
MICROPROGRAMMED IMPLEMENTATION OF A SCHEDULER

R. Chattergy
University of Hawaii

Honolulu, Hawaii

Application of microprogrammin~ to enhance the performance of operating systems has been discussed in
the literature in the past [7,1,5]. Two examples of such applications can be found in [4,6]. This
paper discusses the philosophy behind the microprogrammed implementation of a scheduler, used in a
large, time-shared computer incorporating several processors.

1. INTRODUCTION

This paper describes the activities of a typical
microprogrammed scheduler (microscheduler) in a
time-shared system with multiple processors. This
description is a simplified version of the actual
microscheduler in the BCC 500 computer system, de­
signed by W. Lichtenberger, M. Pirtle, B. Lampson,
J. Freeman, R. Schultz and R. Van Tuy! in 1969. A
functional diagram of the system is shown in figure
1. The general philosophy of scheduling for a mul­
tiprocessing system has been discussed at length in
[3]. As mentioned in [3], scheduling consists of
two activities. The first is the determination of
an optimal schedule based on some scheduling cri­
terion. The second is the enforcement of that
schedule on the processes in the system.

Clearly the task of selecting a scheduling criterion
and determining a schedule by some algorithm is a
canple.x and evolutionary process, The et'!Virtinmertt
within which resou~ces are allocated by scheduling
often changes, forcing a change of the scheduling
criterion, and in extreme cases a change of the
corresponding algorithm.. Hence a scheduling algo­
rithm is unsuitable for microprogrammed implementa­
tion in a read-only memory. On the other hand, the
task of enforcing a schedule, classified as a midi­
primitive in [7], consists of more permanent sub­
tasks such as, the creation and maintenance of
queues, blocking and awakening of active processes,
making calls on the swapper etc. These subtasks
are discussed in detail in the later sections.
These subtasks are even system independent in the
sense that, they must be carried out in one form or
another regardless of the system architecture.

The above considerations prompted the design of the
scheduler in the following form. The scheduler is

15

a hardware processor, microprogrammed to execute a
set of instructions in a loop. The task of schedule
enforcement is directly microprogrammed as part of
this loop. Besides schedule enforcement, the pro­
cessor also executes a machine instruction of an em­
ulated machine in every iteration of the loop. The
scheduling algorithm is implemented in software on
this emulated machine. Thus the microscheduler car­
ries out both scheduling activities, executing the
scheduling algorithm written in a high-level lan­
guage for flexibility, and enforcing the schedule
discipline via firmware for speed of execution.

2. HARDWARE DESCRIPTION

The BCC 500 shown in figure 1, is a large time­
shared computer with two processors for executing
user-processes, and three special purpose processors
for carrying out system management tasks (i.e., ex­
ecuting the operating system). All of the proces­
sors operate independently, communicate ~ith each
other via main memory, and are microprogrmamed. Fi­
gure 2 shows the arithmetic-logic unit of a micro­
programmed special purpose processor and its bus
structure.

All registers shown in figure 2 are twenty four bits
wide. M,Q, and Z are the main registers, where M
serves as the communication register with the main
memory via the main memory interface. The outputs
of Mand Qare connected to the left Boolbox (LB),
and the outputs of Q and Z go into the right Boolbox.
Each Boolbox can perform any of sixteen boolean op­
erations on its inputs. The outputs of the Bool­
boxes are connected to the Adder. The output of the
left Boolbox goes into the Cycler.

The outputs of the Adder and the Cycler can be put

into any of the seven Holding Registers, RO, .•. ,R6.
The register RO acts as the memory address register
(MAR) when main memory is accessed. The output of
any of the Holding Registers can be incremented by
one and hence any of these registers can be used as
a counter. In addition there are sixty four Scratch
Pad registers which are loaded from the X-bus and
read onto the Y-bus.

The Control Memory of the microprocessor is a read­
only, diode memory containing atmost 2 048, ninty­
bit words. Different fields of the 90 bit micro­
word control different logic circuits and in case
of a branch to a subroutine, the return address is
automatically stored in an auxilliary register.

3. MICROWORD

The bits and fields in the 90 bit words in the con­
trol memory are coded to generate the controlling
signals necessary to operate the ALU. For example,
bits 0-5 are used to set up one of a number of
branch conditions to be tested for branching. The
bits 8-17 are used to provide the branch address,
which can also be obtained from the OS register
(return from a subroutine) or the X-bus (computed
go to). The bits 18-41 are used to specify a 24-
bit constant which can be gated onto the X or the
Y buses respectively. A detailed description of
all the fields is too long. The above description
should be enough to give the reader a "feel" for
the system.

