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Application of microprogrammin~ to enhance the performance of operating systems has been discussed in 
the literature in the past [7,1,5]. Two examples of such applications can be found in [4,6]. This 
paper discusses the philosophy behind the microprogrammed implementation of a scheduler, used in a 
large, time-shared computer incorporating several processors. 

1. INTRODUCTION 

This paper describes the activities of a typical 
microprogrammed scheduler (microscheduler) in a 
time-shared system with multiple processors. This 
description is a simplified version of the actual 
microscheduler in the BCC 500 computer system, de­
signed by W. Lichtenberger, M. Pirtle, B. Lampson, 
J. Freeman, R. Schultz and R. Van Tuy! in 1969. A 
functional diagram of the system is shown in figure 
1. The general philosophy of scheduling for a mul­
tiprocessing system has been discussed at length in 
[3]. As mentioned in [3], scheduling consists of 
two activities. The first is the determination of 
an optimal schedule based on some scheduling cri­
terion. The second is the enforcement of that 
schedule on the processes in the system. 

Clearly the task of selecting a scheduling criterion 
and determining a schedule by some algorithm is a 
canple.x and evolutionary process, The et'!Virtinmertt 
within which resou~ces are allocated by scheduling 
often changes, forcing a change of the scheduling 
criterion, and in extreme cases a change of the 
corresponding algorithm.. Hence a scheduling algo­
rithm is unsuitable for microprogrammed implementa­
tion in a read-only memory. On the other hand, the 
task of enforcing a schedule, classified as a midi­
primitive in [7], consists of more permanent sub­
tasks such as, the creation and maintenance of 
queues, blocking and awakening of active processes, 
making calls on the swapper etc. These subtasks 
are discussed in detail in the later sections. 
These subtasks are even system independent in the 
sense that, they must be carried out in one form or 
another regardless of the system architecture. 

The above considerations prompted the design of the 
scheduler in the following form. The scheduler is 

15 

a hardware processor, microprogrammed to execute a 
set of instructions in a loop. The task of schedule 
enforcement is directly microprogrammed as part of 
this loop. Besides schedule enforcement, the pro­
cessor also executes a machine instruction of an em­
ulated machine in every iteration of the loop. The 
scheduling algorithm is implemented in software on 
this emulated machine. Thus the microscheduler car­
ries out both scheduling activities, executing the 
scheduling algorithm written in a high-level lan­
guage for flexibility, and enforcing the schedule 
discipline via firmware for speed of execution. 

2. HARDWARE DESCRIPTION 

The BCC 500 shown in figure 1, is a large time­
shared computer with two processors for executing 
user-processes, and three special purpose processors 
for carrying out system management tasks (i.e., ex­
ecuting the operating system). All of the proces­
sors operate independently, communicate ~ith each 
other via main memory, and are microprogrmamed. Fi­
gure 2 shows the arithmetic-logic unit of a micro­
programmed special purpose processor and its bus 
structure. 

All registers shown in figure 2 are twenty four bits 
wide. M,Q, and Z are the main registers, where M 
serves as the communication register with the main 
memory via the main memory interface. The outputs 
of Mand Qare connected to the left Boolbox (LB), 
and the outputs of Q and Z go into the right Boolbox. 
Each Boolbox can perform any of sixteen boolean op­
erations on its inputs. The outputs of the Bool­
boxes are connected to the Adder. The output of the 
left Boolbox goes into the Cycler. 

The outputs of the Adder and the Cycler can be put 



into any of the seven Holding Registers, RO, .•. ,R6. 
The register RO acts as the memory address register 
(MAR) when main memory is accessed. The output of 
any of the Holding Registers can be incremented by 
one and hence any of these registers can be used as 
a counter. In addition there are sixty four Scratch 
Pad registers which are loaded from the X-bus and 
read onto the Y-bus. 

