
1HE MEM)RY MANAGEMENT FUNCTION IN A

MULTI PROCESSOR CCMPlITER SYSTB1

- A Description of the BCC 500

Memory Mal1:ager

Wrenwick K. Lee

Technical Report R-2
Issued September 12, 1974

1HE ALOHA SYSTEM, Task II
Department of Electrical Engineering

University of Hawaii

Sponsored by
Advanced Research Projects Agency

ARPA Order No. 1956
Contract No. NASZ-6700

1HE ALOHA SYSTEM, Task II, is affiliated with the Department of Electrical
Engineering at the University of Hawaii, and is currently conducting
studies into the design and fabrication of secure multiprocessor oper­
ating systems.

1his research was supported by the Advanced Research Projects Agency
of the Department of Defense and was moni tared by NASA, Ames Research
Center under Contract No. NASZ-6700.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency of the United States Government.

ABS1RACT

1he BCC 500 System was designed to be a large-scale interactive

computing utility supporting up to several hlilldred on- line users. To

achieve this goal, a multi-processor architecture was chosen. Central

processors were designed to compile and run user code, while the operating

system was designed to be run by several dedicated processors. 1his

paper details the system memory management function which was assigned

to one of these processors.

With this architecture, memory management takes on a different

dimension. Techniques and capabilities beyond the reach of those attainable

by time-sharing memory managrnent flillctions on a CPU with other system and

user tasks may be employed. The memory manager is continuously active,

monitoring the memory system and taking appropriate action more quickly

and more of ten.

ii

ACKNOWLEDGEMENTS

1he :implementation of the BCC 500 memory manager involved the

contributions of various members of the BCC 500 staff; among them

Jack Freeman, Dr. Butler Lampson, Dr. W. Lichtenberger, Dr. Melvin

Pirtle, Rainer Schulz, and Robert Van Tuyl.

iii

TABLE op·coNTENTS

1. INTRODUCTION

1.1 Organization• .
1.1.l System Structures (Section 2) ••

1.1.2 Hardware (Section 3) . . • .

1.1.3 Data Structures (Section 4)

1.1.4 Microcode (Section 5 and Section 6)

1.1.5 APU Code (Section 5 and Section 7)

1.1. 6 Connnunications, Error Handling (Section 8)

1.1. 7 Concluding Remarks (Section 9) •

2. INTRODUCTION - SYSTFM STRUC1URES

2.1 Pages

2.2 Page Types
'

2.3 Unique Names

2.4 Physical Location of Pages

2.5 Context Blocks

. . . •.

2.5.1 The Process Memory Table

2.5.2 The Active Page Table

2.6 The Process Table

3. INTRODUCTION - THE HARDWARE

3.1 The Processor

3.2 Dnnn & Disk Hardware

. .

3.2.1 Data & Address Fonnats

iv

1

1

1

1

2

2

2

2

3

4

4

8

11

12

17

19

25

26

26

4.

3.2.2 Position Counters
3.2.3 TSU Control Registers ••••••

3.2.4 Indicators

3.2.S TSU Instructions
3.2.6 Instruction Ti.ming

3.2.7 Status Register

3.2.8 Attentions •••••

3.2.9 Select Register in the TSU

3.2.10 Disk Seeks & Position Verification

3.2.11 TSU State ••••

INI'RODUCTION - DATA STRUC1URES

4.1 Q.leues

4.1.1 General Request

4.1.2 Activate Request

4.1.3 Request Entry

.

. . . .

. .

. .•

• • • 39

• • 40

. . .
45

47

so

51

54

54

57

• •. 59

4.2 The Core Hash Table

4.2.1 CHr Layout

.

61

66

67

68

70

70

71

.
4.2.2 When a Page is 'in CHI''

4.2.3 CHI' Page Status Infonnation

4.2.4 Scheduled Count & Accessibility of Pages

4.2.S Removing a Page from CHI', or Clearing DIRTY

4.3 Drum Hash Table ••••

4.3.l General

.

. . .

74

75

77

79

4.3.2 DHT Page Status Infonnation
79

80

v

4.4 Standard Circular List Structure

4.5

4.6

State of ~ Microprocessor

Important Central Memory Locations

4.7 Statistics (Counters)

4.8 Table Manipulations

5. INTRODUCTION - SOFI'WARE & FIRMWARE .

6. MEMORY MANAGER FIRMWARE

6 .1 The Memory Manager's Main Loop

6.2 :Microcode Descriptions •...

• • • • • • • 0

82

84

84

87

90

95

99

100

6.3 Detailed Microcoded Routines Descriptions . . . o • • • 104

6.3.1 Subroutine Lii1.kage

6.3.2 Main Loop •.••

6.3.3 Process Attention

105

• 0 • • • Cl • • • Cl • Cl Cl • 10 5

. . . . 107

6.3.4 Start .Auxiliary Processing Unit •••• • • • • • 109

6.3.S arr Hash 109

6.3.6 arr Search • • • • • 109

6.3·. 7 Enter arr Entry • • 110

6.3.8 Delete CfIT Entry • • • • • 111

6.3.9 Clear CHf Entry • • • • 111

6.3.10 Get Free Core . • • e • • . 0 • • • • 0 • • 112

6.3.11 Put Page on Free Core List

6.3.12 DHT Hash

6.3.13 Search DHT

vi

113

113

114

6.3.14 :Make DHT Entry

6.3.15 Delete DHr Entry

6.3.16 .Append Entry onto List

6.3.17 Stack Entry on List •

6.3.18 Remove Entry from List

6.3.19 Save State

6.3.20 Dump TSU State

6.3.21 Generate Wakeup

6.3.22 Send TSU Instruction

6.3.23 Stack Entry on Free List

6.3.24 Remove Fntry from Free List

6.3.25 Initialization Sequence for .Af.t:

6.3.26 Wait Until Device Idle

6.3.27 Compute Next Sector on Selected Unit

6.3.28 Get Position of Rotating Device

7. MJM)RY MANAGER SOFTWARE

7.1 APU Code - Overview

7.2 :Major Transfer Vectors . .
7.2.1 Primary Transfer Vector

7.2.2 General Request Transfer Vector • .
7.2.3 .Activate Request Transfer Vector

7.2.4 Cleanup Request Transfer.Vector.

7.2.5 Startup Request Transfer Vector

7.3 The Auxiliary Processing Unit •.

vii

. .

•

. . .

. . . .
. . .

. . . .

. .

. .

115

115

117

118

118

119

119

120

121

121

lZZ

122

124

125

126

127

131

132

132

133

134

135

136

8. CClvlMUNICATIONS AND ERROR HANDLING

8.1 Comrnmications - The Memory Manager and the Outside World. 148

8.2 Error Handling • • • • • • • • • • • • • • • • 150

8.2.1 General Error Philosophy • • • • • • • 150

8. 2. 2 Types of Errors_ . ·• • . •

8.2.3 Errors During Swapping

8.2.4 Disk Read Errors

8.2.5 Disk Write Errors

8.2.6 Dn.nn Errors for Non-Swapping Transfers

9. CONCLUDING REMARKS

Appendix I Abbreviations for Model I Memory Management System ••

Appendix II Microprocessor General Theory of Operation

.Appendix III .AMC Startup . . • • . . • . . • •

viii

151

152

152

152

153

154

157

160

180

LIST OF FIGURES

Fig. 2.1 MIB and Associated Page Types CB, IB, FP . . 5

Fig. 2.2 CB Contents 13

Fig. 2.3 CB Storage Allocation 14

Fig. 2.4 Fonnat of an Entry in a Process Memory Table 20

Fig. 2.5 Format of an Entry in an Active Page Table 21

Fig. 2.6 Format of the Process Table (PRT). 23

Fig. 2.7 Description of PRT Bits 24

Fig. 3.1 .Auxiliary Memory System Configuration 27

Fig. 3.2 Drum and Disk Page Fonnats 28

Fig. 3.3a Drum Characteristics . 31

Fig. 3.3b Disk • . . 32

Fig. 3.3c Disk (continuation) 33

Fig. 3.4 Parameters of BCC 500 Rotating Memories 35

Fig. 3.Sa TSU Control Registers 37

Fig. 3.Sb TSU Registers 38

Fig. 3.6a Position Counter (PC) Fonnat 41

Fig. 3.6b Drum Record Timing • 42

Fig. 3.7 TSU Register Loading 44

Fig. 3.8 TSU Register Loading Interface (Select Register) 55

Fig. 4.1 Normal Request Entry 0 0 62

ix

List of Figures - continued

Fig. 4.2 Various .AMC Queues
Fig. 4.3 Direct 1/0 Request Entry
Fig. 4.4 Core Hash Table (002) Entry

Fig. 4.5 CHI' Hashing Structure . . . •
Fig. 4.6 Drum Hash Table Entrr . • . . . • . .
Fig. 4.7a Circular List Structure
Fig. 4.7b Fmpty List •••.••• . .
Fig. 5.1 .AMC Code Organization . . .
Fig. 6.1 Main Loop·
Fig. 6.2a Three Hash Table Entries . . • .
Fig. 6.2b b is Deleted

. .
. . . .

. . .

. • . • • .

.. •

. . . .

. .

. . .
.

. .
.

, . •

. .

.

.

.

.

.

63

70

72

73

81

83

83

96

98

• • 116

. . . 116

Fig. 6.2c Corrected Hash Table if a, b, c Hash into same Location. 116

Fig. 6.2d Corrected Ha.sh Table if c Hashes into Location it is in. 117

Fig. 7.1 Dispatching Structure
Fig. 8.1 Memory Manager Cornnrunications

APPENDIX

. . .

Fig. 1 Microprocessor Data Paths: Arithmetic Section •

Fig. 2 Microprocessor Data Paths: Control Section •

x

•• 128

• 149

•• 161

• 162

Table Al.

Table A2..

Table A3.

Table A4.

LIST OF TABLES

90-bit Microinstruction Word

Branch Conditions

Special Functions

Bool Box Control .•

xi

168

172

. 176

• • 179

1 INIRODUCTION

Memory management for the BCC 500 was designed to be controlled by

a single dedicated processor •. As a result, the central processors do

not run memory management tasks. The memory management processor con­

tinuously monitors the memory system and quic:J<ly responds to events that

are important to the memory system.

This report is a teclmical description of the memory management

system. Hardware ccmponents, data structures, implementation code,

and comnrunications conventions are described in detail.

1.1 Organization

The following parts of the memory management system will be described.

1.1.1 System Structures· (Section 2)

This describes the system environment in which the menory

manager operates. Concepts such as page, unique name, context

block, process table, etc. are discussed.

1.1.2 Hardware (Section 3)

The hardware has been specially adapted to attain the high

swap rates desired. The processor, drum, disk and auxilary memory

controller are extensively discussed. One can see the differences

such as position monitoring, unique name checking, and other features

of the hardware.

1.1.3 Data Structures (Section 4)

The fundamental data structures of the memory manager are

detailed. The queue which is used extensively in the memory manager

is illustrated. Also the core and drum page tables are explained.

1.1.4 Microcode (Section 5 & Section 6)

The role of microcode is explained~ Various examples of

microcoded routines are given.

1.1.S APU Code (Section 5 & Section 7)

The role of APU code is explained. The APU instruction set

is given.

-T~l. 6 -co:rrnmmications, Error Handling (Section 8)

Co:rrnmmica ·dons , and error conventions are explained.

1.1. 7 Concluding Remarks (Section 9)

Looking in retrospect, connnents are given on the relative

merits and difficulties of the implementation. Reconnnendations and

questions are also mentioned.

-2-

2 INTRODUCTION - SYSTB~ STRUCTURES

The following are the :important system structures involving the

memory manager. An overview of the various structures involved in paging

is given and one is introduced to the environment of the memory manager.

The number of structures presented is essentially quite small, yet suf­

ficient to give a fair insight into the role of the memory manager.

2.1 Pages

The memory system of the BCC 500 consists of 128K words of core,

4 million words of drum, and 125 million words of disk. The BCC 500 System

super-imposes a page structure on this storage space. .All three levels of

storage are sub-divided into 2K-word blocks, called pages. Pages are units

of infonnation as well as units of storage space. When we speak of pages

of code, pages of data, etc. , we mean an amount of code, data, etc. , that

may be stored in a page of storage. This is just to say that ''page" is

used in a manner completely analogous to that in which ''byte" and ''word" are

used. When we use ''page" to refer to a unit of storage space, we speak of

"core pages", "drum pages", and "disk pages" depending on which of the three

levels of memory we are referring to. Storage pages have an "origin" as

well as an extent (2048 words). Pages of core are 2048 word blocks starting

at an address which is congruent to 0 modulo 2048. Similarly, drum and disk .

pages have fixed "starting addresses" built into the hardware. They are a

little different from core pages in that we don't speak of word addresses in

connection with these storage devices.

-3-

2.2 Page Types

Pages can be of the following types:

1) MIB (M.iltiple Index Block) - the file directory for one user. It

also contains the disk addresses of the data pages for small files.

2) IB (Index Block) - contains the disk addresses of the data pages

for a large file.

3) CB (Context Block) - contains the defining infonnation for a process.

4) FP (File Page) - contains data and occupies a definite position in a

file.

The pages of a file are m.unbered f"tom O, up to a maximtml value MAXFA.

The ntmlber for a page is called its file address and specifies its position

in the file, which may not be the same as the number of pages preceding it,

since sane file addresses may have no corresponding pages.

5) PP (Private Page) - contains data and belongs to a process, Privat.e

pages are not ordered in any way, but each one can appear in just one

PMr* byte.

The relationships of the various types of pages are shown in Fig. 2.1.

2.3 Unique Names

Associated with every page is a 48-bit number called its unique name.

This m.unber has the following format:

*PMI' is a table of pages belonging to a given process. This is explained
further in Section 2. 5 .1 on the PMT. ·

-4-

Objects

Process

Large File

Small File

MIB and Associated Page Types CB, IB, FP

MIB (Multi-Index Block, size = 1 page)

File Directory for one user

User

" .
. . .

. . . .

.

.
name, disk address of file
pages (FPs)

.

.

Figure 2.1

-s-

-

_.,,

CB (Context Blo ck, infoI111ation
concerning process)

see Fig.2.2

IB (Index Block - disk addresses
of file pages (FPs))

Note: CB and IB bo th have size = 1 page

Bits

0-1

2-17

18-36

37-47

Name

UNTAG

UNUSER

UNID

UNADR

Contents

0 = MIB or small file data page

1 = large file IB or data page (FP)

2 = CB or PP

3 = not used

User number of the owner of the page

A ntnnber different for each object (file or

process) with the same owner. For a MIB this

field is 0.

Page number + 1 for a private page or a file

page. For a MIB, IB or CB this field is O.

Some comments on the implications of this fonna.t are appropriate.

1) The ntnnber of distinct users is limited to 64K. Each user who

exists has exactly one MIB. Every page except a MIB belongs to a MIB, and

hence every page belongs to some user. The user to whom a page belongs can

be detennined from the UNUSER field of the page~~.:unique_name .•

2) Every object (file or process) has an entry in a MIB. This entry

specifies the UNID field of the object. This field is the same in the unique

name of every page qf the qbject. It is therefore possible to find the object

which a given page is part of, starting from the unique name of the page, by

examining the UNUSER field to find the MIB and then comparing the UNID field

with each object in the MIB. When a new object is created it is given a new

UNID, which is the UNID of the last object created in that MIB, + 1. This

ensures that all pages of the new object will be distinguishable from any

-6-

page of any old object, whether or not the old object still exists. When

the last UNID value (219-1) is assigned to a new object in some MIB, it is

not possible to create any more objects in that MIB. This situation can be

remedied only by reassigning the UNIDs for all the presently existing objects

in that MIB and updating all occurrences of unique names for pages belonging

to that MIB anywhere in the system.

3) A file cannot have more than 2047 pages because of the size of the

UNADR. It is not possible to move a page to another position in a file with­

out changing its unique name. It is, however, possible to completely recon­

struct a file from a complete scan of tke disk.

Unique names have the following basic property; no two different pages

ever created by the system can have the same unique name. This observation

requires some clarification:

1) If the UNID reassignment mentioned above is carried out, it nrust be

thought of as the creation of a new system into which some information from

the old system is copied.

2) If a file page is destroyed, and a page with the same file address

in the same file is subsequently created, it is considered to be the same

page. There is no difference between these two operations perfonned in

sequence and the cperation of zeroing the page. It is not claimed that this

is the only possible interpretation of the meaning of recreating a file page,

but it is a reasonable one, and it is the one adopted by the Memory Management

System~).

3) It is not possible to have more than one reference t~ a private page

When the page is destroyed it is removed from all maps in the process

-7-

and therefore ceases to exist in the most complete sense possible.

If another private page is created in the same PMf byte, it makes no

whether it is regarded as the same page·or different (though the latter

viewpoint seems preferable):

--if it is the same, the matter is academic since there can be no

references to the page at the time it is created and subsequent references

to it are under the control of the creator.

--if it is different, the matter is academic since no record of the

previous page exists anywhere in the system.

Unique names exist in the system in the following places:

1) Recorded on disk together with a page

2) Recorded on drum together with a page

3} In the core hash table (GIT) entry for a page

4) In the entry for an object (and :implicitly for each of its pages) in

a MIB

5) In a PM!' entry

6) In a PRT* entry

They also exist in the temporary storage of the MMS.

2.4 Physical Location of Pages

A page always exists on disk, and may also exist on drum, in core, both

or neither, where by 'exist' we mean that space is allocated for the page.

A valid copy of the page may exist in any combination of these three places.

*PRT is the Process Table -- This is explained further in Section 2.6.

-8-

Since a page p always exists on disk, there is always a disk address

K(p) for it. This address is assigned by the monitor, which is responsible

for disk allocation, when the page is created. The unique name recorded

at K(p) is either UN(p) or O, the latter if and only if the WUN (Write Unique Name)

bit for the page is set in the Drum Hash Table (DHr). The reason for this is

that when the page is created it is assigned a free disk page which has

UN = O and the WUN bit for the page is set. The first time the page is

written on the disk, its unique name will be written and the WUN bit will be

cleared. When p is destroyed the unique name at K(p) is zeroed.

It is expected that pages will be moved on the disk infrequently, if at

all. The combination of unique name and disk aqdress is therefore nonnally

sufficient to identify a page and pennit it to be read from the disk; this

combination is called the real name (RN) of the page and occupies three words.

If a page is moved and an attempt is made to access it using the old disk

address, a unique name error will occur, since it is not possible for the

same unique name to be written on two different disk pages. The unique

name of the page can then be used to find the MIB entry for the object of

which it is a part, and from this entry the correct disk address can be obtained.

This works oecause of a second basic property of the system: the correct disk

address of a page is always· recorded in the MIB entry (for small file page),

IB (for large file page) or CB (for private page) for the object of which it

is a part. Hereafter we will suppress the IB and CB cases.

It is possible for many occurrences of the real name of a page (other

than a privatepage}-to exist in the system. New occurrences are created

when a file page is put into a PMf entry, or when the monitor puts a MIB, IB

-9-

or CB into its map, or when a PRT entry is made for a process.

The subset of pages in core or on the drum changes rapidly, as does

the physical core or drum location of a page. Core and drum addresses are

therefore kept in exactly one place in the system, so that only one change

need be made when a page is moved.

1) The core address of a page is kept in the Core Hash Table (a-IT),

which can be conveniently accessed by unique name. Every page which is in

core (the precise meaning of this phrase will be explained later) has a

arr entry, which contains all the information relevant to its sojourn in

core.

2) The drum address of a page is kept in the Drum Hash Table (DI-IT),

which in theory can also be conveniently accessed by unique name. Every

page which is on the drum or on its way there has a DI-IT entry, which contains

all the infonnation relevant to its sojourn on the drum.

We are now in a position to explain roughly how a page p can be accessed

if its RN is known. First use UN(p) to access arr. If this access is success­

ful the page is in core at the address given by CHr. Otherwise use UN(p) to ·

access IHT. If this access is successful the page is on the drum at the

address given by DI-IT. Otherwise use K(p) to access the disk. If the unique

name recorded there agrees with UN(p), the page is there on the disk. Other­

wise use UN(p) to find the MIB entry for the page. This may reveal that the

page does not exist. Otherwise it is on the disk at the location given by

the MIB, and the RN may be updated accordingly.

It is a third basic property of the system that the procedure described

above will always yield a valid copy of the page unless there is a failure of

-10-

the Mv1S. There are some built-in cross-checks to make detection of a failure

more likely.

1) When a page is read from drum, the UN which was recorded on the

drum may fail to agree with DHT. We give up this cross-check by accessing

DIIT on disk address ·rather than unique name. Since it is possible for a

disk address to be reassigned (unlike a unique name), an attempt to access

a page p on the drum with an old RN r (i.e., K(p) = K(r)) may fail because

UN(r) f UN(p). We can, however detennine the facts. If the UN recorded at

K (p) agrees with the one on the drum, then we have an old RN and the MMS

has not failed. If it disagrees there is indeed a MMS failure. To surrnnarize,

using UN(p) to access a DHT keyed on disk address must include reading the

page from the drum and checking the recorded UN.

2) When a page is read from disk using a disk address obtained from the

MIB, the recorded UN must agree with the one in the MIB.

3) When writing on the disk, the recorded UN must agree with the one

obtained from DHT and the drum. This cross-check of the (UN,K) pairing

defined by DHT and the drum is gained in return for cross-check (1) which

was lost by keying DHr on K.

2.5 Context Blocks (CB)

To define a process for the operating system requires a good, deal of

information. This infonnation is called the "state" of the process. When a

process is donnant, its state is defined by its entry in its owner's file

directory (MIB) • Such an entry contains the symbolic name of the process, infonna­

tion for controlling access to the process, and the Unique Name of a special

-11-

page of the process called its Context Block. This special page contains

the infonnation needed to introduce (or re-introduce) the process into the

operating system's job stream, that is, to activate the process.

Mien a process is active, its state is more complex. Some information

about it is kept in tables, such as the Process Table and the character I/O

line tables, which are resident in core. Infonnation which is needed only

when the process is itself in core (or being swapped in or out) is kept in

the Context Block page. This page can be thought of as providing temporary

storage for the operating system in certain of its functions with respect to

the process.

Figures 2.2 and 2.3 detail the layout of the CB. Of particular interest

are the MAP, PMf and APT which involve the memory manager.

2.5.1 The Process Memory Table (PMT)

One kind of information the operating system requires about an active

process is a list of the Unique Names of all the pages which belong to the

process. These names (together with a mapping of the process' address space

into them) are needed by the CPU so that it may find the pages to which the

process directs references when actually executing instructions. These page

names are also required by the Auxiliary Memory Control (.AMC) so that it

can identify the pages which it needs to swap into core preparatory to the

rtlnning of the process.

