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Designer's Difficulties

Struggling with the design and construction of the world's most power-
ful coméuter has never been easy. And in many ways the nature of the struggle
has been constant through time. It has taken at least four or five years to get
every major new machine going. Typicalty, financial crises arise, regardless of
whether the undertaking is in a university or industrial setting. And the
speedup over the fastest pfevious machine has never been much more than factor
of ten, often much less. Still the cumulative results from the mid 1940's to
1970 have resulted in an impressive speedup factor of 106.

Just as impressive, but more bewildering is the growth in complexity
of computer organization. Early machines contained a few thousand relays or
vacuum tubes, but modern ones are approaching lO6 transistors. One of the de-
signer'é main trade-off problems has always been between the number of parts
he uses and the speed of each individual part. Since for a fixed cost he always
wants as fast a machine as-possible, he can choose a simple organization with
very fast pa;ts or a mbre'complex organization with slower parts. The fewer the
parts the higher the reliability, but faster‘parts cost more than slow ones and
producing them may be very difficult. The designers of the most powerful.
maéhines have éiways pushéd both reliability and cost to their limits. Ome
reason for this is that from the early 1950's on, there have usually'been two o£
more groups in competition to build the next big machine.

For the moment we can leave the definition of "most powerful machine"
at the intuitive level of "fastest and biggest." But modern machines have several
goals in addition to these traditional ones. From the standpoint of operating.
cost, maximum “throughout" is desired. In other words, a computing center manager
would like to collect fees for as much of his machine time as possible. This be-
comes a difficult m&tter when complex operating systems and input/output equip-
ment are used, since these may consume a good deal of overhead time. Another

goal which is becoming more difficult to achieve is low "turnaround time" for users.
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When many individuals are attempting to use a common central facility, the system
response time may get very long. fo a large extent these.newer problems are
related to the software provided for big machines. Thus éhe modern design of super
machines must really be the design of a hardﬁare-sdfpware systemn.

Earlier we remarked that certain machine design'difficuities have not
chenged in time. . The overall design of systems has in fact became more complex due
to the introduction of software design questions on top of hardware or logical
design. No large machines has been & one man show. Thus the designer-builder inter-
Tace has very often been the source of much difficulty. These difficulties include
personality clashes, technical disagreements, failures to communicate, etc. Intef-.
fzeing the designers and implementers of software is no easier than with hardware
people and indeed seems to be very much harder. Furthermore, now the hardware and
softwaré designers must talk to each other. Currently, large machine projects may
involve literally hundreds of professional people. Usually, the more, the worse.

Finallyi in our ‘jeremiad of big system design, the bitterest pill of all
for imaginati&e designers is the "design freeze." Having kept open all options as
long as possible, the designers must make théir final decisions and stop designing.
The several year construction period which follows is similar to a gestat%an period
in that changes‘in the design are virtually impossible and if attempted méy prove
fataI: In reality, of course, there are always some mistakes in the design and as
many of these as possible are removed. These changes often cause major expendituies
of money and sometimes degrade the machines' performance.

In this introduction we shall quickly sketch the history leading to modern
digital computers. We do this for several reasons. TFirst, in spite of their.great
runber of parts, computers are quite simple iﬁ functional terms and it is interesting
to learn when various ideas were first proposed or implemented. It is also revealing
to note how few really bpig innovations have occurred. Finally, we canﬂot resist

telling the story of Charles Babbage.



The World's First Computer Designer

Although present machines are direct ‘descendents of ideas of the mid-
1930's, Bebbage designed his Analytical Engine, the world's first general purpose
digital computer, nearly lso'years ago} He also built a prototype of the.world's
first special purposé digital ccmputer, his Difference Engine, yhich.he evident-
ly first thought about in ;812 -~ ten years aféer the invention of the
steamboat;' The ideas that he and a few colleagues had about computers And pro-
grarming over some 30 years are overwhelming. They touched on a great many of
the ideas usgd in modern computers. Nor were his thoughts limited to computers,
as we shall see later.

Not surprisingly, Babbage had to face many of the above mentioned
difficulties that present day designers encounter. éevefal of these proved
so overwhelming that he never finished anything but a prototype of the Difference
Engine. His major problem seems to have been a too ambitisus plan -- a block
over which every designer must stumble at least once. .This led to financiel
problems and difficulties with his chief engineer.

Babbage himself wrote down few details about his machines and it was '
said that his lectures abo'it machines were prettyvmuch incomprehensible.
Fortunately, an Italian army officer named.Menabreé, who sat through a series pf
lectures Babbage gave in Turin in 18LO,.published a good account of the Analy-
tical Engina. This was later trénslated into English and, at Babbage's suggestion, .
annotateé 5& 2is colleague Ada Augusta, Countess of Lovelace. On reading this
paper as well as several by Babbage one is depressed by the relatively small
progress made by thousands of modern computer scientists. Or, to be more correct,
one is annoyea by how often the same problem is discovered, worked on, solved,
and breathlessly discussed in the current literatwe.

Babbage had been motivated as early as 1812 to consider a machine
waich could evaluate polynomials by the method of Qifferénces. He was annoyed

by the fact that human computers of astronomical and other fables were usually
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people of some intellectual accomplishment but that such computations really
required only mechanical skills. - He was also bothered by thé large numbers of
errors occurring in published tebles as well as errata in errata sheets. So
between 1820 and 1822 he built a six decimal digit Difference Engine capable of
evaluating any second degree polynomial. Initial conditions were placed on
wheels by hand. Spurred by his success with this project he obtained Government
funds for a 26 digit, sixth degree Difference Engine. This was a very much
more corplex machine. It was to have autometic rounding, provision for double
precision arithmetic, various alarm (interrupt and completion) bells, as well

as a method for engraviné copper plates for printing the computed results. The
latter ﬁguld preclude transcription errors. Cpnéernéd about inherent mechanical
errors, Batbage arranged various roller and conical bearings that would jam if
certain mechenical tolerances were exceeded. If completed, the Difference Engine
would certainly have revoiutionized the tabulation of mathematical functions.

It must alsé be noted that Babbage.was developing a complex design notation for
cormunicating his ideas to his engineering and construction people.

This project dragged on for 10 years un%il 1833 consuming 17,000 pounds
of English government money and perhaps as much of Babbage's own fortune. During
this period Babbage engaged in a series of fund raising activities and became in-
creasingly at odds with his chief engineer Clement. Evidently he proposed many
design changes but the exact details of the collapse of the project do not seem
to have been recorded. In any case, by the early 1830's he was only interested
in obtaining funds for the construction of his newest idea, the Analytical Engine.
‘Before discussiﬁg its details, we shall set these events in historical perspective
by notjing the following. The chronometer of Harrison, which was the first oné
adequate for precise longitudinal traqsoceanic navigatioh, was produced in-the 1780"s
after a very long and trying experience. It took Harrison 3 years to produée a

copy of his first successful model. Interchangable parts were not to come for scme
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time. In fact Wnhitworth, who later introduced standord screw threads among
other things, lost his Jjob with Clement wﬁen the Difference Engine project
collapsed. Babbage worked at a time which was sparked with great inventions --.‘
the steam locomotive in 1825, the electric generator in 1831, the'reaper in
1834, the electromagnetic relay in 1835, Daguerreotype 4n 1839 and telegraphy
in 18LY4. ‘éf course, né thought of an electrical machine was possible then.

But one is impressed by Babbage's courage to attempt so compiex a mechanical
device given the state of the grt at the time.

Bebbege's machines were all designed to be driven by a hand crank,
but in one of his accounts of his first inspiration he quotes an early con-
versation with John Herschel. They were checking some taﬁles and Babbage said
"I wish to God these calculations had been executed by stégm," to which Herschel
replied "It is quite possible.” Herschel, Babbage, and George Peacock had been
friends as Qambridge undérgraduates, whe?e they formed the Analytical Society.
Later Herschel became a famous astronomer and Peacock a leading algebraist at
Cambridge. ﬁabbage later had many discussions of his machines with these men
and many of the leading scientists of the day. ia?lace, Bessel and Jacesi (not
to mention the Duke of Wellington) all had extensive discussions with him.

If is.fascinating to note that Boole and DeMorgan were both con-
temporaries of Babbage, but no interaction between them has been noted concern-
ing machine design. However, Ada Augusta Byron -- the poet's daughter -- studied
mathematics under DelMorgan for many years. Mrs. DelMorgan notes than on an garLy
éccasion, she tookx Ada to visit Babbage and that Ada quickly understood what
was going on. Some years later as Lady Lovelace, she translated Menabreéb
paper on the Analytical Engine and collaborated with Babbage.

The Analytical Engine that Babbage designed in the 1820's and 1830's
was spectacuiar, even by the standards of the 1950's. His design methods and

his ideas for the machine's organization and use demonstrate Babbage's genius.
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The immense complexity of what he hoped to build demonstrates his kihship with
many of todays designers. By'pushinélfunds and technolégy to the limit ~- and
often too far past tbe'limit -- he faced a-<long series of frustrations.

. - The Analytical Engine ‘was to be & fifty decimal digit machine. TIts
"store" « memory was to hold 1000 of these words (about i65,000 bi£s) ig’aécimal
form. These words could be written from or read to the "mill", or arith-,
metic and logical unit, via some mechanical linkages. The whole system‘was under
the cont£ol of a process whiéh‘was described on two sets of punched cards. Oﬂe
set, the "operation cardg“ contgined the series of operations to be performed.
The otter set, called "variable cards" indicated which store locations were
to be operatéd on by the‘operatiOn cards. Babbage was quite familiar with.the
Jacquard loom which was.controlled by a sequence of punched cards. In fact, |
the punched card idea dated back to the early 1700's, although Jacquard's famous
loom was not developed until 180L.

- While the Analytical Engine did not have a stored program, it was
able to pefform various xinds of condition‘tests‘and'then branch on the out-
come. In particular it could move its card sequence forward or backward ‘a
fixed distance. Furthermore, there was an index register and index adder
available for loop control; té\qpote Menabrea, "When the number n has been in-
troduced into the machine, a card will order a certain registering apparatus'
to merk (n-1), and will at the same time execute the ﬁultiplication of b by |
b." This is in a discussion of evaluting b". Note that the indexing a?ith-:'
metic was apparently carried out in paralltl with the multiplication. The |
index register was evidently not used to index through memory, however.

The eriﬁhmetic unit was designed to perform fixed point, gifty digit
calculations at the following speeds: add or subtract in one second, multipl&

or divide In one minute. To achieve such speeds Babbage devised, after years

of work, a par#llel addition algofithm with anticipatory carry logic! ' He was
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very proud of that accomplishment. As in the Difference Engine, Babbage provided
for multiple precision operations, aﬁtomaéie mechanical fault prevention and
detection, and autocmatic rouﬂding and overflow detection.

- Babbage wa; bothered fof'some time ab?ut the provision of standard
function values e.é. log x, sin x, to the machine. Finaily.he cpncluded;that
either thg.recomputatién of such numbers, essentially via a subroutine, each
time'they were needed or their provision from external cards'would work. He
was willing to let the decision rest on operating experiepce. His.table lodk-
up procedure was arranged as follows. The machine's operator would be provided
" with drawers full of such carés punched with both x and f(x). When a bell
rang the operator would read a.dial and pick out the Eorrésponding card.

The machine would check to see that the correct card had been supplied by testing.
the argument and if an operator error had occurred a louder bell would ring.
He was quite proud of this idea because the problem as well as his solution had
evidently perplexed Bessei, Jacobi and others for some time.

