
THE IL I C IV
The First Supercomputer

•'. -_. ,. .
' .. - t J,

THE ILLIAC IV

The First Supercomputer

BOOKS OF INTEREST

WAYNE AMSBURY
Structured BASIC and Beyond

M. CARBERRY, H. KHALIL, J. LEATHRUM, and L. LEVY
F,oundations oj Computer Science

W. FINDLAY and D. WATT
Pascal: An Introduction to Methodical Programming

HAROLD LAWSON
Understanding Computer Systems

DAVID LEVY
Chess and Computers

D. LEVY and M. NEWBORN
More Chess and Computers

TOM LOGSDON
Computers and Social Controversy

I. POHL and A. SHAW
The Nature-oj Computation: An Introduction to Computer Science

DONALD D. SPENCER
Computers in Number Theory

TH E I LLIAC IV

The First Supercomputer

R. Michael Hard

Computer Science Press

Copyright © 1982 Computer Science Press, Inc.

Printed in the United States of America.

All rights reserved. No part of this book may be reproduced in any form, in­
cluding photostat, microfilm, and xerography, and not in in(ormation stor­
age and retrieval systems,without permission in writing from the publisher,
except by a reviewer who may quote brief passages in a review or as provided
in the Copyright Act of 1976.

Computer Science Press
11 Taft Court
Rockville, MD 20850 U.S.A.

1 2 3 456

Library of Congress Cataloging in Publication Data

Hord, R. Michael, 1940-

87 86 8S 84 83 82

The Illiac IV, the first supercomputer.

Includes bibliographical references o

1. Illiac computer. I. Title.
QA7608.I5H67 001.64 81-19437
ISBN 0~914894-71-4 AACR2

Table of Contents

List of Figures
List of Tables

ACKNOWLEDGMENTS

I. INTRODUCTION

II. BACKGROUND
A. Hi story

1. The Design Concept
2. Implementation Difficulties

B. Current Status

III. THE COMPUTER
A. The System

1. Introduction
2. Overview of the lAC Computational

Facil i ty
3. System Description
4. Operational System Hardware

B. The Illiac IV
1. Introduction to Parallelism
2. Major Constituents
3. Detail Discussion

C. Overlap
1. Introduction
2. Instructional Flow
3. FINST Overlap
4. Coding for Overlap Mode
5. Evaluation of the Illiac IV in Non­

Overlap and Overlap Modes
D. Performance

IV. PROGRM1MING
A. The CFD Language

1. Introduction
2. History
3. The Language
4. The Translators
5. Conclusions

B. The GLYPNIR Language
1. Introduction
2. Variables

v

Page

viii
xi

xii
1

3
3
4
8
16

18
20
20

21
25
33
42
42
47
49
53
54
55
58
65

70
72

82
84
84
87
88
93
93
94
94
96

vi Table of Contents

V.

3. Storage Control
4. Control Statements
5. Example
6. Miscellaneous
7. Discussion
8. Conclusions

C. Language Review
1. I ntroducti on
2. Computational Model Presented to the

User
3. Vector and Array Processing
4. Scalar Processing
5. Control Structures
6. Input/Output
7. Program Development and Maintenance
8. Closing Remarks

APPL ICATIONS
A. Summary

1. Computational Fluid Dynamics
2. On-Orbit Satellite Support
3. Physics/Chemistry/Mathematics
4. Seismic
5. Signal/Image Processing
6. Weather/Climate Simultation

B. Computational Fluid Dynamics
1. Parallel Computation of Unsteady, 3-D,

Chemically Reacting, Nonequilibrium Flow
Using a Time-Split, Finite-Volume Method
on the I11iac IV

2. An Illiac Program for the Numerical
Simulation of Homogeneous Incompressible
Turbulence

3. TRIOIL IV, a Three-Dimensional Hydro­
dynamics Code for the Illiac IV Computer

C. Image Processing
1. Image Line Detection on the Illiac by

Hough Transform
2. Use of Illiac IV in Analysis of Landsat

Sa te 11 ite Da ta
3. Image Skeletonizing on the Illiac
4. Two-Dimensional Hadamard Transform on

the III i ac IV
5. SAR Digital Processing Research

D. Mathematics
1. Computing the Singular Value Decompo­

sition on the Illiac IV
2. Exploitation' of Parallelism in Number

Theoretic and Combinatorial Computation

98
101
104
105
106
108
111
111

113
115
118
119
120
121
122
123
126
126
128
128
129
130
133
134

137
159

159

173
184

185

190
203

207
212
215
216

244

Table of Contents vii

E. Seismic 255
1. A Three-Dimensional Finite Difference

Code for Seismic Analysis on the Illiac
IV Parallel Processor 256

2. Seismic Data Processing 264
F. Astronomy 293

1. Three-Dimensional Galaxy Simulations 294
V 1. COt~MENTARY

A. Comments on Some Case Studies
B. Assessing the Illiac for Wind Tunnel

Simulations
C. Illiac Instruction Speedup
D. The Effects of the Illiac IV System on

Computing Technology

APPENDIX

SOURCES
ASK - The Illiac Assembly Language

304
305

311
318

323

329
349

List of Figures

Number Title Page

2.1 Conventional computer architecture 6
2.2 Parallel organization of Illiac IV 6
2.3 Illiac IV routing paths 7
2.4 Long view of Illiac IV 17
2.5 Rear view of Illiac IV 17
2.6 lAC computer room 17
2.7 Internal view of Illiac IV 17

3.1 The lAC system 22
3.2 Illiac IV system memory hierarchy 22
3.3 Simplified diagram of the Illiac IV 24
3.4 PEM to Illiac IV data transfers 24
3.5 Simplified lAC system block diagram 27
3.6 Block diagram of Illiac I/O subsystem 30
3.7 B6700 configuration diagram 34
3.8 Conceptual architecture of Illiac IV 43
3.9 Detailed view of rowsum operation 45
3.10 Simplified CU block diagram 48
3.11 Illiac IV functional block diagram 48
3.12 Illiac IV system block diagram 50
3.13 Block diagram of control unit 52
3.14 Illiac IV control unit elements 56
3.15 FINST/PE instruction classification and

sequencing 59
3.16 FINST block diagram 61
3.17 Simplified PE block diagram 64
3.18 Non-overlap timing 65
3.19 Overlap timing 66
3.20 Overlap timing, recerd sequence 66
3.21 Loop time comparisons 66
3.22 Example #2 overlap code 67
3.23 Loop times 68
3.24 PEM resident scalars 68
3.25 CU resident scalars 69
3.26 Performance of various supercomputers on the

operation V=A*(B+C) 72

4.1 Illiac IV block diagram 85
4.2 Word, sword and slice 95
4.3 Diagonal slice 97

viii

Number

4.4
4.5

4.6
5.1
5.2
5.3

5.4

5.5a
5.5b
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13
5.14
5.15

5.16
5.17
5.18a
5.18b
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35

5.36
5.37
5.38
5.39

Lis t of Figures ix

Title

Example of pointer structure
A 3x3 matrix stored in a four-unit memory
system
One-skew storage
Wind tunnel testing time
A typical computational cell i, j, k
Mesh geometry determined by a series of nested
cones
Partitioning the shock layer into finite
volumes
The cone coordinate surface
The shell coordinate surface
Program flow chart
Enthalpy error measure
Shock-wave location
Contours on axis normal plane 1.6m from nose
Scales of motion R1, R2, R3
Scales of motion: energetic, inertial,
dissipation
Simulation program
Flowchart of a typical cycle of TRIOIL IV
Grid Subdivisions
Organization on Disc of data for TRIOIL IV
calculation on the Illiac
Peak shock pressure versus time
Hough transform geometry
Grid pattern input
Hough transform of grid pattern
Pixel data file
Pixel data on PE
Input file for weighted clustering
Condensing eight channel data
Pixel neighbor diagram
Input image
Picture after 1 iteration
Picture after 2 iterations
Picture after 3rd and final iteration
Hadamard transform waveforms
Input array
Hadamard transform of Figure 5.29
SAR geometry
Algorithm with branching
Algorithm with branching removed
I4TRES geometry
Suggested data schemes for convolution­
recursive filtering
Suggested data schemes for beamforming
Suggested data schemes for matched filtering
Suggested data schemes for PHILTRE
Computation of maximum likelihood f-k
spectra

Page

100

107
107

135
143

147

147
151
151
152
154
154
154
161

161
161
176
177

179
182
186
187
188
196
196
198
201
204
205
205
206
206
209
210
210
214
254
254
258

269
271
274
277

279

x List of Figures

Number

5.40
5.41
5.42
5.43
6.1
6.2

Title

SDAC lowrate tape format
Input format for FKCOMB
Memory allocation
Development of particle configurations

Improvements in numerical methods
Comparision of Illiav IV and CDC 7600
computation speeds

282
285
299
301
314

317

List of Tables

Number Titl e

3.1 Comparison of Illiac and CDC 7600 execution
times

3.2 Vector operation timings
5.1 TRIOIL IV tabulated data
5.2 Tabulated comparison of peak pressure versus

time
6.1 Stages of approximation in computational

aerodynamics

xi

71
73-81
181

182

313

Acknowledgements

CHRIS JESSHOPE
MEL PIRTLE
AL BIRHOLTZ
RICHARD HALE
ANDERS FIELD
FANIS ECONOMIDIS
S. KOVACS
K.G. STEVENS
ED STERNBERG
C. T. MARKEE
HOWARD FALK
DANIEL SLOTNICK
R. GEMOETS
M. OZGA
F.T. LUK
D.H. LEHMER
A.S. HOPKINS
J. LEVESQUE
WIN BERNHARD
PAT HISS
R.A. GUSTAFSON
L. BRIGHT
M. SMITH
C. ROMNEY
D.H. LAWRIE
F. REINHARDT
L. L. REED
D.R. HENDERSON
R.S. ROGALLO
J.L. STEGER
H.E. BAILEY
R.H. MILLER
S. TULLOH
O.K. STEVENSON
G. FEIERBACH
A. KERR

xii

I. Introduction

The Illiac IV was the first large scale array computer. As the fore­
runner of today's advanced computers, it brought whole classes of
scientific computations into the realm of practicality. Conceived
initially as a grand experiment in computer science, the revolutionary
architecture incorporated both a high level of parallelism and pipe­
lining.

After a difficult gestation, the Illiac IV became operational in
November 1975. It has for a decade been a substantial driving force
behind the develooment of computer technology. Today the Illiac IV
continues to service large-scale scientific aoolication areas includ­
ing computational fluid dynamics, seismic stress wave propagation model­
ing, climate simulation, digital image processing, astrophysics,
numerical analysis, spectroscopy and other diverse areas.

This volume brings together previously published material, adapted
in an effort to provide the reader with a perspective on the strengths
and weaknesses of the Illiac IV and the impact this unique computa­
tional resource has had on the development of technology. The history
and current status of the Illiac system, the design and architecture
of the hardware, the programming languages, and a considerable sampling
of applications are all covered at some length. A final section is
devoted to' commentary.

The story of the Illiac IV is also in part the story of the
Institute for Advanced Computation. This is the government organization
formed in 1971 by the Defense Advanced Research Projects Agency and the
National Aeronautics and Space Administration Ames Research Center to
develop and operate this computer. The Institute provides access to
the Illiac through a connection to the ARPANET, a national communication
network. The Institute also performs software development, maintenance,
and research in various advanced computation topics.

Considerable effort has been invested by the Institute in documen­
ting the evolution of the Illiac system and oroviding those publica­
tions to the user community. Frankly, this material has experienced
quite limited circulation and to most of the computer world the Illiac
remains mysterious. This attitude is fostered by the lack of a thorough­
going summary of the Illiac's environment, design and capabilities.
It is in response to that information gap that this book is addressed.

The Illiac IV consists of\a single control unit that broadcasts
instructions to sixty-four processing elements operating in lock steo.

2 Introduction

Each of these processing elements has a working memory of 2K sixty­
four bit words. The main memory of the I11iac is implemented in disk
with a capacity of eight million words and with a transfer rate of
five hundred megabaud. Arithmetic can be performed in 64, 32 or 8 bit
mode. In 32 bit mode, on algorithms well suited to the parallel ar­
chitecture, the I11iac performs at a rate of 300 million instructions
per second. Although it uses electronics from the late 1960's, for
certain classes of important problems, the Illiac remains the fastest
computer to date.

This book is written primarily for computer professionals. Cer­
tainly a much wider audience of engineers, scientists, students, pro­
gram managers and laymen interested in this dynamic technology will
find much to engage them. Some sections, however, include consider­
able detail and assume a fairly sophisticated background in computer
science.

II. Background

A. History

The Illiac IV story begins in the mid-1960's. Then, as now, the com­
putational community had requirements for machines much faster and
with more capacity than were available. Large classes of important
calculational problems were outside the realm of practicality because
the most powerful machines of the day were too slow by orders of mag­
nitude to execute the programs in plausible time. These applications
included ballistic missile defense analyses, reactor design calcula­
tions, climate modelling, large linear programming, hydrodynamic sim­
ulations, seismic data processing, and a host of others.

This demand for higher speed computation began in this time frame
to encounter th~ ultimate limitation on the computing speed theoreti­
cally achievable with sequential machines. This limitation is the
speed at which a signal can be propagated through an electrical con­
ductor. This upper limit is somewhat less than the speed of light,
186,000 miles per second. At this speed the signal travels less than
a foot in a nanosecond. Through miniaturization the length of the in­
terconnecting conductors had already been reduced substantially. Inte­
grated circuits containing transistors packed to a density of several
thousand per square inch helped greatly. But the law of diminishing
returns had set in.

Designers realized that new kinds of logical organization were
needed to break through the speed of light barrier to sequential com­
puters. The response to this need was the parallel architecture. It
was not the only response. Another architectural approach that met
with some success is overlapping or pipelining wherein an assembly
line process is set up for performing sequential operations at differ­
ent stations within the computer in much the wayan automobile is fab­
ricated. The Illiac IV incorporates both of these architectural
features.

The first section of this chapter introduces the design concept
in somewhat more detail. This detail will be elaborated in the course
of the book. The design concepts were enormously innovative when the
Illiac project was undertaken. It was the first of what today have
come to be called supercomputers.

The second section of this chapter is based on an article by
Howard Falk that appeared in the IEEE Spectrum: October, 1976. It
provides chapter and verse in describing the horrendous problems that
were overcome in making the Illiac IV a reality.
~©1976 IEEE. Reprinted with permission from IEEE Spectrum.]

3

1. The Dealgn Concept

The I11iac IV computer is the fourth of a series of advanced computers
designed and developed at the University of Illinois, and this accounts
for the origin of its name. Its predecessors include a vacuum tube
machine completed in 1952 (11,000 operations per second), a transistor
machine completed in 1963 (500,000 operations per second) and a 1966
machine designed for automatic scanning of large quantities of visual
data. The I11iac IV is a parallel processor in which 64 separate com­
puters work in tandem on the same problem. This parallel approach to
computation allows the Illiac IV to achieve up to 300 million opera­
tions per second.

Conventional computers solve problems by a series of sequential
steps in much the wayan individual mathematician would solve the same
problem. In a parallel processor, however, many computations can be
performed simultaneously; on the Illiac IV for example, 64 calculations
are done at once.

If the problem at hand is to calculate the price earnings ratio
for the stock of a corporation, parallelism is of no advantage since
the problem cannot be broken into piec'es that the separate processors
can address independently. Hence 64 mathematicians can solve the prob­
lem no faster than one mathematician. If, on the other hand, the prob­
lem is to calculate the average price earnings ratio for all of the
stocks listed on the New York Stock Exchange, then by assigning the
calculation of the different ratios to different mathematicians, a pro­
ductive division of labor is achieved and the result is obtained more
quickly than one mathematician could obtain it sequentially.

Fortunately, a very large fraction of the world's scientific com­
putational problems satisfy this parallelism requirement. For these
problems that are suitable for implementation on the Illiac, very hand­
some run-time reduction factors have been achieved.

The father of the Illiac IV was Professor Daniel Slotnick who con­
ceived the machine in the mid-1960's. The development was sponsored by
the Defense Advanced Research Projects Agency. Subsystems for the
Illiac were manufactured in a number of facilities throughout the U.S.
These subsystems were then shipped to the Burroughs Corporation in
Paoli, Pennsylvania for final assembly. The Illiac was delivered to the
NASA Ames Research Center south of San Francisco in 1971.

The logical design of the Illiac IV is patterned after the Solomon
computers. Prototypes of these were built in the early 1960's by the
Westinghouse Electric Company. This type of computer architecture is

4

•

History 5

referred to as SIMD, Single Instruction Multiple Datastream. In this
design there is a single control processor which sends instructions
broadcast style to a multitude of replicated processing units termed
elements. Each of these processing elements has an individual memory
unit; the control unit transmits addresses to these processing element
memories. The processing elements execute the same instruction simul­
taneously on data that differs in each processing element memory.

For comparison, the logical structure of a conventional sequential
computer is illustrated in Figure 2.1, while Figure 2.2 shows the archi­
tecture of the SIMD machine.

In the particular case of the Illiac IV, each of the processing
element memories has a capacity of 2,048 words of 64-bit length. In
aggregate, the processing element memories provide a megabyte of stor­
age. The time required to fetch a number from this memory is 188
nanoseconds, but because additional logical circuitry is needed to re­
solve contention when two sections of the Illiac IV access memory simul­
taneously, the minimum time between successive operations is somewhat
longer.

In the execution of a program it is often necessary to move data
or intermediate results from one processor to another. Routing paths
for this purpose are provided as shown in Figure 2.3. One way of re­
garding this interconnection pattern is to consider the processing ele­
ments as a linear string numbered from 0 to 63. Each processor is pro­
vided a direct data path to four other processors, its immediate right
and left neighbors and the neighbors spaced eight elements away. So,
for example, processor 10 is directly connected to processors 9, 11, 2,
and 18. This interconnection structure is wrapped around, so processor
63 is directly connected to processor O. To transfer values among pro­
cessors not directly connected, multiple routing steps are required.
For example, to move a number from processor 9 to processor 18 it must
first be moved to processor 17 and then to processor 18.

The other major control feature that characterizes the Illiac IV is
the enable/disable function. While it's true that the 64 processing
elements are under centralized control, each of the processing elements
has some degree of individual control. This individual control is pro­
vided by a mode value. This mode value for a given processor is either
1 or 0, corresponding to the processor being enabled ("on"), or dis­
abled ("offll). The 64 mode values can be set independently under pro­
gram control, depending on the different data values unique to each
processing element. Enabled processors respond to commands from the
control unit; disabled elements respond only to a command to change mode.
Mode values can be set on specific conditions encountered during pro­
gram execution. For example, the contents of two registers can be com­
pared and the mode value can be set on the outcome of the comparison.
Hence iterative calculations can be terminated in some processors while
the iteration continues in others when, say, a quantity exceeded a
specified numerical limit.

In addition to the megabyte of processor element memory, the Illiac
IV has a main memory with a sixteen million word capacity. This main
memory is implemented in magnetic rotating disks. Thirteen fixed head
disks in synchronized rotation are organized into 52 bands of 300 pages
each (an Illiac page is 1024 words). This billion-bit storage subsystem
is termed the Illiac IV Disk Memory or 140M. The access time is deter­
mined by the rotation rate of the disks. Each disk rotates once in 40

6 Background

Program
Instructions

I

,~
Control

~
Unit

~
Processing Inputl

Unit Output

t
Memory

---+

Figure 2.1 Conventional computer architecture

Program
Instructions

~
Control . Unit

I
.--------------f-------l-------f-------

Processing Processing Processing
Element Element Element

0 I 2

t ! t
Processing Processing Processing

Element Element Element
Memory Memory Memory

0 I 2 , , ,

. ---------,
· ..

· ..

Processing
Element

63

Processing
Element
Memory

63

· .. ------'
Figure 2.2 Parallel organization of Illiac IV

History 7

milliseconds so the average access time is 20 milliseconds. This
latency makes the access time about 100,000 times longer than the access
time for processor element memory. The transfer rate, however, is 500
million bits per second.

This memory subsystem, the input/output peripherals and the manage­
ment of the other parts of the system are under the direction of a
Digital Equipment Corporation PDP-IO conventional computer. A Bur­
roughs B-6700 computer compiles the programs submitted to the Illiac
into machine language.

This design concept came to fruition tn November 1975 when the
Illia~1 IV was pronounced operational.

~4~D
f>

Figure 2.3 Illiac IV routing paths

e. 'Implementation Difficulties

It was during the firebombing and rioting that shook the University of
Illinois campus in the spring of 1970 that the Illiac IV computer pro­
ject reached its climax. Illiac IV was the culmination of a brilliant
parallel computation idea, doggedly pursued by.Dani·el Slotnick for
nearly two decades, from its conception when he was a graduate student
to its realization in the form of a massive supercomputer. Conceived
as a machine to perform a billion operations per second, a speed it was
never to achieve, Illiac IV ultimately included more than a million
logic gates--by far the largest assemblage of hardware ever in a single
machine.

Until 1970, Il1iac IV had been a research and development project,
whose controversy was limited to the precise debates of computer scien­
tists, the agonizing of system and hardware designers, and the question­
ing of budget managers. Afterward, the giant machine was to become a
more or less practical computational tool, whose disposition would be a
matter of achieving the best return on a government investment of more
than $31 million.

This article will discuss the successes and failures that have made
Illiac IV significant in the development of computer technology, but
first let us return to the campus in Urbana-Champaign, Ill., in 1970,
when I11iac IV was at the center of boiling passions over the relation­
ships between the university, government, and private industry.

I11iac was funded by the U.S. Department of Defense's Advanced Re­
search Projects Agency (ARPA) through the U.S. Air Force Rome Air De­
fense Center. However, the entire project was not only conceived, but
to a large extent managed, by academicians at the University of Illinois.
Finally, the system hardware was actually designed and built by manu­
facturing firms--Burroughs acted as the overall system contractor; key
subcontractors included Texas Instruments and Fairchild Semiconductor.

When headlines in The Daily 111ini, January 6, 1970, proclaimed,
IIDepartment of Defense to employ UI computer for nuclear weaponry,1I
tensions rapidly escalated--not only between University of Illinois stu­
dents and the faculty and school administration, but also between the
parties directly involved in the Il1iac IV project itself. Out of the
campus cauldron bubbled heated phrases; some directed at Government's
"danger-ous foo1s,1I others at industry's II ques tionab1e business prac­
tices," and still others at the university's "volatile visionaries. 1I

8

History 9

As a university-based project supported by military funds~ I11iac
IV was 1arge~ but by no means unique. Such funds had long been flowing
into graduate schools and 1aboratories~ and had always been accompanied
by strain and contradiction. On the one hand~ there was the university's
need to train students and advance basic knowledge; on the other, there
was the Department of Defense (DOD) need for new military technology.
With the prodding of the Military Procurement Act of 1970~ signed into
law by President Richard Nixon on November 19~ 1969~ DOD funding agen­
cies were under increased pressure to demonstrate the military value of
all the research and development projects they supported. David Packard,
then Deputy Secretary of Defense~ was publicly reiterating DOD determin­
ation to support only work that had a "direct, apparent, and clearly
documented relationship" to military functions and operations. Mean­
while, on the campus, there were antiwar sit-ins, demonstrations, and
rising fee1ings--extending beyond the students to the facu1ty--that
military projects did not belong at the University of Illinois. Con­
frontation over the military R&D issue was imminent in 1970; and the
news of military uses for I11iac IV was explosive.

When the dust sett1ed~ what remained for those in industry who had
been observing the I11iac IV project was an impression that universities
might be bold initiators of new ideas but were not equipped to manage
large engineering projects. For those in government, there was a hard­
ening determination to keep I11iac in a protected, secure environment
away from any campus. For university administrators and facu1ty~ there
was a growing conviction that military R&D support was a very mixed
blessing, and one that in many cases might not be worth pursuing.

Despite misgivings, the university prepared itself to receive the
giant computer--in a new building specially designed for the machine-­
but the move from the Burroughs plant in Pao1i~ Pa. to Illinois was
never to occur. Instead, I11iac IV would find its permanent home at a
NASA facility in California.

Lawrence Roberts, then director of ARPA Information Processing
Techniques, recalls the decision not to place I11iac IV at I11inoi5 as
mainly a question of finding the best possible operational managers for
the machine: "University people who might run it ... are unwilling to
look at some kinds of problems; maybe the classified ones, maybe just
sensitive ones ... Was the university the right organization to manage
a large operational undertaking? ... The answer was generally no."

Just as the story of I11iac IV can be divided into the periods be­
fore and after the campus turmoil of 1970, so the successes and failures
of the project can be measured in two quite separate senses. For the
I11iac IV balance sheet, there are the achievements and shortcomings of
an R&D project, deliberately designed to press computer architecture and
design forward as far and fast as possible. There are also the more
practical considerations surrounding a multimillion-dollar conglomera­
tion of hardware that is expected to prove its worth by performing day­
to-day computational tasks.

This research-operational ambivalence in the I11iac IV project is
reflected in the divided feelings expressed by those involved. For ex­
ample, Daniel Slotnick says: nI'm bitterly disappointed, and very
pleased .•• delighted and dismayed. Delighted that the overall objec­
tives came out well in the end. Dismayed that it cost too much~ took
too long, doens't do enough, and not enough people are using it."

10 Background

Perhaps the greatest strength of Illiac IV, as an R&D project, was
in the pressures it mounted to move the computer state of the art for­
ward. There was a conscious decision on the part of all the technical
people involved to press the then-existing limits of technology. Dr.

-Slotnick, who was the guiding spirit of the project, made it clear to
his co-workers that the glamour and publicity attendant to building the
fastest and biggest machine in the world were necessary to successfully
complete what they had started.

The end results this pioneering urge had on computer hardware were
impressive: Illiac IV was one of the first computers to use all semi­
conductor main memories; the project also helped to make faster and more
highly integrated bipolar logic circuits available (a boon to the semi­
conductor and computer industries, this development actually proved a
disaster for I11iac IV--more on this subject later in this section); in
a negative but decisive sense, I11iac IV gave a death blow to thin-film
memories; the physical design, using large, 15-1ayer printed circuit
boards, challenged the capabilities of automated design techniques.

As it began to take shape in 1965 and 1966, I11iac IV seemed so
exciting that engineers, physicists, and computer scientists pressed to
be assigned to the project. Its overall architecture--using many sep­
arate processing units all operating simu1taneous1y--was an undeniable
demonstration of the possibility of highly parallel computation. With
I11iac IV, exploration of the benefits of parallel computation was un­
derway.

On the software side, the I1liac IV programming work at the Univer­
sity of Illinois spawned a whole new generation of experts in parallel
and high-speed computation. David Kuck and his students at the univer­
sity stopped full-time work on I11iac IV in 1968, but the impact on soft­
ware and applications thinking was a lasting one. Students who wrote
their master's theses at Illinois on I11iac IV have gone on to promising
careers in the field. For example, Muraoka is now manager of computer
architecture at NTT laboratories in Japan. According to Dr. Kuck, work
on extracting the ultimate computation speed from programs, in organiz­
ing algorithms for ultimate speed, has been greatly stimulated by ex­
perience with the I11iac IV project. He points out that people at other
schools, such as Stanford, the Massachusetts Institute of Technology,
and Carnegie-Mellon, are now doing theses and research that have been
influenced, however indirectly, by I1liac IV.

In terms of hardware, deficiencies in I11iac IV's bipolar logic
circuits set off a series of design changes that ultimately delayed by
years the completion of the machine, while they also ushered in dramatic
changes in memory technology.

Initial plans for I11iac IV circuitry envisioned bipolar emitter­
coupled logic (ECl) gates capable of speeds of the order of 2-3 ns. The
ECl circuits were to be packaged with 20 gates per chip--a level of com­
plexity that later would be called medium-scale integration. Chosen as
the subcontractor for these circuits, Texas Instruments seemed eager to
do the job and sincere in the belief that it could produce the expected
circuits.

As the development process moved ahead, it became evident that the
20-gate chips were not functioning properly. Noise margins for these
circuits were inadequate. The power distribution design inside the
circuit packages was such that crosstalk was excessive. At the root of
such problems was an inability to produce multilevel circuit substrates

History 11

that could meet the necessary preC1Slon requirements for lead definition,
resistivity, and level-to-level registration. TI asked for an added year
of development time to produce the original circuits. Instead s the de­
cision was to go to a simpler integrated circuit--with only seven gates
per chip--while maintaining substantially the same circuit speeds.

Although the initial ECl development effort for Illiac was a fail­
ure, the millions of dollars of government money that were invested in
that effort played a sUbstantial role in advancing the ECl integrated
circuit art, so that within about a year TI was able to solve the sub­
strate problems and to offer commercial medium-scale integrated ECl cir­
cuits similar to those the Illiac IV project had hoped to use.

But for Illiac IV, problems with ECl circuits were just beginning.
The shift to smaller circuit packages was to have a pervasive impact on
other portions of the hardware, such as processing element memories,
printed circuit boards, and cabling--and overall system design and capa­
bilities would be drastically affected as well. But even the smaller
circuit packages themselves proved to be a continuing source of trouble.
The plastic encapsulation for these circuits proved to be very sensitive
to the operating environments particularly to the ambient humidity.
This required an unusual effort to provide stable humidity in the final
Illiac IV installation at the NASA Ames Research Center at Moffet Field,
Calif. Internal short circuits between leads to external circuit pins
provided a second major problem--and one that was more subtle since it
developed only over a period of time. Test procedures were devised to
adjust power-supply voltages to maximum and minimum marginal values in
an attempt to show up potential short circuits. Dynamic impedance be­
tween leads was also checked, using a variable-current supply source
while monitoring voltage output. For the design and production schedule
of the overall Illiac IV system, the shift from medium-scale to small­
scale ECl chips was a disaster that led to delays probably totaling
about two years.

Illiac IV initial specifications called for a 2048-word, 64-bits­
per-word, 240-ns cycle-time memory for each of its processing elements.
In 1966, when the initial design study for the system was underway, the
only technology that seemed to be available to meet these requirements
was the thin-film memory. At that time" a few developmental semiconduc­
tor memory chips were being studied, but no computer manufacturer would
yet consider them seriously for main memory use.

Fortunately~ Burroughs, the Illiac IV system contractors had al­
ready developed thin-film memories for its B8501 computer. Two years
and about a million dollars later, the memory design had been modified
to meet initial Illiac IV requirements and prototype memories were in
operation.

The change to smaller ECl circuit chips proved to be a death blow
to the thin-film memory. When the smaller chips' requirements for added
space on circuit boards and interconnections were taken into account,
it turned out that there was not enough room for the smallest feasible
thin-film memory configuration. Attempts to increase the overall size
of the processing elements were frustrated by limitations on propagation
time through system interconnections and cables. Even when use of the
small-scale ECl circuits forced the designers to drop the system clock
rate from 25 MHz down to its present value of 16 MHz, the thin-film
memory still could not be made to fit. Not only was the thin-film

12 Background

development money wasted, but thin-film memory technology received what
has since proved to be a fatal blow--at least as far as its use in com­
puter main memories is concerned.

Strangely, the failures and disappointments of the ECl circuits and
thin-film memories also set the stage for a brilliant hardware success:
Illiac IV was to be one of the first computers to use all-semiconductor
main memories. While interviewing EE students at the University of
Illinois for jobs at Fairchild's Semiconductor Division, Rex Rice also
happened to meet an old friend and former co-worker, Daniel Slotnick.
When the conversation turned to the computer memory art, Rice, who was
managing advanced development projects at Fairchild, described, in con­
fident and optimistic terms, the work then underway on bipolar semi­
conductor memories. The conversation may have been just interesting
shoptalk at the time, but the idea that high-speed semiconductor memories
had become a feasible alternative was to playa key role in Illiac IV
developments.

When it became clear that thin-film memories could not be used
without drastically slowing down the entire system, the stage was set
for semiconductor memories. Proposals were taken from Texas Instruments,
Motorola, and Fairchild for the development and production of memories
that would meet Illiac IV specifications. Over the contrary advice of
some of the engineers working on the project, Slotnick chose Fairchild
as the semiconductor memory subcontractor.

Called for were 2048 words (64 bits/word) of memory for each of the
64 Illiac processing elements, a total of 131,072 bits per processing
element. And the memory was to operate with a cycle time of 240 ns and
an access time of 120 ns. A complication, in the packaging of the mem­
ories, was the need to provide access to each memory not only from its
own processing element but from the overall system control unit and the
system input-output connections as well. Meeting these requirements
meant some extension of the semiconductor art, as well as overcoming a
host of design and production problems.

When Fairchild was awarded the contract, its facilities for the
project consisted of an empty room, a naked facility that was to be con­
verted for development and production of new devices.~ Within a few
months, with an all-out effort, the company would churn out some 33,000
memory chips (256 bits per chip).

Slotnick recalls that development proudly: III was the first user
of semiconductor memories, and I took a lot of criticism for thinking
that we'd have them on time and within specifications. Illiac IV was
the first machine to have all-semiconductor memories. Fairchild did a
magnificent job of pulling our chestnuts out of the fire. The Fairchild
memories were superb and their reliability to this day is just incredi­
bly good. 1I For the semiconductor industry, this dramatic demonstration
of memory capabilities had a decisive effect. It put Fairchild firmly
into the memory business and, together with IBM's announcement of 64-bit
bipolar memory chips for its 360-85 system, the effect was to speed up
the pace toward the widespread acceptance that semiconductor memories
now enjoy in computers and related systems.

One of the most formidable problems faced by the Illiac IV design­
ers was that of packaging and interconnecting the control unit and the
64 processing elements. Speed was a prime objective of the design, and
in the early stages there was no indication that the project would be

History 13

moving into massive cost overruns, so guaranteeing 25-MHz operation
appeared to be an unconditional design criterion. Optimization was to
be strictly on performance, not cost.

Configuration studies revealed that the principal packaging prob­
lems were to minimize the volume of the equipment and the length of the
interconnections so as to reduce propagation delays. Because of the
tight system control requirements and the limited space available for
interconnections, the designers felt forced into the use of multiple­
layer printed circuit boards. For the control unit, four signal layers
were needed to make connections between the 165 circuit package posi­
tions accommodated by each board (the final control unit boards averaged
about 140-150 circuits each).

Because of impedance problems, ground layers had to be spaced be­
tween the signal layers and the board designs grew until they included
15 different layers. They were expensive and extremely difficult to
produce. Furthermore, the designs turned out to be so complex that
board layout by human beings was virtually impossible. Initially, a
number of wiring patterns were attempted by designers and draftsmen,
but these proved to contain so many errors that they were unusable. In
addition to the 15-layer complexity, wiring rules were complicated by
the use of 50-ohm transmission lines loaded with 100-ohm stubs through­
out the design. There were limitations on how close, and how far, loads
could be placed from sources--because of the problem of transmission
reflections. The human designers simply could not cope with all the
rules and requirements.

Fortunately, computer-based design automation techniques were
available at the time the Illiac control unit boards were being de­
signed. At first, a printed-wiring routing program supplied by a sub­
contractor proved inadequate, but with the help of the University of
Illinois faculty and students, as well as the Burroughs design team, a
satisfactory routing program was finally developed. The boards were
designed and produced--a minor triumph for the design automation art.

That was not the end of the printed circuit board story, however.
In its final incarnation at NASA Ames, Illiac IV continued to be plagued
by board problems, and faults, such as small cracks in the printed cir­
cuit connections, were uncovered in the process of bringing the compu­
ter into regular daily operation.

In looking back at the history of the Illiac IV project, lawrence
Roberts, former director of ARPA Information Processing Techniques,
feels that Illiac's strongest virtue--its pioneering role in pressing
forward the computer state of the art--became in the end its greatest
weakness. Dr. Roberts now feels that the best course would have been
to build the machine using transistor-transistor logic (TTL) rather than
ECl circuits. TTL logic was, in the late 1960s, a straightforward',
widely employed technology, and its use could have considerably reduced
the cost and duration of the project. Says Roberts: ItI feel it is
absolutely clear that it should have been done with older technology.
I've used that lesson many times since then. People complain bitterly
but it has always worked out better.1t

When Illiac IV was delivered to its final home at the NASA Ames
Research Center in California in the spring of 1972, the question in
the mind of Dr. Pirtle, former Director of NASA's Institute for Advanced
Computation, was whether or not the machine could actually be made to

14 Background

perform useful work. By the following summer, the educated outlook was
positive. Illiac was then operating at reduced speed, but it would al­
most always execute its control sequences correctly, and--occasionally-­
it would actually deliver correct results. At that time, the machine
was made available to a few users, just to demonstrate that useful pro­
gramming codes could be made to run--but knowing full well that most of
the computed results would be erroneous or inaccurate.

Then, in June 1975, a concerted effort began to check out Illiac
fully and make it operational. Over the next four months, thousands of
manufacturing faults were uncovered in printed circuit boards and con­
nectors; 110,000 low-reliability terminator resistors, wire-wrapped to
backplanes, were replaced by circuit-board-mounted resistors; and logic
design faults--principally involving signal-propagation times--were
corrected, as were improper line terminations and inadequate power-supply
filtering in the disk controllers.

The system now operates from Monday morning to Friday afternoon,
including 60 to 80 hours of good, verified up-time for the users, along
with 44 hours of maintenance and downtime.

Above all, speed was to be the most crucial characteristic of
Illiac IV. A billion instructions per second was Slotnick's initial
goal. As the system design took shape, that target was expressed more
specifically as 256 parallel processing elements that would each per­
form a 64-bit floating point addition in 240 ns.

Then, when the size of the machine had to be dropped from 256 to 64
processing elements, this goal faded from sight, retreating even further
as the clock speed was dropped from 25 to 16, and finally to 13, MHz.
Still, even in 1970--after major hardware disappointments with the
available circuitry had been absorbed into the systems design--the sys­
tem was still believed by its creator to be capable of performing 200
million instructions per second. Today this has been achieved. Per­
formance is discussed in detail in Section III.

When the University of Illinois trustees signed the initial Illiac
IV contract with the U.S. Air Force in February 1966, the cost of the
project was estimated at just over $8 million, a number that was re­
markably close to the gate of the Clay--liston world championship
heavyweight title bout held just months earlier. By January 1970, fund­
ing for the project had grown far beyond the dimensions of a prizefight,
to over $24 million, and by April 1972, when the huge computer had been
delivered to its permanent site in California, its estimated cost had
reached $31 million.

Clearly, inflation played a role in these escalating costs, as did
the millions that were spent for development of key components such as
the ECl circuits, and for components that were discarded, such as the
thin-film memories.

At the same time, Illiac was originally planned to include 256
processing elements. As it became evident that costs were rapidly ris­
ing, the number of processing elements was cut back to 64--so the ma­
chine ended up at one-fourth its original size, although costing about
four times as much as initially estimated.

University-based project managers apparently had no clear idea of
the costs of developing and manufacturing in an industry environment.
Slotnick felt that the primary source of the cost overruns was at
Burroughs where the cost-plus-fixed-fee environment in the company's

History 15

defense-space operations set it up to jump on the Illiac IV contract
"with both feet.1I From the Burroughs viewpoint, it was a "hairy" pro­
ject; their aim was to avoid losing money. Actually, Burroughs manage­
ment consistently underestimated the man-hour costs of the project.

It wasn't until 1971 that those costs came under more accurate
control. At that time, a group was set up at DOD's Advanced Research
Projects Agency to review the Illiac IV situation every few months and
make estimates of costs to completion. Their figures proved to be
accurate, probably because they were from a relatively uninvolved source.

From the system software standpoint, Illiac IV is quite rudimentary.
There is almost no operating system. A user takes hold of the machine,
runs his problem, and then lets it go; the next user does the same. No
shared use of Illiac's 64 processing elements is provided. In smaller
computers that surround Illiac's control unit and processing elements,
there is more complex software that forms a queue of users waiting to
get at the big machine and allows them to perform nonarithmetic "com­
panion" processes. But the actual Illiac operating software itself is
very simple, capable of such basic operations as monitoring input/output
and loading data into the processing element memories. An operating
system, along with two Illiac IV languages called TRANQUIL and GLYPNIR,
was written at the University of Illinois beginning in 1966. This
effort amounted to perhaps a dozen man-years of programming. Later,
when the system was moved to California and connected to the ARPA net­
work, it was decided that entirely new system software was needed, since
PDP-I0 and -11 computers were used--in place of the original B6500 ma­
chine--to connect Illiac IV to the outside world.

There, the NASA Ames users decided to write a new Illiac IV lan~
guage,which would be called CFD, to efficiently communicate problems
involving the solution of partial differential equations to the big
machine. This was accomplished with approximately two man-years of
programming effort.

These equations were important to the NASA Ames users, who now
take up about 20 percent of Illiac IV operating time solving aerody­
namic flow equations.

The remaining 80 percent of Illiac IV time is taken up by a diverse,
and often anonymous, group of users, many of whom still use the GLYPNIR
language.

A giant computer should be useful for tackling giant computing
problems, and that is pretty much the story of Illiac IV applications
programs. Beyond the NASA Ames aerodynamic flow problems, users of the
big computer have been running several small weather-prediction and
climate models with improved and larger models still under development.

Several types of signal processing computations, including fast
Fourier transforms, are now a regular part of Illiac IV's diet, and a
large-scale experiment with real-time data is now underway. Other ap­
plications problems that have actually found their way to Illiac IV in­
clude beam forming and convolution, seismic research, radiation
transport for fission reactors, and linear programming software capable
of handling 50,000 or more constraints is under development.

As Slotnick sees it, applications have gone just about as he
thought they would--"No huge new computational areas have succumbed to
I1liac, but nothing we thought would work has not worked. II

B. Current Status

The Illiac IV became operational in November, 1975. This was defined to
mean that a minimum of sixty hours per week would be made available to
users; today the average is about eighty hours per week of verified user
time.

The first major application effort culminated in September, 1976 in
the successful use of the Illiac in support of a real-time, interactive
experiment for the Department of Defense. Thereafter the Institute for
Advanced Computation made the Illiac available to government agencies
for large-scale computation effo~ts. Many agencies use it today for
diverse application projects (see Section V).

The Institute for Advanced Computation is charged with the respon­
sibility for developing, operating and enhancing the Illiac. This
government body was formed in 1971 on the basis of an interagency agree­
ment between the Defense Advanced Research Projects Agency and the NASA
Ames Research Center. The Illiac and the Institute are located at
NASA Ames, about forty miles south of San Francisco. The interagency
agreement expired in 1979, and today NASA is solely responsible for the
Illiac's continued development and operation.