The page names, and some additional information about the pages, are

kept in a table called the Process Memory Table (PMf) in the Context Block

(CB). These tables begin in a standard place (loc. 3008) in each process'

Context Block for the convenience of the various parts of the operating

-12-

CB CONI'ENTS

0: POP entry indirect address word

1: POP entry in.direct address "WOrd

2: SP first unused stack address

3: SL last word allocated for stack

4: P for Trap (ring dependent)

5: PAR for Trap (ring dependent)

6: BRU for Trap (ring dependent)

7: BRU for Trap (ring dependent)

10-177: FREE

200-277: 1':fAP - Map associating virtual addresses with pages (contains

in.dices into PMI')

300-1277: PMT - Table of pages in use by this process

1300-1707 :. SPT

1710-2027: SPCS

·2030-2115: ICT

2116-2235: OFT

2236-2650: SfACK

2659-2751: APT - Table of active pages (contains indices into PMI')

2752-1763: TR.SfATE

2764-2775: SWSTATE

2776: CTC

2777: IT

Figure 2.2

-13-

CB STORAGE ALLOCATION

SPT (42 words/entry)

OFT (5 words/entry)

PMT (4 words/entry) (128)

APT (1 word/entry)

SPCS (5 words/entry)

MAP

STATE, ETC.

Figure 2,3

-14-

264

80

512

65

80

1011

64

25

1090

system which must reference them. They have room for 128 page names, but

can be expanded to allow for up to 255. That is, the limit of 255 is

built into the system in a number of places, but the current 128 page limit

is imposed by only the software par_t of the system. We begin by giving

explanations of the contents of entries in PMI. Refer to Fig. 2.4 for a

picture of a PM!' entry.

Unique Name: These two words hold the Unique Name of a page of infonna. -

tion. This is the same Unique Name as is written with the page on the

disk and drum and kept in the Core Hash Table when the page is in core. It

is used by the CPU's map loader when it looks up the page in OIT and by the

Swapper when it is swapping the process in or out.

Disk Address : This field holds the address at which the disk copy of

the page is stored. It is the address which will actually be sent to the

disk TSU (Transfer Sub-Unit) when it is requfred to read the page into core

or to write it on the disk. Such addresses have to be kept because there

is no provision at the TSU level for addressing pages by their Unique Names.

However, the system does not depend on this disk address being correct.

When the transfer of a page to or from the disk begins, the contents of the

Class Code field of the addressed page is checked for equality with the Unique

Name of the page of infonnation it is desired to transfer. If this check

fails the transfer is aborted and a "Class Code Error" is reported to the

process for which the transfer was being done. A page's Unique Name and Disk

.Address are called together its ''Real Name."

This is a good place to note an implementation concession for the Drum

Hash Table. First we note that the Core Hash Table is a .table entered by

hashing the Unique Name of a page and containing for each entry the Real Name

-15-

of a page and the absolute address of the core page in which the page is

currently stored. Ideally the Drum Hash Table would be completely analo­

gous and each entry w:>uld contain a Recil Name and a drum page address of

the current drum copy of the page. This implementation was not possible,

simply because of the amount of core storage which such a table would

require. Instead, DIIT entries contain only the Disk Address word of the

Real Name. Except for the loss in elegance this seldom causes any

problems. It just means that in certain cases we have to do an otherwise

unnecessary read from the drum to compare a Class Code with a Unique Name.

(The Core Hash Table and Drum Hash Table are explained in greater

detail in the section on Data Structures.)

Tlrus the Disk Address word in PMr entries is used to find the page

whose Unique Name appears in the entry both on the disk and on the drum,

but in neither case is it considered the final authority in the matter

since we always make the comparison between Class Code and Unique Name.

RF (Reference Flag) : The system tries to make sure that the pages

in the Core and Drum Working Sets of a process are the ones that the process

is referencing most frequently. In order to do this, it IIll.lst somehow be kept

informed as to what pages the process is referencing. The CPU's Ma.p Loader

provides this infonnation by setting the RF flag in PMr whenever it loads

the corresponding page into its map.

SF (Scheduled Flag): When a program causes the Ma.p Loader to load a

page into the CPU's map. the Map Loader looks up the page in the Core Hash

Table using the Unique Name in the appropriate FMT entry. It is possible

that the page is in core for sane other process but not supposed to be

-16-

available to the process in which the program is running. Giving the

program access to the page under these conditions will in general lead to

chaos, since the core storage management systan depends on lmowing how

many processes have access to the pages in core. The SF bit is used to

prevent this illegal access. It is set by the core management system if

the process is authorized to access the page, and the CPU will trap if it

is asked to load a page with SF = 0 into its map.

CCE (Class Code Error): When the pages of a process' Core Working .·

Set are being read into core the Unique Names in pr.IT are compared with the

Class Codes on the pages read. If the comparison fails, the read is aborted

and the CCE flag in the 00' entry is set. The SF bit is, of course, reset.

If the process tries to reference the page, it will get a trap from the

CPU, at which time CCE can be tested to detemine the source of the problem.

ROE (Read Error): If a page of the Core Working Set cannot be

swapped in because of a "hard" error encoWltered in trying to read the

page from the drum, the ROE bit in the pages IMI' entry is set. Like the

CCE bit, this error indication is for use in analyzing the page fault which

will result if the page is referenced.

2.5.2 The Active Page Table (APT)

When it is time to bring a process into core so that it may execute

instructions on a CPU, a request is sent to the Swapper to bring in the

pages the process needs in order to rWl. The Swapper is given a pointer to

the process' entry in PRT.* In the PRT entry the Swapper finds the Real Name

*Section 2.6 describes the Process Table (PRT).

-17-

of the process' C.Ontext Block. It brings.this page into core. In the

Context Block (CB) is a table, called the Active Page Table (APT), which contains

pointers into the Process Memory Table (PMf). Entries in APT are marked

as to whether the pages they point to are to be swapped in or not. The

set of pages which are marked to be swapped in is called the Core Working

Set (CWS) of the process. The Swapper scans .APT and reads all O~S pages

into core. When these reads are completed the process is said to be loaded

and is available to be run on a CPU.

Figure 2. 5 gives the format of an entry in .APT. We now explain the

various fields shown in the figure.

use Histo;cy; This field is used by the system to keep a history of

references the process directs to the page the entry points to. It is up­

dated periodically from the RF flag in PMT and used by the routines

which maintain the Core Working Set.

~age Lock: It is possible to lock pages into core, that is, to exempt

them from the algorithms which cause DIR1Y pages to be written back on the

drum and pages not in any Core Working Set to be released from core. The

operating system can lock pages directly by turning on bits in the pages'

entries·in the Core Hash Table. Certain privileged User Programs will

also need to insure that pages are kept in core. The Monitor provides

a K:ALL which can be tised to do this. When a process executes this MCALL,

the PAGE LOCK field of its CWS entry for the page will be set to a code

identifying the lock Qit in arr for which the process is responsible.

-18-

Keep:
Lock: 1hese fields are intended to allow a program to designate

elements of its Core Working Set as more important than others. No

operations on them are implemented in the current version of the

Process Memory System, however.

DWS: In addition to the Core Memory Set there. is another subset of

APT called the Drum Working Set (DWS). It is the set of pages which are

being kept on the drum for the process. It is a super/set of _the Core

Working Set and is maintained entirely by the software parts of the operating

system. The DWS bit in an APT entry is set if the page pointed to is in

the process' Drum Working Set.

CWS: This is the bit the Swapper uses to determine whether an APT

entry points to a page to be swapped in. It is set if the page is to be swapped

in (i.e., is in the process' Core Working Set) and reset if it isn't.

PM!' Index: This is an index into the Process Memory Table and points

to a Real Name of a page. ·

2.6 The Process Table (PRT)

A Process Table entry is kept for each active process in the system.

The first three words of this entry give the real name (unique name + disk

address) of the context block (CB) for the process. As described in

section 2. 5, the context block contains various tables: The PMT, a table

of pages known to the process and the .APT, a set of indices into PMI' of

currently active pages.

Thus if the swapper is given a process table index, it can (and does)

determine which pages to swap.

0

1

2

3

Fonnat of an Entry in a Process Memory Table

0
UNIQUE NAME

0 (UN)

0 1 2

* * DISK ADDRESS (DKA)

0 3
*

l~ I~ ACCESS F LOCK (AL)*

RDE - Read Error

RF - Reference Flag

SF - Scheduled Flag

CCE - Class Code Error

11 12
s
F

Figure 2.4

13

~
15

c
c
E

CONTROL
LOCK (CL) *

* Not used by the Memory Manager

-20-

23

~

23

23

Fonnat of an Entry in an Active Page Table

0

0 7 8 11 l~ l~ 14 15 16 23
' PAGE D c K L

USE HISTORY (UH) LOCK w Vi E 0 PMT INDEX
(PGL) s s E c (PMI')

.. p K

An F.xample of an APT Entry

0 1 2 3·4 5 6'7

11010011000 01 10 0 0 0

The entry tells us that the page whose Real Name appears in PMTf 69] is

in the process' Drum and Core Working Sets. The page is not locked in

core for this process. Nor is it KEPT or LOCKed in the working sets. The

process has made references to the page during

the last interval,

the next to the last interval,

the 3rd from the last interval,

the 6th from the last interval,

the 7th from the last interval,

Figure 2.5

-21-

Figures 2.6 and 2.7 detail the process table. Of particular interest

to memory management are:

1) PRUNl

PRUN2

PRDK

which give the real name of the context block for the process

2) PRSE

which is an error word that the memory manager returns to indicate

some problem which prevents it from swapping the process

3) In the·Process Status Word (PRST),

SWQ; a request for swapping-in has been put on the memory manager

queue. When the memory manager considers it, this bit is reset.

CBC: creating a request to read in a context block accompanies the

setting of this bit (original request is a swapping-in queue request).

PQ: after the context block has been read in, this bit accompanies

the reading in of the individual pages of the process CWS. The

CBC bit is turned off.

LDD: Last leg of swapping in, this bit is set when all the pages have

been read into core; PQ bit is turned off.

-22-

PRUNl

PRUN2

PRDK

PRPIW

PRSE

PRSW

PRRTP

PRRT

PRST

PRCO

PRPTR

FORMAT OF TI-IE PROCESS TABLE
(PRT)

UNIQUE NAME 1

~----------~----------------~
UNIQUE NAME 2

A

~ c DISK ADDRESS
T

c E Q A c R RR
0 S T M H A i T c I p

SWAPPER ERROR WORD

LAST READ TIME DISK TRANSFER DRUM TRANSFER
(LRT) COUNT (KTC) COUNT (DTC)

APT RTI POINTER (PRT POINI'ER) OVERFLOW

x TIME OF NEXT REAL TIME INI'ERRUPT
12 13141516171819 20 212223
B w c p

p s s M L RR c
L A B D w c s D EU p

MCT PRI K _Q_ c K Q lQ_ lQ_ Q D SN u
N* t
~- ~

SCBEDULER FIELDS

SCHEDULER FIELDS

QUEUE POINTER (SCHEDULER,
µ-SCBEDULER, ETC.)

*Bits only looked at by software

Figure 2.6

-23-

DESCRIPTION OF PRT BITS

CD: Carrier Off Interrupt

ES: Escape Interrupt

QT: Quit Interrupt

OU: QIIO Interrupt

AMC: AMC Interrupt

RAP: Reduce Active Page Set

RSI: Run Scheduler Initially

RT: Real Time Interrupt

MCT: Millisecond Compute Time

PRI: Micro Scheduler Priority

BLK: · Blocked

WAQ: Wake-up Queue

CBC: Context Block Considered

PDK: Process Delayed for Disk Transfers (No longer used)

PQ: Process Queued on Sector Read List

SWQ: On Swapper Request Queue

SCQ: On Scheduler Queue

MSQ; On Micro Scheduler Queue

LDD: Process Loaded

RUN: Process Running

CPU: CPU Number

RES: Resident Process

NIN: Non-Interactive

PRD: Process to be Destroyed

ACT: Active Process in PRT

Figure 2.7

-24-

3 INTRODUCTION - TI-IE HARDWARE

1his section describes the characteristics of the hardware used by

the memory manager. We shall discuss first the processor, then the

dnnn and disk, and finally the controllers. Figure 3.1 shows the logical

relation between the various components.

3.1 The Processor

The processor that runs the memory manager is a microprocessor

designed to provide a flexible and wide-ranging ability to perform varied

processing and control functions in the system. The BCC 500 uses five of

these processors, one of which is fully dedicated to memory management.

The memory manager is also known as the Auxiliary Memory Control (AMC), processor.

This processor executes 90-bit microcode instructions, allowing a

large number of possible functions to be carried out. Its cycle time is

100 nanoseconds. Basic boolean, shifting, and arithmetic functions are

provided by the microprocessor. In addition to ten accunrulator-like

registers in the processor's arithmetic unit there are 64 scratchpad

registers which allow quick access to variables which are referenced

frequently.

M:>st of the memory management functions are implemented directly in

the management processor's microcode, resulting in immense processing

power for this (dedicated) purpose. Each of the other system microprocessors

is similarly dedicated to one or more major system functions (including

two that are "dedicated" to general calculation i.e., the CPU's). E.x.cept

for the microcode and some easily wired special functions and conditions, each

microprocessor is identical in construction. (The two CPU's are slightly different.)

-25-

3. 2 Drum and Disk Hardware

This section is concerned with the characteristics of the auxiliary

memory_ hardware used by the memory manager. It is intended to describe

everything about this hardware which can be observed from the vantage

of the .AMC.

3.2.1 Data and Address Fonnats

The AMC is connected to a block transfer unit, or controller called

an auxiliary memory transfer unit (.AMTIJ). Figure 3.1 shows the AMC,

the .AMIU, and their connections with the Central Memory. The AMC uses

its own pa th to Central Memory to access. system tables and APU instruc­

tions (elaborated on in Sections 5 and 7). The AMI'U's path to Central

Memory is used only for block transfers of data between Central Memory and

the rotating devices. The path between the MC and the .AMID is used for

control: AMIU commands coming from the AMC and status infonnation returning

to the MC.

The AMIU consists of four logically.similar block transfer devices

called Transfer Sub-Units (TSUs) and a Transfer Unit Interface "Multiplexer

(WIM). F.ach TSU is capable of accepting a single command from the AMC

to perform a specified block transfer, to monitor .. the many types of errors

which may occur during a transfer, to report on the status of a transfer

after completion, and to report certain other status information--especially

rotational position information for the devices--required by the AM:.

The TSUs are independent of each other and may perform transfers sinulta­

neously. They share a single Central Memory port; and the 1UTh:1 serves

-26-

Central
AMC

(Processor) r­
---------.1 I

- - --,
Memory

Central
Memory

I
I .

I
_J

DRUM TSU

DRUM TSU

I ())))) C))))) ())))) ()))))
DISK TSU

I DISK TSU

L __:_ - - - - _-_J
AMTU (Controller)

1 TUIM Transfer Unit Interface Mulitplexer
<4 TSU's Transfer Sub-Units. <2 for drums, <2 for disks.
<4 Units, drum or disk, per TSU

<4 simultaneous data transfers, 1 per TSU
<8 simultaneous seeks, 1 per disk

Figure 3.1: Auxiliary Memory System Configuration

-27-

.. 1 _4_s_-_b_i_t_UN _______ z_o_4_s_wo_;~ta record I
Dn.nn Page Foniiat

HEADER 48-bit UN I) .. ____ z_o_4s_w_o_r~t-~_r_e_co_r_d ____ ..,I

Disk Page Format

Fig. 3.2 Dn.nn and Disk Page Fonnats

-28-

to multiplex their (independent) requests to the Central Memory, resolving

conflicting requests within it. The TIJIM also serves as a routing and

gathering point for control and status information passed from and to the

AK:.

There are two types of rotating memory:· drum and disk. The terms

drum and disk refer primarily to fixed-head and moveable-head devices

respectively, rather than to actual details of construction. (In the

present hardware, dnuns are drums and disks are disks, however.) Drums

have a higher transfer rate and no track selection latency (seek t:ime).

The TSUs are consequently of two types: drum and disk. Each can

have four devices or units connected to it. Each unit is a logically

independent device which rotates and positions its arms independently

of the other units (that is, if it has arms). A TSU can perform data

transfers for only one of its attached units at a time.

Data is recorded on both drum and disk in units of 2048, 24-bi t-word

records called pages. Recorded with each page is a 48-bit unique name (UN).

Also associated with each disk page is a header which contains the physical

address of the page. Figure 3.2 illustrates this. Note that on the disk,

header, UN and data are three separate records; while on the drum, UN

and data form a single record. Each data record has a checksum. A drum

checksum is of length 24 bits and a disk checksum is of length 48 bits.

Finally, each word is recorded on disk with an additional parity bit.

The drums were designed specifically to transfer at a high rate.

The disk is not required to be quite so fast as the drum, as its main purpose

in the system is bulk storage. When processes become active or files are

-29-

accessed their pages primarily reside on the dn.un; they move into core to

be accessed and then back out onto the dn.un. When they are no longer

actively being accessed they return to the disk.

Along with the discussion of the dn.un and disk, various tenns that

relate to them will be defined.

Drum: A page on a drum is defined by its sector and band position.

A sector is an angular segment of the drum required to hold one page. As

the drum rotates, succeeding sectors come under the heads. There are 24

sectors or pages around the dn.un. Information is transferred to/from

drum in 24 bit-parallel fashion, i.e., 24 heads are used simultaneously.

Since the drum is equipped with approx:i:mately 1100 heads, it is necessary

to specify which grouping of 24 heads to use during a given transfer.

This grouping is called a band. There are 42 bands on a drum, allowing

for storage of 42 X 24, or 1008 pages (i.e., a total of 1008 X 2048 =

2,064,384 words) per drum.

With a rotation period of 33.3 msec, the drum transfers information

at the rate of 750 pages/sec (1.5 ·106 words/sec). This is a rather

high rate; however one must recall that this is a potential rate and

not necessarily an actual one. It is the responsibility of the memory

manager to make the most of this potential rate.

Disk: The disk is eve~ more unconventional than the drt.nn. It is a large

file with 13 disks each 4~ feet in diameter. Like the dn.un, it transfers using

a group of heads in parallel to define a logical "band". Since only six

heads are used for the 24-bit words being transferred, however, the

trans£ er is partly serial. The heads of a given band are located on a

-30-

I
VI
I-'

I

SECTOR

BAND BAND

l

' \ \ \

I
/

~

I
I

24-BIT PARALLEL TRANSFERS

Fig. 3.3a Drum Characteristics

24 sectors
42 bands
33.3 ms rotation times
1.5 words/usec transfer rate

(750 pages/sec)

I
~
N
I

DISI{

BAND

5 SECTORS

24 BANDS

256 CYLINDERS

50 msec rotation

.27 words/ usec (135 pages/sec)

Figure 3.3b

3 5 8 1 0 12 12 Bi ts
Logical Track

(6-Track Parallel Reads)

Radial Head Movement,Cylinder Positioning
(256 Possible Positions)

Figure 3.3c

-33-

radius of one side of one of the disks. On a disk the head nearest the outer

edge moves over a greater circumference than the inside head. (The disk is

depicted in figures 3.3b and 3.3c) Thus more bits can be stored under the

outside head than the inside head, and the bit rate per head is thus a function

of the head's radius. Figure 3.3c shows the relative number of bits transferred

during a unit of time. Note that these numbers add up to 50 bits, 2 for parity

and 48 for two words. Most disks read words sequentially off tracks, as well

as use worst case (low) densities that are the same no matter where the head

positions is. The 500 method allows more density and greater transfer rate.

Whereas on the drum the heads are fixed, on the disk they are moveable.

On the 500 disk there is an angular positioning ann which moves the heads

over the correct logical track, or cylinder.

There are 256 angular positions. For components of the disk address,

we use the tenns band, sector, and cylinder. A sector is that angular

portion of the disk necessary to store one page. There are five sectors

per revolution on the disk. Figure 3.3b depicts the organization of the

disk. The disk has 13 platters with 26 surfaces. Each surface corresponds

to a band. A cylinder is one of the 256 angular positions. (The tenn

cylinder - reminiscent of a drum - derives from the fact that for each

track positioning the disk addressing stiucture otherwise resembles a drum.)

In all, there are 30,720 pages (or 63 x 106 words) on a disk unit. The disk

has a 50 ms rotation time, with an average 4.8 µsec. to transfer a (double) word

All BCC 500 rotating memory parameters are summarized in Figure 3.4.

-34-

Dnun:

Disk:

24

42

1,008

2

33.3

1.5

-30

5

24

120

256

30,720

2

50

.21

-so
65-225

sectors/revolution

bands

pages/unit or 2,064,384 words/unit

uni ts (Hawaii configuration)

ms rotation time

words/µsec transfer rate

µs sector gap

sectors/revolution

bands

pages/cylinder or 240,000 words/cylinder

cylinders/unit

pages/unit or 62,914,560 words/unit

units (Hawaii configuration)

Figure 3.4 Parameters of BCC 500 Rotating Memories

-35-

.AMC Disk address internal fonn:

The disk unit has 5 sectors per band, 24 bands per cylinder, and 256

cylinders. There are two TSUs which may control disks (the Hawaii configuration

has only one, however). Each TSU may have up_ to four disk units attached

to it. This infonnation has been packed into one word in order to keep

tables small.

TRACK NUMBER BAND 1761 ZII 231 - SECTOR 4 UNIT2

.AMC Dn.ini. address internal fonn:

The two million word drum has 24 sectors per band and 42 bands. Since

space in the address word is not as critical in the drum address~ the

fields have been adjusted to correspond to the device address fields in

the TSU.

BAND 1761 - SECTOR

The address of a page, as accepted by the TSU, is contained in one

word with the following fonnat:

2 - 9 cylinder (disk only)

10 - 16 band

17 - 21 sector

The other bits in the word are not used. This fonnat is shown in Fig. 3.Sa.

-36-

AMC BUS I t11112 I 3 I 4 I SI 6 I 718 l9llOl111Ll1$41lSllfi17l18l!9120l21122123f

CHECK~ I ~ 231

CHECK 1 I ~ 231

OUT

STATIJS* I 13 231

UN~ I ~ 231

UN 1 I ~ 231

CYLHIDER BAND SECTOR

PAGE ADDR. I 2 911*1 16117 211
IN

CORE ADDR. I s 231

TAG

INSTR.* E3 l1s 21 J

WORD CCUNT i 12 231

UNIT NO. 122 231

*Amplified on next page

Fig. 3.Sa TSU Control Registers

-37-

!")
N -N·
N

.-I POSITION ONLY N

Q DRUM POLICY N

0) DISABLE ail<. CODE CYCLE r-i

6 00 }op r-i
H
E-< r:--
u r-i

~ l.O

}UNUSED
.-I

z lf)

H r-i

~
H

~ ~
~u) ~B
i~

1-1

~s
VI
s..
QJ,

~}T~ FifilD E5

·00
"E:l; r-i '6:l.

r--.
'IQ. '6:l. r-i r-{

VI .,..
O'>
QJ
~

I
::::> co
(/) ...,.,
I- I' ·' ""- ~ -, ..
.Q
LO .
(Y)

QJ
s..
:::s

!")
N

~ Ei3 N REGISTER LOADING VIOLATION 1-f N
Cl .. Ci

....... DEVICE NOT AVAILABLE N

O'> .,..
LL. N DRUM POLICY VIOLATION

0) DATA TRANSFER LATE

~1
.......
00 MEMORY PARITY ERROR

~ r:-- CHECKSUM NOT ZERO r-{

ID EXCESSIVE TIME CONSUMED
UN NOT EQUAL
DEVICE PARITY ERROR
HEADER NOT EQUAL

3.2.2 Position Counters

Each TSU has four registers called position counters (PCs), one for each

unit. TI1e fonnat of a PC is shown in Fig. 3.6a. The four bits marked * show

the same in all four PCs; they are identical.copies of indicators and are discussed

in Section 3.2.4. The rest of the PC gives infonnation about the ann position

and rotational position of its unit, as follows.