When reading Babbage, Menabrea, and Lovelace one is amazed and de-
lighted to see how far the questions of mechanicai computing were explo%ga.
It is tempfing to read things into their statements from time to time. On
ome cccasions they are exasperatingly brief and sometimes they are ambiguous
or they mildly contradict each Sthef. Such matters as the self checking
mechanisms which would jam when too much mechanical error accumulated are hard
to understand and the writers said they would not attempt a c0mplgte explanation.
On the matier. of parallel arithmetic operations they make several passing re-
marks. We quoted.Menabrea above about index calculations. At another point,
in his’ surmary, which seems to indicate the importance of the idea; he is
discussing the speed of the machine and says, "Likewise, when a long ;eries
of identical.computatigns is to be performed, such as tﬁose required for_the

formation of nunerical tableé,‘the machine .can be brought into play so as to
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give several results at the same‘time, which will greatly abridge the ﬁhole
amount of the processes." This seems to be a clear statement of parallelism
between arithmetic operationé!

_ Babbage and Lady Love}ace both discuss programming questions, but
she exhibits her.oﬁn great insight in her notes.on.the Méenabrea paper. ébé
was quite concerned about languages for expressing programs. One was a kind
of assexbly language ngpation on large cﬁarts- These were translated from
another rotation very much like compiler assignmént §tatements. A1l variables
were deroted by Vi where i indicates the storage location from 1 to 1000. To
avoid the confusion of writing Vl= V1+V2 she introduged another inde; and wrote
m+1Vi= mvl+nV2 to indicate that the right hand side values were the mth and nth
values‘to occupy thelr respective storage locations. Her machine level languaée
was a kind of zero addrcsg operator languege, although a separate operand stream

was specified to the machine. Thus, to evaluate

"d'm-dm!
X= S
mn'-m'n

_ dn'-d'n
¥y= on'-n'n

she would use these three operation cardé 6(x), 3(-), 2(+) where commas
separate the cards. DNote that éhe common subexpressibn in the denomihator
is evéluated just once. Iocations were supplied by a three address scheme
using three varisble cards, two for the arguments and one for the result.

She finelly suggests a loop notation using the 3 sign to denote
loop control. She also allows for an index variable and nested lodps! Her'
notes contain several quite complex programs but shé and Babbage.were not
bothered by long programs. In fact they were bot£ heartened by the fact that
Babbage ovmed a Jacquard-tapestry = which had required éver 20,000 cards for
its production. She does remark that from the standpoints of time required

and ultimate accuracy, some numerical results would.be impossible to attain

in any practical sense. 4



We noted above that during the course of the'Difference Engine
projccf, Babbage had received 17,000 pounds from the Government. He had
spent perhaps as much of his.personal inheritance from his banker father..
Thus, by the time he was deeply involved with the Analytical Engine, sources
of funds were scarce. Evidently Ilady Lcv.elace gnd her husband were fair;y
well heelgd and were both interested in horse racing as was Babbage. So at
one point they devised betting procedures, evaluated them on the prototype
Difference Engine, and lost a good deal of the Lovelace fortune.
On another occasion Babbage studied geme playing (including chess)
on the Analytical Engine and designed a tic-tac-toe machine. He proposed to
put several of them on the road with admission chargeé. ?erhaps he had heard
of Maléel’s‘"auyomatic chessplayer" which was revealed to contain a man. One
is also reminded of Mél;el's collaboration with Beethoven which resulted in
"Wellington's Victory" but no machine. In any case, Babbage dropped this plan.
Viewed on the whole, Babbage'é life was a very interesting and creative
one; his computing activities famed only one facet of his career. Ve concluce
with a short discussion of some of his other intefests. He carried on -g~life-
long battle witﬂ street musicians - hauling them iﬁto court 0; severgl occasions.
As a result, hié home was the scene of frequent retaliatory concerts. Being
much interested in the heart beat and respiratory rates of all animals, he
took every opportunity in his travels to measure these. On one occasion he
had himself sealed inside a 265° F oven for about five minutes to study the
effects on himself. Railroads, a new inveption, were a great intérest and '
he is credited with many ideas including the invention of the first recording
speedometer as well .as the first cowcatcher. A contribution of which he was
very proud was a notation for describing the motion and "logic" of hié'meéhanical
drawings for his Engines. ZEarlier in his life he and his Analytical Society friends -
had been instrumental in getting English mathematiciaqs to drop Ncwtoniaﬁ notation

for the calculus in favor of that of .



Leibniz. We shall end this discussion witﬁ an abbreviated list of other writings
and work: an operations research type study of the post foicé system; meteoro-
logical and tree ring observations,'electricity end magnetism, a light house
occulting system widely adopted, various other signaling schemes and a study
which convince& him that the Anélytical Engine could play cbess.with & "3 or more"
move lookahead.® In short; while Babbage may occasionally have been in error he was
seldom at a loss for i?gas about a ;ubject.

He was Lucasian Professor of Mathematics at Cembridge for nine years,
but bitterly femarked thét that was the only hﬁnor conferred on him by his own
country. DBzbbage's entiré life was filled with the frustration of having few
of his id?as appreciated and even fewer adopted. Toward the end of his life
a friend noted, "He spoke as if he hated mankind in general, Englishmen in
particular, and the English Government and Organ Grinders most of all.” 1In
his boo¥ "The Exposition of 1851" he expressed his feelings quite clearly when '
he wrote,"Prbpose to any Englishman any ﬁripciple or any instrument, however
admjirable, and you will observe that the whole effort of the English mind is
directed to find a difficglty, a defect, or an imﬁbssibility in it. If you
speak to him of a machine for peeling a potato, he will.pronpdnce it impossible;
if you peel a potato with it before his eyes, he will declare it useless becaﬁse
it will not slice a pineapple. Impart the same principle or show the same machine
to an American or to one of our Colonists and you will observe that the whole -
effort of his mind is to find some newv application of the principle, some new

1

use for the instrument. 10 1871, the London Times noted in his obituary thet

he lived to bé alrost 80,"in spite of organ grinding pcrsécutions."_

Actually Bapbage lived to see some small successes for his ideas. In-
spired by a published account of'his Difference Engine, a Swedish printer,
George Scheutz, and his son, Edward, bﬁilt a machine. Scheutz spent a good

deal of his own money and had some gofernmcnt suppori. In 1854 he exhibited
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in Englard his fourth order, eigﬁt.digit difference machine with a pripting
output mechanism. Babbage and his son received Scheutz warmly and after a

good deal of publicity the machine was sold.to the Dudley Observatory in Albany,
New York. Whether or not it was_dhch used seems.to be in question. 1In ény'
case, a copy was.made ip 1863 and the British Government used it to compute
actuarial tables for the newly emérging life insurance business - a topic on
which Babbage had discqursed in earlier times. |

Babbage's son, H. P. Babbage continued to work on the Analytical Engine
and aftef his father's death managed to construct some working parts of the mill"
between 1880 and 1910. At a demonstration this machine computed and printed a
table of twenty digit multiples of .

In the 1880's another interesting forerunner of modern computer equip-
ment wac under -development. Working at the U. S. Patenf Office, Herman Hollerith,
an engineering graduate: of Columbia, éonstructed a punched card tabulating machine.
By 1890, Hollerith machineé were in use at the U. S. Census Bureau for processing
retu;ns of the 1890 census. Hollerith later went into business for himself,
manufacturing a variety of card processing equipment. He was quite.succeSSful
and as we shgll see below, his company became a basic building block in the

modern, computer industry.



C-T-R et seq.

In 1892, young Thomas J. Watson launched his sales career on a horse
drawn wagon, peddling sewing macﬁines, planos, organs and caskets out of
Painted Post, New York? Before ;ong he had moved to Buffalo, and Rochester
and became a star, salesman for the National Cash Register Company of Daytqn,
Ohio. His record having been observed by J. H. Patterson, the head of NCR,
Watson was elevated to varioﬁs positions énd by 1914 was more or less the num- .
ber two man at NCR, which by then was the largest cash register company in the
.U. S. His position in the company and the coﬁpany's position with respect to
competifion caused Watson some difficulty.

First, Patterson was a manager who ruled with an iron, if somewhat
bizarre, hand. His executives had tﬁ engage in various Patterson designed'
regimens (e.g. prework group horseback riding and special foods) and were fired
for various kinds of.real or imagined insubordinztion. .Occasionally instezd of
firing someone Patterson would provide him with a "fresh start" by moving the
entire contents of his office out on the front lawn, dousing it with kerosene
and touching a match to itf So, after almost twent& years with KCR.and the
survivor of many earlier purges, Watson vas fired by Patterson in 19;&.

The foremost market position of NCR was due in large part to Watson's
efforts, but this was his second difficulty. Some months before his firing,

a nurber of top management NCR people including Patterson and Watson had

been taken to court for a number of illegal business practices.. They had
essentially eliminated alllcompetition in the new ana used cash register business
by strong selling, price cutting, industrial espionage, personal harrassment and
their ultimate weazpon, the "knockout machine." This was a‘flimsy copy of a
competitior's machine which would be sold cheaply as the real thing and soon
break dovn. Watson was.at the time of his firing apﬁealihg a fine and one year

jail sentence. In spite of this, Watson asked Charles R. Flint for a Job.



Flint was a New York tycoon. who had invested in practically everything,
and in 1911 had formed one of the early conglomerates of diverse product
manufacturers == the Computer-'fabUlaIOI‘-Recording Company, otherwise known Qs
C-T-R. This included & number of companies making equipment that could be
called business macﬁines, apd included‘Hefmaﬁ Hoilerith's'?abulating Machine
Company. When Flint prdposed Watson to the Board as manager of C-T-R, there
were some réised eyebrows, but Flint prevailed. Later the jail sentence and
other litigation disappeared. Watson moved rather slowly at first, but becane
C-T-R president and by 1924 was solidly in éommand. In 1924 he changed the naue
of the company to International Business Machines.

In many ways, Watson ran IBM as Patterson ran NCR. He was once re-
ferred to as a "benevolent despot", but he was more rational and if not intellecf-
ually inclined, he did enjoy and have good intuition about meking money. IBM
flourished and by the mid 1930's Watsoﬁ was the highest paid person in the U. S.

Watson's interest in deveioping new products as a way to higher profit-
&ility caused him to support various new machine deyelopment activities within
the company. He also enjoyed talking with people inside and outside IBM about
possible uses of his equipment. Thus, when he was telephoned by a young edu-
cation professor at Columbia, Benjamin D. Wood, in 1928, Watson said he could
spare an hour for a lunch meeting.‘ The meeting went well and Watson stayed
until 5:30 listening to the problems and ideas Wood p?esented. In short, Wood
had been developing intelligence fests for college students and had 35,000
to process. With a room full of girls and sqgme equipment he had designed, the
processing of tﬁese tests was costing at least $5.00 each. He explained how
these tests and similar material could be processed for perhaps 10 of 20 cents
using IBM equipment-- perhaps with some modification. Two days later Wood had
a room full of IBM equipment at his disposal, free of charge. His predictions

were correct and he continued to offer suggestions to Watson including one that
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the mechanical parts should be eliminated in favor ofrall electrical equipment.
This association led to a line of IBM equipment for eduqation, and Wood remained
an IBM consultant for many years. More important, the equipment attracted the
attention of other Columbia faculty end students. An astronomy graduate student,
Wallace Eckert, talked to Wood and Watson. This later led to another gifi to
Columbia, the T. J. Watsoﬁ Astronomical Computing Bureau. One of Watson's top
engineers, Clair D. Lake, built a special machine for the Bureau. It was the
first machine which could multiply and it also had a sequencing mechanism. It
vas used for the computation of astronomical and navigational tables ~-the latter
were very important in antisubmarine warfare in the North Atlantic in the late
1930's. Later, Eckert joined IEM as the first ‘director of the T. J. Watson
Laboratory which was located near the Columbia campus.

