PROPERTY OF IAC LIBRARY

DESCRIPTION OF ARITHMETIC OPERATIONS

IN THE ILLIAC IV PROCESSING ELEMENT

INTRODUCTION

TABLE OF CONTENTS

PROPERTY OF IAC LIBRARY

1. DESCRIPTION OF THE PROCESSING ELEMENT

2. ADDITION AND SUBTRACTION

NNNNMNNNNN
L]
o~NOTUE WD

INTRODUCTION

CARRY PROPOGATE ADDER (CPA)

SHIFT COUNTER (LOD #4)

BARREL SW1TCH

OVERFLOW

ROUNDING

NORMALIZATION AND OVERFLOW CORRECTION
TIMING OF ADDITION OPERATIONS

3. MULTIPLICATION

INTRODUCTION

ADDITION OF EXPONENTS

RECODING THE MULTIPLIER

PSEUDOADDER TREE (PAT)

TIMING OF MULTIPLICATION OPERATIONS

4. DIVISION

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INTRODUCTION

IMPLEMENTATION OF THE DIVISION OPERATION
SUBTRACTION OF EXPONENTS

NORMALIZATION

TIMING OF DIVISION OPERATIONS

A. ADDITION IN 64~BIT MODE

B. ADDITION IN 32-BIT MODE

C. MULTIPLICATION IN 64~BIT MODE

D. DIVISION IN 64=-BIT MODE

E. DIVISION IN 32-BIT MODE

Page
1

2

O 00 L P~

11

13
18

19
19
20
21
24
27
28
28
30
33
34 -
35
37
45
58
67

76

INTRODUCTION

This manual was written in order to provide a source of basic informa-
tion as to how programmed arithmetic operations are implemented within an
ILLTAC IV Processing Element. A description of the addition, multiplication,
and division operations is included together with a summary of individual

register and logic network functions.

Most of the enclosed material was derived from descriptive write-ups

compiled by T. Economidis of Automation Technology Incorporated.

SECTION 1
DESCRIPTION OF THE PROCESSING ELEMENT

The Processing Element (PE) of the ILLIAC IV executes the data computa-=

tions and local indexing for operand fetches. It contains the following

elements:

1)

2)

3)

4)

5)

6)

7)

Five 64-bit registers (A,B,C,R,S) to hold operands and results,

'A' serves as the accumulator, holding one of the operands in
arithmetic operations and receiving the output of the adder at

the conclusion of the operation. The 'B' register serves as the
second operand register in arithmetic operations (with the excep-
tion of multiplication). The 'C' register is used in certain in-
structions to save carries from the adder. The 'R' register holds
the divisor and multiplicand in those operations as well as
serving as a data routing register. The 'S' register is a general

storage register.

A fast parallel-adder (CPA) which functions as either a carry
propogating adder using three levels of look-ahead with four bits
in the first group, four groups in the second section, and four
sections in the final level (producing a 64-bit sum in a single

clock period), or as a carry save adder.

A set of multiplicand select gates (MSG) which generate multiples
of the multiplicand from a decoding of the eight least significant

bits of the multiplier during a given iteration.
A logic unit (LOG) for Boolean functions.

A four-level shift network called the barrel switch (BSW) which
permits 32~bit or 64-~bit words to be shifted left, right, end-off,

or cnd-around in one clock period.

A 16-bit index register (RGX) and adder (ADA) for memory address

modification and control.

A parallel logic network, called the Leading One Detector (LOD),
which generates information as to the amount of shifting needed in

a normalization operation and a binary number to be used for expo-

nent correction.

-2

SECTION 1 - DESCRITTION OF THE PROCESSING EIEMENT (continucd)

8) An 8-bit mode register (RGM) to hold the results of tests and the
results of tests and the PE ENABLE/DISABLE state information.

9) A non-propogating three-level adder network, called the
Pseudoadder Tree (PAT), each level of which accepts an
addend, an augend, and a carry-in. Output of the third

level consists of a sum and a carry.

2.1

SECTION 2
ADDITION AND SUBTRACTION

INTRODUCTION

Since the process of adding (or subtracting) two floating point num-
bers is the longest and most complicated of all arithmetic operations per-
formed by the TLLIAC IV, it seems a logical starting point for this discus-
sion of the arithmetic unit. Only addition will be specifically discussed

herein since subtraction is merely addition with a complemented operand.

Floating point addition requires that the two operands have equal ex-
ponents. If they arec not the same, the mantissa of the smaller number must
be shifted right by as many places as the exponents differ. This process

is known as alignment.

After addition, the lcading one bit of the sum's mantissa may not be
in the most significant bit position. 1If normalization was specified in
the programmed instruction, the mantissa must be shifted left to this posi~-

tion and the exponent decremented correspondingly.

In the 64-bit mode, the contents of the A register are added to the
contents of the B register. In the 32-bit mode, the outer mantissa of A is
added to outer mantissa of B and the inner mantissas summed likewise. The

sum is placed in A in both cases.

As for implcmentation,‘the operands are initially loaded into registers
A andAB. The difference in exponents is calculated in the CPA, which trans~-
mits that information to the shift count register. This register affects
control of the PE's shift unit, the four-level barrel switch, which outputs
a corrected mantissa to the register (A or B) that formerly contained the

smaller exponent.

The actual addition of mantissas is performed in the CPA and the re-
sulting sum is routed to the "accumulator'", the A register. The questions
of overflow and underflow as well as implementation of the normalization

and rounding options will be discussed in the remaining text of this section.

The hardware elements in this section are discussed in the "chronological"

order in which they are employed for additionm.

2.

2

SECTION 2 (continued)

CARRY PROPOGATE ADDER (CPA)

Addition operations, such as the initial compariag of exponents and
the later summing of mantissas, are performed in the Carry Propogate Adder
(CPA). As noted in Section 1, this element also contains a carry look-
ahead adder which determines whether, based on the inputs to the CPA; there
will be a carry. 1If there is a carry, it is fed back into the CPA which

produces the final sum.

In order to accommodate 64-bit data words, the adder is divided into

sixteen 4~bit groups and four 4-group sections..

Addition of two bits can produce a bit generate (if the inputs are "1"
and "1") or a bit transmit’(if the inputs are "0" and "1" or "1" and "0").
Therefore, it follows that each group can similarly produce a group generate
(a carry originating within the group) or a group transmit (a carry passed

along by the group). Group transmit will only occur if all inputs to the

group are either of the form 0, 1 or 1, 0. Logically, the generate/trans-

mit concept can also be extended to sections.

Operation of the Carry Propogate Adder can be summarized as follows:

Each adder bit position produces a bit generate and a bit transmit
which feed into group carry look-aheads four bits at a time. Each group
look-ahead in turn produces a group generate and group transmit which feed
into section carry look-aheads four groups at a time, FEach section look-
ahead produces a section generate and section transmit., All section
generates and transmits feed into all other sections in order to create

carry input to each section. The carry into each section is:

‘31=G4+G3T4 2 3 4 Gy Ty T3eT,
C2 = G 4 3 4 +G2 3 4.Tl
c3‘“‘02+G1 6Ty Ty¥G3- T, Ty - Ty
C, =G, +G,.T +G T 4G T T

4 73 23123412

SECTION 2 (Continmed)

The group carries are produced by the above input carry to the
section and by the group generates and transmits that precede it within
the section. These group carries are fed into the group look-ahead,
which in turn produces bit cerries. These bit carries are a function
of the input carry to the group and the bit generates and transmits that
precede it within the group. The bit carries are then fed into the
adder, which in conjunction with the original inputs to the particular

bit position, produces the output sum,

The symmetry of the adder is more clearly noticeable in Figure 1.

/}; b ;x hiobiAy bk n2 A.{} Bl p B4 oy

. r_g ;: = VA Y 2,":’ r;} Tt E T

W Coon oo Ut
il | {

T [u" TR L;T{ ERTENIRLENT I ;ﬁ

wlplyly !1 f il il Ll J f‘:.i.x,!.,&-x

LR

= = s
== e
= NN —
== . szcmw \ i =] l==
= T=s A ENERATE AND : =
ﬂ \ %TRANbH/T § L
= s /] - <= =
=L \ \B \ s e
D N S
== o =
= = ; 4 -
g g v B‘i‘j"_ —;:
m b
= e

SECTr/ON LOOK~AHEAD

GROUP ~— — GROUP GENERATE
CARRY * AND TRANSMIT
BIr BIT GENERATE
CARRY T ‘Iq/ AND TRANSMIT
ADDER FOR '
CNE BIT SUM AXD CARRY
PCS.T/ON

. / ouTPUT
¥

INPUT OPERANDS =

FiGure |

Carry Prosocare Abper Brock sewemaric

2.3

SECTION 2 (continued)

SHIFT COUNTER (LOD #4)

After cowparison of the two expounents, the CPA arrives at a number by
which the mantissa of the smaller operand must be shifted right. The
shifting itself is done in the Barrel Switch (which will be described in
Section 2.4), but interpretation of this shift command into a form recog-
nizable by the Barrel Shift control is done in a parallel logic network
known as the Leading One Detector (1.0D). Four sections of the network
(LoD 1,2,3,5) are involved in normalization (Section 2.7). Section #4 of
the network (LOD #4), however, is a 6-bit shift counter that decodes the
CPA-derived shift amount into a set of proper shift signals for the Barrel

Switch.

Before continuing, it should be noted that if the difference of expo-
nents is greater than 47 in the 64-bit mode or 23 in the 32-bit mode, the

mantissa of the smaller operand is forced to zero.

SECTION 2 (continued)

BARREIL SWITCH (BSW)

The Barrel Switch is a shift network having four 64-bit levels that
can shift a set of bits up to 63 positionsyeither left or right and either
end-off or end-aroundsin one clock period. The first level of the Barrel
Switch receives a parallel input of 64 bits from the Logic Unit (LOG). This
level is essentially a buffer and has no shifting capability, but it can
prohibit certain bits from entering the second level of the BSW. This fea=-
ture is employed in implementing the "shif{t mantissa" instructions. The
first level is also capable of swapping bytes within itself. This feature

is used in the 32-bit mode division operations (Section 4).

The second level can shift in multiples of 16 bit positions, the third
level in multiples.of 4 bit positions, and the fourth level in multiples of
1 bit position. As previously stated, the amount of shifting (the multiple)
for each level is controlled by decoded pairs of bits from the shift counter.
Decoding of the two most significant bits results in multiples (0 to 3) of
16 to be applied to the second level and can affect shifts of 0, 16, 32, or
48 positions. The middle two bits control third level shifting and can re-
sult in a bit pattern being displaced by 0, 4, 8, or 12 positions from its
second level position. Finally, the two leaste-significant bits of the shift
counter are decoded and applied to the fourth level of the BSW to affect a

shift of 0, 1, 2, or 3 bit positions.

For alignment, shifting is always to the right., If in taking the dif-
ference of the two exponents an end-around carry has been detected, the
difference is indicated as positive and the true output of the shift counter
is applied to the Barrel Switch controls. Otherwise the one's complement of

the output of the shift counter is applied to the Barrel Switch controls.

It should be stated that left shift instructions are implemented by
applying the above convention to the shift counter output but subtracting

the shift amount from 64 before enabling BSW control.

G

2.4

SECTION 2 (continued)

BARREL SWITCH (BSW) (continued)

In order to better understand the implementation of a shift through
the BSW hardware, consider a sample case where bit position 32 is to be
shifted 27 positions to the right. The contents of bit 32 is input to level
one of theABSW through the logic unit (LOG). It will then pass from the
first level to bit 32 of the second level without any shifting having yet
occurred. Level two receives a control signal from the shift counter to
shift its contents once. Recall that a "1" multiple applied to the second
level causes BSW control to shift level two right by 16 positions. Bit 32
is then shifted to bit position 48. Now bit position 48 is transferred to
the third BSW level, where a shift-counter-originated "Multiple=2" signal
enables BSW control to direct an 8-bit (2 x 4) shift operation. The con-
tents of bit position 48 moves to bit 56. Now level three bit 56 is trans-
ferred to level four bit 56, a "multiple=3" signal enables BSW control to
affect a 3-bit (3 x 1) shift, and bit 56 is shifted to bit position 59.

The required 27-bit shift has now been completed. A schematic summary of

the entire operation is given in Figure 2.

It should be kept in mind that although the example below focuses on
displacement of only one bit, all bits entering levels 2, 3, and 4 are

shifted by the same amount as that single bit.

From LOG
Oijl110 1111 32
R
BSW l
Control % 48
ek , ¥ e
> 3 56
& > e
[
4 59
t
o \ '—w
13 l
To A or B

FIGURE &. TLLUSTRATION OF BARREL SWITCH SHIFT -10-

BSW 1

BSW 2

BSW 3

BSW 4

SECTION 2 (continued)

2.5 OQOVERFLOW

If two numbers of the same sign are added, the magnitude of the result
might be greater than can be represented with the present exponent. This

condition is called overflow.

Since floating point arithmetic is under consideration here, it becomes
necessary to speak of both mantissa overflow (a carry into the exponent

field) and exponent overflow (a carry into the sign bit).

Mantissa overflow can occur:
o when the mantissas of addend and augend have the same sign
o when rounding. If the signs of addend and augend are equal, the
most significant shifted-off bit is added to the least significant

bit. of the sum.

Exponent overflow can occur:
o when adding exponents of equal signs in order to find the differ-
ence for alignment
o when mantissa overflow has occurred.
Either kind of overflow will cause one of the F bits in the Mode Register
(RGM) to be set. The correction of mantissa overflow is discussed in Sec-

tion 2.7.

