building Actor Applications

This section will describe in detail the entire process of developing an application
with Actor. Some of the topics we'll cover will include object-oriented design issues,
source code management, using resources, error handling, incremental development,
debugging, optimization and the "install procedure." The material in this section
presumes that you already have a good feel for Actor syntax and you have a basic
understanding of the various system tools.

4.1 Designing the Application

You probably realized that programming in Actor has a very different feel from
other languages. We found that as people become experienced Actor programmers,
their approach to designing applications changes as well. There is a large payoff
associated with creating a good design "up front," that is, before you write a line of code.
While this is true of all programming, classes and objects underscore this approach even
more.

Actor requires that you think in terms of classes. One of the great benefits of object
oriented programming is that classes organize related properties into units that stand on
their own. We go through a similar process as we learn about the world around us. As
new facts are acquired, we relate them to existing structures. After enough new facts are
acquired about a certain area, we create new structures to accomodate the greater level
of detail in our knowledge.

The single most important activity in designing an Actor application is coming up
with a set of classes that work together to provide the functionality that you desire.
There are always many solutions to this problem. In the ensuing material, we'll give
you some hints about finding the best solution, and how to know what the best solution
looks like. Please keep in mind that this topic could easily (and will) form the basis for a
book, so we'll only have room to point you in the right direction here. ·

4.1.1 Occam's Razor

Scientific theoreticians often rely upon a rule-of-thumb known as "Occam's Razor,"
after William of Occam, a 14th-century scholastic philosopher. Briefly put, Occam's
Razor says that the best theory explains the known facts with the minimum amount of
complexity. We have found this to be a very useful tenet in approaching the design of
an object-oriented application, and language, as well.

4. 1: Designing the Application 255

Let's restate Occam's Razor in object-oriented terms: We have found that the best
designs usually involve the least complex code, but not necessarily the fewest number of
classes or methods. Minimizing complexity should be your goal, because that produces
the most easily maintained and enhanced application. In Actor, the best way to
minimize complexity is to make use of the inherent power of the language, and to add
as little as possible to what is already there.

4.1.2 Creating an Animistic World

To many indigenous cultures, the world is populated by entities. Mountains, plants,
animals, bodies of water are all governed by spirits that oversee the operation of that
particular aspect of the world. This is directly opposed to the "civilized," western world
view in which human beings are the only active entities around, and everything else is
there for man to use for his own ends.

Oddly enough, programming in Actor seems to have a Jot in common with the first,
animistic world view. In more traditional languages, we approach programming as
writing a lot of code to do all the things that have to be done. The code is the rocks,
plants, bricks and mortar that the programmer uses to build structures. The
programmer is the only active entity, and the code just basically a lot of building
materials.

Object-oriented programming is more like creating a Jot of helpers that take on an
active role-a spirit--and form a community whose interactions become the application.
When you design a class, you can think of the class as an expert or consultant that you
can then use again wherever you need its specific expertise. Because of the loose
coupling between classes, there is a high likelihood that you wiJJ be able to use it in
more places that you had originally planned. After a while, classes become like old
friends that you know are reliable, and always there when you need them.

The first step, therefore, in building an application should be to design a set of
classes that each have specific expertise, but can work together in ways that are useful.
Try to apply Occam's Razor at each stage of this process. For instance, it is much better
to have a large set of classes, each of which is simple and clear in itself, than to have a
few large and complex classes. When you document a class, you should easily be able
to explain in a few sentences what it does. The same goes for methods. If you can't,
then rethink the class and try to subdivide it into more independent pieces.

A common occurrence is that your first attempt is not divided up properly, and is
therefore more complex than it needs to be. Take the time to critique what you have
proposed. You may find that you can gather common pieces of expertise from several
classes, and this in itself becomes another "peer" class that the others consult. Or, you
might be able to create a common ancestor for several classes that gathers together in a
single place very similar code. Actor's inheritance mechanism can reduce code size a
great deal if you take the time to think in this way. After a while, it becomes automatic.

A great deal of benefit accrues from having a larger number of simpler classes in
Actor. You cannot possibly foresee all of the future scenarios in which the classes that
you create will be reused. The more you apply Occam's Razor, the more likely it will be

256 Chapter 4: Building Actor Applications

that future problems can be solved by recombination of existing classes, adding a
minimal number of descendants. A class that can be easily understood and inherited
contributes to the overall system, while a complex, poorly designed class is just so much
dead weight.

Think of Actor as an organic system, one that evolves as you create each new (
application. Carefully designed classes have a synergistic effect not only on the current
system, but on its future evolution. If you exercise some discipline as you proceed, you
will begin to see some extraordinary gains in you productivity against conventional
programming.

4.1.3 Two Ways of Inheriting Behavior

Most of the time, you will want new classes that you create to inherit from classes
that already exist in Actor. A goal of any object-oriented language is to minimize the
amount of new code that must be written for a particular task.

Often, you will find that you need a class that has all of the properties of an existing
class, with some slight modifications. For instance, you may need a stack class that
doesn't generate an error if it is empty and a pop is requested. This could be
accomplished easily by creating a descendant of OrderedCollection.

There are a couple of reasons why you might not want to create a direct descendant
class. Firs~, you might not want to inherit all of the behavior of a class, only a certain
part of it. You might also want to create a composite class that has properties of several
existing classes. In either of these cases, a good solution is to define a new class with
instance variables that hold objects of the class or classes you want to borrow from. You
can ''borrow" behavior from these classes by sending messages to the instance variables.
A good example of this in Actor is class Bag, which borrows a part of Dictionary's
behavior through an instance variable rather than being a direct descendant.

This approach allows you to define a specific protocol for the new class that exactly
models the behavior that you need, and not worry about inheriting inappropriate
behavior from a long line of ancestors. Usually, the choice between direct inheritance
and inheritance through instance variables will be clear. Always consider both options
when you design your classes. Again, your constant goal should be clarity and
simplicity, for that will benefit you most in the long run.

4.1.4 Benefits of Polymorphism

The tenn polymorphism refers to the generic nature of messages in Actor. A
message is a symbolic request rather than a function call. The interpretation of the
message is up to the object, and the same vatjable could hold objects of many different
classes at runtime. Thus, the variable could exhibit a variety of behaviors, depending
upon the class that it held.

4.1: Designing the Application 257

Most programmers new to Actor fail to appreciate the degree to which this property
can simplify their code. Proper use of polymorphism can eliminate much of the control
structure that tends to complicate conventional code. Whenever you write a piece of
code that has to dispatch different activities depending upon what type of input is
received, you should consider defining classes that model each type of input. Your code
can then send a single message to the input object, and Actor's internal messaging
mechanism takes care of dispatching the correct behavior. You should give particular
thought to this whenever you are about to write a case statement.

4.1.5 The Power of Perform

An additional level of power and elegance can be gained by effective use of the
perfoz:m message (see section 2.1.6.3). Just as polymorphism allows the class of the
receiver to take on different values at runtime, perform allows the message selector itself
to be computed at runtime. This can eliminate yet another layer of control structure and
it supports a very clean, data-driven approach to programming.

A good example of this can be found in the get Token method of class
TCLAna1yzer. The lexical analyzer must detect what type of token to look for based on
the first character read. For instance, if a digit is seen, it will continue to look for digits
until a non-digit is found. A C program would probably have a table of types
corresponding to the ASCII character set, and a large case statement that does sbmething
different for each type.

In Actor, the case statement is unnecessary because of the perfoz:m message. The
akipDe1im message returns a symbol indicating the lexical type of the next non
delimiter character found. The get Token method then simply sends the message
perfoz:m (ae1f, eym.) to dispatch the proper behavior for that type of character. This
may seem slow, but actually it is relatively efficient because it ties into Actor's highly
optimized messaging mechanism.

4.1.6 Using NUClass

All objects in Actor have Boolean significance. This is a subtle feature, but it also can
simplify your code if properly used. For instance, search routines often are inconvenient
to write in languages that have single-valued functions. The routine must return both a
found flag and the element that was found, but the function can only return a single
value. This requires the use of composite objects such as lists, which are not as easy to
manage as single entities.

In Actor, ni1 is used to represent logical falsehood as well as the uninitialized state
of variables and collection elements. This makes it very convenient for a search method
to return the element if it is found, or nil if not found, which avoids the use of composite
objects.

258 Chapter 4: Bui/ding Actor Applications

You can combine this last property with polymorphism to further simplify your
code. Instead of using an if statement to determine, conditional behavior based on the
results of the search, you might wish to define a method in NilClass that accomodates
the case in which the element is not found. This allows your code to send a single
message that employs polymorphism to properly handle the result of the search.

If you look at the methods already defined in NilClass, you will see several that
are there for precisely this reason. For example, to save space, not all classes in Actor
have method dictionaries. Several methods in the system traverse all of the classes and
send a keyAt message to their method dictionaries. Defining the keyAt message in
NilClass to do nothing allows each of the senders of keyAt to ignore whether the
dictionary really exists, which saves a good deal of code.

As we said before, this section can only scratch the surface of designing an Actor
application. The Whitewater Group is committed to a strong user education program,
and we will make more useful hints available through user seminars, the bulletin board
system, and written materials. The best way to learn Actor is to use it - don't be afraid to
make a few mistakes!

4.2 Writing the Application

After you have designed a rough version of how your classes will look, you can
begin writing methods to define your classes' behavior. This section will discuss the
coding process and how to best make use of the Actor environment.

4.2.1. Coding Style

To ensure that your code is readable by other Actor programmers (and yourself),
you may wish to follow some conventions that we have developed out of our experience
with Actor and other object-oriented languages:

1. Global variables of all kinds, including constants and class names, begin
with a capital letter. Other variables begin with lower-case letters.

2. All variables have descriptive names in which each English word starts with
a capital letter. Avoid choppy, overly-abbreviated names or extremely long
names.

3. MS-Windows-related names are all capitals, including resource IDs.

4. Attempt to fit in with conventions already established in method naming.
For instance, if you have a method that converts a new class of your creation
to a String, it should be called asString.

4.2: Writing th8 Application 259

5. Be careful about modifying methods that we distribute. In general, define a
descendant that behaves as you want it to. You can add methods to system
classes, but modifying system methods makes it very difficult for us to
provide you with adequate technical support, because you will be working
with a different system. Also, when we distribute updated class files, you
could lose your changes if you modified our methods. Tracking new
methods through an update is much easier than trying to preserve
modifications.

6. Actor's automatic formatter does a very good job of giving all code a
consistent, readable look. We suggest using "'R to reformat a method before
accepting it in the Browser.

7. Class names should be unique in the first 8 characters to provide a unique
filename under MS-OOS.

8. A void long, dense methods. This almost always indicates a bad design, and
is bad for reusability, not to mention maintenance. Break long methods into
shorter, more focused ones. Remember the suggestions from the last section
on designing your classes. Above all, keep it simple!

4.2.2 Incremental Development

If you have ever worked with a traditional compiler, it is unlikely that you would
have written and tested one method at a time, because you would spend most of your
time waiting for the compiler or linker. Consequently, you probably were tempted to
take a "shotgun" approach, and write and test a lot of code at once. You will find
working in Actor to be a very pleasant change in that regard.

For example, let's say that in the course of writing a method, you aren't sure of how
a certain part of the system works. Without even leaving the Browser, you can send
messages to other objects (including the Browser itselO to get a first-hand experience of
how things work. Then, when you Accept the method, you can test it immediately and
make changes, until you are confident that it works as designed.

We greatly encourage this incremental approach to building an application. It leads
to more reliable code and much less proportional time spent debugging. When you
attempt to debug a lot of code at once, several problems can interact and mask each
other. This has a multiplicative effect in drawing out the debugging process, and makes
it much less likely that you will test your code thoroughly.

Coding and testing one method at a time greatly enhances your confidence in what
you are producing, because you are always building on a solid foundation. You will
also be able to catch design flaws earlier, before you have a lot invested in code. Actor's
powerful tools and object-oriented design make incremental development very
attractive, which in tum allows you to be much more productive.

260 Chapter 4: Building Actor AppNcations

4.2.3 Managing Source Code

The Actor source code for your application will exist in one of three kinds of files.
When you work with the Browser, you are working on class Source files. This is the file
type with the .CLS extension. You can modify existing class source files and/or create (
new ones. The Browser does all of the file handling for you, so that you should rarely
have to ''look inside" a class source file. These files have a strict but uncomplicated
format which enables the Browser to read and write to them. The class source files can
also be manipulated with a text editor such as the File Editor, but this is not ·
recommended as common practice.

You can also use any text editor to produce Actor source files that do no adhere to
any particular format, that simply contain a list of statements that define constants,
classes and methods. These files by convention have an .ACT extension. There is a third
kind of file that is also produced with a text editor that only defines constants and global
variables. This kind of file has the .H extension.

4.2.3.1 File Formats

The only real rule about an Actor source file (other than a class source file) is that it
be able to compile successfully. When Actor loads a source file, it reads and then
compiles a chunk at a time. A chunk is a statement or group of statements followed by a
chunk-mark, which is the double-exclamation point, ! ! • Actor has a 3500-byte buffer
(si7.e is detennined in the global SrcBufLen) for compiling, thus limiting the length for
a single method. This is not a burden, however, since a 3500-byte method will be
needlessly difficult to manage and should be broken into smaller methods.

The simplest file type is the .H file, which is a convenient place to define an
application's constants. In Actor, the file is ACTOR.ff. It is basically a series of
"defines," using the C syntax for defining constants, i.e., ldef ine INPUT_ BOX 100.
As you develop the need for new constants, you can make a copy of this file and rename
it for your application. Then you can add new constant definitions to it, and later,
remove unnecessary Actor ones. The file can generally be recompiled without using
much memory, since the symbols already exist and Int objects occupy no memory
other than their object pointer. (You load it with the Load menu option under the File
menu in the Workspace.) The important thing with a .H file that Actor will load is that
you place a chunk-mark often enough to avoid the possibility of overflowing the input
buffer.

Using named constants wherever possible and defining them in a central location is
good practice. You should avoid using literal numbers in your method and class
definitions, since all numbers look alike after a while.

The .ACT file can include the same kind of constant definitions as a .H file, but in
addition can include inherit statements for creating new classes, method definitions
for one or more classes, and even statements to create regular objects and start
applications. Sometimes this is the most convenient way to package a mini-application
or simple utility, rather than dealing with several class source files and a special .H file.

4.2: Writing the Application 261

There are only a few things to keep in mind when creating the .ACT file. The first is
the proper use of the now message. The text for any method or group of methods must
be preceded with a now message sent to the class whose objects the method(s) is for.
The now message must be followed by a chunk-mark, since the compiler must know
what class's method dictionary a method should be added to before it tries to compile it.
Secondly, each method should also be followed by a chunk mark. For example, the
following sequence of statements in a .ACT file will add two methods to String:

now(String) !!

Def addHello(self)
("self + "Hello"
) !!

Def addBye(self)
("self + "Bye"
) !!

After loading this text, you can send the messages addHello and addBye to String
objects. An .ACT file can define methods for any number of classes, as long as the
appropriate now messages inform the compiler properly.

Comments can be placed anywhere in the file, and follow the C syntax: I*
comment * /. If a comment is very long, it should be broken up into multiple
comments such that none is longer than SrcBufLen bytes, and a chunk-mark placed
after each.

4.2.3.2 Class Source File Format

A class source file is basically a refinement of the .ACT file, restricting it to one class
only, and requiring the chunks to be ordered correctly. A class source file is easily read,
not only by the Browser but the programmer as well. When the Browser writes a
method into the file, it copies it line-by-line out of the edit window. In this way, the
class source files are "personalized" for the programmer. If you work with a narrow
Browser, the methods will be saved that way, and so on.

Because Actor supplies you with more than 90 existing class source files that were
compiled to produce the system, there is no need to elaborate on the format of these
files. The following rules together with the numerous examples should suffice:

262 Chapter 4: Building Actor Applications

1. The first chunk is the class comment. It should contain three or four
sentences stating the purpose of the class and its objects.

2. The second chunk is the inherit message that creates the class. The
message is always sent to the class's immediate ancestor. The second
argument of this message is a literal array defining the class's instance
variables. A comment should be placed after each one of these. (See
EDI'IWIND.ClS, for example.)

3. The third chunk is a now message to the class of the newly created class:
now (Browsex<:lass) ! ! . The Actor compiler understands that the word
Class appended to a class name should be interpreted as sending a class
message to the class. Thus class (Browser) and Browsex<:lass are
equivalent.

4. The class methods (if any) are listed next, one chunk per method. Each
method should include a comment as part of the chunk.

5. The next chunk is a second now message, this time sent to the class itself.

6. The object methods follow next. They follow the same format as the class
methods, one method per chunk.

There is no limit to the number of methods in the file or to the file length itself.
Whenever a class source file gets to be around 10K, it may be time to create a descendant
class. (See section 4.1 on design guidelines.)

4.2.3.3 Creating a Library of Class Files

The Tutorial describes how to create two new class source files, for the classes
Point3D and Scxibble. In the Scribble example, it is shown how the class can be
created, and methods added and debugged. Then the Scribble class is deleted from
the system, and once again reloaded. The important point is this: In the process of
creating a new class with the Browser, all of the essential features of the class wind up in
the class source file. If you delete the class from your system, take a Snapshot, and then
load the class source file, you are back where you started.

This means that you can develop different parts of a very large application at
different times, by creating a set of class source files, seeing how they work together, and
then deleting the classes from the system. The class source files will remain intact in the
CLASSES directory. They can be copied onto backup disks for future reference,
uploaded onto the Actor Bulletin Board System, or discarded. When it is time to put
togther a large application, the required class source files can be compiled onto the
smaller image. In this way it is possible to put together an application even though it
was not p<>Ssible to compile all of it on top of the Actor development environment.

(

4.2: Writing the Application 263

If you need to make reference to a class that is temporarily deleted due to space
considerations, you can create a "dummy" global variable for the class as long as you
will not need it to function. For example, if you know that the Scribble class works
properly, you can delete it from Actor, but keep the global variable Scribble around
with the statement: Actor [#Scribble] : = nil. Then you can compile code
referencing Scribble, as long as no attempt is made to actually use it as a class. Later,
you can recompile the Scribble class source file and the code that uses it over the
small image, SMALL.IMA.

You may find that other Actor programmers have developed useful classes and put
their class source files into the public domain or distributed them as "shareware." You
should put these class files into the CLASSES directory if you want to use them with
Actor. Once you load them, then the Browser will let you look at the source code, make
changes, and even delete the class again. Sometimes class source files will include
constant definitions for some of the values used in the file, and sometimes the constants
will be defined in an accompanying .H file, which is the preferred method.

Finally, you may find yourself working on several different applications at a time,
and thus want to segregate the work on your disk by project. The easiest approach to
this is to create individual directories for each project, for example, PROJt, PROJ2,
PROJ3. In each of these project directories, create the subdirectories CLASSES, WORK,
and BACKUP, and an ACT directory if you want. Put a copy of ACTOR.EXE and
ACIOR.IMA in each project directory, and copy some or all of your class source files
into each project's CLASSES directory. If you are limited by disk space, you only need
to copy class source files that you think you will be working with. If you have plenty of
disk space, copy them all, since then you will be able to have access to the source code
for any method in the system. Once you have a project directory installed, you can
switch to that directory, start Actor, and develop the project. The image file and the
class source files will evolve separately for each project.

4.2.4 The Resource Compiler

Actor supplies all of the files that you need to compile the Actor resource script file,
ACIOR.RC. One of these files, ACTRC.H, is almost identical to the constants file
ACIOR.H, except that ACTRC.H cannot be loaded by Actor, simply because it has no
chunk marks. Since ACTRC.H must be readable by the resource compiler, it can't have
chunk-marks. Otherwise, the constant values defined by each should be identical. The
resource compiler uses the values in ACTRC.H to associate numeric quantities with
resource elements such as menu items, dialog template items, strings, etc. Actor uses
the same constants in ACTOR.ff, so that the compiled code is coordinated with the
compiled resources. As you add your own constants to the system, you must maintain
the parallel constants files in the same way. There may some constants needed only by
one or the other, but shared constants should obviously have the same value in each file.

264 Chapter 4: Building Actor Applications

To compile the Actor resource file in its distributed form, the resource compiler will
need access to these files: ACTRC.H, WINOOWS.H, TRACK.H, WORK.ICO,
BROWSER.ICC, and CUBE.DAT. The locations for these files on the hard disk are
specified at the beginning of ACTOR.RC. The path specifications can be altered to
match your disk setup. The resource compiler itself should be in a DOS execution path.
To be safe, you should work with a backup copy of ACTOR.EXE.

To run the compiler, switch to the director}' with ACTOR.EXE. All of the other files
should be properly located on the disk. Type RC ACTOR at the DOS prompt and press
<CR>. The process takes some time, depending on the speed of your machine.

When developing your own resource script file for your applications, start with a
copy of ACTOR.RC and modify it to include your own menus, dialogs, data, and other
resource pieces. This way, you will still have all of the Actor development resources
around. When the application is ready to go out, strip out all the Actor dialogs, menus,
the cube data, icons, etc., which take over lOK of the .EXE file. Then recompile the
shorter script file. The resource compiler replaces the former resources with the ones
defined in the script file.

The WINDOWS.H file defines all of the constants used in MS-Windows. In the
course of the development of Actor, a very small subset of these constants was copied
into the files ACTWIND.H and ACTWINDL.H. The "L" file defines the long values
only, so that the file can be compiled separately and less frequently-long values use
more static memory when recompiled. As the need arises, you will want to copy
additional constant definitions to a file of your own, so that you can use MS-Windows
style constants throughout the application.

4.2.5 Error Handling

This section will discuss the various types of errors that can occur in the Actor
system, and how you can make effective use of Actor's error handling methods.

There are four basic kinds of errors that can occur in running your code: primitive,
high-level, and file errors, and message failure. The error handling needs of an
interactive system and an installed application are radically different. For this reason,
we have provided methods that are appropriate while you are developing your
application, with the expectation that you will redefine them when it is installed.

4.2.5.1 The Stack

Before we can discuss error handling, a slight digression about the Actor stack is in
order. When a function executes, it has to have an area of memory in which to allocate
its temporary variables and return address, together called an activation record. Actor
has reserved a region of memory for this purpose called the stack. When a message
send results in the execution of a high-level function, the new function's activation
record is allocated "above" the caller's, which remains on the stack (see Figure 4.1).

top of stack
Receiver

I
Link
Return
Address Function C

I Locals

Function A \ Args

Function B 11
Link

Function B

\
Function C

I
Link

· Function A

\

Figure 4-1 : Activation records on the stack.

4.2: Writing the Application 265

The stack is important in error handling because it contains a precise record, albeit
not in a convenient form, of how the application got to the point of the error. This can
help you decide where to look in resolving the cause of the error. The problem is that
for efficiency, information on the stack is kept in a binary form that does not obey the
standard representation of objects in the Actor system.

To make the information accessible to the rest of the system, Actor uses a special
class to convert an activation record into an object when it n~s to be examined. Class
Context has a single method, new, which takes a base pointer, performs the conversion
and returns a Context object. Actor's error handling methods make use of Context
objects to display the stack history in a way that is understandable to the user. Your
application can also make use of Contexts to find out more about how an error
occurred and what to do about it.

A Context stores the information from an activation record in its five instance
variables, which are as follows:

receiver -The receiver object of the method whose activation is recorded by
the Context.

link - An Int whose value is the stack address of the next activation record
down on the stack.

function - The object pointer of the executing method.

arguments - An OrderedCollection containing the current values of the
arguments passed to the method, in left-to-right order.

locale - An OrderedCollection containing the current values of the local
variables allocated by the method, in left-to-right order.

Of particular importance here are the arguments and locale instance variables,
because they allow us to "reach in" to the execution of any method and examine its state.

A couple of primitive methods are available to access the Actor stack and find an
activation that we might convert into a Context. The atackTop method of class
Object returns an Int address (known as the base pointer) of the method that contains
the call to atackTop. The atackLink method of class Int assumes that the receiver is
a base pointer, and links to the next activation record down on the stack.

There are three methods in class Object that are intended to handle various kinds
of errors. All accept two arguments, with a valid base pointer as the first argument. The
primError method is executed whenever an error occurs in a machine language

- primitive. The error method handles all high-level errors that are triggered by code in
a high-level method. The fail method is executed whenever the receiver of a message
can find no implementor for the message in its class hierarchy. The default behavior in
each case is to start a DebugDialog showing the stack history (see section 4.3.2.1).

266 Chapter 4: Building Actor Applications

The overall design scheme behind Actor's error handling emphasizes the need for
the installed application to "trap" non-fatal errors and handle them in a user-friendly
manner. In your application, for instance, you probably wouldn't want your users to be
confronted with an Actor debug dialog, although it depends on the application. To
allow easy redefinition, all errors of each type are passed through a single method.

4.2.5.2 Primitive Errors

Primitive errors occur when Actor is in the course of executing a method written in
assembly language. In order to preserve efficiency, primitives normally don't allocate a
full activation record, but if an error occurs, a synthetic activation record is constructed.
A primError message is then sent to the receiver of the primitive that had the error.
The first argument to primError is the base pointer of the synthetic activation record.
The second argument is an error number that tells what error occurred. The file
ERR$.EQU on your distribution disk contains a text description of each .error number.

The error number passed to primError is also the resource ID of a string that
describes the error. The primError method first loads this string, then sends a fill
message to the Bug object with the base pointer value it received from the primitive. Fill
causes the debugger to generate a textual description of the stack from its base up to the
activation record pointed to by bp, and store the resulting stack dump in its frames
instance variable.

A new DebugDialog is then created to show the stack display and allow the user to
convert activation records to Contexts and inspect them (see section 4.3.2.2). When
control returns from the debug dialog, abort (TheApp) is executed, which clears the
stack to the point at which Actor was last entered by MS-Windows.

4.2.5.3 High-level Errors

The error method of class Object is used in a very similar way to handle all
errors that occur within functions. Any function can announce an error condition by
sending the message error (rcvr, stackTop () , errorSymbol) . The receiver is
whatever object is most appropriate for that particular error. The stackTop message
produces a base pointer to the current activation, as already described. The last
parameter in the error message is always a Symbol, and it is important in a number of
different ways. By convention, the error symbol always ends in the word "Error."

Since all high-level errors are handled in the same method, the error symbol must be
used to identify the specific error that occurred. For example, in
OrderedCollection: insert, if the insertion index is out of range, the method
executes error (self, stackTop (), #rangeError). Then, Object's error
method calls errorString (#rangeError), which determines if there is a constant
whose key is #rangeError and whose value is a resource ID. If so, the resource string
is returnecl. In the case of #rangeError, the string is "Index is out of bounds".

·4.2: Writing the Application 267

Object: error then tries to find a function with the name #rangeError in the
class chain of the receiver (an OrderedCollection). Since there is none, the default
action is taken, which is to put up a debug dialog. If there had been a function by that
name, it would have been performed in the following manner: perfoxm (self,
stackTop, "Index is out of bounds", #rangeError).

This very flexible arrangement allows high-level error handling to be tailored on an
individual error basis, yet the entire mechanism can be replaced by simply redefining
Object : error. For instance, if you wanted more specific handling of range errors,
you could define a rangeError method in class Collection, and it would
automatically be executed the next time a range error occurred. The Actor parser
exploits this flexibility in several places, such as ancestError and syntaxError.

4.2.S.3.1 Reaching Into a Context

For a specific error, you might want to get at the arguments that were passed to the
function, or the value of one of its locals. This can be done very easily by creating a
Context. As an example, let's define a rangeError method that prints the index
argument that was out of range:

Def rangeError(self, stackTop, str I ctzt)
{ ctzt := new(Contezt,stackTop);

printLine(tuple(ctzt.arguments[l),

)

"is not a valid index in: "));
sysPrint(self);

Of course, in order to do this, any functions that send rangeError must have the same
argument format.

4.2.S.4 File Errors

Whenever an Actor file primitive calls DOS, it stores the error return from DOS in a
special location in the kernel. The l'ile primitive getError returns the value of the
last return from OOS. The rile method checkError calls getError, and if the value
is non-zero, executes error (self, stack'l'op, #dosError). Consequently, you
can define a dosError method that handles file errors in any way that you wish.
Actor's default method simply reports the error in an ErrorBox.

268 Chapter 4: Building Actor Applications

4.3 Debugging Techniques

This section will cover some of the techniques and tools that you can use to debug
your Actor code. Most of the time, if you follow the principle of incremental
development, finding errors in your code will not be very difficult. If you do run up 1
against something that is hard to crack, this section will provide some helpful hints. \

4.3.1 The Low-level Debugger

When we were developing the Actor system, we found it helpful to have a low-level
debugging tool that worked with the physical format of objects. We originally intended
to take it out of the distributed system, but it has proven so useful that we decided to
provide it to our users. Actor stands alone perfectly well without it, but we are
documenting it here for those who might find it helpful. For most users, we would
recommend skipping this section and proceeding to the discussion of high-level
debugging.

To use the low-level debugger (which we will henceforth refer to as ActBug), you
must start MS-Windows with standard input and output redirected to a serial port to
which a terminal is connected, for example:

win <coml: >coml: ACTOR. IMA

ActBug can then be invoked at any time by sending the message trace () . The
trace primitive alters the jump table used by Actor whenever it executes a high-level
:&'unction or a P:dmitive. Instead of executing the normal code of the threaded inner
interpreter, Actor jumps to special code that monitors breakpoints and other conditions
(and executes about 25 percent more slowly).

After trace () is executed, Actor will enter ActBug as soon as the next function is
entered via either a late- or early-bound message. ActBug is now in single-step mode.
You should see Something like the following on your terminal:

Entering: 3600
goto

0001 Locals

OP CL Len J\ddr Data
Receiver: 2004 ActorParaer 0021: 7736:0006 0000

Arga:

The top line tells you the object pointer of the function that you are about to enter
(all numbers are in Hexadecimal), and how many local variables it allocates. On the
next line is the name of the function if ActBug was able to find it in a
Method.Dictionary somewhere. On the fourth line, ActBug displays the receiver
object in a standard format. First is the object pointer, then the name of the class, then

4.3: Debugging Techniques 269

the length, then the address of the object's data in segment:offset form. Finally, tl'ie first
8 words of the object's data are printed as they appear in memory. This may wrap to the
next line if the class name is too long.

On succeeding lines, each of the arguments (if any) that were passed to the function
is printed in the same standard format. The above example shows a 0-argument
function.

Since this is a physical-level display, there are a couple of things you need to know
about how objects are stored. Int objects are stored with their data in bits 1:15 of the
word, and bit 0 always on. For instance, Int 15 would be stored physically as OxOOlF.
Just divide by 2 to derive the value of an Int from its physical representation. Char
objects are stored with their data in bits 2:9, bit 1 always on, and bit 0 always off. Other
objects are represented by object pointers, in which bits 0 and 1 are always 0.

When you see the exclamation point (I) on your terminal, ActBug is waiting for a
command. There are currently only four commands that ActBug will accej>t: single
step, go, breakpoint and display. They are used in the following manner:

P - (single-step) Re-enters Actor until the next high-level function is reached.
Any primitives in the current function execute without re-entering ActBug
command level.

G - (go) Re-enters Actor in tracing mode until a breakpoint is reached or the
trace () message is sent again. ActBug continues to trace the execution of
each function and primitive, but doesn't pause unless a breakpoint is found.

Bn xzxx - (breakpoint) Expects a breakpoint number n (0-2) and then a 1-to-4-
digit hex number xxxx that is the object pointer of a function. This will cause
ActBug to break before executing that function while it is tracing. You can
determine a function's object pointer for a breakpoint by sending it a who
message.

D xxxx - (display) Displays the object whose object pointer follows the 'D' in
standard format.

Once ActBug is entered via the trace () command, it remains in tracing mode until
a traceOff () message is sent. While in tracing mode, ActBug does two things: it
monitors each function to see if its object pointer matches a breakpoint, and it
increments the profile word of each function and primitive as It is executed. This is how
you can determine the functions with the highest dynamic frequency in your
application, and thereby determine where to optimize your code (see section 4.4.1).

ActBug is chiefly useful as a means of single-stepping through code that is
encountering a serious error and failing to report the cause. This can happen, for
instance, while you are loading code over the small image, and the load order is
incorrect.

270 Chapter 4: Building Actor Applications

ActBug is being distributed in Actor version 1.0 as an unsupported product. We
hope that some will find it useful, but The Whitewater Group cannot provide you with
ActBug support beyond this short explanation. We also cannot guarantee that it will be
present in future releases. Our intent is to provide a high-level debugging tool that will
replace ActBug, and be much more in the flavor of the rest of the Actor environment.

4.3.2 High-level Debugging

Although Actor version 1.0 does not provide a high-level single-stepping debugger,
it does provide many tools that you will find helpful in debugging your code. Judicious
use of the error-handling mechanism and the Inspector can quickly uncover most, if not
all, of the problems that you will encounter. This section will provide some general
guidance in how to go about the debugging process.

4.3.2.1 The Debug Dialog

Many errors produce a dialog box that contains a s~ck history up to the point of the
error. For instance, Figure 4.2 shows the debug dialog that would be produced if you
executed the following code in the Workspace:

1(12 3)(4)

This statement tries to access non-existent element 4 in an Array that is only 3 long. In
the title bar of the dialog is the message, "Index ia out of bounds . " This means
that we tried to access a collection with an index that was past the physical limit of the
collection.

Within the dialog's list box, each line describes the activation of a particular function
on Actor's runtime stack. The function that was called most recently is always on the
top line, with the function that called it below, and so on. In each line, the text to the left
of the arrow(->) describes the function that is executing, and the receiver is described
to the right.

In this example, most of the stack is concerned with the parser, because we entered a
statement in the Workspace. In fact, only the top two lines involve the execution of the
statement that we typed in. Whenever you execute something in the Workspace, it
sends the message parse to the string that contains your code in the window object.
You can see that this occurred 7 lines down in the dialog. That message tells the parser
to parse the text, compile it into a temporary function, and execute the function. One
line from the top, you can see where the temporary function was executed. Because it
resides in no MethodDictionary, it has no name, and prints itself simply as <a
Function>. For statements typed in any of the work windows outside of the Inspector,
the receiver is always nil.

