
PROPERTY OF lAC LIBRARY

DESCRIPTION OF ARTTHHETIC OPERATIONS

IN THE ILLIAC IV PROCESSING ELENENT

TABLE OF CONTENTS

PROPERTY OF lAC LIBRARY
INTRODUCTION

1. DESCRIPTION OF THE PROCESSING ELEMENT

2. ADDITION AND SUBTRACTION

2.1 INTRODUCTION
2e2 CARRY PROPOGATE ADDER (CPA)
2.3 SHIFT COUNTER (LOD #4)
2.4 BARREL SWITCH
2.5 OVERFLOW
2.6 ROUNDING
2.7 NORMALIZATION AND OVERFLOW CORRECTION
2.8 TIMING OF ADDITION OPERATIONS

3. MULTIPLICATION

3.1 INTRODUCTION
3.2 ADDITION OF EXPONENTS
3.3 RECODING THE HULTIPLIER
3.4 PSEUDOADDER TREE (PAT)

" 3.5 TIMING OF NULTIPLICATION OPERATIONS

4. DIVISION

4.1 INTRODUCTION
4.2 IMPLEMENTATION OF THE DIVISION OPERATION
4.3 SUBTRACTION OF EXPONENTS
4.4 NORMALIZATION
4.5 TIMING OF DIVISION OPERATIONS

APPENDIX A. ADDITION IN 64-BIT MODE

APPENDIX B. ADDITION IN 32-BIT HODE

APPENDIX C. MULTIPLICATION IN 64-BIT MODE

APPENDIX D. DIVISION IN 64-B11 MODE

APPENDIX E. DIVISION IN 32-B1T MODE

i

1

2

4

4
5
8
9

11
12
13
18

19

19
20
21
24
27

28

28
30
33
34 .
35

37

45

58

67

76

INTRODUCTION

This manual \vOS wri.tten in order to provide a source of basic informa­

tion as to hO\\7 progullIUTlcd 3.1'1. thmetic operations are imp1 emented within an

ILLTAC IV Processing Element. A description of the additi.on, multiplication,

and division operations is included together with a summary of individual

register and logic network functions.

Most of the enclosed material was derived from descriptive write-ups

compiled by T. Economidi.s of Automation Technology Incorporated.

-1-

SECTION)

DESCRIPTION OF THE PROCESSING ELEHENT

The Processing EIGlllent (PE) of the ILLIAC IV executes the data computa­

tions and local indexing for operand fetches. It contains the following

elements:

1) Five 64-bit registers (A,B,C,R,S) to hold operands and results o

'A' serves as the accumulator, holding one of the operands in

arithmetic operations and receiving the output of the adder at

the conclusion of the operation. The 'B' register serves as the

second operand register in arithmetic op(~rations (with the excep­

tion of multiplication). The 'c' register is used in certain in­

structions to save carries from the adder. The 'R' register holds

the divisor and multiplicand in those operations as well as

serving as a data routing register. The" S' register is a general

storage register.

2) A fast parallel-adder (CPA) which functions as either a carry

propagating adder using three levels of look-ahead with four bits

in the first group, four groups in the second section, and four

sections in the final level (producing a 64-bit sum in a single

clock period), or as a carry save adder.

3) A set of multiplicand select gates (MSG) which generate multiples

of the multiplicand from a decoding of the eight least significant

bits of the multiplier during a given iteration.

4) A logic unit (LOG) for Boolean functions.

5) A four-level shift netHork called the barrel switch (BSW) which

permits 32-bit or 64-bit words to be shifted left, right, end-off,

or end-around in one clock period.

6) A 16-bit index register (RGX) and adder (ADA) for memory address

modification and control.

7) A parallel logic network, called the Leading One Detector (LOD) ,

which generates information as to the amount of shifting needed in

a normalization operation and a binary number to be used for expo-

nent correction.

-2-

SECTJ01~ 1 - DESCRJl'TION or- THE PROCESSING ELEIvlENT (continued)

8) An 8-bit mode register (RGM) to hold the results of tests and the

results of tL'.~~ts and the PE ENABLE/DISABLE st;qte information.

9) A non-propog<lting three-level adder network, called the

Pseudoaclder Tree (PAT), each level of which accepts an

addend, an augend, and a carry-in. Output of the third

level consists of a sum and a carry.

-3-

2.1 INTRODUCTION

SECTION 2

ADDITION AND SUBTRACTION

Since the process of adding (or subtracting) two floating point num­

bers is the longest and most complicated of all arithmetic operations per­

formed by the ILLIAC IV, it seems a logical starting point for this discus­

sion of the arithmetic unit. Only addition will be specifically discussed

herein since subtraction is merely addition with a complemented operand.

Floating point addition requires that the two operands have equal ex­

ponents. If they arC' not the same, the mantissa of the smaller number must

be shifted right by as many places as the exponents differ. This process

is known as alignment.

After addition, the leading one bit of the sum's mantissa may not be

in the most significant bit position. If normalization was specified in

the programmed instructfon, the mantissa must be shifted left to this posi­

tion and the exponent decremented correspondingly.

In the 64-bit mode, the contents of the A register are added to the

contents of the B register. In the 32-bit mode, the outer mantissa of A is

added to outer mantissa of B and the inner mantissas surmned likewise. The

sum is placed in A in both cases.

As for implementation, the operands are initially loaded into registers

A and B. The difference in exponents is calculated in the CPA, which trans­

mits that information to the shift count register. This register affects

control of the PE's shift unit, the four-level barrel switch, which outputs

a corretted mantissa to the register (A or B) that formerly contained the

smaller exponent.

The actual addition of mantissas is performed in the CPA and the re­

sulting sum is routed to the "ac.c.umulator", the A register. The questions

of overflow and underflmv as well as implementation of the normalization

and rounding options will be discussed in the remaining text of this section.

The hardware elements i.n this section are discussed in the "chronological"

order in which they are employed for addition.

-4-

SECTION 2 (continued)

Addition operati.ons, such as the initial compar~~g of exponents and

the later sum7Tling of mantissas, are performed in the Carry Propagate Adder

(CPA). As noted in Section 1, this element also contains a carry look­

ahead adder ,,,hich determines whether, based on the inputs to the CPA, there

will be a carry. If there is a carry, it is fed back into the CPA which

produces the final sum.

In order to accommodate 64-bit data words, the adder is divided into

sixteen 4-bit groups and four 4-group sections._

Addition of two bits can produce a bit generate (if the inputs are "I"

and "1") or a bit transmit (if the inputs are "0" and "I" or "I" and "Oil).

Therefore, it follmvs that each group can similar.ly produce a group generate

(a carry originating vlithin the group) or a group transmit (a carry passed

along by the group). Group transmit will only occur if all inputs to the

group are either of the form 0, 1 or 1, O. Logically, the generate/trans­

mit concept can also be extended to sections.

Operation of the Carry Propogate Adder can be summari.zed as follO\"s:

Each adder bit position produces a bit generate and a bit transmit

which feed into group carry look-aheads four bits at a time. Each group

look-ahead in turn produces a group generate and group transmit which feed

into section carry look-aheads four groups at a time. Each section look­

ahead produces a section generate and section transmit. All section

generates and transmits feed into all other sections in order to create

carry input to each section. The carry into each section i.s:

C
l

G
4

+ G3oT4+G2:T3·T4+GloT2oT3oT4

C2 = Gl + G 4 0 T 1 +G 3 • T 4. • T 1 +G 2 0 T 3 • T 4 • T 1

C
3

G
2 + Gl·T2+G4·TloT2+G3·T4·TloT2

C
4 = G

3 + G2oT3+Gl·T2oT3+G4·Tl·T2oT3

-5-

SECTION 2 (Cont:i tliH~(j)

The group carriE's arc produced by the Above input cnrry to the

section and by the group generates and transmits that precede it within

the section. These gl·OU.p carries are fed into the group look-ahead,

which in turn produces hit c2rries. These bit carries are a function

of the input c2rry to t11e group and the bit generates and transmits that

precede it within the group. The bit carries are then fed into the

adder, which in conjunction with the original inputs to the particular

bit position, produces the output sum.

The synnnetry of the adder is more clearly noticeable in Figure 1.

-6-

BIT

C.ARRY

ISoPOER.. FC=:'
eNC 8fT

PCS,T/OS.

~\
\\

S£CTlON cOOK-AHEAD

____ GROUP GENERATE"
. MJD TRANSl-lfT

FIGURE I

CARRY PROPOGAT£ ADDER. 8LOCI(SCfI£J.1ATlC

-7-

SECTION 2 (continued)

After comparison of l:lH'. t',JO cxpol1ent~;, Lhe: CPA arrives at a number by

which the mantiss~ of the smaller operand must bE.~ shifted right. The

shifting itself is done in the Barrel Swltcll (which will be described in

Section 2.4), but intcl~prctation of this shi ft COIIUll<lnd into a form recog­

nizable by the Barrel Shift control is done in a paralleL logic network

known as the Leading One Detector (LOD). four sections of the network

(LOD 1,2,3,5) are involved in normalization (Section 2.7). Section #4 of

the network (LOD #4), however, is a 6-bit shift counter that decodes the

CPA-derived shift amount into a set of proper shift signals for the Barrel

Switch.

Before continuing, it should be noted that if the difference of expo­

nents is great~r than 47 in the 64-bit mode or 23 in the 32-bit mode, the

mantissa of the srnall<'r operand is forced to zero.

-8-

SECTION 2 (continued)

~.4 BARREL SWITCH (BSW~

The Barrel Switch is a shift network having four 6!~-bit levels that

can shift a set of bits up to 63 positions,either left or right and either

end-off or end-around~in one clock period. The first level of the. Barrel

Switch receives a parallel input of 64 bits from the Logic Unit (LOG). This

level is essentially a buffer and has no shifting capability, but it can

prohibit certain bits from entering the second level of the BSW. This fea­

ture is employed in implementing the "shift mantissa" instructions. The

first level is also capable of swapping bytes within itself. This feature

is used in the 32-bit mode division operations (Section 4).

The second level can shift in multiples of 16 bit positions, the third

level in multiples.of 4 bit positions, and the fourth level in multiples of

1 bit position. As previously stated, the amount of shifting (the mUltiple)

for each level is controlled by decoded pairs of bits from the shift counter.

Decoding of the t\vO most significant bits results in multiples (0 to 3) of

16 to be applied to the second level and can affect shifts of 0, 16, 32, or

48 positions. The middle two bits control third level shifting and can re­

sult in a bit pattern being displaced by 0, 4, 8, or 12 positions from its

second level position. Finally, the two least·significant bits of the shift

counter are decoded and applied to the fourth level of the BSW to affect a

shift of 0, 1, 2, or 3 bit positions.

For alignment, shifting is always to the right. If in taking the dif­

ference of the two exponents an end-around carry has been detected, the

difference is indicated as positive and the true output of the shift counter

is appli.ed to the Barrel Swi.tch controls. Otherwise the one's complement of

the output of the shift counter is applied to the Barrel Switch controls.

It should be stated that left shift instructions are implemented by

applying the above convention to the shift counter output but subtracting

the shift amount from 64 before enabling BSW control.

SECTION 2 (continued)

2.4 BARREl. SWITCH (BSH) (continued)

In order to better understand the implementation of a shift through

the BSW hardware) consi.der a sample case whe-re bit position 32 is to be

shifted 27 positions to the right. The contents of bit 32 is input to level

one of the BSW through the logic unit (LOG). It will then pass from the

first level to bit 32 of the second level without any shifting having yet

occurred. Level two receives a control signal from the shift counter to

shift its contents once. Recall that a "I" multiple applied to the second

level causes BSW control to shift level two right by 16 positions. Bit 32

is then shifted to bit position 48. Nmv bit position Lt 8 is transferred to

the third BSW level, v,1here a shift-counter-originated "Multip1e=2" signal

enables BSW control to direct an 8-bj,t (2 x 4) shift operation. The con­

tents of bit position 48 moves to bit 56. Now level three bit 56 is trans­

ferred to level four bit 56, a "multiple=3" signal enables BSW control to

affect a 3-bit (3 x 1) shift, and bit 56 is shifted to bit position 59.

The required 27-bit shift has now been completed. A schematic summary of

the entire operation is given in Figure 2.

It should be kept in mind that although the example below focuses on

displacement of only one bit, all bits entering levels 2, 3, and 4 are

shifted by the same amount as that single bit.

From LOG

~
32

BSW 'I , ~
11---->-

t---__________ -"", .,L'___ '--,-_'-.--.1

56

___________ ~j_- ~l r--,
----l~-r 11-10

--------11
.......... 1 -~- f
To A or B

FIGURE 2. ILLUSTRATION OF BARI{EL SHIl'CH SHIFT -10-

BSW 1

BSW 2

BSh1 3

BSW 4

SECTION 2 (continued)

2.5 OVERFLOH

If two numbers of the same sign are added, the: magnitude of the ref~td_t

might be greater than can he represented \vith the present exponent. This

condition is called overflow.

Since floating point arithmetic is under consideration here, it becomes

necessary to speak of both mantissa overflow (a carry into the exponent

field) and exponent overflow (a carry into the sign bit).

Mantissa overflow can occur:

o when the mantissas of addend and augend have the same sign

o when rounding. If the signs of addend and augend are equal, the

most significant shifted-off hit is added to the least significant

bit. of the sum.

Exponent overflow can occur:

o when adding exponents of equal signs in order to find the differ­

ence for alignment

o when mantissa overflow has occurred.

Either kind of overflow \·7111 cause one of the F bits in the Mode Register

(RGM) to be set. The correction of mantissa overflow is discussed in Sec­

tion 2.1.

-11-

SECTION 2 (continued)

2.6 ROUNDING ---.--
Hounding is a programming option that is performed when the exponents

of the two ope.rands differ. Although the mantissa of the smaller operc:md

has been right-shifted "end-off", use of the rounding option enables the

most significant bit of that shifted-off bit string to be saved in a special

latch (I1'1SB for 6!+,·bit moc1(~ and 32-bit inner vlOrd, Qj'·lSB for 32-bit outer

word).

If the operands agree in sign, the ISMB (OSMB) bit is added to the sum

of the mantissas. If the operands differ in sign (a subtraction is taking

place), the complement of lSHB (OSHB) is added to the final sum.

-12-

SEe'j'ION 2 (cont.i llucc1)

2.7 NOR!'L" Ll7.;\TION AND OVLlZFLO\~ C01<RECTJON ___________ ~ __ .~ "~M"' ___ • ___ '_'. ____ • __

If normalL-:ation is requC'.stc'd :in the programmed instruction, lhe first

three sections of the LC.:"Hling One Detector (LOD -if 1 ,2) 3) are used to detect

the position of the lendi.ng one in the mantissa. Hhen one of these LOD's

detects a leading one, it generates the controls required by the Barrel

Switch in order to left-shift the mantissa's leading one to bit position 16

(for 64-bit mode and inner word in 32-bit mode) or bit position 40 (for the

outer word in 32-bit mode). LOD #1 and LOD #2 and LOD #3 control shifting

in BSH levels 2, 3, and [~, respectively. They are enabled by LOD irS. If

the mantissa in question is found to be already normalized as the result

of the addition operation, LaD #5 disables LCID's I, 2, and 3 and the Barrel

Switch is set up for a zero shift.

