

UCSD p-System Internal Architecture
TI Part No. 2232400-0001
Original Issue: 15 April 1983

Copyright © 1978 by the
Regents of the University of California (San Diego)

All rights reserved.

All new material copyright © 1979, 1980, 1981, 1983
by SofTech Microsystems, Incorporated

All rights reserved.

All new material copyright © 1983
by Texas Instruments Incorporated

All Rights Reserved.

No part of this work may be reproduced in any form or by any
means or used to make a derivative work (such as a transla­
tion, transformation, or adaptation) without the permission in
writing of SofTech Microsystems, Inc.

UCSD, UCSD Pascal, and UCSD p-System are all trademarks
of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific
license only, and any unauthorized use is contrary to the laws
of the State of California.

Preface

This publication is a reference manual for the UCSD
p-System™* on the Texas Instruments Professional Computer.
It covers the internal details of the p-System. The p-machine
architecture and instruction set are covered. Codefile format,
low-level I/O mechanisms, and operating system details are
also addressed.

For further information about the system and its use, refer to
the following publications:

Personal Computing with UCSD p-System (2232418-0001)

UCSD p-System Program Development (2232399-0001)

UCSD p-System Assembler (2232402-0001)

UCSD PascaFM* (2232401-0001)

DISCLAIMER

This document and the software it describes are subject to
change without notice. No warranty expressed or implied
covers their use. Neither the manufacturer nor the seller is re­
sponsible or liable for any consequences of their use.

* UCSD p-System and UCSD Pascal are trademarks of the Regents of the Uni­
versity of California.

iiiliv

Contents

Preface iii

Introduction vii
Purpose of This Guide ... vii
A Brief History of the System viii

1 The p-Machine 1-1
Overview 1-3
Program Code 1-6
Task Environments ... 1-42
p-Machine Instructions ... 1-46

2 Low-Level 1/0 2-1
The I/O Subsystem 2-3
Device I/O Routines 2-6
The RSP ... 2-13
BIOS 2-23
BIOS Calling Conventions ... 2-45
SOS6-Specific BIOS Calls 2-47

3 The Operating System 3-1
Organization 3-3
p-Machine Support 3-5
The Code Pool .. 3-11
I/O Support 3-17
Varieties of I/O .. 3-20

4 Program Execution .. 4-1

v

Appendixes

A p-Machine Opcodes (Alphabetic Order)

B p-Machine Opcodes (Numeric Order)

C ASCII Table

vi

Glossary

Index

Introduction

PURPOSE OF THIS GUIDE

This guide describes the internal design of the UCSD p-System
as implemented on the Texas Instruments Professional Com­
puter. The p-machine, operating system, basic I/O, and the way
in which these elements are organized to support the running
of a program written in UCSD Pascal are covered.

It should serve as a guide and reference for more advanced
users of the p-System, but is not intended to be a stand-alone
definition for the use of implementors. Such a definition does
not yet exist; if one is written, it will probably be based on the
format of this book.

Perhaps the best way to use this guide is to read it sequen­
tially, skipping those sections (such as the list of p-codes) that
go into very specific detail. This should give the reader a fairly
complete picture of what goes on within the p-System. If the
user then needs to know specific internal details, the relevant
section can be referred to later.

While few users will want or need to implement a p-System
from scratch, the internal descriptions provided in this guide
should be useful to a number of audiences.

The largest audience is probably those who will make no
specific use of the information. To these users, the benefit will
be a better understanding of the p-System's operation and a
general improvement in their ability to engineer programs for
effective execution in the p-System environment.

vii

Second, there are the implementors of system software facili­
ties that complement existing p-System capabilities; for in­
stance, new language translators, new system utilities, or
PMEs for additional processors. For this group of pro­
grammers, the UCSD p-System Internal Architecture presents
more information than was available in the past.

Finally, there are the implementors with a compelling need to
use facilities such as the ability to explicitly generate p-codes
in a Pascal program where an ordinary Pascal construct would
not suffice. We take it for granted that only a compelling need
would lead you to take such steps.

All of these audiences, particularly the last, should understand
that the principal commitment of SofTech Microsystems and
its licensees is to the user facilities, and not to any of the spe­
cific implementation strategies that are described in this guide.
Programmers who take advantage of internal tricks do so at
their own risk.

A BRIEF HISTORY OF THE SYSTEM

The software system on the Texas Instruments Professional
Computer that is now called the UCSD p-System began when
Kenneth Bowles was responsible for teaching the introductory
programming course at the University of California, San Diego.
In late 1974, under Bowles' direction, a group of undergraduate
and graduate students began to implement Pascal for micro­
computers.

Before this time, the introductory programming course had
been taught using a large time-shared computer. This pre­
sented a bottleneck-many people used the machine, so its
turnaround was sometimes quite slow, and a student's produc­
tivity was to some extent limited by the availability of the card
punches. Furthermore, the machine's time-sharing environ­
ment, its accounting system, its complexity, and the amount of
sensitive information that it stored prevented the student from
any extensive hands on use of the machine or its facilities. In
brief, the computer was intimidating.

viii

These were the main reasons for the decision to change the na­
ture of the beginning programming course. It would be self­
paced, to accommodate the large number of students, and each
individual student's study habits. (UC-Irvine's physics pro­
gram had been doing this successfully for a couple of years.) It
would use Pascal, rather than the dialect of Algol that was spe­
cific to the University's large time-sharing computer; and, it
would use microcomputers.

The decision to use small computers was motivated partly by
their low cost, and partly by the desire to give students an op­
portunity to program in an interactive environment. The sys­
tem was first implemented for a number of PDP-ll/lOTM's with
diskettes and VT-50 terminals. Students were expected to buy
their own diskette, and use it for storing the system and their
own programs.

It was the interactive environment that led to some of UCSD
Pascal's deviations from the standard language, mostly as re­
gards INTERACTIVE files and the handling of EOF and
EOLN. The type STRING came about from the desire to teach
basic programming concepts without recourse to numerical
problems which distracted many students from the actual prob­
lems of programming.

The user interface of the p-System-by which we mean the
practice of displaying a menu or prompt at every level of the
p-System and organizing the levels in a tree structure-was in­
tended to be easy to learn for the complete novice, yet not cum­
bersome for the experienced user. This proved very successful,
and has been retained.

PDP-UIlO is a trademark of Digital Equipment Corporation.

ix

The emulative approach to executing Pascal was present from
the beginning. P-code, adapted from the original design by Urs
Amman of the Eidgenossische Technische Hochschule, in
Zurich, was designed to be compact and easily generated by a
compiler; because of the constraints of the microprocessor envi­
ronment, the goal was to keep the compiler and the code files
as small as possible. The tradeoff in execution time was felt to
be an affordable cost. Time has borne out this decision.

All of the original implementations were on PDP-ll/LSI-ll TMI

machines. Because of the emulative approach, it was a rela­
tively straightforward matter to rewrite the p-machine
emulator for the 8080 and Z80™2, and subsequently, for many
other processors. The 8086 PME now runs on the Texas
Instruments Professional Computer.

This adaptation of the PME, sometimes called the interpreter,
was originally motivated by the search for less expensive hard­
ware. But it was soon recognized that software portability was
valuable in itself. The economics of the computer business, es­
pecially the microprocessor field, dictated this. It is not a new
observation that hardware costs continue to plummet, while
software, being hand-made, continues to be very expensive. It
is through modularity and portability that p-System addresses
the problem as thoroughly as it does.

I LSI-ll is a trademark of Digital Equipment Corporation.

2 Z80 is a trademark of Zilog, Incorporated.

x

1

The p-Machine

Overview 1-3
Emulative Execution 1-3
The Stack and the Heap 1-4
Code Segments 1-4
Device I/O 1-6

Program Code ,. 1-6
Code Segments 1-6

Code Segments and Byte Sex 1-9
Routine Dictionaries 1-10
Routine Code 1-10
The Constant Pool 1-11
The Relocation List 1-16
Segment Reference List 1-19
Linker Information 1-22

Code File Organization 1-27
The Segment Dictionary 1-27
Assembler-Generated Code Files 1-33

Code Segment Environments 1-35
Segment Information Blocks (SIBs) 1-35
Environment Records (E_RECs) 1-38

Task Environments 1-42
p-Machine Instructions 1-46
The Intrinsic p-Machine .. 1-46
p-Code Instruction Set 1-47

Operands and Notation 1-47
Individual p-Code Instructions 1-54

1-1/1-2

OVERVIEW

The p-machine is an idealized machine. The operating system,
programs such as the filer, and compiled user programs all run
on the p-machine. Code for the p-machine is known as p-code,
and all code files in the system consist of either p-code or the
native code for a particular physical processor.

P-code is designed to be compact, so that programs in p-code
are much shorter than equivalent programs in native code.
P-code is also designed to be easily generated by a compiler.

Because p-code is compact and simple compared to native
codes, it is fairly easy to implement the p-machine on a variety
of actual processors. It is also easier and cheaper to maintain a
system that runs on one p-machine, rather than a family of sys­
tems, each dedicated to a particular physical processor. This is
the essential key to the portability of the p-System.

Emulative Execution

The p in p-code and p-machine stands for pseudo. The
p-machine emulator program is written in the native
code of some particular processor. It is responsible for
executing p-code instructions, and controlling machine­
dependent I/O. The p-machine emulator is also called
the PME or the interpreter. On the Texas Instruments
Professional Computer, the PME is written in 8086 as­
sembly language.

At run time, the user's program, or a portion of it, is in
main memory. The PME fetches each p-code instruc­
tion, in sequence, and performs the appropriate action.
The process of bootstrapping involves loading the
PME, if necessary, and starting its execution. The next
step is to call the operating system, which runs on the
p-machine.

1-3

The Stack and the Heap

The system maintains memory-resident data in two dy­
namic structures called the Stack and the Heap. The
Stack is used for static variables, bookkeeping infor­
mation about procedure and function calls, and evalua­
tion of expressions. The Heap is used for dynamic
variables, including the structures that describe a pro­
gram's environment.

The Stack can be considered part of the p-machine.
Most p-code instructions affect the Stack in one way or
another.

The Heap is an integral part of the system, but is pri­
marily supported by the operating system, rather than
the p-machine.

Both the Stack and the Heap reside in main memory,
and grow toward each other in a largely first-in , first­
out manner. Between them is an area of memory that is
partly unused, but also contains the Codepool (see
Chapter 3).

The Heap is more fully described III Chapter 3, The
Operating System.

Code Segments

1-4

In the p-System, program code is stored in one or more
segments. A code segment may contain either p-code or
native code or both. Besides the code itself, each code
segment contains bookkeeping information for the sys­
tem's use and usually a pool of constants.

Every compilation unit-separately compiled Pascal
PROGRAM or UNIT-results in a principal segment of
code. In addition, there may be subsidiary segments if
the program or unit contained SEGMENT routines or
EXTERNAL native code routines. Information em­
bedded in the compilation's code file contains the refer­
ences among the possibly various compilation units
that are part of the full program.

When a program is X(ecuted, the operating system
reads this reference information and resolves the refer­
ences by finding the location of all compilation units
needed by the program, including subsidiary segments
and indirect references such as a UNIT using another
UNIT. Tables are built that may be used at run time to
make references, such as procedure calls, from one seg­
ment to another.

The segments of a running program compete for space
in main memory with each other and with the Stack
and the Heap. The principal constraint, as far as code
segments are concerned, is that the calling and called
segment must both be present in main memory for an
intersegment call to succeed.

Segments in main memory are all stored contiguously
in an area called the Codepool. The Codepool resides be­
tween the Stack and the Heap, and may be moved
about to create more room.

Code segments are described in this chapter. Codepool
handling is described in Chapter 3, The Operating
System.

1-5

Device I/O

Device 110 and control is accomplished by calls from
the language level to routines within the PME. The de­
vice 110 routines then calIon the routines of the PME's
Basic 110 Subsystem (BIOS), and the BIOS routines
control the peripheral hardware directly. 110 environ­
ment dependencies are thus isolated in the BIOS, and it
is possible to adapt the p-System to a new hardware
environment by changing only the BIOS, not the entire
PME.

On adaptable systems, the BIOS itself has a standard
interface to the Simplified BIOS (SBIOS). The SBIOS
is a set of simple 110 routines, and is intended to allow
the user to rapidly adapt the system to a new 110
environment.

The BIOS is dealt with in Chapter 2, Low-Level 110.

PROGRAM CODE

Code Segments

1-6

A code segment is a collection of routines, together
with descriptive information. The code and information
in a segment is contiguous, since the code segment is
the unit of movement for code; code is loaded into
memory a segment at a time.

There are up to 255 routines within a segment,
numbered 1 through 255.

At compile time, segments are assigned a name and a
number. The name is eight characters long. It is used
by the operating system to handle inter segment refer­
ences at associate time. It is also used when maintain­
ing code files with LIBRARY. The number is used to
reference the segment at run time.

The beginning (low address) of a code segment is a re­
cord that contains the following information about the
segment:

• Pointer to the routine dictionary

• Pointer to the relocation list

• The 8-character name of the segment (4 words)

• Byte sex indicator word

• Pointer to the constant pool

• Real size word

• Space reserved for future use (2 words)

The figure following illustrates a code segment as it
would be loaded into memory; the various substruc­
tures of a code segment are described.

1-7

PROCEDURE
DICTIONARY

PROCEDURE {
CODE FOR

PROCEDURE
#2

2284131

1·8

ODD

HIGH ADDRESS

EVEN

RELOCATION LIST

NUMBER OF PROCEDURES

POINTER TO PROCEDURE 1

POINTER TO PROCEDURE 2

• • •
POINTER TO PROCEDURE N

CONSTAN":" ··-OOL

PART NUMBER, WORD

PART NUMBER, WORD 2

REAL51ZE

CONSTANT POOL POINTER

BYTE SEX INDICATOR WORD

8 CHARACTER SYM BOL IC
NAME OF SEGM E NT

RELOCATION LIST POINTER

PROC DICTIONARY POINTER

L0W ADDRESS

Code Segments and Byte Sex

Code segments are independent of the byte sex
of the host processor. A number of system com­
ponents cooperate to achieve this independence.

There are two groups of word-oriented (byte-sex­
dependent) information. The first is superstruc­
ture information, such as the routine dictionary.
This information is flipped by the operating sys­
tem when a segment is loaded. The second is
embedded information, such as XJP tables or
constants accessed by LDC. This sort of infor­
mation is flipped by the PME.

The compiler produces code segments that con­
tain word information in the natural order of
the machine on which the compiler was run.
Immediately following the segment's eight char­
acter name is a flag that always contains the
constant 1 in the byte sex of the original
machine. If read in the opposite byte sex, it ap­
pears to be a 256.

When a segment is loaded by the operating sys­
tem, and its byte sex flag indicates that the sex
of the segment is opposite that of the running
machine, routine dictionaries are byte-swapped.
Embedded information is then flipped by the
PME.

The net result is that segments of either sex
can run on any machine.

1-9

1-10

Routine Dictionaries

The first word in a code segment points to word
o of the segment 's routine dictionary, also
called the procedure dictionary. The routine dic­
tionary is a list of pointers to the code for each
routine in the segment. Each routine dictionary
pointer is a seg-relative word pointer.

Routines within a segment are numbered 1
through 255. A routine 's number is an index
into the routine dictionary; the nth word in the
dictionary contains a pointer to the code for
routine n.

The first word (word 0) of the dictionary con­
tains the number of routines in the segment.

In the case of EXTERNAL and FORWARD
routines, the source code may contain a
routine's declaration but not its code. The corre­
sponding routine dictionary entry is zero, at
least before linking.

Routine Code

The code of a routine consists of two words:
DAT ASIZE and EXITIC, followed by the exe­
cutable object code. The object code may be en­
tirely p-code, entirely native code, or a mixture
of the two.

DA T ASIZE is the number of words of local
data space that must be allocated when the pro­
cedure is called. DA T ASIZE does not include
parameters; the routine's parameters are as­
sumed to already be on the stack. The first exe­
cutable instruction starts at the byte or word
immediately following the DATASIZE word. If
the first executable instruction is native code,
DATASIZE is one's-complemented.

If this first instruction is a p-code instruction,
then EXITIC is a seg-relative byte pointer to
the code that must be executed when the proce­
dure is exited. If this first instruction is a na­
tive code instruction, then EXITIC is undefined
at run time.

If the code of the routine contains both p-code
and native code, it is still the first instruction of
the routine that determines these conditions.

The Constant Pool

Multiword constants are stored together in a
single constant pool for the entire segment. The
constant pool begins immediately after the last
body of procedure code in the segment.

The location of the constant pool is contained in
the constant pool pointer, a seg-relative word
pointer that immediately follows the byte sex
indicator word at the beginning of the segment.
It points to the low address of the constant
pool. If the constant pool pointer is equal to
zero, the segment does not contain a constant
pool.

Constants are referenced by word offsets rela­
tive to the beginning (low address) of the con­
stant pool.

The constant pool is divided into two subpools:
the real pool and the main pool.

The first word of the constant pool points to
the beginning of the real pool. This is a word
pointer relative to the start of the constant
pool; if there are no real constants in the code
segment, this word must be O. The first word of
the real pool contains the number of real con­
stants in the real pool.

1-11

H IGH
ADDR ES S

2 28 4 1 3 2

1-12

The following figure illustrates a constant pool
with an embedded real subpool.

PO I N TER T O PR OC E OUR E N

R E A L S U BPOO L

CO N S T AN T POO L
PTR

Real constants are generated for either 32-bit or
64-bit floating point Binary Coded Decimal
(BCD) data formats-real values (and operations
upon them) can be transported across all pro­
cessors with the same-sized representation of
floating point numbers, but cannot be t rans­
ported to machines with floating point formats
of a different size.

NOTE

Two-word (32-bit) floating point arith­
metic is not necessarily available on
the Texas Instruments Professional
Computer.

Only one size is likely to be available for a par­
ticular processor, since real constant handling is
done by machine-dependent software (that is,
within the PME). Within a single program, all
compilation units must share the same size for
real constants and variables.

The Pascal compiler is configured, when com­
piled, to default either to 32-bit or 64-bit reals.
A directive is available to override the default:

{SH2} . sets realsizc to 2 words 132 bitsi
{SH4} - sets realsize to 4 words 164 bitsi

This directive must occur before the first sym­
bol in a compilation that is not a comment. The
active realsize for a particular compilation is
displayed after the compiler's version number at
the beginning of the console output during a
compilation and in a compiled listing.

The realsize at compilation time is also
embedded in every code segment even though it
may not reference any reals. The word
REALSIZE at the base of the segment contains
this value.

1-13

1·14

A 32-bit real constant is represented by a three­
word record. The first word contains a signed
integer representing the exponent value. The
following two words contain the mantissa
digits. A mantissa word representing significant
mantissa digits contains an integer whose abso­
lute value is between 0 and 9999; its value cor­
responds to four mantissa digits. The first
mantissa word is signed, and thus contains the
mantissa sign. The second mantissa word may
contain a negative value; in this case, it does
not contain any significant digits and is disre­
garded when constructing the internal represen­
tation of the real constant. It serves as a
terminator word for the constant conversion
routines. The decimal point is defined to lie to
the right of the four digits in the last valid
(used) mantissa word. The digits in the last
mantissa word are left-justified. For example, if
the real value is 1.1, the first mantissa word
contains 1100 decimal (044c hexadecimal).

Example:

1 .. 4 significant mantissa digits:
The first mantissa word contains a signed
value between 0 and 9999. The second word
contains a negative value. The implied deci­
mal point position is at the end of the first
word.

5 .. 8 significant mantissa digits:
The second mantissa word contains a positive
value between 1 and 9999 and represents up
to 4 low-order digits. The first word contains
a signed value between 1 and 9999, it repre­
sents the 4 high-order digits. The implied
decimal point position is at the end of the
second word.

A 64-bit real constant is represented by a record
whose length may vary between 4 and 6 words,
depending upon the number of significant digits
in the constant. The first 2 words of a 64-bit
constant are identical in format to those of a 32-
bit real constant; thus, the format always con­
tains an exponent word and a first mantissa
word. An enumeration of the remaining words
for all cases follows:

1 .. 4 significant mantissa digits:
Mantissa word 2 contains a negative
terminator.
Mantissa word 3 is zeroed and is present
solely to provide sufficient space for
the native format.

5 .. 8 significant mantissa digits:
Mantissa word 2 contains 1 to 4 digits
(left-justified).
Mantissa word 3 contains a negative
terminator.

9 .. 12 significant mantissa digits:
Mantissa word 2 contains 4 digits.
Mantissa word 3 contains 1 to 4 digits
(left-justified) .
Mantissa word 4 contains a negative
terminator.

13 .. 16 significant mantissa digits:
Mantissa words 2-3 contain 4 digits.
Mantissa word 4 contains 1 to 4 digits.
Mantissa word 5 contains a negative
terminator.

17 .. 20 significant mantissa digits:
Mantissa words 2-4 contain 4 digits.
Mantissa word 5 contains 1 to 4 digits.

1-15

1-16

Real constants are converted to native machine
format when a code segment is loaded into
memory; this may result in a significant run-
time overhead for programs that are memory- ~
bound. Time-critical programs of this nature
may sacrifice portability for execution speed by
using the Real Convert utility to convert their
real subpools into native machine format. This
is done by replacing the canonical form of each
real constant in the code file with a native real
constant. The modified subpool is merged with
the main pool by setting the real pool pointer to
zero, thus eliminating the usual conversion pro-
cess during a segment load. Because the con-
stant pool is transformed in place, constant
offsets embedded in the code file do not require
updating.

The Relocation List

The last (high address) body of information in a
memory-resident code segment is the relocation
list. The second pointer at the beginning of the
code segment points to the last (highest ad­
dress) word in the relocation list. This pointer is
a seg-relative word pointer; if there is no reloca­
tion list, it is equal to zero.

The relocation list contains all the information
necessary to fix any absolute addresses used by
code within the segment, whenever the segment
is loaded or moved in memory. Such absolute
addresses are only needed by native code. Seg­
ments containing p-code exclusively are com­
pletely position-independent; no relocation list is
needed.

A relocation list consists of zero or more reloca­
tion sublists. Each sublist contains code offsets
for objects that must be relocated, and specifies
the type of relocation that must be done. Sub­
lists can occur in any order, and more than one
sublist can have the same type of relocation.

The following code fragment shows the format
of the heading of a sublist:

LocTypes = IRelocEnd, {signals end of entire relocation list}
SegRel. {relative to address of base of this segment}
BaseRe!' {relative to data segment given in DATASEGNUM}
InterpRe!.{relative to PME's interp-relative table}
ProcReli; {relative to address of 1st instruction in proc}

ListHeader = PACKED RECORD
ListSize: integer; {number of pointers in sublist}
DataSegNum: 0 .. 255; {local segment number for BaseRel}
RelocType: LocTypes; {relocation type of sublist entries}

END;

Each sublist contains a ListHeader and zero or
more seg-relative byte pointers to the objects
which must be relocated. The RelocType field in
the ListHeader defines what kind of relocation
will be applied to all objects designated by the
sublist.

The relocation type ProcRel is generated by the
assembler, but changed by the linker into
SegRel. ProcRel sublists should never be
encountered when loading and relocating assem­
bly code.

The DataSegNum field in the ListHeader is
only used in sublists with a RelocType of
BaseRel, and in all other cases should be zeroed.
It specifies the local segment number of the
data segment that all of the sublist's pointers
are relative to. Since the assembler cannot know
this segment number in advance, it should zero­
fill the field and leave the responsibility for cor­
rectly setting this field to the linker.

1-17

RELOCATION
SUBLIST

2284133

1-18

The ListSize field in the ListHeader contains
the number of pointers in the sublist.

The following figure illustrates a relocation list
with multiple sublists.

HIGH ADDRESS

RELOCTYPE OATASEGNUM

LISTSIZE

RELOCATION POINTERS

LOW ADDRESS

RELOCATION
LIST POINTER

The relocation list is intended to be used from
high address down to low address. Each sublist
in turn from high to low is processed until a
sublist with a relocation type of RelocEnd is
encountered. The DataSegNum and ListSize
should be 0 for this terminating entry.

The relocation list is located at the end of the
code segment, since it is sometimes possible to
discard the relocation information after the seg­
ment has been loaded into memory.

Segment Reference List

In the p-machine, each code segment is asso­
ciated at run time with an environment vector
that defines the mapping of each segment
number to the segment or unit that it desig­
nates. Each compilation unit has its own inde­
pendent (local) series of segment numbers, and
its own environment vector. In this way, a par­
ticular unit may be referenced by more than one
unit, and each unit that references it may use a
different segment number. (For more infor­
mation about environment vectors, see the sec­
tion, Code Segment Environments later in this
chapter.)

When a compilation unit references one or more
other compilation units, the principal segment
of the compilation contains a segment reference
list. This list defines the connection between the
segment numbers, which are created by the
compiler and appear in the object code, and the
names of the units to which they refer. Only
principal segments contain segment reference
lists.

1-19

1-20

The segment reference list, when present, is lo­
cated above the relocation list (it grows toward
higher memory addresses). The list is used by
the operating system at associate time. It does
not occupy any space in memory during the pro­
gram's execution.

The segment reference list associates the name
of each compilation unit with the number by
which that compilation unit is referenced. The
compilation unit names do not change.

The following fragment of Pascal code describes
a record in the segment reference list:

SegRec= PACKED RECORD
SegName: PACKED ARRAY 10 .. 71 OF CHAR: {referenced segment

name}
SegNum: 0 .. 255; {associated segment number}
Filler: 0 .. 255: {reserved for future use}

END;

The Seg_Refs entry in the segment dictionary
contains the number of words in the segment
reference list. The Code_Leng field in the seg­
ment dictionary can be used as a seg-relative
word pointer to the start of the segment refer­
ence list. The segment reference list consists of
one or more SegRec's, starting directly above
the relocation lists and continuing towards
higher memory addresses. A SegRec consists of
SegName, which contains the name of the seg­
ment, SegNum, which contains the number by
which the segment is referenced within this cur­
rent code segment, and some filler.

The segment reference list is terminated
SegRec with a blank-filled SegN arne
SegNum of zero.

by a
and

SegRec's with a SegName of *** are generated
so the operating system can execute the initiali­
zation and termination code sections of a unit.
Before executing a host program, the operating
system constructs a list of all used units that
contain a reference to ***, and uses this list to
execute the initialization/termination sections of
all used units before/after the invocation of the
host program.

When the initialization/termination section of a
unit (which is procedure 1) is compiled, a
<CXG\ <***'s seg num>, 1> instruction is
emitted between the initialization and termina­
tion parts. A local segment number is reserved
for the *** segment reference, and the oper­
ating system creates a linear list that links to­
gether the units of a program that require
initialization. At the end of this list is the outer
body of the main program. The operating sys­
tem invokes the program by calling the first ini­
tialization code on this list, which calls the next,
and so forth up to the body of the main pro­
gram, itself. When the main program termi­
nates, the calling chain is popped, and
termination sections are executed in the reverse
order.

1-21

1-22

Linker Information

Linker information (linker info) is a portion of a
code segment that allows the linker to resolve
references between p-code and native code. Seg­
ments output by an assembler always have
linker information. Segments output by a com­
piler have linker information only if they con­
tain an EXTERNAL routine. Only principal
segments may contain EXTERNAL routines.

Linker information is a sequence of eight-word
records, starting on the block boundary fol­
lowing the end (high address) of the segment
reference list. The end of the sequence contains
the value EOFMark. Linker information records
are always 8 words long-unused records and
unused fields are zero-filled.

If a code segment has linker information, the
HasLinker Info Boolean in Seg_Misc in the seg­
ment dictionary is TRUE. The starting block of
linker information, relative to the start of the
code file, can be calculated from the formula:

Code---.Addr + (lCodeJeng + Seg_ Refs + 255) DIV 256)

where Code--Addr, Code_Leng, and Seg_Refs
are all values in the segment dictionary (see
ahead in this chapter).

Two fields are common to all linker information
records. The Name field contains an eight-char­
acter segment name. The LIType field deter­
mines the nature of the linker information in
the remainder of the record.

