BCC 500 FORTRAN REFERENCE MANUAL

Martha Crosby

Manual M-6
Issued September 30, 1975

THE HAWAII 500 PROJECT
Department of Electrical Engineering
University of Hawaii

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 2884
Contract No. NAS2-8600

THE HAWAII 500 PROJECT is affiliated with the Department of Electrical

Engineering at the University of Hawaii.

Research has been supported by the Advanced Research Projects Agency
of the Department of Defense and was monitored by NASA, Ames Research
Center under Contract No. NAS2-8600.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency of the United States Government.

B8CC 500 FOKTKAN KiFERENCE MANUAL

Table of Contents

Page Number

1. Introduction 1

{1}, Fortran Compiler 3
A. Syntax 3

1. Expressions 3

2, Control and Execution Statements O

B, Library 11

C. Symhol Table Size 14

D. Commands 15

1Ji. Fortran QOperating System 16

A. Loader ; 16

B. Runtime Debugging 17

C. Runtime Diagnostics 18

1V, Appendix 20

A. Sample Programs

B. References

Introduction

The BCC 500 Fortran is a subset of ANST Fortran 1V,
formally called ANSI Basic Fortran. The source program
is prepared by the text editor, QED, This source file
is comhiled by the Fortran Compiler, FTC which preparcs
an object file for the Fortran Operating System, FOS.
Debugging facilities in FOS, allow the user to break-
point statements, execute single statements, and examine
and change Fortran variables,

This manual outlines the basic commands for each
subsystem, many of which may also be obtained by typing
the llelp Command in each subsystem. Although tLhe system
allows Rk words‘of storage, much larger programs can be
effectively run by using files which are common to all
levels of the systemy since most large programs can be
breken into a sequence of smaller programs communicating
through data files. TFO0OS indicates how much storage
remains after loading all subprograms. All programs
referenced must be loaded whether or not they are called.
The following chart show the structure of the Fortran

system,

Structure of Fortran System

Executive
Command @
l.anguage

e | ' _
w“"»w .
HNTK*\ : I , F(any-otouer subsytems
Comménd Mode Command mode C;;;::;\@ de
—
(Appengd} (Compilation) Debug
(Iésert\ Exec
(Ciange Pro eed
text uxeCutlon
input (Edit) of
mode (Modify) ~ Progran
1ine Debugging
edit Mode

mode

1. Fortran Compiler
A, Syntax
expressions and Definitions

Integer Constant- Integer without decimal point using

digits 0,1,...9 with optional preceding + or - sign.
Integer Variable-Scries of alphanumeric characters

(except special characters) the first of which is
T,J,K,I.,M, or N, The series may be any length for
readability but the first six characters comprise
_ the name.
Integer String-Integer variable name detined by nli=

n characters where n is from 1 to 7.
eal Constant—- Any number written with a decimal point

using decimal digits and optional sign. An intecper
exponent may follow a floating point constant, it
may also have a preceeding sign, Examples are:
L0087
9.7E-3
5,086
kReal Variable-Series of alphanumeric characters

(except special churactérs\, the first of which is
alphabetic and not 1,J,K,L,M, or N, The first six
characters define the name.

Real String- Real variable name defined hy nH=n characters

where n ranges from 1 to 6.
Subscripted Variables- An integer or real variable followed
by 1, 2, or 3 integers greater than O, that are scparated

by commas. Examples are:
Beta(5*J-2)
_Max(I,K+2,L\

Arithmetic Statements

| i
|

The form of arithmetic statements is "a"="b" where a may be
i suhseripted variable and b is an expression.

Uxpreossion- Sequence of constants, subscripted or

non-subscripted variable(s) and operation symwbols
which indicate a quantity or a series of calculations.

Operation Symbols- +,-,*,/,** indicating addition,subtraction,

multiplication,division, and exponentation.
Rules for constructing expressions
1. The simplest expression consists of a combination
of constants and variables. If the quantities are
"integer the expression is in the integer mode, real
quantities are in the real mode, string quantities
may be used in either mode depending on their names.
2. Fxponentation of a quantity does not affect its mode,
but an integer may not he given a real exponent.

‘. Nuantities may be preceded by a +,- or connected hy
any of the operators to form expressions provided:

No two operators appear consecutively.
Nuantities conunected are of the same mode.
No operators are assumed to be present.