The Institute's staff numbers about eighty-five under the guidance
of a contractor general manager and a civil servant director. The In­
stitute for Advanced Computation (lAC) is an element of the NASA/Ames
Research Support Directorate.

The lAC staff provides analysis and programming support in addition
to operations, development and research activities. These activities
include new language development, application project management and
maintenance of a full computational environment with ARPANET communica­
tions and digital graphics capabilities.

The preeminent application of the Illiac IV is wind tunnel simula­
tion in support of the Computational Fluid Dynamics Branch of NASA/Ames.
This activity has given rise to substantial advances in the state of the
art of aerodynamic design.

Today the Institute continues to improve the capabilities of the
Illiac and is participating in the development of successor machines
and in the progress of advanced computation technology in general.

Figures 2.4-2.7 show various views of the Illiac IV facility.

16

History 17

Figure 2.4 Rear view of Illiac IV Figure 2.5 Long view of Illiac IV

Figure 2.6 lAC computer room Figure 2.7 Internal view of
III iac IV

III. The Computer

This chapter describes the hardware aspects of the Illiac IV and its
environment. As the reader can well imagine, a complex of system ele­
ments having the first supercomputer as a component is highly complex
and in many ways quite sophisticated. Thi~ treatment will necessarily
leave much unsaid.

Each of the 64 processing elements of the Illiac itself contains
more than 100,000 discrete electronic parts assembled into approximately
12,000 switching circuits. This complexity implies serious concern
about reliability. Any system containing more than six million parts
that must all work for the whole to work is expected to fail every few
hours. Consequently a great deal of attention has been directed to
testing and diagnostic procedures. A Test and Maintenance Unit is in­
corporated into the design of the Control Unit. Each of the 64 Process­
ing Elements is subjected every two hours to an elaborate battery of
automatic tests. If any malfunction is indicated by any of these tests,
the Processing Element is unplugged and replaced by a hot spare; once
repaired the unplugged unit becomes a spare.

One measure of the Illiac's reliability is the week-in week-out per­
formance compared with its operational goal. Illiac status is color­
coded by the operations staff. Green hours are actual hours of verified
batch time available to users. Red hours are logged during the repair
of an unplanned down period. Blue time is for development and enhance­
ment. Yellow time is counted for maintenance, weekends and holidays,
and batch hours preceding a failed verify. The operational goal is a
minimum of 60 green hours per week.

In calendar year 1977, data is available for 48 weeks. Missing
weeks include a scheduled Christmas shutdown, etc. In this period, which
begins more than a year after the announcement of operational status, the
Illiac is reported to have delivered 3480 green hours for an average of
72.5 hours per week. The tentative nature of this operational status,
however, is indicated by the 14 weeks (30%) in which the Illiac failed
to meet its 60 goal. For 23 weeks of 1978 for which data is at hand the
111 i ac averaged about 66 green hours per week wi th 26% of the weeks fai'l­
ing to achieve 60 hours.

The Illiac IV could not have been designed were it not for the use
of other computers. Artwork for the system's printed circuit boards was
designed with computer assistance. Diagnostic programs for the logic
and other hardware were developed on other computers. Even application

18

The Computer 19

codes were written with the help of SSK, an Illiac simulator running on
a conventional computer. Two Burroughs B 5500 computers were devoted
virtually full time for two years to development activities.

This chapter is organized into four parts. The first section ad­
dresses the lAC Computational System, i.e., the Illiac environment.
Section two describes the Illiac per se. The third section describes
how the Illiac is a pipelined machine as well as a parallel machine.
Finally performance is documented through benchmarks.

A. The System

1. Introduction

This section addresses the overall environment of computational resources
at the Institute for Advanced Computation (lAC) to support the Illiac IV
user community. lAC operates a remotely accessible conventional compu­
ter center that affords the users the underlying basi~ services to per­
mit the effective use of the unconventional Illiac. This section is
based on liThe lAC Computer Facility, An Overview ll byC. T. Markee, lAC
TM 5194, February, 1977.

20

2. Overview of the lAC Computational Facility

The lAC system is configured as a memory-centered multiprocessor archi­
tecture. The system configuration is illustrated in Figure 3.1. It was
primarily designed to provide efficient support for the Illiac IV. This
system today routinely provides both interactive conventional processing
and large scale parallel processing.

There are two unique large-problem oriented computational resources
in the lAC system, the gigabit per second bandwidth Illiac IV array pro­
cessor and the 500 megabit per second Illiac IV synchronized disk system
(140M) .

This computational facility may be conceptually separated into four
functional resources. The first of these, the connection to the 50 kilo­
bit per second packet switched ARPANET communications facility provides
remote users with network access to the lAC Central system facilities
for code development.

Another functional element, the Central system, provides the re­
searcher with tools for the development of Illiac IV software. Included
in the support facilities are interactive job preparation, file manage­
ment, data movement, job staging, edit and debug utilities, and control
of executing Illiac IV programs. The Central system consists of over
20 POP-11 control and communications processors. Additionally, the
Central system supports interactive time shared service on several POP-IO
computers.

A third functional element of the lAC system is the file management
system. This is embodied in the multilevel memory hierarchy of the com­
putational facility. This hierarchy is illustrated in Figure 3.2. Five
physically distinct memory subsystems comprise the three levels of the
hierarchy. The third or primary memory level separates into the PEM
(Processor Element Memory), the 140M and the Central Memory.

The Central Memory is a 512K word multiport, 64-way interleaved,
synchronous core memory that has a 10.93 megahertz clock. While the
single word access time of the Central Memory is approximately 630 nano­
seconds, the normal operating mode is pipelined access which .Yields a
transfer bandwidth of over 1500 megabits per second.

The processor element memories are used to hold both Processor Ele­
ment instructions and operands. Constructed of 256 bit RAM chips, the
PEMs store 128 Illiac IV pages of data, can be accessed in 188 nano­
seconds, and have a cycle time of 200 nanoseconds.

21

22 The Computer

Figure 3.1 The lAC system

· 64 PIIOCI!SSING ELIIICI!NTS MEMORIES .
• I." x 10

6
IITS (131072 IITS PER MEMORY)

• 10' IPS, • ACCESS TIME 1 •• ft., • 12. PAGES

ILLIAC IV DISlS CENTRAL MEMORY

• 1.1 x 10' IITS • 19.4 • 10
6

BITS (SUI

• 5.2 x 10
1

IPS
WORDS OF 36 IITS EACH)

• 15 x 10' PAGES • 10
9

BPS
(.AGE • 10ze i-~ • 10l(PAGES tPAGE • SlZ
WORDS Of 64 IPW) WORDS OF 36 IPW)

• 133 U. TO TRANSFER • ACCESS TIME 630 ns
1 PAGE

• ACCESS TIME 19.6 ..

$: ILL lAC IV HIERARCHY 11
SWAPPI MG DRUM

• loS x 10' IITS

• • x 10
7

IPS

• •• 10
3

PAGES
(PAGE • 51~ WORDS OF 36 BPW)

• ACCESS TIME 20 ..

PDP·I0 HIERARCHY ~

a-TEIIEX DISI

• , • 10
9

IITS

• 1.' • 106 1'5 (10
6

BPS FOR i4 AND 0.9 • 10
6

BPS
FOR i4-TENEX USE)

• US x 10' PAGES (PAGE· S12 WORDS OF 36 BPW)

• ACCESS TIME 10 .s

~ tj
LASER MEMORY

• 700 • 10
9

IITS

• 3 x 10
6

BPS

• 9.S x 106 PACES (2.4 • 104 PACES/STRIP)

• ACCESS TIME 10 SECONDS

4th LEVEL
MEMORI

3rd LEVEL
MEMORY

2nd LEVEL
MEMORY

lit LEVEL
MEMORY

Figure 3.2 llliac IV system memory hierarchy

The System 23

The 14DM t the third component of this level in the hierarchy, is
used exclusively to support Illiac IV processing. It has a capacity of
16 million 64 bit words. It consists of 13 fixed head disks and has a
transfer rate of 500 megabits per second. The swapping drum (4 million
36 bit words capacity, 80 megabit per second transfer rate) and the
TENEX disks (165,000 TENEX pages capacity) complete the memory hierarchy.

The final functional element of the lAC system is the Illiac IV
parallel computer. A simplified diagram of the Illiac IV is shown in
Figure 3.3. The entire Illiac IV computational facility may be viewed
as a drum based machine consisting of 64 Processing Elements under the
command of a single Control Unit. Each Processing Element has its own
2 K 64-bit word fast semiconductor scratch-pad memory. Transfers be­
tween these Processor Element Memories and the 140M are illustrated in
Figure 3.4.

In its capacity as a computational facilitYt lAC is organized into
two divisions: Program Development and Computer Operations. The per­
sonnel within these two divisions are directly involved in the opera­
tion, maintenance and effective utilization of the computational re­
source.

The Program Development Division provides the interface between lAC
and its computational facility users. Computer Operations has direct
responsibility for seven-day-a-week, 24-hour-a-day operation and main­
tenance of lAC's physical computational facility. Normally, the opera­
tions staff has no contact with users.

The conventional user has access to the system via the ARPA net­
work. He LOGS IN, communicates with the lAC System usinq A Control
Language (ACL), and can submit Illiac jobs for deferred processing (BATCH)
by simply defining parameters in a Primary Input File (PIF). Correspond­
ing Batch messages and System responses are output into a Primary Output
File (POF). The data for processing may be sent via the ARPA network
employing a File Transfer Program (CPYNET) or submitted on mag tape.

A special high speed link interface has been developed which pro­
vides the facility for a remote computer site to use the Illiac Proces­
sor interactively as opposed to normal Batch operation. The Link also
enables a user to handle/process classified data on the Illiac.

24 The Computer

ADVANCED
DATA

BUFFER

PROCESSING
ELEMENT
LOCAL
MEMORY
(PEM,)

COIITIIOL ,*IT - ACCIIOUI,ATORS

U I CONTROl. '*IT IUS

B

Figure 3.3 Simplified diagram of the Illiac IV

MEMORY

,-----, /
COMMANDS --

PEMO

128 PAGE
PROCESSOR

MEMORY

40 ms/REV

15600 PAGE
14 DISK MEMORY

Figure 3.4 PEM to Illiac IV data transfers

3. System Description

The principal computing resource within the lAC computational facility
is the llliac array processor. The Illiac is integrated into the lAC
computational facility described by this document. This facility in­
cludes additional processors, interfacing devices, memory and software
systems, all dedicated to optimizing the support of llliac's processing
capability.

A. Physical Overview Description

The physical hardware which comprises the lAC computational facil­
ity is located at NASA Ames Research Center, Moffett Field, Cali­
fornia. Building N233-A-was constructed for this facility.
The custom-built facility has an 11,700 square foot computer bay.
The complex requires 1.2 megawatts of power and 281 tons of air
conditioning.
An equivalent basement area below the computer bay contains power
switching gear, air conditioning equipment and 3 motor generator
sets, which provide approximately 1,000 amps of clean power to the
machine room.

1. Environmental Facilities

Four separate air conditioning systems provide temperature and
humidity control. Chillers, dryers, moisturizers, fans, etc.
are distributed in the basement and on the roof. Three of the
systems provide two acre feet per minute of 60 degree Fahren­
heit air under the computer room false floor for vented dis­
tribution through equipment as required. The fourth air con­
ditioning system moves an acre foot per minute through the
llliac with temperature 64 deg F and relative humidity con­
trolled better than +/-5% to ensure a stable machine environ­
ment.
A complex system of sensors, recording devices, and alarms re­
port status for the entire environmental system on a centrally
located annunciator panel.

25

26 The Computer

2. Personnel Facilities

Most lAC personnel are located in an office facility in Sunny­
vale. This separate physical facility provides two benefits.
First, improved system performance is achieved by restricting
machine access only to those directly involved in operation
and maintenance.
And second, the off-site offices afford more convenient liai­
son with the commercial firms, which provide much of the de­
velopment support to the Institute.
A communication link provides convenient terminal access to
the computational facility for lAC personnel as well as visit­
ing users.

B. Hardware/Software System

The computational facility has been organized and designed to sup­
port high speed computation on the Illiac Processor. The storage,
control and transfer of large data bases (typically, 5-10 million
words) is part of this support. Figure 3.5 is a detailed block
diagram of the current lAC system.

1. III iac

The Illiac IV parallel computer is described in detail in the
next section. A brief overview is provided here tn show the
motivation for various system features.
The Illiac consists of 64 parallel processing units, each a
general purpose, stored program, digital computer devoid of
control, and all under the direction of a single Control Unit,
which is also a stored program digital ,computer. Local work­
ing storage for each processing unit is a semiconductor mem­
ory with 2K 64-bit word capacity and 300 nanosecond full cycle.
Local storage typically contains both program and data.
Illiac speed depends upon its basic clock which currently runs
at 12.5 MHz (approximately 80 ns). In addition to the basic
clock rate, Illiac computational speed is achieved in three
ways. First, replication or parallel hardware structure; sec­
ond, parallel data transfer; and third, overlap operation-­
that is, two normally sequential events performed concurrently
in different parts of the machine.
Main memory storage for Illiac processing is currently pro­
vided by a 12 disk subsystem (140M) with a (maximum) capacity
of 15 million 64-bit words at 500 million bits per second,
synchronized for high bandwidth transfer from multiple disk
drives. This memory with its controls and data paths is
called the I/~ subsystem (lOSS).

ARPA 50K Sou
Net

- - ""' f Non-Operational

'-
:"l

C
E
N
T
R
A
L

The System 27

...... 1------- Central System --------i~~ f-------ILLIAC System~

Figure 3.5 Simplified lAC system block diagram

28 The Computer

The user and operations deal with each disk or storage unit
(SU) in terms of its bands. Each SU has four bands, each with
a capacity of 300 Illiac pages*, i.e., 1200 Illiac pages per
SUo The user does not see the maximum physical capacity of
32 bands because only a specified quantity of bands are
"released" as operational. The actual bands specified will
vary. Both the bands in use and the spares have been certi­
fied by 8000 passes of random data (10" bits) with no errors.
Remaining bands are undergoing test or maintenance.
The Control Unit directs parallel processing in all or select­
ed Processing Units (PUs). The architecture supports 64, 128
or 512 parallel data systems, respectively 64, 32 or 8 bits
wide. Sixty-four and 32-bit word processing is fully imple­
mented in hardware, while 8-bit capability is limited.
The III iac Processor is a "raw" computational resource, i.e.,
a computational "job" requires both user data and user pro­
gram. However, there is a limited operating system which
exists in an external PDP-ll memory management processor (MMP).
It issues high level commands, and processes status, common to
all "jobs".

2. Burroughs 6700

An entirely separate Burroughs 6700 computer complex is main­
tained operational in the same machine room to provide pro­
gramming support to users. It supports an Illiac Assembler
(ASK), an Illiac Compiler (GLYPNIR) and an Illiac Simulator
(SSK) .

3. Central System

A central system complex provides interacti.ve communications
for users, program and data storage, and high speed data trans­
fer facilities to support the Illiac Processor. Data paths
are established from the ARPA Network and physical mag tapes
via central memory to the Illiac main memory (140M) and the
Burroughs 6700 Computer Complex. These paths can be seen in
Figure 3.5.
A concept of "shared memory" is employed within central memory
to accomplish high speed data transfer, concurrent multipro­
cessing, and communication with central system processes,
which have been "distributed" to POP-ll, peripheral proces­
sors.
The central system complex is a memory based system comprised
of a DEC POP-ll central processing unit with 128K of core mem­
ory, a 1 million word swapping drum and 7 each 50 megabyte.

*An Illiac page is 1024 64-bit words (or 2048 32-bit words). A TENEX
page is 512 36-bit words. One Illiac page of data can reside within
four pages of TENEX address space.

The System 29

Century 215 disk drives. This hardware complement supports a
modified BB&N TENEX 1.34, which is a demand page operating
system with fixed page size and a virtual address space imple­
mented by means of page tables.
The central system address space consists of 256 pages of 1
microsecond core memory. Approximately 107 pages are used by
TENEX and other resident functions. Swapping is supported by
a 2048 page drum with an 11 megabit/sec. bandwidth (inst.) and
35 ms worst case rotational latency. Moving head, removable
media disk files provide another 170,520 pages in the virtual
address space.
A special shared memory portion of the central system address
space (BIOM/ME-IO) is also accessible by the Burroughs 6700
computer system and the Illiac main memory (140M). BIOM ports
provide 40 megabit/sec bandwidth data transfer for Illiac pro­
gram preparation on the Burroughs 6700 and 640 megabit/second­
bandwidth for on-loading/off-loading either 140M or PEM.

4. Input/Output Subsystem (lOSS)

Figure 3.6 is a block diagram of the lOSS. It consists of the
following major elements:

a. Storage Units (SU)
b. Disk File Controller (DFC)
c. Electronics Unit (EU)
d. I/O Switch (lOS)
e. Descriptor Controller (DC)
f. Buffer I/O Memory (BIOM)
g. MMP Remote Module
h. Disk Synchronizer

The Illiac IV disk memory (140M) is the Illiac processor main
memory. Under direction from the DC, it provides 15 million
64-bit words at 500 megabits per second (inst.) over a 1,024
bit BUS which accesses 16 PEMs simultaneously. Currently, one
DFC with a maximum of 12 SUs is operational.
The BIOM provides data rate buffering over four (4) ports:

a. To 140M at 540 megabits/second
b. To B6700 at 40 megabits/second
c. To PDP-I0 at 32 megabits/second
d. (Not used)

The BIOM is physically constructed of 4 PEMs, i.e., 8K 64-bit
bi-polar memor.v. Currently TENEX/I4DM transfers via BIOM con­
sist of four Illiac pages (IK x 64 bit each).
14DM is a fixed head per track disk file system currently con­
sisting of 8 to 12 single disk SUs connected to one DFC.
There are 512 tracks per disk, organized in four bands which
transfer 128 bits parallel. 1200 sectors per revolution x 4
bands = 4800 sectors/disk. Each sector is 128 x 128 bit words.
Total disk capacity is 79,257,600 bits.

OFC 2 EU 1

(Read Amps)

I-~t------ ",,""".,, I OFC 1 Non-oper;';;;;a! EU2

256 1

128

TENEX 86100

Figure 3.6 Block diagram of Illiac I/O subsystem

SU's

w o

~
It)

(")

~
c:
rt
It)
t1

The System 31

An Illiac page, consisting of four contiguous sectors, trans­
fers in approximately 133 milliseconds. Worst case rotational
latency is approximately 40 milliseconds.
A disk synchronizer system synchronizes the SUs for each DFC
within one sector time to avoid full rotational latency during
multi-SU transfer.

5. Illiac Problem Diagnosis Support Software

To understand a "working" machine it is first necessary to
accept the fact that conceptually it is always broken, and
that while broken it is usable depending upon the level of
failure.
The failure of one of the programs listed below can be used to
certify a non-working machine. The successful execution of
one or all of the programs below can be used to certify a level
of failure above which the machine ran during execution of
those programs. Within this context, the following programs
can be used to imply a "working" machine.

Confidence Tests:

Successful Il1iac execution of one or more of the following
programs is used to establish a level of confidence that
the machine is "working".

a. FLIRT - this is a converted segment of user code which will
halt on one of 64 errors. PE states are compared follow­
ing each step. Error results are output to a file for use
by the PESO simulator in isolating stuck-l stuck-0.

b. CONBAT - like FLIRT this is a converted segment of user
code, but it has been optimized for faster execution. The
diagnostics have been removed and only final results are
compared. It is a go/no-go test.

c. 14DMPT - this is an 14DM to PEM array data path transfer
test. Path testing to the BIOM is currently not opera­
tional. This test requires TENEX/MMP. It has a user in­
terface which selects test patterns, number of passes,
14DM areas and response to error detection.

Diagnostic Tests:

Failure during Illiac execution of any of the following pro­
grams is used as a diagnostic tool to support efforts to
isolate and correct problems which occur.

a. OPAL - this is a basic test of the Control Unit (CU) which
operates from TEN EX via MMP and TMU. All testing uses TMU
hardware.
CUTEST is an OPAL subtest.

32 The Computer

b. 10PAL - this is a program of selected tests for Illiac
I/O. PEMOZ is an 10PAL job which write l's or 0's in 'the
BIOM and loads them into PEM.
PEMVR is an 10PAL job which writes random data in the
BIOM.

c. HACPM - this program tests PEMs, PE mode control and the
Control Unit Buffer (CUB) cards. It uses TMU hardware or
loads the program directly into IWS. It does not use
FINST/PE instructions.

d. HAPE - this is a PE test which resides in PEM. It employs
canned operands and results which test 64- and 32-bit
arithmetic Boolean logic functions and transfer paths.
It can be loaded via BIOM (fast) or TMU (slow). Operands
and failure results are output to a file for use by the
PESO simulator in isolating stuck-I, stuck-0.
SINGLE CYCLE MULTIPLY (SCM) is a diagnostic multiply in­
struction. It executes the first iteration of a floating
point multiply.

e. RUNARA - this program resides in PEM and generates random
operands to test PE in 64-bit mode. It uses array routing
to check PEs against each other and sends results to a
file for use by the PESO simulator in isolating stuck-I,
stuck-0.

f. PESO - this is a hardware logic simulation system specifi­
cally adapted to simulating the Illiac IV PE but capable
of being generalized or converted to simulate other de­
vices. It runs on the working PEs in the Illiac. Its
principal application is as a diagnostic aid for locating
certain types of hardware failures.
Given a set of known errors in the output of the device
being simulated, PESO can be used to simulate all single
stuck type faults and report which of these faults pro­
duces simulated results consistent with the observed re­
sults.

g. RANDOM INSTRUCTION TEST (RIT) - this is the only CU over­
lap diagnostic. It has four tables of instructions from
which it assembles a random instruction sequence. It com­
pares results in overlap and non-overlap for dissimilarity.
It has the ability to reiterate through the sequence look­
ing for the point at which dissimilarity begins.

Special Tests:

The following diagnostics were written for special purposes:

a. PROBE - a special diagnostic written to test 64-bit,
add-rounding problems.

b. 7-UP - a special diagnostic to multiply random numbers.
c. ONEROM - compares the CU ROM output to the known correct

output for each instruction decode.

4. Dperational System Hardware

A. Burroughs 6700 System

The B6700 is a medium-sized information processing, compiler ori­
ented computer system designed specifically to support problem­
oriented languages, e.g. ALGOL, COBOL and FORTRAN. All programs
are reentrant and support multi-user time sharing. The system
provides dynamic storage allocation, program segmentation and sub­
routine linkages.
At lAC the Burroughs 6700 supports an 111 i acprogram compiler,
GLYPNIR; an Illiac program assembler, ASK; and an Illiac simulator,
SSK.
Figure 3.7 is a block diagram of the Burroughs 6700 computer sys­
tem configuration within the lAC computational facility.

1. Processor

The central processor complex consists of a model II processor
(5MHz), a model I multiplexor (10MHz), 4 scratch pad memories,
a peripheral controller (1.67MHz) and a data communications
processor (OCP) with a 9600 baud link to the lAC central sys­
tem (LCP).

2. Memory Hierarchy

The processing complex is supported by 65.6K x 52-bit core
memory, and 5 each 20-megabyte disk files with 46 millisecond
worst case latency and 408KHz (inst.), transfer rate.

3. Peripherals

In addition to the disk units the peripheral controller has:

a. Three 9-track and one 7-track tape drives selectable for
556/800 BPI or 75/90/120 IPS

b. 800 line per minute, 132 column line printer
c. 800 card per minute card reader
d. 150 ca~d per minute card punch
e. Console display
f. Hardware diagnostic capability

33

Figure 3.7 86700 configuration diagram

W
.t'-

1-3
::r
CD

CJ
o
.§
~
rt
CD
Ii

The System 35

B. Central System-A

System-A is the primary operational computer system. A BB&N TENEX
operates on DEC-10 hardware to provide a time-sharing system for
both internal and external users to have interactive and batch
access. System-A is the primary host on the ARPANET. It current­
ly provides central file storage and a central communication point
for all of the hardware/software subsystems including the Illiac.

1. Processor

The central processing unit (CPU) is a model KI DEC PDP-10,
general purpose, stored program, binary, digital computer. It
is an asynchronous, 36-bit word processor with an instruction
cycle time of approximately one MHz, 16 general purpose regis­
ters (16 accumulators, 15 index registers) and multiplexed
I/O channels featuring programmed priority interrupts with
seven fully nested levels. The system has multi-level in­
direct addressing and features double-precision hardware
floating point arithmetic.
One of its more interesting features is virtual mapping hard­
ware. The most significant 9 bits of the 18-bit memory ad­
dress points to a user-determined, 13-bit, physical page ad­
dress, which is concatenated with the original low-order, 9-
bit word address to form a total 22-bit address for physical
memory space.

2. Memory

The System-A operational storage hierarchy consists of 128K of
core memory, a one megaword swapping drum, eight each 50-mega­
byte disk spindles and two IBM compatible Potter mag tape
drives.
MA-10 core memory is 16K per box, 900 ns. full cycle time,
with 4 bits of selection to provide a maximum of 16 MA-10
boxes per system. The MA-10 features a two-way interleave
for overlap memory access and 18 bits of addressability.
The ME-10 is a 16K box with a one microsec full cycle time
and 8 bits of pOY't selection for a total system capacity of
256 16K boxes. The ME-10 features a four-way interleave and
provides 22 bits of addressability.
The Systems Concepts memory is a 64K box with an internal full
cycle time of 700 ns. The swapping drum system consists of an
Applied Logic Corporation controller with a Bryant 1,000,000
word floating head drum interfaced directly to System-A core
memory. The control interface is connected to the standard
KI-10 I/O BUS. The drum is organized in 128 horizontal bands,
each containing eight tracks for parallel simultaneous data
transfer. Five parallel transfers make one 36-bit word; 128
words fom a sector; and there are 64 sectors per band, i.e.,
16 TENEX pages per band. Worst case rotational latency is 35
milliseconds, and the instantaneous, bit serial, transfer rate
is 1.4 MHz to provide a bandwidth of 11.2 megabit/second.

36 The Computer

A telefile DC-IO disk controller interfaces eight each 215
Century disk drives directly to System-A core memory. The
DC-IO control interface is connected to the standard KI-IO
I/O BUS. One 215 disk drive is always off-line as a "hot"
spare.
An lAC modification to the DC-IO controller provides 3 TENEX
pages/track, 60 pages/cylinder, 24,360 pages/spindle. Band­
width is 2.5 MHz (instantaneous) with 25 ms worst case rota­
tional latency.
An lAC mag tape controller is managed by a PDP-II processor.
It interfaces two Potter, automatic threading, model 1082,
800 BPI, 150 IPS, vacuum loop tape drives. Current hardware/
software limitations result in a system transfer rate from mag
tape of 28 pages per minute (heavy TENEX loading) or 60 pages
per minute (light TENEX loading).

3. Peripheral Subsystems

The KI-IO processor supports a TDIO DEC tape controller with
eight TU55 DEC tape transports, a 300 character per second,
high-speed, paper tape reader and a OKlO real time clock.
Local and remote communication processes have been implemented
in PDP-II processors at AMES and the ANNEX facility called the
LCP and RCP respectfvely. They handle an expanded complement
of devices, which includes terminals, CRTs from 300 to 2400
baud and a system of four line printers implemented on Data
Products 300 line per minute drum printers.
Peripheral communication processes are managed by PDP-II pro­
cessors called CPs. These links are discussed separately
below.

4. Special SYstems

A separate system called the OPERATOR-II (OPR-Il) monitors
input from major lAC computational facility system elements,
e.g., TENEX-A & B,Illiac (via MMP) , the LCP/RCP, the B6700
and the System Status Analyzer (SSA). The OPR-II logs this
information in real time on a hard-copy terminal, as well as
storing it in a TENEX file for daily status processing. The
SSA is an analog/digital data collection device which multi­
plexes information from 32 probes/sensors positioned at criti­
cal points in the machine room. This system is expandable to
128 probe/sensors.

The System 37

C. System Communication Links

For overall system operation, effective communication of commands
and data between system nodes is as important as the speed and
capacity of the hardware/software system which comprises that
node.

1. "Shared Memory" Corrmunication

For the most part paths internal to the system are implemented
by means of "shared memory." "Shared memory" is used by the
KI processors, the PDP-11 peripheral processors and the com­
munication processors to transfer commands, data and control
information. Each processor considers the "shared memory" to
be within its address space and access contention is solved
by software "lock" words.
In general each process uses a statically defined area in
one or more of the memory units which it shares with its com­
panion processes. The shared memories are accessed through
TENEX by the use of KLUDGE files. These files have page maps
which point to the associated shared memory unit. Any refer­
ence to a page in a KLUDGE file actually references a location
in the shared memory. Using KLUDGE files, the partitioning
and use of shared memories is independent of the actual memory
box used or its physical address.

2. Communication Processors

Communication processors (CPs) have been used to implement
both internal and external system communication paths. A
typical CP consists of a PDP-ll system with the communication
hardware to support the CP operating system software.
The CPs support all the protocol for network type communica­
tions which multiplexes and commands both control and data
over a full duplex link. They also offer a uniform hardware/
software interface to support the distribution of processes
previously resident within TENEX.
Two recent important software development projects have made
use of the CP system: first, a high bandwidth, network data
transfer directly with an available port in the TENEX disk
driver (TOO); second, an interactive, real-time, message facil­
ity allowing communication between Illiac processinq and the
companion process in TENEX.

3. The'ARPA Network

Geographically separated computers (hosts) communicate via
the ARPA network. Host computers connect into the network by
means of a small, local computer called an Interface Message
Processor (IMP). Host computers typically differ in type,
speed, word length, etc.

38 The Computer

The network is formed by interconnecting IMPs via a 50-kilobit
communication link. Each IMP is programmed to store and for­
ward messages to neighboring IMPs in the network, i.e., each
message is passed from IMP to IMP through the network until
it arrives at its destination IMP.
Host computers communicate via the network by means of regular
messages which vary in length from 96 to 8,159 bits. The
first 96 bits are control bits called the leader. Leader in­
formation is defined by the host and includes destination,
handling type and a message ID to identify the message in case
of transmission loss.
The IMP converts regular messages to packets which consist of
96 leader bits and 1,008 data bits. The IMP message process­
ing task consists of disassembling outgoing messages into
packets, assembling incoming packets into messages, allocating
buffer space, detecting lost messages and performing the book­
keeping to support eight messages in transit in either direc­
tion. IMPs provide a transmission queue with priorities.
They request buffer space for large messages to avoid dead­
locks. They provide full network protocol including 30-45
second timeout for no response.

4. The AMES/ANNEX Link

The TENEX low speed I/O capability for line printers and ter­
minals is extended from the lAC computational facility at
AMES over a set of telephone lines (type 3002, Schedule 4,
voice grade, private line) to the ANNEX facility in Sunnyvale.
There are also eight direct dial-up, full duplex, phone lines
as well as the 12 AMES/ANNEX phone lines, two of which are
full duplex.
The local communication processor (LCP) at AMES mUltiplexes
300, 1800 and 2400 baud serial transmission paths. Some of
these paths communicate with the ~emote communication pro­
cessor (RCP) at the ANNEX site, which provides approximately
24 hardwire terminals, eight local exchange dial-ups and a
local line printer.
A 230.4 Kbaud wideband link is in the final stages of imple­
mentation. The AMES-CP/ANNEX-CP would manage low overhead
high bandwidth data transfer with an interactive, real time
graphics display system over this link.

5. The AMES/ARC Link

The ARC-CP and the I4CP manage a 1,344 megabaud data link to
establish high bandwidth data transfers. This link bypasses
the lAC central system facility and provides a remote host
TENEX site with direct control of the Illiac system. Control
information is passed to the MMP. Data is transferred direct­
ly to the ME-IO/BIOM.
KG-34 encryption hardware is installed in this link to accom­
modate the transmission of secure data from a secure remote
host for secure Illiac processing.

The System 39

D. Central System-B

System-B is a secondary computer system. It supports a BB&N TENEX,
operating on DEC-I0 hardware. It is a time-sharing system for in­
ternal, lAC software development use. It is also used to support
maintenance activity for the Illiac.
Access to this system is limited even within lAC. However, a
TENEX-BATCH facility (T-BATCH) provides deferred processing of
TENEX jobs on System-B.

1. Processor

The Central Processing Unit (CPU) is a model KI DEC PDP-I0
identical to the processor described in Section IV-C-l above.

2. Memory

The System-B operational storage hierarchy consists of 128K of
core memory and 5 each 25-megabyte disk spindles.
The Systems Concepts memory is a 128K of core memory and 5
each 25-megabyte disk spindles.
The Systems Concepts memory is a 128K box with an internal,
full cycle time of 700 ns. Other specifications are unknown.
A Telefile DC-I0 disk controller interfaces 5 each 114 Cen­
tury disk drives directly to System-B core memory. The DC-I0
control interface is connected to the standard KI-I0 I/O BUS.
One 114 disk drive is kept off-line as a "hot" spare.
An lAC modification to the DC-I0 controller provides 3 TENEX
pages per track, 60 pages per cylinder, 12,180 pages per spin­
dle. The bandwidth is 2.5 MHz (inst.) with 25 ms worst case
rotational latency.

3. Peripheral Subsystems

The KI-I0 Processor supports a 300 character/second, high
speed, paper tape reader and a DK-I0 real-time clock.
A local communication process has been implemented in a PDP-II
processor at AMES called LCP-2. It handles an expanded com­
plement of devices including terminals and CRTs from 300 to
2400 baud.

E. Computer Facility Support Systems

The computational facility hardware component systems require sup­
port facilities. This includes an environmental control system,
a power distribution system and the necessary alarms to indicate
failures or faults in these systems.

1. Air Conditioning System

A recirculating air flow system removes the machine room heat
load using one of two 281 ton capacity chilling units which
are alternated weekly. The unused unit remains on standby.

40 The Computer

The chillers' cool air is driven by the following fan systems:

AC1 22,500 CFM Tech lab/PEX lab
AC2 36,000 CFM Machine Room under the west floor
AC3 36,000 CFM Machine Room under the east floor
AC4 7,280 CFM Office area
AC5 7,500 CFM makeup fresh air;

Plus the following special air flow systems:

2 ea. 8,000 CFM Motor Generator Room fans
1 ea. 20,000 CFM Tech lab/PEX lab return air;

Plus a special system for the Illiac:

3 ea. 27,500 CFM fans, two of which are operational to pro­
vide 55,000 CFM with one fan always on automatic standby.

These systems provide the following environmental control:

ACI 68 +/-5 deg.F with thermostatic control (Tech lab/
PEX lab).

AC2, 3 60 +/-5 deg.F dnd 26 +/-5% relative humidity.
Il1iac 64 +/-0 deg.F temperature at 50 +/-5% relative

humidity.

All environmental systems have pneumatic controls.
Temperature alarms are set to go off at 78 deg.F in Illiac and
for a humidity excursion below 20% or above 70% in any area.
Dehumidification is provided by a three stage system on the
roof consisting of bag filters, a charcoal filter and a BRY­
air unit consisting of desiccant and dryer.
A special closed area, in the Tech Lab supplied by ACI, is
equipped with a fume hood for silver solder welding.

2. Power Distribution

Power is brought to the lAC computational facility wing, Build­
ing N233 at AMES, as a 6900-volt feeder input to a four-way
oil switch. The other input is a spare for a future alternate
6900-volt, feeder input.
One output from the oil switch provides 1,600 amps, 480/277
three-phase, four wire service for building power. This ser­
vice supports fluorescent lighting, air conditioning systems
and utility wall receptacles.
The second output provides 2,500 amp, 120/208 three-phase,
five wire service for three motor generator sets, which pro­
vide "clean" computer room power. The motor/generator sets
are equivalent to a load of approximately 1,200-1,300 amps.
Motor generator set #1 provides power for the central system
hardware. Approximately 200 amps of the 521-amp full load
capability is used.

The System 41

A total of approximately 1,000 amps of II cl ean" power is de­
livered by the three motor generator sets to the machine room.
At full load, the motor generator sets will "ride through" a
300 millisecond power discontinuity. The "ride th'rough" is
inversely proportional to the load; therefore, the current
"ride through" would be approximately one-half second.
Approximately 50 utility receptacles distribute "clean" com­
puter power in the PEX Lab and Tech Lab. Each receptacle is
provided with a separate 25 amp, 250 vo1t, four wire line fil­
ter to decouple utility equipment noise from other clean room
power.

3. Alarm Systems

4.

An alarm system with sensors in all critical areas including
temperature, humi di ty, unauthori zed access, etc., reports to 'a
centrally located annunciator panel.
A list of annunciator panel alarms follows:

a. CU OVER TEMPERATURE (82 Deg.)
b. CU ALARM TEMPERATURE (80 Deg.)
c. CU LOW TEMPERATURE (65 Deg.)
d. PUCOO-07 OVERTEMPERATURE (82 Deg.) 8 alarms
e. PUCOO-07 ALARM TEMPERATURE (80 Deg.) 8 alarms
f. PUCOO-07 LOW TEMPERATURE (65 Deg.) 8 alarms
g. FACILITY CONTROL POWER OFF
h. ILLIAC 3 MINUTE AIR TIMEOUT
i. ILLIAC SMOKE DETECTION any PUC
j. EMERGENCY SHUT DOWN INITIATED
k. ILLIAC SUPPLY FAN TROUBLE
1. ILLIAC UNPROTECTED
m. MG SET ROOM OVERTEMPERATURE
n. MG SET ALARM TEMPERATURE
o. ANNUNCIATOR BATTERY CHARGER FAILURE
p. ANNUNCIATOR POWER ON
q. SMOKE DAMPERS OPEN

Fire Systems

A halon fire system has been installed to protect the tlliac.
Portable Halon units can be connected to special fixtures in­
stalled in the Illiac to flood localized areas with halon for
fire suppression. A manually operated system is also avail­
able to flood the entire Illiac from a halon supply in the
basement.

B. The ILLIAC IV

1. Introduction to Parallelism

The Illiac IV belongs to a class of computers termed Single Instruction
Multiple Data stream (SIMD) processors. The architecture of the Illiac
is shown at a conceptual level in Figure 3.8.

Illiac is a parallel processor. It consists of a control unit
(CU), 64 processing elements (PE), 131,072 words of core memory, and
15,974,400 words of disk memory. The control unit has access to all
of core memory. Its basic cycle time is 60 nanoseconds. However,
greater processing power is achieved through the simultaneous execution
of an instruction in each of the 64 processing elements.

The control unit fetches and decodes all instructions. After
decoding, some instructions are broadcast for execution in the process­
ing elements while others are executed in the control unit. The arith­
metic capability of the control unit is limited to 24 bit two's comple­
ment addition and subtraction, masking, and comparison for use in branch­
ing. The control unit has no floating point capability. One operand
at a time is processed by the control unit. The control unit also
initiates data transfers between core and Illiac disk.

The processing power of Illiac resides in 64 identical processing
elements. Each PE executes instructions broadcast from the CU. Though
each PE has its own index registers and memory to operate upon, all 64
PEs always execute identical instructions in lockstep. Each PE has
direct access to 2048 words of core memory.

There are three data paths available for communication among PES
and between the PEs and the control unit (CU). First, the CU can ac­
cess all of core, so it can load a word from one processing element
memory (PEM) and either use it or store it in another PEM. This method
of communication is both simple and flexible, allowing for any data
movement desired, but, since only one word at a time is transferred, it
is relatively slow compared to the two other methods available.

Second, the CU can communicate with all PEs by broadcasting the
same word to all PEs simultaneously. This method is faster than the
first since sixty-four words are transmitted at once, but provides only
a limited form of communication.

Third, the PEs can communicate with each other via the ROUTE in­
struction which transfers the contents of a register in each PE to the
PE determined b~ the following scheme: If PEN (processing element num­
ber) is the number of the source PE and R is the route amount supplied
with the instruction, identical 'in all PEs, the number of the destina­
tion PE is MOD64 (PEN+R). If the PEs are thought of as arranged in a

42

Moin
Memory

Bond 2 ...

The Illiac IV 43

2048

51 52

Figure 3.8 Conceptual architecture of Illiac IV

44 The Computer

circle with PE 63 adjacent to PE 0, the ROUTE instruction consists of
loading the data, rotating the circle, and storing the data. This data
transfer is very fast since 64 words are transferred simultaneously.
It is general in that all 64 words can be different but the pattern set
by the fact that the routing distance is the same for all PEs is re­
strictive. It does not transfer 64 words randomly distributed in core
to 64 different locations simultaneously.

The primary memory used by Illiac is a disk memory with capacity
approximately 100 times that of core memory. One page (1024 words) of
memory is the minimum amount of data that can be transferred between . 8
core and disk. Although the bandwidth between core and disk is 5. x 10
bits per second, the average access time to a particular spot on disk
is 20 milliseconds. This relatively long access time (compared to an
80 nanosecond clock time in 64 parallel processors) necessitates careful
planning of disk usage. The number of disk transfers must be kept to a
minimum to avoid waiting for disk accesses.

Since the most important feature of Illiac is its computing power
one of the prime objectives in the design of any Illiac program is to
minimize execution time. The best possible result is a running time
1/64 that possible with only one PE, but due to the architecture of the
machine the degree to which this is achieved is dependent upon the de­
sign of the algorithm. First, suppose that it is necessary to code the
trigonometric SIN function for Illiac. If the particular usage makes
.it possible to always compute 64 functions simultaneously, one simply
has the same SIN routine running in all PEs on different data, and a
speedup by a factor of 64 is very nearly achieved. (Some time is lost
if there is conditional branching in the original SIN routine which is
changed to enabling and disabling of PEs.) A second approach is to de­
vise a method for utilizing all 64 processors to compute one function
value. No method has been devised for doing this 64 or even 10 times
faster than is possible with one processor. The first approach is both
faster and simpler, but certain algorithms may preclude calculation of
more than one value of SIN simultaneously or may require significant
overhead elsewhere in order to do so.