The following fragment of psuedo-Pascal code
describes a linker information record:

PtrRecNum

LITypes

LIEntry

{an integral number of 8-word pointer records}
{this is variable from record to record};

IEOFMark. Glob Ref. PublRef. PrivRef. ConstRef.
G1obDef. PublDef. ConstDef. ExtProc. ExtFunc.
SepProc. SepFuncl;

RECORD
Name: PACKED ARRAY [0 .. 7] OF CHAR;
CASE LIType: LITypes OF

GlobRef. PublRef. ConstRef
: !Format: IWord. Byte. Bigl;

NRefs: integerl;

PrivRef: !Format: IWord. Byte. Bigl;
NRefs: integer;
NWords: integerl;

ExtProc. ExtFunc
: ISrcProc: integer;

NParams: integerl;

SepProc. SepFunc
: ISrcProc: integer;

NParams: integer;
KoolBit: Booleanl;

GlobDef: I HomeProc: integer;
ICOffSet: integerl;

PublDef: IBaseOffset: integer;
PubDataSeg: integerl;

ConstDef: IConstVaI: integerl;

EOFMark:
END {CASE};

PtrList: ARRA Y[O .. PtrRecNum] OF
ARRA Y [0 .. 7] OF integer

END {LIEntry};

1-23

1-24

Glob Ref, PublRef, ConstRef, and Priv Ref are all
linker information types generated by an assem­
bler. They all consist of two fields that precede
a list (PtrList) of seg-relative byte pointers into
the associated segment. Format contains the
size of the fields pointed to by the accompany­
ing list. NRefs contains the number of pointers
in the list. PtrList contains multiples of eight
words; all unused words should be zero.

For these types of linker information records,
PtrRecNum = ceiling(NRefs/S), where ceiling(n)
is the smallest integer > = n.

Glob Ref is used to link identifiers in two or
more assembled routines. Name is an identifier
that is referenced within the segment, and de­
fined in some other assembled routine. Format
should always be Word. The linker must add
the final segment offset of the referenced object
to all words pointed to by PtrList. This offset
must be in the correct addressing mode; that is,
bytes or words, depending on the processor
being used.

PublRef is used to link an identifier in an as­
sembled routine to a global variable in a compi­
lation unit. Name is an identifier that is
referenced in the segment, and defined as a
global variable in some other compilation unit.
Format should always be Word. The linker
must add the offset of the referenced object to
all words pointed to by PtrList.

ConstRef is used to link an identifier in an as­
sembled routine to a global constant in a compi­
lation unit. N arne is an identifier that is
referenced in the segment, and defined as a
global constant in some compilation unit. For­
mat may be either Byte or Word. The linker
must place the constant value into all locations
pointed to by PtrList.

PrivRef is used to allocate space in the global
data segment. Format should always be Word.
NW ords specifies the number of words to allo­
cate. The linker must add the offset of the start
of the allocated area within the global data seg­
ment to all words pointed to by PtrList.

ExtProc and ExtFunc are generated by a com­
piler to reference EXTERNAL routines. There
is no PtrList. SrcProc is the number assigned to
the routine. NParams is the number of words al­
located for parameter passing.

SepProc and SepFunc are generated by an as­
sembler for routine declarations. There is no
Ptr List. SrcProc is the number assigned to the
routine. NParams is the number of words allo­
cated for parameter passing. KoolBit is TRUE
if the routine is relocatable, FALSE otherwise.
Thus, .PROC and .FUNC generate SepProc or
SepFunc records with KoolBit = FALSE, and
.RELPROC and .RELFUNC generate SepProc
or SepFunc records with KoolBit = TRUE.

GlobDef declares a global identifier in an as­
sembled routine. A GlobDef record is generated
for each label defined by a .DEF, .PROC,
.FUNC, .RELPROC, or .RELFUNC directive.
There is no PtrList. Name is an identifier de­
fined within the segment, and may be refer­
enced by any other assembled routines within
the same segment. HomeProc contains the
number of the routine in which Name is defined.
ICOffset is a byte offset to Name, relative to
the start of the routine in which Name is
defined.

1-25

1-26

PublDef declares a global variable in a compila­
tion unit. A PublDef record is generated for
each global variable in a compilation unit that
is visible to any EXTERNAL routines. There is
no PtrList. BaseOffset is the word offset of the
variable, relative to the start of the data seg­
ment that contains it. PubDataSeg is the local
number of the data segment that contains the
variable.

ConstDef declares a global constant in a compi­
lation unit. A ConstDef record is generated for
each global constant in a compilation unit that
is visible to any EXTERNAL routines. There is
no PtrList. ConstVal contains the value of the
constant.

EOFMark indicates the end of used linker infor­
mation records. Name should be blank-filled.

The following example shows the types of seg­
ments (as defined in the segment dictionary),
and the types of segment reference records that
can be contained in the associated linker infor­
mation. Note that Proc_Seg's cannot have
linker information at all:

Prog_Seg Unit_Seg Seprt_ Seg
Glob Ref yes
PublRef yes
PrivRef yes
ConstRef yes
ExtProc yes yes
ExtFunc yes yes
SepProc yes
SepFunc yes
GlobDef yes
PublDef yes yes
ConstDef yes yes
EOFMark yes yes yes

Code File Organization

The Segment Dictionary

The first block of a code file contains the first
record of that file's segment dictionary. A seg­
ment dictionary consists of a linked list of dic­
tionary records; if the dictionary is longer than
one record, subsequent records are embedded in
the code file. These are each one block long, and
are located between code segments.

A single dictionary record can describe up to 16
distinct segments. The information describing a
segment is contained in 6 different arrays. This
information can be found by using a single in­
dex value to select a component from each of
these arrays. Entries in the segment dictionary
describe only segments whose code bodies are
included in the code file.

The following fragment of Pascal code describes
a segment dictionary record:

CONST Max_ Dic __ Seg = 15; {maximum segment dictionary record entry}

TYPE Seg_ Dic_Range = O .. MaJ,-j)ic Beg; {range for segment dictionary entries}

Segment~ame = PACKED ARRAY [0 .. 7] OF CHAR; {segment name}

{segment types}
Seg_Types = (No __ Seg. {empty dictionary entry}

Prog Seg. {program outer segment}
Unit_ Seg, {unit outer segment}
Proc_Seg, {segment procedure inside program or unit}
Seprt_ Seg); {native code segment}

{machine types}
M_Types = (M_Psuedo, M_6809, M __ PDP _ II, M_8080,

M_ Z .80, M_ GA_440, M _ _ 6502,
M_ 6800, M 9900, M_ 8086,
M_ Z8000, M_ 68000, M_ HP87);

{p-machine versions}
Versions = (Unknown, II, II_I, III. IV, V, VI. VII);

1-27

1-28

{segment dictionary record}
Seg~ict = RECORD

Disk_ Info:
ARRAY [Seg~ic_Range[OF {disk info entries}

RECORD
Code---.Addr: integer; {segment starting block}
Code_ Leng: integer; {number of words in segment}

END {of RECORD};
Seg--,'" arne:

ARRAY [Seg_ Dic_ Range] OF Segment~ame; {segment name entries}
Seg---.Misc:

ARRA Y [Seg_Dic_Range] OF {misc entries}
PACKED RECORD

Seg_ Type: Seg_ Types; {segment type}
Filler: 0 .. 31 ; {reserved for future use}
HasJink_ Info: Boolean; {need to be linked?}
Relocatable: Boolean; {segment relocatable?}

END {of PACKED RECORD};
Seg_ Text:

ARRAY [Seg~ic_Range] OF integer; {start blk of interface text}
Seg_ Info:

ARRAY [Seg_ Dic_ Range] OF {segment information entries}
PACKED RECORD
Seg~um: 0 .. 255; {local segment number}
M_ Type: M_ Types; {machine type}
Filler: 0 .. 1; {reserved for future use}
Major_Version: Versions; {p-machine version}

END {of PACKED RECORD};
Seg_ Famly:

ARRA Y [Seg~icJange] OF {segment family entries}
RECORD

CASE Seg_ Types OF
Unit_ Seg, Prog_ Seg:

(Data_ Size: integer; {data size}
Seg_ Refs: integer; {segments in compilation unit}
Max_Seg~um: integer; {number of segments in file}
Text_ Size: integer); {# of blks interface text}

Seprt_ Seg, Proc_ Seg:
IProg~ame: Segment~ame); {outer program/unit name}

END {of Seg_Famly};
Next~ict: integer; {block number of next dictionary record}
Part--,"ium: PACKED ARRAY [1..8] of 0 .. 15;
Filler: ARRAY [0 . .4] OF integer; {reserved for future use}
Copy~ote: string[77]; {copyright notice}
Sex: integer; {machine sex (Sex = I)}

END {of SEG~ICT};

DisLlnfo contains information about the seg­
ment's location within the file. Segment code
always starts on a block boundary. Code~ddr
is the number of the block where the segment
code starts, relative to the start of the code file.
Code_Leng is the number of 16-bit words in
the segment. This size includes the relocation
list but does not include the segment reference
list. All unused entries in this array should be
zeroed.

Seg_N arne contains the first eight characters
of the program, unit, segment, or assembly pro­
cedure name. Unused entries should be blank­
filled.

Seg_Misc contains miscellaneous information
about the segment. Seg_Type indicates the
type of segment: Prog_Seg and Unit_Seg are
outer segments of programs and units respec­
tively; Proc_Seg is a segment routine within
either a unit or a program outer segment;
Seprt_Seg is an unlinked native code segment.
Has_Link_Info indicates whether linker infor­
mation has been generated for this segment.
Linker information resides in the blocks that di­
rectly follow the segment reference list. Linker
information starts on a block boundary. The
Boolean Relocatable specifies whether a code
segment is statically or dynamically relocatable.

Dynamically relocatable code segments reside in
the code pool; their position in memory may
change many times during execution. Statically
relocatable code segments are loaded only once,
in a fixed position on the system heap; they
remain position-locked and memory-locked
throughout their lifetime.

1-29

1-30

All segments that contain only p-code are
position-independent and, thus, dynamically re­
locatable. Segments that contain native code
may be dynamically relocatable provided they
make no assumptions about either the lifetime
of any modifications made to the segment body,
or the exact location of the segment body in
memory across the execution of a single p-code.

Dynamically relocatable native code is gener­
ated by assembling routines using the
RELPROC or RELFUNC assembler directives;
a linked code segment containing assembly
routines is dynamically relocatable only if all of
its assembly routines were originally specified
as dynamically relocatable. Note that the use of
these assembler directives is an assertion by the
programmer that the routines they declare
behave properly; the system does not enforce
this, so caution must be used. If a routine is to
be dynamically relocatable, it cannot store infor­
mation into the segment body, be self-modify­
ing, or store any pointers to the code segment
in data variables, and then assume that things
will behave correctly the next time it is called.

The Boolean Relocatable is unaffected by the
presence or absence of relocation lists, and IS

not relevant to concurrency considerations.

Seg_ Text contains the starting block of the
segment's INTERFACE text section, relative
to the start of the code file. The INTERFACE
text section can appear anywhere within the
code file that contains the code segment it
describes. The Seg_Text array entry, in con­
junction with the Text_Size field in the
Seg_Family record, indicates the address and
length of the INTERFACE section in blocks.
The INTERFACE text section always starts on

a block boundary and follows all of the conven­
tions of a text file, with the exception that the
last page of the section may be either 1 or 2
blocks long. Only segments with a Seg_Type
of Unit_Seg have INTERFACE sections. All
other segments and unused entries should be
zero-filled.

Seg_Info contains further information about
the segment. Seg_Num is the segment number.
M_Type tells what kind of object code is in the
segment. If there is any native code in the
segment, then M_Type will have one of the
processor-specific M_Type's. If the segment
consists exclusively of p-code, then its M_ Type
is M_Psuedo. Major_Version gives the ver­
sion of the p-machine on which the code file is
intended to run.

Seg_Famly contains information about the
code segment's compilation unit. The infor­
mation contained in this array depends on
whether Seg_Type indicates a principal or a
subsidiary segment.

If the segment is a subsidiary segment, then
Seg_Famly contains the first eight characters
of the parent compilation unit's name, stored in
Prog_N arne. If this name is not known at code
file generation time (as is the case with
Seprt_Seg's), the field should be blank-filled.

1-31

1-32

If segment is a principal segment, then the
information in SegJamly consists of four
fields:

• Data_Size is the number of words in this
segment's base data segment. The vari­
ables of principal segments are referenced
from any location, including their own
outer routine bodies, via global loads and
stores (rather than local operations). There­
fore, the Data_Size field associated with
the body of an outer routine in a code seg­
ment should be zero, so that no super­
fluous memory will be allocated in an
unused local data area.

• Seg_Refs is the size in words of the seg­
ment reference list for this segment.

• Max_Seg_Num is the total number of
segment numbers assigned to this
compilation unit. Max_Seg_Num in­
cludes all segments with assigned
numbers, regardless of whether the seg­
ment body is contained in this file or not.

• Text_Size is the number of blocks of
INTERF ACE text within the compilation
unit. Text_Size is used in conjunction
with the Seg_Text array to specify the
INTERFACE text for a compilation unit
of type Unit_Seg; it is zero-filled for all
other compilation unit types.

If the segment is unused (Seg_Type
No_Seg), then Seg_Famly should be zero-
filled. '\

Next_Dict contains the block number of the
next segment dictionary record, relative to the
start of the code file. In the last record of the
segment dictionary, Next_Dict should be zero.

Filler is reserved for future use and should al­
ways be zero-filled.

Copy_Note is reserved for a copyright mes­
sage, which can be created with either the
LIBRARY utility or a compiler directive.

Sex corresponds to the byte sex of the code file.
lt is a full word that contains the value 1, with
the same byte sex as the rest of the dictionary
record. Thus, when this word is examined by a
program running on a machine with the same
byte sex as the code file, it will appear as a 1;
on a machine of opposite sex, it will appear as a
256. System programs use this word to detect
the sex of the code file, and, if necessary, byte­
swap the word-oriented fields of the dictionary.

Assembler-Generated Code Files

Code files generated by an assembler have a
slightly different structure from those gener­
ated by a compiler. A relocation list is gener­
ated for each procedure in an assembler­
generated segment (instead of one relocation list
for the whole segment). These are the only sort
of lists that may contain ProcRel relocation.
These lists are placed immediately after the
body of the procedure they describe. The start
or high-end address of each list is pointed to by
the seg-relative word pointer contained in the
ExitIC field of each assembler-generated
procedure.

1-33

1-34

An assembler-generated segment is also unique
in that during the linking process, the code
bodies of all its procedures and functions may
be copied into one of the segments of the compi- ~
lation unit it is being bound to. Further, the
name of the segment or segments that the as­
sembly code may be linked to is never known at
assembly time. It is, however, always assumed
that any number of assembly procedures or
functions that communicate via REFs and
DEFs are always bound into the same segment,
regardless of whether they were assembled
together.

The DataSize word generated by the assembler
for each routine should have a value of -1
(OFFFF HEX); this indicates a data size of zero,
that is one's complemented, to signal that the
first instruction of the code body is native code.

Finally, since the assembler-generated code seg­
ments cannot know what program or unit they
are to be linked to, the Prog_N arne entry in
the Seg_Famly array of the segment dictionary
should be blank-filled, and the DataSegNum
field in the ListHeader record of all BaseRel re­
location sublists should be zero-filled.

It is the linker 's responsibility, when linking
assembler-generated segments, to convert all
ProcRel relocation sublists into SegRel reloca­
tion lists, to correctly set the DataSegNum field
in the ListHeader of all BaseRel relocation
sublists, and to collect all relocation sublists
and place them after the procedure dictionary of
the code segment. The linker should also update
the Relocatable bit in the Seg~isc array, de­
pending on the information supplied in linker
information.

Code Segment Environments

Segment Information Blocks (SIBs)

A Segment Information Block (SIB) is a record
that contains information about an active code
segment. A code segment is active if it can be
used by a program that is running. A SIB is al­
located on the Heap, and remains there as long
as the segment is active. There is only one SIB
for each code segment, no matter how many
other segments may be using it.

NOTE

A code segment need not be in
memory to be active; an active code
segment may be on disk or in the
Codepool, but its SIB will always be
on the Heap.

The following fragment of Pascal code describes
an SIB:

SIB = RECORD
Seg_ Pool: Pool_ Ptr;
SegJase: Me~Ptr; {segment's memory location}
SegJefs: integer; {N of active calls to the seg}
Time_ Stamp: integer; {memory swap activity}
Link_ Count: integer; {number of links to the SIB}
Residency: -l..maxint; {-I = pos lock, 0 = swap, n = mem lock}
Seg __ Name: PACKED ARRAY [0 .. 7] OF CHAR;
Segj eng: integer; {N of words in segment}
Seg~ddr: integer; {disk address of segment}
VoL Info: VIP; {pointer to disk drive info}
Data_Size: integer; {number of words in data segment}
Res_ SIBs: RECORD {code pool management record}

Next_ SIB, {next SIB in list}
Prev_SIB: SIB_P; {previous SIB in list}
CASE Boolean OF {scratch area}

TRUE: (Next_ Sort: SIB_ P); {next SIB in sort list}
FALSE: (New_ Loc: Me~Ptr); {temporary address}

END {of Res_SIBs};
M_Type: integer;

END {of SIB};

1-35

1-36

Seg_Base contains the current memory ad­
dress of the code segment. If the code segment
is not in memory, Seg_Base contains NIL.

Seg_Refs contains the number of outstanding
calls to the segment. It is incremented when­
ever a routine outside the segment executes a
CXP to a routine within the segment. It is de­
cremented whenever a RET from a routine
within the segment returns to a routine outside
the segment.

Time_Stamp contains a value based on the
number of times a segment is used; it increases
over time. It is incremented by six whenever a
call is made to a routine outside the segment. It
is also incremented by six whenever a routine
within the segment returns to a routine outside
the segment. Finally, it is incremented by six
whenever a task switch suspends the segment
that is currently executing.

Link_Count contains the number of links to
the SIB from other operating system data
structures. When Link_Count becomes zero,
the SIB is removed from the Heap and the
space it occupied is available again.

Residency contains a value between -1 and
maxint. A -1 indicates that the segment is
Position_Locked. This occurs when the
Boolean Relocatable in the segment dictionary
is TRUE. A zero indicates that the segment is
Swappable, that is, it can be removed from
memory if necessary. A value greater than zero
indicates that the segment is Memory_Locked.
In this case, the value is a count of the number
of memory lock operations that have been ap­
plied to that segment. Residency is incremented
when a program declares the segment to be

Memory_Locked, and decremented when a pro­
gram declares it to be Swapp able. It becomes
actually Swappable when Residency is equal to
zero; that is, when no outstanding Mem_Lock
operations remain. Programs can control the re­
sidency of segments by using the intrinsics
MEMLOCK and MEMSWAP.

Seg_N ame contains the first eight characters
of the segment's name.

Seg_Leng contains the number of words that
the code segment occupies, including any reloca­
tion lists, but excluding segment reference lists.

Seg_Addr contains the segment's first block
number on disk.

V ol_Info contains a pointer (VIP) to a volume
information record that contains the drive
number and volume name of the disk on which
the segment is resident.

Data_Size contains the number of words in the
code segment's data segment. This only applies
to principal segments; otherwise, Data_Size
should be zero.

Res_SIBs is used to maintain the code pool.
All SIBs of segments in the code pool are on a
doubly-linked list formed by the Prev_SIB and
Next_SIB pointers. The Sort_SIB and
New _Loc fields are used for temporary values
while managing the code pool.

The operating system uses several data struc­
tures to manage code segments by maintaining
active SIBs and managing the code pool. All of
these data structures refer to SIBs through
pointers.

1-37

1-38

When a program being prepared for execution
requires a code segment that is not yet active,
the appropriate SIB is allocated on the Heap
and initialized. The operating system creates a
pointer to the SIB, and the SIB 's Link_Count
is incremented. When the segment is no longer
needed, the pointer is removed, and the
Link_Count is decremented. When the
Link_Count becomes zero, the SIB is removed
from the Heap.

Environment Records (E~ECs)

A code segment 's environment is the mapping
of segments it may access into local segment
numbers. Segment numbers only have local
meaning; a segment may only refer to segments
that have been assigned local segment numbers.
It may not refer to segments outside of this
scope.

For each segment, there is an Environment Re­
cord (E_Rec). This record designates an Envi­
ronment Vector (E_ Vec) that describes the
mapping of local segment numbers to actual
code segments.

The following fragment of pseudo-Pascal de­
scribes environment records and vectors:

E_ Vect_ P = E_ Vect;
E_ Rec_ P = E __ Rec;

= RECORD
Vec~ength: integer; {number of local segments}
Map: ARRAY [l..Vec~engthl OF E_ Rec_ P;

{local environment mapping}

= RECORD
Env~ata: MeIIL-Ptr; {pointer to global data}
Env_ Vect: E_ Vect._P; {pointer to environment}
Env_ SIB: SIB_ P; {pointer to SIB for seg number}
CASE Boolean OF

TRUE : (LinLCount: integer; {number of links to E_ Rec}
Next_ Rec; E~ec_P); {next environment record}

END {of E_ Rec};

Env_Data points to the segment's global data.
The data segment is allocated on the Heap
when the program is called.

Env _ Vect is an array of pointers to E_Rec's.
It is indexed by a segment number-the pointer
indicates an E_Rec that describes a code
segment. In this way, a mapping from local
segment numbers to actual segments is
accomplished.

Env_SIB points to the segment's SIB, which
is also placed on the Heap when the program is
called.

LinLCount indicates the number of active
compilation units that are currently USE'ing
the segment. This only applies to the principal
E_Rec of a compilation unit. LinLCount is
maintained in the same wayan SIB's
LinLCount is maintained.

1-39

1-40

Next~ec is a pointer on a chain of all active
compilation units. This chain is called
Unit~ist. This field also applies only to the
principal E_Rec's of a compilation unit.

In order to minimize index manipulations, the
Map array in an E_ V ect record starts at one.
Thus, it may be indexed by local segment
numbers. These must be one or greater. The
Vec_Length field of the record may be con­
sidered to occupy the zero position of the map.

The operating system uses a recursive routine
to construct the environments of a program's
USEd units, and then its subsidiary segments
and principal segment-the native segments.
The algorithm is roughly:

FUNCTION BuildJnv ISeg~ict): E_ Rec_ P;
BEGIN
IF outer block segment E_ Rec exists in UnitJist

THEN BEGIN increment LinLCount;
return existing E~ec_P

END ELSE BEGIN

create Env~ata for outer block data space;
IF there are USEd units indicated in Seg~ict THEN

FOR all USEd units DO
install BuildJnv INew_Seg~ict) into current

E_ Vect;
FOR all native segments DO
BEGIN

create E~ec and SIB for native segment;
install E_ Vect, SIB, and Env~ata in E~ec;
install E_ Hec for native segments in E_ Vect

END;
install E_ Rec for outer block segment on UnitJist;
return E_Rec_ P for outer block segment

END
END

The Build~nv function returns a pointer to
the E_Rec for the outer block of the program
being executed. This pointer is installed into the
operating system's User_Program E_ Vect
entry.

After a program's execution, a recursive routine
is used to delink the environment for the pro­
gram's outer block and all subsidiary units and
segments. The algorithm is roughly:

PROCEDURE DumpJnv (E.-Rec_ P);
BEGIN
decrement Link_ Count;
IF Link_ Count = 0 THEN
BEGIN

de·link from UnitJist;
DISPOSE IEnv-Data);
FOR all E_ Rec 's on E_ Vect whose Seg_ Vect < >

E.-Rec.Seg_ Vect DO
Dump nv (those E_ Rec's);

FOR all E_ Rec's on E_ Vect whose Seg_ Vect =
E.-Rec.Sec_ Vect DO

BEGIN
de---1ink E_ REC .SEG_ SIB;
DISPOSE (those E_ RECs);

END;
DISPOSE (E_ Rec.Seg_ Vect);

END
END

The operating system sets its E_ Vect entry for
the terminating program to NIL, and calls
Dump~nv for the outer block's E_Rec. After
Dump~nv returns, a pass is made through
the Res_SIBs list to find all segments whose
LinLCount = 1, and remove them from the
Heap.

1-41

TASK ENVIRONMENTS

A task is a routine that is executed concurrently with other
routines. Task is implemented by three data structures: the
body, the Task Information Block (TIB), and the task stack. In
Pascal, a task is known as a PROCE SS.

The main task of the p-System is the thread of execution that
runs from operating system initialization and all system utility
or user program executions to the termination of the operating
system. A program may have subsidiary tasks.

During execution, each subsidiary task uses its own stack in­
stead of the system Stack. The task's activation record is ac­
tually contained in the task stack; both are allocated on the
Heap, along with an amount of free space into which the stack
may grow.

The task body is a portion of a p-code segment. In structure, it
is no different from the body of a procedure or function.

The amount of space allocated to the task stack depends on the
STACKSIZE parameter of the START intrinsic. The default is
200 words.

The main task uses the system Stack for expression evaluation
and activation records. The Heap is shared by the main task
and all subsidiary tasks.

The TIB of a subsidiary task is allocated on the Heap when the
task is started. It contains information about a task's execu­
tion environment. This must be maintained and restored when­
ever a task is restarted after having been idle.

1-42

At any given time, the p-machine may have:

• One task running

• Several tasks ready to run

• Several tasks waiting for semaphores

The tasks that are ready to run are organized into a queue.
There is also a queue of waiting tasks for each semaphore,
though it may be empty. Tasks in queues are ordered by their
priority.

The p-machine register CURTSK always points to the TIB of
the currently executing task. The register READYQ points to
the first in the list of tasks ready to run.

The following fragment of Pascal code describes a TIB:

TIB = RECORD {Task Information Block}
Regs: PACKED RECORD

WaiL_Q: TIB_ Ptr;
Prior: byte;
Flags: byte;
SP Jow: MellL-Ptr;
SP _ Upr: Mem_ Ptr;
SP: Mem_ Ptr;
MP: MSCW_ Ptr;
Reserved: Integer
IPC: integer;
Env: ERec_ Ptr;
ProcNum: byte;
TIBIOResult: byte;
Hang_ Ptr: Sem_ Ptr;
M_ Depend: integer;

END {of Regs}
MainTask: Boolean;
StarL . ..MSCW: MSCW _ Ptr:

END {of TIB}

SP is the p-machine Stack Pointer. SP ~ow and SP _Upr are
the stack pointers for this task.

MP designates the local activation records for this task.

1-43

IPC is the p-code Instruction Counter (a seg-relative byte
pointer), and ProcNum is the number of the executing routine.

Priority contains the task 's priority. This is a number from 0
through 255.' The higher the value, the more urgent the
priority.

Wait_Q is used when the task is waiting to run, or waiting on
a semaphore. Wait_Q is one link in a linked list of TIBs.

When a task is waiting for a semaphore, Hang_Ptr points to
that semaphore. If the task is not waiting for a semaphore,
Hang_Ptr is NIL. Hang_Ptr allows a task to be removed
from a semaphore's wait queue if the task is being terminated.

Flags are reserved for future use.

Env is a pointer to the task's E_Rec. The task's SIB may be
found through the E_Rec.

In the future, TIBIOResult will be used to save an IORESULT ~
that is local to the task.

M_Depend contains machine-dependent data maintained by
the PME. It is initialized to O.

MainTask, if TRUE, indicates that this is the TIB of a root or
parent task.

Start_MSCW points to the Mark Stack Control Word
(MSCW) of the routine that START'ed this task.

Further information about tasks appears in Chapter 3, The
Operating System. The following figure shows the layout of
main memory while the system is running, including the loca­
tion of task stacks as discussed in this section.

1-44

2284134

HIGH ADDRESS

ODD EVEN

OPERATING SYSTEM
(SUBSET ALWAYS RESIDENT)

STACK

HEAP

PROCESS 1 STACK

GLOBAL DATA SEG1

GLOBAL DATA SEG2

INTERPRETER

LOW ADDRESS

1-45

p-MACHINE INSTRUCTIONS

The Intrinsic p_MACHINE

1-46

A Pascal compilation unit may directly generate online
p-code. This is done by calling the intrinsic procedure
'P _MACHINE'. Producing online p-code may be
useful in very low-level system programming. Abso­
lutely no protection is provided by this intrinsic or the
system; it can only be used at the user's risk, and ex­
treme caution should be exercised.

The form of a call to P _MACHINE may be sketched
as follows:

[P -.MACHINE I < p-machine item> {. < p-machine item> I)

that is, the parameters to the procedure are a list of one
or more <p-machine item>s_ A <p-machine item> de­
scribes a portion of p-code, and causes one or more
bytes to be generated_

There are three varieties of < p-machine item> :

• P-Code Syllable: The simplest item is a (non-real)
scalar constant. This item produces a single byte
of p-code which is the least significant byte of the
specified constant.