4. Parenthesis do not affect the mode of the expression
but may be used to specify order of precedence whichis
normally executed left to right in the following order:
** exponentation
*/ multiplication and division

+- addition and subtraction

Control and Specification statements

The followine

is a list of the Fortran statements,
the general form of the statement, the purposc of

the statement, and an example.

ACCEPT n, List where n is the statement number of
statement., and list is a list of the quantities
to be transmitted.
Purpose: read information from teletype as specified
hy format statement n. Numhers may be right justified
to the format by adding a comma after each number as
it is typed in.
Bxampie: ‘ccept 9, 1,J,h which may be entered as 3,1,5,

regardless of the contents of Format statement 9.

ASSIGN i to n where i is a statement number an n is a
rcal or fixed variable which appears in an assigned
GO TO statement or as a format number.
furpose: causes a subsequent GO TO n (nl,ng,...nm)
to transfer control to statement i where i is included
in the series above, or to transmit data with different

formats during execution.

Example: A(2Y)=.....
‘\(3)=..--0

\SHIGN 3 TO A(1) _
3 FORMAT(2F10.5) :
TVER ACLIY,A(2),A(3) where A(1) acts as a label
CALL name (nl,ao,...an) where name is the nawe of a subroutine
subprogram, and cach a is an argument.
Purpose: used to call subroutine subprograms; the call
transfers control to the subprogram and presents it
with the parenthesized arguments.
Example: CALL QDRTIC(P*Q.?&?,Q/4.536,R-S**2.,X},x&)
CLOSE (i) where i is file pumber given in OPEN command for
reading or writing symbolic (QED) files.

OPEN (i ,INPUT,SYMBOLIC,"name:9SYM") where i is file number
ouUTrUT and name is file name.

COMMON Ay ptlny e iy whereieqch aﬁ is the name of a variable
or non subscripted array name.
Lurpose: Causes each aj to be assigned a location in
common storage allocated by position.
Example COMMON X, ANGLE ,MATA ,MATB
SUBROUTINE SPHIRE
CONMMON A,3,C,D
CONTINUE
Purpose: used as last statement in range of a DO when
the DO would otherwise end with a transfer of control.
Also used as a no operation for program readability.
DIMINSTON VisVoseesVy where each v is the name of an
array subscripted with 1,2 or 3 unsigned integer
constants., Each subscript indicates the size of one
dimension of the array.
furpose: provides information necessary to allocate
sterage for arrays. Storage is assigned columnwisc.
Example: DIMENSION A(10), B(5,5,5), J(12,3)

DO n i.=ml,m,),m1 where n is a statement number, i is a
non subscripted integer variable, and My My, Mo are
either integer constants or non suhscripted variables,
1f m-
Purpose: command to execute repeatedly the statements

is not stated it's value is assumed to be 1.

which follow up to and including the statement with
statement number n. The first time the statements are

executed with i=m For each succeeding execution i

1.
is increased by LB Control passes to the statement

following n when i exceceds My e
xample: DO 25 I=1,15
DO 20 J=1,1
FND
Purpose: indicates end of source program or subprogram

-

o ; R "
FQUIVALENCE (a,b,c),(d,e;f);...t where a...f are variables

which may have a single subscript.

Purpose: causes all variables specified hy cach

narenthetical expression to be assigned the same
location in storage.

Example: EQUIVALENCE (TOP,SIDE(3Y), (BOT(14),H)

FORMAT (si,so,...sn\ where s, is a format specification.

Purpose:descrihe type of conversion and format of datad.
to be used in the transmission of an input/output list.
Connections mway be established during execution as
described in the ASSIGN statement. Formats are data
interpreted by FOS, therefore it is possible to input

an appropriate string of characters into an array

from any 'file such as the teletype at runtime. This
feature allows programs to be tested with minimal formats
and expanded to any desired level, also part of the
output may be deleted with FO.0, 10, or EO.U specified.
The format string is referred to by the name of the

array which stores it in memory. nA3 should be used

for an integer array and nA6; for a real arrvay. In

both cases, the number of words n must be greater or
equal that required to hold the string but may not

exceed the size specified by dimension statements.
Termination of output does pot produce a carriage return,
enabling many different statements to produce one physical
line of output. Literal values are delimited by §----%.

Example: TYPE 1
1 FORMAT(S$SUMS OF SQUARES = §)

TYPE 2,5UMSQ
2 FORMAT(IZ/)

This produces the integer conversion of SUMSQ, one line
of output and the explicit carriage return / to line feed.