The Control Memory of the microprocessor is a read­
only, diode memory containing atmost 2 048, ninty­
bit words. Different fields of the 90 bit micro­
word control different logic circuits and in case 
of a branch to a subroutine, the return address is 
automatically stored in an auxilliary register. 

3. MICROWORD 

The bits and fields in the 90 bit words in the con­
trol memory are coded to generate the controlling 
signals necessary to operate the ALU. For example, 
bits 0-5 are used to set up one of a number of 
branch conditions to be tested for branching. The 
bits 8-17 are used to provide the branch address, 
which can also be obtained from the OS register 
(return from a subroutine) or the X-bus (computed 
go to). The bits 18-41 are used to specify a 24-
bit constant which can be gated onto the X or the 
Y buses respectively. A detailed description of 
all the fields is too long. The above description 
should be enough to give the reader a "feel" for 
the system. 

4. MICRO LANGUAGE 

A special purpose readable reference language, 
called MICRO, is available for writing micropro­
grams for the processors of the BCC 500. The MICRO 
language has declaration statements and statements 
for execution. The declaration statements can be 
used to define macros, give symbolic names to re­
gisters, define parameter values, define branch 
conditions for repeated use in the program, etc. 
The set of statements for execution consists of the 
usual assignment (including multiple) statement, 
memory operations statement, branch instructions, 
microword-field assignment statements, etc. It is 
impossible to discuss the language in detail here. 
Instead, explanatory comments enclosed between "/*" 
and "* /" are imbedded in the sample microprograms 
provided in the later sections. 

5. MICROSCHEDULER INTERFACE 

A simplified diagram of the interfaces among the 
system resources and the microscheduler is given in 
figure 3. In this figure, the microscheduler and 
the user processors are hardware processors, where­
as the swapper and the scheduler are software pack­
ages run on the system processors. All processors 
in the system make WAKEUP calls to the microschedu­
ler to activate processes. If a process, which has 
received a wakeup call, is not in the main memory, 
the microscheduler inserts the identity of this 
process into the input stack of the scheduler. The 
scheduler, using its scheduling algorithm, assigns 
a priority to the process which cannot be changed 
by the other processors. It puts the process in 
its appropriate position in a queue and makes a 
SWAPIN call to the swapper. In some cases such as 
a page-fault condition, the microscheduler can make 
a direct SWAPIN call to the swapper. Due to lack 
of adequate memory space, the swapper may fail to 
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swap in a process. It then makes a GIVEUP call to 
the microscheduler, asking for the identity of a 
process that may be swapped out to make room. The 
microscheduler answers this call via a SWAPOUT call 
indicating the process that can be swapped out. 

The microscheduler alters the work schedules of 
the processors by making SWITCH calls. A switch 
call contains the identity of the process to be 
worked on by the receiving processor. If a new 
process of preemptive priority preempts the current 
process on a processor, this information is sent 
back to the microscheduler via a RETURN call by the 
processor. If a running process blocks itself, the 
corresponding processor makes a BLOCK call to the 
microscheduler. The processor informs the micro­
scheduler whether or not the blocked process should 
be swapped out (a policy decision made by the moni­
tor). 

All communications with the microscheduler are car­
ried out via a stack in the main memory under suit­
able PROTECT and UNPROTECT mechanisms. 

6. LIFE-CYCLE OF AN ACTIVE PROCESS 

Figure 4 shows the life-cycle of an active process 
under control of the microscheduler. Consider an 
active process which receives a call from some 
other running process. The call is entered under 
protection into the top two words of the input 
stack of the microscheduler. The microscheduler 
periodically inspects the stack for calls from the 
outside. Upon finding such a call, the microsche­
duler checks the identity of the process for vali­
dity. If the identity is invalid, it ignores the 
call and delets the entry. For a valid call, the 
microscheduler determines whether the call is for 
a wakeup or block. 

WAKEUP CALL: The microscheduler merges the data 
word from the call into the program interrupt word 
of the process (PIW), stored in the process resi­
dent table. It checks to see if the process is 
either waiting in the microscheduler queue for a 
processor, or already running. In either case, 
nothing more needs to be done. For an interesting 
example of this situation see [2) pp. 271. 