4. MICRO LANGUAGE

A special purpose readable reference language,
called MICRO, is available for writing micropro­
grams for the processors of the BCC 500. The MICRO
language has declaration statements and statements
for execution. The declaration statements can be
used to define macros, give symbolic names to re­
gisters, define parameter values, define branch
conditions for repeated use in the program, etc.
The set of statements for execution consists of the
usual assignment (including multiple) statement,
memory operations statement, branch instructions,
microword-field assignment statements, etc. It is
impossible to discuss the language in detail here.
Instead, explanatory comments enclosed between "/*"
and "* /" are imbedded in the sample microprograms
provided in the later sections.

5. MICROSCHEDULER INTERFACE

A simplified diagram of the interfaces among the
system resources and the microscheduler is given in
figure 3. In this figure, the microscheduler and
the user processors are hardware processors, where­
as the swapper and the scheduler are software pack­
ages run on the system processors. All processors
in the system make WAKEUP calls to the microschedu­
ler to activate processes. If a process, which has
received a wakeup call, is not in the main memory,
the microscheduler inserts the identity of this
process into the input stack of the scheduler. The
scheduler, using its scheduling algorithm, assigns
a priority to the process which cannot be changed
by the other processors. It puts the process in
its appropriate position in a queue and makes a
SWAPIN call to the swapper. In some cases such as
a page-fault condition, the microscheduler can make
a direct SWAPIN call to the swapper. Due to lack
of adequate memory space, the swapper may fail to

16

swap in a process. It then makes a GIVEUP call to
the microscheduler, asking for the identity of a
process that may be swapped out to make room. The
microscheduler answers this call via a SWAPOUT call
indicating the process that can be swapped out.

The microscheduler alters the work schedules of
the processors by making SWITCH calls. A switch
call contains the identity of the process to be
worked on by the receiving processor. If a new
process of preemptive priority preempts the current
process on a processor, this information is sent
back to the microscheduler via a RETURN call by the
processor. If a running process blocks itself, the
corresponding processor makes a BLOCK call to the
microscheduler. The processor informs the micro­
scheduler whether or not the blocked process should
be swapped out (a policy decision made by the moni­
tor).

All communications with the microscheduler are car­
ried out via a stack in the main memory under suit­
able PROTECT and UNPROTECT mechanisms.

6. LIFE-CYCLE OF AN ACTIVE PROCESS

Figure 4 shows the life-cycle of an active process
under control of the microscheduler. Consider an
active process which receives a call from some
other running process. The call is entered under
protection into the top two words of the input
stack of the microscheduler. The microscheduler
periodically inspects the stack for calls from the
outside. Upon finding such a call, the microsche­
duler checks the identity of the process for vali­
dity. If the identity is invalid, it ignores the
call and delets the entry. For a valid call, the
microscheduler determines whether the call is for
a wakeup or block.

WAKEUP CALL: The microscheduler merges the data
word from the call into the program interrupt word
of the process (PIW), stored in the process resi­
dent table. It checks to see if the process is
either waiting in the microscheduler queue for a
processor, or already running. In either case,
nothing more needs to be done. For an interesting
example of this situation see [2) pp. 271.

On the other hand, if the process is blocked, the
microscheduler unblocks the process. It checks to
see if the process is in the main memory. If the
process is in the main memory, the microscheduler
inserts it, according to it's priority, in a queue
of processes waiting for processors. Note that if
the inserted process has preemptive priority then
it can preempt a running process. This means that
the microscheduler may have to reallocate the
processors. A preemptive priority structure is ne­
cessary because the system does not have a hard­
wired interrupt mechanism. Preemptive priorities
must be assigned to processes whose non-execution
can lead to loss of information.

If the process is not in the main memory, it has to
be swapped in. The microscheduler then puts the
process in a stack of processes waiting for the
scheduler. The scheduler determines the priorities
of the processes independently, and inserts them in
the input queue of the swapper.. In some cases, the
microscheduler may make a direct request for a

swapin to the swapper.

BLOCK CALL: Whenever a running process blocks,
the monitor is activated. The monitor decides whe­
ther the blocked process should remain in main mem­
ory (page-fault) or be swapped out (input from ter­
minal). This decision is passed onto the microsch­
eduler via the block call. The microscheduler
blocks the process and if so directed makes a swap­
out call to the swapper.

If a process is caught in a timer-trap, the micro­
scheduler does not block it but puts it on the in­
put stack of the scheduler for future scheduling.
The scheduler changes the priority of such a pro~
cess based on its scheduling criterion and sends a
wakeup.

RETURN CALL: Whenever a running process is preemp­
ted of it's processor by a process with preemptive
priority, the processor sends a return call to the
microscheduler. The microscheduler removes the
process from the run state and puts it in the mi­
croscheduler queue to wait for a processor.