• Expression Value: If the item is an expression en­
closed in parentheses, then a p-code sequence is
generated which will compute the value of the ex­
pression and leave it on the Stack

• Address Reference: If the first token of the item is
' '' ' , then the item is the specification of a variable
and p-code is generated which leaves the address
of that variable on the Stack

A < p-machine item> may not be a string constant.

Example:

Given these declarations:

CONST STO = 196;

TYPE Records = RECORD
FirstField. Second Field: integer

END;
PRecords = Records;

VAR Vector: ARRAY [0 .. 9] OF PRecord;
i: integer:

... the following call to P _MACHINE ...

PMACHINE I"Vector[5J".FirstField. li*iI. STO)

would cause the square of i to be stored in the first
field of the record designated by the sixth element of
the array Vector.

p-Code Instruction Set

Operands and Notation

Instruction Parameters - The parameters to a
p-code instruction contain information about the
location and size of that instruction's operands.
They are generated at compile time and are,
therefore, static. Each p-code uses some fixed
combination of these parameters.

1-47

1-48

These are the five possible parameter formats;
there are no others:

UB - Unsigned Byte

Represents a positive integer in the range
o through 255. When converted to a 16-bit
two's complement value, the most signifi­
cant byte is zeroed.

SB - Signed Byte

Represents a two 's complement 8-bit inte­
ger in the range -128 through 127. When
converted to a 16-bit two's complement
value, the most significant byte is a sign
extension (all bits equal bit 7 of the low
byte (SB)).

DB - Don't Care Byte

Represents a positive integer in the range
o through 127. It may thus be treated as
either an SB or UB. Bit 7 is always O.

B -Big

This is a parameter with variable length. If
bit 7 of the first byte is 0, the remaining 7
bits represent a positive integer in the
range 0 through 127. If bit 7 of the first
byte is 1, then bit 7 should be cleared; the
first byte is the high-order byte of a 16-bit
word, and the following byte is the low­
order byte of that word. The Big format
may represent positive integers in the
range 0 through 32767.

W - Word

This is a two-byte parameter. It is a I6-bit
two's complement value that represents an
integer in the range -32768 through
32767. The word is always least­
significan t-byte-first.

Dynamic Operands - In the p-machine instruc­
tion descriptions that follow, stack-oriented dy­
namic operands of the p-code will be discussed.
This section describes those operands.

Activation Record

See the following section.

Addr (address)

A I6-bit hardware word address. On byte­
addressable processors, this is typically an
even quantity.

Bool (Boolean)

A I6-bit quantity treated as a logical
value.

Byte-ptr (byte pointer)

A 32-bit quantity. TOS is an index into an
array of bytes. TOS-I is the word address
of the base of the byte array. Two words
are used in a byte-ptr so that individual
bytes may be specified even on word­
addressed processors.

Int (integer)

A I6-bit two's complement integer.

1-49

1-50

Nil

A constant that references an invalid ad­
dress. The actual value varies from pro­
cessor to processor.

Offset

An offset into a code segment. This is
either a word or a byte offset, depending
on the natural addressing unit of the host
processor.

Pack-ptr (packed array pointer)

Real

Set

Three words that designate a bit field
within a I6-bit word. TOS is the number of
the rightmost bit of the field, TOS-I is the
number of bits in the field, and TOS-2 is
the address of the word.

A 32-bit or 64-bit floating point quantity.

A set is 0 through 255 words of bit flags,
preceded by a word that contains the
number of words in the set.

Word

A I6-bit quantity that may be treated in
any way-as an integer, Boolean, address,
and so on.

Word-block

A group of zero or more words.

MARK
STACK

2284135

Activation Records - An activation record is
created for each invocation of an active routine.
The following figure illustrates an activation
record.

HIGH ADDRESS

FUNCTION VALUE

PARAMETERS

LOCALS
AND

TEMPORARIES

MSPROC

MSENV

MSIPC

MSDYN

MSSTAT

LOW ADDRESS

DATASIZE
WORDS

LEAST SIGNIFICANT
BYTE

1-51

1-52

The parts of an activation record are:

• Mark Stack.

• Five (full) words of housekeeping infor­
mation:

MSST AT - pointer to the activation
record of the lexical parent.

MSDYN - pointer to the activation
record of the caller.

MSIPC - seg-relative byte pointer to
point of call in the caller.

MSENV - E_Rec pointer of the
caller

MSPROC - procedure number of the
caller

• Local and temporary variables. This area
is DataSize words long.

• Parameters.

• This area (which may be empty) contains:

Addresses - for V AR parameters,
and record and array value pa­
rameters.

Values - for other value parameters.

• Function value. This area is present only
for functions, and is either one or two
words (or four words, if reals are that size).

Conventions - The next section describes indi­
vidual p-machine instructions, grouped by the
nature of their operation.

On the left is the mnemonic for the instruction,
followed by its value. All p-code instructions are
represented by a single byte. This is followed by
the format for the parameters, if any.

If the instruction has more than one parameter
of the same format, then they are distinguished
by an underscore followed by a number. Param­
eters of a given kind are numbered left-to-right,
starting from one.

On the right is a verbal description of the
instruction.

Below the opcode value is a notational descrip­
tion of the p-machine Stack before and after the
p-code's execution. Only the expression­
evaluation portion (the top words of the Stack)
is shown.

On the left is a depiction of the Stack before the
opcode is executed, followed by a colon (:), fol­
lowed by a depiction of the Stack after the op­
code is executed. Each depiction of the Stack is
enclosed in angle brackets « ». Within the
brackets, the Stack grows from left to right.
Individual operands are separated by commas,
and vertical bars represent exclusive alter­
natives (one or the other value, but not both).
Thus, the operand closest to the right bracket
(» is the top-of-stack (TOS). Brackets that do
not enclose any operands represent an empty
evaluation stack.

1-53

1-54

Individual p-Code Instructions

Constant One-Word Loads -

SLDC 0 .. 31
< >:<word>

Short Load Word Constant. Push the op­
code. with the high byte zero.

LDCN 152
< >:<NIL>

Load Constant NIL. Push NIL. The value
may vary across processors.

LDCB 128 UB
< >:<word>

Load Constant Byte. Push UB. with high
byte zero.

LDCI 129 W
< >:<word>

Load Constant Word. Push W.

LCO 130 B
< >: < offset>

Load Constant Offset. B is a word offset
into the constant pool of the current seg­
ment. Convert B to a seg-relative word off­
set. If operating on a byte addressed
machine. convert B to a byte offset. Push
the offset on the Stack.

Local One-Word Accessing -

SLDL1 32

SLDL16 47
< >:<word>

Short Load Local Word. SLDLx: fetch the
word with offset x in the local activation
record and push it.

LDL 135 B
< >:<word>

Load Local Word. Fetch the word with off­
set B in the local activation record and
push it.

SLLA1 96

SLLA8 103
< >:<addr>

Short Load Local Address. Push the ad­
dress of the indicated offset in the local ac­
tivation record.

LLA 132 B
< >:<addr>

Load Local Address. Calculate address of
the word with offset B in the local activa­
tion record and push it.

SSTL1 104

SSTL8 111
<word>:< >

Short Store Local Word. Store TOS in the
indicated offset in the local activation
record.

1-55

I-56

STL 64 B
<word>:< >

Store Local Word. Store TOS into word
with offset B in the local activation record.

Global One-Word Accessing -

SLD01 48

SLD016 63
< >:<word>

Short Load Global Word. SLDOx: fetch
the word with offset x in the global data
area of the current segment and push it.

LDO 133 B
< >:<word>

Load Global Word. Fetch the word with \
offset B in the global data area of the cur-
rent segment and push it.

LAO 134 B
< >:<addr>

Load Global Address. Push the word ad­
dress of the word with offset B in the
global data area of the current segment.

SRO 165 B
<word>:< >

Store Global Word. Store TOS into the
word with offset B in global data area of
the current segment.

Intermediate One-Word Accessing -

SLODI 173 B

SLOD2 174 B
< >:<word>

Short Load Intermediate Word. Push the
word at offset B in the lexical parent
(LODl) or grandparent (LOD2) activation
record of the local activation record.

LOD 137 DB,B
< >:<word>

Load Intermediate Word. DB indicates the
number of static links to traverse to find
the activation record to use. Push the word
at offset B in that activation record.

LDA 136 DB, B
< >:<addr>

Load Intermediate Address. DB indicates
the activation record as for LOD. Push the
address of offset B in that record.

STR 166 DB, B
<word>:< >

Store intermediate word. Store TOS at off­
set B in the activation record indicated by
DB.

Extended One-Word Accessing -

LDE 154 VB, B
< >:<word>

Load Extended Word. Push the word at
offset B in the global data area of local
segment VB.

1-57

1-58

LAE 155 VB, B
< >: <addr>

Load extended address. Push the address
of the word at offset B in the global data
area of local segment VB.

STE 217 VB, B
<word>:< >

Store extended word. Store TOS at offset
B in the global data area of local segment
VB.

Indirect One-Word Accessing -

SINDO 120

SIND7 127
< addr >: < word>

Short Index and Load Word. TOS is the
address of a record. SINDx: replace it with
word x of the record.

IND 230 B
< addr > : < word>

Index and Load Word. TOS is the address
of a record. Replace it with the Bth word
in the record.

STO 196
< addr,word >: < >

Store Indirect. Store TOS into the word
pointed to by TOS-l.

Multiple-Word Accessing -

LDC 131 VB_I, B, VB_2
< >: < word-block>

Load Multiple Word Constant. B is a word
offset into the constant pool of the current
segment. Push the VB_2 words starting
at that offset onto the evaluation stack. If
VB_I, the mode, is 2, and the current seg­
ment is of opposite byte sex from the host,
swap the bytes of each word as it is
pushed.

LDM 208 VB
< addr > : < word-block>

Load Multiple Words. TOS is a pointer to
the beginning of a block of VB words.
Push the block onto the stack, preserving
the order of words in the block.

STM 142 VB
< addr,word-block >: < >

Store Multiple Words. TOS is a block of
VB words. Transfer the block from the
stack to the destination block starting at
the address TOS-l, and preserving the or­
der of words in the block.

LDCRL 242 B
< >:<real>

Load Real Constant. Push the real con­
stant designated by the constant pool
index B in the current segment. The con­
stant is guaranteed to be in the native
byte sex of the host, so no byte flipping is
necessary during the load.

1-59

1-60

LDRL 243
<addr>: <real>

Load Real. TOS is the address of a real
variable. Replace the address by the value
of the variable.

STRL 244
< addr,real > : < >

Store Real. TOS is the value of a real vari­
able. TOS-I is an address. Store TOS at
the address in TOS-I.

String and Array Parameter Copying - To
copy value parameters of type string or packed
array of character into the activation record of a
called routine, the calling routine generates a
parameter descriptor. This descriptor is a 2-
word record. The first (low address) word is
either NIL or a pointer to an E_Rec. If the \
first word is NIL, the second word is the ad-
dress of the parameter. If the first word points
to an E_Rec, the second word is an offset rela-
tive to the designated segment. The offset is
generated by an LCO instruction.

The called routine uses a CAP or CSP instruc­
tion to copy the parameter into its activation
record. CAP and CSP use the parameter de­
scriptor to do this.

CAP 171 B
<addr,addr>:< >

Copy Array Parameter. TOS is the address
of the parameter descriptor for a packed
array of characters. Cause a segment fault
if the parameter descriptor designates a
non-resident segment. Otherwise, copy the
source (which is B words big) into the des­
tination address at TOS-I.

C8P 172 VB
< addr,addr >: < >

Copy String Parameter. TOS IS the ad­
dress of the parameter descriptor for a
string. Cause a segment fault if the de­
scriptor designates a non-resident segment.
Otherwise, compare the dynamic length of
the designated string against UB, the de­
clared size (in bytes) of the destination for­
mal parameter. Cause a string overflow
fault if the length of the source is greater
than the capacity of the destination. Other­
wise copy for the length of the source into
the destination whose address is TOS-I.

Byte Accessing -

LDB 167
< byte-ptr > : < word>

Load Byte. TOS is a byte pointer. Pop it
and push a word with the byte it desig­
nated in the least significant bits and a
most signifant byte of zero.

8TB 200
< byte-ptr, word>: < >

Store Byte. Store byte TOS into the loca­
tion specified by byte pointer TOS-I.

Packed Field Accessing -

LDP 201
< pack-ptr > : < word>

Load a Packed Field. Replace the packed
field pointer TOS with the field it desig­
nates. Before being pushed on the Stack,
the field is right-justified and zero-filled.

1-61

1-62

STP 202
<pack-ptr,word>:< >

Store into a Packed Field. TOS is the
right-justified data, TOS-1 a packed field
pointer. Store TOS into the field described
by TOS-I.

Record and Array Accessing -

MOV 197 DB, B
< addr,addr >: < >

Move. Move B words from the source des­
ignated by TOS to the destination desig­
nated by TOS-I. TOS is either the address
of a word block (if DB is zero) or the offset
of a constant word block in the current
segment. If DB is 2, and the current seg-
ment has opposite byte sex from the host, \
swap the bytes of each word as it is
moved.

INC 231 B
< addr > : < addr >

Increment Field Pointer. The word pointer
TOS is indexed by B words and the resul­
tant pointer is pushed.

IXA 215 B
< addr,word >: < addr >

Index Array. TOS is an integer index,
TOS-1 is the array base word pointer, and
B is the size (in words) of an array ele­
ment. Push a word pointer to the indexed
element.

IXP 216 UB_l, UB_2
<addr,word>: <pack-ptr>

Index Packed Array. TOS is an integer in­
dex, TOS-l is the array base word pointer.
UB_l is the number of elements per
word, and UB_2 is the field width (in
bits). Compute and push a packed field
pointer.

Logical Operators -

LAND 161
< word, word> : < word>

Logical And. AND TOS into TOS-l.

LOR 160
< word, word> : < word>

Logical Or. OR TOS into TOS-I.

LNOT 229
<word>: <word>

Logical Not. Take one's complement of
TOS.

BNOT 159
< Baal>: < Baal>

Boolean Not. Complement the low order
bit and clear the remainder of TOS.

LEUSW 180
< word, word> : < Bool >

Less Than or Equal Unsigned. Push Bool­
ean result of unsigned comparison TOS-l
< = TOS.

1-63

1-64

GEUSW 181
< word, word> : < Bool >

Greater Than or Equal Unsigned. Push
Boolean result of unsigned comparison
TOS-l > = TOS.

Integer Arithmetic -

ABI 224
<int>:<int>

Absolute Value Integer. Take absolute
value of integer TOS. Result is undefined
if TOS is initially -32768.

NGI 225
<int>:<int>

Negate Integer. Take the two 's comple­
ment of TOS.

INC I 237
<int>:<int>

Increment Integer. Add 1 to TOS.

DECI 238
<int>:<int>

Decrement Integer. Subtract 1 from TOS.

ADI 162
< int,int > : < int >

Add Integers. Add TOS into TOS-I.

SBI 163
< int,int > : < int >

Subtract Integers. Subtract TOS from
TOS-I.

MPI 140
< int,int > : < int >

Multiply Integers. Multiply TOS by
TOS-I. This instruction may cause over­
flow if result is larger than 16 bits.

DVI 141
< int,int >: < int >

Divide Integers. Divide TOS-l by TOS and
push quotient.

MODI 143
< int,int >: < int >

Modulo Integers. Divide TOS-l by TOS
and push the remainder.

CHK 203
< int,int,int > : < int >

Check Subrange Bounds. Ensure that
TOS-l < = TOS-2 < = TOS, leaving
TOS-2 on the Stack. If conditions are not
satisfied, cause a run-time error.

EQUI 176
< int,int > : < Bool >

Equal Integer. Push Boolean result of inte­
ger comparison TOS-l = TOS.

NEQI 177
< int,int > : < Bool >

Not Equal Integer. Push Boolean result of
integer comparison TOS-l < > TOS.

1-65

1-66

LEQI 178
< int,int >: < Bool >

Less than or Equal Integer. Push Boolean
result of integer comparison TOS-1 < =
TOS.

GEQI 179
< int,int > : < Bool >

Greater than or Equal Integer. Push Bool­
ean result of integer comparison TOS-1
> = TOS.

Real Arithmetic - All overflows and under­
flows cause a run-time error.

FLT 204
<int>: <real >

Float Top-of-Stack. Convert the integer
TOS to a floating point number.

TNC 190
<real>:<int>

Truncate Real. Convert the real TOS to an
integer by truncating.

RND 191
<real>: <int>

Round Real. Convert the real TOS to an
integer by rounding.

ABR 227
<real>: <real>

Absolute Value of Real. Take the absolute
value of the real TOS.

NGR 228
< real> : < real >

Negate Real. Negate the real TOS.

ADR 192
< real,real > : < real >

Add Reals. Add TOS into TOS-l.

SBR 193
< real,real > : < real >

Subtract Reals. Subtract TOS from TOS-l.

MPR 194
< real,real > : < real >

Multiply Reals. Multiply TOS by TOS-l.

DVR 195
< real,real > : < real >

Divide Reals. Divide TOS into TOS-l.

EQREAL 205
< real,real > : < Bool >

Equal Real. Push Boolean result of real
comparison TOS-1 = TOS.

LEREAL 206
< real,real > : < Bool >

Less than or Equal Real. Push Boolean re­
sult of real comparison TOS-1 < = TOS.

1-67

1-68

GEREAL 207
< real,real > : < Bool >

Greater than or Equal Real. Push Boolean
result of real comparison TOS-l < = TOS.

Set Operations -

ADJ 199 VB
< set>: < word-block>

Adjust Set. Force the set TOS to occupy
VB words, either by expansion (putting
zeroes between TOS and TOS-l) or com­
pression (chopping of high words of set),
and discard its length word.

SRS 188
<int,int>: <set>

Build a Subrange Set. The integers TOS
and TOS-l must be in [0 through 4079). If
not, cause a run-time error, else push the
set [TOS-l through TOS]. If TOS-l >
TOS, push the empty set.

INN 218
< int,set > : < Bool >

Set Membership. Push Boolean result of
TOS-l IN TOS.

UNI 219
< set,set >: < set>

Set V nion. Push the union of sets TOS and
TOS-I. (TOS OR TOS-l)

INT 220
< set,set >: < set>

Set Intersection. Push the intersection of
sets TOS and TOS-l. (TOS AND TOS-1)

DIF 221
< set, set > : < set>

Set Difference. Push the difference of sets
TOS and TOS-l. (TOS-1 AND NOT TOS)

EQPWR 182
< set, set > : < Bool >

Equal Set. Push the Boolean result of set
comparison TOS-1 = TOS.

LEPWR 183
< set,set >: < Bool >

Less than or Equal Set. Push true if TOS-1
is a subset of TOS, else push false.

GEPWR 184
< set,set >: < Bool >

Greater than or Equal Set. Push true if
TOS is a superset of TOS or else push
false.

1-69

1-70

Byte Array Comparisons -

EQBYT 185 UB_I, UB_2, B
< addrl offset,addr I offset >:
<Bool>

Equal Byte Array. TOS and TOS-I are
each a pointer to a byte array (if the corre­
sponding UB is zero) or the offset of the
constant byte array in the current seg­
ment. B is the size (in bytes) of that array.
UB_I and UB_2 are mode flags. They
refer to TOS and TOS-I , respectively. If
the byte sex of the segment is different
from the host and the corresponding mode
is 2, swap the bytes of each word of that
operand before doing the comparison. Push
the Boolean result of the byte array com­
parison TOS-l = TOS.

LEBYT 186 UB_I, UB_2, B
< addr I offset,addr I offset >:
<Bool>

Less than or Equal Byte Array. TOS and
TOS-I each point to a byte array (if the
corresponding UB is zero) or the offset of
the constant byte array in the current seg­
ment. B is the size (in bytes) of that array.
UB_I and UB_2 are mode flags. They
refer to TOS and TOS-I, respectively. If
the byte sex of the segment is opposite
that of the host and the corresponding
mode is 2, swap the bytes of each word of
that operand before doing the comparison.
Push the Boolean result of the byte array
comparison TOS-I < = TOS.

GEBYT 187 VB_I, VB_2, B
< addrl offset,addrl offset >:
<Bool>

Greater than or Equal Byte Array. TOS
and TOS-1 each point to a byte array (if
the corresponding UB is zero) or the offset
of a constant byte array in the current seg­
ment. B is the size (in bytes) of that array.
VB_1 and UB_2 are mode flags. They
refer to TOS and TOS-1, respectively. If
the byte sex of the segment is opposite
that of the host and the corresponding
mode is 2, swap the bytes of each word of
that operand before doing the comparison.
Push the Boolean result of the byte array
comparison TOS-1 < = TOS.

Jumps -

UJP 138 SB
<>:<>

Unconditional Jump. Jump by offset SB.

FJP 212 SB
<Bool>: < >

False Jump. Jump by offset SB if TOS is
false.

TJP 241 SB
<Bool>:< >

True Jump. Jump by offset SB if TOS is
true.

1-71

1-72

EFJ 210 SB
<int,int >: < >

Equal False Jump. Jump by offset SB if
TOS < > TOS-l.

NFJ 211 SB
<int,int >: < >

Not Equal False Jump. Jump by offset SB
if TOS = TOS-l.

JPL 139 W
<>:< >

Unconditional Long Jump. Jump W words
from current location.

FJPL 213 W
<Bool>:< >

False Long Jump. Jump W words from
current location if TOS is false.

XJP 214 B
<int >: < >

Case Jump. The first word, WI, with word
offset B in the constant pool of the current
segment is word-aligned and is the mini­
mum index of the table. The next word up,
W2, is the maximum index. The case table
is the next (W2-WI) + 1 words. If the
byte sex of the segment is opposite to the
host, any of these words must be byte­
swapped before they are used.

If TOS, the actual index, is in the range
WI through W2, then jump W3 words ~
from the current location, where W3 is the
contents of the word pointed to by TOS.
Otherwise, do nothing.

Routine Calls and Returns -

CPL 144 VB
< param > : < activation>

Call Local Procedure. Call procedure VB,
which is an immediate child of the cur­
rently executing procedure and in the same
segment. Static link of the new MSCW is
set to old MP.

CPG 145 VB
< param > : < activation>

Call Global Procedure. Call procedure VB,
which is at lex levelland in the same seg­
ment. The static link of the MSCW is set
to BASE.

SCPIl 239 VB

SCPI2 240 VB
< param > : < activation>

Short Call Intermediate Procedure. Set the
static chain to point to the lexical parent
(CPIl) or grandparent (CPI2) of the calling
environment. Call procedure VB .

CPI 146 DB, VB
< param > : < activation>

Call Intermediate Procedure. Call proce­
dure VB, which is at lex level DB less than
the currently executing procedure and in
the same segment. V se that activation
record's static link as the static link of the
new MSCW.

1-73

1-74

CXL 147 DB_I, DB_2
< param > : < activation>

Call Local External Procedure. Call proce­
dure DB_2, which is an immediate child
of the currently executing procedure and in
the segment DB_I.

SCXGl 112 DB

SCXG8 119 DB

CXG

< param > : < activation>

Short Call External Global Procedure. The
segment number is indicated by the opcode
(1-8) and DB is the procedure number.

148 DB_I, DB_2
< param > : < activation>

Call Global External Procedure. Call proce­
dure DB_2 which is at lex levelland in
the segment DB_I.

CXI 149 DB_I, DB, DB_2
< param > : < activation>

Call Intermediate External Procedure. Call
procedure DB_2 which is at lex level DB
less than the currently executing proce­
dure, and in the segment DB_I.

CPF 151
< param,proc-ptr > : < activation>

Call Formal Procedure. TOS contains a
procedure number. TOS-l contains an
E_Rec pointer. TOS-2 contains a static
link. Call the indicated procedure.

RPU 150 B
< activation> : < func >

Return from User Procedure. Restore state
of calling procedure from MSCW and dis­
card. Pop MSCW from Stack. Cut back an
additional B words from Stack, leaving
function value, if appropriate.

LSL 153 DB
< >:<addr>

Load Static Link onto Stack. DB indicates
the number of static links to traverse.
Push the indicated static link.

BPT 158
< >: < activation>

Breakpoint. Unconditionally call execution
error procedure.

Concurrency Support -

SIGNAL 222
<addr>:< >

Signal. TOS is a semaphore address. Sig­
nal this semaphore.

WAIT 223
<addr>:< >

Wait. TOS is a semaphore address. Wait
on this semaphore.

1-75

1-76

String Instructions -

EQSTR 232 UB_I. UB_2
< addr I offset, addr I offset> :
<Bool>

Equal String. TOS and TOS-l each point
to a string variable (if the corresponding
UB is zero) or the offset of a constant
string in the current segment. UB_l and
UB_2 refer to TOS and TOS-l, respec­
tively. Push the Boolean result of the
string comparison TOS-l = TOS.

LESTR 233 UB_l, UB_2
< addr I offset, addr I offset> :
<Bool>

Less or Equal String. TOS and TOS-l each
point to a string variable (if the corre­
sponding UB is zero) or the offset of a con- ~
stant string in the current segment. UB_l
and UB_2 refer to TOS and TOS-l, re­
spectively. Push the Boolean result of the
string comparison TOS-l < = TOS.

GESTR 234 UB_l, UB_2
< addr I offset, addr I offset> :
<Bool>

Greater or Equal String. TOS and TOS-l
each point to a string variable (if the corre­
sponding UB is zero) or the offset of a con­
stant string in the current segment. UB_l
and UB_2 refer to TOS and TOS-l, re­
spectively. Push the Boolean result of the
string comparison TOS-l > = TOS.

ASTR 235 UB_l, UB_2
<addr,addrioffset>:< >

Assign String. TOS-l is the address of the
destination string variable. UB_2 is the
declared size of that string. TOS repre­
sents the source for the assignment. It is
either the address of a string variable (if
the mode, UB_l, or the offset of a string
constant in the current segment). Cause a
string overflow fault if the dynamic size of
the source string is greater than the
declared size of the destination. Otherwise,
copy the source into the destination.

CSTR 236
<addr,int>:< >

Check String Index. TOS-l is the address
of a string variable. TOS is an index into
that variable. Check that the index is
between 1 and the current dynamic length
of the variable. If not, cause a range-check
execution error.

1-77

1-78

Miscellaneous Instructions -

LPR 157
<int>:<word>

Load Processor Register. TOS is a register
number. Push the contents of the register
indicated in this fashion: (for SPR, also):

a. Register number is positive; it is a
word index into the TIB.

b . Register number is negative:

-1 Indicates the pointer to the TIB
of the currently running task

- 2 Indicates the current E_ V ec_P

- 3 Indicates the pointer to the TIB
at the head of the ready queue \

SPR 209
<int,word>:< >

Store Processor Register. TOS-1 is a regis­
ter number (defined as for LPR). Store
TOS in indicated register.

DUP1 226
< word> : < word, word>

Duplicate One Word. Duplicate one word
on TOS.

DUPR 198
< word-block>: < word-block>

Duplicate Real. Duplicate the real on TOS.

SWAP 189
< word, word> : < word, word>

Swap. Swap TOS with TOS-l.

NOP 156
<>:<>

No Operation. Continue execution.

NAT 168
<>:<>

Native Code. Transfer control to native
code that begins directly after this instruc­
tion. Details are machine-dependent.

NAT- INFO 169 B
<>:<>

Native Code Information. Ignore the next
B bytes in the p-code stream. This infor­
mation is used in the generation of native
code. Treat instruction as a long form of
NOP.

RESERVEI 250

RESERVE6 255

These codes are reserved for use by the
compiler to identify embedded compiler
directives. They must not be explicitly gen­
erated by programs.