Eckert's earlier astronomy calculations had attracted a good deal of
attention andramong “:ie visitors were Harlow Shapley, astronomy professor at
Harvard University and James B. Conant, the president of Harvard. Shapley dis-
cussed the Columbia work with Howard Aiken who was teaching mathematics in
Harvard's Graduate School of Enginee?ing. Aiken had known about the state of
tﬁe art in computing and had been thinking about building a more complex machine.
Shapley prompted:Aiken to visit Eckert at Columbia and later to discuss his
ideas with James W. Bryce of IBM. Bryce had been one of IRM's key inventors
for thirity years and as a result of these discussions Watson put up & million
dollars to build a machine for Aiken.

Although, Watson had & reputation for occasionally trampling on every-
one close to him=- including the Columbia professors=-- Aiken had shopped around
and found no one but IBM capable of building his machine (whose details will
be discussed later). Aiken also had a strong personality. Watson apparently

did not involve himself much with the .project until the machine was finished.
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At that point he decided it should be enclosed in a special glass and stain-
less steel case; Aiken strongly disagreed. Watson won fhat round as he always
had within the company. Watson had been honored by many organiza?ions and nations
and expectéd that his gift of a million dol}ar machine plus another $200,000 for |
operating it would bring out the best in Harvard. When Watson arrived at Harvard
for the dedication he found that it was Aiken and not Watsoﬁ who was to get the
credit for £he machine. After raising a ruckus which included a threat to take
the machine awzy, Watson was calmed down by President Conant who then made a
speecn at the dedication.

Watson diea in the mid-l950'§ and was succeeded by his son as president

of IBY. The company has continued to build punched card equipment and other

machines.
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Modern Machine Rerinnings

Three men ushered in the modern digital computer era in the- 1930's.
They were Howard H. Aiken of Harvard‘University, George R. Stibitz of Bel;
Telephorne Laboratories and Xonrad Zuse of the Technische Hochschule in Berlin.
Collectively they designed ané built a number of reley machines and by the
15L0's, each had completed a seneral purpose programmable'digitai cq?puter.
They all spparently worced ircependently of one another, alt@ough Aiken used
the engﬁheering talent-gf IR to build his machine, in.particular three'men were his
coinventors: B. M. Durfee, ¥. E. Hamilton and C. D. Lake, who had designed a.géod
dezl of earlier IBM equipment. By 1946, J. P. Eckert (no relation to Wallace Eckert)
end J. W. Mauchly of the Moore School of Electrical Engineering at the University
of Pennsylvaﬁia had successfuily campleted ENTAC, the first electronic digital

A

ttention of John von Neumann who, as a consultant,

(A

corputer. This attracted the
with Eckert and Mauchly pronossa EDVAC, the.first stored program computer; This
design was modified and embellished by a number of people and by 1950 there

were more thaen a dozen big.machine projects under way. By 1950, so many of the
ideas used in.current machines had been proposed and experimented with, that it
will take us a good deal of srzce to outline some of the details. It is;é} course,
impossible to pin down who.had each idea first but we shall attempt g'rough
chronclogical oréering based cn various ﬁublished documents.

Zusgsevidently begen first (he had his first ideas in 1934) but his
influence outsicde Germany was rrobably the smallgst of.the pioneers. Unfortunately,
most of his =sarly work was destroyed during the war. His special purpose relay
rachines Z1 and Z2 were built tetween 1936 *and 1940. Z3 was a general purpose

rachine which operated under external program control. It had a 64 word data
L .
memory and the numbers were of dinary floating point format: 22 bits with 1k

mantissa, 7 exponent and one sizn bit. The machine contained 26C0 relays and

was built between 1934 and 1741. During the war Zuse developed two special

purpose .control computers, one which continously sampled 100 points for process
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control. Following the war, Zuse built 24 and then went into business, commercially
manufactﬁ;ing Z5 and subsequent maéhines. ‘As we ghall see,’Sﬁibiﬁz was almost an
exact American parallel of Zuse, although a few years behind him.

At Bell Lebs, Stiﬁitz huilt his Model I or "complei computer" between
1938 end 19&0% It was not.a pfogéammable machiné, it simply perf&rmed corplex
arithmetic on numbers presented via a teletype keyboard. Its.main claim to fame
is that Stibitz demonstated the first remote terminal system (keyboard and printer)
to an American_Mathematical Society meeting et Dartmouth in 1940, using the machine
which was in Tew York City:

Subsequently Bell Labs built several other relay machines, including

an interéolator and a ballistic computer each of which had a few internal registers
for data storage. Between 19Uk and 1947 Stibitz and S. B. Williams built the
Model V system which was a general purpoée two processof machine. This machine
contained 90C0 telephone relays and 50 pieces of teletype equipment occupying
1000 square féet of floor space. The speéds of each processor were: 300 milli-
second for addition, 1 second for multiplication, about 5 seconds for divide or
square root, and .07 seconds for a register to register transfer. Earlier Stibitz
machines had used an excess'threc binary numbef system, but fo;"this machgge Stibitz
invented and used biquinary decimal numbers for several reasons. It ﬁade self |
checking, convcrsion to decimal, and implementationin relay circuits rela?ively
easy. The numﬁers were floating point with seven decimal digits and an exponent:
of magnitude less than 20. Each processor's internal memory was 15 relay registers.
Tne entire system consisted of two such processors and thpee I/0 positions, all |
interconnectedl .Each 1/0 position could handle a number of I/0 devices. Thus‘
one job-could use both processors or two separate jobs could be run together."
Furthermore, the machines could, -on completing one job, switch to another I/O
position. Thus, set up timehby a humap operator could be masked. Also the tape

motion time to access a new job could be masked and by preparing a number of jobs



on several paper tﬁpes the machine could be run overnight, unattended.

The machine was programmed using a simple tb¥ee address symbolic
language, taking advantage of the fact that the 15 registers were named by
letters of the alphabet. Ioops could be prograrmed by making paper tape loops
With typical Bell S&stem concern for reliability, the machine had various self
checking featuresd and high.reliability was achieved. The chief cause of diffi-
culty was dﬁty reiay contacts. Various lemps would iﬁdieate to an operator where
the difficulty was if the machine stopped. On an unattended run, the machine could
abort ore job and proceed to try the.next one if a fault occurred. Two of these
machines were'built, one for the Nationel Afvisory Committze for Aeronautics
(Lengley Field, Va.) and one for the Ofdnance Department of the Army (Aberdeen
Provinz ' Ground, Maryland).

Bell Telephone Labs constructed a Model VI system in the late 1940's
which was installed at their Murray Hill, N. J. Laboratory. This machine was in
ceveral ways an improved version of the Model V. First, it had a number of re-
mote terminals from which jobs could be submitted to the machine via telephone
lines. Second, when a Job failed for some reason, the machine would automatically
reétart it and try once more. A sticky relay might work the second time. If
not it would go on to the next job as did lodel V. These two featurés made thé
system appear to be very much like a modern machine with a remote entry batch
processing operating system.

Another inte:esting feature of Model VI wes the ebility to wire inA
subroutines. Provisions were made for up to 200 such subroqtines. They could
call each other and be nested dowm to four levels. Since the program was other-’
wise On external paper tépe{ this speeded up the operation of the machine apd
made the programmer's life easier.

Models V and VI were both "asynchronous” machines. That is, they had

no contrelling clock; when one. step of an operation was over it caused the next
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step to begin. This design fhilosophy has been tried with varying success in some
modern high speed machines.

In contrast to the Bell Labs approach, Aiken and the IBM group
designed a synchronous computer which was gperated at a 300 millisecond cycle?
This machiqe was designed and built between 1937 and 194k, IBM became involved
in l93§ and the vork from then until completion was carried ouf in their facilities
at Endiqoté, N. Y. The machine was operated at Harvard University, and was known
either as the Automatic Sequence Controlled Calculator or the Harvard Merk I.

Mark I wa; 8 feet high, 51 feet long énd 6 feet deep. It was a decimal, fixed
point machine using a 23 digit plus sign, word. It could store 72 sugh words iﬁ
10 position c9unter wheels and had an additional 60 number storage facility in
manuelly set dial positions (what would now be called a read only memory). Its
speeds were add or subtract in 300 ms., multiply in 6 seconds,divide in 11.L
seconds, and it could evaluate several special functions in abou£ one minute.
‘These latter were so slow that faster, lower accuracy subroutines were often used.
The machine could also perform double precision or half vord operations.

Instructions were externally stored on 24 hole paper tape and were
in two eddress format. Initially it could conditionally jump to one of two ex-
ternal tape routines based on the range qf en argument. This was later changed
to a branch to one of.several tapes based on a more generel transfer on minus
instruction.

Prograrming for maximum speed could present interesting challenges.
All operations shared a main bus and during the exection of a long operation
the programmer could initiate shorter ccmmands such as addition or certain I/O
operations. A hardware interlock prevented these "interposed operations" <from
conflicting with the longer ongoing operation. Evidently this technique was used
a great deal. Mark‘I was the-first large scale machine to be completed and was
first used to compute various tables and.later used &o solve systems of algebreic
and differential equations. After it was broken in, Mark I was quite reliable,
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reportedly available 95% of the time in 1950, and it was-in use for 15 years.
While we have gone over the period of early development in é very
quick way, it is clear that spectacular progress was made. Zuse, Stibitz and
Aiken had broken ground for events that in the subsequent five years would yield
the "modern" digital computer. Wnile their mechanical realizetions were great
feats of engilneeving, their ideas.were mainly rediscoveries of ‘things that were
well known to Babbage exactly 100 years earlier. For their implementations alone,
however, they would havé earned Babbage's respect, as he wrote in "The Life of a
Philosopher™ in 1864, "If,unwarned by my example, any man shall undertake and
shall succeed in really constructing an engine embodying in itself the whole of
the execﬁ@ive department of mathematical analysis upon differenﬁ principles or
by simpler mechanical means, I have no fear of leaving my reputation in his
charge, for he alone will be fully able to appreciate the nature of my efforts

and the value of their results."



The Second Wave

The improvements introduced in the next wave of machines included electronic
parts, large internal memories, stored programs, index registers, and magnetic
tape &nd drum secondary storage. By the early 1950's the typicel w:chine could multipl,
in a few mulliszeccnds and hed 102k vords of primary mémory. &e shall attempt to
point out the most importent steps in terms of the people who made £hem ard the
machines they built.

In 1943, Mauchly and Eckert undertook the design of what turned out to be
one of the physically largest computers made before or after that time? ENIAC
was sponso;ed sy the Army Ordnance Department and was intended to integrate
ordirary differential equations for the generation of ballistics tables. It
was finished at the Moore School in February, 1G46. The machine was configured
in a U-shape but overall it was about 100 feet long and 8 1/2 feet high. It
contzined 18,000 vacuum tubes and 1500 relays and consumed 150 kw of power. Each
register in the machine used 550 tubes and was about 2 feet wide end 8 1/2 feet.
hign! In spite of its gargantuan dimensions the machine was very fast and quite
reliable.

ENIAC was a ten digit fixed point decimal maéhine with a parallel arith-
metic unit which performed at the following speeds: add in-<200 us, multi§1y~in
2.8 ms., and divide in 6 ms. It also had a square root unit and was capable of
double precision operations. Its internal memory consisted of 20 registers, each
of ten dizits. It was able to do I/O and arithmetic simultaneously and had an
800 card per minute reader. Nevertheless, computations were often I/O bound and
while its raw speed was a factor of 1000 over Mark I its overall performance may
have been closer to a speedup of two or three hundred. The machine was externally
prograziied by attaching various portable "function tables" which would be arranged
by the prograrmer. These external tables could also be used as & read-only data
nermory. The machine was capable of conditional jumps although this feature

evolved in time. The time to set up the machine for a particular calculation



ranged from & half hour to a day. In 1947 its "up time" was estimated to be 20%
but by 1950, measured over a one month period, the h;rdware was available 85% of
the time; when set up time and progrém'hangups wefe included, 67% utilization was
measured. After completion, the machine was moved to the Aberdeen Proving Ground
and various improvements were made. Jchn von Neumann was instrumental in making
the programming easier and faster via external boards, wires; and switches.