-11-

2.6

SECTION 2 (contimed)

ROUNDING

Rounding is a programming option that is performed when the exponents
of the two operands differ. Although the mantissa of the smaller operand
has been right~shifted "end-off", use of the rounding option enables the
most significant bit of that shifted-off bit string to be saved in a special
latch (IMSB for 64-bit mode and 32-bit inner word, OMSB for 32-bit outer

word).

If the operands agree in sign, the ISMB (OSMB) bit is added to the sum
of the mantissas. 1If the operands differ in sign (a subtraction is taking

place), the complement of 1SMB (OSHMB) is added to the final sum.

-12-

2.7

SECTION 2 (continucd

NORMALLZATION AN OVERFLOW CORRECTTON

If normalization is vequested in the programmed instruction, the lirst
three sections of the Leading One Detector (LOD #1,2,3) are used to detect
the position of the leading one in the mantissa. When one of these LOD's
detects a leading one, it generates the controls required by the Barrel
Switch in order to left-shift the mantissa's leading one to bit position 16
(for 64-bit mode and inner word in 32-bit mode) or bit position 40 (for the
outer word in 32-bit mode). LOD #1 and LOD #2 and LOD #3 control shifting
in BSW levels 2, 3, and 4, respectively. They are cnabled by LOD #5. 1If
the mantissa in question is found to be already normalized as the result
of the addition operation, LOD #5 disables LOD's 1, 2, and 3 and the Barrel

Switch is set up for a zero shift.

In the case of mantissa overflow, LOD #5 disables LOD #1, 2 and enables

LOD #3 for a one bit position end-off right shift.

Now that the mantissas have been properly manipulated, a discussion of

exponent correction is required.

Exponent Correction in 64-Bit Mode

A fixed input of 00111111 is placed into the B register bit positions
0 to 7 and the contents of LOD #1,2,3 are enabled by LOD #5 into bit posi=-
tions 10 to 15. Further, LOD #5 gencrates zeros into bits 8 and 9 in case
of overflow or if the leading one is at bit position 16 and generates omes

in any other case.

So, the exponent field of the B register is as follows for the 64-bit
mode:
o 1If overflow has occurred - 011 1111 0000 0001
o If leading one is at bit position 16 - 011 1111 0000 0000
o Normalization - 011 1111 1lxx xxxx

Where the x's indicate normalization shift count.

-13-

SECTION 2 (continucd)

Exponent Correction in 64-Bit Mode (continued)

The main critevion for the output of the B register into the CPA is
the state of bits 8 and 9. 1f these bits are zero, then the complement of
B register bits 1 to 7 is brought into the CPA, which means that the output
of the B register bits 0-15 is:

o If overflow has occurred - 0100 0000 0000 0001
o 1If leading one is at bit position 16 - 0100 0000 0000 0000

If bits 8 and 9 are ones, the mantissa must be shifted to the left a
certain number of places, which implies that this shift count must be sub-
tracted from the exponent of the final sum. Since the true (uncomplemented)
output of the B register is brought into the CPA for bits 8, 9 = 1, bit 1

is a zero and the exponent is negative.

Exponent Correction in 32-Bit Mode

For the 32-bit mode, the contents of LOD #1, 2, 3 are enabled by LOD #5
into bit positions 10 to 15 (for inner word) or 2 to 7 (for outer word). As
for the 64-bit mode, LOD #5 generates a one in the exponent most significant
bit (bit 1 or 9 for outer word or inner word, respectively) if overflow has

occurred or if the mantissa requires no normalization.

So, the exponent field of the B register is as follows for the 32-bit
mode:
o 1If overflow has occurred, outer word - 100 0001 in bits 1-7
o If overflow has occurred, inner word - 100 0001 in bits 9-15
o 1If leading one is in bit position 40 (outer word) - 100 0000 in bits 1-7
o If leading one is in bit position 16 (inner word) - 100 0000 in bits 9-15
o Normalizatioh -~ Oxx xxxx in bits 1-7 or 9-15

Where x's signify normalization shift count.

In the 32-bit mode the uncomplemented exponent is fed from the B regis-
ter into the CPA, Observe that in the normalization case above, the leading
zcro in the exponent indicates how much the exponent of the sum must be re-

duced.

“14-

SECTION 2 (continued)

Exponent Underflow

If, in normalization, the value of the exponent is reduced below the
minimum value that the register can accommodate, exponent underflow is said
to have occurred. In such an instance, the entirc contents of the A regis~

ter is set to zero and the appropriate mode register F bit is set.

Normalization with Zero Mantissa

At this point, an interesting question arises. What will happen if
the program calls for normalization and the mantissa of the sum is zero?
It is apparent that in this case the LOD #1, 2, 3 won't detect a leading
one and, therefore, the Barrel Switch will not be performing any mantissa
shifting. Moreover, no correction bits will be inserted into the B register,
which implies that the exponent will not be affected from that condition.
Therefore, exponent underflow will not occur under any circumstances when

attempting to normalize a zero mantissa.

In floating point arithmetic, a zero number is represented by a zero
mantissa and the smallest exponent that the machine can hold. When the man-
tissa is zero, there is a signal called Zero Mantissa Level which inhibits .
the load clocks into the exponent field of the A register, while simultan-
eously the clear clocks are enabled to fill this field with zeros. Since
the exponent is represented in excess code. , zeros in the exponent field

means that the number has the smallest possible exponent.

Normalization Reference Table

Table 1 irdicates the mantissa shift amount and exponent correction

for normalization in the 64-bit and 32-bit modes.

=] 5«

:—;9I—

LADLG L

SHIFTING IN NORMALIZATION AND EXPONENT ADJUSTMENT

BRit Position

BARREL SWITCH LEVELS

EXPONENT ADJUSTMENT

of Leading FIRST LEVEL
One 64 Bit Mode|32 Bit Mode] SECOND| THIRD|FOURTH 64 BIT MODE 32 BIT MCDE
32 Inner OQuter LEVEL! LEVEL| LEVEL
ovl 0 - 0 0 1 0100000000000001(01000001
16 0 - 0 0 0 10100000000000000/0100000¢0
17 0 - 48 12 3 0011111111111111}]00111111
18 0 - 48 12 2 0011111111111110100111110
19 0 - 48 12 1 0011111111111101j00111101
20 0 - 48 12 0 0011111112111100/00111100
21 0 - 438 8 3 0011111111111011{00111011
22 0 - 438 8 2]0011111111111010j00111010
23 0 - 48 8 1 0011111111111010400111001
24 0 - 48 8 0 0011111111111000{001110060C
25 0 - 48 4 3 0011111111110111{00110111
26 0 - 48 4 2 0011111111110110{00110110
27 0 - 48 o4 1 00111111111101C1;00:2190101
28 0 - 48 & 0 0011111111110100{001120100
29 0 - 48 0 3 0011111111110011;00110011
30 0 - 48 0 2 00111111111100101001106010
31 0 - 48 0 1 0011111111+110001{00110001
32 0 - L8 0 0 0011111111110000{00110000
33 0 - 32 12 3: 0011111111101111j00101111
34 0 - 32 12 2 0011111111101110|60101110
35 0 - 32 12 1 0011111111101101;00101101
36 0 - 32 12 0 0011111111101100{00101100
37 0 - $32 8 3 0011111111101011;00101011
38 0 - 32 8 2 0011111111101010,001010C10
39 0 - 32 8 1 0011111111101001;11101001

nL'[-

e R

ya

SHIFTING IN NORMALIZATION-AND EXPONENT ADJUSTMENT

Bit Position BARREL SWITCH LEVELS EXPONENT ADJUSTMENT
of Leading FIRST LEVEL
One 64 Bit Mode|32 Bit Mode{ SECOND} THIRD|FOURTH 64 BIT MODE 32 BIT MODE
32 Inner Outer LEVEL| LEVEL| LEVEL
ov2 - 0 0 0 1 | memmmmm e a s 01000001
40 0 24 32 g 0 0011111111101000 101000000
41 0 24 32 4 3 0011111111101000 1100111111
42 0 24 32 4 2 0€11111111101110 00111110
43 0 24 32 4 1 0011111111101101 00111101
44 0 24 32 4 0 00111111111011001i0011110C¢C
45 0 24 32 0 3 0011111111100011 00111011
46 0 24 32 0 2 0011111111100010 00111010
47 0 24 32 0 1 0011111111100001{C01110C1
48 0 24 32 0 0 0011111111100000 00111000
49 o . 24 16 12 3 00111111110111111/00110111
50 0 24 15 12 2 0011111111011110 00110110
511 0 24 16 12 1 001111111101311011100110101
52 0 24 16 12 0 001111111101110000110100
53 0 24 16 8 3 00111111110‘10011 20110011
54 0 24 i6 8 2 0011111111010010 001109010
55 0 24 16 8 1 00111111110100061 00110001
56 0 - 24 16 8 0 0011111111010000 00110000
57 0 24 16 4 3 0011111111001111 00101111
58 0 24 16 b 2 0011111111001110 00101110
59 0 24 16 A 1 0011111111001101 00101101
60 0 24 16 4 0 0011111111001100 (00101100
61 0 24 16 0 3 001111111100001110C101011
62 0 24 16 0 2 0011111121000010(00101010
63 0 24 i6 0 1 0011111111000001:i00102001

SECTION 2 (Continﬁed)

TIMING OF ADDITION OPERATIONS

Following is a summary of the sequence of operations for addition in

the 64-bit mode and 32-bit mode as a function of clock times:

Addition in 64-Bit Mode

T1 Take difference of exponents

T2 Save rounding bit

T3 Align mantissa having smaller exponent

T4 Add mantissas

T5 Complement, round, store overflow (if any)

T6 Complement, normalize, adjust exponent, determine sign

T7 Correct resultant exponent

Addition of 32-Bit Mode

T1 Také difference of inner word exponents
T2 Save rounding bit for inner word
T3 A) Take difference of outer word exponents
B) Align mantissa of inner word having smaller exponent
T4 Save rounding bit for outer word
T5 A) Align mantissa of outer word having smaller exponent
B) Add mantissas of inner word, store overflow (if any)
T6 Complement, round, store overflow (if any) of inner word
T7 - A) Add mantissas of outer word, store overflow (if any)
B) Complement, normalize, adjustvexponent of inner word
T8 Complement, round, adjust exponent of outer word
T9 Complement, normalize, adjust exponent of outer word

T10 Correct resultant exponent and sign of outer word

A detailed list of the sequence of operations occuring during each

of the above clock times is given in Appendices A and B.

-18

3.1

SECTION 3
MULTIPLICAT1ON

INTRODUCTION

Multiplication is actually the addition of partial sums (to form the
partial product), in which each partial sum is a multiple of the multipli-
cand. In floating point multiplication, the exponent of the product is the

sum of the exponents of the operands.

Since multiplication time in the PE's is dependent on the fact that
the control unit proceeds to the next operation only after all PE's in the
quadrant have completed the multiplication, acceleration of the process is
greatly dependent upon the reduction of the number of partial sums as well
as the speed with which these sums are formed and the speed at which they

are added.

As for implementation, the R register holds the multiplicand, the B
register holds the multiplier, and theiA register contains the partial pro-
duct (and initially, the multiplicand)L In the 64-bit mode, the A register
will contain the 48 high-order bits of the final product and the 48 low-
order bits will be found in the B register. 1In the 32-bit mode, if both E
bits in the mode register arc enabled, the A register will contain both 24-
bit products while the B register will contain the 48-bit product of the
outer word. 1If either or both E bits are disabled, the A register halfword
will be properly restored and the B register will contain the 48-bit outer

word product.

19

3.2

SECTION 3 (continued)

ADDITION OF EXPONENTS

In floating point multiplication, the exponents of the operands are
added. The sign bit of the final exponent is determincd by a carry (or
absence of.carry) out of the exponent field. Such a carry will exist if
either a) both exponents are positive or, b) one exponent is positive and

the other negative and their sum is a positive number.

The "carry" (0 or 1) is placed into a special circuit and brought back
directly into the most significant bit position of the exponent. In that

way, the exponent carry dees not effect the sign of the mantissa.

“20-

SECTION 3 (continued)

RECORDING THE MULTIPLIER

It is established that binary multiplication with an n<bit multiplier
conceptually takes n iterations. With multipliers of the order of 48 bits
{64~bit mode mantissa) in the TLLIAC 1V, a reduction in the number of itera=-
tions is eésential to efficient operation. In the present design of the
processing element, the number of iterations has been reduced to three for

each of the words of the 32-bit mode and to six for the 64-bit mode.

Since the mantissa of a 32-bit word is comprised of 24 bits and that
of a 64-bit word is 48 bits long, it is evident that one iteration must
accomplish multiplication by 8 multiplier bits at a time; Such a feat is
implemented as follows: 1In the first iteration, the contents of the B
register (multiplier) mantissa are fed into the Logic Unit (LOG), which passes
them in parallel to the Barrel Switch. Within the Barrle Switch, the mantissa
is right-shifted end-off by 8 places. The shifted-off low-order 8 bits are
routed to a network called the Multiplier Decoder Gates (MDG), where they are
divided into 4 pairs. The 40 high-order mantissa bits are returned to the

B register.

In subsequent iterations, the same shifting-decoding process is
performed, but only the 40 low order bits from the B register are used.
For each of those iterations, then, the Barrel Switch receives 40 bits

every clock time and returns 32 bits to the B register.