One misconception is that if all of the PEs are kept "busy" the
machine is running at maximum efficiency. In fact this statement is
not true and one must be very careful in relating the word efficiency
to the use of Illiac. For example, consider the problem of summing
groups of numbers. If it is desired to sum 64 pairs of numbers, keep­
ing 64 different results, each PE forms one sum and the work is done
64 times faster than could be done by one processor. If however, it is
desired to find the sum of one group of 64 numbers, a more compli­
cated method must be used. In order to simplify the explanation some­
what, consider an eight PE machine and the summation of eight numbers,
one in each PEe Figure 3.9 depicts a method whereby this can be done
in three routes and three additions. Since the routes require roughly
equivalent CPU time as the register loads necessary before any opera­
tion, the time taken for an 8 PE machine to sum eight numbers is equal
to the time taken for three additions. If this algorithm is extended
to the summation of 64 numbers within a 64 PE machine it takes 6 addi­
tions to form the sum. Given that one PE requires 63 additions to sum
64 numbers, the 64 PE machine is 63/6 or 10.5 times faster. Note that
although none of the PEs are ever disabled and all are forminq the

STATE OF REGISTERS

OPERATION PEO PEl PE2 PE3 PE4
Initial Conditions $A";1

0 $A=11 $A=12 $A=13 $A=14
$R=O $R=O $R=O $R=O $R=O

1. Route Contents of $A=10 $A=11 $A=12 $A=1 .3 $A=14
$~ to $~+l • $R=17 $R=10 $R=I1 $R=12 $R=13

2. Add $A to $R $A=10+17 $A=11+10 $A=12+I1 $A=I3+12 $A=14+13
and leave result in $A. $R=1

7
$R=10 $R=I1 $R=12 $R=13

3. Route Contents of $A=10+17 $A=I
1
+10 $A=I2+I1 $A=I3+1

2 $A=14+1
3

$~ to $~+2. $R=16+1S $R=1
7
+1

6 $R=10+I7 $R=I1+1
0 $R=12+11

4. Add $A to $R $A=IO+17+ $A=11+10+ $A=I 2+I 1+ $A=13+12+ $A=14+13+

and leave result 16+15 17+16 10+17 11+10 12+11
in $A. $R=16+1S $R=I7+16 $R=10+I7 $R=I1+10 $R=I2+11

5. Route Contents of $A=10+17+ $A=11+10+ $A=12+11+ $A=I3+12+ $A=I
4
+13+

$~ to $~+4. 16+15 17+16 10+17 11+10 12+11
$R=14+13+ $R=IS+14+ $R=I6+IS+ $R=1 7+16+ $R=10+17+

12+11 13+12 14+13 15+14 16+15

6. Add $A to $R $A=10+17+ $A=11+10+ $A=12+I
1
+ $A=13+12+ $A=14+13+

and leave result in $A. 16+15+ 17+16+ 10+I7+ 11+10+ 12+11+

14+13+ IS+14+ 16+I S+ 17+16+ 10+17+

12+11 13+12 14+13 IS+14 I6+1S
$R=14+13+ $R=IS+I4+ $R=I6+1S+ $R=17+16+ $R=10+17+

12+11 13+12 14+I3 IS+14 16+1S

Figure 3.9 Detailed view of rowsum operation

PES PE6

$A=IS $A=I6
$R=O $R=O

$A=IS $A=16
$R=I4 $R=I

S

$A=IS+I4 $A=I6+1S

$R=14 $R=IS

$A=IS+14 $A=I6+1S
$R=I

3
+1

2 $R=1
4
+1

3

$A=IS+I4+ $A=16+1S+

13+12 14+13
$R=13+12 $R=I4+1

3

$A=IS+14+ $A=16+1S+

13+12 14+13
$R=11+I0+ $R=I

2
+11+

17+16 10+I7

$A=lS+14+ $A=I6+1S+

13+12+ 14+13+

11+10+ 12+11+

17+16 10+17
$R=11+10+ $R=12+11+

17+16 10+17

PE7

$A=1
7

$R=O

$A=I7
$R=I6

$A=I
7
+16

$R=I6

$A=17+16
$R=IS+14

$A=1 7+I6+

15+14

$R=IS+14

$A=17+16+

15+14
$R=13+1 2+

11+10

$A=17+I6+

15+14+

13+12+

11+10
$R=13+I2+

11+10

l

~
(1)

t-4
~
~
I»
()

H
<
~
VI

46 The Computer

sum~ this algorithm does not achieve the factor of 64 speed up. How­
ever, the factor of ten speed up that is achieved makes this algorithm
usable if data organization requires its use.

The choice of which design approach to take for a particular prob­
lem is dependent upon data organization. There is often one approach
requiring a very specific data organization which is much faster than
any other. It must be decided whether the overhead and execution time
involved in data transposition is compensated by decreased overhead and
execution time elsewhere in the algorithm.

2. Major Constituents

As the name implies, the main function of the control Unit (CU) is to
control lock-step parallel operations of 64 PEs. The CU, as illustrated
in Figure 3.10 may be logically partitioned into five functional units
that support asynchronous PE computation: a) the Advanced Station
(ADVAST), which handles incoming instruction blocks, b) the Instruction
Look Ahead (ILA) that, under program command, provides the address of
the first program instruction, and requests 8-word instruction blocks,
via the memory service unit, from the PEMs to its instruction word
storage, c) the Final Station (FINST), which converts instructions
into microsequences for the PEs, d) the Memory Service Unit (MSU),
which provides memory control for the PEs and memory logic units (MLUs),
and, e) the Test Maintenance Unit (TMU) for initialization and test­
ing.

Program execution starts in the CU wherein the stack is used to
interpret all instructions. Some serial instructions are completely
executed within the CU, others are broadcast to the PEs for synchro­
nous, parallel execution. One view of the CU is that of a small com­
puter complete with a stack, four accumulators and index registers.
The CU accumulators can implement many serial instructions including
add, subtract, Boolean operations, shifting and bit setting. Addition­
ally, the accumulators may be used for fetching and storing in the
processing element memory. The CU also has 64 scratch-pad buffers,
called the Advanced Data Buffers (ADB). The CU can selectively enable
each of the 64 processors, can control the transfer of information
between different processing elements, and can selectively access words
anywhere in the PEs primary memory. Accordingly, when the PEs execute
instructions in lock step, they perform the same operation on different
operands.

Each PE has 6 registers and sufficient logic to execute a full set
of instructions under the complete control of the CU. Reqister R enables
information routing to 4 other PEs. As information can be routed be­
tween any pair of PEs, no PE is more than 8 steps away from any other.

-Register X enables independent fetches within each PEM. While Register
o contains the mode enable bits for each PEt Registers At B, and S
function as the accumulator, its extension and a scratch register re­
spectively. Operating at the 12.5 megabit clock rate, the PEs can
multiply 2 64-bit floating point numbers in 700 nanoseconds. Register­
to register adds are accomplished in 550 nanoseconds.

Viewed from the CUt the PEM is a high-speed 128K 64-bit word
primary memory. Considered from each PEt the PEM is a 2K 64-bit word

47

48 The Computer

local working memory; each PE has direct access to its own column of
2 K words. The function relationship between the CU, PE and PEM is
illustrated in Figure 3.11.

MEMORY
REQUESTS

INSTRUCTIONS

INSTRUCTION
BLOCKS

MEMORY CONTROL

MEMORY REQUESTS
AND ADDRESSES

INstRUCTION
BLOCIC

(16 INSTRUCTIONS)

NICROSEQUEJICES
TO PUs

Figure 3.10 Simplified CU block diagram

CDInOLUIIIT

1UT IIAIIfT!JWlCE UNIT (MIl

FINAL
STATlOM

r----------t (FINSTll

r-;=====1 ~1:iE
(NSUl

Figure 3.11 Illiac IV functional block diagram

3. Detail Dlacuaaian

The Illiac System is represented in detail block diagram form in Figure
3.12. The communication processor (14CP) communicates over a one mega­
baud link with a host computer which provides high-level commands, user
programs and the data base for Illiac computation.

A Memory Management Processor (MMP) interprets commands. It con­
trols the I/O subsystem (lOSS) via the descriptor controller (DC) and
it controls the Illiac via a register interface in the Test and Main­
tenance Unit (TMU) of the CU.

User's programs and data bases reach the Illiac via the buffer
input/output memory (810M) and/or the Illiac disk memory (140M), both
within lOSS and under control of DC.

The Illiac is an array processor consisting of a single unit (CU)
which provides all sequence control for 64 distributed processing units
(PU).

1. Array Routing Structure

The PU array can be viewed as a ring of 64 elements. A user
can route data with a ROUTE N instruction. Like a carousel
the data moves end around via hardware connections which are
+1 or +8 and via paths determined by the hardware to be the
fastest.
The PU array can also be viewed as an 8x8 matrix intraquadrant
connected by "x" and "y" data transfer paths. These paths
wrap around in both dimensions so that process "routing" can
be programmed through any desired PU sequence.
Consider any element in the matrix. Each PU has four transfer
paths to adjacent neighbors. In the "X" dimension PUs are
numerically 8 PUs separate.
The time required for a ROUTE to be accomplished depends upon
the number of times a +1 or -1 and/or a +8 or -8 PU shift must
be executed to reach the destination. The total time for a
"ROUTE" is the number of clock periods (current operation at
80 ns) x 1+4n where lin" is the number of shifts of distance
8 or 1.

49

Non-Secure ~
TENEX lAC,

ARC

ARC -rill
Link KG
Control 34
a
Doto

Non-Secure
TENEX Lood Line
a
OPR II Line

Non-Secure
TENEX
Address
Spoce

• None

32

To
TENEX 4 9600 Boud

LCP

Legend' Control

Data

€9 Secure Disconnect

B6700
Computer
System

Scan Bus/TMU

14 Control

1055 14DM
Control

48

o
o
o
o

o
o
o
o

Conc

EU

o
o o
o

I
1

I
1
1
I
1 Non-r Operational

I

I
I
I
I
I
I
I
I
I
I L L---..J I ______ I

Figure 3.12 Illiac IV system block diagram

Ln
0

1-3
::l'"
(\)

(')
0 ,g
~
rt
(\)
ti

ILLIAC IV,

ILA T
CU Advost

t
MSU
FINST

64EA
PUs

puc 4 1

The I11iac IV 51

2. Control Unit (CU)

The CU consists of five sections which operate semi-indepen­
dently:

Test Maintenance Unit (TMU)
Instruction Look-Ahead (ILA)
Advanced Station (ADVAST)
Final Station (FINST)
Memory Service Unit (MSU)

A diagram of the CU is shown in Figure 3.13. The MMP tells
the CU to initiate Illiac processing with a command to regis­
ter TRI in TMU. The CU return status to the MMP via register
TRO in the TMU.
The user program and data base have already been loaded in
distributed processor element memory (PEM) via lOSS.
ILA fetches 8-word instruction blocks from PEM and places
them in a 64-word content addressable memory which serves as
an instruction word stack (IWS). Instructions are retrieved
by means of an instruction counter in ILA and associative mem­
ory which locates the proper 8-word group. IWS can contain
128 instructions.
Instructions from IWS are received in the ADVAST instruction
register (AIR). Instructions can bypass ADVAST (in overlap
mode) or initiate functions such as address arithmetic, loop
control, mode control, interrupt processing and configuration
control. ADVAST contains a 64 word operand stack, four accu­
mulators and combinatorial logic unit. Instructions are out­
put to FINST via the "9th" FINST queue position which is two
registers, the ADVAST to FINST register (AFR) for instructions
and the ADVAST word register (AWR) for data.
FINST has the primary responsibility of decoding instructions
into microsequences (PE enables) and broadcasting these over
a control BUS for lock step synchronous operation of all selec­
ted PUs. FINST instructions (ADVAST instructions are executed
in ADVAST) are input from AD VAST into an 8 location instruc­
tion/data queue which acts as a buffer between ADVAST and
FINST. The FINST dperand register (FOR) and the FINST in­
struction register (FIR) drive the diode ROM which creates PE
enables. FOR primarily sets up the second operand for instruc­
tion execution although it has other special features. FIR
primarily executes the essence of the FINST instruction.
The MSU arbitrates access between PEM and the lOSS, FINST and
ILA.

3. Processing Unit (PU)

Each PU consists of a processing element (PE), a 2K, 64-bit,
local, three hundred nanosecond PE Memory (PEM) and a memory
logic unit (MLU).

52 The Computer

The PE is basically a four register arithmetic unit capable
of executing a full repertoire of instructions, for example,
fixed or floating point arithmetic in 64-bit or 32-bit mode
with options for rounding and normalization.
The PE combines a carry-save adder tree and parallel adder
with carry, look-ahead logic to provide either a floating
point multiply or a floating point add (with post-normaliza­
tion) in 720 nanoseconds (9 clocks). A floating point divide
(post-normalized) requires 4.5 microseconds (56 clocks). The
PE also contains a barrel switch, a leading ones detector and
a BOOLE box. Instruction operands can originate from any
register, from the common data BUS, from any register in the
four adjacent array neighbors or from PEM.
PEM is a bipolar, 300 nanoseconds 2K x 64-bit, local, random
access memory.
The MLU contains a PEM data buffer and it controls data trans­
fer between PEM and the PE, 1055, and CU (FINST and ILA).
A floating pOint number on the Illiac consists of a I-bit
sign, a IS-bit exponent to the radix 2, and a normalized
48-bit mantissa. The machine thus has about 14 decimal digits
of accuracy. A fixed point number has a I-bit sign and a
48-bit manti ssa.

IWS

, ,
I
I ,---
I'

" II

" I' I'
--Ii

From
PEMs

I: t
I
I ,

r------J ,
I , , , ,
I

ROM

L __ _

PE Enables

Figure 3.13 Block diagram of control unit

c. Overlap

Early in 1976 the Institute for Advanced Computation implemented the
overlap feature on the Illiac IV. This allowed the control unit to be­
gin decoding the next instruction while the processing units were com­
pleting the execution of the current instruction. Hence the Illiac be­
came a pipeline processor as well as a parallel processor.

53

1. Introduction

This section will describe two types of overlap, CU and FINST. The term
overlap is sometimes associated with the operation in the I/O but is not
the concern of this discussion.

CU Overlap is concerned with processing CU and PU instructions as
fast as possible. To this end, the CU is divided into several units
using the design concept that each unit should be capable of independent
operation with small well defined interfaces between units. This design
philosophy allows for different operations to go on at the same time in
each independent unit. The term CU overlap describes the ability of
these independent units to function in this manner.

FINST overlap refers to the capability of simultaneously process­
ing more than one PU instruction by FINST. Operations such as getting
an operand ready for the next instruction while the present operation is
in progress are typical of this multiprocessing capability.

Both of these overlap processes can be turned off. The mode of
operation when both are disabled is called single instruction mode or
non-overlap. It has the action of processing only one operation through­
out the CU at a time.

*This section is based on "Overlap in the Illiac IV Control Unit", by
E. Sternberg, lAC Tech Report, 1976.

54

I

I'

2. Instruction Flow

Further clarification as to the operation of the individual units is
necessary for a full understanding of CU overlap. Four of the five
units in the CU are shown in Figure 3.14. The fifth unit, the TMU
(Test and Maintenance Unit), does not differ in the two modes of
operation, overlap and non-overlap, so it is not shown.

Starting from the bottom up, FINST is the unit that sends the in­
structions in the form of microsequences, to the PU. By design the
PUs are void of control and depend on these microsequences to manipu­
late the data in the proper fashion to obtain the desired results. The
PUs are said to be driven by the CU, in particular FINST. The task for
FINST (Final Station) is decoding individual instructions, deciding
proper action for the instructions, and issuing microsequences to
accomplish the correct actions.

ADVAST's (the advanced station) primary task is to differentiate
between two types of instructions. The first type are those destined
for the PUs. The second type are those that will operate within the
CU. A third type could be considered those instructions that do con­
siderable action in the CU and also reference the PUs. Basically,
ADVAST either processes the instruction or passes it on to FINST for
processing by the PUs.

ILA (instruction look ahead) has as its function the prefetching
of instructions. In an attempt to optimize the instruction processing
speed, the unit ILA was established to maintain a significant quantity
of instruction in the CU thus negating the need to go to PE~1 for each
new instruction.

MSU (the memory service unit) does what the name implies, corre­
lates and processes memory requests. There are five different requests
that can be made of memory ~nd MSU must arbitrate the requests and give
them all proper service.

55

56 The Computer

14 Control Unit Block Elements
(Simplified)

Instructions
Instruction

Look
Instruction

Ahead
Blocks

Memory
Requests

"
Memory
Control

Memory
Memory

Service
Unit

Requests And
Addresses

Instruction
Block

(16 Instructions)

..

+
Advanced
Station

f'"ST
IPE
tlons Instruc

Queue

f'NST' Instruct

Final
Station

i

PE
ions

Mlcrosequences
To PU's

Fi9ure l.14 Illiac IV control unit elements

Overlap 57

Important to understanding overlap is understanding the interfaces
between the units involved.

ADVAST and IlA share an interface which primarily deals with the
obtaining of instructions •. IlA is the station where the instructions
are stored locally and ADVAST is the station where the individual in­
structions will first be examined, so in theory their interface is quite
simple. A simple handshaking is all that goes on, with AD VAST notify­
ing IlA that it is ready for another instruction and IlA notifying
AD VAST when the instruction is ready. Since ADVAST has the only connec­
tion with all 64 PEMs in the CU, by means of the CUB (control unit
buffer), ADVAST also participates in the block fetching of instructions
by IlA in its function of storing quantities of instructions in the CU.

This interface acts differently during overlap operation. AD VAST
monitors conditions throughout the CU. These conditions determine when
ADVAST goes to IlA for another instruction. In overlap mode this re­
quest comes more quickly on the heels of the previous request than in
the previous non-overlap mode. ADVAST no longer waits for the rest of
the machine to reach an idle state as it did in the non-overlap mode.
Thus, as soon as ADVAST decides that it can handle another instruction
it requests one from IlA.

Another important interface is the one between AD VAST and FINST.
An eight position queue exists as a buffer between the two units. Its
purpose is to allow ADVAST to deposit instructions destined for the PUs
and return for another instruction to ILA. Meanwhile FINST is free to
remove an instruction from the queue as soon as one is available and
FINST is ready to process another. Some important control states of
the queue are queue full, queue empty and queue not full.

In the non-overlap or single instruction mode the purpose of the
queue is defeated because only one instruction is available for pro­
cessing throughout the CU. ADVAST does not request another instruction
from IlA until FINST is finished with the last instruction. Hence, there
is no possibility that more than one instruction can exist in the queue
at any time. In overlap, however, AD VAST only need deliver the instruc­
tion to the queue and it is free to return to IlA for another instruc­
tion. Of course, the condi~ion of the queue is important, and ADVAST
cannot deliver an instruction to a queue that is already full. Similar­
ly, FINST cannot remove an instruction from a queue that is empty. The
purpose of the queue is shown to be a buffer for instruction between
the two units allowing for increased independent operation in the over­
lap mode.

Operation between and within the other units in the CU is not
changed in the overlap mode. One additional speed up of the machine
will be observed. Previously, after each instruction, IlA provided a
delay that would allow settling time for the previous operation so no
interference with the next instruction was possible. Overlap mode allows
for no such settling time. The next instruction starts as soon as it is
determined possible.

3. Flnet Dverlap

FINST. as noted before. is the section of the control unit that sends
the microsequences to the PUs. The main objective in the design of
the FINST/PU interface is to keep the PUs busy. The result of this
design objective is termed FINST overlap. Basically this is the start­
ing of one instruction before the conclusion of the previous instruc­
tion. In order to better understand this concept, refer to Figure 3.15

1

i I

for a description of FINST/PU instructions. I
Every instruction reaching FINST by way of ADVAST is considered

to have two parts. The first part is referred to as the overlap por- "
tion. The second section is referred to as the execution portion. As
shown in the four cases across the top of the figure. the combination
of the overlap and execution sections of an instruction can vary .. That
is. an instruction can have one clock of overlap and seventy of execu-
tion, or ten of overlap and one of execution. Instructions may also be
completed in overlap and have no execution. or contain no overlap and
only execution. The determination is fixed and will be discussed later.
The theory of overlap should then be clear by looking at the bottom half
of Figure 3.15. With clocks being counted as shown on the left, note
that one single clock contains a portion of the execution of one in-
struction. This is the basis for FINST overlap: the simultaneous pro-
cessing of more than one instruction.

58

FINST / PE Instruction Classifications

Overlap

Exec

Typical
Instruction

Overlap

Exec

Memory
Reference
Instruction

Instruction Sequen clnG

Overlap

-
C

L--
Exec Overlap

0 __ - -C -------
K Exec

S

!":~~:::.I B Completed
In Overlap Instruction

With No
Overlap

Overlap .---- Exec

Overlap 59

Figure 3.15 FINST/PE instruction classification and sequencing

60 The Computer

The description of the FINST/PU instruction in the previous sec­
tion led the designers to the configuration of FINST shown in Figure
3.16. The FINST hardware is divided into two sections, one dedicated
to the processing of the overlap portion of the instruction and the
other dedicated to the execution portion of the instruction. There is
no duplication of hardware; the execution portion of the instruction
cannot be accomplished from the overlap section and vice versa. Each
section is dedicated to its portion of the instruction. The flow of
instructions through FINST is also fixed. An instruction must always
appear in the overlap station before moving on to the execution station.

In a little more detail we see the instructions being deposited
in the queue by ADVAST. On a first in first out basis an instruction
is removed from the queue and placed in the instruction register of the
overlap station (FOR). The instruction is examined for the type of
overlap to be accomplished (if any). At the precise time it is deter­
mined that it is okay to proceed with the overlapping action the in­
struction is simultaneously transferred to the read-only-memory address
register for the overlap portion of the RO~1 and sent on to the instruc­
tion register for the execution section. The RO~1 address register
(FOAR) will then select the proper word from the ROM to accomplish the
desired action for overlap. At the next clock period the enabled condi­
tion necessary to accomplish the desired action in the PU will appear in
the FINST command register (FeR). A copy of the command register appears
in the PU each clock. Meanwhile the instruction register of the execu-
tion station (FIR) is decoding the instruction. The next clock will •
select the address of the word or words in the read-only-memory that
are dedicated to the particular instruction decoded. And as in the
overlap section, the next clock will load the particular set of enables
needed by the PU to perform the instruction.

In examining how FINST overlap works with respect to instruction
flow, it will be seen that as soon as the instruction overlap is decoded
in FOR and sent to the ROM address register, the overlap station is ready
to get another instruction from the queue. In the case of instructions
with short overlap portions, this leads to a pipelining effect with in­
structions in the overlapping station and the execution station.

FINST Block Diagram

FINST QUEUE

0 I 2

!
Execution
Instruction

Register

--
Execution Station

Execution
Address
Register

ADVAST
Instruction

Register

•
3 4

I I

Exec I Overlap

I
I

Read
Only

Memory
I

FINST
Command
Register

Enables To PU's

5 6

1
Overlap

Instruction
Register

I
Overlap Station

Overlap
Address
Register

Figure 3.16 FINST block diagram

Overlap 61

7

62 The Computer

The decision was made to limit the scope of operations that could
take place in the overlap station. There are only several types of
operations t such as memory references t register transf~rst literal
transfers and shift count modifications, that go on in overlap. The
minor exception overlap is used to get the second operand of an instruc­
tion in place before the instruction is executed. Because the action
of getting the second operand in place in many cases is similar to
other FINST/PU instructions t in most cases those other instructions are
also executed in the overlap station.

The portion of any instruction in FINST done in overlap and the
portion in the execution station is predetermined. An instruction does
not move from station to station because o~e station becomes available t
it moves to the next station only after it has performed all the tasks
it was designated to perform while in that station. A memory reference
cannot start in FOR and complete in FIR. It must wait in FOR until the
operand has returned from memory and then is permitted to move to FIR.

The read only-memory is conceptually divided into two sections t
one addressed from the execution station and one addressed from the
overlap station. No cross addressing is allowed.

When an instruction enters the execution station t decoded in FIR t
and starts addressing the ROM, a state of ROM busy is set up. This
state, FIAR busy, precludes any other instruction from being executed
from the ROM, but does not prohibit non interfering instructions from
generating PU enables from the overlap station. The method for deter­
mining if the overlapping instruction is non-interfering will be
discussed shortly. An instruction may continue to address the ROM for
a considerable time. A divide, for instance t can use-69 clocks in order
to accomplish the task. Any following instructions that have completed
their overlap portion will wait in FIR until the resources needed to
accomplish its desired action are available. Even further overlap at
some point will be stopped until the long instruction processing in the
execution station completes. Resources do not exist in the PU to store
many operands so it makes little sense to get too far ahead in fetching
operands.

So far only the processing of the instruction has been examined.
Note, also t that there are a series of registers in FINST that allow
the data associated with the instruction to keep in step with the in­
struction. Therefore t when the enables appear at the PU, the data, if
any, associated with these enables will be on the common data bus.

L

Overlap 63

The mechanism mentioned in the previous section which determines
when overlap is allowed to proceed, is referred to as the busy bits.
For the sake of this mechanism the PU has been divided up into seven
areas, each labeled with its own busy bit. Registers A, B, and R all
have a busy bit. The mode register has a busy bit M. The address adder
has the busy bit Z. The operand select gate, a very important resource
in the PU, has the busy bit D. And finally, the LOG (logic unit) and
the barrel switch have the busy bit L. These busy bits were selected
by careful examination of all PU instructions and the design considera­
tions of FINST and overlap. See Figure 3.17.

Referring back to Figure 3.16, keep in mind there is an instruc­
tion processing in the overlap section which requires a portion of the
hardware in the PU, and there is an instruction processing in the execu­
tion station which requires a portion of the PU hardware. Where both
sections require the same hardware, there is a conflict and it is up to
the busy bit hardware to resolve it. Solving conflicts is not diffi~
cult; the execution station always has priority. If the execution sta­
tion requires the use of the R register and the overlap station has an
identical requirement, the execution gets first use. The overlapping
instruction must wait until the executing instruction is finished with
the register.

This method of arbitration has the effect of keeping instruction
sequences in order and still remaining quite simple. For example, con­
sider an instruction sequence of adding registers A and B and placing the
result in memory. The ADD instruction will obtain the two operands in
A and B and proceed to add them together. The result of the addition,
which takes place in the execution station, will be deposited in the A
register. Both A and B will be unavailable to the overlapping station
until the results are in A. The next instruction, loading A into mem­
ory, takes place in the overlap station. Had the A register not been
off limits to the overlapping instruction, some intermediate results
not desired would have been placed in memory instead of the final sum,
which is correct.

The busy bit hardware is then a mechanism by which the executing
instruction notifies the overlapping instruction of those parts of the
PU hardware it intends to use during the execution of its instruction.
The overlapping instruction then observes the portions of the PU the
executing instruction requires and proceeds with overlap only after
determining that all the hardware necessary for completing the overlap
sequence is available. The overlapping instruction awaits all hardware
necessary for the successful conclusion of the overlap portion. If, for
example, the overlapping instruction has accounted for all hardware
necessary to complete overlap except the R register, and the execution
station is processing a divide, the overlapping instruction will begin
its overlap as soon as the divide releases the R register, which will
come before the instruction in the execution stage is completed.

64 The Computer

Simplified PE Block Diagrom
Route Common
Logic Data

R
Register

Bus

Memory
Mode

Register

I R Busy
...... ______ ... 1 M Busy

W r.,--

Arithmetic
Functions

!
A

Register

I A Busy
'-----'

Operand
Sefect
Gates

D Busy

B
Register

B Busy

Logic
Functions

I L Busy

To MIR
~--....

+Z Busy

Address
Adder

~MAR

L
S

Register

I

Figure 3.17 Simplified PE block diagram

4. Coding for Overlap Made

EXAMPLE #1

Perform an arithmetic operation on three arrays stored in PEM~ i.e.~
evaluate the expression:

Qj = Aj * Bj * Cj

Here,* designates any arithmetic operation of the form: ADRN~ MLRN,
DVRN, SBRN or a combination of any two of these operations. The follow­
ing sequence of instructions in assembly language (using the operation
ADRN only) worked efficiently in IInon-overlapli mode.

LIT(O) =1,N,O; %FORM LOOP J FROM O-N
LOOP: LOA A(O); %LOAD ROW Aj INTO THE ACCUMULATOR A

ADRN B(O); %ADD TO ACCUMULATOR A CONTAINING Aj
%THE CONTENTS OF PEM ROW Bj

ADRN C(O); %ADD TO ACCUMULATOR A CONTAINING THH
%SUM OF Aj + Bj THE CONTENT OF PEM
% ROW Cj

STA Q(O); %STORE THE SUM Aj + Bj + Cj FROM THE
%ACCUMULATOR A TO PEM ROW Qj

TXLTM(O) ,LOOP; %INCREMENT J AND RETURN TO "LOOP" IF
%THE LIMIT N HAS NOT BEEN REACHED

In overlap mode however, the times required for memory fetches and for
execution of instructions must be considered in order to code the in­
struction sequence most efficiently. Each PE instruction has a fetching
part and may also have an execution part. All arithmetic operations
have both. The fetch and execution cycles of the instruction sequence
above are tabul ated for "non-overlapll in Fi gure 3.18. The fetch and ex­
exution times are given in clocks, where one clock = 80 milliseconds.

Fetch- Time:

Execution
Time: (Clocks)

II LD~ Ai IIA~ Bill II~ 91\ IlsT~ QJI !
I IADRgN Bil IADRN til I
I 9 J

L..-----~'.I------LoOP Time - 47 Clocks ---....... ---'

Figure 3.18 Non-overlap timing

65

66 The Computer

In Figure 3.19, the memory fetch for "ADRN Cj" is performed while the
execution of "ADRN Bj" is taking place, and "AORN Cjll will be executed
as soon as IIAORN Bjll is completed. In this sequence the memory fetch
time available during execution of IIAORN CJ II is wasted.

Adding a fetch instruction to this sequence significantly reduces the
time needed to perform the loop. To use overlap efficiently, the ex­
pression Qj = Aj + Bj + Cj could be coded as follows:

LOOP:

LIT(O)
LOS
LOA

AORN
ADRN
LOS
STA
TXLTM(O)

=1,N,O;
A(O);
$S;

B(O);
C(O);
A + 1(0);
Q(O);
,LOOP;

%LOOP J-SETUP
%PREFETCH
%REGISTER TO REGISTER

TRANSFER

The fetch and execution cycle chart for the recoded sequence is shown
in Figure 3.20. Loop time comparisons for the three cases are shown
in Figure 3.21.

The same kind of recoding is advised when dealing with an expression
of

Qj = Aj * Bj

where only one arithmetic instruction is involved in computing Qj.

Fetch - Time:

Execution
Time: (Clocks)

! I LOA Ai IIADRN BIIIAORN Cj I I!STA Qjll
I 8 8 9 5 I

I IAORN BJ IIAORN CII :
: 9 9 I

'------..... --Loop Time - 39 Clocks --..... '--------'

Figure 3.19 Overlap timing

Fetch - Time: !LOS Aj I U LOA $5 !AORN BjllADRN CI I!LOS Aj+IIISTA Qjll
8 Ijl 8 9 95 1

Execution I IAORN BI IIAORN Cj I I
Time: (Clocks) I 9 9 I

'------------.I-._--LooPTime - 32 Clocks I

Figure 3.20 Overlap timing, recoded sequence

"Non- Overlap· Overlap Overlap. Recoded

---------- -------- 1-------
47 Clocks 39 Clocks 32 Clocks

Figure 3.21 Loop time comparisons

I ..

Overlap 67

EXAMPLE #2

Evaluate the expression:

Qj = Aj * S * SI

where Sand SI are scalars (one 64-bit word each) and where * designates
any arithmetic expression of the form: AORN, MLRN, OVRN, SBRN or a com­
bination of any two of these operations.

in Example #1, lines 8 through 11 of the loop which evaluates the array
expression of Qj = Aj * Bj * Cj, read as follows:

8)
9)

10)
11)

AORN
AORN
LOS
STA

B(O);
C(O);
A+l(O) ;
Q(O);

However, in investigating the expression Qj = Aj * S * S1, it became
apparent that the storage of Sand S1 is a more important factor in
minimizing execution time than is the coding of the loop itself.

In the "scalar" case, it has been determined that moving the LOS A+l(O)
between the two AORN instructions will speed up the loop by two clocks
per iteration. This becomes a considerable amount of time when N is
large. The complete loop follows:

1) LIT(O) =l,N-l,O;
2) SLIT(l) =S; %FETCH THE SCALAR S
3) LOAD(l) $C1 ; %TO THE CU
4) SLIT(2) =Sl ; %FETCH THE SCALAR SI
5) LOAD(2) $C2; %TO THE CU
6) LDS A(O);
7)LOOP: LDA $S;
8) ADRN $C1 ;
9) LDS A+l(O) ;

10) ADRN $C2;
11) STA Q(O);
12) TXLTM(O) ,LOOP;

Figure 3.22 Example #2 overlap code

68 The Computer

Figure 3.23 shows the fetch and execution time in clocks for each in­
struction in the loop.

Consideration must be given to where to store the scalars Sand SI'
since the two LOAD instructions take a much larger amount of time to
execute than the actual loop. Experiments have shown that the two
LOADs take 81 clocks to execute, which is more than three times longer
than the actual loop execution time.

The timing data for the loop in Figure 3.22, expressed as the number of
floating point operations per second (FLOPS), with PEM-resident scalars
versus the number of rows of A, is graphically displayed.

From Figure 3.24 and Figure 3~25, we see that the Illiac rate of execu­
tion approaches 55.2*10 FLOPS asymptotically. For N»O, there is no
significant difference between scalars that are PEM-resident (LOAD) or
CU-resident scalars. For N>O but small, making the scalars CU-resident
is advised.

FETCH-TIME:

EXECUTION
TIME: (CLOCKS)

LOA MlfIN

I~~
I
I
I
I

LOS Aj+ 1 LfC2 I ...-....... ---....... '2"'" I ' STA Qj

AORN $C1 ADRN $C2

'---------" .. ------LOOP TIME - 25 CLOCKS;-------t ----'

60

50

40

30

20

10

Figure 3.23 Loop times

10' FLOPS

55.2

-------------------:=;.-------~----
,45.9

I
I ,
,
,
I
I ,
I
I

1 2 3 4 5 6 7 8 9 10.1 2 3 4 5 6

j = number of rows of A in Qj = Aj * 5 * 51

"LOAD"

PEM-RESIDENT SCALARS

Figure 3.24 PEM resident scalars

I~

Overlap 69

10' FLOPS

60

50 52.8

1
50

•
5 I

I I
40 -_1 40 . 5 I I

I I 135 . 5
I 30 I i I I CU-RES I DENT

I 1 I I SCALARS

20
1 I I i I I I
I I I I

10 I I I L
I I I I
I 1 I I
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6

Figure 3.25 CU resident scalars

6. Evaluation of the ILLIAC IV In Non-Dverlap and
Dverlap Modea

Each 14 instruction still takes the same time to execute (the 14 will
continue to operate at a "clock rate" of 12.5 MHz.); but instruction
sequences can be executed more quickly with overlap. During testing of
overlap, 14 executed programs sequenced up to five times faster. Many
users' codes were executed at more than twice their previous rate.
Clearly the time required to execute a highly I/O bound program would
not be significantly affected by overlap, since the I/O mechanism is
unaltered.

A number of arithmetic expressions for the Illiac IV have been
coded in assembly language in order to analyze the performance of the
machine in overlap mode. The following results were produced using the
two most common measures of computer performance -- millions of opera­
tions per second (mips) and millions of floating point operations per
second (megaflops).

PRECISION
64 BIT
32 BIT

MIPS
140--=-1"95
250 - 310

MEGAFLOPS
40 - 55
70 - 90

These results were for vector lengths which were multiples of 64
and for floating point operations which were rounded and normalized.
No routing was involved and all arithmetic operations were done from
memory to memory. The sample problems were carefully coded to take
advantage of their inherent parallelism.

A 64 x 64 matrix multiply problem was used as a benchmark to eval­
uate the performance of the .Illiac IV, in both non-overlap and overlap
modes of execution. This problem was chosen as it utilizes the full
parallelism of the Illiac IV. It was found that the most natural method
of computing the matrix problem on the Illiac IV was by the "middle
product ll

, and not the more usual inner product algorithm:

For 1=1, 64

70

I .•

I

I

~

Overlap 71

This algorithm involves a scalar vector product. First a row of A
is transferred to the ADB, then elements of this row are broadcast to
the PEs, multiplying corresponding rows of B. Accompanying 64 of these
products gives a row of C.

The algorithm was coded in both CFD FORTRAN, compiled at NASA Ames,
and in ASK (Jobs #1 and #2). In addition to this, two more ASK jobs
were coded to exploit the overlap mode of execution. These differed
from Job #2 as follows:

Job #3 - The code in the inner loop is reordered to maximize PE
overlap. Rows of B are fetched from store ahead of the calculation,
using $R as intermediate storage. This allows the memory reference to
be overlapped with the ADRN instruction.

Job #4 - Transfer of a row of A to ADB is performed in blocks of
eight words during the execution of the inner loop. A buffering tech-
nique is used to minimize ADVAST halts when referencing transferred data.
Data from the eight word buffer overwrites the previous block as it is
being used. It should be noted that this code executes two additional
AD VAST instructions during a pass of the inner loop. However, these are
effectively free due to overlap.

The results of running Jobs #1 and #2 in both non-overlap and over­
lap modes show that the overlap mode is three times faster. In addition
to this, coding to exploit overlap can give further gains. The results
are shown below and compared with similar jobs on a CDC 7600.

ILLIAC EXECUTION THiES (mill iseconds)

Job #1
Job #2
Job #3
Job #4

Overlap
17 .2
15.9
12.0
10.0

Non-Overlap
59.2
37.7

CDC 7600 EXECUTION TIMES (milliseconds)
FTN 168
COMPASS 77

Table 3.1 Comparison of Illiac and CDC 7600 Execution Times

D. Performance

Table 3.2 contains timings for the execution of many commonly used
vector operations on the CDC 7600, CDC Star 100, Il1iac IV and Cray"
Cray 1.

Also Figure 3.26 displays performance by the Star 100, Illiac IV
and Cray 1 for the operation:

V(*)=A(*)*(B(*)+C(*))
The units used to measure performance in the tables as well as

Figure 3.26 is MFLOPS or millions of floating point operations per sec- I~
ond.

(J)
a.. o

80

60

~40
~

20

o
o 100 200 300 400 500 600 700

N

Figure 3.26 Performance of various supercomputers on the
operation V=A*(B+C)

This section is based on "Timing Comparison of Several Supercomputers",
Appendix D of Optimal Utilization of Supercomputers, Volume II, Report
by R&D Associates, RDA-TR-102702-002, February 1977 (J. Levesque, T.
Rudy, and G. Wagenbreth).

72

OPERATION VECTOR LENGTH

V(I)=A(I)+B(I) 5 10 50 100 500 1000

FORTRAN CDC 7600 1.3 1.5 1.6 1.6 1.6 1.6

RDALIB CDC 7600 2.55 3.73 5.55 5.75 5.95 6.03

STAR 100 64 BIT 1.7 3.3 13.2 20.8 39.1 43.9

STAR 100 32 BIT 1.8 3.5 15.3 26.6 64.4 78.4

ILLIAC IV 64 BIT 1.45 2.91 14.53 18.13 24.90 25.88

ILL lAC IV 32 BIT 1.45 2.91 14.5 29.1 46.29 49.80

CRAY 1 10.0 14.5 22.9 23.0 23.6 23.6

Table 3.2 Vector operation timings

"d
!D
Ii
I-h
0

~
::l n
!D

'" VJ

" .po

1"'3

ffi
C":l
0

~
OPERATION VECTOR LENGTH s::

I'"t
CD
t1

V(I)=A(I)*B(I) 5 10 50 100 500 1000

FORTRAN CDC 7600 1.4 1.6 1.7 1.8 1.8 1.8

RDALIB CDC 7600 2.42 3.46 6.3 6.5 6.84 6.88

STAR 100 64 BIT .8 1.5 6.0 9.7 49.6 66.3

STAR 100 32 BIT 1.0 1.9 9.0 16.4 49.6 66.3

ILLIAC IV 64 BIT 1.45 2.90 14.5 16.25 24.9 25.9

ILLIAC IV 32 BIT 1.45 2.90 14.5 29.0 46.3 49.8

CRAY 1 9.8 14.3 22.7 22.75 23.5 23.5

Table 3.2 Vector operation timings (cont'd.)

-

OPERATION

V(I)=(A(I)+51)*S2

FORTRAN CDC 7600

RDALIB CDC 7600

STAR 100 64 BIT

STAR 100 32 BIT

ILLIAC IV 64 BIT

ILLIAC IV 32 BIT

CRAY 1

5

2.1

1.1

1.3

2.40

1.47

10

2.4

2.0

2.5

4.80

2.937

VECTOR LENGTH

50 100

2.7 2.8

10.0 10.6

8.2 13.2

11.3 20.3

24.0 26.55

14.7 29.37

59.3 60.2

Table 3.2 Vector operation timings (cont'd.)

500

2.8

11.1

25.5

56.1

39.7

60.1

63.9

1000

2.8

11.1

28.9

71.8

41.0

67.21

64.4

"d
(l)
t;
t-n
o

~
n
(l)

......
VI

......
0\

t-3
::T
CD

Q
0

.§
OPERATION VECTOR LENGTH r::

rt
CD
Ii

V(I)=(A(I)+B(I))*Sl 5 10 50 100 500 1000

FORTRAN CDC 7600 2.1 2.4 2.6 2.7 2.7 2.7

RDALIB CDC 7600 8.9 9.3 9.6 9.7

STAR 100 64 BIT 1.1 2.0 8.2 13.2 25.5 28.9

STAR 100 32 BIT 1.3 2.5 11.3 20.3 56.1 71.8

ILLIAC IV 64 BIT 2.4 4.8 24.04 26.5 39.70 41.0

ILLIAC IV 32 BIT 1.47 2.94 14.7 29.4 60.31 67.45

CRAY 1 42.8 43.2 45.2 45.5

Table 3.2 Vector operation timings (cont'd.)

- --..

OPERATION VECTOR LENGTH

V(I)=(A(I)*B(I)*Sl 5 10 50 100

FORTRAN CDC 7600 2.4 2.6 2.8 2.9

RDALIB CDC 7600 10.1 10.6

STAR 100 64 BIT .8 1.5 6.0 9.7

STAR 100 32 BIT .9 1.9 8.7 16.0

ILLIAC IV 64 BIT 2.3 4.6 23.11 25.47

ILLIAC IV 32 BIT 2.15 4.3 21.5 43.0

CRAY 1 43.0 43.0

Table 3.2 Vector operation timings (cont'd.)