Having been attracted by ENIAC, von Neumann became a consultant to the Moore
School éroup and began to studj the question of machine desigh. In l9hh; Eckert
had written a memo suggesting thé use of a magnetic drum or disk as thé priméry
nemory of a machine. The use of a variety of memories for radar systems had
developed during World Var II. Craﬁford had written a’thesis at MIT'in 19k2
suggesting 2 magnetic disk or drum in this context, apd a variety of acoustic
delay line rexories were-in usé by radar people at the time.

In 1645, von Neumann wrote a memo as an ENIAC consultent discussing a
stored program machine. This important idea, due perhaps to Eckert, Mauchly and
von Neumann, led to a new project to buildlEDVAC. This was to be a machine of
much more modést size than ENTIAC, but with a iarger internal memory and slightly
slower arithmetic. While it spawned a great many other machines and ideas EDVAC
was not the first' stored program machine to become operational. The project was
begun in 1946 and the machine was not operational until 1952. During this period,
Mauchly and Eckert left the Moore School to form their own computer company and
von Neumann launched his own project at Princeton takiﬁg with him several other
Moore School people.

In any case, EDVAC was a binary, 4l bit, fixed point machine with a bit
serial arithmetic unit. This required only 3500 tubes to achieve average speeds
of 850 us for add, and 2.8 ms for multiply. It had a mercury delay line memory

vhich cmtained 1024 words of data end program. This was orgsnized as 128 delay



lines each containing 8 words. This memory led the designers to choose a four
eddress instruction format, two for arguments, one for result and one for next
instruction, since any of these could be anywhere in the 1024 word circulating
nerory. Tne machine had two arithmetic units; the second used for checking the

first.

England Pulls Ahead

Following & visit to the Moore School, Maurice Wilkes of Cambridge
University started a project at Cemdbridge at the end of 1946. This led to
EDSAC, the fir§t stored program machine to be completed, in l9b9? EDSAC was
quite similar in design to EDVAC although somewhat slower. It had a 1.5 ms add
time, an average 6 ms multiply time and required a few hundred ms for division.
Its memory characteri§tics were much like those' of EDVAC described above. The
overall machine had about 3000 tubes and dissipated 15 kw. Wilkes was quite
interested in questions concerning the programming and‘use of the machine.
Among other things, he developed a large subroutiﬁe library for EDSAC users.

Others had preceded Wilkes in England with thoughts about cutometic
computers. Alan M. Turing had published his famous paper in 1936 end J. R.
Wormersley at the National Physical Laboratory had bégun to think about real
machines in 1945. 3By 1947, Turing and others had joined him to begin & project
which led to the construction of ACE, the pilot model being completed in 1950.
The Ace pilot had only about 1000 tubes but achieved an add time of 32 us on
32 bit words. Its small component count made it very reliable. Shortly after
the NPL activity began, the Telecommunication Research Establishment began to
study the probleg. This led to the development of MADM at Manchester University,
the project béing moved there in early 1@&7 with continuing support from the
Telecorfmunications Research Establishment?

Delay lines had a rather long latency; since they operated at a few
megacycles and contained several hundred bits, it could take a millisecond to

access a word. Thus a randem access, large, cheap memory device was sought. At
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YManchester, F. C. Williams developed the "Williams tube® which filled this bill.
His first tube worked in 1947 and was used in a prototype machine by June of

1948. This was a cathode ray tube with bits stordon its face. Thep could be
capacitively sensed and access time was a function of electron beam switching

and sensing times dnly. Thus, fhe first large random access memory was ayail-
able. " In 1948, the Manchester group, which also included T. Kilburn, demonstrated
a 2000 rpn, head fer track, magnetic dgum and used this as backup to Williams tube
primary memories in 16h9.

Using this memory hierarchy, they issued I/0 instruction for blocks
of data from the drum and stole frocessof cycles to access the'main memory. JThey
built another prototype in 1949 that hﬁd an interesting new feature which they
called the B-tube. Using the B-tube, thessaid,"...instructions, and in particulgr
their address section, could be modified in their effect without being modified
in their stored form." Thus appeared the world's.firstlindex register.. With
these importént innovations as background, they designed MADM in 1949 and it
was finished in 1951. This was a one address, binary machine with 40O bit,
fixed point operations. Its arithmetic speedé vere: addition in 1.2 ms ard multi-
plication in 2.16 ms. 1600 pertodes and 2,000 diodes were used. The Williams
tube memory éonsisted of 512 words stored in 8 tubes, together with a 150,C00
bit drum.

We remarked earlier that magnetic recording on disks or drums had been
'sﬁggested at least as early as 1942. The first successful machine to use a
macnetic drum was built in 1947 by A. D. Booth at the University of London.

It was called SEC and had 256 words of 21 bits. The arithmetic unit employed

only 230 tubes and had a 1.6 ms add time.
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Meanwhile, Back 2t Princeton

Just a year after his EDVAC report, von Neumann and two éo-woikers,
Arthur W. Burks and Herman H. Goldstine, rublished another report? This was
June, 1946 and £hey were all at the Institute for Advanced Study (IAS) at
Princeton University; Burks and Goldstine had both been at the.Moore School
for some time and had been involved with ENIAC. 'Their new report was entitled
"Preliminary Discussion of the Logical Design of an Electronic Computing
Instrumeng," and it was a detailed, clearly argued discussion of many details
of machine design. In 1947 Goldstine and von Neumann wrote an accompanying
docurment on the analysis and coding of problems for the machine. These
docurients led to the construction of the IAS machine which was completed in
1952. Julian H. Bigelow wac the chief engineer in charge of the IAS machine.
This project bccéme the focal point of computing activities in the U. S. The
project was Junded by the Army Ordnance Department, with contributions fronm

the.Air Force, the Office of Naval Research and the Atomic Energy Commission.

The IAS rachine was completed in June, 1952 and was a rather compact
unit; excluding the I/O geai its dimensions were 8X8X2 feet. It contained
2300 tubes (many. double triodes) and 4O Williams tubes each containing 1024 bits.
Thus the memory contained lOéh, L0 vit words each being interpreted as one
fixed point number or two instructions. The machine had & one address order
code with 10 bits of address per instruction. The memory access time was about
25 us and excludirng this, the average arithmetic times were: 15 wus for addition,
400 ps for multiplication and 1 ms for divisiop. fany engineering innovations were
included; among them a word parallel memory access feature not included in the
Manchester machines. The arithmetic unit'also operated in parallel and the machine

was asynchronous.
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This machine and project were quite important from several standpoints.
First, the excellent engineers who built the machine had a number of rather good
recent inventions to use. Second, von Neumann and his staff thought very
imaginatively and broadly about how to use the machine. Finelly, their reports
and visitorscaused this machine's reputation to be widely known. A number of

opies of the machine were built.
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In parallel with the IAS activity,; the Servomechanisms Laboratory of MIT

began to build a machine. One original motivation was the problem of real time
aircraft simulation. The Whirlwind I project began in 1947 under Office of Naval
Research sponsorship and was directed by Jay W. Forrester. Very high speeds were
achieved ip the 15 bit (plus sign) parallel,,.fixed point arithmetic unit: add in
8 us, multiply in 24 us. When memory fetch time was included, both operations
averaged 180 us. Vhirlwind was a synchronous machine with a 2 megacycle clock for
the arithmetic unit. It was also a stored program machine. The machine was
operational in 1951.

One important outcome of'thg MIT activity was in the primary memory area.
Initially, Whirlwind had a 1024 woré, 16 bit, modified Williams tube memory.
Under Forrestér's direction, alternative.memory devices were being studied. The
MIT group was in close competition with an RCA team headed by Jan Rajchman. At
least by virtue of consent decrees some ten years later, MIT won the race.

{The settlement included royalty-free rights to RCA and a $i3 million license.
from MIT to IBM.) In 1953 they had installed in Whirlwind a 2048 word coincident.
current magnetic core memory. This memory had a 1 us read time and an 8 us write
and cycle time and the cores were about 80 mils OD. The machine also had a
cathode ray tube for output display with a computer controlled camera attached.

Thus by 1953, Whirlwind I with its core memory, and the IAS machine vere
both in operation. These two machines are regarded by many.people as the first
of the "modern" digital ccomputers. They pad combined some ten years of engineering
development by a number of other groups together with their own inventions and
excellent enéineering. The influence of these machines was widely felt in both

university projects and the newly emerging electronic computing industry.

A New Industry Besins

We mentioned earlier that one of the reasons that EDVAC was not completed
earlier may have been the departures of von Neumann and his people to the IAS

project as well as Eckert and Mauchly to form their own compeny. In December, 1947
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the Eckert-Mauchly Computer Corporation was founded with financial backing

from a multimillionaire. The firm designed and built BINAC for Northrop Air-
craft under an Air Force contract. It was ep EDVAC-like machine with a delay
line mexory end about & one millisecond arithmetic speed. BINAC was demonstrated
in August, 1949.

At the time, their only commerciel competition was from IBM which was
selling various combination.electronic and electromechanical devices. These
included the Selective Sequence Electronic Calculator (SSEC), the 604
électronic Calculating Punch, and the Card Programmed Calculator (CPC) all
introduced in'l9h8. The CPC actually grew out of an experiment in which a 60k
and an accounting machine were joined by people at Northrop. None of these was
a stored program machine, and it lookgd as if the Eckert-Mauchly Corporation had
a clear field. BRased on their BINAC experience they designed a new machine,
UNIVAC, and began taking orders at $250,0QO per system.

At that point their fortune changed. Their financial backgr was killed
in an airplane’crash at about the time they realized that the $250,000 UNIVAC
price tag was too low to make a profit. Seeking funds they talked with pgople
at the T. J. Watson Laboratory in New York. The technical people there were
enthusiastic abou# UNIVAC but evidently on Watson's decision, the Eckert-Mauchly
talks were terminated. James Rand of Remington Rand then discussed the matter
with Eckert and Mauchly and subsequently took over their company.

At thé time, Remington Rand hadla line of desk calculators as well as
various punched card equipment. Unlike IBM, Remington Rand used a 6 row, 90
column card. While IBM equipment had been primarily designed for "business
applications" it had found its way into many "scientific" uses. Remington
Rand equirment scems to have retained the flavor of "business equipment" only,

at that tiie.
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The first UNIVAC was delivered to the Bureau of the Census in June of
1951.' UNIVAC was a synchronous-machine.and had a delay liné memory of 1000
(not 102h)'words of 12 decimal digits. The serial arithmetic unit operated at
ebout 1 millisecond and the‘numbers were binary coded decimal in excess three
format. Magﬁetic t&pes were used as secondery memory end sﬁécial buffer reglsters
were provided for data entry to primary.memory. UNIVAC was quite successful and
48 systems were built (sale price was $750K;although they were ;iso leased).

In 1952 Remington Rand bought out Engineering Research Associates of
Minneapolis. ERA had been a pioneer in commercial magnetic drum manufacture and
had designed their 1101 and 1102 computers eround their d;um. The UNIVAC name
had numbers att;ched to it for later Remington Rand machines and still later the
11C0 numbering scheme was resurrected. |

IBM finally saw the'light and in 1950 began a project which led to the
IBM 701 by the end of 1952. " The 70l was a 36 bit fixed pdin@ synchronous, parallel
machine with a 2048 word Wiliiams tube memory. Its speed was about 40 us for
addition and 400 us for multiplication or division. $his was the beéinning of
a long series of TGO and 7000 series machines. It also signalled the end of
the open field for Remington Rand. With Watson's aggressive sales background
and widely established sales network, IEM éuickly moved in. Eventually nineteen
T01 systems were sold and many other machines followed.