FUNCT1I0ON name (31’82"""an) where name is the function
name subject to mode convention and a; are arguments.
Purpose: the statement is used at the beginning of a
function type subprogram to definc its name and
arguments.

Example: FUNCTION ROOT(B,A,C)

GO TO n where n is a statement number

Purpose: transfers control to statement n

GO TO n,(ul,ng,...nm\ where n is a non-subscripted integer
variable appearing in a previously executed ASSIGN
statement and ns is also a statement pumber that may
have been assigned to n by a previously executed!

ASSIGN statement.

Purpose: transfers control to the statement with
statement number equal to that value of n which was

last given by an ASSIGN statement.

Example: GO TO k,(100,200,300) where k is 100, 200 or 300.

GO _TO (nl,ng,.....nm), i where n,,n,,...n —are statement
numbers and i is a non subscripted integer variable.
Purpose: transfers control to the ith value on the list.
Example: GO TO (10,20,30,40),J where J is 1,2,3, or 4.

1F(a) Ny s05,0x where a is an expression and Nyaby, and n-
statement numwbhers .

Furpose: causcs transfer of control {o statemont n,,n.,n.
b)
SAASS . » 1 : =

depending on whether a is less than, egual to, c¢r greater
than zero. Basic fortran.does nmot support logical 1F's,.
Example: IF((X+YY-10.) 5,15,25

Pl e

9.

1F (BENSE TIGHT i) n,;,n, where n and n,are statement oumbers,

‘ |
Purpose: causes transfe# of control to statewent n or oo,

1 2
if the sense light i is on or off respectively. There are
24 sense lights that may be tested.

Example: IF (SENSE LIGHT 3) 30,40

IF (SENSE Sw1TCH 1) n,,n, where 1 is the number of a sense

switch (1 through 1) and ni and n, are statement pumbers.
Purposc: transfers control to statement n, or n, if
sense switch i is up or down. Sense switches are set in
FOS with the i;S for SET and i;R for RESET commands.
Example: TF(SENSE SWITCH 2) 10,20

PALSE n where n is a number typed if non zero.
Purpose: Stops execution of program temporarily and
types "PAUSE n" on the teletype. The user may Lype ;i
to continue the program or debug at that time,
Example: PAUSE 1

READ n, list where n is the statement number of a format

and list is the guantities to be transmitted.

Purpose: Allows any QED file to be accessed. Specific
symbolic files may be assigned and reassigned during a
run. 1f a file is not assigned default is to the
teletype.

Example: READ 1, DATA

RETURN
Purpose: returns control tb wain program-which called

it.

SENSE LIGHT i where i, a number between 1 and 21, is turned

on. If i is zero, sense lights are turned off.

Purpose: permits sense lights to be turned on or off so
that they may later be tested to cause a program to branch.
Example: SENSE LIGHT 5

10,

STOP
Purpose: causes object pfogrdm to halt and allow for
debugging or return to system supervisor,

SUBROUTINE name(al,aq...an\ where name is the symbolic

name of each subprogram, and each a, is an argument.
Purpose: first statement of SUBROUTINE-typce subprogram
and defines it to be such,as well as dcefining its name
and arguments.

Examplei SUBROUTINE QDRTIC(B,A,C,ROOT1 ,ROOT2)

TYPE n, list where n is the statement number of a format
and list is a list of quantities to be transwmitted.
Purpose: causes quantities to he typed on the teletype
in accordance with FORMAT n. Many type statements can
produce the same physical line of output if a "/" is
not encountered in the FORMAT statement.

Example: TYPE 10, A,B,C

Procedures
Fortran procedures consist of Functions and Subroutines.
Tn order to use them they must be defined and called,
Functions may be defined in the following four ways:
Arithmetic Statement Functions: These functions are defined

by a single arithmetic statement in the source program.
Built in "unctions: pre-defined and exist in the program

similar to macro's at the assembly level, that is they
are incorporated into the object program each time it is
refered to by the source program.

Libraryv functions: pre-defined and exist in program library.

Function subprograms: usually user subprogram that may consist

of more than one statement and we common to all subprograms.

11.

Fach type of function must observe the following conventions:
May use other functions in its definition.
May have as %any variable asfdesircd passed as arguments.
Must have names formed in accordance with rules for
naming functions,
Calling functions must follow these rules:
Name indicates the mode of the single value that is result.
Arguments must correspond in number, order, and mode with

arguments which appear in the program definition.