•the sector number tells which sector is currently under the heads

•for the disk, the cylinder number tells which cylinder is currently under

the heads or being sought for. For the details of how to interpret this

field and the related CYLINDER VERIFIED bit, see Section 3.2.10.

•the position within the sector (PWS) field tells approximately where in

the sector the heads currently are.

Figure 3.6b tells how to interpret the PWS field for the dn.un. The reasons

for the strange intervals are historic.

Note especially the definition of the end of sector (EOS) time as the

time the PWS field goes from 15 to j1. This is the reference point from which

most activity in the TSU is measured.

If the POSITION NOT VALID bit is ·on, the infonnation in the PC is meaning­

less because it is being incremented. If this bit is on, the PC is merely

reread until its bit goes off.

The PC for a disk unit is not affected in any way by a seek taking place

for that unit.

-39-

3.2.3 TSU Control Registers

A TSU (each TSU operates ccmpletely independently of the others) has two

sets of control registers. One set, called the ftm.ctional registers (FR),

contains the instruction currently being executed. The other set, called the

holding registers (HR), can be read or written by the .AM:. Whenever an

instruction is completed, and at certain other times, the FR are exchanged or

swapped with the HR. Precise details of this process are presented below.

Figure 3.Sa swmnarizes the register fonnats and should be referred to while

reading this section.

Timing in the TSU is geared to the transfer of pages between a rotating

device and central memory. The time at which most things happen is the EOS

time (see Section 3.2.2), the time at which all the data of a sector, and any

auxiliary infonnation (checksums, etc.) which the hardware may ?Uf fix to

the data, has passed by the heads. At this time the inter-sector gap is

under the heads; after it has passed by, infonnation related to the next sector

begins to come under the heads. We will call this time T, sanetimes with a

subscript to denote the sector which has just passed by. An EOS time occurs

in each tm.it at regular intervals. The unit addressed by the functional

UNIT NO (the selected unit) provides the EOS time for the TSU. A TSU EOS

occurs at regular intervals except when a new unit is selected; this case is

discussed below.

The TSU works in the following way. The .AMC loads the control registers

in the order: instruction register, core address, word count, page address,

UN, and unit number, into the HR (FR are not generally accessible to the .Af.I:).

-40-

POSITION COUNTER (3-11 UNUSED IN DRUM TSU)

. ·~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
\...) \ \.) '---._,---) L.._-;

~;gm~ ~e 6 ~~ ~~
POSITION

(/) 65 WITHIN

~~a~ H tr.l~
tr.ls >-3

~
tr.l SECTOR H

~~
~(/) ~ tr.l

§:@ tr.l
gj gg~ ~ ~ ~ * *~ h3 ~ ~ ~ ~

H~ >-3 H
ZH

~
a G') 'T.l

*H * tr.l
t::;j H

t::;j

Fig. 3.6a Position Counter (PC) Fonnat

-41-

Length of What is
Ticks PWS Interval Happening

.0 - 23 .0 24 Inter-sector gap
24 - 70 1 47 Preamble, data starts
71 - 134 2 64

135 - 157 3 23
158 - 165 4 8
166 - 212 5 47
213 - 276 6 64 Data
277 - 299 7 23
300 - 307 8 8

308 - 354 9 47
355 - 418 10 64
419 - 441 11 23
442 - 449 12 8
450 - 496 13 47
497 - 560 14 64 Data, checksum, post-

amble, dead time
561 - 584 15 23 Dead time

One tick = 2.4 ~s. 584 ticks = 1.4 ms = 1 sector time

Transition from PWS=l5 to PWS=.0 is End-Of-Sector (EOS)

Fig. 3.6b Drum Record Timing

-42-

We assume sector i is now under the heads. When the EOS time T. occurs,
1.

the TSU swaps the registers. This talces about 1 µsec. The TSU then starts

"executing" the instruction in the FR i.e., it attempts the indicated transfer

or ann positioning. Let us say the indicated transfer is for sector j.

Then the TSU waits for sector j to come under the heads and does the transfer.

At T. the registers are swapped again, and the .AM: can then look at the
J

HR to find out what happened during the instruction. At the same time, if

the HR were loaded again aft:er Ti but before Tj, the new instruction is being

executed by the TSU. The AMC thus has one sector time to examine the results

of the transfer done in the previous sector and set up an instruction for

execution in the next sector and can thus accomplish continuous transfer.

Matters are slightly complicated if the unit is changed since the units

are not rotationally synchronized. The swap occurs as usual at T. . Then
1..

the TSU starts to look for an EOS on the newly selected unit. This EOS is

called a synchronizing EOS, and until it occurs the TSU is suspended.

The synchronizing EOS serves only to activate the suspended TSU. When it

occurs, execution of the FR instruction begins, exactly as it would have at

Ti if there had not been a unit change. The second EOS on the new unit is

the next effective EOS after T .. It follows that the interval between TSU EOS
1

times will be a variable and as long as twice the normal interval following

a unit change.

There is a special feature in the hardware to take care of a dual­

positioner disk, in which the two units rotate synchronously. When the TSU

switches from one unit of the dual positioner to the other it behaves as though

-43-

(Instruction register only)

1) during sector -­

functional
holding I Read X

empty

2) shortly before sector ends --

ftmctional
holding

Read X
Read Y

3) end of sector (EOS)

functional

holding
Read Y 1) ________ _......~
Read X .J

4) before end of succeeding sector

functional
holding

Read Y
Read Z

loaded by memory manager for
next sector

swap Registers; use infonna tion
from functional regist~r (now in
holding register) to determine
success of last operation; Read Y
now ready for next sector

Instruction Y now being executed
Holding register loaded with
instruction for the sector to
follow

The above pattern is repeated with the functional register instruction

being executed while the holding register is loaded in preparation for the next

sector. Then between sectors, the registers are again swapped~

Fig. 3.7 TSU Register Loading

-44-

no unit change had occurred, i.e. it never becomes suspended and no synchronizing

EOS is required. If this case·were not handled specially, a unit switch on

the dual positioner would always cause the TSU to be suspended for a full sector­

time.

When the AMC loads the registers, it must load the instruction register

first and the unit number last. If the instruction register is not loaded

between Ti and Ti+l' no instruction will be executed during sector i+2.

In this case the TSU is said to be idle. A swap occurs as usual at Ti+l to

bring the results of the instruction which was loaded at T. back to the HR
l

for examination. If the HR are not loaded during sector i+2, however, no

swap occurs at Ti+2. In this case the TSU remains idle during sector i+3,

and continues to be idle l.lntil an instruction is loaded into HR. If this

happens during sector j, a swap will occur at T. and the TSU will cease to be
J

idle at that point.

If a swap occurs after the instruction register has been loaded but before

the unit number has ~een loaded, a register loading violation occurs. The

instruction is taken as a NOP and the status register will indicate the violation

after execution of the NOP is complete. See Section 3.2.5 for details of

instruction timing, and Section 3.2.9 for how the loads are handled.

3.2.4 Indicators

The four indicator bi ts marked * in any position cmmter are each copies

of four indicators (see Section 3.2.2 for the significance of the rest of

the word) which record the progress of an instruction through the cycle just

described. When the holding instruction register is loaded, the HR LOADED

bit (bit ~ of any position counter) is set. HR LOADED is cleared when the

registers are swapped, so it is set exactly when there is an instruction

loaded (or partially loaded) in the HR and awaiting execution.

The FR LOADED bit (bit 1 in the PCs) is set from HR LOADED when the

~egisters are swapped. It is therefore set exactly when there is an instruction

in the FR being executed or awaiting execution. Note that this bit comes on

when an instruction enters the FR even if the sector addressed by the instruction

is not under the heads. It therefore provides no infonnation about whether

the data transfer is actually underway.

This information is provided by the INS CCMPLETING bit (bit 13 in the PCs)

which i.s on if FR LOADED is on and the instruction will complete at the

end of the current sector on the selected unit·. More precisely FR LOADED may

be on and INS COMPLETING off only if

1) the TSU is suspended, or

2) the instruction has DRUM POLICY=~, and POSITION ONLY=~ and address

sector i is not now under the heads (or, in the case of a disk write, CYLINDER

VERIFIED is off) .

In all other cases FR LOADED implies INS COMPLETING. These cases may be

classified as follows:

3) the instruction has DRUM POLICY=l

4) the instruction has POSITION ONLY=l

5) the instruction has DRUM POLICY=~, POSITION ONLY=~, addresses sector i

and sector i is now under the heads (and, in the case of a disk write, CYLINDER

VERIFIED is on).

-46-

6) there is a register loading violation

7) the instruction conslililes excessive time (see Section 3.2.7).

1he definition implies that INS C(l\ff>LETING is always on for exactly one

sector per completed instruction.

Finally, the RESULT WAITING bit (bit 2 of the PCs) is set from FR

LOADED when the registers are swapped. It is cleared when AMC reads the

STATUS register. It thus indicates that there is information waiting to be

collected about the fate of the last corrrrnand. 1he TSU will not swap new

values from the FR into the HR if the RESULT WAITING bit is on. This situation

occurs if the AMC has not yet read the results of a previous transfer which

would be clobbered by the results of the current transfer.

The three bits HR LOADED, FR LOADED a'ld RESULT WAITING may be thought of

as resting places for a single bit indicating the presence of an instruction

which goes from .MC to HR to FR to HR and back to AMC.

All four indicator bits may change state about 1 µsec after a TSU EOS.

1he INS CCMPLETING bit may be set about 1 µsec after a synchronizing EOS.

These are the only times that the indicators can change state.

3.2.5 TSU Instructions

There are two instructions which may be given to a drum TSU. All drlilil

instructions have POSITION ONLY=0. Normally dTlilil instructions have DRUM POLICY=l

and DISABLE CHECK CYCLE=0 (see below).

OP=0: Transfer WORD CNT words, from the beginning of drum page PAGE ADDR

to central memory locations CORE ADDR through CORE ADDR+WORD CNT-1. At the end

-47-

of the read the UN of the page is left in UN0 and UNl. A checkswn for

the page (not including the UN) is in CHECK0; if it is non-zero the data has

been read from the drwn incorrectly, i.e., there has been a read error. In

this case the CHECKSUM NOT ZERO bit in STATIJS will be set. PAGE ADDR will be

pointing to the next page, CORE ADDR to the first lillreferenced core location

and WORD CNT will be 77757776B (i.e., -2 in its context); these three

registers are normally of little interest after the read. A variety of useful

information discussed in detail in Section 3.2.7 is left in STATIJS. On a

read the checkstnn is computed for the entire page, regardless of the WORD CNT,

as long as it is >.0.
.

OP=l: Transfer the UN in UN~ and UNI and the contents of central memory

locations CORE ADDR through CORE ADDR+WORD CNT-1 followed by 2048-WORD CNT zero

words to the drtnn page at PAGE ADDR. CHECK0 and CHEC.Kl are of no value after

this instruction. STATUS reports unusual conditions as for a read, and the

addresses and count are left as for a read.

There are five instructions which may be given to a disk TSU. Four are

data transfer instructions and have POSITION ONLY=~. These instructions may

have DRUM POLICY on or off (see Section 3.2.6). They normally have DISABLE

CHECK CYCLE=0.

OP=.0: Read, which works exactly like drwn read, except that the disk has

two checksum words, CHECK.0 and CHEC.Kl. A disk read is not affected by

CYLINDER VERIFIED, but it will set CYLINDER VERIFIED if there is no error; see

Section 3.2.10.

-48-

OP=l: Write, which works exactly like drum write, except that it is not

executed tmtil CYLINDER VERIFIED for the selected tmit is set; see Section 3.2.10.

OP=Z: Write header, which is an instruction used only by hardware

maip._tenance perso!lllel and is used only at disk maintenance times.

OP=3: Write with UN check. This instruction is like write except that

instead of writing UN.f:'l and UNl it compares them with the values recorded on the

disk. If the disk values agree the write proceeds nonnally. If not the write

is aborted and the UN NOT EQUAL bit in STATUS is set. This is the only condition

which sets this bit.

The fifth disk TSU instruction has POSITION ONLY=l. The value of OP is

ignored in this case. This instruction causes the disk to move the anns to

the cylinder specified by PAGE ADDR. The other registers are ignored. No data

is transferred. This instruction requires one sector time for execution plus

any time during which the TSU is effectively suspended due to lack of cylinder

verification. DRUM POLICY must be ~ for this instruction.

The DISABLE GIT< CODE CYCLE bit alters the method of computing the checksum

words. Nonnally for the drum (disk) CHECK.0 (CHECK.0 and CHECKl) is computed by

starting with the first word (double word) and then as each word (double-word)

arrives doing an Exclusive OR of it with CHECK~ (CHECK~ and CHECKl) and cycling

the result left 1. The cycle is suppressed by this bit. The suppression of

the check code cycle diminishes the effectiveness of the check code and is

intended for hardware check-out purposes only. All other use of drum or disk

involving data must specify cycling of the check code.

The TAG FIELD is not used or modified in any way by the TSU. It is

-49-

provided solely for the convenience of the .MC, which by using it may attach

a 4-bit tag to an instruction. The tag bits are copied, along with.the rest

of the instruction, from HR to FR and back to HR. The tag is intended to

help identify the loss of instructions due to register loading violations.

3.2.6 Instniction Timing

If DRUM POLICY=! in any instruction and the unit is not changed, the

sector position of the page addressed must be the one which will be under

the heads immediately after the swap which brings the instruction into the FR,

the arm position must be the current arm position (only relevant for disk),

and CYLINDER VERIFIED must be set for a disk write. If this is not the case,

the instruction is aborted and DRUM POLICY VIOIATION is set in STATUS. If

the unit is not changed the instruction requires exactly one sector time to

execute.

If DRUM POLICY=! in any instruction and the unit is changed, the page

addressed must be the one which will be under the heads after the synchronizing

EOS swap. In this case the instruction requires somewhere between one and

two sector times to execute.

If DRUM POLICY=~, this restriction is not enforced. In this case a transfer

instruction may require as much as one full device revolution, plus seek time

if the arm position for the page addressed differs from the current arm position

and the instruction is a write. The instruction will complete at the first EOS

time for the sector addressed after the arms have verified a new position, if

required. A POSITION ONLY instruction requires exactly one sector time to

-so-

exeaite regardless of the PAGE ADDR, unless units are switched, ·in which case

it requires between one and two sector times.

A swap can occur only at a TSU EOS. A swap will occur at each TSU EOS

where

HR LOADED or (INS C<M'LETING and not RESULT WAITING)

3.2.7 Status Register

1he STA11JS register contains an assortment of bits which report on errors

which may occur during execution of an instruction. 1hey are catalogued here,

together with an exhaustive description of the conditions which cause them to

be set. 1he FR STA11JS is cleared when a swap occurs. It may then accumulate

bits until the next swap, at which time its contents are copied into HR

STA11JS and it is cleared again. A successful instruction will have a cleared

STA11JS register.

In the absence of any other comment, an instruction which causes a STA1US

bit to be set does nothing and requires exactly one sector time (plus unit

change time). Such an instruction leaves WORD CNT = 77757777B and CORE·ADDR

and PAGE ADDR unchanged. When a data transfer has started it can be aborted

by DATA TRANSFER LATE; memory parity errors do not abort the transfer.

1) REGISTER LOADING VIOLATION is set if the instruction register has been

loaded when a swap occurs but the unit number has not. It appears in

FR STA11JS after the swap which interrupts the.loading, and then in

HR STA11JS after the next swap. See Section 3.2.9 for a discussion

of register loading. RLV will also occur if the AM: attempts to

-51-

load the HR when they contain the results of a previous transfer

(RESULT WAITING=l) • This will happen if, for example, a swap occurs

before the AMC can even attempt to load the instruction register.

The RLV will appear in the HR at the_ end of the interval in which

this happens, or as soon as the RESULT WAITING bit is cleared

(STATUS is read).

2) DEVICE NOT AVAILABLE is set if the unit addressed by the UNIT NO register

is not connected to the TSU, has power turned off, or is in some

bad state.

3) DRUM POLICY VIOLATION is set if DRUM POLICY=! and the page addressed

by PAGE ADDR is not under the heads when the instruction arrives in

the FR. (See Section 3.2.6.)

4) DATA TRANSFER LATE is set if the memory fails to deliver a word soon

enough (write) or to absorb one soon enough (read). When it is set

the rest of the transfer is aborted; in a write zeros are written.

Timing is not changed.

5) MEMJRY PARITY ERROR is self-explanatory. Timing is not changed and the

transfer is not aborted.

6) a-IECKSUM NO!' ZERO is set at the end of a read if CHECK.0 (dn.nn) or

CHECK.0 and CHECKl (disk) are non-zero, indicating that an error has

occurred. Timing is not changed. Note that the UN is not included in

the checksum.

-52-

7) EXCESSIVE TIME OONSUMED is set if the instruction remains in the FR

for more than 1 second. This can happen if the page address is for a

non-existent page or if the seek mechanism on the disk fails. The

instruction does nothing. INS Ca.ff>LETING is set at the next TSU EOS

after the 1 second has elapsed, and the instruction completes at the

following TSU EOS as usual. ETC can only happen on an instruction with

DRUM POLICY=POSITION ONLY=0 which has a PAGE .ADDR whose sector nlllllber

is too large for the unit (or as a result of hardware failure).

8) UN NOT EQUAL (disk write with UN check only) is set if the UN recorded

on disk differs from UN0 and UNI. No data is transferred, the disk is

not changed, and timing is not changed.

9) DEVICE PARITY ERROR (disk read or disk write with UN check only) is

set if a word is read from the disk and has the wrong parity. Timing

is not changed. One parity bit is recorded with each word on disk, in

addition to the two word checkslllll at the end of the record. This

error can occur when reading the UN·as well as when reading data. The

cases cannot be distinguished.

10) HEADER NOT EQUAL (disk transfer only) is set if the page address recorded

in the header for the page disagrees with the address in the FR PAGE

.ADDR register. This can happen only if the header is wrong or was read

incorrectly ..

The following bits abort transfers before central memory or drum/disk is changed:
REGISTER LOADING VIOLATION, DEVICE NOT AVAILABLE, DRUM POLICY VIOLATION,

EXCESS IVE TIME CONSUMED' UN Nar EQUAL' HEADER Nar EQUAL.

-53-

DATA TRANSFER IATE aborts transfers after core or disk is changed.

The following bits do not affect transfers (but the data is probably bad):

MEM)RY PARI1Y ERROR, DEVICE PARI1Y ERROR.

The other STATIJS bits do not affect the transfer.

Only the following bits can be set by a POSITION ONLY command: REGISTER

LOADING VIOLATION, DEVICE NOT AVAILABLE, DRUM POLICY VIOLATION (always, unless

DRUM POLICY=~).

3.2.8 Attentions

The TSU sends an attention to the ~ shortly after every TSU EOS or

synchronizing EOS if attentions are enab1ed from that TSU (see Section 3.2.9).

In other words, an attention is sent, if .enabled, at every EOS on the selected

unit. An attention will occur on the EOS before the addressed sector, and

another one on the EOS after the addressed sector.

1here is no way to tell which TSU sent an attention except to go and look

at.the various registers. It is of course possible for several TSUs to send

attentions at the same time.

3.2.9 Select Register in the TSU

1his register (Fig. 3.8) is loaded from one of the AMC registers (Z register)

when an ALERT is executed (a microprocessor special function). There are

four select registers, one for each TSU. Two bits in Z determine which TSU

is addressed by the ALERT. Any bit may be set in the Select Register. The

select register bits correspond to TSU registers which are to be read or

written by the Af.1C, as performed to the E2 bus or from the Z register by PIN

-54-.

or POI' special functions. Data is sent to all registers for which a bit is

set. The data transferred to the .Af.C from the TSU is the OR of all registers

for which a bit is set in the select register.

~
3

TSU
2

where

12
E D E s c c p p
A A L T K K c c
T T D s 0 1 0 1

TSU = TSU Number

EAT = Enable attention

DAT = Disable attentio.q

ELD = Enable load

p p
F H c c c

2 3 u u ~

Figure 3.8: TSU Register Loading (Select Register)

23

c w c D M I
1 c A A p N

The remaining bits are.select bits. If Enable load is set, the register

will be loaded when a pot is executed. If Enable load is not set, the appropriate

registers will appear on the E2 bus.

STS = Status register

CK,0 = Check code ~

CKl = Check code 1

PC~ = Position Counter ~

Pel = Position Counter 1

PC2 = Position Counter 2

PC3 = Position Counter 3

-55-

FU = Functional Unit register (the only functional

register that is addressable)

llJ = Holding Unit register

C0 = Class Code (Unique Name) 0

Cl = Class Code (Unique Name) 1

WC = Word Count

CA = Core address

DA = Device address

MP = Map address

IN = Instruction reg~ster

Registers can be loaded only in the following order:

1) instruction register

2) any other registers except unit number

3) unit mnnber.

The rule is enforced in the following way: there is a flag OKL which

indicates that it is OK to load registers. This flag is

1) set by loading the instruction register when HR LOADED is off

2) reset by loading the unit number, or by a swap.

If any attempt is made to load any register other than the instruction register

and OKL is off, the load is aborted. A register loading violation occurs if

OKL is set when a swap occurs. The most important consequence of all this is

that if a swap occurs in the middle of register loading, the results of the old

instruction, now in the HR, are not destroyed by subsequent loads.

-56-

3.2.10 Disk Seeks arid Position Verification

Whenever a disk unit is given an instruction for which the arm position

(cylinder) in PAGE ADDR differs from the arm position in the last instruction

to that unit, it will move the arms to the newly specified position.

The timing of the ann movement operation ranges from about 65 msec to

220 msec depending on the arm displacement and on which of the eight positioning

pistons (one corresponding to each bit of the cylinder nmnber) change state.

An estimate of the time required for the operation can be computed using the

expression below:

56 + 4* Y I new cylinder - old cylinder

+ £(new cylinder, old cylinder) msec

where f(x,y) is given by the following table:

Weight of most significant bit
which x differs. from y Time

128 100

64 50
32 25
16 13

8 6

4 3

2 I

1 0

Each disk unit has a CYLINDER VERIFIED flag (CV) which is bit 3 of any of

its PCs. Whenever a seek is initiated on unit u, CVu is cleared. This is

the only way to clear CVu. It can be set under two cirClIDlstances:

1) A read is done from the unit withou~ any errors.

2) The time since the seek was started exceeds AV ms (currently 300 ms).

This time is called the automatic verification interval. This method

of setting CVu is independent of whether u is selected.

The rationale behind all this is as follows: when a seek is done, there

is a period during which the arms move to a new position, and a subsequent period

during which they oscillate around the new position. AV is chosen large enough
.

to ensure that any seek will be completed in that much time. Faster position

verification can be obtained by successfully reading a sector. Since a sector

is 10 ms long and has 48 checksum bits as well as a parity bit on each word, it

is possible to feel confident that the arms have settled down if no errors occur

in the read of the sector •. Note that any WORD 00 > .0 is sufficient to verify

the position.

A drawback of this scheme is that it becomes necessary to distinguish

between parity and checksum errors caused by bad data and those caused by .

incomplete positioning. Since data errors are expected to be rare, it is quite

satisfactory to examine CV after the transfer. If it is set, the error is a

data error. As a consequence, an attempt to read a bad page may take as much

as AV+R ms, where R is the read time.