1-79/1-80

2

Low Level 1/0

The I/O Subsystem 2-3
Device I/O Routines 2-6
Calling the RSP/IO 2-7

Devices and Device Numbers 2-8
CONTROL Parameters 2-9

IORESULT and Completion Codes 2-10
Logical Disk Structure 2-11

Physical Sector Addressing Mode 2-11
The RSP 2-13
Calling Mechanisms 2-13

UNITREAD and UNITWRITE 2-13
Parameter Description 2-14
Parameter Stack Format 2-15
UNITBUSY 2-16
UNITWAIT 2-16
UNITCLEAR 2-17
UNITST A TUS 2-17

RSP Responsibilities 2-18
Special Character Output Handling 2-18
Special Character Input Handling 2-20
NOSPEC Bit 2-21
Translation for Subsidiary Volumes 2-22

BIOS 2-23
Design Goals 2-23
Completion Codes ~ 2-24
Calling Mechanisms 2-25

Console 2-25
Printer 2-25
Disks 2-26

________ Remote 2-26
User-Defined Devices 2-27

Character Codes 2-28

2-1

BIOS Responsibilities ... 2-29
Console ... 2-29
Initialization and Control............ 2-35
Printer .. 2-37
Disk .. 2-39
Remote 2-42
U ser-Defined Devices .. 2-43

Special BIOS Calls .. 2-43
System Output 2-43
System Input 2-44
System Initialization and Control.................. 2-44
System Status ... 2-44

BIOS Calling Conventions .. 2-45
8086-Specific BIOS Calls .. 2-47

2-2

THE I/O SUBSYSTEM

Besides emulating the p-machine, each PME must contain
some native code to perform certain time-critical operations,
and deal with hardware dependencies such as I/O devices. The
body of code that is not devoted to emulating p-code is called
the Run-time Support Package (RSP). The portion of the RSP
that is responsible for I/O is called the RSP/IO.

To make the system as portable as possible, the RSP/IO is
machine-independent, except for a portion called the Basic
Input/Output Subsystem (BIOS). The BIOS must vary depend­
ing on the hardware in use, but the interface between the BIOS
and the RSP/IO is standard-calls to routines in the BIOS are
clearly defined. Thus, we have the I/O Hierarchy shown in the
figure on the following page.

The user's I/O calls (READLN, WRITELN) are mapped by the
compiler and operating system into calls to the RSP
(UNITREAD, UNITWRITE). The RSP/IO calls the BIOS
which controls the actual device operations. It is important for
the reader to recognize that here we are discussing a
synchronous I/O system. In other words, when an I/O request
has been initiated by your program, control does not return to
that program until the I/O operation is completed.

This chapter describes the behavior and interfaces of the
RSP/IO and BIOS. The easiest way to describe its relation to
the BIOS and RSP/IO is to sketch the history of I/O support
within the p-System.

The first implementation was for the PDP-H, which has well­
established standard interfaces to peripheral devices, regardless
of manufacturer. In this environment, there was no need for
I/O adaptation.

2-3

., LANGUAG E" L!:VE"L "

.. BIOS

LEVFL"