Index is out of bounds

rray:a == rray 1' (Ok)
<a Function>==>n1l
ActorParser:doScript slist==><a ActorP ..
YaccMachine :default==><a ActorParser> ;!~!
YaccMachine :newState==><a ActorParser> ij1il
Yac~Machine:parse==><a ActorParser> ~[

~~~~~U ~~~~,~~~;~~ 1 w~r~~~:~:> ·111~ 
WorkEdit :doline==><a WorkS~ace> !iii. 
WorkEdit:WM CHAR==><a Works ace> ~ 

Figure 4-2: An example of a debug dialog. 



/ 

\ 



4.3: Debugging Techniques 271 

The top line shows the place where the error occurred. Most of the time, the most 
informative place to poke around is in the top few activations. Array: at is actually a 
Primitive, which created a synthetic activation on the stack after the error occurred. 
That's so we can examine it just as if it were a high-level function activation. 

Let's imagine that this error occurred in compiled code, and we didn't already know 
what the troublesome index was. How do we find out? The debug dialog has a very 
useful feature, that you can use by double-clicking on the top line of the list box. 

4.3.2.2 Inspecting Contexts 

As you can see, Actor generated a Context object from the activation record that 
you selected, and ran an Inspector on it. If you select the recei var instance variable, 
you will see the array that you entered. What we're really interested in is the argument 
that was sent in the at message. If you click on argument a, you will find 4, which has 
to be causing the problem. 

Because Array: at is a primitive, it has no local variables, so the Context's 
J.ocal.a instance variable shows an empty collection. In other cases, however, J.ocal.a 
will prove very helpful, because it captures the exact state of the method that was 
executing. The local variables and arguments are always shown in left-to-right order as 
they are declared in the function. This means that you can start a Browser, go to the 
function in question, and associate names with the args and locals, and see how they are 
being used. 

You might wonder how all of this can occur in high-level Actor code without 
disturbing the activation records that you are viewing on the St!lck. When an error 
occurs, the current function'f! activation is on top of the stack. It then calls 
Obj.act :error or (in this case) Object :primError, which pushes the caller's 
activation down on the stack and creates a new series of activations above it. When the 
debug dialog is entered, MS-Windows doesn't return until the user clicks OK. Thus, the 
activations being displayed remain undisturbed, pushed down on the stack until the 
dialog returns and an abort is executed. This clears the stack and returns tQ the last 
place that MS-Windows entered Actor. 

Until you click OK, you can send messages, browse, inspect and do whatever you 
wish to investigate the cause of the error. This means that you have the full power of 
the Actor environment at your disposal, which is a tremendous aid. For example, you 
could chain another Inspector on the recei var variable from the Context, and 
examine the state of the object to see if all is well. 

In general, when an error occurs, don't be too hasty in hitting the OK button. All of 
the information you need is usually there, and you just have to extract it. Use the 
Browser, and examine the relevant methods while the dialog is still active. This might 
give you some ideas about where to look to find the exact cause of the problem. If the 
error description is unfamiliar, look it up in Appendix J, and read the suggested course 
of action. 



272 Chapter 4: Building Actor Applications 

4.3.2.3 Setting Breakpoints 

Now we'll describe a nice technique that you can use to stop a function in the 
middle of its ex~tion, and examine its local state. We're going to borrow the code that 
Object : error uses to fill and display the debug dialog, only we won't do an abort 
after OK is clicked. This pennits us to break a function in the middle, poke around, and 
then continue on after we close the dialog. 

Here is a simple definition for the breakpoint utility, which you can modify to suit 
your needs. We'll put it into class Object, so we can give it any receiver that is 
convenient. 

Def break(aelf) 
( trace(fill(Bug, atackLink(atackTop())), 

"Breakpoint"); 
) 

The phrase atackLink (atackTop () ) gives us the base pointer for the function 
that called break. If we didn't use atackLink, we would have gotten the base pointer 
for break itself, which isn't very useful. After we send a fill message to Bug, 
generating the text for the stack display, the trace message causes it to put up a debug 
dialog with the string "Breakpoint" in the title bar, pennitting us to go exploring. 

To see how break works, compile it and then pick some method in the system that is 
easily called (Browser methods are good). Bring the source up in the Browser, and 
insert the phrase break (self) somewhere in the method. The next time the method 
executes, you'll see a debug dialog with ''Breakpoint" in the title bar. If you examine the 
arguments and locals for the top activation record, you can see what the local state for 
the function is, as well as all of the nested activations that preceded it. 

The break utility is a good example of how a very simple little Actor method can do 
wonderful things. Sometimes it just takes a little thought about what you need. You 
could modify break to accept a message string or values to print, or other changes that 
might make it more generally useful. You're really only limited by your imagination. 

Actor's support for incremental development and interactive testing make the 
debugging process a far easier activity than you're probably used to. In general, your 
goal should be to isolate the problem to a small area as quickly as possible, and then 
interact with the objects involved to detennine what is causing the problem. Once you 
know roughly where things are going wrong, you can use all of Actor's power to flush 
out the exact cause. 



4.4 Optimizing the Applicaiion 273 

4.4 Optimizing the Application 

When you are developing your application, you should try and make your code as 
clear and simple as possible. It's important to design your application with efficiency in 
mind, but it's generally more useful to get your code working and debugged before you 
set out to make it optimally efficient. 

A funny phenomenon occurs in many software projects. Because programmers lack 
the proper analytical tools, they tend to spend a lot of time optimizing the wrong things. 
It's a surprising fact that the bottlenecks in most applications occur in a very narrow 
subset of the overall code. You can spend weeks or months rewriting code to make it 
run faster, but unless you are working in the right place, the real effect on the 
performance of the application will be negligible. 

One of Actor's unique qualities is its ability to run efficiently without compromising 
the object-oriented model. It didn't get that way by luck or happenstance, but by careful 
analysis of what optimizations do the most good for the least overhead. One of the tools 
that we used in optimizing the Actor system was a profiling mechanism that reveals 
exactly how many times functions and primitives are executed, We have made that tool 
available to you, so that you can spend your effort in places where it will have a real 
effect. 

4.4.1 Profiling 

The Actor compiler does a very good job of compiling efficient threaded code for the 
high-level source that you write. We have carefully examined compiled code, and 
designed primitives that optimize common patterns. 

Any compiler can only take a general approach to optimization, A compiler cannot 
foresee every possible situation, nor can it make up for an inefficient algorithm. Actor's 
profiling mechanism allows you to take a clinical look at just what your application is 
doing, and isolate the areas that are most worthy of your attention. 

In general, choice of algorithm is the most significant factor in optimizing Actor 
code. The language itself does not impose any extraordinary penalties for the features 
that it provides (such as late binding), An algorithm that does twice the work, however, 
will always run half as fast. You may find that the exercise of profiling points out some 
surprising facts about the algorithm that you have selected. Once you have the most 
efficient algorithm, then you can use selective early binding based on profiling data to 
allow the compiler to generate even more efficient code. 

The file PROF.ACT in your act directory contains methods that are useful in 
reporting the results of a profiling session, By using classes Bag and 
SortedCollection, it is a trivial matter to generate a list of functions or primitives 
sorted by dynamic frequency. 

PROF.ACT first defines three enumerative methods that execute a block across all 
Functions, primitive methods and Primitives. The distinction between the last two is 
that some primitives are used only by the compiler, and don't exist in method 
dictionaries. The method primitivesDo enumerates across all primitives, including 



274 Ohapt., 4: Bui/ding Aotor Applloatlon1 

these special compiler primitives. It starts at the beginning of the object table (with nil) 
and uses the nextOP method to tr'\verse the entire object table, using all objects with a 
class of Pz:imitiv•· 

Functions keep their profile word at element 1 of their indexed data. Primitives, on 
the other hand, must have a special method to get and set the contents of the profile 
word. The initPz:ofil• method sets the profile word for all functions and methods in ( 
the system to 0. 

The funcPz:ofile and primProfile methods are run after you have been 
profiling and want to collect the data. Each defines a new Bag to receive the methods 
and the number of times they were executed. You can then send the Bag a sorted 
message to derive a sorted report of dynamic execution frequency. 

To run the profiler, start MS-Windows with input and output redirected to the serial 
port. The batch file ACTDBUG.BAT does this for you. You should have used the DOS 
mode conunand to set communications parameters for the port that you are using. You 
must also have a terminal connected to the port and set up with the same parameters. 

You should already have your application loaded, and prepared to run the 
particular portion that you want to collect data on. You should try and be as precise as 
possible, so the data isn't cluttered with a lot of irrelevant statistics. 

Before you tum profiling on, execute initProfile () to zero all profile words 
(PROF.ACT does this when loaded). You tum profiling on by sending the message 
trace () . This enters the low-level Actor debugger, which should print a message on 
the terminal. The debugger does the actual work of incrementing profile words for 
methods that execute while it is in trace mode. To enter trace mode, just type G at the 
terminal. Actor is now profiling every method that executes. 

You should now run that portion of the application that you are interested in 
optimizing. You should run it long enough to get reliable numbers, but if you profile for 
too long, you will overflow the profile words and lose resolution (maximum value is 
16K-1). A couple of minutes is usually plenty, and some applications may only require a 
few seconds. To stop profiling, send the ~ssage traceOff () . 

The following statement will gather the function profile data, sort it, and write it out 
to the file wf (given filename "profile.dat" in PROF.ACT): 

vriteOn(aoz:ted(funcProfile()), vf); 
cloae(vf); 

You can now take a look at PROFILE.DAT. If more than a few functions are at the 
maximum value, you should run it again, for a shorter time period. You will probably 
find that the great bulk of the work is occurring in less than 20 functions. 

Now that you know where the work is getting done, you can decide on an 
optimization strategy. First of all, the functions with the highest dynamic frequency 
should themselves be as efficient. as possible. You might want to give some attention to 
the algorithms used in those areas. Secondly, messages that invoke those functions 
might be good candidates for early binding. You should use Actor's Stopwatch class 
to monitor the effect of any improvements that you make. The file TIMER.ACT defines 
Stopwatch, which allows you to time the execution of a 0-argument block. 



4.4 Optimizing the Application 275 

4.4.2 Early Binding 

We have designed Actor with a unique feature that allows you to help the compiler 
generate more efficient code. In any message, you can specify the class of the receiver at 
compile time. The compiler can then search for the selector in the specified class, and if 
it finds a method, compile the object pointer of that method directly instead of 
generating an actual message. This is known as early binding because the compiler 
binds the symbolic message name to a physical function at compile time rather than run 

· time. The overhead at runtime is similar to a function call. 
Actor is able to do this because of its unique token-threaded design. Functions are 

objects, and all objects can be "executed" directly by the compiler. At this level, Actor is 
somewhat like Forth, only much more general. The design affords a great deal of 
flexibility in how the compiler generates code. Functions are simply arrays of objects, 
and those objects can be messaging primitives, literal objects, functions, or any of a wide 
variety of compiler primitives. 

If you examine compiled Actor code, you will find that Functions consist mostly of 
inline object pointers of Primitives. This is a major reason why Actor can run so 
efficiently in general. The compiler is able to make use of a large set of optimization 
primitives that consolidate common code sequences and reduce the number of 
individual tokens that must be executed. 

Given this, the overhead of run time method binding can become significant against 
the overall work done by a function. Actor's messaging technology is very fast, and 
employs a method cache that has a hit rate of well over 90 percent. Nevertheless, a 
threaded nest operation is still much faster. On an individual message basis, it takes 
only about 20 to 30 percent of the time required by the average late-bound send. Of 
course the effect on the overall application is far less because it is diluted by the cycles 
being consumed inside primitives. 

Early binding has certain drawbacks. It tends to make compiled code more 
dependent upon other functions, and less resilient if things change. Actor's token
threading scheme minimizes the negative effects, because even if you recompile a 
Function, its token remains the same, and its callers never know the difference. Thus, 
token-threading allows for a loose coupling even between early-bound methods. At 
worst, callers may have to be recompiled under limited circumstances, all of which are 
monitored by the Actor compiler. 

The chief danger in early binding is that you can specify a type at compile time that 
is completely inappropriate at run time. This can result in ugly crashes and bugs that 
are difficult to detect. Fortunately, Actor takes some steps to ensure that types are valid 
in certain situations (this is called protected early binding). 

Early binding can be very advantageous, but it should be used with discipline. First 
of all, you should never use unprotected early binding in your application before you 
have fully coded and debugged it. Secondly, only the small subset of functions that you 
have identified as bottlenecks via profiling should even be considered as candidates for 
unprotected early binding. · 



276 Chapter 4: Building Actor Applications 

Actor does quite a bit of protected early binding behind the scenes to make your 
code run more efficiently. For instance, if you send a message to a literal, such as: 

"hello " + "there" 

The compiler immediately looks up the "+" selector in class String (the class of ( 
"there••, the receiver). If a method is found in that class (not in one of its ancestors), an 
early-bound message is generated. The same thing occurs for messages to global 
variables and constants. This kind of early binding is fairly safe, because the class of 
these objects has already been implicitly established at runtime. 

The other area in which protected early binding occurs is in messages to aelf. If 
you invoke an inherited method by assigning a type to aelf as a receiver, as in: 

printOn(aelf:String, aStream) 

The compiler ensures that class String is actually an ancestor of the class currently 
being compiled (the receiver of the last now message). An error will be generated if you 
try to force the receiver, aelf, to an unrelated type. 

Unprotected early binding allows you to force any receiver, whether a variable or 
the result of an expression, to a particular type. For instance, because we know that the 
result of string concatenation is always another String, we could do the following: 

printOn( (aString + "that") :String, aStream) 

There are two things that you should watch out for when using early binding. First, 
you must be sure that the receiver is not polymorphic. There are obviously places where 
late binding is built into the design, and you must accomodate that. Secondly, watch for 
variables or expressions that could be nil, either because they weren't initialized or 
because nil is a proper return value. 

The files SIEVE.ACT and SIEVEt.ACT provide an example of how to optimize a 
piece of code using early binding. The algorithm used to implement Eratosthenes' Sieve 
isn't necessarily optimal in itself, because it was written to be comparable to a standard 
benchmark used in other languages. Once we got the algorithm working, we just 
looked at the messages that could be early-bound and assigned types to the receivers. 
Note that we only did this inside of the enumerations, because the initialization code has 
a negligible effect on the overall performance. On an 8Mhz Zenith Z248 AT-compatible, 
sieve ( 8190) runs in 4.40 seconds for the late-bound version, and 3.63 seconds for the 
early-bound version. Thus, a performance gain of over 20 percent was achieved with a 
couple of minutes of work. 

Carefully used, early binding is an easy way to get more performance. You should 
consider it the last step in optimizing your application, after you feel that your 
algorithms and coding techniques have been fine-tuned. If your application starts to 
behave strangely after adding unptrotected early binding, take it out and proceed a step 
at a time. With proper use, we think you'll find it a very useful and desirable feature. 



4.5 Installing Your Actor Application 277 

4.5 Installing Your Actor Application 

After your application is debugged and optimized, you will have to perform what 
we call the install procedure. This is a series of steps that accomplishes the following: 

t. Code and data that is unused by your application at run time is discarded. 

2. The Actor lexical analy7.er, parser and compiler are removed from the object 
memory. 

3. An image is saved that has preset static and dynamic memory allocations, 
representing the minimum memory needed by your application. This 
produces a turnkey file that can be executed simply by your end-users. 

4. The requirements of your end-user license with The Whitewater Group are 
satisfied. 

The install procedure is a necessary step for anyone who wishes to distribute their 
application to other users without additional licensing agreements with The Whitewater 
Group. The term install used in this context refers to the process of reducing your 
application's memory requirements by removing the Actor parser and other unneeded 
code, and then saving an image that is only code and data necessary to run your 
application. 

4.5.1 Installation Overview 

Briefly, the installation procedure consists of the following steps: 

1. Identify the classes and non-primitive methods that are used by your 
application from the Actor system. 

2. Compare this list with the classes and methods built into the "small image." 
Determine which class files need to be loaded over the small image to satisfy 
the needs of your application. 

3. Run the "small image," SMALL.IMA, and load the required class files. 

4. Load the • CLS and .ACT files that build your application. 

5. Load INSTALL.ACT, containing the removeCompiler method. 

6. Define an init method for the application object in TheApp. This will be 
executed when your application starts up. 



278 Chapter 4: Building Actor Applications 

7. Define a method that calls removeconipiler, executes a cleanup, saves an 
image with memory settings, and exits. 

8. Execute this method. 

9. Finally, set the IDSAPP resource in ACTOR.RC to the name of the image file 
that constitutes your application. This causes the kernel to start with this 
image file if no other is specified. You must then rename ACTOR.EXE to the 
name of your application (still .EXE). 

4.5.2 The Small Image 

When we create a new version of Actor, we start with ACTOR.EXE, which contains 
the kernel and all of the assembly language primitives. In this state, Actor understanps 
a low-level language that is like object-oriented Forth. We use this intermediate 
language to construct the lexical analyzer and parser. We can then load the minimal 
window classes necessary to "come up" under MS-Windows. 

We then take a snapshot, named SMALL.IMA, which we use as a base from which 
to build up the distributed Actor image with its Browser, Inspector and other tools. You 
received a copy of SMALL.IMA on your distribution disks, and you will use it as a base 
from which to build up your installed application. When you start SMALL.IMA, you 
must do all of your communication with Actor via the Display, since the mouse editing 
support has yet to be loaded. 

The small image contains a subset of the classes and methods from ACTOR.IMA. 
All of the system primitives are available in SMALL.IMA, because they are defined in 
the kernel. It also contains some intermediate versions of methods written in the Forth
like language. In some cases, these methods survive in ACTOR.IMA (You might have 
tried to look at some of them in the Browser, and gotten a "Source code not available" 
message.). Most of the intermediate-language methods have been redefined in normal 
Actor code so that you can examine and edit them in the Browser. 

The file SMALL.DOC contains a description of what is in the small image. You can 
use it to determine what you will be starting with when you load the small image. 

4.5.3 What Class Files to Load 

There are several ways to determine what files you need to load over SMALL.IMA. 
The least demanding is to simply go over your source and estimate what classes are 
used. In some cases, the class may already be present in SMALL.IMA, but doesn't have 
its full complement of methods. Thus, you might have to load the class file, and then 
remove the methods that you don't need. Or, you might find it simpler to copy one or 



4.5 Installing Your Actor Application 279 

two methods to another file and load that. By trial and error, you may find that other 
files have to be loaded that you didn't include in your original estimate. This technique 
is best suited to an experienced person who can easily tell what classes and methods are 
used by casual inspection of code. 

A more scientific approach is to use Actor's profiling mechanism (see section 4.4.1). 
Start profiling, and then exercise all parts of your application, if that is possible. When 
you examine the profile report, you will find a number of methods with no calls. These 
can presumably be removed from the system, assuming that you tested everything. The 
profiling technique becomes less feasible in larger applications, since it is very difficult 
to exercise all possible paths. 

Yet another approach is to start with the full set of class files in WORK.LOO, which 
contains the names of the files we use to build up the system. Start removing files, and 
then loading your application. Eventually, you will reach a relatively minimal set. This 
can be more time-consuming, but is more suited to an inexperienced programmer who 
d~sn't have far-reaching knowledge of the system. 

4.5.4 Some Hints 

You will undoubtedly find that Actor is not nearly as clear in its description of any 
errors that occur when using the small image. This is because most of the "user
friendly" error routines are loaded in class files. A frequent occurrence in the small 
image is that if you hit a compilation error, the error handler itself experiences an error 
due to a missing or temporarily redefined method. This obviously could lead to a 

. recursive failure and stack overflow if unchecked. Therefore, Actor simply aborts the 
load if it detects a recursive error condition. 

Load order is very important at this stage. We recommend maintaining the relative 
load order in WORK.LOO. We discovered the successful load order by 
experimentation, and you will shorten your work considerably by keeping it. If you 
don't, it is possible to define a method that is used immediately by the compiler, but 
depends on another method not yet loaded. At best, this will produce the recursive 
error state mentioned above. 



280 Chapter 4: Building Actor Applications 

4.5.5 The Track Sample Application 

The file TRACK.LOO contains a minimum load set for the Track application in 
Actor: 

/*load file for the Track sample application */I! 

Actor[#Trackl] := #( 
"clasaes\number.cls" 
"claases\int.cls" 
"classes\long.cls" 
"claases\atruct.cls" 
"claaaea\graphica.cls" 
"claasea\polygon.cla" 
"classes\point.cla" 
"classea\ellipae.cla" 
"act\ahapea.act" 
"act\track.act" 
"act\install.act" 
"act\trackapp.act" 
"claaaea\keyedcol.cla" 
"claaaes\methoddi.cls" 
"claaaes\dictiona.cls" 
) ! ! 

You should construct a load file for your application that is modeled on TRACK.LOO. 
First it defines the cleanup method so that you can see how much memory is reclaimed 
when a static garbage collection is performed. This would not be necessary if we were 
going to load OBJECT.CLS, but Track doesn't require anything else from that file. 

Then, we define a collection of strings naming the files to be loaded for the 
application. The Number, Int and Long class files are required due to mixed-mode 
arithmetic that occurs when handling mouse events. We then load the various graphics 
classes that Track needs to draw its shapes. Finally, we load the Track application itself, 
INSTALL.ACT, and DICTIONA.CLS. Dictionary is loaded because it provides the 
remove method used by Dictionary and MethodDictionary. 

4.5.5.1 Removing the Compiler 

We have provided the file INST ALL.ACT as an aid in removing the objects 
comprising the Actor parser and compiler from the system. The removeCompiler 
method removes various global variables that hold objects used by Actor, along with 
several compiler-related methods. For most applications, you will be able to execute this 
method as it stands. Applications that perform lexical analysis or use YaccMachine 



4.5 Installing Your Actor Application 281 . 

will require a customized version of removeCompiler. If your application requires the 
classes ActorPareer or ActorAnalyzer, you will have to contact The Whitewater 
Group and make special licensing arrangements. 

You should note that the removeCompiler method doesn't actually get rid of the 
objects; it merely makes them inaccessible by removing them from dictionaries. The 
memory occupied by those objects will be reclaimed when you run a static garbage 
collection by executing the cleanup method. 

Once removeCompiler is executed, Actor is no longer able to parse and compile 
source code. Therefore, you must build a method that calls removeCompiler, does a 
cleanup, and saves the image, without returning to the interpreter. We have provided 
an example of this kind of method in the file TRACI<APP.ACT, which we will discuss 
next. 

4.5.5.2 The Application File 

The file TRACKAPP .ACT defines three new methods that are necessary to complete 
the installation of Track. First, a new init method is defined for the class ActorApp. 
We will discuss this in more detail below. Next, a method is defined to remove 
additional objects not caught in the generic removeCompilar method. Finally, the 
inetall'lrack method actually does the work of removing the unneeded objects and 
saving the image. 

4.5.5.2.1 The Application Object 

The global variable ThaApp contains an object that should represent the entire 
application. Its instance variables are a good place to store application-wide 
information. For instance, the ActorApp class defines two variables, workspace and 
display, that represent the two main windows that Actor maintains. 

This global variable, TheApp, has a special status in the Actor system. When the 
Actor kernel starts up, it sends an init message to whatever object is in TheApp. This 
is where Actor creates its workspace and display windows (see 
CLASSES\ACIORAPP.CLS for a complete listing). 

In order for your appUcation to "come to life"· when the image starts up, you must 
define a new application init method. The first job of any application init method is 
to call the method initSyatem. to perform some necessary setup in the Actor system. 
This registers class Window with MS-Windows, among other things. Then, the init 
method should perform any application-specific setup, such as creating and showing a 
startup window. 



282 Chapter 4: Building Actor Applications 

4.S.S.3 Error Handling 

Another thing that you will certainly want to do is redefine the Actor error handling 
messages (see section 4.2.5). You can intercept all errors in Actor by redefining the three 
methods Object :p:dmll:J:ror, Object :error, and Object: fail. You almost 
certainly would not want your end users to see error messages as Actor would present ( 
them. In the Track application, we naively assume that no errors could occur, so we 
delete the three methods to save space. Normally, you would redefine the error 
methods to do something sensible in the context of your application. 

4.S.S.4 The Install Method 

Now we come to the method that pulls together all of what we've discussed, and 
actually installs your application. If you look at the install'.rrack method, it shows 
all the steps necessary to accomplish the install procedure. First, it sets VImage to a 
name appropriate for the new application. Next, it calls the standard removeC<>q>iler 
method along with its own removeJunk method to get rid of inessential objects. Then 
it creates an instance of the '.frackApp class and stores it in 'l'heApp, and performs a 
cleanup to reclaim memory. Finally, it creates and saves the image file, and exits to 
Windows because the Actor interpreter has been disabled. · 

The two numbers in the snap message set the default memory allocations for static 
and dynamic memory in the image file. That means that if the image file is started 
without Static• and Dynamic• values in WIN.INI, these default values will be used. 
This allows you to distribute your application without having to tell your users to set up 
WIN.INI for Actor. 

You might be wondering how we can invoke a method from the Actor compiler that 
removes the compiler from the system. In fact, it would be impossible unless we play a 
trick on Actor when we invoke the install'l'rack method. The trick is that we use the 
phrase: 

abort(install'.rrack()) 

What abort (al'un.ction) does is first collapse the Actor stack down to the 
bottom, and then call the target(O-argument) function. If the static garbage collector. 
detected a reference to the Actor parser on the stack, it would not reclaim the memory 
occupied by the parser, even though all global references to it have been removed. 
Garbage collectors must be very careful to preserve any objects that are accessible to 
your program in any way. This is a situation in which that benign tendency backfires on 
us, which is why we must play the trick. By using abort, the garbage collector sees an 
empty stack, and reclaims the compiler objects. 



4.5 Installing Your Actor App/icaiion 283 

4.5.5.5 Determining Memory Settings 

We arrived at the memory settings in install'lrack by trial and error combined 
with a little observation. When you execute the install'lrack method, you will see a 
lot of "removed" messages, and then the system will pause while it performs the 
cleanup method. You can use the value reported by cleanup to determine the static 
memory required by your application. Here's how: 

1. Write down the value reported in the "bytes remaining" portion of the 
cleanup message. 

2. Divide this number by 1024 and truncate it to an integer to derive the 
number of kilobytes remaining after static garbage collection. 

3. Subtract this value from the static setting that is currently in effect to get the 
static requirement for your application. For example, if you started 
SMALL.IMA with static set to 90K, and cleanup reported 57330 bytes 
remaining, you would get: 

57330 I 1024 = 55.9 = 55 
90 - 55 = 35 

Dynamic memory is not nearly as easy to determine. It can vary greatly, depending 
on the dynamic characteristics of your program, as well as how much memory you can 
afford to use. Remember that Actor allocates twice the number that you specify for 
dynamic. The best approach is probably to install your application with a guess for 
dynamic, and then attempt to run it. To tune dynamic, you can override the image 
defaults by adjusting the memory settings in WIN.INI. 

If your application refuses to run or runs slowly, you should allocate more dynamic 
and try again. When you reach a comfortable value, replace the guess in your install 
method and install it one last time. 

If you run dynamic very close to the limit, you may find that your application runs 
in a jerky manner or slows down. The type of garbage collector that Actor uses 
performs a "flip" when memory in one semispace is exhausted, and switches to the other 
semispace. Every time there is a flip, the entire 64K object table must be traversed. On 
AT-class machines, this flip takes only a small fraction of a second, but may produce 
visible slowdowns in your application. You should set dynamic high enough to avoid 
frequent flips. You should also test your application a great deal with the final dynamic 
setting to ensure that the value you have chosen is adequate for all paths through the 
code. 



284 Chapter 4: Building Actor Applications 

4.5.5.6 Setting Up ACTOR.RC 

You will probably have defined your own resources in ACTOR.RC. At this point 
you can discard most of the resources used by Actor for its windows and dialogs. There 
is one special resource that is important to the installation procedure, and that is the 
string IDSAPP. This string tells ACTOR.EXE which image file to use if none is specified ( 
in the command line. 

Let's look at what will happen when you distribute your application. You will have 
to distribute both ACTOR.EXE and your application image. Your users, however, may 
have several applications written in Actor, each of which has to have its own version of 
the Actor kernel with the proper resources. What you are going to do is rename the 
ACTOR.EXE file, so that as far as your end-users are concerned, that file is your · 
application. 

Once this is accomplished, then the logical thing for your users to do is ''run" the 
.EXE file from MS-DOS Executive. That's where IDSAPP comes in. It tells the .EXE file 
which image to load if the .EXE is started by itself. 

It was a challenge to make ACTOR.EXE flexible enough to work in an interactive 
programming environment and then to "become" an installed application. ACTOR.EXE 
has to go through a decision process when handling the command line, so that it can 
satisfy both roles. . 

There are three possible types of command line when ACTOR.EXE is started: 

1. (Development) ACTOR.EXE XXX.IMA 
This causes ACTOR.EXE to load the .IMA file specified, allowing you to used 
various images during development. 

2. (Application) YOURAPP.EXE 
This corresponds to your users starting the application with a null document. 
The kernel loads the image file specified in IDSAPP. 

3. (Application) YOURAPP.EXE XXX.DOC YYY.DOC ZZZ.DOC 
If the kernel is started with non'."image files specified in the command line, it 
assumes that those documents are intended for the application. It loads the . 
image file specified in ID SAPP, and stores the command line string in 
TheApp.commandLine. 

In terms of the Track application, if we had created a customized kernel with its 
own resources, we would have performed the following two steps: 

1. Edit ACTOR.RC, removing all non-Track-related resources and changing the 
string IDSAPP to "track. ima". 

2. Run the resource compiler, producing a new ACTOR.EXE (make sure you 
keep a copy of the old one). Rename the file ACTOR.EXE to TRACK.EXE. 



4.5 lnstaJHng Your Actor Application 285 

4.5.6 On Your Own 

We have outlined the install procedure using an example application that we 
created. Your application will certainly have somewhat different requirements, but by 
following the framework that we have outlined, you should be able to accomplish your 
installation without a great degree of difficulty. It might help to organize your thinking 
if we summarize the procedure according to the two files that you will create: 

1. The Load File 
This file should define a collection of file names of the .CLS and other files 
that you load to build up your application from SMALL.IMA. You can also 
use this file to define any miscellaneous methods that might have been 
extracted from .CLS files. The load order should correspond roughly to that 
in WORK.LOO. 

2. The Application File 
This file defines the class describing your application, along with the .init 
method executed at image startup. It also contains an install method that 
performs the various steps of the install procedure, saving an image and 
exiting from Actor. 





5 Class Reference 

The Class Reference presents an alphabetical description of all of the classes in the 
Actor system. The following information is presented for each class: 

1. The name of the class source file 
2. The names of the ancestor classes 
3. The names of the descendant classes if any 
4. A list of all instance variables shown by the classes that define them 
5. A brief description of all class methods 
6. A brief description of all object methods 

The information presented below was compiled from the class, method and Ivar 
comments in the class source files. It is the same information shown in the About Oass 
Dialog and method source in the Browser edit window. 

ActorAnalyzer 
Source file: 

Inherits from: 

Inherited by: 

ACIORANA.CLS 

Object Stream Analyzer 

(no descendants) 

This class customizes Analyzer for the specific kind of lexical analysis required 
to parse Actor source code. 

Instance variables: 

~sition 
collection 
ch 
numStr 
val 
token 
inLit 
commentPos 
createFlag 
is Real 
level 

(From class Stream) 
(From class Stream) 
(From class Analyzer) 
(From class Analyzer) 
(From class Analyzer) 
(From class Analyzer) 
(From class Analyzer) 
Position of a comment if found 
If true, create objects while parsing 
True if ~rsing a Real 
Holds indent level for source formatting 



288 Chapter 5: Class Reference 

Class methods: 

Object methods: 

eosErrol'(self, bp, str) 

(none) 

Report that the end of the input being analyzed was reached before expected. 

formatLines(self, width) 
Return a TextCollection containing formatted lines of source. Input is the string 
currently owned by the analy7.er in its collection variable. The width argument 
is the current width of the window in characters. 

nextLine(self) 
Return the next source line from the input stream, based on sensible formatting 
criteria. Called by formatUnes. 

sourceLine(self, st, tok) 
Return a properly indented source line. st is the starting offset in the string to 
scan, and tok is the first token that was found. 

Actor App 
Source file: 

Inherits from: 

I~herited by: 

ACTORAPP.CIS 

Object 

(no descendants) 

An instance of Actor App is stored in TheApp, and is sent an init message at 
startup. Any appli~tion should have an object in TheApp that can respond to 
init and abort, containing application-wide data. 

Instance variables: 

workspace 
display 

Class methods: 

Object methods: 

abort(self):nll 

The Actor workspace window 
The Actor display window 

(none) 

Clean up the system stack following an error. This causes an immediate return 
to the last place at which Windows called Actor by sending it a message in the 
queue. The Actor stack is set to the point at which the last WM_ method was 
invoked. This method obviously never returns. 



ActorApp 289 

init(seli) 
Start Actor with a display and workspace window. This method is executed at 
system startup as a way to initialize the entire Actor environment. 

Actor Parser 

Source file: 

Inherits from: 

Inherited by: 

AC10RPAR.CLS 

Object YaccMachine 

(no descendants) 

ActorParser is a YaccMachine customized to parse and compile Actor source. It 
builds a parse tree, and then sends a compile message to the root of the tree. 

Instance variables: 

states 
v 
ret 
fr 
err Flag 
errs 
yylast 
lex 
yyVal 
yydef 
yyActions 
yychk 
yyr~ 
yyrt 
yypgo 
yypact 
yyact 
yyexca 
rev 
chr 
st 
yyn 
ace 

Cass methods: 

Object methods: 

reportUndef(self, sym, bp, str) 

(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) · 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 
(From class YaccMachine) 

(none) 

Find and report an undefined symbol by rescanning for it with the lexical 
analyzer. This allows the compiler to insert a message next to an undefined 
identifier. 



290 Chapter 5: Class Reference 

syntaxError(self, hp, str) 
Report a syntax error by inserting a string in the edit window or printing in the 
Display. 

Analyzer 
Source file: 

Inherits from: 

Inherited by: 

ANALYZER.CLS 

Object Stream 

Actor Analyzer 

Analyzer provides general support for any lexical analysis task. Each character 
in the stream is classified, which produces a symbol. This is used to dispatch an 
action, and produce a token. 

Instance variables: 

position 
collection 
inlit 
token 
val 
numStr 
ch 

Class methods: 

Object methods: 

getChar(self):Char 

(From class Stream) 
(From class Stream) 
True if scanning inside an array literal 
Numeric id of list token 
Ob.ie.!=t from last token 
Used to build numbers 
Last char from getChar 

(none) 

Return the next character in the input stream and advance the position variable. 
Return asChar(O) if at the end of the string. 

init(self):self 
Initialize the Analyzer's private variables. 

scanWhlle(self, aBlocld:Char 
Scan the input stream while aBlock evaluates to true. The one-argument block 
is sent each character in the collection. 

skipDelim(self):charClass 
Skip any delimiters in the stream, and leave position on the next non-blank 
character. The character is stored in the private variable, ch. The char's 
classification symbol is returned. (See Char:classify.) 

undef(self, aChar):nil 
This method is executed (using perform) whenever a character is scanned that 
has no meaning in Actor's lexical set. For instance, classify('%') returns #undef. 



Array 
Source file: 

Inherits from: 

Inherited by: 

ARRAY.CLS 

Object Collection IndexedCotlection 

Function lmmedFunction OrderedCollection 
SortedCollection TextCollection 

Analyzer 291 

Array is a sequential collection that holds other objects. Array objects are fixed 
in si7.e; once you create one, it cannot hold more than the number of elements 
you specified. Literal arrays can be formed with the # fonnat; for instance, an 
array with the elements 3, 7, and 8 can be formed by saying #(3 7 8). 

Instance variables: (none) 

Class methods: (none) 

Object methods: 

at(self, lndex):ArrayElement 
Return the element at self[index]. If index < 0 or index >= limit(selO, then an out 
of bounds error is generated. 

copyFrom(self, begldx, endldx):Array 
Return the contents of self from self[begldx] to self[endldx-1); inclusive, in the 
form of another Array object. For example, copyFrom(#(3 4 5), 0, 2) would 
return Array(3 4 ). If begldx > endldx, then a bad range error is generated. 

fill(self, anObject):Array 
Fill the receiver with anObject. For example, to initialize an array called Scores 
so that all of its elements were zero, you would send the following message: 
fill(Scores, 0). 

find(self, target):Int 
Return the index at which the target is located within self. If the target is not 
found, then indexOf return nil instead. For example, index0f(#(3 5 7), 5) would 
return 1, but index0f(#(3 5 7), 10) would return nil. find uses equality to find 
·the target element. 

indexOf(self, target):Int 
Return the index at which the target is located within self. If the target is not 
found, then indexOf return nil instead. For example, index0f(#(3 5 7), 5) would 
return 1, but index0f(#(3 5 7), 10) would return nil. indexOf is the same as find 



292 Chapter 5: Class Reference 

except that it uses equivalence as its searching criterion, so you should only use 
indexOf to locate a target for which equivalence is meaningful, such as Int, Char, 
or Symbol objects. • 

put(self, anObjec~ index):anObject 
· Place anObject at self[index]. For instance, if Joe is an Array object, then Joe[3] 

:= "Hello" is equivalent to the message put(Joe, "Hello", 3). It returns anObject; 
in the example above, ''Hello" would be returned. 

Association 
Source file: 

Inherits from: 

ASSOCIAT.CLS 

Object 

Inherited by: (no descendants) 

An Association object exists only to unite two objects, which it stores in its two 
instance variables, key and value. They are useful whenever you need to 
consider two objects as a unit. Elements of Dictionary objects are Associations, 
for example. 

Instance variables: 

key 
value 

The identifier J>a!'t of an association 
Object associated with key 

Class methods: (none) 

Object methods: 

<(self, assoc) 
Less than method for Association objects. An Association is considered less 
than another if its value instance variable is less than the other's. 

=(self, assoc) 
Equal method for Associations. Associations are equal if their keys and values 
are equal. 

>(self, assoc) 
Greater than method for Association objects. An Association is considered 
greater than another if its value instance variable is greater than the other's. 

hash(self) 
Hash method for Association objects. Associations hash based on their 
contents-the hash value of the key is bitwise XORed with the hash of value. 



Association 293 

init(self, newKey, newValue):Assodatlon 
Initialize an Association. The Association's key instance variable is set equal to 
the first argument, and value is set equal to the second argument. 

printOn(self, aSbm) 
Print an Association object onto the specified stream. 

Behavior 
Source file: 

Inherits from: 

Inherited by: 

BEHA VIOR.CLS 

Object 

Meta 

Behavior describes the behavior of all classes considered as objects. The 
inheritance scheme is implemented in Behavior, as are many of the new 
methods for the vartous classes. 

Instance variables: 

ancestor 
methods 

, variables 
format 
fileName 
name 

Class methods: 

Object methods: 

<(self, aCl) 

A class's ancestor 
A class's methods 
A class's variables 
Oassformat 
Name of class source file 
The class name, a symbol 

(none) 

Classes respond to < and > so they can be sorted in SortedCollections. 
Comparison is based on name. 

>(self, aCl) 
Oasses respond to < and > so they they can be sorted in SortedCollections. 