I~ the case of mantissa overflow, LOD #5 disables LOD #1, 2 and enables

LCD #3 for a one bit position end-off right shift.

Now that the mantissas have been properly manipulated, a discussion of

exponent correction is required.

Exponent Correc!ion in 64-Bit Mod~

A fixed input of 00111111 is placed into the B register bit positions

a to 7 and the contents of LOD #1,2,3 are enabled by LOD #5 into bit posi­

tions 10 to 15. Further, LOD itS generates zeros into bi ts 8 and 9 i.n case

of overflow or if the leading one is at bit position 16 and generates ones

in any other case.

So, the exponent field of the B register is as £ollO\.]s for the 64-bit

mode:

a If overflow has occurred - all 1111 0000 0001

o If leading one is at bit position 16 - all 1111 0000 0000

o Normalization - all 1111 11xx xxx x

Where the XIS indicate normalization shift count.

-13-

SECTION 2 (contil1l1ccl)

Exponent CorEec t.~~~~_i.n 6 tl.: Hi t _Node (cont inued)

The main criterion fur the output of the B register into the CPA is

the state of hi ts R 3nd Y. If these bits are zero, then t-he complement of

B register bits 1 to 7 is brought into tLe CPA, which means that the output

of the B register bits 0-15 is:

o If overflmv has occurred - 0100 0000 0000 0001

o If leading one is at bit position 16 - 0100 0000 0000 0000

If bits 8 and 9 are ones, the mantissa must be shifted to the left a

certain number of places, 'vhich implies that this shift count must be sub­

tracted from the exponent of the final sum. Since the true (uncomplerncnted)

output of the B register is brought into the CPl\ for bits 8, 9 = 1, bit 1

is a zero and the exponent is negative.

Exponent Correctioll in 32-Bi t Mode

For the 32-bit mode, the contents of LaD #1, 2, 3 are enabled by LOD #5

into bit positions 10 to 15 (for inner word) or 2 to 7 (for outer word). As

for the 64-bit mode, LOD #5 generates a one in the exponent most significant

bit (bit 1 or 9 for outer word or inner word, respectively) if overflow has

occurred or if the mantissa requires no normalization.

So, the exponent field of the B regtster is as follows for the 32-bit

mode:

0 If overflow has occurred, outer word 100 0001 in bits 1-7

0 If overflmv has occurred, inner word 100 0001 in bits 9-15

0 If leading one is in bit position LfO (outer word) 100 0000 in bits

0 If leading one is in bit position 16 (inner word) 100 0000 in bits

0 Normalizatjon - Oxx xxxx in bits 1-7 or 9-15

Where XIS signify normalization shift count.

In the 32-bit mode the uncomplemented exponent is fed from the B regis­

ter into the CPA. Observe that in the normalization case above, the leading

zero in the exponent indicates how much the exponent of the sum must be re­

duced.

-14-

1-7

9-15

SECTION 2 (continued)

Exponent UnderflovJ

If, in normalization, the value' of the exponent is reduced below the

minimum value that the register can accolThllodate, exponent underflovJ is said

to have occurred. In such an instance, the entire contents of the A regis­

ter is set to zero and the appropriate mode register F bit is set.

Normalization with Zero MAntissa

At this point, an interesting question arises. ~lat will happen if

the program calls for normalization and the mantissa of the sum is zero?

It is apparent that in this case the LOD #1, 2, 3 won't detect a leading

one and, therefore, the Barrel Switch will not be performing any mantissa

shifting. Moreover, no correction bits will be inserted into the B register,

which implies that the exponent will not be affected from that condition.

Therefore, exponent underflow will not occur under any circumstances when

attempting to normalize a zero mantissa.

In floating point arithmetic, a zero number is represented by a zero

mantissa and the smallest exponent that the machine can hold. When the man­

tissa is zero, there is a signal called Zero Mantissa Level which inhibits

the load clocks into the exponent field of the A register, while simultan­

eously the clear clocks are enabled to fill this field with zeros. Since

the exponent is represented in excess code:,,, zeros in the exponent field

means that the number has the smallest possible exponent.

Normalization Reference Table

Table 1 irdicates the mantissa shift amount and exponent correction

for normalization in the 64-bit and 32-bit modes.

-15-

J
I-'
0\
~

Bit Position
of Leading

One

OV1
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32

33

34

35

36
37
38
39

l.aOL.c 1.

SHIFTING IN NORJ.'1ALIZATION AND EXPONENT ADJUSTMENT

BARREL SHITeR LEVELS EXPONENT ADJUSTMENT.
FIRST LEVEL

[64 Bit Mode 32 Bit Hode SECO~1) THIRD FOURTH 64 BIT HODE 32 BIT MODE
32 Inner Outer LEVEL LEVEL LEVEL

0 - 0 0 1 0100000000000001 01000001
0 - 0 0 0 0100000000000000 01000000

0 - 48 12 3 0011111111111111100111111 ,
0 - 48 12 2 001111111111111000111110

I 0 - 48 12 1 0011111111111101 00111101

I 0 - 48 12 0 0011111111111100 00111100

0 - 48 8 3 0011111111111011 00111011

0 - 48 8 2 0011111111111010 00111010

0 - 48 8 1 0011111111111010 00111001 -
0 - 48 8 0 0011111111111000 00111000

0 - 48 4 3 0011111111110111 00110111

0 - 48 4 2 0011111111110110 00110110

0 - 48 :·4 1 0011~ 1111111010 1\ OOl10~01

0 - 48 4 0 001111111111010000110100

0 - 48 0 3 0011111111110011100110011

0 - 48 0 2 0011111111110010!00110010

0 - - - -- 48 0 1 o 0 1 1 1 1 11-1 1-1.1 0 0 0-1 00110001

0 48 0 r 0 00111 1 1 1 1 1 1 1 0 000 00110000 - I 0 - 32 12 3.: 0011111111101111 00101111

0 - 32 12 2 0011111111101110 00101110

0 - 32 12 1 0011111111101101 1 00101101

0 - 32 12 0 ,0011111111101100100101100

0 - '32 8 3 0011111111101011,00101011

0 - 32 8 2 0011111111101010:00101010

0 - 32 '-'8 1 10011111111101001111101001

,
I--'
-.....J

Bit Position
of Leading

One

OV2
40

41

42
43
44
45
46
47
48
49

50

511

52

53

"54
55

56

57

58

59
60

61

62

63

) - - -- -

SHIFTING ~N NOlli~LIZATION.A1~ EXPONENT ADJUSTMENT

BARREL SWITCH LEVELS EXPONENT ADJUSTHENT
FIRST LEVEL

164 Bit Mode 32 Bit Mode SECOi':D THIRD FOURTH 64 BIT MODE 32 BIT MODE
32 Inner Outer LEVEL LEVEL LEVEL

- 0 0 0 1 - - - - - - - - - - - - - - - - 10 1 0 0 0 0 0 1
0 2/+ 32 I 8 0 o 0 1 1 1 1 1 1 1 1 1 a 1 0 0 0 10 1 0 0 0 0 0 0

0 24 I 3? l+- 3 I 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 10 0 1 1 1 1 1 1

0 24 32 4 2 I 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 io 0 1 1 1 1 1 0
0 24 32 4 1 o 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 10 0 1 1 1 1 0 1
0 24 32 4 0 o 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 10 0 1 1 1 1 0 0

0 24 32 0 3 o 0 1 1 1 1 1 1 1 1 1 0 a 0 1 1 10 a 1 1 1 0 1 1
0 24 32

I
0 2 o 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 /0 0 1 1 1 0 1 0

0 24 32 a
I

1 001111111110000100111001
0 24 32 0 0 o 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 io 0 1 1 1 a a 0
0 24 16 12 1'\ 0011111111011111 00110111 j

0 24 16 12 2 0011111111011110 00110110

0 24 16 12 1 o 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 10 0 1 1 ° 1 0 1
0 24 16 12 0 0011111111011100·00110100

0 24 16 t 8 3 o 0 1 1 1 1 1 1 1 1 0 1 0 a 1 1 10 a 1 1 0 0 1 1
I

0 24 16 8 ,.,
I 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 a 10 0 1 1 0 0 1 0 L

0 24 16 8 1 a 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 10 0 1 1 0 a a 1

0 24 16 8 0 o 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 10 0 1 1 0 0 0 0
I

0 24 16 4 3 o 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 10 0 1 0 1 1 1 1

'0 24 16 4 2 o 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 10 0 1 0 1 1 1 0 ,
0 I 24 16 t:4 1 10011111111001101 00101101

I

0 I 24 16 4 0 10011111111001100 00101100

0 I 2ll- !_6 ° 3 0011111111000011 00101011
I l

o 0 1 1 1 1 1 1 J. 1 0 0 0 0 1 0 10 0 1 0 1 0 1 0 I o· ! 24 16 0

24 o I 1 I 0 0 1 1 1 1 1 1 1 1 a 0 0 0 0 1 I 0 0 1 0 1_ 0 0 1 16 o

SECTION 2 (continued)

Following is a sunmwry of the sequence of operations for addition in

the 64-bit mode and 32-bit mode as a function of clock times:

Addition in 64-Bit Mode

Tl Take J:Lfference of exponents

T2 Save rounding bit

T3 Align mantissa having smaller exponent

T4 Add mantissas

TS Complement, ruund, store overflow (if any)

T6 Complement, normalize, adjust exponent, determine sign

T7 Correct resultant exponent

Addition of 32-Bit Mode

Tl Take difference of inner word exponents

T2 Save rounding bit for inner word

T3 A) Take difference of outer word exponents

B) Align mantissa of inner word having smaller exponent

T4 Save rounding bit for outer word

TS A) Align mantissa of outer word having smaller exponent

B) Add mantissas of inner "vord, store overflo,,, (if any)

T6 Complement, round, store overflmv (if any) of inner \-lord

T7 A) Add mantissas of outer word, store overflow (if any)

B) Complement, normalize, adjust exponent of inner word

T8 Complement, round, adjust exponent of outer word

T9 Complement, normalize, adjust exponent of outer word

TlO Correct resultant exponent and sign of outer word

A detailed list of the sequence of operations occuring during each

of the above clock times is given in Appendices A and B.

-18 ...

3.1 INTRODUCTION

SECTION 3

MULTIPl.ICAT10N

Multiplication is actually the addition of partial sums (to form the

partial product), in \<lhich each partial sum is a multiple of the multipli­

cand. In floating point multiplication, the exponent of the product is the

sum of the exponents of the operands.

Since multipli.cation time in the PEls is dependent on the fact that

the control unit proceeds to the next operation only after all PEls in the

quadrant have completed the multiplication, acceleration of the process is

greatly dependent upon the reduction of the number of partial sums as well

as the speed v.dth \·;rhich these sums are formed and the speed at which they

are added.

As for implementation, the R register holds the multiplicand, the B

register hold~ the multiplier, and the: A register contains the partial pro­

duct (and initially, the multiplicand). In the 6!j.-bit mode, the A register

will contain the 48 high-order bits of the final product and the 48 low­

order bits will be found in the B register. In the 32-bit mode, if both E

bits in the mode register arc enabled, the A register will contain both 24-

bit products while the B register will contain the 48-bit product of the

outer word. If either or both E bits are disabled, the A register halfword

will be properly restored and the B register will contain the 48-bit outer

word product.

-19-

SECTION 3 (cant inu E~d)

3.2 bJ]DITIQN OF E.~PQr:iI'~l~I§.

In floating point multi.plication, the exponents of the operands are

added. The sign bit of the final exponent is determined by a carry (or

absence of. carry) out of the exponent field. Such a carry will exist if

either a) both exponents are positive or, b) o~ exponent is positive and

the other negative and their sum is a positive number.

The "carry" (0 or 1) is placed i.nto a special circuit and brought back.

directly into tlJe ITl()St s:i.gn:i fi.cant bit position of the exponent. In that

way, the exponent carey does not effect the sign of the mantissa.

-20-

SECTION 3 (continued)

~.3 RECORDING THE MULTIPLIEH -------------_.-
It is established that binary multi.plication \.,ri.th an n-bit multiplier

conceptually takes n jLerationse With multipli.ers of the order of 48 bits

(64-bit mode mantissa) in the ILLJAC IV, a reduction in the number of itera­

tions is essentlal to efficient operation. In the present design of the

processing element, the number of iterat.i.ons has been reduced to three for

each of the words of the 32-bit mode and to six for the 64-bit mode.

Since the mant issa of a 32-bit 'vord is comprised of 24 bits and that

of a 64-bit word is 1+8 bits long, it is evident that one iteration must

accomplish multiplication by 8 multiplier bits at a t.ime. Such a feat is

implemented as follows: In the first iteration, the contents of the B

register (multiplier) mantissa are fed into the Logic Unit (LOG), which passes

them in parallel t.o the Barrel Switch. Within the BarrIe Switch, the mantissa

is right-shifted end-off by 8 places. The shifted-off 1ow-order 8 bits are

routed to a network called the Multiplier Decoder Gates (NDG), where they are

divided into 4 pairs. The 40 high-order mantissa bits are returned to the

B register.

In subsequent iterations, the same shifting-decoding process is

performed, but only tIle 40 low order bits from the B register are used~

For each of those iterations, then, the Barrel Switch receives 40 bits

every clock time and returns 32 bits to the B register.

Each pair of multiplier bits can be interpreted as follows:

o A bit paj.r 00 means that no addition of the multiplicand is

requiredo

o A bit pair 01 means that the multiplicand must be added to the

partial product.

o A bit pair 10 means that double the mUltiplicand (which is the

multiplicand shifted left one position) must be a.dded to the

partial product.

-21··

SECTION 3 (continued)

3.3 RECODING THE HULTIPLIER (continued)
o A bit pall' 11 means that the multiplicand must be multiplied by

three before being added. This condition is implemented by sub­

tracting the multiplicand from the partial product and then adding

the mUltipljcand after shifting it left two positions (i.e., after

mUltiplying it by four).

The above pairs, then, can be coded as multiples 0, 1, 2, and -1, res­

pectively, with the latter implying an immediate subtraction and a carry

into the next pair.