500

2.9

11.1

19.0

48.8

37.78

65.34

44.7

1000

2.9

11.1

21.6

65.6

38.96

68.92

44.9

'"t:I
III
Ii
I-t>
o

~
n
III

""'"
""'"

-...J
ex>

1-3
::r
(I)

C":l
0

~
OPERATION VECTOR LENGTH c

rt
(l)
1"1

V(I)=A(I)+B(I)+Sl 5 10 50 100 500 1000

FORTRAN CDC 7600 2.0 2.2 2.4 2.5 2.5 2.5

RDALIB CDC 7600 9.4 9.9 10.3 10.3

STAR 100 64 BIT 1.0 2.0 8.5 14.5 33.6 40.2

STAR 100 32 BIT 1.0 2.0 9.4 17.2 51.0 67.6

ILLIAC IV 64 BIT 2.4 4.8 24.0 26.84 39.7 41.0

ILLIAC IV 32 BIT 2.15 4.30 21.5 43.03 65.34 68.92

CRAY 1 43.5 43.5 45.1 45.3

Table 3.2 Vector operation timings (cont'd.)

--..

OPERATION VECTOR LENGTH

V(I)=A(I)*B(I)*C(I) 5 10 50 100

FORTRAN CDC 7600 2.3 2.6 2.8 2.9

RDALIB CDC 7600 9.2 9.6

STAR 100 64 BIT .8 1.5 6.0 9.7

STAR 100 32 BIT .9 1.9 8.7 16.0

ILLlAC IV 64 BIT 2.31 4.62 23.11 25.21

ILLlAC IV 32 BIT 2.15 4.30 21.5 43.03

CRAY 1 33.9 33.9

Table 3.2 Vector operation timings (cont'd.)

500 1000

2.9 2.9

9.9 10.0

19.0 21.6

48.8 65.6

37.0 38.07

64.33 67.63

35.0 35.1

'"d
CD
I"(
Hl
o a
§
o
CD

-...J
\0

(Xl
0

1-3
::r
CD

(')

~
OPERATION VECTOR LENGTH c

rt
CD
11

V(I)=(A(I)+B(I))*C(I) 5 10 50 100 500 1000

FORTRAN CDC 7600 2.2 2.4 2.6 2.7 2.7 2.7

RDALIB CDC 7600 8.1 8.5 8.7 8.7

STAR 100 64 BIT .7 1.4 6.1 10.4 23.1 27.3

STAR 100 32 BIT .8 1.7 7.7 14.4 45.6 62.7

ILLIAC IV 64 BIT 2.40 4.8 24.0 26.27 38.84 40.01

ILLIAC IV 32 BIT 2.23 4.46 22.30 44.58 67.08 70.68

CRAY 1 14.8 21.6 34.2 34.3 35.3 35.3

Table 3.2 Vector operation timings (cont'd.)

.{,<

OPERATION VECTOR LENGTH

V(I)=A(I)+B(I)+C(I) 5 10 50 100 500 1000

FORTRAN CDC 7600 2.1 2.3 2.5 2.5 2.5 2.5

RDALIB CDC 7600 8.1 8.5 8.7 8.7

STAR 100 64 BIT 1.0 2.0 8.5 14.5 33.6 40.2

STAR 100 32 BIT 1.0 2.0 9.4 17.2 51.0 67.6

ILLIAC IV 64 BIT 2.4 4.80 24.0 26.27 38.8 40.0

ILLIAC IV 32 BIT 2.23 4.46 22.3 44.57 67.0 70.7

CRAY 1 34.2 34.2 35.2 35.3

Table 3.2 Vector operation timings (cont'd.)

I-d
(1)
Ii
I-ta
0 a
~
(")
(l)

00

IV. Programming

Not surprisingly, at this stage of the Illiac IV's evolution, the most
serious impediment to the full utilization of the machine's computational
power is the lack of applications software. The Illiac is difficult to
program; it is even harder to program well.

Part of the difficulty is psychological. Programmers do not natur­
ally think about algorithms suitable for parallel architectures. The
mental approach that makes for a good Illiac programmer is a learned
skill. More so than in other computer related disciplines, Illiac pro­
gramming improves with experience. With a regularity bordering on monot­
ony, Illiac programmers with moderate experience would show a piece of
their code to an old hand for review and be told that with some minor
changes run time performance could be improved by an order of magnitude.
Even the old hands continue to improve their skills at a noticeable
rate.

A second difficulty is the lack of software tools. To draw a data
item from the 140M main memory into a processing element memory for
manipulation can take up to 40 milliseconds due to risk latency, and 40
milliseconds is forever on a machine as fast as the Illiac. So place­
ment of the data on the 140M can be critical to minimizing run time,
since judicious data layout can all but eliminate latency penalties.
Placement of the data on the 140M is under programmer control. But
there are no tools available to the programmer to assist in this tedious
but critical task.

A third drawback to having satisfactory applications software is
the lack of a software library. Code development is dispersed across
the world. There is no central repository for application programs.
Even the programs developed at lAC get lost in time or become useless
through incomplete documentation. Hence new code development efforts
are denied the opportunity to use modules from prior codes that might
otherwise be applicable.

Another unfortunate circumstance is the undebugged status of the
IVTRAN compiler. There are two high level languages in which applicable
codes can be written for the Illiac, CFO and GLYPNIR. CFO resembles
FORTRAN, GLYPNIR resembles ALGOL. FORTRAN and ALGOL programs do not run
directly on the Illiac. Hence an existing FORTRAN program, for example,
must be converted into CFO before it can be executed on the Illiac and
this conversion effort, for even a moderately sized Fortran program, can
be quite time consuming and expensive. Since the world is filled with

82

Programming 83

existing FORTRAN applications programs, a decision was made early on to
develop IVTRAN, an Illiac programming language with the feature that an
existing FORTRA~ program could be converted by machine translation using
the IVTRAN compiler into Illiac running code. IVTRAN would even seek
opportunities to exploit the parallel architecture of the Illiac.

To a degree the IVTRAN compiler works. Some of the application
codes described later in Chapter V were first written in FORTRAN and
then converted to Illiac code using the IVTRAN compiler. But the IVTRAN
compiler has bugs. Quite frequently its output is gibberish. It has
not been released for general use as a practical programming tool.

Finally, the Illiac's status as a one of a kind machine impedes its
use for application projects. With no successor machine identified on
which Illiac codes would be compatible, the costly code development
effort is quite understandably an aversion to program managers. As the
Illiac ages this consideration is expected to grow even more serious.

The situation, however, is not all gloom and doom. The Illiac is
so fast that the economics often dictate its use despite these problems.
Speedup factors for Illiac programs compared with the same programs im­
plemented on conventional computers, where the algorithm is appropriate
for parallel implementation, often are 20, 40, 60 or even higher. Illiac
time is offered to government agencies at $2500 per hour. Hence, a pro­
gram need not require very much production running to amortize the cost
of code conversion.

This chapter consists of three sections. In the first two the CFD
and GLYPNIR languages are described. The third section provides a re­
view of the Illiac languages. ASK, the Illiac assembly language is
treated in the Appendix.

A. The CFD Language

1. Introduction

To understand the evolution of CFD it is necessary to go back to 1970
and 1971 when the Computational Fluid Dynamics Branch of NASA Ames
Research Center first learned that it would be able to use the Illiac IV.
Fora great many years this branch had been coding fluid flow problems in
FORTRAN so that they could be run on the conventional serial machines of
that period (IBM 360 and CDC 6000 series computers). Thus the advent of
the Illiac IV forced the branch to determine how to run the next genera- I

tion of these fluid flow problems on the Illiac. To do this the branch I~.
first looked closely at how the Illiac hardware performed. •

They wanted to understand the Illiac hardware from the standpoint
of how best to generate code for it. To do this, the branch looked at
the four functional parts of the Il]iac IV. Those parts are the control
units, the 64 processing elements, the processing element memories, and
the Illiac main memory. (See Fig. 4.1 for a diagram of th~ hardware de­
scribed below.)

The control unit (CU) contains the instruction stack which inter­
prets all instructions, some of which may be completely executed within
the CU.

Instructions are partially executed and then broadcast to the 64
processing elements; there the execution is completed by all the pro­
cessing elements in lock-step. In addition to managing the instruction
stack, the CU may be thought of as a small, self-contained computer.
It has four accumulators which are capable of a full set of shifting,
bit-setting, and Boolean operations, as well as addition and subtrac­
tion. Furthermore, these accumulators may be used as index registers
for fetching and storing in the processing elements. The CU also has
64 scratch registers called the Advanced Data Buffer (ADB).

*This section is based on "CFD-A FORTRAN-like language for the Illiac
lV", by K. G. Stevens, lAC Newsletter, July, 1977.

84

Advanced
Data
Buffer

Processing
Element
Local
Memory
(PEMt)

The CFD Language 85

Control Unit

ADB Accumulators

W
Control Unit Bus

r------''-r-----· •• ----......

...

Figure 4.1 Example #2 overlap code

86 Programming

A processing element (PE) has six programmable registers called
RGA, RGB, RGS, RGR, RGX, and RGD. RGA is the accumulator and RGB is its
extension; RGS is a scratch register. The remaining registers are some­
what peculiar to the Illiac architecture. RGR is used for inter-PE com­
munication of data. Data may be rotated end-around (data from PE 1 go­
ing to PE 64) within the 64 RGRs. RGX acts as an index for intra-PE
fetching. This register allows independent fetching depths in each of
the PE memories. The RGD contains fault bits and test result bits for
that PEe It also contains bits called mode bits which, when set, allow
the PE to take part in instructions and, when reset, protect the PE
memory as well as RGA, RGS, and RGX from change.

The processing element memories (PEMs) may be thought of in two
ways: (1) collectively as 131,072 64-bit words of memory from the CU·s
point of view, and (2) as a 64 x 2048 matrix of 64-bit words from the
point of view of the PEs. In the latter case, each PE is able to. access
its own column of 2048 words. (Note that the RGX indexing permits the
PEs to fetch independently any word within their own column.)

The main memory of the Illiac is logically a 16-million word drum.
The drum is divided into 52 bands (tracks) each of which contains 300
Illiac pages (an Illiac page is 1024 64-bit words). The drum may be
mapped, i.e., data may be stored upon it in predetermined locations and
accessed asynchronously. This enables the programmer to ensure that the
data he wishes to fetch are coming under the read/write heads when he
needs it. This allows the full billion-bit-per-second transfer rate to
be realized during execution.

I .. ,

2. History

After examining the Illiac hardware it was determined that if it could
be programmed efficiently it would allow an increase in speed of about
two orders of magnitude over the conventional serial machines the Branch
was using. Moreover, there appeared to be a large class of problems
ideally suited to parallel computation by the 11"liac. Once the researcher
understands what is meant by parallel computation, the principal difficulty
is simply that of writing the problem in a language that the machine under­
stands.

It was this problem of language that most concerned the programmers
in 1971. They inspected ASK (the assembly language for the Illiac IV)
but quickly discarded it for general purpose use because of the usual
problems associated with an assembly language. GLYPNIR was also discard­
ed, first because it was more general than the problems required (the
price of that generality was verbose machine code), and second because it
was ALGOL-based rather than FORTRAN-based. Under these circumstances
they decided to develop a new language.

The development of CFD has been governed by three factors: (1) the
architecture and instruction set of the Illiac; (2) the expected nature
of the "average" program; and (3) the ease of writing the translator.
They also tried to have CFD resemble FORTRAN. No attempt was made to hide
the hardware peculiarities from the user; on the contrary, every attempt
was made to give the programmer access and control of all of the Illiac
hardware so that an efficient program could be constructed. This concern
for effi ci ent programml ng 1 s necess i tated by the I I Ii ac I s speci ali zed
architecture which increases the speed ratio of good to poor coding.
This ratio of codes that make the machine work well to codes that make
it work poorly can be as great as 50 to 1 for Illiac. This same ratio
for conventional computers is about 5 to 1.

During the very early stages of code development, it became apparent
that trying to debug code on the Illiac IV itself or its hardware simu­
lator, called SSK, was difficult if not impossible. The programmers there­
fore decided to develop a method by -ItJhich they could logically" debug or
code before ever approachi ng the III i ac or SSK. To this" end they de­
cided to translate CFD into serial FORTRAN so that problems could be
logically debugged on conventional computers using the wide range of
existing FORTRAN debugging tools. This decision then added a fourth
governing factor to the development of CFD; namely, that CFD be trans­
latable into FORTRAN. They also chose to write these two translators (CFD
to Illiac code and CFD to FORTRAN) in FORTRAN so that they would be easy
to write and easy to debug as well as be transportable to a wide class
of machines.

87

3. The Language

The current version (Version 2.0) of CFD may now be contrasted to
FORTRAN, bearing in mind the hardware for which CFD must generate code.
CFD statements are composed of CFD key words used in conjunction with
the basic elements of the language (constants, variables, and expres­
sions). These statements are written in card format similar to FORTRAN.

Types of Named Quantities

There are four classes of named quantities in CFD: (1) variables,
(2) subprograms, (3) common blocks, and (4) disk areas. Variables may be
divided into three subclasses: (1) scalars, (2) arrays, and (3) vector
aligned arrays. An array may reside in either PE or CU memory and may
be of any length, limited only by the memory size. These arrays, how­
ever, may not be used as vectors in vector operations, and may not have
more than one subscript. Vector aligned arrays, on the other hand, must
reside in PE memory, and may have one, two or three subscripts. The
range of the first subscript of a vector aligned array is always 64. All
vector aligned arrays have their first word in the first PE, hence-the
nomenclature "vector aligned. 1I

There are five categories of CFD statements: (1) specification;
(2) subprogram; (3) input/output; (4) control; and (5) assignment state­
ments. Each statement category is discussed below.

Specification Statements

CFD supports the full range of FORTRAN specification statements; for
example, IMPLICIT, DIMENSION, COMMON, EQUIVALENCE, and explicit state­
ments. There are five types of variables in CFD: CU INTEGER, CU REAL,
CU LOGICAL, PE REAL, and PE INTEGER. Note that the residence of the
variable must be declared. Real and integer variables are similar to
those in FORTRAN. However, CFD logical variables are quite different
from FORTRAN logical variables. FORTRAN logical variables have one
value (either .TRUE. or .FALSE.) while CFD logical variables always
have 64 values, one in each bit of the 64-bit word. In this sense they
are vectors, and when used to control the PEs, each PE receives one bit.
The CFD variable MODE contains the current machine mode bit vector and
is stored in the RGDs.

In the case of CU variables, a specific CU address must be assigned
by use of an EQUIVALENCE statement. Because there is only one CU, these
variables must be thought of as being in COMMON to all subprograms. The
following are examples of various types of CFD specification statements:

*IMPLICIT CU LOGICAL(M)
*CU REAL ALPH
PE INTEGER X()
DIMENSION RHO(,64)
COMMON /CONSV/ EO(,64,2)
*EQUIVALENCE (I,I), (2MSK), (3,MD), (4,ALPH)

88

1 .• _

The CFD Language 89

In this example we have the integer variable I residing at CU loca­
tion l~ while the logical variables MSK and MD reside in CU locations 2
and 3~ respectively. X~ RHO~ and EO are vector aligned arrays of one~
two and three dimensions respectively. The asterisk in column 6 is one
of our concessions to ease of translator writing. All nonassignment
statements must have an asterisk in column 6 to be valid Version-2.0-CFD
statements.

Subprogram Statements

A subprogram may either be a FUNCTION, a SUBROUTINE, or a BLOCK DATA.
The declaration statements for these subprograms are the same as in
FORTRAN. A FUNCTION or a SUBROUTINE is referenced in the usual FORTRAN
manner. The following is an example of a SUBROUTINE statement with one
argument.

*SUBROUTINE UPDATE(RHO)

Input/Output Statements

All CFD I/O is between Illiac main memory and the processing element
memories - not printers and card readers - and this I/O is asynchronous
to make use of the overlapping and mapping capabilities of the Illiac.
Since this I/O is asynchronous, CFD also has a WAIT statement which will
halt execution until a previously requested READ or WRITE is completed.
For example:

*DISK AREA EOSTAR(4)
*READ(3,EO(1,1,2), EOSTAR(1),4)
*WAIT 3

In this example the first statement declares that there is a pre­
viously mapped area on the Illiac main memory, called EOSTAR, which is
4Illiac pages long. The second statement requests that four pages be
read beginning with the first page of area EO STAR into PEM beginning at
EO(1,1,2). This second statement also gives this I/O request the identi­
fication number 3. The third statement will stop the program until the
I/O request associated with identification number 3 has been completed.
CFD WRITE statements have the same format as the READ statement.

Control Statements

There are two kinds of program control in Jlliac IV: (1) branching
and (2) enabling or disabling PEs. These controls may be used separate­
ly or in combination. Branching is the type of control used in serial
computers and determines which statements will be executed next. In
Illiac, however, it is also necessary to specify which PEs will partici­
pate in the execution ofa vector statement.

The following statements are implemented in CFD with their standard
FORTRAN form and meaning.

90 Programming

GO TO (absolute, computed, and assigned)
ASSIGN
CONTINUE
RETURN
STOP
CALL
END

One of the most frequently used control statements is the DO state­
ment, and in CFD it is slightly more general than in FORTRAN. The dif­
ferences from FORTRAN are: (1) the increment must be a constant, but
may be negative, and (2) the starting and limit values may be a CU
INTEGER variable plus or minus an integer constant. As in FORTRAN, the
index must be greater than zero.

Logical IF statements are implemented in CFD, but arithmetic IF
statements are not. IF statements are of two basic kinds: (1) scalar
IFs having a single true/false result, and (2) vector IFs having 64 true/
false results, one for each PEe Scalar IFs determine the program flow,
and vector IFs define the participating PEs. There are no single-re­
sult, logical variables in CFD, so the variety of scalar IFs is quite
restricted. There are three basic forms: (1) those involving arithmetic
tests between CU integer expressions using only addition and subtrac­
tion; (2) those involving quantified logical expressions; and (3) those
testing for I/O request completion. A logical expression in CFD implies
64 true/false results, and "quantifying" reduces it to one true/false
result. The logical quantifiers are .ANY., .ALL., .NOT ANY., and
.NOT ALL.. The following are examples of scalar IF statements:

*IF (INDEX .GT. LIMIT) RETURN
IF (.NOT ANY. «A() .GT. EPSLON))) STOP
*IF (.COM. 3) GO TO 123

The first statement is true if the CU INTEGER INDEX is greater
than the CU INTEGER LIMIT. The second statement is true if all 64 A's
are less than or equal to EPSLON. The third statement is true if the
I/O request associated with the identification number 3 is completed.

The PEs are controlled in two ways: (1) the instruction stream in
the CU determines the machine instruction to be executed; and (2) the
enabling mode pattern in the PEs determines which PEs will perform the
instruction and which will remain idle. At the CFD level, the enabling
mode controls only vector arithmetic assignment statements and the eval­
uation of SUBROUTINE arguments that require scratch storage. Vector
arithmetic statements do not alter variables in disabled PEs. The
enabling mode pattern is the logical variable MODE, a reserved symbol,
at all times except when the vector assignment statement following a
vector IF is executed. In that case, the enabling mode is the result
of the vector IF. For example,

IF«A().LT.O.)) A(*) = -A(*)
is one way to replace A(*) by its absolute value. If the sequence

I

I~

MODE = (-A(*).lT.O.)
A(*) = -A(*)

The CFD Language 91

is used, A(*) is replaced by its absolute value as before, but now the
enabling mode has been set so that only the PEs in which A was negative
will be active in statements following this sequence.

Assignment Statements

In a logical assignment statement a logical variable is assigned the
value of a logical expression. The basic building block of a logical
expression is the "base mode," which may be a logical variable, a logi­
cal constant (ON meaning all true and OFF meaning all false), a vector
relation, or any of these preceded by .NOT., which implies logical nega­
tion. A vector relation consists of two vector arithmetic expressions
separated by one of the following: .GT., .IT., .GE., .lE., .EO. or
.NE. •

The logical expression may simply be a base mode, or it may contain
operators having base modes as operands. There are three kinds of oper­
ators: (1) bit setting operators, (2) shifting and rotating operators,
and (3) Boolean operators. The two kinds of bit setting operators are
.TURN ON. and .TURN OFF. and are used to turn on (enable) or turn off
(disable) discrete bits of the variable being defined. The bits them­
selves are ~pecified in a list following the operator. For example:

MASK = ON .TURN OFF. 1,2,.lAST.2

This statement assigns false to the first two and the last two bits
of MASK while assigning true to the remaining 60 bits. The list may in­
dicate individual PEs or ranges of PEs as may be seen in the following
CFD statements.

MODE = MODE .TURN ON •. FIRST. 1-1
MASK = .NOT. MASK .TURN ON. MIN .TO. MAX

The two kinds of bit shifting operations are "end-off" shifts
(.SHL. and .SHR. for left and right shifts respectively) and "end­
around" shifts (.RTL. and .RTR. for left and right); the end-around
shifts are usually called "rotates" rather than shifts. In the end-off
shifts, vacated bits are set to zero (false).

The three Boolean operators are .NOT., .AND., and .OR. all of which
have their conventional meaning. The following are typical CFD logical
assignment statements.

MASK = MODE .RTl. 1+1
MODE = .NOT. MODE .AND. (A(*) .GT. 1.0)

There are three kinds of scalar arithmetic statements, all of which
are specific and restricted. The limited vocabulary for CU arithmetic
reflects the absence of the required hardware. The first kind of state­
ment is an arithmetic assignment statement involving only CU INTEGER
variables, integer constants, and the + and - operators. The second
kind of statement involves the transfer of single words of data. No

92 Programming

arithmetic is done, and the data may be REAL or INTEGER and have any
residence (CU or PEl. The third kind of statement has no FORTRAN equiva­
lent and is required in Il1iac to facilitate any necessary juggling be­
tween CU and PE memory due to the limited size of CU memory. The
TRANSFER statement allows the programmer to move blocks Qf eight words
between CU and PE memory (using special Illiac machine instructions).
The following CFD statement causes variable I and the seven CU variables
after it to be assigned the first eight values of the PE array TEMP.

*TRANSFER (8) I=A(l)

PE arithmetic is vector arithmetic, even when an expression involves
only scalars. Expressions must be either REAL or INTEGER, and mixed
type expressions are not allowed. The following standard FORTRAN opera­
tions are implemented: +; - ; * ; / ; and **. The order of computa­
tion is the same as in FORTRAN. Exponents in CFD must be integer con­
stants in the range 2 through 10 and may not be exponentiated themselves.
The variable being defined in a PE arithmetic assignment must be vector
aligned, and its first subscript must be * alone. This convention is
followed because the enabling mode (MODE) then corresponds directly to
the PEs of the defined variable.

When the first subscript contains an *, the subscript possesses
some non-FORTRAN qualities. Assume that all PEs are enabled, then the
statement

A(*) = 8(*-1)
is equivalent to the FORTRAN statements

A(I)=B(64), A(2)=B(I), A(3)=B(2), ... , A(64)=B(63)
illustrated by the following diagram.

/

. A(1)-A(2~. A(3)

______ B(l) 8(2) B(3)

A(63!,;r A(64) 1
B(63) 8(64)

Note that the transfer of data is done in the RGRs and is end-around.
Suppose the central difference of the vector P(*) is needed. Its

value, as given by
DIFT(*) = P(*+l) - P(*-l)

may have no meaning in PEs 1 and 64 unless P is in fact periodic. The
difference would not be computed in these PEs if the statement above
were preceded by

MODE = ON .TURN OFF. 1, 64
An ~ in the first subscript implies that the variable is a vector.

When the first subscript contains no * the variable is used as a scalar,
the same value being used in every PEe

When the first subscript contains an *, the second subscript, if
present, may contain an integer vector. This allows each PE to refer
to a different position in its memory. Suppose the variable X has been
declared a PE INTEGER vector and has been assigned the values 1,0,1,0,
... ,0,1,0. Then, if RHO is a 64 X 64 matrix, RHO(*,X(*)+l) is the saw
tooth pattern vector made up of the following variables:

I

~

The CFD Language 93

RH0(1.2), RHO(2,1), RHO(3,2), RHO(4,1) .•• RHO(64,1)
Note that this integer vector index is stored in and used from RGX.

(A complete description of the language may be found in Ref. 2).

4. The Tren.letar.

There are two CFD translators in existence. One compiles CFD into relo­
catable machine code for the !lliac IV and the other translates CFD into
standard serial FORTRAN.

Both these translators are written in FORTRAN which allows them to
be easily brought up on a wide range of computers. These translators
currently run on a PDP 10, an IBM 360/67, an IBM 360/91, and a CDC 7600.

15. The Canclu.lan.

CFD is clearly not a machine independent language. It allows the pro­
grammer to use the power of the RGR, RGX, and RGD for intra-PE communi­
cation, independent PE indexing, and a wide range of mode control, re­
spectively. It also restricts the user to simple scalar operations be­
cause complicated scalar operations are not possible on the Illiac with­
out running at 1/64 its top speed. The machine dependent nature of the
CFD language forces the programmer to think parallel, leaving only book­
keeping chores to the compiler. This has allowed the Computational
Fluid Dynamics Branch of Ames Research Center (and others) to develop a
wide range of application programs which make efficient use of the
Illiac IV parallel hardware; for this reason, CFD has met all of its
goals.

Although the language cart.be said to be machine dependent, its de­
pendence is not just on the tlliac IV. Rather, its dependence is on a
machine which can execute vector as well as scalar instructions. To
this end the Computational Fluid Dynamics Branch is developing a third
CFDtranslator. This translator will translate CFD to CDC 7600 assem­
bly language, which makes optimal use of all the pipelining and over­
lapping of which the 7600 is capable. Or, as pointed out in Ref. 3
(Feustel, et al .), the Branch will compile CFD for the "vector 7600,"
which runs from 1 to 5 times faster than the 7600 using FORTRAN.

Thus CFD appears to be a logical extension of FORTRAN which allows
for the efficient use of the vector hardware of the Illiac IV and quite
probably other parallel and vector machines.

REFERENCES

,1. Burroughs Corporation, Illiac IV Systems Characteristics and Pro­
gramming Manual. NASA Contractor Report 2159, 1972.

2. Computational Fluid Dynamics Branch, CFD -- A FORTRAN-like language
for the Illiac IV, internal paper, NASA Ames Research Center, 1973.

3. Feustel, E.A., et al., Future Trends in Computer Hardware, Proceed­
ings AIAA Computational Fluid Dynamics Conference, July, 1973.

B. The GL YPNIR Language

1. Introduction

GLYPNIR is a language designed for programming the Illiac IV computer.
Initial design was begun in early 1968, and a compiler has been availa­
ble since early 1969. In view of the increasing interest in Illiac IV
and in parallel computation in general, this discussion is presented in
order to acquaint the reader with GLYPNIR. It will discuss some design
goals and sketch pertinent features of the language while omitting as
much detail as possible (cf. (13), (14), (17), (18)). It is not
claimed that GLYPNIR contains essentially new features which cannot
be found elsewhere. Rather, this language is a selection and adapta­
tion of features particularly useful for programming a parallel array
type computer. The goal has been to produce a useful, reliable, and
efficient programming tool with a high probability of success.

Primary memory consists of 128K 64-bit words divided into 64 2K
word modules. Thus, primary memory may be viewed as a two-dimensional
structure where each word can be addressed by a pair (a, B) where B
specifies a memory module and a specifies an address within that module.
A group of 64 words, each in a different module but each having the same
address w1thin its module, is called a super word or sword (see Figure
4.2). Each PE is connected to one 2K module and can directly access
only its own module. Thus, the PEs can collectively access a sword.
Additionally, since each PE has its own index registers, it can index
its own module independently of the others. Thus the PEs can collective­
ly access 64 words, one word from each module but with each word at a
different address. Any such group of 64 words from distinct modules is
called a slice. (Thus a sword is a slice but not vice versa.) Access
to other modules must be done through the PE interconnection logic
(routing network). Secondary memory c~nsists of special head-per-track
disk units with an I/O rate of .5 X 10 bits/second (each of two chan­
nels) and an average latency of 20 milliseconds. The Illiac IV is super-
vised by a control computer, currently a PDP-10. .

This section is based on "GLYPNIR-A Programming Language for Illiac lV",
by D.H. Lawrie, T. Layman, D. Baer and J.M. Randal, Communications of
the ACM, Volume 18 Number 3, March 1975, page 157.

94

The GLYPNIR Language 95

It was apparent very early that a language was needed which (1)
hides the machine architecture from the users, and (2) results in effi-
cient1 object code. It was felt that, given limited resources and the
requirement for a high probability of succes, GLYPNIR could not attempt
to provide both of the above. 2 Since most of the users were contempla­
ting large production codes requiring high efficiency and could afford
more programming effort, it was decided to provide an efficient language
which would be a considerable improvement in terms of programming effort
over assembly language, but which would not compromise efficiency by
hiding the machine architecture.

PEe.

Word

~ Sword __ ~:WAl

o 63

Figure 4.2 word, sword and slice

IBy efficient is meant that the code generated by the compiler runs
lIalmostli as fast as the same program written directly in assembly
language.

2A separate language was underway which could satisfy at least (1)
above. See (1).

2. Variabl ••

In order to use a machine efficiently, variable types must be pro­
vided in the language which represent those entities which the machine
recognizes. Traditionally, this has meant providing real (floating),
integer (fixed), Boolean (logical), and sometimes other types. In addi­
tion to the type, the user can usually specify the size of a variable
in terms of the mumber of bytes, words, etc., and its structure, such
as vectors, arrays, and trees.

The variable types available in GLYPNIR can be divided into two
major categories. The first represents words (scalars) or vectors of
words. The second represents swords or vectors of swords. These can
be further subdivided into real, integer, alpha, and pointer type vari­
ables. Variables representing words are referred to as CU variables and
are declared as follows.

CU INTEGER CI
CU ALPHA A2
CU REAL VECTOR Z (100)
etc.

Illiac IV can operate in parallel on swords much like a convention­
al computer operates on words. In order to utilize this parallel capa­
bility, a second major. category of variable is introduced which repre­
sents these swords. These variables are referred to as PE variables:

PE REAL X,Y ~
PE ALPHA A
PE REAL VECTOR Z(100)
etc.

Each of the variables A, X, and Y declared above actually refer to
a sword. Thus, the statement X + X + Y would cause corresponding words
of X and Y to be added in parallel and stored in X; i.e. Xi '+- Xi + Y i'
o < i < 63.

- Tne sword vector Z(100) declared above represents an indexable vec­
tor of 100 swords, each sword consisting of 64 words. Thus Z is in
some sense a two dimensional array (64 X 100). Various parts of this
array can be accessed and processed in parallel. For example, suppose
CI is declared as an integer word (CU INTEGER CI). Then Z(CI) refer­
ences the CI-th sword of Z. Now let I be declared as an integer sword
(PE INTEGER I) and initialized such that the value of the ith word is i;
i.e. 10 = 0, I, = 1, ... , 163 = 63. Then the expression Z(I) would
reference a slice of Z, i.e., elements (0,0), (1,1), ...• (63.63) of
this array, as in Figure 4.3. Z(I+36) would.reference a different slice
consisting of elements (0, 36), (1, 37), ... , (63, 99).

In addition to the above variable types there are also Boolean or
logical variables declared as follows:

BOOLEAN B, TESTRESULT
BOOLEAN VECTOR BUFFERFULL (10)

Boolean variables represent 64 separate true/false values. For
example, assume X and Yare REAL swords as declared above. Then the
Boolean expression X < Y results in 64 separate true/false values, one
for each of the 64 pairs of corresponding elements of X and Y. The
Boolean assignment statement B + X < Y assigns these 64 Boolean results
to the Boolean variable B.

96

The GLYPNIR Language 97

GLYPNIR defines a multivalued Boolean result to be TRUE if and only
if all elements of the result are. true. It is FALSE if and only if all
the elements are false. Otherwise, fheresult is mixed. Boolean
quantifiers SOME and EVERY are available for use in Boolean expressions.
For example, SOME B is TRUE if some element of B is true, and EVERY B is
FALSE if some element of B is false.

I 10 II 2 ~

z[q

z[l]

Z[2]
'----'---

Z[9~ I I ... D
Figure 4.3 Diagonal slice

3. Starage Cantral

The primary memory on Illiac IV is quite small relative to the
machine speed. For example, it takes Illiac only about 1 millisecond
to access the entire primary memory while it would take about 200 milli­
seconds for a more conventional machine with 256K words of .75 micro­
second core. In addition, Illiac has no virtual memory hardware, so the
user must segment data for large programs and manipulate these segments
himself. Thus, it was considered important to give the programmer a
high degree of control over allocation and addressing of primary memory.
This was done in several ways.

Block Structure

GLYPNIR is a block-structured language and resembles ALGOL 60 at least
in appearance. A GLYPNIR program consists of nested blocks of code
and each block may have its own local storage. This helps to minimize
the use of storage by allowing the prngrammer to declare storage areas
for vectors, etc., only i.n that part of the code where they are needed.
Block storage also tends to make the program logic more obvious and thus
improves its readability.

Packed Storage
I

Various data types can be packed into 64-bit words. For example, I_
floating-point numbers can be stored one per word in full 64-bit pre-
cision or two per word in half precision. Integers may be assigned to
arbitrary fields within a word and as many as 32 signed integers can be
stored in a single 64-bit word. This packed data is accessed via fields
and/or partial word designators. For example, partial word designators
used in the expression

A.(O:20) A.(2l:l0) + I
cause the 10-bit field starting at bit 21 of A to be added to I and
stored in the first 20 bits of A. (If A is a sword, then this is done
simultaneously for each word of the sword.)
Fields can be used to specify a portion of a block of words, where the
block of words is addressed by a pointer value. For example, let P be
a point variable (see next section) whose value is the machine address
of a block of words, and let R be a field declared

INTEGER FIELD R(2,0,13)
Then the expression P. R refers to the field R of the block pointed at
by P, ;"e., the 13 bits starting at bit 0 of word 2 of the block. Fields
may be of type real, integer, alpha (unsigned integer), or pointer.
Real fields are restricted in format to those allowed by the machine.
Integer and alpha fields can be of any length but may not cross word
boundaries. Pointer fields are explained more fully in the next section.

Pointers, Structures, and Dynamic Storage Allocation

GLYPNIR included facilities which allow creation and modification of
user defined data structures. These facilities include dynamic alloca­
tion of storage blocks and the ability to declar~ the manipulate
pointers (machine addresses) and fields within these blocks. Perhaps

98

The GLYPNIR Language 99

the easiest way to demonstrate these capabilities is to describe how
similar facilities would be used in a conventional (nonparallel) language
and then describe the extensions made for Illiac IV.
First, assume that in our hypothetical language we have pointer type
variables whose values are machine addresses. We might also have vec­
tors of these pointer variables. Let P and PV(3) be examples of
these.
Next, we need a dynamic storage allocator, i.e., a routine which allo­
cates or deallocates blocks of storage at execution time. Assume
ALLOCATE(N) is a procedure or routine which when called allocates 'N
words of storage and returns a pointer to the first word (word 0) of
this block. For example, the statement P ALLOCATE(6) would result in
allocation of 6 words of storage and assignment of a pointer to this
block of storage to P. Additionally we need a deal location procedure,
e.g., FREE(P,N) which would return to the free storage list N words at
location P.
Finally, we need a field specifier, i.e., some notation for specifying
a particular field of an arbitrary data block. For example, we might
allow a field specifier to be declared as follows:

INTEGER FIELD R(2,0,13)
This declares R to be a field of length 13 (consisting of bits 0-12)
in the third word (i.e., word 2) of a block of data. It also implies
that the data in this field represents an integer (or at least it is
to be treated as if it were an integer). Now, if P points to a block
of data, then P. R specifies the field R of that block. Similarly,
if PV(l), PV(2) and PV(3) each pOint to a block of data, then PV(l),
PV(2) and PV(3) . R each specify field R of each of these blocks.
We would also like to be able to index through a block of data. We can
do this in at least two ways. First, by modifying the pointer; e.g.,
P + P + I. Second, by indexing the field, e.g., P . (I)R. Thus, if
P points to word 0 of a block, then P + I and P . (I) point to word I
of the block.
Now if we allow fields to contain pointer values, then we can construct
chains of pointers. Assuming PF is a pointer field, then P . PF . R
is the field R of the block pointed at by the field PF of the block
pointed at by P. This can be carried on indefinitely. As an example,
the following program in our fictional language would set up the data
structure shown in Figure 4.4.
BEGIN
POINTER VECTOR P(3);
POINTER FIELD PFA(2,0,64), PFB(3,O,64);
INTEGER FIELD INT(O,lO,10);
INTEGER N, M;
~ (M and N are inttialized)
P(O) + ALLOCATE(N+l);
P(1) + ALLOCATE(4);
P(2)+ ALLOCATE(~1+1);
P(1) .PFA P(O);
P(1). PFB P(2);
P(O).PFA P(2)
END

100 Programming

The shaded area in Figure 4.4 represents the field which would be
referenced by any of the following expressions:

P(2).(M)INT
or P(1) .-PFB.·(M) INT
or P(1).PFA.PFA (M)INT
In GLYPNIR the above ideas are extended as follows:
1. There are two kinds of pointers: (a) pointers which can point
anywhere in memory; and (b) pointers which can point only within a
given memory module.
2. Pointer variables can represent either a single pointer or a
sword of pointers.
3. There are several kinds of allocation and deal location state­
ments allowing allocation/deallocation of blocks of words or blocks
of swords.
Experience has shown that these facilities are useful even in numer­
ically oriented applications. For example, they are used to allow
packing of low precision data, I/O can be performed directly from
data areas (without intermediate buffering), and complex relation­
ships between data items can be maintained via pointer link rather
than physical movement of the data.

p[6J
I------i

pet]
I------i

P[2J
~--... '\

o

o

2

2

Figure 4.4 Example of pointer structure

I

~

4. Control St:1i1::em8nte

Control statements resemble those of FORTRAN and ALGOL except they
have been extended to facilitate control of parallel calculations. Ex­
amples are given below where (BE) is a Boolean expression, and (S) is a
statement or block of statements.

If Statements and Mode Patterns

IF (BE) THEN (S)
IF (BE) THEN (SI) ELSE (S2)
FOR ALL (BE) DO (S)
LOOP 1+11, 12, 13 DO (S)
THRU I DO (S)
FOR+ 11 STEP 12 UNTIL 13 DO (S)
DO (S) UNTIL (BE)
WHILE (BE) DO (S)
GO TO (label)

One can think of each statement in the language as being executed
separately in each PE. For example, take the statement "X + X + 1"
where X is a sword. For each of the 64 elements of X there is a
corresponding PE. The above statement causes each (enabled) PE to
increment its value of X. Now consider the statement

IF (BE) THEN (SI) ELSE (S2)
The (BE) represents 64 Boolean values, one corresponding to each
PE. The statement (S1) is then executed in PEs whose corresponding
element of (BE) is true. Then (S2) is executed in PEs correspond­
ing to false elements of (BE). For example, "IF X < 0 THEN X =
-X ELSE X = 0" would cause negative elements of X to be set posi­
tive and nonnegative elements to be set to zero. In effect, the
statements (Sl) and (S2) are executed under the control of an ena­
ble pattern (mode pattern) generated by the Boolean expression.
That is, the Boolean expression causes certain PEs to be disabled
before the statements are executed. Since IF statements can be
nested, these enable patterns must also be nested and in fact they
are kept in an execution-time stack.
Since (Sl) and (S2) can be any statement including a (go to) state­
ment, we have a problem. "IF (BE) THEN GO TO HERE ELSE GO TO
THERE" would imply that some PEs would begin executing a code
stream at label HERE while others would begin at THERE; i.e. dif­
ferent PEs would execute different code streams. If we allowed
this we would have to provide for all the facilities required to
control independent parallel code streams (semaphores, etc.) and we
would be providing a capability clearly not supported by the hard­
ware. Instead, we chose to restrict the meaning of (go to) state­
ments in this context. We require that all PEs execute the (go to)
if any PE does. Thus, if X < 0 is not FALSE, the statement

IF X < 0 THEN BEGIN
X + -X;
GO TO HERE
END

ELSE BEGIN
X + 0;
GO TO THERE
END

101

102 Programming

Since (S,) and (S2) can be any statement including a GO TO state­
ment, there is a problem. IIIF (BE) THEN GO TO HERE ELSE GO TO
THEREII would imply that some PEs would begin executing a code
stream at label HERE while others would begin at THERE; i.e.,
different PEs would execute different code streams. If this were
allowed GLYPNIR would have to provide for all the facilities re­
quired to control independent parallel code streams (semaphores,
etc.) and would be providi~g a capability clearly not supported
by the hardware. Instead, GLYPNIR chose to restrict the meaning
of GO TO statements in this context. The requirement is that all
PEs execute the GO TO if any PE does. Thus, if X < 0 is not FALSE,
the statement

IF X < 0 THEN BEGIN
X -+- -X;
GO TO HERE
END

ELSE BEGIN
X-+- 0;
GO TO THERE
END

would result in IIX-+- _XII followed by an unconditional transfer of
control to HERE. The ELSE PART woul d only be executed if X < 0 I~
is FALSE.
The statement "FOR ALL (BE) DO (S)II is equivalent to IIIF (BE) THEN
(S) II. It is in the language because it is mnemonically somewhat
more pleasing to some users than the IF STATEMENT.

I te ra ti ve S ta teme nts

The iterative control statements (LOOP, THRU, FOR, DO, and WHILE
above) cause the specified statement or block of statements to be
repeated either until some count is exhausted (LOOP, THRU, FOR) or
until some Boolean condition is satisfied (DO, WHILE). The state­
ment "LOOP I-+- 11,12,13 DO (S)" is similar to a FORTRAN DO loop,
except the test for completion (I -+- 13) is made before (S) is ex­
ecuted. The controlled variable (I above) must be a CU INTEGER
variable and the initial value (11), increment (12) and limit (13)
can be arbitrary arithmetic expressions but they must each result
in a single value (they may not involve swords or slices). They
are converted to integers if necessary. The statement IITHRU I DO
(S)" causes the s ta tement (S) to be repeated r times. III II must be
a CU variable or a constant (not a sword) and is converted to an
integer if necessary .