Subroutines differ from the more specialized functions in two
ways: '
They may not be referenced by their appearance in an
arithmetic expression but must be used with a CAL!.
They may return more than one value which may be passed

either with arguments or through COMMON,

i}, Library
A number of functions are available from the library file,
#2:FL1IBE, when called by a loaded program. A compiled subprogram
may have the same name as a library function. When two or
more subprograms of the same namec are reéd by FOS, the first
one is loaded and the rest are ignored.
The library presently contains the following functions:
ALOG computes the natural logarithm of a real argument,
Memory: 138 words
Accuracy: relative error less than 6*!0*'1
EXE éompﬁtcs cxponenfial base e of real argument.
Memory: 144 words
Accuracy: relative error less -than 6*10~11,amax(o,(log2x+l))
SQRT computes square root of real argument. |
Memory: 83 words

Accuracy: relative error less than 10°ll

12.

ATAN given two argumehts; y and x, the routine computes
the arctangent of y/x giving the result in radians in
the proper quadrant. If one argument is given x is
assumed to be 1.

Memory: 256 words
Accuracy: relative error less than 10~ 11

ADBS,TABS real or integer absolute value, argument may
he of either mode.
Memory: 13 words

FLOAT converts integer argument to real
Mewory: 4 words

ITFRIX,INT,AVINT integer or floating value of real argument
truncated to integer. Positive and negative arguments

are both truncated toward zero.
Memory: B words
ISTIGN,SIGN integer or real result of the algebraic sign of

the second argument, = assiegned to the value of the first
argument .
Memory: 20-21 words

AMOD requires two real arguments, returns the remainder
when the first is divided by the second. That is
WWiCo A, P =A-FLOAT(FIX(A/BR)) *B
Memory: 13 words

MOD requires two integer arguments. Returns the remainder
when the first is divided by the second. For intescrs
MOL(T ,JY=1-(1/T)*T
Memory: 9 words

MAX,AMAX. .finds intéger or real maximum of any number of
avguments of "either mogde.

MINJAMIN finds integer or real minimum of any number of
arguments of ejither mode.

Memory: 60O words, includes all four entrics,

13.

DIM requires two real arguments, returns the difference
il the first one is greater than the second, otherwise
returns zero,
SAMCALBT = AN(A=B, 0.0)
cAMUL,0,0Y 20X (AL,0,0) and =DIM(0.0,) =AMIN(0.0,1)
The iM function is much shorter if the result is needet,
Memory: 1O words

iDiM recaires two integer arguments. Returns the differcnce
if the first is greater than the second, otherwise retauvus
200G,
IDIM(L (I =MAX(T=J,0)
Memory: 10U words

LOCF returns the absolute address of an argument of either
mode.

Memory: 1 words

I given two real arguments, P and 9, this function returns
zern if they are equal within the four low order mantissa
hits, otherwise it returns an integer with the sign of
’-@. Given one real argument P, the function returns
zern il {1s magnitude is less than 10710 otherwise it
returns an integer with the sign of . This function is
useful in conjunction with the if statement to provide
a means of testing equality of decimal numbers in binary.
Viemory : 25 words.

EXIT same effect as STOP statement, except that *EXIT* is
typed. F0OS returns to the command mode.

Memory: 10 words.
rOWER ,FORM, TIME , BRS ,EOF ,IS1ZE, and IPOSIT also exist in the

library file and are for the most part built in functions.

4

14.

sywbol Tahle Size ‘
Symhol Lahle storage i's dynamkcally allocated by the
compiler, None of the tables have fixed leneth; cuch
may he lengthened, shortened, or rclocated as iteuws
are added or rcmoved. No table can be exceceded until
all memory is used. Included in the symbol table storage
is the working storage for statement translation. This
arca is expanded during the analysis of each statement
and contracted as the program is written out. Since
it's size fluctuates rapidly in preportion to statement
complexity, it is difficult to predict the availahle
symbo.l table storage, but may be approximated at 150 words.
Table storage is hound in the following way:
N+2S+6A+2F+14+2G+4L+2C+3D+3D+M+W less than TABLESIZE
where: |
A= number of array variables
C= common identifiers
D= do loops
K= equivalence identifiers
- rcal constants
G= global subprograms
I= integer constants
I.= local subprograms €(Arithmetic Statement functions)
M= format statements
S= number of scalar variables

W= working storage

N

Commands

To invoke the Eor&ran‘g?mp}ler‘give the executive command
@FTC which responds with it’s‘namc, version and +
+ﬂ;1ists all the commands available in the subsystem.