Needless to say, read instIUctions are not affected by CV. A write, however,·

-58-

is not allowed to occur unless ().[is on. The reasons for this are that

1) there is no parity or checksum error detection on a write

2) more important, if the al111S are still moving a write may spread

destruction across several cylinders _of a disk surface.

A DRUM POLICY=! write will cause a policy violation if ().[is off; a DRUM

POLICY=O write will wait until ().[is on before executing.

3.2.11 TSU State

When the Main Loop of the Memory Manager detennines that a TSU needs servicing,

it puts' the state of the TSU into central memory. The routine also supplies

the pointer to the cleanup buffer (described in data structures section) and the

TSU mnnber as part of the state. The APU (software) is concerned with

this infonnation so that the state is put into the local address space of the

APU code.·

56 Pointer to buffer (also in B register)

57 TSU It

6~ Instruction register

61 Map register

62 Device address register

63 Central memory address register

64 Word Cotmt register

65 Class code register #1

66 Class code register #~

67 Holding Unit Register

7~ Functional Unit Register

-59-

71 Position Cotm.ter for Unit ~

72 Position Cotm.ter for Unit 1

73 Position Cotm.ter for Unit 2

74 Position Cotm.ter for Unit 3

75 Check word #1 register

76 Check word #~ register

77 Status register

-60-

4. INTRODUCTION - DATA STRUCTURES

This section describes the main data stIUctures used by the memory

manager.

4.1 Queues

The ftuldamental data stIUcture used in the organization of the .AM: is

the queue. A request will start off on a certain queue, and as it is partially

serviced, be passed along to succeeding queues until its completion.

Thus a "general" request such as "swap in a process" will be broken down

into requests for specific pages of the process to be read from the drum

and disk. If one were to freeze the AMC processing at a specific point,

by looking at the various queue entries, one could get a fairly comprehensive

picture of the state of processing that the .AM: was in at the time.

To illustrate the fundamental role of the queue in the memory manager,

we shall follow the swapping in of a process beginning with a high level request

to read in a process. The request starts on the

SWAP QUEUE

in the form of a request node. Figure 4.1 shows the format of a request node

while Section 4.2 describes the request node in detail. This is the same basic

fonnat that the AMC uses for all its various request nodes. This request node

has the unique name of the context block of this process. As shown earlier

in the section describing context blocks, the context block contains the unique

names of all pages belonging to the process. We start by reading in the context

block. To get the context block in, we put the request on a

DRUM SECTOR QUEUE

-61-

1 REAL NAME

2

WAKE- 1 5 23
UP ERRCNT PTR TO PRT FOR PROCESS (EPRT) 3
(WAKF)2 4 ~ 18

CWS INDEX 5 17 REQUEST CODE 23

(ECWS) _6_
(RCD) 6

4

TSU 3 Vi 23
IDENT CODE PTR TO NEXT ENTRY ON QUEUE (EQP)
lIOCODE) 18

5

Fig. 4.1 Nonnal Request Entry

-62-

General Request Queue

Context
Block
Queue

ffi ffi J \,,,_,

"'"V
Cleanup Queues

for TSU Processing

AMC

Read in
Progress

Queue

D
Write
Queue

Figure 4.2 Various AMC Queues

I I
24 I I drum

sector
queues I

I

5 I
disk I

sector I
/queues I

~ ~ ~ ~
L. ..)

V'
256 disk

cylinder queues

a)

I

8 I
I

I
I

There are twenty~four such identically functioned queues, one for each sector

on the drum. Depending on which sector of the drum the Context Block is located,

(asstmling it is on the drum), the request will be placed on the appropriate

sector queue. We recall from our previous discussion that the drum signals

that it is between sectors (EOS) which allows position monitoring (PC) so

that the request can be serviced (on the TSU) when the aPPropriate sector comes

~ As sectors on the drum come up, the corresponding sector queues are. searched

for requests. Having sent the request (now transfonned to a TSU command) ,

the same request is placed on a·

CLEANUP QUEUE

There is one such queue for each TSU. After the request has been completed by

the TSU at the end of sector time (F.OSl, the .AMC looks at the requests on the

cleanup queue. "Cleaning up" includes checking for errors and abnonnalities.

AsStmling the context block was smoothly read in, the cleanup in this case will

put the request on a

OONTEXT QUEUE

context block queue. This is a queue of processes whose context blocks only

have been read in. In time, the .AMC accepts this request. The .AMC then looks

in the context block for the set of pages that are to be read into central memory

for this process (CWS), and a number ~f requests are generated and placed on

the appropriate dnun sector queues. Thus if there are requests for two pages

on drum sector 2, there will be two requests on the queue for drum sector 2.

In this way requests are scattered to the various queues. By doing this, as

the drum comes to each succeeding sector, there will be requests queued up

for ·that sector. Thus the drum will be kept busy transferring continuously.

-64-

In the same way the context block was read from the drum, as these pages

are read, they go onto the cleanup queue, and finally the request node is freed.

When the last of the pages is read in, the process is considered to be loaded.

1he scheduler is then signaled with a wakeup .signal that it should now

consider th.e process ready- for assigrunent to a CPU.

In this illustration, one sees the major role played by queues in the

implementation.

Figure 4.2 illustrates the various queues that the request node can go

onto. Request nodes are removed from the freelist when needed. Requests from

the outside world come via the general request queue, activate queue, and swap

queue.

When looking at Fig. 4.2, notice that a request node for swapping in moves

from the swap queue to the context block queue once its context block has been

read in. At this point a whole flock of request node·s are put on the drum sector

queues to read in the processl core working set. 1here is one queue for each

sector on the drum, and note, also, one queue for each sector on the disk. 'Ibe

memory manager loads the controller with a connnand for a sector innnediately

before the heads pass over it, using the request node from the corresponding

sector queue. At this t:ime the node is put on the cleanup queue. Upon success­

ful completion of the transfer, the node is removed from the cleanup queue.

1here are 256 disk cylinder queues. 1he heads on the disk move to each

succeeding cylinder in a round-robin fashion. As we move to succeeding cylinders,

the entries in the cylinder queues are portioned out to the different sector

queues for the disk. Sector queues are reloaded each time the disk moves to a

new cylinder.

-65-

The write queue holds the requests for those which need to be written

onto tl1e drum. In the process of transferring pages, a write is done for

a sector if there is no read to be done. When the page is wTitten out,

the location on the drum where it had been before is freed. Thus it does not

have to return to the same (static) location. If we find that the page

needs to be loaded in ·core, say for another process, then we abort the write

and remove the request from the write queue.

This concludes the discussion of the major queues and their uses.

4.1.1 General Request

The strategy for the CPU is to first get a free request node from the

free request entry list (FREL) while protected by protect 2.* Then it

appends the completed request onto the General Request Queue (the appending

operation tmder protect 2). Finally it sends a request strobe to the AMC.

(Note: protects, strobes, etc. are discussed in the section on commtmications).

The general requests are:

~uest Code

1

4

s

6

Function

Write process onto drum

Direct drum transfer

Direct disk transfer

Return page to drum

A process may be brought into core by a strategy similar to that of a general

request, except that the entry is appended to the Process Input Queue. The

request code is 1.

*Protects are described in Section 8.1 on Connnunications

4.1.2 Activate Request

The activate request combines a data structure with an algorithm to effect

a call on the AMC. The basic idea is the CPU will send some data to the AMC and

then wait until the AM:: replies. The AMC must reply quickly. Furthennore, the

AM: may return a word of data which decl.ares what action was taken by the AMC.

The CPU then reads the data and then frees the activate port into the .A!vIC.

There is only one activate port. It consists of two words for control and infor­

mation purposes, and two words which are the header of the activate queue.

The CPU strategy is to first lock out all other processors attempting to

send activates (by using PROTECT 2). 'Then check the first Activate Cell

(lOOB absolute). If the cell is non zero, release the protect and try again.

Otherwise set the cell to 1 and release the other processors (if desirable).

Now put the request on the Activate queue (which should be empty) and send

a request strobe to the .AMC •

. When the AM: has finished, it will have disposed of the entry. It will

also succeed or fail return to the CPU. Success is indicated by the number

"2" in the first Activate Cell. Failure is indicated by a negative number in

the first Activate Cell. In addition, when failure is indicated, the second

cell is set to a non-zero value which has the following meaning:

1-TELL CPU TO WAIT, COME BACK LATER

2-UNIQUE NAME ALREADY EXISTS

3-DISK ADDRESS IN USE

4-NOT IN DHr

5-DISK ADDRESS DID NOT CCMPARE IN CHT

-67-

6-WAIT FOR WAKE-UP

13-ACTIVATE REQUEST our OF BOUNDS

For both success and fail returns the CPU will zero the two Activate Cells

(lOOB & lOlB) •

The activate requests are as follows:

Request Code

11

12

13

14

15

4.1.3 Request Fntry

Function

Transfer page from drum to disk

Write Uni.que Name onto disk

Transfer page from disk to drum

Make new page

Destroy specified page

This is the basic data structure for the AMC queues. It moves about from

queue to queue, being modified by the .AMC as necessary. A Free List is maintained

of all entries not currently being used. The CPU (and oth.ers) remove a free node

under protect 2. The six words then serve to keep the infonnation as long as the

request is in the reabn of the AMC. The entry has two forms, one for nonnal

requests ~d one for Direct I/O requests. Nonnal requests will contain a subset

of the following (see Fig. 4.1):

a. Unique Name

b. Disk address

c. Wakeup condition (Wakeup is sent if field not zero)

-68-

d. Error count for re-trying command on device errors.*

e. Pointer to Process Table for process making request.

f. Core Working Set index.*

g. Request code

h. TSU identification code*

i. Pointer to next entry

Direct I/O requires more infonnation to be sent with the original request. It

contains the following (see Fig. 4.3):

a. Unique Name

b. Disk or drum address in the compact internal form (which includes the

TSU# and Unit#). Described at the end of Section 3.2.1.

c. Wa,keup condition.

d. Error count for re-trying conunand on device errors.*

e. Pointer to the process table for the process making· request.·

£. Logarithm to the base 2 of the word count. This defines a reasonable

set of word counts: 23
~' 1, 2, 4, •.• , 2 •

g. Core page number in absolute core.

h. Timing (i.e., when to send request: Correct, ahead by one sector,

behind one sector, or half drum revolution away from correct time).

i. Dt..nnp the TSU state at the end of the instruction.

j . Recover if an error was made during the transfer by doing the trans£ er

again.

*'Tiiese fields are not set by CPU.

-69-

k. Request code.

1. TSU instruction exactly as sent to the TSU.

m. Pointer to next entry.

4.2 The Core Hash Table

4 •. 2.1 CHr Layout

Infonnation about the current contents of core memory is maintained in the

core hash table, which is a chained hash table using the unique name as key •.

0 23

UNIQUE NAME

1 0 23

2 Drum or Di:sk'. Address, Clntemal Form}

1 -s- 23
WAKE- PTR TO PRT FOR PROCESS (EPRT) UP ERRCNT

3

Jl'fAKF)2 4 18
12

v
T 15 D R 23

LOG2 WORD I u c Request Code CORE PAGE M
COUNf (PGAD) I M v (RCD)

~ 2

p R
7 6

4

5 TSU Instruction PTR TO NEXT ENTRY ON QUEUE (EQP)
23

18

Fig. 4.3 Direct I/O Request Entry

-70-

1be table comes in two parts:

1) 1be index, called aITl, which is an array of 256 pointers to lists of

Oil' entries. Each word of CI-ITl is either END or the address of a CHf2 entry

with the property that HASH (UN(e)) is the address of the CHfl word. If there

are several pages in CHf with the same value of HASH (UN), the aITl word points

to one of them, which points to the next using the collision pointer field,

and so on until all are d1ained onto the list. 1be last one has END in its

collision pointer. 1be ordering of pages on this chain is not significant.

Since there are only 64 core pages, chains of length >l should be infrequent.

1be hashing function HASH is to take the exclusive OR of tRe 6 S~bit bytes

of a UN and then the exclusive OR of this result with 364B. END is the

standard end-marker for chains in the MvtS: it is 777777B in the last 18 bits

of a word; the first 6 bits are ignored.

2) The body, called CI-ITZ, which is an array of NCORE entries of 6 words

each. 1be index of an entry in CHf2 gives the physical page it describes. 1be

fonnat of an entry is given in Fig. 4.4.

4.2.2 When a Page is 'in CHf'

A page is said to be in CHf if it can be found by the hash table search.

If a page is in CHf, it is guaranteed to be the page specified by the UN in GIT

and if it got there by a drum or disk read, there was no detected error in the

transfer. To put this more precisely, there are three ways for a page to get

into 011':

-71-

1) by a dnnn read in which the UN in the PMr entry which gave rise to the

read agrees with the UN read from the dnnn and no error was detected during

the transfer.

1

2

3

4

..
5

UNIQUE NAME .

[7 2
DISK ADDRESS

J1 1 2 3' 4 5 6 12 16
D K u R E D CORE PAGE # LOCK

w w w _s_ w 8 3 .
6

FREE CORE POINTER (FCLP)

~
6

COLLISION PTR (CLP)

D = DIRTY

U = UNAVL, unavailable to CPU

DW = DWIP, dnnn write in progress

KW = disk write

E = read error

SC = scheduled count

R = RIP, read in progress

SC

The free core pointer holds the page on the free core list. The

collision pointer holds the page on the arr hashing structure.

Figure 4.4 Core Hash Table (CI-IT2) Entry

-72-

2_ft
23

8
23

18
23

18

255

1

arn

6 word entries
(see Fig.4.4)

chain

CHT2 (for 128K core)

The figure shows physical pages ~ and 63 with hash code 1,

physical page 1 with hash code 255

Fig. 4.5 CHT Hashing StIUcture

-.73-

2) by a disk read in which the UN in the read request agrees with the UN

read from the disk and no error was detected during the transfer.

3) by creation of a new page. In this case the UN is the one given in

the create request.

In cases (1) and (2) the page goes into arr when the read has been successfully

completed, in case (3) when the request is satisfied.

Recall that every physical page has an entry in arr2. This entry describes

the status of the page whether or not the page is in arr. Pages not in CHI'

are of the following types:

1) empty pages. These come into existence only at initialization, when

a page is destroyed, or when a read fails.

2) pages involved in a read actually in progress from drum or disk. A

page is allocated for this pUrJ?OS.e when the read is given to the TSU. At the
~~--

completion of the transfer it is either put in CHT (if the read was successful

according to (1) or (2) above) or becomes empty. A page cannot remain· in this

state for more than 2 disk sector times. A page has the RIP bit set if and only

if it is in this state.

4.2.3 arr Page Status Information

In addition to the RIP bit mentioned above, several other bits record the

status of a CHI' page. They are all quite independent, except as stated.

1) DWIP is set when a drum write is in progress. It is exactly analogous

to RIP. When DWIP is set the page becomes clean. When IWIP is cleared the page

goes onto the free core list, unless the write fails.

2) KW is set when the page is brought into core to be written on the disk.

It remains set until the disk write is successfully completed or abandoned. Note

-74-

that it is not analogous to DWIP.

3) DIRTY is on when the page in core is potentially different from the

copy on dnnn. DIRTY is set by the CPU whenever it does a store. DIR1Y is

cleared when a dnnn write is started, at the time DWIP is set. If DIRTY is off,

the page is said to be clean; a clean page with .0 scheduled col.IDt may be removed

from OIT' and allocated to some other purpose.

4) UNAVL prevents CPU access to the page. It is never changed or referenced

by the M45.

5) LOCK prevents the page from being removed from (}fl' if it is f: ,0. It is

not set or cleared by the MvrS. It nrust not be cleared when SC=,0, or the page

removal algorithm will not work.

4.2.4 Scheduled Count (SC) and Accessibility of Pages

The SC field of arr counts the number of loaded context blocks in which the

page appears in the core working set and has SF on, plus 1 if KW=l. It serves

two purposes:

1) A page should be removed from core when there are no loaded working

sets which refer to it. Since the SC field counts the mnnber of loaded working

sets referring to the page, the right time to remove the page is when SC=~.

2) When a page is read from drum or disk, a comparison of the recorded

UN with the requested UN is always made. When a page is in core and being

referenced by a CPU, on the other hand, its physical core address sits in the

physical map (PM)* and is used directly; no check for the proper, UN is made when

*The physical map is a map between physical and virtual pages kept for each CPU.

-75-

the page is referenced. It is therefore important to be able to control CPU

access to a page and to know whether a CPU could have the page in its PM or not.

We will say that a CPU can access a page if the page (specified by its UN)

is in arr, UNAVL=~, and the SF bit in the CPU'·s PMf entry =1. The CPU will load

the physical address of a page into its PM only if it can access the page. Once

the page is in the PM, of course, the CPU can reference the page regardless of

the state of arr. The map-clearing machinery described below pennits control

to be exercised over a page which is in a PM.

We now observe that if SC is correct there cannot be a CPU which can access

a page with SC=f}, since for such a page there is no PMf byte with SF=l. This

means that if SC=f} a page can be removed from arr (or its DIR1Y bit can be

cleared) with the assurance that any subsequent attempt to reference the page

from a CPU will not find the page (or will discover that the DIRTY bit is~),

since any CPU reference to a page not in the PM must go through arr.

The SC is maintained ill the following way:

I) When a context block has been read, the working set is scanned. Each

page is looked up to see if it is in arr. If it is, SC for the page is incre­

mented and the SF bit is set. Otherwise a read is queued for the page. No

account is taken of other reads which may be queued for the same page (at least

not for the purposes of this discussion).

2) When the read is considered (for details on when this happens see the

discussion of swapping below) a second attempt is made to find the page in arr.

If it is found, again SC is incremented and the SF bit set, and the read is

abandoned. Otherwise the read is perfonned. If it is successful the page is

put into arr, its SC is set to 1 and the SF bit set.

-76-

3) When a process is written out, the working set is scanned again. For

each page with SF=l, SC is decremented by 1 and SF set to ~.

4) When a page is released to the dn.nn, its SF bit is cleared (the request

is an error and is aborted if SF=~) and SC decremented.

4.2.S Removing a Page from arr, or Clearing DIRTY

These operations can be performed only when SC=~, hence only when no CPU

can access the page. Since there is no entry in any PM for this page, all

that is required is to remove it from the hashing list structure, or to reset

DIRTY.

Since the consequences.of a mistake at this point are extremely serious,

however, a very powerful (and expensive) cross-check is provided to ensure that

a page being emptied or cleared is in fact not in any PM. The :r.r.15 has an

operation called selective map clearing which puts both physical maps in a

state which will cause the CPU to perform· a local selective map clearing the

next time the map is accessed. The local clearing proceeds as follows:

1) The CPU picks up from a fixed core location peculiar to it a physical

page m.nnber. This number is set up by the :r.r.15 to the number of the page being

emptied or cleared before the ~ does the selective map clearing. When setting

up the location, the MMS waits for it to become ~ first.

2) The CPU then tells the PM to scan for a non-empty entry containing the

specified physical page number.

3) If no such entry is found, the CPU zeros the core location and proceeds

on its way.

-77-

4) If the entry is found, the page being emptied or cleared was in the PM.

This indicates a failure of the M-15. The CPU empties the PM entry and proceeds

with the local clearing. When it is finished., the CPU generates a fixed trap

to the monitor, which can cope with the situation as it sees fit. In this case

the core location is left untouched so the monitor can find out what happened.

The procedure just described ensures that the PMs cannot get out of touch

with the arr. It is carried out innnediately after a page is removed from arr
or the PrRlY ~it reset, and before any action is taken which depends on the

fact that the page cannot be referenced. Once the selective map clear is done,

the amount of time which IIR.lSt elapse before the page is completely safe from CPU

references is the largest time which can elapse in the CPU between a reference

to the map and the use of a mapped address (not necessarily the same one).

The cost of a selective map clear is about lOµs of CPU time. It is

necessary to do one for each page transferred to or from the dnnn: in the case

of a read, because the transfer requires freeing a physical page, and in the

case of a write because DIRTY IIR.lSt be cleared.

The contents of this section so far imply that sneaky writes (writes of

dirty pages which are still in use) will never be done, and this is indeed the

intention. It is, however, possible to handle sneaky writes at the expense of

complicating the trap routine in the monitor which receives the trap caused by

doing a selective map clear while the page is actually in a PM.

The MM5 keeps a free core list (FCL) of pages which are candidates for

reallocation. A page is put on this list, provided it is not there already:

1) When its SC is decremented to ~' LOCK=~, its drum address in DHf is not

~ and its DIRTY bit is ~-

-78-

2) When a write for the page is successfully completed.

When a core page is needed (for a drum or disk read, or to satisfy a create

new page request) one is taken from the FCL and treated as follows:

1) If SC#.0, it is ignored. This means that it has shown up in a core

working set being loaded since it was put on the FCL, which is quite

possible. If LOCKf.0, it is also ignored.

2) If DIKI'Yf,0, it is ignored. Cf (1).

3) If LOCKf.0 or RIPf,0 or KWf.0, punt. This is a MMS error, since SC should

never be -~ when the page is locked or being written on the disk, and

a page being read into should not be in CHT at all.

4) Otherwise it is removed from arr and a selective map clear is done

for it. The physical page may then be· put to its new use.

This is the only way in which a page ·may be removed from CHT.

4.3 Drum Hash Table

4.3.1 General

Infonnation about the current contents of the· drum is maintained in the

drum hash table, which is a linear hash table using the disk address as key.

The basic infonnation in a DHI' entry d is

1) a disk address K(d), used to search the table

2) a drum address D(d) which is the current drum location of the page at

the given disk address

3) a use count UC(d) which more or less counts the lllDilber of processes in

which the page appears in the DWS.

-79-

4.3.2 DI-IT Page Status Information

In addition to K, D and UC, a DI-IT entry contains some additional information

which keeps track of the status of the page.

1) ONDK (On Disk), set if the disk copy of the page is valid. This bit

is set after a successful disk read when a DI-IT entry is made, and just

before a write. It is cleared when a page is created, after an

tmsuccessful write and after a drum write if DIR1Y is set. Note that

the first drum write for a page newly read from disk normally is

done because ONDR (see below) is ~ and not because DIR1Y=l; this

write does not clear ONDK, which is what we want.

2) ONDM (On Drum), set if a copy of the page exists on the drum.

This bit is set when the page is written onto the drum. It is

reset only when a DIIT entry is newly created for a page which is

being read from disk to drum or for a page which has just been

created in core. ONDM=~ causes the page to be written out of core

onto the drum even though DIR1Y=0 in the CHT entry for the page.

3) WUN, set if the drum unique name should be written to the disk.

This bit is set only by creation of a new page, and is cleared when

the write is successfully completed.

4) DEST, set if a destroy request has been made for the page. This

bit can only be cleared by deletion of the DI-IT entry.

5) DKT, set if a disk write is going on. This bit is set when the

decision is made to write, i.e., when the write request is put

on the disk queues. It is cleared when the write is completed

successfully.

-80-

DHr is organized as two parallel tables called DHrl and DHr2.

DHrl is the linear hash table and has 1 word per entry, containing the

disk addresses. DHr2 is maintained parallel to DHrl and has 2 words per

entry, containing all the other infonnation about the page in the following

fonnat.