Thus by 1953--just nine years after the completion of Mark I--
Whirlwind I and the IAS machine were leading the research front and UNIVAC I
and the IBM 701 were both commercially eveilable. In 1970 there are some 70
companies in the business of computer manufacturing.' IBM has about 70% of thé
market and its nearest competitor, Honeywell with its newly'purchased GE division,

has about 8%.
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We will close this Chapter.with a synopsis of the history of machine
organization up to 1955 and a few remarks about what followed. At this point
the reader has surely noticed that a large fraction of the "big ideas" of modern
machines were in use by 1953. In fact a good many of them were thought about
by Babbage, 100 years earlier. ﬁabbage had proposed a machine organizatign
with a memory, arithmetic unit, control unit and I/O facilities. He invented
a parellel arithmetic unit with anticipatory cerry logic and an overflow alarm.
He also used an index register for loop counting‘and it worked in parallel with
the arithmetic unit. Between them, ﬁabbage and Lady iovelace proposed a good
many programming ideas which were similar to those in current use. Unfortunately,
they were a hundred years ahead of the'technology.

'In fact the vacuum tube and Eccles-Jordan flip-flop circuit were both
invented in the first quarter of the 20th century but were not employed until
25 years later in ENIAC. After the feasibility of large general purpose com-
puters had been demonctrated using electric relay and mechanical technology,
the events of World War IT caused the US and British governments to provide
‘the funds for a gocod deal of computer research and aevelopment. The earlier
radar efforts certainly provided many engineering and technology ideas.

By 1953, most of what Babbage had proposed.was implemented. Machine
speed was the‘main thing that would have surprised Babbage. . He proposed a one
second add and a one minute multiply. In fact several tens of microseconds
were all that addition required and multiplication was about an order of
magnitude slower. The clever memory hierarchy ideas of the Manchester group
as well as the noticn of a stored program would have impressed, if not surprised,
Babbages

The computer scientist of 1970 should give pause to notice the wealth
of innovations which had been demonstrated by 1953. The multiprocessor with

rexote Job entry at Bell Labs,-the 8 us core memory at MIT, the propcsal of



microprograrning by Wilkes.in 1951 -- any of these sound like current subjects.
ﬁany topics had been sharply debated in the l9h0'h! including synchronous
vs. asynchronous operation, bit serial vs.word parallel arithmetic,‘decimal vs.
binary and fixed vs. floating point number representation. Several of these
subjects are sti%l debaﬁed -=- or "settled" by providing both. _I£ should bt
noted that asynchronous operation as'pioneered by Stibitz and followed through
the IAS bachine, has largely'disappeared- The extra control hardware end time
required for "reply bacﬁ;; between elementary operations became ﬁnreasonable as
machine speeds incréased. It is also iﬁteresting to note that vhile early machiﬂes
(Zuse and Stibitz) had floating point ba%dware, it had largely disappeared by
1953 —-‘not to return for several years. von Neumann haa.beén instrumental in
this, arguing that propeq,scaling was easy if one sufficiently understood his
problen; otherwise he shouldn't be computing in the first place. His argument
contained one genuinely unfortunate flaw -- few users since have understood
their calculations as von Neumann understood his. In any case, the "philosophy
of machine design" papers written in the léhO‘s often read in part as if they
had been written last year.

Not that all ideas had been proposed by 1953. Some inventions big and small
that came after 1955 will close this chapter. The transistor and integrated cir-
cuit certainly provided the biggesﬁ technology charnges and with them came re-
markable systgm speecdups. Memories with extra tag bits; indirect addressing,
and phased or interleaved banks were to follow as was modern peging hardware.
This led to complex multiprogramming and time sharing systems. Fancy terminals
have greatly aided some users. Faster arithmetic algorithms and pipelined
arithrmetic units as well as program look ahead have contributed to faster com-
putation. Stack machiﬁes have led to a variation in addressing es well as fast

compilation. As we said at the beginning, things have become much more.com-

plicated and hardwere and software orgenization have become deeply intertwined.
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In 1953, soTtware was in a rather simple and pure state. Symbolic asscublers were
cormon and high level lonpuages were being discussed. Iortunately no one had

thought about software operating systems.



9.

FOOTNOTES

[11] contains most of the available Babbage references. Also [5] contains
a falr amount about Babhoge.

Much of this pateriel was obtained from [1L].

‘[ 1], pazes 359 and 267, contairs accounts of the work of Zuse. In [9] on

- pages 508 and 650 one can read further details including an erticle
by Zuse himself.

[ 2], péges 1 and 69, contains articles about the activities at Bell Labs.
[12], paze 41, is a very good discussion of the Bell Labs Machine. On page 91
of [12] there is an interesting philosophical paper by Stibitz.

[12] is & complete description of the machine.
ENIAC is discussed in [12] page 31 and [1] page 97.

EDSAC is discussed in {3], also in [18] by Wilkes who was the designer of
EDSAC.

MADHY end its preccding developments are discussed by the designers in [5]
page 117. .

A complete discussion of the IAS machine design is contained in [7].

10. See [16] for a discussion of Whirlwind.
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Code

DCL

ICL

DCL

¥X6.30
B6hka
ICL

T72f
DCL

X6.21
En33h
DCL

X6.0
G578r
DCL

(1]
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[ 3]

[ 4]
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Chapter 2

Processor Design

2.1.1 Overzll Design Questions

A computer system designer must solve one probleﬁ in many forms
and at many levels: What is the least expensive way to provide a given
function to the user of the machine? The function may be‘a.low level
detail or it may be an overall system charactefistic. The function may
be of an entirely logical nature or it may involve the speed with ﬁhich
scmething is accomplished. The function may be stated in terms of a
user's problem or in terms of the computer itself. The possible functional
specifications are endless so let us turn to the question of cosct. Except
in rare cases the designer must do things as cheaply as possible, subject
to the functional constraints éﬁécified for the system. Cost savings may
be made by using less expensive parts and by reducing the nuwber of partsf
This often involves a number of trade offs, éarticularly because cheaper
parts are usually slower and judiciously adding more parts generally speeds
things up. Since overall costs are ugsually all that matter, cost and speed .
trade offs may be made between ﬁarious units of the overall systém. In
any case, it is usually bad préctice to ihclude features merely because they
are exotic (although some machines may appear to contradict this). Funcisions
chould ve of Jjustifiable use to the cuscmer and the overall cost should be
as low as possible.

Given these rather obvious remarks, the questién remains:! how does
one go zbout designing a computer system? We shall attempt to answer that

o

question in a fairly general way by discussing a number of computer functions
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and how they are interrclated. We shall attempt to discu§s general
principles and then relate tdem to some real machines. Our overall.
approach will be from the inside out; we shail'start with the arith-
metic unit, primary memory and the control unit. These will be followed

by overall system discussions.

. 2.1.2 Arithmetic and Logical Unit

If we regard consideration of the arithmetic and logical unit
as the first design proﬁlem, then a number of decisions at this level will
be reflected throughout the system. In practice the various parts of the
machine affected would be considered simu}taneouslyQ Here we shall
restrict our attention to one part at a time.

In terms of cost and speed we must concern ourselves with the
kind of circuits uéed as well as how many parts are required. Circuit
parameters of interest are_éwiféhing speed, fan-in and fan-out limitations,
power dissipation, noise immunity, reliability and cost. Interrelations
between parts required by the funcfions desired must be compatible with
such things as layout on boards with respect to number of wiring levels,
cross talk, cooling, and repairability.

The user requirements specified may be rather vague. Problems
in different contexts tend to place a variety of demands on the arithmetic
unit--some problems fequiring one thing and others something else. 1In any
case, large numerical computation.tends to be the most severe burden for the
arithmetic unit so we shall discuss some dgtails of this.

First, one must decidelwhich operations are to be performed.
Addition, subtraction, ﬁultiplication and division are typical, although

there.are many variations on these. TIn the future, more complicated functions



may be built into machines e.g. trigonometric functions, log, exp, or
n-ary summation. Initially we shall restrict our éttention to addition.

| First we must decide if we are going to actually add or just
do a table lookup to get the result: This latter strategy has sometimes
been employed (cf. IBM 1620)in slow, small machines; large, high speed
nachines usually have the ability to compute the sum 6f~tWo numbers
using some kind of sequential logic. The form of the numbers turns out
to be quite important in a number of respects. By form we mean the
number of digits, the number system and whether or hot some kind of
explicit exponent is used.

The number of digits dictates the word length of memory as well
as the arithmetic unit and its registers. This can be quite important in‘
terms of overall-sy;tem cqgt.' Users can often give estimates of the
required word length in terms of the maximum round-off error tolerable for
certain calculations. It is usually desirable to make the word length a
multiple of the character size (byte) used in the computer system and this
has usually been either 6 or 8 bits in binary machines. In the early days
some internal decimal machines were built (e.g. IBM 650) although
these are quite rare now and we' shall restrict our attention to internal
binary machines. For numerical calculating the range of 32 to 6L bits has
beeh common. The possibility exists of choosing a standard word lgngth and
then providing arithmetic operations on double or half words. This has
often been done to try to satisfy a wider class of useré.

Choosing a word length typically requires choosing both an exponent
and fraction size in most modern machines used for numerical computétion.

von Neumann argued against floating point hardware and built a LO-bit fixed



point machine. Later, most companies built floating point machines with
40 or fewer total bits to the .cha,grin of ma.ny. numerical uses, Typieally,
..from 6 to 16 bits of exponent are provided. “As more complex numerical
computations are performed, users are less happy with normalized
arithmetic. Several unnormalized or significance a.'r.ithmetic schemes have
been proposed and implemented.

Fix}ally, the number system chosen can greatly influence the speed
and ga‘te count of the arithmetic unit. The well-known polynomial representation
is ‘commonly used, although a redundant form of this has quite desirable
properties. Also the residue number systgm has interesting properties which
are useful in a theoretical way as well as for some applications.

We shall attempt to discuss several of these issues and to contrast
some of them with others. The xfeader should be forwarned that no pat answers
are forthcoming. " Some fairly aetailed results are available but the choices

between alternatives must be dictated by individual design requirements.

2.3 Number Systems

2.3.1 Polynomial Numbers

Numbers may be coded in a variety of ways. For example, the polynomial

) _n;unber k-1
p(r,k) = 2

d.r, 0<ad, <r,
. i -1
i=0 .

represents a k digit integer with radix r. If r = 10 we have a
decimal number, e.g.

3 2

p(1o,4) = 3 X 107 + 7 x 107 + 1 x 10t + 9 x 10 = (3719)10.

We shall use the radix subscript notation when necessary to avoid ambiguity.

As another example if r = 2 we have a binary number, e.g.
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2 1l

p(2,3) = 1x2° +0ox 2t +1x2°= (201), = (5),,-

Finally, if r = 16 we have & hexadecimal number, é.g.
p(16,3) = 1 x 162 + 9 x 16T + 15,4 % 16°

To avoid confusion, the substitutions A = 10 o’ B=11

107 C = 1210, D= 1310,

1

E =14 15,, are often ussd. Thus for our example, (19F)16 = (hls)lo =

100 F =
(0001,1001,1111),. Since four bits (binary digits) can be used to represent
the 16 possiﬁle coefficients required in a hexadecimal number, an easy
conversion from binary to hexadecimal may be made. In the last example
this can be seen by simply reading off groups of four bits iﬁ the binary
form and rewriting them as hexadecimal coéfficients of appropriate powers
of 16.

Because of the ease of building physical devices with two stable
internal states,:a radix of soﬁe pover of two is often chosen for computer
nunber representation. Binary, octal, and hexadecimzl are common choiceé.