On the other hand, if the process is blocked, the 
microscheduler unblocks the process. It checks to 
see if the process is in the main memory. If the 
process is in the main memory, the microscheduler 
inserts it, according to it's priority, in a queue 
of processes waiting for processors. Note that if 
the inserted process has preemptive priority then 
it can preempt a running process. This means that 
the microscheduler may have to reallocate the 
processors. A preemptive priority structure is ne­
cessary because the system does not have a hard­
wired interrupt mechanism. Preemptive priorities 
must be assigned to processes whose non-execution 
can lead to loss of information. 

If the process is not in the main memory, it has to 
be swapped in. The microscheduler then puts the 
process in a stack of processes waiting for the 
scheduler. The scheduler determines the priorities 
of the processes independently, and inserts them in 
the input queue of the swapper.. In some cases, the 
microscheduler may make a direct request for a 



swapin to the swapper. 

BLOCK CALL: Whenever a running process blocks, 
the monitor is activated. The monitor decides whe­
ther the blocked process should remain in main mem­
ory (page-fault) or be swapped out (input from ter­
minal). This decision is passed onto the microsch­
eduler via the block call. The microscheduler 
blocks the process and if so directed makes a swap­
out call to the swapper. 

If a process is caught in a timer-trap, the micro­
scheduler does not block it but puts it on the in­
put stack of the scheduler for future scheduling. 
The scheduler changes the priority of such a pro~ 
cess based on its scheduling criterion and sends a 
wakeup. 

RETURN CALL: Whenever a running process is preemp­
ted of it's processor by a process with preemptive 
priority, the processor sends a return call to the 
microscheduler. The microscheduler removes the 
process from the run state and puts it in the mi­
croscheduler queue to wait for a processor. 

7. PROCESSOR SCHEDULING 

The microscheduler periodically checks the status 
of each processor and reallocates those processors 
which are either idle or can be preempted. The 
processors are directed to switch processes by 
means of the SWITCH call sent by the microschedu­
ler. In principle, the SWITCH call provides the 
processor the identity of the new process to be 
run. 

A processor has three possible states. It is 
either idle, or running a process, or running a 
process which has preempted another process. If 
the processor is in the last mentioned state, then 
the microscheduler does not send it a switch call 
untill the process running on it blocks. A proces­
sor is switched only if it is idle or running a 
process which has not preempted another process. 

Whenever the microscheduler enters a new process in 
its queue that has a preemptive priority, it sets 
up a schedule flag. This flag indicates that real­
_location of the processors is necessary. When the 
microprocessor decides to reallocate the processors, 
it switches the highe~t priority process in the 
microscheduler queue with a process that has 
blocked. 

8. MICROSCHEDULER INPUT STACK 

Calls to the-IiiiCroscheduler are placed on a stack 
c~lled USIB in the microprogram. Each call con­
sis·ts of two words. The leftmost six bits of the 
first word contains an opcode identifying the call, 
such as 1 for wakeup, 2 for block etc. The right­
most eighteen bits of the first word contains a 
pointer to the first word of a process's process . 
resident table (in effect identifies',,the process). 
The second word contains the bits to be set by the 
microscheduler in the process interrupt word in the 
resident table, as a result of the call. 
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9. MICROPROGRAM FOR MANAGEMENT OF USIB 

USIBIGIN: PROTECT (USIB); 
/*Protects stack from use by other processors ..• */ 

MAR+ USIBTOP, FETCH; 
/*Get pointer to top of stack ...•••••••••......• */ 

Q + SK7 + M, MAR + USIBASE, FETCH; 
/*Get pointer to the bottom of stack ..•••....... */ 