The commands which must be confirmed by a "." are:
+1nput from (FILE—NAME); Source file should be 95V
+Qutput from (FILE-NAME). Compiled object program uitiN
+List to (IFTLE-NAME). 9SYM 1f listing is wanted o

terminal "*T" should be specified as [{ile nawe.
+Unhug. must be invoked prior to compile if runtime
debugeer is going Lo be used.
+Map., gives map of program variables
inodap, ltisting normally produces map of program variable
storage. This is omitted by invoking NoMap after Iist.
+Nolist.
+Nobebug.
+Compile.
+Finished.
! lgnore this line.
Syntax check with nocode generation is provided by
not invoking the output command.
New files are created by enclosing the {ile name in
double gonotes.,
Typing control-K at any time returns to the "4+"

commanid processor.

16,

1il. Fortran Onerating System

A. bLoander ;

m o includes such 6peratjuns as floating point
uﬁitﬁ@etic, format scanning, and program debugging.
Fortran progzrams compiled by '"'C are loaded and
execuled with FOS by giving the following command:

@FQS carriage return The system responds with

LOAD MAIN PROGRAM
FROM FILE (FILE-NAME).

If subprogrusws arc called they must be read following
the routine which calls it, if this order is violated,
the names of the wmissing routines will be typed and
the file should be read again. [1f library routines
are not included in the user files, they should be
loaded when the system responds

LOAD SUBPROGRAMS & &0
ROM FILE for any subprograms type FILE-NAMIL,
for the library type #2:FLIBE.

When all the programs and subprograms the system

will respond with
LOADING COMPLETE the time,and the unused storage.
Transfers to the executive are permitted during the
loading process provided F0OS isn't waiting for the
user to open another file. The following situations
may arise while loading:

FILE NOT BINARY Files not 9BIN or not
1LIEGAL FPILE generated hy FTC
FROGHAM TOO BIG Exceeds BK currently available

for programs and subprograms

17.

At this point the program may be executed, if the

program was compiled without the debugging option, only

the following commands may be used:

+36G

+3b
!

+3D
3N
+5r
+(n):5
+(nY;R
"

+.

—

Go to the first statement of the wain program
'roceed after pause or c¢rror

Disregard previous error or pause hereufter
Reinstate all disregarded items

“Xit Fortran QOperating System

Set senseswitch n

Reset sense switch n

Tgnore this line

GControl Return to "+" command processor

AL

Prints all commands of subsystem

B. Runtime Debugging

tf the program was compiled with the DWPRUG optinmn,

the debugger commands may be used. These include:

+(address? (6 Go to addressed statement

ey h Proceed afer error pause or breabinint
+{addressY!i(n) Set breakpoint at addressed line udngd
+1{n) Clear breakpoint n

+10 Clear all breakpoints

+{address);C Replace address with continue statement
to= Print address of current line
+(address)= Print closest relative adress

+(named)/ Frint variable nawe in intrinsic mode
+(name [0 Print variable name in octal

+(namel” Print variable name in ASCII

+(namele/ . Intrinsic mode input

+{(namele[_ Octal mode input

+(name Yen \SCIT mode input

~~

L.

Addresses for the debugger may have one or two parts,
The two part adhress specifiés a program unit followed by
a4 relative label address. Once a two part address has been
xiven the debugger remembers the program unit. Thereafter
a one part address specifying only the relative label will
operate within the most recently specificed progriam unit.

ITnitially the main program is assumed specified. luxamples:

SETASS WL EONE RS Subprogram USER, labe! 100

Lmel, TO0E Subprogram USER, 5 statements srios Lo
label 100

I RS Main program, label 40

#1000 Main program, breakpoint 1 at 10

statements beyond label 10O
Runtime Diagnostics

AGTO ~An assigned GOTO statement has been encountered
but no variable has been assigned.

ARGAM Anp argument of the wrong mode has been transmitted
to a subprogram. The incorrect mode is used,

ARGN - The wrong number of arguments has been transmitted
to o subprogram. T1f too many were transmitted, the
extra ones arc ignored., If too few were transmitted
the extra positions are filled with garbage.