~ 1
0 0
N N
D D
K M

2

2

DRUM ADDRESS (D)

3 4 5
w D K D
u E D K
N s T T

T

ONDK -- On Disk

ONDM - On Drum

WUN - Write Unique Name

DEST - Page is being destroyed

14

USE COUNT (UC)

KDT - Disk to Drum Transfer in progress

DK!' - Drum to Disk Transfer in progress

Figure 4.6: Drum Hash Table Entry

-81-

23

23

4.4 Standard Circular List Structure

The AMC nrust keep a lot of data in queues and stacks and lists. It was

considered best to have one mechanism for manipulating all of these structures.

Therefore a circular list structure was developed. It has the following

properties:

a. A node may be attached to the front of the list preceding all other

nodes. This operation is known as stacking the node.

b. A node may be attached to the end of the list behind all the other

nodes. This operation is known as appending the node to the list.

c. A node may be removed from the front of the list. This is equivalent

to unstacking the node if the entries are put on the front exclusively.

It is equivalent to removing a node from a queue if the nodes are put

on the end exclusively.

d. Only 18 bits of the node are used for the pointer, and the pointer may

be in any one of the words in the node.

e. A special pointer (777777B) marks the end of the list.

Each list nrust have a fixed starting point. This point is known as a

"header". In this design the header is composed of two words. The first word

points to the front of the list. The second header word points to the last node on

the list. Each node contains one pointer for the list which points to the

first word of the next node (see Fig. 4.7a). The pointer may be offset from

the beginning of the node by any amount. As a natural consequence of the data

stIUcture, the empty list has a header with the first word containing 777777B.

The second word of the header points to a pseudo-node in which the first word of

the header is in the same position as the pointer for that list (see Fig. 4.7b).

-82-

Header First Node Last Node

header #1
_..

l
-... ,.......

header #2 off set

.1 l l 777777

Fig. 4.7a Circular List Structure

,----------,
T I i
offset I I
l_ I :

777777

Fig •. 4.7b Empty List

-83-

4.5 State of AMC "Microprocessor

The state of the microprocessor is loaded and stored when crashes and

breakpoints occur. Several memory locations participate in this operation.

The state is stored into cells 2500B to 2611B in the following fonnat:

2500

2501

2577

2600

2606

2607

2610

2611

SK,0 (M)

SKl

SK63

R,0

R6

OS

Q

z

Of course SK~ is the contents of M since this scratchpad register is

reserved for saving M. When the state has been saved, the cell Breakwait is

tested. For the AMC this is cell 25B. The address of the instruction to execute

after the state has been restored is kept in Break (20B).

4.6 Important Central Memory Locations

Since the system has many processing units, each needing some information

which is a subset of all the infonnation needed to operate the system, all the

system tables are in main memory. The AM: also requires infonnation which is

-84-

considered private to itself (although certainly diagnostic or recovery routines

may wish to look at it). In phase 1 the private tables are also kept in main

memory.

The following is a map of the interesting memory:

5 SYSTEM RESTART REGISTER

20 BREAK .ADDRESS

25 BREAKWAIT CELL

100 ACTIVATE CELL

101 ACTIVATE CELL

102 . ACTIVATE QUEUE HEADER START •

103 ACTIVATE QUEUE HEADER END

104 GENERAL REQUEST QUEUE HE.ADER START

105 GENERAL REQUEST QUEUE HE.ADER END

106 PROCESS INPUT QUEUE HEADER START

. 107 PROCESS INPUT QUEUE HEADER START

110 FREE REQUEST ENTRY LIST HEADER START

111 FREE REQUEST ENTRY LIST HEADER END

112 FREE CORE LIST HEADER START

113 FREE CORE LIST HEADER END

114 PROCESS READS IN PROGRESS HEADER START

115 PROCESS RE.ADS IN PROGRESS HEADER END

116 CONTEXT BLOCK QUEUE HEADER START

117 CONTEXT BLOCK QUEUE HEADER END

120 WRITE QUEUE HEADER START

121 WRITE QUEUE HEADER END

-85-

122 NUMBER ON FREE CORE LIST

123 NUMBER ON FREE REQUEST ENTRY LIST

124 ERROR PROCESS FOR SWAPPER

125 COUNr OF TIMES COOLD Nill REM:JVE NODE FROM FREL

126 CLEANUP BUFFER HEADERS

135 CLEANUP BUFFER HEADERS

136 DISK SECTOR QUEUE HEADERS

151 DISK SECTOR QUEUE HEADERS

152 NICT ERROR COUNT

153 NUMBER OF CONTEXT BLOCKS LOADED

154 NUMBER OF PROCESSES BEING LOADED

155 BASE ADDRESS OF DRUM SECTOR READ LIST

156 BASE ADDRESS OF DRUM FREE PAGE TABLE

157 BASE ADDRESS OF DISK CYLINDER QUEUES

400 - 777 CHTl

1000 - 2377 CHT2

PART OF STATE OF l\IICROPROCESSOR

2517 BASE ADDRESS OF DlITl

2520 BASE ADDRESS OF DIIT2

2521 SIZE OF DIIT

-86-

(IBRL)

(DFPT)

(KCQ)

4.7 Statistics (Cot.inters)

COUNfERS

THE FIRST BLOCK IS COUNTS FOR VARIOUS TYPES OF I/O TRANSFERS INITIA!cl)

(STAR.TI.JPS)

2~~B CONTEXT BLOCK

2~1B PAGE READ (BOIB CONTEXT AND PROCESS PAGE)

2~2B DRUM READ FOR DRUM TO DISK TRANSFER

2~3B DIRECT DRUM TRANSFER

2~4B DIRECT DISK TRANSFER

2~5B WRITE FOR PAGE NOT ON DRUM

2~6B WRITE FOR DIR1Y PAGE

2~7B CHECK UN ON DRUM ·FOR DESTROY' PAGE

21~B. NOIHING

211B WRITE ON DISK FOR DRUM TO DISK TRANSFER

212B CHECK UN ON DISK FOR DRUM TO DISK TRANSFER

213.B CHECK UN FOR WRITE UNIQUE NAME ON DISK

ZI.4B READ DISK FOR DISK TO DRUM TRANSFER

ZI.SB WRITE FOR WRITE UNIQUE NAME

Zl.6B CHECK UN ON DISK FOR DESTROY PAGE

217B DE$TROY ON DISK

22~B READ DRUM FOR DISK TO DRUM TRANSFER

221B READ PAGE KLUDGE

222B PAGE FAULT READ

223B PAGE FAULT WRITE

224B PAGE FAULT WAKEUP

-87-

THE NEXT BLOCK OF COUNI'ERS ARE FOR COUNTING ACTIVATE ERROR RETIJRNS

IT BEGINS AT 225B

22SB WAIT CPU

226B UNIQUE NAME ALREADY EXISTS

227B DISK ADDRESS IN USE

23~B Nar IN ffiT

231B DISK ADDRESS DID NOT COMPARE IN CHT

232B WAIT FOR WAKE-UP

233B DISK ADDRESS REASSIGNED

237B ACTIVATE REQUEST OUT OF BOUNDS

24f}B NO REQUEST NODE

241B NO CHT ENTRY

242B SGIEDULED COUNT OVERFLOW

243B .PROCESS IN TROUBLE

THE NEXT BIDCK OF CCUNTERS ARE FOR COUNTING 'AMC' ERRORS

IT BEGINS AT 246B

246B REDO WRITE FOR AIL REASONS

247B TAG FIELD ERROR

250B REGISTER IDADING VIOLATION

251B IDI'AL DEVICE ERRORS

252B RETRY CCM1AND

-88-

1HE NEXT BLOCK OF COUNI'ERS ARE FOR COUNTING.WE .NUMBER.OF.ERRORS

SENT TO A PROCESS. IT BEGINS AT 251B.

AMC FAIL RE1URNS TO CPU

251 CPWAIT TEU. CPU TO WAIT, COME BACK LATER

252 $UNER UNIQUE NAME ALREADY EXISTS

253 DKINU DISK ADDRESS IN USE

254 NINDIIT Naf IN DHT

255 DNCHT DISK ADDRESS DID Nar C(}1PARE IN CHf

256 WAITWK WAIT FOR WAKE-UP

257 DKRAS DISK ADDRESS REASSIGNED

26~ HERDR HARD ERROR ON DRUM READ

261 SERDR SOFT ERROR FRCl4 DRUM

262 $HERDK HARD ERROR ON DISK

263 $UNERK UNIQUE NAME ERROR ON DISK AFTER DRUM CCl4PARED

264 $SERDK SOFf ERROR ON DISK READ

265 $ARQOB ACTIVATE REQUEST OUT OF BOUNDS

266 NOREQ NO REQUEST NODE

267 NCHT NO CHf ENTRY

27~ SCHOVF SCHEDULED COUNT OVERFLOW

271 PRTRBL PROCESS IN TROUBLE

-89-

4.8 Table 'Manipulations

Time is not measured in milliseconds in the swapper but rather by relation

to the events taking place. The following times are the important times in

referencing events:

1) The time when a request is considered. Let me call this Request Time

(RQT).

2) The beginning of a transfer, i.e. , a node is removed from a queue and

connnands sent to the TSU. Let me call this Start-up Time (STPT).

3) The end of a transfer when the node is again perused to detennine

. what to do next. Let me call t:his the End of Transfer Time (EOTT).

4) The time that a process' context block is scanned for the reads or

writes. This occurs as frequently as required by the swapper to

maintain its flow. Let me call this Process Scan Time (PSNT).

·Core Hash Table

Dirty bit:

Set - by someone when page rnodif ied.

Reset - Start-up of write to drum.

Disk Write bit:

Set "". (;>TPT) immediately before disk write conunand sent to disk TSU.

Reset - EOTT of disk write.

Tested - When trying to determine if page is "in core".

Page Status (4 bit field):

Set - Start-up of all transfers.

Set - EOTT and error in transfer.

Clear - At end of all transfers if transfer is successful.

-90-

Scheduled Count:

Inc. - Context block read - at RQT if context block in core, otherwise at

EOIT.

Inc. - Page of a process at ti.me context block is scanned if page in core,

otheIWise at EOTI'.

Dec - Context block read - after context block is scanned and it is put on

the Read in Progress Queue since it is in the Core Working Set.

Dec - Page of a process - RQT, when context block .scanned for pages for a

write process request.

Dec - Page of a process - RQT, for.return page to drum conunand.

Free Core Pointer:

Set - When it is detennined that a page must go onto the free core list.

Reset - When it is detennined that a page may be removed from the free

core list.

Page Lock:

Set - ? Not by Swapper

Reset - ? Not by Swapper

Drum Hash Table

Disk address (field):

Set - when DHI' entry made

Cleared - when DHI' entry deleted

Location (two bit field):

Set - (Eaii) end of write onto drum

Set - (EOTI') end of write onto disk

Clear - (RQT) request new page

-91.:

Write Unique Name:

Set - (RQT) request new page

Reset - (EOTT) transfer from dTI.lIIl to disk

Reset - (EOTI) write Unique Name onto disk

Destroyed:

Set - (RQT) delete page on disk

Disk-to-DTI.lIIl Transfer in Progress:

Set - (RQT) disk-to-dTI.lIIl transfer

Set - (RQT) write Unique Name onto Disk

Reset - (EOTT) either transfer completed

Dnnn-to-Disk Transfer in Progress:

Set - (RQT) drum-to-disk transfer

Reset - (EOIT) transfer completed

Unique Name Check:

Set - (RQT) destroy page

Hard Drum Error on Read for Destroy Page:

Set - (EOTT) destroy page

Use Count (field}:

Inc - (RQT) transfer page from disk to drum

Set - (RQT) request new page

Dec - (RQT) transfer page from dTI.lIIl to disk.

Request Node

Error Count:

Inc - (EOTT) when an error is detected in a transfer.

Reset - (EOTI) when transfer is successful.

-92-

CWS Index:

Set - (PSNf) when context block is scanned to queue reads.

Identification Code:

Set - (STPT) when TSU given instruction to aid in identifying the entry

in the buffer.

Request Code:

Set - (EOTT) when necessary to requeue request as another request in

sequence.

Process Memory Table

Class Code Error:

Set - (EOTT) if class codes do not match on read for a process.

Scheduled Count Flag (SF):

Set - (PSNI') when context block is scanned to queue reads.

Reset - (PSNT) when context block is scanned to queue.·writes.

Reset - when there are hard errors.

Process Table

AMC Intern.tpt Bit:

Set - (EOTT) whenever the wakeup is requested in the original request.

Swapper Error Word:

Set - (EOTT) a hard error occurs.

Drum Transfer Count:

Inc when the context block is scanned and a read is queued.

Dec - (EOTT) a process read is successful.

-93-

Processed Queued:

Set - when process is put on Read In Progress Queue

Reset - when process loaded

Swapper Queue:

Set - SWQ is set by µ-Scheduler or CPU when they send a SWAPIN request for

the process to the AMC.

Reset - (RQT) when taken off queue for context block read.

Loaded:

Set - when process in core and wakeup generated.

Reset - LDD is reset by µ-Scheduler when it sends a SWAPOUT request for

the process to the .AMC.

-94-

5. INTRODUCTION -- SOFrWARE AND FIRMWARE

Having looked at the hardware aspects of the system, and quite a bit of

data structures, we come now to the actual code in the system. As has been

alluded to earlier, we have both microcode and an implementation language

(assemblyish code) called APU code. The implementation language instruction

set is actually implemented in microcode. This overall organization is

shown in Fig. 5 .1.

The obvious advantage of microcode is its high computation rate. The micro-

processor cycle time is 100 ns. Because we are using ROM, the disadvantage is

difficulty in modifying the code. The APU code has an inverse characteristic,

easily modifiable, but considerably slower than microcode.

What has been coded in microcode are those functions that are well-defined

and called frequently. Most primitive functiOns are microcoded. Coded in

APU code are the more policy dependent, less often called functions. Because

this was a first attempt at putting menory managenent into a separate .

processor, it was not clear as to what should go :j_nto microcode and APU code.
• . I

A proposed later version of the memory manager, in fact, puts into micro­

code many APU functions of the present version.

The subroutine mechanism of the memory manager is a powerful and flexible

one. As usual the APU code has a subroutine call mechanism to other APU

routines. But it also has a subroutine call mechanism to call microcode subroutines.

Likewise microcode routines can call other microcode routines. The mechanism is

not fully symmetric in that microcode cannot call APU routines (though it can

branch to them). Using this structure, the memory manager code is a powerful

mix between microcode and APU code. APU routines make use of calls to

very fast microcoded routines to perform many tasks.

-95-

Microcode

APU Code

various memory management
functions

•frequently called
•well-defined
•low level

Main Loop

various memory management
functions

•policy-dependent
.•high level

Fig. 5.1 NC Code Organization

-96-

implementation of
instruction set for
.APU Code

It should be pointed out that in order for the memory manager -

to perfonn effectively, it IIUlst do its work subject to various time constraints.

For example, between the time of one end of sector (EOS) when the registers

swap (HR and FR, see Fig. 3. 7) and next EOS, the memory manager Illllst

analyze the results of the last swap, check for and handle e~rors, and

also set up the transfer for the next sector to come. This it must do for

each TSU. On the side, it IIUlSt find tjme to read context blocks and queue

up page reads, move the heads on the disk, etc. It is clear why CPUs are not

assigned this type of memory management function. They would never have time

to run user processes! The use of microcode is very important to the effective­

ness of the system. Poor performance is marked by less than contirnous

swapping of pages (that is,· if there is enough work) mainly attributable to

the memory manager not being able to handle its workload, i.e. being too slow.

The first of the n.-o following sections describes the microcode. We

turn first to the main loop, for this is where the memory manager starts.

From here it dispatches to various microcode and APU routines.

-97-

6. MEMJRY MANAGER FIRMWARE

This section describes the firmware portion of the memory manager.

6 .1 The Memory :Manager's :Ma.in Loop

Figure 6.1 shows the main loop, the center of activity for the memory

manager. One of the basic activities of the main loop is checkingthe

attention flag. TSUs set this flag when they come to their EOS's. Notice

in the main loop the various places that ATTENTIONS are checked for.

Receiving an ATTENTION we look for CLEANUPs that need to be done. As

discussed in the data structures (Section 4.1), there is a cleanup queue for

each TSU. The memory manager checks to make sure that all went well in the

last transfer, taking appropriate action for error cases. Depending on what

the request code was (Fig. 4.1 shows request code as part of request entry),

we dispatch to one of several APU cleanup routines. For example, the cleanup

for a context block read involves setting various flags that a cleanup for a

regular page read doesn't.

Having done all.possible cleanups, we then do STAR11JPs for the various

TSUs. This involves packing the various TSUs with the correct transfer

connnands for the forthcoming sector. Microcode functions search the

appropriate drum/disk sector queue for the node and then dispatch to one

of several APU startup routines.

The different cleanups and startups will be discussed in more detail in

the section on APU code.

If we have time, we try to queue up page reads of the CWS for a context

block that has been read in, and then try to read in a new context block for

another process.

Much of the memory manager's attention is devoted to simply managing

the just mentioned activities.

-99-

Other thanATTENI'IONS the memory manager also handles activate and general

requests. The request flag is set by the monitor or another processor to

signify a request for the memory manager. We dispatch to an APU routine via a

general request transfer vector or activate request transfer vector.

If at this point there is noATIENTION, we move the disk to the next

cylinder (round-robin fashion) so that transfers for that cylinder can coIIUTlence.

We continue to service general and activate requests until an AlTENTION comes.

Note that flag-s.etti.ng rather than interrupt is used to conmnmicate to the

memory manager. The assumption is that the speed at which the memory manager

does its assignments permits attentions and requests to set flags which will be

serviced in an appropriately short time.

Note also that the queue structure allows the memory manager to perform

its work in small packets. There are many places in which the memory manager

can be diverted to other tasks because of a signal coming in (e.g. A'ITENTION).

This can be done because the state is maintained in the request nodes and

passed from queue to queue.

Thus we have the organization of the main loop. It is mainly a.dispatcher

to various discrete routines that will finish their tasks quickly and return

to the main loop.

6.2 Microcode Descriptions

Following is a list of microcode routines and structures given in

chronological order as they occur in the microcode.

The presence of patches makes certain parts a little messy. However, a

-100-

general perusal of the microcode gives one some insight into the microcode

part of the memory manager.

More detailed descriptions of routines marked with an asterisk are

given in the sections indicated.

Loe

0

2

4

45

46

64

102

107

121

141

143

156

171

200

Routine or Structure

When the Zap signal is sent, the
APU is breakpointed with state saved
if desired, or else initialized

Part of APU main loop

Field logic for APU Code

Punt (fail) return setup for .AMC

Save State of .P¥C
* (6. 3.19)

Load State of .P¥C

·Exchange. scratchpads wfth mem.o.ry·

Staclc Link Subroutine; saving return
points, state, for subroutine calls
*(6.3.1)

Subroutine Call, Return Mechanisms

PUNT(fail) logic

CHT Search
*(6.3.6)

Enter CHf Entry
*(6.3.7)

Put Page on Free Core List
*(6.3.11)

CHT Hashing
*(6.3.5)

-101-

Name

SWAPR

R2PNI'

SAVST

LOAD ST

XSKPD

STKLK

PNI'

CHf SCH

ECHf

PPFCL

a-ITHSH

Loe Routine or Structure Name

213 Delete CHr Entry DCHr
*(6.3.8)

222 Clear CHr Entry CCHrE
*(6.3.9)

235 Get Free Core GFC
*(6.3.10)

270 DHr Search DHrSCH
*(6.3.13)

311 Make DHr Entry EDHf
*(6.3.14)

321 Delete DHr Entry DDHf
*(6.3.15)

340 Append Entry to List AEL
*(6.3.16)

347 Stack Entry on List SEL
*(6.3.17)

357 Remove Entry from List (1) RTEQP
*(6.3.18)

362 Remove Entry from List (2) REL

400 APU Instructions Table

640 Fail Return Table for Calls FrABLE

665 APU Instruction Fetch Main Loop IL¢

725 Area for APU instructions that take
more than the table to implement

752 Call Micro-code subroutines (from APU) CALL

763 Return from Routine CAI..13
Fail Return from Routine

771 Patch Space

1000 MAIN LOOP MAIN
*(6.3.2)

-102-

Loe Routine or Structure Name

1023 Copies from cylinder to sector queues COPYK
for disk

1027 Process Attentions PATIN
*(6.3.3)

1033 Call APU Cleanup Routine-part of PATN2
attention processing

1045 Search for TSU needing cleanup PATNl

1057 Search for TSU needing startup PATN3

1076 Start APU routine SAPU
*(6.3.4)

1103 Dtnrrp TSU state DPTSU
*(6.3.20)

1125 Generate Wakeup WAKU0
1141 Send TSU Instruction ST SUI

*(6.3.22)

1160 Various test routines

1175 Stack Entry on Free List SETFL
* (6. 3. 23)

1202 Remove Entry from Free List REF FL
* (6. 3. 24)

1216 12-Bit Multiplication Routine MVLP

1220 Initialization sequence GO
*(6.3.25)

1277 Get Selected Position FSTR
*(6.3.27)

1333 Get Position GETPOS
* (6. 3. 28)

1346 Continuing Startup, decide to go to. PATN5
STDRill-1 (1460) or STDISK (1471)

-103-

Loe Routine or Structure Name

1352 New Page Request NPAGE

1400 Get First Device GTFDV

1427 Begins APU Code for Startup DOSTART

1460 Drum Startup STD RUM

1471 Disk Startup STD I SK

1500 Find Drum Page Table Entry FDPTE

1512 Find Band in Free Drum Page Table FBFDPTE

1523 Make Drum Address MDRM

1531 Parse Drum Address PDRM

1536 Clear/Set Drum Free Page Table CSFDP

1546 Check for page in core routine INC OR

1563 Execute connnand (used to set up for EXEC
TSU comnands to channel)

6.3 Detailed Microcoded Routines DescriEtions

The following pages contain descriptions of major routines which

are microcoded. By referring to the description of the appropriate data

structure, one should be readily able to read the microcode.

Control is retained in the main loop (microcoded) until there is

something for the AMC to do, then control is passed to an APU routine.

Each of these APU routines has a real time constraint of about one quarter

millisecond in order to run the .AMC at full speed.

-104-·

6.3.l Subroutine Linkage

Due to the complex nature of the swapper, several levels of subroutines

were necessary. A stack mechanism was designed for saving the link. The

stack begins in the highest numbered scratchpad register (77B). The subroutine

affects three holding registers. STKP is res~rved for the stack pointer.

It is initialized to 77B in the main loop. The registers RS and R4 are also

used by the stack link (STKLK) subroutine. Other registers are preserved

(although not without some effort).

6. 3. 2 Main Loop (MAIN) (Also described in Section 6.1)

Control remains in this loop as long as there is nothing for the AMC

to do. While the AMC is idle, no memory queues are generated. The AM:: has two

types of requests which can originate from another processor. Each request is

accompanied by a request strobe which sets the request latch in the AMC

microprocessor. 1 The TSU requires periodic processing by the AMC. The TSU

sends an ATTENTION signal every time it needs another instruction. The AMC

then determines if there is an instruction in the holding register which

has just been executed. If there is, it does the necessary cleanup for it.

Then it attempts to find transfers for the devices. In addition, this loop

calls two other APU-coded routines. One of these routines will copy entries

from the disk cylinder queues to the disk sector queues incrementally. It

will not execute longer than about 200 microseconds. The other routine will

maintain the requests to bring a process into core. It is so located in the

loop that it will be called about once a sector time (1 millisecond).