Comparison is based on name. 

addAncestors(self, aColl) 
Add all of the receiver's ancestors to a collection, including the receiver. 

addVariables(self, coll) 
Add all the receiver's own and inherited variables to a collection. 



294 Chapter 5: Class Refflrence 

ancestors(self} 
Return an OrderedCollection of the receiver and its ancestors in inheritance 
order. 

descendants(self} 
Return an Ordered Collection containing the descendants of the receiver in 
inheritance order. 

descendantsDo (self, aDict, aBlock, level) 
Perform a block over each of the receiver's descendants. Requires a dictionary 
produced by buildClassLists as the first argument. The two-argument block 
receives a descendant and a level at each invocation. Level is incremented at 
each level of inheritance. 

findFunction(self, aSym):Boolean 
Return true (specifically, return the method itself) if a method with the specified 
name aSym exists in the method dictionary of the receiver class or an ancestor of 
the receiver class. For instance, findFunction(Behavior, #findFunction) returns 
Behavior:findFunction, whereas findFunction(Behavior, #joe) returns nil. Used 
in the error handling process to see if an error handling routine is defined. 

findVar(self, symbol):Int 
Return the index of a named instance variable in the receiver, including any 
inherited instance variables. This treats an object like an array, in which each 
cell has a name. System use only. 

fixedV ars(self}:lnt 
Return the number of named instance variables in objects that have the receiver 
as their class. 

getFileName(self} 
Determine the proper file name for this class's source code, and return it. 

inherit(self, clName, ivars, fmt, idx) 
Define a new descendant class of the receiver. If a class by this name already 
exists, ask shouldCompile to see if ivars, ancestor or format have changed. If so, 
announce with a warning message. The existing class's object pointer is used in 
any case, so as to preserve early-bound references to existing functions. 

isAncestor(self, aClass) 
Return true if aClass is an ancestor of or== receiver. 

method(self, symbol):method 
Return the function or primitive that corresponds to a given name in the 
receiver's method dictionary, or nil if not found. 



Behavior 295 

new(self):lnstance 
Create a new instance of the receiver as an atomic object. 

now(self):self 
Set the current class for which methods are to be compiled as the receiver. 

printOn(self, aStrm) 
Print the name of the class onto the specified stream. 

shouldComplle(self, cl, ivars, fm~ idxFlag) 
Given the parameters for an inherit message, determine the names, if any, of 
classes that should be recompiled. The receiver is the ancestor specified in the 
inherit, and it finds if there are existing descendants with similar names but 
dissimilar properties. 

variableNew(self, size):lnstance 
Return a new instance of the receiver. For non-atomic classes only. Collections 
re-Implement new to call variableNew. 

variables(self) 
Return an OrderedCollection containing this class's inherited and own 
variables, in inheritance order. 

BlockContext 
Source file: 

Inherits from: 

Inherited by: 

BLOCKCON.CLS 

Object 

(no descendants) 

This class describes the behavior of blocks, which are pieces of code, delimited. 
by curly brackets, that may be passed as arguments and executed at a later time. 
For example, (using(i) print(i)} is a BlockContext which is used as the argument 
in the do message: do(over(3,30), (using(i) print(i)}). 

Instance variables: 

Class methods: 

Object methods: 

args(self):Int 

(none) 

(none) 

Return the number of arguments expected for the receiver block. 

temps(self):lnt 
Return the number of temporary variables for the receiver block. 



296 Chapter 5: Class RsferBncs 

Brow Edit 

Source file: 

Inherits from: 

Inherited by: 

BROWEDIT.Cl.S 

Object Window TextWindow EditWindow WorkEdit 

(no descendants) 

This class is responsible for creating and managing the special edit window for 
Browser objects. The edit window for Browsers is the part in which you edit 
method text. 

Instance variables: 

buttonDn 
hMenu 
paintStruct 
ctefProc 
hWnd 
chStr 
textMetrics 
xMax 
yPos 
XPos 
tmHeight 
tmWicfth 
endLine 
end Char 
startLine 
startChar 
dirty 
caret Vis 
top Line 
workText 
dragUne 
oldX 
pOrigirl 
ctragDC 
iD 
cRect 
parent 

Class methods: 

Object methods: 

WM_CHAR(self, wP, IP) 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class WorkEdit) 
(From class WorkEdit) 
(From class WorkEdit) 

(none) 

Handle auto-indent for Browser. 



BrowEdit 297 

WM_SIZE(self, wp, Ip) 
Recalculate xMax for the new size and resize window. 

copyMethod(self, methStr) 
Copy (without formatting) the method string argument into a TextCollection, 
store it in the workText instance variable, and return it. 

formatMethod(self, methStr) 
Format the method string argument into a TextCollection, store it in the 
workText instance variable, and return it. 

mergeTemplate(self, aString) 
Insert template string (if-then, loop-endloop, etc.) into the method text, 
reformat, and return workText. 

reform(self) 
Reformat the method. 

Browser 
Source file: 

Inherits from: 

Inherited by: 

BROWSER.CIS 

Object Window PopupWindow ToolWindow 

(no descendants) 

The Browser class creates and manages Browser windows, the part of Actor 
which manages all the source code for the Actor system. Specifically, this class 
manages the Browser listboxes, edit window, and all other Browser functions. 

Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 
zoom 
ew 
lb2 
lbt 
oldSize 
newSize 
mode 

selOass 
classCol 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWindow) 
Determines whether class or object methods are 
displayed 
The currently selected class 
A collection of classes 



298 Chapter 5: Class Reference 

comment 
inherit 
alpha 

Class methods: 

Object methods: 

WM_CLOSE(self, wP, IP) 

The class's comment string 
The class's inherit message strinp 
Alphabetic/hierarchial dass listing flag 

(none) 

Close the receiver browser and remove from the master list of Browsers. 

WM_COMMAND(self, wP, IP) 
Handle the various Browser events. 

aboutCl(self) 
Present the "About the class" dialog for the selected class and handle the result. 

accept(self) 
Compile the method code in the edit window. 

cMethods(self) 
Switch mode and display class methods rather than object methods. 

compCIDia(self, clColl) 
Run the errorBox asking if classes should be recompiled and return a boolean 
flag according to the user's answer. 

delSelClass(self) 
Remove the selected class and all descendants (if any) from Actor. 

delSelMethod(self) 
Remove the selected method from the currently selected class. 

doDirtyWork(self) 
Show the Dirty Work (Accept, Abandon, etc.) dialog box if the text in the 
Browser's edit window has changed. If the dialog box has to be shown, the 
various responses are handled. 

doMenuChoice(self, wP) 
Handle the menu choices (Accept, Reformat, Delete method, etc). 

fillClassList(self) 
Fill the class list box from classCol (if there is one). If there isn't, fill the list box 
either alphabetically or by class hierarchy (depending on value of Browser's 
instance variable alpha). 

fixArray(self, array) 
Create default class comment if none given. Return the repaired array (in 
ClassDialog format). 



Browser 299 

initClassEdlt(self) 
Setup for editing a newly selected class. 

loadClasslnfo(self) 
Load the class information into Browser's instance variables (inherit and 
comn\ent) from the class's source file. 

· loadMethods(self) 
Load the method listbox with the class's methods if there is a selected class. 

loadSelMethod(self) 
Load and return the text for the selected method. If the source code for the 
selected method isn't found, return nil. 

makeDescendant(self) 
Put up a new ClassDialog box for the possible new descendant. If the 
descendant doesn't already exist, then the new class is created along with its 
source file. If it does exist, an error dialog is shown. 

oMethods(self) 
Switch mode and display object methods rather than class methods. 

openCiassFlle(self, class) 
Open the selected class file in the WORK directory, if the class is in dirtyClasses. 
Otherwise, open the class file in the CLASSES directory. Return the opened file. 

options(self, wP) 
Handle all of the Option menu's choices (About the class, etc.). 

paint(self, hDc) 
Doesn't do anything except override ancestor's method. 

recompClasses(self, dColl) 
Recompile the source code for all the classes in the specified collection of classes. 

resetClassMenu(self) 
Reset the menu bar if a class is selected. 

saveMethText(self, text, fSym) 
Save the new text for current method into the source file. The first argument, 
text, is the method text. The second, fSym, is the symbol with the name of the 
method, e.g. #print. First an attempt is made to replace previous method text, 
otherwise, method is simply added to the file. 



300 Chaptsr 5: Class Rsfersncs 

start(self, clsCol, class) 
Start up a Browser. If clsCol is a collection of classes, only those classes are 
loaded. If clsCol is nil (the default when you pick "Browse!" from a WorkSpace 
menu), all classes are loaded. If the second argument, class, is not nil, then it 
will be the currently selected class when the Browser appears. Otherwise, the 
Browser will appear with no currently selected class. 

updateCFile(self, class, array, limit) 
Update the specified class file with the specified ClassDialog array. Only 
replace as many chunks as limit indicates. 

zoomEdit(self) 
Change zoom state and update window accordingly. 

ByteCollection 
Source file: BYTECOLL.CI.S 

Inherits from: Object Collection lndexedCollection 

Inherited by: String Symbol Struct GraphicsObject Polygon Rect 

ByteCollection is a formal class which acts as the unifying class for all collections 
which are collections of bytes, such as String and Struct. 

Instance variables: (none) 

Class methods: 

Object methods: 

asHandle(self):Long 

(none) 

Return a MS-Windows handle to the ByteCollection. 

printOn(self, aStrm) 
Print the byte collection onto the output stream. Byte collections have no 
unformatted output. 

Char 

Source file: 

Inherits from: 

Inherited by: 

CHAR.CLS 

Object Magnitude 

(no descendants) 



Char 301 

Chars are elements of strings that follow the ASCII sequence, such as 'a', 'f', and 
'&'. Chars are distinguished from Strings of length one by the fact that they are 
surrounded by single rather than double quotes. 

Instance variables: (none) 

Oass methods: 

Object methods: 

<(self, aChar) 

(none) 

Less than. If the argumenrs ASCII value is less than the receiver's, then this 
method returns true. 

<=(self, aChar) 
Less than or equal to. If the argumenrs ASCII value is less than or equal to the 
receiver's, then this method returns true. 

>(self, aChar) 
Greater than. If the argumenrs ASCII value is greater than the receiver's, then 
this method returns true. 

>•(self, aChar) 
Greater than or equal to. If the argumenrs ASCII value is greater than or equal 
to the receiver's, then this method returns true. · 

asDlglt(self, base):lnt 
Return the number that self represents in the specified base. For instance, in 
hexadecimal, 'F is decimal 15, so asDigit('F, 16) would return the number 15. 
Bases from 2 to 36, inclusive, are valid. The result of this method with bases 
outside this range is undefined. If the receiver is not valid for the specified base, 
i.e. asDigit('H', 16), or asDigit('2', 2), then nil is returned. Case of the receiver is 
not important-asDigit('f, 16) is the same as asDigit('F, 16). 

aslnt(self):Int 
Return a character's ASCII value. 

asStrlng(self):String 
Return a character as a String. For example, asString('e') returns "e". 

asSymbol(self) 
Return receiver as a Symbol. Example: asSymbol('f') returns #f. 

asUpperCase(self) 
Convert a Char to upper case. Characters which are not lower-case letters are 
not affected. 



302 Chapter 5: Class Reference 

classify(selfl:Symbol 
Return a symbol according to the classification of the receiver. For example, 
classify('h') returns #alpha, and classify('S') returns #digit. 

hash(self):lnt 
Return a Char's hash value. 

isHexDigit(self) 
Return true if receiver is 'a'-'f or' A'-'F. 

isPrintable(self):Boolean 
Return true if the receiver is a printable character (ASCII value in the range 32 to 
126, inclusive). 

print(self) 
Display the character in the current output ports. 

printOn(self, aStrm ) 
Print the Char onto the specified stream. 

stringOf( self, num) 
Return a string of num instances of the receiver. For example, stringOf('a', 5) 
returns "aaaaa". · 

sysPrintOn(self, aStrm):Stream 
sysPrint the receiver onto the specified stream. 

Class Dialog 
Source file: 

Inherits from: 

Inherited by: 

CLASSDIA.CIS 

Object ModalDialog 

(no descendants) 

OassDialog presents the About Class/Make Descendant dialogs from the 
browser. Information from a ClassDialog is returned in the form of an 8-
element array arranged as follows: array[O) is the class itself, array[t] is the class 
comment, array[2) is the inherit string, array[3] is "now(classOass)", array[4] is 
the instance variable string, array[S) is the format, array[6] is a boolean flag 
which is true if instances of the class are indexed (the isldx instance variable), 
and array[7J is the name of the class's ancestor. 



Instance variables: 

handle 
theOass 
theAncest 
comment 
inherit 
ivStr 
format 
isldx 
clName 
ancName 
editFocus 

aass methods: 

(From class ModalDialog) 
The class for which the dialog is produced 
Ancestor of theOass 
Oass comment 

. ClassDialog 303 

Class inherit string 
String which contains the class's instance variables 
Format of the class's instances 
If class's instances are indexed, this is true 
The class's name (a String) 
The class's ancestor's name (a String) 
True if either edit window has the focus 

new(self, browser, theCI, theAnc) 
Create and show a new Class Dialog box whose parent is the specified Browser 
window. The class and ancestor of the dialog are specified in theO and thAnc. 

Object methods: 

WM_COMMAND(self, wP, IP) 
Event handling for the dialog box. 

WM_INITDIALOG(self, wp, Ip) 
Fill dialog with class information. 

accept(self) 
Accept revised entries in class dialog. 

bldlnherit(self) 
Build an inherit message string for current class. 

classArray(self) 
Create an 8-element class information array with dialog's values. 

flipFormat(self, wP) 
Switch the format to another choice. 

initFormat(self, val) 
Initialize the format instance variable. 

loadlvars(self, iMsg) 
Build an edit string containing class's instance variables. 

setltemFocus(self, item) 
Set the focus to the specified item. 



304 Chapter 5: Class Reference 

Class List 
Source file: 

Inherits from: 

Inherited by: 

CLASSLIS.CLS 

Object Control ListBox 

(no descendants) 

Class ListBox for the Browser. This class creates and manages the list of classes 
which appear in the upper left corner of every Browser window. 

Instance variables: 

cRect 
contID 
parent 
hCntl 
selStr 
selldx 

Class methods: 

Object methods: 

fill(self, coll, aClass) 

(From class Control) 
(From class Control) 
(From class Control) 
(From class Control) 
(From class ListBox) 
(From class ListBox) 

(none) 

Use either Object's descendants, or the specified collection of classes coll, to load 
the listbox. If aClass is not nil, show that class as the currently selected item in 
list. 

getSelClass(self) 
Return the selected class represented as a symbol. 

Collection 
Source file: 

Inherits from: 

Inherited by: 

COLLECTI.CLS 

Object 

IndexedCollection Array Function ImmedFunction 
OrderedCollection SortedCollection TextCollection 
ByteCollection String Symbol Struct GraphicsObject 
Polygon Reel Interval KeyedCollection Dictionary 
MethodDictionary Set SymbolTable 

Collection is a formal class which provides the unifying methods for all the 
various collection classes such as Dictionary, String, and many others. Any 
object which is not atomic should descend from the Collection class. 

Instance variables: (none) 



Class methods: 

new(self, siz) 

Collection 305 

New collections are created using the variableNew method. Collections are 
automatically sent an init message when they are created. 

Object methods: 

asArray(self) 
Return an array containing the receiver's elements. 

asOrderedCollection(self) 
Return an OrderedCollection containing the receiver's elements. 

asSet(self) 
Return a Set containing the receiver's elements. 

asSortedCollection(self) 
Return a SortedCollection containing the receiver's elements. 

browse(self) 
Browse the elements of the Collection, assuming that they are classes. For 
example, browse(descendants(Array)) would browse the descendants of the 
Array class. 

collect(self, aBlock) 
Map one collection to another using a one argument block. First, a new 
collection is created. Then, the receiver collection is traversed, and the result of 
evaluating the block with the element as the argument is added to the new 
collection. 

extrad(self, aBlock) 
Return a subset of a collection which contains only the elements for which the 
one argument block evaluates to true. 

load(self) 
Load a collection of filenames as source files. For instance, load(tuple("testl.act", 
"test2.act")) would first load and compile "testt.act" and then load and compile 
"test2.act". 

printOn(self, aStrm) 
Print the receiver collection onto the specified stream. 

specles(self) 
Return ''Set" as the species of a collection. If a given collection class or an 
ancestor does not redefine species, the species of that collection will be Set. The 
species method must return a class whose instances can respond to an add 
message (such as Set, OrderedCollection, etc.). 



306 Chapter 5: Class Reference 

sysPrmtOn(self, aStrm) 
sysPrint the receiver collection onto the specified stream. 

Context 
Source file: 

Inherits from: 

Inherited by: 

CONTEXT.CIS 

Object 

(no descendants) 

A context is an object that corresponds to a method's activation record on the 
stack. Contexts are only created by the Debugger. 

Instance variables: 

receiver 
link 
function 
arSl!ments 
locals 

Class methods: 

new(self, bp):Context 

Ob~t which received the message 
Address of previous hp 
Function belng executed 
ArSl!ments paSsed to function 
LoCal variable values 

Convert the stack activation record whose address is contained in bp to a 
Context object. 

Object methods: (none) 

Control 
Source file: 

Inherits from: 

Inherited by: 

CON1ROL.CLS 

Object 

ListBox ClassList 

This class provides universal methods used by all control windows, such as 
Buttons and ScollBars. Descendants of Control, such as Button and ScrollBar, 
define behavior for specific controls. 



Control 307 . 

Instance variables: 

hCntl 
parent 
contID 
cRect 

Handle to the control 
Parent object 
Control ID 
Size rectangle 

Class methods: (none) 

Object methods: 

create(self, wName, winClass, style) 
Create and return a new control; save handle in hCntrl. wName,ts the name of 
the control, usually nil except for for buttons. winClass is a string specifying the 
predefined MS-Windows class of the control, e.g. "ListBox", and style is an 
integer which determines the exact style of the control object. Refer to the new 
methods of some of the descendants of Control to see how they use this method. 

handle(self) 
Return control handle (hCntl). 

invalidate(self) 
Invalidate entire control for repaint. 

moveWlndow(self) 
Move the window to the latest size, don't repaint. 

sendMessage (self, wMsg, wP, IP) 
Send an MS-Windows message to a control. wMsg is a message constant, such 
as LB_ADDSl'RING, BM_SETCHECK, etc. wP and IP provide additional 
information about the message being sent. 

setCRec:t(self, rect) 
Set the sizing rectangle to the specified Rect. 

setFocus (self) 
Assign input focus to control. Return hWindPrev, the handle to the window 
which had the input focus. 

setSlze(self) 
This is the default version of setSize. It simply returns the current value of 
cRect. The descendants of Control will usually redefine this method. 

show (self, val ) 
Display the control according to val. If val is 0, the control will be made hidden. 
If val is one, the control is made visible. 



308 Chapter 5: Class Reference 

DebugDialog 
Source file: 

Inherits from: 

Inherited by: 

DEBUGDIA.CIS 

Object ModalDialog 

(no descendants) 

DebugDialog displays the stack activation records that led up to an error, and 
allows any of them to be converted into Context object and Inspected by double 
clicking on them. 

Instance variables: 

handle 
message 
basePtr 

Class methods: 

new(self, resID, parent, msg) 

(From class ModalDialog) 
The caption string for the dialog 
The address of tile top activation record in the dialog 

Create and show a modal dialog that announces an Actor error. 

Object methods: 

WM_COMMAND(self, wp, Ip) 
The only events that can occur are the OK button or a ListBox item being 
selected. This method handles those events. 

WM_INITDIALOG(self, wp, Ip) 
Fill the newly created dialog's listbox with a series of items corresponding to 
stack activation records. These items were built in the Debugger via a fill(bp) 
message. 

inspectContext(self) 
Convert an activation to a Context and start an Inspector to inspect it. This 
occurs when the user double-clicks on an activation. 

Debugger 
Source file: 

Inherits from: 

Inherited by: 

DEBUGGER.CLS 

Object 

(no descendants) 



Debugger 309 

Debugger is called upon when an Actor error occurs. The fill message causes it 
to construct a stack history and store it in the frames variable. This can then be 
displayed by the DebugDialog. 

Instance variables: 

frames 
basePtr 

The stack history, an ordered collection of strings 
The pointer to the top of the stack 

Class methods: (none) 

Object methods: 

fill(self, bp):self 
Fill the frames OrderedCollection with strings describing the stack activation 
records from basePtr to the stack base. 

trace(self, msg) 
Start a new DebugDialog that will display the stack activation records that were 
stored in the frames variable. 

Dictionary 
Source file: DICI10NA.CIS 

Inherits from: Object Collection KeyedCollection 

Method Dictionary Inherited by: 

A Dictionary object is a keyed collection whose elements are Association objects. 
A Dictionary can have any kind of object as a key, because its keys are looked 
up on the basis of equality rather than equivalence. For example, you could 
have a Dictionary object called Countries where each key is a nation and each 
value is the capital of the nation. Then, Countries("France"] would refer to the 
value ''Paris". In this example, the key is "France", and the value is ''Paris". The 
key and value are kept together in an Association object. 

Instance variables: 

tally 

Oass methods: 

(From class KeyedCollection) 

(none) 



31 o Chapter 5: Class Reference 

Object methods: 

add(self, aKey, anElement ) • 
Add a key and an element to a Dictionary. For example, if you have a 
Dictionary called Sam, then the following message associates the element 
"Hello" with the key "Greeting": put(Sam, ''Greeting", "Hello"). 

addAssoc(self, anAssoc>:self 
Add an Association to the Dictionary. 

assocAt(self, aKey):Association 
Return the Association object which has the specified key. 

assocsDo(self, aBlock) 
Evaluate the block over each of the receiver's Associations. 

at(self, aKey):DlctlonaryElement 
Return the element associated with the specified key. 

buildClassUsts(self) 
Return a Dictionary whose keys are the classes in the receiver Dictionary, and 
whose elements are SortedCollections of the key's immediate descendants. 

classes(self) 
Return the set of classes in the receiver Dictionary. 

classesDo(self, aBlock) 
Evaluate the one-argument block over the classes in the receiver Dictionary. 

I 

do(self, aBlock) 
Enumerate over the elements in the Dictionary. 

find(self, aKey):lnt . 
Return the physical index of the specified key. 

fixUp(self, ldx) 
Re-hash all the elements of the receiver. This needs to be done after deleting an 
entry because other hash values might need to occupy the empty slot. This is a 
generic fixup that works for Dictionary and MethodDictionary. 

getKey(self, ele~) 
Return the key part of an element. (Private method) 

getVal(self, idx) 
Return the value for a particular physical index of the Dictionary. (Private 
method) 

grow(self) 
Copy elements into larger collection and swap with the old collection. 



Dictionary 311 

keyAt(self, value):aKey 
Return the key residing at the specified value in the Dictionary. 

keysDo(self, aBlocld 
Evaluate the one argument block over the keys of the Dictionary. 

put(self, anElement, aKey) 
Replace a current element or create a new one. The put method for this class is 
identical to the add method except for the order of its arguments. 

putElem(self, assoc, val, idx) 
Store a new key /value pair at the specified physical index. (Private method) 

remove(self, aKey) 
Remove the element with the specified key from the Dictionary. If there is no 
element corresponding to aKey, then an "element not found" error is generated. 
The remove method returns the removed key. 

DirtyCLD 
Source file: 

Inherits from: 

Inherited by: 

DIR1YCLD.CLS 

Object ModalDialog 

(no descendants) 

· This class creates and manages the ''Dirty Classes" dialog box. This is displayed 
when trying to quit Actor after modifying classes and their source files without 
doing a snapshot. 

Instance variables: 

handle 
classes 

Class methods: 

new(self, resID, parent, clSet) 

(From class ModalDialog) 
The set of classes whose source code has been modified 

Create a new dirty classes dialog. Returns constant value indicating user's 
choice when dialog is finished. 

Object methods: . 

WM_INITDIALOG(self, wP, IP) 
Initialize the dialog. 



312 Chapter 5: Class Reference 

Edit Window 
Source file: 

Inherits from: 

Inherited by: 

EDI1WIND.Cl.S 

Object Window TextWindow 

WorkEdit BrowEdit WorkSpace 

This is the parent class of all edit-style windows. It supports text editing and 
cutting/pasting. A new window class is registered with MS-Windows on start
up. The caret for all EditWindow objects is the standard text-editing I-beam. 

Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 
chStr 
textMetrics 
xMax 
yPos 
xPos 
tmHeight 
tmWidth 
dragDC 
~ngin 
olciX-
dragLlne 
worl<Text 
top Line 
caret Vis 
dirty 
stariChar 
startLine 
end Char 
endLlne 

Class methods: 

register(self) 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
The handle to a display context used for selecting text 
The point where draggging starts 
The previous x value wnile dragging 
The current line for dra~ng 
A TextCollection contairung the text of the window 
The index into workText ofthe line at top of window 
Boolean flag controlling visibility of caret 
Boolean flag-true if text has been changed 
Starting character of highlighted range of text 
Starting line of highligfited-range of text 
Ending character of hl_ghlighted range of text 
Ending line of highlightea range of text 

Register all edit windows with the I-beam caret style. 

wndClass(self) 
Return static string for this window class name ("EditWindow"). 

Object methods: 

WM_CHAR(self, wP, IP) 
Process MS-Window's character input message. 



EditWindow 313 

WM_COMMAND(self, wP, IP) 
Dispatch menu choices, accelerators. 

WM_KnLFOCUS(self, wP, IP) 
When losing focus, de-select text visually, and then hide and destroy the caret. 

WM_SETFOCUS(self, wP, IP ) 
Prepare window for input and output, show selected text. 

WM_SIZE(self, wP, IP) 
Recalculate xMax to max characters per line for formatting text. 

WM_ VSCROLL(self, wP, IP) 
Respond to MS-Window's vertical scrolling message. wP tells what kind of 
scrolling request has been made. 

aqows(self, wP) 
Respond to arrow keys (accelerators). Not implemented at this time. wP is ID 
of accelerator. 

beglnDrag(self, wp, pt) 
Initialize the dragging parameters. 

charlnput<self, aChar) 
Handle the inputted character, return true if aChar is a CR. Delete selected text 
first. 

create(self, par, wName, rect, style) 
Modify the style for edit windows-add a vertical scroll bar. Permits edit 
windows to be tile, popup, or child style. 

delChar(self) 
Delete the character to the right of caret. 

deleteSelText(self) 
Delete the selected text from the TextCollection, workText, and reset selection 
parameters. 

drag(self, wp, pt) 
Show selected text while the mouse is dragged. 

dragDown(self) 
Handle case where mouse is dragged down one or more lines. 

dragUp(self) 
Handle case where mouse is dragged up one or more lines. 

endDrag(self, wp, pt) 
Stop selecting text, move cursor. 



314 Chapter 5: Class Reference 

eol(self) . 
Pass any eol messages on to the Display window. 

getClipText<self) 
Return the text string from the Clipboard. 

getSelText(self) 
Return the selected text as a string suitable for clipboard, with a CR_LF between 
each line. 

hideCaret<self) 
Hide the caret if it is visible and switch caretVis flag. 

init(self) 
Initialize the edit window. 

initEditParms(self) 
Initialize the editing parameters (home the caret, etc.). 

initSelParms(self) 
Initialize the selection parameters according to xPos and yPos. 

initWorkText(self) 
Initialize the workText instance variable, add one zero-length string. 

invSelTxt(self) 
Invert the selected text. Assumes a valid dragDC. 

invertLine(self, xo, yo, width) 
Inverts the rectangle starting at xo and yo, width. Height is character height - 2. 
Assumes a valid dragDC. 

invertSelText(self) 
Invert the selected text, obtaining the display context. 

isEditable(self) 
Return true flag for error insertion routines. 

isSelText(self) 
Return true if there is selected text. 

noScroll(self) 
Decide if text doesn't need to be scrolled, i.e., if worktext all fits in window. 

paint(self, hdc) 
Redraw the workText from topLine down, preserve xPos and yPos. If window 
has focus, show selected text. 

printLine(self, line) 
Print the given line, preserve xPos and yPos. Obtain own display context. 



EditWindow 315 

resetTop(self) 
Adjust topline if near the top or bottom of window, return flag that topline 
was adjusted. 

selNulLlne(self, yo) 
Show a 0-length line as selected by inverting a 2-pixel wide strip at left. Requires 
a valid dragDC. 

selectAll(self) 
Select all text in workText. 

setClipText(self, text) 
Set the Oipboard to the specified text. 

setCurPos(self, aPnt) 
Set cursor position (xPos, yPos) according to the specified point. 

setFocus(self) 
Enable window for input and set the focus if window doewsn't already it. 

setScrollPos(self) 
Set scroll bar position, avoiding divide by 0. 

showCaret(self) 
Show the caret if it is hidden and switch caretVis flag. 

visLlnes(self) 
Return the number of visible text lines in window. 

xClear(self) 
Oear the selected text. 

xCopy(self) 
Copy the selected text to the clipboard. 

xCut(self) 
Cut the selected text to the clipboard. 

xPaste(self) 
Paste the clipboard text to the EditWindow at current insertion point. 



316 Chapter 5: Class Reference 

Empty List 

Source file: 

Inherits from: 

Inherited by: 

EMPTYLIS.CLS 

Object ParseNode 

(no descendants) 

A general-purpose parse tree node used to hold empty lists for parsing via 
YaccMachine. 

Instance variabl~: 

type 

Class methods: 

Object. methods: 

compile(self):nil 

(From class ParseNode) 

(none) 

EmptyList compile does nothing. 

list(self):Interval 
Return an empty Interval, 0 .. 0by1. 

size(self):O 
EmptyList size is always 0. 

Error Box 

Source file: ERRORBOX.CLS 

Inherits from: Object 

Inherited by: (no descendants) 

ErrorBox displays a string in a simple dialog box, making use of MS-Windows 
MessageBox function. 

Instance variables: (none) 

Class methods: 

new(self, parent, txt, cap, type) 
Create a new ErrorBox error dialog with parent as the parent window, text as 
the dialog message text, cap as the caption. The type of error dialog is specified 
via the type argument, which controls exactly what the error dialog looks like. 
For more information, refer to the MS-Windows documentation concerning 
MessageBox. 



ErrorBox 3 t 7 

Object methods: (none) 

File 
Source file: FILE.CIS 

Object Inherits from: 

Inherited by: SourceFile DocFile 

The File class provides the methods to read and write data to and from DOS 
files. 

Instance variables: 

handle 
fileName 

Class methods: 

File handle, an integer value 
File name, as a null-terminated string 

exists(self, dosFileName, mode) 
Boolean method which determines whether or not a file with the specified 
dosFileName exists. The mode determines which operations are valid for the 
given file: O=read orily, l=write only, and 2=read/write. For example, if the file 
"test.dat" is a valid, writeable file on drive A:, the message exists(File, 
"a:test.dat", t) would return an unopened File, File("a:test.dat"). If a DOS file 
with the specified name does not exist, or if it does but the mode is invalid for 
that file, then exists returns nil. 

Object methods: 

atEnd(self) 
Return true if file is at eof (end of file). 

checkError(self):nil 
Usually executed after another file operation. If an error occurred in the process 
of executing the operation, then checkError will display an error dialog 
displaying the file name and the error number. After every file operation, you 
should either send a checkError or getError message to the File object. Please 
refer to the Actor manual (Guide to the Actor Oasses, the File Oass) for a list of 
the error numbers that checkError can display. See also the getError method in 
this class (checkError essentially just puts up a dialog box displaying any 
nonzero value that getError returns). 

close(self):File 
Close the DOS file and also frees up its handle so another file can use it. 



318 Chapter 5: Class Reference 

copy(self, aFlle, numBytes):lnt 
Copy ~e specified number of bytes from the receiver to the destination file. 
Both files must be opened, and the number of bytes must be a Long integer. It 
returns a result code in the form of an Int. The various result codes are 
summarized in the Actor manual, in the Guide to the Actor Classes, the File 
class. 

copyAll(self, aFile) 
Copy one unopened file to another. Return a result code (see the Actor manual, 
Guide to the Actor Oasses, the File class, for an explanation of the various result 
codes). 

copyFrom(self, lo, hi) 
Return a string copied from the specified range in the file. 

create(self):FileHandle 
Create the OOS file with the specified name and return the OOS handle to that 
file. If a file by the same name already exists and it is not marked as read-only, 
then the existing file will be deleted. If it is marked as read-only, then an error 
will be generated. If create returns nil instead of an integer file handle, then an 
error occurred. Note: create effectively does an open, too, so you don't have to 
open the file after you create it. 

delete(self):nil 
Delete the receiver file. If the deletion succeeded, then an integer is returned (its 
value is undefined, however). If it did not succeed, such as if the file was read
only or did not exist, then delete returns nil. 

dosError(self, bp, str) 
Display an error dialog box with str as the caption. The second argument, bp, is 
displayed at the end of the caption. ''File Error'' is the title of the dialog. (The 
checkError method for this class uses this method.) 

eol(self):Boolean 
Return true if the current file pointer is at the end of a line, i.e. if the current 
character in the file being pointed to is a CR character. 

getError(self):Int 
Return the last result code for a file operation. If no error occurred, then 
getError returns 0, otherwise it returns a number corresponding to the OOS 
error. For a complete list of the possible values getError can return, refer to the 
Guide to the Actor Oasses, the File class. After you do any file operation, you 
should call either getError or checkError, or else the error will go undetected. 

install(self, static, dynamic) 
Save an image of object memory with values for default static and dynamic 
memory allocation. 



File 319 

length(self) 
Return a long integer containing length of the file in bytes. The file must be 
open. 

lseek(self, numBytes, mode):Long 
Move the file pointer the specified number of bytes according to the specified 
mode. If mode is 0, then the pointer is moved relative to the beginning of the 
file. If mode is 1, the pointer is moved relative to the current position. If mode 
is 2, the pointer is moved relative to the end of the file. lseek returns a long 
integer representing the new value of the file pointer. Some notes: the file must 
have been open, and numBytes must be a Long. Also, you can lseek past the 
end of the file and no error will be generated (i.e. getError will return 0). It's up 
to the programmer to protect against lseeking past the end of file-if you lseek 
past the end of file and then try to read/write, an error will occur. 

move(self, pos) 
Move the specified number of bytes in the file relative to the current posiition. 
move converts pos to a Long, so you can use any number as an argument to 
move. pos can be either positive or negative, depending on whether you want 
to go forward or backwards in the file. Also, move returns the new value of the 
file pointer. Note: move uses the lseek method in this class, so refer to it for 
notes about moving past the end of file. 

moveTo(self, pos) 
Move absolutely (i.e. relative to the beginning of the file) to pos. For example, to 
move to the beginning of a file called Joe, you would say moveTo(Joe, 0). Also 
return the new value of the file pointer. Note: pos is converted to a Long for 
you, so you can use any number as an argument to moveTo. Also note that 
moveTo uses lseek, so refer there to see what happens when you moveTo past 
the end of a file. 

next<self) 
Read and return the next Char in the file. 

nextPut(self, aChar) 
Write a Char to the file. 

nextPuWl(self, str) 
Allow files to be used like streams. Write the argument string to the file. 

open(self, mode):FileHandle 
Open the file. The allowable operations on the file are specified by the mode 
argument. If mode=(), then reads only are allowed. If mode=t, then writes only 
are allowed. If mode=2, then reads and writes are both alJowed. II the open is 
successful, then open will return the OOS handle for the file. If not, then it 
returns nil. If an open message returns nil, then you can use checkError or 
getError to find out exactly what happened. 



320 Chapter 5: Class Rsfsrsncs 

. position(self) 
Return the current position (the current value of the file pointer). 

printOn(self, aSbm) 
Print the receiver file onto the specified stream. 

reName(self, newFlleName) 
Rename the DOS file to newFileName and also update the Actor File object's 
instance variable, fileName. 

read(self, numBytes):Strlng 
Return the specified number of bytes read from the file, represented as a string. 
For instance, if you have a File object called Sam, then the following message 
would read tOOL bytes starting from the current position in the file and return 
the data as a String: read(Sam, tOOL). Note that numBytes must be a Long 
integer. 

readChar(self):Char 
Read a character from the current file position and return that character. 

mam(self, newFileName):nll 
Rename a DOS file to newFileName, a String. Does not change the value of the 
File object's instance variable, fileName. The argument newFileName must be a 
string in the ASCIIZ format, i.e. terminated with a null byte. Please see the 
rename method in this class. 

setName(self, aFileName):File 
Assigns a OOS filename to an Actor File object. A File's instance variable, 
fileName, is set by this method. A File has to have a valid DOS filename before 
you can do any operations on it, so you should send a setName message to 
every newly-created File object. Convert aFileName, an Actor string, into the 
ASCIIZ format (null-terminated). Example: setName(f, "test.dat"). 

snap(self, static, dynamlc):Flle 
Save an image of object memory with values for default static and dynamic 
memory allocation. 

snapshot(self):File 
Save an image of object memory to the receiver File. Default static and dynamic 
memory values are supplied (static=90, dynamic=50). 

write(self, aStr):Flle 
Write the String argument to the receiver file. 

writeChar(self, aChar):File 
Write the specified character to the receiver file. 



File Dialog 
Source file: 

Inherits from: 

Inherited by: 

FILEDIAL.CLS 

Object ModalDialog 

(no descendants) 

FileDialog 321 

A file dialog presents a list of files for selection. The dialog returns a string 
defining the file to be loaded. 

· Instance variables: 

handle 
startDir 
load.File 
fileSpec 
pathSpec 
editFocus 

Oass methods: 

new(self, parent, file) 

(From class ModalDlalog) 
Initial path ~ification 
nil if cancelled, true otherwise 
Filter for files, e.g. "• .... 
Contains the current DOS directory 
True if the edit window has the foCus 

Create and display a new file loader dialog. The dialog's fileSpec instance 
variable is specified by the file argument. For example, new(FileDialog, 
TheApp. workspace, "\ • .•") would present a file dialog listing all the files and 
subdirectories in the root directory, setting pathSpec to ''C:\" in the process. 

Object methods: 

WM_COMMAND(self, wP, IP) 
Handle file dialog events (OK, Cancel, etc.). 

WM_INITDIALOG(self, wp, Ip) 
Initialize the file loader dialog. 

getLoadFile(self) 
Get the selected file from the listbox, if any. If a directory is selected, reload list 
instead. 

loadLlst(self) 
Load the listbox based on fileSpec instance variable, update pathSpec instance 
variable. 

resetDir(self) 
Reset the original directory, which is stored in the startDir instance variable. 



322 Chapter 5: Class Reference 

Function 
Source file: 

Inherits from: 

Inherited by: 

FUNCTION.CLS 

Object Collection IndexedCollection Array 

ImmedFunction 

Functions are arrays of executable objects. 

Instance variables: 

Class methods: 

Object methods: 

abort(self):nil 

(none) 

(none) 

Execute the receiver, which must have 0 arguments, after clearing the stack. 
System use only. 

args(self):Int 
Return the number of arguments expected by the receiver. 

argsError(self, bp, std 
Report that an early-bound call to this function passed the wrong number of 
arguments. 

eadyUsers(self) 
Return the set of classes that have functions which early bind to the receiver. 
This is the set of classes that should be recompiled if the receiver is replaced 
with a new function that has a different number of arguments. 

execute(self):Object 
Evaluate the receiver, which must expect 0 arguments. 

owner(self) 
Return the class that holds this function in its method dictionary. 

sysPrintOn(self, aStrm) 
sysPrint the receiver onto the specified stream. sysPrint does a printOn because 
Functions have no unformatted output. 

temps(self):Int 
Return the total number of temporary variables (arguments plus locals) 
allocated by this function. 



GraphicsObject 
Source file: 

Inherits from: 

Inherited by: 

GraphicsObject 323 

GRAPHICS.CLS 

Object Collection IndexedCollection ByteCollection 
Struct 

Polygon Rect 

GraphicsObjects are Structs with fonnats defined by MS-Windows. 
GraphicsObject is the parent class of Rect, Elipse, Polygon, and RndRect. 

Instance variables: 

Class methods: 

Object methods: 

wordAt(self, ldx) 

(none) 

(none) 

Return the word at a particular index offset within the GraphicsObject. 
Graphics objects hold signed word values, because graphics objects can have 
negative coordinates. 

Indexed Collection 
Source file: 

Inherits from: 

Inherited by: 

INDEXEDC.CLS 

Object Collection 

Array Function lmmedFunction OrderedCollection 
SortedCollection TextCollection ByteCollection String 
Symbol Struct Do!Struct GraphicsObject Polygon Rect 
Ellipse RndRect Proc Interval Charlnterval 

lndexedCollection is a formal class which provides methods used by all the 
indexed collections, such as Array, OrderedCollection, and ByteCollection. 
Objects of these classes have elements that are accessed by integer subscripts, 
such as Sam[S]. The subscripts serve as physical indices, or offsets, into the 
collection. 

Instance variables: 

Class methods: 

(none) 

(none) 



324 Chapter 5: Class Reference 

Object methods: 

=(self, coll) 
Return true if one indexed collection is equal to another. Two indexed 
collections are considered equal if all their elements are equal. By definition, if 
two indexed collections are not the same size, then they cannot be equal. 

do(self, a Block) 
Evaluate the block over the indexed collection. 

hash(self) 
Return the hash value of an indexed collection .. It is computed by by XORing 
the hash values of its elements and then producing an Int. 

keysDo(self, aBlock) 
Evaluate a one-argument block over the keys of the receiver. In an 
IndexedCollection, the keys are the integer indices of the collection, and thus are 
probably of little interest. However, keysDo is provided so that any collection 
can respond to keysDo. 

map(self, aBlock) 
Return a new collection that is the result of applying the one-argument block to 
each of the receiver's elements. The new collection is the same size and class as 
the receiver. 

reverse(self) 
Reverse the collection in place (that is, the collection itself is altered) and return 
self. 

species(self) 
Return suitable species for cloning, etc., namely, OrderedCollection. If a 
descendant class doesn't redefine species, the species will be OrderedCollection. 

Inspector 
Source file: 

Inherits from: 

Inherited by: 

INSPECTO.CLS 

Object Window PopupWindow ToolWindow 

(no descendants) 

The Inspector class creates and manages Inspector windows, the windows 
which allow Actor users to inspect any object in the Actor system. 



Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 
zoom 
ew 
lb2 
lbl 
oldSize 
newSize 
target 
curl.isl 
indices 

• a~s methods: 

new(self, paren~ targ) 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWirtdow) 
(From class ToolWindow) 
(From class ToolWindow) 
(From class ToolWindow) 
The object being inspected 
The current listlx>x, lbl or lb2 
True if the object being inspected has indices 

Create a new Inspector window to inspect targ. 

Object methods: 

WM_CLOSE(self, wP, IP) 
Oose the inspector and remove from the master set of Inspectors. 

WM_COMMAND(self, wP, IP) 
Handle the Inspector events. 

WM_SETFOCUS(self, wP, IP ) 

Inspector 325 

Set compiler's class for target, pass the focus to the Inspector's edit window if it 
exists. 

dataAsString(self, iv) 
Return the selected data as a string for printing. 

doMenuCholce(self, wP) 
Dispatch the various menu choices (Doit!, Inspect, etc.). 

lnitKeyLlst(self) 
Initialize the key list box (lb2), upper right comer. 

lnitVarLlst(self) 
Initialize the variable list box Obl), upper left comer. 

lnspSelKey(self) 
Start Inspector on the selected key. 

lnspSelVar(self) 
Start new Inspector on the selected variable. 



326 Chapter 5: Class Reference 

showData(self) 
Show the data for the selected variable or key. 

start(self) 

Int 

Start an Inspector: Show the window, create listboxes, edit window, fill 
listboxes, display all. 

Source file: INT.CLS 

Inherits from: 

Inherited by: 

Object Magnitude Number 

(no descendants) 

Int is the class for all integer numbers in the range -2,..14 to (2..,.14)-1 inclusive (-