Each pair of multiplier bits can be interpreted as follows:

o A bit pair 00 means that no addition of the multiplicand is
required,
o A bit pair 01 means that the multiplicand must be added to the

partial product.
o A bit pair 10 means that double the multiplicand (which is the
multiplicand shifted left one position) must be added to the

partial product.

“2] e

3.3

SECTION 3 (continued)

RECODING THE MULTIPLIER (continued)
0 A bit pair 11 means that the multiplicand must be multiplied by

three before being added. This condition is implemented by sub-
tractipng the multiplicand from the partial product and then adding
the multiplicand after shifting it left two positions (i.e., after

multiplying it by four).

The above pairs, then, can be coded as multiples 0, 1, 2, and -1, res~-
pectively, with the latter implying an immediate subtraction and a carry

into the next pair.

Considering the effects of a carry from a preceding pair, a ''recoding"

can be defined as follows:

, RECODED
PAIR CARRY-IN MULTIPLE CARRY-OUT
00 0 0 0

01 0 1 0

10 0 2 0

11 0 -1 1

00 1 1 0

01 1 2 0

10 1 -1 1

11 1 0 1

The multiplier in the B register is partitioned as follows:

The 64-Bit Mode

Bit 63 does not participate in the bit-pairing process but is used to
ot e,)or not Sote,the multiplicand 1nte the A register as €he
chock-whether-tha-initial--loading-ofthe-muttiplticand-into—the—f-regicter
J e d Pq,r't;uxi JFreauat. Lo . . C
was—corréct—(if it-is-enesthe-multipli-cand-remains—in—the—i-registeryn The
remaining 47 bits are grouped in pairs from the right and in six 4-~pair sec-

tions as shown in Figure 3. »
16 ' 63

|

Pair {Pair {Pair {Pair
4 3 2 1
Section 6}Section 5|Section 4{Section 3!{Section 2 Section 1

FIGURE 3. PARTITION OF 64-BIT MODE MULTIPLIER MANTISSA

22

3.3

SECTION 3 (continued)

RECODING THE MULTIPLIER (continued)

Since the mantissa containsg 48 bits and bit 63 is nct paired, it is
clear that pair &4 of sccrion 6 logically contains only one bit. However,
to avoid having to worry about a possible carry into the exponent field,
this "pair" should be thought of as an actual two-bit pair in which the
leading bit is zero. So if bit 16 is a one and a carry occurs from Pair 3,
Pair 4 will become 10 (an addition of twice the multiplicand to the partial

product).

Each of the above sections require one iteration (one clock time) for

the formation of the partial product.

The 32-Bit Mode

The partitioning process for multiplication in the 32-bit mode is simi-
lar to the process for 64~bit mode multiplication described above, cxzcept
that bits 39 and 63 will be the initial multiplicand enables and outer and

inner word mantissas will each be partitioned into three sections.

Application of Recoded Multiples

" The actual recoding takes place in the MDG, where one multiple
is generated for each of the four bit-pairs. These multiples are sent
to the Multiplicand Select Gates (MSG), which apply each to the multi-
plicand from the R register. The MSG outputs four levels of shifted
multiplicand, each level reflecting the result of applying one of the
recoded multiples to the multiplicand. Clearly, each output level must
consist of 49 bit positions in order to accomodate the '"multiple = 2"

case, where a 48-bit number is shifted left by one place.

The first three MSG output levels become input to the first three
levels of the Pseudoadder Tree (Section 3.4), respectively. The fourth
MSG output level, which is the result of applying the recoded bit-pair

#4 to the multiplicand, is input to the Carry Propogate Adder.

~-23~

3.4

SECTION 3 (continued)

PSEUNOADDER TREE (PAT)

Since multiplication is defined as successive additions of the multi-
plicand, it is evident that the use of a very fast adder is essential.
However, instcad of adding only two numbers to produce the sum, a new adder
has been incorporated into the ILLIAC IV PE which adds three numbers
(addend, augend, and carry-in) and produces not only a sum, but both a sum

and a carry. This adder is called the Psecudoadder Tree (PAT).

The PAT has three levels and can accommodate 56 bits, Its high speed
is due to the fact that there is no carry propogation since carry consti=-

tutes one of the three inputs to the next level of the tree.

The operations of each level of the PAT are as follows:

o In the first level of the Pseudoadder Tree, the 48-bit partial
product from the A register is added to the first shifted multi-
plicand that is output from the MSG. The sum and carry output
from this level is input to level two.

o The second level adds this first level input to the MSG result
obtained by applying the second recoded bit-pair to the multipli-
cand. A new sum and carry is generated to serve as input to the
third level.

o The third level of the PAT adds the MSG third output level to

this input to produce a final sum and carry for the PAT,

At this point, six of the eight bits in a multiplier section have becn
applied to the multiplicand and the result has bgen added to the partial
product. The resulting sum and carry of this operation comprise the output
of the PAT. All that remains is to add this result to the output of the
fourth MSG section, which is the multiplicand after it has been multiplied
by the recoded bit-pair #4. This addition is performed in the Carry Propo-
gate Adder. It can be observed that the CPA is actﬁally behaving as a

fourth level of the Pseudoadder.

-2l

3.4

SECTION 3 (continued)

PSEUDOADDER TREE (PAT) (continued)

The output of the CPA is the {inal 56-bit sum and carry of one multi-
plication iteration. The 48 high-order bits of the sum are loaded into the
A register mantissa and the 8 low-order bits are loaded into the B register
mantissa. Carry is fed into the C register for input to the first level of
the Pseudoadder in the next iteration. Of course, in the initial iteration
the C register contains all zeros and therefore contributes no carry to the

PAT,

To aid understanding, the process described above is schematically

represented in Tigure 4.

“25-

RGR

b e

Multiplies

Jrzzzzn from MDG

Multiplicand
4 Select Gates
o
RGA (MSG)
i J PAT MSG OQOutputs
; perr 49 bits per level
: === lst Level
“2nd Level ol
\; e JIE S ——
3rd Level —
JL \i <z
Carry Propogate
Adder (CPA)
8 Bits
48 Bit
'”":::"Fl ° o Carry r RGB
T
ot
RGC
Figure 4. Schematic Representation of Multiplication

RGA - Partial Product
RGB - Multiplier

RGR = Multiplicand

26

3.5

SECTION 3 (continued)

TIMING OF MULTIPLICATION OPERATIONS IN 64-BIT MODE

Following is a summary of the sequence of operations for multiplication

in the 64-bit mode as a function of clock times:

Tl

T2
T3
T4
5
T6
T7
T8
T9

A) Calculate Exponent

B) Recode 8 bits of multiplier mantissa for first iteration

Recode 8 bits of multiplier
Recode 8 bits of multiplier
Recode 8 bits of multiplier
Recode 8 bits of multiplier
Recode 8 bits of multiplier
Sixth iteration

Form the final product

Normalize final product

mantissa
mantissa
mantissa
mantissa

mantissa

for
for
for
for

for

second iteration
third iteration
fourth iteration
fifth iteration

sixth iteration

A detailed list of the sequence of operations occuring during each

of the above clock times is given in Appendix C.

27 -

SECTION 4

DIVISION
INTRODUCTION
There are several methods for performing the division operation. Among
the most common are ''restoring”, 'mon-restoring', and "non~-performing'. In

the restoring method, the divisor is successively subtracted from the high-
order bits of the dividend; the result replaces the dividend. The quotient
is increased for each successful subtraction, i.e., for each subtraction
yielding a positive result. When a negative result of subtraction is ob~-
tained, the dividend is restored by adding the divisor to it., The dividend
and the quotient are then shifted left one position and the process is re-

peated.

Non-restoring division is based on the observation that a subtraction
yielding a negative result in the above method requires a restore operation
(i.e., an addition of the divisor) followed by a subtraction of the divisor
during the next iteration (with the divisor shifted one place to the right,
or divided by two). The two operations "add present divisor" and ‘''subtract
one~half present divisor" can be combined to a single operation 'add one=-
half of present divisor". From a hardware viewpoint, however, this process
requires extra logic gates to pick up locally the TRUE or COMPLEMENT output
of the divisor register and implies added cost and complexity of the proces-

sing element.

The ILLIAC IV employs an altered restoring method known as the non-
performing method. Recall that in the réstoring method, a one is entered
in the quotient for a positive subtraction result and a zero is entered
otherwise. This rule only applies to positive quotients, however. 1I1f the

sign of the quotient is negative (i.e., if divisor and dividend have oppo-

. site signs), the opposite is performed (zero for positive subtraction result,

one otherwise). In non-performing division, the sign of the result is con-
sidered. 1If this sign is the same as that of the'present partial remainder,
a one is entered in the quotient bit if the quotient is positive and a zero
is entered if the quotient is negative. If the sign of the subtraction
result differs from that of the present partial remainder, the result of
the subtraction is ignored and the partial remainder is shifted left one
place. A zero is then added to the quotient if the quotient is positive

and a one is-added to a negative quotient.

- -28-

SECTION 4 (continued)

INTRODUCTION (continued)

As for register allocation, the double-length dividend is initially in
registers A and B. The normalized divisor is in thc¢ R register. Following
each iteration, the one-bit quotient is loaded into the B register at posi=-
tion 63 and the remainder is retained in the A register. At the end of the
requiréd 48 iterations, the quotient is in the B register and the remainder
is in A. The contents of these two registers are then swapped so that in

the final form, the 48-bit quotient is in the A register.

-29-

SECTION 4 (continued)

IMPLEMENTATION O THE DIVISION OPERATION

As previously stated, the mantissa of the dividend is of a Iength
double that of a single register's mantissa field. For the 64-bit mode,
then, a dividend mantissa is 96 bits long. These bits initially occupy
both the A and B registers with the 48 high-order bits located in the A
register. The dividend need not be mormalized., The divisor, located in
the R register is 48 bits long and must be in normalized form before the

division process is started.

Since the recursive division process requires subtraction of the divi-
sor from the dividend, the one's complement of the divisor is taken into
the CPA where a one is added to it to form the two's complement. The
divisor, now in complemented form, is added to the dividend. If the sub-
traction is successful (i.e., if the result is positive), then the quotient

bit is a one. Otherwise the quotient bit is a zero.

The system hardware puts a one in the quotient bit if either:
o The "RSIGXN" latch is set, or
0 The result of the subtraction of divisor from dividend causes a
carry out of the most significant bit of the adder (positive re-
sult of subtraction).

That is, Q = RSIGN,,, + GCl6 GCl6 = Carry Out of the MSB

The "RSIGN" latch can be thought of as a one-bit left extension of the A
register. It is set when bit position 16 of either the A register or the
CPA are one and the previous quotient bit was one.

That is:

RSIGNi+ = A16'Qi + CPA16'Qi

1

This specification is predictable since, given the fact that the divisor
is always normalized, a successful subtraction requires a one in the most

significant bit position (Bit 16) of the partial remainder.

The RSIGN latch is initialized to zero, so the quotient for the first
iteration is entirely dependent on whether the subtraction of divisor from

dividend produces an overflow. That is, on whether the result is positive.

«30~

SECTION 4 (contivued)

IMPLEMENTATION OF THE DIVISION OPERATION (continued)

Subsequent iterations require consideration of the previous result.
If Qi = 1, the preceding subtraction must have been successful. Therefore,
the remainder is taken through the CPA and loaded back into the A register

after being shifted left end-off By one place.

If Qi = 0, however, a negative remainder is indicated. Thus, the re-
sult of the subtraction (remainder) is ignored and the current dividend from
the A register is passed through the PAT and, after being shifted to the

left by one position, is re-~entered in the A register.

It should be explained at this point that neither the CPA nor the PAT
have any extensive shift capability built into them. Their ability to affect
the above single position left-shifts is as follows: The PAT has three
levels, each level receiving three inputs (sum, carry, and the shifted R
register contents). In division, the C register is cleared in clock time T1
and therefore, no carry enters the first level. Further, the division pro-
cess, unlike multiplication, does not access the MDG recoding network. So
the contents of the A register constitute the only input to the PAT first
level. The PAT has been designed so that in the absence of MDG and carry-in,
the contents of the A register is directed to the PAT third level. This
level is hard-wire connected back to the A register, but displaced one posi-
tion to the left relative to the original position. That is, bit 63 becomes

bit 62, 62 becomes 61, etc.

The CPA is constructed in the same way. The A register is hard-wired
to the CPA, the output of which goes back to the A register, but displaced

one position to the left.

Each time the A register mantissa contents are left-shifted, the B
register mantissa contents are also left~shifted (but in the Barrel Switch
instead of the PAT or CPA). Thus, B register bit 16 is transferred to A
register bit 63 and the now-vacant B register bit 63 receives the quotient

bit, ‘ -

“31=

SECTION 4 (continued)

IMPLEMENTATION OF THE DIVISION OPERATION (continued)

Following the 48th iteration, the dividend has undergone 47 left shifts
and quotient Q is in bit location 16 of the B register. The last subtrac~
tion has determined Q48° If Q48 = 1, the subtraction result is shifted left
and then loaded back into the A register to become the partial remainder for
the 4%th iteration of the recursive process. 1If Q48 = 0, the previous re-

mainder is shifted to the left by one place and then returned to the A register.

In the next clock time, no execution takes place, but a test is made to
determine whether the original dividend was greater or equal to the divisor.
If bit position 16 of the B register contains a one (Ql = 1) the exponent in
A is increased by one. 1If this bit is zero (Q1 = 0), the exponent remains
unchanged. The latter indicates that one more bit of precision can be added

to the quotient.