1see discussion of Requests in Section 4.2.

-105-

The main loop consists of two large routines and some small ones. The

large routines are called MAIN and PA11N (process attention). We begin at MAIN:

a. Set the scratchpad stack pointer and the APU core stack pointer.

b. Process Attention by calling PA11N. This routine will test the

attention signal and take the appropriate action. If no attention

is set, it tests the request strobe latches and returns a value to

signify that request latch 1 is set or reset.

c. If request latch 1 is not set and if either the nlIDlber of entries on

the disk sector queues equals zero or the flag register bit 0 is set,

start the APU routine which will copy entries from the cylinder

queues to the sector queue, then go to a.

d. If request latch is set, reset it.

e. If the activate cell is one, start the APU on the Activate Request

routine by calling SAPU. 2 Punt if the Activate Queue is empty and

the activate cell is one •

. f. If the General Request queue is empty, go to a. Otherwise start

the APU on the General Request routine by calling SAPU.

g. Process Attention by calling PA11N. (See b. above)

h. If either the ntnnber of entries on the disk sector queues equals

zero or the flag register bit 0 is set, start the APU routine which

will copy entries from the cylinder queues to the sector queue.

2see Start APU.inSection 6.3.4.

-lOo-

i. Process Attention by calling PATIN. This routine returns a value

which indicates that request latch 1 is set or reset. If set, go

to d, otherwise go to f.

6.3.3 Process Attention (PATIN)

The idea of this routine is to detennine whether any TSU needs servicing.

As a convenience, when the attention latch is not set it returns a value

dependent on Request latch 1. It will also save the state and wait until the

Breakwait cell becomes non-zero if Request latch 2 is set.

If an attention latch is set, it begins by looking for a TSU which needs

cleanup. The position counter has a bit specially designed to aid this search. 3

When a TSU is found needing cleanup the APU is given control. When the APU

returns the search is begun again. When the search fails another search is

initiated, this time for a TSU needing a transfer. Again there is a bit in the

position counter (holding register awaiting execution) specially designed for

this purpose. When a TSU is found needing an instruction (startup), another

APU routine is begun. When the APU returns, the search for a TSU needing an

instruction proceeds. When the search fails the attention latch is tested.

If it is set, we begin both searches again. Otherwise an APU routine is called

which decides whether another process is required. Then control is sent to the

beginning of this routine.

a. Go to c if attention set (it is reset by the test).

3see TSU Position Counter discussion in Section 3.2.2.

-107-

b. Save the state and wait on Breakwait Cell if request latch 2 is

set. Otherwise return -1 if no request latches set, otherwise

return ~-

c. Set TSU # to ~-

d. Go to f if the TSU tested does not hold an instruction which has

finished execution but has not been read by .AMC.

e. Compute the clean-up buffer pointer and store it into the first

word of the TSU state. Store the rest of the TSU state in core

and then start the .APU on the clean-up routine by calling SAPU

(which will punt if the clean-up buffer is empty). Control is

returned to c.

f. Add 2 to the TSU#, i.e., search only TSU~ and 2. If the TSU#

is less than 4, go to d. (Currently, only two TSUs exist;

number ~· for the drums and number 2 for the disks)

g. Set TSU # to ~.

h. Go to j if TSU tested does not need an instruction.

i. Set core stack and detennine whether the disk or drum routine

should be called. If an instruction is sent to the TSU, control

is returned tog. Otherwise, control goes to j.

j . Add 2 to the TSU number. If the TSU number is less than 4,

go to h.

k. If attention latch set, go to c (attention latch reset by test).

1. Call the .APU routine which detennines when to start bringing

another process into core. Then go to a.

-108-

6.3.4 Start Auxiliary Processing Unit (SAPU)

'Tiri.s is a short routine which does some corrmon things before going to

the APU code. It takes an address to begin the APU and a pointer to a

request. The routine fails if pointer to the request is an end of list

(777777B) word.

a. Put address of APU routine in Program Counter.

b. Put address of node in B. Fail return if it is an end of list.

c. Fetch the request code from the request and put in A and X.

d. Stack the link and go to APU.

6.3.S CHI HASH (CHTIISH)

'Tiri.s routine computes a pointer to a.pseudo-node, the last entry of

which is a pointer in CHI'l. It takes the 48 bit Unique Name as input.

These two words are EOR' ed together to form a single word. This word is

then split into 3 separate 8-bit bytes. Each byte is EOR'ed together and

the result EOR' ed with 264B. The resulting word is masked to leave the

low order eight bits which are added to the appropriate base address •

. 6.3.6 CHI' Search (CHTSCH)

This routine searches CHT for an entry which contains the Unique Name

presented~ This routine finds the first entry (if there is one) by calling

the subroutine CHTHSH which computes the address of a pseudo-node in CHTl.

The collision pointer5 of this pseudo-node is a pointer (or end of list,

777777B) into CHf2. The collision pointer list is followed until the last

entry is found or the Unique Name presented compares with the Unique Name

5rhe CHT data structure is discussed in Section 4.2.

-109-

in one of the entries. If the search succeeds, the routine returns with

the address of the entry. Otherwise, it fail returns with a pointer to the

last node on the collision chain.

If the Unique Name is zero, it is a failure, otherwise:

a. Find the pointer to the first pseudo-node in CHfl by calling CHIHSH.

b. Check the pointer for being an end of list; if it is, fail return.

c. Compare the Unique Name in the entry with the one given. If they

are equal, return.

d. Get the new pointer from the collision pointer field

(word 5 of entry) and go to b.

6.3.7 Enter CHf Entry (ECHf)

This routine does all the chain patching such that the entry presented

represents a page in core with the given Unique Name. A CHf entry (in CHTZ)

may only represent a page if it can be reached from an entry in CHfl by following

the collision pointer chain. 6 The entry must not be on another collision

chain when presented to this routine. It is a fatal error to present a Unique

Name which already exists as a page of memory, i.e. , may be found by CHfSCH.

The Unique Name and disk address are placed in the entry.

a~ Pass the Unique Name to CHI'SCH. If it succeeds in finding

the Unique Name, PUNT.

b. Store Unique Name and disk address into node.

c. CHfSCH returned the pointer to the last entry on the

collision pointer chain for the given Unique Name. Replace

6rhe CHf data structure is discussed in Section 4.2.

-110-

the collision pointer in this entry with a pointer to the

new entry.

d. Put End of List (777777B) into the new entry's collision

pointer field.

6. 3. 8 Delete CHI Entry (DCHr)

The effect of this subroutine is to remove the page with the given

Unique Name from core. This is accomplished by removing the entry with the

given Unique Name from the collision chain7 which begins in CHrl for the

given Unique Name. If such an entry does not exist the subroutine fail

returns. A pointer to the entry is returned if it is found and removed.
. . .

Only the collision point.er field in the preceeding entry is affected.

a. Find the entry by calling CHrSCH. · If the entry is not

found, fail return.

b. Get the collision pointer from the node found. This

pointer points to the next entry on the collision chain.

c. Put the pointer into the collision pointer field in the entry

preceeding_the entry found by CHI'SCH. CHrSCH returns a pointer

to the preceeding entry. .

6.3.9 Clear CHI' Entry (CCI-ITE)

The entry is cleared in all fields except for the page number which

always remains the same, and the free core list pointer field which if non­

zero indicates the entry is on the Free Core List. Prefetches are used to

prepare memory so that this routine will execute in a minimum time.

7
The CfIT data structure is discussed in Section 4.2.

-111-

6.3.10 Get Free Core(GFC)

The goal of this routine is to return a free page of core by returning

. a pointer to a CHI' entry. The entry returnec;l. will have been removed from ·

any collision chain it may have been on, and cleared to zero. In the process

of attempting to find a page which is free, it follows the free core list

pointer chain, removing those entries which are not free from the Free Core

List. The Free Core List is a standard circular list. 8 If no free entry can

be found the routine fail returns.

a. Set protect 2 and initialize search by getting pointer to

pseudo-node which points to first entry. Go to lower case.

b. Remove entry from Free Core List which is not free. Decrement

number of entries on free core list counter (NFCL). Continue

search at the entry pointed to.by the one thus removed.

c. Get pointer to next node. If it is the End of List (777777B)

unprotect 2 and fail return.

d. Test all pertinent fields for zero. If any of the fields are non­

zero go to b. The fields tested are:

1. Scheduled count

2. Dirty Bit

3. Disk Write Bit

4. Bits 3-5 of the Page Status word

5. Lock field

e. Remove the entry from the Free Core List. Decrement the number

8see description of standard circular list in Section 4.5.

-112-

of entries on the Free Core List. Remove the entry from the

collision chain it may be on. Clear the maps of the CPUs if the

Unique Name is not zero. Clear the CHT2 entry and clear the Free

Core List Pointer field in the· entry.

6.3.11 Put Page on Free Core List (PPFCL)

Given a pointer to a CHr entry, the entry will be placed on the Free

Core List provided that the Free Core List pointer is zero. This·proviso

is necessary because a page may be used, written out, used again and written

out again, all while the page is on the Free Core List. Whether the entry

is put on the Free Core List or not, the routine returns successfully.

a. Return if the Free Core List pointer not equal to zero.

b. Increment the number of entries on the Free Core List.

c. Stack the entry on the Free Core List by calling the subroutine

SEL.

6. 3 .12 DHT HASH (DHTHSH)

The purpose of this routine is to compute the index of the entry in

DHf from the given disk address. DHT is organized as two tables (which nrust

be adjacent and ordered DHTl, DHT2). The first table has one word per entry

and the second two. The hash code (address) is computed as fol-lows:

a. Zero the top two bits of the word given as the disk address.

b. Rotate the result so that the top half of the word is in the

place of the bottom half.

c. EOR the rotated word with the original disk address.

-113-

d. Extract the bottom 13 bits of the address to form an index into

DHf. The size of DHT is normally smaller than SK, therefore

perform a modulo operation.

e. Return index if index is less than size of DI-IT.

f. Set index to index minus size of DH!'. Go to e.

6.3.13 Search DHI' (DHTSCH)

The goal of this routine is to locate the presented disk address in the

Dnnn Hash Table. 9 The Drum Hash Table is composed of two parts, DI-ITl and

DHT2. mm. has one word per entry (the. disk address) and DI-IT2 has two. If

during the search a zero is found instead of the presented disk address, the

search fails. The search will also fail (after a long time) if the table is

full. It will fail :immediately if the presented address is zero.

a. Fail return if address equals zero.

b. Compute the index by Hashing the disk address. This amounts to

a call on DI-ITHSH.

c. Set up pointers into the two tables. Set the top two bits of

the disk address. This will allow the search to succeed

independent of the top two bits in the DI-ITl entry probed.

d. Fetch the first entry at the starting address.

e. Fail if the word fetched is zero.

f. Set the top two bits of the word fetched.

g. Return if the disk address just fetched matches the one prepared

in c.

9see Drum Hash Table discussion in Section 4.3.

-114-

h. Increment the two pointers. If the pointers overflow the table,

reset the pointers to the beginning of the table.

i. Increment the counter of the number of probes. If it exceeds

the size of the table fail return.

j. Fetch the next word from the table and go to e.

6.3.14 Make Dill' Entry (EDHT)

The object of this routine is to make a complete entry into DHT. It

will fail if an entry with the same disk address is in DHf already.. It will

also fail if the disk address presented is .zero.

a. Fail return if the disk address is zero.

b. Find the pointers into DHf by searching for the disk address

presented. If the search succeeds we cannot make the entry,

therefore fail return.

c. Copy the three word entry from scratchpad to the appropriate

places in DHf.

6.3.15 Delete DHf Entry (DDHT)

Given a disk address, this routine will find it and delete it from the

Drum Hash Table. However, it is not through yet, for the method of handling
.

collisions is to scan linearly through the table for an empty spot. This

implies more work needs to be done. Suppose disk addresses a, b, c all produce

the same address with the hashing algorithm (see Fig. 6.2). Then they would

occupy sequential locations in the table corresponding to the order in which

-115-

they-were entered into the table. Suppose we delete the second entry (Fig. 6.2b).

It is now in1possible to find the third entry with the search mechanism

described; the third entry is.no longer correctly placed in the· table.

It is therefore necessary to re-enter all entries which occur between the

a

b

c

Fig. 6.2a Three Hash Table Entries

a

c

Fig. 6.2b b is Deleted

a

c

Fig. 6.2c Corrected Hash Table if a,b,c Ha.sh into same Location

-116-

a

c

Fig. 6.2d Corrected ttish Table if c Hashes into Location it is in

deleted entry and the next free entry (.0} (Fig. 6.2c). It is not sufficient

to move them up one slot, for suppose only the first two hashed into the

same address and the third hashed into the address in which it now resides

(Fig. 6. 2d).

a. Search for entry by calling DHI'SCH. If search fails, fail

return.

b. Delete entry, set up scan, go to f.

c. Return if entry deleted.

d. Copy entry into scratchpad, delete entry.

e. Reenter entry into DHT.

f. Fetch the first word of the next entry in DHT.

g. Increment the pointers into DHT. If the pointers overflow the

table boundaries, reset.them to the beginning of the table and

fetch the first -word of entry. Go to c.

6.3.16 Append Entry onto List (AEL)

This routine appends a node onto a list. It takes as arguments

-117-

pointers to the list header and the node and the offset of the list pointer

in the node. It affects only the pointer fields. The second word of the

list header points to the last node on the list. A pointer to the node to

be appended is placed in the current last node and in the second word of the

list header. The end of list mark (777777B) is placed in the new last node.

6.3.17 Stack Entry on List (SEL)

This routine puts the node presented onto the given list. 10 Offset must

be. given by the caller. The first entry of the -header points to the ~beginning

of the list. The second entry points to the end. The pointer in the node is

located at the beginning of the node plus the offset. If the list is empty

the node presented becomes the first and.last node.

a. Fetch and save the first word of the header. Store the pointer

to the node into the first word of the header.

b. If the first word was the end of list, store a pointer to the node

into the second word of the header.

c. Store the pointer fmmd in the first word of the header into the

pointer field of the node.

6.3.18 Remove Entry from List (REL)

The purpose of this routine is to remove an entry from the list presented.

The list structure has only one-way pointers, i.e. only one pointer per entry.

Therefore this routine also requires a pointer to the entry preceeding the entry

to be removed. If no entry follows the entry given the routine fails. This

allows this routine to be very general. Specifically, another ~ntry point is

called Remove top entry. If it fails it implies that the list is empty. The

10see discussion of Standard List Structure in Section 4.5.

-118-

routine moves the list pointer from the node to be removed to the preceeding

node and returns a pointer to the node removed. Only the pointer fields are

affected.

a. Fetch the pointer node of the node preceeding the node to be

removed.

b. Fail return if it is an end of list mark (777777B).

c. Fetch the pointer word of the node to be removed. If the pointer

is an end of list mark it is the last node on the list. Therefore

set the second header word with the pointer to the node preceeding

the one to be removed.

d. Store the pointer obtained ·.from the node to be removed into the

pointer field of the preceeding node.

6.3.19 Save State (SAVST)

This routine is entered with M in a scratchpad register and R\21 in M.

It saves the state of all main registers, the holding registers, and all but

one scratchpad register (the one holding the contents of M). As it stores

the state it zeros the Breakwait Cell. When the state is stored it fetches

Breakwait nntil it becomes non-zero. The state is then loaded. Every

register is restored except the scratchpad register holding M and the effect

of a DGOTO in the instruction preceeding the one where the break occurred

·(OREG).

6.3.20 Dump _TSU State (DPI'SU)

This subroutµie requires the address of the place to store the state

-119-

and the TSU #. It stores the TSU #, then stores the state. The routine is

three loops, for getting the position counter requires some extra logic which

is in the routine GETPOS.

a. Store the TSU#.

b. Setup to get the first 9 registers. This loop slides a bit to the

left once ea~h time through the loop. The low order 16 bits in the

select register are addresses of registers in the TSU.

c. Setup to get the position counters in the order 0, 1, 2, 3. This

loop uses a counter for the Unit # as required by the GETPOS routine.

d. Finally setup to get the last 3 ~egisters using the slidin~ bit

teclmique.

6.3.21 Generate Wakeup

This routine is the pr:imary cornrrrunication with the microscheduler. It

takes a pointer to the process table and a data word. · The microscheduler

maintains a stack into which these two words may be put. The stack is full

if the stack pointer (USIBTOP) plus 2· has 0 in the low order five bits.

a. Set protect 10 8•

b. Fetch USIBTOP and add 2·to it. If the result exceeds the top of

the stack (five low order bits are zero) unprotect 1~ 8 and go to a.

c. Store the new value into USIBTOP.

d. Store the pointer to the process table merged with the wakeup.

·conunand into the word pointed to by USIBTOP. Store the data

word into the next word.

e. Unprotect l~ 8 •

-120-

6.3.22 Send TSU Instruction (STSUI)

The purpose of this subroutine is to do all the work of sending a

complete list of TSU instructions. 11 It also returns to the next highest

level on the stack. Several arguments are expected to be in the :Main and

Holding registers of the microprocessor. Only the Z register is changed by

this routine.

a. Send instruction from Rl.

b. Send device address from R2.

c. Send page and map address from R3.

d. Send word colillt from Z (effettively).

e. Send Unique Name word~ fromM.

£. Send Unique Name word 1 from Q.

g. Send Unit number from Rl.

h. Return to next higher level on stack.

6.3.23 Stack Entry on Free List (SETFL)

This function keeps track of lillused request entries. 12 When the entry is

no longer useful to the AMC, it IIlllSt be explicitly placed on the Free Request

Entry List by calling this routine. It IIlllSt not be put on by merely appending

it to FREL. The CPU uses the free requests on this list, so a·protect nrust be

set before the entry can be appended. Furthennore a count of the number of

entries is maintained by this routine.

a. ·Protect 2.

b. Increment NFREL (Number of free requests).

11s d. · f 1 · · s · · ee iscuss1on o se ect register in ect1on 3.2.1.

-121-

c. Stack entry on Free List.

d. Unprotect 2.

6.3.24 Remove Entry from Free List (REFFL)
13 If possible, this routine returns a pointer to a Free Entry. If no

entry exists, a counter (ROFN) is incremented and the routine fail returns.

Free Entries contain six words. . They are kept on a standard circular list

whose header is called the Free Request Fntry List (FREL).

a. Protect 2 •

b. Remove the top entry from Free Request Entry List.
If no entry exists go to e.

c. Decrement number of free requests (NFREL) •

d. Unprotect 2 and return.

e. Increment ROFN.

f. Unprotect 2 and fail return.

6.3.25 Initialization Sequence for .AMC

When the .AMC microprocessor executes the instruction at zero, it makes

the choice of saving the state and waiting for a breakpoint, or initializing·

enough core for the system to get started. The initialization sequence begins

in instruction 1. One cell in memory called the Switch Register in Memory

(SRMIM) 14 contains a few bits which this routine interprets to obtain the

following information:

a. Whether the .AMC is to fill core from a device.

b. Whether the .AMC is to save core.

12 ' 13s d. . f R . Fn . . S · . ee 1scuss1on o equest tries 1n ect1on 4.2.
14s d . . .

ee escr1pt1on of Crash and System Areas on Disk and Drtmi in Section 3.3.

-122-

c. The type of device (i.e., drum or disk) on which the system will

be found.

d. The unit number of the device.

e. The addresses of the place to put the saved core (i.e., old

system) and the place to get the new system.

Sixty four thousand words are saved and read into core. There are four

possible sets of addresses on the device selected. EiQht devices may be selected

(one from each TSU, either unit¢ of 1).

a. Reset both request strobe latches.

b. Hang until a request strobe is received.

c. Reset request latch 1.

d. If the CHIO is doing the Initialization, go to q.

e. Set up loop for drum or disk depending on TSU field in SRME'-1.

f. Set up unit number.

g. Wait until device has become idle by calling RDST.

h. Go to 1 if not supposed to store old system.

i. Send cormnands to TSU by calling STSUI. The registers are not

changed by that routine.

j. Wait for drum to idle by calling RDST.

k. Check for any errors in transfer. If any errors occurred, go to h.

1. Update addresses in holding register. In updating the device

address, if it is found to be on the last sector (depends on the

device), add an appropriate value which will add one to the band

and zero the sector field.

-123-

m. Increment a down-counter. If it is not zero, go to h.

n. Compute the address from which the system will be read. This involves

zeroing the sector field and adding one to the band field of the

device address.

o. If the instruction sent to the TSU is not a read, go to h.

p. Send request strobe 1 to microscheduler.

q. Wait for request latch 1 to be set.

r. Reset request strobe latch 1 and load state by branching to

LOADST.

6.3.26 Wait Until Device Idle (RDST)

This routine is used to wait until the selected device is idle. It

reads the position counter and keeps reading it until certain conditions

are true.

a. Read position counter zero of selected position counter.

b. Go to a if the position is not valid.

c. Return if all of the following conditions are true:

1) There is no instruction awaiting execution in the

holding registers.

2) There is no instruction being executed in the functional

register.

3) The position of unit ~ is in the gap or first third of any

record (512 word).

-124-

6.3.27 Compute Next Sector on Selected Unit (FSTR)

It is necessary for the .Af.IC to know the next sector on any unit at any

time. While a transfer is taking place, the holding registers must be loaded

for the next transfer. Since there is more than one unit attached to one TSU

we must be able to determine what sector of the desired unit will follow the

sector currently being processed by the functional side of the TSU.

The routine may fail to produce a sector for one of two reasons. It may

be that there is less than one record time until the swapping of the registers

(256 µsec). This would not give the Af.1C enough time to select the proper

transfer. It may be that the TSU contains an instruction, but is delaying

its execution for a period exceeding one sector time (1 millisec). In this

case we do not wish to load the holding registers since the total situation

may change by the time the instruction is executed.

a. Read SP, the position of the selected unit, by calling GETPOS.

See Fig. 6.3a for the fonnat of a position.

b. Read FP, the position of the functional unit, by reading the

functional unit number and calling GETPOS.

c. Fail return if the frmctional unit contains an instruction but is

delaying execution, i.e., the registers will not swap at the next

end of sector.

d. Fail return if the remaining time before the swapping of the

registers is less than or equal to one record. This· insures that

we have 250 µs to figure out what to do before the registers swap.

e. Compute the distance to the swapping of the registers. This is

-125-

-
D=20B- (FP A 17B), since the registers swap at the end of the sector

and FP A 17B gives the position within the current sector. Add D-1

to SP. Now SP tells us where the selected unit will be just before

the registers swap. We are interested in the first sector after the

registers swap. We get this by adding one sector (20B) more to SP,

which now contains an address somewhere in the first sector which

will come up after the registers ·swap, except for

f. the fact that a comparison of positions for two different units may

be off by 2. To correct for this (conservatively) add 2 to SP if

the selected unit differs from the functional unit .

. g. Now SP points somewher.e l.p.tq ·. tlie>s~ctor we want. We extract the

address of the sector, discarding irrelevant record and PWR bits,

and take it modulo the size of the unit (24 for drum, 5 for disk).

6.~.28 Get Position of Rotating Device (GETPOS)

This routine will return the valid position register for the TSU and

unit selected. It must compute from the unit mnnber the bit to set in the

Select Word of the Tsu. 15 It does this by shifting a bit appropriately. If

the position returned by the TSU is not valid, the TSU is asked again.

a. Compute select word

b. Request TSU to send position counter selected

c. Return if position valid, go to b if not.