T The value of a computed GOTO lies outside the range
specified., Control transfers to the first statement
of the given list,

EF1A TS is unable to output one or more variables as
the FORMAT statement lacks a needed E,7,1, or A,
The variable is not transmitted. :

FXP The argument of an expontial function is greater
than 176 octal. The answer is set to the maximum
real value,.

PCHR FOS has detected an illegal format character,
The character is ignored and a scan for Lhe next
specification is begun. Character has same cfifcct
as a comma,

FORML,ITOREP The 1/0 statement variable references something
other than a format statement,

19,

[IXWITS The 1/0 statement which references a FORMAT has
never heen assigned.

oy VOS5 has received an illeral input character,
The character is dienored and a scan i hepun
for the next input f(ield.

IS The value of an IF SENSE LIGHT statement is not
between 1 and 24. The sense light is assumed off,

1sS The value of an 1F SENSE SWITCH is other than
: between 1 and 4. The sense switch is assumed off.

TNUM An input number to F0OS is outside of range. The
value is set to zero,.

AR Program specifies a transfer to an undcfined label
The program cannot be continued, but the debugger
may he used.

P The argument of a logarithm function is negative
g ar sero, the result of the function is sel Lo zoro,

N AR The program has tried to raise a negative numbher Lo
a4 non-integral real power. The form /N/**F isg
comvtted instead,

S Output exponent exceeds range. The number is
- transmitted with O exponent.

RRIEAD The size of storage has been exceeded, continuing
program will destroy common storage required by
subroutine calls. '

SNLT The value of the SENSE LIGHT is not in the range
of 1 to 24, The statement is ignored.

SORT A negative argument was passed Lo the square root
subroutine. The absolute valuc is used.

Q**N The proeram tried to raise 0O to a non positive power.
If it was to the O power a 1 or 1., is returned. 11
it was to negative power, the maximuwm possitle real
or integer value is returned,

IV, Apoendix

PAGE

10

20
30

40
50
60
65

80
70

1

MONDAY APRIL 21, 1975 11:15:47

DIMENSION LETTER(5)
LETTER(1)=1H+

LETTER(2) =1k~

LETTER(3)=1H=*

LETTER(4) =11/

LETTER(5)=1HS

ACCEPT 1,IOPERATE,IARG1,IARGZ2
FORMAT(A1,218)

DO 10 I=1,5
IF(LETTER(I)-IOPERATE) 10,20,10
CONTINUE

TYPE 6

GO TO0 9

FORMAT(SWHATS/)

GO T0(30,40,50,60,70),1
IANS=TARG1+IARGZ

GO TO 65

IANS=IARG1-IARGZ2

GO TO 65

IANS=TARG1*IARGZ

GO TO 65

IANS=IARG1/IARGZ

GO TO 65

TYPE 80,IARGl, IOPERATE,IARGZ,IANS
GO TO 9
FORMAT(I8,A1,18,%=%$,18/)
PAUSE

END

20.

MC-FORT:GSYM

This example shows assignment and comparisen ef
nen-numeric data, the arithmetic if statement, and
input-eutput to teletype using TYPE and ACCEF? commands.

@ FTC

VERSION 12-83=-7% ("H.'" FOR HELP) TODAY 1S 04/21/75 1250:39
+INPUT FROM MC-FORT.

+0UTPYT TO "OBJECT".

+COMPILE.

COMPILING MAIN PROGRAM

COMPILE TIME B:0:5

+FINISHED. TOTAL COMPUTE TIME 0:@0:7

@ FO5

VERSION 12-23-70¢ ('"3H" FOR HELP) TODAY IS 04/21/75 1252:05
LOAD MAIN PROGRAM

FROM FILE OBJECT.

LOADING TIME @:0:1

8063 WORDS OF STORAGE UNWUSED

+30G

+1234,5578, 1234+ 5678= 5912
-2876,8765, .. 9876~ 8765= 1111
*2458, 1111, 2463% 1111= 2741948
/9999,9999, 9999/ 9999 = 1
<

PAUST

+3F

TOTAL COMPUTE TIME @:9:3

@

PAGE 1 TUESDAY APRIL 22, 1975 13:40:16 TEST:3SYM

DIMENSION IGRAJE(SO).KEY(SO)ySSN(Z 50)

1 FORMAT (2A6,13/) ‘
10 I=1
SDEV=0.
XMEAN=
TYPE 2
2 FORMAT($ TYPE ID AND GRADESS$/)
20 ACCEPT 1, (SSN(K,I),K=1,2),IGRADE(I)
IF(IGRADE(I)-100) 30,30,40
30 GRADE=IGRADE(I)