16384 to 16383). 

Instance variables: 

Oass methods: 

Object methods: 

•(self, y):lnt 

(none) 

(none) 

Multiplication operator. Example: 3•4, 

+(self, y):lnt 
Addition operator. Example: 3+4. 

-(self, y):lnt 
SubtractiQn operator. Example: 10-2. 

/(self, numeratod:lnt 
Division operator. If both operands are integers (i.e. not Reals), then integer 
division is performed. For example, 3/ 4 is 0, whereas 3.0/ 4 is 0.75. Note that 
the receiver Int is actually the numerator, i.e. in the message 3/ 4, 3 receives the 
message. 

<(self, y):Boolean 
Less than. If the argument is less than the receiver, then this method returns 
true. In the message 14<3, 3 is the receiver of the <message and 14 is the 
argument. 



Int 327 

<=(self, y):Boolean 
Less than or equal to. If the argument is less than or equal to the receiver, then 
this method returns true. In the message 14<=3, 3 is the receiver of the<= 
message and 14 is the argument. 

<>(self, y):Boolean 
Not equal. If the receiver is not equal to the argument, then this method returns 
true. In the message 14<>3, 3 is the receiver of the<> message and 14 is the 
argument • 

==(self, y):Boolean 
Equals. If the receiver is equal to the argument, then this method returns true. 
In the message 14=3, 14 is the receiver of the= message and 3 is the argument. 

>(self, y):Boolean 
Greater than. If the argument is greater than the receiver, then this method 
returns true. In the message 14>3, 3 is the receiver of the> message and 14 is 
the argument. 

>=(self, y):Boolean 
Greater than or equal to. If the argument is greater than or equal to the receiver, 
then this method returns true. In the message 14>=3, 3 is the receiver of the >= 
message and 14 is the argument. 

abs(self):Int 
Return absolute value of self. 

asBool(self) 
Return true if the receiver is not zero. 

asChar(self):Char 
Return a Char whose ASCII code is equal to the receiver. For instance, 
asChar(32) returns ' ' (a space). 

asDigit(self) 
Return the receiver as it would be represented as a digit. For instance, asDigit(3) 
returns '3'. For receivers not in the range 0 .. 9, inclusive, asDigit returns the 
character digit that corresponds to the receiver. For example, in numeric bases 
16 and above, the decimal number 15 is represented as the letter 'F. Therefore, 
asDigit(15) returns 'F. This method is only valid for receivers in the range 
'O' • .'9' and• A' . .'Z' (inclusive) because there are only 36 possible digits (10 
numbers + 26 letters). The character that asDigit returns for receivers outside 
this range is undefined. 

aslnt(self) 
Return self. Included only so that you can send asint messages to any number. 



328 Chapter 5: Class Reference 

asLong(self):Long 
Return the receiver as a Long integer. For example, asLong(38) returns 38L. 

asReal(self) 
Return self as a Real number. For example, asReal(18) returns 18 .• 

asString(self, base):String 
Return the receiver as a String in the specified base. For example, 
asString(l00,2) returns "1100100", which is what decimal 100 is in base 2. Any 
number can be displayed in hexadecimal fonnat by using 16 as a base, for 
instance. 

bitAnd(self, y):lnt 
Bitwise AND operator. Return the result of the receiver bitwise ANDed with 
the argument. 

bitOr(self, y):lnt 
Bitwise OR operator. Return the result oft~ receiver bitwise ORed with the 
argument. 

bitXor(self, y):lnt 
Bitwise XOR operator. Return the result of the receiver bitwise XORed with the 
argument. 

converterFor(self) 
Return the selector used to coerce other numerics to this class. 

do(self, aBlock) 
Enumerate the one-argument block over the Interval 0 to self (step=l). 

generality(self) 
Generality for Int objects. Return 0. 

getText<self):String 
Return text from MS-Windows. The receiver must be a valid handle to the text. 
The returned string is in ASOIZ format. 

high(self) 
Return the two high order bytes of an Int. Since there are no high order bytes in 
an Int, high for this class returns 0. 

loadString(self) 
Return the String from the resource file having the receiver as a resource ID. 
The maximum length of the String is 80. 

low(self) 
Return the low order two bytes of an Int. The low order bytes of an Int are the 
Int itself, since there are no high order bytes. 



Int 329 

max(self, y):Int 
Return the maximum of two Ints. For instance, max(3,4) returns 4. 

min(self, y):lnt 
Return the minimum of two Ints. For instance, min(3,4) returns 3. 

mod(self, y):Int 
Modulus operator. Return the remainder after dividing the argument by the 
receiver. For instance, 7 /5 is 1, with remainder 2. Thus, 7 mod 5 is 2. 

negate(self):Int 
Return the negative of the receiver. For instance, negate(3) returns -3. negate(-
49) returns 49. Zero, of course, has no negative, so negate(O) is 0. 

negative(self):Boolean 
Return true (specifically, it returns the receiver Int) if the receiver is negative 
(less than zero). Note that zero is neither negative nor positive. 

nonZero(self):Boolean 
Return true (specifically, it returns the receiver Int) if the receiver is nonzero. 

over(self, endldx) 
Return an Interval object starting at self, stopping at endidx, with step size 1. 
This is the primary way to create Interval objects, rather than to send a new 
message to Interval. For example, the message over(0,15) creates the Interval 
o .. 15, with step size 1. 

overBy(self, endldx, stepSize) 
Return an Interval object starting at self, stopping at endidx, with step size step. 
For example, the message overBy(0,15,2) creates the Interval 0 .• 15, with step size 
2. 

point(self, y):Point 
Return a Point object with an x value of the receiver and a y value of the 
argument. For example, point(3,7) returns 3@7. 

positive(self):Boolean 
Return true (specifically, it returns the receiver Int) if the receiver is positive 
(greater than zero). Note that zero is neither negative nor positive. 

printOn(self, aStrm) 
Print the Int onto the specified Stream. All integers by default display 
themselves in base 10. 

random(self):Int 
Return a random Int between 0 and (self-1), inclusive. A random message to a 
negative Int is not defined. 



330 Chapter 5: Class Reference 

rect(self, top, right, bottom) . . 
Return a Rect object with the receiver as the comer's x coordinate. The rest of 
the rectangle is defined by the arguments. 

stackLink(self):Int 
If the receiver Int is the address of a valid activation record, return the address 
in the fonn of another Int of the previous activation record on the Actor stack. 

stock(self) 
Return a handle to a predefined MS-Windows stock object such as a brush, pen, 
or font. (Stock object is the term that MS-Windows uses; it does not refer to 
object in the Actor sense.) 

tabs(self) 
Return a ·string of 2•self spaces. If self is less than or equal to zero, an empty 
string ('"') is returned. 

zero(self):Boolean 
·Return true (specifically, it returns 0) if the receiver is zero. 

Interval 
Source file: INTERVALCLS 

Inherits from: Object Collection lndexedCollection 

(no descendants) Inherited by: 

An Interval represents an arithmetic series, e.g. {0,1,2,3 ..• } and {0,2,4,6, ... }. 
Unlike most objects, an instance of class Interval is not usually created by 
sending a new message to class Interval (although you can do that too). Instead, 
new Intervals are usually created using two methods of class Int, over and 
over By. 

Instance variables: 

start 
stop 
step 

The start value 
The stop value 
The increment or decrement 

Class methods: 

new(self, lntervalStart, intervalEnd, stepSize):lnterval 
Create a new Interval object. The three arguments correspond to the start, stop, 
and step size of the new Interval. 



lntstVal 331 

over(self, intervalStart, intervalStop ):Interval 
Return a new Interval object. The first argument, intervalStart, is the starting 
point of the interval, and the second is the stopping point. The step size is 1. 
For example, over(Interval, 0, 10) would return an Interval object with stop=O, 
stop=lO, and step=l. 

Object methods: 

at(self, ldx) 
Return the element at the index given by idx. For example, at(over(S,10),3) 
returns8. 

do(self, oneArgBlock):lnt 
Evaluate a one-argument block over the Interval. For instance, the message 
do(over(0,10),{using(i) print(i)}) would print 0123456789. Return the last 
number in the interval (in the above example, 9 would be returned). 

in(self, val) 
Return true if val is in the set represented by the Interval. For example, (4 in 
overBy(0,10,2)) returns true, because 4 is an element of the set (0,2,4,6,8). 

init(self, intervalStart, intervalEnd, stepSize) 
· Initializes the data for the Interval. 

prlntOn(self, aStrm) 
Print the Interval onto the specified Stream argument. An example Interval 
would appear as "0 .. 10 by 2". 

size(self) 
Return the number of elements in the interval. 

sysPrintOn(self, aStnn) 
sysPrint the Interval onto the specified Stream. sysPrint is the same as printOn 
for this class because Interval objects do not have any unformatted output. 

Item List 
Source file: 

Inherits from: 

Inherited by: 

ITEMLIST.CLS 

Object ParseNode 

IvChain 

A general-purpose parse tree node used to hold lists of arguments, locals, etc. in 
parsing via YaccMachine. 



332 Chapter 5: Class Reference 

Instance variables: 

!we (.Prom class ParseNode) 
hst The actual list object 

Class methods: (none) 

Object methods: (none) 

Keyed Collection 
Source file: KEYEOCOL.Cl.S 

Inherits from: Object Collection 

Inherited by: Dictionary MethodDictionary 

KeyedCollection is the formal, parent class for any class where the elements are 
accessed symbolically rather than by physical integer offsets. For example, you 
could access the cities in Illinois by saying Cities["Illinois"]. In this case, the key 
is "Illinois", and the element would be something like Set("Chicago" ''Rockford" 
"Evanston" "Belleville" ). Elements of a KeyedCollection are inherently 
unordered. 

lnstance variables: 

tally Number of elements in collection 

Class methods: (none) 

Object methods: 

=(self, aColl) 
Equals method for KeyedCollections. KeyedCollections are equal if they are the 
same size and have equal keys and elements. 

clear<self):KeyedCollection 
Clear the receiver KeyedCollection. All keys and elements are set to nil. 

grow(self) 
Grow a keyed collection so that it can hold more elements. Works by copying 
elements into larger collection and then swapping object pointers with the new 
collection. 

hash(self) 
Return the hash value of the receiver. A keyed collection hashes by adding the 
hash values of its keys and producing an Int. 



KeyedCoHsction 333 

inlt(self) 
Initialize the KeyedCollection by setting the tally instance variable to O. 

keys(self) 
Return a Set containing all of the keys in the collection. 

keysDo(self,aBlock) 
Evaluate the one-argument block over the keys of the receiver. 

printOn(self, aStrm) 
Print the KeyedCollection onto the specified Stream. The keys of the collection 
are what gets placed onto the stream. 

size(self) 
Return the current size of the KeyedCollection. 

sy11Print0n(self, aStrm) 
sysPrint the keyed collection onto the specified stream. sysPrint for keyed 
collections is the same as printOn because KeyedCollections have no 
unformatted output. 

ListBox 
Source file: 

Inherits from: 

Inherited by: 

USTBOX.CIS 

Object Control 

Oasslist 

The ListBox class creates and manages all the ListBox controls. A ListBox is a 
window with a vertical list of elements which can be scrolled using the scrollbar 
and selected using the mouse. Many Actor list boxes, such as used in the 
Browser and Inspector, are managed using the methods from this class. 

Instance variables: 

cRect 
contID 
parent 
hCntl 
selldx 
selStr 

Class methods: 

new (self, id, par) 

(From class Control) 
(From class Control) 
(From class Control) 
(From class Control) 
An integer containing the index of the selected item 
String representation of currently selected item 

Create a new list box object in Actor and MS-Windows. Parent passes itself and 
the control ID. 



334 Chapter 5: Class Reference 

Object methods: 

addString(self, aStr ) 
· Add aStr to the UstBox, maintaining sorted order, and return its index. 

clearList(self) 
Clear the contents of the UstBox. 

getSelldx(self) 
Return the index of whatever item is currently selected and set selldx. Return 
nil if no item is selected. 

getSelString(self) 
Return the selected string. Return nil if none is selected. 

insertString(self, aStr, ldx) 
Add aStr to the UstBox at the specified idx, overriding the sorted order, and 
return its index. If idx=-1, aStr is added to end of UstBox. 

selectString(self, aStr) 
Select the specifed string if possible. Set and return selldx. Return nil if 
selecting aStr doesn't work. · 

setCurSel(self, ldx) 
Set the current selection to idx. 

setLastSel(self) 
Set the current selection to whatever was the last selected item. 

setVars(self, id, par) 
Set the instance variables of the UstBox. 

Long 
Source file: 

Inherits from: 

Inherited by: 

LONG.CLS 

Object Magnitude Number 

(no descendants) 

Long is the class which can represent any integer which will fit in 32 bits, i.e. -
2,..31 to -(2••31)-1, (-2,147,483,648 to 2,147,483,647). Long integers always 
appear with an 'L' after them, e.g. 34L, 23689L, etc. Although Actor will always 
print an upper case 'L', you can use either upper ~r lower case. 

Instance variables: 

Class methods: 

(none) 

(none) 



Long 335 

Object methods: 

•(self, y):Long 
Multiplication operator. Example: 3L•4L. 

+(self, y):Long 
Addition operator. Example: 3L+4L. 

-(self, y):Long 
Subtraction operator. Example: 10L-2L. 

/(self, numerator):Long 

' 

Division operator. If both operands are integers (i.e. either Ints or Longs), then 
integer division is performed. For example, 3L/ 4L is 0, whereas 3.0/. 4 is 0.75. 
Note that the receiver Long is actually the numerator, i.e. in the message 3L/ 4L, 
3L receives the message. 

<(self, y):Boolean 
Less than. If the argument is less than the receiver, then this method return true. 
In the message 14L<3L, 3L is the receiver of the< message and 14L is the 
argument. 

<=(self, y):Boolean 
Less than or equal to. If the argument is less than or equal to the receiver, then 
this method returns true. In the message 14L<=3L, 3L is the receiver of the<= 
message and 14L is the argument. 

<>(self, y):Boolean 
Not equal. If the receiver is not equal to the argument, then this method returns 
true. In the message 14L<>3L, 3L is the receiver of the<> message and 14L is 
the argument. , 

=(self, y):Boolean 
Equals. If the receiver is equal to the argument, then this method returns true. 
In the message 14L=3L, 14L is the receiver of the= message and 3L is the 
argument. 

>(self, y):Boolean 
Greater than. If the argument is greater than the receiver, then this method 
returns true. In the message 14L>3L, 3L is the receiver of the> message and 14L 
is the argument. 

>=(self, y):Boolean 
Greater than or equal to. If the argument is greater than or equal to the receiver, 
then this method returns true. In the message 14L>=3L, 3L is the receiver of the 
>= message and 14L is the argument. 



336 Chapter 5: Class Reference 

asBool(self):Boolean 
Return true (specifically, return the asint(self)) if the receiver is not zero. 

asChar(self):Char 
Return a Char whose ASCII code is equal to the receiver. For instance, 
asChar(32L) returns' ' (a space). 

aslnt(self}:lnt 
Return receiver as an Int. If the receiver is too large to be converted into an Int, 
an error is generated. 

asLong(self} 
Return self. Included only so that you can send asl..ong messages to any 
number. 

asPoint(self} 
Convert a packed point as received from MS-Windows to an Actor point object. 
A "packed point" has the x coordinate stored in the lower two bytes of the Long, 
and they coordinate is stored in the upper two bytes. For example, 
asPoint(128000928L) returns 9210@1953. 

asReal(self):Real 
Return self as a Real number. For example, asReal(18L) returns 18 .. 

asString(self, base):String 
Return the receiver as a String in the specified base. For example, 
as.5tring(100L,2) returns "1100100", which is wha.t decimal 100L is in base 2. Any 
number can be displayed in hexadecimal format by using 16 as a base, for 
instance. Bases from 2 to 36, inclusive, are defined. 

bitAnd(self, y):Long 
Bitwise AND operator. Return the result of the receiver bitwise ANDed with 
the argument 

bitOr(self, y):Long 
Bitwise OR operator. Return the result of the receiver bitwise ORed with the 
argument. 

bitXor(self, y):Long 
Bitwise XOR operator. Return the result of the receiver bitwise XORed with the 
argument. 

c:onverterFor(self) 
Return the selector used to coerce other numerics to this class. 

extend(self) 
Sign-extend the low word (lower two bytes) of the receiver, and return the 
result. 



long 337 

generality(self) 
Generality for Long objects. Return 1. 

hash(self) 
Return a hash value based on the numeric contents (rather than the object 
pointer, which is how Int and Char objects are hashed). 

high(self):Long 
Return the high order word (upper two bytes) of the receiver. For example, 
high(3800788L) returns 57L. 

low(self):Long 
Return the low order word Oower two bytes) of the receiver. For example, 
low(78899L) returns 2467L. 

mod(self, y):Long 
Modulus operator. Return the remainder after dividing the argument by the 
receiver. For instance, 7 /5 is 1, with remainder 2. Thus, 7L mod SL is 2L. 

negate(self):Long 
Return the negative of the receiver. For instance, negate(3L) returns -3L 
negate(-49L) returns 49L. Zero, of course, has no negative, so negate(OL) is OL. 

negative(self):Boolean 
Return true (specifically, it return the receiver Long) if the receiver is negative 
(less than zero). Note that zero is neither negative nor positive. 

posltive(self):Boolean 
Return true (specifically, it returns the receiver Long) if the receiver is positive 
(greater than zero). Note that zero is neither negative nor positive. 

printOn(self, aStrm) 
Print the Long onto the specified Stream. All integers by default display 
themselves in base 10. 

sysPrintOn(self, aStrm) 
sysPrint the Long onto the specified Stream. Print an 'L' after it. 

wordAt(self):Long 
Treats the Long as a Segment:Offset pair and return the contents of that memory 
location. For instance, to peek at the contents of memory location OOOF:FD3E, 
you would send a wordAt(OxFFD3EL) message. 

zero(self):Boolean 
Return true (specifically, it returns 0) if the receiver is zero. 



338 Chapter 5: Class Reference 

Magnitude 
Source file: 

Inherits from: 

Inherited by: 

MAGNITUD.CLS 

Object 

Char Number Int Long Real 

Magnitude is the abstract, formal ancestor class for all classes whose instances 
are atomic and can be compared with each other, such as the Number classes 
and the Char class. U a class's instances are atomic and it is logical to say that 
one instance is greater than or less than another, then Magnitude should 
probably be the parent class of such a class. 

Instance variables: 

Class methods: 

Object methods: 

between(self, min, max) 

(none) 

(none) 

Return true if self is in the range defined by min and max, inclusive. For 
example, between('c','a','f') returns true, whereas between(4,15,28) returns nil. 
Note that max must be greater than min, i.e. between(3,10,0) returns nil. 

I 

max(self, anObject) 
'.Return the maximum of self and anObject. For example, max(' c' ,' e') returns' ft. 

min(self, anObject) 
Return the minimum of self and anObject. For example, min(' c' ,' e') returns' c'. 

Meta 
Source file: 

Inherits from: 

Inherited by: 

META.CIS 

Object Behavior 

(no descendants) 

Meta describes the behavior of all classes of classes, such as IntClass, 
StringClass, etc. 

Instance variables: 

name 
format 
variables 
methods 
ancestor 

(From class Behavior) 
(From class Behavior) 
(From class Behavior) 
(From class Behavior) 
(From class Behavior) 



Class methods: 

new(self):class 
Create a new instance of Meta, that is, a class of a class. 

Object methods: 

Method Dictionary 
Source file: 

Inherits from: 

Inherited by: 

(none) 

ME1HODDI.CLS 

Object Collection KeyedCollection Dictionary 

(no descendants) 

Meta 339 

MethodDictionary objects holds key /value pairs with lookups based upon 
equivalence, as opposed to equality. This is more efficient in terms of both time 
and space than Dictionary, but less general. Since the keys are looked up on the 
basis of equivalence rather than equality, this restricts the keys of 
MethodDictionaries to be objects for which equivalence is meaningful, such as 
Char, Int, and Symbol. All MethodDictionary objects are allocated out of static 
memory. If you want objects with all the properties of MethodDictionary 
Instances, but allocated out of dynamic memory, please see the 
IdentityDictionary class. 

Instance variables: 

tally 
values 

aass methods: 

(From class K~Collection) 
A collection of values associated with the keys 

new(self, size):MethodDictlonary 
Returns a new MethodDictionary with the specified number of elements. 

Object methods: 

add(self, anElement, aKey):MethodDictionary 
Add the specified key and element to the MethodDictionary receiver. 

at(self, aKey):AnElement 
Return the element residing at the specified key. 

clear(self) 
Empty the MethodDictionary completely of all keys and elements. All keys and 
elements are set to nil. 



340 Chapter 5: Class Reference 

do(self, aBlock) 
Evaluate the elements of the receiver over the one-argument block. 

find(self, aKey):lnt 
Return the physical index of the specified key. 

getKey(self, elem) 
Return the key part of an element. (Private method) 

getVal(self, ldx) 
Return the value residing at the specified physical index. (Private method) 

grow(self) 
Grow a MethodDictionary so that it can hold more elements. Works by copying 
elements into larger collection and then swapping object pointers with the new 
collection. Overrides Dictionary's grow method. 

inlt(self):MethodDictionary 
Initialize the receiver by setting the tally instance variable to zero. 

key At(self, a Val) 
Return the key corresponding to the specified value (there may be several keys 
with the same value, but not vice-versa) . 

. keysDo(self, aBlock) 
Evaluate the keys of the receiver over the oite-argument block. This method 
overrides Dictionary's keysDo method. 

put(self, aKey, anElement) 
Place anElement into the collection corresponding to aKey. Overrides 
Dictionary's put method. 

putElem(self, key, val, ldx) 
Store a new key /value pair at the specified index. (Private method) 

sysPrintOn(self, aStrm) 
· sysPrint the MethodDictionary onto the specified stream. 

ModalDialog 
Source file: 

Inherits from: 

Inherited by: 

MODALDIA.CLS 

Object 

ClassDialog DebugDialog DirtyCLD FileDialog 

General purpose class for creating and running modal dialogs. Modal dialogs 
are dialogs which take control from its parent window, and usually require 



ModalDialog 341 

some action on the part of the user before work can continue. For most kinds of 
modal dialogs, a descendant class needs to be defined, but some simple dialogs 
can use this class directly. Dialogs also require definition in the resource script 
file, via a dialog template. 

Instance variables: 

handle The dialog's handle, assigned by MS-Windows 

Class methods: 

new(self, resID, parent) 
Create and run a modal dialog. This method does not return until the dialog is 
finished. 

Object methods: 

WM_COMMAND(self, wp, Ip) 
Exit point for a simple modal dialog. If Cancel was not chosen, wP is passed to 
the MS-Windows EndDialog routine. If Cancel was chosen, 0 is passed to 
EndDialog. The value passed is then returned by the MS-Windows DialogBox 
function. 

WM_INITDIALOG(self, wp, Ip) 
By returning a 1 from the INITDIALOG message, we are telling MS-Windows to 
set the input focus to first tabstop item. (See MS-Windows Reference 8.3). 

flash(self) 
Flash the dialog to signal an error. 

getltemText(self, item) 
Return text string for the specified dialog item. 

getLBText<self, Item) 
Return the selected text for the ListBox designated by item. 

handle(self) 
Return the handle for the dialog. 

setDlalog(self): self 
Set this dialog to be the current one. 

setltemText(self, Item, aStr) 
Set the text for the specified dialog item to aStr. 

setText<self, aStr) 
Set the caption text for the dialog window. 

toggle(self, id) 
Toggle a check button and return the new boolean state. 



342 Chaptsr 5: Class Reference 

Nil Class 
Source file: 

Inherits from: 

Inherited by: 

NILCLASS.CLS 

Object 

(no descendants) 

NilOass describes the behavior of the object nil, the only instance of this class. 
nil is used to represent logical false as well as the uninitialized state of all 
variables. Many of nil's methods are defaults that do nothing, but eliminate 
control structure that would have to explicitly check for nil. 

Instance variables: 

Class methods: 

Object methods: 

asString(self, base) 

(none) 

(none) 

Return a string representation of nil. 

do(self, aBlock) 
Empty do method. 

findV ar(self):self 
Empty findVar method. 

keyAt(self, lndex):self 
Empty key At method. 

parse(self, arg) 
Empty parse method. 

printOn(self, aStrm) 
Print "nil" onto the specified stream. 

register(self) 
Empty register method. 

removeNulls(self) 
Empty removeNulls method. 



Number 
Source file: 

Inherits from: 

Inherited by: 

NUMBER.ClS 

Object Magnitude 

Int Long Real 

Numb9r 343 

This class is a formal class which acts as the parent class for all numeric objects, 
such as Int, Long, and Real. Its major purpose is to handle mixed-mode 
arithmetic, such as 3.4+4 (adding a Real to an Int). Handling these situations is 
called coercion, and many of the methods in this class handle arithmetic 
coercion. 

Instance variables: 

Class methods: 

new( self) 

(none) 

Reports an error if new is sent to a number. 

Object methods: 

•(self, aNum) 
Mixed-mode multiplication operator. Example: 3"'4.7. 

tttt(self, aNum) 
Return aNum raised to the receiver power as a Real. For instance, 2"3 returns 
8.0. 

+(self, aNum) 
Mixed-mode addition operator. Example: 3+4.3. 

-(self, aNum) 
Mixed-mode subtraction operator. Example: 3L-4. 

/(self, aNum) 
Mixed-mode division operator. Example: 3/4.0. 

<(self, aNum) 
Mixed-mode less than. H the argument is less than the receiver, then this 
method returns true. 

<=(self, aNum) 
Mixed-mode less than or equal to. H the argument is less than or equal to the 
receiver, then this method returns true. 



344 Chapter 5: Class Ref9TBnce 

<>(self, aNum) 
Mixed-mode not equal. If the argument is not equal to the receiver, then this 
method returns true. 

=(self, aNum) 
Mixed-mode equals method. If self = aNum, then return true. 

>(self, aNum) 
Mixed-mode greater than. If the argument is greater than the receiver, then this 
method returns true. 

>=(self, aNum) 
Mixed-mode greater than or equal to. If the argument is greater than or equal to 
the receiver, then this method returns true. 

abs(self) 
·.·Return the absolute value of the receiver. For example, abs(-4.0) returns 4.0, and 
abs(37L) returns 37L. 

arcCos(self) 
Return the arcCosine of the receiver. The receiver is treated as an angle in 
radians. 

arcSin(self) 
Return the arcSine of the receiver. The receiver is treated as an angle in radians. 

asPoint(self) 
Convert a packed point as received from MS-Windows to an Actor point object. 
A "packed point" has the x coordinate stored in the lower two bytes of a 
number, and the y coordinate is stored in the upper two bytes. 

bitAnd(self, aNum) 
Mixed-mode bitwise AND operator. (See bitAnd for the Int and Long classes). 

bitOr(self, aNum) 
Mixed-mode bitwise OR operator. (See bitAnd for the Int and Long classes). 

bitXor(self, aNum) 
Mixed-mode bitwise XOR operator. (See bitXor for the Int and Long classes). 

coerce(self, aNum, oper) 
Determines which number has the highest generality, self or aNum, converts the 
one with the lowest generality to the class of the other, and then performs the 
specified operation. 

cos(self) 
Return the Real cosine of the receiver. The receiver is treated as an angle in 
radians. 



Number 345 

dec(self) 
Failure function for integer decrement primitive. Return self, converted to a 
Long, decremented by one. 

dec2(self) . 
Failure function for integer decrement by two primitive. Return self, converted 
to a Long, decremented by two. 

degToRad(self) 
Return the receiver, which is assumed to be in degrees, converted to radians. A 
Real is returned. 

exp(self) 
Return the Real exponential of the receiver (e raised to the self power). 

inc(self) 
Failure function for integer increment primitive. Return self, converted to a 
Long, incremented by one. 

inc2(self) 
Failure function for integer increment by two primitive. Return self, converted 
to a Long, incremented by two. 

log(self) 
Return the Real natural logarithm (base e) of the receiver. 

mod(seU, aNum) 
Mixed-mode modulus operator. Example 3 mod 4. For a definition of modulus, 
see the mod methods for the Int and Long classes. 

negative( self) 
Return true if receiver is greater than zero. 

nonZero(self) 
Return true if receiver is not equal to zero. 

over(seU, arg) 
Define an interval from receiver to arg by 1. Both must be within Int range. 

pack(seU, hi) 
Return a Long that has the receiver as its low word (lower two bytes) and the 
argument as its high word (highest two bytes). 

polnt(self, yV al) 
Return a Point object with an x value of the receiver and a y value of the 
argument. For example, point(3L,7) returns 3L@7. 

positive(self) 
Return true if receiver is greater than zero. 



346 Chaptsr 5: Class Refsrsncs 

radToDeg(self) 
Return the receiver, which is assumed to be in radians, converted to degrees. A 
Real is returned. 

sin(self) 
Return the Real sine of the receiver. The receiver is treated as an angle in 
radians. 

sqrt(self) 
Return the Real square root of the receiver. 

tan( self) 
Return the Real tangent of the receiver. The receiver is treated as an angle in 
radians. 

zero(self) 
Return true if receiver is equal to zero. 

Object 
Source file: 

Inherits from: 

Inherited by: 

OBJECT.CLS 

Actor App Association Behavior Meta BlockContext 
Collection lndexedCollection Array Function 
lmmedFunction OrderedCollection SortedCollection 
TextCollection ByteCollection String Symbol Struct 
GrapWcsObject Polygon Reel Interval I<eyedCollection 
Dictionary MethodDictionary Set SymbolTable 
CompileState Context Control ListBox Classlist 
Debugger ErrorBox File SourceFile DocFile Magnitude 
Char Number Int Long Real ModalDialog ClassDialog 
DebugDialog DirtyCLD FileDialog NilClass ParseNode 
AssgnNode BlockNode CallNode Emptylist IdNode 
IfElseNode IfNode lnfixNode Itemlist IvChain 
LoopNode MsgNode RetNode Point Primitive Stream 
Analyzer ActorAnalyzer Window PopupWindow 
ToolWindow Browser Inspector TextWindow 
EditWindow WorkEdit BrowEdit WorkSpace 
WorkWindow YaccMachine ActorParser 

Object is the class from which all other classes descend. The methods in this 
class can be used by any object in the Actor system. 

Instance variables: (none) 



Class methods: 

Object methods: 

<>(self, arg):Boolean 

(none) 

Return true if argument is not equivalent to receiver. 

=(self, arg):Boolean 
Return true if argument is equivalent to receiver. 

==(self, arg):Boolean 
Return true if argument is equivalent to receiver. 

ancestError(self, bp, std 
Report an incorrect ancestor in a typed message to self. 

and(self, arg):Boolean 
Return true if both argument and receiver are non-nil. 

at(self, lndex):Object 
Basic indexed access primitive for pointer objects. 

c:lass(self):Behavior 
Return the class of the receiver. This method cannot be redefined. 

cleanup(self) 

Object 34i 

Perform a static garbage collection and report number of bytes saved and bytes 
remaining. 

copy(self):Object 
Return a new object that has all of the receiver's instance variables. 

do(self):self 
do for atoms does nothing. 

error(self, stackTop, errorSym):nil 
All high-level errors are handled via this method. The first parameter should be 
stackTop(), which gives a pointer to the activation of the caller. The second 
parameter is a symbol that describes the error. If the symbol is defined as an 
integer constant, the value is taken to be the ID of an error string. Executes 
abort (never returns). 

fail(self, stackTop, selector):nil 
This method is executed any time a late-bound message is not understood. 

func:Name(self, aFunction):String 
Return a string describing the function by looking it up in the class chain of the 
receiver. 



148 Chapter 5: Class Reference 

gc(self):self 
Low-level primitive called by cleanup. 

generality( self) 
Objects have negative generality so that Number= can detect non-numbers and 
return false. 

hash(self):Int 
Return an integer based on the object pointer of the receiver. 

inheritError(self, bp, std 
Present an error box to show incorrect attempt to early bind. Used in early 
binding support. System use only. 

init(selfl:self 
Object init does nothing. Allows any object to be sent an init message at creation 
time. 

initCache(self):self 
Oear the methods cache after a method recompilation. 

lnitSystem(self) 
Set failure functions for numeric primitives, and other setup required at system 
start. · 

inspect(self) 
Start an Inspector for this object. 

isldx(self) 
Return true if the object has indexed instance variables. 

isPtr(self) 
Return true if the receiver is a pointer object. 

keysDo(self, aBlk) 
keysDo for atomic objects does nothing. 

limit(self):Int 
Return the physical number of elements that a collection can hold. Atom objects 
returnO. 

nextOP(self):Object 
Return the next sequential non-freed object pointer in the object table. For 
system use only. · 

not<self):Boolean 
Return the logical negation of the receiver. 



Object 34 

op(self) 
Return the long integer value of the receiver's object pointer. 

or(self, obj):Boolean 
Return true if either the receiver or the parameter is true. 

primError(self, stacktop, errorNum):nll 
All primitive errors are handled through this method. The second parameter is 
the primitive error number, which corresponds to an error string ID in the 
resource file. 

print{self):self 
Print the receiver on a stream, and draw the resulting string on the output ports. 

printLlne(self) 
Print the object plus newline to current output ports. 

p~intOn(self, aStream):self 
Object's printOn just prints the class name, e.g. <a String>. 

publidself, aSym):self 
Makes a new global variable. For example, public(3, #Sam) makes Sam a global 
variable with the value 3. Equivalent to the statement Actor[#Sam] := 3. 

put(self, val, idx):val 
Basic indexed put for non-atomic objects. 

screenSize(self) 
Return the coordinates of the screen as a Point object. The x instance variable is 
width, y is length. 

senders(self) 
Return a Set of functions that contain the object pointer of this object. To find 
senders of a late-bound method, use the selector symbol as the receiver. To find 
senders of an early-bound method call, the method itself should be the receiver. 

setClass(self, class):self 
Set the class of an object. For system use only~ 

size(self):Int 
The default response to size is to return limit. 

species(self):class 
The default response to species is the same as class. 

stackTop(self):Int 
Return a integer pointer to the activation record of the caller. 



150 Chapter 5: Class Reference 

statidselfl:self 
Move an object to the static region. This causes its physical location to remain 
stable until a static garbage collection is performed. 

staticRoom(selfl:Long 
Return the number of bytes available in the static region as a Long. 

swap(self, obj):self 
Swap the object pointers of the receiver and the argument. Dangerous, used 
chiefly in grow methods. 

sysPrlnt(selfl:self 
Object sysPrint defaults to Object:print. 

sysPrintOn(self, aStream):self 
Print the receiver on a stream in a format suitable for development and 
debugging. 

trace(self):self 
Enter the low-level debugger, accessed via the communications port. 

traceOff(self):self 
Return to normal operation after performing a trace. 

who(self) 
Return a string containing the hexadecimal representation of the object pointer 

. of the receiver. 

-=(self, obj):Boolean 
Return true if the receiver and the argument are not equivalent. 

Ordered Collection 
Source file: 

Inherits from: 

Inherited by: 

ORDEREDC.CLS 

Object Collection IndexedCollection Array 

SortedCollection TextCollection 

OrderedCollection is an indexed collection in which the elements are 
chronologically ordered, i.e. elements at the end were added to the collection 
after the ones at the beginning. The most obvious use of an OrderedCollection 
is a stack. You can think of an OrderedCollection as a stack, if you prefer, and 
we have even provided pop and push methods. An OrderedCollection is 
considered empty if its two instance variables, firstElement and lastElement, are 
equal. 

( 

\ 



Instance variables: 

first Element 
lastElement 

Class methods: 

The index of the first element 
The index of the last element 

(none) 

Object methods: 

?hasElements(self):OrderedCollection 

OrderedColJBCtion 351 

Generate an "Empty collection" error if the collection is empty. If not, then it just 
returns the receiver. This method is used as an error checking mechanism by 
some of the other methods of this class. 

add(self, anObject):OrderedCollection 
Add the specified object to the receiver at its end. The add method is 
synonomous with push if you consider an OrderedCollection to be a stack. In 
fact, this class's push method uses this method. 

checkRange(self, ldx) 
Makes sure that the index is within the valid range of the collection. (Private 
method) 

do(self, aBlock) 
Evaluate the one-argument block over the elements of the receiver. 

first(self) 
Return (but do not remove) the first element in the collection, if any. If there 
isn't a first element, i.e. if the receiver is empty, an "Empty collection" error is 
generated. 

grow(self) 
Grow the OrderedCollection so that it can hold more elements. Works by 
copying elements into larger collection and then swapping object pointers with 
the new collection. 

lnit(self) 
Initializes an OrderedCollection by setting firstElement and lastElernent equal to 
zero. You can empty an existing OrderedCollection simply by sending it an init 
message. 

insert(self, elem, ldx) 
Insert a new element at the specified index in the collection. Reports an error if 
the index is not in the current valid range. Grow the collection if necessary. 

lnsertAll(self, coll, ldx) 
Insert any indexed collection into the receiver, starting at the specified idx. 



'152 Chapter 5: Class Reference 

last(self) 
Return (but not remove) the last element in the collection, if any. If there isn't a 
last element, i.e. if the receiver is empty, an "Empty collection" error is 
generated. 

pop(selfl 
Removes and return the last element in the collection. If the collection is empty, 
an "Empty collection" error is generated. 

push(self, anObj) 
Add a new last element, anObj, to the collection. 

remove(self, idx) 
Removes the element at the specified idx. If idx is not valid, i.e. if it is less than 
firstElement or greater than or equal to lastElement, then a ''Range Error" is 
generated. The removed element doesn't leave a ''hole;" elements above the 
removed element (i.e. with indices greater than idx) are moved down. 

removeFirst(self) 
Removes the first element in the collection, if there is one. If there isn't one, then 
a ''Range error" is generated. 

removeLast(self) 
Removes and return the last element in the collection, if any. If the collection is 
empty, an ''Empty collection" error is generated. (The pop method of this class 
uses this method; removel.ast is another name for pop.) 

reverse(self):OrderedCollection 
Returns a new collection with all of the receiver's elements, but in reverse order. 
Differs from lndexedCollection:reverse by the fact that it returns a new 
collection rather than reversing the receiver in place. 

size(self) 
Return the current number of elements in the collection. 

Point 
Source file: PQINT.ClS 

Object - Inherits from: 

Inherited by: (no descendants) 

Point objects are atomic objects with two instance variables, x and y. They hold 
the x and y coordinates of the Point, respectively. Points are displayed in the 
form x@y, such as 44@33, -23@2, etc. You can specify literal points this way, too. 



Point 353 

The methods of this class are used to connect Points together to make lines. In 
addition, Points are useful whenever you need to combine two objects together 
as a packet (a particular row-column pair, for instance). 

Instance variables: 

x 
y 

The x value of the Point, e.g. 3 in 3@2 
The y value of the Point, e.g. 2 in 3@2 

Class methods: (none) 

Object methods: 

=(self, aPt) 
Equals. Two Points are equal to one another if their x instance varia\>les are 
equal and their y instance variables are equal. 

dl'aw(self, hdc) 
Draw the point on the screen. Since drawing a Point is not really defined, this 
method is included for completeness. It actually draws a very small rectangle. 

hash(self) 
Return a hash value equal to the hash value of x XORed with the hash value of 
y. 

line(self, aPoint, hdc) 
Draw a line from self to aPoint using the specified handle to a display context. 
Reset the current window position to be aPoint. 

llneTo(self, hdc) 
Draw a line from the current position up to, but not including, self, using the 
specified handle to a display context. Reset the current window position to be 
the receiver Point. 

moveTo(self, hdc) 
Change the current window position to be the receiver point using the specified 
handle to a device context. 

printOn(self, aStrm) 
Print the Point in x@y format onto the specified stream .. 

x(self) 
Return the x value of the receiver point. 

y(self) 
Return the y value of the receiver point. 



54 Chapter 5: Class Reference 

Polygon 
Source file: 

Inherits from: 

Inherited by: 

POLYGON.CLS 

Object Collection lndexedCollection ByteCollection 
Struct GraphicsObject 

(no descendants) 

The Actor Polygon class allows you to create geometric shapes of any 
complexity. A Polygon is basically a collection of points that are connected 
together in a series of lines. In fact, a Polygon isn't neccessarily a real polygon 
unless you explicitly make it one. For instance, to define a triangle, you have to 
include four points, where the last one is the same as the first. Otherwise the 
polygon won't be closed. 

Instance variables: 

Oass methods: 

new(self, aColl) 

(none) 

Create a new Polygon object in Actor. aColl is an array of points. For example, 
to create a triangle with vertices at()@(), 3@4, and o@4, you would send the 
message new(Polygon, #(o@O 3@4 0@4 ()@())). 

Object methods: 

draw(self, hdc) 
Draw the Polygon receiver using the specified handle to a display context. 

PopupWindow 
Source file: POPUPWIN.CIS 

Inherits from: Object Window 

Inherited by: ToolWindow Browser Inspector 

The PopupWindow class produces popup-style windows. Most of the windows 
in Actor are of the popup variety-in fact, they all are, except for some of the 
demonstration programs and the Actor Display. PopupWindows are basically 
identical to their tiled counterparts except they are always attached to a parent 
window and cannot be made iconic or zoomed. If their parent window is made 
iconic, PopupWindows disappear. When creating a PopupWindow, default 
sizing is provided, or you can specify location with a Rect. See the new method 
for this class. 



Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 

Oass methods: 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 

new(self, par, menuName, wName, rect) 

PopupWindow 355 

Create and return a new Popup window. The par argument is the parent 
window, and menuName is the ASCII string specifying the name of a menu 
resource (nil for no menu). wName is a sb'ing containing the caption for the 
window, and rect, if specified, determines where and how big the 
PopupWindow will be. 

Object methods: (none) 

Primitive 
Source file: 

Inherits from: 

Inherited by: 

PRIMITIV.ClS 

Object 

(no descendants) 

Primitives are methods implemented in languages other than Actor. 

Instance variables: (none) 

Oass methods: 

Object methods: 

args(self):Int 

(none) 

Return the number of arguments expected by the primitive. 

argsError(self, bp, std 
Report that an early-bound call to the primitive passed the wrong number of 
arguments. 

earlyUsers(self) 
Return the set of classes that have functions which early bind to the receiver. 
This is the set of classes that should be recompiled if the receiver is recompiled. 

getProfile(self):Int 
Return the contents of the profile word. This word is incremented each time the 
primitive is executed when Actor is in profiling mode. 



156 Chapter 5: Class Reference 

indexOf(self, anObj) 
Always returns nil. Since primitives can't contain object pointers, they can 
never be senders. 

owner(self) 
Return the class that holds this method in its method dictionary. 

setFail(self, function):self 
Set the failure function for the primitive. Only used in arithmetic primitives. 

setProfile(self, num):self 
Set the contents of the profile word to an initial value. 

sysName(self) 
Define how primitives construct an identifying string for sysPrintOn. 

temps(self):args 
Temps always equals args, since primitives cannot have locals. 

Real 
Source file: REAL.CIS 

Inherits from: 

Inherited by: 

Object Magnitude Number 

(no descendants) 

A Real is designed for very large or very small numbers, or any number with a 
fractional part. A Real is sometimes represented (depending on how big or small 
it is) in scientific notation, such as 1.334e+083, which means 1.334 times 10 to the 
83rd power. Actor represents its reals in 8 bytes, equivalent to Microsoft C's 
double data type. Technically, an Actor Real is in the IEEE double-precision 
floating point fonnat. Numbers from 1.7e-308 to 1.7e+308 (or their negatives) 
can be represented as Actor Real objects. 

Instance variables: 

Class methods: 

Object methods: 

•(self, y):Real 

(none) 

(none) 

Multiplication operator. Example: 3.()'t4.0. 

+(self, y):Real 
Addition operator. Example: 3.0+4.0. 

( 



Real 357 

-<self, y):Real 
Subtraction operator. Example: 10.0-2.0. 

/(self, numerator):Real 
Division operator. For example, 3.0/ 4.0 is 0.75. Note that the receiver Real is 
actually the numerator, i.e. in the message 3.0/4.0, 3.0 receives the message. 

<(self, y):Boolean 
Less than. If the argument is less than the receiver, then this method returns 
true. In the message 14.0<3.0, 3.0 is the receiver of the< message and 14.0 is the 
argument. 

<•(self, y):Boolean 
Less than or equal to. If the argument is less than or equal to the receiver, then 
this method returns true. In the message 14.0<=3.0, 3.0 is the receiver of the<= 
message and 14.0 is the argument. 

<>(self, y):Boolean 
Not equal. If the receiver is not equal to the argument, then this method returns 
true. In the message 14.0<>3.0, 3.0 is the receiver of the<> message and 14.0 is 
the argument. 

•(self, y):Boolean 
Equals. If the receiver is equal to the argument, then this method returns true. 
In the message 14.0=3.0, 14.0 is the receiver of the =message and 3.0 is the 
argument. 

>(self, y):Boolean 
Greater than. If the argument is greater than the receiver, then this method 