. The statement IIFOR I-+- 11 STEP 12 UNTIL 13 DO (S)" is similar to
the LOOP statement above except that the controlled variable (I),
initial value (11), increment CI2J and limit(I3) may be swords.
Thus each PE may execute (S) a different number of times, with dif­
ferent increments, and with different values of the controlled var­
iable, subject to the same restrictions on GO TO statements as
apply to IF STATEMENTS. For example, assume 13 is a PE INTEGER
(sword) whose ith element has the· value i (i.e. I3i = it 0 < i < 63)
and Z ;s a PE REAL VECTOR Z(64) (sword vector). Then the following
statemen~s would cause the upper triangular (including the main

The GLYPNIR Language 103

diagonal) part of Z to be set to zero:
FOR 1= 0 STEP 1 UNTIL 13 DO Z(I)+ 0

The statements "00 (S) UNTIL (BE)" and "WHILE (BE) DO (S)" cause
the indicated statement (S) to be repeated UNTIL or WHILE a Boolean
condition is satisfied. For example, assume X is a sword containing
real values> O. Then the following statement would decrement each
element of X by 1 until it is s 0:

WH I LE X > 0 DO X + X - 1
or DO X +- X - 1 UNTI LX> 0

Note that the UNTIL statement iterates until the Boolean expression
is FALSE, and the WHILE statement iterates while the Boolean ex­
pression is TRUE.

104, Programming

8. Example

At this point an example might be helpful. Suppose the memory has
a sword C of elements and the program must compute a new sword X, the
value of whose elements are the square roots of the corresponding' ele­
ments of C; i.e., X· = ICi' 0 ~ i 5 63. It could of course use the
built-in function SQRT(C) which would return the required sword. In­
stead let it use the it~rative formula Xj = ~(Xj + Cj/Xj) where it will
stop iterating when ((Xj)2 - Cj) < E. In FORTRAN wrlte this as follows:

DO 10 J = 1. N
9 IF (ABS((X(J)*X(J) - C(J))/C(J)).LE.EPSILN) GO TO 10

X(J) = (X(J) + C(J)/X(J))*.5
GO TO 9

10 CONTINUE
In GLYPNIR write this as follows where X and Care PE variables (swords):

L:IF ABS((X*X-C)/C) UPSILON THEN
BEGIN
X - (X+C/X)*.5;
GO TO L
END

Alternately, we could write
tmILE ABS((X*X-C)/C) EPSILON DO X+- (X+C/X)*.5

These programs would iterate simultaneously on all elements which have
not converged, until all elements have converged.

./ B. MI.cellanaou.

I

Subroutines resemble ALGOL procedures in that they can be declared
in the block head and they may return values. (They may also be declared
and compiled separately.) However, they differ in that they are non­
recursive and their arguments are called by value; i.e., the value of the
argument is passed to the subroutine. Arguments may be either words,
swords, or slices, and typed subroutines may return either word or sword
values.

I/O between the Illiac and the outside world is a function of the
operating system and control language and will not be discussed here
(cf (4)).

Limitations in the scope of this discussion have made it necessary
to simplify descriptions of some of the features of the language, and
descriptions of other facilities have been omitted entirely, among them:
ability to insert in-line assembly code (for optimization of kernals),
ability to control hardware register allocation, rather powerful MACRO
capabilities, and a number of intrinsic functions having particular rele­
vance to parallel processing. (Fer a complete, formal description of
GLYPNIR, refer to Layman and Baer (17).)

The GLYPNIR compiler was written in Burroughs Extended ALGOL and
runs on the Burroughs B6700 computer. It consists of approximately
20,000 ALGOL card images (excluding support systems) and requires approx­
imately 25 K of core for execution. It compiles at a rate of 1200 cards
per cpu minute.

Recent experience indicates that unoptimized code generated by the
GLYPNIR compiler runs 1.5 to 3 times slower than the same program coded
in Illiac IV assembly language (see, for example, (22)). Other experi­
ments on conventional machines indicate this is not unusual (6).

In addition to the compiler, several support packages are provided.
These include subroutine and macro libraries, a compiler verification
system, and debugging aids. Debugging of user programs can be done on
Illiac IV or on the Illiac IV simulator which runs on the Burroughs
B6700 computer. A dialect of GLYPNIR which compiles and executes on an
IBM 360 is also available and can be used for debugging (7).

105

7. Discus.lon

There are two basic problems in compiling code for a parallel com­
puter: (1) detection of parallel operations, and (2) parallel execution
of parallel operations.

The first problem involves the automatic analysis of a serially
coded algorithm to determine which parts of the code can be done in
parallel. Work in this area has been reported in the literature by
Muraoka (20), Kuck, Muraoka and Chen (9), and Lamport (11, 12), among
others. Alternately, explicit sp~cificatio~ of parallelism in the lan­
guage could be allowed. Techniques for doing this include but are not
limitea to allowing the programmer to refer to whole vectors or arrays
rather than just vector or array elements. This latter idea is not new
and is already possible in many languages (e.g. APL, PL/I).

Once there is a set of parallel operations to be performed, it
must be decided how to perform them on a given parallel machine. Not
all parallel operations can be done in parallel. The problem here
lies primarily inthe"ability of the memory system to access data in
parallel and to cause operand pairs to be properly paired. For example,
consider a memory system which consists of four separate memory modules,
each of which is capable of accessing independent memory addresses.
Assume that there is a 3 x 3 matrix stored in these me~ories as shown in
Figure 4.5. Notice that the program can access a row of this matrix (e.g.,
(ADD, A01, A02) in parallel since each element of a row is in a different
memory unit. The same is true of a column. However, the diagonal (AOO,
AU, A22) cannot be accessed in parallel since all these elements lie in
the same memory.

Another difficulty is that rows and columns are not in the same
order.

Illiac IV hardware is not capable of performing a realignment
efficiently unless it consists of a simple uniform shift of the data of
distance ± 1 or ± 8.

Thus, we have two problems which must be handled if we are to do a
parallel operation in parallel: (a) parallel memory access, and (~) par­
allel data alignment. Once these problems are solved, there remalns o~ly
rather simple arithmetic operations between already paired data. Failure
to solve either of these problems can cause serious, even complete de­
gradation to serial processing.

On Illiac IV, these problems are solved (at lea~t partially) by
using special storage mapping schemes which minimize access conflicts
and realignment problems. One of these, called I-skew storage, is illus­
trated in Figure 4.6. Notice this allows parallel access to rows and
columns but not to diagonals, and alignment of rows with columns requires
only uniform shifts.

This scheme works well for some problems. Other problems require
other schemes. Larger arrays must be sliced or folded in various ways
to fit them into these storage mapping schemes while minimizing address­
ing complexity. A great many schemes have been invented (e.g. see
Kraska (8), Millstein (19), Muraoka (21), and Kuck and Sameh (10»), and
each scheme is clearly superior to others for some program. The process
of selecting and using the right scheme at the right time is not well
understood and it is a monumental task for a compiler to assume. And
yet it must be done by someone if the compiler is to generate efficient
object code. (See also Lawrie (15, 16).)

106

The GLYPNIR Language 107

During the design of the GLYPNIR compiler, these problems and their
solutions were not well understood. Experiments with more elegant (and
risky) solutions were being undertaken (Abel (1». GLYPNIRls greatest
contribution would be to assure the availability of a language with a
compiler capable of producing reliable and efficient object code. To
accomplish this, the storage and alignment problems were left to the
programmers. This is why programmers using GLYPNIR must explicitly
express their parallelism in terms of swords and slices instead of
vectors, arrays, etc.

This is clearly not the most desirable solution to the problem.
But programmers would rather cope with these problems using GLYPNIR
than cope with the same problems using assembly languages.

o 2 3

Figure 4.5 A 3x3 matrix stored in a four-unit memory system

Figure 4.6 One-skew storage

B. Canclualana

From a programmer's point of view, one of the major deficiencies of
GLYPNIR is that it fails to hide the basic 64-wide parallel architecture
of Illiac IV. In effect, the programmer is required to restructure his
data and computation so that the computation can be done in parallel in
"strips" of width 64 or less. Currently, this is done by applications
programmers after much study of their parti-cular application and the
algorithms involved. For the compiler to do this restructuring, i.e.,
to hide the Illiac architecture, would entaH"generation :ofcode whose
lack of efficiency would violate one of the primary design goals.

In effect, there is a widened gap between the human conceptualiza­
tion of a computation and the macine architecture on which that computa­
tion must be performed. Of course, languages exist which allow explicit
specification of parallelism and these might help to bridge this gap.
Unfortunately, no one knows how to translate such languages into effi­
cient machine code, due at least in part to the difficulties of selecting
the proper storage mapping schemes. What is needed is a continuation
and consolidation of three current areas of research: (1) languages
and the representation of algorithms; (2) automatic analysis and modi­
fication of computation structures; and (3) "programmable" parallel
architectures. GLYPNIR is not the answer to this problem, but it pro­
vides~ reliable and useful programming tool in the interim.

108

I .•

!

~

The GLYPNIR Language 109

References

1. Abel, N., et al. TRANQUIL, a language for an array processing com­
puter. Proc. AFIPS 1969 SJCC, Vol. 34, AFIPS Press, Montvale, N.J.,
pp. 57-73.

2. Abel, N., et al. Language specifications for a FORTRAN-like higher
level language for Illiac IV. I~liac IV Doc. No. 233, *Illiac IV
Proj., U. of Illnois at Urbana-Champaign, Urbana, Ill., 1970.

3. Barnes, G.H., et al. The Illiac IV Computer. IEEE TC C-17, 8 (Aug.
1963), 746-757.

4. Bouknight, W.J., et al. The Illiac IV System. Proc. IEEE, 60, 4
(Apr, 1972), 369-388.

5. CFD, a FORTRAN-based language for Illiac IV Computational Fluid
Dynamics Branch, Ames Res. Cent., NASA, r10ffett Field, Calif.

6. Henriksen, J.C., and ~1erwin, R.E. Programming language efficiency
in real time software systems. Proc. AFIPS 1972, Vol. 40, AFIPS
Press, Montvale, N.J., pp. 155-161.

7. Hoffman, R.E. User's manual for GLYPLIT: a program to translate
Illiac IV Glypnir to IBM 360 PL/1. Rand Rep. No. R-857-ARPA
(Apr. 1972), Rand Corporation, Santa Monica, Calif., 74 pp.

8. Kraska, P. Array storage allocation. t1.S. Th., U. of Illinois at
Urbana Champaign, Dept of Computer Sci. Rep. No. 344, 1969.

9. Kuck, D., ~~uraoka, Y., and Chen, S.C. On the number of operations
simultaneously executable in FORTRAN-like programs and their resulting
speed-up. IEEE TC C-21 (Dec. 1972), 1293-1310.

10. Kuck, D., and Sameh, A. Parallel computation of eigenvalues of real
matrices, In Infor~ation Processing 71, Vol. II, pp. 1266-1272,
North-Holland Pub. Co., Amsterda~-London, 1972.

11. Lamport, L. The coordinate method for the parallel execution of DO
loops. Proc. 1973 Sagamore Computer Conf. on Parallel Processing,
pp. 1-12.

12. Lamport. L. The parallel execution of DO Loops. Comm. ACM 17, 2
(Feb. 1972), 83-89.

13. Lawrie, D.H., Glypnir: an overview of the language. Illiac IV Doc.
No. 230, Illiac IV Prof., U. of Illinois at Urbana-Champaign, Urbana,
Ill. 1970.

14. Lawrie, D.H. GLYPNIR programming manual. Illiac IV Doc. No. 232,
Illiac IV Proj., U. of Illinois at Urbana-Champaign, Urbana, Ill.,
1970.

15. Lawrie, D.H. Memory Systems for Parallel Array Processors~ Proc.
Eleventh Ann. Allerton Conf. on Circuit and System Theory. Allerton
Hse., Monticello, Ill., 1973, pp. 568-576.

16. Lawrie, D.H. Access requirements and design of primary memory for
array processors. (To be published).

17. Layman, T., and Baer, D. Glypnir Reference Manual. Illiac IV Doc.
No. 263, Illiac IV Proj., U. of Illinois at Urbana-Champaign, Urbana,
Ill., 1972, 239 pp.

18. McIntyre, D.E. Illiac IV software development. 1972 WESCON Tech.
Papers, Session 1, 1972.

19. Millstein, R.E. Control structures in Illiac IV FORTRAN, Comm. AGM
16, 10 (Oct. 1973). 621-627.

20. Muraoka, Y. Parallelism exposure and exploitation in programs.
Ph.D. Th., U. of Illinois at Urbana-champaign, Dept. of Computer
Sci. Rep. No. 424, 1971.

110 Programming

21. Muraoka, Y. Storage allocation algorithms in the TRANQUIL Compiler,
~i.S. Th., U. of Illinois at Urbana-Champaign, Dept. of Computer
Sci., 1969.

22. Ogura, ri. Sher. ~i.S., and Erickens, J.H. A study of the efficiency
of Illiac IV in hydrodynamics calculations. CAC Doc. No. 59,
Center for Advanced Computation, U. of Illinois at Urbana-Champaign,
Urbana, Ill., 93 pp., 1972.

Illiac IV documents are available from: Illiac IV Project.
Documentation. Institute for Advanced Computation. ~1ail Stop 233-14,
NASA Ames Research Center, ~1otfett Field, CA 94035.

c. Language Review

1. Introduction

This review is a brief examination of some existing programming languages
for the Illiac IV, namely GLYPNIR (1, 2), CFD (3), and IVTRAN (4). A
proposed lan~uage, ArPLE (5), is also discussed briefly to contrast with
the above languages. In this short overview, the comparison of the
various programming languages is organized from three points of view.

The first point of view is that programming languages, for Illiac
as for other computers, are tools of problem solving. High-level lan­
guages attempt to present the computational facilities of computers in
terms more understandable to the user than machine language. The pur­
pose is to help the user formulate a solution to his problem by providing
him with computational "abstractions" that are "close" to his problem
domain.

A second and closely related point of view is that programming lan­
guages are tools to implement solutions (programs). Over the past few
years, people have begun to realize the high cost of software production.
Interestingly, it has been found that the major part of this cost is not
due to the initial design and programming efforts, but lies with pro­
gram testing and debugging and with program maintenance. Even in these
conditions, the reliability and the "quality" of large software systems
is often questionable. Consequently, it is important to look at how
languages can simplify testing and debugging and facilitate program
maintenance.

lAPPLE (5), COCKROACH (6), and TRANQUIL (7) are various languages that
have been proposed for Illiac, but were never implemented. However,
COCKROACH is very similar to CFD, and many of TRANQUIL's features can be
found in IVTRAN. Thus, this overview is limited to CFD, GLYPNIR, and
IVTRAN. As much as possible, only the implemented subset of IVTRAN is
discussed.
This section is based on "A Critical Look at Some Programming Languages
for Illiac IV", by Fred Richard, lAC Newsletter, November/December, 1977.

111

112 Programming

The third point of view taken in the following sections is that
IlliacIV is a unique architecture. Although the development of soft­

ware forIlliac IV has similarities with the development of software for
any other computer, programming the Illiac is much different from pro­
gramming a classic sequential computer. Because the main advantage of
IllfacIV is its speed, Illiac applications are usually applications that

cannot be processed within a reasonable amount of time on most other
machines. Thus, the major design and programming issues for Illiac IV
result from a justified concern for efficiency. A first issue is to
isolate, during the design phase, the parallelism inherent to the appli­
cation, or to reformulate the problem to obtain some parallelism. The
second issue is to map this parallelism onto the Illiac IV. The two
major difficulties are:

1) Management of the two-level memory hierarchy, i.e., how to lay
out the data on the disk memory to provide fast access to por­
tions of the data sets needed at the same time for processing.

2) Management of the CU-PE ensemble, i.e., how to organize program
data within this complex to obtain good response time.

Evidently, these two difficulties cannot be resolved independently.
However, since most Illiac applications seem to be I/O bound, rather
than "CPU" bound, design decisions about the management of the memory
hierarchy seem more important for efficiency considerations.

In summary, the following sections provide a comparison of the
IlliaclV programming languages both from a usual point of view (lan- I

guage design, implementation, and usage) and from the point of view of II.
producing programs that make efficient use of the Illiac IV resources
(management of the memory hierarchy and management of the CU-PE com-
plex). The list of the following sections can be viewed as a list of
design issues for parallel machines like Illiac IV.

2. Computational Model Presented to the User

Any programming language defines some abstract machine for its user.
The purpose of this abstract machine is to hide (in part or totally)
the target machine and provide the user with facilities close to his
problem domain, in order to diminish the conceptual distance between
the initial problem specifications and the resulting program. Among
the languages examined, there are four distinct types of "abstract" ma­
chines presented to the user by the four languages considered:

1) APPLE presents generalized array and vector computations. This
simple revision of the APL does not require any knowledge of the
Illiac to produce a working program {whether efficient or not}.

2) IVTRAN presents a FORTRAN machine with some one-dimensional par­
allel facilities. IVTRAN can be considered in two different
ways. Since the IVTRAN compiler accepts standard FORTRAN and
attempts to isolate DO loops that can be executed in parallel,
IVTRAN can be regarded as a FORTRAN compiler that generates
code for the Illiac. Unfortunately, the techniques used by the
current compiler to extract parallelism are very restricted,
and the code generated for a FORTRAN program is very often code
running in one PE at a time. The parallelizing part of the
IVTRAN compiler must be considered as a tool to improve programs
(see Programming Support Report). On the other hand, IVTRAN
can be regarded as a FORTRAN based language with some parallel
facilities. The computational model provided by the full IVTRAN
language as it is currently implemented is an extension of
FORTRAN where some parallel operations can be performed along
one dimension of arrays of arbitrary size. IVTRAN requires some
knowledge of the Illiac architecture for the allocations of
arrays and the alignment of operands.

3) CFD is a FORTRAN-based language which requires the user to know
that the Illiac is composed of one CU and 64 PEs, organized in
linear order. There is a very clear distinction between control
variables and vector aligned variables. However, CFD hides lit­
tle of the Illiac from the user: the MODE must be manipulated
directly, transfers between CU and PE memory 'must be programmed,
and the limited arithmetic capabilities of the CU are reflected
in CU arithmetic expressions.

4) GLYPNIR, an ALGOL-like language, requires less detailed knowl­
edge of the Illiac IV than CFD. There are no limitations on CU
arithmetic (the programmer, however, should make sure that at
least one PE is enabled when such expressions are evaluated).
GLYPNIR differs importantly from the other languages in that it
presents the Illiac IV as a set of PEs operating simultaneously
and does not constrain the user to either a vector or an array
approach.

From the point of view of the abstract machines provided by CFD,
GLYPNIR, and IVTRAN, three serious criticisms can be made.

First, all three languages fail to abstract more than the CU-PE
complex of Illiac. The two-level memory hierarchy is not part of their
respective computational models. Management of the disk memory is left
entirely to the user and only very low level facilities are provided to
transfer data between 14DM and PE memory.

113

114 Programming

Second, CFD and GLYPNIR do not hide enough of the I1liac. They
force the user to think directly in terms of Illiac parallelism (e.g.,
64 simultaneous operations).

The last criticism applies to more current programming languages
besides CFD, GLYPNIR, and IVTRAN. In the case of Illiac languages, none
of them provide features that are at the same level of abstraction as
the user problem domain. Admittedly, it is difficult to provide, in
the same language, a facility like II 1 ayers of the atmosphere" to one
user and a facility like "particle" to another. However, it is net be­
ing too demanding to require some mechanism that would allow each user
to define the additional abstractiens that fit his problem.

3. Vectar and Array Prace •• lng

As an APL-like language, APPLE provides very high level capabilities for
vector and array processing. Because of the generality and the highly
dynamic behavior of some of its features, there are major difficulties
in implementing such a language efficiently on Illiac. One should not
neglect, however, the importance of such primitives to design large pro­
grams. They allow the programmer to concentrate his attention on high

'level optimizations instead of attempting to organize cleverly very low­
level code.

The use of vectors and arrays in IVTRAN, CFD, and GLYPNIR is more
primitive, often reflecting the physical limitations of the Illiac,
but also allowing the programmer various degrees of control on the use
of the machine resources.

PE Variables

The only way to obtain parallelism in IVTRAN and CFD is through
the use of arrays. Both IVTRAN and CFD provide arrays of up to
three dimensions. Parallelism is obtained by applying the same
operation to elements of an array that lie across PEs. Data
types are limited to integer and floating point. Furthermore,
CFD restricts the first dimension of arrays to be less than or
equal to 64.
In GLYPNIR, where the 11liac IV is explicitly presented as a set
of 64 processors operating simultaneously, a PE variable defines
a collective name for a set of 64 "simple variables" distributed
across the PEs. Similarly, a PE vector defines a set of 64
vectors of identical size. The basic data types provided by
GLYPNIR are similar to the data types of IVTRAN and CFD, but
the ALPHA "type" provides an escape hatch for the representation
of other quantities.

PE Variables Memory AfTlocation

CFD and GLYPNIR PE structures map directly onto the physical
memory. A one-dimension 64-element CFD array is equivalent to
a GLYPNIR PE variable. A two-dimension CFD array is equivalent
to a GLYPNIR PE vector. In CFD, the first dimension of an array
lies across PEs. Any other storage structure (e.g., skewed
array) that may he needed by the programmer must be'implemented
on top of the available structures, and each reference to such
"application structures II in the text is done by indicating the
CFD or GLYPNIR variables (which stand for areas of PE Memory)
along with an adequate subscript denotation. The abstraction
of the "application structures II is ultimately lost in the pro­
gram text.
IVTRAN offers a much more powerful scheme for array storage
where the programmer can choose which array dimension lies
across the PEs and can specify skewing or alignment of other
dimensions. There are two problems with IVTRAN array allocation
that often force the programmer to restructure his arrays to
obtain some efficiency. The first case consists of restructur­
ing an array A (2,30) into B (60) so that all elements lie in
one PE row. The second case consists of controlling the alloca­
tion of distinct arrays through EQUIVALENCE or DEFINE's to align

115

116 Programming

them and avoid inefficient routing during computation. Thus,
like GLYPNIR and CFD, IVTRAN often forces the programmer to re­
code his problem in a notation which no longer indicates the
logical structure of the data used in the computation.
A main drawback of all these languages is that they do not pro­
vide any facility to pack many data items in various fields of
the same word. Only GLYPNIR enables packing with the ALPHA data
type, but the field manipulations can become tedious.

Array Addressing

Routing

The selection of array components in CFD and GLYPNIR reflects
directly the addressing structure of the 14. Each array ref­
erence selects one element in each PEe The position of the
elements selected in different PEls may differ if the index
expression includes some quantity local to each PEe This fea­
ture is especially important to implement nontrivial algorithms
(see the IIdiagonal control paradigm ll and the lIadvancing wave
paradigmll described in (8)). However, other accessing methods
must be programmed with additional control structures, e.g., I •••

proper MODE setting to access a single element, and explicit
loop to iterate overall elements of a two or three dimensional
array.
IVTRAN provides a different approach. First, any array element
can be addressed separately, as in FORTRAN. All mode operations I

are hidden from the user. Second, the 11*11 notation allows ref- I.
erences to entire cross-sections (note that an IVTRAN cross-
section is a very restricted form of submatrix) for component-
wise operations; depending on the allocation, cross-section
operations may be parallelized. Finally array references within
a DO FOR ALL loop denote IIsimultaneous ll access to an entire row
of the array. IVTRAN does not allow IIlocal indexingll as in
GLYPNIR and CFD, since the array allocation is supposed to alle-
viate that need for numerical ap~lications. However, this re­
striction prevents simultaneous access to array elements that
lie across PEs. when the index set of these elements is not
regular (e.g., not· a row, column, or diagonal of a skewed two­
dimensional array), and forbids the implementation of nontrivial
control schemes (see (8)).

The simultaneous evaluation in many PEs of an expression in~
volving terms that are stored in various PEs requires routin~
of the operands. Syntactically, this routing is entirely trans­
parent to the IVTRAN user. The main nrawback of this approach
is that it is very difficult to estimate the routing cost of an
IVTRAN program, and thus to be able to modify storage structures
to improve the performance.
In GLYPNIR, the communication of values among PEs is accom­
plished by specifying a routing expression 1n an assignment, or
by using an intrinsic function with the appropriate routing ex­
pression. When a GLYPNIR assignment contains a routing specifi­
cation, the expression on the right-hand side of the assignment

Language Review 117

is evaluated in the source PEs, although these PEs may not be
part of the current MODE setting when the assignment statement
is entered. GLYPNIR allows a different routing distance to be
specified at each PE, and this provides a great amount of flexi-
bility, but is rather inefficient. .
The CFD approach to routing is much more restricted. Routing is
implied in an expression like A(*) + B(*+3) where each element
of B is transferred 3 PEs to the left before being added to an
element of A. Computation is entirely done at the destination
PEs. The routing distance must be identical for all elements
being routed.
The most important limitation of routing in CFD and GLYPNIR is
that only circular transfers (PEls are arranged on a ring) are
available. Clever programming seems required to make the PE
ensemble look like a square (ends off) of a torus. More elabor­
ate data manipulation functions (e.g., perfect shuffle) require
important programming effort.
In summary, two categories of array processing can be distin­
guished between IVTRAN, on the one hand, and GLYPNIR and CFD on
the other. The IVTRAN approach is to provide storage schemes
that are as general as possible without indicating precisely
the cost of using these structures. GLYPNIR and CFD provide
very low level storage structures that reveal entirely the
Illiac structure, but for which the implicit computational costs
are low and well defined.
Both approaches are flawed because they only provide a fixed set
of storage schemes that do not always correspoAd to the logical
structures dealt with by programs. The implementation of a
matrix using a skewed storage in GLYPNIR or CFD requires a com­
plex notation to be used every time a row, a column, or a diag­
onal of the matrix is accessed. Similarly, IVTRAN requires ob­
scure notation if two consecutive elements of a vector have to
be stored in the same PEe It is obvious that no language can or
should provide all possible structures. At the machine level,
there are few possible schemes in addition to the ones provided
by the above languages. However, the use of these structures
through an entire program leads to obscure notation and repre­
sents an important loss of abstraction. It would be preferable
to provide a scheme allowing the programmer (1) to define the
logical structures in terms of the basic storage structures of
the machine, in one part of the program, and (2) to refer to the
logical structures through the rest of the program. This hiding
mechanism should alleviate much of the program complexity, while
retaining control over its efficiency.

4. Scalar Procassing

In the context of this discussion, scalar processing means the set of
facilities offered by the various languages to perform computations
other than component-wise simultaneous operations (parallel processing).
A scalar expression evaluates to a single value. The elements of scalar
expressions are usually elements of what are called CU variables in CFD
and GLYPNIR, although this need not be.

Scalar processing in CFD is limited to the arithmetic capabilities
of the Illiac CU. Complex scalar expressions in CFD must be explicitly
performed in the PEs. Things are a little bit easier on the programmer
in GLYPNIR where arbitrary scalar expressions can be expressed. The
only problem is that at least one PE must be enabled to evaluate proper­
ly subexpressions involving floating point arithmetic. IVTRAN is even
s'impler.

An important disadvantage of the IVTRAN language is the provision
for numerous type conversions in expressions, which almost defeats the
purpose of type and hides the complex transformations that take place
during execution. Strong data type checking at compile time, as in
GLYPNIR, has been shown to eliminate many programming errors without
going through extensive debugging runs, and enforces an explicit nota­
tion throughout the program. For these reasons, this approach is pref­
erable.

118

I~

B. Control Structure.

The main drawback of all the languages reviewed is the lack of distinc­
tion between control structures that affect the instruction stream (i.e.,
modifying the instruction fetch by the CU) and control structures that
affect the data streams (i.e., modifying or selecting the set of PEs
that should execute forthcoming instructions). This is especially true
of IVTRAN where IF statements within a DO FOR ALL are interpreted dif­
ferently from regular IFs. This is also true of some control struc­
tures of GLYPNIR. For instance, the GLYPNIR IF statement can be used
for two different purposes. On the one hand, it can be used to signify
the conditional execution of some statements depending on the single
boolean value of some CU expression, as in usual "sequential" program­
ming languages. On the other hand, a GLYPNIR IF statement can be used
to signify the execution of a second sequence of statements in a comple­
Mentary set of PEs. Only one branch is meant to be executed in the
first case, while the two branches are executed sequentially in dis­
joint sets of PEs in the second case. Unfortunately, both cases are
handled identically in GLYPNIR and unnecessary mode manipulations occur
when the first type of IF is meant.

The distinction is made more clearly in CFD where two kinds of IDs;
scalar and vector, are provided~ The drawbacks of CFD are the restric­
tions on the selection expressions and the fact that such IF's can accom­
modate only a single statement. To restrict the execution of a series
of CFD statements to a subset of the PEs, MODE manipulation is required.
This feature is also available in GLYPNIR but, fortunately, it can be
avoided most often when programming in this language. The problem with
an assignment to the pseudo-variable MODE in CFD, as in MODE-SOMEPESONLY,
is that it is a highly dynamic feature that modifies the meaning of the
statements that follow. This kind of notation is dangerous (for example,
it remains in effect when a branch is taken, which complicates debugging)
and some other syntactic device (e.g., FOR<PE EXP>DO control structure
in GLYPNIR, or indexing with a control vector in APPLE) should be pre­
ferred.

Another problem with GLYPNIR and CFD concerns those control struc­
tures that indicate iteration over sub-arrays. In many instances (con­
sider the addition of two n x m matrices), the looping statements re­
quire the specification of indices and of index sequences unnecessarily.
This kind of overspecification reduces further the amount of abstrac­
tion available in both languages. The "*" (array cross-section) con­
struct of IVTRAN prevents the need for such overspecifications.

119

s. Input/Dutput

Although the management of the memory hierarchy seems to be a critical
factor in the overall performance of an Illiac program, neither GLYPNIR
nor CFO offers facilities beyond BUFFER IN, BUFFER OUT types of state­
ments for data transfer between the disk memory (140M) and PE memory.
They only provide access to the primitive facilities of the machine.
IVTRAN provides most of FORTRAN I/O, but at a prohibitive execution
cost.

There are two related aspects to the I/O problem on Illiac. The
first is creating 140M areas from TENEX files according to a user-sup­
plied map. Within an area, many distinct logical entities may be inter­
leaved, so that all operands required by some iterated step of the pro­
gram can be loaded in one single I/O request at execution time. The
second aspect consists of the various transfers between 140M and PE
memory during execution. The efficiency of a program depends on the
relative position of locations addressed by successive requests to the
140M. The mapping mechanism that enables the user to distribute data
over the physical disk space requires much knowledge of the program be­
havior and timing in order to produce a suitable map. Not only do the
current languages fail to include the memory hierarchy of thellliac in
their computational models, but they also fail to provide the user with
any help. Buffered I/O seems a minimum, with the compiler inserting
I/O requests in the generated code as early as possible. Second, an ~
estimation of the computation times between successive requests could
enable the compiler to provide an initial map for the user (note that
this may not always be possible). Furthermore, it should be easy for
the user to obtain run-time statistics on program behavior in order to
facilitate improvements of the initial mapping.

This lack of I/O structuring facilities is the major problem of
all languages reviewed. A minor problem is the lack of list directed,
possibly formatted I/O in GLYPNIR and CFO. The only type of I/O state­
ments currently offered by these languages implements transfers between
areas in PE memory and areas in disk memory. It is not possible to pro­
duce directly any readable output (program log, intermediate results
for debugging purposes, or simply final results), or to input data in
character form. IVTRAN provides this facility, but very inefficiently.
It should be possible to restrict these features so that most of the
formatting and conversions can be performed by pre- and post-processors
operating on TENEX (which is what users have to do currently to obtain
any readable output).

120

7. Program Davelopmant and Maintenance

IVTRAN appears to be the most sophisticated of the various languages re­
viewed. Its para11e1izing processor does provide some help in convert­
ing a FORTRAN program to a running III iac program. However, the user
should be warned that the capabilities of the parallelizer are limited
and that usually much program manipulation is required to obtain a pro­
gram which is at all efficient. Recoding in IVTRANis strongly recom­
mended. All these operations require a good knowledge of the inner
workings of the IVTRAN compiler. IVTRAN seems to provide a reasonable
debugging package.

Compared to IVTRAN, GLYPNIR offers limited debugging facilities and
run time checks. On the other hand, the compile time evaluation facil­
ity and the macro facility of GLYPNIR are important program development
tools that are not provided by any other Illiac language. These facil­
ities assist the development of programs in a systematic fashion, with­
out losing much of the initial abstraction and at no cost in run time
efficiency. As for CFD, no similar facility is provided to support pro­
gram development or testing.

There are a number of program development and maintenance tools
that are unavailable to the Illiac user, to cite a few: test data selec­
tion, program prover utilities, and symbolic dumps, for program valida­
tion; program transformation (source to source program 1I 0ptimization ll

)

and performance prediction utilities, for program enhancement. Although
some of these tools are just being understood and implemented for
"sequential ll languages, they are wide)y recognized as being relevant for
software production. There is no reason why their benefits could not
be exercised in the production of III iac software.

121

B. Closing Remarks

There are three important points that need to be considered seriously
before any new language for parallel machines like the Illiac can be
proposed.

1) Software development for the Illiac is not much different from
software development for other machines: this means that any
new language for Illiac should be designed to be part of a com­
plete programming system including extensive program develop­
ment tools. Serious restrictions on the language may be re­
quired to make these tools possible.

2) The management of the .Illiac memory hierarchy is an important
factor of the efficiency of the Illiac applications program:
this hierarchy should be manageable in the language itself;
the supporting software should facilitate the optimum use of
these resources. .

3) There are many ways a given program can be implemented in
parallel: a language should not force a user to view problems
only in terms of vectors or only in terms of simultaneously
executing PEs. No languages of manageable size can provide
all desirable facilities to all users. This means that a new
language should enable program-defined extensions (abstractions)
while leaving the user a good deal of control over the efficien­
cy of the generated code.

References

1. GL YPNIR Reference t1anua 1 by Terry Layman and Davi d Baer. 111 i ac IV
Document No. 263, University of Illinois (December 1972).

2. GLYPNIR Programming Notes I-B. lAC Doc. No. PD UBOOO-0004-A.
3. CFD: A FORTRAN Based Language for Illiac IV. Computational Fluid

Dynamics Branch, Ames Research Center, NASA.
4. The IVTRAN t1anual (Revised Edition). CADO-7051-2Bll t·1assachusetts

Computer Associ ates. (January 1975).
5. An APPLE Tutorial by ~·1arvin Schaefer. SDC-H15074/100/100. System

Development Corporation (September 1973).
6. COCKROACH Programming ~1anual, by N. E. Abel. University of Illinois,

June 1970.
7. TRANQUIL: Status and Prospects by N. E. Abel et al. Illiac Doc. No.

233. University of Illinois (January 1970).
B. Design of a Linear Programming System for the Illiac IV, by C. E.

Pfefferkorn and J. A. Toml in, Institute for Advanced Computati on.

122

I

I"

v. Applications

Historically, the development of applications on the Illiac IV have
gone through four phases. The first of these occurred in the period
from early 1973 until November 1975. In this phase prior to the Illiac
becoming operational a wide variety of application code development
'project~ were undertaken. Many of these were performed by university
and private sector personnel under contract to NASA or DARPA. The
computational fluid dynamics work performed by the staff of the Ames
Research Center CFD Branch is the notable exception. Generally the
work was done remotely over the ARPANET communication system. In ret­
rospect the marvel is that not all of these projects failed. The 11-
1iac was not ready; it was down almost all of the time and when it was
available, arithmetic errors without diagnostics were rampant.

During this period some programmers divided the Illiac into three
sections of 21 processors each and worked the problem three times in
parallel. Frequently the intermediate results from the three sections
would be compared. If any two agreed, that would be taken as correct
and the calculation would proceed, If no two agreed, the program would
branch back to the previous checkpoint to try again. The program would
be allowed to branch back dozens of times before giving up and aborting.

The machine was clearly designated as experimental. Unfortunately
not all of the personnel attempting to develop application codes real­
ized the serious implications of the experimental status. As a result
the I11iac developed the reputation of a disaster machine.

To some degree the reputation was deserved. The Goddard Institute
for Space Sciences Global Circulation Climate Model implementation
(conversion) effort, for example, was undertaken during this period;
it was never validated as working. At first direct line for line con­
version was attempted. Later a restructuring of the code to better
match the I1liac characteristics was tried. At last report, after a
major effort, the I1liac version of the code ran to completion but it
didn't make weather. Negative atmospheric pressures would occur in the
course of the simulation.

To some degree the reputation was not deserved. The conversion of
the Fleet Numeric Weather Central Primative Equation Weather Model con­
version was another project that was begun and later abandoned. This
exercise depended not only on an Illiac advertised as experimental, but
also on the IVTRAN compiler that was advertised not yet to have been
debugged. The failure of this project is not properly ascribed to the

123

124 Applications

Illiac, but to impatience to use systems not yet in place. Similar
stories are legion.

This period was very beneficial to the Illiac project, which at
this point had been institutionalized as lAC. The experiences of the
user community were a great help in identifying the glitches of the
Illiac and expedited the advent of its operational status.

Throughout this period lAC provided the services of support repre­
sentatives. Three people on the lAC staff provided hand holding and
liaison. The burden of successful code devplopment rested with the
contractor orqanization. Assistance of support representatives was
invoked primarily for trouble shooting.

Remarkably some application code development projects succeeded in
this environment. One of these was the SAM-IV project by the Mathemat­
ical Applications Group Incorporated. SAM-IV is a radiation penetra~
tion/transport model. At the time there was a controversy as to whether
Monte Carlo methods could be efficiently programmed on a parallel archi­
tecture. Three simultaneous contracts were awarded to explore this
question. Two of the contractors worked on the problem and reported
that Monte Carlo techniques just were not appropriate for a parallel
mathtne. The third, MAGI, succeeded with SAM-IV. This case exhibits a
phenomenon that continues today, fifteen years after the inception of
the Illiac; namely the unpredictability without major analysis of
whether a particular algorithm will lend itself to parallel implementa­
tion.

The second phase of applications development on the Illiac IV
occurred in the period from November 1975 until October 1976. In this
period the Illiac IV was almost exclusively devoted to one application
project. This was the Fixed/Mobile Experiment sponsored by the Tacti­
cal Technology Office of the Defense Advanced Research Projects Agency.
This effort was classified to the DOD Secret level, which required that
the Illiac itself be secured. Furthermore, a high speed data link with
encryption had to be established to a remote site. The principal con­
tractor for applications code development was Ensco, Inc., Springfield,
Virginia.

The details of the activity cannot be discussed here but the effort
was ultimately successful and developed confidence in some sectors that
the Illiac could be counted upon for useful work. On the other hand
all other application activities during this period were relegated to a
time available priority, so not much of note can be reported.

The third phase of applications development on the Illiac covered
the period from October 1976 until June 1979. During this period under
the direction of the sponsors, NASA and particularly ARPA, the Institute
for Advanced Computa tion acti ve1y supported appl i cations development.
A Projects Department staffed with applications specialists was estab­
lished inhouse to provide expertise and project management to various
federal agencies. An Applications Development Department was establish­
ed in the Washington, D.C. metropolitan area to provide close interac­
tion with various user federal facilities. This turned out to be a
highly successful period for applications on the Illiac.

This period started slowly, with many potential users wary due to
the bad reputation of the III iac from the pre-1975 days when many
efforts did not go well. Gradually, however, activity picked up. In
1978 dozens of applications projects funded by a wide variety of non­
sponsor federal agencies were underway in diverse application areas.

Applications 125

The interagency funds transfer process brought the Institute substan­
tially more support in this time frame than was provided by either of
the sponsor agencies.

June 1979 saw the start of the current phase of Illiac IV applica­
tions development. DARPA decided that the success of the phase three
period had demonstrated the utility of the Illiac to a wide spectrum of
the computational community. Hence DARPA sponsorship was no longer
required so the Illiac became a NASA machine. NASA thereupon committed
the Illiac to NASA projects, closed the Washington Applications Devel­
opment Department. reduced the lAC staff from about 115 people to about
85, and began a practice of entertaining no new interagency relation­
ships.

This chapter begins with a summary of the applications projects
that were active during 1978 to illustrate the variety of efforts that
can effectively exploit this national computational resource, provided
that the proper staff and facilities are in place. The sections follow­
ing this summary section consist of edited articles about specific
application projects in the areas of computational fluid dynamics,
image processing, mathematics, seismic research, and astronomy.

The application reports of this chapter are certainly not exhaus­
tive. Many articles were considered but not included for lack of space.
It is hoped that these examples illustrate the major features of prac­
tical Illiac codes.

A. Summary

The uniquE processing capabilities at the Institute are used by various
government agencies for addressing large computation problems and those
scientific research efforts which can efficiently employ the computa.
tional power and parallel design of the Il1iac IV. This section pre~
sents an overview of these efforts during 1978.

This section is organized by application areas. These are divided
into programs, which are further subdivided into specific projects.
The application areas are those broad disciplines which lAC has identi­
fied as requiring large scale computing as well as being amenable to
parallel processing.

Within these broad application areas, programs are groups of re­
lated efforts that require particular expertise. Initially, program
areas were developed by using the expertise developed in ongoing pro­
jects.

1. Computational Fluid Dynamics.

Research in this area is mainly performed by the Computational
Fluid Dynamics Branch at the NASA Ames Research Center. In a
recent public statement, Harvard Lomax, Chief of the Computation­
al Fluid Dynamics Branch, identified the use of the Illiac IV as
crucial to the recent advances in computational fluid dynamics.
It is the goal of the CFD Branch to develop computational tools
of sufficient strength to assist and to some degree replace the
use of wind tunnels in the design of airfoils.

A. TRANSONIC FLOW PROGRAM

AIRCRAFT BUFFET PROJECT - Code developed by the Computational
Fluid Dynamics Branch solves the Navier-Stokes equations for
2-dimensional unsteady transonic flow. Results are compared with
wind tunnel data with the goal of developing a production code to
investigate aircraft buffeting.

TRANSONIC AILERON BUZZ PROJECT - A recently developed viscous­
flow airfoil code for the Illiac IV was used to simulate transonic
aileron buzz.

126

I .•

Sununary 127

The thin layer Navier-Stokes equations are solved with the turbu­
lence modeled by a two-layer algebraic eddy viscosity model. The
results are in essential agreement with the wind tunnel data.
The code uses up to a 64 x 128 grid of pOints.

3D TRANSONIC FLOW PROJECT - Illiac code developed by the Computa­
tion Fluid Dynamics Branch is used to solve the Navier-Stokes
equations in application to three-dimensional transonic flow
problems. The flow field around complicated surfaces may be cal­
cUlated. This code is a research tool suitable for a very large
processor. Modifications are being made to make the code run
faster and to make it useful for development purposes using
smaller computers.