XMEAN=XMEAN+GRADE
SDEV=SDEV+GRADE®*2

KEY(I)=1I

I=1+1

GO TO 20
40 I=1-1

CALL SORTI(IGRADE,XKEY,I)
DO 45 M=1,I
L=KEY(M)
45 TYPEL1,(SSh(K,L),K=1,2),1GKADE(M)
LEIGH=IGRADE(I)
LOW=IGRADL(1)
FN=1
M=(FN+1l.)/2.
MEDIAN=IGRADE(M)
SDEV=SQRT((SDEV-XMEAN%%2/FN)/(FN-1.))
XMEAN=XMEAN/FN
TYPE 3,1,XMEAN
TYPE 6,SDEV,MEDIAN
TYPE 7,LHIGH,LOW

o O W

FORMAT (S FORS,13,5 DATA POINTS, THE WEAN IS $,13/)
FORMAT($ THE STANDARD DEVIATION IS$,F5.2,% THE MEDIAN IS$,13/)
FORMAT(S RANGE IS FROM$,13,% T0$,13/)

0 PAUSE 1
GO TO 10
END
SUBROUTINE SORTI (L,KEY,NO)
DIMENSION L(1),KEY(1)
MO=NO

10 IF(MO-16) &0,20,20

20 MO=2%(MO/8)+1

30 KO=NO-MO
Jo=1

40 1=J0
IPMO=1+M0

50 IF(L(IPMO)-L(I)) 60,60,70

60 LEMP=L(I)

L{I)=L(IPMO)
‘L(IPKO)=LEMP

KEMP=KEY(I)

KEY(I)=KEY(IPMO)

KEY(IPKO)=KENP

IPMO=1

I=1-M0

PAGE 2

70

&0
9C

20

TUESDAY APRIL 22, 1975 13:40:18 TEST:9SYM

IF(I-1)'70,50,50
J0=J0+1

IF(JO~KO) 40,40,10
IF(MO-1) 100,100,90
MO=2(M0/4) +1

GO TO 30

RETURN

END

This example shows calling a subroutine with variable
dimensiens, using nen-numeric data in an array, and

conversion from real to fixed peint eutput in the format
statement.

The data could pe read from a symbelic file by inserting
the fellewing changes; file "DATA" is written in QED.
OPEN(3, INPUT ,SYMBOLIC , "DATA : 9SYM")

READ(3,1) (SSN(K,I),K=1,2),IGRADE(I)

CLOSE(3)

2 FTC

TERSION 12-%3-75 (“H.' FOR HELP) TODAY IS Q4/22/75 1329:%54
+INPUT FROM TEST. ‘

+OUTPIIT TO “TORBJ".

+DEBUG .

+COMPILE.

COMPILING MAIN PROGRAM
COMPILING SUBROUTINE SORTI

COMPILE TIME 0:0:9

+FINISHED. TOTAL COMPUTE TIME 0:0:10

@ FOS

UYERSIQON 12-03=-70 ('"s3H'" FOR HELP) TODAY 1S 04/22/75 1331:1%9
LOAD MAIN PROGRAM
FROM FILE TOBJ.
MISSING
SANT
249575
LOAD SUBPROGRAMS
FROM FILE #2:FLIBE.
LOADING TIME @:0:4
6927 WORDS OF STORAGE UNUSED
+3G
TYPE ID AND GRADES
523-48-8131 99
312-44-1030 70
226-36-5475 82
576=-46=-4387 78
575-38-2978 92
999
312-44-1030 70
576-46-4387 78
N256-36-5475 82
523=-48-8131 90
575-38-2978 92
FOR 5 DATA POINTS, THE MEAN IS 82
THE STANDARD DEVIATION IS 8.99 THE MEDIAN IS 82
RANGE IS5 FROM 92 TO 7%

PAUSE 1
+KEY (1) /
+KEY(2)/ 4
+KEY (3) 7/
+KEY C4) /
+HEY (5) /
3T
TOTAL COMPUTE TIME 0:0:8

& 0

161 R

@

KIEWERENCED

L. FORTRAN 11 Reference Manual,. Document 30.50.50
Feb. 8, 1966, C. Stephen Carr, University of California,
Perkeley.

2. Batch TORTRAN Reference Series, Tymshare, Revision 4,
OCctober 1968,