Considering the effects of a carry from a preceding pair, a "recoding"
can be defined as fo11mvs:

RECODED
PAIR CARRY-IN MULTIPLE CARRY-OUT

00 0 0 0
01 0 1 0
10 0 2 0
11 0 -1 1
00 1 1 0
01 1 2 0
10 1 -1 1
11 1 0 1

The multiplier in the B register is partitioned as follows:

The 64-Bit Mode

Bit 63 does not participate in the bit-pairing process but is used to
~~te. !<')r ~o-t ;~()".~~: C"J-T:he ~v'tI.)l'~lp!,c"c..Y\d '''''-{:r:> "f~~f?. .A r-("'-f.!!'')'(:t;:,.. ~s i,he., _

clie..ck-v.i Qat.h.Qt:--th~-~n.1::t:"l,.a.l,-~l-o.ad-bH.g.~~-the·.··nw·±,t=l~f>"J:.f.€-a~±-at-o-f.h e it "'!"eg~:oe-t.-er
/I"){i-,ee.(pc('r-t/l:t./ proe,"vct:.

waS--GG:r~e c t (i f -i..t.-i-s--on6.,.-t;H.e"~-I:nu-l--t4.i~.JA".c,aHcJ-~.ffia-~.......t.;.fl€ A reg i:B~ Th e

remaining 47 bits are grouped in pairs from the right and in six 4-pair sec­

tions as shown in Figure 3.

16 63

+------+_-+-\ __ ~I _-+l_. __ l!--l-I-+-J!.-I ~l ~..-.L..-\ -n-4-
I !. IPair Pair !pair Pair

5 \ Section 4 Section 3\ Section 214 se!tion \ 1 Section 6 Section

FIGURE 3. PARTITION OF 6/f -BIT }lODE l'lULTIPLIER }1ANTISSA

-22-

SECTION 3 (cant ilHled)

~.3 RECODING THE HUI::yl}?LIER (continued)

Since the mantissa contains 48 bits and bit 63 j.s not paired, it is

clear that pair 4 of secLion 6 logically contains only one bit. However,

to avoid having to \Vorry about a possible carry into the exponent field,

this "pair" should be thought of as an actual t\-Jo-bit pair in which the

leading bit is zero. So if bit 16 is a one and a carry occurs from Pair 3,

Pair 4 will become 10 (an addition of twice the multiplicand to the partial

product).

Each of the above sections require one iteration (one clock time) for

the formation of the partial product.

The 32-Bit Node

The partitioning process for multiplication in the 32-bit mode is simi­

lar to the process for 64-bit mode multiplication described above, ex.cept

that bits 39 and 63 will be the initial multiplicand enables and outer and

inner word mantissas ,·,ill each be partitioned into three sectionso

Application of Recoded }lultiJ?les_

The actual recoding takes place in the MDG, where one multiple

is generated for each of the four bit-pairs. These multiples are sent

to the Multiplicand Select Gates (MSG) , whi.ch apply each to the multi­

plicand from the R register. The }'1SG outputs four levels of shifted

multiplicand, each level reflecting the result of applying one of the

recoded multiples to the multiplicand. Clearly, each output level must

consist of 49 bit positions in order to accomodate the "multiple 2"

case, where a 48-bit number is shifted left by one place.

The first three MSG output levels become input to the first three

levels of the Pseudoadder Tree (Section 3.4), respectively. The fourth

MSG output level, \vhich is the result of applying the recoded bit-pair

#4 to the multiplicand, is input to the Carry Propagate Adder.

-23-

SECTION 3 (continued)

Since multiplicat.ion is defi.ned as successive addit.ions of the multi­

plicand, it is evident that the use of a very fast adder is essential.

Ho,,,,ever, instead of adding only two numbers to produce the sum, a new adder

has been incorporated into the ILLIAC IV PE ~",hich adds three numbers

(addend, augend, and carry-in) and produces not only a sum, but both a sum

and a carry. 1'hi[; adder is called the Pseudoadder Tree (PAT).

The PAT has three levels 8nd can acconunodate 56 bits. Its ·high speed

is due to the fact that there is no carry propagation since carry consti­

tutes one of the three inputs to the next level of the tree.

The operations of each level of the PAT are as follows:

o In the first level of the Pseudoadder Tree, the 48-bit partial

product from the A register is added to the first shifted multi­

plic~nd that is output from the MSG. The sum and carry output

from this level is input to level two.

o The second level adds this first level input to the MSG result

obtained by applying the second recoded bit-pair to the multipli­

cand. A new sum and carry is generated to serve as input to the

third level.

o The third level of the PAT adds the MSG third output level to

this input to produce a final sum and carry for the PAT.

At this point, six of the eight bits in a multiplier section have been

applied to the multiplicand and the result has been added to the partial

product. The resulting sum and carry of this operation comprise the output

of the PAT. All that remains is to add this result to the output of the

fourth MSG section, which is the multiplicand after it has been multiplied

by the recoded bit-pair #4. This addition is performed in the Carry Propo­

gate Adder. It can be observed that the CPA is actually behaving as a

fourth level of the Pseudoadder.

-2t~-

SECTION 3 (continued)

3.4 PSEUDOADDER T~EE (PAT) (continued)

The output of the CPA is the final 56-bit sum and carry of one multi­

plication iteration. The 48 high-order bits of the sum are loaded into the

A register mantissa and the 8 low-order bits are loaded into the B register

mantissa. Carry is feel into the C register for input to the first leve1 of

the Pseudoadder in the next iteration. Of course, in the initial iteration

the C register contains all zeros and therefore contributes no carry to the

PAT.

To aid understanding, the process described above is schematically

represented in Figure 4.

-25-

i----··
i
;
i
t

I
I
I
!

II

I

j _ :t-lu 1 tip 1 i e s

5------ __ .L___ _.- from :t-lDG

Carry Propagate
Adder (CPA)

Multiplicand
Select Gates
(HSG)

8 Bits

MSG Outputs
49 bits per level

I 48 Bits
Lb_:.:;::.=::::.~_.--=:::""-:-':::;;::;;"-_7_~~ __ _ Carry [J RGB

I J
~

RGC

Figure 4. Schematic Representation of Multiplication

RGA - Partial Product
RGB - Multiplier
RGR - Multiplicand

-26-

_L _____

SECTION 3 (continued)

3.5 TIM.ING OF MULTIPLICATION OPERATIONS IN 6ft -BIT MODE

Following i.s a summary of the sequence of operations for multi.plication

in the 64-bit mode as a function of clock times:

TI A) Calculate Exponent
B) Recode 8 bits of multiplier mantissa for first iteration

T2 Recode 8 bits of multiplier mantissa for second iteration

T3 Recode 8 bits of multiplier mantissa for third iteration

T4 Recode 8 bits of multiplier mantissa for fourth iteration

T5 Recode 8 bits of multiplier mantissa for fifth iteration

T6 Recode 8 bits of multiplier mantissa for sixth iteration

T7 Sixth iteration

T8 Form the final product

T9 Normalize final product

A detailed list of the sequence of operations occuring during each

of the above clock times is given in Appendix C.

-27-

4.1 INTRODUCTION

SECTION 4

DIVISION

There are several methods for performing the division operation. Arnong

the most common are "restoring", "non-restoring", and "non-performing". In

the restoring method, the divisor is successively subtracted from the high­

order bits of the dividend; the result replaces the dividend. The quotient

is increased for each successful subtraction, i.e., for each subtraction

yielding a positive result. When a negative result of subtraction is ob­

tained, the di.vidend is restored by adding the divisor to it. The dividend

and the quotient are then shifted left one position and the process is re­

peated.

Non-restoring division is based on the observation that a subtraction

yielding a negative result in the above method requires a restore operation

(i .. e., an addition of the divisor) followed by a subtraction of the divisor

during the next iteration (with the divisor shifted one place to the right,

or divided by two). The two operations "add present divisor" and "subtract

one-half present divisor" can be combined to a single operation "add one­

half of present divisor". From a hardware viewpoint, however, th~s process

requires extra logic gates to pick up locally the TRUE or CO}IPLEMENT output

of the divisor register and implies added cost and complexity of the proces­

sing element.

The ILLIAC IV employs an altered restoring method known as the non­

performing method. Recall that in the restoring method, a one is entered

in the quotient for a positive subtraction result and a zero is entered

otherwise. This rule only applies to positive quotients, however. If the

sign of the quotient is negative (i.e., if divisor and dividend have oppo­

site signs), the opposite is performed (zero for positive subtraction result,

one otherwise). In non-performing division, the sign of the result is con­

sidered.. If this sign is the same as that of the present partial remainder,

a one is entered in the quotient bit if the quotient is positive and a zero

is entered if the quotient is negative. If the sign of the subtraction

result differs from that of the present partial remainder, the result of

the subtraction is ignored and the partial remainder is shifted left one

place. A zero is then added to the quotient if the quotient is positive

and a one is added to a negative quotient ..

-28-

SECTION 4 (continued)

.1 INTRODUCTION (continued)

As for register allocation, the double-length dividend is initially in

registers A and B. The normalized divisor is in the R register. Following

each iteration, the one-bit quotient is loaded into the B register at posi­

tion 63 and the remainder is retained in the A register. At the end of the

required 48 iterations, the quotient is in the B register and the remainder

is in A. The contents of these two registers are then swapped so that in

the final form, the 48-bit quotient is in the A register.

-29-

SECTION 4 (continued)

.2 IMPLEMENTATION OF THE DIVI~}ON QPERATION

As previously stated, the mantissa of the dividend is of a length

double that of a single register's mantissa field. For the 64-bit mode,

then, a dividend mantissa is 96 bits long. These bits initially occupy

both the A and B registers Hith the 48 high-order bits located in the A

register. The dividend need not be normalized. The divisor, located in

the R register is 48 bits long and must be in normalized form before the

division process is started.

Since the recursive division process requires subtraction of the divi­

sor from the dividend, the one's complement of the divisor is taken into

the CPA where a one is added to it to form the two's complement. The

divisor, now in complemented form, is added to the dividend. If the sub­

traction is successful (i.e., if the result is positive), then the quotient

bit is a one. Otltenvise the quotient bit is a zero.

The system hard'vare puts a one in the quotient bit if either:

a The "RSIGN" latch is set, or

a The result of the subtraction of divisor from dividend causes a

carry out of the most significant bit of the adder (positive re­

sult of subtraction).

That is, Q = RSIGNi +l + GC16 GC16 = Carry Out of the MSB

The "RSIGN" latch can be thought of as a one-bit left extension of the A

register. It is set when bit position 16 of either the A register or the

CPA are one and the previous quo~ient bit 'vas one.

That is:
RSIGN. 1 = A16;Q. + CPA16·Q.

1.+ 1. 1.

This specification is predictable since, given the fact that the divi.sor

is always normalized, a successful subtraction requires a one in the most

significant bit position (Bit 16) of the partial remainder.

The RSIGN latch is initialized to zero, so the quotient for the first

iteration is entirely dependent on whether the subtraction of divisor from

dividend produces a.n overflow. That i.s, on whether the result is positive.

-30-

SECTION l.j (conth1uc·.d)

~. 2 IMPl.EMENTATION OF THE DIVIS ION OPERATION (continued)

Subsequent iterations require consideration of the previous result.

If Q. = 1, the preceding subtraction must have been successful. Therefore,
1 .

the remainder is taken through the CPA and loaded back into the A register

after being shifted left end-off by one place.

If Q. = 0, however, a negative remainder is indicated. Thus, the re-
1

suIt of the subtraction (remainder) is ignored and the current dividend from

the A register is passed through the PAT and, after being shifted to the

left by one position, is re-entered in the A register.

It should be explained at this point that neither the CPA nor the PAT

have any extensive shift capability built into them. Their ability to affect

the above single position left-shifts is as follows: The PAT has three

levels, each level receiving three inputs (sum, carry, and the shifted R

register contents). In division, the C register is cleared in clock time T1

and therefore, no carry enters the first level. Further, the division pro­

cess, unlike multiplication, does not access the MDG recoding network. So

the contents of the A register constitute the only input to the PAT first

level. The PAT has been designed so that in the absence of MDG and carry-in,

the contents of the A register is directed to the PAT third level. This

level is hard-wire connected back to the A register, but displaced one posi­

tion to the left relative to the original position. That is, bit 63 becomes

bit 62, 62 becomes 61, etc.

The CPA is constructed in the same way. The A register is hard-wired

to the CPA, the output of which goes back to the A register, but displaced

one position to the left.

Each time the A register mantissa contents are left-shifted, the B

register mantissa contents are also left-shifted (but in th~ Barrel Switch

instead of the PAT or CPA). Thus, B register bit 16 is transferred to A

register bit 63 and the now-vacant B register bit 63 receives the quotient

... 31-

SECTION L~ (cant i nlled)

.2 IMPLEMENTATION OF THE DIV!._SION OPEJy~TION. (continued)

Following the 48th iteration, the dividend has undergone 47 left shifts

and quotient Q1 is in bit location 16 of the B register. The last subtrac­

tion has determined Q4SG If Q48 = 1, the subtraction result is shifted left

and then loaded back into the A regi.ster to become the partial remainder [or

the 49th iteration of the recursive process. If Q48 0, the previous re-

mainder is shifted to the left by one place and then returned to the A register.

In the next clock time, no execution takes place, but a test is made to

determine whether the original dividend was greater or equal to the divisor.

If bit position 16 of the B register contains a one (Ql = 1) the exponent in

A is increased by one. If this bit is zero (Ql = 0), the exponent remains

unchanged. The latter indicates that one more bit of precision can be added

to the quotient.

At the end of the 49th iteration (clock time T53), the contents of Q
l

is interpreted as regards the quotient. If Q
l

= 1, the B register is blocked

to prevent insertion of Q49" If Ql = 0, however, the quotient is shifted

left one position and Q49 is enabled into B register bit position 63.

Division is now complete. and the mantissas of the A and B registers

are interchanged, leaving the final quotient in the A register and the final

remainder in the B register.

-32-

SECTION 4 (cant i rmed)

.3 SUBTllACTION OF EXp(r':E~;I';:)
-----.---.~.--...... ~- .. -.--.. --~

In division, the: ~xponent of the divisor i.s subtrCtcted from the expo-

nent of the dividend and the result is placed into the exponent part of the

A register. At ti,e beginning of the division process (clock time Tl), the

exponent of the divisor (R register) is passed through the Operand Select

Gates (OSG) and is loaded into the exponent part of the B register. Then,

at clock time T3 (T2 is used for mantissa adjustment), the subtraction of A

and B register exponents is performed in CPA and the result is gated back

into the A register.

Nothing further is done with the exponent until the 48th mantissa

division iteration has been completed. At that time (T52), the exponent in

A is incremented by one if the first quotient bit (Ql) was a one. If this

incrementation produces exponent overflow, the F (overflow) bit of the mode

register is set.

-33-

SECTION 4 (contirll1c'd)

~.4 NOlU,fALIZATION

The process of mantissa normali.zation and corresponding exponent cor­

rection for division is essentially the same as described in Section 2.7

for the addition operation.