At the end of the 49th iteration (clock time T53), the contents of Q1
is interpreted as regards the quotient. If Q1 = 1, the B register is blocked
to prevent insertion of Q49. If Q1 = 0, however, the quotient is shifted

left one position and Q49 is enabled into B register bit position 63.

Division is now complete . and the mantissas of the A and B registers
are interchanged, leaving the final quotient in the A register and the final

remainder in the B register.

-32-

SECTION 4 (continued)

SUBTRACTICN OF IXPORERTS

In division, the exponent of the divisor is subtracted from the expo-
nent of the dividend and the result is placed into the exponent part of the
A register. At the beginning of the division process (clock time T1), the
exponent of the divisor (R register) is passed through the Operand Select
Gates (0SG) and is loaded into the exponent part of the B register. Then,
at clock time T3 (T2 is used for mantissa adjustment), the subtraction of A
and B register exponents is performed in CPA and the result is gated back

into the A register.

Nothing further is done with the exponent until the 48th mantissa
division iteration has been completed. At that time (T52), the exponent in
A is incremented by one if the first quotient bit (Ql) was a one. I1f this
incrementation produces exponent overflow, the F (overflow) bit of the wmode

register is set,

«33a

SECTION 4 (continued)

NORMALIZATION

The process of mantissa normalization and corresponding exponent cor-
rection for division is essentially the same as described in Section 2.7

for the addition operation.

If normalization is specified in the programmed 64-bit mode division
instruction, the binary number 00 111 111 is placed into bit positions 0 to
7 of the B register (clock time T3) for exponent adjustment. At clock time
T55, the leading one detcector determines the amount of shifting that will
be necessary for mantissa adjustment. The Barrel Switch shifts the A man-
tissa by this amount and the shift count is inserted into the exponent of
the B register. At T56, the A and B register exponents are added in the
Carry Propogate Adder with the sum transferred back into the A register ex-
ponent field., If exponent underflow occurred, the entire A register is set

to zero.

A similar procedure is followed in 32-bit mode division. The exponent
correction factors are entered into the B register at clock times T3 and T6
(for outer and inner word, respectively). The mantissas are normalized and

exponents are adjusted in clock times T67 to T69.

~3l -

SECTION 4 (continued)

Following is a summary of the sequence of operations for division in

the 64~bit mode and 32-bit mode as a function of clock times:

Division in 64-Bit Hode

T1 Transfer exponent of R register into B register

T2 If rounding, transfer mantissa of R register into B register shifted
end-off to the right by one

T3 Calculate cxponcnt

T4 — T51 Form the quotient field ‘

T52 1Increment cxpounent of A register if Q1 =1

T53 Test Q in order to determine use of Q49

T54 1Interchange mantissas of Register A and Register B

T55 fIf normalizing, detect leading one of Register A mantissa and shift
T56 { accordingly. :

T56 Adjust exponent of Register A, check for exponent underflow

Division in 32-Bit Mode

T1 Transfer exponents (inner and outer) of R register into B register

T2 If rounding, transfer outer mantissa of R register into B register
shifted end-off to the right by one '

T3 A) If rounding, transfer shifted inner mantissa of R register into
B register as in T2
B) Calculate exponents

T4=T5 Interchange outer and inner mantissas of B register
T6 Interchange outer mantissas of A and B registers

T7-1730 Form the Quotient field for inner words

T31 1Increment inner exponent of A register if Q = 1

T32 Test Ql in order to determine use of Q25

T33 Interchange inner mantissas of A and B registers

T34~T36 Interchange inner and outer mantissas of R fegister

T37 Check for non-normalized divisor in R register

T38~T61 Form the quotient field for inner words (recalling inner and outer

words have been interchanged)

“35-

)

SECTION 4 (continund)

TIMING OF DIVISION OPERATIORS (continued)

T62
T63

T64 -

Increment outer exponent of A register if Q1 = 1
Test Q1 in order to determine use of Q25

Interchange mantissas of A and B registers

T65-T66 Interchange inner and outer mantissas of B register

T66

T67

T68

T69

Clear inner or outer exponent and mantissa of A register if exponent
underflow

If normalizing, detect leading one of Register A inner mantissa and
shift accordingly

A) If normalizing, detect leading one of register A outer mantissa
and shift accordingly
B) Adjust inner exponent of Register A, check for exponent underflow

Adjust outer exponent of Register A, check for exponent underflow

A detailed list of the sequence of operations occuring during each of

the above clock times is given in Appendices D and E.

-36-

APPENDIX A ADDTTICN IN €l BIT MODE

EXPORENT DIFFERENCE

Enable truz ocu! of exponent of B -

. Enable complement out of exponent of A =

AN
N

. N\
Enable complement out of exponent of A into.CPA —

Enable true out of exponent of B into CPA-. -
Enable the sign of B mantissa into CPA

Enable the bit carrics because of thc addition of exponents of

B & A into CPA f

Force zeroes intoc the mantissa part of CPA

Clear and load clocks into S.C.R. (1LOD #4)

Put exponent part of CPA into SCR(8-15)
. Clear and load clocks into LOD ‘

Clear and load the latch for OSEQ

37

EXAMPLE O 11 OPERATIONS

R o7)9 PN ot
A 1 00000O0CO0OCOOO0O0O0 1
B 1 000000O0OOCOO1LO
A 0t 1111111111110

B 1 000000 0 0O0OO0O0CO0OT1O0
CPA ; 0O 6 06 0O0OO O O O0OO0OO0OO0OI0 0 O

) , A
CARRY ‘ - % 1
FINAL RESULT OF EXPOHENT
S.C.R. DIFFERENGE - 000001
”‘wa]

38~

12

ROUNDING (Optional)

Enable true out of sign and mantissa of A

Enable true out of sign and mantissa of B

a) ‘Enable A into LOG if there is (from exp. addition) a carry and

thercfore if cxponent of A < exponent of B

b) Enanle B into LOG if there is no carry and therefore expouent
expﬁnent of B |

Enabie the G4 shift counter from SCR

Enable force shift left (control for end=off)

Transfer LOG into BSW (bits 16-63)

Load most significnat shifted=-off bit into IMSB latch

chh e

cemedk ‘Fk st

o) \.}]
7 C/(DCL B .l_ U S

e ———— . —_——— .

A >

T3

10.
11,
12,

13.

ATTON MANTISSA HAVIKG SMATLER EXPONENT

. Enat‘le CUWP:!‘\“’I‘-"‘HI O{ sz’,lls of AA 8’4 B if Veoana ‘ 01100

Enable true of cigns of A & B

Enable true of msntissas of A & B

Load sign and mantissa of A into LOG if there is a carry

Load sign and mantissa of B into LOG if there is no carry
Enable 64 shift counter from S.C.R,

a) True out‘ofo.C.R. if thereis a carry

b) Complement of SCR if there is no carry

Transfer LOG into BSW (16-63 bits)

a) Transfer the BSW into A (16-64 bits) if theve is a carry
b) Transfer the BSW into B (0-15, 16»63‘bits) if there is no cafry
a) Load A mantissa if there is a carry | i
b) Load B mantissa if there is no carry

Enable exponent of B (1-15 bits)

Restore sign of A (O bit) |

Enable B expcnent into the exponent paft of A

Clear and load the sign and exponent part of A,

Tl

12,

13.

ADDITICN O MANTISSAS

Enable true out of mantissa of B if mantissa signs equal
Enable complement out of B if wmantissa signs are unequal
Enable true out of sign and mantissa of A

Transfer mantissa of A into CPA

Transfer mantissa of B into CPA

Inhibit EAC from exponent if signs are equal

Enable bit carries resultine from the addition of the mantissa
into CPA.

Transfer sign of mantissz of B into CPA

Transfer the cxpenent of A into CPA

Transfer the mantissa of CPA into A . ‘ -
Set WCMP latch if there is no carry and signs are unequal

Set overflow if the sigus are cqual and there is a carfy'(most
significant bit of mantissa of CPA) a

Clear and load clocks to OV1

A

T5

1:

10.

11,

Enable the true of mantissa of A if WOMP latch is low.

Enable the complement of mantissa of A if WCMP latceh is high.,

Transfer wantissa of A (1 or 2 above) into CPA.
Enable bit carries into CPA (0 - 15) and (PA(16-63).
Enable the cxponent of A intc CPA (65n7§).

Clear and then load clocks into mantissé of A.

Force zeros into the mantissa part of C?A (from B).

!
a) Force SGE = 1 IF ROUND and add 1 to MSB of mantissa

and WCMP latch is low. ‘

b) Force SGE = O and STE = O IF ROUND and subtract 1 from
the MSB of mantissa and WCMP latch is low.

Set overflow OV1, |

Enable the mantissa sign of B into CPA.’

Enable the mantissa part of CPA into A.

42

10.

LIZE, ADJUST EXPONENT

¥
FA SR AN
e+ s+ emars - arave e a1 - eeremcemarons ot s v ve o

IF NORMALIZATION

Enable RGA (16G-563) if WCMP lateh = O,

Enable compliment of RGA (16-63) if WCMP latch = 1,

Enable RGA (16-63) into LOD when normalizing.

Enable RGA (16-63) into LOG.

Enable 10G{16-63) into B SW.

Enable e%ponent correction bits into RGB (B-15) when
normalizing,.

Enable exponent correction bits into RGB (B-15) when
nopmalizing.

Enable clear and load clocks into RGB (O-7).

Enable 00 111 111 into RGB (0-7) for exponent correctién.

Load clocks for F.

IF NO NCRMALIZATION
Enable clear and load clocks for RGA (16-63).
Enable RGA (0-15). |
Enable RGA (1-63) into CPA (65-79, 16-63).
Enable RGB (16-63) into CPA (16-63).
Enable bit carries into CPA (16-63) but disable CPA
(65-79).
Compute corfect sign of RGA,
Restore sign of RGA, ‘
Enable CPA (1-15) into RGA (1-15).
Enable clear clock for OVI,

“43-

CORRECT RESULY

1.

10.

11,
12,
13.
1L,
15.
16.

_EXPONENT

).

Enable True out of RCGB (8-15).

Enable true out of RGA (1-1

1

‘Enable true out of RGB (1-7) if normalize and there is:

a) No overflow or

b) Bit 16 not a ONE,

Enable complement of RGB (1-7) if there is:

a) Overflow or

b) ﬁit 16 is a ONE.

Enable RGA (1-63) into CPA (65-79, 16-63).

Enable RGB (1-63) into CPA (65-79, 16-63).

Enable bit carries into CPA (16-63, 65-79).

Clear mantissa of RGA if there is exponent underflow or
overflow (conditionally),

Load clocks to RGA (0-15) or FYEASNOW~T and P-EX-UF~-L and
P-ZML~-H-L, |

Enable exponent overflow to mode register cn FYEEXOFM-T and
Pee--E---1,

Enable exponent underflow on FYENUF-M-T and P-ZML--H-L,
Clear and load clocks to F.

Set F on underflow or NO zero mantissa.

Clear clocgs to OV1,

Restore the sign of RGA after computation.

Enable CPA (65-79) into RGA (1-15).

bly-

APPERDIX B: ADPITION TN 32-BIT MODT

DIFFERGHCLS OF

M i, et e i L et i

2 WORD

Enable truc out of RGB (9-15),

Enable complement out of RCGA (9-15)

Enable RCA (0,1-7, 9-15) into CPA (64,65-T1, T3-79)
Enable RGB (8,9-15) into CPA (72,73-79)

Sncble WDY inner and outer mantissa into CPA (16-63) *
Enable bit carries into CPA (72,73-79)

Enable CPA sum of inner sigﬁ and exponent (72,73-79)
inté the BSW ‘

Eqable clear and load clocks iﬁto the SCR (LOD #4)
Enable clear and load clocks into LOD
>01ear and load clocks into ISEQ and #$SEQ latch
Enable signal to speed up path around the latch of

stored carry.

*
Since the part of LOG corresponding to the OUTER and INNER
mantissa has not been enabled, the input to the CPA (16-~63)

looks like all zeros .

NUMERICAL EXAMPLE

Bit Position

RGA 1000101 = 5)10 Decimal 5
RGB 1000001 = 1)

RGA 0111010

CPA 1111011

SCR 111011

SCR 000100 = L), Difference

45

. . . .

[S, I~ B IR (U
L

00 ~§

T2 SAVE MSB TO BE SHIFTED OFT

FORX ROUNDING IN INNER WORD

Enable true out of ir, sign and tn. mant. of A (8,16-39)
Enable true out of in. sign and tn.mantissa of B (8, 16-39)
Enable RGA into L0OG if there is a carry (AFXDP<BEXP)
Enable RGB inte LOG 1f there is no carry (AEXP»REXP)
Enable LOG (0-39) into BSW (24-63)%*
Enable CPA into shift counter from SCR

a) SCR true out if there is a carry

b) SCR comlement out if there is no carry.
Enable force shift left** '
Enable clear and load clocks into IMSB latch

Because of restrictions arising from signal controls we enable in 1,0G
bits (0-39) but we effectively place the bits (0-39) of LOG into the
BSW (24-63 bits) by simply shifting each byte by 24 places to the
right in order to be able to save the MSB in a postion 64. '

Enabling is required so thatvthé‘nd-carry case can produce a right
shift that has the appearance of a desired left shift.

A

T3 A) DIFFERENCY. p TXPONENTS OF

B)

GIFIFR_DORD

Enable true out of RGH (1-).
Enable complement out of RCGA (0,1-7).
Enable RGA (1-7) into CPA (65-71).

Enable Ol /// /// into CPA (72-79).

Enable RCA (8-15) into CPA {72-79). :

Enable RGEB (0,1-7) into CPA (64,65-71). !