The above numbers were all integers, but real numbers are easy to
write as polynomials by letting the swmation range over negative as well
as non-negative values. Thus
K1

p(r,k,j) = = dirl; 0<d <7

i=-j
is a j + k digit real number, base r.
Examples of decimal and binary real numbers are

1 2

p(10,3,2) = 9 x 10° + 0 x 10- + 4 x 10° + 7 x 1071 + 3 x 10
= 901¥ T3

and

P(E:Q;B)

1]

1 x 21 + 0 % 0 41 % ol 4o % 272 411 X 2’3 = (10.101)2

It

(2.625)10.

Note that they have j digits after the decimal and binary point, respectively.



2.3.2 Signed Digit Numbers

The poiy'nomial numbers of the last section used non-negative
digits, only. There are good reasons to allow each digit to have its own
sign, as we shall see in a2 later discussion of arithmetic operations. Many
possible definitions of signed digit mubers could be given, but we choose

the following.

A signed digit polynomial number is given by

sp(r,j,k,maxldil) = z dirl, -maxldil <4 Smaxldil
i \

where r > 2,

and
3%1 <max|d;| €T - L if r is odd,

% +1 <max|d,| <r -1 if r is even. TFor example, if we choose r = 10 and
— 1 —

|
™M
pf
[
o

-

5, 6<4d, <6=

let max|d,| = g +1 = 6, we have sp(10,2,3,6) =

237.62.

235107 + (-6)x10" + (-3)x20° + 6x107 + 2x107% = 300 - 60 - 3 + .6 + .2
The sign of such a number is the sign of the highest power nonzero

digit, and negative numbers are formed by changing the sign of each digit.

Thus no explicit sign is required. Note that the algebraic value of a signed

digit polynomial numbér is zero if and only if all di = 0.

2.3.3 Residue Numbers

The residue number system uses an implicit definition for each
nunber rather than the explicit polynomials of the previous sections. Before
discussing this system we will review a few definitions.

We say that a is congruent to r, modulo m, and write

2 = r(mod m)
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if for integers a, m and r there is an integer k such that
a =1r % mk,
In this congruence relation, r is called the residue and m the modulus of

the number a. We shall concern ourselves only with the least positive

residue rlp, defined by 0 < rzp <m. Thus if m = 2 and a = 5 we have

5= 5(mod 2), k =0
5= 3 (mod 2), k =1
5=1(mod 2), k = 2
5= -1 (mod 2), k = 3

and rlp = 1. Clearly rlp is unique for any a and m. Finally we recall that

two integers are relatively prime if their greatest common divisor is 1.

The residue number system represents an integer as a concatenation
of the least positive residues of that integer with respect to a set of re-
latively prime moduli. For example, let 2 and 3 be the moduli, then we can

represent the integers 0,...,5 as follows:

N od 2 r (mod - Residue number N
rzp(m ) IP( 3) ]
0 0 0 00
1 1 1 11
2 0] 2 02
3 1 0 10
i 0 A 01
5 1 2 12
k
In general, if we are using k moduli Ty eee,my, then we can represent T m
i=1

distinct numbers in the residue number system. If we had chosen moduli that

were not relatively prime this would not be true.



-8 -

2.& Machine Representation of Numbers

2.4.1 Precision and Machine Radix

A great variety of formats have been froposed and used to store
and operate on numbers inside computers; If machine numpers have a word
length of w digits (excluding sign), we say that integers may be represented
with w digits of precision. It is important to distinguish "precision" in
this sense from the meanings of such words as "accuracy" or "significance".
Thus numbers may be represented to 20 digits of precision. But if the
measuring device from which they were obtained was only accurate to 3 digits,
only 3 digits of the 20 are accurate. The other 17 may have been "extrapolated"
by a meter reader.

We now consider the meaning of the word "radix" in computer terms.
A machine is built of elements,. each having a number of different internal
states. Let us say that each element can represent v values. Almost al;
current machines are built using physical devices with two stable states. These
may be assembled into v value elements with v = 2 or with some other value of
v, say v = 10. Thus, vhile most machines are made from two state physical devices,
a number of current machines have binary (v=2) as well as decimal (v=10)

arithmetic capabilities. When we wish to clearly decnote a machine radix in terms

of v value elements we shall write rv instead of r.

2.4.2 Fixed and Floating Point MNumbers -

Integers are stored in most binary machines as a sign bit and w
digits of integer. Thus, the range of w digit integers in a radix rfmachine
is
r ¥ <i(r,w) <1 v
v v’ v
"with both plus and minus zero included.
Nunmbers in this form need not be regarded as integers. Obviously the

radix point may be assuwned to be anywhere in the number. Or it may be assumed
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to be a fixed number of zeros to the right or left of the word. Wherever it
is assumed to be, it is fixed by the programmer (as in slide rule computation).

This number representation in computers is thus called either integer or fixed

point form. A fixed point number which is not “an integer clearly has the range

W+S

Uk
S r
v

-r, < fi(:v,w,s) <

vhere s (a signed integer) is a scale factor assumed by the user.

Since the late 1950's most big machines have provided arithmetic

units which operate on integer as well as floating point or real number forms.

Such forms usually represent a signed fraction and o signed exponent. Assume
two signs plus w = e + f digits are used, vhere e is.the number of digits
of the exponent and f is the number of digits of the fraction. Suppose we have

a machine with radix rv. An exponent ey of e digits and a fraction fl of T

digits may take the forms

e

]

1 fl(rv,e,sl)

£, fl(rv,f,se).

= 0 so exponents are regarded as integers and s, = -f since

In most machines s o

1
the radix point is assumed to be at the left end of each word.

Thus ey = 1(rv,e)

and T, = fi(rv,f,-f).

are assumptions that we shall make unless otherwise noted in our subéequent
discussion.

Up to this point we have discussed forms of the fraction and exponent
but we have not mentioned the vase to which the exponent is raised. This is
often referred to as the radiz of machine numbers by users and we shall denote it

by rb. - In mzny machines rb = rv = v, but this is not always so. Iﬁ is also popular

to0 choose r, = rs for some small integer k. For example in the IBEM 360 floatirng point
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b

operations v = r, = 2, but Ty = 2" = 16, and it is referred to as a hexa-
decimal floating point machine. If Ty = rs then our distinction between
radicies may seem pedantic because collectignS'of k digits in rv may be

regarded as digits in Ty (recall our earlier discussion of conversion from

binary to hexadecimal).

Now we can express floating point machine numbers (with s, = 0

end s, = T as above) as
e e

r Tyr -(rv-l) < fo(r.,r,,e,f) <lxr (rv )

v b = vop T b
or f!(rv,rb,e,f) =+0

(rg-1) e -(=5-1)

or olxr {mfz(gv,rb,e,f) <, X1

Note that the intervals represented contain only a finite number of reals.

both will be denoted by r. For

We shall adopt the notation that if rv = b;

example if r = 2 we have

e e
2(1’f'2 ) < f1(2,e,f) < 2(2 -1)
or ©r2(2,e,8) = + O
e e
or 2B1) ¢ p(a,e, 1) < -2(17T2T),

We say that the precision of a floating point number is determined

by f and its range is determined by Ty and e.

2.4.3 Normalized and Unmnormalized Numbers

The computer stored form of a floating point number is not necessarily

unique. Thus we ‘have
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a 2 leQ

1

= £1(2,e, )

if ||a.+el||5 e, Ilfllls f, and ||2—afl||5 f, where [x|| is the number of digits in x.

For example, if e= 3 and f = 5
£4(10,3,5) =.03210 x 10°0°

= 32100 x 10°02

= 00321 x 10°%%,

To make the stored form of floating point numbers unique, some standard form
may be chosen. Very often this is the normalized form of a number which we
shall denote by nfi(r,e,f). Thls means that 1f the number being represented
is non zero, the f:.Lrst digit to the right of the radix point is non zero.

By properly adjusting the exponent, any non-zero floating point number can be

normalized as we did above using an adjustment factor a. If the radix point is

assumed to be at the left end of the fraction, then clearly we obtain maximum
precision for fractions using normalized forms.
It is not always the case that users want to do normalized floating

point calculations. Hardware and software aids for performing unnormalized or

significance arithinetié: are often provided. 1In this case some adjustment a

is used so that the normalized number is shifted a digits to the right.
Roughly speaking such a number may be said to have a significance of f-a
digits. The point of providing significance arithmetic is that often the user
starts out with numbers 61‘ less significance than the f available on his
machine. Also the significance of all hls numbers is usually not the same.

Iﬁ such cases 1t may be very misleading to compute using the full f digits

of the machine and to deliver an f digit result. Rather, the significance of
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the result should be expressed as a. function of the significance of the input
data. Machines with significance arithmetic features provide proper adjustment

for each operation.

2.4.4 Multiple Precision Representation

Whatever word length is provided by machine designers will prove
inadequate for some users. Thus multiple precision hardware or software is
often built. If n word-precision‘is provided, then n memo?y locations must be
fetched per operand. In multiple precision floating point operations it may
seem desirable to use an exponent of the.same size as that used for single
precision. However it is often the case that only an f digit arithmetic unit
is available. Thus, each word in the multiple precision representation is |
used as an f, e pair. The exponents are then adjusted to reflect the position

of each component in the longer number.
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2.5.1 Floating Point Arithmetic Definitions

The following definitions should be intuitively clear.

e €

Tet £1,(r,e,f) = £ x r 1 ana £1,(r,e,f) = £, x ¥ 2 then
_(e -2 ) e
17% "1 .
(£) # T, x T ) x T, if e; 2 &,
le(r,e,f) + fza(r,e,f) =
-(e-e.) . €
1 2 .
(flxr 2 ife)XT: 1fel<e2
fll(r,e,f) * flg(r,e,f) =f; xfyxT
(el-e2 .
le(r,e,f) / fﬁe(r,e,f) = (fl/fa) X T

A number of difficulties may arise in terms of machine representation of the results
of these arithmetic operations. In the case of add or subtract the exponent of the
result is the same as one of tﬁe-original exponents but one of arguments must be
shifted (adjusted) a distance equal to the magnitude of the difference of the
exponents. This can cause digits to flow off the right end of a number or machine

register and we shall call it fraction underflow. In case both fractions have a

high order 1, 1 is progagated off the left end of the number or machine register

and we shall call this fraction overflow.

In the case of multiplication and division the exponents are added and
substracted, respectively. 1In case a positive exponent gets too large we shall

refer to it exponent overflow, and exponent underflow will mean that a negative

exponent exceeds the e digits in magnitude.

These various kinds of exceptions should always be used to trigger an
alarm to the user. Provisions should be provided to allow him to take appropriate
action. With most modern compilers and operating systems, the actions can be
taken’automatically. For example, certain values should be saved for the user to

study and the job may or may not be continued.
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2.5.2 Machine Addition

First let us restrict our attention to addition of nonnegative

integers. For example

nl(r,k) + nz(r,k) = .Z dy 7+ z dy,T
i=0 i=0
k-1 s
= 2 (Q 4y )r.
i=0

Since each digit is required to be less than r, qli + d2i must be rezarded as

a pair of digits, commonly called a sum and carry digit, so dli + in =

re. + s. where c.

i+l 1 141 = 1lif d‘.Li + dai—> r, otherwise c; = 0.

i+l
It will become important below to decide precisely what we mean by "the addition

of two numbers". Is it sufficient to generate only the c; and s, digits for

+1

all i? Or must we worry about propagating the carry across the result? Note that

316
+ 255
569
can be evaluated with all zero carry bits whereas
316
+ 69
1010
requires a carry to propagate across all positions. Apparently the latter
process is much slower than the former. On the other hand, the generation of
Cii and S5 in each position would seem to take the same time for each position
and if these could be saved for the next addition perhapé an overall time.saving

would be possible. We shall return to these questions later.
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Note that the second sum above overflowed in the sense that two three
digit numbers led to a four-digit one. With a fixed word length maéhine this
would require the raising of some kind of alarm to cause appropriate action to
be taken.