If normalization is specified in the progranU11ed 6Lt -bit mode division

instruction, the binary number 00 111 111 is placed into bit positions 0 to

7 of the B register (clock time T3) for exponent adjustment. At clock time

T55, the leading one detector determines the amouut of shifting that will

be necessary for mantissa adjustment. The Barrel Switch shifts the A man­

tissa by this amount and the shift count is inserted into the exponent of

the B register. At T56, the A and B register exponents are added in the

Carry Propogate Adder with the sum transferred back into the A register ex­

ponent field. If exponent underflow occurred, the entire A register is set

to zero.

A similar procedure is follQ'l;ved in 32-bit mode division. The exponent

correction factors are entered into the B register ~t clock times T3 and T6

(for outer and inner word, respectively). The mantissas are normalized and

exponents are adjusted in clock times T67 to T69.

SECTION (~ (cnnr-inur>o)

·.5 TIHING or DIVISIO~~ OPEl~.!\TI0NS --_ ... _._----- _ .. -- -.. ' ... - .. ---- .-.--, .. ~.---.- .. -.-

Following it:; eFt summary of the sequence of oper3ti.ons for divi.[;ion in

the 6!+-bit mode· and 32·-bit mode as a futlction of clock times:

Division in (A"Bit ilode

Tl Transfer exponent of R register into B register

T2 If rounding, transfer mantissa of R register into B register shifted
end-off to the right by one

T3 Calculate exponent

T4 TS1 Form the quotjent field

T52 Increment C):r~o'·Jc.nt of A register if Q
1

= 1

T53 Test Ql in order to determine use of Q49

T54 Interchange mantissas of Register A and Register B

T5s frf normalizing, detect leading one of Register A mantissa and shift
T56 laccordingly.

T56 Adjust exponent of Register A, check for exponent underflow

Division in 32-Bit Mode

Tl Transfer exponents (inner and outer) of R register into B register

T2 If rounding) transfer outer mantissa of R register into B register
shifted end-off to the right by one

T3 A)

B)

If rounding, transfer shifted inner mantissa of R register into
B register as in T2
Calculate exponents

T4-T5 Interchange outer and inner mantissas of B rf~gister

T6 Interchange outer mantissas of A and B registers

T7-T30 Form the Quotient field for inner words

T31 Increment inner exponent of A register if Q
l

1

T32 Test Ql in order to determine use of Q25

T33 Interchange inner mantissas of A and B registers

T34-T36 Interchange inner and outer mantissas of R register

T37 Check for non-normalized divisor in R register

T38-T61 Form the quotient field for inner words (recalling inner and outer
words have been interchanged)

-35-

SECTION 4 (contir;(l.:~d)

~.5 TIHING OF DIVISION OPERAT]ONS (continued)

T62 Increment outer exponent of A register if QI I

T63 Test Q
l

in order to determine use of Q25

T64 Interchange mantissas of A and B registers

T65-T66 Interchange inner and outer mantissas of B register

T66 Clear inner or outer exponent and mantissa of A register if exponent
underflo'V7

T67 If normalizing, detect leading one of Register A inner mantissa and
shift accordingly

T68 A)

B)

If norma]:Lzing, detect leading one of register A outer mantissa
and shift accordingly
Adjust inner exponent of Register A, check for ex.ponent underflow

T69 Adjust outer exponent of Register A, check for exponent underflow

A detailed list of the sequence of operations occuring during each 6f

the above clock times is given in Appendices D and E.

-36-

APPENDIX ,\: ADDITION IN 0+ BIT HaDE

Tl EXPO~~ENT DIFfElZI:NCE
---..... --.~------

1. - Enable tru::! O\J~_: of exponent of B -

2. - Enable complement out of exponent of A
>\

3· - Enable camp] e:nent out of exponent of A into. CPA' -
I
I

4.
i

Enable true out of exponent of B into CPA r.

5· Enable the sign of B mantissa into CrA
!

6. - Enable the bit carries because of the addition of

B &A into CPA

7. - Force zeroes into the mantissa part of CPA

8. Clear and load clocks into S.C.R. (LaD ~t4)

9. - Put exponent part of CPA into SCR(8-15) ""-•.. __ .. _------

10. -. Clear and load clocks into LaD

11. - Clear and load the latch for OSEQ

-37-

I (2· 04 . . _ 1~1 ') :/ ,).j j'

~.---.-.... -.-----.--~-~
I~> /' if I')

----,.

A 1 0 0 000 0 0 0 0 0 0 001
---··----·--"----~·--·--·-,·----···-·---i

B 1 0 000 000 0 0 000 1 0
---··------·---·-·-------i

A 011 1 1 111 1 1 1 1 1 1 0

B 1 0 0 0 0 0 ,0 0 0 0 0 0 0 1 0

CPA

CARRY

s.C. R.

o 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

FINAL RJ~SULT OF EXPOHENT
DIFFERENCE

-38-

o 0 000 :~
j),N l

1'2 ROUNDING (Optional)

1. Enable true out af sign and mantissa of A

2.. Enable true out of sign and mantissa of B

3 .. - a) Enable A into LOG if there is (from exp. addition) a carry and

therefore if c:::poncnt of A < expon(~nt of B

b) Enable B into LOG if there is no carry and therefore exponent A >

exponent of B

4. - Enable the 64 shift counter from SCR

5. - Enable force shift left (control for end-off)

6. - Transfer LOG into BSW (bits 16-63)

7. - Load most significnat shifted-off bit into IHSB latch

(--.---~~:)

\

r' ", ,-vj "1 ';, ,.' 1",,_ ,...' ~ '_,., ~ C---,--
.. --~-:---.".-.'"

-39-

T3 A LTC;~ !\1A~<J'J S SA H!\VI he; SJ\lA 1 ,L,ER EXPC:~'mNT
.. -.-.--.-.~. "-' • ____ • ~ __ ~ __ ..._· ___ ••• ' •• r _._ •• _.,_~_ _._. __ ,_ _~_ __ ••

. -.--------,-.--,~.-------- ,.------'._--

1_ -- Enable cowp! ,,'~!,I~"ll t or signs of A & B if V • 11 ••

2. Enable true or signs of A & B

3· - Enable true of lIla 11 t: ~~. S [;.::1 S of A & B

4. Load sign and ffulntissa of A into LOG if there is a carry

5. - Load sign aw] mantissa of B into LOG if there is no carry

6. - Enable 64 shift counter from S.C.R.

a) True out· of S. C. R. if thereis a carry

b) Comple.w2nt of SCR if there is no carry

7. - Transfer LOG into BSW (16-63 bits)

8. a) Transfer the BS~'] into A (16-61t bits) if there is a carry

b) Transfer the BSH into B (0- 15, 16.·63 bits) if there is no carry

9· - a) Load A mantissa if there is a carry

b) Load B mantissa if there is no carry

10. - Enable exponent of B (1-15 bits)

11. - Restore sign of A (0 bit)

12. - Enable B exponent into the exponent part of A

13. - Clear and load the sign and exponent part of A.

-40-

ADDITIOi\ OF }iI'J'iTISSAS

1. Enable true out of nnnti.ssa of B if mantissa signs equal

2. - Enable complemcilt out of B if m:"ultissa sizns an.! unequal

3. - Enable true out of sign and mantissa of A

It. - Transfer mantissa of A into CPA

5. - Transfer Dantiss~ of B into CPA

6. Inhibit EAC ,from exponent if signs are equal

7. - Enable bit carries]'esuJtin~ from the addition of the mantissa

into CPA.

8. Transfer sign of m;:-tntiss~:. of B into CPA

9. - Transfer the cxpoaent of A into CPA

10. Transfer the lllantissa of CPA into A

11. Set WCHP latch if there is no carry and signs are unequal

12. Set overflow if the signs are equal and there is a carry' (most

significant bit of mantissa of CPA)

13. - Clear and load clocks to OVI

1.. Enab 1c die true of mant5r-.sa of i\ if vJCHP latch is low.

2. Enable the contl,lement of mantissa of A if WCl'Jl"l latch is high.

3. Transfer rDantissCi or A (lor 2 above) into CPA o

4. Enable bit carries into CPA (0 - 15) and (~A(16-63)·

5. Enable the exponent of A inte CPA (65-79).

6. Clear and then load clocks into mantissa of A.

7. Force zeros into the mantissa part of etA (from E).
I

8. a) Force SGE ~ 1 IF ROUND and .add 1 to HSB of manLissa

and HCHP latch is low.

b) Force SGE = 0 and ST't: = 0 IF ROUND and sub trac t 1 from

the lISB of mantissa and HCHP latch is low.

9. Set overflow OV1.

10. Enable the mantissa sign of B into CPA.

11. Enable the mantissa part of CPA into A.

-42-

T6 f~·~~t~~Ef';&~~:r:L~: .};.?.T~~1/~!::1·.~1~:;:~SI~~~::..~~r~2~~~~~~~~·:::~::~r~El:'2:~~~~ ;~.::~l.:~-:~~
"

IF NOlU'lAI ,1 ZATION

1. EnablE: KGA (JC-63) if UCHP latch O.

2. Enable compliment of RCA (16-63) if WCMP latch ::: 1.

3. Enable RCA (16-63) into LOD T...;hen normalizing.

4. Enable RCA (16-63) into LOG.

5. Enable LOG (16-63) into B sw.

6. Enable exponent correction bits into RGB (£-15) when

normalizing ..

7. Enable exponent correction bits into RGB (B-15) vlhen

normalizing.

8. Enable clear and load clocks into RGB (0-7).

9. Enable 00 111 111 into RGB (0-7) for exponent correction.

10. Load clocks for F.

IF N01\"ORhALIZATION

1. Enable clear and load clocks for RGA (16-63) •

2. Enab Ie RCA (0-15).

3. Enable RCA (1-63) into CPA (65-79, 16-63).

4. Enable RCB (16-63) into CPA (16-63) ..

5. Enable bit carries into CPA (16-63) but disable CPA

(65-79).

6. Compute correct sign of RGA.

7. Restore sign of RGA.

8. Enable CPA (1-15) into RGA (1-15).

9. Enable clear clock for OV1.

-43-

T7 CORRECT nF~)IJLT!);T EXPOI\ENT
:::::'::"-":::'::;:"'::.-':',"7:::~ :.::-_ :-':, ,". __ ::,:,,: :::::::.:::.: :=.:::.::.::-:~..::.:::::-::::7:.::.:---=.:::.

1. Enable true out of H.CA I 1 ... _)
~) .. ~ 1 ~ •

2. Enable True out of RGB (8-15) •

3. Enab 1. e true out of RGB (1-7) if nonnalize and there is:

a) No overflow or

b) Bit 16 not a ONE.

4. Enablecomplement of RGB (1-7) if there ~s:

a) Overflow or

b) Bit 16 is a O~~.

5. Enable RCA (1-63) into CPA (65-79J 16-63).

6. Enable RGB (1-63) into CPA (65-79J 16-63).

7. Enable bit carries into CPA (16-63 J 65-19).

8. Clear mantissa of RCA if there is exponent underflm-:, or

overflow (conditionally).

9. Load clocks to RCA (0-15) or FYEASNo\~-T and P-EX-UF- ... L and

P-ZHL--H-L.

10. Enable exponent overflow to mode registe:c on FYEEXOFM-T and

P----E---l.

11. Enable exponent undcrflo\-.1 on FYENUF-H-T and P-Z}lL--H-L.

12. Clear and load clocks to F.

13. Set F on underflow or no zero mantissa.

14. Clear clocks to OVI.

15. Restore the sign of RGA after computation.

16. Enable CPA (65-79) into RGA (1-15).

-44-

1. Enable true out of l~CB (9-15).

2. Enable COlD})] ('meat out of RGA (9-15)

3.

4.

Enable RCA (o) 1-7, 9-15) into CPA (64,65-71, 13-79)

5.

6.

7.

Enable llGB (8)9-15) into CPA (12,73-79)

Eucb Ie \'~DJI inner and outer mantissa into

Enable bit carries i.nto CPA Cl2) 73-19)

Enable CPA stun of inner sign and exponent

into the .i3St~

CPA (16-63)

(72,13-79)

8. Enab Ie clear and load clocks in to the SCR (LOD 1t4)

9. EnAble clear and load clocks into LOD

10. Clear and load clocks into ISEQ and ¢SEQ latch

11. Enable siL,nal to speed up path around the latch of

stored carry.

*

*

Since the part of LOG corresponding to the OUTER and INt\f£R
mantissa has not been enabled, the input to the CPA (16-63)
looks like all zeros.

NUMERICAL EXAMPLE

Bit Position

RGA

RGB

RGA

CPA

SCR

1 o 0 0 1 0 1

1 o 0 0 0 0 1

o 1 1 1 010

1 1 1 1 0 1 1

1 1 101 1

= 5)10 Decimal 5

= 1)10

SCR o 0 0 ~. ___ O __ ~ __ .= 4) 10 Difference

-/+5-

T2 SAVE MSB TO BE SHIFTED orr

FOR ROUNDI:'~G IN INNER WORD

1. Enable true out of r(., sign and 1';. manto of A (8,16-39)
2. Enable true" O~.1:::: of: (I':. sign ~nd Ii;. m&l.ltissa of B (8, lG·M39)
3. Enable RGA int.o LOG if there is a carry (AEXPc.:BEXP)
4.. Enab le RGB into LOG i. f there is 110 carry (AEXP}BEXP)
5. Enable L09 (0-39) into ESW (24-63)*
6. Enable CPA into shift counter from SCR

a) SCR true out if there is a carry
b) SCR comlement out if there is no carry.

7. Enable force shift left"-"*
8. Enable clear and load clocks into IMSB latch

* Because of restrictions ar1.s1.ng from signal controls He enable in LOG
bits (0-39) but we effectively place the bits (0-39) of LOG into the
BSW (24-63 bits) by simply shifting each byte by 24 places to the
right in. order to be able to save the MSB in a postion 64.

** Enabling is required so that 'the 'no-carry case can produce a right
shift that has the appearance of a desired left shift.

-46-

1.
;.

Ennble true out of RGB ()../,').

2. Enable complement out of RCA (0,1-7) Q

3. Enable RGA (1-7) into CPA (65-'71).

4. Enabl.c 01 11/ III into CPA (72-79).

5. Enable RCA (8-15) into CPA (72-79).

6.

7.

8.

Enable RGB (0,1-7) into CPA (64,65-71). I
I

i
Enable ~.Jl))+ inner rnantissn inte CPA (16-39)-X-

Enable bit carries into CPA (6't,65-'71).

9. Enable CPA su~ of outer sign and exponent (64,65-71)

into narrel S vJi tch (through the SCR).