returns true. In the message 14.0>3.0, 3.0 is the receiver of the > message and 
14.0 is the argument. 

>=(self, y):Boolean 
Greater than or equal to. If the argument is greater than or equal to the receiver, 
then this method returns true. In the message 14.0>=3.0, 3.0 is the receiver of 
the>= message and 14.0 is the argument. 

arcTan(self):Real 
Return the arcTangent of the receiver. The receiver is treated as an angle in 
radians. 

aslnt(self) 
Return receiver as an Int. If the receiver is too large to be converted into an Int, 
an error is generated. 

asLong(self):Long 
Return the receiver as a Long integer. For example, aslong(38.78) returns 38L. 



'58 Chapter 5: Class Reference 

asReal(self) 
Return self. Included only so that you can send asReal messages to any number. 

asString(self, sigDigits):String 
Return the receiver as a String. The argument, sigDigits, determines how many 
significant digits are used to make the string. For example, asString(pi,8) ( 
returns "3.1415927'', whereas asString(pi,4) returns "3.142". 

converterFor(self) 
Return the selector used to coerce other numerics to this class. 

cos(self):Real 
Return the cosine of the receiver. The receiver is treated as an angle in radians. 

degToRad(self) 
Return the receiver, which is assumed to be in degrees, converted to radians. 

exp(self):Real 
Return the exponential of the receiver (e raised to the self power). 

generality(self) 
Generality for Real objects. Return 2. 

log(self):Real 
Return the natural logarithm (base e) of the receiver. 

negate(self) 
Return the negative of the receiver. For instance, negate(3.0) returns-3.0. 
negate(-49.8) returns 49.8. Zero, of course, has no negative, so negate(O.O) is 0.0. 

printOn(self, aStrm):Self 
Print the receiver onto the specified stream. 

pwr(self, aNum):Real 
Return aNum raised to the receiver power as a Real. For instance, pwr(3.0, 2.0) 
retums8.0. 

radToDeg(self) 
Return the receiver, which is assumed to be in radians, converted to degrees. 

sin(self):Real 
Return the sine of the receiver. The receiver is treated as an angle in radians. 

sqrt(self):Real 
Return the square root of the receiver. 

tan(self):Real 
Return the tangent of the receiver. The receiver is treated as an angle in radians. 



Rect 359 

Re ct 
Source file: RECT.CLS 

Inherits from: 

Inherited by: 

Object Collection IndexedCollection ByteCollection 
Struct GraphicsObject 

(no descendants) 

Although a rectangle is a polygon, it's important enough to be a descendant of 
GraphicsObject in its own right. It has two descendants, RndRect and Ellipse. 
Rectangles are defined by four numbers. The first two are the x and y 
coordinates, respectively, of the upper left hand comer, called the origin. The 
last two are the x and y coordinates of the lower right hand comer, called the far 
corner or sometimes just the comer. You can make a literal Rect with the & 
character. For example, the following defines a literal Rect with origin at (3,5) 
and corner at (8,9): &(3 5 8 9). 

Instance variables: 

Class methods: 

new( self) 

(none) 

Return a new 8-byte (4 word) Struct, the size of an MS-Windows rectangle. 

Object methods: 

bottom(self) 
Return they coordinate of the far comer of the Rect object. For example, 
bottom(&(lO 20 30 40)) returns 40. 

draw(self, hdd 
Draw the Rect using the specified handle to a display context. 

fill(self, aBrush, hdc) · 
Fill self with the given brush pattern, using the specified handle to a display 
context. 

helght(self) 
Return the height of the receiver (Bottom - top). 

inflate(self, x, y) 
Expand the rectangle by x and y units (subtracts x from left, adds x to right, 
subtracts y from top, and adds y to bottom). Directly alter the Rect object and 
return it. 

init(self, left, top, right, bottom):Rect 
Intialize the left, top, right, and bottom of the Rect object. For instance, if Joe is a 
Rect object, then initOoe,1, 2,3,4) returns Rect(l L 2L 3L 4L). 



SO Chapter 5: Class Reference 

left(self) 
Return the x coordinate of the origin of the Rect object. For example, left(&(tO 
20 30 40)) returns 10. 

off set(self, x, y) 
Move the rectangle by x and y units (adds x to left and right, and adds y to top 
and bottom). Directly alter the Rect object and return it. 

right(self) 
Return the x coordinate of the far comer of the Rect object. For example, 
right(&(tO 20 30 40)) returns 30. 

setBottom(self, newValue) 
Set the bottom of the Reel (y value of the far comer) to newValue. 

setComer<self, aPoint) 
Set the far comer to aPoint. For example, setCorner(&(O 0 0 0),3@4) returns 
Rect(OL OL 3L 4L). 

setLeft(self, newValue) 
Set the left of the Rect (x value of the origin) to newValue. 

setOrigin(self, aPoint) 
Set the origin to aPoint. For example, setOrigin(&(O 0 0 0),3@4) returns Rect(3L 
4LOLOL). 

setRight(self, newValue) 
Set the right of the Rect (x value of the far corner) to newValue. 

setTop(self, newValue) 
Set the top of the Rect (y value of the origin) to newValue. 

top(self) 
Return they coordinate of the origin of the Rect object. For example, top(&(tO 
20 30 40)) returns 20. 

width(self) 
Return the width of the receiver (right - left). 



Set 361 

Set 
Source file: SET.CLS 

Inherits from: Object Collection 

Inherited by: SymbolTable 

A Set is a collection of unique objects. There is a maximum of one instance of 
any given object. Any kind of object can be a member of a set. The major 
operation for Set objects is membership, which is implemented with the in 
operator. For instance, 3 in Set(3 4 5) returns true. 

Instance variables: 

tally Number of elements in the set 

Class methods: (none) 

Object methods: 

add(self, anElement) 
Add an object to the Set, if there isn't one already there. 

do(self, aBlock) 
Evaluate the one-argument block over the elements of the Set. 

find(self, elem) 
Find and return the physical index of the specified set element or the first empty 
position if the element is not in the Set. 

fixUp(self, idx) 
Re-hash all the elements of the Set. This needs to be done after deleting an entry 
because other hash values might need to occupy the empty slot. 

grow(self) 
Return the receiver with more room for added elements. 

in(self, anElement) 
Return true (specifically, return anElement) if anElement is a member of the Set. 

init(self):Set 
Initialize the Set by setting the tally instance variable to zero. 

keysDo(self, aBlock) 
Evaluate the one-argument block over the keys of the receiver. The keys of a set 
are string versions of the physical indices of the elements. For instance, if an 
element of the receiver is located at physical index 7, then the string "7" will be 
treated as the key and "7" will be the block argument. 



162 Chapter 5: Class Refef9f1C9 

remove(self, anmement) 
Removes the specified element from the receiver Set. 

size(self) 
Return the current number of elements in the receiver. 

Sorted Collection 
Source file: 

Inherits from: 

Inherited by: 

SORTEDCO.CIS 

Object Collection Indexed.Collection Array 
OrderedCollection 

(no descendants) 

A SortedCollection is an indexed collection whose elements are in some kind of 
sorted order, such as ascending or descending. Whenever a new element is 
added,, it is placed in the collection such that sorted order is maintained. The 
order in which the collection is sorted is completely arbitrary, and is detennined 
by an instance variable called compareBlock. 

Instance variables: 

lastElement 
firstElement 
compare Block 

Class methods: 

Object methods: 

add(self, item) 

(From class OrderedCollection) 
(From class Ordered.Collection) 
A two-argument block, compares the arguments 

(none) 

Add an item to a sorted collection. First determine where it should go and then 
puts the item there. 

findltemlndex(self, target) 
Search for an target in the receiver. Utilize a binary search, since we are 
searching for an item in a sorted list. Return a two-element tuple where the first 
element is a boolean flag indicating whether or not the target was found. The 
second element of the tuple can mean two different things. If the target was 
found, the second element of the tuple is the index at which the target was 
found. If it wasn't, the second element is the index at which the target should be 
inserted. 

grow(self) 
Create a new collection, preserves the old compareBlock, copy all the elements 
from the old collection to the new, and swap object pointers so that self refers to 
the newly created collection. 

( 
' 



SottsdCol/sction 363 

init(self) 
Initialize the SortedCollection object. By default, the compareBlock is set so that 
the elements are sorted in ascending order. lastElement and firstElement are 
also set equal to zero. 

remove(self,item) 
Remove the specified item from a sorted collection. 

setCompareBlock(self, newCompareBlock) 
Re-sort self according to newCompareBlock, return self. 

SourceFile 
Source file: 

Inherits from: 

Inherited by: 

SOURCEFI.CLS 

Object File 

Doc File 

SourceFile class objects are Actor source files, and can be loaded, modified, and 
have methods added or deleted. SourceFile I/O is buffered for performance. 

Instance variables: 

fileName 
handle 
buffer 

Class methods: 

new(self):SourceFile 

(From class File) 
(From class File) 
Read buffer, for efficiency 

Create a new file for loading and editing Actor class source files. 

Object methods: 

addClassMeth(self, methtext) 
Add the class method to self, return the new file, which is a copy of the old plus 
the new method. Assumes an open self, leaves open. 

addObjectMeth(self, methtext) 
Append object method to the source file, return the new file which is a copy of 
self plus the new method. Assumes open self, leaves open. 

bak_Save(self, class) 
Backup original class source file, by moving it to the BACKUP directory. Then 
move source file in WORK directory to the CLASSES directory. 



'364 Chapter 5: Class Reference 

close(self) 
Oose the file and throw away buffer. 

condDelCFile(seU, class) 
Conditionally delete previous class file in WORK directory if the specified class 
is NOT found in DirtyClasses. Otherwise, delete it. Present a dialog box asking 
whether or not to rename previous file with a .BAK extension. 

delReplMethod(self, methtex~ fSym, rFlag) 
Delete or replace existing method with the new one in a new file, according to 
rFlag. If rFlag is true, then the text for the specified method fSym is replaced 
with the text in the methText argument; if it is false, the method text is deleted. 
Return the newly created file in either case. Assumes an open self, leaves open. 

deleteMethod(seU, fSym) 
Delete specified method in a new file and return the newly created file or nil if 
the method fSym was not found. Assumes an open self. 

getChunk(self): chunk 
Get the next chunk from self, return as a string. 

init(self):seU 
Initialize the buffer and position for self. 

load(seU, filename):seU 
Load the Actor source file with the specified DOS filename, e.g. 
"CLASSES\SOURCEFI.CLS". 

loadMethText(seU, aMethod) 
Load the text of aMethod from the open self. Note accordingly if the source 
code is missing. 

locateMethod(seU, methName) 
Locate specified method in self, return an Array(methText, startPos, endPos) or 
nil if not found. Assumes an open self. 

makeClassFile(seU, array) 
Create a new class source file with the specified class information array (see the 
OassDialog class for format of this array). 

moveTo(seU, pos) 
Redefine moveTo for buffered reads. 

open(seU, type):Boolean 
Open the source file for reading and/ or writing. Return the handle if able to 
open, otherwise return nil. 



SourceFile 365 

openClass(self, class) 
If the specified class is in DirtyClasses, open the class source file for the class in 
the WORK directory. Otherwise, open it in the CLASSES directory. Return file. 

openClasslnDlr(self, class, dlr) 
Try to open specified class file in indicated directory. Example: 
openClassinDir(aSourceFile, Behavior, ''CLASSES\"). 

readChunk(self):chunkStrlng 
Read in the next chunk in the open source file. 

updateClassFile(self, array, limit) 
Update a class file with the specified array of class information. Assumes that 
self is open and read-only. Only replace as many chunks as limit indicates. 

writeChunk(self, text) 
Write a chunk out to open file at current position. 

writeMeth(self, methtext) 
Write a method in the form of a TextCollection to open self. 

Stream 
Source file: 

Inherits from: 

Inherited by: 

STREAM.CLS 

Object 

Analyzer ActorAnalyzer 

A Stream holds any indexed collection along with an integer pointer which 
points to the current position in the collection. Streams are used extensively in 
the compilation process, but they are also used in a lot of other places. For 
instance, most output in Actor is done with Streams (using the various printOn 
methods). 

Instance variables: 

collection 
position 

Cass methods: 

Object methods: 

atEnd(self):Boolean 

The string or other collection 
Current index into the collection 

(none) 

Return true if the receiver's position points to the end of the collection. 



366 Chapter 5: Class Reference 

copyFrom(self, start, stop):Collection 
Return all the elements in the Stream's collection from start to stop-1, inclusive. 
Example: copyFrom(streamOver(''Hello"),0,3) returns ''Hel". 

last(self):AnElement 
Return the last element of the Stream's collection accessed. Equivalent to the 
expression aStrm.collection[aStrm.position-1). 

next(self):AnElement 
Return the element of the Stream's collection currently being pointed to and 
increments the position pointer. 

nextPut(self, anElement):Stream 
Place anElement into the Stream's collection at the index currently pointed to by 
position, and then increments position. 

nextPutAll(self, aColl):Stream 
Place aColl into the Stream's collection at the index currently pointed to by 
position. Equivalent to the following message: do(aColl,{using(el) 
nextPut(aStrm,el))). 

put(self, anElement, offSet):AnElement 
Place anElement into the Stream's collection at the specified offset. Does not 
. modify the position instance variable. Equivalent to the following construct: 
aStrm.collection[offSet] := anElement. 

putBack(self):Int 
Decrements position instance variable if position is zero. If it is, position is not 
decremented. Return the new value of position. 

reset(self):Stream 
Set position pointer equal to zero. 

word(self, delimiterChar):String 
Return the next word from the Stream. word is limited to Stream objects where 
the collection is a String. First, aStrm is scanned until it finds the first character 
which is not a delimiterChar. It continues scanning until it finds another 
delimiterChar, and the characters in between-a word-are returned in the form 
of a String. The position instance variable is updated to the point where the 
delimiterChar was found. Note: this method does not check to see if it is 
looking at valid elements of the Stream. If asked, it will search past the end of 
the Stream's collection. You need to check that the Stream is not at the end 
before sending a word message. 



String 367 

Smng 
Source file: STRING.CLS 

Inherits from: Object Collection IndexedCollection ByteCollection 

Inherited by: Symbol 

A Sb'ing is a collection of Char objects. Actor Strings are limited in size only by 
available memory and the maximum object size of 16K-1 characters. 

Instance variables: 

Oass methods: 

Object methods: 

+(self, aStr):String 

(none) 

(none) 

Sb'ing roncatenate operation. 

<(self, aStr):Boolean 
Return true if aStr precedes self alphabetically. 

=(self, aStr):Boolean 
Return true if two strings are identical. Note that <> is NOT defined, so use 
not(strt = str2) instead. 

>(self, aStr):Boolean 
Return true if aStr follows self alphabetically. 

asHandle(seU>:handle 
Return a MS-Windows handle for self. The string is ropied to global memory 
and a handle is obtained. Later, the handle should be freed using GlobalFree, 
otherwise global memory is used up. 

aslntCself, base):lnt 
Return the value of number in self, according to base. For example, aslnt("FF', 
16) returns 255. 

asLlteral(self) 
Return a literal object if self contains one. For instance, asUteral(" 3@2 Hello ") 
would return the Point object 3@2. 

asRealCself):Real 
Return the value of number in self as a Real. For example, asReal("3.4") returns 
3.4. 

asString(self):String 
Return self-dummy conversion. 



368 Chapter 5: Class Reference 

asSymbol(self):Symbol 
Return self represented as a symbol. 

asUpperCase(self) 
Return an upper-case version of the receiver. 

asciiz(self):string 
Append a 0 byte to the end of this string, return new string. MS-Windows 
usually requires such a "null-terminated" string. 

at(self, idx):Char 
Return the character at the specified index (self(idx]). 

breakLines(self, lev, width) 
Break self into lines according width. Ignore level. Used by Actor edit windows 
for displaying long object representations. 

commentBreak(self) 
Look for an end-of-comment "symbol" in the receiver string. If one is found, 
return a number one greater than the index of where the end-of-comment 
symbol is located. 

copyFrom(self, begldx, endldx):String 
Equivalent to the subString method-return new string from begldx to endldx-1, 
inclusive. 

delete(self, begldx, endldx) 
Return a new string, with the characters from begldx to endldx-1, inclusive, 
removed from self. 

erase(self):String 
Erase self (fills with blanks). Does not produce a new string. For instance, 
erase("aaaaa") returns"". 

errorBox(self, str) 
Show an error box with self as the caption, and str as the message. 

fill(self, aChar):String 
Fill self with aChar. Does not produce a new string. For example, fill(''Hello", 
'a') returns "aaaaa". 

find(self, targetStr, idx):lnt • 
Find and return the index of the first occurence of targetStr in self, starting at 
idx. Return nil if not found. 

findBreak(self, len) 
Find and return a sensible break point in a string. Used by method formattter. 



String 369 

hash(sel&.Int 
Return the hash value of self. 

indexOf(self, targetChar, ldx):lnt 
Find and return the index of the first occurence of targetChar in self, starting at 
idx. Return nil if not found. 

insert(self, aStr, ldx) 
Return a new string with aStr inserted at the specified. index. 

lsSymbol(self):Boolean 
Return Boolean true if self is a symbol. 

leadingBlanks(self) 
Return the number of leading blanks. 

le~Justlfy(self) 
Return a new string with leading blanks removed. 

load(self) 
Open and compile the file named by self. 

mapDellms(self) 
Convert delimiters to spaces. 

parse(self):Object 
Assuming receiver is valid Actor source code, compile receiver into a temporary 
function and execute that function. This is the method used by Actor when you 
highlight a string and select Doit! from the menu-the highlighted range is sent a 
parse message. Actually uses YaccMachine:parse. 

print(self) 
Draw the string on the current set of output ports. 

printOn(self, aStrm):self 
Print the receiver string onto the specified stream. 

put(self, char, ldx):self 
Place the specified character into self at idx. For example, put(''Hello", 'J', 0) 
returns "Jello". Return the altered string. 

removeNulls(self) 
Return a new string from 0 to the first null in the receiver. 

replace(self, source, src:Begldx, src:Endldx, targBegldx, targEndldx):String 
Return a new string, deleting the target range from self and replacing with 
source range. This method is used by insert, delete, subString, copyFrom, etc. 



370 Chapter 5: Class Reference 

rightJustify(self) 
Return a new string with all trailing blanks removed. 

streamOver(se)f) 
Create and return a new Stream whose collection is the receiver String and 
whose position is set to zero. 

subString(self, begldx, endldx) 
Return a new string, with the characters from self[begldx] to self[endldx-1), 
inclusive. 

sysPrintOn(self, aStrm):self 
sysPrint the receiver string onto the specified stream. 

Struct 
Source file: 

Inherits from: 

Inherited by: 

STRUCT.CIS 

Object Collection IndexedCollection ByteCollection 

GraphicsObject Polygon Rect 

Structs are fixed-size, indexed collections of byte data. Useful to communicate 
with MS-Windows and other programming languages. All the Actor geometric 
object classes, with the exception of Point, are descendants of Struct. Note that 
the data inside Structs are binary data, not Actor objects. Data inside Structs are 
always accessed in terms of byte offsets, e.g. "the word located at byte offset 3." 

Instance variables: 

Class methods: 

Object methods: 

addr(self, byteOffset):Long 

(none) 

(none) 

Return a Long integer representing the Segment:Offset of the physical address 
in memory of the data at the specified byte offset within the Struct. Note: 
because of dynamic garbage collection, the physical address of ANY dynamic 
data is not constant. Therefore, the address that addr returns is reliable only for 
Struct objects that reside in static memory. 

at(self, ldx) 
Return the word value at the specified index. Note that the index is a byte 
offset, i.e. at(aStruct,2) returns the word located at byte offset 2. 

atLSB(seU, byteOffset) 
Return the least significant byte (LSB) of the word located at the specified byte 
offset. 



Struct 371 

atMSB(self, byteOffset) 
· Return the most significant byte (MSB) of the word located at the specified byte 

offset. 

call(self):Struct 
Make a MS-DOS function call via MS-DOS interrupt 21 (hex). The Struct should 
be a Do~truct and appropriately set up before sending this message. See the 
Do~truct class for more details. 

do(self, aBlock) 
Evaluate the block over the elements of the receiver. 

fill(self, val) 
Fill receiver Struct with the specified word value. 

longAt(self, byteOffset):Long 
Return the Long integer (four bytes) located at the specified byte offset. 

put(self, val, idx) 
Place the word value into the Struct at the specified index. Note that the index 
is a byte offset into the receiver. 

putLong(self, anObject, byteOffset):Struct 
Place the specified object into the collection at the specified byte offset. If 
anObject is a Long, then the Long will be placed into the receiver. If anObject is 
a more complicated data structure, such as a collection or window, then 
putl.ong will place the physical address of the object into the receiver. 

putMSB(self, val, byteOffset) 
Store val at the most significant byte of the word located at the specified byte 
offset. 

putWord(self, newWord, byteOffset):Struct 
Place the specified word (two bytes) into the collection at the specified byte 
offset. 

readlnto(self, aFile) 
Fills the receiver with the next limit(selO bytes of the specified File. The 
specified File argument must be open. 

wordAt(self, byteOffset):Long 
Return the word (two bytes) located at the specified byte offset. 



~72 Chapter 5: Class Reference 

Symbol 
Source file: 

Inherits from: 

Inherited by: 

SYMBOL.CIS 

Object Collection IndexedCollection ByteCollection 
String 

(no descendants) 

Symbols are strings that are guaranteed to be unique. They can be compared to 
other symbols via equivalence, and are used as keys in dictionaries. 

Instance variables: 

Class methods: 

Object methods: 

errorShing(self) 

(none) 

(none) 

Return the resource string that corresponds to the receiver, if any. The receiver 
must be a key in Constants with an integer value that is used as the resource id. 

hash(self):lnt 
Symbols hash based on their unique object pointers. 

implementors(self) 
Return a SortedCollection of classes who implement the message named by the 
receiver. 

isMetaName(self):Boolean 
If the symbol is the name of a metaclass, return the association of its instance or 
nil. For example, ArrayClass returns the association of Array. 

sysPrintOn(self, aStrm) 
sysPrint the Symbol onto the specified stream. 

undefError(self, bp, std 
The compiler was unable to resolve the receiver as a variable. Allow the user to 
make the name into a global, otherwise report the undefined name. 



SymbolTable 
Source file: 

Inherits from: 

Inherited by: 

SYMBOLTA.CIS 

Object Collection Set 

(no descendants) 

Symbo/Table 373 

SymbolTable is a Set that holds all system symbols. 

Instance variables: 

tally 

Class methods: 

Object methods: 
' 

find(seU, aKey):Int 

(From class Set) 

(none) 

Return the physical index of the specified key. 

TextCollection 
Source file: 

Inherits from: 

Inherited by: 

TEXTCOLL.CIS 

Object Collection IndexedCollection Array 
OrderedCollection 

(no descendants) 

TextCollection objects are collections of strings. Each element must be a String 
object. Used as an instance variable of all Actor edit windows to hold the 
working text. 

Instance variables: 

lastElement 
firstElement 

Class methods: 

(From class OrderedCollection) 
(From class OrderedCollection) 

(none) 



374 Chapter 5: Class Reference 

Object methods: 

advance(self, st, sc, Ina) 
Move forward in the collection from the given point by incr characters. Return a 
Point made up of the current character and pos (char@pos). 

ass tring(self) 
Return a single string that is the concatenation of all the strings. Don't adjust 
formatting at all, preserve total text length. 

commentBreaks(self) 
Break lines after comments and return new TextCollection. Used to format 
methods in the Browser edit window. 

deleteChar(self, line, pos) 
Delete the character at the specified line and position. 

deleteText(self, sL, sC, eL, eC) 
Delete text from the collection, removing all extra lines but sL (sL=startUne; 
sC=startChar; eL=endUne; eC=endChar). 

insertString(self, aStr, line, pos) 
Insert aStr into the collection at the specified line and character pos. 

insertText(self, aStr, line, pos) 
Insert a string of lines delimited by CR_LF into the collection at the specified line 
and character position. 

lengthBreaks(self, length) 
Break lines according to length and return new TextCollection. Used to format 
source lines in the Browser edit window. 

makeString(self) 
Return a single string that is the concatenation of all the strings. Put one space 
between each line, remove extra spaces. Will change total text length. 

subText(self, sL, sC, eL, eC) 
Return a string from the collection suitable for the clipboard. A carriage retum
line feed is inserted between each line from the collection. 



TextWindow 375 

Text Window 
Source file: TEX1WIND.CIS 

Inherits from: Object Window 

Inherited by: EditWindow WorkEdit BrowEdit WorkSpace 
WorkWindow 

TextWindow class allows printing of text. The caret shows the current text 
insertion point, located at point (xPos, yPos). 

Instance variables: 

buttonDn 
hMenu 
pc\intStruct 
aefProc 
hWnd 
tmWidth 
tmHeight 
xPos 
yPos 
XMax 
textMetrics 
chStr 

Class methods: 

Object methods: 

WM_KILLFOCUS(self, wP, IP) 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
Width of font in pixels 
Height of font in pixels 
X coordinate of caret location 
Y coordinate of caret location 
Maximum number chars printable in line 
A Struct with font information 
A String used in printChar 

(none) 

MS-Windows notification that self is just about to lose the input focus. Hide 
caret first. 

WM_SETFOCUS(self, wP, IP) 
MS-Windows message indicating that self has just gotten the input focus. When 
regaining focus, create a new caret. 

WM_SIZE(self, wp, Ip) 
Oear the window if resi7.ed. 

bs(self) 
Backspace once. Cannot backup to the previous line. 

ds(self) 
Home the cursor, clear the screen. 

drawChar(self, aChar) 
Draw a character in the window at current position. Go the next line if character 
is a CR. 



376 Chapter 5: Class Reference 

drawString(self, aStr) 
Draw a string in the TextWindow. 

eol(self) 
End of Jine--CR. If near the bottom of the window, scroll window up on line. 

home(self) 
Send cursor to home position. Does not move the caret. 

init(self) 
Initialize a TextWindow. Load the font data into textMetrics, set the text width 
and height instance variables, and home the caret. 

moveCaret(self) 
Move the caret to the current text insertion point. 

printChar(self, aChar) 
Print a character in window at the text insertion point. Skip line if necessary. 

printString(self, aStr) 
Print the string, on new line if necessary. 

show(self, val ) 

x(self) 

y(self) 

Display the TextWindow and calculate a new value for the maximum number of 
characters per line. The val argument determines how the window will appear. 
See the Actor manual, Guide to the Actor Classes, Window class, to see the 
various possible values and effects for val. 

Translate xPos and return current x coordinate in pixels. 

Translate yPos and return current y coordinate in pixels. 

Tool Window 
Source file: TOOLWIND.CI.S 

Inherits from: Object Window PopupWindow 

Inherited by: Browser Inspector 

The Actor ToolWindow class creates Actor tool windows such as the Browser 
and Inspector. All ToolWindows have two listboxes and an edit window. The 
Toolwindow class handles resizing of these windows. 



Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 
newSize 
oldSize 
lbl 
lb2 
ew 
zoom 

Oass methods: 

Object methods: 

WM_SETFOCUS(self, wP, IP) 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
New size Point, for resizing 
Old size Point 

Too/Window 377 

ListBox 1-in the Browser, the class ListBox 
ListBox 2-in the Browser, the methods UstBox 
Edit window 
Zoom edit area flag 

(none) 

Pass the focus to the edit window if it exists. 

WM_SIZE(self, wP, IP) 
Handle resizing-set the rectangles for the controls if window has actually 
changed size. 

sizeKids(self) 
Set the control rectangles for the child windows. 

Window 
Soula! file: 

Inherits from: 

Inherited by: 

WINDOW.CIS 

Object 

PopupWindow ToolWindow Browser Inspector 
TextWindow EditWindow WorkEdit BrowEdit 
WorkSpace WorkWindow 

General-purpose Window class with menu support. The default is the tiled 
window style, and the default pointer is the generic mouse pointer. Although 
generally a formal class, can be used to display graphics. 

Instance variables: 

hWnd 
defProc 
paintStruct 
hMenu 
buttonDn 

Handle to the Window from MS-Windows 
Default window Proc 
A Struct to handle graphics output 
Either menu handle or a control id 
Mouse button flag-true if mouse button is down 



378 Chapter 5: Class Reference 

Class methods: 

new(self, menuName, wName) 
Create a new window object in Actor and Windows. A register message must 
be sent at runtime to Window and its subclasses before any instances are 
created. 

newWClass(self, cName, iName) 
Create a new window class Struct. 

register(self) 
Register the Window class with MS-Windows. 

wndClass(self) 
Return the name of this class's MS-Windows class ("ActorWindow") either for 
registration or new window creation. 

Object methods: 

WM_LBUTTONDOWN(self, wp, Ip) 
MS-Window's left-button-down message. Sends a beginDrag message. 

WM_LBUTTONUP(self, wp, Ip) 
MS-Window's message for left button release. Sends an endDrag message. 

WM_MOUSEMOVE(self, wp, Ip) 
MS-Window's mouse move message. Sends a drag message if buttonDn is true. 

WM_P AINT(self, wP, IP) 
MS-Window's message to paint self-erases and sendss paint(self) message. 

WM_SETFOCUS(self, wP, IP) 
MS-Window's notification that window has gained the focus. Sets global 
variable ThePort equal to self. 

WM_SYSCOMMAND(self, wP, IP) 
MS-Window's system-menu message. 

addAbout(self) 
Add "About Actor" to system menu. 

beginDrag(self, wp, aPt) 
Dummy beginDrag method. 

check(self, item) 
Check the specified menu item. 

clientRect<self) 
Return the client rectangle as a Rect object. 



Window 379 

create(self, par, wName, red, style) 
Create a window in MS-Windows according to parameters specified in the 
arguments. style argument determines new window style. 

dlsableMenultem(self, item) 
Disable (but not gray) the specified menu item. 

drag(self, wp, aPt) 
Dummy drag method. 

enable(self, item) 
Allow menu item to be selected. 

endDrag(self, wp, aPt) 
Dummy endDrag method. 

g~tContext<self) 
Return a display context for self. 

gray(self, item) 
Disable and gray this menu item. 

handle(self) 
Return window handle. 

invalidate(self) 
Invalidate the entire window and erase. 

lsEdltable(self) 
Return false flag for error reporting code. 

loadMenu(self, menuName) 
Load the menu resource if possible and obtain a handle to a menu to place in 
hMenu (if menuName not nil). 

paint<self, hdc) 
Dummy paint method. The paint method is expanded in the descendants of 
Window. 

releaseContext(self, hdc) 
Release the display context for self. 

repaint(self) 
Repaint the entire window immediately. 

setMenu(self, hmenu) 
Set window's menu to the specified hmenu and return bSet (nonzero if menu 
changed). 



380 Chapter 5: Class Reference 

setText(self, aStr) 
Set the window text (the window caption) to the given sb'ing. 

show(self, val) 
Display self according to value of val. 

showOldCurs(self) 
Restore default cursor. 

showWaitCurs(self) 
Display wait cursor. 

unCheck(self, item) 
Uncheck the specified menu item. 

update(self) 
Repaint the entire window. 

validate(self) 
Validate the entire window. 

WorkEdit 
Source file: 

Inherits from: 

Inherited by: 

WORKEDIT.CIS 

Object Window TextWindow EditWindow 

BrowEdit WorkSpace 

You can execute Actor source code from the Browser, Inspector and Workspace 
edit windows because they are all instances of this class, the WorkEdit class, or 
one of its descendants. Instances of WorkEdit are child windows (unless 
overridden) which can execute Actor statements. 

Instance variables: 

buttonDn 
hMenu 
paintStruct 
aefProc 
hWnd 
chStr 
textMeb'ics 
xMax 
yPos 
xPos 
tmHeight 
tmWi<fth 
endUne 
end Char 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class EditWindow) 
(From class EditWindow) 



startLine 
startChar 
dirty 
caret Vis 
top Line 
workText 
drag line 
oldX 
pOri. 
arag&: 
~arent 
CR.eel 
iD 

Oass methods: 

new(self, ld, par) 

(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
Parent window object 
The sizing rectangle 
Control id 

WorkEdit 381 

Create and return a child style edit window for workspaces. The id and par 
arguments specify the Control ID and parent window of the WorkEdit window, 
respectively. 

Object methods: 

WM_CHAR(self, wp, Ip) 
Translate CR into doLine, Ctrl-CR into CR. 

WM_COMMAND(self, wp, Ip) 
Handle browser-specific edit window. 

dolt(self, rcvr) 
Compile the selected text. 

doLlne(self) 
Compile the current line or selected text. 

formatTemplate(self, aTemp) 
Format a template string and insert it at cursor. 

lnsertlnSelection(self, aStr, pos) 
Insert aStr into selected text at the position specified by pos. 

lnsertLlnes(self, ot) 
Insert TextCollection at endline if blank, else after endLine. 

lnspectlt(self) 
Run an Inspector on the result of evaluating the current selection. 

moveWindow(self) 
Move the window to the latest size. 



382 Chapter 5: Class Reference 

setVars(self, id, par) 
Set some of the WorkEdit object's instance variables. 

tempStr(self, wP) 
Return appropriate template string (e.g. if-then, do-endloop, etc.). 

Workspace 
Source file: 

Inherits from: 

Inherited by: 

WORI<SPAC.CLS 

Object Window TextWindow EditWindow WorkEdit 

(no descendants) 

ACIOR workspace edit window. The Actor Workspace is an instance of this 
class. Instances of this class allow execution of Actor code, can starts Browsers 
and Inspectors, and have full editing capability. 

Instance variables: 

buttonDn 
hMenu· 
paintStruct 
aefProc 
hWnd 
chStr 
textMetrics 
xMax 
yPos 
xPos 
tmHeight 
tmWi<fth 
end Line 
end Char 
startLine 
startChar 
dirty 
caret Vis 
top Line 
workText 
dragLine 
oldX 
JP". 
ara~EC 
iD 
cRect 
parent 
browsers 
inspectors 
editors 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class EditWindow) 
(From class WorkEdit) 
(From class WorkEdit) 
(From class WorkEdit) 
Set of open browsers 
Set of open inspectors 
Set of open file windows 



WorlcSpace 383 

Class methods: 

new(self, menuName, wName) 
Create a workspace window, bypass ancestor's new method .. 

Object methods: 

WM_CLOSE(self, wP, IP) 
Check the class source files before closing. If they have changed, user will have 
a chance to save his or her any work. 

WM_COMMAND(self, wP, IP) 
Handle workspace events (Load, Edit, Browse, etc.). 

WM_DESTROY(self, wP, IP) 
Oose window and quit ACTOR. 

WM_QUERYENDSESSION(self, wP, IP) 
End MS-Windows message. Go through Actor shutdown so that users can save 
their work. They can cancel ending the session. 

create(self, par, wName, rect, style) 
Create workspace as a popupwindow, bypassing WorkEdit's create method. 

doDirtyClasses(self) 
Run Dirty Classes dialog, and return ok-to-quit flag. DirtyClasses is the set of 
classes whose source files have been modified. 

init(self) 
Initialize the workspace instance variables. 

Work Window 
Source file: 

Inherits from: 

Inherited by: 

WORKWIND.Cl.S 

Object Window TextWindow 

(no descendants) 

Define a work window containing an interpreter and non-editable text. The 
Actor Display is an instance of this class. Windows are tiled and do not keep a 
copy of the text displayed. 



384 Chapter 5: Class Rsfsrence 

Instance variables: 

buttonDn 
hMenu 
paintStruct 
ClefProc 
hWnd 
chStr 
textMetrics 
xMax 
yPos 
xPos 
tmHeittltt 
tmWiath 
buffer 

Class methods: 

Object methods: 

(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class Window) 
(From class TextWindow) 
(From.class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
(From class TextWindow) 
For text input 

(none) 

WM_CHAR(self, wParam, lParam) 
Respond to the MS-Windows character message. 

WM_CLOSE(self, wP, IP) 
If there is a workspace window, check about the class source files before closing. 
See the WM_ CLOSE method in the WorkSpace class. 

WM_DESTROY(self, wp, Ip) 
Closing this window closes Actor. 

charlnput(self, aChar) 
Handle input of this character-type it, backspace, or go to a new line. Return 
true if a CR is typed. 

YaccMachine 
Source file: 

Inherits from: 

Inherited by: 

YACCMACH.CLS 

Object 

ActorParser 

YaccMachine defines a state machine driven by arrays produced by the yacc 
utility. Its methods correspond to the C output of yacc. Users should create a 
descendant that can process the particular grammar that they input to yacc. 



Instance variables: 

states 
v 
ret 
fr 
err Flag 
errs 
yylast 
lex 
yyVal 
yydef 
yyActions 
yychk 

~ 
yypgo 
yypact 
yyact 
yyexca 
rev 
chr 
st 
yyn 
ace 

Class methods: 

Object methods: 

parse(self):Object 

YaccMachine 385 

(none) 

Called by String:parse. Parse the string that is held as an instance variable of the 
receiver's private lexical analyzer. Then compile into a temporary function and 
execute. 





6 Appendices 

Appendix A: Actor language description 

This document provides a formal description of the Actor language at a syntactical 
and philosophical level. Much of Actor is written in Actor, and built up from the basic 
elements that this document describes. 

A.1 Introduction 

Actor is a "pure" object-oriented language. All computing activities in Actor obey a 
message-sending paradigm. In this model, an object can send a message to another 
object consisting of a selector and a set of parameters. The selector is a generic name 
that the receiver uses to select one of its local methods for execution. 

A.2 Objects 

Everything in Actor is represented as an object, including boolean conditions, 
numbers, characters, strings, arrays, even methods. An object is a capsule of private 
data. All objects of a given class have a common format for private data (called the 
object's "instance variables"), and share the same set of methods that they can use to 
operate upon their private data. Data consists of a set of fixed-length instance variables, 
plus an optional area for variable-length data. 

A.3 Classes 

A class is a way of describing the behavior of a group of objects of the same type. 
For instance, class Int describes the behavior of all small integers (absolute value < 
16K). A class contains a variable dictionary that describes the data format of each of its 
members, and a method dictionary of all the methods available to member objects. 



388 Chapter 6: Appendices 

A.3.1 Inheritance 

A class inherits information from an ancestor class (and its ancestors). Thus each 
class can be thought of as a specialization of another class, its ancestor. A class inherits 
its ancestor's data dictionary, and can add more data of its own for the use of its member 
objects. A class cannot redefine any of its ancestors' instance variables, it can only add 
variables. 

A class, however, can redefine any of its ancestors' methods. A given selector sent 
to one of its member objects will then use the descendant class's method instead of the 
ancestor's. Members of the ancestor class will still use the original method. 

Classes that describe new and unique functionality can inherit from class Object, 
which is the ultimate parent of all classes (the root of the class tree). Object describes 
behavior common to all objects in the system, such as returning one's class, one's size, or 
creating a copy of oneself. 

A.4 Methods 

A method is a script that contains an object's response to a message. The method is 
assigned a name that corresponds to the selector used in the message. Every method 
returns a single object as its value. Thus, a message always returns a single object, and 
can effectively be equated with that object. 

There may be many methods in the system that have the same name. This is 
because each class of object may respond to a given message in a different way. It is 
normally not determined which method will execute for a message until the message is 
actually sent 

A method or block (see below) can have up to 8 arguments and 8 local variables. 
These serve as holders for objects, and exist only during the life of the method. After it 
returns its result, the temporary variables go away and lose whatever values they had. 
Local variables may be assigned to, but arguments may not. 

A.5 Blocks 

A block is identical to a method, except that it is not given a name and stored in a 
class' method dictionary. A block is created during the execution of a method, and is 
sent as a parameter in a message to an object. The receiving object can do what it 
chooses with the block argument, either execute it or not. Blocks have temporary 
variables just as methods do. 



Appendix A: Languag9 09scription 389 

Blocks provide a great deal of simplicity and power in Actor. They allow the 
programmer to abstract out the common elements of a group of algorithms, and specify 
any differences via blocks. For instance, a routine could be written that performs a post
order traversal of a tree structure, executing a block at each of the nodes. The block can 
provide the specific behavior (printing, compilation, etc) required for the algorithm 
without having to duplicate the actual traversal logic. 

A.5.1 Scoping of Block Temporaries 

Block temporaries are statically scoped. A block may access all temporary variables 
in its parent function as well as any enclosing blocks. Blocks may be nested to a 
maximum of 3 levels. 

A message has 3 elements: a selector, a receiver, and a list of arguments. Some 
messages may have no arguments, others may have many. For example, note the 
following message: 

moveDisk(self, fromPin, toPin) 

The selector is moveDisk, the receiver is self, and fromP in and toP in are the 
arguments. 

Another way of represe~ting messages is infix format. This is used for common 
arithmetic and logical operations: 

base + size 
format bitAnd 1024 
(length - 4)/2 

A.7 Syntax 

Case is significant in all Actor identifiers and keywords. Names beginning with 
upper case are reserved for system (global) variables. Oass names are global variables, 
and therefore begin with capitals. 



390 Chapter 6: Appendices 

A.7.1 Literal Objects 

The following forms are provide for easy definition of literal objects. Literals 
generate an object when the method or statement is compiled, rather than executing a 
message at runtime. 

A.7.1.1 Numbers 

Numeric values obey the syntax of the C language: 

100 
100L 
OxlOO 
OxlOOL 
-25 

A.7.1.2 Characters 

/* decimal small integer 
/* decimal long integer 

/* hexadecimal Int */ 
I* hexadecimal Long */ 
/* unary minus */ 

(15-bit)*/ 
(32-bit) */ 

Character literals are achieved by enclosing the character in single quotes: 

I a' 
IC' 
I I I* space */ 

Character objects that are not representable as printing characters must be created 
via a message, as: 

asChar(13) /*carriage return */ 

A.7.1.3 Strings 

I 

String literals are created by enclosing the string in double quotes: 

"A string" 



Appendix A: Language Description 391 

A.7.1.4 Symbols 

Symbol objects are special strings that are guaranteed to be unique. Two different 
String objects may contain the same data, but are still two different objects. Two 
different symbols, however, cannot have the same data. Symbols are pervasive in the 
Actor system, providing names for methods, variables, and other uses. A literal symbol · 
is created by preceding a non-blank string with a pound sign: 

IListBox 
I Sam 

/* a symbol that is the name of a class */ 
/* another symbol */ 

A.7.1.S Points 

Points are objects that represent a location on a two-dimensional coordinate plane. 
Point literals are created by placing an @ character immediatedly between two numbers: 

13825.2 
-1258400 

a point with x value 13, y value 25.2 
x value is negative 

A.7.1.6 Rectangles 

Rect objects are created as literals with the ampersand character(&:) followed by 
four short integers in parentheses: 

5(10 20 30 CO) 
'(Oz30 -200 10 3000) 

The numbers specify the left, top, right, and bottom coordinates of the Rect. 

A.7.1.7 Arrays 

Literal arrays can be created that hold instances of any of the other literal fonns as 
data (including nested arrays). For example: 

f (10 20 30) 
f (lOOL 2C Ox3c) 
I (Sam. Joe Bill) 
1(182 '(20 30 40) rred) 
I( 1(10 30) l(Jan Feb)) 

array of small integers 
mixed numbers 
alpha strings are symbols. 
a Point, a Rect and a Symbol. 
an Array of Arrays 

The tuple message is another way of creating arrays, only it accepts a general 
parameter list that can be mixed literals and non-literals. The tuple message actually 



392 Chapter 6: Appendices 

creates an array at runtime, as opposed to literal forms, which operate at compile time. 
For example: 

tup1e(10, min(Sam, Joe), "hello"); 

This produces a 3-element array at runtime. 

A.7.2 Variables . 

There are three types of variables in Actor: instance variables, temporary variables 
and global variables. All variables hold objects: the three types are differentiated by 
their scope. 

A.7.2.1 Instance Variables 

Instance variables make up the named data in an object. By convention, instance 
variable names start in lower case. Instance variables hold their values over time, until 
assigned a new value or the object is disposed of via garbage collection. 

Instance variables can be accessed within a method of the owning object's class by 
simply using the name of the instance variable. For instance, 

print (ta11y) ; . 

This sends a print message to the instance variable owned by self and named 
tally. Instance variables that are owned by other objects must be accessed in the form 
object.inatanceVariableNama: 

print(Sam.tal1y); /*print Sam's ta1ly instance 
variable */ 

This uses a logical, as opposed to physical, access. It is equivalent to sending the 
object Sam a message to retrieve its instance variable with name ltally. If Sam has no 