Now let us consider the addition of nonncgative floating point

numbers. For example
£1,(2,2,3) + £1,(2,2,3)

10

= 101. » 27" + 01ll. X 201 (=5JO x I 26

10 ¥ 310 X 219 = 2690)

- 101. % 29 4 001.1 x 21°

10
= 110.1 x 27 = 6.510 X hlo = 2610.

This addition process required an extra step before the addition to equalize

the exponents and align the binary points of the two arguments. In particular,
"the smaller exponent was set equal to the larger one and the fractional part
was properly shifted to compensate. Jotice that the process underflowed the three

digits allowed for the fraction part of tle floating point numbers.
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2.5.3 Normalized Floating Point Addition
We will now consider the process of floating point addition assuming
normalized arguments. Let

10100 x 22+

nfe, (2,3, 5)

10100 x 2°0%

nf,(2,3,5)

The addition process requires equal exponents so we must first align the
fractions and adjust the smaller exponent. Thus we have

nfl. + nfe. = 10100 x 20 4+ oo101 x 20

1 2

11001 x 2011 = nf{

3"

In general we may overflow the left end (by at most one digit) and this requires

a post addition adjustment or renormalization step. This may cause a digit to drop
off the right end of the word. If we have the choice of losing a digit at the
right or left ends, clearly we must choose to drop the low order digit ‘
(otherwise the result would be nonsense). There is a choice of simply dropping
the lost digit called truncation, or adding 1/2 to the highest order digit

about to be dropped called rounding, and generally rounding is preferabls. The

errors introduced by these processes are called truncation error and round

off error, respectively.

While we have discussed the error introduced by post addition
normalization, the ﬁreaddition alignment may also introduce error.' For example,
let

11100 x 201

"

nle(e, 3, 5)

001

nf£2(2,3,5) 10111 x 2

. Then
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11100 x %41 = nfi;
+ 0010111 x 20+ - nf1,
10000111 x 20 - nfly

The fraction underflow digits underlined at the right are somewhat in doubt,

being'the sum of the low order digits given for nf!e and assumed low order

zeros for nfll.' The underlined digit at the left is the fraction overflow

discussed above. To finish the addition we must shift right to renormalize
the fraction and subtract one from the exponent to adjust it. Finally we

shall round by adding an appropriate 1. Thus we obtain

1000011 x 22+
1000011 x 2%° gshift and adjust
. ) round
10001 * 2100 result

In decimal notation

nf1) = T, nfi, = 14575, and nfi, = 8.5

2 3
and our machine addition process has introduced a round-off error of + .0625.
Note that if we had truncated instead of rounding, nfz5 = 8 and the truncation error
would be - .4375.

Generally error may be expressed in absolute or relative terms. Both

of our above examples were absolute error, € the actual value of the error.

Perhaps of more interest is the relative error, €, expressed as the ratio of

absolute error to the correct value (or approximately to the computed value).
Thus for the above example, the relative error due to round off is

€a .0625

rr nfi; + nil, = 8.k575 ©

.00Th

€

while the relative error due to truncation is

€a 4375

¥ nfza_ = B.L375

— - (o]
frt = nfey = -0%.
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2.5.4% Floating Point Multiplication

We shall briefly consider floating point multiplication, emphasizing
the steps before and after the actual multiplication. Assuming normalized
numbers, let

e e

1 2
nff, x nfi, ='(fl XTr )X (f2 xr <)

e. +e
= fl X fé X T = nf£3.

Normalized fractions may be multiplied with no possibility of overflow. At the

same time the exponents may be added and this process overflows if 1el+e2| > e.

In this case the user should be notified that he has exceeded the machine's
capacity. The product of two f digit fractions will generally be of length 2f
and this means that extra.registei length should be provided in the arithmetic
unit. The user may want tp save both the high and low order bits of the product.
More likely he will simply wané Eo save a rounded single length result. Note
that the rounding process must be followed by a renormalization and exponént
adjustment step.

The time consuming process of multiplying the fractions may be
done in various ways. Typically some kind of repeated addition loop is
executed. Thus one operand is shifted and added to itself under the control

of the other operand.



2.6 Bit Level Design Options

To this point we have discussed a number of elementary ideas
about computer numbers and arithmetic. With this as background we shall
turn our attention to some overall questions about computer arithmetic.
To make the discussion tractable we shall limit ourselves mainly to
floating poipt addition. As we mentioned earlier the design of a
machine must be regarded from the user's point of view as well as the
designer's. The designer wants an "inexpensive" unit. Users have a
great variety of performance desires. We shall discuss performance and
cost in terms of a number of parameters. ‘Our objective is to give the
reader some ideas of an overall nature rather than to discuss specific
designs. Thus we shall present analyses of: shifting as a function of
radix; precisioﬁ and accuracy as functions of radix; roundoff as a function
of word length and number of arguments; overall speed as a function of

number representation, hardware characteristics, and word lengths.

2.6.1 Optimal Choice of T

We shall consider several aspects of the choice of radix. First

is the optimization of T, in machine structure terms.

Agssume that a vaiiety of physical devices are available at
various costs. Their speeds may be assumed to be equal or cost may be
written as a function of speed. In any case, assume that an entire machine
is made of various "black boxes" which are radix r devices. Also assume

that the cost per bit of such devices can be expressed as (here r, = r)
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We must qualify this assumption because memory and processor costs per bit

are usually quite different due to Qifferent technologies. This could be
reflected in . Furthermore, it is probably true that if we simulated radix

r "black boxes" using radix 2 hardware, the cost per bit of memory and processor
would have quite different B values. If the assumption‘is'valid for some part
of a machine, we proceed as follows. Let some number N = " be represented

by n bits in various radiées. Then

logeN =n loger
and the cost of N (storage, processing, etc.) may be expressed as
B

Ck, = aIn

B log eN

=dr .
loger

To minimize this cost with respect to r

de Bra_llog rorPL
N e
T - ¢ logeN 2 = 0.
(Llog_r)
e
Thus
B loger =1
or r = el/B.

Since the second derivative is positive we have an expression
for a minimum cost radix. For example, B = 1 implies that the bit cost
is proportional to the radix value in a linear way. In this case r = e

and binary or ternary arithmetic are nearly optimal. In fact a binary

. radix is optimal in case B = lo; 5 = 1.4k,
e



2.€.2 Choice of Ty

Next we consider the choice of radix in determining the range
of floating point numbers. Given some fixed hardware representation for

numbers, the e digit exponent and radix Ty allow £ digit fractions to be

scaled up and down. r

b is built into the logic of the arithmetic unit,

vhile e and T determine the machine's wori length. The choice of T,

affects the precision and range of normalized floating point numbers.

The following table contains some illustrative examples (assuming r, = 2).
Number r o= e ' r =16
f e T e

1/16 1 -011 .0001 000
1/8 | L1 -010 .0010 000
1/k 1 -001 .0100 000
1/2 .1 000 .1000 000
1 1 001 .0001 001
2 1 010 .0010 001
L .1 . 011 .0100 001

It is immediately clear that fractional parts of hexadecimal numbers may
Lave leading ceros and still be normalized. On the other hand, when a

shift is necessary, four binary digits are lost per hexadecimal digit.

Thus, we incur a larger loss of precision per shift with hexadecimal.

Il should also be clear that fewer different values of exponent are fequired

for the same range using larger Ty Thus another question is, what Ty is

most efficient of total word length use? Another obvious question given



-4 -

N digits i3, what sizes of e and f should be used? We shall deal with

each of these matters below.

2.6.2.1 Addition Shift Distances in Practice

First we consider the loss of precision due to éhifting using

higher Ty values. Specifically we shall discuss hexadecimal and binary.

D. W. Sweeney [ ] has analyzed floating point addition in a number of
scientific codes. By tracing about 10 million.instruction exeéutions, he
observed that an overall average of about 10% of the instructions executed
were floating point additions. We shall reproduce only a few of his
findings. 1In particular we are interested in preaddition alignment shifts
and post addition normalization shif'ts. The values in the table represent
the number of shifts of a partiqular distance expressed as a percentage of
all cases measuréd. " The numbeés added were not necessarily of like sign

and a few unnormalized operations were included.

Shift . - o Shift . - 16
Distance b~ Distance b~
. o - 32.64 0 L7.32
aligrment 1-4 3h.61 1 26.02
overflow 19.65 overflow 5.5
normalization 0 59.38 0 82.35
1-4 14.51 1 T.24

As expected, we observe more zero shift cases with higher Ty

In fact, normalization shifts for hexadecimal numbers oniy occur about 18%
of the time. Comparing.the sum of the aligmment shifts from O to 4 for binary
and from O to 1 for hexadecimal, slightly favors hexadecimal. Of course the
binary shifts occur in increments of one bit of precision loss. Similar

‘sums for normalization are almost equal.’
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Viewed enother way, we can observe that the sum of alignment
percentage for distance O and 1 with base 2 are slightly less than the
percentage of distance O shifts for base 16. Similarly the distance O

and 1 normalization shift percentages in binary are slightly more than the

distance O shifts for base 16.

2.6.2.2 Distribution and Number of Values as a function of Ty

We first study the number of different values representable
using various bases and the distribution of these values. Notice that

when floating point numbers with Ty = 2 are required to be in normalized

form, only half of the possible values représentable with f bits are
used (just those with a leading 1). When one leading zero is allowed
(rb = L) then 50% more values are representable and so on.
Given e and f bits of exponent and fraction, respectively, there

are 2° different exponents and Qf'l different normalized fractions

representable. (We are assuming here that r, =T, = 2.) Thus the total
. e+f-1 . .
number of representable values is 2 . Since the largest fraction

representable is approximately 1, the largest binary number representable

o
is approximately 2

(=

Now if T, = B = ep, nurmbers have the form fl X B l. To estimate

the number of values less than the maximum binary number (rb = 2) we observe

that for some k (assuming £, ® 1)
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Thus klog,B = 2%, Now the number of values less than Bk is approximately

(Ef"l +of® s ef_logzs)(k+l).

Thus we can write

e
number of rb = B values less than 22
s = representation ratio
number of T, = 2 values less than 22
-(log,B-1)
~ ef"l(l e T 2 ) (k+1)
2f-lze
-(log,B-1)
B ofli st v 40 2 J(k+1)
2"} (10g,8 )k
-(logB-1)
_(M1x1+2dﬂ+§2+...+9 2 )
T Yk log, B :
2
8 6

If B = 16 and e = 8, then we have k = EEE_TE =2
2

1+ L + L + x
. - 2L "8,
and representation ratio = mn S

By a similar analysis it may be shown that there are about 1.88 times as
many hexadecimal values. as binary values representable using fixed e and

. Thus we conclude that about half of the hexadecimal values are in the

b}

range of the binary values and about ) are outside the binary range.

2.6;2.3 r , f, and accuracy

b)

The accuracy with which some form of floating point numbers

represents the real numbers may be studied by examining the intervals
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between the floating point numbers. Thus, if fli and f2i+l denote a pair

of' adjacent representable floating point numbers, then
fhin = T
e,
1

is a relative interval measure of accuracy. It turns out that this has

ri_f as its maximum value. In [9], for this as well as other accuracy

measures, the question of floating point number represeﬁtations is studied.

It is shown that for fixed N = e + f, the choice of Ty =T, always provides

as mch accuracy and more exponent range than some rb = rvk. In other

words, while f may be made larger at the expense of e with ry = rvk, the

tradeoff with accuracy is not a good one.
That this is true is not hard to see by studying the exponent

range, B, as a function of f and i, where i = logr B, f1 = fBe, and
: v

N =¢e + f. Thus we have

N-f
r

E(f,1) = i( -1).