10. Enable clear and load clocks into SeRe

11. Enable clear and load clocks into LOD.

B) ALIGN HX';TISSAS OF INNER HaRD HI 111 S~1ALLEn. EXI)(J;\ENT
--.:.--::-..::::.~.:=:":==

1. Enable true out of RGA (8, 16-39) •

2. Enable true out of RGB (8, 16-39) .

3. Enable RGA (8,16-39) 'into LOG (8,16-39) if there is

a carry_

4. Enable RGB (8,16-39) into LOG (8,16-39) if there is no

carry.

5. Enable CPA into SC from SCR depending upon the cnd around

carry. Also enable SC > 1tS detection for inner exponent.

a) SCR true out if there is a carry

b) SCR complement out if there is no carry_

-47-

6. Ell.:tble LOG (16-39) ir.to BSH " 16-39). " - .

7. Enable 13 ~;\.J (16-39) into l~CA (16~·39) .

8. Ena.hI c BSH exponent into RGB exponent.

9. Enable 1 ~ (' 1.1
.. Li~} I, (16. .. 39) into RGH (16-39).

10. Enable clear and load clocks into RGA (16-39) if there is

a c~rry.

11. Enabl~ clear and load clocks into RCB (16-39) if there is

no carry.

12. Clear and load clocks to the ISEQ latch.

13. Enable true out of RGB (9-15).

14. Enable RCB exponent into RGA exponent.

15. Enaple clear and load clocks into RGA (8-15) if there is a

carry and El = 1.

16. Restore sign of RGA (8).

* The wn}+ inner mantissa is brought into CPA (16-39)
to insert zeros in CPA (16-39) because since the part of HSG cor­
respond ing to 'ID4 has no t b eel1 enab I ed) its ou tpu t looks I ike a
zero.

-48-

Tl~- SAVE I,t. S. f, or HI'.rS TO BI-: SHIFTSD OF'F or (:UTLR \':ORD

1. En".hls true out of outer sign and mantissa of A(O,!1.0-63).

2. Enable tn.!e out of 01J ter sign and mantissa of H (0, 11-0 -63) •

3.

4.

Enable A into LOC if there is a carry (Acxp < Bexp).

Enable e i.nto LOG if there is no carry (Aexp > Bexp).

5. Enable LOG (40-63) into BSW (40-63)~

6. Enal>le CP..:'\ out into SC from

a) SCR true out if there is a carry

b) SCR eomplement out if there is no carry.

7. Enable force shift left.

8. Enable clear and load clocks into O~LSR latch.

--. - -49 .. ------- ----.---.

T5 A. ALIGN 1·j}·NTISSAS OF OUTER l,lORD HI11{ SivLI\LLER E1."PONENT
-- '.~-:'=---'---:-::====--=-=-==

1. Enahle true out of outer sign and mantissa of A (0,40-63).

2. Enable true out of inner sign and mantissa of B (0,40-63).

3. Enable A into LOG (0,40-63) if there is a carry.

4. Enable B into LOG (0,40-63) if there is no carry.

5. Enable CPA into shift counter and then

a) SCR true out if there is a carry

b) SCR complement if there is no carry_

6. Enable LOG into BSW (40-63),.

1. Enable BSW (40-63) {nto A (40-63).

8. Enable BSW (0-15,40-63) into B (0-15,40-63).

9. Enable load clocks to outer. mantissa of A if there is a

carry and PEXDI-L48H.

10. Clear and load clo~ks to outer mantissa of B if there is

no carry_

11. Enable outer exponent of B (1-7).

12. Clear and load clocks into outer sign and exponent of A (0-7).

13. Enable exponent of B into exponent of A (0-15).

14. Res tore au ter sign of A.

B. ADD MANTISSAS OF II\TNER HaRD STORE OVERFLOH (OV]) (if there is any)

1. ' Enable clear and load clocks to outer sign and exponent of

RGA if E = I and there is a carry.

2. For addition FYE-K----T is 0 from ev.

3. Enable true out of inner mantissa of RGB if P--~SEQ--H.

4. Enable compliment out of inner mantissa of RGB if P--ISEQ--L •

.... 50-

5. Clear and load clocks to outer Sign Equal latch.

6. Enable tr.ue out of inner mantissa of T~GA.

7. Enable the complement out of SCR.

8. Enable RGA (1-7,9-15,16-39) into CPA.

9. Enable RCB (8,16-39).

10. Force zeros into CPA (WD4 outer mantissa to CPA outer mantissa).
!

11. Enable the bit carries into CPA.

12. Inhibit end-around carry thr.:ugh exponent
I

if ISEQ high.

13. Enable CPA (16-39) into RGA [16-39). !
i

14. Clear and load clocks into inner CNP latch.

15. Clear and load clocks into inner mantissa of RCA (16-39).

16. Enable to set OVI (for inner word).

17. Enable true output of RGA inner sign.

-51-

T6 CONPLENENT (i f necessary), ROUND, STORE
. OVEIU'LOW (if there is any)

OF INNER HOPJ)

1. - Enable true out of inner mantissa of RCA (16-39) if inner eMP latch

is low

2. - Enable compliment of inner mantissa of RCA (16-39) if inner CHP latch

is high

3. - Enable RGA (16-39) into CPA (16-39)

4. - Enable bit carries into CPA inner sign and exponent (72, 73-79)

5. - Enable bit carries into CPA mantissa

6. - Enable zeroes into CPA (enable RCA (40-63) into CPA (40-63)

7. - Enable to set OV1 (for !nner word)

8. - Enable RGB inner mantissa (16-39) into CPA (16-39)

9. - Enable adder to round properly

10. - Enable RGB outer sign (0) to CPA outer sign (64)

11. - Enable RGB outer exponent (1-7) to CPA (65-71)

12. Enable inner sign of RGB into CPA (72)

13. - Enable RCA (9-15) into CPA (73-79)

14. - Enable CPA (16-39) into RGA (16-39)

-52-

T7 A. - A))D J'.lA.NTISSAS OF OUTER HOHD,
STORE OVERFLmoJ (if there is any)

1.- Enable true out of RGB (ll-O-63) if OJter Sign Equal latch is high

2. - Enable complement. out of RGB (40-63) if OUter Sign E:qual latch is low

3. - Enab Ie true out of RGA (1-tO-63)

4. - Enable RGA (0) to CPA (64)

5. - Enable R~~ (1-7,8) into CPA (65-71, 72)

6. - Enable RGB (9- 15) into CPA (73-79)

7. - Enable ~GA (40-63) into CPA (40-63)

8. - Enable :1GB (1+0-63) into CPA (40-63)

9. - Enable zeroes into CPA (16-39) (because the signal ca lIs for HD!t- inner

mantissa into CPA inner mantissa)

10. - Enable bit carries into CPA

11. - Inhibi t end-around carries through exponent if 0 uter Sign E.qual latch

is high

12. - Enable CPA (110-63) to RGA (40-63)

13. - Clear and load clocks to outer CMF latch

B. - COHPLIHENT (if needed), NORHALIZE,
ADJUST EXPONEi'iT OF INNER WORD

1. - Clear and load clocks into RGA (40-63)

2. - Enable true out of RGA (16-39) if Inner sign Equal latch is low

3. - Enable compliment out of RCA (16-39) if Inner Sign Equal latch is high

4. - Enable RCA (16-39) into LOG (16-39)

5. - Enable LOG (16-39) into Barrel switch (16-39)

6. - Enable exponent adjustment into inner exponent of RGB

7. - Enable clear arrlload clocks into LOD

8. - Clear OV2 if no overf1o\11 exists

a

10 •. - Clc:~r ard 10e.(· ::~;:';"" (1C.·<~9) Llr1d RGB (8-15)
\

11. - En:'l!';·lc 1.01' (H" 9-·,1~~) to ReB (8J 9-15)

13.. - Enable (con~.1itioLLLd.l.y) to f;et F biL if F bit has been set and thc:~c

is OVI

14. - Inhibit the: cl.ear clocks to RGD

1.5. - Enable batl'cl si·,itch (16-39) into RCA (1.6-39)

16. - Clear ovcrflo~ (OV1)

C O>l.L'.l ,L:.'; :: : \ , :. ~ t~ ,~~ (] ~ ~ c.)., i, I.;~) L~ :.~ r"~, l~lI) J t: ,.: j i' r: ~'~.1.:~):' ~j':, l~'l
Of OU'll:.I!. :":'UFJJ

1. Enable true cut of RCA (40-63) if outce eMP'is low

2.

3. - Enable P.G,\ (); {J-6j) into CPA (1.~O-63)

4. Enable bit cc.:.J:r-f.es into CPt\' (611"'(1.)

5. - Enable RGB C' \ U) :.nto CPA (64)

6. - Enable. RGB (liO~·63) i.nto CPA (1}O·,,63)

7. - Enab Ie RGA (J _-:1Q~
u .~/ /

int.o CPA (65-79) 16-·39)

8. - Clear 2nd lo;;?d c 10c 1;;'8 to RCA. (40-63)

9. - Round properly (See Section 2.6)

10. - Enable to set OV2 (for outer word)

11. - Enc:b1e CPA (Lj.0·~6·r.n to JZGA (I+0-G3)

-55-

ri9 Ci);'Hlj.};flb:;;L (it 1~t.'t,!1\:'d), ;\;01~>'iXLI7,E,
AD.iUS']' Ej:PO: .. n:,\·r or

(1)'1'L: \JOt:D

1. Clear ani }:';'~id c:l(;cks into RCA (!iO ~. 63)
2. Enc2ble tYt!e out of l{CA (LiO - 63) if OC>iP laLch is 10·\':
3. Enable ccrnple;1wnL out of RGA (/{O - 63) if OGl1P latch is high
4. Enable rrG~ (40 - 62) into LOG (40 - 63)
5. Enable LOG (40 - 6~n into barrel s\·litch (40 - 63)
6. Enable load cJocks to RCA (40 .. 63)
7 • En ;:b]. e 1.0 D (0 - 7) to RG E (0 - 7)
8. Enable (condition.'111y) underflm,v if mantissa is not ZERO
9. 1nh ib i t ~ lear c locks to RGD

10. Enable exponent adjustment RGB (8 - 15)
11. Clear and load RGB (0 - 15)
12. Enuble R~A (9 - 15) into CPA (73 - 79)
13. Enable fu;A (16 - 39) into CPA (16 - 39)
14. Enahle ReB (16 - 39) into CPA (16 - 39)
15. Enabl~ cbrries into CPA (16 - 39)
16. En8ble CPA sum (72 - 79) to RGA (8 - 15)
17. Lnable clear clocks to RCA (8 - 15) if El ::: 1
18. Enable clear· clock to RCA (16 - 39) if there is exponent overflow

d u r in g no rID ali z t1l ion
19. Enable expone.nt o\'('1~f1o'i.\1 into mod(~ register
20. Enable load clocks int0 RGA (8 - 15) in case of overflow or under-

f10\.<7 of expon.ent
21. Enable clears alld loads to Fl
22. Restore sign of RCA (8)
23. Enable to set Fl if Fl bit has been set and there is OV2
24. Compute correct si~n of RCA (8)
25. Enable RGB (9 - l5) to CPA (73 - 79)
26. Enable bit carries into CPA (72 - 79)
27. Enable CPA sum (72, 73 - 79) into RCA (8, 9 - 15)
28. Force a shift right ONE i.s overflow occurs
29. Inhibit section carrie~

. -56.;--····· ._.-.- ~-~-.--.. ---

1.
2.
3~

4.
5.
6.
7.
8.
9.

10.

Enable:
Enable
Enable
'Enable
Enable
Enable
Enable
Enable
Enable
Enable
clears

RGA (0 - 7)

'r ('l)})'l],"C'l" j'l:cTT"I 'PAl-i'l" 10 \'" d\ , .J,".J •. J .L' L~

EXYO:'~L~~T [,; SIG~,[

OF OUTER HORD

true' (It!t of RGE (1 - 7) (Eo!" c::.pon 2djuslr:lc:nt)
RGA (1 ., 15) i.nto CPA (65 - 79)
RGB (1 - 15) into CPA (65 - 79)
bit ccu~rics 'j nta ep/:.. (72 _. 79)
CPA sum (6/1 - 71) to RGB (8 - 15)
bi t. ca;:r it.!s i.nto CPA (6L~ - 71)
clear clocks to RGA (0 - 7) if E = 1
clear clocks to RCA (LtO - 63) if E := 1 and E;:p. UJ"
load clocks to RCA (1 - 7) if t.herC! i s FYEAS;~CO-T \'lhich conditionally
OUTEn.. \J(lyd of RCA in exponent overf1oH or u::.derflO\·.~ or if tllcre is

underfloH and F-·Z~·lLw .. ~EL
11. Enable CPA SUI'll (6!+ - 71) to RG.:\. (0 - 7)
12. Clear the OV2 latch
13. Enable (conditioni1.1Jy) underflo'\y into RGD on E == 1 and '\vhen mantissa is

not ZERO
14. Enable exponen c enderflmv or overflm-l if occurs
15. Enable clear anJ load clocks to F
16. Inhibit clear clocks to RGD
17. Restore trj(~ sign of RCA (0)
18. Compute correct of RGA (0)

-57-

j\FPENnTX C:

OF HULTIPLIEL NAKIISSA r(1i~ FIRST JTERAT:r C)::'

1. Enab Jc: Reg i s ~~ t' 1 S A IS: B (0·- 6 3 bit s)
2. Enable Registc~ A into R (0-63 bits)
3. Enable Register R (16-G3 bits)
4. Enable clei.lr and lO:lc1 clocks into il:.nc:r: .J.nd oute.r Hord of register R

6.
7.
8.
9.
10.
11.
12.
13.
1l; •

Enable clenr ar:d load clocks to ill J1l:' 1.' . and out.er \,;o!"Q VFL~'J latches
Enable exp::mcnt unclerflmv and ovcr:~·l.O\v into mode
Enable underflGw into Register D contional on E and El
Inhibit clear clo:-:ks into lZegister D
Enable cl~ar & load clocks into F
Enable clear clocks into Outer sign and exponent of r(~gister A (0-7) if E==l
Enable clear clocks into inner sign and exponent of R~gister A (8-15) if E1=1
Enable clear clocl-\s i.nto innter r.wntissa or Register A .<16-39) if EI=.:l
Enable clear clocks into outer mantissa of Register A (40-63)
Enable load clocks into outer s:L8il a!ld exponent of i~cgister A (0-7) if E==l
Enable load clocks into inrtter sign a.nd (~xronent of Register A (8-15) if El:::1
Enable clear clocks into inner and outer mantissa of Register B (16-63)
Enable load clocks into Inn(~r and outer rn(lntis~2. of Register B (16-63)
Enable the content of Register B into LOG
Enable Log (16·GJ) into 'Bartel S\ .. d.tch

15.
16.
11.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Enable a shift to the right by 8 into the Barrel S"dJeh controls
Enable Barrel Switch (16-63) into Register B (16-63)
Enable the complE~ment output of the outer exponc:nt of Register B 0- 7)0 fFO: .. '

hI B (I -lSI Unslgne.'c Ena e the complement output of the inner exponent of Register - I Operann
Enable Registers A & B (1-15) into CPA (65-79)
Enable the bit ctll-rje~~ into CPA (6!j.-79)
Inhibit section c[1rries from Section 1
Enable the outer sign and exponent of CPA into Register A (0-7)
Enable the inner sign and exponent of CPA into register A (8-15)
Restore the sign of Register A (0)

-58-

·f

T2 FII:'.:;T ITER.i\TIO:\i - RECODC 8 BI'l'~;

OF NULTIPLIEH HANTISSA }'OR SECOND ITEP},-TIO~~

1.
2.
3.
4.
5.