M EOR Q, GO TO EMPTY IF LB=O, Z+LUSIBE 
/* Compare top and bottom pointers stored in M */ 
/* and Q by exclusive OR. If pointers same, out-*/ 
I* put of left boolbox LB=O. Branch to block */ 
/*labelled EMPTY. LUSIBE=No. of words in call •• */ 

MAR+ SK7, FETCH, Z + Q-Z; 
/*Get first word from stack ••...•..•..••.••••.•• */ 

SK7 + Q + M, MAR+ MAR+l, FETCH; 
/*Get second word from stack .••.••..••••....•••. */ 

R2 + M; 
/*Put second word in register R2 .•••....••••..•. */ 

M + Z, MAR+ USIBTOP, STORE; 
/* Move pointer to top of stack down by LUSIBE */ 
I* words ••......•••.••..•.•.•....•••..••..•.•...• */ 

UNPROTECT (USIB); 
/* Unprotect stack. The first word fetched from */ 
/* stack is in SK7 and Q. The second word is in */ 
/* register R2 •••••.•..••••.....•••...••••..•.... */ 

M + Q LCY 4, Q + 600 000 17B; 
M + M AND Q LCY 2, CALL UERROR IF LB=O; 

/* Left cycling the contents of Q through M mask~x/ 
/* ed by 600 000 017 and the last AND operation */ 
/* leaves the opcode for the microscheduler in */ 
/* the rightmost bits of M~ For a valid opcode */ 
/* this must be > 0. UERROR subroutine is called*/ 
/* otherwise •••...••••.•.•••.•••...•••.•.....••.• *I 

Q + MAXOP; 
/*Maximum value of opcode is loaded in Q •••..... */ 

CALL UERROR ON Q-M < O. Q + OPTAB-1; 
/* Call UERROR if the opcode exceeds its maximum */ 
/* allowable value ••......•••••..•.....•.•••..•.• *I 

R5 + M+Q, Q + R2, DGO TO USIBIGIN; 
/* R5 stores the pointer to the subroutine (wake-*/ 
l* up, block etc.) to be used by the microschedu-*/ 
/* ler as a result of this call. The subroutine */ 
/* is called in the next line. Q and R2 contains*/ 
/* the second word of the call. DGO TO is a de- */ 
/* layed branch. The branch is executed after */ 
/* execution of the next instruction is complete.*/ 

MAR + Z + M +- SK7, CALL STKLK, .C + 3,. TCX,. TCW; 
/* STKLK causes a branch to the subroutine point-*/ 
f* ed at by RS. It also saves the return address*/ 
/* in a stack. Because of the delayed GO TO in */ 
/* the previous line, this return address is that*/ 
/* of USilHGIN. Thus a r:eturn is made to USIBI- */ 
/* GIN after a subroutine such as block or wake- */ 
/* up has been executed. MAR contains the ad- */ 
/* dress of the PRT plus 1_ (ie. the address of */ 
/*the PIW), where the 3 is merged from the con-*/ 
/* stant field of the microword by TCX and TCW ... */ 

OPTAB: GO TO WAKEUP; 
GO TO BLOCK; 
GO TO BLOCKOUT; 
GO TO GIVEUP; 

/* End of microprogram for the management of USIB*/ 



10. FLOW-CHART OF THE MICROSCHEDULER 

A complete description of all the microprograms is 
too long to be included in this paper. A flow­
chart describing the operation of a simple micro­
scheduler is given below. 

In the flow-chart, the usual housekeeping opera­
tions have been left out. Also the flow-chart 
does not include such operations as the management 
of real-time queues, which a microscheduler of a 
time-shared system must handle. A real-ti~e queue 
is a queue of processes whose wakeup signals are 
specified by a real-time clock, and does not come 
from other processes. Basically, the microschedu­
ler inspects its input stack periodically, and in 
response to calls left there by other processors 
it executes proper subroutines such as WAKEUP or 
BLOCK. It also checks the schedule flag and the 
states of the processors. Whenever necessary, it 
reallocates the processors and continues to loop 
around. 
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P - User Processor 
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