Assuming that f > i, for the same accuracy we study the ratio of exponent

ranges of an ry = T, number to an Ty = ri number :
B(£-i41,1) ) l(rN-f+l-l-1) ) r1-1 rN-f_rl—l S rl-l -
B(f,i) . i(N T-1) i ] T

2.6.3 Rounding and Truncation

Assume we have a computed floating point number with f digits of
fraction to be retained plus some low order digits which must be disposed of.

The lowest order digit of the f digits represents r-f, so the digits to the
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right represent a quantity whose value is less than r-f. Regardless of
the process used to dispose of these low order digits, the error on each

step is less than r-f. Intuitively it seems desirable to minimize this
error on each step. If it is necessary to introduce a positive error on
some sfeps and a negative error on other steps, it would also seem
intuitively desirable to try to minimize the algebraic sum of these errors;
(that is to minimize the bias in disposing of the extra digits.

First we consider the error due to simply dropping and forgetting

the extra digits; this is usually called truncation error. With an f digit

fraction, the truncation error €4 is

The bias introduced by truncation is the sum of these errors over many steps.
If the average error is one hdlf of the meximum then the bias over n additions

is

An intuitively better procedure is rounding the f bits to be saved
using the high order bit of those to be disposed of. The error so introduced

is usually called round off error. 1In this case the error € is

0<Ke < r-f
r-—-

U L

or at most one half that of €y This may be seen by considering a floating

point number
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where [|jf, || = £. To round £, we add T to it in the g position. If af =0

then clearly no carry is generated and by dropping o B, no error is introduced.

If a< % and B is as large as possible, then no carry is propagated and B is
R . 1l -f T .
dropped, introducing an error of at most 5 r-. If a> E-then a one carries

to fl thus adding r"f to fl. In this case the smallest that o B can be is

% . r-(f+l). This we introduce a maximum efror equal to the amount added to f

1
minus the least amount lost by dropping o B, i.e.

-f r
erS_r —-2-'

r-(f+l)

In the case of r = 2, the error introduced by this process is -p if ¢ = 0 and

-f -f
0T L2 _gifg=1. IfB =0 then the bias iso+32—- 0 = o (1)

2 Ir

B # 0, then for each Bi we can find a Bj such that Bi - (2-(f+l) - Bj) = 0.

Thus, if we assume that all values of P are equally likely, the total bias is

just 2-(f+l).

Let us consider the possibility of reducing the round off bias to zero.

Consider the following table

Number Presented Rounded Result Ef X error
o~f om(f41)  -(£+2) o-f
X 0 0 X 0
bias = 1
X 0 1 - X - 1/k T2
X 1 o X+l 1-1/2=1/2
X 1 1 X+ 1 1-3/4% =1/}
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Here the second and fourth numbers may be paired to introduce zero
bias (cf. discussion sbove) and here (as in general) the third case (10)
introduces the bias. If it were possible to detect the case B =0, o= 1 and

round this in only half of the cases a zero bias rounding procedure would

exist. For example, some random bit could be used to teke the choice in the
a=1, B =0 case.

A scheme which is easier to implement than rounding and not much
more difficult to implement than truncation is the jamming of a 1 into the

last bit position. The error and bias of this are between those of rounding

and truncation.
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2.7 Addition Stveed vs. Gate Count vs. Number Representatives

A simple way of adding two numbers is to add two digits at a
time, generate sum and carry digits and go on to the next pair of digits.
Such schemes are generally referred to as serial by digit and.wefe often
used in early machines [10]. To speed up the addition process one
naturally considers-adding several digits at once. In gener;l,this
leads to questions about.propagating carry digits. Using the residue
or signed digit representation, car%y propagation is not a problem as
we saw earlier, but these are both "unusual" number systems and we shall
deal with them later. Another question that comes up is the possibility
of adding n numbers together at once and considering the speed and cost
of this process compared with adding two numbers.

By the early 1960's a number of fast parallel addition algorithms
were in common uvce. A nﬁmber of alternatives for binary addition are
compared in [9] by Sklansky and sﬁmmarized in Figures 11, 12, 14, 15,
and 16 and Table I there. .Sklansky shoﬁs an n bit serial adder with T
gates and Ln gate delay.time steps. He also has a full ripple carry adder
with Tn gates and 2(n+l) time steps. Several look zhead carry units are
described including a full look ahead conditional sum adder with

3n(2+[log2(n+l)]) gates and 2(l+(log2(n+l)1) time steps. It is assumed that

all gates have a fan in of 2. Sklansky also proposes and contrasts three criteriz
for performance.
At about the same time, Mac Sorley [5] surveyed various
binary arithmetic algorithws. While he does not give functions describing
their speed and gate count, his Table II contains numbers which compare
several séhmes for n = 50 and n = 100. From this one can infer that his
full ripple algorithm roquires 8n gateé‘and 2n time units while his full

look ahead algorithm reguires 2flog,nl time units and less than 2nfllog,n}
[ . "\ —

"»
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gates. MacSorley also discusses a number of multiplication and division
ideas. Another paper appeared in late 1961 [14] which also compares a number of
addition schemes and proposes that several are "better" than Sklansky}s-
earlier conditional sum technique. Table II of this paper compares
several schemes. In this paper as well as [5], the nation of "gate"
seems to bé less well defined than in [9]. In [16] Lehman again compares
a number of schemes.

In any case,.[lh] led to an exchange of correspondence in April,
1963, beginning with [15]. A number of assumptions are discussed at some
length in this correspondence. Sklansky discusses some bounds on add
time independently of any particular circuits but whicﬁ do include fan in
and fan out considerations.

We can roughly summarize the state of fhe art for binary addition

in the early 1960s as follows

Adder Type Gate Count Time Units

Bit Serial . T . hn

Full Ripple 8n 2n
Full Look-Ahead 2n[10g2n1 2[10g2n1

This leads to the obvious question: Can one demonstrate an additiop
circuit faster than 2[log2h1 stepg at any cést? One should also be prepared
to consider unusual number systems at this point.

Winograd [11] -studied the time required to perform
addition under a rather general set of assumptions. We shall particularize
things somewhat in the present discuséion. Roughly speaking, Winograd's
definitions are wide enough to include most known number systems and addition
algorithms, except signed digit addition. One must be concerned about the
encoding, adding, and decoding of numbers to ensure that the addition is

"really performed" by the addition algorithm and not by the encoding and
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decoding process. In any case€, his Theorem 1 is proved for gates with unit

delay and a fan in of f.

Theorem 1 The time T to add two n digit numbers is
T > [log2n]

From this he obtains for k arguments:

Corollary 2 The time T to add k, n digit numbers is
T > [logfkn'l

Winograd also constructs a multiplication scheme which approaches
this bound as shown in his Theorem 2. However, the technique uses residue
numbers and so overflew is not detected in the time given. In [12]

Winograd discusses (the time required for multiplication as well as) the
time required to detect an overflow in the addition of two residue numbers.
In Theorem 9 he shows that the overflow detection time is T > [longn].
Winograd summarizes his results in a simple way in [13].

Comparing these results with the full lookahead scheme mentioned
earlier it is clear that Winograd's lower bound requires about half the
time of a full look~ahead adder. But overflow detection requires the
same time so nothiﬁg is saved. The question remains, however, can Winograd's
bound be approached by some scheme with overflow detection?

Brent [4] considers this problem and establishes that a kind
of carry look-ahead adder can be constructed which for large n approaches
Winograd's bound. Furthermore, his Theorem 1 outlines a scheme for constructing

the adder with order of n log_n gates, although he does not exhibit the scheme.

by

This is favorable improvement on the full look-ahead numbers we tabulated

earlier.



We remarked earlier that Winograd's formulation of this speed, cost
problem did not include the signed digit number system. It was shown by
Avizienis in [2] and discussed in more generality in [1] that addition
could be pgrformed in a fixed amount of time independently of n, the number
of digits. [1] also discusses the number of gates required for various
schemes, but the redundancy required complicates direct comparison with the
binary cases discussed earlier.

Avizienis also discusses the addition of k numbers and derives a

time T = l'logf fg]] +1, £ >4, as well as some gate count functions.
5 .
When signed digit arithmetic is performed, it is assumed that all

numbers are encoded before the calculation begins. Then signed digit
arithmetic is performed. Finally the numbers are decoded, a process which

propagates the last carries.



2.8 Multioperation Speedups

We have seen that arithmetic operation speeds may be reduced to
a function of the speed of parts from which the arithmetic units are built.
We have also seen that lower bounds may be established on the times required
to perforﬁ arithmetic in various number systems. Do these observations
imply that the speedup of computers has been reduced to waiting for
faster parts from whicﬁ new machines may be built? Obviously not, since
we may consider operating on ‘many pairs of numbers simultaneously. Recall
that Babbage planned to do arithmetic and indexing at once and that
Menabrea suggested performing more than one arithmetic 6peration at once.

If we restrict ourselves to the addition and multiplication
operations, we can now regard an arithmetic processor as a collection or
combination of multiplier and adder units. Suppose we have an arithmetic
processor containing two adders and a multiplier and wish to evaluate
(a+b)*(c+d). Then the two sums can be formed simultaneously. Thus the
arithmetic processor would appear to be able to add twice as fast as each
adder can in fact add. In the CDC 6600 this idea is implemented, c¢f. Ch. V
of [8].

It is also possible to achieve faster arithmetic by what is
called pipeline processing. If some operation requires T time units, then
by cutting the logic into K stages and connecting them through registers, it
is possible to introduce a new pair of operands every % time units.

Similarly, results emerge from such a pipeline at the rate of one result per

; time units. This idea is used in the 360/195 as well as the CDC STAR and

TTI ACS machines.
Another approach to speedup by machine organization is to

sequence many simple (one of each operation at a time) arithmetic processors
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from one program. If we have to add k pairs of numbers and we add them
all at once then it takes T time units, but the effective speed per

addition is % time units. This speedup is analogous to that in the pipe-

line case, but in practice k may be made much larger for parallel than
for pipeline machines. This is the approach being taken in the construction
if Illiac IV [3].

Just as we studied the maximum speed of addition (and multipli-
cation) for single arithmetic units, more complex function's speeds can
be studied for multiarithmetic function processors e.g. the cases discussed
above. As a model of the most general case of these, let us consider an
unlimited number of adders and multipliers which operate simultaneously.
Each operation (add or multiply) takes one time unit and the processors
can communicate their outputs to any other processor in zero time. We
also ignore memory times.

How fast can such a machine multiply two matrices or evaluate
a polynomial? Two N X N ﬁatrices may'be multiplied in 1 + [loggN] steps,
instead of the usual 2N3, by the following scheme. We must form N2 inner
products, each of dimension N. Consider l\T3 multipliers each of which

performs one multiplication on the first step. On the second step we

start to form the sums for the inner products. After one addition using

5 3

g— adders, we have g— results. On the second addition step we use half of
N

these adders to obtain T results. After flogzN] such steps we have e

results, namely, the elements of the product matrix.

It has been shown by Pan [7] that 2n operations are required

to evaluate a polynomial of degree n. Thus, for a serial machine, Horner's

Rule is optimal. ‘However, it is easy to see that the form



2 n
pn(x) =ay+ X+ aXx ... +aX

requires only [logen] steps to evaluate all powers, one step to multiply
by the coefficients, and 1 + [log2n1 steps to sum the terms. Thus, by

introducing some "redundant" operations we can obtain the result in

2(1+[log2n]) time steps. This is a crude upper bound for a multiarithmetic

unit machine because some additions can be performed before the final
multiplications are performed. A lower bound for a multiarithmetic unit

machine is 1 + flogen], following Pan, but it is not obvious how to achieve

this. In [6] Muraoka shows how to approach it. Improvements of Muraoka's

result may be found in [17] and [18].
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