7. PROCESSOR SCHEDULING

The microscheduler periodically checks the status
of each processor and reallocates those processors
which are either idle or can be preempted. The
processors are directed to switch processes by
means of the SWITCH call sent by the microschedu­
ler. In principle, the SWITCH call provides the
processor the identity of the new process to be
run.

A processor has three possible states. It is
either idle, or running a process, or running a
process which has preempted another process. If
the processor is in the last mentioned state, then
the microscheduler does not send it a switch call
untill the process running on it blocks. A proces­
sor is switched only if it is idle or running a
process which has not preempted another process.

Whenever the microscheduler enters a new process in
its queue that has a preemptive priority, it sets
up a schedule flag. This flag indicates that real­
_location of the processors is necessary. When the
microprocessor decides to reallocate the processors,
it switches the highe~t priority process in the
microscheduler queue with a process that has
blocked.

8. MICROSCHEDULER INPUT STACK

Calls to the-IiiiCroscheduler are placed on a stack
c~lled USIB in the microprogram. Each call con­
sis·ts of two words. The leftmost six bits of the
first word contains an opcode identifying the call,
such as 1 for wakeup, 2 for block etc. The right­
most eighteen bits of the first word contains a
pointer to the first word of a process's process .
resident table (in effect identifies',,the process).
The second word contains the bits to be set by the
microscheduler in the process interrupt word in the
resident table, as a result of the call.

17

9. MICROPROGRAM FOR MANAGEMENT OF USIB

USIBIGIN: PROTECT (USIB);
/*Protects stack from use by other processors ..• */

MAR+ USIBTOP, FETCH;
/*Get pointer to top of stack ...•••••••••......• */

Q + SK7 + M, MAR + USIBASE, FETCH;
/*Get pointer to the bottom of stack ..•••....... */

M EOR Q, GO TO EMPTY IF LB=O, Z+LUSIBE
/* Compare top and bottom pointers stored in M */
/* and Q by exclusive OR. If pointers same, out-*/
I* put of left boolbox LB=O. Branch to block */
/*labelled EMPTY. LUSIBE=No. of words in call •• */

MAR+ SK7, FETCH, Z + Q-Z;
/*Get first word from stack ••...•..•..••.••••.•• */

SK7 + Q + M, MAR+ MAR+l, FETCH;
/*Get second word from stack .••.••..••••....•••. */

R2 + M;
/*Put second word in register R2 .•••....••••..•. */

M + Z, MAR+ USIBTOP, STORE;
/* Move pointer to top of stack down by LUSIBE */
I* words ••......•••.••..•.•.•....•••..••..•.•...• */

UNPROTECT (USIB);
/* Unprotect stack. The first word fetched from */
/* stack is in SK7 and Q. The second word is in */
/* register R2 •••••.•..••••.....•••...••••..•.... */

M + Q LCY 4, Q + 600 000 17B;
M + M AND Q LCY 2, CALL UERROR IF LB=O;

/* Left cycling the contents of Q through M mask~x/
/* ed by 600 000 017 and the last AND operation */
/* leaves the opcode for the microscheduler in */
/* the rightmost bits of M~ For a valid opcode */
/* this must be > 0. UERROR subroutine is called*/
/* otherwise •••...••••.•.•••.•••...•••.•.....••.• *I

Q + MAXOP;
/*Maximum value of opcode is loaded in Q •••..... */

CALL UERROR ON Q-M < O. Q + OPTAB-1;
/* Call UERROR if the opcode exceeds its maximum */
/* allowable value ••......•••••..•.....•.•••..•.• *I

R5 + M+Q, Q + R2, DGO TO USIBIGIN;
/* R5 stores the pointer to the subroutine (wake-*/
l* up, block etc.) to be used by the microschedu-*/
/* ler as a result of this call. The subroutine */
/* is called in the next line. Q and R2 contains*/
/* the second word of the call. DGO TO is a de- */
/* layed branch. The branch is executed after */
/* execution of the next instruction is complete.*/

MAR + Z + M +- SK7, CALL STKLK, .C + 3,. TCX,. TCW;
/* STKLK causes a branch to the subroutine point-*/
f* ed at by RS. It also saves the return address*/
/* in a stack. Because of the delayed GO TO in */
/* the previous line, this return address is that*/
/* of USilHGIN. Thus a r:eturn is made to USIBI- */
/* GIN after a subroutine such as block or wake- */
/* up has been executed. MAR contains the ad- */
/* dress of the PRT plus 1_ (ie. the address of */
/*the PIW), where the 3 is merged from the con-*/
/* stant field of the microword by TCX and TCW ... */

OPTAB: GO TO WAKEUP;
GO TO BLOCK;
GO TO BLOCKOUT;
GO TO GIVEUP;

/* End of microprogram for the management of USIB*/

10. FLOW-CHART OF THE MICROSCHEDULER

A complete description of all the microprograms is
too long to be included in this paper. A flow­
chart describing the operation of a simple micro­
scheduler is given below.