2-4

DRIVE NO"

~~~!~~:'T 
DE VIC' NO 
D A TA AREA 

ADDRESS 
"VTECDUNT 
l..Ot;.ICAt. 

"LOCK ><0 



When the p-System was adapted to the 8080 and Z80, the 
widespread availability of CP/MTM was used-p-System I/O 
called CP/M BIOS routines. In this way, any hardware environ­
ment that CP/M already supported could then host the 
p-System. 

As adaptations for additional processors (the 9900 and the 
6502) were begun, it became clear that the p-System needed 
some analog to the CP/M BIOS. It was at this point that the 
p-System BIOS, essentially as described in this chapter, was 
created and standardized. 

The final step in this I/O development took place at SofTech 
Microsystems, where it was realized that the BIOS definition 
did not address the problem of standardizing bootstrap mecha­
nisms, and that implementing a BIOS was a difficult task and 
virtually required the use of an already running p-System. 

The adaptable system was created to address these problems. 
The Simplified BIOS (SBIOS) is a very simple hardware inter­
face. It is called from a unit of interface code that accepts 
BIOS-style calls and emits SBIOS routine calls. This interface 
code allows the PME/SBIOS interface to be simpler than the 
BIOS interface. The RSP/IO is essentially unchanged. 

The adaptable system also addresses the bootstrap problem 
by defining a hierarchy of bootstrap components, only some 
of which need to be implemented by the user installing a 
p-System. 

A user who has access to a running p-System and the source 
code for the PME and SBIOS interface code may wish to im­
plement a BIOS-level I/O interface. This is potentially more 
efficient than an SBIOS-Ievel adaptation, since the more elabo­
rate BIOS interface allows the implementor to take advantage 
of such performance characteristics as DMA support in the 

-----. disk interface. 

CP/M is a trademark of Digital Research Incorporated. 

2-5 



Both BIOS and SBIOS I/O interfaces were created as the sys­
tem was adapted to new environments. 

NOTE 

The p-System is not sold by Texas Instruments as 
an adaptable system on the Texas Instruments 
Professional Computer since the SBIOS for the 
Professional Computer is already written. 

DEVICE I/O ROUTINES 

All language-level I/O requests are eventually mapped by the 
compiler and operating system into calls to a group of intrinsic 
routines known as the Device I/O Routines. The programmer 
may call the Device Routines directly, or may use the standard 
I/O syntax of the language in use. The exact details of how this 
mapping is accomplished do not concern us here. The Device 
I/O Routines are not written in Pascal, but in fact are the na- ~\ 

tive code procedures that comprise the RSP/IO. The way that 
these procedures are called is described next. 

Throughout this chapter, it is assumed that all I/O support at 
or below the device I/O level is implemented in assembly lan­
guage. If p-code is the native language of the host processor, 
these routines may in fact be implemented in Pascal. 

The RSP/IO routines are implemented and accessed as routines 
of the operating system's unit KERNEL. KERNEL is acces­
sible as segment 1 of every compilation unit. The actual code 
for the routines may reside in the PME itself, instead of in 
KERNEL. 

2-6 



Calling the RSP/IO 

When you make direct calls to Device I/O Routines, 
they look like any other intrinsic routines. If they ac­
tually were declared in Pascal, the declarations would 
have the following format, allowing a few illegitimate 
constructs such as optional parameters and variable­
length arrays: 

PROCEDURE Ul'\ITREAD( UNITl'\UMBER : INTEGER; 
VAR DATAAREA: PACKED ARRAY 10 .. BYTESTOTRAl'\SFER-ll 

OF 0 .. 255; 
BYTESTOTRA:\SFER: Il'iTEGER 
I; LOGICALBLOCK : INTEGERI 
I; CONTROL: I;-";TEGERI ): 

PROCEDURE Ul'\ITWRITE( < same as for UNITREAD > ); 

FUNCTION UNITBUSY( UNIT:\UMBER : INTEGER) : BOOLEAi'J; 

PROCEDURE UNITWAITI UNITNUMBER: INTEGER); 

PROCEDURE UNITCLEAR( UNITNUMBER : I;";TEGER ): 

PROCEDURE Ui\"ITSTATUS( Ul'\IT:\U!"IBER : Ii\"TEGER; 
VAR STATUSWORDS : ARRAY 10 .. 291 OF INTEGER: 

CO:'\TROL: INTEGER I: 

Remember that no such declarations actually exist in 
the system. They are intended to model the parameters 
passed and returned by the native code RSP/IO 
routines. 

2-7 



2-8 

Devices and Device Numbers 

As described elsewhere, each device is referred 
to in the system by a given number. The formal 
parameter UNITNUMBER in the preceding 
declarations determines which physical unit the 
operation is intended for. Thus, the Device I/O 
Routines are device-transparent to the Pascal 
programmer; the same procedure will handle 
any physical unit. The following table is a list of 
the predefined unit numbers associated with 
each physical unit. The meaning of the other 
parameters is discussed later in this chapter. 

Device 
Number 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13-127 

Volume name 

< Reserved for the system > 
CONSOLE 
SYSTERM 
< Reserved for the system> 
diskO 
disk! 
PRINTER 
REMIN 
REMOUT 
disk2 
disk3 
disk4 
disk5 
< Reserved for future expansion> 

User-Defined Devices - The system reserves all 
device numbers above 127 for user-defined 
devices. They have no preassigned names, yet 
can be accessed through the UNIT intrinsics 
just as devices with preassigned numbers. 



CONTROL Parameters 

Value r
SB 

15-13 
USER 

DEFINED 

Bit 0 ASYNC 

Bit 1 SECT 

Bit 2 NOSPE 

Bit 3 OCRLF 

Bits 4-1 
Bits 13-1 

The CONTROL parameter to UNITREAD, 
UNITWRITE, and UNITSTATUS is a word 
used to pass special information to the RSP/IO 
and BIOS regarding the handling of the I/O re­
quest. The formats of the CONTROL words are 
shown in the following two figures. 

12-4 3 2 
LSB 
o 

(Reserved) NOCRLF NOSPEC PHYSSECT ASYNC 

8 4 2 

Set (1) implies asynchronous I/O request. Reset (0) implies synchro· 
nous I/O request. (This bit should always be reset.) 
Set implies "Physical Sector Mode" for disk I/O. Reset implies "Log· 
ical Block Mode" for disk l iO. 
Set implies " no special character handling." Reset implies " special 
character handling." 
Set implies no LFs are to be appended CRs during nondisk 1/0. 
Reset implies LFs are to be appended to CRs during nondisk I/O. 
Reserved for future expansion. 
User-defined functions. 

The default setting for all these bits is reset (0). 

MSB 15-13 12-1 0 LSB 
USER 

Value 

Bit 0 IODIR 

Bits 1-12 
Bits 13-15 

DEFINED (Reserved) IODIR 

Set (1) implies the status of the input channel is to be returned. 
Reset (0) implies the status of the output channel is to be returned. 
Reserved for future expansion. 
User-defined functions. 

2-9 



IORESULT and Completion Codes 

2·10 

At times, an I/O request will terminate abnormally. To 
handle error conditions, a program may use the 
intrinsic IORESULT. The integer value returned by 
IORESULT describes the status of the last 110 
request. 

Each call to UNITREAD, UNITWRITE, 
UNITCLEAR or UNITST A TUS causes a completion 
code to be set in the SYSCOM data area. The SYStem 
COMmunication area (SYSCOM) is conventionally the 
only data space that may be directly accessed by both 
the operating system and the PME. Programmers may 
test the completion code by using IORESULT. 

The standard completion codes are given in the fol­
lowing figure. 

Code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

19-127 

Meaning 

No error 
Bad block, CRC error (parity) 
Bad device number 
Illegal I/O request 
Data-com time out 
V olume is no longer online 
File is no longer in directory 
Illegal file name 
No room; insufficient space on disk 
No such volume online 
No such file name in directory 
Duplicate file 
Not closed; attempt to open an open file 
Not open; attempt to access a closed file 
Bad format; error reading real or integer 
Ring Buffer Overflow 
Write attempt to protected disk 
Illegal block number 
Illegal buffer address 
Reserved for future expansion 

Codes 128 through 255 are available for non-predefined, 
device-dependent errors. 



Logical Disk Structure 

The system views a disk as a zero-based linear array of 
512-byte logical blocks. All disks in the system have 
this logical structure, regardless of their physical for­
mat. The physical allocation units of a disk are com­
monly known as sectors; these may vary widely from 
one model of drive to another. The BIOS is responsible 
for mapping the logical structure of a system disk onto 
the physical structure of the device; that is, mapping 
logical blocks onto physical sectors. 

Physical Sector Addressing Mode 

To provide enhanced flexibility for systems pro­
gramming at a machine-specific level, a mecha­
nism has been provided for directly accessing 
the physical sectors of the disk. When the 
PHYSSECT bit (bit 1, value 2) of the 
CONTROL word is set on a call to UNITREAD 
or UNITWRITE involving a disk unit, the I/O 
is performed in Physical Sector mode. This has 
the following effects: 

1. The parameter LOGICALBLOCK is inter­
preted by the BIOS as the physical sector 
number (PSN). (In the future, this may be­
come the least significant 15 or 16 bits of 
the PSN.) 

2. The parameter BYTESTOTRANSFER 
must be O. (In the future, this may become 
the most significant 16 bits of the PSN.) 

2-11 



2-12 

Physical Sector Numbers - Typically, the 
physical sectors of a disk are addressed by spec­
ifying both track and sector numbers. That is, 
the disk is viewed as an array of tracks where 
each track is an array of sectors. If this data 
structure were declared in Pascal, it would look 
like this: 

type 

BYTE = 0 .. 255; 

SECTOR = array [O .. (BYTESperSECTOR·l)] of BYTE; 

TRACK = array [l..SECTORSperTRACK] of SECTOR; 

DISK = array [O .. (TRACKSperDISK· l)] of TRACK; 

NOTE 

Here you should be using the conven­
tion that track numbers are zero­
based but sector numbers start from 
one. 

You can convert the type DISK into a linear ar­
ray of SECTOR as follows: 

type 

DISK = array [O .. (TRACKSperDISK*SECTORSperTRACK)-l] 
of SECTOR; 

You can use this linear representation for ad­
dressing the disk by Physical Sector Number 
(PSN). The relations between the PSN, and 
track and sector numbers are: 

PSN = (TRACKNUMBER*SECTORSperTRACK) + 
SECTORNUMBER-1; 
TRACKNUMBER = PSN div SECTORSperTRACK; 
SECTORNUMBER = (PSN mod SECTORSperTRACK) + 1; 



THE RSP 

Physical Sector Size - Any physical sector size 
may be accommodated. An I/O request in Phys­
ical Sector mode simply causes a full sector to 
be transferred. The programmer is responsible 
for ensuring that the data area is at least large 
enough for one physical sector. 

Programs written using Physical Sector mode 
are not expected to be portable to different disk 
hardware without some modification. 

This section details the design and operation of the Input/Out­
put portion of the Run-time Support Package (RSP/IO). While 
the design is processor- and hardware-independent, it is in­
tended to be realized in native code. Thus, the final product 
will be processor-specific but still independent of the exact peri­
pherals used. 

Calling Mechanisms 

This section now discusses how each routine in the 
RSP/IO is called from the Pascal level, or the level of 
another compiled language. The level of detail is in­
tended to be such that an implementor of the RSP will 
know how to pop parameters off the Stack when the 
RSP is called, and how the Stack should look when the 
RSP returns. 

UNITREAD and UNITWRITE 

PROCEDURE UNITREAD( UNITNUMBER : INTEGER; 
VAR DATAAREA: PACKED ARRAY IO .. BYTESTOTRANSFER- l) 

OF 0 .. 255' 
BYTESTOTRANSFER: INTEGER 

______ I; LOGICALBLOCK :INTEGER) 
I; CONTROL: INTEGER) ); 

PROCEDURE UNITWRITE( < same as for UNITREAD > ); 

2-13 



2-14 

Parameter Description 

UNITNUMBER has already been discussed. 

DATAAREA is your buffer to or from which 
the data will be transferred. Describing it as a 
V AR parameter signifies that UNITREAD and 
UNITWRITE are passed a pointer to the start 
of the data area. This pointer is actually repre­
sented as an address couple, consisting of a 
word base and a byte offset. On processors 
which use byte addressing, the effective address 
is computed by simply adding the base and the 
offset, since both quantities are in bytes. For 
processors using word addressing, the effective 
address is computed by indexing byte-wise from 
the base address (always toward higher loca­
tions). Generally, the address of the start of the 
data area mayor may not be on a word bound­
ary. In the case of disk units, however, it is 
only defined if it is on a word boundary; that is, 
a Pascal programmer must not allow actual pa­
rameters with odd numbered indices, like A[3], 
to occur when transferring to or from the disk. 
The reason for this inconsistency is to avoid re­
stricting disk data to being moved byte-by-byte. 

BYTESTOTRANSFER, the third item in the 
parameter list, contains the number of bytes to 
move between your data area and the physical 
unit. 



Two optional parameters follow for UNIT­
READ and UNITWRITE: LOG ICALBLOCK 
and CONTROL. These parameters are optional 
for the Pascal programmer; the compiler will 
assign them both the default value zero. 
LOG ICALBLOCK is only relevant for disk 
reads or writes; as discussed in the section, 
Logical Disk Structure, it specifies the Pascal 
logical block to be accessed. The CONTROL 
word has been discussed in the section, Control 
Parameters. 

Parameter Stack Format 

UNITREAD and UNITWRITE receive their 
parameters on the evaluation stack in the order 
shown in the following figure. Each box repre­
sents a 16-bit quantity. 

++++ 

Unit Number 

Word Base 

Byte Offset 

Byte Count 

Block Number 

Control 

If 

If 

(on re turn, SP 
ts here) poin 

(The stac k shown here 
wn) grows do 
SP 

Like ordinary Pascal procedures, these RSP 
routines pop their parameters from the Stack 
when they are finished. 

2-15 



2-16 

UNITBUSY 

FUNCTION UNITBUSY( UNITNUMBER, INTEGER I, BOOLEAN 

The UNITBUSY function has meaning only in 
an asynchronous environment and thus will al­
ways return FALSE (0) for this synchronous 
specification. The use of the stack is illustrated 
in the following figure. 

++++ 
+ 

Function Result 

Unit Number 4 SP~ 
before after 

UNITWAIT 

PROCEDURE UNITWAIT( UNITNUMBER , INTEGER I; 

Like UNITBUSY, UNITW AIT is only useful in 
an asynchronous environment. In a synchro­
nous system, as described here, UNITW AIT 
becomes essentially a no-op, since no unit will 
have an I/O request pending. A single parame­
ter is on the Top-Of-Stack when the procedure 
is called and is popped off before the procedure 
returns. The use of the Stack is illustrated in 
the following figure. 

++++ 
SP--"".~c-=l 

l--u-ru-'t-N-u-m-b-e-r~I~4---SP ~ 

before after 



UNITCLEAR 

PROCEDURE UNITCLEAR( UNITNUMBER : INTEGER ); 

The purpose of UNITCLEAR is to restore the 
specified device to its initial state. At the RSP 
level, this would mean clearing any state flags 
pertaining to the specified device. The initial 
state for each device at the BIOS level is de­
fined in the following section, BIOS Responsi­
bilities. The stack format is identical to that of 
UNITW AIT (see the previous figure). 

UNITSTATUS 

PROCEDURE UNITSTATUS( UNITNUMBER : INTEGER; 
VAR STATUSWORDS : ARRAY [0 .. 29J OF DJTEGER; 

CONTROL: INTEGER ); 

The purpose of UNITST A TUS is to acquire 
device-dependent information from the specified 
UNIT. The procedure is passed a pointer to a 
status record whose length is a maximum of 30 
words, into which a CONTROL word is stored 
and also the status words are sequentially 
stored. Note that users may define words start­
ing at word 29 and allocating toward word 0, to 
allow for the system's use of the first words of 
the record. 

2-17 



UNITST A TUS receives its parameters on the 
evaluation stack in the order shown in the fol­
lowing figure. Each box represents a I6-bit 
quantity: 

++++ 

Unit Number 

Status 
Record 
Pointer 

Control 

.... "._---ion return, SP 
points herel 

iThe stack shown here 
grows downl 

.. SP 

RSP Responsibilities 

2-18 

This section will detail the processing to be performed 
by the RSP/IO. The primary function of the RSP/IO is 
to manage calls to the BIOS. Secondarily, the RSP/IO 
is responsible for handling certain special functions 
which shall be described here. 

Special Character Output Handling 

Output to the printer, console, or remote or se­
rial units must properly handle blank compres­
sion codes and carriage returns. 



Blank Compression Codes (OLEs) - The sys­
tem supports text files that contain a two-byte 
blank compression code (only at the beginning 
of a line). It is the responsibility of the RSP/IO 
to decode the blank compression code and send 
an appropriate number of blanks. The first byte 
is an ASCII OLE (decimal 16) which signals 
that the next byte contains the excess-32 
number of blanks to insert (that is, it should be 
interpreted as being the < number of blanks to 
be sent> + 32). Therefore, the next byte fol­
lowing the OLE should be processed by sub­
tracting 32 from its value and sending that 
number of blanks. Note that negative results, 
obviously in error, are translated to a value of 
zero. Also, note that the blank-count byte may 
not be the next input byte processed, due to 
device switching. This, therefore, requires the 
maintenance of a flag for each device to indicate 
that it is currently processing a OLE. The OLE 
character and the blank-count byte are not nor­
mally sent to the device (see the paragraph, 
NOSPEC Bit in Control Parameter, that 
follows). 

Carriage Return (CR) - Line Feed (LF) - Text 
files contain ASCII CR's (decimal 13) at the end 
of lines. We define this character as meaning 
new line; that is, a carriage return followed by a 
line feed. Thus, it is the responsibility of the 
RSP/IO to send an ASCII LF (decimal 10) after 
sending each CR. 

NOCRLF Bit - When bit 3 (value 8) of the 
CONTROL parameter is set, the special 
handling accorded CR's is turned off; that is, 
they are sent out like other characters and an 
LF is not automatically appended. 

2-19 



2-20 

Special Character Input Handling 

There are several characters which should re­
ceive special treatment when received from the 
console, the printer, or the remote or the serial 
devices in a complete implementation of this 
I/O system. All but two of them, however, are 
handled by the BIOS. Those which are handled 
in the RSP/IO are the EOF and ALPHALOCK 
characters. 

End-of-File (EOF) Character - The End-of-File 
(EOF) character, when received from the con-
sole, printer or remote devices, signals that the 
end of file has been reached on that particular 
unit. Rather than being a fixed ASCII code, 
this is a soft character. That is, the exact char-
acter code which will be interpreted as end of 
file may be changed during system execution by 
the Pascal user. Further discussion of the soft 
characters used by the I/O Subsystem can be ------. 
found in the following section, Character Codes. 
The EOF character is in the SYSCOM data area 
and must be accessed by the RSP/IO to deter-
mine what character to look for. When the EOF 
character is found in the input stream, the ac-
tion to be taken depends somewhat upon which 
device was referenced. If you are reading from 
UNIT 1 (CONSOLE:), then the rest of the 
buffer, starting at the current position, is 
packed with nulls (decimal 0). For UNIT 2 
(SYSTERM:), the printer and the remote 
devices, the EOF character is put into the 
buffer. In all cases, no further characters are 
transferred to the buffer and control returns 
immediately. 



ALPHALOCK Character - The ALPHALOCK 
character, when received from a device by the 
RSP/IO, signals a default case change for all al­
phabetic characters. All lowercase alphabetic 
characters (that is, a to z) received after the 
ALPHALOCK character will be converted to 
uppercase. Receipt of another ALPHALOCK 
character will cause the case to revert back to 
non converting mode (the default mode). As for 
DLE handling described above, a flag for each 
device to indicate that it is currently in the 
ALPHALOCK state should be maintained to 
ensure proper handling when devices are 
switched. The ALPHALOCK character is not 
normally returned in the buffer (see the fol­
lowing paragraph, NOSPEC Bit). 

BIOS Functions - The remaining special input 
characters, BREAK, START/STOP, FLUSH, 
and CHARMASK, are used only for input from 
the console, not from the printer or remote 
devices. They are handled by the BIOS (See the 
following paragraph, Console Input Options). 

NOSPEC Bit 

When bit 2 (value 4) of the CONTROL parame­
ter is set, the special handling accorded DLE's, 
and the EOF and ALPHALOCK sensing func­
tions previously described are turned off. These 
characters should then be transferred as any 
other character. The BIOS functions are not 
affected. 

2-21 



2-22 

Translation for Subsidiary Volumes 

The RSP is also responsible for converting disk 
read/write calls to subsidiary volumes to disk 
calls to access the physical disk drive instead of 
the virtual subsidiary volume. 

The syscom area contains a pointer to the unit­
table which contains a record for each p-System 
unit. Each record for storage devices contains a 
block offset and physical disk unit number. The 
RSP must look up calls to subsidiary volumes 
and give the physical disk number and correct 
block number when the call to the BIOS is 
made. 

The subsidiary volume requires some special 
checking in the RSP. The following Pascal code 
describes the RSP handling of subsidiary 
volumes. 

if unit# in [syscom".subsidstart.. 
syscom" .subsidstart + syscom" .unitdivision.subsidmax -1] 

then {translate svol parameters} 
with syscom".unitable"[unit#] do 

begin 
if ueovblk = a then return-.ioresulti 9 ); 
if block# > = ueovblk then return-.ioresulti 17 ): 
block# : = block# + ublkoff; 
unit# := uphysvol; 

end 
else {no translation for other volumes needed}; 



BIOS 

As explained previously, the Basic Input/Output Subsystem is 
responsible for providing the actual access to I/O devices. Both 
the design and implementation of the BIOS are specific to a 
given processor and I/O configuration. In this section, we will 
attempt to specify the nature of the BIOS in sufficient detail 
for an experienced programmer to write the code for a given 
processor and set of peripherals. 

The general scheme uses vectors from the RSP/IO to the BIOS 
subroutines for reading, writing, initializing and controlling, 
and answering status requests. The exact vector scheme and 
means of passing parameters must be worked out separately 
for each processor. Arrangements that have already been 
worked out for certain processors are illustrated in the fol­
lowing section, 8086-Specific BIOS Calls. 

Design Goals 

The speed of the BIOS code is fairly insignificant, com­
pared to the (slow) speed of the I/O devices that it 
handles. When peripherals are changed, which may oc­
cur frequently, it often proves that only minor changes 
need to be made to an existing B lOS to service the new 
hardware. Also, since the BIOS always resides in main 
memory, each byte it occupies is one less available to 
the programmer. For these reasons, the major design 
goals should be: (1) compactness; and (2) clarity. 

Like the rest of the PME, the BIOS should be ROM­
able. Obviously, it will also require access to some 
RAM. The addresses that the BIOS references should 
be specified in the assembly code by equates, so that it 
is a simple matter to change them and reassemble the 
BIOS whenever there is a change in the I/O ports or 
the memory configuration. 

2-23 



Completion Codes 

2-24 

All read, write, initialization and control, and status 
calls to the BIOS must return a byte to the RSP that 
contains status information about the I/O request just 
serviced. The value of this byte is the completion code 
discussed in the section, IORESULT and Completion 
Codes, at the beginning of Chapter 2. Most of the stan­
dard completion codes are not relevant to the BIOS­
they are returned by the operating system for file 
errors and the like. The following standard errors can 
be returned by the BIOS: 

o 
1 
2 
3 
4 
9 

15 
16 
17 
18 

No error 
CRC error 
Illegal device number 
Illegal operation on device 
Undefined hardware error 
Device not online 
Ring Buffer Overflow 
Write protect; wrttempt to protected disk 
Illegal block number 
Illegal buffer address 

All other errors are considered hardware-dependent. For 
these, the BIOS should return codes in the range 128 
through 255. The selection of appropriate codes is left 
to the BIOS writer. 

NOTE 

Any predefined devices not implemented 
must arrange to return a completion code of 
9 (Device not online) when an attempt is 
made to initialize or use them. 

Any user-defined devices not implemented 
should return a completion code of 2 (Illegal 
device number) when an attempt is made to 
access them. 



Calling Mechanisms 

In this section, we discuss the parameters required in 
the BIOS calls for each device. Each device has four 
BIOS calls associated with it: READ, WRITE, 
CONTROL, and STATUS. Each device has varying 
needs for information associated with these functions. 
Remember that all calls must return a completion-code 
byte. For a summary of the BIOS calling requirements, 
see the following. 

Console 

Printer 

Only one parameter is needed for reading and 
writing-the data byte to be transferred. The 
status request requires two parameters: the 
CONTROL word and the pointer to the status 
record. For initialization and control of the con­
sole, the BIOS requires a number of special con­
trol characters. These are provided by passing 
the BIOS console initialization routine a pointer 
to the base of the SYSCOM data area, and a 
pointer to a break-handler routine. 

To read and write to the printer, a single param­
eter is required-the byte that contains the 
data. To check the status, the CONTROL word 
and the pointer to the status record are re­
quired. For initialization and control, no param­
eters are needed. 

2-25 



Disks 

Remote 

2-26 

Reading and writing with disk devices require 
five parameters: ~ 

1. A starting logical block number as pre­
viously described. 

2. A count of the number of bytes to transfer 
(positive signed 16 bits; that is, 0 to 
32K-1). 

3. The address of the data area to transfer to 
or from. 

4. A drive number (0 through n-1, given n 
drives. Currently n = 6 is assumed). 

5. The CONTROL parameter. 

To check the status, the CONTROL word and a 
pointer to the status record are passed as pa­
rameters. For initialization and control, the 
drive number is passed. 

The remote device requires a single parameter 
for reading and writing-a byte that contains 
the data being transferred. As with the devices 
just described, the status requires the 
CONTROL word and the pointer to the status 
record. Initialization and control of the remote 
device requires no parameters. 



User-Defined Devices 

Reading and writing with a user-defined device 
require five parameters: 

1. A starting logical block number as pre­
viously described. 

2. A count of the number of bytes to transfer 
(positive signed 16 bits, that is, 0 to 
32K-l). 

3. The address of the data area to transfer to 
or from. 

4. A device number (this will be the same as 
UNITNUMBER). 

5. The CONTROL parameter. 

The native code in the BIOS may choose to ig­
nore some of this information, of course. 

When checking status, the CONTROL word, 
device number, and a pointer to the status 
record are passed. For initialization and control, 
the device number is passed. It is left up to the 
device handler to decode the specific device 
from its device number. 

2-27 



Character Codes 

2-28 

The system assumes that the printer and console 
devices will support the use of printable ASCII charac­
ters and a few standard control codes (CR, LF, SP, 
NUL, and BEL). The remaining control codes that may 
be useful, such as cursor positioning and screen erasure, 
are soft characters that may be changed by using the 
utility SETUP to meet the requirements of some partic­
ular hardware. 

These soft characters, along with all other information 
that is entered using SETUP, are stored in the file 
*SYSTEM.MISCINFO. *SYSTEM.MISCINFO is read 
into a portion of the global data area SYSCOM when­
ever the system is booted or reinitialized. 

The reason for keeping this hardware-dependent infor­
mation at such a high level is that the control codes for 
terminals vary widely and users change terminals fairly 
often and so it was necessary to be able to change a ter- ~ 
minal without creating a new BIOS. The basic issue is 
one of mapping logical control symbols into the control 
codes that are recognized by the hardware. 

Suppose, for example, that there is a predeclared proce­
dure CURSORBACK which causes the cursor on a 
screen terminal to move left one column. Somewhere in 
the system, CURSORBACK must cause a control code 
to be sent to the terminal, which will cause the desired 
response-control-U, control-H, or an escape sequence. 
One way to do this would be for the compiler to emit a 
standard code which the BIOS then translates into 
whatever is correct for the current terminal. This has 
the disadvantage of requiring a new BIOS for every 
slightly different terminal. The approach which we have 
taken sees to it that the correct code is sent to the 
BIOS for the terminal that is currently online. The de­
tails of how this is done are described elsewhere. 



Since many devices can make use of eight-bit control 
codes, the system makes no assumptions about the rel­
evance of the high-order bit, and transfers the whole 
byte unchanged. When using 7-bit ASCII, the value of 
the high-order bit is defined to be zero. This means that 
the BIOS must mask all characters from the console 
with the character mask in the SYSCOM, which will be 
127 (decimal) if 7-bit ASCII is being used. 

The RSP sends both uppercase and lowercase charac­
ters to the BIOS. If a device can handle only uppercase 
characters, the BIOS must map lowercase into upper­
case. 

BIOS Responsibilities 

Console 

In the following discussion, the console device is 
assumed to be a CRT terminal. A typewriter 
device may also be used for the console. 

Console Output Requirements - As previously 
noted, we depend on the action of certain 
ASCII control codes. These are the minimum 
requirements for a console device: 

CR < carriage return> (hexadecimal OD): Move 
cursor to the beginning of the current line 
(column 0). 

LF < line feed> (hexadecimal OA): Move cursor 
down one line while the column position remains 
the same. Starting from any but the last line on 
the screen, the contents of the screen should 
remain the same while the cursor moves down­
ward. If the cursor is on the last line when the 
LF is issued, it should remain in the same posi­
tion while the rest of the display scrolls upward 
one line and the bottom line clears. 

2-29 



2-30 

BEL < bell> (hexadecimal 07): If an audio sig­
nal is available, it should sound. If one is not 
available, the terminal should do nothing. The 
delay time required while doing nothing is im­
material. 

SP < space> (hexadecimal 20): Write a space at 
the current cursor position (erasing whatever is 
there) and advance the cursor position by one 
column. If the cursor is already at the last posi­
tion in a line, the position of the cursor after the 
SP is undefined. We prefer that the cursor re­
main in its prior position in this case. If the cur­
sor is in the last column of the last line on the 
screen, not only is the position of the cursor 
undefined after the SP, but so is the state of 
the screen-maybe it scrolled and maybe it did 
not. As above, we would prefer that the cursor 
remain where it was and that the screen not 
scroll. 

NUL <null> (hexadecimal 00): Delay for the 
time required to write one character. The state 
of the console should not change. 

Any Printable Character: Same as the dis­
cussion for SP, except, of course, write the 
character. 

NOTE 

The effect of sending nonprintable 
characters other than those pre­
viously described is not defined, since 
it is known to vary from terminal to 
terminal. 



Console Output Options - The following set of 
cursor and screen functions should be provided 
if possible. However, they are optional in the 
sense that almost all major functions of the sys­
tem will still be available even if they are not 
provided. The control characters or sequences of 
characters which provide these functions are 
left unspecified (these are soft characters). If a 
stand-alone ASCII terminal is connected to the 
host system, these functions may be provided 
by the terminal itself. In this case, all the BIOS 
need do is pass the appropriate control 
characters. 

Reverse Line Feed: Move the cursor to the next 
line higher on the screen without changing the 
column or the contents of the screen. If the cur­
sor is already on the top line, the result is unde­
fined. If possible, the screen should reverse­
scroll in such a case; or if that is not feasible, 
the cursor and screen should just remain as 
they were. 

Nondestructive Forward and Backward Space: 
Move the cursor in the direction indicated with­
out changing the contents of the screen, that is, 
move it nondestructively. The position of the 
cursor is undefined if an attempt is made to 
move it beyond the beginning or the end of a 
line. The preferred result is that cursor and 
screen remain unchanged in such a case. 

Cursor HOME: Move the cursor to the upper 
left-hand corner of the screen without changing 
the contents of the screen. 

Cursor X,Y Positioning: Move the cursor to 
some absolutely determined row and column 
without disturbing the contents of the screen. 
The result is undefined if an attempt is made to 
move the cursor to a nonexistent position. 

2-31 



2-32 

Erase to End of Screen: Erase from the cursor 
position to the end of the screen, leaving the 
cursor where it started and the other contents 
of the screen undisturbed. 

Erase to End of Line: Erase from the cursor po­
sition to the end of the current line, leaving the 
cursor where it started and the rest of the 
screen undisturbed. 

Console Input Requirements - Input from the 
console should not be echoed to the screen by 
the BIOS; this function is handled by RSP/IO. 
Keys which represent ASCII characters should 
generate 8-bit codes between 0 and 127. Other 
(non-ASCII, that is, special function) keys can 
generate codes between 128 and 255, if desired. 

Console Input Options - If possible, we recom­
mend that the console input BIOS be respon­
sible for the following special functions . 

START/STOP: The START/STOP character is 
used to control console output. When START/ 
STOP (a soft character) is received, console out­
put is suspended until: (1) another START/ 
STOP character is received; (2) a FLUSH char­
acter is received; (3) the console BIOS is reini­
tialized; or (4) the BREAK character is received. 
The action to take in the last three cases is dis­
cussed in the following paragraphs. Should an­
other START/STOP character be received, the 
suspended activities should resume exactly as 
they left off. The chief benefit of this arrange­
ment is that you can suspend output processes 
which are proceeding too fast; for example, a 
text file is scrolling across the screen at 9600 ~ 
baud, or a printer must be brought online before 
the program starts sending it characters. The 
suspension process takes place wholly within 



the BIOS, and requires no communication to 
the RSP. Note that the START/STOP character 
is never returned to the RSP. The queueing of 
keyboard input, if implemented, should continue 
during the suspension. 

FLUSH: FLUSH is another soft control charac­
ter; when FLUSH is typed, the console output 
BIOS discards all output characters (that is, 
does not display them) until: (1) FLUSH is 
typed again; (2) input is requested from the con­
sole BIOS; (3) the console BIOS is reinitialized; 
or (4) the BREAK character is received. The 
FL USH character is never returned to the RSP. 
If FLUSH is received while a START/STOP 
suspension is pending, the suspension is can­
celed and FLUSH has its usual effect. This fea­
ture is useful when a long text file is being 
displayed on the console and you are tired of 
looking at it. Type FLUSH and it terminates 
rather quickly. It is also useful when a process 
is generating console output that is irrelevant, 
but slows down the process. Note that FLUSH 
applies only to console output. 

BREAK: When BREAK (also a soft character) 
is entered, the console input BIOS should check 
the state of the NOBREAK flag bit in the SYS­
COM data area. If the NOBREAK flag is a 1, 
then the BREAK key should be ignored. The 
console input routine should go back to waiting 
for a character from the console. If the 
NOBREAK flag is a 0, then the BIOS should 
immediately give control to a special PME 
routine. The vector to this routine is passed at 
console initialization time. After execution of 
the BREAK routine, the BIOS should continue 
as before. The BREAK routine is responsible 
for notifying the PME that a BREAK should 

2-33 



2-34 

be executed before the next p-code is inter­
preted. Note that the BREAK character is 
never returned to the RSP. Receipt of BREAK 