Enahle
EnaLll Q

Enable
Enable
Enable

true
true
true
RGB
Lex:

out of
out of
out or
(lG~63)

(lG·-63)

nCli (16-23)
n.,....,"")
l\.I.'D (16-,63)
RGR (16-23)
to LOG (1.6-63)
into BS~.;r (16-63)

6. Forc(~ a shift riz,ht end-off 8 places into the .us"," controls
7. Enable PAT sum and carry bits (16-71) to CPA
8. Enable CPA SUTTl (16-63) to nCA (16-63)
9. Enable BSH (3:"~-63) into I{GB (32-63)
10. Enable PAT sum "into RCA (16-39)
11. EnaD Ie \\11)4 (J (, -63) in to CPA (16 -63)
12. Enable h'Dll- (0-"/) into CPA (Gl~-71)
13. Enable RGB (16-23) into CPA (72-j'9)
14. Enable RGC (65-72) into CPA (72-79)
15. Enable bit carries i.nto erA (72-79)
16. Inhibit section enrries
17. Enable clear clocks to RCA (16-63) if E:-;:Er::::1
18. Enable lo.:1d clocks to I~GA (16~63) if E::::Ef=:l
19. Enable clear" c1.oc~,:s to W;S (16-63)
20. Enable load c locks to RCB (16·~63

21. Enable clear and load clocks to CPA carries
22. Sc lee t K func t ion

·~59-

'1'3 SECOIrD ITEr:YTION - FECODE 8 B1'.i:8

1. Enable true out of RGA (16-63)
2. Enab Ie. tn.1e 01) t () f lX~H (1 G -63)
3. Enable. true out or RGl~. (16-63)
4. E~able RGE (16-63) to 102 (16-63)
5. Enable Log (16-63) into BSW (16-63)
6. Force a shift to right 8 positions end--off to the BS:~ controls
7. Enable PAT sum Clnd Ci;l.,TY bits (16·,7]) to CPA
8. Ena.ble HD4 (16-(;]) int.o CPA (16-63)
9. Enable CPA sum (1.6··63) into RCA (16··63)
10. Enable BS~'1 (32--63) into RGB (32-63)
11. Enable PAT sum and carry bits (16-71) to CPA
12. Enable RGB (1()-23) into CPA (72-79)
13. Enable RGC (65-72) into erA (72-79)
14. Enable bit carries into crA (72-79)
15. Enable \,n,,'~ (0-7) into CPA (6 tl·-71)
16. Inhibit section carries
17. Enable load clocks to RCA (16-63) if E=E1=1
18. Enable clear clocks to RGB (1.6-63)
19. Enable load clocks to RGB (16-63)
20. Enable clenr a.nd load clocks to CPA carries
21. Enable clcLtr clocks to RCA (16-63) if E=El=l
22. Select K function

Enable true out of RCA (16-63)
Enable true out (~ ~. Reg (1.6-63)
Enagle true out of RGR (16-63)
Enable RGB (16-63) to LOG (16-63)
Enable LOG (16-63) into the BSH (16·-63)
Fource Shift right endMoff 8 positi.ons to
Enable PAT sum and cc..r:cy bits (16-71) to
Enagle vlDL~ (16-63) into CPA (l6~63)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Enable CPA sum (16-63) into RCA (16-63)
Enable BSlt,' (32-63) into RGB (32-63)

11. Select K Eunction

the BSH
CPA

r .~,

12. Enable t[le stored carry
13. Enable ~A1' smn and c'.irry bits (16-71) into CPA
14. Enable Y.1D 1+ (0-7) iL~o erA (64-71)
15. Enable RG$ (16-23) into CPA (72-79)
16. Enable RGC (65 .. 7?) into CPA (72-79)
17. Enable bit carries into CPA (72-79)
18. Inhibit section caxl."ics
19. Enable clear clocks to RGA (16-63)
20. Enable load clocks to RGA (16-63)
21. Enable clear clock.s to RGB (16-63)
22. Enable load clocks to RGB (16-63)
23. Enable clear and load clocks to CPA carries.

-61-

controls

.1

TS FOURTH ITE1Z1\'TIO~~ - REeODE 8 BITS OF

MULTIPLIER EAtiTISSA FOR FIFTH ITERATION

1.
2.
3.
4.
5.

Enable
Enable
Enable
Enable
Enable

true
true
true
RGB
LOG

out of
out of
out of

(16-63)
(16-63)

RCA· (16··G3)
RGB (16-63)
RGR (16-63)
d:nto LOG (16-63)
into BSH (16-63)

6. Force shift right end-off 8 positions to the BSW controls
7. Enable PAT sum and carry bits (16-71) to CPA
8. Enable BS\v (32....,63) into RGB (32-63)
9. Enable the stored carry

10:'. Enable CPA sum (16-63) into RGA (16-63)
11. Enable PAT sum and carry bits (16-71) to CPA
12. Enable l-JD4 (16-63) into CPA (16-63)
13. Enable 1·m4 (0-7) into CPA (64-71)
14. Enable RGB (16-23) into CPA (72~79)
15. Enable RGC (65-72) into CPt\' (72-79)
16. Enable bit carries into CPA (72-79)
17. Inhibit section carries
18. Select K function
19. Enable clear clocks to RGA (16-63)
20. Enable load clocks to RGA (16-63)
21. Enable clear clocks to RGB (16-63)
22. E~ablc load clocks to RGB (16-63)
23. Enable clear and load clocks to CPA carries

-62-

"'.' ~(
.i. tj r'Ij.':;.'H IT1:RATION " RECODE 8 };iltS

OF HULTIPLIER i·LI\NTISSA FOR SIXTH ITERATION

1.
2.
3.
4.
5.

Enable
Enable
Enable
Enable
Enable.

true
true
true
RGB
LOG

out of
out of
out: of

(16-63)
(16-63)

I~GA . (16-63)
KGB (16-63)
RGR (16-63)
into tOG (16-63)
i.nto BS~.J (16-63)

6. Force shift right end-off 8 positions to the BSW c~ntrols
].. Enable PAT, sum and carry bits (16-71) to CPA
8. Enable 13S1-1 (32-63) into RCB (32-63)
9. Enable the stored carry
10. Enable CPA sum (16-63) into RGA (16-63)
11. Enable PAT .. sum and carry bits (16-71)
12. Enable ~,m4 (16-63) into CPA (16-63)
13. Enable 'HD4 (OM,7) into CPA (64-71)
14. Enable RCB (16-232.
15. Enable RGG (65~72) into CPA (72-79)
16. Enable bit carries into CPA (72-79)
17. Inhibit section carries
18. Select K function
19. Enable clear clocks to BGA (16-63)
20. Enable load clocks to RGA (16-63)
21. Enable clear clocks to RGB (16-63)
22. Enable load clocks to RGB (16-63)
23. Enable clear 2nd load clocks to CrA carries

.'

-63-

•

'1'7 SIX'llI 1 TCj:}.TI ON

1. Enable true (·ul c;i- rr;', (J6-('3)
2. Ennble true (l1Jt 01 1:(:1', (10-G3)
3. Enable tn.lc:.>ut (If 1~C1< (l(·-63)
4. Enable'RGB (lfl-63) i,r:.~:o LOG (16·-63)
5. Enable LOG (lG-(jJ) ilJto BSH (16-63)
6. Force Shift rj,~1t end-off 8 positioTIR to the BSW controls
7. Enable PAT SU:',l a,nd carry bits (16··71) to CPA
8 • En a b 1 e B SH (32 •. (3) in to n.G B (3 2 - 63)
9. Enable the ston'd eel'F)

10. Enable CPA S~Jm (16-63) into rrCA (16-G3)
11. Enable PAT sum and carry biLs (16-71 to CPA
12. Enable WD4 (16-63) into CPA (16-63)
13. Enable 'hr:D4 (0-7) into CPA (72-79)
14. Enable RGB (16-23) into CPA (72-79)
15. Enable RGC (65~72) into CPA (72··79)
16. Enable. bit carries into CPA. (72-79)
17. I'flhibit section carries
18. Select K function
19. Round (optional)
20. Enable clear clocks to RCA (16-63)
21. Enable load clocks to RCA (16-63)
22. Enable clear clocks to RGB (16-63)
23. Enable load clocks to RGB (16-63)
24. Enable clear and load clocks to CPA carries

T8 FOfu'1 THE FINAL PRODUCT

1. Enable true out of RCA (16-63)
2. Enable true out of RGB (16-63)
3. Enable the group carrie~ within the CPA
4. Enable RGA (16-63) into CPA (16-63)
5. En.able bit carries into CPA (64-79)
6. Enable bit carries into CPA (16-63)
7. Enable RGB (16-23) into CPA (72-79)
8. Enable RGB (0-7) into CPA (64-71)
9. Enable~RGC (65-72) into CPA (72-79)

10. Inhibit section carries
11. Enable stored carry l·
12. Enable CPA (16-63) into RGA (16-63)
13. Enable. RGB (16-63) into LOG (16-63)
14. Enable LOG (16-63) into BSW (16-63)
15. Enable CPA (72-79) into RGB (16-23)
16. Enable BSW (24-63) into RGB (24-63)
17. Enable 0 0 1 1 1 1 1 1

normalization
into RGB (0-7) for e:~ponent correction in case of

18. Enable clear clocks ·to RGB (16-63)
19. Enable load clocks to RGB (16-63) if not rounding
20. Clear RGA (0-15) on EXP UF and not normalized
21. Clear RCA (16-63) on EXP UF .. and not normalized
22. Load RGA (16-63) when normalize and E=E1=1
23. Enable load and clear clocks to LOD latches

t

I .
i

-65-

T9 NORMALIZE FINAL PRODUCT

1. Enable true out of RCA (0 - 63)
2. Enable true out of RCB (1 - 7, 16 - 63)
3. Enable CP~ sum (Ll) (64 - 71) to RCA (0 - 7)
4. Enable CPA sum (Ll) (40 - 63) to RGA (4·0 - 63)
5. Enable CPA sum (72 - 79) to RGA (8 - 15)
6. Enable CPA sum (L1) (16 - 39) to RCA (16 - 63)
7. Clear RGA (0 - 63) on UFL o~bit 16 is a ZERO (UFL + A16)
8. Load RGA (0 - 63) on UFL ; UF ; Al6 ; Al7
9. Enable clear and load clocks to F bit mode register

10. Enable exponent underflow into mode register
11. Inhibit ('lear clocks to RGD
12. Enable RGA (1 - 63) into CPA (65 - 79, 16 - 63)
13. Enable RCB (1 - 7) into CPA (65 - 71)
14. Enable bit carries into CPA (64 - 79)
15. Inhibit section carries
16. Restore the sign of RGA (0)

-66-

1.
2.
3.
4.
5·
6.
7·

8 ..
9·

10.
11.
1.2.

*

APPEt\DIX D: DIVISION IN 64 Brr MODE

Tl TRANSFER EXE\Ji{c~N'll OF II HIT TIfEO liB" - PREPARE SCR FOR SHIFTING

Clear RGC (0-63)
Enable COMPLEI:~~TTrr out of RGR expo (0-15 -' *
Enable TRUE g.: CC.)~·:P~.J~·JEITI' out O:f RGE mantissa
Enable RGR (0-63) into OSG

(16-63)

Clear RGB exponent & sign (0-15)
Enable load clocks into RGB exponent
Enable OSG into HGB (0-15)

& sign (0-15)
I

IF ROUNDING

Clear shift count register (SCR)
Enable load clocks into SCR

I

Enable shift right one from Common Data Bus into OSG
Enable OSG into Addl"'ess Adder (ADA) (Outer Exponent)
Enable ADA into Barrel Switch

*

Since the c'ontents of RGR pass through OSG) which is an inverter, in
order to have the TRUE form of RGR out of OSG we have to gate into OSG
the COMPLEr"tENT form of RGR.

Steps 10, 11, 12 are necessary, because the shifting right one enable
into the shift count register is a CU decision and this is the correct
route.

-67-

.1

T2 IF ROUI'IDING

TRA.NSFEH r·ll\NTISSA or HGR IUTO EGB SI-fIFJ:1ED 110 THE RIGHT ElID OFF BY ONE

1. Enable C01ILPLE!<:EN'l' of RGR (16-63)
2. Enable RGR (16-63) into OSG *
3. Enable OSG into t0G
4. Enable LOG into Barrel S"vritch (16-63)
5. Enable OtJ'r from shift count register
6. Clear mantissa of r~DB (16-63)
7. Enable load clocks into mantissa of R~B (16-63)
8. Enable Barrel S-;Ti tch into RGB (16-63)

* The whole word of RGR is enabled, but since we enable only the mantissa
of RGB, the expor1ent part of RGR is already in RGB from the previous
clock tilP2 and need not be inserted again and tberefore the mantissa
of RGR shifted to the right by one is allovred to COllie into RGB.

-- ·-68;.;---·----~--

. I

1. Enable COr·1PLE>fFNT' of HGH (16-63)
2. Enable the HJRD if 11· x 2 :path through HSG
3. Enable TI\Ul~ O'J.t 0::.' :::-ign and_ ex:poncnt of RGA (0-15)
4. Enable TFm~ o"J.t of si£~n of nGB (0)
5. Enable CO'.·:rLEi·1}:.;ifj' out of' exponent of RGB (1-15)
6. Enable ezponent of EGA into CPA (65-79)
7. Enable exponent of HGB into CPA (65-79)
8. Enable bit carries into CPA (64-)
9. Compute sign of RGA

10. Clear exponent & sign of ?GA (0-15)
11. Enable load clocl-:s into RGA (0-1.5)
12. Restore sign of HGA
13. Enable CPA (6Lt-79) into RGA 90-15)
14. Clear R sign latch
15. Clear Bat.·rel S".·:.i.tch (shift count register)
16. Enable load c lo~~ks into Barrel Switch (shift count register)
17. Enable shift left end-around from CDB into OSG
18. Enable 03G into IWA
19. Enable ADA into Barrel Switch (shift count register)
20. Inhibit clear clocks into mode register
21. Enable exponent underflo'ir conditional on E, E
22. Enable exponent underflo\·[into mode register {decision of CU)
23. Enable exponent overflovr into mode register
24. Enable clear and load clocks to F bit
25. Enable clear and load clocks into the TITNER and OUTER underflo,·, latches
26. Clear OUTEn exponent &~ sign of RGB (0-7) .
27. Enable loar ... clocks to OUTER eXFonent & sign of RGB (0-7)
28. Enable 00111111 into OUTER exponent & sign of RGB (0-7) for exponent

correction durin; normalization
29. Initialize iteration counter for 47 times

--69-··----·---~~---~ -

1.
2.
3.
4.
5·
6.
7·
8.
9·

10.
11.
12.
13.
14.
15·
16.
17·
18.
19·

20.
21.
22.
23.