Enable Whh inner mantissa intc CPA (16—35)*

Enable bit carries into CPA (6'%,65-71).

Enable CPA sum of outer sign and exponent (6%,65-71)

into Barrel Switch (through the SCR).

10. Enable clear and load clocks into SCR,

11. Enable clear and load clocks into LOD,

ALIGN MANTISSAS OF INNER WORD WITH SMALLER LXPONENT

1. Enable true out of RGA (8, 16-39).

2, Enable true out of RGB (8, 16-39).

3. Enable RGA (8,16-39)'int0 LOG (8,16-39) if there is
a carry. |

k., Enable RGB (8,16-39) into LOG (8,16-39) if there is no
carry.

5. Enable CPA into SC from SCR depending upon the end around

carry. Also enable SC > 48 detection for inner exponent,
a) SCR true out if there is a carry
b) SCR complement out if there is no carry.

47

11.

12,
13.
1k,
15.

16.

Enable LOG (16-39) into BSW (16-39).

—

Enable 36W (16-39) into RCA (16-39).

Enable BSW exponent into RGB exponent,

Enable 28V (16-39) into RGB (16-39).

Enable clear and load clocks into RGA (16-39) if there is
& carry.

Enable clear and load clocks into RGB (16-39) if there 1is
no carry, |

Clear and load clocks to the ISEQ latch,

Enable true out of RGB (9-15).

Enable RGB exponent into RGA exponent,

Enable clear and load clocks into RGA (8-15) if there is a

carry and El = 1,

Restore sign of RGA (8).

¥

The WDL inncr mantissa is brought into CPA (16-39))

to insert zeros in CPA (16-39) because since the part of MSG cor-
responding to WDL has not been enabled, its output looks like a
zero,

48

Th

SAVE #,5.0.

OF BLIS TO BE SHIFIED

OFF OF GUIZR VORD

Lrable

nable

=1

Enable

Enable

Enable

Enable

true out of outer sign
true out oi outer sign
A into LOC if there is

D into LOG if there is

and mantissa

of A(0,40-63).
and mantissa of B (0,40-63).

a carry (Aexp < Bexp).

no carry (Aexp > Bexp).

L0G (L0-63) into BSW (L40-63).

CPA out into SC from

a) SCR true out if there is a carry

b) SCR complement out if there is mo carry.

Enable

force shift left,

Enable clear and load clocks into OMSR latch,

15

10.

11.

12,

13.
1k,

ALICH MANTISSAS OF OUTER WORD WITH SMALLER EXPONENT

Enable true out of outer sign and mantissa of A (0,40-63).
Enable true out of inner sign and mantissa of B (0,40-63).
Enable A into LOG (0,40-63) if there is a carry.

Enable B into LOG (0,40-63) if there is no carry.

Enable CPA into shift countér and then

a) SCR true out if there is a carry

b) SCR complement if there is no carry.

Enable LOG into BSW (L0-63).

Enable BSW (L40-63) into A (h0-63).

Enable BSW (0-15,40-63) into B (0-15,40-63).

Enable load clocks to outer. mantissa of A if there is a
carry and PEXDI-LLSH, .
Clear and load clocks to outer mantissa of B if there is

no carry, |

Enable outer exponent of B (1-7).

Clear and load ciocks into outer sign and exponent of A (0-7).
Enable exponent of B into exponent of A (0-15), |

Restore outer sign of A.

ADD MANTISSAS OF INNER WORD STORE OVERFLOW (OVy) (if there is any)

. Enable clear and load clocks to outer sign and exponent of

RGA if E =1 and there is a carry.
For addition FYE~K~---T is O from CV,
Enable true out of inner mantissa of RGB if P--ISEQ--H,

Enable compliment out of inner mantissa of RGB if P--ISEQ--L.

“50~

. —_ . e . 4 oo, ot O e

Clear and load clocks to Quter sign pqual latch,

Enable true out 6f inner mantissa of RGA,

Enable the complement out of SCR,

Enable RGA (i-7,9-15,16-39) into CPA.

Enable RGB (8,16-39).

Force zeros into CPA (WDL outer mantissa to CPA outer mantissa).
Enable the bit carries into CPA,

Inhibit end-around carry thrcugh exponent if ISEQ high,

Enable CPA (16-39) into RGA {16-39).
Clear and load clocks into inner CMP laﬁch.

Clear and load clocks into inner mantissa of RGA (16-39).

Enable to set OV| (for inner word),

Enable true output of RGA inner sign,

“5]1=

T6

Enable

is low

Enable

coMpLEMENT (if necessary), ROUND, STORE
OVERFLOW (if there is any)
OF INNEK WORD

true out of inner mantissa of RGA (16-39) if inner CMP latch

compliment of inner mantissa of RGA (16-39) if inner CMP latch

is high

Enable
Enable
Enable

Enable

Enabie

Enable

Enable

Enable

Enable

Enable

Enable

Enable

RGA (16-39) into CPA (16-39)
bit carries into CPA inner sign and exponent (72, 73-79)
bit carries into CPA mantissa

zeroes into CPA (enable RGA (L40-63) into CPA (L0-63)

to set OVl (for inner word)

RGB inner mantissa (16-39) into CPA (16-39) ‘

adder to round properly L | -
RGB outer sign (O) to CPA outer signv(6h)
RGB outer exponent (1-7) to CPA (65-71)
inner sign of RGB into CPA (72)

RGA (9-15) into CPA (73-79)

CPA (16-39) into RGA (16-39)

“52-

T7

10,

11.

12, -

13.

A. -~ ADD MANTISSAS OF OUTER WORD,
STORE OVERFLOW (if thexe is any)

Enable true out of RGB (40-63) if outer Sign Equal latch is high

Enable complement. out of RGB (LO-63) if Outer Sign Equal latch is low

Enable truc out of RGA (40-63)

Enable RGA (0) to CPA (6L)

Enable RGA (1-7,8) into CPA (65-TL, T2)

Enable RGB (9-15) into CPA (73-79)

Enable RGA (40-63) into CPA (L40-63)

Enable 2GB (}40-63) into CPA (40-63)

Eﬁable zeroes into CPA (16-39) (because the signal calls for WD inner
mantissa into CPA inner mantissa)

Enable bit carries into CPA

Inhibit end-around carries through exponent if Outer[signJiqual latch
is high |

Enable CPA (1i0-63) to RGA (L0-63)

Clear and load clocks to outer CMP latch

B. - COMPLIMENT (if needed), NORMALIZE,
ADJUST EXPONENT OF INNER WORD

Clear and load clocks into RGA (40-63)

Enable true out of RGA (16-39) if Inner sign Equal latch is low

‘Enable compliment out of RGA (16-39) if Inner Sign Equal latch is high

Enable RGA (16-39) inte LOG (16-39)

Enable LOG (16-39) into Barrel switch (16-39)

Enable exponent adjustment into inner exponent of RGB
Enable clear amload clocks into LOD

Clear OV2 if no overflow exists

W Teand NUD If thare e overflow i 5o

10.
11.

12'

13.

1y,

15.
16.

Clear and load 2G4 (16-38) and RGB (8-15)

A

\
51 to RCB (8,9-15)

Enable LOD (8,9.1

Shift right by ONE il overflow existe

Enable (conditionaliy) to set F bit if F bit has been set and there

is OV1

’

Inhibit the clear clocks te RGD

Enable barrel switch (16-39) into RCA (16-39)

Clear overflow (OV1)

-5~

COMPLLM T el czeded) 5

Enable troe cui of ROA {L0-G3) if outer CMP is low
}‘:1‘)({0 le com ‘)} crcut o i ouL @ 5 RGN (’! (:)__6 1:
Enable R3L (L0-03) inte CPA (L0-G3)

Enable bit carxies into CPA (64-71)

Enable RG3 (0)

Enable RGB (L0-63) into CPA (L40-63)

Enable RGA (L~

Clear and load clocks to RCA (L0-63)

Round propcrly

into CPA (8L)

39) into CPA (65-79, 16-39)

YR Rt ST RS (I SR WP T R Eal
Lobanl), AlCUGL haldniid

OF OULLR WOLD

See Section 2.6)

Enable to set QVZ2 (for outer word)

Enable CPA (40-63) to RGA (40-63)

O~V WN -

10.
11.
12.
13,

15,
16,
17.
18.

19.
20,

21.
22.
23.
24,
25.
26.
27.
28.
29.

TOOCOMPIRMENT (it needad), RORVALIZR,
ADJUSTY BHPORENT OF
OUTLR WORD

Clear an? luad clecks into RGA (40 - 63)

Enable
Enable
Fnable
Enable
Enable
Enzble
Enable

true out of RGA (40 - 63) 3if OCMP laich is low
cemplement out of RGA (40 - 63) if OCMP latch is high
RGA (40 - 52) into LOG (40 ~ 63)

10G (40 - 63) into barrel switch (40 - 63)

load clocks to RGA (40 =~ 63)

1OD (0 - 7) to RGE (0 - 7)

{conditionally) underflow if mantissa ie not ZERO

Inhibit clear clocks to RGD

Enable

exponent adjustment RCB (8 - 15)

Clear and load RGRB (0 - 15)

Enable
Ernable
Enable
Enable
Fnable
Inable
Enable
during
Enable
Enable

RGA (9 - 1%) into CPA (73 ~ 79)

RGA (16 - 39) into CPA (16 - 39)

RCB (16 - 39) into CPA (16 - 39)

carries into CPA (16 - 39)

CPA sum (72 - 79) to RGA (8 - 15)

clear clocks to RCGA (8 -~ 15) if El = 1

clear clock to RGA (16 - 39) if there is exponent overflow
normalization

exponent overflow into mode register :

load clocks into RGA (8 - 15) in case of overflow or under-

flow of exponent

Enable

clears zid loads to F1l

Restore sign of RGA (8)

Enable

to set Fl if F1 bit has been set and therc is OVZ‘

Compute correct sign of RGA (8)

Enable

RGB (9 - 15) to CPA (73 - 79)

Enable bit carries into CPA (- 72 - 79)

Enable

CPA sum (72, 73 - 79) into RGA (8, 9 =~ 15)

Force a shift right ONE is overflow occurs
Inhibit section carries

. _56'; e e et s A 5 et v s e 2088

K . .

. . [y .

OWoONOTULIDWN
.

[ond

12.
13.

14,
15.
16.
17.
18.

TlO _(,:t)l\’R‘]iC'f F%SL?‘L'}‘ANE‘
EXPONENT & SIGH
OF OUTER WORD

Enable RGA (G - 7)
Enable truc out of RGE (1 - 7) (for expon edjustment)
Enable RGA (1 -~ 15) into CPA (65 - 79)

Enable RGR (L - 15) into CPA (65 -~ 79)

Enable bit carries into CPA (72 - 79)

Enable CPA sum (64 - 71) to RGB (8 - 1%5) |
Enable bit carries into CPA (64 - 71) {
Enable clear clocks to RGA (0 - 7) if E =1
Enable clear clocks to RGA (40 - 63) if E = 1 and Exp. UV

Enable load clocks to RGA (1 - 7) if there is FYEASHCO-T which conditionally
clears OUTER word of RCGA in exponent overflow or 'underflow or if there is
underflow and T-ZML--HL A

Enable CPA sum (64 - 71) to RCA (0 - 7) !

Clear the OV2 latch

Enable (conditionally) underflow into RGD on E = 1 and when mantissa is
not ZERO

Enable exponent uvnderflow or overflow if occurs

Enable clear and load clocks to F

Inhibit clear clocks to RGD

Restore the sign of RCGA (0)

Compute correct of RGA (0)

«57 -

TNT Vo STy T ey N AN 3 YN AT
APPENDTX € PULTITLICATION TN 64 BIT MODE
71 FIRD EXPORERT ~ RECODE & BITS

OF MULTIPLIEN MANTISSA TOR FIRST TTERATION

R WN e

. Enable Registers A & B (0-63 bitsg)

. Enable Register & inte R (0-63 bitsg)

Enable Register R (L6-63 bits) ‘ .

. Enable clear and lozd clocks into iuner and outer word of register R
6. Enable clear arnd load clocks to ipnner . and outer word VFLW latches
7. Enable exponent underflow and overflow into mode
8. . Enable underfluw into Register D contional on E and Ey
9 :

. Inhibit clear clocks into Register D
10. Enable clecar & load clocks into F ‘
11. Enable clear clocks into Outer sign and exponent of register A (0-7) if E=1
12. Enable clear clecks into imner sign and exponent of Register A (2-15) if E1=1
13. Enable clear clocks into innter mantissa of Register A (16-39) if Elzl

14. Enable clear clocks into outer mantissa of Register A (40-63)

15. Enable load clocks into outer sign and exponent of Register A (0-7) if E=1
16. Enable load clocks into innter sign and exponent of Register A (8-15) if Elzl
17. Enable clear clocks into inner and outer mantissa of Register B (16-63)
18. Enable load clocks into Inner and outer mantissa of Register B (16-63)
19, Enable the content of Register B into LOG

20. Enable Log (16-63) into parrel Switch

21, Eunable a shift to the right by 8 into the BDarrel Switch controls

22. Ensble Barrel Switch (16-63) into Register B (16-63)

. , , - For
23. Enable the complement output of the outer exponent of Register B (1-7) Unsiened
24, Enable the complement output of the inner euponent of Register B (1-15) Operzﬁd
<

25. Enable Registers A & B (1-15) into CPA (65-79)

26. ¥nable the bit carries into CPA (64-79)

27. Inhibit section cerries from Section 1

28. Enable the outer sign and exponent of CPA into Register A (0-7)
29. Enable the inner sign and exponent ofCPA into register A (8-15)
30. Restore the sign of Register A (0)

T2 FIRST ITERATION - RECODE & BIWS

QF MULTLPLIER MANTISSA FOR SECOND ITTERATION

Enable true out of RCGA (16-23)

Enable true out of RGB (L6-63)

Enable true out of RGER (16-23)

Enable RGB (10-&3) to LOG (16-63)

Enable 100 (16-63) into BSW (16-63)

Force a shift right endeoff 8 places into the BSW controls
Enable PAT sum and carry bits (16-71) to CPA
Enable CPA sum (16-63) to RCA (16-63)

Enable BSW (32-63) iuto RGE (32-63)

Enazble PAT sum intc RGA (16-39)

Enable WD4& (16-63) into CPA (16~-62)

Enable WD4& (0-7) into CPA (G4-71)

13, Enable RGB (16-23) into CPA (72-79)

14. Enable RGC (65-72) into CPA (72-79)

15. Enable bit carries into CPA (72-79)

16. Inhibit section carrvies .
17. Enable clear clocks to RGA (16-63) if E=E;=l
18. Enable load clocks to RGA (16-63) if E=Eq=l
19. Enable clear clocks to RGB (16-63) '
20. Enable load clocks to RGP (16-63

21. Enable clear and load clocks to CPA carries
22. Select X function

- .