should terminate any START/STOP or FLUSH 
suspension pending. 

The system stores the NOBREAK Boolean in 
the data area called SYSCOM. A pointer to 
SYSCOM is passed to the console initialization 
routine. The byte containing the NOBREAK 
Boolean must be masked with 01000000 binary 
(40 hexadecimal) before exammmg the 
NOBREAK Boolean. The other bits are not nec­
essarily zero. 

Type-Ahead: When non special characters not 
described in previous sections are received from 
the keyboard, and when a no read request is 
pending, they should be queued until the next 
read request. The next read request should re­
move the first character from the queue. When 
characters in excess of the maximum queue size 
are received, they should be ignored; the queue 
should remain intact. While a type-ahead of 
even 1 character is better than none at all, we 
recommend a minimum queue size of about 20 
characters. If possible, the bell should be 
sounded for each character entered from the 
keyboard after no room remains in the queue. 

Input Character Mask: In the p-System prior to 
version IV.l, all characters input from the con­
sole were masked with 7F (hexadecimal) to clear 
the parity bit in bit 7. This changed in version 
IV.1 to allow terminals or keyboards that use 
full 8-bit character codes to return them un­
masked, and to continue to allow terminals that 
needed to have the parity bit cleared to work. 



~ 

Every character read from the console should be 
ANDed with the CHAR_MASK byte found in 
the SYSCOM data area. This will be set with 
the SETUP utility to be either 7F or FF (hexa­
decimal) as needed. The masking should be done 
before checking for BREAK, START/STOP, or 
FLUSH. 

Initialization and Control 

FLUSH 
BREAK 
STOP/START 
CHARMASK 
NOBREAK 
EOF 
ALPHALOCK 

The initialization and control part of the console 
BIOS is responsible for the following tasks (and 
whatever else the BIOS implementor finds 
expedient): 

SYSCOM Data Area: The system stores soft 
characters START/STOP, FLUSH, BREAK, 
and other special variables in the System Com­
munication (SYSCOM) data area. These are 
variables that must be accessible from both the 
operating system and the low level routines 
(PME, RSP, and BIOS). One parameter to the 
console initialization and control routine is a 
pointer to the start of the SYSCOM area. The 
SYSCOM is a packed record declared in the in­
terface section of the unit KERNEL. Byte off­
sets within SYSCOM depend on the processor 
sex (low byte or high byte first). The offsets to 
variables used in the BIOS and RSP, expressed 
as positive byte offsets, are: 

LSB first (decimal) MSB first (decimal) 
decimal hex octal decimal hex octal Usage 

83 53 123 82 52 122 BIOS 
84 54 124 85 55 125 BIOS 
85 55 125 84 54 124 BIOS 
92 5C 134 93 5D 135 BIOS 
58 3A 72 59 3B 73 BIOS 
82 53 122 83 53 123 RSP 
93 5D 135 92 5C 134 RSP 

2-35 



2-36 

BREAK Vector: Another initialization and con­
trol parameter is the address of the PME 
routine which handles BREAK. The console ini­
tialization code is responsible for setting up a 
vector to this address via its private data area 
and calling this routine when the BREAK char­
acter is received. 

F lags: Initialization should cause the START/ 
STOP and FLUSH flags to be cleared (or what­
ever else may be required to return to normal). 

Type-Ahead Queue: Initialization should cause 
any characters currently waiting in the type­
ahead queue to be discarded. 

Console Status - As described in the preceding 
section, Control Parameters, bit ° (value 1) of 
the CONTROL word defines the direction of the 
status request. The request should return, in 
the first word of the status record, the number 
of characters currently queued for the direction 
specified. If some form of buffering is being 
used, this will simply be the number of charac­
ters in the buffer. If no buffering is imple­
mented, the output status will always return 0, 
but the input status will return 1 if a character 
is waiting to be read or ° if none is waiting. 



Printer 

The printer is conceived as being a line printer 
or other hard-copy device. In actual practice, 
any ASCII display device may be used. 

Printer Output Requirements - In order to 
serve the widest variety of hard-copy devices, 
the RSP/IO does not buffer a line of text and 
send it all at once. Rather, it sends the printer 
BIOS a single character at a time. Many line 
printers must buffer a line and then print it all 
at once; if this is the case, it is the BIOS that 
must do so and the BIOS must recognize the 
end of a line. EOLN is signaled by a certain 
character. The possibilities are listed below: 

CR < carriage return> (hexadecimal OD): Print 
the line and return the carriage to the first 
column. An automatic line feed should not be 
done. 

LF < line feed> (hexadecimal OA): In normal 
operation, the RSP/IO will only send an LF to 
the BIOS immediately after a CR. If the hard­
ware allows a simple line feed to be performed 
(without a return), then this should be done. If a 
complete new line operation (carriage return and 
line feed) is the only way your printer can print 
a line, then do so at an LF -do not do anything 
about a CR. 

FF < form feed> (hexadecimal OC): The printer 
should advance the paper to top-of-form, if pos­
sible, and perform a carriage return. If no such 
feature is available, the printer may execute a 
new line operation; that is, a return followed by 
a line feed. 

2-37 



2-38 

Printer Input Requirements - There are no 
strict requirements for input from the printer 
device. If the printer device has the capability 
to transmit data, then the printer input BIOS 
should return all eight data bits unchanged. If 
not, then input should not be allowed and 
should return completion code 3 (Illegal oper­
ation on device). 

Printer Initialization and Control - Initialization 
of the printer device should make it ready to 
print at the beginning of a blank line. A new 
line (carriage return and line feed) operation 
may be in order here. Any characters that have 
been buffered but not printed are lost. The 
printer does not need to do a form feed each 
time it is initialized. 

Printer Status - As described above, the 
number of characters buffered for the direction 
specified in the CONTROL word should be re­
turned in the first status word. If the printer 
has no form of self-checking, return zero. 

When returning output channel status the 
number of characters buffered has a special 
meaning. A zero returned for number of charac­
ters buffered means the printer is ready to re­
cieve a character; a nonzero value is interpreted 
as meaning the printer is not ready to recieve 
another character. The print spooler uses this to 
determine if it can send a character to the 
printer without hanging the system in the back­
ground task on a write to the printer. 



Disk 

Mapping Blocks on Physical Sectors - The 
disk device may be any type of disk drive, 
diskette, or hard disk. The actual sectoring ar­
rangements of the disk are immaterial. The sys­
tem addresses the disk in terms of consecutive 
logical blocks of 512 bytes each. A primary 
function of the disk BIOS, therefore, is to pro­
vide an appropriate mapping scheme into the 
actual (physical) sectors used on the disk. The 
sector interleaving algorithm should be optimal 
for the hardware. 

The system makes no assumptions about the 
interleaving method used by the BIOS, except 
that it works. 

Bootstrap Location - While bootstrap schemes 
vary, typical implementations make use of a 
hardware (usually ROM) bootstrap to load and 
execute a primary software bootstrap which, in 
turn, loads and executes a secondary software 
bootstrap. The secondary bootstrap then loads 
the PME and the operating system, performs 
the required initializations, and starts the 
system. 

To be accessible to the hardware bootstrap, the 
primary software bootstrap must reside at a lo­
cation on the disk which is predetermined by 
the hardware vendor. Since these locations can 
vary widely, it is necessary that the system's 
requirements for a physical disk format be flex­
ible in this regard. 

The primary bootstrap area must not overlap 
disk data structures maintained by the system, 
chiefly the directory and the bootstrap itself. 

2-39 



2-40 

Logical blocks 0 and 1 of each disk are usually 
reserved for bootstrap code (a total of 1024 
bytes). This is the most convenient alternative. 

If 1024 bytes are not enough room, or if the 
interleaving format is unacceptable to the hard­
ware bootstrap, the primary bootstrap area 
must be outside of the Pascal disk. The Pascal 
logical blocks must be mapped onto the disk in 
such a way that the hardware-defined bootstrap 
area is inaccessible to the p-System as a logical 
block. I t will still be accessible in Physical Sec­
tor Mode. 

Physical Sector Mode - When bit 1 (value 2) of 
the CONTROL word is set, disk access should 
be performed in Physical Sector Mode, as de­
scribed in the preceding section, Physical Sector 
Addressing Mode. 

Disk Output Requirements - The disk device \ 
BIOS must transfer as many actual sectors as 
are needed to accommodate the data. To sim-
plify a disk-write in which (BYTESTO­
TRANSFER) mod 512 is not equal to zero (for 
example, a block that is partially written to), 
the remaining contents of the last block are un­
defined. This makes it possible to fill up a whole 
sector, if desired, with whatever garbage re-
mains in the buffer. The following figure illus-
trates this situation. The language level is 
responsible for keeping track, in logical block 
numbers and byte counts, of where the good 
data is. 



WRITE TO DISK. 

NUMBER OF BYTES TO TRANSFER :. 1174 
S T A RTING LOGIC A L B LOCK NUMBER = 72 
DATA AREA ADDRE SS '" DATAAREA 

2284 28 4 

BLOCK 72 
( 512 BYTES ) 

L S TART OF OATA AREA 

DAT A 

BLOCK 73 
(5 12 BYTES ) 

B LOCK 74 

I 

( 362 BY TES ) 

--------...... ; UNDEFINED 

END OF DATA AREA 

Disk Input Requirements - On input from a 
disk device, it is not permissible to over-write 
the end of the assigned data area. Therefore, the 
BIOS is responsible for transferring no more 
than the number of bytes requested. One way to 
accomplish this is to buffer the last sector and 
then transfer only the requested part. 

Disk Initialization and Control - Initialization 
of a disk device should bring it to a state in 
which it is ready to read or write from any 
given track or sector. For some drives with 
simple controllers, the head may need to be 
stepped to track 0 to facilitate the BIOS disk 
driver's remembering the current track. Any 
buffered data is lost. 

2-41 



Remote 

2-42 

Disk Status - Status requests from the disk 
will return the following words in the status 
record: 

Word 1 - The number of bytes currently 
buffered for the direction specified in the 
CONTROL word, as described in the preceding 
section, Console Status. If no capability for 
checking is available, it should be set to O. 

Word 2 - The number of bytes per sector. 

Word 3 - The number of sectors per track. 

Word 4 - The number of tracks per disk. 

This unit is intended to be an RS-232 serial line 
for supporting various types of communication. 
It is important that it transfer raw data with­
out changing it in any way. All eight bits of the 
transferred byte should be considered signifi­
cant. The transfer rate is usually set to 9600 
baud. 

Remote Output Requirements - As noted 
above, all eight bits of the data byte should be 
transmitted. The remote BIOS driver receives 
one byte at a time. 

Remote Input Requirements - Input from a 
remote device should be buffered, if possible, by 
the scheme suggested in the preceding section, 
Type-Ahead. As noted above, all eight data bits 
must be returned. 

Remote Initialization and Control - Initialization 
of the remote device should bring it to a state 
in which it is ready to read or write. 



Remote Status - The number of bytes buffered 
for the direction specified in the CONTROL 
word should be returned in the first status 
word, as described in the Console Status sec­
tion. If no capability for checking is available, it 
should return O. 

User-Defined Devices 

These devices are intended to allow the user the 
freedom to implement devices not specifically 
defined in this document. The actual implemen­
tation is left entirely to the user. The only re­
quirement is that they return a completion code 
when finished and, if the UNITNUMBER is not 
defined, that it return code 2 (Illegal unit 
number). Users should use device numbers 
starting from 128 (see the previous section, 
User-Defined Devices). 

Special BIOS Calls 

These functions are provided by the BIOS to make 
configuration-specific functions accessible to the PME. 
Although these functions are not related to Input/ 
Output, they are put into the BIOS as the repository 
for configuration-specific code. 

As with all other routines in the BIOS, each should re­
turn a completion code. 

System Output 

System Output is reserved for future expansion 
and, at this time, should cause the system to 
HALT. (Note that HALT may actually cause a 
reboot on a few implementations.) 

2-43 



2-44 

System Input 

System Input is also reserved for future use, 
and like System Output, should cause a HALT. 

System Initialization and Control 

The System Initialization and Control BIOS 
routine should initialize such things as the clock 
(reset it to 0) and the interrupt system, if either 
is to be used. 

System Status 

The System Status BIOS routine should return 
the following information in the status record: 

Word 1 - The address of the last word in ac­
cessible contiguous RAM memory; for example, 
on an 8080 system with 64K bytes of RAM, the 
last byte address may be FFFF, but the last 
word address is FFFE. 

Word 2 - The least significant part of the 32-
bit word used by the system clock. If a clock is 
not present, then this must be set to O. 

Word 3 - The most significant part of the 32-
bit word used by the system clock. If a clock is 
not present, then this must be set to O. 

NOTE 

If a clock is used, the system as­
sumes that the two words returned 
are representative of the time in 
60ths of a second. It is the clock 
driver's responsibility to maintain the 
closest approximation to this time. 
The time is defined to be 0 at 
clock initialization. Currently, the 
CONTROL word is ignored. 



BIOS CALLING CONVENTIONS 

--------- The following is a summary of the calling conventions de­
scribed earlier. The 8086-specific protocols for the Texas In­
struments Professional Computer are shown in the following 
section. All calls to the BIOS return a completion code. 

Entry Point 

CONSOLE READ 
CONSOLEWRITE 
CONSOLECTRL 

CONSOLESTAT 

PRINTERREAD 
PRINTERWRITE 
PRINTERCTRL 
PRINTERST A T 

DISKREAD 

DISKWRITE 
DISKCTRL 
DISKSTAT 

REMOTEREAD 
REMOTEWRITE 
REMOTECTRL 
REMOTESTAT 

USERREAD 

Parameters 

single data byte 
single data byte 
BREAK vector 
SYSCOM pointer 
ST A TREC pointer 
CONTROL word 
single data byte 
single data byte 
(none) 
ST ATREC pointer 
CONTROL word 

block number 
byte count 
data area address 
drive number 
CONTROL word 

(same as DISKREAD) 
drive number 
drive number 
ST ATREC pointer 
CONTROL word 

single data byte 
single data byte 
(none) 
ST ATREC pointer 
CONTROL word 

block number 
byte count 
data area address 
device number 
CONTROL word 

2-45 



Entry Point Parameters 

USERWRITE (same as USERREAD) 
USERCTRL device number 
USERSTAT device number 

ST A TREC pointer 
CONTROL word 

SYSREAD block number 
byte count 
data area address 
device number 
CONTROL word 

SYSWRITE (same as SYSREAD) 
SYSCTRL device number 

EVENT vector 
SYSSTAT ST ATREC pointer 

CONTROL word 

QUIET (none) 
ENABLE (none) 

SERREAD device number 
single data byte 

SERWRITE device number 
single data byte 

SERCTRL device number 
SERSTAT device number 

ST A TREC pointer 
CONTROL word 

2-46 



BOB6-SPECIFIC BIOS CALLS 

Entry Points: All BIOS entry points are given as positive off­
sets from the BIOS vector table. The location of this vector 
table is given by the label BIOSVC which is defined with a 
.DEF in the BIOS. Each entry in the vector table should be a 
pointer to the routine that implements that BIOS function. 
The pointer is relative to the beginning of the PME. 

Parameters: When parameters are not being passed in a speci­
fied register, they are pushed on the Stack. Offsets from the 
address pointed to by SP (described as (SP)) are given, recog­
nizing that the Stack grows down and that SP normally points 
to the last word pushed on the Stack. 

Completion Code: Return in register AH. 

Calling Sequence: The RSP will use a CALL BIOSVC(BX) 
(intrasegment, indirect) to call the routine within the BIOS. 

------- The BIOS routines may make free use of registers AX, BX, 
CX, DX, BP, SI, and DI with the exception of QUIET, 
ENABLE, SYSTEMSTAT which may only use AX, BX, CX, 
and DI. Registers CS, DS, SS, and ES must be returned un­
changed. 

Entry Point 

CONSOLE READ 
CONSOLE WRITE 
CONSOLECTRL 

CONSOLESTAT 

PRINTERREAD 
PRINTERWRITE 
PRINTERCTRL 
PRINTERST AT 

Offset 
(hex) Parameters 

00 return data byte in AL 
02 write data byte in AL 
04 BREAK vector at (SP) + 2, (SP) + 3 

SYSCOM pointer at (SP) + 4, (SP) + 5 
06 ST ATREC pointer at (SP) + 2, (SP) + 3 

CONTROL word at (SP) + 4, (SP) + 5 

08 return data byte in AL 
OA write data byte in AL 
OC (none) 
OE ST ATREC pointer at (SP) + 2, (SP) + 3 

CONTROL word at (SP) + 4, (SP) + 5 

2-47 



Offset 
Entry Point (hex) Parameters 

DISKREAD 10 block number at (SP) + 2, (SP) + 3 
byte count at (SP) + 4, (SP) + 5 
data area address at (SP) + 6, (SP) + 7 
drive number at (SP) + 8, (SP) + 9 
CONTROL word at (SP) + 10, (SP) + 11 
data area segment in ES 

DISKWRITE 12 (same as DISKREAD) 
DISKCTRL 14 drive number in CL 
DISKSTAT 16 drive number in CL 

ST ATREC pointer at (SP) + 2, (SP) + 3 
CONTROL word at (SP) + 4, (SP) + 5 

REMOTE READ 18 return data byte in AL 
REMOTEWRITE 1A write data byte in AL 
REMOTECTRL 1C (none) 
REMOTESTAT IE STATREC pointer at (SP) + 2, (SP) + 3 

CONTROL word at (SP) + 4, (SP) + 5 

USERREAD 20 block number at (SP) + 2, (SP) + 3 
~ 

byte count at (SP) + 4, (SP) + 5 
data area address at (SP) + 6, (SP) + 7 
device number at (SP) + 8, (SP) + 9 
CONTROL word at (SP) + 10, (SP) + 11 
data area segment in ES 

USERWRITE 22 (same as USERREAD) 
USERCTRL 24 device number in CL 
USERSTAT 26 device number in CL 

STATREC pointer in (SP) + 2, (SP) + 3 
CONTROL word in (SP) + 4, (SP) + 5 

SYSREAD 28 block number at (SP) + 2, (SP) + 3 
byte count at (SP) + 4, (SP) + 5 
data area address at (SP) + 6, (SP) + 7 
drive number at (SP) + 8, (SP) + 9 
CONTROL word at (SP) + 10, (SP) + 11 
data area segment in ES 

SYSWRITE 2A (same as SYSREAD) 
SYSCTRL 2C EVENT vector at (SP) + 2, (SP) + 3 

device number in CL 
SYSSTAT 2E device number in CL 

ST ATREC pointer in (SP) + 2, (SP) + 3 
CONTROL word in (SP) + 4, (SP) + 5 

2-48 



Offset 
Entry Point (hex) Parameters 

QUIET 30 (none) 
ENABLE 32 (none) 

SERIALREAD 34 return data byte in AL 
device number in CL 

SERIALWRITE 36 write data byte in AL 
device number in CL 

SERIALCTRL 38 device number in CL 
SERIALSTAT 3A device number in CL 

ST ATREC pointer in (SP) + 2, (SP) + 3 
CONTROL word in (SP) + 4, (SP) + 5 

2-49/2-50 





3 

The Operating System 

Organization ........................................................................ 3-3 
Overview of the OS .. .. ....... ................ ..... ....... .. ........................ 3-3 
P-Machine Support .. ................... ............. ... ........ .. ............ 3-5 
The Heap .. ..... ......... .. ... ..... .. ..... . ... .... .. ...... ... . ... ... .. .... .... .. .. ... ... ... 3-5 

Overview .............. ... .... .................. ... ..... .. ..... .................... .... 3-5 
Heap Implementation - Operating System Interface .... 3-8 

The Code Pool... .... ............... ... ........... ...... ... ...... ........ ..... ... 3-11 
Fault Handling ................................................................ .. .... 3-14 
Concurrency ......... ... ...... .. .... ....... ....... ................................... .. 3-15 
1/0 Support ... ... ... ... ...... ....... ..... ....... ...... .... ... .... ....... ... ....... . 3-17 

FIBs .................................................................................... .. .. 3-17 
Directories ............. ... ....... ..... ... .......... .................................... . 3-18 
Varieties of 110 ... ... ....... .. .... ....... ..... .... ... ... .. . .. .. .... ... ... ....... 3-20 
Record I/O ........... ....... .. ... .. .... ... .... ....... .. ...... .. .. ..... ............... ... 3-20 
Screen I/O ....... ....................... ....... .. ...... ...... .. ..................... .. ... 3-20 
Block I/O ........................ .... ..... .................................... ... .... .. .. 3-20 
Text I/O .................................................................................. 3-21 

3-1/3-2 





ORGANIZATION 

Overview of the OS 

The operating system is a collection of Pascal UNITs. 
The organization of UNITs in the operating system 
was determined by three considerations: functional 
grouping, space and language restrictions, and neces­
sary code-sharing with other portions of the system. 
Some UNITs such as SCREENOPS are intended to be 
accessible to user programs as well. The name of a 
UNIT in the operating system generally reflects its 
function. This is a full list of operating system UNITs: 

Unit Name 

HEAPOPS 
EXTRA HEAP 
PERMHEAP 

SCREENOPS 

FILEOPS 

PASCALIO 
EXTRAIO 
SOFTOPS 

SMALLCOMMAND 
COMMANDIO 

STRINGOPS 

OSUTIL 

CONCURRENCY 

REALOPS 

LONGOPS 

GOTOXY 

KERNEL 

GETCMD 
USERPROG 
INITIALIZE 
PRINTERROR 

Function 

Heap operators 

Screen control 

File and Directory operations 

File-level 110 

1/0 redirection and chaining 

String intrinsics 

Conversion utilities 

Concurrency 

Floating Point Functions and Real Number 1/0 

Long Integer operations 

Screen cursor control (may be user-supplied) 

N onswappable central facilities of Op. System 
(always resident in main memory) 

Subsidiary segments of KERNEL 
(swappable) 

3-3 



3-4 

KERNEL contains the resident code necessary to main­
tain the code pool, handle faults, and read segments. 
The KERNEL also contains four subsidiary segments, 
which are swappable: 

GETCMD processes your input at the main 
command level, and builds your program's run-time 
environment. 

USERPROG is the reserved segment slot for your 
program. At bootstrap time it contains the Pascal­
level code which builds the initial run-time environ­
ment for the operating system. 

INITIALIZE is called when the system is booted or 
reinitialized. It reads SYSTEM.MISCINFO, locates 
the system code files, and sets up the table of 
devices. 

PRINTERROR prints run-time error messages. 

The operating system UNITs are compiled separately. 
They are bound together in a single code file, 
SYSTEM.PASCAL, by using the utility LIBRARY. 

Because of certain bootstrap restrictions, KERNEL 
must always reside in segment-slot 0 and USERPROG 
must always reside in slot 15. There are no other 
restrictions on the location of units within 
SYSTEM.PASCAL. 



P-MACHINE SUPPORT 

The Heap 

Overview 

The Heap is an area in low memory used for the 
allocation of dynamically stored variables. The 
upper bound of the Heap depends upon the size 
of the Stack and the code pool. The area be­
tween the Heap and the code pool is provision­
ally available to the Heap; Stack faults and 
segment faults may change the size of this area. 
Heap faults are used by the Heap operators to 
request that more space be allocated to the 
Heap. 

The Heap is manipulated by a number of intrin­
sic routines. These either allocate or de-allocate 
Heap space in a particular way. The rest of this 
section is an introduction to these routines. 

MARK and RELEASE - MARK saves the 
location of the current top of the Heap. 
RELEASE cuts the Heap back to the location 
of the corresponding mark. Variables which 
were allocated between the time of the MARK 
and the time of the RELEASE are removed 
from the Heap, except for variables allocated by 
PERMNEW. MARK and RELEASE may be 
nested; the integrity of the Heap requires that 
they be correctly paired. 

3-5 



3-6 

NEW and VARNEW - NEW and V ARNEW 
cause variables to be allocated on the Heap 
above the topmost mark. NEW(P), where vari­
able P is a pointer to type T, causes the number 
of words in type T to be allocated. P is assigned 
the address of the first location allocated to P 
on the Heap. If T is a record with variants, 
space for the largest variant is allocated. In 
Pascal, a call to NEW may designate a particu­
lar variant, so that space is allocated for this 
particular variant, which may be less than the 
largest variant in that record. 

VARNEW(P,NWords), where P is a pointer to 
type T, causes NWords to be allocated on the 
Heap. T would most commonly be an array. 
NW ords indirectly determines how many ele­
ments of the array are actually available in this 
instance. P returns the address of the first loca­
tion allocated on the Heap. 

V ARNEW is a function, and returns the 
number of words that actually were allocated. 
This should equal NWords; if it is 0, then there 
was less than NWords of available space, and if 
it is some other number, something went wrong. 

DISPOSE and V ARDISPOSE - DISPOSE and 
VARDISPOSE de-allocate space reserved by 
NEW and V ARNEW, respectively. DISPOSE(P) 
frees the number of words pointed to by P. 
VARDISPOSE(P,NWords) frees NWords words. 
In both cases, P is assigned the value NIL. 



CAUTION 

To avoid destroying important infor­
mation that is on the Heap, extreme 
caution should be used with these 
intrinsics, which do little error­
checking of their own. Heap space al­
located by a V ARNEW should be 
freed only by a V ARDISPOSE with 
the same NW ords parameter, and 
MARK/RELEASE pairs should 
always match. Furthermore, if the 
NEW is called for a specific variant, 
the same variant should be used to 
DISPOSE that area. 

If these intrinsics are misused, the 
system is likely to crash. This is the 
least mysterious of the symptoms 
that may occur. 

PERMNEW and PERMDISPOSE A 
variable can be allocated on the Heap by 
PERMNEW(P), where P is a pointer to the 
variable's type. A variable allocated by 
PERMNEW can only be de-allocated by 
PERMDISPOSE(P). Even a RELEASE cannot 
remove it. These routines are meant for system 
use, and are not your routines. 

The operating system uses these routines to al­
low variables to remain defined across MARK/ 
RELEASE pairs. Program CHAIN commands 
are saved on the Heap with PERMNEW, so 
that even after the chaining program termi­
nates, and its Heap space is released, these 
commands are still available to determine the 
further actions of the system. 

3-7 



3-8 

Heap Implementation - Operating System Interface 

Unit Organization - Code for the Heap oper­
ators is contained in three units: HEAPOPS, 
EXTRAHEAP, and PERMHEAP. HEAPOPS 
contains MARK, RELEASE, and NEW. 
EXTRAHEAP contains DISPOSE, VARNEW, 
V ARA V AIL, MEMLOCK, and MEMSW AP. 
PERMHEAP contains PERMNEW, 
PERMDISPOSE, and PERMRELEASE. 
(V ARA V AIL, MEMLOCK, and MEMSW AP 
are for segment management and are discussed 
elsewhere.) 

Heap Globals - The operating system uses 
several variables to manage the Heap. The 
Heap is maintained by a linked list of MARKs. 
The topmost MARK is indicated by 
Heaplnfo.TopMark. A MARK (also called an 
HMR, for Heap Mark Record) has the following 
structure: 

TYPE 
MemLink = RECORD 

AvaiLJist: MemPtr; 
NW ords: integer; 
CASE Boolean OF 

END; 

true: ILast~vaiL 
Prev~ark: MemPtr) ; 

In a MARK, NWords is always 0, and the var­
iant is always TRUE. NWords is 0 because the 
MARK merely marks a location on the Heap, 
and does not reserve any space. 

Each MARK points to an AvailJist, which is 
a list of records of type MemLink. These re-
cords are FALSE variants of MemLink, and ~ 
NWords contains the number of words of avail-
able space, including the two words of the re-
cord itself. The Avail_List chain is ended by an 
A vaiLList of NIL. 



The first MARK on the Heap contains a 
Prev ~ark of NIL. All successive MARKs 
point back to their predecessor, so that the 
MARK chain can be traversed. 

For each MARK, the first A vai~ist record is 
the lowest unallocated space above the MARK. 
Last~ vail points to the last of the available 
space. This is typically bounded by allocated 
Heap space or by another MARK; if the MARK 
is TopMark, Last~ vail is bounded by the 
code pool. 

The Heap maintenance variables have the fol­
lowing structure: 

VAR 
Heaplnfo: RECORD 

Lock: semaphore; 
TopMark. 
HeapTop: MemPtr; 

END; 
PoolBase: MemPtr; 
PermList: MemPtr; 

The Lock semaphore guarantees that the Heap 
is modified by only one process at a time. 
TopMark points to the highest MARK. 
HeapTop points to the highest allocated space 
on the Heap. The fault handler uses HeapTop to 
determine how close the code pool can be moved 
towards the Heap. PoolBase points to the base 
of the code pool. PermList points to a linked list 
of PERMNEW'ed variables. The list is identical 
in structure to an A vaiLList, but each 
NW ords indicates the number of words allo­
cated by a PERMNEW. If PermList is NIL, 
then no variables have been PERMNEW'ed. 

3-9 



3-10 

Tactics - In general, a request for Heap space 
through a MARK, NEW, VARNEW, or 
PERMNEW causes HeapTop to be set to the 
new top of the Heap. The fault handler always 
places the code pool (located at PoolBase) above 
HeapTop; thus, HeapTop reserves space for the 
Heap as soon as a Heap operator requests it. 
This is necessary because of possible inter­
actions between Stack fault handling and Heap 
space allocation. 

The operating system uses the global variable 
SysCom".GDirP (global directory pointer) to al­
locate a disk directory on the Heap. The oper­
ating system's use of this Heap space is meant 
to be invisible to you. Therefore, before any 
Heap operation (except DISPOSE), 
SysCom".GDirP is DISPOSEd to make the 
space occupied by the directory available again. 

Run-Time Environment - Since both you and ~ 
the operating system use the Heap, the oper-
ating system MARKs the Heap immediately 
before the execution of your program by the 
call: 

MARK IEMPTYHEAP!; 

After your program terminates, the operating 
system calls: 

RELEASE IEMPTYHEAP!; 

Thus, all your space is freed after the program 
terminates, unless space has been allocated by 
one or more calls to PERMNEW. 



MARK (EMPTYHEAP) occurs after the run­
time environment for your program has been 
built. The program's run-time environment 
structures such as SIBs, E_Rec's, and 
E_ V ec' s, are for the use of the operating 
system, and are allocated space before 
EMPTYHEAP. Data that is global to your 
program and any units it USES also appears 
before EMPTYHEAP. Heap space that follows 
EMPTYHEAP is intended only for the local use 
of your program. 

The Heap is shared by all tasks in the system. 

THE CODE POOL 

The code pool resides in main memory between the Stack and 
the Heap. It contains executable code segments that may pos­
sibly be discarded or swapped in from disk again. Thus, the 
contents, size, and position of the code pool may change during 
a program's execution. The flexibility of the code pool handling 
can provide a running program with more free memory space 
than in previous versions. 

A segment in the code pool must be either p-code or relocatable 
native code. Nonrelocatable native code segments reside on the 
Heap; they are placed there at associate time. 

The code pool is a contiguous block of code segments-when­
ever a segment is discarded, the surrounding segments are 
moved together. Segments being swapped in are given space at 
either end of the code pool. 

Segments in the code pool are organized into a doubly linked 
list by pointers in each segment's SIB (described in the pre­

~ vious chapter). 

3-11 



The routines that manage the code pool are in the operating 
system's KERNEL unit. They make use of the pointers within 
the SIB, and the following global values: 

PoolBase: Mem_Ptr 

HeapTop: Mem_Ptr 

Points to the SIB of the segment at 
the base of the code pool (next to the 
Heap). 

Points to the SIB of the segment that 
is always resident in the code pool 
(currently, GOTOXY). 

Points to the memory location at the 
base of the code pool. 

The lowest possible bound of the 
Stack; this points to the address 
which is one word above the top of 
the code pool. 

Points to the top of the Heap. 

When space is requested either for the Heap or the Stack, the 
code pool management routines first attempt to reposition the 
code pool without swapping out any segments. 

The actual bounds of the code pool are in Pool_Base, which 
points to the low end of the code pool, and SP ~ow, which 
points to one word above the top of the code pool. The code 
pool operators may move it all the way to HeapTop on the 
Heap side, or up to SP minus a 40-word margin on the Stack 
side. 

3-12 



The code pool may be modified by any of the following 
circumstances: 

----.. . A Heap fault is detected, and the code pool is moved up 
in memory toward the Stack to free the needed number of 
words for the Heap. 

• A Stack fault is detected, and the code pool is moved 
down in memory toward the Heap to free the needed 
number of words for the Stack. 

• A Heap fault or Stack fault is detected, and the code pool 
cannot be moved to allocate the space; one or more seg­
ments are swapped out, the remaining segments are 
moved together, and the code pool is positioned to allow 
for the needed Heap or Stack space. 

• A Heap or Stack fault is detected, and even after swap­
ping out all of the swappable segments, not enough space 
is available: a STACK OVERFLOW is reported, and the 
system is reinitialized. 

• A segment fault is detected. The code pool management 
routines first try to read the segment in at either end of 
the code pool without moving it. If this is impossible, 
they attempt to create more room by moving the code 
pool toward either the Stack or the Heap, and then read 
the segment. If this too is impossible, segments are 
swapped out to make room, and the new segment is then 
read in. If this last effort also fails, a STACK OVER­
FLOW is reported, and the system is reinitialized. 

The code pool management routines are only called by the 
Faulthandler. Since the Faulthandler is a subsidiary task, its 
own stack is statically allocated. Thus, the Faulthandler can 
manipulate the code pool freely, without fear of causing a 
Stack fault. 

3-13 



Fault Handling 

3-14 

When memory space is required by the Stack or Heap, 
or entry into a nonresident segment is attempted, a 
fault is issued. The Faulthandler process is activated 
and uses the code pool management routines to re­
arrange main memory (as described in the previous 
section). 

The Faulthandler is a process that is START'ed at 
bootstrap time. Most of the time it is idle, W AIT'ing 
on a semaphore. When the semaphore is SIGNAL'ed, 
the Faulthandler is activated and performs its memory 
management functions. 

Faults can be SIGNAL'ed by the PME (Stack and seg­
ment faults), or by the EXECERROR procedure in the 
operating system (Heap faults and one segment fault). 

The semaphore record used by the Faulthandler resides 
in SYSCOM. It is declared as follows: \ 

Fault~essage = RECORD 
Fault_ TIB : TIB_ Ptr; 

Fault_Words: integer; 
Fault_ Type: Seg_ Fault .. PooLFault; 

END; 

Fault_ Sem: RECORD 
Real_ Sem. Message_ Sem: semaphore; 
Message: Fault~essage; 

END; 

The PME detects only Stack and segment faults. When 
the PME detects a fault, it places the appropriate infor­
mation in Fault_Sem.Message and SIGNAL's 
Fault_Sem.Message_Sem. The SIGNAL causes a 
task switch to the Faulthandler, and the fault is pro­
cessed. After it has dealt with the code pool, ~ 
Faulthandler WAIT's: this causes a task switch back to 
the previously running process. The instruction that 
caused the fault is re-executed. 



The operating system issues Heap faults, and in one in­
stance, a segment fault. Heap faults are detected by the 
Heap operators when requests are made for Heap space 
by MARK, NEW, VARNEW, and PERMNEW. The 
one segment fault is issued by MEMLOCK if a seg­
ment to be locked in the code pool is not already resi­
dent. To issue a fault, the operating system calls the 
execution error procedure (EXECERROR), and passes 
it the needed information. EXECERROR then performs 
a SIGNAL on Message_Sem. 

The Faulthandler first ensures that the currently run­
ning segment is not swapped out, and then uses the 
code pool management routines to adjust the main 
memory layout. 

If a Stack fault is caused by a call to a routine in a dif­
ferent segment, Faulthandler must lock both calling 
and called segments into memory. 

------ Concurrency 

Operating system routines support concurrency only by 
the activation and de-activation of processes; actual 
task switching is accomplished by the p-machine oper­
ations SIGNAL and WAIT. 

Concurrency support is intended for low-level tasks. 
Most system-level facilities, particularly I/O, are syn­
chronous. For instance, a READ or UNITREAD from 