24.

*

**

Enable TRUE out of 1YJtlntIssa of RCA (16-63)
Enable Cor·1PLEi,iD~~?T out of rnS-!·.Lissa of H3R (16-63)
Enable the HORD // 11 x 2 rath thr01..lc;h MSG *
Enable.mantiss<:- of EG·1\. (J.6-63) into CPA (16 .. 63)
Enable HORD I/: 4 x 2 into CPA (16-63)
Enable exponent of EGA (1-15) into CPA (65-79).
Enable bit carries into CPA (64-79)
Enable bit carries into the mantissa of CPA (16-63)
Enable TRUE out of shift count register (SCR)
Enable TRu~ out of manti~sa of RGB(16-63)
Enable EGB (16-63) into LOG (16-63)
Enable LOG (16-63) into Barrel Switch -)(-*
Clear mantissa of· RGB (16-63)
Enable load clocks into mantissa of RGB (16-63)
Enable Barrel S"tfi tch into RGB (shifted left one)
Enable quotient bit into least significant bit of RGB (63)
Clear mantissa of RGA (16-63)
Enable load clocks into mantissa of RGA (16-6j)
Enable PAT sum [EGA (16-63) shifted left one into mantissa of EGA
(16.-63) if diffel'ence < 0]
Enable CPA sum into RGA (16-63) shifted left one if difference ~ 0
Enable clear clock to R sign latch
Enable load clock to R sign latch
Test iteration and if the iteration counter has not counted 47 interations
repeat all steps T4 - T

5l
• If the counter has counted 47 iterations

then go to TS2 .
Increment iteration counter after the above testing.

In step 3 above we have to enable WORD # 4 x 2 path through MSG because
this is the only way to get RGR (16-63) into CPA

In step 16 the ,,{hole word of LOG is enabled. in-:o Ea:crel S· .. ri tch but
since we allo';·:ed the load cloc}:s of n:an-:issa of RGB, ~'Te can say that
in reality the r.:antissa part of RGB i·rill pass tp..Yough the Barrel SVlitch
and will go back to RGB shifted left one.

-70-

1.
2.
3·
4.
5·

6.
7·
8.
9·

10.
11.
12.
13.
14.
15·

T52 INCF-EASE EXPClfl'-J:IT OF RGA by ONE IF Q., - 1
J..

Enable COi,1PIE:,11~WT cut of RGR n![:..nt.issa (16-63)'
II),

Enable the WJRD fr ~. x 2 path th1"ough the t1SG
Enable TRUE out of sign 2.nc1 exponc:1t of RGA (O-l~)
Enable COi·1PIJEi·:EHT out of sign an and OUTER exponent of EGR (0-15)
Enable TRUE out of :tl'rr~ER mantissa of RGB (16-39) in order to see. if
bit- 16 of RGB is a ONE.
Restore sign of RGA (0)
Enable exponent of RGA into CPA (65-79)
Enable sign and exponent of RGB into CPA (65-79)
Enable bit carries into CPA exponent (64-79)
Clear exponent of RCA if ~ = 1 (RGB bit 16 must be O~fE in this casto:-)
Enable load clocks to RCA If ~ = 1
Enable CPA su~ (O+-{'9) into RcA (0-15)
Inhibit clear clocks to mode register
Enable clear and load clocks to F bit
Enable exponent overflO'i'[into mode register

-71-

.,

1.
2.
3.
4.
5·

6.

7·
8.
9·

10.
11.
12.
13.
14.
15·

16.

17·
18.
19·
20.
21.
22.
23.
24.

T53 TEST ~ IN O&1)ER TO DETEm,lINE USE OF Q
49

Enable TRUE out of manti~sa of RGA (16-63)
Enable COr.l.pT'}~i{r~nT out of mantissa of RGA (16-63)
Enable the 'd,)H.D !l)i x 2 path through MSG
Enablc THUE & COr·1PLE,·=t,'NT out of sign of RGB (0)
Force ONE from HGB (8) conditionally on R sign if FYEDI'I'ER-T or'P----7I--1
have been enabled
Force 011£ from RGB (8) conditionally on R sign if FYEDITER-T- or P----7I--l
have been enabled
Enable mantissa of RGA into CPA 916-63)
Enable WORD -# 4 mantissa into CPA (16-63)
Enable exponent of RGB into CPA (G:;..I79)
Enable bit carries into CPA (16-79)
Enable oUtP~lt of shift count register
Enable TRUE out of rrlo..ntissa of RGB (16-63)
Enable RGB (16-63) into LOG (16-63)
Enable LOG (16-63) into Barrel S~·ritch (16-63)
Enable clear clocks to mantissa of RGB (16-63) if bit 16 of RGB is
ZERO (Q = 0)
Enable 16ad clocks to mantissa of RGB (16-63) if bit 16 of RGB is ZERO
(Q, = 0) . ,
En~le Barrel S~;i t~h into mantissa of HGB (16-63)
Enable Quotient bit into least significant bit (bit 63) of RGB
Enable clear clocks to mantissa of RGA (16-63) if the differ~ence > 0
Enable load clocks to mantissa of RGA (16-63) if the difference> 0
Enable CPA sum directly to RGA mantissa (16-63)
Inhibit clear clocks to mode register
Enable clear and lead clocks to F bit
Enable clear and load clocks into mantissa of flBfI register if bit 16
of HBt: register is a ZERO (~= 0)

-72-

1.
2.
3.
4.
5.
6.
7·
8.

9·
10.
11.
12.
13.
14.

15.
16.
17·

*

**

Enable TRUE from mantissa of RGA (16-63)
Enable RGA into IDG (16--63) -x-
Enable LOC'- into the B~.1l're1 Switch
Enable rrRCE .pro::: r;;a;:ti~3sa of EGB (16-63)
Enable RGE into CPA (16-63)
Enable clear clo2~:s into RGB mantissa (16-63)
Enable load clocks into RGB mantissa (16-63)
Enable Barrel 8-l'ri tell (~,-Thich contains RGA mantissa.) into RGB mantissa
(16-63)
Enable clear clocks to RGA mantissa (16-63)
Enable load clocks into RGA mantissa (16-63) **
Enable CE\ sum (vrhich contains RGB mantiss2v) into RGA mantissa (16-63)
Enable clear clocks into RGA mantissa (16-63) **
Enable lo~d clocks into RGA lr.antissa (16-63) **
Enable CCJ·IPLEr·:EITil o'J.t of RGR INNER mantissa, (16-39) in order to test
whether cit 16 is ZEHO or 1 and tterefore to detect if the divisor is
nOr;nalizE;~_ or not
Enable RG~ (CO:::PLE1.fi.NT) into mode register for unnonnalized divisor
Inhibit clear clocks into mode register
Enable clear and. load clocks into F bit

In actua1i ty the "Thole word of RGA if) enabled into LOG but since only
the mantissa of RGA \-ras enabled that means that only the mantissa part
of LOG is effectively used.

From steps 10 & 13 above we conclude that: TIle mantissa of RGB is allowed
to be transferred into the mantissa of RGA only if we normalize or the
exponent underflc;·; 1atch is low (contains ZEEO) and do not norrrlaliz~
but step 12 clears the mantissa of RGA and therefore the mantissa of
RGA contains ZEROS only if the exponent underflOl·r latch is HIGH (con­
tains 01~) and 1tle do not normalize •

. ~.-------
-73-

T"',T r) r.' TO C Tf.)' r1'\'" r' '11' ,..-, rt (rr T)
_U', .L\', • - 'oJ.\. 1 <X,0 '55' --56

T55 DETECT '1TD~ LEIIJJING OITE OF' I-1ANTTSSA OF RGl\ ~t S1DT'r ACCORDINGLY

1. Enable the LeadinG One D,etector (LOD) for di vide-·61+
2. Enab 1 e TRuE OiJ_t of EGA t:2.nt iss a (16 ... 63
3. Enable nOA into LOG (16-63)
4. Enable LOG into Barrel S'\\ri tch (16-63)
5. Clear LOD
6. Enable load clocks into LOD
7. Clear sign & exponent of RGB (0-15)
8. Enable load clocks into sign and exponent of RGB (0-15)
9. Enable 001111111 corrections bits into OU'rER sign and e~onent of RGB

(0-7)
10. Enable LOD into INl':-ER sign and exponent of RGB (8-15)
11. Clear mantissa of F:GA (16-63)
12. Enable load clocks into RGA (16-63)
13. Enable Barrel Svri tch into manti s sa of RGA (16-63). At this time the lead­

ing one of mant~Lssa is at bit position 16 of RGA.

-74-

1.'
2.

3.

4.
5.
6.
7·
8.
9·

10.

11."
12.

13.

14.
15·
16.

Enable TRUE out of EGA :31gn and expcment (0-15)
Enable COHFLEl,:Yl-iT c"f cOYTections "bits of nCB" (1-'"() if tllB:re is OVEHFLOVl
and bjt 16 is OHE
Enable TR~JE of correction bits of nGB (1-'7) :i.f there is no OVERFLOW
and bit 16 = 0
Enable the INNER si'gn and exponent of' RGB (8-15)
Enable RGA into CPA (64-79)
Enable RGB into CPA (64-79)
Enable bit ca:cries into CPA (64-79)
Restore sign of EGA (0)
Clear sign a11d exponent of RGA (0-15)
Enable load clocks into sign and exponent of nGA (0-15) if there is
no exponent underflow and mantissa is not ZERO or exponent underflo\{
latch is low .
Enable CPA (61+-79) into RGB (0-15)
Clear mantis2a of RGA (16-63) if there is an overflo\{ or the latch ror
exponent unclerflo,{ is h'1GH
Failure to mode register condi tiona1 if there is exponent underflovT or
the eXponent uncierflOi-i latch; is RIGH and the mantissa J 0
Enable exponent underfloT,{ into mode register (dec:Lsion of eu)
Inhibit clear clocks into modes register
Enable clear and load clocks into F bit

" .

-75-

, "

APPENDIX E: DIVISIon IN 32 BI~Ll 1-;ODE

In this mocle)E ;:;; El ::.: 1 and therefore both OUTER (3,nd INNER wonls

are enabled. 'This means that the "A" regir;ter contents ar(: not protected,

which is something that the prograrYl!TIer should alvTays 'keep in mind •

Since the; recursive process vlas fully explained in 64 bit mode,
I

and because almost the same steps are used for the 32 bit mode, with the ex-

ception that more clock times are required for the completion of the division,

we will provide a s'LJ.rnmary- of the actions being taken !in each clock time and
!

urge the reader to refer to the IDSFILE fo~ more detailed information.

CLOCK

TIME
DESCRIPTIOlI OF ACTIONS BEING TA.KEN

Clear RGC to allo~{ proper use of PAT
Transfer OUTEH sign and exponent of RGR into

RGB
Transfer lITNER sign and exponent of RGH into

RGB I

Prepare the SCR for shifting right by i end
off

The shifted to the right by 1 end off OUTER
mantissa of RGR is transfered through
the Barrel Sw~tch into RGB .

The shifted to the right by 1 end-off Il~lliR
mantissa of RGR is transfercd through the
Barrel S\,ri tch into RGB

REMARKS

If
rounding

Only if
rounding

Only if
roundin~

Subtract TITI'TER exponent of RGB from the INNER '""" If do not
exponent of RGA and put the result into RGA I ignore

Subtract OUTER exponent of RGB from the OUTER toe
exponent of RGA and put the result into RGA J exponent

Enable IN.NER and OUTER signs into sign logic J If do not
and restore the sign into the sign of RGA ignore

Clear R _ sign latch signs
Check ex})onent overflow and underflm{ and set If do not

F, Fl bits ignore
exponent

-76-

Inser."v 01"11111 into Oi]'l'ER eXl)onent of HGB for
eX]XiYl(;llt correction during normal.:i.zati on

Shift, left. by 8 cnd-5.J'ound enable into SCR

Enable shi.:fJG right 16 end a1)und into the
shift C!(lun~J register f'ro:l1 GDB through OSG
and !JJA

Set F bit if bit 16 of "R" ree;ister is a ZBRO
INNEH mantissa ()f RGB is placed into the

OU'rEl~ mantissa of RGB

OUTER lLantissa of RGB is placed into the
INliER mantissa of RGB

The OUTER mantissa of RGA is transfered into
the OUTER mantissa of EGB

The OUTEH mantissa of HGB i~ transfered into
the OUTE~ mantissa of RGA

Insert 0111111 (OTT)8) into the Il'ITlliR expo­
nent of RGB (,-/hicn contains the llITiEH

- eXl)Onent of "R" register)
Initialize iteration counter to count up to

25
Enable shift right 63 end around into the

shift count register from Common Data
Hu.s. (CUB) throuGh

OSG and Add.ress Adder (This is like shift­
ing left by lend-around)

If the result of subtraction of IN~R mantis~
sa of "RI! register from the TIliTER l-:1antissa
of "A" register is ~ 0)then this result is
transferred through the CPA shifted left by
1 into RGA.If the result is < O)then the
manti.ssa of PGA is transferred throt:Gh
the PATl shifted left by 1 back to RGA.

Shift mantissa of RGB through the Barrel
Svri tch left by 1 end ... around to prov.ide
space for the quotient bit.

Transfer the most significant bit of RGB into
the least significant bit of RGA

Transfer the quotient bit into bit 63 of RGB
(if the difference is ~O ~ Q. = 1; if the
difference is < 0 then Q. = OJ

1.

Check bit 40 of RGB which contains Q". If
~ = l)then increase the INNER exPoncnt of
TIvA by 1

Enabl e F 1 bi t if an eX})onent overflovl
occuri'cd.

-77-

'Ibis is
CU
decision

See table
for Inter­
ch~ng:i.ng
rnNER &
OUTER
mantisscvs
of RGB

This is
CU
decision

If do not
ignore
exponent

T~J0
.)c:..

o

Check Q. quotient bt t. If Q., = 0 shj ft
O~.1T};~ mantissa of PGB thr6ugh the Barrel
Switch left by 1 end around to provj,de
sTl[tce for Q') into l):Lt 63 of RGB.