= = WO 0N O DN
[T AN .
PN

T3 SECOUD ITERATION -~ RECODE 8 BIWS

OF MULTIPLIER MANTISSA YOR THIRD ITERATLON

1. Enable true out of RGA (16-63)

2. Enable true out of RGE (16-63)

3. Fnable true cut of RGR (16-63)

4. Enable RGE (16-63) to loz (16-63)

5. Enable Log (16-63) into BSW (16-63)

6. Force a shift to right 8 positions end~off to the USW controls
7. TLnable PAT sum and caryvy bits (16-71) to CPA ;

8. Enable WD4 (16-63) into CPA (16-63) l

9. FEnable CPA sum (16-63) into RGA (16-63) '
10. Enable BSW (32-63) intc RGB (32-63)

11. Enable PAT sum and carry bits (16-71) to CPA
12. Enable RGB (16-23) into CPA (72-79)

13. Enable RGC (65-72) into CPA (72-79) '

14, Enable bit carries into CPA (72-79)

15. Enable Wi4 (0-7) into CPA (64-71)

16. 1Inhibit section carries

17. Enable load clocks to RGA (16-63) if E=E;=1

18. Enable clear clocks to RGB (16-63)

19. Enable load clocks to RGB (16-63)

20. Enable clear and load clocks to CPA carries

21. Enable clear clocks to RGA (16-63) if E= El =1

22, Select K function

1. Enable
2. lnable
3. Enagle
4. Enable
5. Enable
6. Fource
7. Enable
8. Enagle
9.

Fnable
10. Enable
11. Select
12. Enable

13. Ernable ?A]

T4

THIRD TTERATION - RECODE 8 BITS

OF MULTIPLIER MANTISSA FOR FOURTH ITERATICH

true out of
true out of
true out of
RGB (16-€3)
LOG (16-63)
Shift right
PAT sum and
WD4 (16-63)

CPA sum (16~

BSW (32-63)
K function

RGA (16-63)

ReB (16-63)

RGR (16-63)

to LOG (16-63)

into the BSW (16-63)

end-off 8 positions to the BSY controls
carry bits (16-71) to CPA

into CPA (16-62)

63) into RGA (16-63)

into RGB (32-63)

the stored carry

~ sum and carry bits (16-71) into CPA

14, Enable WD 4 (0-7) into CPA (64-71)

15. Enable RG3$ (16-23) into CPA (72-79)

16. Enable RGC (65-72) into CPA (72-79)

17. Enable bit carries into CPA (72-79)

18. Inhibit section carrics

19. Enable clear clocks to RGA (16-63)

20. Enable load clocks to RGA (16-63)

21. Enable clear clocks to RGB (16-63)

22. Enable load clocks to RGB (16-63)

23, Enable clear and load clocks to CPA carries.

-61-

T5 FOURTH ITERATION - RECODE 8 BITS OV

MULTIPLIER MANTISSA FOR FIFTH LTERATION

Enable true out of RGA (16-(3)

Enable true out of RGB (16-063)

Enable true out of RGR (16-63) :
Enable RGB (16-63) into LOG (16-63) -
Enable LOG (16-63) into BSW (16-63)

Force shift right end-off 8 positions to the BSW contlols
Enable PAT sum and carry bits (16-71) to CPA
Enable BSW (32«63) into RGB (32-63)

Enable the stored cairry :

10%. Enable CPA sum (16-63) into RGA (16-63)

11. Enable PAT sum and carry bits (16-71) to CPA
12. Enable WD4 (16=63) into CPA (16=63)

13. Enable WD4 (0-7) into CPA (64-71) _
14, Enable RGB (16-23) into CPA (72-79) P
15. Enable RGC (65-72) into CPA (72-79)
16. Enable bit carries into CPA (72-79) '
17. 1Inhibit section carries

18. Select K function

19. Enable clear clocks to RGA (16-63)

20. Enable load clocks to RGA (16«63)

21. Enable clear clocks to RGB (16-63)

22, Enable load clocks to RGB (16-63) 7

23. Enable clear and load clocks to CPA carries

Cco~NOTUB WD

b2

L) .

OO WLWN =
. .

.

Enable
Enable
Enable
Enable
Enable

Force shift right end-off 8 positions to the BSW contlolu

Enable
Enable
Enable

. Enable

Enable

. Enable

Enable

. Enable
. Enable

Enable

T4 TIFTH ITHERATION - RECODE 8 B1US

OF MULTIPLIER MANTISSA FOR SIXTH ITERATIOH

true out of RGA (16-63)
true out of RGB (16-63)
true out of RGR (16-63)
RGB (16-563) into 1L0G (16-63)
LOG (16- 6“) into B5W (16-63)

PAT. sum and carry bits (16-71) to CPA
BSW (32-63) into RGB (32-63)
the stored carry
CPA sum (16-63) into RGA (16-63)
PAT. sum and carry bits (16-71)
WD4 (16-63) into CPA (16-63)
¥wD4 (0-7) into CPA (64-71)
RGB (1¢-23)
RGC (65-72) into CPA (72-79)
bit carries into CPA (72-79)

. Inhibit section carries
. Select
. Enable
. Enable
. Enable
. Enable
. Enable

K function

clear clocks to BGA (16-63)

load clocks to RGA (16-63)

clear clocks to RGB (16-63)

load clocks to RGBE (16-63)

clear and load clocks to CPA carries

3 e

WoooOULTW N

Enable
Enable
Enable

Enabler

Enable

T7 SIXTH ITERATION

Lyue oul of REY (36-03)
true out or ROE (16-63)

true

RCE
L.0G

out of RG¥ {(16-063)
(16-62) into LOG (15-63)
(16-63) into BSYW (16-62)

Force Shift right end-off 8 positions to the BSW controls

Enable
Enable
Enable

. Enable
. Enable
. Enable
. Enable
. Enable
. Enable
. Enable

Enable
Enable

. Enable
. Enable
. Enable

PAT
BSW
the
CPA
PAT
WD4
Wh4
RGB
RGC

sun and carry bits (16-71) to CPA
(32-63) into RGB (32-63)

stored cevry

sum (16-63) into RGA (16-063)

sum and carry bits (16-71_ to CPA
(16-63) into CPA (16-63)

(0-7) into CPA (72-79)

(16-~23) into CPA (72-79)

(65-72) into CPA (72-79)

. bit carries into CPA (72-79)
Thhibit section carriecs
Select K function

. Round (optional)

clear clocks to RCA (16-63)

load clocks to RGA (16-63)

clear clocks to RGB (16-63)

load clocks to RGB (16-63)

clear and load clocks to CPA carries

"'64 B e

- . s e . [. .

WO ESWN -

Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable

Enable:RGC (65-72) into CPA (72-79)

Inhibit section carries

Enable
Enable

Enable.

Enable
Enable
Enable
Enable

T8 FORM THE FINAL PRODUCT

true out of RGA (16-63)

true out of RGB (16-63)

the group carries within the CPA
RGA (16-63) inte CPA (16-63)

bit carries into CPA (64-79)

bit carries into CPA (16-63)

RGB (16-23) into CPA (72-79)

RGB (0-7) into CPA (64-71)

stored carry

CPA (16-63) into RGA (16-63)
RGB (16-63) into LOG (16-63)
LOG (16-63) into BSW (16-63)
CPA (72-79) into RGB (16-23)
BSW (24-63) into RGB (24-63) ,
00111111 into RGB (0-7) for e:ponent correction in case of

normalization

Enable
Enable

clear clocks to RGB (16-63)
load clocks to RGB (16-63) if not rounding

Clear RGA (0-15) on EXP UF and not normalized
Clear RGA (16-63) on EXP UF..and not normalized
Load RGA (16-63) when normalize and E=E,=1

Enable

load and clear clocks to LOD latches

«-65-~

T3 NORMALIZE FINAL PRODUCT

1. FEnable true out of RGA (0 - 63)

2. Enable true out of RGB (1 - 7, 16 - 63)

3. Enable CPA sum (L1) (64 - 71) to RGA (0 - 7)

4, Enable CPA sum (L1) (40 - 63) to RGA (40 - 63)

5. Enable CPA sum (72 -~ 79) to RGA (8 - 15)

6. Enable CPA sum (L1) (16 - 39) to RGA (16 =~ 63)

7. Clear RGA (0 - 63) on UFL or bit_16 is a ZERO (UFL + Al6)
8. Load RGA (0 - 63) on UFL ; UF ; Al6 ; Al7

9. Enable clear and load clocks to F bit mode register
10. Enable exponent underflow into mode register

11. Inhibit clear clocks to RGD

12, Enable RGA (1 - 63) into CPA (65 - 79, 16 - 63)

13, Enable RCGB (1 - 7) into CPA (65 - 71)

14. Enable bit carries into CPA (64 - 79)

15, Inhibit section carries

16. Restore the sign of RGA (0)

Y™

L - ———— . \i—a S —— oAt et

. -

.

N O\ WO

.

8.
9.
10.
11.
12.

APPERDIX D: pTVISTON IN 64 BIT MODE

Tl TRANSFER EXfOizdT OF "R" INTO "B" - PREPARE SCR FOR SHIFTING

Clear RGC {0-63)

Enable COMPLENMMNT out of RGR exp (0-15) *

Enable TRUE & COMPLIZJENT out of RGR mantissa (16-63) *
Enable RGR (0-63) into 0SG

Clear RGB exponent &% sign (0-15)

Enable load clocks into RGB exponent & sign (O- 15)
Enable 0SG into RGB (0-15) l

IF ROUNDING

- l
Clear shift count register (SCR) _ I
Enable load clocks into SCR

Enable shif{ right one from Common Data Bus into 0OSG
Enable OSG into Address Adder (ADA) (Quter Exponent)
Enable ADA into Barrel Switch :

Since the contents of RGR péss through 05G,which is an inverter, in
order to have the TRUE form of RGR out of 0SG we have to gate into 0SG
the COMPLEMENT form of RGR. , N

Steps 10, 11, 12 are necessary, because the shifting right one enable

into the shift count register is a CU decision and this is the correct
route.

-67=

T o IF ROUNDING

TRANSFER MANTISSA OF KGR INTO RGB SHIFTED TO THE RIGHI END OFF BY ONE

1. Enable COMPLEMENT of RGR (16-63)

2. Enable RGR (16-63) into 0SG *

. Enable 0SG into 10G

Enable LOG into Barrel Switch (16-63)

Enable OUT from shift count register

Clear mantissa of KB (16-63)

Enable load clocks into mantissa of RaB (16-63)
Enable Barrel Switch into RGB (16-63)

-] O\ W

.

¥ The whole word of RGR is enabled, but since we enable only the mantissa
of RGB, the exponent part of RGR is already in RGB from the previous
clock time and need not be inserted again and therefore the mantissa
of RGR sliifted to the right by one is allowed to come into RGB.

8 = e e s

\O O OV =W o

o
L)Jl\)l—‘O

1h

16
17.
18.
19.
20.
21,
02,
23.
2k,
25.
26.
27.
28.

(=]
\J'l

T3 COMPUTATTION OF THE EXPONENT

Enable COMPLEMETT of ROR (16-63)

Enable the WORD i I x 2 path through MSG

Enable TRUL out of sign and exponent of RGA (0-15)

Enable TrUZ out of sign of RGB (C)

Enable CO”nTlIINY out of exponent of RGB (1-15)

Enable exponent of RGA into CPA (65-79)

Enable exponent of RGB intc CPA (65-79)

Enable bit carries into CPA (64-)

Compute sign of RGA ‘

Clear exponent & sign of RGA (0-15)

Enable load clocks into RGA (0-15)

Restore sign of RGA

Fnable CPA (64-79) into RGA 90-15)

Clear R sign latch

Clear Barrel Switch (shift count revlster)

Enable load clesks into Barrel Switch (shift count register)
Enable shift left end-around from CDB into 0SG

Enable OSG into ADA

Enable ADA into Barrel Switch (shift count register)

Inhibit clear clocks into mode register

Enable exponent underflow conditional on E, E

Enable exponent underflow into mode revmster %dec1S1on of CU)
Enable exponent overflow into mode register -
Enable clear and load clocks to F bit

Enable clear and load clocks into the TNNER and OUTER underflow latches
Clear OUTER exvonent & sign of RGB (0-T7)

Enable load clocks to OUTER exponent & sign of RGB (0-7)

Enable 00111111 into OUTER exponent & sign of RGB (0-7) for exponent
correction during normalization

Initialize iteration counter for U7 times

e e S i ———— i e o i o e

-69-"

. . . Y

O O-IO0\N\ W N

-
D

11.
12.
13.
1k,
15.
16.
17.
18.
19.
20.
21,

22.
23.