the console does not return to the caller until a charac­
ter is available. No task switch can occur during the 
waiting period. 

The operating system global variable TasLlnfo is 
used to keep track of some of the data for subsidiary 
processes. Its structure is as follows: 

TasLInfo: RECORD 
Lock, 
Task_...Done: semaphore; 
N_ Tasks: integer; 

END {of Task_ Info}; 

3-15 



3-16 

Task_Info.Lock is used to ensure mutual exclusion 
while changing the values of other TasLInfo fields. 
TasLDone is used to WAIT on the termination of any 
subsidiary processes. N_Tasks is the number of 
subsidiary tasks that have been START'ed. 

The unit CONCURRENCY has three routines: START, 
STOP, and BLK~XIT. For each process initiation, 
the compiler emits initialization code that signals the 
semaphore passed to START. The compiler also emits a 
call to STOP in the exit code of each process; a call to 
BLK~XIT is part of the exit code of a main process. 

START builds the data structures for a new task and 
sets it in execution. The task's TIB, activation record, 
and stack space are allocated on the Heap, and the 
operating system forces a task switch by issuing a 
WAIT. Presumably, the new process starts executing, 
and switches back to START by doing a SIGNAL after 
its parameters have been copied. Actually, when 
START performs the WAIT, it is the process with the 
highest priority that begins executing. 

STOP records the termination of a process. It 
decrements Task_Info .N_Tasks, SIGNAL ' s 
TasLInfo.Task_Done, and then initializes and waits 
on a dummy semaphore in order to force a permanent 
task switch from the terminating process. 

BLK_EXIT is called by a main task, and waits for the 
termination of all subsidiary tasks. It waits on 
Task~one, and terminates the main task when 
N_Tasks equals zero. 



I/O SUPPORT 

FIBs 

File I/O is controlled with a structure called a File 
Information Block (FIB). When a user declares a file, 
the compiler emits code to initialize a FIB for that file. 
A FIB is declared as follows: 

FIB = RECORD 
FWindow: Window_ P; 
FEOF. FEOLN: Boolean; 
FState: (FJandW. FNeedChar. FGotChar); 
FRecSize: integer; 
FLock: semaphore; 
CASE FlsOpen: Boolean OF 

true: (F lsBlkd: Boolean; 
FUNIT:UNITNUM; 
FVID:VID: 
FReptCnt. 
FNxtBlk, 
FMaxBlk: integer: 
FModified; Boolean; 
FHeader: DirEntry: 
CASE FSoftBuf: Boolean OF 

true: (FNxtByte, FMaxByte: integer: 

END {of FIB} 

FBufChngd: Boolean; 
FBuffer: PACKED ARRAY [[O .. FBlkSize) 

OF CHAR)) 

FWindow points to the current character in the file's 
buffer. FEOF and FEOLN are the EOF and EOLN 
flags. FState indicates that the file is either a standard 
(Jensen and Wirth) file, an INTERACTIVE file await­
ing a character, or an INTERACTIVE file with a char­
acter. FRecSize is zero for unentered files, one for 
INTERACTIVE files and text files; if it is larger than 
zero, it indicates the size (in bytes) of a record. FLock is 
used to ensure that only one process at a time may 
modify the file. FIsOpen is TRUE only when the file is 
open. 

3-17 



If FIsOpen is TRUE, then several other fields become 
relevant. FIsBlkd is TRUE if the file resides on a stor­
age device. FDev is the number of that device, and 
FVolID the name of the volume. FReptCnt contains a 
count of the number of times the window value is valid 
before another GET is needed. FNxtBlk is the next (rel­
ative) block to access. FMaxBlk is the maximum (rela­
tive) block that can be accessed. FModified becomes 
TRUE if the file is modified; a new date is then set in 
the directory. FHeader is a copy of the file's directory 
entry. FSoftBuf is TRUE if soft-buffered I/O is used. 
This is the case for all files on storage device, except 
unentered files. 

If FSoftBuf is TRUE, then the last set of FIB fields 
are used. FNxtByte and FMaxByte are used for buffer 
handling, FBufChngd indicates that the buffer contents 
have been modified, and FBuffer is the buffer itself. 

Directories 

3-18 

The following figure illustrates the structure of a direc­
tory, as on a disk or other storage device. 



o~m { 

DISK { 
PART 

NUMBER 

STATUS 
BIT 

DTlD 

2284136 

---I 

o 

DFIR5TBLK 

DLASTBLK 

FILLER - 1 OFK INO 

LENGTH (7) 1 

2 3 

4 5 

6 7 

DEOVBLK 

ONUMFILES 

DLOADTiME 

(YEAR) I (MONTH) 

I 
I (DAY) } DLASTBOOT 

1 

DIRENTRY RECORD (1-77) 

OF IRSTBLK 

DLASTBLK 

FILLER 2 I DFKIND 

LENGTH (15) 1 

2 3 

4 5 

6 7 

8 9 

10 11 

12 13 

14 15 

DLASTBYTE 

(YEAR) I (MONTH) I (DAY) } DACCESS 

DIRECTORY: ARRAY [0 .. 77] OF DIRENTRY: 

••• 77 

3-19 



VARIETIES OF 110 

Record 110 

Record 110 applies to entered Pascal files, using the in­
trinsics GET and PUT. 

Screen 110 

Screen 110 may be handled by the unit SCREENOPS, 
whose routines are described in the following section. 

Input from the display unit is accomplished by the pro­
cedure CHAR_DEV_GET, which uses 
SC_CHECK_CHAR (in SCREENOPS) and 
SYSCOM A .MISCINFO to determine whether any spe­
cial handling needs to be done. 

Output to the screen is accomplished by a simple 
UNITWRITE. 

Block 110 

3-20 

Block I/O applies to unentered files. The routines 
BLOCKREAD and BLOCKWRITE are used. These are 
part of the system routine FBLOCKIO in the 
EXTRAIO unit. 

When a file is accessed as an unentered file, all other 
file formatting is disabled. 



Text 110 

A text file is a file of ASCII characters. It has a 2-
block header that contains formatting information used 
by the Screen-Oriented Editor. When a text file is used 
by a system program other than the editor, the oper­
ating system ignores this header. When a new text file 
is created, the operating system writes a 2-block header 
filled with NULs. When a part number is added to a 
text file, it is stored in the last two words of the header 
(end ob block 1). 

Text files always have an even number of blocks. Thus, 
the smallest possible text file is four blocks long. Each 
pair of blocks after the header is considered a page. 
Each page contains lines of text terminated by pressing 
the RETURN key. The last line of text in a page must 
not be continued on the next page in the text file. Ex­
tra space after the last line in each page must be filled 
with NULs (decimal 0). 

Each line in a text file may optionally start with a DLE 
(decimal 16), which is interpreted as a blank compres­
sion code. The byte following a blank compression code 
is ASCII code 32 + n, where n is the number of leading 
blanks. This blank compression code is generated by 
the editor (chiefly for the purpose of saving space in in­
dented program source). 

Your programs typically handle text files with READ, 
READLN, WRITE, and WRITE LN. GET and PUT 
may be used, and will follow the Jensen and Wirth 
standard for files of type TEXT. 

3-21/3-22 





4 

Program Execution 

The run-time environment for your program is created by the 
operating system's GETCMD unit. GETCMD starts the execu­
tion of system programs such as the compiler, linker, filer, and 
so on, and your programs named in the X(ecute command. In 
all such cases, GETCMD calls the procedure ASSOCIATE, 
which finds the appropriate code file, and then calls 
BUILDENV. BUILDENV constructs a program's run-time 
environment, as outlined in Chapter 1, The p-Machine. 

BUILDENV recursively traverses the segments used by a pro­
gram. For each segment, it initializes an E_ Vec, E_Rec, and 
SIB. As each E_Rec is created, it is linked to a chain of seg­
ments that are already active. In this way, the operating sys­
tem can keep track of all active segments. Before BUILDENV 
initializes segment information, it checks to see if that segment 
is already active, and if it is, it does nothing but initialize the 
proper pointers. Otherwise, the E_ Vec, E_Rec, and SIB must 
be created from information present in the code file. 

SEGREFs are segment reference assignments emitted by the 
compiler. Segment numbers are local to a code segment. The 
main program is segment 2 and subsidiary segments, if any, 
are numbered starting from 3. Segment 1 is always the oper­
ating system's KERNEL unit. SEGREFs are emitted for any 
principal segments, such as a used unit, used by the compila­
tion. At associate time, BUILDENV uses the SEGREF list to 
find the segments that the program uses. 

All run-time errors detected by the system cause the current 
program to halt. The system displays an error message, and 
when you press the space bar, the system is reinitialized. The 
program's run-time environment is lost. 

4-1 



When a program terminates, control returns to GETCMD, 
which waits for further instructions. When a program termi­
nates normally, its environment is not lost, and the program 
can be restarted with the U(ser Restart command. The system 
mayor may not need to call BUILDENV again. 

4-2 



A 

p-Machine Opcodes 
(Alphabetic Order) 

Opcode Dec Hex Description 

ABI 224 EO Absolute Value Integer 
ABR 227 E3 Absolute Value of Real 
ADI 162 A2 Add Integers 
ADJ 199 C7 Adjust Set 
ADR 192 CO Add Reals 
ASTR 235 EB Assign String 
BNOT 159 9F Boolean NOT 
BPT 158 9E Breakpoint 
CAP 171 AB Copy Array Parameter 
CHK 203 CB Check Subrange Bounds 

------ CPF 151 97 Call Formal Procedure 
CPG 145 91 Call Global Procedure 
CPI 146 92 Call Intermediate Procedure 
CPL 144 90 Call Local Procedure 
CSP 172 AC Copy String Parameter 
CSTR 236 EC Check String Index 
CXG 148 94 Call Global External Procedure 
CXI 149 95 Call Intermediate External 

Procedure 
CXL 147 93 Call Local External Procedure 
DECI 238 EE Decrement Integer 
DIF 221 DD Set Difference 
DUP1 226 E2 Duplicate One Word 
DUPR 198 C6 Duplicate Real 
DVI 141 8D Divide Integers 
DVR 195 C3 Divide Reals 
EFJ 210 D2 Equal False Jump 
EQBYT 185 B9 Equal Byte Array 
EQPWR 182 B6 Equal Set 
EQREAL 205 CD Equal Real 

A-I 



Opcode Dec Hex Description 

EQSTR 232 E8 Equal String 
EQUI 176 BO Equal Integer 
FJP 212 D4 False Jump 
FJPL 213 D5 False Long Jump 
FLT 204 CC Float Top-of-Stack 
GEBYT 187 BB Greater Than or Equal Byte 

Array 
GEPWR 184 B8 Greater Than or Equal Set 
GEQI 179 B3 Greater Than or Equal Integer 
GEREAL 207 CF Greater Than or Equal Real 
GESTR 234 EA Greater Than or Equal String 
GEUSW 181 B5 Greater Than or Equal Unsigned 
INC 231 E7 Increment Field Pointer 
INCI 237 ED Increment Integer 
IND 230 E6 Index and Load Word 
INN 218 DA Set Membership 
INT 220 DC Set Intersection 
IXA 215 D7 Index Array 
IXP 216 D8 Index Packed Array 
JPL 139 8B Unconditional Long Jump 
LAE 155 9B Load Extended Address 
LAND 161 Al Logical AND 
LAO 134 86 Load Global Address 
LCO 130 82 Load Constant Offset 
LDA 136 88 Load Intermediate Address 
LDB 167 A7 Load Byte 
LDC 131 83 Load Multiple Word Constant 
LDCB 128 80 Load Constant Byte 
LDCI 129 81 Load Constant Word 
LDCN 152 98 Load Constant NIL 
LDCRL 242 F2 Load Real Constant 
LDE 154 9A Load Extended Word 
LDL 135 87 Load Local Word 
LDM 208 DO Load Multiple Words 
LDO 133 85 Load Global Word 
LDP 201 C9 Load a Packed Field 
LDRL 243 F3 Load Real 
LEBYT 186 BA Less Than or Equal Byte Array 

A-2 



Opcode Dec Hex Description 

LEPWR 183 B7 Less Than or Equal Set 
-------- LEQI 178 B2 Less Than or Equal Integer 

LEREAL 206 CE Less Than or Equal Real 
LESTR 233 E9 Less Than or Equal String 
LEUSW 180 B4 Less Than or Equal Unsigned 
LLA 132 84 Load Local Address 
LNOT 229 E5 Logical NOT 
LaD 137 89 Load Intermediate Word 
LOR 160 AO Logical OR 
LPR 157 9D Load Processor Register 
LSL 153 99 Load Static Link 
MODI 143 8F Modulo Integers 
MOV 197 C5 Move 
MPI 140 8C Multiply Integers 
MPR 194 C2 Multiply Reals 
NAT 168 A8 Native Code 
NAT-INFO 169 A9 Native Code Information 
NEQI 177 Bl Not Equal Integer 
NFJ 211 D3 Not Equal False Jump 
NGI 225 El Negate Integer 
NGR 228 E4 Negate Real 
Nap 156 9C No Operation 
RESERVEI 250 FA Reserved 
RESERVE2 251 FB Reserved 
RESERVE3 252 FC Reserved 
RESERVE4 253 FD Reserved 
RESERVE5 254 FE Reserved 
RESERVE6 255 FF Reserved 
RND 191 BF Round Real 
RPU 150 96 Return from Procedure 
SBI 163 A3 Subtract Integers 
SBR 193 Cl Subtract Reals 
SCPIl 239 EF Short Call Intermediate Procedure 
SCPI2 240 FO Short Call Intermediate Procedure 

..--..... SCXGl 112 70 Short Call External Global 
Procedure 

SCXG2 113 71 Short Call External Global 
Procedure 

A-3 



Opcode Dec Hex Description 

SCXG3 114 72 Short Call External Global 
Procedure 

SCXG4 115 73 Short Call External Global 
Procedure 

SCXG5 116 74 Short Call External Global 
Procedure 

SCXG6 117 75 Short Call External Global 
Procedure 

SCXG7 118 76 Short Call External Global 
Procedure 

SCXG8 119 77 Short Call External Global 
Procedure 

SIGNAL 222 DE Signal 
SINDO 120 78 Short Index and Load Word 
SINDI 121 79 Short Index and Load Word 
SIND2 122 7A Short Index and Load Word 
SIND3 123 7B Short Index and Load Word 
SIND4 124 7C Short Index and Load Word 
SIND5 125 7D Short Index and Load Word 
SIND6 126 7E Short Index and Load Word 
SIND7 127 7F Short Index and Load Word 
SLDCO 0 00 Short Load Word Constant 
SLDCl 1 01 Short Load Word Constant 
SLDC2 2 02 Short Load Word Constant 
SLDC3 3 03 Short Load Word Constant 
SLDC4 4 04 Short Load Word Constant 
SLDC5 5 05 Short Load Word Constant 
SLDC6 6 06 Short Load Word Constant 
SLDC7 7 07 Short Load Word Constant 
SLDC8 8 08 Short Load Word Constant 
SLDC9 9 09 Short Load Word Constant 
SLDCI0 10 OA Short Load Word Constant 
SLDCll 11 OB Short Load Word Constant 
SLDC12 12 OC Short Load Word Constant 
SLDC13 13 OD Short Load Word Constant 
SLDC14 14 OE Short Load Word Constant 
SLDC15 15 OF Short Load Word Constant 
SLDC16 16 10 Short Load Word Constant 

A·4 



Opcode Dec Hex Description 

SLDC17 17 11 Short Load Word Constant 
SLDC18 18 12 Short Load Word Constant 
SLDC19 19 13 Short Load Word Constant 
SLDC20 20 14 Short Load Word Constant 
SLDC21 21 15 Short Load Word Constant 
SLDC22 22 16 Short Load Word Constant 
SLDC23 23 17 Short Load Word Constant 
SLDC24 24 18 Short Load Word Constant 
SLDC25 25 19 Short Load Word Constant 
SLDC26 26 lA Short Load Word Constant 
SLDC27 27 IB Short Load Word Constant 
SLDC28 28 lC Short Load Word Constant 
SLDC29 29 ID Short Load Word Constant 
SLDC30 30 IE Short Load Word Constant 
SLDC31 31 IF Short Load Word Constant 
SLDLI 32 20 Short Load Local Word 
SLDL2 33 21 Short Load Local Word 
SLDL3 34 22 Short Load Local Word 
SLDL4 35 23 Short Load Local Word 
SLDL5 36 24 Short Load Local Word 
SLDL6 37 25 Short Load Local Word 
SLDL7 38 26 Short Load Local Word 
SLDL8 39 27 Short Load Local Word 
SLDL9 40 28 Short Load Local Word 
SLDLI0 41 29 Short Load Local Word 
SLDL11 42 2A Short Load Local Word 
SLDL12 43 2B Short Load Local Word 
SLDL13 44 2C Short Load Local Word 
SLDL14 45 2D Short Load Local Word 
SLDL15 46 2E Short Load Local Word 
SLDL16 47 2F Short Load Local Word 
SLDOI 48 30 Short Load Global Word 
SLD02 49 31 Short Load Global Word 
SLD03 50 32 Short Load Global Word 
SLD04 51 33 Short Load Global Word 
SLD05 52 34 Short Load Global Word 
SLD06 53 35 Short Load Global Word 
SLD07 54 36 Short Load Global Word 

A-5 



Opcode Dec Hex Description 

SLD08 55 37 Short Load Global Word 
SLD09 56 38 Short Load Global Word 
SLD010 57 39 Short Load Global Word 
SLD011 58 3A Short Load Global Word 
SLD012 59 3B Short Load Global Word 
SLD013 60 3C Short Load Global Word 
SLD014 61 3D Short Load Global Word 
SLD015 62 3E Short Load Global Word 
SLD016 63 3F Short Load Global Word 
SLLA1 96 60 Short Load Local Address 
SLLA2 97 61 Short Load Local Address 
SLLA3 98 62 Short Load Local Address 
SLLA4 99 63 Short Load Local Address 
SLLA5 100 64 Short Load Local Address 
SLLA6 101 65 Short Load Local Address 
SLLA7 102 66 Short Load Local Address 
SLLA8 103 67 Short Load Local Address 
SLOD1 173 AD Short Load Intermediate Word 
SLOD2 174 AE Short Load Intermediate Word 
SPR 209 D1 Store Processor Register 
SRO 165 A5 Store Global Word 
SRS 188 BC Build a Subrange Set 
SSTL1 104 68 Short Store Local Word 
SSTL2 105 69 Short Store Local Word 
SSTL3 106 6A Short Store Local Word 
SSTL4 107 6B Short Store Local Word 
SSTL5 108 6C Short Store Local Word 
SSTL6 109 6D Short Store Local Word 
SSTL7 110 6E Short Store Local Word 
SSTL8 111 6F Short Store Local Word 
STB 200 C8 Store Byte 
STE 217 D9 Store Extended Word 
STL 164 A4 Store Local Word 
STM 142 8E Store Multiple Words 
STO 196 C4 Store Indirect 
STP 202 CA Store into a Packed Field 
STR 166 A6 Store Intermediate Word 
STRL 244 F4 Store Real 

A-6 



Opcode Dec Hex Description 

SWAP 189 BD Swap .-.... 
TJP 241 Fl True Jump 
TNC 190 BE Truncate Real 
UJP 138 8A Unconditional Jump 
UNI 219 DB Set Union 
WAIT 223 DF Wait 
XJP 214 D6 Case Jump 

A-7/A-8 





B 

P-Machine Opcodes 
(Numeric Order) 

Dec Hex Opcode Description 

0 00 SLDCO Short Load Word Constant 
1 01 SLDCl Short Load Word Constant 
2 02 SLDC2 Short Load Word Constant 
3 03 SLDC3 Short Load Word Constant 
4 04 SLDC4 Short Load Word Constant 
5 05 SLDC5 Short Load Word Constant 
6 06 SLDC6 Short Load Word Constant 
7 07 SLDC7 Short Load Word Constant 
8 08 SLDC8 Short Load Word Constant 
9 09 SLDC9 Short Load Word Constant 

------- 10 OA SLDCI0 Short Load Word Constant 
11 OB SLDCll Short Load Word Constant 
12 OC SLDC12 Short Load Word Constant 
13 OD SLDC13 Short Load Word Constant 
14 OE SLDC14 Short Load Word Constant 
15 OF SLDC15 Short Load Word Constant 
16 10 SLDC16 Short Load Word Constant 
17 11 SLDC17 Short Load Word Constant 
18 12 SLDC18 Short Load Word Constant 
19 13 SLDC19 Short Load Word Constant 
20 14 SLDC20 Short Load Word Constant 
21 15 SLDC21 Short Load Word Constant 
22 16 SLDC22 Short Load Word Constant 
23 17 SLDC23 Short Load Word Constant 
24 18 SLDC24 Short Load Word Constant 
25 19 SLDC25 Short Load Word Constant 
26 lA SLDC26 Short Load Word Constant 
27 IB SLDC27 Short Load Word Constant 
28 lC SLDC28 Short Load Word Constant 
29 ID SLDC29 Short Load Word Constant 

B-! 



Dec Hex Opcode Description 

30 IE SLDC30 Short Load Word Constant 
31 IF SLDC31 Short Load Word Constant 
32 20 SLDLI Short Load Local Word 
33 21 SLDL2 Short Load Local Word 
34 22 SLDL3 Short Load Local Word 
35 23 SLDL4 Short Load Local Word 
36 24 SLDL5 Short Load Local Word 
37 25 SLDL6 Short Load Local Word 
38 26 SLDL7 Short Load Local Word 
39 27 SLDL8 Short Load Local Word 
40 28 SLDL9 Short Load Local Word 
41 29 SLDLIO Short Load Local Word 
42 2A SLDLll Short Load Local Word 
43 2B SLDL12 Short Load Local Word 
44 2C SLDL13 Short Load Local Word 
45 2D SLDL14 Short Load Local Word 
46 2E SLDL15 Short Load Local Word 
47 2F SLDL16 Short Load Local Word 
48 30 SLDOI Short Load Global Word 
49 31 SLD02 Short Load Global Word 
50 32 SLD03 Short Load Global Word 
51 33 SLD04 Short Load Global Word 
52 34 SLD05 Short Load Global Word 
53 35 SLD06 Short Load Global Word 
54 36 SLD07 Short Load Global Word 
55 37 SLD08 Short Load Global Word 
56 38 SLD09 Short Load Global Word 
57 39 SLDOI0 Short Load Global Word 
58 3A SLDOll Short Load Global Word 
59 3B SLD012 Short Load Global Word 
60 3C SLD013 Short Load Global Word 
61 3D SLD014 Short Load Global Word 
62 3E SLD015 Short Load Global Word 
63 3F SLD016 Short Load Global Word 
64 40 Unused 

Unused 
Unused 

B-2 



Dec Hex Opcode Description 

Unused 
~ 95 5F Unused 

96 60 SLLA1 Short Load Local Address 
97 61 SLLA2 Short Load Local Address 
98 62 SLLA3 Short Load Local Address 
99 63 SLLA4 Short Load Local Address 

100 64 SLLA5 Short Load Local Address 
101 65 SLLA6 Short Load Local Address 
102 66 SLLA7 Short Load Local Address 
103 67 SLLA8 Short Load Local Address 
104 68 SSTL1 Short Store Local Word 
105 69 SSTL2 Short Store Local Word 
106 6A SSTL3 Short Store Local Word 
107 6B SSTL4 Short Store Local Word 
108 6C SSTL5 Short Store Local Word 
109 6D SSTL6 Short Store Local Word 
110 6E SSTL7 Short Store Local Word 
111 6F SSTL8 Short Store Local Word 
112 70 SCXG1 Short Call External Global 

Procedure 
113 71 SCXG2 Short Call External Global 

Procedure 
114 72 SCXG3 Short Call External Global 

Procedure 
115 73 SCXG4 Short Call External Global 

Procedure 
116 74 SCXG5 Short Call External Global 

Procedure 
117 75 SCXG6 Short Call External Global 

Procedure 
118 76 SCXG7 Short Call External Global 

Procedure 
119 77 SCXG8 Short Call External Global 

Procedure 
-------... 120 78 SINDO Short Index and Load Word 

121 79 SIND1 Short Index and Load Word 
122 7A SIND2 Short Index and Load Word 
123 7B SIND3 Short Index and Load Word 

B-3 



Dec Hex Opcode Description 

124 7C SIND4 Short Index and Load Word 
125 7D SIND5 Short Index and Load Word 
126 7E SIND6 Short Index and Load Word 
127 7F SIND7 Short Index and Load Word 
128 80 LDCB Load Constant Byte 
129 81 LDCI Load Constant Word 
130 82 LCO Load Constant Offset 
131 83 LDC Load Multiple Word Constant 
132 84 LLA Load Local Address 
133 85 LDO Load Global Word 
134 86 LAO Load Global Address 
135 87 LDL Load Local Word 
136 88 LDA Load Intermediate Address 
137 89 LOD Load Intermediate Word 
138 8A UJP Unconditional Jump 
139 8B JPL Unconditional Long Jump 
140 8C MPI Multiply Integers 
141 8D DVI Divide Integers 
142 8E STM Store Multiple Words 
143 8F MODI Modulo Integers 
144 90 CPL Call Local Procedure 
145 91 CPG Call Global Procedure 
146 92 CPI Call Intermediate Procedure 
147 93 CXL Call Local External Procedure 
148 94 CXG Call Global External Procedure 
149 95 CXI Call Intermediate External 

Procedure 
150 96 RPU Return from Procedure 
151 97 CPF Call Formal Procedure 
152 98 LDCN Load Constant NIL 
153 99 LSL Load Static Link 
154 9A LDE Load Extended Word 
155 9B LAE Load Extended Address 
156 9C NOP No Operation 
157 9D LPR Load Processor Register 
158 9E BPT Breakpoint 
159 9F BNOT Boolean NOT 
160 AO LOR Logical OR 

B-4 



Dec Hex Opcode Description 

161 Al LAND Logical AND 

-------- 162 A2 ADI Add Integers 
163 A3 SBI Subtract Integers 
164 A4 STL Store Local Word 
165 A5 SRO Store Global Word 
166 A6 STR Store Intermediate Word 
167 A7 LDB Load Byte 
168 A8 NAT Native Code 
169 A9 NAT-INFO Native Code Information 
170 AA Reserved 
171 AB CAP Copy Array Parameter 
172 AC CSP Copy String Parameter 
173 AD SLOD1 Short Load Intermediate Word 
174 AE SLOD2 Short Load Intermediate Word 
175 AF Unused 
176 BO EQUI Equal Integer 
177 B1 NEQI Not Equal Integer 

~ 
178 B2 LEQI Less Than or Equal Integer 
179 B3 GEQI Greater Than or Equal Integer 
180 B4 LEUSW Less Than or Equal Unsigned 
181 B5 GEUSW Greater Than or Equal Unsigned 
182 B6 EQPWR Equal Set 
183 B7 LEPWR Less Than or Equal Set 
184 B8 GEPWR Greater Than or Equal Set 
185 B9 EQBYT Equal Byte Array 
186 BA LEBYT Less Than or Equal Byte Array 
187 BB GEBYT Greater Than or Equal Byte 

Array 
188 BC SRS Build a Subrange Set 
189 BD SWAP Swap 
190 BE TNC Truncate Real 
191 BF RND Round Real 
192 CO ADR Add Reals 
193 C1 SBR Subtract Reals 

~ 194 C2 MPR Multiply Reals 
195 C3 DVR Divide Reals 
196 C4 STO Store Indirect 
197 C5 MOV Move 

B-5 



Dec Hex Opcode Description 

198 C6 DUPR Duplicate Real 
199 C7 ADJ Adjust Set 
200 C8 STB Store Byte 
201 C9 LDP Load a Packed Field 
202 CA STP Store into a Packed Field 
203 CB CHK Check Subrange Bounds 
204 CC FLT Float Top-of-Stack 
205 CD EQREAL Equal Real 
206 CE LEREAL Less Than or Equal Real 
207 CF GEREAL Greater Than or Equal Real 
208 DO LDM Load Multiple Words 
209 Dl SPR Store Processor Register 
210 D2 EFJ Equal False Jump 
211 D3 NFJ Not Equal False Jump 
212 D4 FJP False Jump 
213 D5 FJPL False Long Jump 
214 D6 XJP Case Jump 
215 D7 IXA Index Array 
216 D8 IXP Index Packed Array 
217 D9 STE Store Extended Word 
218 DA INN Set Membership 
219 DB UNI Set Union 
220 DC INT Set Intersection 
221 DD DIF Set Difference 
222 DE SIGNAL Signal 
223 DF WAIT Wait 
224 EO ABI Absolute Value Integer 
225 E1 NGI Negate Integer 
226 E2 DUP1 Duplicate One Word 
227 E3 ABR Absolute Value of Real 
228 E4 NGR Negate Real 
229 E5 LNOT Logical NOT 
230 E6 IND Index and Load Word 
231 E7 INC Increment Field Pointer 
232 E8 EQSTR Equal String 
233 E9 LESTR Less Than or Equal String 
234 EA GESTR Greater Than or Equal String 
235 EB ASTR Assign String 

B-6 



Dec Hex Opcode Description 

236 EC CSTR Check String Index ------. 
237 ED INCI Increment Integer 
238 EE DECI Decrement Integer 
239 EF SCPII Short Call Intermediate Procedure 
240 FO SCPI2 Short Call Intermediate Procedure 
241 Fl TJP True Jump 
242 F2 LDCRL Load Real Constant 
243 F3 LDRL Load Real 
244 F4 STRL Store Real 
245 F5 Unused 

Unused 
Unused 
Unused 

249 F9 Unused 
250 FA RESERVEI Reserved 
251 FB RESERVE2 Reserved 
252 FC RESERVE3 Reserved 
253 FD RESERVE4 Reserved 
254 FE RESERVE5 Reserved 
255 FF RESERVE6 Reserved 

B-7/B-8 





c 

ASCII Codes 

Decimal Octal Hexadecimal Character 

0 000 00 NUL 
1 001 01 SOH 
2 002 02 STX 
3 003 03 ETX 
4 004 04 EOT 
5 005 05 ENQ 
6 006 06 ACK 
7 007 07 BEL 
8 010 08 BS 
9 011 09 HT 

10 012 OA LF 
11 013 OB VT 
12 014 OC FF 
13 015 OD CR 
14 016 OE SO 
15 017 OF SI 
16 020 10 DLE 
17 021 11 DC1 
18 022 12 DC2 
19 023 13 DC3 
20 024 14 DC4 
21 025 15 NAK 
22 026 16 SYN 
23 027 17 ETB 
24 030 18 CAN 
25 031 19 EM 
26 032 1A SUB 
27 033 1B ESC 
28 034 1C FS 
29 035 1D GS 
30 036 IE RS 
31 037 IF US 
32 040 20 SP 

C-l 



Decimal Octal Hexadecimal Character 

33 041 21 
34 042 22 
35 043 23 # 
36 044 24 $ 
37 045 25 % 
38 046 26 & 
39 047 27 
40 050 28 
41 051 29 
42 052 2A * 
43 053 2B + 
44 054 2C 
45 055 2D 
46 056 2E 
47 057 2F 
48 060 30 0 
49 061 31 1 
50 062 32 2 
51 063 33 3 
52 064 34 4 
53 065 35 5 
54 066 36 6 
55 067 37 7 
56 070 38 8 
57 071 39 9 
58 072 3A 
59 073 3B 
60 074 3C < 
61 075 3D 
62 076 3E > 
63 077 3F ? 
64 100 40 @ 

65 101 41 A 
66 102 42 B 
67 103 43 C 
68 104 44 D 
69 105 45 E 
70 106 46 F 
71 107 47 G 
72 110 48 H 
73 111 49 I 

C·2 



Decimal Octal Hexadecimal Character 

74 112 4A J 
75 113 4B K 
76 114 4C L 
77 11 5 4D M 
78 116 4E N 
79 117 4F 0 
80 120 50 P 
81 121 51 Q 
82 122 52 R 
83 123 53 S 
84 124 54 T 
85 125 55 U 
86 126 56 V 
87 127 57 W 
88 130 58 X 
89 131 59 Y 
90 132 5A Z 
91 133 5B [ 
92 134 5C / 
93 135 5D 1 
94 136 5E 1\ 

95 137 5F 
96 140 60 
97 141 61 a 
98 142 62 b 
99 143 63 c 

100 144 64 d 
101 145 65 e 
102 146 66 f 
103 147 67 g 
104 150 68 h 
105 151 69 
106 152 6A j 
107 153 6B k 
108 154 6C 1 
109 155 6D m 
110 156 6E n 
111 157 6F 0 

112 160 70 P 
113 161 71 q 
114 162 72 r 
115 163 73 s 

C-3 



Decimal Octal Hexadecimal Character 

116 164 74 t 
117 165 75 u 
118 166 76 v 
119 167 77 w 
120 170 78 x 
121 171 79 y 
122 172 7A z 
123 173 7B 
124 174 7C 
125 175 7D 
126 176 7E 
127 177 7F DEL 

C-4 



Glossary 

associate time - That part of a program's lifetime in which the 
segments and their various references to each other are 
associated by the operating system. This occurs when the 
program is prepared for execution. 

blank-filled - All 8-bit bytes within the specified region are 
filled with blanks (ASCII 32). 

block - An area of memory, usually on a disk, with a fixed 
size of 512 contiguous 8-bit bytes (256 contiguous 16 bit­
words). 

block boundary - Byte zero of any block. 

byte pointer - A byte address, as opposed to a word address. 

byte sex - Some processors address I6-bit words with the 
most significant byte first, others with the least signifi­
cant byte first. Byte sex refers to this difference in ad­
dressing; two machines with different addressing styles 
are said to have different or opposite byte sex. 

compilation unit - A program or portion of a program that 
can be compiled by itself-in other words, a program or a 
UNIT. 

compile time - That part of a program's lifetime in which it is 
being compiled (or assembled). 

concurrency - The execution of two or more tasks or processes 
in parallel, that is, at the same time. Synonymous with 
multitasking. 

Glossary-I 



dynamic - Information that changes during program execu­
tion (or is not known before run time). 

filler - A field in a data structure that is at present unused. If 
this area is described as reserved for future use, then it 
usually should be zero-filled. This avoids confusion when 
future versions of the system make use of filler space. 

intersegment - The data (or program) in question occupies 
more than one segment or contains pointers to another 
segment. 

link time - That part of a program's lifetime in which it IS 

being operated on by the linker. 

multiprogramming - An environment that supports more than 
one user, where each user can perform multitasking. (The 
p-System does not support multiprogramming.) 

multitasking - The execution of two or more tasks in parallel; 
that is, at the same time. A task is a PROCESS from 
your point of view; from the system's point of view it 
might be a program. (The p-System does support multi­
tasking.) 

multiword - Some positive integral number of words. 

native code - Assembled code for some physical, as opposed 
to ideal processor. Also called machine code, or sometimes 
hard code. 

one's complement - All bits in the designated field are flipped. 

p-code - Assembled code for an ideal processor. P-code stands 
for pseudo-code. The p-System PME implements a 
pseudo-machine emulator. 

Glossary-2 



postprocessor - A program that is executed after the 
completion of some other program, and uses as input the 
output of that previous program. A postprocessor that 
creates output that can be used by still another program 
is often called a filter. 

principal segment - A segment that has a segment reference 
list; for example, a segment with a SEG_TYPE of 
PROG_SEG or UNIT_SEG. Corresponds to the outer 
segment of any compilation unit. UNITs, FORTRAN 
programs, and the outermost block of a Pascal program 
are all principal segments. 

relocatable - A portion of object code that can be moved to 
different locations in memory without changing its 
meaning. P-code is relocatable. Native code mayor may 
not be. 

run time - That part of a program's lifetime in which it is 
being executed or run. 

self-modifying - Code that overwrites or modifies itself during 
execution, thus changing its meaning. This is not 
recommended. 

seg-relative - The address of an object is specified as an offset 
from the beginning of the code segment in which it 
resides. 

static - Information that does not change throughout program 
execution and which is known before run time. 

subsidiary segment - A segment that has no segment refer­
ence list; for example, a segment with a SEG_TYPE of 
PROC_SEG or SEPRT_SEG. Corresponds to the object 
code of any segment whose source text is not separately 
compilable. Pascal segment procedures and segments pro­
duced by the UCSD adaptable assembler are subsidiary 
segments. 

Glossary-3 



TOS - Short for top of Stack. The object that is on the top of 
the p-machine Stack (which is the object that was most 
recently pushed). 

upward compatibility - Code that runs on current versions of 
a system will run on future versions of that system. A 
more limited and more easily obtained version of upward 
compatibility requires source code to be recompiled 
on new versions, but ensures that it will run when 
recompiled. 

word - 16 bits aligned on an even byte-address boundary. The 
byte which is most significant is determined by the byte 
sex of the machine for which it was generated. 

word pointer - A word address (as opposed to a byte address). 
The address of a word must be even. 

zero-filled - A field of data that contains nothing but zeroes 
(all bits must be 0). 

Glossary-4 



Index 

Title Page 

A 
ABI ....................... ..... ... .. ........ .... .... ..... .. ... .. ................ .. .... .. .... 1-64 
ABR .... ... ........ ......... ... .. ... ....... .... .. ............ .. ...... ...... ...... .... ....... 1-66 
Activation record .. .. ... .. .. ... .... ...... .... .. .................... ..... ... ......... 1-51 
ADI ...................................................................... .......... ...... ... 1-64 
ADJ ................................ .............................................. .. ...... .. 1-68 
ADR .................................................................................. ... ... 1-67 
ALPHALOCK ................... ... ................................................. 2-21 
Assembler-Generated Code Files .............................. .... .. ... ... 1-33 
ASTR ...................................................................................... 1-77 

B 
B ....... ......................................................... ........... .... ...... .. ....... 1-48 
Basic Input/Output Subsystem ................................ .. ... ...... ... 2-3 
Basic I/O Subsystem ................... .......................... .... ......... ..... 1-6 
BIOS ...................... ......... ........ .... ........................... ..... ....... 1-6, 2-3 

8086 specifics ........................................................... ........... 2-47 
Console .................................................................... .. . 2-25, 2-29 
Disk ........................... ... ...... ....... ... .............................. 2-26, 2-39 
Entry Points ......... ......... ... .... ..... .................. ......... ........... ... 2-45 
Printer ................. ....... ... ... .... .... ..... .. ........................... 2-25, 2-37 
Remote ............................ .... ...... ... .............................. 2-26, 2-42 
Routine parameters ....... . ....... ... .. ... . ..... .. ... ....... ....... .. ....... ... 2-45 

Blank Compression Code .. . .... .. ... .. ... ... .... ... ... ... ........ ... .. ... ..... 2-19 
Block I/O .. ................................ .......... .......... .... ....... ..... .......... 3-20 
BNOT ..................................................................................... 1-63 
BPT ......................... ... ........ ........ ... ... ... ........................ ..... .. .. .. . 1-75 
BREAK ..................................................................... ............. 2-33 
Byte sex .................................................................................... 1-9 

Index-l 



Title Page 

C 
CAP ........................................................................................ 1-60 
CHK ... ........................................................................... ' .......... 1-65 
Code pool ................................................................................ 3-11 
Code Segments ........ ....... ..... ... ............ ... ............. ... ..... ...... 1-6, 1-9 
Completion Codes ......................................................... 2-10, 2-24 
Concurrency ............................... ............................................ 3-15 
Constant pool.... .............. ........... .......... ....... ........... ................ 1-11 
CONTROL parameters ........................................................... 2-9 
CPF ......................................................................................... 1-74 
CPG ........................................................................................ 1-73 
CPI .......................................................................................... 1-73 
CPL ......................................................................................... 1-73 
CSP ......................................................................................... 1-61 
CSTR ........................ ........ ...................................................... 1-77 
CXG ........................................................................................ 1-74 
CXI ......................................................................................... 1-74 
CXL ........................................................................................ 1-74 

D 
DATAAREA ......................................................................... 2-14 
DATASIZE ............................................................................ 1-10 
DB ........................................................................................... 1-48 
DECI ............................................................ .. ........................ 1-64 
DEF ........................................................................................ 1-34 
Device I/O . .......... ... ... ...... ........ ....... ..... .......... ......... .......... ........ 1-6 
Device Numbers ....................................................................... 2-8 
DIF ......................................................................................... 1-69 
Directories .............................................................................. 3-18 
DISPOSE ................................................................................. 3-6 
DLE ........................................................................................ 2-19 
DUP1 ...................................................................................... 1-78 
DUPR ..................................................................................... 1-78 
DVI ................................... ...................................................... 1-65 
DVR ............................ ....................................... ................. .... 1-67 

Index-2 



Title 

E 
EFJ 
E_nvironment record .......................................................... . 
Environment records ............................................................ . 
EOF ....................................................................................... . 