If the re8u1 t §? the s'ubtraction of namR
mantissa of "HI! register from the TNRER
mantissa or "A" register is ?"O then this
result is 1Jrought ba.ck to RGA throu[;h the
CPA but not shifted at all and Q

25
is defi­

nitely equal to 1.
If the result < 0 then Q25 = 0 and the remaind­

er is the mantissa of RGA used for the 2)th
execution of the recursive process.

Check bit 40 of RGB. If it is a ONE enable F 1
to indicate fault because in tbis case the
remainder is invalid.

Transfer INNER mantissa of RGA into II-fNER man­
tissa of RGB th:~'o1)Gh Barrel S1/ritch.

Transfer II~i\r.sR mantissa of RGB into INHER man­
tissa of RGA through CPA.

Enable shift left by 8 end around into the
shift count register from CDB tll1~ough OSG
and PlJA.

At this time the contents of "A" and "B" re­
gisters are as follows:

"AU REGISTER
7 8 15 16 39 40 63

OUTER
EXP. of

"A" reg.

INNER
EXP. of
itA" reg.

"A"
7

"A" "A" "B" 8 9 r:
"B" 8

"B"
5

0
"B" REGISTER

7 8 15 16 39 40
REI,1AllIDER QUOTIENT

077)8 077)8
R4 I R5 R6 Q!~ Q

5

PREPARE FOR DIVISION OF OUTER MANTISSA OF
"A" & liB" REGISTERS BY THE OUTER MANTISSA
OF IlRIt REGISTER

-.- -·78::---'

63

Q6

~ If
\.. 19nore
~exponent

This is
CU
decisio:1

Tran~fer the TI~I·lER Iflantissa of "RJ! into the
OTJTER mantissa of fiR" register

Enable shi.ft righ 16 end-around into shift
COlU1t register from CDB through OSG and
PJ)A

Transfer the OUTER vrord of "R" register into .
the INNER ;.rord of "R" register

Enable shift right 63 end-arOillld into shift
count register from CDB through OSG and
ADA.

Initialize iteration counter to count up to
23.

Set F bit if bit 16 of "R" register is a
ZERO because the divisor is assumed to
be normalized before the division begins.

If the result of subtraction G)f n'm:ER man­
tissa of "Rtf register from the ITTNER
mantissa of "A" register ~ 0)then this
result is transferred through the CPA
(WD # 4 x 2) shifted by one to the left
into "A" register ..

If this result < 0 then the mantissa of "A"
register through the PAT, but shifted by
one to the left.

Shift mantissa of,"B" register through the
Barrel S-vri tch left by one-end around to
provide space for the quotient bit.

Transfer the most significant bit of liB"
register into the least significant bit
of "Alf register.

Transfer the ql:otient bit into bit 63 of liB"
register which '.-1il1 be Q

2
= 1 if' the re­

sult of subtration ~O or Q 1 = 0 if the
result is < O.

At the end of clock time T6l the contents of
"A" and "BI! registers are as follows:

_.- . -79----·-·-~----

See
Table 2

This is
eu
decision

Remember
that the
mantissas
have been
inter­
changed

"B" HEGISTER

Check bit 40 of liB" register. If it is a ONE
. that means Q

1
of the OUTER quotient).S

equal to ONE in which case inc::cease the
OUTER exponent of "A" register by 1.

Enable F bit if an exponent overflo T
,{ occurred.

Check ~ of OUTER quotient field. I.f Q1 = 0
shifv the OUTER mantissa (~J G"QJ Q~l) of
"BIf register throuGh the BarrelvS'.·;i-Gch left
by 1 end around to provide space for Q25 of OUTER quotient field. In this case­
transfer ~ into bit 63 of fiB" register.

If the result 3f the subtraction of the OUTER
mantissa of flRfI register froT!} the OUTER
mantissa of !rAil register is ~ 0 then this
result is brought back to itA" register
through the CPA (HORD If 4 x 2) but not
shifted to the left as in the previQus
clock times. In this case ~5 = 1. If
the result is < 0 then Q 2S = 0 and the
remainder is the mantissa 6f "AI! register
used fo~ the 25th execution of the recur­
sive process.

If bit 40 of liB" register (Ql = 1) is a ONE
then set F bit to indicate fault because
since the exponent is ignored the remaind­
er will be invalid as it has been previously
expJained (X ~ Y case) .

. 0

-80-

If do not
ignore
exponent

~ is
located

. at bit
position
40 of liB!
register

If
ignore
exponent

Transfer ~ilc~nt:i.3sa of "A" regj_ster into mantis­
sa of "B" register throul3h the Barrel
Switch.

~rransfer mantissa of "B" register i"nto man­
tissa of "A" register through the CPA.

Enable shift left by 8 end around frorrt CDB in­
to shift count reeister through OSG and
ADA. '

Enable c1ear and load clocks to F bit.' At
this time the contents of "A rr & "B Tt reg­
isters are as follows:

HA" "REGISTER

"A" "Art QUOTIENT
OUTER DINER

EXPONENT EXro~NKNl Q4 1 ~ 1 Q6 1
Q
7 I%I~

. . "B" REGISTER

REIliAThTDER
077)8 077)8 I?I RBI R91 R1, I R51 R6

Transfer n'lli~R mantissa of "B" register into
OUTER mantissa of '!B It register.

Enable shift right 16 end around into shift
count register from CDB through OSG and
ADA.

Complete the transfer of INl,lliR mantissa of
"B" register into the OUTER mantissa of
"Btl register.

Clear OUTER exponent and mantissa of "Aft
register if do not normalize and the ex­
ponent underflow latch for the OUTER word
is hieh (ONE).

Clear DINER exponent and mantissa of "AI' re- '.
gister if do not NO~~IZE and the expo­
nent underflow latch for the INlIER word
is high (Ol'fE).

-81-

This is
CU'
decis,ion

See
Table 3.
This is
CU
decision

See
Table 3.

Enable 1.If\~.iE oi' IIrfrER mantissa of "A" register
into Bar:cel S'i1itch through LOG.

Ena'blc LO::) to detect t'he leading ONE.
Enab1e exponent adjustment into INN"F~R expo­

nod:L of liB" register.
Enabl.e Barrel S";'ri tc:h back to "A" register.

At this time the contents of "A" & "B"
registers are as follow8:

"Alf REGISTER

"AU
OU1~R

EXPONEnT

NORr.,lALIZED UNNORMALIZ:S'U

UB" REGISTER

EXPONENT
REMAIl'IDER

077)8 ADJUSTED
R4 I R5 I R61 R7 I Ral

Enable OUTER mantissa of "A" register into
Barrel Switch through LOG.

Enable LOD to detect the leading ONE.
Enable exponent adjustment into the OUTER

expone!1t of liB" register.
Enable Barrel S'i'li tch back to "A" register.
Enable TRUE out of IIiilER exponent of flAil

register and bring it into CPA.

R9

Enable adusted exponent out of INlIER exponent
of "B" register and bring it into CPA.

Enable CPA into nmER exponent of "Alf re­
gister if:
There is no exponent underflow, the ex­
ponent underflow latch for the INNER
exponent is low, the INNER mantissa of
"A" register is not ZERO and normaliza­
tion takes p1ace.

If exponent underflo'N' of nnmR exponent (Exp.
UIi'l) has occurred and the INNEH mantissa is
not ZERO then the mode register indicates
failure provided that F1 has been set on

-82-

Only if
normalize

-11-
..;11-

-11-

Only if
norrnaliz

-11-
-11-

-11-
Only if
normaliz

-11-

-11-

-11-

underflow and norrnRlization takes place.
At this time the contents of itA II and "B"

registers are as follovls:

"A" REGISTER

"A" 'A'I INNER NORHALIZED
OUTER ADJUSTED~--~----r----r----r----r--~

EXPONENT EXPONENT Q4

ttB" REGISTER

I

I REMAI~IDER
f~XroNE~TT EXPONENTI--_~_-r-_-r-_~_-r-_-t
I illJUSTED ADJUSTED
L-____ ~ ____ ~R~_~~~~~~~-~~~

Enable TRUE out of OUTER exponent of "A"
register and the adjusted exponent out
of Oll"'J".8R exponent of "B" register, and
bring both into CPA.

Enable CPA into OUTER exponent of "A" re­
gister if:
There is no exponent underflow, the ex­
ponent underflow latch for the OUTER ex­
ponent is 10''', the 01JTER mantissa of "A"
register is not ZERO and norrrialization
takes place.

If exponent underflow of OUTER exponent
(Exp. up) has occurred and the OUTER
mantissa of "A" register is not ZERO
then the mode register indicates failure
provided F bit has been set on underflow
and normalization takes place.

The final contents of "A" and "B" registers
are as follows:

--- - -~---------

-83-

Only if
normalize

-J.l-

Only if
normalize

-11-

itA" REGISTER

"AI! OUIIE I'A" TNT-IE
ADJUSTED lADJUSTED
EXPONENT jEXPOHENT

ADJUSr:tED ADJUST ·
EXPO:TEHT

NORMALIZED ------··sa

. "B" REGISTER

LOG

BARREL SvlITCH

SHIFT BY 8
LEFT END
AROUND

"B" REGISTER

LOG

BARREL SWITCH

SRIFT RIGHT
BY 16 END

.. AROUND

"B" REGISTER

"B" REG I STER

TAl3LE l: Procedure for Interchanging

DiNER & OU11ER Mantissas of RGB

BYTES

A B C

r 1 ~3 4 5 6 7
TI'T. EXF.

077)8 of "R" "B" liB" "B" "B"
REGISTER 4 5 6 ' 7

IN. EXP .. t
077) of "R" ' liB II , "B" liB" "B"

8 REGISTER 4 5 6 7
IN, EXP.

:'B" of "R" "B" "B" 077)8 "B"
6 REGISTER 8 9 7

IN. EXP.
pf "R" "B" "B" 077 liB" "B"
PgGIS. 8 9 7 4
IN. EXF,
of fiR" "B" '13" 077)8 "B" "B"
REGIS. 8 9 7 L~

jllil "B"
8

"B"
9 077)8 fiB"

7 ~////
"B"

7
"B" 8

"B If
9 077)8 "B If

7
. '''B''

8

"B" 077)8 "B" "B If liB" 077)8 9 7 8 9

1///1/
CLEAR CLEAR CLEAR CLEAR II/II & LOAD ~ LOAD & LOAD s: LOAD

IN. EXP:
of fiR" 077)8 "B" "B" "B" "B"
J\EGIS. 7 8 9 4

C T
L
0

I

D C
M
E

8 9 K

"B If
8

"B"
9 T3

"B" 8 "B"
9

"BIf
4

fiB"
5

T4
"B"

5
"B" .

6 -

"B If
5

"B"
6

if / //1 1I11I
"B"

9 077)8

"B"
7

IfB"
8 T5

11/11 if 111I
"B"

5
fiB"

6

NOTE: 1) The shaded area indicates bytes which have not been enabied out of
RGB and therefore at the end of clock time T5 they are found un­
changed in their location into RGB.

2)' ." B If stands for liB" register and the subscripts 4, 5, 6 etc. indicate
8 bit tytes as they have been defined in the organization of the word
format.

'-85~--'--'

"R 1t

REGISTER

OSG

LOG

BARREL
SWITCH

SlITFT LEF
by 8 EA

fiR If

REGISTER

LOG

BARREL
S~IITCH

SIITFT
RIGHT
6, 16 EA

T!u3J IE 2: Procedure for Interchanging

TI'1NER f~ OUTER Manti ssas of RGB

BYTES _ CLOCK

A B 4 5 6 7 8 I 9 TI1"lE
--

"R" OUT, "R" ll'I
"R" * "R" * "R" * "R" 1(- "R" -x. "R" *

EXP. 1(- EXP. * 4 5 6 7 8 9

"R" OUT, "R" nr. "R" ?(- "R" * "R" * "R" -)(. "R" * I "R" *
EXP. * EXP. * 4 5 6 7 8 I 9

"R" OUT "n" IN,
I

"R" "R" "R If "R" "R"
I

"R"
EXP. EXP. 4 5 .. 6 7 8 9

"R" TNl "R" OJT

I
T3~·

"R" "R" I'R" -. "R" "R" "R II
6 EXP. 8 9 E·~P. 7 4 5

T"R" I~. "R" "R"
'R" -OUT,

"R" "R" "R" "Rlf
EXP. 8 9 EXP. 7 4 5 6

"R" nr. fIR" "R"
'R" ourf. "R" "R" "R" "R"

EXP. 8 9 EXP. 7 4 5 6

ENABLE SHIFT RIGHT 16 EIID A.1\OUIID INTO StITFT
T35 COullT REGISTER FRor·l CDB THROUGH OSG & ADA

"R" TIL "R'f "R" "R" OUT "R" ~~!lW$; EXP. 8 9 EXP. 7

"R" IN. "R" "R" "R" OU'I "R" "R" "R" 'R" OUT
EXP. 8 9 EXP. 7 8 9 EXP.

"R" liB" "R" "R" OUT fIR" "R" I'R" "R" OUT
7 '8 9 EXP. 7 8 9 EXP.

"R"
"R If OUT. "Rlf "R'f "R"

fIR!! OUT
"R" "Rtf T36

9 EXP. 7 8 9 EXP. 7 8

~ CLEAR CLEAR CLEAR CLEAH wa II////; ~ ~ LOi\D Pc LOAD & LOAD ~ LOAD

"R" IN. "R'I OUT
"R" UR" "R" "R" * "R" * "R" -x-

EXP. EXP. 7 8 9 4 5 6

* The complement OUT of RGR content is enabled because the OSG gates are
-of negative logic and therfore in order to get a TRUE output from the

OSG gates they must receive an input in COI·1PLEM)\'NT form.

-86-

"B" REGISTER

LOG

BAI\RBL SvrITCH

SHll'T lEfT
by 8 EA

"B fI REGIS1~R

LOG

BARREL SWITCH

SHIFT RIGIff
by 16 EA

B

TABLE 3: Procedure for Intercho.nging

INNER & OUTER Remainder (HGB)

.
C T

BYTES L I
o r'

A B 4 5 6 7 ·8 9
C ~
K

077)8 077)8 REMAINDER

.~. Ha p Rh :Rs R6 .9.

077)8 077)S R.-{ RS H:J R4
\

R5 R6

. R9 077)8 R5 R6 077)8 R4 Rr HS T65
=.:..
077)8 R5 R6 077)e R4 ~ HS R9

077)8 R
5 R6 077)E R4 Rr RS R9

~ R5 R6 077)E R4 0/& ~~%f / ~I I / Ij

R4 R5 R6 077)E R4 R5 R6 077)8

t I

R6 077)e Rl{ R5 R6 077)8 R4 R5 T66

f/I!; . CLEP'p' CLE!0 CL.."SPj &C~~_wi0W1~ ~ LOAD ~ LOAt & LOAr

077)8 077)"
REMAllIDER

0
Rh R5 RI'" -~- RR Rq

b

-87-