15see discussion of Select Register of TSU in Section 3.2.9.

-126-

7. MBURY MANAGER SOF1WARE

· This section describes the software portion of the memory manager.

7.1 APU Code - Overview

As shown in the main loop, (Figure 6.1)· there are dispatches to the

APU code at various points. Basically, the APU code routines handle five

categories of tasks:

1) General requests

2) Activate requests

3) Cleanups

4) Startups

5) Miscellaneous

General requests and activate requests were described in Sections 4.1.1

and 4.1.2 respectively. Using the request code, one dispatches via a

transfer vector to the specific APU routine that handles that case and then

returns to the main loop.

Cleanups and startups were discussed in Section 6.1. A cleanup checks

to see if the TSU properly executed the last connnand and handles possible

errors , while a startup prepares and then sends connnands to the TSU. As

with general and activate requests, there are different cases for startups

and cleanups. The request code field of the node is used as an index into

transfer vectors to the correct startup or cleanup routine.

The miscellaneous category includes other things shown in the main loop

such as reading in context blocks, reading in process core working set.

pages, and several other things the memory manager does. These are invoked

through a primary (main) transfer vector.

The dispatching stl1.lcture is shown in Fig. 7.1.

-127-

Primary Transfer
Vector (TV)

Note: shaded areas are miscel­
laneous requests. Desig­
nated slots in the Pri­
mary Request Transfer
Vec!or point to general,
activate, cleanup, start­
up transfer vectors.

APU
Routine General Request 1V

ndexed by request
ode field of request
ode) r~
APU Routine ,

. . .
Activate Request 1V

-. . ii' A.PU Routine

. . .
· Cleanup Request 1V

1-----===r-~ APU Routine

Startup Request 1V

APU Routine

Fig. 7.1 Dispatching Structure

-128-

We have already seen how a process is loaded in the section on

queues (Section 4.1) but it was from a perspective of queue use. We shall

now use the same sample but view it from a different vantage point, that of

seeing how different startups and cleanups are invoked.

The sequence starts when the memory manager has time to read in a

process' context block. It dispatches via the primary transfer vector to

the .APU routine that handles context block reads (miscellaneous request).

This .APU routine finds. out where the context block is (for example, drum

sector 4),-arid puts a context block read request 9n drum sector queue 4.

(If one is not familiar with Section 4; Section 4.1 should be read before

proceed.in!;~')

Drum Sector
Queue 4

CB Page

1 Request Code

···- -

The request code value "l" denotes "context block read." This completes the

APU routine task.

Later, while the heads are over drum sector 3, the memory manager does

a startup for drum sector 4, to setup the TSU hoiding registers prior to

coming to sector 4. It indexes into the startup transfer vector using

the request code which in this case is 1, Thus in this exampl~ the .APU

routine corresponding to an index of 1 in the startup trans.fer vector is

the startup for context block read. The command is sent over to the TSU

-129-

(TSU ~) for the drum. Also, the request node is put on the cleanup queue

for the TSU. The routine then returns to the main loop.

TSU ~
Cleanup Queue

1 1 ~Page[g
Request Code

After drum sector 4 has passed, the memory manager responds to the

ATTENTION delivered by the TSU by performing a cleanup. Similar to startup,

it indexes into the cleanup transfer vector using the request code. The

. APU routine corresponding to an ind.ex of 1 in the cleanup for the context,

block read. As part of cleanup, a request node is put on the context

block queue (CBQ) • This is a queue of context blocks that have been read in,

but need to be scanned to queue up page reads for the core working sets

of these context blocks. ·

When the memory manager has time to read this CBQ, and upon f ind.ing

the entry for the context block just read, it dispatches via the primary .

transfer vector to the APU routine that queues up reads for the different

pages belonging to the core working set of the process. (This is a

miscellaneous request.) Suppose there were (for simplicity's sake) only

two pages to be read in, on drum sector 7 and drum sector 15.

Thus we have:

-130-

Dnun Sector 7
Queue ,.... _____ ,.

Page 1

2 Request Code

Dnun Sector 15
Queue -------.

Page 2

2

Note that the request code in the nodes have a different number from

context block read.

Request Code

In the same manner in which we did startup an4 cleanup for contex~_ .

block read,. we do it for these pages at the appropriate time. The dif- .

ference is that the APU routines dispatched to correspond to indexes of

2 in the startup and cleanup transfer vectors.

The reading of the last page (page 2 in this case) of the process

c~re working set means that the manager has completed reading in the

process working set. It then notifies the scheduler.

7 .2 · ·Ma.jot Transfer Vector~

The following are the five major transfer vectors found in the memory manager.

-131-

7.2.1 Primary Transfer Vector 1V Index/Request Code

PUN!' 0

General Request 1 + General Request
Transfer Vector

Activate Request 2 + Activate Request
Transfer Vector

Read Drum 3

Startup New Page 4

Cleanup 5 +Cleanup
Transfer Vector

Queue Process Pages 6

Read Context Block 7

Copy from Disk Cylinder to Sectors ·8

Startup- Startup
9 + Transfer Vector

Write Page Startup 10

7.2.2 General Request Transfer Vector TV Index/Request Code

Remove General Request 0

Write Process onto Dram 1

Remove General Request 2

Write Process onto Dram 3

Direct Drum Transfer 4

Direct Disk Transfer 5

Return Page to Drum 6

-132-

7.2.3 Activate Request Transfer Vector

Reserve Page Request

Release Page to Drum

Drum ~ Disk Transfer

Write Unique Name

Disk ~ Drum Transfer

Get free page

Destroy page

PUNT

PUNT

Read Page (for diagnostic purposes)

-133-

1V Index/Request Code

0

1

2

3

4

5

6

7

8

9

7.2.4 Cleanup Transfer Vector

PUNf

Drum Cleanup for CB read

Drum Cleanup for process pages read

Drum -+ Disk transfer (drum cleanup)

Drum Cleanup for direct I/O

Disk Cleanup for direct I/O

Drum Write Cleanup

Drum Write Cleanup

Drum Cleanup for Destroy page.

New page cleanup

Drum-+ Disk transfer (disk cleanup),
write page

Drum -+Disk transfer (disk cleanup),
UN=O check

Write Unique Name (disk cleanup),
UN check for 0

Drum -+Disk transfer (disk cleanup)

Write Unique Name (disk cleanup)

Disk Cleanup for destroy page
(UN match check)

Disk Cleanup for destroy page
(no UN match check)

Disk -+ Drum Transfer (drum cleanup)

Cleanup for read page diagnostic

Cleanup for disk cylinder seek

-134-

1V Index/Request Code

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

7.2.5 Startup Transfer Vector TV Index/Request Code

PUNT 0

Context Block Read 1

Process Pages Read 2

Drum + Disk Transfer (dnnn) 3

Direct Dnnn Transfer 4

Direct Disk Transfer 5

PUNT 6

PUNT 7

Destroy Page (dnnn) 8

PUNT 9

Drum + Disk Transfer (disk) 10

Check UN 11

Check UN 12

Disk + Drum Transfer (~isk) 13

Disk Write Unique Name 14

Check UN 15

Destroy page (disk) 16

Disk + Drum Transfer 17

Read Page 18

-135-

7.3 The Auxiliary Processing Unit (APU)

The following is a description of the APU part of the memory manager.

The microcoded main loop calls APU coded subroutines to perform the necessary

processing. Conventions are made so that APU routines may call microcoded

subroutines.

An APU instruction has the format

0 1 2

where:

and if

9

0

E = ENVIRONMENT

X = INDEXING

S = Scratchpad - Memory operation

0 = Opcode or scratchpad address

I = Indirection or Load/Store

W = Address

E = ~' effective address local

E = 1, effective address absolute

w

S = ~' 0 is opcode 1 I is indirection

S = 1, O is a scratchpad address,

I determines Load/Store,

-136-

23

Indirection

Th.ere are two Indirect Address Words (IAW). A local IAW
0 1 2 9 10

An absolute IAW :

0 1 2 5

Long word address LW

Field Pointer

A field pointer is placed in B whenever a field operation (LDF,STF,

ADP, MGF,ZRF) is to be done. It has the following fonnat:

23

I
23

I

.0 1 5 23

Registers

w

E = ENVIRONMENT

X = Indexing

IF E = J', W is an absolute address

E = 1, W is relative

x = 1, Q +W+X mod 218

X = .0, Q +W

Th.ere are three central registers A, B, X, a 14 bit program counter

P, memory relocation and bounds registers REL and BOUND, and a control

stack CSTK. In addition all scratchpad registers are directly addressable

I

using ei.ther an Rlli~like instruction (see below), or directly from core

by setting S.

All of these registers are maintained in scratchpads. Before executing

.APU instructions the Main loop of the swapper initializes the CSTK to

REL+ lOOB. It is advisable to avoid changing P, REL, BOUND, and CSTK

with scratchpad instructions.

Addressing

Addressing is the same in all instructions except for Load and

Store scratchpad. In the single exception there is no indirection.

Indexing is modulo zl8 for all instructions. The effective address is

computed as follows:

LOOP:

Let l be an instruction,

E(I) be the environment bit,

IX(I) the index bit,

IN(I) the indirect bit,

Q the absolute effective address,

QL the relative effective address, and

X the index register.

T + I;

Q + I AND 37777B;

Q + (Q + X) .AND 777777B IF IX(T) f ¢;

QL + Q;

Q + Q + REL IF E(T) = ¢;

-138-

*Indirection

IF IN(T) :/- 1' 00;

T + CONTENTS (Q)

CT + T AND 37777777B & Q + T AND 37777B &

GOTO LOOP) IF E (T) -:f I);

*Absolute Indirection

Q + T;

Q + (Q + X) AND 777777B IF IX(T) r I);
Q1 + Q;

· ENDF;

Instruction Set

This section describes all instructions. The symbols A, B, X, P

stand for registers, 0 stands for opcode field, Q for the absolute effective

address, Q1 for the relative effective address. $1 indicates the contents

of 1 on the right hand side of a left arrow and $1 indicates a store into

location pointed to by 1 on the left hand side of a left arrow. Certain

fields within Q1 will be defined when appropriate. They will be used by

saying F(1) which is to be interpreted as Field F (right adjusted) of 1.

The notation 1SK is to be interpreted as one symbol whose value is a

scratchpad address.

Data Transfer:

LDA: A + $Q;

LDB: B + $Q;

LDX: X + $Q;

EAX: X + (X AND Nor 777777B) OR (Q1 AND 777777B) ;

-139-

LSK: + (S = 1, I = ~) $0 + $Q;

BEWARE: LSK MAY OCCUR IN AN !AW

STA: $Q +A;

S'l'B: $Q + B;

STX: $Q + X;

XMA: T + $Q; $Q + A; A + T;

SSK: (S = 1, I = 1) $Q + $OSK;

BEWARE: SSK MAY OCCUR IN AN IAW

LDI: A+ QL;

A +A OR 7774B4 IF (QL .AND 2,0,0,0,0B) = ,0;

Note: allows loading of constants between

-2,0,0,0,0B and 17777B;

Arithmetic Operations:

ADD: A + A + $Q;

ADM: $Q + $Q + A;

SUB: A+ A-· $Q;

MUI..: A + A * ($Q AND 7777B) ;

Note: a result >z24 is not modulo z24, but is funny

MIN: $Q + $Q + 1;

MDC: $Q + $Q - 1;

ISK: SK,0(QL) a six bit scratchpad address

$SK,0(QL)SK + $SK,0(QL)SK + 1;

DSK: $SK,0(QL)SK + $SK,0(QL)SK - 1;

-140-

Logical:

ETR:

MRG:

EOR:

A+ A AND $Q;

A+ A OR $Q;

A+ A EOR $Q;

.Field Operation:

B contains a field pointer, QL is a field descriptor as follows:

where:

10 15 20 23

L: is the left bit (numbered from left to right)

R: is the right bit

D: is the displacement

The address of _the field word is computed from B, X, and D:

FADR + B;

FADR + FADR + REL IF E(B) = l;

FADR + FADR + X IF IX(B) = 1;

FADR + FADR .AND 777777B;

FADR + FADR + D;

(unreasonable as this seems)

The following field operations are defined (let FD be the specified

field, i.e., bits L through R of $FADR):

LDF - Load field: loads the specified field right adjusted into A.

All other bits inA are cleared.

A+ FD

-141-

STF - Store field: takes the number of bits specified by the

field descriptor out of the least significant

portion of A and stores them into the field.

FD+- A

.ADF - Add to field: adds the contents of A to the specified field.

A is unchanged.

FD +- A + FD

MGF - Merge field: Merges the (R - L + 1) low order bits of A into

the specified field. A is unchanged.

FD +- A OR FD

ZRF - Zero field: zeroes the bits in the field as specified in the

(R - L + 1) low order bits of A.

FD +- FD .AND Nar A

Conditionals:

SKE: p +- p + 2 IF A = $Q;

SKNE: · p +- p + 2 IF A 'f $Q;

SKG: p +- p + 2 IF A > $Q;

SKGE: p +- p + 2 IF A >= $Q;

SKL: p +- p + 2 IF A < $Q;

SKLE: p +- p + 2 IF A <= $Q;

SKA: P +- P + 2 IF A AND $Q = ~;

SKNA: P +- P + 2 IF A AND $Q 'f ~;

SKB: P +- P + 2 IF B AND $Q = ~;

SKNB: P +- P + 2 IF B .AND $Q r ~;
SKM: P +- P + 2 IF A AND B = $Q AND B;

-142-

SKUM: P + P + 2 IF A AND B r $Q AND B;

SKR: $Q + $Q -1;

P + P + 2 IF $Q < ¢;

SKI: $Q + $Q + l;

P+P+ 2 IF $Q < ¢;

SKN: P+P+ 2 IF $Q < ¢;

SKP: P+P+ 2 IF $Q >=¢;

SKEL:· P+P+ 2 IF ($Q OR 77B6) =

SNEL: P+P+ 2 IF ($Q OR 77B6) "f

BRQ: CALL R2PNT IF Request 2 set;

P + QL IF Request 1 set;

BRX: X + X + l; P + QL IF X < ¢;

BRPX: X + X + l; P + QL IF X >= ¢;

Unconditional branches:

BRU: p + QL;

BRM: $Q + P; p + Q + l;

BRR: P + $QL + 1 mod zl4

BSR: P + $QL + 2 mod zl4

BSL: $CSTK + P; CSTK + CSTK + l;

BSX: X + P; BSL;

BVR: CSTK + CSTK -1;

p + $CSTK + QL mod zl4;

-1

~l;

p + QL;

CALL: The intent of this instruction is to call microcoded

subroutines, These may have a fail return, in which case no

skip indicates failure and skip indicates success. The

-143-

register loaded with the APU fail add~ess is given by bits

l~-12 of QL as follows:

~ - No fail return (no skip from subroutine)

1 - Fail return loaded already

2 - Z + fail return

3 - Q + fail return

4 - M + fail return

5 - RS + fail return

6 - FN1 + fail return

7 - not defined

The state of M, Q1 Z and R,0-RS is maintained by this instruction

in scratchpad. The state is loaded from scratchpad before

executing the subroutine and returned to scratchpad when the

subroutine has concluded. The correspondence is given by the

following table:

M = A(SKS)

Q = B(SK6)

Z = X(SK7)

R,0 = SKB

R1 = SK9

R2 = SKl~

R3 = SKll

R4 = SK12

RS = SK13

When the state is loaded, the microcoded subroutine at QL

mod zll is executed.

-144-

SCALL: ($STKP)SK + (NOT P) OR 7774B4;

STKP + STKP -1;

CALL;

G01D: OREG + QL

. I/O To Devices on E Bus:

PIN: Z +A, Alert;

A+ El, PINSC;

POT: Z +A, Alert;

Z + B, POTSC;

Cycle:

LCY: A + A LCY QL;

Locate Leading one:

Ll..O: Left cycles the contents of A until

1) a one(l) appears in bit position zero(~) or

2) the shift count goes to zero.

The shift count is QL.

The index register is set to the shift count

minus the bit position (the sign bit is bit position ,0).

Special functions:

STROBE:QL, Strobe;

UNPRO: QL; UNPRO;

PRO: QL, PRO, RETURN IF PROTECT SUCCEEDS;

QL, UNPRO, GOTO *-1;

CLRMAP: CLEARMAP;

-145-

Scratchpad to Scratchpad Operations

Let SK.0(QL) be one address, and

SKl(QL) be another

CSS: $SKl}(QL)SK + $SK1(QL)5K;

CLS: $SKl}(QL)SK + ,fl;

CSSI: $SKl}(QL)SK + $SK1(QL)SK +l;

CSSD: $SKl}(QL)SK + $SK1(QL)SK -1;

CSA: A + $SK.0 (QL) SK

CSB: B + $SK,0 (QL) SK

CSX: X + $SK,fl(QL)SK

CAS: . $SKl}(QL)SK +A;

CBS: $SK,0(QL)SK + B;

CXS: $SK,0(QL)SK + X;

Register to Register Operations:

CLA: A+ ti;

CLB: B + tJ;

CLX: x + I};

CLAB: A + ,fl; B + ,fl;

CLEAR: A + I}; B + ,fl; X + ~;

CAB: B +A;

CBA: A+ B;

XAB: T + B; B +A; A + T;

CBX: X + B;

CXB: B + X;

XXB: T + B; B + X; X + T;

-146-

CXA: A+ X;

CAX: X +- A;

XXA: T +- A; A+ X; X +- T;

CNA: A +- -A;

CNX: X +- -X;

-147-

8. CCMvUNICATIONS AND ERROR HANDLING

1his section discusses the communications and the error handling aspects

of the memory manager.

8.1 Conununications - The Memory Manager and the "Outside" World

Up to this point, we have concentrated primarily on the memory :inanager

and emphasized its ability to perfonn numerous tasks. · We ·turn now to the

conventions that exist between it and other components of the operating

system.

Figure 8.1 illustrates the communications of the memory manager.

Notice the use of queues, tables, and strobes. The strobe signals turn

on latches (flags) in a processor. It is in this manner that the memory

manager is notified that there is an activate or general request for it

to service. Notice that it can strobe other processors as well.

The queues and tables are used by several processors, often to pass

in:fonnation between each other, There is a hardware processor interlock

system for these data structures. When a processor is modifying one of ·

these structures, it turns on the PROTECT associated with that structure.

Other processors query the PROTECT and avoid handling the structure on

finding the PROTECT set. Since PROIBCTS are·implemented in hardware, there

i~ no race condition as occurs in setting software flags.

Different protects are assigned (by convention) to different structures.

Thus a simple, convenient, but nonetheless powerful means of conununication

exists between the memory manager and other processors. Tables that are

-148-

' ~
·.i:::.
l.D
•·

Main
Memory

Figure 8.1 Memory Manager Communications

T
u
I TSU's

Attentions

M ~ > .__ _ _,_ ___ _,ALERTS POT/PIN

A ())
U drums

,----1
I Protected I
I Tables I
I ____ I

/.':...

AMC
(Memory
Manager)

-1------~ strobes
to

....,_ ______ strobes
from

disks protected

queues of work to do

- ----·

handled include the ClIT (core hash table) which has entries for·every page

in core. Both the AM:: and the CPU handle arr entries. The PRT (process

table) which contains infonnation relevant to each process in the system,

is similarly protected. Various queues are used by processors to pass

assignments to each other. One such queue is the general request queue

into which other processors put nodes requesting work by the .AMC. Such

queues also are covered by the protection mechanism.

The conununications between the memory manager (.AMC) and controller (.AMTU)

has already been discussed at length in the section on hardware. (Section 3.1,

3.2.9). Actually the controller (.AMIU) is to be considered an "insider" with

respect to its close relationship to the memo:ry manager.

Th.us, the connnunication of the .AMC is conceptually really quite

simple yet affords the necessary conununications capability of a multiprocessing

environment.

8. z : ·Error ·Handling

8.2.1 General Error Philosoplly

Insofar as possible, hard read errors are left to be handled by the

process which requested the data. ·write errors are not considered to be

the responsibility of the process which initiated the write, and are

handled more-or-less automatically by the MMS. It is assumed that hard

errors, i.e. those that cannot be corrected by a reasonable number of

retries, are infrequent and that clumsy and expensive ways of handling them

-150-

are therefore acceptable, although not actively sought after. The data is

therefore discarded in this case. It may be retrieved using a direct

I/O request.

8.2.2 rypes of Errors

By 'error' we mean some fault in the process of reading or writing a

page which is detected by the transfer hardware, or by code in the 1'-M5

which is very close to the hardware. We distinguish the following types:

1) UN errors, which occur when the unique name recorded on drum or

disk does not agree with the one provided by the transfer request~ All

transfers read the UN and check it before transferring any data with the

exception of drum writes. The check is for ¥' rather than equality in the

case of a disk write when the unique name is written. A normal disk

write does not write the unique name.

Since the UN is not included in the checksum generated by the hardware,

checksum errors have nothing to do with UN errors, and a UN error therefore

always takes precedence.

2) Rate errors, (DATA TRANSFER LATE) occur when the memory

cannot provide or accept data fast enough to keep up with the rotating

device. A transfer which results in a rate error is always retried.

3) Memory system parity errors, other than parity on the data in core,

are treated like rate errors.

4) A checksum error on data from the rotating device is called a soft

read error. The transfer is retried until some number of soft errors have

occurred. It then becomes a hard read error.

-151-

Only UN errors and hard read errors will be discussed in the rest

of this section.

8.2.3 Errors During Swapping

These errors cannot occur during a write.

Read errors differ depending on whether it is the context block or

a data page which is involved.

A UN or hard error on CB read is passed on to a special process

which is responsible for such things, since the process is obviously unable

to help itself.

8.2.4 Disk Read Errors

UN and hard read errors are handled in exactly the same way: they are

reported to the process which requested the transfer (with a bit indicating

which kind of error occurred). No DHI' entry is made and any data read is

discarded.

8.2.5 Disk Write Errors

There is no such thing as a soft write error.

A UN error on writing is reported to a special process, never to the

process which initiated it. These errors are of three varieties:

1) UN on disk r UN in request, for s:imple write request

2) UN on disk r O, for write request with WUN

3) UN on disk r UN in request, for destroy request

The DHI' entry, if any, is left untouched. These errors are always

~ failures, since the UN in the request is always the one on the dn.nn.

-152-

8.2.6 Drum Errors for Non..;Swapping,Transfers

Dnnn errors can occur only for reads. There is only one kind of

non-swapping read: a drum to disk transfer request. A hard read error

is reported to the special process. This is.disastrous, but it is rather

tlllclear what to do.

. -153-

9. CONCLUDING REMARKS

The preceding sections detailed the implementation of the memory

manager. The major areas observed were hardware, microcode, software,

system structures, data structures, and corrummications. Each had its role

in fulfilling the goals as stated in the strategy.

The memory management system is conceptually quite straightforward~

The hardware provides more infonnation and capabilities than generally found.

The microcode provides speed and efficiency. The APU code (software) is

partitioned into discrete ftm.ctions accessed by transfer vectors. The system

structures and data structures are simple and few in type, while communications

are quite clear. However, this organization is not typically found in systems,

especially the incorporation of memory management into a separate micro-

coded processor. Thus its very ''uniqueness 11 may make it appear complex.

The system is currently running quite well. Unfortunately, we do

not have quite as many dnuns and disks as were originally planned. We have

two dnuns and two disks, which allows less swapping.