In the flow-chart, the usual housekeeping opera­
tions have been left out. Also the flow-chart
does not include such operations as the management
of real-time queues, which a microscheduler of a
time-shared system must handle. A real-ti~e queue
is a queue of processes whose wakeup signals are
specified by a real-time clock, and does not come
from other processes. Basically, the microschedu­
ler inspects its input stack periodically, and in
response to calls left there by other processors
it executes proper subroutines such as WAKEUP or
BLOCK. It also checks the schedule flag and the
states of the processors. Whenever necessary, it
reallocates the processors and continues to loop
around.

ACKNOWLEDGMENT

The author gratefully acknowledges encouragement
and constructive criticism from Professor Wayne
Lichtenberger of the department of Electrical
Engineering, University of Hawaii.

BEGIN: PROTECT USIB

REFERENCES

[l] W. H. Burkhardt, R. C. Randel, Design of
operating systems with micro-programmed
implementation, NTIS Report, PB-224-484,
September, 1973.

[2] R. M. Graham, Principles of system program­
ming, John Wiley, 1975.

[3] B. W. Lampson, A scheduling philosophy for
multi-processing systems, Couununications of
the ACM, vol. 11, No. 5, May, 1968.

[4] B. H. Liskov, The design of the Venus opera­
ting system, Communications of the ACM vol.
15, No. 3, March, 1972.

[5] J. V. Sell, Microprogramming in an integrated
hardware/software system, Computer Design,
Vol. 14, No. 1, January, 1975.

[6] W. G. Sitton, L. L. Wear, A virtual memory
system for the Hewlett-Packard 2100A,
preprints of the seventh annual Workshop
on Microprogramming, ACM, September, 1974.

[7] A. H. Werkheiser, Microprogrammed operating
systems, preprints of the third annual Work­
shop on Microprogramming, ACM, October, 1970.

+ YES USIB EMPTY ?, ____, __ CHECK SCHEDULE FLAG AND + :tiO PROCESSOR STATES.
GET FIRST TWO WORDS l
UNPROTECT USIB REALLOCATION NEEDED ? • NO GO TO BEGIN

GO TO~OPCODJIN RANGE REPLACE L~~ PRIORITY ----....-- I RUNNING PROCESS BY HIGHEST
UERROR • YES PRIORITY WAITING PROCESS

DECODE OPCODE GO TO 'EGIN
C L

WAKEUP
GO T~VALID PROCESS ID ?
BEGIN !YES

RETURN
UPDATE PIW

BLOCK
UPDATE PIW
SET BLOCKBIT

UPDATE PIW
GO TO YES PROCESS IN MICROQ
BEGIN~OR REING ?

PlIT tROCESS
MICROQ

ON I
TIMEt-TRAP 1 ~ PUT PROCESS

IN' ON SCHEDULER GO TO BEGIN

A
l~ ? INPUT STACK NO

UNBL CK PROCESS
PROCESS IN MEMORY ?

YES~
PUT PROCESS ON M!CROQ PUT PROCESS ON

IF PREEMPTIVE PRIORITY SCHEDULER INPUT
SET SCHEDULE FLAG STACK
GO TO BEGIN GO TO BEGIN

18

YES NO

PUT PROCESS ON GO TO BEGIN
SWAPPERQ
SEND SWAPOUT

GO TO BEGIN

GO TO BEGIN

--------~

FIGURE 3

BLOCK

N MEMORY

OUT OF
MEMORY

•

FIGURE 1

FIGURE 2

WAKEUP

.x

s
c
p

D

y

SWAP OUT

A NET

TIMER-TRAP

P - User Processor
MSCH ~ Microscheduler
CH I/O - Character I/O Processor
MCP - Memory Control Processor
MrU - Memory Transfer Unit
MPX - Multiplexer
SCN - Scanner
T - Terminal

MR - M Register
QR - Q Register
ZR - Z Register
MMI - Main Memory Interface
SCPD - Scratch Pad

SWP - Swapper
SCH - Scheduler
SIN - Swap In
SOUT - Swap Out
GP - Giveup
SW - Switch
W - Wakeup
B - Block
R - Return

-~-------, r--------,
: SCHEDULER ,.~ --1-----t: SWAPPER I
I QUEUE ~ : QUEUE I

L--------~ ~-------J

SWAP IN

FIGURE 4

19

	15
	16
	17
	18
	19