2k,

*%

L Thwww——~¢>T5l ORM THE QUOTIENT FIELD

Enable TRUE out of manilissa of RGA (16-63)
Enable COMPLEMENT dut of mantissa of RGR (16-63)
Enable the WORD 3 9 path throush MSG *
Enable,mantiSSa of X (‘o £3) intc CPA (16-63)
Enable WORD # L x 2 into CPA (16-63)

Enable exponent of RGA (1-15) into CPA (65-79).
Enable bit carries into CPA (64-79)

Enable bit carries into the mantissa of CPA (16-63)
Enable TRUE out of shift count register (SCR)
Enable TRUE out of mantissa of RGB(16-63)
Enable RGB (16-63) into 1.0G (16-63)

Enable LOG (16-63) into Barrel Switch **

Clear mantissa of R3B (16-63)

Enable load clocks into mantissa of RGB (16-63)
Enable Barrel Switch into RGB (shifted left one)

“Enable quotient bit into least significant bit of RGB (63)

Clear mantissa of RGA (16-63)

Enable load clocks into mantissa of RGA (16-63)

Enable PAT sum [RGA (16-63) shifted left one into Lanulssa of RGA

(16-63) if difference < 0] o

Enable CPA sum into RGA (16-63) shifted left one 1f dlfference >0

Enable clear clock to R sign latch .

Enable load clock to R sign latch - .
Test iteration and if the iterabion counter has not counted 47 interations
repeat all steps T) - TSl If the counter has counted 47 iterations

then go to T

Increment it ration counter after the above testing.

In step 3 above we have to enable WORD # 4 x 2 path through MSG because
this is the only way to get RGR (16-63) into CPA

In step 16 the whole word of LOG is enabled into Barrel Switch but
since we allowed the load clocks of manitissa of RGB, we can say thet

in reality the mantissa part of RGB will pass through the Barrel Switch
and will go back to XGB shifted left one.

70~

T52 INCREASE EXPCHENT OF RGA by ONE IF Ql =1

Enable COMPIEMENT cul of RGR mentissa (16-63)

Enable the WORD # L4 x 2 path through the MSG

Enable TRUE out of sign and exponent of RCA (0-19) ‘
Enable COMPLEITET out of sign an and OUTER evponent of KGR (0-15)
Enable TRUE out of THNER mantissa of RGB (16-39) in order to see. if
bit 16 of RGB is a ONE. : :
Restore sign of RGA (0)

Enable exponent of RGA into CPA (65-79)

Enable sign and exponent of RGB into CPA (65-79)

Enable bit carries into CPA exponent (6L4-79) ,
Clear exponent of RGA if Q) =1 (RGB bit 16 must be ONE in this case)
Enable load clocks to RGA if QEL =1 .
Enable CPA sum (€4-79) into RCA (0-15)
Inhibit clear clocks to mode register
Enable clear and load clocks to I bit
Enable exponent overflow into mode register

71~

18
19.
20.
21.
22,
23.
24,

T TEST @ IN ORDER TO DETERMING USE O
53 TooT & ‘ Ug

Enable TRUE out of mantissa of RGA (16-63)

Fnable COMPLEMENT ocut of mantissa of RGA (16-63)

Enable the WORD # 4 % 2 path through MSG

Enable TRUE & COMPLEMENT oub of sign of RGB (0) : o

Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or P----7I--1

have been enabled

Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or I 5 |

have been enabled

Enable mantissa of RGA into CPA 916-63)

Enable WORD # 4 mantissa into CPA (16-63)

Enable exponent of RGB into CPA (65-79)

Enable bit carries into CPA (16-79)

Enable output of shift count register

Enable TRUE out of mantissa of RGB (16-63)

Enable RGB (16-63) into 10G (16-63)

Enable LOG (16-63) into Barrel Switch (16-63)

Enable clear clocks to mantissa of RGB (16-63) if bit 16 of RGB is

ZERO (Q 0)

?nable %&ad clocks to mantissa of RGB (16 63) if bit 16 of RGB is ZERO
0 :

Endble Barrel Siiteh into mantissa of RGB (16- 63)

Enable Quotient bit into least significant bit (bit 63) of RGB

Enable clear clocks to mantissa of RGA (16-63) if the difference > 0O

Enable load clocks to mantissa of RCA (16-63) if the difference > O

Enable CPA sum directly to RCA mantissa (16-63)

Inhibit clear clocks to mode register

Enable clear and lead clocks to F bit

Enable clear and load clocks into mantlssa of "B" reglster if bit 16

of "B" register is a ZERO (Ql

-72-

15.
16.

17.

*%

T‘h NIERCHANGE MANTIGSAS OF RGA & RC
Viss .

Enable TRUE from mantissa of RGA (16-03)

Enable RGA into 1LOG (16-63) *

Enable LO® into the Barrel Switch

Enable TRUE frow mantissa of RGB (16-63)

Enable RGE into CPA (16-63)

Enable clear clocks into RGB mantissa (16-63)

Enable load clocks into RGB mantissa (16-63)

Enable Barrel Switch (which contains RGA mantissa) into RGB mantissa
(16-63)

Enable clear clocks to RGA mantissa (16-63)

Enable load clocks into RGA mantissa (16-63) **

Enable CPM sum (which contains RGB mantissa) into RGA mantissa (16-63)
Enable clear clocks into RGA mantissa (16-63) **

Enable load clocks into RGA mantissa (16-63) *#

Enable CCMPLEMTZITY out of RGR INNER mantissa (16-39) in order to test
whether ©it 16 is ZERO or 1 and therefore to detect if the divisor is
normalizes. or not

Enable RGR (COMPLEIMFNT) into mode register for unnormalized divisor
Inhibit clear clocks into mode register

Enable clear and load clocks into F Dbit

In actuality the whole word of RGA is enabled into LOG but since only
the mantissa of RGA was enabled that means that only the mantissa part
of LOG is effectively used.

From steps 10 & 13 above we conclude that: The mantissa of RGB is allowed
to be transferred into the mantissa of RGA only if we normalize or the
exponent underflcs latch is low (contains ZERO) and do not normalize

but step 12 clears the mantissa of RGA and therefore the mantissa of

RGA contains ZEROS only if the exponent underflow latch is HIGH (con-
tains ONE) and we do not normalize.

C.73-

IF NORMALIZE ADJUST EXPONENT T 1W0 CIOCK 1TIME (T55’ T56)

55 DEIECT THE LEADING CONE OF MANTISSA OF RGA & SHIFT ACCORDINGLY

Enable the Leading One Dcteruoz (IOD) for divide-6l4

Enable TRUE out of R3A mantissa (16.6

Enable RCA into LOG (16-63)

Enable IOG into Barrel Switch (16-63)

Clear IOD

Enable load clocks into LOD

Clear sign & exponent of RGB (0-15)

Enable load clocks into sign and exponent of RGB (0-15)

Enable 001111111 corrections bits into OUTER sign and exponent of RGB
(0-7)

Enable 10D into INNER sign and exponent of RGB (8-15)

Clear mentissa of EGA (16-63)

Enable load clocks into RGA (16-63)

Enable Barrel Switch into mantissa of RGA (16-63). At this time the lead-
ing one of mantissa is at bit position 16 of RGA. .

Tl

n =

= W

O\L P~ O\

o]

11.

12.
13.
1k,

15.
16.

T56 ADJUET FXPCHENT OF RGA, CHECK FOR EXPONENT UNDIRFT OW

Enable TRUE out of RCA sign and exponent (0-15)

Enable COMPLENFHNT of corrections bits of RGB (1-7) if thereis OVERFLOW
and bit 16 is QF

Enable TRUE oP corrcetion bits of RGB (1-7) if there is no OVERFLOW
and bit 16 = ’ -
Enable the ITJLY sign and exponent of RGB (8-15)

Fnable RGA into CPA (64-79)

Enable RGB into CPA (6L4-79)

Enable bit carries into CPA (64-79)

Restore sign of RGA (0) .

Clear sign and exponent of RGA (0-15)

Enable load clocks into sign and exponent of RGA (0-15) if ‘here is

no exponent underflow and mantissa is not ZERO or exponent underflow
latch is low

Enable CPA (€4-79) into RCB (0-15)

Clear mantisea of RGA (16-63) if there is an overflow or the latch Tor
exponent underflow is HIGH

Failure to mode register conditional if there is cwponent underflow or
the exponent underflow latch is HIGH and the mantissa % 0

Enable exponent underflow into mode register (decision of CU)

Inhibit clear clocks into modes register

Enable clear and load clocks into F bit

APPENDIX E: DIVISION IN 32 BIT MCDE

In this mode,F = &, = 1 and therefore both OUTER and INNER words

are enabled. This mcans that the "A" register contents are not protected,
which is something that the programmer should always 'keep in mind.
Since the recursive process was fully explained in 64 bit mode,

|
and because almost the same steps are used for the 32 bit mode, with the ex-
ception that more clock times are required for the completion of the division,
!in each clock time and

urge the reader to refer to the PUSFILE for more detﬁiled information.

we will provide a summary of the actions being taken

CLOCK DESCRIPIICH OF ACTIONS BEING TAKEN REMARKS
TIME
Tl Clear RGC to allow proper use of PAT
Transfer OUTER sign and exponent of RGR into
RGB
Transfer INNER sign and exponent of RGR into
RGB |
Prepare the SCR for shlftlng right by 1 end If
off rounding
T2 The shifted to the right by 1 end off OUTER Only if
mantissa of RGR is transfered through rounding

the Barrel Switph into RGB

T The shifted to the right by 1 end-off INNER Only if
mantissa of RGR is transfered through the - rounding
Barrel Switch into RGB A

Subtract TITNER exponent of RGB from the IWNER If do not
exponent of RGA and put the result into RGA || ignore

Subtract OUTER exponent of RGB from the OUTER the
exponent of RGA and put the result into RGA || exponent

Enable TNHNER and OUTER signs into sign logic } If do not

and restore the sign into the sign of RGA ignore
Clear R sign latch | signs
Check exponent overflow and underflow and set If do not
¥, Fl bits _ ignore
exponent

76~

31

Insert 0111111 into OJTER exponent of RGB for
exponent correction during normalization
Shift left by 8 endezaround enable into SCR

Enable shifi right 16 end ar>und into the
shift count register from CDB through 0SG
and ADA

Set F bit if bit 16 of "R" register is a ZERO

INNER mantissa of RGB is placed into the
OUTER mantissa of RGB i

OUTER mantissa of RGB is placed into the
INWER mantissa of RGB 3

The OUTER mantissa of RGA is transfered into
the OUTER mantissa of RGB

The OUTER wmantissa of RGB i: transfered into
the OUTEK mantissa of RGA

Insert 0111111 (077)g) into the INNER expo-
nent of RGB (which contains the INNER
exponent of '"R" register)

Initialize iteration counter to count up to
25

Enable shift right 63 end around into the
shift count register from Common Data
Bus (CUB) through

0SG and Address Adder (This is like shift-
ing left by 1 end=~around)

If the result of subtraction of INNER mantis-<
sa of "R" register from the INNER mantissa
of "A" register is > O,then this result is
transferred through the CPA shifted left by
1 into RGAIf the result is < O,then the
mantissa of EGA is transferred throvgh
the PAT shifted left by 1 back to RCA.

Shift mantissa of RGB through the Barrel
Switch left by 1 end-around to provide
space for the quotient bit.

Transfer the most significant bit of RGB into
the least significant bit of RGA

Transfer the quotient bit into bit 63 of RGB
(if the difference is >0 , Q = 1} if the
difference is <O then Q, = o)

Check bit 40 of RGB which contains g%. If

= lythen increase the INNER exponent of
Enable F, bit if an exponent overflow
occuried.

“77=

This is
Cu
decision

See table
for Inter-
changing
TNNER &
OUTER
mantissas
of RGB

This is
Cu
decision

If do not
ignore
exponent

o

33

Check Q. quotient bit. If = 0 chift
OIER mantissa of PGB through the Barrel
Switceh left by 1 end around to provide
space Tor Q.. into bit 63 of RGR.

If the result 5f the subtraction of INNER
mantissa of "R" register from the INNER
mantissa of "A" register is >.0 then this
result ic brought back to RGA through the
CPA but not shifted at all and Q.. is defi-
nitely equal to 1. ?

If the result < 0 then Q = 0 and the remaind-
er is the mantissa of°BCA used for the 25th
execution of the recursive process.

Check bit 4O of RGB. If it is a ONE enable F
to indicate fault because in this case the
remainder is invalid.

Transfer INNER mantissa of RGA into INNER man-
tissa of RGB through Barrel Switch.

Transfer ININER mantissa of RGB into IMNER man-
tissa of RGA through CPA.

Enable shift left by 8 end around into the
shift count register from CDB through OSG
and ADA.