EQBYT .................................................................................. . 
EQPWR ................................................................................ .. 
EQREAL ............................................................................... . 
EQSTR ....................... ....... ... ... .. .......... .. ............. .. ................. . 
EQUI ........................................................................ .... ... ..... .. 
E_REC .......................................................................... ...... . . 
EVEC ..................................................................................... . 
EXITIC ................................................................................ .. 

F 

Page 

1-72 
1-38 
1-38 
2-20 
1-70 
1-69 
1-67 
1-76 
1-65 
1-38 
1-38 
1-10 

Fault Handling ......... .................. ........................................... 3-14 
FIB ......................................................................................... 3-17 
File Information Block ...................... ............ ...... ...... .. .. ........ 3-17 
FJP ......................................................................................... 1-71 
FJPL ....................................................................................... 1-72 
Floating point ................... ....... .......................................... .... 1-13 
FLT .............................................................................. ...... ..... 1-66 
FLUSH ................................................................................... 2-33 
Four-word reals ...................................................................... 1-13 

G 
GEBYT ................................................................................... 1-71 
GEPWR .................................................................................. 1-69 
GEQI ........................................... ........................................... 1-66 
GEREAL ............................................................. .................. . 1-68 
GESTR ................. ... ....... ..... ...................................... ............. 1-76 
GEUSW ..................................................................... .... ......... 1-64 

H 
Heap .......... ....................... .............. ....... ............. ............... 1-4, 3-5 

Index-3 



Title Page 

I 
INC ............................................................................. ........... . 1-62 
INCI ................................... .... ........................................ ......... 1-64 
IND ........................................ ..... ............................................ 1-58 
INN ......................................................................................... 1-68 
INT .................................. .... ........................... ... ...... ........ .... ... 1-69 
Interpreter . ................... ............ ........ .................. . .......... ........... 1-3 
IORESULT ............................................................................ 2-10 
IPC .................................. ........ ........................... .. ................... 1-44 
IXA ........................... ........................ ... ..... .... ..... .. ................... 1-62 
IXP ................................................. .. ...................................... 1-63 

J 
JPL ... ................................ ........................................... .... .. ..... 1-72 

L 
LAE .................................... ............. ....................................... 1-58 
LAND ..... ................... ............. .... ............ ..... ...... ..... ............... . 1-69 
LAO .......... .... ....... .... ...................... ..................... .................... 1-56 
LCO ......................................................................................... 1-54 
LDA ........................................................................................ 1-57 
LDC ........................................................................................ 1-59 
LDCB .......................... ............. ... ............................................ 1-54 
LDCI ............................................................................ ........ ... 1-54 
LDCN ..................................................................................... 1-54 
LDCRL ........................................................................... ..... ... 1-59 
LDE ... ..................................................................................... 1-57 
LDL ........................................................................................ 1-55 
LDM ....................................................................................... 1-59 
LDO .......................................... .................................. ....... ..... 1-56 
LDP ... ........... ... .... .......... .. ........ .. ................................ ... ......... . 1-61 
LDRL ...................................................................................... 1-60 
LEBYT ............................ ...... .......................... .... ................ ... 1-70 
LEPWR ....................................................................... .... ....... 1-69 
LEQI ............................... ..... .......................................... ........ . 1-66 
LESTR ........................ ......... ................................................... 1-76 
LEUSW ......................................................................... ......... 1-63 
Linker information ...... ....... ....... ...................................... ...... . 1-22 

Index-4 



Title Page 

LLA ...... .................................................................... .... .......... 1-55 
LNOT ............................ .. ......... ....................................... ........ 1-63 
LOD ........................................................................................ 1-57 
Logical disk structure ........ ...... ............................................. 2-11 
LOR ..................................... ..... .... .................................... ...... 1-63 
LPR .................................................................................. .. ..... 1-78 
LSL ............................................................... ........ ....... ......... .. 1-75 

M 
MARK ......... ....... ............. ... ......... .............. ..... ...... ................ ... . 3-5 
Mark stack .................. ......... ......... ....... ......... .............. ........... 1-52 
MODI ................................................................................ ..... 1-65 
MOV ............................................................... .. ............ .. ........ 1-62 
MP .......................................................................................... 1-43 
MPI ......................................................................................... 1-65 
MPR ........................................................................................ 1-67 

N 
NAT ........... ......... .... .. .. ........ ................. ........... ..................... ... 1-79 
NAT-INFO ............... .. ................. .. ...... ...... .. .. .. .. .. ................... 1-79 
NEQI .......................................... .. .......................... ............. ... 1-65 
NEW ............................... .. ..... ........ ........................................ ... 3-6 
NFJ ......................................................................... ... .. ........... 1-72 
NGI .................................... ....... .............................................. 1-64 
NGR ..................................... ....... ...................................... ...... 1-67 
NIL ......................................................................................... 1-50 
NOCRLF bit ......................... .... ............................................. 2-19 
NOP ........................................................................................ 1-79 

o 
Operating System ...... ..... .. . .... ..... .. ....... .... . ........ ........ ...... ......... 3-3 

P 
P-code 

ABI ..................... .. ........ ...... ................................................ 1-64 
ABR .................................................................................... 1-66 
ADI .......................... ....... ..................... ............................... 1-64 
ADJ ..................... ........... .. ... ................................................ 1-68 

Index-5 



Title Page 

ADR ....................... ........ ... ....... ... ..... ........ ........ ....... ...... ..... . 1-67 
ASTR ................................................................................. . 1-77 
BNOT ......................... ... ....... ......... ...... .. ........... .................. . 1-63 
BPT .................................................................................... . 1-75 
CAP ........................... .................. ..... ........ ...... ... ... .............. . 1-60 
CRK ........... ........................ .. ........... ..... ........... .. .. ........ ...... . . 1-65 
CPF .... ... .......... ..... .... .. ..... ........ ......... ......... ................ ......... . 1-74 
CPG ..... ................. ....................... ........................... ...... ...... . 1-73 
CPI ............... ... ..... ......... ... .... .. ......... ..... ... ... .... .. .................. . 1-73 
CPL ............... ....... ... ...... ......... ........................ ....... ........... .. . 1-73 
CSP ................................ .... ..... ............................................ . 1-61 
CSTn ....................... .... .. ............ ........................... .... .... ... ... . 1-77 
CXG ................................................................................... . 1-74 
CXI ............................................................................ ......... . 1-74 
CXL ................................ ............ ........................................ . 1-74 
DECI .......................... .................. ...... ........ ... .. ...... ...... ..... .. . 1-64 
DIF ............ ..... ............. .. ........... ....... ... ... ...... ................ ....... . 1-69 
DUP1 ........ ....... ......................... ..... ...... .... ....... ................... . 
DUPR .......... .... ........... .......... .. ......... .... ....... ....... ................. . 

1-78 
\ 1-78 

DVI .... ....... .. ....... .... .............. ...... ......... ............... ....... ...... ... . 1-65 
DVR ............................ .. .......... ...... .. .. ... .............................. . 1-67 
EFJ ..................... .... .. ..... ......... ........................................... . 1-72 
EQBYT ......... ........ .... ..... .................... ...................... .......... . 1-70 
EQPWR ........ .......... ......... ...... ......... .......... .. ........... ............ . 1-69 
EQREAL ................... ......... ................ ..... .................. ..... ... . 1-67 
EQSTR ............................. .................................................. . 1-76 
EQUI ...... ... ........ ........ .......... ... ... ....... .. .......... ...................... . 1-65 
FJP ................. ............................................................ ...... . 1-71 
FJPL .... .... .... ....... .. ...... .. ........... .... .... .. ........ ...... ..... .... .... .. ... . 1-72 
FLT ........ ........ .. ...... .... ... ... ........ ...... ..... ......... .................... .. . 1-66 
GEBYT .. ....... ......... ..... .. ........... ... ..... ... ........................ ....... . 1-71 
GEPWR .......... .. .... ...... ..... .............. ............. ........... ............ . 1-69 
GEQI ....... ... ...... .. ........... ................ ...... ...... ....... .............. ... .. 1-66 
GEREAL ..................... .............. ....... .. ................. ............. . . 1-68 
GESTR ... ..................... ......... ..... ............................ ............ . 1-76 
GEUSW ................ ..... ....... ... ........ ............................ .......... . 1-64 
INC .................................. .............. ..................................... . 1-62 
INCI ........... ...... ............................. .... ................................ .. 1-64 

Index-6 



Title Page 

IND ........ ... ....................................... ......... ................. ......... 1-58 
INN ..... .. ............ .... ..... .... ... ....... .. ... .... ... ......... .. ....... ......... ... . 1-68 
INT ... .. ... .... .... ................. .. ... ... .... ..... ............... ... ... ...... .... .. ... 1-69 
IXA .... ...... ........................ ... .............................. ... ...... ..... .... 1-62 
IXP ................................... ..... ... ..... ................ .. .. ............... .. . 1-63 
JPL .......................................... ........ .......... .. .. .. .................... 1-72 
LAE ..... ...... ......... ... .. ... ........... ......... ............ .... ... .... ... .. ..... ... . 1-58 
LAND ... .. ............ ...... .. .... .... ...... .......... ........ .... ... ..... ...... ...... 1-63 
LAO .... ... ..... ..... ..... .. ..... ... ....... ..... ...... ..... ..... ... ... ... ... .. ....... .... 1-56 
LCO ..... .... .... ... ... ..... ............ ....... .......... .. .. ... .... .... .. ..... ...... ... . 1-54 
LDA ... .. ............ .. ..... ... ..... ................................... ... ........ ... ... 1-57 
LDB ... ................ ....... ..... .. ........ ... ..................... .................... 1-61 
LDC ... .... ... ........... ..... ... .... .. ...................... ................. ... ..... .. . 1-59 
LDCB .................................. .... ............................................ 1-54 
LDCI ................................... .......... .......... ............. ..... .......... 1-54 
LDCN ...................... ...... .............. ............................ ........ .. .. 1-54 
LDCRL .... .. ...... ..... .... .... .... ...... ......................... .... ...... ........ .. 1-59 
LDE ... ... .. .... .... .... .... .... ..... ..... ............... ............... ... ... ........ ... 1-57 ....---... 
LDL ... .. .... .... ....... .. .. ... .... ... ......... ..... ..... .......... ........ ... ... ..... ... 1-55 
LDM .... .. .... ...... ..... ... .... ....... .... ......... ..... .......... ..... ... ........ ... .. 1-59 
LDO .. .. ... .. ........ .. ...... ...... .... .. ......... ...... ......... .. ... .... ... ........ .. .. 1-56 
LDP .... ... .... ....... ........ .......... .... ..... ............................ ... ......... 1-61 
LDRL ................................. ....... .......... .................... ... .... ..... 1-60 
LEBYT .............................. ......... .......... .. .... .... .. ............... ... 1-70 
LEPWR ....... ........ ........... ..... .......... ......... ............................ 1-69 
LEQI ..... .. ..... ... ... ... ........ .... ..... ... ... ......................... ... ... ........ 1-66 
LEREAL ... ....... ... ..... ..... ..... ..... ..... .... .... .......................... .. .. 1-67 
LESTR ..... ............... .. ....... .. .... ...... ... .......... .. ..... .... .... ... ........ 1-76 
LEUSW .. .. ... ........ ....... ... ..... .......... ..... ... ... ..... ... ...... ... .......... 1-63 
LLA ..... ... ..... ....... .... .......... ... .. .... ......... .... ... .. .... ... .. .. .... ... ..... . 1-55 
LNOT ... ..... ........... ... ... ..... ............ ....... ...... ..... ... ... ..... ... ... ..... 1-63 
LaD ...... ...... ...... .............. ... .... ..... ......... ..... ... .... ....... .... .... ..... 1-57 
LOR .... .. ...... ......... .... .... ... .... ............. .......................... .......... 1-63 
LPR ... .... .. ........ .. .... ..... ... ........ .... .. ... .... .. .. .. ... ..... ...... ...... ....... 1-78 

~ LSL ... .......................... .......... ... ......... ................... ....... ........ . 1-75 
MODI .... ...... ........ .... .. .. .... .......... ... ... ..... ... ........................ ... . 1-65 
MOV .... ... ..... ................. ... ........ .. ....... ... ............. ............. ...... 1-62 
MPI ... ...... .. .... ............. ....... ..... ....... ... .. ... ..... .... ... ... .. .... ..... .... 1-65 

Index-7 



Title Page 

MPR .................................................................................... 1-67 
NAT ........... ... .. .................................................................... 1-79 
NAT- ........................................... ... .......... .............. .. .. .... .... 1-79 
NEQI .............. ... .................. ........................ ... ..................... 1-65 
NFJ ................ ... ............ ....... ...... ........ ..... .... ... ..................... 1-72 
NGI ..................................................................................... 1-64 
NGR .................................................................................... 1-67 
NOP .... ........... ...... ......... ...... .......... ..... ......... ............... ...... .... 1-79 
RESERVEI ........................................................................ 1-79 
RESERVE6 ........................................................................ 1-79 
RND .................................................................................... 1-66 
RPU ..................................................................................... 1-75 
SBI ...................................................................................... 1-64 
SBR .............. .................. .. .............. ............ ... ............... ....... 1-67 
SCPII ........... .............. .. ....................................................... 1-73 
SCPI2 .................................................................................. 1-73 
SCXGl .......................... .... ............ ... ................................... 1-74 
SCXG8 ............ ... ............ ... ............. .... ........... .. .................... 1-74 
SIGNAL ... ..................... .......................................... ........... 1-75 ~ 
SINDO ......... ....... .... ...... .. ..... ........ .. ........... .................. .... ..... 1-58 
SIND7 ................................................................................. 1-58 
SLDC ...... ..... .......... ........ ...... ........ ... .............. .... ............. ...... 1-54 
SLDLI .. .... .......... ......... .................................................... .... 1-55 
SLDL16 ............ .. ............................. ............ ... ..................... 1-55 
SLDOI ........................... .. ............. .. ........... ... ........... ........... 1-56 
SLD016 .......... .................................................................... 1-56 
SLLAI ................................................................................. 1-55 
SLLA8 ........... ............... .... ............. ............. ... ............ ... ....... 1-55 
SLODI ................................................................................ 1-57 
SLOD2 ................................................................................ 1-57 
SPR ..................................................................................... 1-78 
SRO ..................................................................................... 1-56 
SRS .... .... ..... ... ..................................................................... 1-68 
SSTLI .............................. ................................................... 1-55 
SSTL8 ................................................................................. 1-55 ~ 
STB .. .............................. .............. ............ ....... .............. ...... 1-61 
STE ..................................................................................... 1-58 
STL .. ... ................................................................................. 1-56 

Index-8 



Title Page 

STM ..... ... ............... .... ......... ........... .............................. .... .. . 1-59 
STO ........................................... .. ............................. .... ... .... 1-58 
STP ............................. .... ............................................ .. .... .. . 1-62 
STR ..................................................................................... 1-57 
STRL ............................... ...... .......................................... .. .. 1-60 
SWAP ............................................................. .............. ...... 1-79 
TJP ...................................................................................... 1-71 
TNC ...................................... ..... ............................ ... .. .... ..... 1-66 
UJP ....... .. ..... ..... ...... .. ................. ................................ ... ... .. . 1-71 
UNI .. .... ........ ..... ......... ... .............. ..... .. .......... .. .............. .. ..... 1-68 
WAIT .................................................................................. 1-75 
XJP ............................... ................................... ... ............... . 1-72 

P-code instruction set .................................................... ........ 1-47 
P-machine .. ..... ........... ............ ............. ..... .......... ................ ....... 1-3 
P-machine emulator ..... ........ . ............. ..... ............. .......... . ........ . 1-3 
PERMDISPOSE .. .. ............... ..... .... ............................ ..... ........ 3-7 
PERMNEW .................................................................... .... .. .. . 3-7 
Physical sector mode ............................................................ . 2-11 
P _MACHINE intrinsic ....................................................... 1-46 
PME ........................................ .. ...................................... .... ...... 1-3 

R 
Real numbers .............. .................................. ............ ........ ..... 1-11 
Record I/O .............................................................................. 3-20 
REF ................................... ............ ...... ... ........................ ........ 1-34 
RELEASE .................. ......... .......................................... ......... . 3-5 
Relocation list ........................ .................. .............................. 1-16 
RESERVEI ......................... .... ... ............. ........ .. .................... 1-79 
RESERVE6 ........................................................................... 1-79 
RND .... ............ .... ....... ..... .... ...... .......... .... ............ .. ... .... ... ........ 1-66 
Routine dictionaries .. ........................ .. .......... .... .. ................... 1-10 
RPU ..... ... ... ................... .. ....... ................................... ........ ...... 1-75 
RSP ............................................ ...................................... 2-3, 2-18 
RSP/IO ............................ ... ................................................... ... 2-3 

S 
SB ........ .... .. ..... ............ .... .... ......... .... ..... .................................. 1-48 
SBI .......... .... ................ ......... ............. ... ........................... ........ 1-64 

Index-9 



Title Page 

SBIOS ....................................................................................... 2-5 
SBR ......................................................................................... 1-67 
SCPll ..................................................................................... 1-73 
SCPI2 ..................................................................................... 1-73 
Screen I/O ............................................................................... 3-20 
SCXGl .................................................................................... 1-74 
SCXG8 .................................................................................... 1-74 
Segment Information Blocks ...... ...... ......... ................ ..... ...... 1-35 
SIB .......................................................................................... 1-35 
SIGNAL ................................................................................. 1-75 
SINDO .................................................................................... 1-58 
SIND7 .................................................................................... 1-58 
SLDC ...................................................................................... 1-54 
SLDLI .................................................................................... 1-55 
SLDL16 .................................................................................. 1-55 
SLDOI .................................................................................... 1-56 
SLD016 .................................................................................. 1-56 
SLLAI .................................................................................... 1-55 
SLLA8 .................................................................................... 1-55 
SLODI .................................................................................... 1-57 
SLOD2 .................................................................................... 1-57 
SP ............................................................................................ 1-43 
SPR ......................................................................................... 1-78 
SRO ......................................................................................... 1-56 
SRS ......................................................................................... 1-68 
SSTLI ..................................................................................... 1-55 
SSTL8 ..................................................................................... 1-55 
Stack ......................................................................................... 1-4 
START/STOP ........................................................................ 2-32 
STB ......................................................................................... 1-61 
STE ......................................................................................... 1-58 
STL ......................................................................................... 1-56 
STM ........................................................................................ 1-59 
STO ......................................................................................... 1-58 
STP ......................................................................................... 1-62 
STR ......................................................................................... 1-57 
STRL ...................................................................................... 1-60 
SWAP ..................................................................................... 1-79 

Index-lO 



Title Page 

T 
Task 1-42 
Task environments ................................................................ 1-42 
Text I/O ........................................... .. ..................................... 3-21 
TIB ........................................................................... .. ............ 1-42 
TJP ...... ....................... .. ... ............... .. ... .. ............. .. ... ............... 1-71 
TNC ............ ..... ................ ... ................. ... ...... .......................... 1-66 
Two-word reals ....................................................................... 1-13 
Type-ahead ............. ................................................................ 2-36 

U 
UB ............. ................... .. ................ ..... ..... .......... .... ... .............. 1-48 
UJP ....................................................................... .................. 1-71 
UNI ....... ................... ... ............................................................ 1-68 
UNITBUSY .................................................................... 2-7, 2-16 
UNITCLEAR .......... .. ............................................ 2-7,2-10,2-17 
UNITNUMBER .............................. .. .. ...... .. .... ........ 2-7,2-8,2-14 
UNITREAD ..................................... ............................ 2-10, 2-13 
UNITSTATUS ........ .. ............................................ 2-7,2-10, 2-17 
UNITWAIT .................................................................... 2-7, 2-16 
UNITWRITE ............................................... 2-7, 2-10, 2-13, 2-15 
User-defined devices ............................................... ..... .. ...... .. .. 2-8 

V 
VARDISPOSE ........................................................................ 3-6 
VARNEW ........................................ .. ...................................... 3-6 

w 
W ........................... ........................... ....................................... 1-49 
WAIT ..................................................................................... 1-75 

X 
XJP .. .... ... .... .. ........ .. ... .... .. .... ... ..... .... .... ........ ... .. ... ... ................ 1-72 

Index-ll1Index-12 





THREE-MONTH 
LIMITED WARRANTY 

TEXAS INSTRUMENTS 
PROFESSIONAL COMPUTER 

SOFTWARE MEDIA 

TEXAS INSTRUMENTS INCORPORATED EXTENDS 
THIS CONSUMER WARRANTY ONLY TO THE 
ORIGINAL CONSUMER/PURCHASER. 

WARRANTY DURATION 

The media is warranted for a period of three (3) months from 
the date of original purchase by the consumer. 

Some states do not allow the exclusion or limitation of inciden­
tal or consequential damages or limitations on how long an im­
plied warranty lasts, so the above limitations or exclusions 
may not apply to you. 

WARRANTY COVERAGE 

This limited warranty covers the cassette or diskette (media) 
on which the computer program is furnished. It does not ex­
tend to the program contained on the media or the accompany­
ing book materials (collectively the Program). The media is 
warranted against defects in material or workmanship. THIS 
WARRANTY IS VOID IF THE MEDIA HAS BEEN DAM­
AGED BY ACCIDENT, UNREASONABLE USE, NE­
GLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT 
ARISING OUT OF DEFECTS IN MATERIALS OR 
WORKMANSHIP. 



PERFORMANCE BY TI UNDER WARRANTY 

During the above three-month warranty period, defective media 
will be replaced when it is returned postage prepaid to a Texas 
Instruments Service Facility listed below or an authorized 
Texas Instruments Professional Computer Dealer with a copy 
of the purchase receipt. The replacement media will be war­
ranted for three months from date of replacement. Other than 
the postage requirement (where allowed by state law), no 
charge will be made for the replacement. TI strongly recom­
mends that you insure the media for value prior to mailing. 

WARRANTY AND CONSEQUENTIAL 
DAMAGES DISCLAIMERS 

ANY IMPLIED WARRANTIES ARISING OUT OF THIS 
SALE INCLUDING, BUT NOT LIMITED TO, THE IM­
PLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE, ARE LIM­
ITED IN DURATION TO THE ABOVE THREE-MONTH 
PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LI­
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR 
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES 
INCURRED BY THE CONSUMER OR ANY OTHER USER 
ARISING OUT OF THE PURCHASE OR USE OF THE 
MEDIA. THESE EXCLUDED DAMAGES INCLUDE, BUT 
ARE NOT LIMITED BY, COST OF REMOVAL OR REIN­
STALLATION, OUTSIDE COMPUTER TIME, LABOR 
COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS 
OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF 
BUSINESS. 

LEGAL REMEDIES 

This warranty gives you specific legal rights, and you may also 
have other rights which vary from state to state. 



TEXAS INSTRUMENTS 
CONSUMER SERVICE FACILITIES 

u.s. Residents: 

Texas Instruments 
Service Facility 

P.O. Box 1444, MS 7758 
Houston, Texas 77001 

Canadian Residents: 

Geophysical Service Inc. 
41 Shelley Road 
Richmond Hill, Ontario 
Canada L4C 5G4 

Consumers in California and Oregon may contact the following 
Texas Instruments offices for additional assistance or 
information. 

Texas Instruments 
Consumer Service 

831 South Douglas St. 
Suite 119 
El Segundo, California 90245 
(213) 973-2591 

Texas Instruments 
Consumer Service 

6700 S.W. 105th 
Kristin Square, Suite 110 
Beaverton, Oregon 97005 
(503) 643-6758 

IMPORTANT NOTICE OF DISCLAIMER 
REGARDING THE PROGRAM 

The following should be read and understood before using the 
software media and Program. 

TI does not warrant that the Program will be free from error or 
will meet the specific requirements of the purchaser/user. The 
purchaser/user assumes complete responsibility for any deci­
sion made or actions taken based on information obtained 
using the Program. Any statements made concerning the util­
ity of the Program are not to be construed as expressed or im­
plied warranties. 



TEXAS INSTRUMENTS MAKES NO WARRANTY, 
EITHER EXPRESSED OR IMPLIED, INCLUDING BUT 
NOT LIMITED TO ANY IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICU­
LAR PURPOSE, REGARDING THE PROGRAM AND 
MAKES ALL PROGRAMS AVAILABLE SOLELY ON AN 
"AS IS" BASIS. 

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LI­
ABLE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES IN CONNECTION WITH 
OR ARISING OUT OF THE PURCHASE OR USE OF THE 
PROGRAM. THESE EXCLUDED DAMAGES INCLUDE, 
BUT ARE NOT LIMITED BY, COST OF REMOVAL OR 
REINSTALLATION, OUTSIDE COMPUTER TIME, 
LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, 
LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUP­
TION OF BUSINESS. THE SOLE AND EXCLUSIVE LIA­
BILITY OF TEXAS INSTRUMENTS, REGARDLESS OF 
THE FORM OF ACTION, SHALL NOT EXCEED THE 
PURCHASE PRICE OF THE PROGRAM. TEXAS INSTRU­
MENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF 
ANY KIND WHATSOEVER BY ANY OTHER PARTY 
AGAINST THE PURCHASERIUSER OF THE PROGRAM. 

COPYRIGHT 

All Programs are copyrighted. The purchaser/user may not 
make unauthorized copies of the Programs for any reason. The 
right to make copies is subject to applicable copyright law or a 
Program License Agreement contained in the software pack­
age. All authorized copies must include reproduction of the 
copyright notice and of any proprietary rights notice. 



TEXAS INSTRUMENTS PROFESSIONAL COMPUTER 
UCSD p-System Internal Architecture 
TI Part No. 2232400-0001 

Original Issue: 15 April 1983 

Your Name: 

Company: __________________________________________ _ 

Telephone: ________________________________________ ___ 

Department: ________________________________________ _ 

Address : __________________________________________ ___ 

City / State / Zip Code: ___________________ _ 

Your comments and suggestions assist us in improving our prod-
----. ucts. If your comments concern problems with this manual, please 

list the page number. 

Comments: 

This form is not intended for use as an order blank. 



FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX 

POSTAGE WILL BE PAID BY ADDRESSEE 

Texas Instruments Incorporated 
Attn: Marketing MIS 7896 
P.O. Box 1444 
Houston, TX 77001 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



TEXAS INSTRUMENTS PROFESSIONAL COMPUTER 
UCSD p-System Internal Architecture 
TI Part No. 2232400-0001 

Original Issue: 15 April 1983 

Your Name: 

Company: __________________________________________ _ 

Telephone: ________________________________________ ___ 

Department: 

Address: __________________________________________ ___ 

City / State/Zip Code: ________________________________ _ 

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please 
list the page number. 

Comments: 

This form is not intended for use as an order blank. 



FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 6189 HOUSTON, TX 

POSTAGE WILL BE PAID BY ADDRESSEE 

Texas Instruments Incorporated 
Attn: Marketing MIS 7896 
P.O. Box 1444 
Houston, TX 77001 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



TEXAS INSTRUMENTS PROFESSIONAL COMPUTER 
UCSD p-System Internal Architecture 
TI Part No. 2232400-0001 

Original Issue: 15 April 1983 

Your Name: 

Company: 

Telephone: ____________________ _ 

Department: 

Address: 

City/State/Zip Code: 

Your comments and suggestions assist us in improving our prod­
ucts. If your comments concern problems with this manual, please 

~ list the page number. 

Comments: 

This form is not intended for use as an order blank. 



FOLD 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO . 6189 HOUSTON, TX 

POSTAGE WILL BE PAID BY ADDRESSEE 

Texas Instruments Incorporated 
Attn: Marketing MIS 7896 
P.O. Box 1444 
Houston, TX 77001 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 





Texas Instruments reserves the right to change 
its product and service offerings at any time 

without notice. 

2232400-0001 

TEXAS 
INsrRuMENTS 

Printed in U.S.A. 