variable by that name at runtime, a message send failure error will occur. The dot form 
replaces the bulky and inefficient "pass-through" methods required in other object
oriented languages. 

Instance variables can be referenced as targets for assignment: 

Sam.tally :·= 0; 

This practice is discouraged in cases where altering an object's internal state could 
produce complicated side-effects. It is an easy and efficient way of communication with 
an object, but should be used with caution. Many benefits accrue from letting complex 
objects manage their own state. 



Appendix A: Language Description 393 

A.7.2.2 Temporaty Variables 

Temporary variables are useful only during the execution of a method. A method's 
temporaries consist of its arguments and its local variables. These are named when the 
method is defined, for instance: 

Def insert(self, aString, loc • p, q, size) 

This defines a method named insert that has a two arguments, aString and loc. 
The vertical bar delimits the list of local variables: p, q, and size. Local variables have 

·the value nil unless explicitly assigned. within the method. The self is a placeholder, 
appearing in all method definitions. When the method is invoked via a message send, a 
value provided by the caller is substituted for the arguments. For example: 

insert(Sam, asString(count, 10), 2); 

This sends the message insert to Sam, using the result of the message 
asString (count, 10) as the value of the formal argument, aString. Arguments 
cannot be modified during the execution of the method (i.e., all arguments are passed by 
value only). 

A.7.2.3 Global Variables 

Global variables are actually keys in the system dictionary, Actor. Actor is just a 
Dictionary object, but is given special status by the compiler. Any variable names 
that cannot be resolved as instance variables or temporaries are looked up in Actor, 
and if found, produce a global variable reference. By convention, global variables begin 
in upper case. All class names are stored as global variables, and are therefore in upper 
case. 

A.7.3 Constants 

Constants allow you to assign names to literal objects. The value associated with a 
constant is compiled directly into any method that references the constant name. This 
means that if the value associated with a constant is changed, only methods compiled 
after the change was effected will reflect the change. Constants are actually keys in a 
dictionary called Constanta. Constants may be defined by using a limited version of 
the #define statement from the C language, for example: 

#define CR 13 
#define Square '(10 10 100 100) 
#define Limit 1000 



394 Chapter 6: Appendices 

The right side of a ldefine must be a literal form (evaluable at compile time). 
A more general way to create a constant is to send a message directly to the 

Constants dictionary: 

add(Constants, #Harold, 100 +Size); 

This creates a constant named Harold with value 100 + Size. 

A.7.4 Expressions 

An expression is a composition of syntactic elements that produces an object as its 
result. Examples of legal expressions include: 

100 /* a literal */ 
CR /* identifier (constant) */ 
'!hePort /* identifier (global variable) *I 
print (1'.red) I* message */ 
10 + index /* infix message */ 
Sam.tally /* instance variable reference *I 

These forms can be composed arbitrarily, limited only by readability: 

print(min(Sam..x, 10), 100 +index) · 

A.7.4.l Special Collection References 

A special form exists that expedites references to elements of collections. This 
consists of an expression followed by a pair of square brackets containing another 
expression. The effect of this form is to send an at message to the target object, with the 
value of the expression in brackets as the key. Some examples: 

Actor [ ISam.] 
MyArray[O] 
1(10 20 30)[1] 

/* the value at key Isam. in Actor */ 
/* 0th element of MyArray */ 

I* 20 */ 

This form can also be used on the left side of an assignment statement, in which case 
it generates a put message. Note that some collection classes demand a numeric index, 
while other coll~tions use a more general key. This form supports all types of keyed or 
indexed access. 

( 



Appendix A: Language Description 395 

Collection references can be nested to simulate multi-dimensional collection access: 

Arra:y2D[i][j] 

This expression would be the same as writing: 

at(at(Arra:y2D, i), j) 

A.7.U. Block Expressions 

Blocks are created with a special syntactical form. A block consists of a declaration 
of temporary variables, followed by a list of statements. A block's temporary variables 
are just like a method's, with the exception of the self placeholder. The entire block is 
enclosed in curly braces. For example: 

( uaing(val • start, and) /* foz:mal a:rga and locals */ 
atart :• val + 4; 
and:• limit(aalf); 
print(min(atart, and)); 

) 

1be value of a block is the value of the last expression that was executed in the 
block. The explidt use of return(") within a block causes the block to return from its 
home method, which is not the same as the method that called it. 

A.7.5 Statements 

A statement combines expressions with certain keywords to produce a syntactical 
unit. Statements are used to control execution in the canonical ways: sequence, 
condition and iteration. 

A.7.5.1 Simple Statements 

A statement can be simply an expression followed by a semicolon: 

print(l'rad); 
10; 
print(My.Arra:y[3] +"a string"); 

Since a simple statement disposes of its result, this sort of statement is useful only 
for its side-effects. Semicolon is used to terminate all statements. Its use is optional (but 
recommended) for the last statement in a series. 

. . 



396 Chapter 6: Appendices 

A.7.5.2 Assignment Statements 

An assignment has the side-effect of setting the value of the variable referenced on 
the l~ft side to the value of the expression on the right side. For instance: 

Sam :• 100; 
Actor[lsam] :• new(OrdaredCollection, 3); 
SortBlock :• {using(a,b) asint(a) < asint(b)) 

The last example assigned a block object to a variable. A block is an object 
containing code that can be executed at a later time. The value of a block is derived by 
sending it an eval message with arguments. 

The right side of an assignment statement can be another assignment: 

left := right :• 100; 

The value of an assignment statement is the value of its right side. 

A.7.5.3 Conditional Statements 

There are three forms of the conditional statement: if, if/else, and a case construct 
allowing selection on multiple conditions. In the following code, braces(' [' ' ] ' ) 
around a keyword indicate that it is optional. 

A.7.5.3.1 If Statement 

An if statement consists of the following elements: 

if <expression> 
[ then ] <list of statements> 
endif; 

Since all Actor objects have boolean significance, the expression clause can be an 
arbitrary Actor expression. A special Actor object, nil, is considered to be logically 
false, while any other object (including 0) is considered true. Note that this allows a 
potentially confusing use of the assignment statement: 

if a := b 
then <statements> 
endif; 



Appendix A: Language Description 397 

To a casual reader, this may appear to be a comparison of a and b, but actually is 
an assignment. The true clause will execute if b holds any object other than nil. To 
reduce confusion in this case, it is useful to surround the expression with parentheses: 

if (a :• b) 
then <statements> 
endif; 

The then keyword in if or if/else statements is optional. 

A.7.5.3.2 Weise Statement 

The if/else statement simply adds a false clause to the above if statement: 

if <expression> 
[ then ] <list of statements> 
else <list of statements> 
endif; 

The if/ else statement, like the assignment statement, has a value. This implies that 
an if I else statement can be used anywhere an object is allowed-as an argument, the 
right side of an assignment, and so on. For instance, the following expression assigns to 
c the maximum of a and b: 

c := if a < b then b else a endif; 

If either the true or false clause is empty, its value is nil. Note that the if statement 
does not have a value, only if I else. Actor's highly orthogonal design allows for some 
unusual and powerful forms. For instance, we can have one if/else statement determine 
the logic at runtime that is used by another conditional statement: 

if (if loading 
then (Wind :• isVisible(display)) 
else (Wind :• isEditable(workSpace)) 
endif) 

then showError(Wind) 
endif; 

This construct allows the inner if/ else to determine which conditional ( 
isVisible (display) or isEditable (workspace) ) is used by the outer if 
statement, based upon the value of the variable loading. This exploits both the 
boolean properties of all objects and the fact that if /else has value. Traditional 
languages would require a great deal more code to express the above algorithm. 



398 Chapter 6: Appendices 

A.7.5.3.3 Seled Statement 

The select statement allows conditional selection of one of several cases based 
upon arbitrary boolean expressions. For example: 

select 

case val < 0 
is print("negat.ive"); 
end.Case 

case val == 0 
is print("zero"); 
end.Case 

default print("positive"); 
endSelect 

In each case clause, the word case is followed by an arbitrary expression, just as in 
the if statement. A list of statements can be placed between the is and the end.Case. 
If a given case fires, only that list of statements will execute, and control transfers to the 
statement immediately following endSelect. The default clause is optional, but highly 
recommended as good programming style. The is keyword in the case clause is 
optional. 

A.7 .5.4 Iteration 

There are two mechanisms in Actor for iterative execution. Iteration through the 
elements of a collection is often best handled by sending the collection an enumerative 
message. In cases where enumeration is inappropriate, a very general syntactic 
structure is provided that supports all of the normal iterative models. 

A.7.S.4.1 Enumeration 

All of the collection classes in Actor support the enumeration messages. These 
messages provide a way of executing a block for each element of a collection. There are 
three general types of enumeration: do, collect, and extract. 



Appendix A: Language Description 399 

A.7.5.4.1.1 Do 

A do method simply executes its block argument once for each element in the 
receiver collection. Each collection class implements do in a manner appropriate to its 
data representation. For example: 

do (Hy.Array, 
( uaing(elem) 
)) ; 

print(elem); 

In this example, each element of the array is substituted for the block's formal 
argument, elem. The equivalent of a for/next loop can be achieved by sending do to an 
object of class Interval: · 

do ( over (1, 20), 
( using (nwn) 
)) ; 

print (num * 2); 

In this example, the over message creates an Interval ranging from 1 to 20 with 
step 1. An Interval responds to enumeration messages by executing the block once 
for each integer in the interval. 

A.7.5.4.1.2 Collect 

The collect method allows a mapping from one collection to another. A 
collect method evaluates the block argument once for each element in the receiver. 
The result of the block is added to a new collection, which ends up with the same 
number of elements as the receiver. For example, the following returns a Set consisting 
of the lengths of each of the strings in the receiver: 

collect( tuple("one", "two", "three"), 
(uaing(str) aize(str) }); 

result: Set (3 3 5) 

The collect and eztract messages produce new collections that are filled via the 
add message. Indezed.Collections do not understand add, and thus return as their 
species a class that does (such as Ordered.Collection). Indexed.Collection 
implements another enumeration method, map, that uses put rather than add and 
therefore works with fixed-length objects such as strings and arrays. 



400 Chapter 6: Appendices 

A.7.5.4.1.3 Extract 

An extract method evaluates the blocki and adds the element in the receiver to 
the new collection if the block evaluates to a true (non-nil) value. This allows selection 
of only certain elements of a collection as members of the new collection. For instance, 
the following selects only strings that start with "new": . 

extract( tuple("newObject", "newClass", "oldClass"), 
( using(el) 

subString(el, 0, 3) == "new" )) ; 

re~ult: Set ("newObject" "newClass") 

A.7.S.4.2 Loops 

Actor provides a loop statement for situations in which enumeration is 
inappropriate. The format is as follows: 

loop <statement list> 
while <expression> 
[ begin ] 

<statement list> 
endLoop; 

Since either statement list can be empty, this construct provides both while and until 
loops with the same syntax. The conditional expression can even be embedded in the 
middle of two statement lists, a facility not provided in many languages. The statement 
list immediately following loop will be executed at least once, while the second list is 
executed only while the conditional is true. If writing an until-type loop, the 
programmer may choose to omit the begin keyword for more clarity. 

A.7.5.5 Return 

Any statement can be preceded by a caret (") that causes control to return to the 
caller of the current method. The statement following the caret is evaluated, and this 
object is returned as the value of the current method. A return exits immediately from 
any enclosing control structures, including blocks. A return from within a block exits 
from the method in which the block is defined. Note that this might result in de-nesting 
from several nested calls if the block was passed down to other methods before being 
evaluated. 



Appendix A: Language Description 401 

A.7.6 Binding of Receiven 

Actor allows the class of a message receiver to be specified at compile time as an 
efficiency measure. Although the precise action taken by the compiler for an early
bound expression is version-dependent, in most cases the result will be resolution of the 
message at compile time. nus results in shorter and more efficient code. The degree to 
which the compiler verifies the correctness of types is version-dependent. 

Types can be used in any message expression. Some examples: 

llyArray:Array[idz]; 
init(Wind:'!'extWindow); 
100 + aize:Int; 
print(maz(a, b):Int); 

A.7.6.1 Binding Messages to Self 

The Smalltalk language has a special mechanism for what is known as the 
"superclass send". This allows the programmer to invoke an inherited method by 
starting the search in the class's immediate superclass instead of aelf. A major 
drawback of this facility ls that the programmer cannot get at multiply-redefined 
methods, only the last one to be redefined. Also, if the ancestor relationship changes, it 
may produce unforseen errors at runtime. 

Actor solves this problem via orthogonal application of the typing mechanism. A 
message to aelf can be typed, which causes the compiler to immediately look up the 
method in the specified class. The compiler can verify that the specified class is truly an 
ancestor of the class being compiled. nus makes binding to self very type-safe, unlike 
generalized early binding. In addition to the precision of expression gained by this 
technique, it allows compilation of more efficient code. The expression 
self: Object [idz], for example, allows a MethodDictionary basic indexed access 
to its elements, circumventing several redefinitions of at by its ancestors. 

A.8 Formal Grammar 

NUMBER 
LIDRAL 

; 

: <Int> I <Long> I <IEEE Real> 
NtJMBER '8' NtJMBER 
"I(" [LI'!'ERAL]8 ")" 
"'(" Int Int .Int Int ")" 
'"' <ascii string> '"' 
'f' IDEN'lil'IER 



402 Chapter 6: Appendicss 

K1f_II' 
K1f_BLSB 
K1f 'l'HEN 
K1f ENDII' 
K1f_BEGIH 
K1f WHILE 
K1f_ENDLOOP 
K1f_LOOP 
K1f DEi' 
K1f_SELI' 
K1f_SELBC'l' 
K1f _ENDSELBC'r 
K1f CASE 
K1f_ENDCASB 
K1f_USIHG 
K1f_DEl'AUL'l' 
K1f_IS 
WCALL 280 

AS SIGH 
'l'YPB 
ID:&:N'l'Il'IER 
J:Nl'IX 271 

ac:r:ipt . 
i . , 

unit 

; 

:r:cv:r: 

. , 

obj 

"if" 
"else" 
"then 
"endif" 
"begin" 
"while" 
"endLoop" 
"loop" 
"Def" 
"self" 
"select" 
"end.Select" 
"case" 
"endCase" 
"using" 
·"default" 
"is" 
"Call" 

": •" , . , ID:&:N'l'Il'IER . 
[a-z]+ [a-z 0-9)@ 
<element of Infiz<>ps> 

unit 
sc:r:ipt unit 

func 
stmtList 

obj 
obj 'l'YPE 

ID:&:N'l'Il'IER 
obj'[' obj')' 
obj 'l'YPE '['obj')' 
ivChain 
LI'l'ERAL 
NUMBER 
'-' NUMBER 
ID:&:N'l'Il'IER, (' :r:cv:r: argList ')' 



•••gn 

semi 

argList 

•tmt 

stmtLiat 

; 

; 

; 

. , 

; 

; 

; 

Appendix A: Language Description 403 

WCALL '(' obj argList ')' 
WCALL '(' ')' 
obj '-' rcvr 
obj INl'IX rcvr 
' (' obj ')' 
block 
assgn 
iflllseStmt 
1tW SBLI' 

mBNTirIBR '·' IDBNTIFillR 
obj '.' mUTirIBR 
ivChain '·' IDENTIFIER 

IDUTirIBR ASSIGH obj 
obj'[' obj']' ASSIGH obj 
obj TYPB '['obj']' ASSIGH obj 
ivChain ASSIGH obj 

,. empty ., 
, . ' , 

/* empty •/ 
, , , obj 
argList ','obj 

obj 
ifStmt 
loopStmt 
caseStmt , ,., stmt 

I* empty *I 
•tmt 
atmtList , . , , 
atmtLiat ' . , stmt , 



404 Chapter 6: Appendices 

if Stmt 

ifll1seStmt 

then 

begin 

is 

loopStmt 

caseStmt 

caseList 

def Clause 

caseClause 

pa:mList 

; 

; 

. , 

; 

; 

; 

. , 

. , 

; 

; 

KW_IF obj then stmtList KW_ENDIF 

KW_IF obj then stmtList KW_ELSB 
stmtList KW_ENDIF 

/* nothing */ 
KW_TBEN 

/* nothing */ 
KW_BEGIN 

I* nothing */ 
KW_IS 

Jaf_LOOP stmtList KW_WHILB obj begin 
stmtList KW_ENDLOOP 

KW_SELECT caseList defClause 
KW_ENDSELECT 

caseClause 
caseList caseClause 

I* empty */ 
KW_DEJ!'AULT stmtList 

KW_CASB obj is atmtLiat 
KW _ENDCASB semi 

I* empty */ 
IDENTIFIER 
' , ' IDENTIFIER 
pa:mList IDENTIFIER 
pa:mList ',' IDENTIFIER 



locLiat 

locDefa 

fHame 

func 

blkllaader 

block 

. , 

; 

; 

; 

; 

; 

I* empty */ 
IDBll'.rirIBR 

Appendix A: Language Description 405 

locLiat IDl:H'l'IrIER 
locLiat ',' IDl:H'l'IrIBR 

I* empty */ 
'1 1 .locLiat 

IDl:H'l'IrIBR 
Dll'IX , _, 

D_DJ:r fHama ' (' D_Sl:LI' paz:mList 
locDefa ')' aemi '(' stmtList ')' semi 

/* empty */ 
D_USIHG '(' locList locDefs ')' 

'(' blkHeader stmtList ')' 



Appendix B: Glossary of Terms 

Actor 
A ''pure" object-oriented language. Also, it is the name of a dictionary 
containing the global variables of the Actor language. 

aliasing 
Two different variable names sharing the same object pointer. Thus, a change in 
value of one of the variables will cause a change in the value of the other 
variable. 

ancestors 
More general classes from which more specialized classes descend, while 
inheriting their instance variables and methods. Oasses have only one 
immediate ancestor. For example, Number's immediate ancestor is 
Magnitude. Object is also its ancestor because Object is the immediate 
ancestor of Magnitude. In turn, Humber is an ancestor to Int, Long and 
Real. 

arguments 

array 

ASCil 

Data passed to an object as parameters in a message. The first parameter is the 
receiver of the message, and all other parameters are the arguments. 

A data structure which represents a fixed-sized indexed collection of elements. 
The elements, which are ordered and referenced by integer offsets, can be 
objects of any class. 

The standard numeric code used to represent characters. ASCil stands for 
American Standard Code Information Interchange. 

ASCilZ 
An ASCII string that is terminated by the null character (asChar ( 0) ). 

binary numbers 
Numbers defined in base 2. Only two digits, 0 and 1, can be used. 

bit 
A one-digit binary number. That is, either 0or1. 



block 
A sequence of Actor source code between curly braces (" ( •.• ) '') that can be 
passed as an argument and executed at a later time. It is commonly used as an 
argument in the do message. 

Browser 

byte 

class 

A tool used to explore classes and methods. It is a popup window available 
from the workspace menu as Browse!. 

A binary number of eight digits or bits. ASCII character data is represented in 
byte fonnat. 

A category of objects that all have the same functionality and data fonnat. All 
instances of a class share the same methods and instance variables. By 
convention, class names begin with a capital letter. 

class tree 
A visual aid that represents the hierarchical relationship between the classes in 
the same way as would a family tree. 

compile time 
For a given function, the time at which the compiler translates Actor code into 
threaded code. 

compiler 
A system program that translates Actor code into a low-level language. 

constant 
An object whose value ts fixed at compile time. It is accessed from memory 
more quickly than a variable would be. 

descendants 
Classes created as offshoots from or more specialized versions of another class, 
or ancestor. The descendant inherits from its ancestor all of the methods and 
instance variables, but can redefine them. A descendant has only one 
immediate ancestor, but an ancestor can have many descendants. 

dialog box 
A popup window used for simple interaction with the user, such as data input 
or decision making. 

Display 
A standard Actor window that displays the output of a program and messages 
about compiling messages. 



dynamic memory 
The memory location where transient data structures reside. It is periodically 
scanned by the garbage collector to dispose of obsolete data. 

early binding 
A convention by which the class of a variable or expression is fixed at compile 
time, allowing more efficient execution. By default, Actor is a late binding 
language, but early binding is available if needed. 

expression 
Part of an Actor statement that has a value of its own. Message sends and 
calculations are all expressions, and produce objects as a result. 

extensible language 
A flexible language whose basic structure can be modified to suit a particular 
need. Actor is fully extensible. 

formal class 
A unifying class that provides common methods to its descendant classes but 
has no instances of its own. 

function 
A high-level Actor method, written in Actor source code. 

garbage collection 
Facility which manages the disposal of obsolete data structures stored in 
memory. Actor uses an incremental garbage collector that ensures only very 
short pauses. · 

global variables 
Variables defined throughout Actor, such as class and method names and nil. 
They are actually keys in the system dictionary Actor. 

hexadecimal numbers 

image 

Numbers defined in base 16. Sixteen digits are available: 0 through 9 and A 
through F. 

A file containing a snapshot of the object memory used to re-create a particular 
state of the language environment. 

indexed collection 
A collection of elements that are referenced by an integer offset, where the first 
element is element 0. 



infix notation 
A mathematical syntax convention used in Actor in which operators appear 
between the operands. In Actor, the operators are actually methods and the 
operands are objects. 

Inheritance 
A hierarchical scheme that relates the classes. The higher, or ancestral classes, 
are more general and the lower, or descendant classes, are more specialized. A 
class inherits methods and instance variables from its ancestors. The class can 
then modify the methods or add new ones to become specialized. Actor utilizes 
single inheritance, meaning that each class has only one immediate ancestor. 

Inspector 
A debugging tool that allows the programmer to visually interact with an 
object's instance variables. It is a popup window available from the Workspace 
menu as Inspect!. 

Instance 
All Actor objects are instances of a class, meaning they are an objects whose 
methods and instance variables are defined by their class. Even classes 
themselves are instances of other classes. 

instance variables 
An object's individually accessible pieces of data in addition to the value of that 
object. 

keyed collection 
A collection of elements in which each element has two parts, a key and a value. 
The values are the data that are being collected, and the key is an object by 
which the element is referred, rather than by integer indices. Thus, this type of 
collection has no predefined order. 

late binding 

literals 

A convention by which the class and pointer of a variable or expression is fixed 
at run time. By default, Actor is a late binding language, but early binding is 
available if needed. 

Specific values that are expressed literally, rather than symbolically. 

local variables 
Temporary variables defined only during the execution of a method. A 
function's temporaries consist of its arguments plus its locals. 



logical expression 
An expression with the value true or false. Actually, in Actor, all expressions 
have this property. 

menu bar 
A list of options located at the top of a window. 
The menu items are selected with the mouse. 

message 
An Actor statement that sends information to an object. The statement consists 
of a method name followed by parameters in parentheses. The method name is 
the actual message, which is sent to the first parameter, or receiver. The 
remaining parameters are arguments also sent with the message. 

methods 

nil 

object 

The functions that operate on objects. Methods are defined only for particular 
classes. An object can only by accessed and manipulated by the methods that 
that object's class has defined. 

The only Actor object which is logically false. In fact, the constant fa1ae has 
the value ni1. 

The basic data structure used in object-oriented languages, such as Actor. 
Objects are instances of a class, and the methods defined in that class can 
operate on that object. Virtually all structures in Actor are objects of some class. 

object-oriented languages 
Languages that treat data structures as objects belonging to classes. The classes 
define methods and inherit methods from other classes accoring to a 
hierarchical inheritace scheme. 

object pointer 
An internal value that is related to the address in memory where an object's 
data actually resides. 

ordered collection 
A variable-length collection of elements that preserves the elements in the order 
in which they were entered. This structure can be used to simulate a stack. 

popup windows 
Windows that when called appear to lie on top of other windows on the screen. 
Popups can be moved and change si7.e but cannot be zoomed or made iconic. 



receiver 
The object that is sent a message. It appears as the first parameter in a message 
send statement. 

recunion 
Calling a method from within the code of that method. 

runtime 

scope 

A given function's run time occurs when the function is being executed. Note 
that one function's run time (as in a compiler function) might actually be 
another function's compile time. 

Scope refers to the domain in which a variable's name has meaning. For 
instance, a block temporary's scope is delimited by the curly braces that enclose 
the block. The scope of global variables is everywhere. 

selector 

self 

The symbolic name which appears in a message send. It is the first term in the 
statement and is outside of the parentheses. (For instance, the print in 
print (Sam)). 

Inside a function, self refers to the receiver of the message that caused the 
function to be executed. Used as a receiver, it is a way of sending another 
message to the same object that the owning function is operating on. 

Snapshot 
A method of saving the current status of the Actor environment in the file 
indicated by the 
l'i1e object VZmage. It rewrites the system as it currently stands. Snapshot is 
available on the Workspace menu under File. 

sorted collection 
A collection of elements that automatically sorts elements as they are entered in 
either ascending or descending order. 

source code 
The text of high-level Actor functions. This code cannot be executed until it has 
been compiled into threaded code. 

statements 
A syntactical unit made up of expressions and keywords. Statements are used 
to control execution in the canonical ways: sequence, condition and iteration. 
Simple stateme~ts can be expressions followed by a semi-colon. 



static memory 
The memory location where large, standard data structures reside. It does not 
have automatic garbage collection. 

subclass 
Another term for descendant. 

superclass 
Another term for ancestor. 

templates 
A programming aid. They are format masks of frequently used Actor code. 
They are available as a Workspace menu item. 

temporary variables 
Arguments and local variables that are used during a message send statement. 

threaded architecture 

tuple 

word 

The compiler design used in Actor that assigns each routine and object an 
internal token or pointer. 

A data structure that constructs an array at run time, rather than at compile 
time. 

A binary number equivalent to two bytes or 16 bits. 

Workspace 
A standard Actor window in which code is entered. This is where most of your 
interaction with the Actor interpreter is done. 



Appendix C: Classes by Method 

This appendix is an alphabetically compiled list of all predefined Actor methods. 
Following each method, the classes that implement that method are listed. 

Method: 

• .. 
+ 

I 

< 

<= 
<> 
= 

== 
> 

>= 
-= 
?hasElements 
abort 
aboutO 
abs 
accept 
add 

addAbout 
addAncestors 
addArg 
addAssoc 
addClassMeth 
add Loe 
addObjectMeth 
addString 

Long Number Real Int 
Number 
Sb'ing Long Number Real Int 
Long Number Real Int 
Long Number Real Int 
Int 
String Long Number Behavior Char Association 
Int Real 
Long Number Char Real Int 
Long Number Object Real Int 
IndexedCollection Object Int Association Number 
Point Long Real String KeyedCollection 
Object 
Sb'ing Long Number Behavior Char Association 
Int Real 
Long Number Char Real Int 
Object 
OrderedCollection 
Function ActorApp 
Browser 
Number Int 
OassDialog Browser 
OrderedCollection Library SortedCollection 
MethodDictionary Behavior Bag Dictionary 
ItemList Set 
Window 
Behavior 
CompileState BlockNode 
Dictionary 
SourceFile 
CompileState BlockNode 
SourceFile 
List Box 



Method: 

add Times 
add Token 
add Variables 
addr 
advance 
alpha 
ancestError 
ancestors 
and 
arcCos 
arcSin 
arcTan 
args 
argsError 
arrows 
asArray 
asBool 
asChar 
asDigit 
asHandle 
aslnt 
asliteral 
asLong 
asOrderedCollection 
asPoint 
as Real 
asSet 
asSortedCollection 
asString 

asSymbol 
asUpperCase 
asciiz 
assocAt 
assocsDo 
at 

atEnd 
atLSB 
atMSB 
bak_Save 
begin Drag 
between 
bindRef 
bit And 

Bag 
Object 
Behavior 
Struct 
TextCollection 
Actor Analyz.er 
Object 
Behavior 
Object 
Number 
Number 
Real 
Function Primitive BlockContext 
Function Primitive 
Edit Window 
Collection 
Long Int 
Long Int 
Char Int 
String ByteCollection 
String Long Char Real Int 
String 
Long Real Int 
Collection 
Long Number 
String Long Real Int 
Collection 
Collection 
NilClass String Long TextCollection Char Real 
Int 
String Char 
String Char 
String 
Dictionary 
Dictionary 
Array Struct String MethodDictionary Object Bag 
Dictionary Interval Charlnterval 
File Stream 
Struct 
Struct 
SourceFile 
EditWindow Window 
Magnitude 
Object 
Long Number Int 



Method: 

bitOr 
bitXor 
bldFonnat 
bldlnherit 
bottom 
break Lines 
browse 
bs 
buildQassUsts 
cMethods 
call 
charlnput 
check 
checkDirty 
checkError 
checkRange 
class 
classArray 
classes 
classesDo 
classify 
cleanup 
clear 

clearUst 
clientRect 
close 
els 
coerce 
collect 
colon 
comment 
comment Break 
comment Breaks 
compClDia 
compile 

condCompile 
condDelCFile 
converter For 
copy 
copy All 

~ 

Long Number Int 
Long Number Int 
Behavior 
OassDialog 
Rect 
String 
Collection 
TextWindow 
Dictionary 
Browser 
Struct 
EditWindow WorkWindow 
Window 
File Window 
File 
OrderedCollection 
Object 
aassDialog 
Dictionary 
Dictionary 
Char 
Object 
KeyedCollection YaccMachine MethodDictionary 
CompileState BlockNode 
UstBox 
Window 
File SourceFile 
Text Window 
Number 
Object Collection 
Actor Analyzer 
Actor Analyzer 
String 
TextCollection 
Browser 
lfElseNode Symbol CallNode LoopNode Object 
Int ltemList Association MsgNode Char 
AssgnNode Function lnfixNode EmptyList ldNode 
lfNode String CompileState RetNode BlockNode 
lvChain 
MsgNode Object lnfixNode 
SourceFile 
Long Real Int 
File Object 
File 



Method: 

copy From 
copy Method 
cos 
create 

dataAsString 
dee 
dec2 
default 
degToRad 
delChar 
delReplMethod 
delSelClass 
delSelMethod 
delete 
deleteChar 
deleteMethod 
delcteSelText 
delete Text 
descendants 
descendants Do 
digit 
disableMenultem 
discard 
do 

doArgl_list 
doArgl_obj 
doAssgn 
doBlkHeader 
doBlkHeader_empty 
do Block 
doCUst_list 
doCase 
doCollAssgn 
doDefEmpty 
do Default 
doDirtyClasses 
doDirtyWork 
doFunc 
dolf 
dolfElse 
dolt 
dolvAssgn 

Array String File Stream 
Brow Edit 
Number Real 
File EditWindow FileWindow Control Window 
WorkSpace 
Inspector 
Number Int 
Number Int 
YaccMachine 
Number Real 
Edit Window 
SourceFile 
Browser 
Browser 
String File 
TextCollection 
Source File 
E4itWindow 
TextCollection 
Behavior 
Behavior 
Actor Analyzer 
Window 
Object 
lndexedCollection Dictionary OrderedC~llection 
MethodDictionary Object Struct Int Bag Set 
NilOass Charlnterval Interval 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
WorkSpace 
Browser 
Actor Parser 
Actor Parser 
Actor Parser 
WorkEdit 
ActorPaJsel' 



Method: 

dolvChain 
dolvld 
dolvObj 
do Line 
do List_ empty 
dolocDefs 
dolocl_parm 
do loop 
doltype_coll 
doMenuChoice 
doNeg 
doObLewcall 
doObUdent 
doObLinfix 
doObLmsg 
doObLparen 
doObLself 
doObLsys 
doObLwcall 
doParml_blist 
doParml_bparm 
doParml_list 
doParml_parm 
doPdef 
doRcvr_type 
doRtype_coll 
doRval_coll 
doScript_func 
doScript_sList 
doSelect 
doSlist_list 
doSlist_stmt 
doStmt_ret 
dosError 
drag 
dragDown 
dragUp 
.draw 
drawChar 
drawString 
dropStates 
early Bind 
early Users 
enable 
end Drag 

ActorParser 
ActorParser 
Actor Parser 
WorkEdit 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
ActorParser 
Inspector Browser 
Actor Parser 
Actor Parser 
Actor Parser 
ActorParser 
Actor Parser 
Actor Parser 
ActorParser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
Actor Parser 
File 
EditWindow Window 
Edit Window 
Edit Window 
Polygon RndRect Ellipse Rect Point 
Text Window 
TextWindow 
YaccMachine 
ParseNode Object IdNode 
Function Primitive 
Window 
EditWindow Window 



Method; 

eol 
eos 
eosError 
erase 
error 
errorBox 
errorString 
exception 
execute 
exit 
exp 
extend 
extract 
fail 
fill 
fil~ClassList 
find 

findBreak 
findFunction 
findltemlndex 
findVar 
first 
fix Array 
fixUp , 
fixedVars 
fix up 
flash 
flipCheck 
flipFormat 
flipState 
fonnatLines 
fonnatMethod 
fonnatTemplate 
free 
funcName 
gc 
generality 
get 
getAKO 
getChar 
getCheck 
getChunk 
getOipText 
getContext 

File EditWindow TextWindow 
Actor Analyzer 
Actor Analyzer 
String 
Object 
String 
Symbol 
YaccMachine 
Function 
Object 
Number Real 
Long 
Collection 
Object 
Array Struct String Debugger Rect ClassList 
Browser 
Array String MethodDictionary SymbolTable Set 
Dictionary 
String 
Behavior 
SortedCollection 
NilClass Behavior 
OrderedCollection 
Browser 
Set Dictionary 
Behavior 
SymbolTable 
Modal Dialog 
Button 
ClassDialog 
Button 
Actor Analyzer 
Brow Edit 
WorkEdit 
Library 
Object 
Object 
Long Object Real Int 
Frame 
Frame 
Analyzer 
Button 
SourceFile 
Edit Window 
Window 



Method: 

getError 
getFileName 
getldent 
getltemText 
get Key 
getLBText 
getListNum 
getLoadFile 
getNum 
getPos 
getProfile 
getRange 
getSelOass 
getSelldx 
getSelSbing 
getSelText 
getState 
get Text 
getToken 
getVal 
getValue 
goto 
gotoRt 
gray 
group 
grow 

handle 
hasRvalue 
hash 

height 
hideCaret 
high 
home 
hyphen 
implementors 
in 
inBlock 
inc 
inc2 
indexOf 
infix 
inflate 
inherit 

File DosStruct 
Behavior 
Actor Analyzer 
Modal Dialog 
MethodDictionary Dictionary 
Modal Dialog 
Actor Analyzer 
File Dialog 
Actor Analyzer 
Scroll Bar 
Primitive 
Scroll Bar 
Cass List 
List Box 
List Box 
Edit Window 
Button 
Int 
Actor Analyzer 
MethodDictionary Dictionary 
Frame Slot 
YaccMachine 
YaccMachine 
Window 
Object InfixNode 
KeyedCollection MethodDictionary Set 
OrderedCollection Dictionary SortedCollection 
ModalDialog Control Window 
LoopNode lfNode Object ltemList EmptyList 
KeyedCollection String Long Point Object Char 
Symbol Association IndexedCollection 
Rect 
Edit Window 
Long Int 
Text Window 
Actor Analyzer 
Symbol 
Set Interval Charlnterval 
CompileState 
Number Int 
Number Int 
Array String Primitive 
Actor Analyzer 
Rect 
Behavior 



Method: 

inheritError 
init 

initCache 
initClassEdit 
initEditPanns 
initFormat 
initKeyList 
initSelPanns 
initSystem 
initVarList 
initWorkText 
insert 
insertAll 
insertlnSelection 
insert Lines 
insertString 
insertText 
inspSelKey 
inspSelVar 
inspect 
inspectContext 
inspectlt 
install 
interpret 
invSelTxt 
invalidate 
invertUne 
invertSelText 
is Ancestor 
isEditable 
isHexDigit 
isldx 
isMetaName 
isPrintable 
isPtr 
isSelText 
isSymbol 
is Temp 

Object 
Analyzer WorkSpace ltemList Set LoopNode 
Association ScrollBar Interval YaccMachine 
SortedCollection CallNode CompileState Bag 
IdNode KeyedCollection SourceFile Library 
BlockNode RndRect MethodDictionary MsgNode 
Object OrderedCollection InfixNode IvChain Rect 
ActorApp Function IfNode TextWindow RetNode 
IfElseNode AssgnNode EditWindow 
Object 
Browser 
Edit Window 
Class Dialog 
Inspector 
Edit Window 
Object 
Inspector 
Edit Window 
String OrderedCollection 
Ordered Collection 
WorkEdit 
WorkEdit 
TextCollection ListBox 
TextCollection 
Inspector 
Inspector 
Object 
DebugDialog 
WorkEdit 
File 
Stream 
EditWindow 
Control Window 
Edit Window 
Edit Window 
Behavior 
EditWindow Window 
Char 
Object 
Symbol 
Char 
Object 
Edit Window 
String 
CompileState BlockNode 



Method; 

item 
ividx 
key At 
keys 
keysDo 

lCompile 
last 
leading Blanks 
left 
left Justify 
leftMost 
length 
length Breaks 
limit 
line 
line To 
list 
litArray 
litChar 
litRect 
litString 
litVec 
literal 
load 
loadClassinfo 
loadlvars 
load list 
loadMenu 
loadMethText 
loadMethods 
load Ordinals 
loadSelMethod 
loadString 
locateMethod 
log 
longAt 
lookAKO 
low 
lseek 
makeClassFile 
make Descendant 
makeString 
map 
mapDelims 

YaccMachine 
Object 
NilOass MethodDictionary Dictionary 
I<eyedCollection 
I<eyedCollection MethodDictionary Object Bag 
Dictionary IndexedCollection Set 
IvChain CompileState IdNode BlockNode 
Stream OrderedCollection 
String 
Rect 
String 
lnfixNode 
File 
TextCollection 
Object 
Point 
Point 
Itemlist Emptylist 
ActorAnalyz.er 
ActorAnalyz.er 
ActorAnalyz.er 
ActorAnalyz.er 
Actor Analyz.er 
String 
String File SourceFile Collection Library 
Browser 
OassDialog 
FileDialog 
Window 
SourceFile 
Browser 
Library 
Browser 
Int 
SourceFile 
Number Real 
Struct 
Frame 
Long Int 
File 
SourceFile 
Browser 
TextCollection 
Indexed Collection 
String 



Method: 

max 
merge Template 
method 
min 
mod 
move 
moveCaret 
move To 
move Window 
negate 
negative 
nestNode 
new 
newState 
next 
nextLine 
nextOP 
nextPut 
nextPutAll 
noScroll 
nonZero 
not 
now 
oMethods 
occurrences 
offset 
op 
open 
opcnClass 
opcnClassFile 
openClasslnDir 
openFile 
openSaveAs 
options 
or 
over 
over By 
owner 
pack 
paint 
parse 
pass 
pcall 
point 
pop 

Class: 

Magnitude Int 
Brow Edit 
Behavior 
Magnitude Int 
Long Number Int 
File 
Text Window 
File SourceFile Point 
WorkEdit ScrollBar Control 
Long Real Int 
Long Number Int 
IfElseNode 
Behavior 
YaccMachine 
File YaccMachine Stream 
Actor Analyzer 
Object 
File Stream 
File Stream 
Edit Window 
Number Int 
Object 
Behavior 
Browser 
Bag 
Rect 
Object 
File SourceFile 
SourceFile 
Browser 
SourceFile 
File Window 
File Window 
Browser 
Object 
Number Int 
Int 
Function Primitive 
Number 
EditWindow Window Browser 
NilClass String YaccMachine 
YaccMachine 
Struct 
Actor Analyzer Number Int 
Ordered Collection 



Method: 

pop Block 
position 
positive 
precedence 
primError 
print 
printChar 
print Line 
printOn 

printString 
public 
push 
pushBlock 
put 

putBack 
putElem 
putl.ong 
putMSB 
put Word 
pwr 
rCompile 
rad To Deg 
random 
reName 
read 
read Char 
read Chunk 
read Into 
readText 
recompClasses 
rect 
reduce 
reform 
register 
releaseContext 
remove 
removeFirst 
remove Last 
removeNulls 
repaint 
replace 

Class: 

CompileState 
File 
Long Number Int 
InfixNode 
Object 
String YaccMachine Object Behavior Char IdNode 
Text Window 
EditWindow Object 
Collection Interval File Object Int Association 
Point Long Char Function Frame NilOass 
Behavior Real String KeyedCollection 
ByteCollection Primitive Slot 
Text Window 
Object 
YaccMachine OrderedCollection 
CompileState 
Array Struct String MethodDictionary Stream 
Object Dictionary 
Stream 
MethodDictionary Dictionary 
Struct 
Struct 
Struct 
Real 
CompileState BlockNode 
Number Real 
Int 
File 
File 
File 
SourceFile 
Struct 
File Window 
Browser 
Int 
YaccMachine 
Brow Edit 
NilOass 
Window 
Set OrderedCollection Dictionary SortedCollection 
OrderedCollection 
Ordered Collection 
NilOass String 
Window 
String 



Method: 

reportUndef 
reset 
resetOassMenu 
reset Dir 
reset Top 
reverse 
right 
right}ustify 
mam 
rpnError 
runValueDemon 
saveMethText 
scan While 
screenSize 
selNulUne 
selectAll 
selectString 
sendMessage 
senders 
set 
setAKO 
setAddr 
setAncestor 
setArgs 
set Bottom 
setCRect 
setCall 
setCheck 
setClass 
setClipText 
setCompareBlock 
setCorner 
setCurPos 
setCurSel 
setCurve 
setDialog 
setFail 
setFixedVars 
setFocus 
setFunction 
setltemFocus 
setltemText 
setLastSel 
set Left 
setMenu 

Actor Parser 
Stream 
Browser 
File Dialog 
Edit Window 
OrderedCollection lndexedCollection 
Rect 
String 
File 
String 
Frame 
Browser 
Analyzer 
Object 
Edit Window 
Edit Window 
List Box 
Control 
Object 
Frame 
Frame 
Proc 
Behavior 
Proc 
Rect 
Control 
DosStruct 
Button 
Object 
Edit Window 
SortedCollection 
Rect 
EditWindow 
List Box 
RndRect 
Modal Dialog 
Primitive 
Behavior 
EditWindow Control 
CompileState 
OassDialog 
ModalDialog 
UstBox 
Rect 
Window 



Method; 

setName 
setOrigin 
setPos 
setProfile 
setRange 
setRight 
setScrollPos 
setSize 
setState 
set Text 
setTop 
setValue 
setVars 
setXCurve 
setYCurve 
shouldCompile 
show 
showCaret 
showData 
showError 
showOldCurs 
showTitle 
showWaitCurs 
sin 
size 

sizeKids 
skipDelim 
snap 
snapshot 
sorted 
source Line 
special 
species 
sqrt 
stackUnk 
stack Top 
start 
static 
staticRoom 
stock 
streamOver 
stringOf 
subString 
sub Text 

Class: 

File 
Rect 
Scroll Bar 
Primitive 
Scroll Bar 
Rect 
Edit Window 
Control 
Button 
ModalDialog Window 
Rect 
Frame Slot 
WorkEdit ListBox 
RndRect 
RndRect 
Behavior 
Control Window TextWindow 
Edit Window 
Inspector 
YaccMachine 
Window 
File Window 
Window 
Number Real 
KeyedCollection OrderedCollection Charlnterval 
Interval Object Bag ltemUst EmptyList Set 
ToolWindow 
Analyzer 
File 
File 
Bag 
Actor Analyzer 
Actor Analyzer 
Object lndexedCollection Collection 
Number Real 
Int 
Object 
Inspector Browser 
Object 
Object 
Int 
String 
Char 
String 
TextCollection 



Method: 

swap 
syntaxError 
sysName 
sysPrint 
sysPrintOn 

tabs 
tan 
tempStr 
temps 
test 
toggle 
top 
trace 
traceOff 
unCheck 
undef 
undefError 
update 
updateCFile 
updateClassFile 
vaICompile 
validate 
variableNew 
variables 
vis Lines 
who 
width 
wind Call 
WM_ CHAR 

WM_ CLOSE 

WM_COMMAND 

WM..;.DESTROY 
WM_INIIDIALOG 

WM_KEYDOWN 
WM_KEYUP 
WM_KILLFOCUS 
WM_LBUTI'ONOOWN 
WM_LBUTI'ONUP 

Object 
Actor Parser 
Primitive 
Object 
Symbol MethodDictionary Object Long Char 
Function Frame Collection String Keyed.Collection 
Interval 
Int 
Number Real 
WorkEdit 
Function Primitive BlockContext 
Actor Analyzer 
ModalDialog 
Rect 
Debugger Object Int 
Object 
Window 
Analyzer 
Symbol 
Window 
Browser 
SourceFile 
NilOass ParseNode ltemList EmptyList 
Window 
Behavior 
Behavior 
Edit Window 
Object 
Rect 
Actor Analyzer 
BrowEdit WorkEdit EditWindow FileWindow 
Work Window 
FileWindow WorkWindow Inspector WorkSpace 
Browser 
Browser OassDialog EditWindow FileDialog 
ModalDialog InputDialog DebugDialog Inspector 
FileWindow WorkEdit WorkSpace 
WorkWindow WorkSpace 
ModalDialog ClassDialog InputDialog FileDialog 
DebugDialog DirtyCLD 
Scan Window 
Scan Window 
EditWindow TextWindow 
Window 
Window 



Method: 

WM_MOUSEMOVE 
WM_PAINT 
WM_QUERYENDSESSION 
WM_SETFOCUS 

WM_SIZE 
WM_SYSCOMMAND 
WM_VSCROLL 
word 
wordAt 
write 
writeChar 
writeChunk 
writeMeth 
write Text 
x 
xClear 
xCopy 
xCurve 
xCut 
xPaste 
xeval 

· xpcall 
xperfonn 
xtuple 
y 
yCurve 
zero 
zoomEdit 

Om! 

Window 
Window 
WorkSpace 
EditWindow Window ToolWindow Inspector 
Text Window 
BrowEdit EditWindow ToolWindow TextWindow 
Window 
Edit Window 
Stream 
Struct Long GraphicsObject 
File 
File 
SourceFile 
SourceFile 
File Window 
Point TextWindow 
Edit Window 
Edit Window 
RndRect 
Edit Window 
Edit Window 
MsgNode 
MsgNode 
MsgNode 
MsgNode 
Point TextWindow 
RndRect 
Long Number Int 
Browser 



Appendix D: List of Global Variables 

This document describes the global variables in the Actor system that are of interest 
to the user. 

Actor 

Bug 

The Actor dictionary, which holds all global variables. 

The sole instance of class Debugger. This object is employed whenever an 
error occurs to construct an informative trace of the stack activation records that 
led up to the error. An instance of DebugDialog is usually created to display 
the stack trace. 

CmdShow 
Holds the value passed to the Actor application's main routine by Windows. 
This should be used in the create message when the first windows is created by 
the application. 

CoercedOps 
An array of symbols naming the primitive methods that support mixed-mode 
arithmetic. Each of these primitives has its failure function set by the Actor 
startup routine. 

Compiler 
The object that oversees compilation of parsed Actor code into threaded tokens. 

Constants 
A MethodDictionary that holds the names of objects whose value is fixed at 
compile time. When the compiler resolves a reference to a constant, the object 
pointer of the constant is compiled directly into the method. 

CurrentParser 
At any time, this variable holds either of two ACtorParser instances, Parser 
or Loader. Parser is used by the Browser and Workspace to parse interactive 
commands and recompile methods. Loader is used when a file is loaded from 
the disk. 



Demo a 
Initially, this variable holds the string "act \demoa • act". If a load message is 
sent to this string, it loads the file DEMOS.ACT. This file causes the name 
Demoa to refer to a Dictionary of collections of strings, each collection 
comprising all the files necessary to load a particular demo. For instance, you 
could then type load (Demoa [ ltu:a:tle] ) to load the turtle graphics demo 
files. 

BchoDef a 
If true, a message is printed in the display whenever a #define statement is 
processed. 

B:r::r:o:r:Lavel 
1be error methods increment this variable to flag recursive errors, that is, errors 
that are generated in the error handling process itself. For instance, the error 
method may request an object to print its name, which then causes another 
error. This would result in stack overflow if not checked, which is the reason for 
B:r::r:o:r:Lavel' a existence. If B:r::r:o:r:Lavel is > 0, the error handler does an 
immediate abort to avoid further nested errors. 

Binatance 
1be instance handle for the Actor module within MS-Windows. Various 
MS_ Windows calls require this handle. 

BugaSize 
This value determines how many characters long a collection's printOn string is 
allowed to grow. When HugeSb:e is reached, the rest of the collection is 
represented by an ellipsis( ... ). You can make BugeSize larger if you need to 
examine a long collection. (Default size is 256). 

InfizOpa 
Those method names that are to be treated as infix by the parser are stored as 