At this time the contents of "A" and "B" re-
gisters are as follows:

"A" REGISTER

7 8 1516 39 4o 63
OUTER INNER
EXP. of |EXP. of nan nan nAu nB n'_ an nBu
nAu reg. nAn reg. 7 8 9 f q
"B" REGISTER
7 8 15 16 ‘ 39 Lo 63
REMATNDER QUOTIENT
01T)g | OTTg
By [Bs (Bl %% | %

) 1
lgnore
}exponent

This is
CU
decision

PREPARE FOR DIVISION OF OUTER MANTISSA OF
"a" & "B" REGISTERS BY THE OUTER MANTISSA
OF "R" REGISTER

T38’T6i

Transfer the TUNER mantissa of "R into the
OUTER mantisse of "R" register

Enable shift righ 16 end-around into shift
count register from CDB through OSG and
ADA

Transfer the OUTER word of "R" register into -

the INHER word of "R" register

Enable shift right 63 end-around into shift
count register from CDB through OSG and
ADA.

Initialize iteration counter to count up to
23. . :

Set F bit if bit 16 of "R" register is a
ZERO because the divisor is assumed to
be normalized before the division begins.

If the result of subtraction of IINNER man-
tissa of "R" register from the INNER
mantissa of "A" register > O then this
result is transferred through the CPA
(WD # 4 x 2) shifted by one to the left
into "A" register.

If this result < O then the mantissa of "A"
register through the PAT, but shifted by
one to the left.

Shift mantissa of "B" register through the
Barrel Switch left by one-end around to
provide space for the quotient bit.

Transfer the most significant bit of "B"
register into the least significant bit
of "A" register.

Transfer the quotient bit into bit 63 of "B"
register which will be Q. = 1 if the re-
sult of subtration > 0 or Q 1= 0 if the
result is < O.

At the end of clock time T,. the contents of
"A" and "B" registers are as follows:

=79

See
Table 2

This is
CU
decision

Remember
that the
mantissas
have been
inter-

changed

"A" REGISTER

OUTER TIBIER
EXPONENT | BXPONENT{ R R8 R Rh R- R6

A" AT REMATNDER

9

T\

"B" REGISTER

QUOTIENT

077)g | OTT)g

o | % | % | 4] %] %

Check bit 4O of "B" register. If it is a ONE
that means Q. of the OUTER quotient jis
equal to ONE in which case increase the
OUTER exponent of "A" register by 1.

Enable F bit if an exponent overflow occurred.

Check Q1 of OUTER quotient field. If Q
shiff the OUTER mantissa (Q7, Q, Q. 3 of
"B" register through the Barrel” Swiich left
by 1 end around to provide space for Q?5
of OUTER quotient field. In this case”
transfer Q, into bit 63 of "B" register.

If the result g’ the subtrzetion of the OUTER
mantissa of "R" register from the OUTER
mantissa of "A" register is > 0 then this
result is brought back to "A" register
through the CPA (WORD # L4 x 2) but not
shifted to the left as in the previous
clock times. In this case Q25 =1, If
the result is < 0 then Q 0 and the
remainder is Lhe want135° gf "A" register
used for the 25 execution of the recur-
sive process.

If bit 4O of "B" register (Q. = 1) is a ONE
then set F bit to indicate fault because
since the exponent is ignored the remaind-

er will be invalid as it has been previously

explined (Xo > Y case).

80~

If do not
ignore
exponent

is
10cated
at bit
position
Lo of "B’
register

If
ignore
exponent

Transfer nantissa of "A" register into mantis-
sa of "B" register through the Barrel
Switch.

Transfer mantissa of "B" register into man-
tissa of "A" register through the CPA.

" Enable shift left by 8 end around from CDB in-
to shift count register through 03SG and
ADA.

Enable clear and load clocks to F bit. At
this time the contents of "A" & "B" reg-
isters are as follows:

"A" REGISTER

!IAI; "A"
OUTER INNER

QUOTIENT]

EXPONENT | EXPONENT @ | Q5 | Q| @ | 95| %

. "B" REGISTER

REMATINDER

0T7)g | 0T7)g

R7 R8 R9 Rh RS R6

Transfer INNER mantissa of "B" register into
OUTER mantissa of "B'" register.

Enable shift right 16 end around into shift
count register from CDB through OSG and
ADA.

Complete the transfer of INNER mantissa of
"B" register into the OUTER mantissa of
"B" register.

Clear OUTER exponent and mantissa of "A"
register if do not normalize and the ex-
ponent underflow latch for the OUTER word
is high (ONE).

Clear INNER exponent and mantissa of "A"
gister if do not NORMALIZE and the expo-
nent underflow latch for the INNER word
is high (ONE).

w81

This is
cu
decision
See
Table 3.
This is
CU
decision
See
Table 3.

68

Ensble TRUE of IINER wantissa of "A" register
into Barrel Switch through LOG.

Enable LOD to detect the leading ONE.

Enable exponent adjustment into INNER expo-
nont.of "B" register.

Enable Barrcl Switch back to "A" register.
At this time the contents of "A" & "B"
registers are as follows:

"A'" REGISTER !

"AM A" NORMALIZED UNNORMALIZED
OUTER TIITER
ENT | EXPONE .
"B" REGISTER
677) EXPONENT REMALNDER
8 | ADJUSTED
R R R R R
Byl Bl el 7] T8 T

Enable OUTER mantissa of "A" register into
Barrel Switch through LOG.

Enable IOD to detect the leading ONE.

Enable exponent adjustment into the OUTER
exponent of "B" register.

Enable Barrel Switch back to "A" register.

Enable TRUE out of INIER exponent of "A"
register and bring it into CPA.

Enable adusted exponent out of INNER exponent
of "B" register and bring it into CPA.

Enable CPA into INNER exponent of "A" re-
gister if: :
There is no exponent underflow, the ex-
ponent underflow latch for the INNER
exponent is low, the INNER mantissa of
"A" register is not ZERO and normaliza-
tion takes place.

If exponent underflow of INNER exponent (Exp.
UF).) has occurred and the INNER mantissa is
not ZERO then the mode register indicates
failure provided that Fl has been set on

-82-

Only if
normalize
-11-~
“11-

-11-

Only if
normalizg
~11-
~11-

-11-
Only if
normalizg

~11-

-11-

-11-

unde
At this
regl

rflow and normalization takes place.
time the contents of "A" and "B"

sters are as follows:

"A" REGISTER
mA" PA™ TNNER NORMALIZED
OUTER | ADJUSTED
EXPONENT| EXPONENT| Q) Q@ | Q7A)
"B" REGISTER
i REMA ,
FEXPONENT | EXPONENT THDER
{DJUSTED | ADJUSTED
R, | R. | R | R, 39

Enable TRUE out of OUTER exponent of "A"
register and the adjusted exponent out
of OUTER exponent of "B" register, and

bring both into CPA.

Enable CPA into OUTER exponent of "A" re-

gister if:

There is no exponent underflow, the ex-
ponent underflow latch for the OUTER ex-

ponent is low, the OUTER mantissa of "A"

register is not ZERO and normalization

takes place.

If exponent underflow of OUTER exponent
(Exp. UF) has occurred and the OUTER
mantissa of "A" register is not ZERO
then the mode register indicates failure

provided F bit has been set on underflow
and normalization takes place.

The final contents of "A" and "B" registers
are as follows:

e T e s A St . e .

 -83-

Only if
normalize

-11-

Only if
normalize

~11-

"A" REGISTER

"A" QUTER"A" TNIEH NORMALTZED
ADJUSTED |ADJUSTED :
EXPONENT [EXPONENT QM Q6 Q7
"B" REGISTER
ADJUSTED | ADJUSTED REMATNDER
EXPOENT | EXPONENT
R), Rg R7

-8l

BYTES g P
I
- 0
A B C D c %
1 |93 b |5 [6|1 |89 |K
: IN. EXP. 1 -
L1ttt REGISTER O Of HR" "B" "B“ IIB" IIBI 'IB" IBI T
- Mg REGISTER L 5 6 1 8 9| 3
IN. EXP. ‘ N
f ”RH HB" . HBYI "Bl "B" HBI IB'
Hoe g RgGISTER 4 > 6 7 8 2
IN. EXP.
BARREL SVJITCH “B" Of ”R" ”B" 'lB" 077) ”B" ”B" HB"
| REGISTER 8 9 8 1 4 5 T
SHTFT BY 8 TN. EXP, M""'m,u
0) f an I!BH IIBH o HB" B IB B 4
kggiNgND ;EGIS; 8 9 " [§ 4 |-
an REGISTER IIE‘ I«?lg? an mp 077) "B" "B" uBn "B"
T s 8 A R L ! O
LOG’ } "B” "B" 077) "B" /
| 8 9{0TTg| "B'q |
11 l’l Nyt ey 1t "1t "" n sy IT
BARREL SWITCH B 7 B 8 B 9 077)8 B 7 B 8 B 9 077)8
SHIFT RIGHT
™) 111 11 e 1! 1" 131 1t My 1 11 11 n 11]
'. iéoéﬁnmﬂD "B 9 0(7)8 B 7 B"s| "B 5 077)8 B 7 B"g T,
- CLEAR | CLEAR|CIEAR|CLEAR /
oo)], emamaiema)
"B" RFGISTER g‘ %‘?{?} 077) HBH HB" "B“ "B" "B" "B"
J ~ |rEGIS. 8 7 8 9 4 > 6

NOTE: 1)

2)

TARIE L: Procedure for Interchanging

INNER & OUTER Mantissas of RGB

The shaded area indicates bytes which have not been enabled out of
RGB and therefore at the end of clock time T. they are found un-
changed in their location into RGB. >

" B" stands for "B" register and the subscripts L, 5, 6 ete. indicate
8 bit tytes as they have been defined in the organization of the word
format.

A et At Pt St s e & e

-85=

TABIE 2: Procedure for Interchanging

INNER & OUTER Mantissas of RGB

BYTES : CLOCK
A B i 5 6 T 8 9 TIME
"R" "R" OUTI "R" I‘[q (12111 ¥ M1t X% 1ttt ettt e tt 3 11t
R", * *|"R" . * "R
REGISTER | EXP. *|Exp. *| B4 | B'5 6 | X7 8 9
"R" OUT: ”R" I]-\L it N it * 1y 11 * 1ttt . { 11y 1t iy 11
¥- R * * R
05G EXP. *|EXP. *| N4 | X5 | N 77| %8 9
i
"R" OUT ”:Rn IN‘ Hyy I My it 1ytt 1t 1y | ey It
) 'R R
10G EXP. |Exp. | N4 Rig | Rg | By 8 9
T
BARREL an "R" I nRu an "R" an "R" HRH HR" 3h
SWITCH 6 |EXP. 8 9 | EP. 7 L 5
SI‘U:FT I_IEFT”R" INO My 1t 1ty 1t ’R" OUT' ey 17 HR" 1y 1t HR"
by 8 EA | EXP. Rg | Rg |Exe. R 4 3 5 6
"R" "R" IN" npt! HESR L 'R" OUTE "1t Hyy 81 Hpott He Mt ’
REGISTER | EXP. Rs | Rg |Exe. Ral By Rs| Rg
ENABLE SHIFT RIGHT 16 END AROUND INTO SHIFT T
COUNT REGISTER FRO:{ CDB THROUGH OSG & ADA 35
. "RYTIL| e ot 'R" OUT] won /// //
0SG . R"g R’9 D, R . V/ /]
"R" IN- HRII "R" ”R" OU'I‘G llRll HR" R" OUT
LOG EXP. 8 9 | EXP. T 8 9 EXP.
BARREL " 1" 1" 1" 1t " "R“ OUT " " 1t 11 11t ”R" OUTI
R R R R R R
SWITCH 7 8 9 | EXP. 7 8 9 | EXP.
SI‘EFT 11y 1t ‘ 1ty It g T
1"t R OU‘I{ Mttt neott [} 2311 R OU'D 1"npitt " 'l 36
gIGig - By | exe. Ryl Rg | By |uxe. Rl R
)
// CTFAR | CLEAR | CLEAR | CLEAR /7 //
& LOAD P LOAD |& LOAD {& LOAD
"R "R" IN.'R" OUT an Moy 11 o T
R ¥
REGISTER | EXP. | EXP. R 7 8 R 9 b 5 R

*¥ The complement CUT of RGR content is enabled because the 0SG gates are
-of negative logic and therfore in order to get a TRUE output from the
0SG gates they must receive an input in COMPLEMENT form.

-86-

"B" REGISTER

LOG

BARREL SWITCH

SHIFT LEFT
by 8 EA

"B" REGISTER

L.OG

BARREL SWITCH

SHIFT RIGHT
by 16 EA

TABLE

3: Procedure for Interchanging

INNER & OUTER Remainder (RGB)

Cop
BYTES : L
0y
A B | b 5 6 7 |8 9 |gE
077)g|071)g REMATNDER |
R7 R8 FQ RU sR5 R6
oT7)g|0TT)gl Ry | Bg | By | By | B | B
| R9 077)8 R5 R ‘077)8 Ry, R7 Ry T65
077)8 R5 Rg 077)8 Rh R7 Ry R9
077)8 R5 R 077)8 Rh R7 Rg ' R9
4 7
//' R R o77)d R <;42§///222;765224/
6 g 4 A //
422222 g /C /4;/ // / ///
Ry, R5 Rg 077)E R, R5 Rg 077)8
Re |07 Ry | Bs | B |OTTg| By | Bs | Tgg
CLEAE cLeAT crmad cizas /A,
222222& LOADf: LOADZ: LOAR)& LOADé%%%éZZéZéZéCQé%%Z
0TT)g| OTT)g FEMATHDER |
R), 35 R, R7 Ry Rq

-87=