B. TURBULENT FLOW PROGRAM

INCOMPRESSIBLE TURBULENCE PROJECT - Turbulence modeling for
three-dimensional incompressible flow is being investigated for
the Navy Department. The Navier-Stokes equations are solved
using a spectral algorithm. Flow fields are computed on the
Illiac and then reduced on the CDC 7600.

SIMULATION OF TURBULENCE PROJECT - Turbulence and transition
phenomena were simulated by solving the compressible Navier­
Stokes equations for several three dimensional geometrics includ­
ing a circular jet. The mean velocity profile and turbulent
intensities in the resulting turbulent jet are in agreement with
those observed in subsonic jets. More detailed comparisons with
experimentally measured shear stresses and temporal correlations
are planned. These classes of codes use Fast Fourier Transforms
and finite difference methods on grids as large as 128 x 64 x 64
and make heavy use of the Illiac IV disk system (140M).

TURBULENT CHANNEL FLOW PROJECT - Code is being written to
solve the Navier-Stokes equations for 3-dimensional unsteady
incompressible flow. Small-scale turbulence is taken into con­
sideration. Comparison is made with experimental measurements
in order to understand the physics of turbulent flows near a
boundary.

20 TURBULENCE SIMULATIONS PROJECT - Illiac code developed
by the Computational Fluid Dynamics Branch is being used to
solve the Navier-Stokes equations in application to two-dimen­
sional flow. The flow over simple surfaces is calculated to
develop a model for turbulence.

3D TURBULENCE PROJECT - Vortex methods are used to solve the
Navier-Stokes equations. Boundary layer turbulence simulations
for 3-dimensional incompressible unsteady flow are computed.
Comparison is made to measurements of actual fluid flow in order
to develop the method of solution and to understand the physics
of the problem.

128 Applications

3D TRANSONIC FLOW PROJECT - Illiac code developed by the Com­
putation Fluid Dynamics Branch is used to solve the Navier-Stokes
equations in application to three-dimensional transonic flowrrob­
lems. The flow field around complicated surfaces may be calculated.
This code is a research tool suitable for a very large processor.
Modifications are being made to make the code run faster and to
make it useful for development purposes using smaller computers.

VISCOUS SEPARATED FLOW PROJECT. A code which uses an
implicit method for solving the three dimensional Reynolds
averaged Navier-Stokes equations was developed for the Illiac
IV. The calculations compare well with experimental profiles,
The code currently uses a 40 x 40 x_40 grid. It is being modified
to simulate the flow around a wing using an 88 x 40 x_48 grid.
This code is a path finder on the way to engineering use of the
three dimensional Navier-Stokes solutions for developing airfoils.

C. VEHICLE MODELLING PROGRAM

AXI-SYMMETRIC WAKE PROJECT - The Galileo Project involves
entry into the Jovian atmosphere, This proolem is oeing studied
for the Ames Thermal Protection Branch. Compressible~ supersonic
flow behind the initial shock wave of an entry vehicle is being
calculated and compar.ed to experimental measurements to determine
entry conditions.

SPACE SHUTTLE PROJECT - Euler's equation with chemical non­
equilibrium is solved in two and three dimensions by the finite
volume method with three separate codes. Supersonic and hyper­
sonic fluid flow simulations about the Space Shuttle Orbiter are
calculated. The results will complement the experiments that
Ames Research Center will place on the early Shuttle flights,
and the code may possibly be used to process Shuttle data.

2. Dn-Drbit Satellite Support

TERRA PROJECT - There has been a continued thrust within lAC
to support projects concerning satellite tracking and geodetic
parameter estimation. Recently the Navel Surface Weapons Center
funded lAC for the implementation of a program to form matrices
of preprocessed satellite observation data, an essential step in
determining accurate geodetic parameters.

3. Physics/Chemistry /Mathematics

A. CHEMISTRY PROGRAM

MOLECULAR DYNAMICS PROJECT - Under the auspices of the Computa­
tional Fluid Dynamics Branch at Ames, Drs. Chris Jesshope and
James Craige with the University of Reading, England, have just
completed a three dimensional molecular dynamics simulation model
for the Illiac IV. The model is able to simulate from 8 to 10
thousand particles, and the code will be made available for
general use.

Sunnnary 129

One motivation behind the development of this code is the
comparison of the power of various machines. It is hoped that
the same program will be developed for the IBM 360/195, CDC 7600
and the CRAY so that an accurate comparison can be made. This
will help to assess the power of the different architectures of
these machines for this application.

B. MATHH1ATICS PROGRN1

RATIONAL Cm1PUTATION PROJECT - Dr. Newman at the University
of California at Santa Barbara under funding from the Air Force
Office of Scientific Research has been using the I11iac to
invert exactly matrices with integral coefficients. The method
uses modular arithmetic and the Chinese Remainder Theorem to
express the answer using rational numbers.

NUMBER THEORETIC FUNCTIONS PROJECT - Dr. Lehmer of U.C.,
Berkley continues to use the Illiac for the evaluation of functions
with number theoretic importance.

C. OPERATIONS RESEARCH PROGRM-1

MULTI-STAGE GAMES PROJECT - A proposal for developing
methods for solving multi-stage games and dynamic programming
problems on the Illiac was funded by the Office of Naval Research.
This research is currently underway.

A consul ti ng proj ect for the U. S. Army ~1i 1 i tary Personnel
Center was carried out to enhance their "Objective Force ~1odel"
and was completed successfully.

4. Selamlc

The seismic applications area was formed to apply the
Institute's unique computational resources to large seismic models.
The 14TRES code, which simulates near-field radiation from earth­
quake sources, was implemented on the Illiac IV and successfully
completed all acceptance tests early in 1978. One model use is
to discriminate between natural and nuclear events in support of
the nuclear test ban treaty. Another is the assessment of hazards
associated with earthquakes. In all of these areas, there is an
acute need for accurate numerical simulation of earthquake induced
ground motions. Major support for this application area is pro­
vided by the Nuclear t1onitoring Research Office of DARPA.

A. SEIStlIC APPLICATIONS SYSTH1 DEVELOP~1ENT PROGRN1

ACTION PROJECT (A finite element earthquake simulation
program.) - The Institute continues with its design work
on ACTION. Contact with current and potential users consis­
tently identifies three primary requirements for a seismic simula­
tion code. These are large size, flexibility and low run cost.
These requirements will be incorporated in the ACTION system.
The finite element philisophy underlying this system and the
modularity of the code will make this code well suited to the

130 Applications

user I S needs.

B. SEIS~UC APPLICATIONS SYSTn1 ENHANCEMENT PROGRAM

I4TRES ENHANCEMENT PROJECT - In order to allow the I4TRES
code solve a wide range of problems, the seismic fault
mechanism was expanded to incl ude non-uniform pre-stress and
unilateral rupture. These alterations were designed, programmed
and debugged during 1978. Toward the end of 1978, design plans
were underway to expand the code to include multiple materials.

C. SEISMIC APPLICATIONS SYSTEMS MAINTENANCE PROGRAM

I4TRES MAINTENANCE PROJECT - The most recent development
work has been centered largely on developing an algorithmic
definition of the I4TRES code to permit order1y and efficient in­
clusion of proposed modifications. Additionally, work has gone
forward on providing an improved results scanner for more effi­
cient monitoring of the output of production runs.

D. SEISMIC APPLICATIONS PRODUCTION PROGRAM

I.J

SSS PRODUCTION PROJECT - The I4TRES system was employed
for the Air· Force Geoohvsi5:s Laboratory in cooperation with
Systems, Science and Software, Inc. These runs were aimed, in
part, at determining the effects of an elastic material behavior l-
in the region immediately surrounding the rupture surface.

N~C PRODUCTION PROJECT - III i ac runs are pl anned for a
recently funded Nuclear Regulatory Commission study. These
runs are intended to assess seismic hazards at the San Onofre
Nuclear Power Plant using the I4TRES system.

E. SEISMIC APPLICATIONS SCIENCE PROGRAM

r1ADARIAGA COMPARISON PROJECT - I4TRES runs were completed
during 1978 to validate the published results of R. Madariaga
for a circular fault.

IS. Signal/Image ProceSSing

lAC made substantial progress in 1978 in developing image
and signal processing capabilities. The results of this effort
are apparent in the variety and extent of the image processing
tasks currently-underway. In the past, most of the effort has
been directed toward LANDSAT processing; however, in the past
year, a number of applications involving digital cartography
were begun at the Institute.

A. IMAGE PROCESSING PROGRAM

LANDSAT (EXPERIMENTAL NASA EARTH RESOURCES SATELLITE)- Much
of the effort in this area centered on the software system
created for processing LANDSAT images called EDITOR. An lAC

Sunnnary 131

version of this system was established and user documentation
compiled, published, and distributed under an arrangement with
Ames Research Center. A second associated project was completed
for the United Stated Geological Survey Geography Program that
analyzed alternatives for data movement of LANDSAT image data
within the lAC computer environment.

Due to the establishment of the EDITOR command system at lAC,
there has been a marked increase in the planned use of the lAC
for LANDSAT processing. For example, th~ U.S. Department of
Agriculture substantially increased its use during 1978. USDA
currently has plans to process over 30 scenes by the middle of
1979.

The USGS Geography Program has also increased its Illiac IV
use. In 1978, a program was completed to classify the land cover
of a large region of the Alaskan coast. In addition, USGS is in
the process of classifying ground cover in Northern California
for use by the Land Information and Analysis Division.

Ames Research Center has also extended its use of the Illiac
IV and EDITOR for land use analysis. A number of projects were
begun in 1978. Among them is a project to categorize and measure
forest use and potential forest use in the State of California.
A second project being undertaken for Ames by Humbolat State
College requires applying the LANDSAT analysis programs to other
agricultural analysis within the State of California. The State
of Hawaii is also using the system. Land use classification has
been made of the Island of Maui and the work is continuing. The
State of Idaho has recently completed an analysis of agricultural
acreage in the Snake River region.

Besides providing raw computational resources, lAC is direct­
ly involved with the complete processing of LANDSAT data. Ames
Research Center has requested production support of the California
Forest Inventory Project. Under this project, lAC personnel
will convert over 60 formatted images from the Jet Propulsion
Laboratory into EDITOR format and will manage the running of this
large production effort.

B. SIGNAL PROCESSING PROGRAM

SASE PROJECT - In support of DARPA's Tactical Technology
Office (TTO), lAC developed a high-speed secure link between lAC
and ARPA Research Center at r·1offett Fi e 1 d and used th i s 1 ink
successfully for secure processing on the I11iac IV in a prior
year. In 1978, lAC achieved a major success using the I11iac
and this link.
. Besides providing the I11iac IV and operators, lAC also
provided software support which included:

• Improving the reliability of the LINK;
• Improving file handling software to transfer variable

length files on the PDP-IO, a medium-sized computer
at the ARC computing center; and

• Developing a graphic subsystem for the ARC system.

132 Applications

SAR PROJECT (Synthetic Aperture Radar) - lAC has supported
a continued effort in the area of SAR processing. lAC was funded
through an Applications Notice to NASA Headquarters to support
Lockheed in developing an on-board analogue processor for SAR
data. They intend to use an algorithm called QSARP and lAC is
currently testing the effects of round-off on this algoritnm,

C. DIGITAL CARTOGRAPHY PROGRAM

TEXTURE MEASUREMENT PROJECT - In 1978, lAC developed a
parallel implementation of an image texture measurement process
denoted as MAXMIN. The Engineer Topographic Laboratories will
use this algorithm to detect locations on stereo photographs
which would be appropriate for extraction of topographic eleva­
tion data. After test and verification, this code was applied to
over 30 production images with the results delivered to the ETL
analysts. This texture measurement process is being continued
with the development of a second algorithm known as a grey scale
spatial dependency matrix technique. This technique provides a
different way to characterize a scene's texture information.

RELAXATION SMOOTHING PROJECT - A second project is also
being undertaken for the Engineer Topographic Laboratories.
This is a major effort to develop a relaxation-based smoothing
technique that will improve the quality of elevation data 14
extracted from stereo pair photography.

VECTOR TO RASTER CONVERSION PROJECT - A major cartographic
effort of a different type is currently under study for the
National Ocean Survey of the National Oceanic and Atmospheric
Administration (NOAA/NOS). One of their most demanding product­
ion tasks is the creation of map overlay transparencies. A fis­
cal year 78 qualitative analysis of this process indicated a high
probability that the Illiac IV would provide an effective and
economical alternative to serial processors in the conversion of
NOAA/NOS digital data bases (which are vector in nature) to a
format suitable for recording on a raster plotter device. An
extensive quantitative analysis is currently underway to find
optimum techniques by which this process could be implemented on
a production basis.

AUTOMATED INFORMATION SYSTEM PROJECT - National Oceanic
and Atmospheric Administration, National Ocean Survey (NOAA/
NOS) is moving in the direction of automating the production
of NOS mapping and charting products. lAC has delivered to
NOAA/NOS a qualitative assessment and proposal in support of this
activity. The proposal has been funded for lAC to produce a
system specification for their Automated Information System (AIS).
This effort will involve system design, hardware, and software
specification, the validation of the hardware configuration and
the establishment of the operating environment for a system which
generates NOS nautical charts. The objective will be to specify
and deliver production work stations which fulfill NOAA/NOS's

Sunnnary l33

requirements. There will be 10 nautical chart work stations and
one geodetic control diagram work station (for the National Geo­
detic Survey).

FILTERING TECHNIQUES PROJECT - A project for the U.S. Geo­
loqica1 Survey Topographic Division investigated the use of
convo 1 uti ona 1" and Fourier transform fi 1 ters" to smooth topographic
elevation data.

NGS/READJUSn1ENT PROJECT - The Nati ona 1 Geodeti c Survey
has funded a design study to determine the feasibility of
using the I11iac for their 1983 readjustment of the North Ameri­
can Geodetic Network. The object is to employ all the available
surveying information with appropriate weights to obtain more
accurate estimates of the monument positions using a least
squares fit. This problem represents the largest set of non­
linear equations for which a solution has ever been attempted.

s. Weather/Climate Simulation

STRATOSPHERIC ~10DEL PROJECT - Usi ng the ARPANET, Dr. Fred
Alyea of MIT has been developing a dynamic atmospheric model
incorporating chemistry and heat exohange. The model stretches
from the ground to 72 kilometers, but the primary interest is the
stratosphere. The Jovian stratospheric model is ready to 9perate
since it uses no dynamics. The fully dynamic model is in the
final testing stages and may use as many as 200 Il1iac hours a
year when it gets into production.

TRAJCAL PROJECT - lAC finished a system design for putting
the trajectory part of a model which calibrates the dis­
position of effluents in the atmosphere on the I11iac IV for
AFTAC (Air Force Technical Applications Center). This is a
post-facto trajectory mode intended primarily for use in calcu­
lating the transport, diffusion, and disposition of effluents on
a regional/continental scale. The I11iac cod~ would be based on
a version of this model currently running on a 360/75 at Patrick
Air Force Base in Florida.

B. Computational Fluid Dynamics

Aircraft and aerospace vehicles have become increasin~ly large and
complex. Both the difficulty and the cost of evaluatlng new aerodynam­
ic designs are rising exponentially. If this trend persists, it could
require many years of wind tunnel testing to develop the next major
aerospace vehicle beyond the Space Shuttle. The plot in Figure 6.1 shows
the enormous increase in development ti:me over the history of manned
flight.

In contrast, the cost of computer simulated fluid flow analysis
has been decreas ing by a factor of 10 about every five years. These I~
trends have had an enormous impact upon computational fluid dynamics.
Computational physics can replace or supplement the wind tunnel for
engineering design and test purposes when the physics of the problem
is well enough known to be represented by an accurate mathematical
model, and when the computational resources are available to obtain a
numeric solution in a practical amount of time at a competitive cost.

In general, the objectives of computational aerodynamics are to
decrease the time and cost required for the design of new aerospace
vehicles and eventually to provide more accurate simulations of flight
aerodynamics than can be obtained from ground based experimental test
facilities. In assessing the relative roles of computer and wind-tunnel
simulation facilities, it is i~portant to recognize that their inherent
limitations, tabulated below, are complementary:

Wind Tunnel
Model Size
Velocity
Dens i ty
Temperature
Wall interference
Support interference
Aeroelastic distortions
Atmosphere
Stream-uniformity

134

Computer
Speed
Storage
Accuracy of equations

of motion

w
::;;
i=
(!)
z
i=
~ 1000

10

Computati onal Fl uid Dynamics

WIND TU NNEL TESTING TIME

Figure 5 .1

d.C~
¥)~~~

Dc'~t~ r '" DO<

t DC-3

1940 1960 1980 2000

YEAR

~Jind tunnel testing time

135

136 Applications

The uses of any wind tunnel are restricted by the size of the
model that can be placed in it and by its maximum pressure and velocity
of flow (Reynolds number). Wall and support interference limit the
accuracy of such simulations, particularly in transonic wind tunnels.
Artificial aeroelastic distortions of model wings induced by high
dynamic pressures further significantly limit high-Reynolds-number
transonic tunnels. The temperature range and the type of atmosphere
restrict the ability to simulate atmospheric entry aerodynamics; stream
non-uniformities greatly limit the accuracy of simulations of the flight
boundary-layer transition.

On the other hand, typical computer simulations - in which the
governing Navier-Stokes equations of fluid motion are integrated over a
large number of grid points throughout the flow field - are limited
principally by speed and storage. More exact approximations become
possible as both computing power and the accuracy of turbulence models
are increased. Some progress has been made on the Illiac IV in over­
coming these limitations, which determine the time and cost required
to simulate a given flow.

The Computational Fluid Dynamics Branch at NASA Amesohas made
major contributions to the field of computational aerodynamics under
the outstanding leadership of Harvard Lomax. The work of this branch
has explored recent advances in computer capabilities to obtain aero­
dynamic flow simulations efficiently from methods quite independent of
traditional wind-tunnel testing. Their work on the Illiac has helped
extend the scope of these simulations of fluid flow dynamics to include 1'l1li

pnoblems that would have otherwise been impossible or impractical to ~
solve.

1. Parallel Computation of Unsteady, 3-D, Chemically
Reacting, Nanequlllbrium Flaw Using a Time-Split Flnlte­
Volume Method an the ILLIAC IV

The system of unsteady, three-dimensional, partial differential equa­
tions used to simulate the inviscid flow of air in chemical nonequili­
brium is approximated by a set of factored, finite-volume difference
operators where the effect of chemical production is also contained in
the factorization. The method is similar to that of Rizzi and Bailey
(NASA SP-347, 1975, pp. 1327-1349), except for the emphasis on vector­
matrix reformulation designed to be suitable for the special architec­
ture of modern advanced computers (e.g., the Illiac IV, CDC 7600, or
STAR). The systematic application of the operators yields a second­
order accurate numerical algorithm. The method is programmed in the
vector FORTRAN-like language called CFD: all results for the examples
given were obtained from the Jl1iac. The problem described is a numer­
ical simulation of the flow in the high temperature stagnation region
of a reentering Space Shuttle orbiter flying at large angles of attack
(400). Capability for treating arbitrary geometry in a flow containing
subsonic, sonic, and supersonic regions is demonstrated by this method.
The air chemistry is described by a five-reaction model which includes
the three dissociation reactions for N2, 02, and NO and the two rear­
rangment reactions involving NO. The vector-matrix formulation and the
unique disk-memory mapping results in extremely efficient data manage­
ment f,or the architecture of the Illiac and makes maximum use of the
Illiac's "data crunching" capability. Comparative running times are
given for the Illiac IV and the CDC 7600.

INTRODUCTION

The new generation of very fast, special purpose vector computers
(e.g., Illiac IV, CDC STAR, CDC 7600, TI ASC, CRAY 1, and IBM
370/195) has made possible the numerical simulation of complicat­
ed flow fields. including chemical reactions, about geometrically
complex bodies(l). The need for these solutions results partly from
the continuing interest and usefulness of more sophisticated atmos­
pheric entry vehicles such as the space shuttle. To obtain such
results, the split finite-volume method discussed in this paper is

Based on an article by Walter A. Reinhardt in the lAC Newsletter, October,
1977.

137

138 Applications

a viable numerical method. The equations that are approximated
using this scheme are quite general and, with the exception of
the easily modifiable chemical reaction model, are applicable for
studies of combustion, pollution, and other chemically reacting
flow phenomena, where convective transport effects dominate the
influence of radiative, viscous, and other transport mechanisms.
The resulting numerical simulations are particularly valuable to
the vehicle designer (2,3,4,5) as a source of information for estima­
ting heat transfer rates, boundary layer effects (6) (e.g., the in­
fluence of flow separation and entropy layer "swallowing"), surface­
material corrosion, as well as the aerodynamic loads acting on
the spacecraft during atmospheric entry. Wind-tunnel tests alone
cannot provide such information (3,4). The effect of chemical
reactions greatly complicates the scaling of such data to what
happens in full scale actual flight.

The shock perturbed flow about a shuttle orbiter flying at a
large scale angle-of-attack during atmospheric entry is interlaced
with embedded discontinuities that enclose non-reacting or reac­
ting regions, depending on the altitude and velocity along the
flight trajectory. The flow field itself contains a large variety
of possible flow phenomena. To numerically simulate these flows
requires several varied methods. Within the nose region, there
exists subsonic flow (in the stagnation region), transonic flow,
and supersonic flow. Here the numerical simulations (7,8,9,10~11)
generally involve marching the unsteady fluid flow equations in
time, starting with an initially specified estimated flow field. ~
The marching contin.ues until unsteady effects are no longer ob-
served.

The flow field on the exit boundary of this soluation (i.e.,
on the "data surface") serves as the initial condition for numeri­
cal methods that approximates the steady representations of the
flow equations. As long as the exit boundary lies in supersonic
flow, the problem is hyperbolic in the direction of the flow. The
coordinate in this direction is time-like; the data surface can
then be marched step-wise down the body either as a generalized
coordinate (12,13,14) surface, as a plane, (15,16) or by method-of­
characteristics (17). Still other methods solve this flow using the
unsteady flow equations simtlarly as in the noise region (18,19).
Canopy shocks, induced by body curvature, and cross-flow shocks
that result from strong cross flow at large angles of attack, are
also found in the numerical simulations. (15,20,21) The intersec­
tion of the bow and wing shocks, besides introducing subsonic flow
pockets at the wing leading edge, yields a variety of complicated
flow discontinuity effects such as multiple shocks and slip sur­
faces. These have also been investigated in numerical simulations
(15,20).

The subjects of this paper is the finite-volume method first
proposed by ~1acCormack, Warming and Paullay (22,23) and generalized
by Rizzi, ibid Schiff, 24 Hung, (25) and Diewert (26). The method
is quite flexible and has been employed by Rizzi ibid in the calcu­
lation of the supersonic flow as well as the subsonic flow regions
about the space shuttle. The method has also been used in inviscid
studies of jet counterflow (24) as well as the two-dimensional vis-

Computational Fluid Dynamics 139

cous studies of separated transonic flow over an airfoil (26) and of
separated supersonic flow over a compression corner (25).

The method is based on the integral conservation-law repre­
sentations of the fluid flow equations. "Finite-volume" denotes
the partitioning of the entire flow region into arrays of topolog­
ical hexahedra that are the computational elements. The calcula­
tion procedure of Rizzi and Bailey (8) involves calculating the
fluxes through the hexahedra faces and the chemical production
within these elements. In applying the method to special purpose
advanced computers, a valuable adjunct is "time-splitting", that
is, factoring the three-dimensional spatial differencing operator
into three one-dimensional operators. This method remains second­
order accurate. but improves operational efficiency on convention­
al computers (7,8) and has especially profound effects on Illliac
IV efficiencies. This occurs because either data arrays or their
transposes are equally accessible within the Illiac's main memory
disk storage and thus data transfer is equally optimal, regardless
of data order requirements of the operator being executed.

Another "splitting" discussed here is that of separating the
species convection from chemical production, In this case the
production terms are contained within a separate operator that is
also one-dimensional. Several advantages occur. The chemical
effects can be "advanced" with a smaller time step than that used
for convection (several applications of the chemical production
operator are still required, however so that the aggregate step
is that of the convection); and, depending on whether the chemis­
try is "s tiffl(27,28) implicit or explicit numerical algorithms
can be used without penalty to the accuracy of the overall method.

The computation of chemically-reacting, three-dimensional
flows, even with the simplest chemical models, seriously strains
the capability of other than the new generation of vector compu­
ters. These computers achieve their rapidity principally through
special hardware features (overlap~ parallelism, or pipeline),
but to take greatest advantage of their computational capability
requires careful use of vector-matrix formalism and programming
in a vector language.

MATHEMATICAL FORMULATION

In this paper the basic equations will be introduced first. Then
the procedure for approximating these equations using the finite­
volume method will be described. The generality of the equations
and discussion will be relaxed when the coordinate system, which
has proved valuable for solving the flow infue nose region of the
shuttle at large angles of attack, is introduced. The discussion
becomes more specific when the Illiac IV architecture is described
and we point out the procedure for solving the flow on the Illiac.
Finally, several results are presented to demonstrate the viabil­
ity of the method as well as of parallel processing.

140 Applications

CONSERVATION EQUATIONS

The unsteady equations of fluid dynamics, which govern the flow
of a multicomponent reacting mixture of gases, are described in
vector integral conservation-law form by the representation

:t J J J UdT + 11 H • d-; = n
vol(t) set)

(1)

where the column vectors U and Q and the second-order tensor H,
whose elements are flux vectors, are defined as

1 q
u uq + (pIp) ix

" v vq + (pIp) i
"Y w wq + (pIp) i z U .. P

eT H(U) ,. P hT q - ut ,
cR. cR. q

0

0

0

0
n - p 1 .. 1,2 ••.• ,S

0

wR.

I

I.

Computational Fluid Dynamics 141

for flow velocity qui + v i + wi, total specific internal
2 x y x

energy eT = e + q 12 and total enthalpy hT = eT + pip, pressure p,

density p, concentration (mass fraction) c~, and chemical produc­
tion w

t
. The explicit formulation for the w~ Will not be given

here. The relation used for this study, which depends on a chem­
ical reaction model to be defined, is a conventional expression
which can be found in a number of references (e.g., see ref. 31 or
32). The equations given above refer, respectively, to conserva­
tion of mass, of the three components of momentum, of energy, and
of species within an unsteady volume region enclosed by surfaces
which move with a velocity t.

The above equations are made complete with the addition of a
state relation for pressures p(e,p,c~). The Lighthill model is
introduced where the translational and molecular rotation modes are
assumed to be fully equilibrated while the molecular vibrational
mode is assumed half-excited (16). The following equation for
Pressure results

s
p. (y-1)p(e - L c1 hi)

1""1
(2a)

where e = eT - (U2 + v2 + w2)/2 is the internal energy per unit

mass and h~ is the heat-of-formation correspon'ding to the species

c~. The ratio for specific heats is y = cplcv' and the sound vel-
ocity~ needed in subsequent expressions, is given by

(ib)

The model air mixture is assumed to contain the molecular species
(oxygen (02), nitrogen (N 2), and nitric oxide (NO)) and the atomic
species (oxygen (0), and nitrogen (N)). The production terms
are based on a relatively simple chemical reaction model given in
the table.

142 Applications

Table I: Chemical Reaction Model

1 02+M ::: 2O+M

2 N
2
+M::: 2N+M

3 NO+M ::: N+O+M

4 NOtO::' N+0
2

5 NOt-N::' O+N
2

It includes those reactions that most significantly affect the
enthalpy. The reaction rates used in this study, which appear
explicitly in the chemical production terms wt ' equation 1, are
the same as used by Davy and Reinhardt (16). Using the above
reaction model, the specific heat ratio may now be written explic­
i tly:

Y • [4(C
02

+ c'
2

+ cNOl + ~ (Co + cNl]/[3 (C02 + CN2 + CNol + ~ (Co + CN~
(2c)

SPLIT FINITE-DIFFERENCE OPERATORS
Finate-difference approximations to the gas dynamic conservation­
law equations described in the previous section are used to advance
the flow in time from specified initial data. The finite-differ­
ence operators to be defined here approximate equation 1 for'the
labeled computational cell illustrated in Figure 5.2. If the
solution is known at time

inside the topological hexahedron i,j,k with volume ~t. J' k and
1, ,

bounded by the six sides ~si' ~si+1' ~Sj' ~Sj+1' ~sk' and
~sk+1' then it can be determined at time t + 6t from the time
split sequence denoted by

(3a)

(3b)

(3c)

I,

1.-

Computational Fluid Dynamics 143

x

Figure 5.2 A typical computation cell i, j, k

144 Applications

The symbol U is used to denote that we are temporarily assuming
for this illustration that wt = 0 (i.e., chemical effects are
frozen). The fractional powers imply that three fractional steps
are required to advance one time step. The operator representa-

n+l/3 n tion U = L·U denotes
J

t1ean values of the flow variables in the cell are used in the above
representation as defined by

U~.j.k .. J J J UdT / l1T i • j •k
vol(t)i.j.k

(5)

where 6T i ,j,k is the small but finite volume of the cell at that
time step. Also, the flux vector

In equation 4 the subscripts i and k, which do not vary, are
implied but are not written, to simplify notation. The operation­
al relation for Lk appears identical to that for Lj except for the
replacement of k with j and appropriate modification of the frac­
tional power denoting substep, and similarly for Li . This notation
exemplifies the one-dimensional character of the operators, and it
is this essence that characterizes "splitting".

The condition on 6t necessary for the stability of the above
method is that the numerical domain of dependence must include the
physical one (8,20,22,23). Stability conditions can be determined
analytically for each operator. For Lj we have

(6)

I~

Computational Fluid Dynamics 145

Similar relations are used to obtain 6tk and 6t i . The oper­
ator sequence denoted by equation 3 is then stable if

This discussion of time-splitting has been brief; additional
detail can be obtained by referring to the original sources
(see 8, 22, or 23).

Chemical production effects were not considered in the above
development; as a result the symbol n does not appear in these
relations. The species concentrations may, however, still be con­
tained in the vector U (see Eq. 1). Therefore, given an initial
non-uniform distribution of the species c~, the above relations
allow an accurate simulation of the convection of c~ through the
flow field. To account for chemical production another operator,
denoted Lp' is introduced. Consistent with the notation above we

define Un+1 Lp un+1 to denote the set of operations

6t
'(f+l '" lJn+l + _f n

M
(8)

~ ~ n+1
where, similarly as before n :: n (U). Accuracy require-
ments may necessitate that the time step 6tf for chemistry be

different from the 6t found by equation 7. For the simulation
of shuttle flows 6tf = 0.5 t gave satisfactory results, but

small values can be used. The Lp is successively applied

N,
L .. n L ; N = 6t/tJ.t

f chern R.=1 PRo

until the aggregate chemistry step matches that used for the con­
vection, that is,

146 Applications

One advantage of splitting the chemistry is that implicit
operators may be exchanged with the explicit method given above.
This may be necessary if the system of equations becomes "stiff"
(27,28). Then methods similar to those described by Lomax and
Bailey (27) may be applied.

. n+l n The sequence of operatlons U = LChemLi Kk U represents
a complete time step that properly accounts for chemical product­
tion as well as convection. This sequence of operations, however,
is only accurate to first order in ~t. Second-order accuracy is
achieved by reversing the operator order during the next time
step. The proper second-order sequence, therefo re, is gi ven by
the two time-step sequence

(9)

COMPUTATIONAL CELL NETWORK
To apply the finite-difference operators require that the entire
flow region be divided into a network of small topological hexa­
hedra. For the nose region flow field of the shuttle orbiter dis-
cussed here, th e coo rdi nate surfaces are cones, shells and planes. !II
The cones are arbitrarily positioned and translated in the manner
displayed in Figure 5.3. Translation of the cone is accounted for
by the coordinate X of its apex measured along the body axis,
rotation by the angle W between its axis and the free stream and,
lastly, dilation by its vertex angle w. Each of these conical
surfaces is then divided by rays from the apex into equally spaced
angular increments. The planes formed by the ray of one cone and
the corresponding ray of the next (see Fig. 5.4.) delineate a
system of contiguous pyramidal columns. All that is needed to
specify the ray i,k are its two angles 8. k and~. k' made with the
z and x axes, and its intersection x· wit~ the bo~j axis. The
columns are partitioned into small h~xahedra by a sequence of
shells that coincide with the body and shock and divide the dis-
tance ~ along each ray into J equal segments. The cells compose

Computational Fluid Dynamics 147

q.
Moo

Figure 5.3 Mesh geometry determined by a series of nested cones

• ."-+----n-~ "L"."/_C~\J(
M~

Figure 5.4 Partitioning the shock layer into finite volumes

148 Applications

a nonorthogonal mesh network floating in time that fills the
time-dependent shock layer. The other boundaries are the pitch
plane of symmetry and a down-stream boundary immersed in super­
sonic flow. The mesh network is quite general and allows a wide
range of flow regions and computational spaces to be studied.

INITIAL AND BOUNDARY CONDITIONS
Because the governing equations are hyperbolic and the subsonic
region is bounded by supersonic flow, the time-dependent method
is well posed as an initial-boundary-value problem. To commence
the calculation, an initial approximation must be specified for
the complete field.

Our initial flow field is built up as follows (7,8). A shock
surface, axisymmetric about the wind direction and positioned at
an estimated standoff distance, is generated by a quadratic func­
tion of the latitudinal angle e. The slope of this surface can
thus be determined at any given point, and the flow properties
there are then calculated from the free-stream conditions by use
of the Rankine-Hugoniot shock relations. On the body, pressure
is derived from a Newtonian formula, and the entropy there is set
to the same value as that of the streamline which has passed
through a normal shock (the stagnation streamline). With these
two properties, the density and velocity components can be found
by using the equation-of-state and integrated steady-energy rela­
tion (the species are assumed constant at their free-steam values
throughout the field). Finally, the flow properties within the I.
shock layer are specified by linearly interpolating between the
shock and body values along each pyramidal column of cells.

This procedure yields a satisfactory set of initial conditions
for perfect gas flow over a broad range of r1ach numbers and for
angles of attack approaching 45°. For nonequilibrium flow, how­
ever~ the transients generated from the impulse start of the esti­
mated flow fields with frozen species composition can cause diffi­
culties. A more satisfactory initial condition in this case is a
perfect gas solution after most unsteady effects have decayed.

For the inviscid calculations presented here, three distinct
types of boundaries are encountered at the edges of the overall
mesh: entrance, exit, and streamline boundaries. Along the
entrance boundary the dependent variables U (in eq. 1), are held
constant at their supersonic free-stream values, while at the exit
they are calculated using one-sided differences. Across cell faces
coincident with a streamline boundary, such as an impervious body,
no transport is allowed. The only variable actually needed at
such a cell face is the pressure, which can be expressed in terms
of the interior mesh values of pressure and the derivative of
pressure normal to the face. This derivative, a /a I is

p n body

obtained from the momentum equation normal to the streamline

computational Fluid Dynamics 149

where the body is the surface F(x,y,z)~O and the subscripts indi­
cate partial differentiation with respect to that variable.

The bow shock-wave itself is treated as an interior feature
of the flow field (8) and is not assigned any special attention
within the different operators Li' Lj' and Lk. After every itera-
tion the mesh is readjusted to maintain alignment with the shock.
The conservation form of the difference operators will then impli­
citly satisfy the Rankine-Hugoniot shock-wave "jump" relations and,
in addition, accurately determine the solution in the vicinity of
the shock. To maintain alignment, the mesh surface coincident
with the shock must move with the unsteady shock itself. This is
accomplished within an operator called LBSHK .

The velocity of each cell segment of this mesh surface is
obtained from the simultaneous solution of the shock jump rela­
tions for a moving discontinuity and a local characteristic rela­
tion, which is valid in the plane defined by the free-stream velo­
city and the shock normal direction (see Ref. 8). An iteration
procedure yields the shock velocity A for each ray i,k shown in
Figure 5.4. The shock-mesh surface is then moved by the incre­
ment A 6t computed for each ray. Coordinates are assigned new
values to maintain equal spacing of the shells between the shock
and body surface, and values of the variables, U, are then found
by interpolation.

OPERATIONS ON THE ILLIAC IV
Discussed below are considerations unique to vector machines for
selecting and programming a method as well as assessing the mach­
ine and running the code. The arithmetic units and replication
features of advanced computers (Illiac, CDC 7600, CDC STAR, CRAY 1,
TI ASC, and 370/195) have such high cycle frequencies that most
often machine speed is controlled not by cycle time for an opera­
tion, but by time for data transfer to and from a massive bulk
storage area. Thus a numerical method designed for minimizing
arithmetic operations without considering data transfer may yield
very inefficient vector computer programs.

The disk memory (I4m1) and PD1 have features that lead to
very efficient array operations on the Illiac. The entire data
base required for a problem is stored in the I4Dt1; selected por­
tions of these data are then transferred to or from PEM, which can
be consi dered as the "worki ng" storage area where data are actua 1-
ly modified. (Problems not requiring the large data base of the
blunt-body program discussed here may be designed to operate
within PEM and hence use the I4DM only for data output, e.g., see
(16). We denote the massive data stored in I4DM by the symbol
M(I,J). This symbol refers to the two-page blocks of data stored

150 Applications

in the 140M that are conceptually labeled I and J. As pointed
out earlier, a page is the smallest unit of data transferred and
assigns 16 words to each PE. Data assignment within these 140M
blocks is such that for each mesh point, the conservative depend-
ent variables U (eq. 1) are sequentially stored first (10 varia-
bles). In addition, also stored are the coordinates (3), surface
area (9), volume (1), and the shock velocity along a ray (1) for
a total of 24 variables (eight additional locations are reserved
for species variables in studies involving more complicated
chemistry models). The mesh points in the meridianal direction
are stored along the PEs and the subscripts I and J of the array
~·1(I,J) in I4m~ refer, respectively, to cones and to shells. He
denote by B the actual array of data transferred as it appears
stored in the PEM. Ideally, B should be large because of the
rapidity of data transfer on the Illiac (half-million bits per
second). For example, we may have B(*,L,I) = ~,1(I,3) or just as

easily, we might get B(*,L,J) = Mt (J,4); that is (see Figure 5.5)
B contains all of the variables for the computations involving the
third shell or the fourth cone (Mt designates the matrix transpose I­

f M(I,J). The asterisk denotes the vector row alignment along
the PEs; L denotes variable type (e.g., p, u, v, w, etc.). The
array H(I ,J) need not be square .. The advantage of the data trans-
fer flexibility on the Illiac should now be apparent; pn1 storage
is really a "buffer" area and data stored depend only on operator
req~irements. The operator Lj' equation 3a, involves data only ~

on a cone; Lk, equation 3b, involves data on a ring which may be

on a cone or shell (see Fig. 5.5); and Li considers data on a shell.

The chemistry operator LCHEM ' equation LREMESH' designating the
reinterpolation of data after the advancement of the unsteady
shock-wave surface, has a cone preference. Finding the shock-wave
velocity LBSHK involves only the single shell that is the shock

surface.
The actual sequence of operations implemented during each

step is illustrated on the flow chart in Figure 5.6. The looping
about the operators shown in the block diagram denotes that the
entire sequence of cones or shells is processed by the loop. Each
two-step sequence requires three complete passes through the en=
tire data base stored in the 140M. The operator L t appearing in
the last cone processing loop in Figure 5.6 denotes the sequence
of operations (eqs. 6 and 7) required to find the time increment
t which is needed in the difference equations (eqs. 4 and 8) and
in LBSHK (see discussion on Initial and Boundary Conditions).

RESUL TS
Results from two entirely different calculations are discussed
here to demonstrate the variability of the method as well as of
paralle processing. The first is a perfect gas calculation
(i.e., with frozen chemistry and specific heat ratio Y = 1.4) for

Computational Fluid Dynamics 151

/ SHOCK RING

J= T
1111

;('OG
----->

Figure 5.5a The cone coordinate surface

7
/

i = 1

I
k=2

~ k = 1

Figure 5.5b The shell coordinate surface

152 Applications

I •• I l ____ - __ ...J

•
PROCESS • SHELLS

PROCESS • CONES

MAIN
OPERATION

LOOP
I

I.
EXIT

MACHINE

PROCESS • CONES

Figure 5.6 Program flow chart

Computational Fluid Dynamics 153

a flight Mach number of 22.0 and angle-of-attack of 40.2°. The
second is a chemical nonequilibrium calculation for a trajectory
point corresponding to a Mach number of 21.7, an altitude of
about 65.1 km, and an angle of attack of 30° (free-stream con-
ditions are: P~ (pressure) = 106.2 dynes/cm2, poo (density) =

1.55 x 10-7 g/cm3, Voo (velocity) = 6.544 km/sec). Several para­
meters from the perfect gas calculation will be used to illustrate
the convergence to steady state. Several contours of selected
variables will be presented from the nonequilibrium solution to
illustrate features about the flow.

As discussed in the previous section, the calculation starts
with a specified set of initial conditions. The entire flow field
is then marched in time until the solution becomes steady. Steady
state is determined by monitoring the fractional total enthalpy
given by eHT = /Hoo - (h+q2/2 /Hoo where Hoo = Yoo Poo /(Yoo - l)poo.
This difference is a measure of deviation from steady flow and is
computed for each point in the entire flow field. Displayed in
Figure 5.7 are two curves; the upper curve denotes the total num-
ber of mesh points with eHT greater than one percent, while the
lower curve similarly denotes the numberof points greater than
10 percent. The perfect gas calculations used a coarse grid net­
work of 2295 points: 9 shells, 15 cones, and 17 meridianal planes
(i.e., 17 enabled PEs). These results are preliminary and were
for comparison with results obtained on the CDC 7600. The grid
network, however, is easily refined. We see in Figure 5.7 that
the number of points that satisfy the one and ten percent error
criteria increases to a maximum and then decreases. After 579
steps all pOints have an error less than ten percent; after 800
steps, 289 points still have an enthalpy error between one and
ten percent.