The concept of memory management being assigned to a separate processor

has been shown to be viable. A fuller understanding of what constitutes

memory management ftm.ctions has resulted. Some of the shortcomings of the

memory manager resulted from not having a precedent to follow in designing

the memory management ftm.ctions.

It is doubted that the present memory manager would be able to fully

handle all the swapping that was intended. Having to read context blocks

and queue up a lot of pages causes hiccups in the swapping. Activates

have a similar effect. Possible alternatives are to make the basic memory

-154-

manager concenied with only startups and cleanups or put the swapper in

yet another processor. Also, a lot more APU code could be put into

microcode.

A problem with the microcode was that it was read-only, rather than

read/write.. It is difficult to modify and one tends to avoid changing it

very much. In fixing bugs, it would have been ten-fold better to have

writable microcode.

Debugging was enhanced with the use of a breakpoint box that could

breakpoint in the microcode. The APU code could also be breakpointed. A

system DDT allowed us to monitor various tables as well as look at the data

structures at will.

At one point there was major difficulty when queues were. being

clobbered. Since there were only forward pointers, it was hard to recon­

struct the situation. The use of backward pointers as well would certainly

enhance the integrity of the queue structures. (It was later found that

the queues were being clobbered by a hardware bug). Checks to ensure the

integrity of the queue could thus be inserted.

The statistics provided are very few. But what little there are

prove very useful. By varying system load, one can tell how often the .Af.K:

skips swaps because there is not enough time to set up (startup). A

larger emphasis on statistics would provide much improved measurement

capability.

The present implementation of the memory manager is not capable of

supporting 500 users. But it has gone a long way towards that goal. Most

important, it confirms that that goal is attainable. The use of a powerful

-155-

memory management processor (and probably a swapping processor) in a

multiprocessor organization holds great promise in achieving a large­

scale utility supporting 500 users.

-156-

Appendix I ABBREVIATIONS FOR MODEL I MEMORY MANAGEMENT SYSTEM

.Nl'C. auxiliary memory controller

AMfU auxiliary memory transfer unit

BLK process status bit: process blocked

CB context block

CBC

arr

cws

DEST

DID'

DIRTY

DKT

DKW

DSQ

DWIP

DWS

EC

ECD

EOS

ERR

FCL

process status bit: context block read is queued

core hash table

core working set

this DHT entry is being destroyed

drum hash table

dirty bit in CHT

drum to disk transfer

this DHT entry is being written on disk

drum sector queue

drum write in progress bit in arr

drum working set

error count in .AMC node

error code for disk transfers, in PRT

end of sector

error field in PMT

free core list

. -157-

FP

FR

GREQ

HNE

HR

IB

K

K~

KIJI'

KSQ

KVALID

KW

LDD

MIB

M)Q

o:ra.
OP

PC

PM

00

pp

PQ

PRT

file page

functional registers in TSU

general request queue

header not equal flag

holding registers in TSU

index block

disk address

disk cylinder queue

disk to drum transfer

disk sector queue

disk copy of this llil' entry is valid

disk write bit in arr
process status bit: Process loaded

multiple index block

memory management system

process status bit: on µscheduler queues

OK to· load TSU registers .

operation code for TSU instruction

position COllllter in TSU

physical map of a CPU

process memory table

. pri.vate page

process status bit: page reads are queued

process table

-158-

PWS

R

RIP

RN

RUN

SC

SF

SWAPQ

SWQ

TSU

TUIM

UC

UN

UNAVL

UNID

UNTAG

UNlJSER

WL

WUN

position within sector

rotation time for drum or disk in ms

read in progress bit in arr

real name

process status bit: process running

scheduled count in arr

scheduled flag in PMr

swapping request queue

process status bit: read request is on SWAPQ

transfer sub-unit

transfer unit interface multiplexer

use count

unique name

unavailable bit in arr

object identification field of unique name

tag field of unique name

user field of unique name

write list

this DHf entry needs to have its UN written on disk

-159-

Appendix II MICROPROCESSOR GENERAL THEORY OF OPERATION

A. Introduction

The BCC Microprocessor is a synchronous, 24-bit digital computer.

The flow of data between the functional elements of the computer is con­

trolled by terms generated by the microprocessor 90-bit instruction word.

Table Al, below, is a listing of the bits in the instruction word and a

definition of their function.

1. Data Flow. (See Fig. 1)

The X-bus and the Y-bus are the two principal intra-processor

data transfer busses. Data transfer between the microprocessor and ancillary

devices is accomplished by the El-bus and the E2-bus for a parallel-input

(pin), and by the Z-bus for a parallel-output transfer (pot). Data

transfer between the microprocessor and the core memory is accomplished

by the Ml-bus and the M2-bus for input data, and by the M-bus for output

data. The data busses are 24-parallel transfer lines gated by terms

derived from the microprocessor instruction word.

2. Read-Only Memory (ROM). (See Fig. 2)

The ROM is a diode memory containing the 90-bit instruction

words. The ROM is addressed by the 0 register and outputs the selected

90-bit instruction word to the I register.

3. I Register.

The I register is a 90-bit register and contains the current

microprocessor instruction being executed. The I register is nonnally

loaded at the end of each machine cycle, from the RCM.

-160-

DATA Ff<OM
DATA FROM CEN~'RAL

LOCAL MEMORY MEMOHY Y BUS

>< >: x BUS

2 I.MMl
5 ~ >< >: >< >:

0 0 N N
1 LMM2 M M M M

~><
Q z

ft 0: .. CENTRAL

~ffi MEMORY M
&x INTERFACE

t! ~
"'E-<
<:z:
E-<w <t.I
a

LEFT RIGll'f
BOOL BLjiJ-BLJ BOOL BRjiJ-BRJ
BOX BOX

LSPX SCRATCH-
PAD

CY LOC
COUNT CYCLER ADDER

OV 'l'/,X

TCX
c BUS

X BUS

Y BUS

'
LR.11.

RjiJ Rl R2 R3 H-1 RS

I!!R

TllY

l:i.gure 1; Microprocessor Data .Paths: Arithmetic Section

·-161-

Y IN
FRO?!

OS
RF.GI STER

El
m;s
TI:l \'.

TINCO
READ-ONLY

X BUS ---
MEMORY DDRESS

IN

90 BITS

TXO

TBO

I REGISTER TC SO

B FIELD: 10 BITS

80 BITS

INSTRUCTION BITS
TO REMAINDER

OF THE SYSTEM

TOSY

TO ARITHMETIC
NOTE: TINCO, TXO, TBO SECTION Y BUS
and TCSO are generated
by the control circuitry.

10 BIT
INCREMENTER

0 REGISTER
{10 'T'S)

~
LOAD 0

OS
REGISTER

LOAD OS

Figure 2: MICROPROCESSOR DATA PATHS; CONTROL SECTION

-162-

4. 0 Register.

The 0 register is a 10-bi_t register which holds the address of

the instruction word to be executed in the next cycle. It can be loaded

from the B-f ield of the instruction word, the least significant 10 bits

.. o.f_ the X-bus; the incremented contents of the 0 register; or the OS .

register.

5. OS Register.

The OS register is a 10-bit register used to save the return

address for subroutine calls. The contents of the OS register can be

transferred to the Y-bus.

6. M, Q, and Z Registers.

-The M, Q, and Z-registers are 24-bit registers, and are loaded

from the X-bus or the Y-bus. The M register is also loaded, independently,

from the local or central memory under control of the central· memory inter­

face. The buffered outputs of the Z register are used for parallel-output­

transfers (pot) to ancilliary devices via buffers on the I/O interface

card. Two boolean (bool) boxes associated with the M, Q, and Z registers

provide inputs to the adder/cycler. The output of the left bool box is

any one of the sixteen logical functions of M and Q; the output of the

right bool box is any one of the sixteen logical functions of Z and Q.

The logical functions to be perfonned are specified by the BR and BL fields

of instruction word. See Table A4 for details.

-163-

7. Holding Registers.

The holding registers, R,0 thru R6, are 24-bit registers which

are loaded from the X-bus or the Y-bus. The output of the holding register

can be incremented, and is gated by the instruction word to the Y-bus.

8 • · Scratchpad.

The scratchpad is a 24-bit by 64-word IC memory, loaded from the

X-bus, and read into the Y-bus and addressed either by a field in the

instruction word or by the least significant six bits of the Z register.

9. Adder /Cycler.

The adder portion of the adder/cycler is a 24-bit full-adder with

an anticipated carry. The adder sums the output of the left and right

bool boxes. The resultant sum is transferred to the X-bus. A low-order-

carry input to the adder may be generated directly by a bit in the

__ instruction word. The cycler portion of the adder/cycler is controlled

by the instruction word or by the Z register, and left cycles the output

of the left bool box to the X-bus.

10. Typical Instruction Cycle.

Every instruction in the microprocessor is a conditional branch.

The MCONT field (2 bits) of the instruction word specifies the location of

the branch address as either the Branch Address field of the instruction,

the X-bus, or the OS register. The MC field of the instruction word

specifies one of 64 conditions which, if satisfied, will cause a branch to

occur. If the branch condition is not satisfied, the contents of the

0 register (present address incremented) are used as the address of the

-164-

the next instruction word; and at the end of the machine cycle, the

next instruction is fetched from the R.a.1 and the 0 regis.ter is incremented.

When the branch condition is satisfied, the 0 register is not incremented

at the end of the machine cycle; the register clocks are inhibited. The

cycle time of a successful conditional branch is, therefore, extended in

· the sense that the nonnal overlap of instruction execution with instruction

fetching is abrogated. A success causes the 0 register to be loaded from

the source specified by the MCONf field of the instruction word. During

the extended interval, the 0 ~egister fetches the word in the branch desti~

nation address.

B. Microprocessor ·rnstruction

A microprocessor instruction may.require one, two, or three machine

cycles to be executed. The control logic contains two flip~flops, XXB and

XX:C, which comprise the state cotmter. The state cotm.ter determines from

VCY, DGO, and BRANQI in the instruction whether an. instruction will take

one, two, or three machine cycles. The three possible states are state A

(XXB' • XX:C') , state B (XXB • XX:C') , and state C (XXB' XX:C) • The length of

time required to complete an instruction depends on the type of

instruction.·

1. Unsuccessful Branch Irt.stractions.

These instructions do not branch and do not have the VC'l bit in

the instruction set. Execution of the instruction occurs in state A and

requires only one machine cycle.

2. · · Stretehed ·unsuccessful Branch Iri$tttictions •

These instructions do not branch and have the VC'l bit in the

-165-

instruction set. Execution of the instruction occurs at the end of state

B and, therefore, requires two machine cycles. State A is a waiting period

that allows signals to propogate through long paths such as scratchpad,

adder, and tests of X.

3. Successful Branches,

These are instructions where the branch condition is satisfied.

They require two machine cycles and, therefore, use both state A and state B.

Register loading is done at the end of state B, but the 0 register is

loaded with the branch destination address at the end of state A. At the

end of state B, the 0 register is loaded again, this time with the branch

destination address plus one, Sinrultaneously, the I register is loaded

with the instruction contained at the branch address.

4. Stretched Successful Branch Instructions.

These are instructions for which the branch condition is satis~

fied, and the VCT bit in the instruction is set. These instructions use

three machine cycles and, therefore, require states A, B, and C. This type

of instruction is Used when the branch address or condition requires the

time to be generated. Loading of any register specified in the instruction

occurs at the end of state C.

5. Subroutine Calls.

A subroutine call stores the contents of the 0 register (the

address of the instruction being executed plus 1) in the OS register, and

loads the 0 register with the subroutine address. This instruction

requires two machine cycles, state A and state B, and JJil.lSt, therefore, have

the VC! bit set in the instruction.

-166-

6. Deferred Branch Instruction.

Deferred branch instructions cause the instruction after the

deferred branch instniction (current address plus 1) to be executed before

the branch occurs. In order to execute a deferred branch, the DGO bit in

the instruction is set. This instruction uses state A only and requires

one machine cycle. If the VCY is set in the instruction, an additional

machine cycle will be available to prepare the branch condition or

address, and the instruction will use state A and state B. In a deferred

branch, the 0 register is loaded from the B-field of the instruction, the

least significant ten bits of the X-bus, or the OS register at the end of

state A if VCY is set.

-167-

Table Al. 90-bit Microinstruction Word

Signal Position Clock Function

MC,0-MCS 0-5 K2 Branch Condition field (6 bits).

(See Table AZ) •

M:ONT,0,1 6,7 K3 Branch control field (2 bits):

,0 = branch conditionally to the

address specified by the con-

tents of B0 thru B9.

· 1 = branch conditionally to the

address specified by the con-

tents of B.0 thru B9. Store

the contents of the 0 Register

(return address) in the OS

Register.

2 = branch conditionally to the

address specified by the con-

tents of the OS Register.

3 = branch conditionally to the

address specified by the con-

tents of the X-bus ten lsb.

B,0, Bl, B2 8,9,10 K3 Branch address field (10-bits).

B3, B4, BS 11,12,13

B6, B7, BS 14,15,16

B9 17

-168-

Table Al. 90-bit Microinstruction Word. (cont'd)

Signal Position Clock Function

C,0, Cl, CZ 18.,19,20 K3 Constant Field (24-bits).

C3, C4, cs 21,22,23

C6, C7, cs 24,25,26

C9, ClO, 27,28,29

Cll, Cl2, 30,31,32

Cl3, Cl4, 33,34,35

Cl5, Cl6, 36,37,38

Cl7, Cl8, 39,40,41

Cl9, C20, ·

C21, C22,

C23

!HR 42 K2 Increment holding register.

TCX 43 K3 Transfer the contents of C-f ield

to the X-bus.

TCY 44 K3 Transfer the contents of C-field

to Y-bus.

TSPY 45 K3 Transfer the contents of the

selected scratchpad address to

the Y-bus.

1HY 46 K3 Transfer the contents of the

holding register to the Y-bus.

-169-

Table Al. 90-bit Microinstruction Word. (cont'd)

Signal Position Clock Function

TXW 47 K3 Transfer the data in the X-bus to

the holding register.

TYW 48 K3 Transfer the data in the Y-bus to

the holding register.

TAX 49 K3 Transfer adder output to the

X-bus.

LOC so K2 Low order carry to adder.

SSP.0-5 s1 .. s6 K2 Select the contents of scratchpad

address ¢-77(8).

TOSY 57 K3 Transfer the contents of the OS

register to Y-bus (bits 14-23) •

. LJW 58· K3 Load holding register R,0.

LSPX 59 K3 Load the selected scratchpad.

address from the X-bus.

MS,0-MSS 60-65 K2 Special functions field.

(See Table A3.)

RRN,0--2 66-68 K2 Holding register select read field

(enables selected holding register,

·R,0 thru R6, output).

LRN~-2 69-71 K3 Holding register select load field

(clocks selected holding register,
-- ·~·- .. I-

Rl thru R6, input).

-170-

Table Al. 90-bit Microinstruction Word. (cont'd)

Signal Position Clock Fwiction

LMX 72 K3 Loads the M register from the

X-bus.

I.MY 73 K3 Loads the M register from the

Y-bus.

LQX 74 K3 Loads the Q register from the

X-bus,

LQY 75 K3 Loads the Q register from the

Y-bus.

LZX 76 K3 Loads the Z register from the

X-bus.

L2Y 77 K3 Loads the Z register from the

Y-bus.

BL,0-BL3 78-81 K2 Left bool box control field

(See Table A4) •

BR,0-BR3 82-85 K2 Right bool box control field

(See Table A4) .

VCT' 86 K3 State cowiter set-term.

DGO 87 K3 State cowiter set-term.

'IElY 88 K3 Transfer data from the E-1 Bus to

the Y-bus.

'IE2Y 89 K3 Transfer data from the E-2 bus to

the y:..bus.

-171-

Table A2. Branch Conditions

MC,0-MC5 Branch Conditions

fJfJ Never branch

fJl Always branch

,02 X=fJ

,03 X'/fJ

,04 X<fJ

,05 X>Jj

Jj6 X>fJ

fJ7 Y>fJ

lfJ Y</1

11 RJ'<fJ

12 RJ'>fJ

13 X<fJ

14 Xt"777777B=fJ, (X(6)-X(23)=777777B)

15 X'"'777777B'ffJ, (X(6)-X(23)'f777777B)

16 Z>fJ

. 17 Z<fJ

2fJ Always Branch

21 Yf'>7rfJ, (Y(23)vY(22)vY(21)=1

22 BL=fJ

. 23 BLrfJ

24 Y(.23)=.0

25 Y(23);',0

-172-

Table AZ. Branch Conditions (cont'd)

26

27

31

32

33

34

35

36

37

4.0

41

42

43

44

45

46-77

Branch Conditions

Attention latch l=.0 &·

Request Strobe.latch 1 = 0 and Request
Strobe latch 2 = 0
Protectrx

Request Strobe latch 2 = 0

Special flag A=.0

Special flag Ai.0

Attention latch 2=¢&

Attention latch 3=.0&

Attention latch lr.0&

Not decoded

Undefined

Undefined

Local memory parity error=l&

Undefined

Central memory parity error=l&

Breakpointr.0

ffi
~ Resets latch.

& 46 thru 77 not decoded.

-173-

Special Functions

Each microprocessor has several special functions, principally

concerned with I/O. These functions are controlled by the MS,0-MS4

field of the microinstruction. Some have branch conditions associated with

them which may be tested with the MC,0-K:4 field of the instruction.

POT/PIN

The POT/PIN System allows the microprocessor to communicate with

external devices. When a microprocessor wishes to transfer data to an

external register, it puts the address of the external register to be

loaded (hardware defined) into the Z Register and sends an Alert strobe to

all external devices. The external device takes the address from the

Z bus, and uses it to set up a path from the Z bus to the specified

register. The microprocessor will then load Z with the data to be sent,

and send a 'PaI'' strobe. The external device will use this POT signal to

load the selected register from Z. ·When an external device wishes to send

data to a microprocessor, it sends an 'ATI'ENTION' signal to the micro­

processor. This signal is latched in.the microprocessor and may be tested

by a branch condition. The microprocessor can then read a register in the

external device by sending an 'ALERT' to the device. The device will set

up a path between the selected register and the E bus. The microprocessor

will then transfer the E bus to the Y bus, use the data, and send a 'PIN'

strobe signifying that it has read the data.

Request Strobe

Each microprocessor has one latch which can be set by_thc other micro­

processors in the system. This latch may be tested by a branch condition.

-174-

A unit can also selectively set the latches in all the other micro­

processors by gating the contents of the X bus to the request strobe lines.

X will contain an 8 bit mask which will detennine which of the other

microprocessors are to be strobed. It is legal for a microprocessor to

strobe itself.

-175-

fJfJ
,01

/J2

/J3

fJ4
fJ5
.06
fJ7
lfJ
11

12
13
14
15
16
17

2/J

21
22

23
24
25
26
3,0

31

32
33

34
4/J

Table A3. Special Fllllctions

No activity
LCYl
LCY2
LCY3
LCY4
LCYS
LCY12
LCY16
LCY2/J

LCL Z (CCFZA)
LClf Z (CCFZB)
S.KZ (SPFZ)
ALERT

POT

PIN

Fllllction

·Request Strobe #1
Unprotect
Unusable
LPF

Reset Request Strobe Latch #~
Reset Central Memory Request
Request Protect
Reset T.U.
Set special flag A
Reset special flat A
Reset Request Strobe Latch #2
Request Strobe #2
Undefined
Release&

-176-

Table A:J. Special Functions (cont~d)

M5_0 ... '.MS5 Function

41 Pres tore&
42 Store& .
43 Store li Hold&
44 Fetch&
45 Fetch & Hold&
47 Pref etch&
6,0 Set Bank B
61 Set Bank A
62 Clear all CPU Maps
64 Fetch&_ · .

65 Fetch & Hold&

&
~ Occurs at end of instruction
~ Local and Central Memory
& Memory Reference
Lt ODDWORD FETCH
&. Special ftmctioils 27, 35, 36, 37, 46, 63, and 66 thru

77 are not decoded

-177-

Bool Box Functions

The bool boxes generate the 16 possible functions of 2 variables

in response to their control fields. BL¢-BL3 controls the left bool box

(functions of M and Q) , BR¢-BR3 controls the right bool box (functions of

Zand Q). The functions are:

BL¢-BL3 or BR,0-BR3 Left Bool Right Bool
Box Output Box Output

0 M•Q Z·Q

1 M=Q Z=Q

2 Q Q

3 M+Q Z+Q

4 M z
5 M+Q Z+Q

6 M+Q Z+Q

7 1 1

10 ~ ¢

11 M•Q Z.Q

12 M•Q Z·Q

13 M z
14 M•Q Z•Q

15 Q Q

16 M(EOR)Q Z(EOR)Q

17 M+Q Z+Q

-178-

Table A4, Bool Box Control

BLJ1""BL3 Left Bool
Box Output BR,0-BR3 Right Bool

Box Output

J1J1 M•Q 11.'1 Z•Q

.(11 M=Q /11 Z=Q

.(12 Q .'12 Q

.(13 M+-Q .'13 Z+Q

.(14 M .'14 z

.(15 M+Q .'15 Z+Q

.(16 M+Q .'16 Z+Q

.(17 1 J17 1

1.(1 J1 1.(1 J1

11 M-Q 11 Z•Q

12 M•Q 12 Z•Q

13 M 13 z
14 M•Q 14 Z·Q

15 Q 15 Q

16 M(EOR)Q 16 Z(EOR)Q

17 M+-Q 17 Z+Q

-179-

Appendix III AMC Startup

1here is a convenient facility for starting up the .NvX:. Instead of

loading from paper tape or magnetic tape, the .AMC can be initialized with

infonnation kept on reserved areas on the dp.nn and disk. This startup

procedure is controlled by the use of a Switch Register. It is one word

·Which is located at 5 in absolute memory. It contains fields which give

the following infonnation (see Fig. AS):

a. AMC or QUO initialization.

b. Store memory onto crash area.

c. TSU number.

d. Choice of 2 devices attached to TSU.

e. Two bits which are interpreted as described below to give the

band address on the device.

1here are two algorithms for computing the starting address for the crash

area. 1his one address then determines both the crash and system areas.

One of the algorithms pertains to the drum and one pertains to the disk. ·

1he critical thing is that the two devices have a different number of sectors

on one band. It takes two bands on the drum to store the system (32 sectors)

and two more to keep the virgin system. On the disk it will take 6 bands for

the crash area and 6 for the system all on cylinder (track) zero:

-180-

BIBLiffiRAPHY

1. Denning, P .J., "The Working Set Model for Program Behavior," Connn. of
the ACM, Vol. 11, No. S, 1968.

2. "BCC Microprocessor Manual", BCC Corporation, 1970.

3. Freeman, Jack, "Process Memory System," Manual, Internal Documentation,
BCC Corporation, 1970.

4. Lampson, B.W., ''Memory Management System," Specifications, Internal
Documentation, BCC Corporation, 1970.

5. "Specifications for a High-Perfonnance Auxiliary Memory System, 11

BCC Corporation, 1969.

6. Van Tuyl, R.R., "AMC Phase 1 Notes," Working Papers, Internal
Documentation, BCC Corporation, 1970.

7. Van Tuyl, R.R., "An Algorithm for Swapping Data from Drum to Core,"
Master's Thesis, University of California, Berkeley.

-181-