keys in this dictionary. Each name has an associated precedence level as its 
value in the dictionary. Any method can be made infix simply by adding its 
name and a precedence to Infix<>pa. 

KeyWo:r:da 
A Sat containing reserved symbols in Actor that have particular syntactic 
meaning, such as if, then, loop, and so on. 

LitA:r::r:aySize 
Whenever a literal array is encountered, the parser creates an array to store the 
element values in as they are parsed. LitA:r::r:aySize determines the size of this 
array. 



Loader 
The ActorParser object that is used to parse source files. 

LpDl'unc 
A Long containing the address of the assembly language routine that Actor uses 
as the window function for all modal dialogs. 

LpWl'unc 
A Long containing the address of the assembly language routine that Actor uses 
as the window function for all windows. 

OUtPorts 
A collection of devices that obey the Text Window protocol for drawing text and 
characters. Any object responds to the message print by printing itself on a 
Stream, and then sending a printString with the resulting String to each of 
the devices in OUtPorts. 

Parser 
The instance of ActorParser that is used to parse commands in the 
Workspace, Inspector and Browser. 

SpecialMethoda 
A MethodDictionary containing information about selectors that have special 
primitives. This allows the compiler to generate more efficient code. The keys 
in SpecialMethods are the selectors with the highest static frequency in the 
Actor system. Each value in SpecialMethoda is an Association whose key 
contains the number of arguments expected by the special primitive, and whose 
value is an index into the array smsgPrims. This array contains the actual 
object pointer of the primitive. 

SrcBufLen 
This global contains an Int that determines how large a source buffer will be 
created in instances of class Sourcel'ile. This in tum determines the largest 
chunk that can be parsed by the loader. 

Symbols 
The Actor symbol table. This is a descendant of Set that contains every 
Symbol currently being used in the Actor system. 

TheApp 
This global holds the application object. When Actor starts up, an init message is 
sent to this object. In the distributed system, it is an instance of class ActorApp, 
but each application should define its own application class and store it in this 
object during the install procedure. 



'rhePoJ:t 
When an Actor window gets the input focus from MS-Windows, it places its 
object pointer in this variable. 

'.rokenC1aaaea 
An Array with 128 elements, each of which is a Symbo1 indexed by ascii value. 
The Actor lexical analyzer classifies each character in the input stream by 
looking it up in '.rokenC1aaaea. The resulting symbol is used to perform an 
appropriate method to generate a token. 

VJ:mage 
An instance of class l'i1e that is used to hold the current name of the Actor 
virtual image. At any time, the state of the Actor system can be saved to disk 
with the message anapahot (VJ:mage) • 

liHe•••ge• 
A HethodDictionaz:y whose keys are the message numbers of all messages 
that can be received from MS_ Windows. The values are the corresponding 
symbolic names of the messages. For instance, HHeaaagaa [ 1] -= 
11111_ CR&An. A complete listing of the contents of WMessages is found in the 
file ACTWIND.H. 



Appendix E: Windows Functions 

AccessResource(hlnstance,hReslnfo):nFile 
Sets file pointer for read access to resource hReslnfo. Returns DOS file handle. 

AddAtom(lpString):wAtom 
Creates an atom for character string lpString. 

AddFontResource(lpFilename):nFonts 
Adds font resource in lpFilename to system font table. 

AdjustWindowRect(lpRect,IStyle,bMenu) 
Converts client rectangle to a window rectangle. 

AllocResource(hlnstance,hReslnfo,dwSize):hMem 
Allocates dwSize bytes of memory for resource hReslnfo. 

AnsiLower(lpStr):c.<::har 
Converts character string lpStr to lowercase. 

AnsiNext(lpCurrentChar):lpNextChar 
Returns long pointer to next character in string lpCurrentChar. 

AnsiPrev(lpStart,lpCurrentChar):lpPrevChar 
Returns long pointer to previous character in string lpStart. lpCurrentChar 
points to current character. 

AnsiToOem(lpAnsiStr,lpOemStr):bTranslated 
Converts ANSI string to OEM character string. 

AnsiUpper(lpStr):c.<::har 
Converts character string (or character if lpString high word is zero) to 
uppercase. 

AnyPopup():bVisible 
Indicates whether or not a popup style window is visible on the screen. 

Arc(hDC,Xt, Yt,X2, Y2,X3, Y3,X4, Y4):bDrawn 
Draws arc from X3, Y3 to X4, Y4, using current pen and moving 
counterclockwise. Arc's center is at center of rectangle given by Xt, Yt and X2, 
Y2. 

BeginPalnt(hWnd,lpPaint):hDC 
Prepares window for painting, filling structure at lpPaint with painting data. 



Appendix E: Windows Functions 433 

BltBlt(hDestOC,X,Y ,nWidth,nHeight,hSrcOC,XSrc,YSrc, dwRop):bDrawn 
Moves bitmap from source device to destination device. Source origin is at XSrc, 
YSrc. X, Y, nWidth, nHeight give bitmap origin and dimensions on destination 
device. dwRop defines how source and destination bits are combined. 

BrlngWindowToTop(hWnd) 
Brings popup or child window to top of stack of overlapping windows. 

BulldCommDCBOpDef,lpOCB):nResult 
Fills device mntrol block lpOCB with control codes named by Ip Def. 

CallMsgFiltel(lpMsg,nCode):bResult 
Passes message and mde to current message-filter function. Message-filter 
function is set using SetWindowsHook. 

CallWindowProc(lpPrevWndFunc,hWnd,wMsg,wParam, IParam):IReply 
Passes message information to the function specified by lpPrevWndFunc. 

CatchOpCatchBuf):nThrowBack 
Copies current execution environment to buffer lpCatchBuf. 

ChangeCllpboardChain(hWnd,hWndNext):bRemoved 
Removes hWnd from clipboard viewer chain, making hWndNext descendant of 
hWnd 's ancestor in the chain. 

ChangeMenu(hMenu,wIDChangeltem,lpNewltem,wIDNewltem, wChange):bChanged 
Appe+nds, inserts, deletes, or modifies a menu item in hMenu. 

CheckDlgButton(hDlg,nIDButton,wCheck) 
Places or removes check next to button, or changes state of 3-state button. 

CheckMenultem(hMenu,wIOCheckltem,wCheck):bOldCheck 
Places or removes checkmarks next to popup menu items in hMenu. 

CheckRadioButton(hDlg,nIDFirstButton,nlDLastButton, nIDCheckButton) 
Checks nIDCheckButton and unchecks all other radio buttons in the group from 
nIDFirstButton to nIDLastButton. 

ChlldWindowFromPoinl(hWndParent,Point):hWndChild 
Determines which, if any, child window of hWndParent contains Point. 

ClearCommBreak(nCid):nResult 
Oears mmmunication break state from mmmunication device nCid. 

ClientToScreen(hWnd,lpPoint) 
Converts client coordinates into equivalent screen coordinates in place. 



. ClipCursor(lpRect) 
Restricts the mouse cursor to a given rectangle on the screen. 

CloseCllpboard( ):bClosed 
Closes the clipboard. 

CloseComm(nOd):nResult 
Closes communication device nCid after transmitting current output buffer. 

CloseMetaFile(hDC):hMF 
Closes the metafile and creates a metafile handle. 

CloseSound( ) 
Ooses play device after flushing voice queues and freeing buffers. 

CloseWindow(hWnd):nOosed 
Ooses the specified window. 

CombineRgn(hDestRgn,hSrcRgnt,hSrcRgn2, nCombineMode):nRgnType 
Combines, using nCombineMode, two existing regions into a new region. 

CopyMetaFile(hSrcMetaFile,lpFilename):hMF 
Copies source metafile to lpFilename and returns the new metafile. 

CopyRect(lpDestRect,lpSourceRect) 
Makes a copy of an existing rectangle. 

CountClipboardFormats( ):nCount 
Retrieves a count of the· number of formats the clipboard can render. 

CountVolceNotes(n Voice):nNotes 
Returns number of notes in voice queue nVoice. 

CreateBitmap(nWidth,nHeight,cPlanes,cBitCount, lpBits):hBitmap 
Creates a bitmap having the specified width, height, and bit pattern. 

CreateBitmaplndirect(lpBitmap):hBitmap 
Creates a bitmap with the width, height, and bit pattern given by lpBitmap. 

CreateBrushlndirect(lpLogBrush):hBrush 
Creates a logical brush with the style, color, and pattern given by lpLogBrush. 

CreateCaret(h Wnd,hBitmap,nWidth,nHeight) 
Creates caret for hWnd using hBitmap. If hBitmap is NULL, creates solid 
flashing black block nWidth by nHeight pixels; if hBitmap is 1, caret is gray. 



Appendix E: Windows Functions 435 

CreateCompatibleBitmap(hDC,n Width,nHeight):hBitmap 
Creates a bibnap that is compatible with the device specified by hDC. 

CreateCompatibleDC(hDC):hMemDC 
Creates a memory display context compatible with the device specified by hDC. 

CreateDC(lpDriverName,lpDeviceName,lpOutput, lplnitData):hDC 
Creates a display context for the specified device. 

CreateDialog(hlnstance,lpTemplateName,hWndParent, lpDialogFunc):hDlg 
Creates a modeless dialog box. 

CreateDiscardableBitmap(hDC,X,Y):hBitmap 
Creates a discardable bibnap. 

CreateEllipticRgn(X1,Y1,)(2,Y2):hRgn 
Creates an elliptical region wCreates an elliptical region whose bounding 
rectangle is defined by Xl, Yl, X2, and Y2. 

CreateEllipticRgnlndirectOpRect):hRgn 
Creates an elliptical region whose bounding rectangle is given by lpRect. 

CreateFont(nHeight,nWidth,nEscapE!ment,nOrientation, 
nWeight,cltalic,cUnderline,cStrikeOut,nCharSet, 
cOutputPrecision,cOipPrecision,<.Quality, cPitchAndFamily,lpFacename):hFont 
Creates a logical font having the specified characteristics. 

CreateFontlndirect(lpLogFont):hFont 
Creates a logical font with characteristics given by lpLogFont. 

CreateHatchBrush(nlndex,rgbColor):hBrush 
Creates a logical brush having the specified hatched pattern and color. 

CreateIC(lpDriverName,lpDeviceName,lpOutput, lplnitData):hIC 
Creates an information context for the specified device. 

CreateMenu( ):hMenu 
Creates an empty menu. 

CreateMetaFileOpFilename):hDC 
Creates a metafile display context. 

CreatePattemBrush(hBitmap):hBrush 
Creates a logical brush having the pattern specified by hBitmap. 

CreatePen(nPenStyle,n Width,rgbColor):hPen 
Creates a logical pen having the specified style,width, and color. 



CreatePenlndirect(lpLogPen):hPen 
Creates a logical pen with the style, width, and color given by lpLogPen. 

CreatePolygonRgn(lpPoints,nCount,nPolyFillMode):hRgn 
Creates a polygonal region having nCount vertices as given by lpPoints. 

CreateRectRgn(X1,Y1,X2,Y2):hRgn 
Creates a rectangular region. 

CreateRectRgnlndirect(lpRect):hRgn 
Creates a rectangular region with the dimensions given by lpRecl 

CreateSolldBrush(rgbColor):hBrush 
Creates a logical brush having the specified ·solid color. 

CreateWlndow(lpCl~ssName,lpWindowName,dwStyle, 
X,Y,n Width,nHeight,hWndParent,hMenu, hfustance,lpParam):hWnd 
Creates tiled, popup, and child windows. 

DefWindowProc(hWnd,wMsg,wParam,lParam):lReply 
Provides default processing for messages an application chooses not to process. 

DeleteAtom(nAtom):nOldAtom 
Deletes an atom nAtom if its reference count is zero. 

DeleteDC(hDC):bDeleted 
Deletes the specified display context. 

DeleteMetaFile(hMF):bFreed 
Deletes access to a metafile by freeing the associated system resources. 

DeleteObject(hObject):bDeleted 
Deletes the logical pen, brush, font, bitmap, or region by freeing all associated 
system storage. 

DestroyCaret( ) 
Destroys the current caret and frees any memory it occupied. 

DestroyMenu(hMenu):bDestroyed 
Destroys the menu specified by hMenu and frees any memory it occupied. 

DestroyWlndow(hWnd):bDestroyed 
Sends a WM_DESTROY message to hWnd and frees any memory it ~cupied. 

DevlceMode(hWnd,hltem,lpString,lpString):lpString 
Displays a dialog box that prompts user to set printer modes. 



Appendix E: Windows Functions 437 

DlalogBox(hlnstance,lpTemplateName,hWndParent, lpDialogFunc):nResult 
Creates a modal dialog box. 

DispatchMessageOpMsg):IResult 
Passes message to window function of window specified in MSG structure. 

DlgDirLlst(hDlg,lpPathSpec,nIDListBox,nIDStaticPath, wFiletype):nListed 
Fills nlDListBox with names of files matching path specification. 

DlgDirSelect(hDlg,IpString,nlDListBox):bDirectory 
Copies current selection from nIDListBox to lpString. 

DPtoLP(hDC,lpPoints,nCount):bConverted 
Converts into logical points the nCount device points given by lpPoints. 

Drawlcon(hDC,X,Y ,hlcon):bDrawn 
Draws an icon with its upper left corner at X, Y. 

DrawMenuBar(hWnd) 
Redraws the menu bar. 

DrawText(hDC,lpString,nCount,lpRect,wFormat) 
Draws nCount characters of lpString in format specified by wFormat, using 
current text and background colors. Clips output to rectangle given by lpRect. 

EIHpse(hDC,Xl,Yl,)(2,Y2):bDrawn 
Draws ellipse with center at the center of the given bounding rectangle. Draws 
border with current pen. Fills interior with current brush. 

EmptyCHpboard( ):bEmptied 
Empties clipboard, frees data handles, and assigns clipboard ownership to the 
window that currently has the clipboard open. 

EnableMenultem(hMenu,wIDEnableltem,wEnable):bEnabled 
Enables, disables, or grays a menu item, depending on wEnable. 

EnableWindow(hWnd,bEnable):bDone 
Enables and disables mouse and keyboard input to the specified window. 

EndDlalog(hDlg,nResult) 
Frees resources and destroys windows associated with a modal dialog box. 

EndPaint(hWnd,lpPaint) 
Marks the end of window repainting; required after each BeginPaint call. 



EnumChlldWindows(hWndParent,lpEnumFunc,lParam):bDone 
Enumerates the child style windows belonging to hWndParent by passing each 
child window handle and lParam to the lpEnumFunc function. 

EnumClipboardFormats(wFormat):wNextFormat 
Enumerates formats from list of available formats belonging to the clipboard. 

EnumFonts(hOC,lpFacename,lpFontFunc,lpData):nResult 
Enumerates fonts available on a given device, passing font information through 
lpData to lpFontFunc function. 

EnumObjects(hDC,nObjectType,lpObjectFunc, lpData):nResult 
Enumerates pens or brushes (depending on nObjectType ) available on a device, 
passing object information through Ip Data to lpObjectFunc function. 

EnumProps(hWnd,lpEnumFunc):nResult 
Passes each property of hWnd, in tum, to the lpEnumFunc function. 

EnumWindows(lpEnumFunc,lParam):bDone 
Enumerates windows on the screen by passing handle of each tiled, iconic, 
popup, and hidden popup window (in that order) to the lpEnumFunc function. 

EqualRgn(hSrcRgn1,hSrcRgn2):bEqual 
Checks the two given regions to determine if they are identical. 

Escape(hOC,nEscape,nCount,lplnData,lpOutData):nResult 
Accesses device facilities not directly available through GDI. 

Escape(hOC,ABORTDOC,nCount,lplnData,lpOutData):nResult 
Aborts the current job. lplnData, lpOutData, and nCount are not used. 

Escape(hOC,DRAFI'MODE,nCount,lplnData, lpOutData):nResult 
Turns draft mode off or on. lplnData points to 1 (on) or 0 (ofO. nCount is 
number of bytes at lplnData. lpOutData is not used. 

Escape(hOC,ENDDOC,hCount,lplnData,lpOutData):nResult 
Ends print job started by STARTDOC. nCount, lplnData, lpOutData are not 
used. 

Escape(hOC,FLUSHOUTPUT,nCount,lplnData, lpOutData):nResult 
Flushes output in device buffer; lplnData, lpOutData, and nCount are not used. 

Escape(hOC,GETCOLORTABLE,nCount,lplnData, lpOutData):nResult 
Copies RGB color table entry to lpOutData. lplnData is color table index. 
nCount is not used. 



Appsndix E: Windows Functions 439 

Escape(hDC,GETPHYSPAGESIZE,nCount,lplnData, lpOutData):nResult 
Copies physical page size to POINT structure at lpOutData. lplnData and 
nCount are not used. 

Escape(hDC,GETPRINTINGOFFSET,nCount,lplnData, lpOutData):nResult 
Copies printing offset to POINT structure at lpOutData. lplnData and nCount 
are not used. 

Escape(hDC,GETSCALINGFAC10R,nCount,lplnData, lpOutData):nResult 
Copies scaling factors to B POINT structure at lpOutData. lplnData and nCount 
are not used. 

Escape(hDC,NEWFRAME,nCount,lplnData,lpOutData):nResult 
Ends writing to a page. nCount, lplnData, and lpOutData are not used. 

Escape(hDC,NEXTBAND,nCount,lplnData,lpOutData):nResult 
Ends writing to a band. lpOutData gives rectangle to hold device coordinates of 
next band. nCount and lplnData are not used. 

Escape(hDC,QUERYESCSUPPORT,nCount,lplnData, lpOutData):nResult 
Tests whether an escape is supported by device driver. lplnData points to the 
escape. nCount is the number of bytes at lplnData. lpOutData is not used. 

Escape(hDC,SETABORTPROC,nCount,lplnData, lpOutData):nResult 
Sets abort function for print job. lplnData, lpOutData, and nCount are not used. 

Escape(hDC,SETCOLORTABLE,nCount,lplnData, lpOutData):nResult 
Sets RGB color table entry. lplnData points to table index and color. lpOutData 
points to RGB color value to be set by device driver. nCount is not used. 

Escape(hOC,STARTDOC,nCount,lplnData,lpOutData):nResult 
Starts print job, spooling NEWFRAME calls under same job until it reaches 
ENDDOC. lplnData is name of document; nCount is its length. \&lpOutData 
not used. 

EscapeCommFunction(nCid,nFunc):nResult 
Executes escape function nFunc for communication device nCid. 

ExcludeClipRect(hDC,Xt,Yt,)(2,Y2):nRgnType 
Creates new clipping region from existing clipping region less the given 
rectangle. 

FatalExit(Code):Result 
Halts Windows and prompts through auxiliary port (AUX) for instructions on 
how to proceed. 



FillRect(hDC,lpRect,hBrush):nResult 
Fills given rectangle using the specified brush. 

FillRgn(hDC,hRgn,hBrush):bFilled 
Fills given region with brush specified by hBrush. 

FindAtom(lpString):w Atom 
Retrieves atom (if any) associated with character string lpString. 

FindResource(hlnstance,lpName,lpType):hReslnfo 
Locates resource lpName having lpType and returns handle for accessing and 
loading the resource. 

FindWindow(lpClassName,lpWindowName):hWnd 
Returns the handle of the window having the given class and caption. 

Flash Window(h Wnd,blnvert):blnverted 
Flashes the given window once by inverting its active/inactive state. 

FloodFill(hDC,X,Y ,rgbColor):bFilled 
Fills area of the display surface with current brush, starting at X, Y and 
continuing in all directions to the boundaries with the given rgbColor. 

FlushComm(nCid,nQueue):nResult 
Flushes characters from nQueue of communication device nOd. 

FrameRect(hDC,lpRect,hBrush):nResult 
Draws border for the given rectangle using the specified brush. 

FrameRgn(hDC,hRgn,hBrush,nWidth,nHeight):bFramed 
Draws border for given region using hBrush. nWidth is width of vertical brush 
strokes. nHeight is height of horizontal strokes. 

FreeLibrary(hLibModule) 
Removes library module hLibModule from memory if reference count is zero. 

FreeProdnstance(lpProc) 
Removes the function instance entry at address lpProc . 

FreeResource(hResData):bFreed 
Removes resource hReslnfo from memory if reference count is zero. 

GetActiveWindow():hWnd 
Returns handle to the active window. 

GetAtomHandle(w Atom):hMem 
Returns the handle (relative to the local heap) of the atom string. 



Appendix E: Windows Functions 441 

GetAtomName(w Atom,lpBuffer,nSize):nLength 
Copies character string (up to nSize characters) associated with wAtom to 
lpBuffer. 

GetBitmapBits(hBitmap,ICount,lpBits):ICopied 
Copies ICount bits of specified bitmap into buffer pointed to by lpBits. 

GetBitmapDimension(hBitmap):ptDimensions 
Returns the width and height of the bitmap specified by hBitmap. 

GetBkColor(hDC):rgbColor 
Returns the current background color of the specified device. 

GetBkMode(hDC):nBkMode 
Returns the background mode of the specified device. 

GetBrushOrg(hDC):dwOrlgin 
Retrieves the current brush origin for the given display context. 

GetBValue(rgbColor):cBlue 
Retrieves the blue value of the given color. 

GetCaretBlinkTime( ):wMSeconds 
Returns the current caret flash rate. 

GetClassLong(hWnd,nlndex):long 
Retrieves information at nlndex in the B WNDCLASS structure. 

GetClassName(hWnd,lpClassName,nMaxCount):nCopied 
Copies hWnd's class name (up to nMaxCount characters) into lpClassName. 

GetClassWord(hWnd,nlndex):word 
Retrieves information at nlndex in the B WNDCLASS structure. 

GetClientRect(hWnd,lpRect) 
Copies client coordinates of the window client area to lpRect. 

GetCllpboardData(wFormat):hOipData 
Retrieves data from the clipboard in the format given by wFormat. 

GetCllpboardFormatName(wFormat,lpFormatName, nMaxCount):nCopied 
Copies wFormat's format name (up to nMaxCount characters) into 
lpFormatName. 

GetClipboardOwner( ):hWnd 
Retrieves the window handle of the current owner of the clipboard. 



GetClipboardViewer( ):h Wnd 
Retrieves the window handle of the first window in the clipboard viewer chain. 

GetClipBox(hOC,lpRect):nRgnType 
Copies dimensions of bounding rectangle of current clip boundary to lpRect . 

GetCodeHandleOpFunc):hlnstance 
Retrieves the handle of the code segment containing the given function. 

GetCommError(nOd,lpStat):nError 
Fills buffer lpStat with communication status of device nOd. Returns error code, 
if any. 

GetCommEventMask(nCid,nEvtMask):wEvent 
Retrieves, then clears, event mask. 

GetCommState(nOd,lpDCB):nResult 
Fills buffer lpDCB with the device control block of communication device nCid. 

GetCurrentPositlon(hOC):ptPos 
Retrieves the logical coordinates of the current position. 

GetCurrentTask( ):hTask 
Returns task handle of the current task. 

GetCurrentTime( ):lTime 
Returns the time elapsed since the system was booted to the current time. 

GetCunorPosOpPoint) 
Stores mouse cursor position, in screen coordinates, in B POINT structure. 

GetDC(hWnd):hOC 
Retrieves the display context for the client area of the specified window. 

GetDeviceCaps(hDC,nlndex):n Value 
Retrieves the device-specific information specified by nlndex. 

GetDlgltem(hDlg,nIDDlgltem):hCtl 
Retrieves the handle of a dialog item (control) from the given dialog box. 

GetDlgltemlnt(hDlg,nIDDlgltem,lpTranslated, bSigned):wValue 
Translates text of nIDDlgltem into integer value. Value at lpTranslated is zero if 
errors occur. bSigned is nonzero if minus sign might be present. 

GetDlgltemText(hDlg,nIDDlgltem,lpStrlng, nMaxCount):nCopied 
Copies nIDDlgltem's control text (up to nMaxCount characters) into lpStrlng. 



Appendix E: Windows Functions 443 

GetDoubleCllckTlme( ):wOickTime 
Retrieves the current double-click time of the system mouse. 

GetEnvironment(lpPortName,lpBnviron,nMaxCount):nCopied 
Copies to lpBnviron environment associated with device attached to given port. 

GetFocus( ):hWnd 
Retrieves the handle of the window currently owning the input focus. 

GetGValue(rgbColor): cGreen 
Retrieves the green value of the given color. 

GetlnstanceData(hlnstance,pData,nCount):nBytes 
Copies nCount bytes of data from offset pData in instance hlnstance to same 
offset in current instance. 

GetKeyState(nVirtKey):nState 
Retrieves the state of the virtual key specified by nVirtI<ey. 

GetMapMode(hDC):nMapMode 
Retrieves the current mapping mode. 

GetMenu(hWnd):hMenu 
Retrieves a handle to the menu of the specified window. 

GetMenuSbing(hMenu,wlDitem,lpString,nMaxCount, wF1ag):nCopied 
Copies wlDltem's menu label (up to nMaxCount characters) into lpString. 
wFlag is MF _BYPOSmON or MF _BYCOMMAND. 

GetMessage(lpMsg,hWnd,wMsgFilterMin, wMsgFilterMax):bContinue 
Retrieves message in range wMsgFilterMin to wMsgFilterMax; stores at lpMsg. 

GetMessagePos( ):dwPos 
Returns mouse position, in screen coordinates, at the time of the last message 
retrieved by B GetMessage. 

GetMessageTime( ):)Time 
Returns the message time for the last message retrieved by B GetMessage. 

GetMetaFile(lpFilename):hMF 
Creates a handle for the metafile named by lpFilename. 

GetMetaFlleBlts(hMF):hMem 
Stores specified metafile as collection of bits in global memory block. 



GetModuleFlleName(hModule,lpFilename,nSize):nLength 
Copies module filename (up to nSize characters) to lpFilename. 

GetModuleHandle(lpModuleName):hModule 
Returns module handle of module named by lpModuleName. 

GetModuleUsage(hModule):nCount 
Returns reference count of module hModule. 

GetNearestColor(hDC,rgbColor):rgbSolidColor 
Returns the device color closest to rgbColor. 

GetObject(hObject,nCount,lpObject):nCopied 
Copies nCount bytes of logical data defining hObject to lpObject. 

GelParent(hWnd):hWndParent 
Retrieves the window handle of the specified window's parent (if any). 

GelPixel(hDC,X, Y):rgbColor 
Retrieves the RGB color value of the pixel at the point specified by X and Y. 

GelPolyFillMode(hDC):nPolyFillMode 
Retrieves the current polygon-filling mode. 

GelProcAddress(hModule,lpProcName):lpAddress 
Returns address of the function named by lpProcName in module hModule. 

GelProfilelnt(lpSectionName,lpKeyName, nDefault):nKeyValue 
Returns integer value named by lpI<eyName in section lpSectionName from the 
win.ini file. If name or section not found, nDefault is returned. 

GelProflleStrlng(lpSectionName,lpI<eyName,lpDefault, 
lpReturnedString,nSize):nLength 
Returns character string named by lpKeyName in section lpSectionName from 
the win.ini file. String is copied (up to nSize characters) to lpRetumedString. If 
name or section are not found, lpDefault is returned. 

GelProp(hWnd,lpString):hData 
Retrieves data handle associated with lpString from window property list. 

GetRelAbs(hDC):nRelAbsMode 
Retrieves the relabs flag. 

GetROP2(hDC):nDrawMode 
Retrieves the current drawing mode. 

( 



Appendix E: Windows Functions 445 

GetRValue(rgbColor):cRed 
Rebieves the red value of the given color. 

GetScrolJPos(hWnd,nBar):nPos 
Rebieves current position of scroll bar elevator identified by h Wnd and nBar. 

GetScrollRange(hWnd,nBar,lpMinPos,lpMaxPos) 
Copies minimum and maximum scroll bar positions for given scroll bar to 
lpMinPosandlpMaxPos. 

GetStockObject(nlndex):hObject 
Rebieves a handle t~ a predefined stock pen, brush, or font. 

GetStretchBltMode(hOC):nStretchMode 
Retrieves the current stretching mode. 

GetSubMenu(hMenu,nPos):hPopupMenu 
Rebieves the menu handle of the popup menu at the given position in hMenu. 

GetSysColor(nlndex):rgbColor 
Retrieves the system color identified by nlndex. 

GetSysModalWlndow():hWnd 
Returns the handle of a system-modal window, if one is present. 

GetSystemMenu(hWnd,bRevert):hSysMenu 
Allows access to the System menu for copying and modification. Revert is 
nonzero to restore the original System menu. 

GetSystemMetrics(nlndex):n Value 
Rebieves information about the system mebics identified by nlndex. 

GetTempDrive(cDriveLetter):cOptDriveLetter 
Returns letter for the optimal drive for a temporary file. cDriveLetter is a 
proposed drive. 

GetTempFileName(cDriveLetter,lpPrefixString,wUnique, 
fpTempFileName):wUniqueNumber 
Creates a temporary filename. 

GetTextCharacterExtra(hDC):nCharExtra 
Retrieves the current intercharacter spacing. 

GetTextColor(hOC):rgbColor 
Rebieves the current text color. 

· .. 



GetTextExtent(hDC,lpString,nCount):dwTextExtents 
Uses current font to compute width and height of text line given by lpString. 

GetTextFace(hDC,nCount,lpFacename):nCopied 
Copies the current font's facename (up to nCount characters) into lpFacename. 

GetTextMetrlcs(hDC,lpMetrics):bRetrieved 
Fills buffer given by lpMetrics with metrics for currently selected font. 

GetThresholdEvent( ):lplnt 
Returns long pointer to a threshold flag. The flag is set if any voice queue is 
below threshold (i.e., below a given number of notes). 

GetThresholdStatus( ):fStatus 
Returns a bit mask containing the threshold event status. If a bit is set, the given 
voice queue is below threshold. 

GetUpdateRect(hWnd,lpRect,bErase):bUpdate 
Copies dimensions of bounding rectangle of window region that needs 
updating to lpRect. bErase is nonzero if ba~kground needs erasing. bUpdate is 
zero if window is up-to-date. 1 

GetVerslon( ):wVersion 
Returns the current version of Windows. 

GetViewportExt(hDC):ptExtents 
Retrieves the x- and y- extents of the display context's viewport. 

GetViewportOrg(hDC):ptOrigin 
Retrieves x- and y- coordinates of the origin of the display context's viewport. 

GetWindowDC(hWnd):hDC 
Retrieves display context for entire window, including caption bar, menus, 
scroll bars. 

GetWindowExt(hDC):ptExtents 
Retrieves x- and y- extents of the display context's window. 

GetWindowLong(hWnd,nlndex):long 
Retrieves information identified by nlndex about the given window. 

GetWindowOrg(hDC):ptOrigin 
Retrieves x- and y- coordinates of the origin of the display context's window. 

GetWindowRed(hWnd,lpRect) 
Copies dimensions, in screen coordinates, of entire window (including caption 
bar, border, menus, and scroll bars) to lpRect. 



Appendix E: Windows Functions 447 

GetWindowText(hWnd,lpString,nMaxCount):nCopied 
Copies h Wnd's window caption (up to nMaxCount characters) into lpString. 

GetWindowTextLength(hWnd):nLength 
Returns the length of the given window's caption or text. 

GetWindowWord(hWnd,nlndex):word 
Retrieves information identified by nlndex about the given window. 

GlobalAlloc(wFlags,dwBytes):hMem 
Allocates dwBytes of memory from the global heap. Memory type·(e.g., fixed or 
moveable) is set by wFlags. 

GlobalCompact(dwMinFree):dwLargest 
Compacts global memory to generate dwMinFree free bytes. 

GlobalDiscard(hMem):hOldMem 
Discards global memory block hMem if reference count is zero. 

GlobalFlags(hMem):wflags 
Returns memory type of global memory block hMem. 

GlobalFree(hMem):hOldMem 
Removes global memory block hMem from memory if reference count is zero. 

GlobalHandle(wMem): dwMem 
Retrieves the handle of the global memory object whose segment address is 
wMem. 

GlobalLock(hMem):lpAddress 
Returns address of global memory block hMem, locks block in memory, and 
increases the reference count by one. 

GlobalReAlloc(hMem,dwBytes,wflags):hNewMem 
Reallocates the global memory block hMem to dwBytes and memory type 
wflags. 

GlobalSize(hMem):dwBytes 
Returns the size, in bytes, of global memory block hMem. 

GlobalUnlock(hMem):bResult 
Unlocks global memory block hMem and decreases the reference count by one. 



GrayString(hDC,hBrush,lpOutputFunc,lpData,nCount, X,Y,nWidth,nHeight):bDrawn 
Writes nCount characters of string at X, Y,using lpOutputFunc (or B TextOut if 
NULL). Grays text using hBrush. lpData specifies output string (if 
lpOutputFunc is NULL) or data are passed to output function. nWidth and 
nHeight give dimensions of enclosing rectangle (if zero, dimensions are 
calculated). 

HideCaret(hWnd) 
Removes system caret from the given window. 

HiliteMenultem(hWnd,hMenu,wIDHiliteltem, wHilite):bHilited 
Highlights or removes the highlighting from a top-level (menu bar) menu item. 

InflateRect(lpRect,X, Y):nResult 
Expands or shrinks the rectangle specified by lpRect by X units on the left and 
right ends of the rectangle and Y units on the top and bottom. 

lnitAtomTable(nSize):bResult 
Initializes atom hash table and sets it to nSize atoms. 

InSendMessage():blnSend 
Returns TRUE if window function is processing a message sent with 
BSendMessage. 

lntersectClipRect(hDC,Xt,Yt,x2,Y2):nRgnType 
Forms new dipping region from intersection of current clipping region and 
given rectangle. 

lntersectRect(lpDestRect,lpSrctRect, lpSrc2Rect):nlntersection 
Finds the intersection of two rectangles and copies it to lpDestRect. 

InvalidateRect(hWnd,lpRect,bErase) 
Marks for repainting the rectangle specified by lpRect (in client coordinates). 
The rectangle is erased if bErase is nonzero. 

InvalidateRgn(hWnd,hRgn,bErase) 
Marks hRgn for repainting. The region is erased if bErase is nonzero. 

InvertRect(hDC,lpRect):nResult 
Inverts the display bits of the specified rectangle. 

InvertRgn(hDC,hRgn):blnverted 
Inverts the colors in the region specified by hRgn. 

IsChild(hParentWnd,hWnd):bChild 
Returns TR~ if given window is a child of hParentWnd. 



Appsndix E: Windows Functions 449 

IsClipboardFormatAvailable(wFormat):bA vailable 
Returns TRUE if data in given format is available. 

IsDlalogMessage(hDlg,lpMsg):bUsed 
Determines whether lpMsg is intended for the given modeless dialog box. If so, 
the message is processed and bUsed is nonzero. 

IsDlgButtonChecked(hDlg,nIDButton):wCheck 
Tests whether nIDButton is checked. For a 3-state button, returns 2 for grayed, 1 
for checked, zero for neither. 

Isl.:onlc(hWnd):blconic 
Specifies whether or not a window is open or closed (iconic). 

IsRectEmpty(lpRect):bEmpty 
Determines whether or not the specified rectangle is empty. 

IsWlndow(hWnd):bExists 
Determines whether or not hWnd is a valid, existing window. 

IsWlndowEnabled(hWnd):bEnabled 
Specifies whether or not hWnd is enabled for mouse and keyboard input. 

IsWlndowVlslble(hWnd):bVisible 
Determines whether or not the given window is visible on the screen. 

KillTlmer(hWnd,nIDEvent):bKilled 
Kills the timer event identified by hWnd and nIDEvent. 

LlneDDA(Xl,YlX2,Y2,lpLineFunc,lpData) 
Computes successive points in line starting at Xt, Yt and ending at X2, Y2, 
passing each point and lpData parameter to lpLlneFunc function. 

LineTo(hOC,X,Y):bDrawn 
Draws line with current pen from the current position up to, but not including, 
the point X, Y. 

LoadAccelerators(hlnstance,lpTableName):hRes 
Loads accelerator table named by lpTableName. 

LoadBitmap(hlnstance,lpBitmapName):hBitmap 
Loads bitmap resource named by lpBitmapName. 

LoadCursor(hinstance,lpCursorName):hCursor 
Loads cursor resource named by lpCursorName. 



Loadlcon(hlnstance,lpkonName):hlcon 
Loads icon resource named by lplconName. 

LoadLibrary(lpLibFileName):hLibModule 
Loads the library module named by lpLibFilename. 

LoadMenu(hlnstance,lpMenuName):hMenu 
Loads menu resource named by lpMenuName. 

LoadResource(hlnstance,hReslnfo):hResData 
Loads the resource hReslnfo and returns a handle to the resource. 

LoadString(hlnstance,wID,lpBuffer,nBufferMax):nSi7.e 
Loads string resource wlD into the buffer lpBuffer. Up to nBufferMax characters 
are copied. 

LocalAlloc(wFlags,wBytes):hMem 
Allocates wBytes of memory from the local heap. Memory type (e.g., fixed or 
moveable) is set by wFlags. 

LocalCompact(wMinFree):wLargest 
Compacts local memory to generate wMinFree free bytes. 

LocalDlscard(hMem):hOldMem 
Discards local memory block hMem if reference count is 7.erO. 

LocalFlags(hMem):wFlags 
Returns memory type of local memory block hMem. 

LocalFree(hMem):hOldMem 
Frees local memory block hMem from memory if reference count is 7.ero . . 

LocalFreeze(Dummy) 
Prevents compaction of the local heap. 

LocalHandle(wMem):hMem 
Retrieves the handle of the local memory object whose address is wMem. 

LocalHandleDelta(nNewDelta):nCurrentDelta . 
Sets the entry count for each new handle table created in the local heap. 

Locallnit(wValue,pString,pString):bResult 
Initiali7.es the local heap. 

LocalLock(hMem):pAddress 
Returns the address of local memory block hMem, locks the block in memory, 
and increases the reference count by one. 



Appendix E: Windows Functions 451 

LocalMelt(Dummy) 
Permits compaction of the local heap. 

LocalNotify(lpFunc):lpPrevFunc 
Sets the callback function for handling notification messages from local memory. 

LocalReAlloc(hMem,wBytes,wFlags):hNewMem 
Reallocates the local memory block hMem to wBytes and memory type wflags. 

LocalSize(hMem):wBytes 
Returns the size, in bytes, of local memory block hMem. 

LocalUnlodc(hMem):bResult 
Unlocks local memory block hMem and decreases the reference count by one. 

LodcData(Dummy):hMem 
Locks the data segment in memory. 

LodcResource(hReslnfo):lpReslnfo 
Returns the memory address of the resource hReslnfo, locks the resource in 
memory, and increases the reference count by one. 

LodcSegment(wSegment):hSegment 
Locks the segment whose segment address is wSegment. 

LPtoDP(hDC,lpPoints,nCount):bConverted 
Converts logical points into device points. 

MakeProdnstance(lpProc,hlnstance):lpAddress 
Returns a function instance address for function lpProc. Calls to the instance 
address ensure that the function uses the data segment of instance hlnstance. 

MapDialogRect(hDlg,lpRect) 
Converts the dialog box coordinates given in lpReet to client coordinates. 

MessageBeep(wType):bBeep 
Generates a beep at the system speaker when a message box is displayed. 

MessageBox(hWndParent,lpText,lpCaption, wType):nMenultem 
Creates window with given lpText and lpCaption containing the predefined 
icons and push buttons defined by wType. 

MoveTo(hDC)(,Y):ptPrevPos 
Moves the current position to the point specified by X and Y. 



MoveWindow(hWnd,X,Y,nWidth,nHeight,bRepaint) 
Causes WM_SIZE message to be sent to hWnd. X,Y, nWidth, and nHeight give 
the new size of the window. 

OemToAnsl(lpOemStr,lpAnsiStr):bTranslated 
Converts the OEM character string to an ANSI string. 

OffsetCllpRgn(hDC,X, Y):nRgnType 
Moves clipping region X units along the x -axis and Y units along they -axis. 

OffsetRect(lpRect,X,Y):nResult 
Moves given rectangle X units along the x-axis and Y units along they -axis. 

OffsetRgn(hRgn,X,Y):nRgnType . 
Moves the given region X units along the x -axis and Y units along the y -axis. 

OffsetViewportOrg(hDC,X, Y):ptOldOrgs 
Modifies viewport origin by adding X and Y to current origin values. 

OffsetWindowOrg(hOC,X,Y):ptOldOrgs 
Modifies window origin by adding X and Y to current values. 

OpenClipboard(hWnd):bOpened 
Opens clipboard; prevents other applications from modifying its contents. 

OpenComm(lpComName,wlnQueue,wOutQueue):nOd 
Opens communication device named by lpCommName. Transmit-queue and 
receive-queue sizes are set by wlnQueue and wOutQueue. 

OpenFile(lpFileName,lpReOpenBuff,wStyle):nFile 
Creates, opens, reopens, or deletes file named by lpFileName. 

Openlcon(hWnd):bOpened 
Opens the specified window. 

OpenSound( ):nVoices 
Opens the play device for exclusive use. 

PaintRgn(hDC,hRgn):bFilled 
Fills the region specified by hRgn with the currently selected brush. 

PatBlt(hOC,X,Y ,n Width,nHeight,dwRop):bDrawn 
Creates a bit pattern on the specified device, using dwRop to combine the 
current brush with the pattern already on the device. 

PeekMessage(lpMsg,hWnd,wMsgFilterMin,wMsgFilterMax, bRemoveMsg):bPresent 
Checks application queue and places message (if any) at lpMsg. 



Appendix E: Windows Functions 453 

Ple(hDC,Xt,Yt,)(2,Y2,)(3,Y3,X4,Y4):bDrawn 
Draws arc starting at X3, Y3 and ending at X4, Y 4 and connects center and two 
endpoints, using current pen. Moves counterclockwise. Fills with current brush. 
Arc's center is center of bounding rectangle given by Xt, Yt, X2, Y2. 

PlayMetaFile(hDC,hMF):bPlayed 
Plays the contents of the specified metafile on the given device context. 

Polygon(hOC,lpPoints,nCount):bDrawn 
Draws a polygon by connecting the nCount vertices given by lpPoints. 

Polyllne(hOC,lpPoints,nCount):bDrawn 
Draws a set of line segments, connecting the nCount points given by lpPoints. 

PostAppMessage(hTask,wMsg,wParam,IParam):bPosted 
Posts message to application; returns without waiting for processing. 

PostMessage(hWnd,wMsg,wParam,IParam):bPosted 
Places message in application queue; returns without waiting for processing. 

PostQultMessage(nExitCode) 
Posts a WM_QUIT message to the application and returns immediately. 

. ,• 

PtlnRect(lpRect,Point):blnRect 
Indicates whether or not a specified point lies within a given rectangle. 

PtlnReglon(hRgn,X,Y):bSuccess 
Tests if X, Y is within the given region. 

PtVlslble(hDC,X,Y):bVisible 
Tests if X, Y is within the clipping region of the given display context. 

ReadComm(nOd,lpBuf,nSize):nBytes 
Reads up to nSize bytes from the communication device nCid into buffer lpBuf. 

Rectangle(hOC,X1,Y1,)(2,Y2):bDrawn 
Draws rectangle, using current pen for border and current brush for filling. 

RectVlsible(hOC,lpRect):bVisible 
Determines if any part of given rectangle lies within clipping region. 

RegisterClass(lpWndOass):bRegistered 
Registers a window class. 

RegisterClipboardFormat(lpFormatName):wFonnat 
Registers a new clipboard format whose name is pointed to by lpFormatName. 



RegisterWindowMessageOpString):wMsg 
Defines a· new window message that is guaranteed to be unique. 

ReleaseCapture( ) 
Releases mouse input and restores normal input processing. 

ReleaseDC(hWnd,hDC):nReleased 
Releases a display context when an application is finished drawing in it. 

RemoveFontResource(lpFilename):bSuccess 
Removes from the font table the font resource named by lpFilename. 

RemoveProp(h Wnd,lpString):hData 
Removes lpString from property list; retrieves corresponding data handle. 

ReplyMessage(IReply) 
Replies to message without returning control to the SendMessage caller. 

RestoreDC(hDC,nSavedDC):bRestored 
Restores display context given by hDC to previous state given by nSavedDC. 

RoundRect(hDC,Xt,Yt,x2,Y2)<.3,Y3):bDrawn 
Draws rounded rectangle, using current pen for border, current brush for filling. 

SaveDC(hDC):nSavedDC 
Saves the current state of the display context hDC. 

ScaleViewportExt(hDC,xnum,Xdenom,Ynum, Ydenom):ptOldExtents ' 
Modifies viewport extents by multiplying current x- or y- extent by Xnum or 
Ynum and dividing by Xdenom or Ydenom. 

ScaleWindowExt(hDCXnum,Xdenom,Ynum, Ydenom):ptOldExtents 
Modifies window extents by multiplying current x- or y- extent by Xnum or 
Ynum and dividing by Xdenom or Ydenom •. 

ScreenToCllent(hWnd,lpPoint) 
Converts the screen coordinates at lpPoint to client coordinates. 

ScrollWindow(h Wnd,x:Amount,Y Amount,lpRect,lpClipRect) 
Moves contents of client area XAmount along screen's x- axis and YAmount 
units along y-axis (right for positive XAmount; down for positive YAmount). 

SelectCllpRgn(hDC,hRgn):nRgnType 
Selects given region as current clipping region for the specified display context. 



Appendix E: Windows Functions 455 

SelectObject(hDC,hObject):hOldObject 
Selects hObject as current object, replacing previous object of same type. 

SendDlgltemMessage(hDlg,nIDDlgltem,wMsg,wParam, IParam):IResult 
Sends a message to nlDDlgltem within the dialog box specified by hDlg. 

Senc:IMessage(hWnd,wMsg,wParam,IParam):IReply 
Sends a message to a window or windows. 

SetActiveWindow(hWnd):hWndPrev 
Makes a tiled or popup style window the active window. 

SetBltmapBlts(hBibnap,dwCount,lpBits):bCopied 
Sets bibnap bits to values given at lpBits. dwCount is byte count at lpBits. 

SetBltmapDlmenslon(hBibnap,X,Y):ptOldDimensions 
Associates a width and height, in 0.1 millimeter units, with a bitmap. 

SetBkColor(hDC,rgbColor):rgbOldColor 
Sets current background color to the device color closest to rgbColor. 

SetBkMode(hDC,nBkMode):nOldBkMode 
Sets the background mode used with text, hatched brushes,and line styles. 

SetBrushOrg(hDC,X,Y):dwOldOrigin 
Sets the origin of all brushes selected into the given display context. 

SetCapture(hWnd):hWndPrev 
Causes mouse input to be sent to hWnd, regardless of mouse cursor position. 

SetCaretBllnkTlme(wMSeconds) 
Establishes the caret flash rate. 

SetCaretPos(X, Y) 
Moves the caret to the position specified by X and Y. 

SetClassLong(hWnd,nlndex,INewLong):IOldLong 
Replaces long value at nlndex in the B WNDCLASS structure. 

SetClassWord(hWnd,nlndex,wNewWord):wOldWord 
Replaces word at the given nlndex in the B WNDCLASS structure. 

SetClipboardData(wFormat,hMem):hCUpData 
Copies hMem, a handle for data having wFormat format, into the clipboard. 

SetClipboardViewer(hWnd):hWndNext 
Adds hWnd to clipboard viewer chain. hWndNext is next window in chain. 



SetCommBreak(nOd):nResult 
Sets a break state on communication device nCid and suspends character 
transmission. 

SetCommEventMask(nOd,nEvtMask):lpEvent 
Sets the event mask of the communication device nOd. 

SetCommState(lpDCB):nResult 
Sets a communication device to the state specified by the device control block 
lpDCB. The device to be set is identified by the ID field of the control block. 

SetCursor(hCursor):hOldCursor 
Sets cursor shape to hCursor; removes cursor from screen if hCursor is NULL. 

SetCursorPos(X,Y) 
Sets position of mouse cursor to screen coordinates given by X and Y. 

SetDlgltemlnt(hDlg,nIDDlgltem,wValue,bSigned) 
Sets text of nIDDlgltem to string representing an integer. 

SetDlgltemText(hDlg,nIDDlgltem,lpString) 
Sets caption or text of nIDDlgltem to lpString. 

SetEnvironment(lpPortName,lpEnviron,nCount):nCopied 
Copies data at lpEnviron to environment associated with device attached to 
given port. 

SetFocus(hWnd):hWndPrev 
Assigns the input focus to the window specified by hWnd. 

SetMapMode(hDC,nMapMode):nOldMapMode 
Sets the mapping mode of the specified display context. 

SetMenu(hWnd,hMenu):bSet 
Sets window menu to hMenu. Removes menu if hMenu is NULL. 

SetMetaFileBits(hMem):hMF 
Creates memory metafile from data in the given global memory block. 

SetPixel(hDC,X,Y,rgbColor):rgbActualColor 
Sets pixel at X, Y to the device color closest to rgbColor. 

SetPolyFlllMode(hDC,nPolyFillMode):nOldPolyFillMode 
Sets the polygon-filling mode for the specified display context. 



Appendix E: Windows Functions 457 

SetPriority(hTask,nChangeAmount):nNew 
Sets the task priority of the task hTask, and returns new priority. 

SetProp(hWnd,lpString,hData):bSet 
Copies string and data handle to property list of hWnd. 

SetRecl(lpRect,Xt, Yt)C2,Y2):nResult 
Fills B RECT structure at lpRect with given coordinates. 

SetRectEmpty(lpRect):nResult 
Sets the rectangle to an empty rectangle (all coordinates are zero). 

SetRelAbs(hDC,nRelAbsMode):nOldRelAbsMode 
Sets the relabs flag. 

SetResourceHandlel(hlnstance,lpType, lpLoadFunc):lpLoadFunc 
Sets the function address of the resource handler for resources with type lpType. 
A resource handler provides for loading of custom resources. 

SetROP2(hDC,nDrawMode):nOldDrawMode 
Sets the current drawing mode. 

SetScrollPos(hWnd,nBar,nPos,bRedraw):nOldPos 
Sets scroll bar elevator to nPos; redraws scroll bar if bRedraw is nonzero. 

SetScrollRange(hWnd,nBar,nMinPos,nMaxPos,bRedraw) 
Sets minimum and maximum scroll bar posi~ons for given scroll bar. 

SetSoundNoise(nSource,nDuration):nResult 
Sets the source and duration of a noise from the play device. 

SetStretchBltMode(hDC,nStretchMode):nOldStretchMode 
Sets the stretching mode for the B StretchBlt function. 

SetSysColors(nChanges,lpSysColor,lpColorValues) 
Changes one or more system colors. 

SetSysModalWlndow(hWnd):hPrevWnd 
Makes the specified window a system-modal window. 

SetTextCharacterExtra(hDC,nCharExtra):nOldCharExtra 
Sets the amount of intercharacter spacing. 

SetTextColor(hDC,rgbColor):rgbOldColor 
Sets text color to the device color closest to rgbColor. 



SetTextJustification(hDC,nBreakExtra,nBreakCount):nSet 
Prepares GDI to justify a text line using nBreakExtra and nBreakCount. 

SetTimer(hWnd,nlDEvent, wElapse, lpTimerFunc):nIDNewEvent 
Creates system timer event identified by nIDEvent. wElapse is elapsed 
milliseconds. lpTimerFunc receives timer messages; if NULL, messages go to 
application queue. 

SetVlewportExt(hDC,X,Y):ptOldExtents 
Sets the x- and y- extents of the viewport of the specified display context. 

SetViewportOrg(hDC,X,Y):ptOldOrigin 
Sets the viewport origin of the specified display context. 

SetVoiceAccent(n Voice,nTempo,nVolume,nMode, nPitch):nResult 
Places an accent (tempo, volume, mode, and pitch) in the voice queue nVoice. 

SetVoiceEnvelope(n Voice,nShape,nRepeat):nResult 
Places the envelope (wave shape and repeat count) in the voice queue nVoice. 

SetVoiceNote(n Voice,n Value,nLength,nCdots):nResult 
Places a note in the voice queue nVoice. 

SetVoiceQueueSize(nVoice,nBytes):nResult 
Allocates nBytes of memory for the voice queue nVoice. Default is 192 bytes. 

SetVoiceSound(n Voice,nFrequency,nDuration):nResult 
Places a sound (frequency and duration) in the voice queue nVoi~. 

SetVoiceThreshold(nVoice,nNotes):nResult 
Sets the threshold level to nNotes for the voice queue nVoice. 

SetWindowExt(hDC,X,Y):ptOldExtents 
Sets the x- and y- extents of the window of the specified display context. 

SetWindowLong(hWnd,nlndex,INewl.ong):lOldl.ong 
Changes the window attribute identified by nlndex. 

SetWindowOrg(hDC,X,Y):ptOldOrigin 