The shock distance measured from the body on the lee-side ray
and on the wind-side ray is shown in Figure 5.8. Also shown is
the standoff distance on the innermost cone whose axis points in
the wind direction (see Fig. 5.3). On this cone there is negli­
gible variation of the shock distance around the cone. This dis­
tance, therefore, approximates what is normally referred to as the
stagnation stream 1 i ne "shock stand-off di stance. II l~e observe
that the shock-wave locations in the windward region, where
pressures are highest, decay most rapidly to a constant value (i.e.,
within about 100 steps). In contrast the lee-side shock-wave
location on the outermost cone, where the flow has expanded most
greatly with considerably lower pressures, shows the slowest con­
vergence rate. Here the shock-wave position oscillates with
decaying amplitude to the final constant value. Even though the
shock-wave pos ition is constant everywhere after about 600 steps,
the flow within the shock may still have pockets with errors of
between one and ten percent (Figure 5.7.).

Displayed in Figure 5.9 are the shock-wave positions relative
to the body surface and contours of molecular oxygen, nitrogen,
and nitric oxide and of temperature. Within each frame, the inner

154 Applications

2.295

.289

200 400 579 800
STEP NUMBER

Figure 5.7 Enthalpy error measure

600 581.4 DELTA

48.6

LEE·SIDE ON OUTER CONE

WIND·SIDE ON OUTER CONE

97.0

64.05 . THE"STAND.OFF" ON INNERMOST CONE

'----'--==-4_=-== 8.72
o 200 400 600 800

STEP NUMBER

Figure 5.8 Shock-wave location

MOLECULAR OXYGEN TEMPERATURE NITRIC OXIDE MOLECULAR NITROGEN

Figure 5.9 Contours on axis normal plane 1.6 m from nose

Computational Fluid Dynamics 155

closed curve represents the body and the outer curves are the
shock. The left-half set of curves shows the body and shock
positions properly scaled relative to each other. In the right
set of curves, the shock perturbed region i~ expanded five times
so that contour features can be seen. The plots are on the last
coordinate surface after the cones are entirely opened to become
an axis normal plane located 1.6 meters from the shuttle orbiter
nose. The grid network is also more refined, which explains the
smooth contours.

The molecular oxygen contours are easiest to explain; their
positions are principally caused by the dissociation reaction,
equation 1 in Table 1. Approximately 100 percent dissociation
of O2 occurs and on the windward symmetry plane this dissociation
occurs near the shock wave. In the lee side, however, where the
flow is cooler and the shock-wave strength is considerably less,
the dissociation is not as abrupt and occurs somewhat more uni­
formly throughout the field. This explanation is simplistic
because convection effects also play an important ~ole in the
lee-side oxygen concentration field.

The temperature relaxation observed on the windward symmetry
plane is due principally to oxygen dissocation. (The contour
closest to the windward shock has a temperature of about 8000oK;
each adjacent contour represents an 8-percent change of this
temperature.) The field away from this region is complex, de­
pending on convection as well as on the chemical effects. The
nitric oxide contours show a complex interplay of production,
destruction, and convection of this species as evidenced by the
closed cont0ur lines. The maximum concentration of NO within the
field, however, does not exceed around five percent of the
mixture.

The molecular nitrogen contours (each level corresponds to
about a three percent change of the free-stream concentration)
show very little dissociation but do not show a coupling effect
with the nitric oxide as expected (see chemical reaction model
in Table 5.1).

CONCLUSIONS
The present numerical method permits an efficient and accurate
calculation of three-dimensional reacting flow. The method itself
was developed originally (7) using FORTRAN language on a serial
computer (i.e., IBM 360/67) and allowed relatively efficient
studies of perfect gas blunt-body flows. The current design, using
CFD language (29), yields the most efficient computer codes for
either the CDC 7600 or the Illiac IV. The Illiac results require
the least computational time (i.e., about 1/5 the CDC 7600 time).
The method uses a time-splitting of the convection differencing
operator to achieve efficient data management between random
access and disk access storage on the Illiac. The efficient
calculation of the effects of the chemical reactions is achieved
by an additional splitting of chemical production from convec­
tion. The demonstration reported in this paper continues the
successful series of applications (22,8,13,24,25, and 26) of
the finite-volume method for solving complicated multi-
dimensional fluid flow problems.

156 Applications

References

1, F.R. Bailey, Computational Aerodynamics -- Illiac IV and Beyond.
Meeting IEEE Computer Society, Compcon Spring, Feb. 28 - Mar. 3,
1977, San Francisco, Calif.

2. J.A. Lordi, R.J. Vidal, and C.B. Johnson, Chemical Nonequilibrium
Effects on the Inviscid Flow in the Windward Plane of Symmetry of
Two Simplified Shuttle Configurations. NASA TN 0-7189, March 1973.

3. W.O. Goodrich, C.P. Li, C.K. Houston, R.M. Meyers, and L. Olmedo,
Scaling of Orbiter Aerothermodynamic Data through Numerical Flow
Field Simulations. NASA SP-347, March 1975.

4. W.O. Goodrich, C.P. Li, C.K. Houston, P. Chiu, and L. Olmedo,
Numerical Computations of Orbiter Flow Fields and Heating Rates.
AIAA Paper No. 76-359, July 1976.

5. J.V. Rakich, and M.J. Lanfranco, Numerical Computation of Space
Shuttle Heating and Surface Streamlines. AIAA Paper No. 76-464,
July 1976.

6. J.C. Adams, Jr., W.R. Martindale, A.W. Mayne, Jr., and E.O. Mar­
chand, Real Gas Effects on Hypersonic Laminar Boundary-Layer Para­
meters Including Effects of Entropy-Layer Swallowing. AIAA Paper
No. 76-358, July 1976.

7. A.W. Rizzi, and M. Inouye, Time-Split Finite-Volume Method for
Three-Dimensional Blunt Body Flow. AIAA J., 11, No. 11, (1973),
pp. 1478-1485.

8. A.W. Rizzi, and H.E. Bailey, Reacting Nonequilibrium Flow Around
the Space Shuttle Using a Time-Split Method. Aerodynamic Analy­
sis Requiring Advanced Computers, Part II, NASA SP-347 (1975),
pp. 1327-1349.

9. C.P. Li, Time-Dependent Solutions of Non-equilibrium Airflow Past
a Blunt Body. J. Spacecraft and Rockets, 9, No.8, Aug. 1972,
pp. 571-572.

Computational Fluid Dynamics 157

10. G. Moretti, and G. Bleich, Three-Dimensional F10w Around Blunt
Bodies. AIAA J., vol. 5, no. 10, Oct. 1967, pp. 1557-1562.

11. R.W. Barnwell, A Time-Dependent Method for talculating Supersonic
Angle-bf-Attack Flow About Axisymmetric Blunt Bodies with Sharp
Shoulders and Smooth Nonaxisymmetric Blunt Bodies. NASA TN
D-6283, 1971.

12. A.W. Rizzi, A. Klavins, and R.W. MacCormack, A Generalized Hyper­
bolic Marching Technique for Three-Dimensional Supersonic Flow
with Shocks. Proc. Fourth Int. Conf. on Numerical Methods in
Fluid Dynamics, ed. R.D. Richtmyer, Lecture Notes in Physics,
35, Springer-Verlag, 1975, pp. 341-346.

13. A.W. Rizzi, and H.E. Bailey, A Generalized Hyperbolic Marching
Method for Chemically Reacting 3-D Supersonic Flow Using a
Splitting Technique. Proc. AIAA 2nd Computational Fluid Dynamics
Conference (June 1975) pp. 38-46.

14. A. Rizzi, and H. Bailey, Finite-Volume Solution of the Euler
Equations for Steady Three-Dimensional Transonic Flow. 5th
Conference on Numerical Methods in Fluid Dynamics, Enschede,
Holland (June 1976).

15. P. Kutler, W.A. Reinhardt, and R.F. Warming, Multishocked,
Three-Dimensional Supersonic Flowfields with Real Gas Effects.
AIAA J., vol. 11, no. 5,pp. 657-664 (May 1973).

16. W.C. Davy, and W.A. Reinhardt, Computation of Shuttle Nonequilib­
rium Flow Fields on a Parallel Processor. Aerodynamic Analyses
Requiring Advanced Computers, Part II, NASA SP-347 (1975)
pp. 1351-1376.

17. J.V. Rakich, Three-Dimensional Flow Calculations by the Method of
Characteristics. AIAA J., vol. 5, no. 10, 1967, pp. 1906-1908.

18.. A.W. Rizzi, Transonic Solutions of the Euler Equations by the
Finite-Volume Method. Proc. Symposium Transsonicum II, eds. K.
Oswatitsch and D. Rues, Springer-Verlag (1976) pp. 567-574.

19. J.E. Daywitt, and D.A. Anderson, Analysis of a Time-Dependent
Finite-Difference Technique for Shock Interaction and Blunt-Body
Flows. Engineering Research Institute, Iowa State U., ERI Pro­
ject 101 (May 1974).

20. P. Kutler, Computation of Three-Dimensional, Inviscid Supersonic
Flows. Progress in Numerical Fluid Dynamics, Lecture Notes in
Physics, vol. 41 (ed. H.J. Wirz), pp. 287-374 (1975).

21. J. Daywitt, D. Anderson, P. Kutler, Supersonic Flow About Circu­
lar Cones at Large Angles of Attack; A Floating Discontinuity
Approach. AIAA Paper 77-86 (Jan. 1977).

158 Applications

22. R.W. MacCormack t and A.J. Paullay~ Computational Efficiency
Achieved by Time Splitting of Finite Difference Operators.
AIAA Paper 72-l~4, 1972.

23. R.W. MacCormack, and R.F. Warming, Survey of Computational
Methods for Three-Dimensional Supersonic Inviscid Flows with
Shocks. "Advances in Numeri ca 1 Fl uid Dynamics" AGARD Lecture
Series 64, Brussels t Belgium (Feb. 1973).

24. Lewis B. Schiff, The Axisymmetric Jet Counterflow Problem.
AIAA Paper no. 76-325 (July 1976). AIAA 9th Fluid and Plasma
Dynamics Conference, San Diego, Calif., July 14-16~ 1976.

25. George S. Deiwert~ Computation of Separated Transonic Turbulent
Flows. AIAA Paper no. 75-829 (June 1975).

26. C.M. Hung~ and R.W. MacCormack~ Numerical Solutions of Supersonic
and Hypersonic Laminar Flows over a Two-Dimensional Compression
Corner. AIAA Paper no. 75-2, Jan. 1975.

27. H. Lomax, and H.E. Bailey, A Critical Analysis of Various
Numerical Integration Methods for Computing the Flow of a Gas
in Chemical Nonequilibrium. NASA TN 0-4109, 1967.

28. Robert J. Gelinas, Stiff Systems of Kinetic Equations -- A Prac-
titioner's View. J. Compo Physics, 9, no. 2t (Apr. 1972), I~
pp. 222-236.

29. K.G. Stevens, Jr., CFD -- A Fortran-like Language for the
ILLIAC IV. ACM SIGPLAN Notices, 10, no. 3. March 1975,
pp. 72-76.

30. Computational Fluid Dynamics Branch: CFD A Fortran-Based
Language for Illiac IV. C.F.D. Branch, 202-1, NASA-Ames Research
Center, Moffett Field, Calif. 94035.

31. W.G. Vincenti, and C.H. Kruger, Jr., Introduction to Physical
Gas Dynamics. John Wiley and Sons, Inc., New York, 1965.

32. J.F. Clarke, and M. McChesney, The Dynamics of Real Gases.
Butterworths Inc. (1964).

2. An lIIiac Program for the Numerical Simulation of
Homogeneous Incompressible Turbulence

Sm1MARY

An algorithm and Illiac computer program, developed for the
simulation of homogeneous incompressible turbulence in the
presence of an applied mean strain, are described. The tur­
bulence field is represented spatially by a truncated triple
Fourier series (spectral method) and followed in time using
a fourth-order Runge-Kutta algorithm. Several transforma­
tions are applied to the numerical problem to enhance the
basic algorithm. These include:

1. Transformation of variables suggested by Taylor's
sudden-distortion theory

2. Implicit viscous diffusion by use of an integrating
factor

3. Implicit pressure calculation suggested by Taylor's
sudden-distortion theory

4. Inexpensive control of aliasing by random and phased
coordinate shifts

INTRODUCTION

The primary difficulty in the numerical simulation of homo­
geneous turbulence is that the nonlinearity of the equations
of fluid motion excites a large range of scales (i.e., a large
ratio of largest to smallest scale) of motion in both space
and time. The computer resource required for a complete simu­
lation is proportional to the product, over all space-time
dimensions, of the range of computed scales of each dimension.
These scale ranges increase with Reynolds number (R), and
their product increases so rapidly, in three space dimensions,
that only the weakest experimentally studied turbulence can be
simulated completely on today's computers.

thls sectlon lS reprinted from a paper ln the tAC Newsletter, July 1978,
Robert Rogallo.

159

160 Applications

The overall range of scales continues to increase indef­
initely with Reynolds number. (Fig. 5.10) However, at a
sufficiently high Reynolds number, the scales of motion can
be grouped, in order of decreasing scale, into three distinct
ranges: the energy-containing range, the "inertial" range,
and the dissipation range (Fig. 5.11). Further increases in
Reynolds number increase only the inertial range. The range
of energy-containing scales, which determine the features of
turbulence of engineering interest, is bounded as R, and the
motion in these scales becomes independent of the motion at
similar scales. At somewhat lower R, the inertial and dissi­
pation ranges merge, but still do not affect the energy-con­
taining range. At sufficiently low R, dissipation occurs in
the energy-containing range itself. This physical description
of the scale dependence upon Reynolds number is encouraging
because it indicates that, in principle, only the energy-con­
taining scales of motion need to be included in a high Rey­
nolds number turbulence simulation. The difficulty is that,
mathematically, all the scales are coupled through the non­
linear terms in the governing equations and, although we know
that physically (i.e., statistically) the energy-containing
range is uncoupled from the smaller scales, we do not know how
to uncouple it mathematically.

The range of statistically interdependent scales increases
with the anisotropy of the motion and, because most flows of
engineering interest are anisotropic, it is important to de­
termine the nature and magnitude of the additional computa­
tional difficulty posed by anisotropy.

THE NUMERICAL SIMULATION

The computational tool presented here is an unsteady incom­
pressible Navier-Stokes code that runs on the Illiac IV com­
puter. The program computes the evolution in time from an
arbitrary homogeneous turbulence field in the presence of a
single class of spatially-linear mean flows. The simulation
is a spectral decomposition similar to that of Orszag (1)
but differing in detail. The primary purpose of this report
is to present the simulation algorithm in detail sufficient
to allow its use by others. The program can be used as
presented to study weak (low Reynolds number) turbulence for
which typical results are presented. The magnitude of the
computation (Fig. 5.12) requires a computer at least as fast
as a CDC-7600.

I.

Computational Fluid Dynamics 161

log K

Figure 5.10 Scales of motion R1, R2, R3

ENERGETIC

r INERTIAL

I ",r DISSIPATION

,
'" \' , , , "

Figure 5.11 Scales of motion: ehergetic, inertial, dissipation

NUMBER OF MESH CELLS

DEPENDENT VARIABLES

DATA BASE

FFT'S PER STEP

COMPUTER TIME PER STEP

COMPUTER TIME PER RUN

262144

786432 (=3·,~3)

2.62 x 106 (a10'643)

376832 (a4'23'642)

20 sec (REAL TIME)

to to 30 min (REAL TIME)

ALGORITHM

SPATIAL RESOLUTION SPECTRAL (ALIAS-DAMPED)

TEMPORAL RESOLUTION RUNGE-KUTTA (FOURTH-ORDER)

Figure 5.12 Simulation program

162 Applications

THE EQUATIONS OF MOTION

The equations governing the flow of a viscous constant-density
fluid are the familiar Navier-Stokes equations:

u +(uu) +(vu) +(wu) +p =v(u +u +u)
t x y z x xx yy zz

v +(uv) +(vv) +(wv) +p =v(v +v +v)
t x y z y xx yy zz

w +(uw) +(vw) +(ww) +p =v(w . +w +w)
t x y z z xx yy zz

u tv +w =0 x y z

Where (u,v,w) is the velocity vector, p is the pressure­
density ratio, v is the kinematic viscosity, and sub­
scripts denote differentiation.

We wish to simulate numerically the effect of a simple
class of imposed strains on a homogeneous field of turbulence.
The strain field is given by:

(~,v,;) = [xa(t),yb(t),zc(t)]

Where a + b + C = a as required by continuity. It is conven­
ient to introduce the following transformation of the depend­
ent variables:

u=ax+Al/2G

v=by+B l/2v

w=cz+c1/2w

p=-~ [(:~la2)x2+(:~lb2)y2+(:~IC2)z2 +p]
Where a (t), b(t), and c(t) are the arbitrary time-dependent
strain rates imposed, and the resulting inverse square strains
are:

A(t) = e
-1: a dt

B(t) = e
-1: b dt

C(t) = e
-1: c dt

Computational Fluid Dynamics 163

It follows from the continuity condition that material volumes
are invariant, (i.e., ABC=l). Explicit spatial dependence of
the resulting system of equations is eliminated by the follow­
ing transformation of independent variables;

x = AI/2x

" BI/2 Y = Y

Z = cI/2z

The equations of motion for the transformed turbulence
field are then:

" ("") (AA) (AA) A V
t

+ A uv A + B VV A + C WV A + p", = x y z y

Au~ + BV A + cO A = 0
X Y z

The above transformations seem to be the natural ones
for the study of the effect of uniform imposed strain on a
homogeneous turbulent field, regardless of the rate at which
the strain is imposed. A more general set of tranSfOr:Tlations
can be used when the mean strain-rate matrix is not diagonal,
and also when the mean vorticity is nonzero.

164 Applications

NUMERICAL APPROXIMATION

We wish to simulate a spatially homogeneous turbulence field
in an infinite space, and this suggests that we represent the
field spatially as a Fourier series. The resulting field is
periodic in all three space dimensions, with correspondingly
periodic spatial correlations. However, if these correlations
decay to negligible magnitude within the period, (e.g., if the
integral scale is much smaller than half the period), the
error due to the finite period should be small. In practice,
this requirement is difficult to satisfy with the resolution
allowed by today's computers.

In this section we develop the equations in more detail
and describe the integration process as programmed.

Let Tll = uu, L12 = vv, T13 = uw, etc., tilde ~
denote the three-dimensional Fourier transform, and kI' k2' k3
be wave numbers in the x, y, and z directions, respectively.
The equations (5) in wave space are then:

The linear terms are combined by multiplying the equa­
tions by the integrating factor

I

I

~

Computational Fluid Dynamics 165

giving

Now multiply the first equation by ikl' the second by
ik2' etc., to obtain (Let U = iklu, V = ik2v, W = ik3w)

(The purpose of this transformation of dependent variables
is discussed later on; note that kl , k2' k3 = 0 are special
cases.)

166 Applications

The usual procedure for the computation of p requires the
time differentiation of the continuity condition. However, we
want the algorithm to handle impulsive strains correctly
(jumps in A, B, and C), that is, according to Taylor's sudden
distortion theory, so we need to avoid the differentiation.
We thus define a potential ~ as:

II. t '" ~ = -F- 0 Fp dt

and absorb it into the time-advanced variables. Then

d~ '" '" 2 '" dt = F{k1 k2A'f 113 + kik 3Bl23 + k3 CT 33}

i

and the continuity condition becomes

('" '" '") ~ = F -1 AX + BY + CZ .
Ak 2 + Bk 2 + Ck 2

1 2 3

where

I'

Computational Fluid Dynamics 167

The tis are functions of u, v, w only, so that, if u, v, ware
known at the beginning of a time step and satisfy the continuity condi-

ition, we may advance X, Y, Z. However, to form (12) advanced values

of u, V, w this requires the solution (11) for ~ at the advanced time.
This is done using the continuity condition at the advanced time, and
does not require its time differentiation.

At the beginning of a step t=O, and we have

'}I 'V 'V 'V 'V~ 'V
F = 1, ~ = 0, X = U, Y = v, z = W

The equations for X, Y, and Z are integrated over the time step,
and the final values are used in equations (11) and (12) to produce
final values of U, V, and W. The origin of time is then shifted
to the final time giving the proper initialization for the next
time step.

Spatial differentiation ;s a point operator in wave space but

multiplication (e.g., t12 = 8~) is not, and the most efficient means
of forming the Fourier transform of a product from the transforms
of its terms is to return to physical space by inverting the trans­
forms, form the product, and then transform the resul t back to wave
space. Unfortunately, the transformation of the product back to
wave space introduces an error due to spectral truncation.

The truncation errors are most easily demonstrated in one
spatial dimension. The representation of the product of two Fourier
series a,b (in complex form) as a Fourier series c is given by the
(infinite) convolution sum

However, the process of inverting finite transforms a and b,
forming the product ab, and then taking its finite transform re­
results instead in two sums:

~k=~'i. f;+~~ 1;
L K-S S L. k±M-s s
s s

168 Applications

The first sum represents a contribution (incomplete due to
truncation) to ab correctly attributed to wave number k. The second
sum also represents a contribution to ab, but it is actually a
contribution not to k, but to k+m, wave numbers beyond those
allowed by the length (r1) of the finite transforms used. This is
the lIaliasing" error. Now it may be argued that because aliasing
errors do not account for all of the truncation error, suppres-
sion of the aliasing error is not cost effective so far as accur­
acy is concerned. However, in the algorithm used here, the alias­
ed terms can lead to nonlinear instability, and their control is
essenti a 1 .

Now to consider the effect of a shift of the physical coordi-
nate system. In wave space this amounts to multiplication of eik~,
where -~ is the amount of coordinate shift. If we use eik~ to
shift ak, bk prior to inverting them to physical space, form the
product ab on the shifted grid, transform back to wave space, and
finally shift coordinates back with e-ik~ we obtain

~ IV ~
'- ~±M-s s
s

The first (alias-free) sum is invariant under these shifts,
but the second sum, the aliased one which we wish to suppress, has
a phase dependency on ~ and can be eliminated. For example, if
two evaluations are made, one with e~iM~ = 1 and the other with
e~iM~ = -1, the alias-free result is one-half their sum. The
second sum (which is multiplied by the phase factor) itself vanish-
es identically for: k : < N, (N S ~V3) if modes of a and b
outside of this range are nulled prior to inversion, and transforms
of length ~1 are retained. Thus two independent procedures are
available for alias suppression.

The extension of these procedures to three dimensional gives
fo~ each ck eight terms, seven of which represent aliasing errors.
The aliased terms are classified according to the number of dimen­
sions in which aliasing has occurred.

1.-

Computational Fluid Dynamics 169

We then have

" ~ a:: So (alias-free)

+ 9181 + °252 + °383 (singly-aliased)

+ 9102S4 + 0203S5 + °3°186 (doubly-aliased)

+ 9l>203S7 (triply-aliased)

All of the aliased sums (Sl, ... S7) vanish if modes having any

k. > N. are nulled. The doubly and triply aliased sums (S4""'S7)
1 1 •

vanish if modes having any two ki > Ni are nulled. The triply aliased

sum (S7) vanished if modes having all three k. > N. are nulled. Alter-1 ,

natively one can evaluate the convolution eight times using the eight
combinations of ex' ey, ez' = ~ 1 and sum to eliminate the aliased
terms. Note that suppression by the latter means requires eight
evaluations to eliminate all of the aliased terms. One can also,
as suggested by Orszag (1) remove S 4' ... S7 by truncati on and the
remaining single aliases by coordinate shift \'!ith blo evaluations.
t-l/e are faced with the choice between losing information (truncation)
or losing computational speed (multiple evaluations).

We have, following Orszag, eliminated doubly and triply
aliased sums by truncation, though the truncation used here dif­
fers slightly from that of Orszag who nulls modes having k • k >

2U1/3)2. We have not exactly eliminated the remaining si~gle­
aliases, due to the computational cost of the double evaluations
required. Instead, we have used the fact that the Runge-Kutta
algorithm requires pairs of evaluations at each half step and that
by using a shifted grid for the second evaluation we reduce the
total alias error for the pair by a factor of 6t2. The possibil­
ity of nonlinear instability is fUrther reduced by ensuring that
the ej for the first evaluation in a pair are not correlated with
those of other pairs. This is easily accomplished by the use of a
uniform-random-number generator during computation of the phase
factors.

170 Applications

DATA MANAGEMENT

In large simulations the high-speed random-acess memory of the
computer cannot hold the entire data base of the problem (in the
present code it holds 6% of it). In this case, the high-speed
memory may only be able to hold a few lines of the mesh (e.g., all
values of kl for a few k2' k3 values), and it is convenient to
transform and take derivatives only along those lines. In general,
separate passes over the data base are required for each spatial
dimension. The directional order in which operations are perform­
ed then determines the required number of passes over the data base.
We will demonstrate how this number may be reduced in a spectral
algorithm.

Consider the evaluation in wave space of (uu) and (uu) ,
x Y

which is required in equation (5). The transforms of u and v are
inverted in the x, y, and z directions, each direction requiring
a separate pass over the data base. On the last (z) pass of this
sequence we also form, in physical space, the uv product and then
transform back to wave space in the z direction. In principle,
there remain only the x and y transforms and the multiplications
by ikx and iky to form the derivatives in the x and y directions.
The problem is that, under our constraints, transforms and deriv­
atives can only be taken in the direction of the grid lines held
in fast memory. Under these constraints we must either perform
three transforms and two derivatives in two passes, or two trans­
forms and two derivations in three passes. If the constraint on
the derivative is absent, the results can be obtained in two trans­
forms and two derivatives in two passes. This constraint can be
rem@ved only if four lines of the mesh can be held simultaneously
in fast memory (so that all eight real numbers representing wave
number k are present). The Illiac fast memory is sufficiently
large to accommodate four mesh lines, but not within a single
processing element (PE), so that differentiation would require
communication across the PEs. We have instead used a slightly
altered set of dependent variables that avoids this problem alto­
getf.ter.

If the x momentum equation is differentiated with respect to
X, and the y momentum equation with respect to y, and the uv stress

terms appears as (~v) xy in both equations, and its evaluation under
the constraints. But two extra integrations (of UA and VA) are then

A A x y
required to form u and v in physical space; however since integra­
tion and di ffe-rentiation cost far less than either a transform or
an I/O pass, this method is quite efficient. To avoid loss, upon
differentiation, of information in a Fourier mode having a null
wave number we simply do not multiply that mode by its wave number
(i.e., zero) and similarly, when we integrate it we do not divide
by its wave number. What this amounts to is that, instead of the
usual spectral dependent variables

I •.

I

I

I

~

we use

'" u(O,k
2

,k
3

)

'" v(k1,O,k)

'" w(k
1

,k2 ,O)

Computational Fluid Dynamics 171

'" , ik
1
u(k

1
,k

2
,k

3
)

'" , ik2v(k1 ,k2 ,k3)

'" , ik3w (k1 , k2 , k3)

u(k1,k2,k3)

v(k 1,k2,k3)

w(k 1,k2,k3)

, kl :; °
, k2 :; °

, k3 :; °

Use of these variables simplifies the continuity condition
and minimizes the number of transforms and passes over the data
base.

172 Applications

APPENDIX

THE ILLIAC PROGRAM

The fourth-order Runge-Kutta algorithm is used to integrate the
system of equations (10-12). The strain inverses A,B,C, and the inte­
grating factor F are considered known. The bulk of the computation is
the evaluation of the right side of (10), which is done in subroutines
PHASE 1, PHASE 2, and PHASE 3. The dependent variables X,Y, Z are then
advanced in STEP and the continuity condition (11), is used by PRESSR
to recover the physical velocities (12). These five subprograms are
called sequentially by the control routine LOOP which is responsible for
data management and step control.

The functions of processes called by these routines are given by
in-line comments in the listing.

Data Structure and Flow
The data base resides on disk and consists of two blocks. The first
block of data holds the velocity field at the beginning of Runge-Kutta
step (three words/node) and a predicted velocity accumulator field (three I
words/node) in which the right side of (10) is evaluated, requiring both •
sequential and nonsequential page accesses from the disk.

Each prediction within the Runge-Kutta process requires two complete
passes through the data base, one bringing (x,y) planes into core (PHASE
1, PHASE 3, STEP, and PRESSR) for operators in the y direction, and one
bringing in (x,z) planes (PHASE 2) for operators in the x and z direc­
tions. In the latter pass, only the working space data block is required,
allowing the (x,z) planes to be handled by a triple buffered scheme.

Listing of Program
The program is coded for execution in 32-bit precision on the Illiac
computer. The routines listed in the full paper, which are coded in
the CFD language, cover the major algorithmic steps of the computation.
Some of the lower level routines are coded in assembly language (ASK)
for efficiency, and others had to be hand coded because of the restric­
tions pl~ced on 32-bit operation by the CFD language.

REFERENCE

Orszag, S.A.: Numerical Methods for the Simulation of Turbulence. Physics
of Fluids Supplement II, 1969, p. 250.

(Note: A discussion of the physics has been omitted from this condensa­
tion. To obtain copies of the completed paper, order NASA TM-73,203.)

3. TRIDIL IV. II Three Dlman.lonal Hydrodynamic. Code
for the ILLIAC IV Computer

In most cases, an understanding of the complex phenomena involved in
the numerical simulation of hydrodynamic studies can be accurately
described using one- and two-dimensional codes. Many times, however,
situations arise in which the phenomena are clearly three-dimensional.
Unfortunately, the length of time and number of cells required for the
solution of such problems is not practical on most present day computers.
Development of the Illiac IV has provided the opportunity to attain the
speed, economy and mesh sizes needed to realistically treat these prob­
lems. A project was, therefore, initiated to reconfigure the TRIOIL
code to make optimum use of the unique features of the Illiac IV com­
puter. The resulting version of the code, TRIOIL IV, is operational
and has been used to calculate a three-dimensional blast wave problem.
The basic logic of the code, its utilization of the tlliac IV and com­
parisons with other computers are discussed.

ThlS sectl0n lS based on a report by L.L. Reed and D.R. Henderson;
System, Science and Software Corp., La Jolla, California,
(SSS - I R - 76-2807) Dec. 1975.

173

174 Applications

DESCRIPTION OF TRIOIL IV

The TRIOIL IV code treats two materials and permits variable zone
size in each of the three dimensions. The current version is
capable of processing a 64 x 70 x 70 grid (313,600 zones). Either
reflective or transmitted boundary conditions may be specified.
In mixed cells t the energy is partitioned in proportion to the
mass of each constituent cell. The Tillotson (1) equation of
state form is incorporated and can be used for describing a wide
range of material properties.

TRIOIL IV incorporates a unidirectional, explicit technique
(splitting)(2) for solving the hydrodynamic equations in an Euler­
ian formulation. The splitting technique is a series of one-dimen­
sional passes over the computational grid performed in such a
manner as to arrive at a three-dimensional solution without the
use of "look ahead" for mass transport. The look ahead feature is
used in many current 2-D and 3-D Eulerian codes.

The three hydrodynamic conservation equations for inviscid
flow are

.!e.+ V • -+ 0 at pu = Conservation of mass

-..
~~u + V • p~ = -VP Conservation of momentum

and

~pE -+ -+ Conservation of energy
o + V • puE = -V·Pu at

where

p density

-+ velocity u

p pressure

E = specific total energy

t = time .

!

Computational Fluid Dynamics 175

'In the TRIOIL code, these equations are solved in two phases.
Terms involving pressure forces are treated in Phase 1 (PH1) and
transport terms are treated in Phase 2 (PH2). The Phase 1 pro­
cessing is completed for all three coordinate directions before
proceeding to Phase 2. Detailed descriptions of the Eulerian
finite difference equations are described in (3).

In the splitting technique used in TRIOIL IV, the conserva­
tion equations are identical to those of TRIOIL. However, in
the TRIOIL IV code, both Phase 1 and Phase 2 are completed for a
given coordinate direction before proceeding to another coordinate
direction. A complete computation cycle consists of three calcu­
lational sweeps over the grid; one for each coordinate direction.
The direction of the'sweeps are permuted to account for the six
possible combinations of the three coordinate directions. This
is done to avoid preferential mass flow which would occur if the
calculations were performed in the same coordinate sequence each
cycle.

The parallel processing characteristic of the Illiac IV makes
it undesirable to halt the normal flow of calculations for the
handling of individual cells as is usually the case in the treat­
ment of boundary conditions. In order to avoid this problem in
the TRIOIL IV code, boundary cells are placed at the ends of the
normal computational grid. These cells are initialized at the
beginning of each calculational cycle in a manner which causes the
interface between the boundary cell and the adjacent cell to re­
ceive the appropriate boundary conditions (transmittive or re-
fl ective) .

A typical TRIOIL IV cycle is outlined in Figure 5.13. After
the initial grid generation, a slab of data (e.g., x-y) is read
in from disk. In this slab, PHl and PH2 are carried out for one
direction, say, the x-direction. This process is then repeated
for the other y-direction in the slab and the resulting data are
written back onto the disk. This same procedure is then followed
until all (x-y) slabs have been processed (Figure 5.14).

Next, the data are read in and processed a slab at a time in
an orthogonal direction (e.g., x-z) with the appropriate equations
being solved for the z-direction. At the end of the cycle, the
new timestep is calculated and the next cycle is initiated with a
different permutation of the x, y and z directions.

The unique feature of the Illiac IV, which requires special
programming considerations, is that 64 processinq elements (PEs)
a re used in para 11 e 1 process i ng mode. For simp 1 i city, the code
was organized so that one coordinate direction (the x-direction)
would always lie "across" the PEs. That is, difference equations
involving shifting information from one PE to another apply only
to the x-direction. Equations involving the y and z-directions
use the standard serial type of difference equations. For in­
stan~e, "UBAR", the average velocity at a cell interface is repre­
sented in the y and z directions in the following manner:

UBAR = {U[LOe] + U[LOC + N])/2

176 Applications

r------
I PHIX
I PH2X
I EOS --1 PHIY
I PH2Y

L~~ __ _

r-----
I PHIZ
I PH2Z

-, EOS

L"'2~E!~::

Alternate
Subsequent
Cyeles

Figure 5.13 Flowchart of a typical cycle of TRIOIL IV

Data Are
One Slab

x

Computational Fluid Dynamics 177

Processed
At a Time

I-l..-
.... 1.0-

.... l..-
f-V

.... l..-

Processing The Grid As X-V Slabs

Processing The Grid As X-Z Slabs

Figure 5.14 Grid subdivisions

178 Applications

where IIU{LOC)II represents the velocity of the cell center t and
t'U(LOC+N)" represents the velocity at the center of the neighbor­
ing!cell. However t due to the parallel processing feature of the
Illiac IV computer, information contained in adjacent PEs is not
directly available. It must therefore be shifted into the appro­
priate PEt when performing calculations in the x-direction. This
requires an additional set of equations for the x-direction. The
same velocity calculation as mentioned above would be represented
in the x-direction as:

UBAR = (U(LOC) + RTL(l t ,U(LOC)))/2,

where IIRTLII indicates a shift of data to the left adjacent PE.
This technique eliminated the need for either skewing the storage
or performing a matrix inversion to change coordinate directions
during processing.

As described above, the TRIOIL IV code alternately processes
a series of x-y planes and x-z planes. The data for these planes
are arranged on the 140M disks so that the y-direction lies se­
quentially along disk IIpages ll (1 page equals 1024 words) and the
z-direction lies across the disk bands (1 disk equals 4 bands).
This is best illustrated in Figure 5.15. For simplicity, the
necessary page del ays between bands have not been i ncl uded. Each
page on the disk contains all values of x for any given value of
y or z. The ability to read either along or across bands allows
the TRIOIL IV code to utilize common in-core storage for both the i,~
y and z planes, the main storage vector being dimensioned to the
larger of the two directions.

Each cycle requires a total of one read and one write per
plane. In a typical cycle, an x-y plane would be read in from
the first band, processed and written back out to the same band.
The next band (or x-y plane) would then be read in and the process
continued until the last band has been processed and written out.
For the second half of the cycle, the first x-z plane is read
across the bands and into the storage vector previously utilized
by the x-y plane. This plane is then processed and written out
to the same storage area or disk. The heads are then positioned
one page down and the rest of the x-z planes are serially pro­
cessed in the same manner completing a full cycle.

It is interesting to compare disk reading time with computing
time. The time needed to read and write information (I/O) on the
disk per cycle depends on the average access timet 20 msec per
read or write, and the number of x-y and x-z planes needed for the
calculation. Assuming a 64 x N x N grid, the disk I/O time TO per
cycle is roughly

TO = 20 msec x 4N

The computational time needed per cycle TC is the number of
cells (64 x N x N) times the processing time per cell Tp in ms

TC =~Tp x 64 x N 2

PAGE
0

PAGE
1

PAGE
2

PAGE
33

PAGE
N-1

PAGE
N

BAND

o

JOKO
ALLX

J1 KO
ALLX

J2 KO
ALLX

J3 KO
ALLX

J(JMAX-1)
KO

ALLX

J (JMAX)
KO

ALLX

JO K1
ALL X

J1 K1
ALL X

J2 K1
ALL X

J3K1
ALL X

J(JMAX-1)
KO

ALLX

J (JMAX)
K1

ALLX

Computational Fluid Dynamics 179

2

JOK2
ALLX

J1 K2
ALLX

J2 K2
ALL X

J3 K2
ALLX

J (JMAX-1)
KO

ALL X

J(JMAX)
K2

ALLX

3

JOK3
ALL X

J1 K3
ALLX

J2 K3
ALLX

J3K3
ALL X

M

JOKMAX
ALLX

J1 KMAX
ALL X

J2 KMAX
ALL X

J3 KMAX
ALL X

J (JMAX-1)
KMAX
ALLX

J (JMAX)
KMAX
ALLX

Figure 5.15 Organization on disk of data for TRIOIL IV
calculation on the Illiac

180 Applications

Then the ratio of TO to TC is

Tp' for the test calculation di~cussed below, was 0.14 msec
per cell. Thus, for a 64 x 70 x 70 mesh, TO/TC = 0.13.

TEST PROBLEM

The TRIOIL IV code was tested by calculating a point source three­
dimensional blast wave solution. The initial conditions are tabu­
lated in Table 5.1.A single source cell with an energy density of
1015 erg/gm was placed in one corner of the grid. The source cell
was designated DOT material with the remaining material designated
as X. The same perfect gas equation of state was used to define
the material properties of both DOT and X materials. The three
boundaries adjacent to the source were specified as reflective and
the outer boundaries were transmissive.

Both in-core and out-of-core options in TRIOIL IV were used.
A third calculation was made using the current version of the
TRIOIL code on the UNIVAC 1108 computer to obtain a timing com- ~
parison between serial and parallel computers. I~

Results of the TRIOIL IV calculation are compared with the
analytic solution in Figure 5.16 in the form of peak shock presn

sure vs. time. As shown in Figure 5.16, the finite source zone
leads to a lower pressure than the analytic solution at early
times. As time progresses, the pressure calculated overshoots and
by the end of the calculation, good agreement with the analytic
solution is obtained. A tabulated comparison of peak pressure vs.
time is given in Table 5.2.The difference in the values for peak
pressure at 2.473 ~s is assumed to be due to the increased accur­
acy of the 64-bit Illiac IV vs. the 36-bit UNIVAC 1108.

Computational Fluid Dynamics 181

ILLIAC ILLIAC
Parameter In-Core Out-of-Core UNIVAC 1108

Density 1.0 g/cm3 1.0 g/cm 3
1.0 g/cm3

Specific energy
1015 erg/g 1015 erg/g 1015 erg/g of source

Gamma of gas 1.4 1.4 1.4

x of all cells 1.0 cm 1.0 cm 1.0 cm

y of all cell s 1.0 cm 1.0 cm 1.0 cm

z of all cells 1.0 cm 1.0 cm 1.0 cm

Number of active
x partitions 62 62 16

Number of active
y partitions 10 8 10

Number of active
z pa rtit ions 10 8 10

Table 5.1 Tabulated data

182 Applications

1016

10111

10"

Spherical Symmetry

1"-.:
I'. An Iy<ic

"'-
~

10-7

Time (sec)

o Code Results

t' n

"'-

1005

Figure 5.16 Peak shock pressure versus time

Peak Pressure {erg/cm3,
Time (sec) UNIVAC 1108 ILLIAC IV

2.70 x 10-8 2.935 x 1014 2.935 x 1014

2.95 x 10-7 1.305 x 1013 1. 246 x 1013

8.78 x 10 -7 2.519 x 1012 2.509 x 1012

1. 61 x 10-6 1.180 x 1012 1.217 x 1012

2.47 x 10 -6 7.683 x 1011 7.916 x 1011

Table 5.2 Tabulated comparison of peak pressure ~ time

Computational Fluid Dynamics 183

TIMING COMPARISON BETWEEN ILLIAC IV AND UNIVAC 1108

Some timing studies were performed to compare speeds of the
TRIOIL computations on the UNIVAC 1108 computer with the two
Illiac IV versions of the code. The results are as follows:

Code/Computer

TRIOI L/UNIVAC

In-core/Ill.iac IV

Out-of-core/Illiac IV

Processing Time per Cell

7.5 msec/cell

0.14 msec/ce11

0.35 msec/cell

The gains in processing time are truly impressive. Of course a
problem must contain 64 cells inat least one direction in order
to realize the full capability of the Illiac IV. The out-of-core
Illiac IV code will approach the speed of the in-core version as
the number of cells increases.

References

1. J. H. Tillotson, "Metallic Equations of State for Hyper­
velocity Impact (U)," General Dynamics Corporation
(July 1962).

2. W. E. Johnson, unpublished notes on splitting in hydro­
dynamics calculations (U).

3. W. E. Johnson, "Development and Application of Computer
Programs to Hypervelocity Impact (U), Systems~1 Science
and Software,Report 3SR-353, (December 1970). (U)

4. "System Guide for the Illiac IV User," Institute for
Advanced Computation, lAC Doc. No. SG-I1000-0000-D,
(March 1974). (U)

c. Image Processing

Digital image processing research is particularly well suited
to the architecture of the Illiac IV. A wide variety of algo­
rithms have been experimentally implemented in the areas of mul­
tispectral classification, line detection, enhancement, skele­
tonizing, shape detection, transform coding, and others. The
Illiac is not well suited to production processing of images
since many image processing activities are data intensive
rather than compute .intensive. Moving large images from tape
onto the 140M is a relatively slow process. The Illiac, how- ~
ever, has been useful in the development of parallel algorithms
for hardwiring into special purpose image processing systems.