Sets the window origin of the specified display context. 

SetWindowsHook(nFilterType,lpFilterFunc): lpPrevFilterFunc 
Installs a system and/or application hook function. 

SetWindowText(hWnd,lpString) 
Sets window caption {if any) or text (if a control) to lpString. 



Appendix E: Windows Functions 459 

SetWindowWord(hWnd,nlndex,wNewWord):wOldWord 
Changes the window attribute specified by nlndex. 

ShowCaret(hWnd) 
Displays newly-c:reated caret or redisplays hidden caret. 

ShowCursor(bShow):nCou~t 
Adds 1 to cursor display munt if bShow is nonzero. Subtracts t if bShow is zero. 

ShowWindow(hWnd,nCmdShow):bShown 
Displays or removes the given window as specified by nCmdShow. 

SizeofResource(hlnstance,hReslnfo):wBytes 
Returns the size, in bytes, of resource hReslnfo. 

StartSound( ):nResult 
Starts play in each voice queue. 

StopSound( ):nResult 
Stops playing all voice queues, and flushes the contents of the queues. 

StretchBlt(hDestDC,X, Y ,nWidth,nHeight,hSrcDC,XSrc, YSrc, 
nSrcWidth,nSrcHeight,dwRop):bDrawn 
Moves bibnap from source rectangle into destination rectangle, stretching or 
mmpressing as necessary. Source origin is at XSrc, YSrc. X, Y, nWidth, and 
nHeight give origin and dimensions of rectangle on destination device. dwRop 
defines how source and destination bits are combined. 

SwapMouseButton(bSwap):bSwapped 
Swaps the meaning of the left and right mouse buttons if bSwap is TRUE. 

SyncAllVoices( ):nResult 
Places a sync mark in each voice queue. Voices wait at the sync mark until all 
queues have enmuntered it. 

TextOut(hDC,X, Y ,lpString,nCount):bDrawn 
Writes character string using current font and starting at X, Y. 

Throw(lpCatchBuf ,nThrowBack) 
Restores the execution environment to the values in buffer lpCatchBuf. 
Execution mntinues at the location specified by the environment with the return 
value nThrowBack available for processing. 

TranslateAccelerator(hWnd,hAccTable,lpMsg):nTranslated 
Processes keyboard accelerators for menu mmmands. 



TranslateMessage(lpMsg):bTranslated 
Translates virtual keystroke messages into character messages. 

TransmltCommChar(nCid,cChar):nResult 
Places the character cCharat the head of the transmit queue for immediate 
transmission. 

UngetCommChar(nOd,cChar):nResult 
Makes the character cChar the next character to be read from the receive queue. 

UnlonRect(lpDestRect,lpSrctRect,lpSrc2Rect):nUnion 
Stores the union of two rectangles at lpDestRect. 

UnlockData(Dummy) 
Unlocks the data segment. 

UnlockSegment(wSegment):hMem 
Unlocks the segment whose segment address is wSegment 

UnreallzeObjecl(hBrush):bUnrealized 
Directs GDI to reset the origin of the given brush the next time it is selected. 

UpdateWindow(hWnd) 
Notifies application when parts of a window need redrawing after changes. 

ValidateRect(hWnd,lpRect) 
Releases from repainting rectangle specified by lpRect (in client coordinates). If 
lpRect is NULL, entire window is validated. 

ValidateRgn(hWnd,hRgn) 
Releases hRgn from repainting. If hRgn is NULL, entire region is validated. 

WaitMessage( ) 
Yields control to other applications when application has no tasks to perform. 

WaitSoundState(nState):nResult 
Waits until the play driver enters the state nState. 

WindowFromPoint(Point):hWnd 
Identifies the window containing Point (in screen coordinates). 

WinMain(hlnstance,hPrevlnstance,lpCmdLine, nCmdShow):nExitCode 
Serves as entry point for execution of a Windows application. 

WndProc(hWnd,wMsg,wParam,IParam):IReply 
Processes messages sent to it by Windows or the application's main function. 



Appsndix E: Windows Functions 461 

WriteComm(nGd,lpBuf ,nSize):nBytes 
Writes up to nSize bytes from buffer lpBuf to communication device nCid. 

WriteProfileString(lpApplicationName,lpKeyName, lpString):bResult 
Copies character string lpString to the win.ini file. The string replaces the 
current string named by lpKeyName in section lpSectionName. If the key or 
section does not exist, a new key and section are created. · 

Yield( ):bResult 
Halts the current task and starts any waiting task. 





Appendix F: MS-Windows Messages 463 

Appendix F: MS-Windows Messages 

F.1 Window Messages 

Message wParam IParam (lo/hi) 

WM_ACTIV ATE activation typea handleb /iconicc 
WM_ACTIV ATEAPP activation flagd task handlee 
WM_ASKCBFORMATNAME max. bytes copy LPSTR to buffer 
WM_CANCELMODE 
WM_CHANGECBCHAIN window handlef window handles 
WM_CHAR ASCII value keystateh 
WM_ CLOSE 
WM_ COMMAND commandIDi command typei 
WM_ CREATE LPCREATESTRUCT 
WM_CTLCOLOR HOC to child hChild or control typek 
WM_DEADCHAR dead key value keystateh 
WM_DESTROY 
WM_DESTROYCLIPBOARD 
WM_DEVMODECHANGE LPSTR to device name 
WM_DRAWCLIPBOARD 
WM_ ENABLE disabled flagl 
WM_ENDSESSION end session flagm 

a- Activation type is zero If inactivated, 1 lf activated by non-mouse, 2 If activated by mouse. 
b- Low-order word is handle of window being Inactivated if activation type is 1 or 2, otherwise, it is 

handle to window being activated. 
c- High-order word is nonzero if window imnic, zero otherwise. 
d- Activation flag is nonzero if application is being activated, zero otherwise. 
e- Low-order word is handle to task being Inactivated If activation flag is nonzero, otherwise it is 

handle to task being activated. 
f- Handle to window being removed from chain. 
g- Low-order word is handle to window following the removed window. 
h- Bits 1-16: repeat munt; bits 17-25: OEM scan oode; bit29: 1, if with alt key, zerolfnot;bit30: 1 if 

key pressed before, zero if not; bit 31: 1 lf key released, zero If pilshed. 
i- Menu item ID, ~trol ID, or accelerator ID. 
j- z.ero If menu item; 1 In high-order word If accelerator key; window handle In low-order word and 

notification a>de In high-order word if control. 
k- High-order word is Cl'LCOLOR_MSGBOX, Cl'LCOLOR_EDIT, Cl'LCOWR_LISTBOX, 

Cl'LCOLOR_BTN, Cl'LCOLOR_DLG, Cl'LCOLOR_SCROJ,.LBAR, or Cl'LCOLOR_Sf A TIC. 
1- Disabled flag is nonzero If window is disabled, zero otherwise. 
m- End session flag is nonzero if session ending, zero If continuing. 



464 Appendix F.1: Window Messages 

Message 

WM_ERASEBKGNDa 
WM_FONTCHANGE 
WM_GETDLGCODEb 
WM_GETTEX'fc 
WM_GETTEX'fLENGTHd 
WM_HSCROLL 
WM_HSCROLLCLIPBOARD 
WM_INIIDIALOGl 
WM_INITMENU 
WM_INITMENUPOPUP 
WM_KEYDOWN 
WM_KEYUP 
WM_KILLFOCUS 
WM_LBUTTONDBLCLK 
WM_LBUTTONOOWN 
WM_LBUTTONUP 
WM_MBUITONDBLCLK 
WM_MBUITONOOWN 

wParam 

HOC to window 

max. byte count 

scroll codee 
window handles 
control handlej 
menu handle 
menu handle 
VK_keycode 
VK_keycode 
window handlem 
key staten 
key staten 
key staten 
key staten 
key staten 

a- Must return nonzero lf background erased, zero otherwise. 

lParam (lo/hi) 

LPSTR to buffer 

thumb positionf 
scroll codeh 

item index/ system menuk 
keystatel 
key statel 

POINTo 
POINTo 
POINTo 
POINTo 
POINT<> 

b- Must return DLGC_WANTARROWS, DLGC_WANTTAB, DLGC_WANTALLI<EYS, or 
DLGC_HAS5ETSEL. 

c- Must return number of bytes copied. 
d- Must return number of bytes in title text. 
e- SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, SB_PAGEDOWN, SB_TI-IUMBPOSITION, 

SB_TI-IUMBTRACK, SB_TOP, SB_BOTTOM, or SB_ENDSCROLL. 
f- Thumb position in low-order word for SB_TI-IUMBPOSITION and SB_TI-IUMBTRACK only. 
g- Handle to Oipboard application window (dlpbrd.exe). 
h- SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, SB_PAGEDOWN, SB_TI-IUMBPOSITION, SB_TOP, 

SB_BOTTOM, or SB_ENDSCROLL in low-order word, and thumb position In high-order word 
lfSB_TI-IUMBPOSITION. 

i- Must return nonzero to give first control input focus, otherwise, must return zero. 
j- Handle to first control that can receive input focus. 
k- High-order word is nonzero lf the menu is the System menu, zero otherwise. 
1- Bits 1-16: repeat count; bits 17-25: OEM scan code; bit 29: 1 lf with ALT key, zero lf not; bit30: 1 lf 

key pressed before, zero lf not; bit 31: 1 lf key released, zero lf pushed. 
m- Handle to window gaining the input focus. 
n- A combination of MK_RBUTTON, MK_LBUTTON, MK_MBUTTON, MK_SHIFf, and 

MK_ CONTROL. 
o- Mouse position in client roordlnates. 



Appendix F: MS-Windows Messages 

Message wParam IParam (lo/hi) 

WM_MBUITONUP keystatea POJNTb 
WM_MOUSEMOVB keystatea POJNTb 
WM_MOVE POINTc 
WM_NCACTIV ATE caption flagd 
WM_NCCALCSIZE LPRECTe 
WM_NCCREATEf window handle LPCREATESTRUCT 
WM_NCDESTROY 
WM_NOllTI'ESTs POINTi 
WM_NCLBUITONDBLCLK hittypeh POINTl 
WM_NCLBUITONOOWN hittypeh POINTl 
WM_NCLBUITONUP hittypeh POINTl 
WM_NCMBUTIONDBLCLK hittypeh POINTl 
WM_NCMBUTIONOOWN hit typeh POINTl 
WM_NCMBUTIONUP hittypeh POINTl 
WM_NCMOUSEMOVE hit typeh POINTi 
WM_NCPAINT 
WM_NCRBUTI'ONDBLCLK hittypeh POINTl 
WM_NCRBUTI'ONOOWN hit typeh POINTl 
WM_NCRBUTI'ONUP hittypeh POINTl 
WM_PAINT LPP AINTSTRUCT 
WM_PAINTCLIPBOARD window handleJ LPPAINTSTRUCT 
WM_QUERYENDSESSIONk 
WM_QUERYOPENI 
WM_ QUIT exit code 

a-A combination of MK_RBUTI'ON, MK_LBUTI'ON, MK_MBUTION, MK_SHIFr, and 
MK_ CONTROL 

b- Mouse position Jn client coordinates. 
c- Screen coordinates of window's upper-left comer. 

d- Caption flag Is nonzero if the caption is active, zero if inactive. 
e- Screen a>ordinates of window rectangle. 
f- Must return nonzero if non-client area aeated, zero otherwise. 
g- Must return H1NOWHERE, HTERROR. 1-lttRANSPARENT, HTCLIENT, HTCAPTION, 

H'ISYSMENU, HTGROWBAR. HTMENU, J-m-ISCROLL, or H1VSCROLL. 
h- H1NOWHERE, HI'ERROR. HTIRANSPARENT, HTCLIENT, HTCAPTION, H'ISYSMENU, 

HTGROWBAR. HTMENU, HTHSCROLL, or H1VSC::ROLL. 
1- Mouse position in saeen coordinates. 
j- Handle to Oipboard application window (clipbrd.exe). 
k- Must return nonzero to amtmue end of session, zero to prevent it. 
1- Must return nonzero to open icon, zero otherwise. 

465 



66 Appendix F.1: Window Messages 

Message wParam 

WM_RBUTIONDBLCLK key statea 
WM_RBUITONOOWN key statea 
WM_RBUTIONUP key statea 
WM_RENDERALLFORMATS -
WM_RENDERFORMAT format typec 
WM_SETFOCUS window handled 
WM_SETREDRAW redraw flag 
WM_SETI'EXT 
WM_SETVISIBLE 
WM_SHOWWINOOW 
WM_SIZE 
WM_SIZECUPBOARD 
WM_SYSCHAR 
WM_SYSCOLORCHANGE 
WM_SYSCOMMAND 
WM_SYSDEADCHAR 
WM_SYSKEYOOWN 
WM_SYSKEYUP 
WM_SYSTEMERROR 
WM_SYSTIMER 

showflage 
showflage 
sizetypeg 
window handleh 
VK_keycode 

command ID.i · 
dead key code 
VK_keycode 
VK_keycode 
8 (out-of-memory) 

IParam (lo/hi) 

POINTb 
POIN'fb 
POIN'fb 

LPSTR to text 

showtypef 
width/height 
LPRECT 
key statel 

key state• 
keystatei 
keystatel 

a-A combination of MK_RBUTIUN, MK_LBUTION, MK.)dBUTIUN, MK_SHIFf, and 
MK_ CONTROL. 

b- Mouse position in client coordinates. 
c- CF _TEXT, CF_BITMAP, CF _TEXT, CF _BITMAP, CF _METAFILEPICT, CF _SYLK. CF_DIF, or a 

private type. 
d- Handle to window losing the input focus. 
e- Show flag ls nonzero if the window ls shown, 7.ero if hidden. . 
f- Zero if ShowWindow function called, otherwise SW _OTI-IERZOOM, SW_O'll-IERUNZOOM, 

SW _PARENTCLOSING, or SW _PARENTOPENING. 
g- SIZEICONIC, SIZEFULISCREEN, SIZENORMAL, SIZEZOOMSHOW, or SIZEZOOMHIDE. 
h- Handle to Oipboard application window (cllpbrd.exe). 
l- Bits 1-16:repeatcount;blts 17-25: OEM scan code; bit29: 1 if with ALT key, zeroif not;bit30: 1 if 

key pressed before, zero if not; bit 31: 1 if key released, zero if pushed. 
j-SC_SIZE, SC_MOVE, SC_ICON, SC_ZOOM, SC_ CLOSE, SC_NEX'IWINDOW, 

SC_PREVWINOOW, SC_ VSCROLL, SC_HSCROLL, SC_MOUSEMENU, or SC_KEYMENU. 



Message 

WM_TIMECHANGE 
WM_ TIMER 
WM_VSCROLL 
WM_ VSCROLLCLIPBOARD 
WM_WININICHANGE 

wParam 

timer ID 
scroll codeb 
window handled 

a- Long pointer to timer call-ba~ function. 

Appendix F: MS-Windows Messages 467 

JParam (lo/hi) 

FARPROCa 
thumb positionc 
scroll codee 
LPSTR to sect. t 

b- SB_LINEUP, SB_LINEDOWN, SB_PAGEUP, SB_PAGEDOWN, SB_THUMBPOSITION, 
SB_1HUMBTRACK, SB_TOP, SB_BOITOM, or SB_ENDSCROLL 

c-Thumb position in low-order word for SB_THUMBPOSITION and SB_THUMBTRACK only. 
d- Handle to Clipboard application window (clipbrd.exe). 
e-SB_UNEUP,SB_LINEDOWN,SB_PAGEUP,SB_fAGEDOWN,SB_THUMBPOSITION,SB_TOP, 

SB_BO'ITOM, or SB_ENDSCROLL in low-order word, and thumb position in high-order word 
if SB_nIUMBPOSITION. 

f- NULL if more than one section changed. 



~68 Appendix F.2: Control Messages 

F.2 Control Messages 

Button-Control Messages 

Message 

BM_GETCHECKa 
BM_GETSTATEb 
BM_SETCHECKc 
BM_SETSTATEd 

wParam 

check flag 
state flag 

a- Returns zero if not checked, 1 if checked, 2 if grayed (3-state only). 
b- Returns zero if no highlight, 1 if highlight. 
c- If zero, dear check. If 1, set check. If 2, gray check (3-state only). 
d- If 1, set highlight. If zero, clear highlight. 

Edit-Control Messages 

Message 

EM_CANlJNDOa 
EM_FMTLINESb 
EM_GETHANDLEc 
EM_GETLINEd 
EM_GETLINECOUNTf 
EM_GETMODIFYg 
EM_GETRECT 

wParam 

fonnatflag 

line number 

a- Returns TRUE if can undo last change. 
b- Returns TRUE if text formatted. 
c- Returns handle to text buffer (relative to local heap). 
d- Returns number of lines in text. 
e- Long pointer to buffer to receive text. 
f- Returns number of lines of text. 
g- Returns state of modify flag. 
h- Long pointer to buffer to receive rectangle. 

lParam (lo/hi) 

lParam (lo/hi) 

LPSTRe 

LPRECTh 



Edit-Control Messages (continued) 

Message 

EM_GETSEIJ 
EM_UMl1TEXT 
EM_LINEINDEXI 
EM_LINELENGTHk 
EM_LINESCROLL 
EM_REPLACESEL 
EM_SETFONT 
EM_SETHANDLE 
EM_SETMODIFY 
EM_SETRECT 
EM_SETRECTNP 
EM_SETSEL 
EM_UNDQr 
WM_ CLEAR 
WM_ COPY 
WM_ CUT 
WM_UNOO 

wParam 

max. bytes 
line number 
line number 

fontlDm 
buffer handlen 
modify flago 

·-

1- Returns start- and end-character positions of the selection. 

J- Returns character position of line. 
k- Returns character length of line. 
1- Long pointer to replaoement string. 

m- Font constant from GetStockObject function. 

n- Handle to text buffer (relative to local heap). 

o- Must be TRUE to set modify flag. 
p- Long pointer to rectangle. 

q- Long pointer to rectangle. 

r- Returns TRUE if last change restored. 

Appendix F: MS-Windows Messages 469 

IParam (lo/hi) 

line/ char scroll 
LPSTRI 

LPRECTP 
LPRECTq 
start/ end pos. 



f70 Appendix F.2: Control Messages · 

List-Box Messages 

Message 

LB_ADDSTRINGa 
LB_DELETESTRINGc 
LB_DIR 
LB_GETCOUNTe 
LB_GETCURSEU 
LB_GETSELs 
LB_GE'ITEX11t 
LB_GE'ITEXTI.ENj 
LB_INSERTSTRINGk 
EM_RESETCONTENT 
LB_SELEC'ISTRINGl 
LB_SETCURSEL 
LB_SETSEL 

a- Returns index for string. 
b- Long pointer to new string. 

wParam 

index 
DOS attributes 

index 
index 
index 
index 

index 
index 
set/ clear flagn 

c- Returns number of strings remaining in list box. 
d- Long pointer to pathname spedficatlon. 
e- Returns number of strings in list box. 
f- Returns index of selection. 
g- Returns TRUE If string is selected. 
h- Returns character length of string. 
i- Long pointer to buffer to receive text. 
j- Returns character length of string. 
k- Returns index of inserted string. 
1- Returns index of selected string. 
m- Long pointer to prefix string. 
n- If TRUE, select string. 

IParam (Jo/hi) 

LPSTRb 

LPSTRd 

LPSTRI 

LPSTRb 

LPSTRm 

index/-



-- --··--···-----· 

Appendix F: MS-Windows Messages 471 

F.3 Window Message Numeric List 

~od~ MH1ag~ Cod~ M~11ag~ 
0x0001 WM_ CREATE OxOOAS WM_NCRBUTIONUP 
Ox0002 WM_DESTROY OxOOA6 WM_NCRBUTIONDBLCLK 
Ox0003 WM_MOVE OxOOA7 WM_NCMBUTIONOOWN 
Ox0005 WM_SIZE OxOOA8 WM_NCMBUTIONUP 
Ox0006 WM_ACTIV ATE OxOOA9 WM_NCMBUTI'ONDBLCLK 
0x0007 WM_SBTFOCUS 0x0100 WM_I<EYDOWN 
Ox0008 WM_KILLFOCUS Ox0101 WM_I<EYUP 
Ox0009 WM_SETVISIBLE Ox0102 WM_ CHAR 
OxOOOA WM_ENABLE 0x0103 WM_DEADCHAR 
OxOOOB WM_SETREDRAW Ox0104 WM_SYSKEYOOWN 
OxOOOC WM_SETI'EXT. Ox0105 WM_SYSKEYUP 
OxOOOD WM_GETI'EXT Ox0106 WM_SYSCHAR 
OxOOOB WM_GETI'EXTLENGTH Ox0107 WM_SYSDEADCHAR 
OxOOOF WM_PAINT Ox0110 WM_INITDIALOG 
0x0010 WM_ CLOSE 0x0111 WM_ COMMAND 
0x0011 WM_QUERYENDSESSION Ox0112 WM_SYSCOMMAND 
0x0012 WM_ QUIT Ox0113 WM_ TIMER 
0x0013 WM_QUERYOPEN 0x0114 WM_HSCROLL 
Ox0014 WM_BRASEBKGND 0x0115 WM_VSCROLL 
OxOOtS WM_SYSCOLORCHANGB 0x0116 WM_INITMENU 
Ox0016 WM_ENDSESSION Ox0117 WM_INITMENUPOPUP 
0x0017 WM_SYSTEMERROR 0x0118 WM_SYSI'IMER 
0x0018 WM_SHOWWINDOW Ox0200 WM_MOUSEMOVE 
0x0019 WM_CTLCOLOR 0x0201 WM_LBUTIONOOWN 
OxOOtA WM_WININICHANGE Ox0202 WM_LBUTfONUP 
OxOOtB WM_DEVMODECHANGE Ox0203 WM_LBUTfONDBLCLK 
OxOOtC WM_ACTIV ATEAPP Ox0204 WM_RBUTIONOOWN 
OxOOtD WM_FONTCHANGE Ox0205 WM_RBUTIONUP 
OxOOtE WM_TIMECHANGE 0x0206 WM_RBUTIONDBLCLK 
OxOOtf WM_CANCELMODE 0x0207 WM_MBUITONOOWN 
0x0081 WM_NCCREATE 0x0208 WM_MBUITONUP 
0x0082 WM_NCDESTROY Ox0209 WM_MBUITONDBLCLK 
Ox0083 WM_NCCALCSIZE Ox0305 WM_RENDERFORMAT 
Ox0084 WM_NCHITIEST Ox0306 WM_RENDERALLFORMATS 
Ox0085 WM_NCPAINT Ox0307 WM_DESTROYCUPBOARD 
Ox0086 WM_NCACTIV ATE Ox0308 WM_DRAWCUPBOARD 
0x0087 WM_GETDLGCODE Ox0309 WM_PAINTCLIPBOARD 
OxOOAO WM_NCMOUSEMOVE Ox030A WM_ VSCROLLCLIPBOARD 
OxOOAt WM_NCLBUTI'ONOOWN Ox030B WM_SIZECUPBOARD 
OxOOA2 WM_NCLBUTI'ONUP Ox030C WM_ASKCBFORMATNAME 
OxOOA3 WM_NCLBUTI'ONDBLCLK Ox030D WM_CHANGEC~HAIN 
OxOOA4 WM_NCRBUTIONDOWN 0x030E WM_HSCROLLCLIPBOARD 



Appendix G: List of Errors 

When an error occurs, a short message will be generated in the Display window that 
gives either the numeric error code (in Primitive errors), or an error symbol (in high
level errors). Most errors generate a debug dialog with a dump of the stack, and a 
descriptive message in the title bar. The list of errors included below is arranged in 
order based on either the primitive error number or the error symbol. The error is 
described, with suggestions as to possible causes and remedies. 

G.1 Primitive Errors 

Error #1 
Message: "Divide by zero" 

An attempt to divide by 0 has occurred. 

Error #2 
Message: "Index out of bounds" 

An object has had an element outside its physical indexable limit referenced. 
(for example, Array element A [ 5] is referenced when A has only 3 elements.) 
Atomic objects generate this error if any indexed access is attempted. Inspect 
arguments in the top activation to determine the index that was out of bo.unds. 

Error #5 
Message: 'Non-integer index argument to primitive" 

A descendant of :rndexedCo11ection (e.g. Array), has been referenced with 
a non-integer value. (for example, A [' n' ] is not a valid reference into an 
indexed collection.) 

Error #7 
Message: "Invalid size sent to new primitive" 

The Behavior: variab1eNew primitive was called with a negative value or a 
non-:rnt. 

Error #10 
Message: "Out of static memory" 

You have exceeded your static memory limit. Expand the static= parameter 
in your win.ini file, or execute c1eanup () to reclaim some static memory. 

Error #16 
Message: 'Wrong number of block arguments" 

The wrong number of arguments was sent to a block in an eval message. To 
determine the proper number, inspect the top activation, and in the Inspector 
workspace, evaluate the message args (receiver). 



Appendix G: List of Effors 473 

Error'20 
Message: 'Too large for Char conversion" 

Only the numbers 0-255 can be converted to their ASCII character equivalents. 
Check the receiver of the aaChar message. 

Error#22 
Message: 'Wrong argument type to primitive" 

An arithmetic primitive was sent an argument whose class was different from 
that of the receiver. This error is only produced if the primitive does not have a 
failure function, that is, a function that it can call to coerce mixed-mode 
arguments. A primitive's failure function is set via the message aetl'ail, 
which normally occurs during application startup in the method initSyatem. 

Error#27 
Message: "Bad range to copyFrom primitive" 

The Array: copyl'roa primitive was called with a negative argument, or with 
start< end. Inspect the top activation record to find the exact argument values, 
and look below in the stack display to determine where copyli'rom was called. 

Error#33 
Message: "Long is too large for Int conversion" 

A Long whose absolute value was greater than 16K-1 was requested to convert 
itself to an Int. Ints can be-16k <=Int<= 16k-1. 

Errorl36 
Message: ''Bad range input to munger primitive" 

Range values specified as arguments to String: replace were not within the 
bounds of the string being accessed. To correct, check the stack display for the 
method that called replace. 

Error HO 
Message: "Primitive receiver is nil" 

An early-bound primitive was executed with nil as the receiver. This is 
usually due to an uninitialized variable. 

G.2 High-level Errors 

Error: #ancestError 
Message: "<type> is not an ancestor of <class>" 

You attempted to compile an early-bound message to an object whose class does 
not inherit from the specified type. The compiler does type-verification on 
early-bound messages to self, literals and globals, because it is able to 
determine the class of these objects at compile time. 



Appendix G: List of Errors 474 

Error: #commentError 
Message: ''Unterminated comment" 

Check your code to determine if each comment start (" /"") has a matching 
termination ('"' /"). 

Error: #curClassError 
Message: "No current class in Compiler" 

The Compiler object has nil in its curClass instance variable. This 
determines the class to which newly compiled methods are added, and should 
be set using the now message (as in now (Array) ). 

Error: #defineError 
Message: "<<< Improper #define format" 

The value portion of a #define statement must be a single literal object. This 
error is generated when a non-literal (such as an expression) is used as the 
value. For instance, the phrase #define l'red (100 * 30) would produce 
defineBrror. Note that the value part of a #define is parsed as if it were 
inside a literal array. For example, the phrase #define fl'red joe would 
give Fred the value ljoe. 

Error: #dosError 
Message: " <a File> reported OOS error # <error>" 

The last file operation produced an error, and your routine called checkError. 
See a DOS reference manual for a description of OOS error returns. 

Error:#eleIDNotFndError 
Message: "Element not found in collection" 

A remove message was sent to a collection with an element that does not exist 
in the collection. Inspect the top activation to determine the receiver and the 
element that was asked to be removed (in arguments). 

Error: #emptyError 
Message: "Empty collection" 

An OrderedCollection (or a descendant) was sent an access message such as 
pop or remove when it had no elements. 

Error: #eosError 
Message: "<<<Premature end of input" 

The parser was unable to detect a complete pattern in its input text. A right 
parenthesis might be missing, or extra characters might have formed a partial 
expression on the right side of the input. Count parentheses and braces. 



Appendix G: List of Errors 475 

Error: #infixError 
Message: "<<<Not a valid infix expression" 

This error occurs when the lexical analyzer sees two consecutive infix 
characters, but there is no entry in InfiXOps for the resulting 2-character 
symbol. For instance, z >== y is a valid infix expression, whereas x: += y is 
not. 

Error: #inheritError 
Message: "<selector> is not a function in <class>" 

In an early-bound message, the compiler was unable to find the selector in the 
ancestors of the specified class. In early-bound messages, you must specify the 
precise class in which a method is to be found, and you cannot rely upon 
inheritance. You can use the implementors (selector) message to 
determine where a given selector is implemented. 

Error: #litArrayError 
Message: ''Improper literal .array syntax" 

Uteral arrays can contain only other literal objects. Messages and expressions 
are not permitted. See the Actor Language Description for proper literal syntax. 

Error: #litArrayO_vflError 
Message: "Literal array is too large" 

The global variable LitArraySize specifies the maximum number of elements 
that a literal array can have. You have exceeded this limit. Either increase 
LitArraySize or define a smaller array. The lexical analyzer creates an Array 
of LitArraySiza every time it sees a literal array symbol: "I (". This array is 
sent a copyFrom for as many elements as were parsed. 

Error: #litNumError 
Message: "<<< Improper literal number format" 

The lexical analyzer found an ambiguous character following a number (such as 
a hex character in a decimal number). For instance, the string "lOOa" would 
generate this error. This error can also occur when the beginning of a literal 
point pattern has been scanned, but the '@' character is followed by something 
other than a number. 

Error: #litRectError 
Message: "<<< Improper literal rectangle format" 

The lexical analyzer found an error in a literal rectangle declaration. A literal 
rectangle consists of the pattern"& ("followed by four literal numbers and a 
closing parenthesis. 



Appendix G: List of Errors 476 

Error: #rangeError 
Message: ''index is out of bounds" 

An OrderedCollection (or descendant) or an Interval has received an 
access message with an index outside of its legal range. This high-level error is 
different from primitive error #2 (see above) in that it is generated by a high
level method that compares the index to a logical range rather than a physical 
range. In OrderedCollection, for instance, the index passed to insert 
could lie within the physical limit of the collection, but not between 
firstBlement and lastZlement, and therefore it would be illegal. 

Error: #re&!sterError 
Message: 'Couldn't register class" 

A null was received from MS-Windows in the register method of class 
Window. One of the values placed in the MS-Windows Window Oass structure 
was probably faulty. This structure is created in the Window method 
newWClass. 

Error: #slitError 
Message: ''Unterminated string literal" 

The lexical analyzer reached the end of its input text before it found a matching 
quote(") to terminate a string literal. 

Error: #s~taxError 
Message: "<<< Syntax error" 

This message is usually inserted into an edit window in the approximate 
vicinity of the error. It handles all cases in which YaccMachine received an 
unexpected token. YaccMachine is quite good at announcing an error very 
close to the point in the source that it occurs. This makes up for tt~e lack of 
specific error messages tuned to the type of token that was expected. Examine 
your Source to the left of the message, and you will generally see very quickly 
what is wrong. Common problems are forgotten keywords, missing semicolons 
between statements, or misplaced parentheses. 

Error: #undefCharError 
Message: ''Undefined character in source" 

The lexical analyzer scanned a character that has a classification of lundef. 
This indicates either a character that has no lexical meaning in Actor, or a 
character that is out of its intended context. For instance, if you execute the 
phrase @200, the analyzer will generate an undefined character error on ' @', 
even though ' @' is valid in point literals. Outside of that narrow context, 
however, ' @' has no other meaning. To determine the character in error, 
inspect the top activation, whose receiver should be an ActorAnalyzer. 
Inspect the receiver, and select the ch variable of the analyzer. This should 
contain the problem character. Note that if you attempt to evaluate anything 
either in the Workspace or the Inspector, you will change the state of the lexical 
analyzer and lose the information. 



Appendix G: List of E"ors 477 

Error: #wCreateError 
Message: "Couldn't create window" 

A call to CreateWindov failed, due to a faulty parameter in the create, or a lack 
of memory. 

Error: #wNameError 
Message: ''No Windows routine by that name" 

You used a name after the call keyword that is not defined as a MS-Windows 
function. To determine the name causing the problem, inspect the top 
activation, inspect the receiver (which should be an analyzer), and select its 
collection instance variable. The Call statement should be at an offset in 
the collection that is just before offset given in the position instance 
variable. · 

Error: #wSynError 
Message: "<<< Improper Windows call syntax" 

The syntax of a Call statement is incorrect. To find the problem, see 
vNameBrror, above. 





Index 

abs method 102 
accelerator keys 5 
accelerators 230 
accessibility of objects 222 
ACT directory 37 
ACT files 260 
action methods 248 
activation record 264 
ActorErrors 85 
addmethod 

Bag class 151 
Dictionary class 157 
KeyedCollection class 156 
Library class 225 
OrderedCollection class 122 
Set class 149 
SortedCollection class 125 

addAbout method 232 
addAncestors method 109 
addString method 

ListBox class 202 
addTimes method 152 
addition 99 
addVariables method 110 
advance method 131 
aliasing 86 
Analyzer class 241 
ancestors method 109 
arbitrary message 90 
arcTan method 102 
arguments 25 
Array class 118 

(see Collection class) 119 
copyFrom method 121 
creating an object 119 
fill method 120 
find method 121 
indexOf method 121 
introduction 58 

literal 120 
array 

definition 391 
asArray method 118 
asciiz method 134 
asDigit method · 

Char class 96 
asHandle method 134 
aslnt method 

Char class 96 
String class 133 

asl.ong method 
String class 133 

asOrderedCollection method 118 
asPoint method 111 
asReal method 

String class 133 
asSet method 118 
assignment statement 11 
Association class 104 

in Dictionary class 156 
asString method 

Char class 96 
Number class 103 

asSymbol method 
Char class 96 

asUpperCase method 
Char class 97 

assignment statements 28 
assocsDo method 158 
asSymbol method 

String class 133 
at method 

Dictionary class 157 
KeyedCollection class 155, 156 

atEnd method 
File class 165 
Stream class 163 

atISB method 142 
atMSB method 142 
atom 76 

Bag class 
adding elements 151 
definition 151 



implementation 152 
profiling 151 

Behavior class 106 
comparisons 106 

between method 94 
binding 

of receivers 401 
toself 401 

bitAnd method 103 
bitOr method 103 
bitwise logical operators 103 
bitXor method 103 
block 

definition 388 
expressions 395 
nesting 389 
temporary variables 389 

block arguments 33 
blocks 33 
boolean expressions 28 
boolean operators 78 
boolean qualities of objects 77 
Browser 38, 48, 56 
brush 176 
bs (backspace) method 189 
buildOassLists method 159 
Button class 

creating buttons 207 
defintion 207 
maintaining states 208 
managing buttons 208 

ByteCollection class 118 

call method 226 
case statement 31 
Char class 95 

comparisons 95 
conversion methods 96 
notation 95 

characters 
definition 390 

Charlnterval class 148 
check method 231 
checkError method 166 
child window 19 

child windows 198 
chunk 260 
class 

definition 10, 387 
Oass Definition Dialog 39 
class files 

definition 260 
file management 262 
format 261 
installing applications 278 

class method 81 
class methods 41 
class of an object 81 
class source files 42 
CLASSES directory 37 
class tree 108 

traversals 109 
classes 

creating 107 
classesDo method 158 
cleanup method 92 
clearList method 

ListBox class 202 
client area 63 
clientRect method 182 
Oipboard (MS-Windows) 129 
close method 

File class 167 
clsmethod 

TextWindow class 190 
coding style 258 
coercion 104 
collect method 115 

definition 399 
Collection class 112 

accessing elements 113 
assigning elements 113 
conversion method 117 
creating objects 112 
init method 113 
limit method 81 
new method 112 
size method 81 

collection 
definition 13 



/ 

collections 
accessing elements 394 

command environment 4 
comment style 261 
comments 

fonnat 25 
compareBlock 126 
compile method 249 
ronditional statement 396 

if statement 396 
if/else statement 397 
select statement 398 

ronditional statements 29 
ronstants 

definition 393 
Context class 265 
Control class 

creating objects 198 
definition 198 
displaying controls 199 
input focus 200 
purpose 198 

rontrol structures 29 
conversion methods 111 
ropy 

deep 87 
shallow 86 

ropy method 87 
copy All method 

File class 168 
ropyFrom method 

Array class 121 
File class 165 
Stream class 163 
String class 136 

cos method 102 
CR_LF 129, 169 
create method 

File class 167 
Window class 237 

creating objects 15 
CreateWindow function 179, 185 
cursor 3 

debugging 

debug dialog 270 
high-level debugger 270 
inspecting Contexts 271 
low-level debugger 268 
setting breakpoints 272 

deep copy 87 
default window procedure 185 
degToRad method 102 
delete method 

File class 167 
String Class 135 

deleteChar method 130 
deleteText method 130 

TextCollection class 191 
descendants method 111 
design philosophy 255 
dialogbox 6 
dialog event handling 218 
dialog template 210 
Dictionary class 

accessing elements 157 
adding elements 157 
creating objects 157 
definition 156 
enumeration methods 158 
equality, importance of 157 
keys 156 
removing elements 158 
searching 157 · 

disableMenultem method 232 
display context 170 
Display window 3, 6 
division 99 
do method 114 

KeyedCollection class 156 
definition 399 
intervals 145 

doMenuChoices method 230 
DosStruct class 226 
drawString method 

TextWindow class 190 
dynamic linking 224 
dynamic memory 221, 222 

early binding 275 



early-binding 90 
EditWindow class 

creating objects 64 
creating windows 191 
definition 191 
text scrolling 192 
text selection 194 
Ellipse class 
Rectangles, descendant of 178 
definition 177 

enable method 231 
enumeration 398 

collect method 399 
do method 399 
extract method 400 

enumeration methods 114 
eol (end of line) method 189 
equality 79 
equality operators 79 
equivalence 79 
equivalence operators 79 
erase method 138 
error dialog 24 
error handling 84 
error method 265, 266 
ErrorBox class 

creating message boxes 213 
definition 213 
return values 214 

ErrorBox method 213 
errorString method 266 
eval method 34 
exp method 102 
expressions 

blocks 395 
definition 394 
special collection refs 394 

extract method 
definition 400 

fail method 265 
false constant 71 
File class 226 

closing files 167 
copying files 168 

creating files 166, 167 · 
definition 165 
deleting files 167 
error checking 166 
length of files 169 
moving in files 168 
naming files 166 
opening files 166 
reading files 169 
renaming files 168 
writing files 169 

FileDialog class 
creating objects 214 
definition 214 

fill method 
Array class 120 
Rect class 176 
String class 138 

find method 
Array class 121 
Dictionary class 157 
KeyedCollection class 156 
MethodDictionary class 160 
Set class 150 
String class 138 

findltemlndex method 127 
first method 124 
firstElement 122 
fixUp method 

KeyedCollection class 156 
flipCheck method 208 
flipState method 208 
floating point methods 102 
formal classes 75 
formal grammar 401 
formatUnes method 252 
funcProfile method 274 
function 

definition 233 
functional hierarchy 71 
functions 41 

garbage collection 43 
definition 221 
dynamic 92 



static 223 
generality 104 
generality method 104 
getChar method 242 
getCheck method 208 
getOipText method 234 
getContext method 183 
getError method 166 

DosStruct class 226 
getltemText method 219 
getLoadFile method 219 
getPos method 

ScrollBar class 205 
getRange method 

ScrollBar class 205 
getSelldx method 

ListBox class 203 
getSelString method 

UstBox class 203 
getState method 208 
getToken method 244 
global variables 

definition 393 
Graphical Device Interface 170 
graphics classes 169 
gray method 232 
grow method 112 

Hfiles 260 
handle 165, 170 
handle method 211 

Control class 199 
Window class 181 

handle, window 179 
hash function 153, 154 
height method 175 

Rect class 182 
hexadecimal format 98 
high method 103 
high-level errors 266 
home method 189 
hWnd instance variable 180 

icon bar 3 
if statement 396 

if I else statement 29 
image 44 
implementors method 140 
in method 150 
inclusiveOver method 

Interval class 143 
inclusiveOverBy method 

Interval class 143 
incremental development 259 
IndexedCollection class 118 

accessing elements 118 
IndexedCollection class 

introduction 58 
indexOf method 

Array class 121 
String class 138 

infix format 
arithmetic methods 99 
definition 15 
operators 100 

infix methods 100 
InfixOps 100 
inflate method 176 
inherit method 107 
inheritance 76, 106, 108 

creating descendents 256 
definition 17, 388 
of instance variables 18 
of methods 18 

init method 82 
Association class 105 
Rect class 174 
RndRect class 177 

initProfile method 274 
initSystem method 281 
initialization of objects 82 
input focus 185 
insert method 

OrderedCollection class 123 
String class 134 

insertAll method 
OrderedCollection class 123 

insertString method 129 
ListBox class 202 

insertText method 



TextCollection class 191 
inspect method 92 
Inspector 18 
Inspector window 198 
Int class 98 

division 99 
installing applications 

loading class files 278 
memory settings 283 
overview 277 
small image 278 

instance 
definition 10 

instance variables 
access 11,392 
assignment 392 
definition 10, 392 
use in inheritance 256 

intersection method 176 
Interval class 142 

creating intervals 143 
empty intc;?rval 145 
implementation 146 
instance variables 146 
other uses 147 

invalidate method 183, 184 
isAncestor method 109 
isHexDigit method 97 
item method 249 
iteration 398 

enumeration 398 
loop statement 400 

key At method 258 
KeyedCollection class 

accessing elements 153, 154 
common protocol 155 
definition 153 
introduction 61 
keys 154 
size 154 

keysDo method 
Dictionary class 158 
KeyedCollection class 155, 156 

last method 124 
lastElement 122 
late-binding 90 
leftJustify method 136 
length method 169 
lexical analysis 241 
Library class 

creating objects 225 
definition 225 

library procedures 
calling 224 

limit method 81 
line method 

Point class 171, 183 
ListBox class 201 

loading 202 
selecting items 203 
size 201 

lineTo method 
Point class 171 

literal array 120 
literal objects 

Rect objects 391 
arrays 391 
characters 390 
definition 390 
numbers 390 
points 391 
strings 390 
symbols 391 

loadMenu method 232 
loading files 37 
local variables 25 
log method 102 
logical operators 78 
Long class 98 
longAt method 142 
loop statement 

definition 400 
low method 103 
low-level methods 103 
lseek method 168 

Magnitude class 94 
makeString method 131 



mantissa 98 
map method 118 
max method 94 
memory allocation 221 
menus 

adding 232 
definition 228 
event handling 229 
modifying 231 
switching 232 

message 
definition 389 

message queue 184 
method 

definition 13, 388 
MethodDictionary class 

definition 160 
equivalence, importance of 160 
memory considerations 161 
searching 160 
structure 161 
valid keys 160 

methods 
creating 26 
format 25 

min method 94 
mixed-mode arithmetic 99, 104 
mod method 99 
Modal Dialog class 

creating objects 211 
definition 210 
initializing objects 212 
initializing, example of 215 
instance variables 212 
templates 210 

mouse basics 3 
move method 

File class 168 
moveCaret method 189 

TextWindow class 190 
moveTo method 

File class 168 
Point class 171 

MS-Windows classes 65 
MS-Windows messages 186 

multiplication 99 

naming convention 14 
nesting 212 
new message 

Window class 179 
new method 

Button class 207 
Collection class 112 
Control class 199 
Dictionary class 157 
File class 166 
FileDialog class 214 
ModalDialog class 211 
Polygon class 172 
PopupWindow class 195 
Rect class 174 
Scroll Bar class 204 
Stream class 162 
definition 16 

newCheck method 207 
newDefPush method 207 
newHorz method 204 . 
newPush method 207 
newRadio method 207 
newVert method 204 
newWClass method 237 
next method 

File class 165 
Stream class 163 

nextPut method 
File class 165 
Stream class 163 

nextPutAll method 
File class 165 
Stream class 163 

nil 77, 93 
definition 28 

NilClass 77, 93 
use of 257 

Number class 98 
coercion 104 
generality 104 
mixed-mode arithmetic 104 

now method 261 



numbers 
definition 390 

Object class 75 
definition 388 

object 
definition 387 

·object methods 76 
Occam's Razor 254 
object-oriented programming 

introduction 9 
. terminology 10 

objects 
creating 107 

occurrences method 152 
offset method 176 
open method 

File class 166 
operator precedence 100 
optimizing 

early binding 275 
profiling 273 

ordered pair 104 
OrderedCollection class 

introduction 58 
OrderedCollection class 122 

a~essing elements 124 
adding elements 122, 123 
first method 124 

: fit"StElement 122 
last method 124 
lastEJement 122 
removing elements 123 
reverse method 119 

over method 
In~erval class 143 

overBy method 
Interval class 143 

paint method 176 
parent window 19 
parent windows 198 
parse tree 

definition 248 
nodes 249 

parsing 
definition 240 
lexical analysis 241 

pcall method 226 
perform method 257 
physical hierarchy 77 
Point class 

creating points 170 
definition 170 
literal form 170 
other uses 172 

points 
definition 391 

point method 170 
Polygon class 

creating objects 172 
definition 172 
printing 173 

PolyLines (MS-Windows) 172 
polymorphism 256 

definition 14 
pop method 123 
popup windows 3 
PopupWindow class 

creating objects 66 
creaitng windows 195 
definition 195 
menus 196 
parent windows 196 

position method 169 
precedence 100 
primError method 265, 266 
primitive errors 266 
primProfile method 274 
Proc class 225 
primitive methods 41 
print method 83 
printChar method 

TextWindow class 189 
printLine method 83 

. printOn method 83 
printString method 

TextWindow class 189 
profiling 273 
put method 



KeyedCollection class 156 
Stream class 164 

putBack method 
Stream class 164 

putLong method 142 
putlSB method 227 
putMSB method 142 
putWord method 227 
pwr method 102 

quitting Actor 4 

radToDeg method 102 
random method 102 
read method 169 
readChar method 169 
Real class 98 

methods 102 
receiver 

definition 14 
Rectclass 

accessing objects 174 
creating objects 174 
definition 174 
intersection 175 
literals 174 
manipulating boundaries 175 
moving objects 176 
notation 174 
resizing objects 176 
union 175 . 

Rect objects 
definition 391 

register method 238 
releaseContext method 183 
remove method 

Dictionary class 158 
KeyedCollection class 156 
OrderedCollection class 124 
SortedCollection class 125 

removeCompiler method 280, 281 
removeLast method 123 
rename method 

File class 168 
replace method 136 

reset method 162 
resetDir method 218 
resource script file 210 

compiling 263 
definition 228 

return 400 
return value 26 
reverse method 119 
RndRectclass 176 

saving work 46 
scan code 186 
ScanWindow class 187 
scan While method 241 
scientific methods 102 
scientific notation 98 
scrollbar 6 
ScrollBar class 

creating objects 204 
definition 204 
moving objects 205 
scrolling 205 
setting ranges 205 

select statement 398 
selector 90 
self 25 .·, ;,Ji;; 

sendMessage method··· ·: ' :': ' 1'· .i 

Control cla5s :200,·202": 
senders method 140 ;,;;:.;;-<, 

Set class 116 ' · '' ' "'·' 
accessing element$· 150 
adding elements 149' 
cardinality' 149 L : 

definition 149 " "j ' 

introduction 60 
ordering 150 
removing objects lSO 

setBottom method 175 , 
setCall method 227 
setCheck method 208 
setCRect method 

., .. 
' ListBox class 201 

setClipText method 234 
setCompareBlock method 126 
setCorner method 175 



selCurve method 177 
setFocus method 

Control class 200 
setLeft method 175 
setMenu method 232 
setName method 

File class 166 
setOrigin method 175 
setPos method 

ScrollBar class 205 
setRange method 

ScrollBar class 205 
setRight method 175 
setState method 208 

· setText method 
Window class 182 

setTop method 175 
setXCurve method 177 
setYCurve method 177 
shallow copy 86 
show method 

Control class 199 
Window class 180 

showOldCurs method 182 
showWaitCurs method 182 
sin~ho~t102· .,, 
sizebo~ 13 ··''' '···' '· 
size method 81 · ·' . ·. ···' ·· 

Interval clasS 145 · 
sl!'[iig~$S t36 i , .. ,, 

skipDelim tnethbd '242" .· 
srrlalt' imilge 278 ; · .J·:' 

snap method 282 ' · ' · ' 
Snapshot 188, 223 
SortedCollection ~lass 125 

adding elements' 125;:.·' 
introduction 58 · c1'' 

locating elements· 127 
ordering 126 ' 
removing elements 1?5 

source code 
ACI"files 260 · 

:: 1 H files 260 
class files 260, 261 
comment style 261 · 

source files 
ACT files 260 

species method 81 
species of an object 81 
sqrt method 102 
stack 223 
stack simulation 122 

pop method 123 
push method 123 
remove method 124 
removeLast method 123 

stackLink method 265 
stackTop method 265 
statement 

assignment statement 396 
conditional statement 396 
definition 395 
iteration 398 
return 400 
simple statement 395 

static data area 92 
static garbage collector 223 
static memory 221 
static method 221 
staticRoom method 92 

...t ~A:~~-.~ 
Stopwatch class 274 ~ , ;;,_ii 
stream 82 ... , " 
Streamchlss 134' .· .'i ,, 

acces5i~ et~ts 1~ 
creating ob~ts 162 ·, ,, .. ,, 

streamOver;method 134, .162 . · 
· String class }32 , , '' '"' · ' 

compclrisons 132 
cohcateriation 133 '. . •' . 
conversion methods · fa3 •· 
deletion 135 ' · · ' 
rnseruon · 134 · · q 

. search ,methods 138 · 
stflngOf method . ' ' ;i: . ·. 

Char class · 97 
' strings . 

definitidh 390 
Struct class 141 

introduction 58 
as Point objects 171 



si7.e of objects 141 
style, coding 258 
subString method 136 
subText method 131 
subtraction 99 
Symbol class 139 
symbols 

definition 391 
symbols, uniqueness of 80 
syntax 

binding of receivers 401 
case 389 
constants 393 
expressions 394 
literal objects 390 
statement 395 
variables 392 

sysPrint method 83 
sysPrintOn method 83 
system menu box 4 
system methods 86 

tally 154 
tan method 102 
template 29 
text inserttpn poipt 4 
TextCollecUon class )~8 .. 

deleting t~t 130, , · ... 
~~ni t~t 1,Z9 . , 
Window uses' 191 

T~~~fu~ctjp.~).29,, .. 
Te>ctWindow .. ··. . 

WM_KJLU:OCUS n)~thod 189 
WM..,.$~.m~~hpd .189 

TextWindow class .. 187, 188 
· ca~ 188 ,, , · ''.. 

creating ~c.io~s fas' 
deftnltion 188 . . · 
displaying wirldows. 188 
moving th~ c~ret 19q 
printing text 189 
selecting1 ~nd9ws 188 

ThePort 185, i88 . 
tiled window 63 
tiled windo~s. 3 . , .. ·' 

ToolWindow class 197 
topmethod 174 
trace method 268 
traceOff method 269 
true constant 77 
tuple message 

definition 391 
tuple method 88, 120 
Turtle Command Language 

compiling 251 
definition 242 
formal grammar 245 
function call 244 
functions 243 
introduction 240 
lexical analyzer 244 
primitives 242 

turtle graphics 7 

union method 176 
upCase method 

String class 133 
upright character 25 

variahle nu~r o~ pa;r~m~Wm~ 89 
variableNew me.t~<>'i\. Jg§1,, ~1i,~ 

Collection class 11~, .,1 ')Yi'! 

variables 392 ;:.:- \:.qr'i:•m '~":.i<~ 
.End Iqqex ... ;··· :.,.,., :;11 ,i 
global viJr~kl~. ~?.3, -~ 
ins~~~ey~~~·1~~?~l !~ 
temporary,~arlCll?J~; ~Y.3-1 «! 

virtual key 186•r t. ,,'1 t 1., r g;. ;~ 
' ':;'- . h ,d~ 

widtlun~thqcJ;,. ··= ,. ;;; .. ):~·", ,;:-
Rectcl~ )82., :r;:' • 

Windows · .. ,,·:'.,, 1,, •. ; 

intrP<j»c;tipA;3 .;. )'' ",: 
popup3. · ... ". 
ti~.3 .... , ·' ·.··.,' ,,, . 

Window class ' . ; , . . .. ,, v 

creating objects,. 63 
clearing windows 183, 184 
client area 182 
creating windows 179 



definition 179 
display context 183 
displaying windows 180 
drawing lines 183 
menu management 192 
menus 180 
MS-Windows messages 184 
tiled windows 180 
wait cursors 182 

window classes 179 
closing windows 239 
in MS-Windows 236 
quitting an application 239 
registration 236 

Window messages 235 
to Actor 235 
to Windows 235 

windows 
introduction 62 

WM_ COMMAND method 
Window class 203 

WM_INITDIALOG method 
FileDialog class 2i6 

WM .... l<P)'DQW« tn.essage" 18(; 
'WM_J<E¥P@WJ'lfmethod· .. J86 
·~M_;l<~¥µP~sage. 186 .· 
~~-SEJJPCU$ methQd 185, 188 
·~ndqiJ~ ~ffl)<! ~7 · · 
·word method: ·· . . • 

·. : . Stre~~cJ~~ tQ 
·woi:dAt tne'hocl .. -
·. ft-' '$tr~<:t~.-.·1iti . 
'Wo.rkEdft,class '.t9'f' 
1\TprkspaCf! 4 ·.. .. . 
W()r~pa~•H~•A~ W7 ' 
fi()r.ksPilc~f~indow 3 
w,,.t~~.thodr .. 169 ... ' 
writeehar~ t~ 

·yacc_·. . . , 
•,_, 4efini~on 240 

Yjl¢Machtne .class 
·.definition· ~45 
function 240 
use 247 