184

1. Image Line Detection an the ILLIAC by Haugh
Transform

Five years ago Duda and Hart reported (1) the use of the Hough
transformation to detect lines and curves in digital pictures.
They suggested an alternative parameterization to that used by
Hough ten years previously as reported by Rosenfeld (2).
Extending the Hough transform for angle and shape detection,
texture classification, template orientation and other appli­
cations is discussed in (3). Briefly, the Hough transform
replaces the original problem of finding colinear points by
a mathematically equivalent problem of finding concurrent lines.
Suppose we have a set of N points (xi' Yi)' = 1, 2 ... ,N. The
lines through a given one of these points (xi' Yi) are given by

P = x. cos Q + y. sin Q
1 1

(1)

where Q specifies the angle of the normal to the line with
respect to the x axis, and P is the distance of the line from
the origin as shown in Figure 5.17. Note that the range of P
is both positive and negative, but bounded by the format size.
Concurrent lines are characterized by the same P, Q parameter
values. Quantizing P and Q into suitable increments allows the
generation of a two dimensional histogram of all of the P, Q
values associated with the N points; for each (x., Yi) and for
each Q increment, equation 1 indicates a specifit P value. If
the accumulated count of P, 0 occurrences - the histogram- is
termed H(P,Q), then high values of H indicate a high number of
colinear points. An example H(P,Q) is shown in Figure 5.18.
The left half of this H display reports line counts with P
ranging from 0 (top) to 63 (bottom) and Q ranging from 60 (left)
to 1800 (right); the right half shows counts for P between -1
(top) and -64 (bottom). The ten lines correspond to the ten
*'s in H.

185

186 Applications

y

'---~~------------------~~----x

Figure 5.17 Hough transform geometry

00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
11111111111111111111111111111111
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
11111111111111111111111111111111
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
000010000100001000010000100~J100
00001000010000100001000010000100
11111111111111111111111111111111
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
00001000010000100001000010000100
11111111111111111111111111111111

Image Processing 187

Figure 5.18a Grid pattern input

188 Applications

000000000000001232233432322000 000000000000000012323443333221
000000000000011432233332221000 000000000000000012123344332231
100000000000011422333332111000 000000000000000001222234433341
321001000100111432323322110000 00000000000000000112233223333*
42100000111224*111222222210000 000000000d00000000212233233211
321100010011341112234321110000 000000000000000000111234432221
221101111112341112333322100000 000000000000000000111223333231
132211111122321113232221100000 000000000000000000011222332441
433110111112311112333211100000 00000000000000000001112332333*
333211111222311122333220000000 000000000000000000011123333211
432122111123211132332111000000 000000000000000000001112333221
123222221222111122333211000000 000000000000000000000111232231
133322222233211133332100000000 000000000000000000001112333441
433321222222111333232110000000 00000000000000000000011223333*
332333222322211433421110000000 000000000000000000000011233211
4233322233211114342111 00000000 0000000000000000000000ll.~J3221
123333333332221432321100000000 000000000000000000000011132231
13334232232234*122221000000000 000000000000000000000001123441
332324333222341133221000000000 00000000000000000000000111333*
433323343222341133210000000000 000000000000000000000000113211
323244323322321333210000000000 000000000000000000000000112321
123432444323311433100000000000 000000000000000000000000012331
132334443332211432100000000000 000000000000000000000000002341
333333333333321431100000000000 00000000000000000000000001133*
43333434323334*121000000000000 000000000000000000000000001111
423332333333341121000000000000 000000000000000000000000011221
123333344332341310000000000000 000000000000000000000000001231
133333322433221410000000000000 000000000000000000000000000141
432323333342311310000000000000 00000000000000000000000000002*
323221233324421200000000000000 000000000000000000000000000001
42323222223334*000000000000000 000000000000000000000000000001
122223223223230000000000000000 000000000000000000000000000000
021212222222.230000000000000000 000000000000000000000000000000
022220221222200000000000000000 000000000000000000000000000000
001122112221100000000000000000 000000000000000000000000000000
001112211111100000000000000000 000000000000000000000000000000
000111111111000000000000000000 000000000000000000000000000000
000110111100000000000000000000 000000000000000000000000000000
000011010100000000000000000000 000000000000000000000000000000
000001101000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000[-;0000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000
000000000000000000000000000000 000000000000000000000000000000

Figure 5.18b Hough transform of grid pattern

Image Processing 189

In practice, then, a digital image can be subjected to a deriv­
ative and threshold operation to generate a set of N candidate
line and edge elements. Then the Hough histogram is generated
and thresholded. The surviving P, Q pairs indicate image lines
that can be used to eliminate spurious line and edge candidate
elements, and fill in gaps of the detected lines and edges.

As Duda and Hart point out, a similar method can be used
to find just the lines through a given point, just the lines of
a given direction, and by extension to higher dimensions for H,
any arbitrary type curve.

This technique seems not to have found wide popularity in
the digital image processing community. Perhaps, as suggested
by a more recent paper by Duda and Hart, this is due to run
time considerations, particularly for large image formats and
for higher H dimensionality. If so, perhaps the economics
should be reconsidered since the advent of faster computers.

The Hough transform is an efficient, effective detector of
lines since the ~omputational effort grows linearly with N
rather than as N for considering all pairs of figure points.
Since lines and edges occur in most digital images and since
these lines and edges convey so much of the image content, it
is important that such an efficient detector be more fully ex­
ploited. This is particularly true in light of the growing
importance of parallel processors since the Hough transform
exhibits substantial parallelism.

This algorithm has been experimentally implemented on the
Illiac IV as part of the continuing effort to explore the bene­
fits of a parallel computer architecture for a wide range of
general digital image processing operations.

References

1. Richard O. Duda and Peter E. Hart, Use of the Hough
Transformation to Detect Lines and Curves in Pictures,
Comm. of ACM, January 1972 (Vol. 15 No.1) page 11.

2. A. Rosefeld, Picture Processing by Computer, Academic
Press, New York, 1969.

3. R. M. Hord, Extending the Hough Transform, Automatic
Image Pattern Recognition Symposium, U. of Md.,
May 23-24, 1977.

2. U.a af ILLIAC IV in Analyai. af LANDSAT Satellite
Data

1. INTRODUCTION

The data from the LANDSAT Multi·spectra1 Scanner (MSS) sate1-
1iteisavai1ab1e for analysis as a collection of picture ele­
ments (pixels) in frames containing about 7.5 million pixels.
In the area of the continental United States, each pixel cor~
responds to about 1.14 acres and each frame to about B.5 million
acres. Each pixel has four component channels, one for each of
the four bands of spectral data coll ected. Each of these com- I_
ponents is stored as an eight-bit integer with a value from 0
to 127, and represents an intensity in a particular frequency
band. These frequency bands are: green (5000-6000 angstroms),
red (6000-7000 angstroms), far-red (7000-BOOO angstroms) and
near-infrared (BOOO-11000 angstroms). Each frame is placed on
a single tape and portions of these tapes are read and analyzed
using the EDITOR system (6).

EDITOR is an interactive file management and image pro­
cessing system. It was developed by the Center for Advanced
Computation (CAC) of the University of Illinois for, and with
the aid of, the Statistical Reporting Service of the United
States Department of Agriculture (USDA/SRS), the Geological
Survey of the United States Department of Interior (USDI/USGS),
and the Ames Research Center of the National Aeronautical and
Space Administration (NASA/AMES).

The EDITOR system is currently available at two ARPANET
hosts: Bolt, Beranek, and Newman (BBN) and at 14-TENEX.
While EDITOR can read portions of LANDSAT frames from tape to
disk at BBN, interactive user access to magnetic tape is not
implemented at 14-TENEX. At lAC, entire frames must be read
from tape and portions deleted from the disk before data ana­
lysts can proceed.

The preparation of the data in the form suitable for the
EDITOR system consists of reformatting of the tapes received
from Goddard Space Flight Center and, optionally, a skew cor-

ThlS Section is reprinted from a paper'in the lAC Newsletter by
Martin Ozga, September, 1977.

190

Image Processing 191

rection process with a rotation to a north-south orientation.
Skew correction is not really necessary for analysis, but it is
helpful when checking data against maps. These preprocessing
steps will not be described further here since they in no way
currently involve the use of the Illiac IV.

For data analysis, two of the procedures, clustering and
classification, are often done on large data sets for which
the computation time on TENEX becomes prohibitive. These pro­
grams have been made available on the Illiac IV. As will be
seen, the computations required for clustering and classifica­
tion are quite parallel and thus well-suited for Illiac use;
processing turns out to be only a short job on the Illiac IV.
For the convenience of users, EDITOR provides a program to
create PIF's and handle the transfer of files over the ARPA
network to I4-TENEX and then submit jobs to the Illiac IV.
For I4-TENEX users, of course, only the PIF creation is neces­
sary. This facility saves the user the problem of worrying
about the proper Illiac disk format required for each program
and saves wasted runs which might be caused by improper control
sequences.

2. DATA ANALYSIS

The analysis of LANDSAT MSS data generally consists of looking
at small areas of data, identifying characteristics of pixels
representing areas with particular ground covers or usages, and
then applying these characteristics to large areas to obtain
some sort of picture of the distribution of ground covers in
these larger areas. Some users may want to estimate acreages
devoted to various crops such as corn, soybeans, etc. Other
users may be interested in maps of various agricultural uses,
of forest lands, or of urban areas and urban densities.

The first step in analysis is to perform a cluster analy­
sis on the smaller areas of data. This cluster analysis, as
will be seen, divides the data into a collection of classes
and assigns each pixel to some class. Also, and what is more
important for further analysis, a statistics file is generated
giving the means and variance-covariance matrix (for the four
channels) for each of these classes based on the pixels which
fall into the classes.

To give meaning to these classes, it is necessary to find
areas of data about which something is known. Thus, accurate
information should be available for small areas of land known
as "ground truth areas". To use this information in connection
with LANDSAT data requires that all ground truth data be regis­
tered very accurately to the LANDSAT data. All this is achiev­
ed through digitization and registration procedures available
within EDITOR, descriptions which are beyond the scope of this
article (6). Once registration is complete, it is possible to
identify certain pixels as belonging to particular fields and
thus to identify those pixels with known ground covers. When
clustering is done, one can check the assignments of pixels
to classes and the assignment of these same pixels to ground
cover and thus obtain a correspondence. Unfortunately, in

192 Applications

practice, things do not work out so easily due to problems in
distinguishing certain ground covers. These problems include
variat';ons in spectral characteristics of the same ground cover
over a large area, general noise in the data, and seasonal var­
iations in spectral characteristics -- corn and trees are con­
fused during many parts of the year.

No matter what method is used to assign categories to
ground covers, it should be emphasized that this process is
probably the most difficult and also the most important in the
analysis of LANDSAT data. From the clustering a collection of
statistics for the various categories is obtained. If possible,
several categories are selected for the ground covers of inter­
est to allow for variation in the data for those covers. Final­
ly pixels in a large area are assigned to those categories
using the statistics. This is referred to as the classifica­
tion of the data into the categories. Due to memory size lim­
itations on the ILLIAC IV, a maximum of 64 categories may be
used for classification. While this is enough or more than
enough for most applications, it still means that care must be
taken in the selection of categories corresponding to the var­
ious ground covers.

Since the number of categories allowed is limited to 64,
-it is necessary to combine or pool categories which represent
the same ground cover and which are "close" to each other.
What constitutes "close" is a matter of some dispute and seems Ii
to vary with the type of ground cover under consideration. I

The EDITOR system provides a statistics file editor to compute
the distance between categories, pool categories, print list-
ings of statistics files, and assemble the statistics files
needed for classification.

Before the final classification of the large area is per­
formed, it is prudent to classify smaller areas about which
something is known to check the accuracy of the final classi­
fication. These small areas may be the same areas used for
clustering framing areas or they may be different test areas,
if any are available.

If the accuracy of classification is not sufficiently high
(what constitutes "sufficiently high" varies from application
to application), more work must be done on the statistics.
This would mean using more categories for ground covers with
which the worst problems are experienced, pooling different
categories than before, etc. It might even be necessary to do
additional cluster analyses on areas not previously used to
get more or different categories for various ground covers.

Once a statistics file is obtained which seems to yield
classification with sufficient accuracy, the entire large area
is classified using the Illiac IV. This large area would typi­
cally correspond to at least one or more counties and might
even be an entire frame for certain applications.

For any sort of estimate on land usage or ground cover,
an aggregation is made of the classified data by category (and
hence by ground cover or land usage using the user-supplied
category assignment) and by areas within the frame. These

Image Processing 193

areas may correspond to such things as political or geographic
boundaries. To obta4n the mapping pf pixels into these areas,
a further digitizing and registration procedure is needed using
subsystems of the EDITOR system. The estimates given may be
simple sums of the pixels in the categories or may be arrived
at using a more complex statistical process.

In summary then, it is seen that analysis of LANDSAT data
is a process involving many steps. The clustering and classi­
fication steps lend themselves well to Tlliac IV processing as
will be seen. However, for the results of clustering and clas~
sification to be meaningful, a great deal of manual interpreta­
tion, with the assistance of various interactive programs in
the EDITOR system, is needed.

3. ILLIAC IV IMPLEMENTATIONS

3.1 Clustering

The clustering technique used is taken from LARSYS (1,2) as
developed at the laboratory for Applications of Remote Sensing
(LARS) at Purdue University and applied to Illiac IV by CAC.

The clustering algorithm can be divided into the following
four steps:

~ -- Initialization

Let Xl""XN be the N(four-channel) pixels in the area to
be clustered, each pixel represented by a four-dimensional
integer vector Xk = (Skl' Xk2 , Xk3 , Xk4). If the number
of categories desired from the cluster is C, let Ml , ---,
MC be the C initial mode centers of these categories to
be computed, where each Mi is a vector, Mi = (mil' mi2 ,
mi3 , mi4). Then, let S = sl' s2' s3' s4) be the sample
mean of the N pixels.

S - 1 N
J
. - N

k=l
j=1,2,3,4

and the sample variance for each dimension

2 1 N 2
C1. = -N 1 L (Xk · - S.)

J - k=l J J
j=1.2.3.4

Next, consider the real line intervals

194 Applications

The Cartesian product XiY l • XkY2 . XkY3' XkY4 for all Xk
defines a rectangular parallelepiped in the observation
space which should contain most vectors. The C initial
category mean values Mi = (mil' mi2 , mi3 , mi4) are chosen
along the diagonal of this parallelepiped as follows:

i-1] Mi = S + y[2 c:T - 1 i = 1, 3, ... , c

~ -- Category Assignment
The square of the Euclidean distance is determined from
each pi xel X" to each category mean Mi as

2 4 2
dk" = r (XkJ" - MiJ,) 1 j=l

and pixel K is assigned to the category giving the

smallest value of d~i'

.
~ -- Category Migration
If Step 2 did not change the assignment of any of the N
pixels (and the first time through Step 2 it always
changes the assignment of all pixels), go to Step 4.
Otherwise, replace the old category mean values by the
mean of all the pixels currently assigned to that cate­
gory. Then return to Step 2, Category Assignment.

Step 4 -- Variance-Covariance Calculation
The mean values for each category will have been calcu­
lated as part of Step 2. To complete the statistical
description of the categories, the variance-covariance
matrix for each category is calculated (the variances
are the diagonal elements of this matrix and the covar­
iances are the off-diagonal elements). An element of

Image Processing 195

the matrix is calculated as

P
C = ! E (Xk· - m ..) (Xkl - mil)
ijl Pi - l k=l J lJ

where Mi (mi2 , mi3 , mi4) is the mean for the category i
being considered, Pi is the number of pixels found to be
in that category, the Xk = (Xkl , Xk2 , Xk3 , Xk4) are the
pixels which are determined to be in the category and j

and i are the two channel values.
The data is presented to the Illiac IV as a two row header con­
taining various information about the data file followed by
the pixels. The pixels are each stored in 32 bits and thus two
per PE. The file ;s seen by the Illiac IV as shown ;n Figure
5.19.

Now since the pixels each take up 32 bits, by doing some
shifting it is easy to get each pixel into either the inner or
outer part of the word and thus process separate pixels in par­
allel in each half of the PE using 32-bit mode.

The first step is to convert each channel value into a
floating point value so that all further computation may be
done in (32-bit) floating point. The memory row used by the
original data then is used to store the category of the pixel
and four additional rows are used to store the floating point
values, so we have data in a PE as shown in Figure 5.20.

Of course, the classes for all pixels (as was true for
the original data) would all be stored together and then would
come the floating point values in a separate area of memory.

The summing required for calculation of mean values pro­
ceeds first in parallel down the PElS for all rows. Next, the
sums in the inner and outer parts of each PE are added and
finally the entire sum is computed by routing and adding (as
;s well known, only 6 routes are needed since 26 = 64). The
summing, where necessary, is done separately for each PE.

The category assignment (Step 3) is, of course, easily
done in parallel for 128 pixels at a time since in this phase
the pixels are handled quite independently.

Finally, when the process converges, the output clustered
and statistics files are created. The output clustered file
has 16 bits for each pixel (only eight of these are used~ the
other eight are to maintain compatibility with files created
by the classification programs). The creation of this file
requires several routing steps in order to combine two rows of
categories into one.

Since clustering is an iterative process, the current
implementation on the ILLIAC IV is core-contained. This means
that the maximum number of pixels which may be processed is
40704.

196 Applications

PE 59 60 61 62 63

)

J
j

pixel 0 pixel an ILLIAC IV Word

f}

)
2 Row

Header

n Rows

of Data

Bits 31 32 63

Figure 5.19 Pixel data file

Outer Inner

pixel 0 pixel 1 Class of pixel

Floating point values for Channel

Floating point values for Channel 2

Floating point values for Channel 3

Floating point values for Channel 4

Figure 5.20 Pixel data in PE

I

~

Image Processing 197

However, since it is sometimes useful to be able to
cluster more pixels, CAC has lately been experimenting with
what we call "weighted clustering". This is based on the
observation that within an area of LANDSAT data, pixel values
tend to be repeated many times (5). Then, if each pixel is
stored once, along with the number of occurrences (or weight)
of that pixel and the clustering formulas are modified appro­
priately to take this weight into account, the same resultant
statistics are obtained so that more pixels may be clustered.
The input file for wei.ghted clustering as read in by the
Illiac IV has a two row header, followed by the weights (wi)
followed by the pixels (Pi); this is shown in Figure 5.21.

Each weight is storeo as a 32-bit integer so that the
weight falls into the same PE and the same part (inner or
outer) of that PE (after some appropriate shifting on the
Il1iac IV) as does the pixel value to which it applies. Since
for each pixel value, the weight will occupy an additional
word, the total number of different pixel values to which
weighted clustering may be applied is reduced to 33664. The
program to generate weighted files is available as part of
EDITOR on TENEX. The weighted cluster produces a valid statis­
tics file, but does not produce an output file suitable for
display. To get such an output file it is necessary to use
the statistics file generated by the cluster to do a Euclidean
minimum distance classification of the entire area. Such a
classification is, of course, equivalent to Step 2 (category
assignment) of a cluster analysis.

3.2. Classification

Classification is the process of assigning a category to each
pixel in some (usually) large area based on a statistics file
as obtained by one or more cluster analysis. Currently two
classification algorithms are implemented on the Illiac IV:
the statistical maximum likelihood classification as adapted
from LARSYS (3,4), and the simple minimum distance Euclidean
classifier (equivalent to Step 2 of cluster analysis).

In statistical classification, pixel Xk is classified
into category i such that the discriminant function G. is
maximum where 1

198 Applications

58 59 60 61 62 63

~
{) 2-row

header " I
.\
J

, I n rows of

weights

J ,
\

(,
-'.

j I n rows of

pixels

'<
)
l
l
J

I wo I W1 J an ILLIAC IV word for weights
(] ~I ~2

l PO I P1 I an ILLIAC IV word for pixels

~I 32 t3

Fi gure 5.21 Input file for weighted clustering

~

and

Image Processing 199

is the mean value vector for category i

is the 4 x 4 variance-covariance matrix for
category i

- ~ ln ILi I where

means the determinant of Li'

The inversion of the matrix Li and the computation of bi for each cat­
egory is done on TENEX in the statistics editor program of EDITOR
before the statistics file is presented to the Illiac IV classification
program.

In Euclidean classification, pixel Xk is classified into category
i such that (the square of) the Euclidean distance, d2

ki , is the mini­
mal between the pixel and the mean value vector Mi where

242
dki = L (XkJ· - MiJ.) j=l

and

It is readily seen that for both methods, the classification of
anyone pixel is entirely independent of that of any other pixel.
Therefore t the procedure is parallel and may proceed very rapidly on
the Illiac IV. AlsO, the classification procedure is not iterative
so there is no reason for the data to be core-contained. It can handle
as much data as will fit on the Illiac disk.

The input and output data have the same format as for clustering,
except that for statistical classification a chi-square index indicat­
ing the probability of misclassification is put into the high order
eight bits of the l6-bit field allotted to each pixel on output.

An enhancement of ciassification currently being worked on at CAC
is "masked classification" in which different statistics files are used
on different areas of the data. Which statistics file to use is deter­
mined by a mask file fitting the area to be classified. The mask file
is generated by digitizing boundaries between different types of ter­
rain. Such a procedure should be of use in areas where the terrain
varies widely, as in certain areas of California where the transition
from agricultural valleys to mountains is abrupt. The process of de­
termining, for each PEt the mask field to which a pixel contained in
the PE belongs is not particularly well-suited to Illiac IV processing.
Some large mask file representation could be passed to the Illiac IV,
but because of the problems incurred in handling the increased amount
of data, it seems best to tolerate this relatively minor loss of paral-
1 eli sm.

200 Applications

3.3 Use of Multitemporal Data

It is sometimes useful to process multitemporal data, made up of
data from two separate frames spliced together. Each pixel then
has eight channels, four from each frame. Using frames from dif­
ferent seasons of the year over the same area makes it easier to
distinguish certain ground covers, such as corn and trees, which
may not be distinguishable on a single frame.

On the Illiac IV, programs are also available to cluster and
classify eight-channel data. They are similar to the programs for
four-channel data and so will not be described. The eight-channel
classifier is a 32-bit mode program and since each eight-channel
pixel takes up a full 64-bit word, a little extra data manipula­
tion is necessary. The eight-channel cluster program is a 64-bit
mode program. Both the eight-channel cluster and classify allow
a maximum of 32 categories.

Another way to handle eight-channel data on the Illiac IV is
to condense it back to four-channel data by taking two channels
from each of the two pixels used to make an eight-channel pixel.
We have found it useful to take channels 2 and 4 from each. The
program to do. this condensation (available as part of EDITOR)
allows the user to select the channels desired. The procedure I

for taking channels 2 and 4 is shown in Figure 5.22. Once this
is done, the four-channel cluster and classify programs may be I.
used.

Finally, the construction of the eight-channel data is a pro­
cess that lends itself in part to use of the Illiac IV. The pro­
cess requires a correlation of many blocks of data paired between
the two frames to generate a set of matched control points between
the two images. Using a polynomial fitting these control points,
pixels from one frame may be mapped to the other allowing pixels
representing the same ground area to be spliced together. While
there is already such a block correlation program available on the
Illiac IV, it has been found to be unsatisfactory for overlay of
pairs of frames from widely different seasons and so improved
methods of image overlay are being studied.

3.4 Considerations for Illiac Use

It should be noted that in LANDSAT applic~tions, one is dealing
with large amounts of data which is presently stored on tapes.
The handling of many tapes, reading them into TENEX disk and copy­
ing the output back to other tapes as needed to process large
amounts of data on the Illiac IV presents some still unresolved
problems. Thus we look forward to the implementation by lAC of
more adequate tape to disk data handling facilities, which are
now under development.

The classify programs - for a full frame of LANDSAT data
covering approximately 8.5 million acres - typically take less
than five minutes of actual time on the Illiac IV, including trans­
fers between Illiac memory (PEM) and Illiac disk (I4DM). Timings

Image Processing 201

are dependent on the number of pixels and on the number of cate~
gories. In addition, the time required for clustering can vary
widely with different data sets since it is an iterative process.
However, in the past, the time taken for transfers between the
140M and TENEX disk far exceeded the time spent processing on the
Illiac IV. In July of 1977, lAC made available a new system for
handling these TENEX to Illiac'disk transfers. Data in this par­
ticular application is now transferred quickly enough to cut the
total processing and transfer time for a full LANDSAT frame from
approximately 55 minutes to 12 minutes.

8-channel pixel

(64 bits)

4-channel pixel

(32 bits)

Figure 5.22 Condensing eight channel data

202 Applications

References

1. G. H. Ball and D. J. Hall, "ISODATA, A Novel Method of Data
Analysis and Pattern Classification", Stanford Research
Institute,Menlo Park, California, 1965.

2. P. H. Swain and K. W. Fu, liOn the Application of Nonparametric
Techniques to Crop Classification Problems", National Elec­
tronics Conference Proceedings, 1968.

3. K. I.J. Fu, D. A. Landgrebe, and T. L. Phillips, IIInformation
Processing of Remotely Sensed Agricultural Data ll

, Proceedings,
IEEE, Vol. 57, No.4, April 1969.

4. P. H. Swain, "Pattern Recognition: A Basic for Remote Sensing
Data Analysi S", LARS Informati on Note 11572, Laboratory for
Applications of Remote Sensing, Purdue University, West
Lafayette, Indiana, 1972.

5. ~1. Goldberg and S. Schlien, "A Four-Dimensional Histogram
Approach to the Clustering of Landsat Data", Fourth Purdue
Symposi um on ~1achi ne Processi ng of Remotely Sensed Data,
Purdue University, West Lafayette, Indiana, June 1977.

6. M. Ozga, 14. E. Donovan and C. Gleason, "An Interactive System
for Agricultural Acreage Estimates Using Landsat Data",
Symposium on Machine Processing of Remotely Sensed Data,
Purdue University, West Lafayette, Indiana, June 1977.

3. Image Skeletonizing an the ILLIAC

The general problem of image pattern recognition is to assign each
of the patterns to be recognized to one of a prescribed number of
classes. The specific class to which a given pattern is assigned
is chosen on the basis of the values assumed by certain measure­
ments applied to the pattern. These measurements are termed fea­
tures. The effectiveness of a pattern recognition process depends
largely on significance of the features.

One type of image pattern recognition has been implemented
on the Illiac IV for some time: multispectral classification.
Most commonly this processing has been applied to LANDSAT Multi­
spectral Scanner data. In this application the program assigns
each picture element to one of a prescribed number of land cover
classes such as bare soil, trees, wheat, water and snow. The
features used to perform this classification are the ref1ectances
of the particular ground point in each of four colors or spectral
regions. This set of four features is termed the spectral signa­
ture.

Image pattern recognition is also concerned with other types
of patterns, for example, spatial temporal patterns, In the spa­
tial domain patterns can be assigned to classes of the basis of
size, shape, location and orientation. If one seeks to recognize
patterns on the basis of size, then features are chosen that are
independent of shape, location and orientation. Such features
are then termed invariant with respect to these other characteris­
tics.

Generally invariant features cannot be obtained directly
from the original picture. Rather the picture is subjected to
some pre-processing which presents the information in a trans­
formed way. This transformation process is termed feature ex­
traction. One example of feature extraction is the two dimension­
al Fourier Transform, which is invariant with respect to the loca­
tion of the pattern in the format of the original image.

If, in bin~ry images (just black and white, no grays), elon­
gated objects of varying thickness are to be classified without
regard to thickness, then a transform which makes the features'
thickness invariant would be useful. Example applications would
include Chinese characters and chromosomes.

A number of such transforms can be found described in the

203

204 Applications

image pattern recognition literature. They are referred to as
thinning, skeletonizing or medial axial transforms. We will focus
on one reported by Stefanelli and Rosenfeld (Journal of the Assoc­
iation for Computing Machinery, Vol. 18, No.2, April 1971, page
255) .

If we refer to a given picture element as PI, then we define
P2, "., P9, the neighbors of PI, by the diagram in Figure 5.23.

P9 pa P7

P2 PI P6

P3 P4 P5

Figure 5.23 Pixel neighbor diagram

Let A(Pl) be the number of 01 patterns in the ordered set
P2, P3, ... , P9, P2. Let B(Pl) be the number of nonzero neigh- I

bors of Pl. Then a nonzero point PI is changed to zero in the ~
image if all of the following 4 conditions prevail:

a} 2 ~ B(Pl} ~ 6

b} A(Pl) = 1

c} P2 * P4 * pa = 0 or A(P2) # 1

d) P2 * P4 * P6 = 0 or A(P4) # 1

This algorithm is applied iteratively until no further
changes occur. This processing yields connected values given to
that point and its eight neighbors at the (n-l)th iteration.
Thus all the points of a figure can be processed simultaneously.

This algorithm has been implemented on the Illiac IV. A
small test case has been executed with the results shown in
Figures 5.24 through 5.27.

Image Processing 205

o 000 0 000 0 000 0 0 0 0

o 0 0 0 0 0 0 * * * 0 0 0 0 0 0

o 0 0 0 0 0 0 * * * * 0 0 0 0 0

o 000 0 0 * * * * * * 0 0 0 0

o 000 0 * * * * * * * 0 0 0 0

o 0 0 0 * * * * 0 0 * * 0 0 0 0

o 0 0 0 * * * * 0 0 * * 0 0 0 0

o 0 0 0 * * * 0 0 00* * 000

o 0 0 * * * * * * 0 0 * * 000

o 0 * * * * * * * * * * * 000

o 0 * * * * * * * * * * * * 0 0

o 0 * * * 0 0 0 0 0 0 0 * * 0 0

o 0 * * * 0 0 000 00* * 0 0

o * * * 0 0 0 0 0 0 0 0 * * * 0

0** 0 0 0 0 0 0 0 0 0 0 * * 0

000 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.24 Input image

o 0 000 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 000 000 0 0 0 0 0 0

o 0 0 0 0 0 0 0 * * 0 0 0 0 0 0

o 000 0 0 0 * * * * 0 0 0 0 0

o 0 0 0 0 0 * * 00* 0 0 000

o 0 0 0 0 * * 0 00* 0 0 0 0 0

o 0 0 0 0 * * 0 0 0 0 * 0 0 0 0

000 0 0 * * 0 0 00* 0 0 0 0

o 0 0 0 * * * 000 0 * 0 0 0 0

o 00* * * * * * 00* 0 0 0 0

o 0 0 * * 0 0 0 * * * * * 0 0 0

o 00* 0 0 0 0 0 0 00* 0 0 0

o 0 * * 0 0 0 0 0 0 0 0 * 0 0 0

00* 0 000 000 0 0 0 * 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 000 0 0 0 000 0 0 0 0

Figure 5.25 Picture after 1 iteration

206 Applications

o 0 0 000 0 0 000 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000 0 0 0 0 0 0 0 000 0 0 a
00000 0 0 * * * * 0 0 0 0 0

000 0 0 0 * * 00* 0 0 0 0 0

o 0 0 0 0 0*0 0 0 * 0 0 0 0 0

o 0 0 0 0 * 0 000 0 * 0 000

000 0 0 * 0 0 0 0 0 * 0 0 0 0

o 0 0 0 0 * 0 0 0 00* 0 0 0 0

o 0 0 0 * * * * * 00* 0 0 0 0

o 0 0 * 0 a 0 0 * ** * * a 0 0

o 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0

o 0 * * 0 0 000 0 00* 0 0 0

00000000000 0 0 * 0 0

o 0 0 0 0 0 000 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 000 0 0

Figure 5.26 Picture after 2 iterations

o 0 0 0 000 0 0 0 0 0 0 000

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 0 * * * * 0 0 0 0 0

o 0 0 0 00* * 0 0 * 0 0 0 0 0

o 0 0 0 00* 0 0 0 * 000 0 0

o 0 0 0 0 * 0 0 0 0 0 * 000 0

o 000 0 * 0 0 0 00* 0 0 0 0

000 00* 0 0 0 0 0 * 0 0 0 0

o 0 0 0 * * * * * 00* 0 000

o 00* 0 0 0 0 * * * * * 000

o 0 0 * 0 0 0 0 0 0 00* 0 0 0

o 00* 0 0 000 0 00* 000

000 0 0 0 0 0 0 000 0 * 0 0

o 000 0 0 0 0 0 000 0 0 0 0

o 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0

Figure 5.27 Picture after 3rd and final iteration

4. Twa Dlmenelanel Hadamard Transform
an the ILLIAC IV

The Fourier Transform, the coefficients of a series expansion for
a function in terms of sines and cosines, has quite properly found
broad applicability throughout the scientific computation communi­
ty. A wide range of lAC application efforts have employed the
Illiac implemented FFT algorithm for quite some time, One promi­
nent example is the generation of images from SEASAT Synthetic
Aperture Radar da ta.

In the realm of general digital image processing, two dimen­
sional Fourier Transforms are used for enhancement, compression,
texture classification, smear removal, quality assessment, cross
correlation, and a host of other operations. One simple example
is contrast improvement. Here the Fourier Transform of an input
image is obtained to ascertain the spatial frequency content of
that image. If the zero frequency component or D.C. element of
that transform is set to zero, the inverse of this "filtered"
transform will be a new rendering of the image with the background
haze removed. Hence, the contrast is improved and the image will
be more interpretable.

Another transform, termed the Hadamard Transform, closely
related to the Fourier Transform, for some applications has advan­
tages over the Fourier Transform. Consider an n x n array of
picture elements X~j where ~, j = 1,2, ... , n. A transformation
of this X array into another n x n array Ykl can be specified

1j
by

k,t = 1,2, ••• , k.

Similarly, the inverse transformation gives

n n
x .. = l: l: a .. UYI.D

-<.J k= 1 l= 1 -<.J rfA. rfA.,
i., j = 1, 2, ••• , n.

207

208 Applications

The particular transform is defined by choosing the £lIS.

For the Fourier transformation

a.I..D:· =!... exp [- 21r1-=--i (fU.+.e.jl/n]
r«A..j n

and the Hadamard transformation

where

_ 1 (__ 11 b(k,.e.,~,jl
a.kU..j - n

.e.og
2
n-l

b(k,.e.,i,jl = ~ [bh(klbh(.e.1 + bh(ilbh(j)]
h=e.

b
h

(') is the hth bit in the binary representation of t·), and n

is a power of 2.
Stated differently, the Fourier Transform uses sines and

cosines, while the Hadamard Transform uses Walsh functions.
Figure 5.28 shows the first 16 of these Hadamard Transform wave­
forms.

One advantage of the Hadamard Transform over the Fourier
Transform is computational simplicity. For an n x n image, the
FFT requires 2n

Zlog zn multiplications and a like number of addi­
tions, while the Hadamard requires just the additions.

For image data compression purposes large images are gener­
ally partitioned into a set of 26 x 16 sub-images(l). A computer
program to generate the Hadamard Transform of a 26 x 16 sub~image
has been experimentally implemented on the Illiac. Sample input
and output arrays are shown in Figures 5.29 and 5.30. The program
does not normalize the output. Fortuitously the inverse Hadamard
Transform is produced by the same program to within a scale factor.

The Illiac IV as an array processor is particularly well
suited for image processing applications. Consequently the Insti­
tute is experimentally implementing a number of general purpose
image processing algorithms on the Illiac.

o 0-----------------

0---, r=
o ----. r---1

c:::J L--
4 0 -, r==--t r-

L--.J L......J
5 0-, II~
~ L-J L-

6 0-,., ., r­
L.J L-.-I L-I 0-, ., ,..., rr
L-I L-I L..J L-

8 0, ., ., ~ r
L..J L..J L-I L-I

9 0,, n....,,
L-I L-J U L-I L-

10 0, nqJ....,n r
L-I U U L-I

11 0, n II n n.,
L-IU UL..JU L-

12 0, n n., n n r­
UL.JU UL-IU

13 0-, n n n n ., n
UL.JUUU UI...

14 0, n n n n n n r
UUUL-JUUU

15 0, n n n n n n n
UUUUUUUI...

11111111111111111
o 2 4 6 8 10 12 14

Image Processing 209

Figure 5.28 Hadamard transform of Figure 5.29

210 Applications

o 0 0 0 0 0 0 0 0 000 0 000

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0 000 0 0 0 0 0 0 0 0 000

000 000 0 0 0 000 0 000

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ·0

0000000 0 000 0 0 000

o 0 0 000 0 0 000 0 0 0 0 0

o 0 0 000 0 0 0 0 0 0 0 000

o 0 0 000 0 0 0 000 0 000

o 0 0 0 0 0 0 0 0 000 0 000

o 0 0 0 0 0 0 0 000 0 0 000

000 000 0 0 0 0 0 0 0 000

o 0 000 0 0 0 0 000 0 000

o 0 0 0 0 0 0 000 000 000

o 0 0 000 0 0 0 0 0 0 0 000

1 1 1 1 1 1 1 1 1 1 1 1 1 111

Figure 5.29
Input Array

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 o 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 o 0 0 0 O.

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 00000

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.30
Hadamard Transform of Figure 5.29

Image Processing 211

References

1. Paul Wintz, "Transform Picture Coding", Proc. IEEE, \/ol.
60, No.7, July 1972, p. 809.

2. A. E. Kahveci and E. L. Hall, "Sequency Domain Design of
Frequency Filters", IEEE Trans. Comp., Sept. 1974, p. 976.

3. H. F. Harmuth, "A Generalized Concept of Frequency and Some
Applications", IEEE Trans. Info. Theory, Vol. II-14, No.3,
May 1958, p. 375.

4. W. K. Pratt et al., "Hadamard Transform Image Coding",
Proc. IEEE, June 1969, p. 58.

5. R. ~1. Haralick et al., "A Comparative Study of Data Com­
pression Techniques for Digital Image Transmission", Cadre
Corporation, Lawrence, Kansas, February 1972.

5. BAR Digital Proceaaing Reaearch

In 1972 NASA Special Programs Office of Applications began the
SEASAT program to gather information about the Earth's oceans in
the same manner as LANDSAT gathers data about the land's surface.
They conducted a survey of potential users of data on the condi­
tion of the seas; from this they determined a set of mission ob­
jectives and designed a vehicle to carry the sensors required to
meet these objectives. By testing the capabilities of this sat­
ellite under actual conditions, researchers will be able to
analyze all aspects of the program and design a system of satel­
lites to provide global coverage of the oceans.

It was obvious from the beginning that this program would
introduce new computational and data processing requirements.
In late 1975, the Institute for Advanced Computation began dis­
cussions with the SEASAT management regarding their computational
requirements. After reviewing the mission's requirements, it was
obvious that the most computationally intense process facing the
program was in the reduction of data from a microwave imaging
sensor, the synthetic aperature radar (SAR). The characteristics
for processing this data clearly matched the architecture of the
Illiac IV. This would also be the first attempt to use a SAR on
a satellite mission, and it would establish new requirements both
for the volume and for the transmission speed of remotely sensed
data. lAC proposed and was awarded research funding to investi­
gate using the Illiac IV to develop, analyze, and evaluate algo­
ri thms for the reducti on of SAR data. These algorithms wi 11 ul ti­
mately be implemented in hardware aboard future vehicles.

Simply put, B SAR is a microwave imaging radar whose beam is
focused by post-processing the return signal, rather than by hav­
ing its beam focused by the size and shape of the emitting device.
The radar mounted on the satellite illuminated an area on the
earth about 15 km x lOa km. This area, called a "footprint", is
to the side of the satellite's orbital plane at an angle of 200

degrees. (SAR's have been flown on aircraft for many years and
are called side-looking radars.) Because this beam is slanted,
the point nearest to the satellite is reflected sooner than the
point most distant from the satellite. This reflection is time
sampled at a frequency necessary to give a 25 meter ground reso­
lution. Such orientation is on a line orthogonal to the orbital

212

I

I~

Image Processing 213

plane and is called the range direction; the orientation along
the line parallel to the satellite's orbit is called the azimuth
direction. The positioning in the azimuth direction is determin­
ed by the direction in which the radar is pointed ("look angle")
and the doppler shift introduced by the relative motions of the
satellite and the target. Each pointt called a resolution ele­
ment t represents a 25 m x 25 m square of surface area. The images
to be produced from the SEASAT-A SAR are of 100 km square regions
with a resolution of 25 meters. This means that the final image
is composed of a grid of 40,000 x 40,000 resolution elements.
This processing is further complicated by having to compensate
computationally for the satellite's orientation and the earth's
rotation.

The role of the SAR is to gather data on ocean waves with
wavelengths of 50 meters and larger. This permits the computa­
tion of the wave energy spectra and direction. The resolution
of SAR permits the study of ice formations and movement.

As can be seen from the above description, SAR produces
large volumes of data at a very high rate. The only reasonable
approach to processing such volume is to do as much processing
as possible onboard the satellite so that it will transmit only
essential data to ground stations on earth. The processing of
this data will require new algorithms and techniques which are
being developed and analyzed on the Illiac IV.

The approach taken by lAC is to design a programmed environ­
ment which will manipulate the data from a SAR image. This envi­
ronment is made up of a system of programs to read, convert, re-
order, and display the SAR data .. It was designed so that various
subprograms to compute correlations and filter functions can be
included as modules to the system. The processing of an image is
done in two main steps; first along the range direction, then
along the azimuth direction. This requires transposing the image
(corner turning) between the range and azimuth processing. The
results of the processing are scaled and packed into a format
which will allow it to be reproduced on several commercial image
display devices.

214 Applications

SEASAT-A SAR

lOx 5° ANTENNA BEAM

Frequency

Pulse Width

Pu1 se Repeti tl on Frequence

Pu1 se Compression Ratio

Figure 5.31 SAR geometry

1340 MHz.

31 nanosec

'" 1 000 Hz
500

D. Mathematics

Numerical analysis activities on the Illiac IV are for the most
part research in nature and generally directed at seeking methods
for parallel processors in general rather than for the Illiac
specifically. For examples performing a two dimensional Fourier
transform on the Illiac involves the one dimensional transform of
the columns of the array down the PEs, a transpose of the array,
followed by the one dimensional transform of the rows of the array
again down the PEs. Research into efficient matrix transpose
methods is then applicable to other parallel processors.

1. Computing the Singular Value Decomposition on the
ILLIAC IV

INTRODUCTION

In this report we study the computation of the singular value
decomposition of a matrix on the Illiac IV computer. The singular
value decomposition of a real m x n matrix A (e.g., see (10), can
be defined as

where

and

A = urv\ (1)

U is an m x m orthogonal matrix,
V is an n x n orthogonal matrix,
r is an m x n matrix with a non­
negative main diagonal and zeros
everywhere el se.

The columns U(V) are called the left (right) singular
vectors of A, and the diagonal elements o'i's of L are called
the singular values. We assume that

and

where

0' >0' > ••• >0'>0
1- 2- - v

Uv+l = •.. = Uk = 0,

v = rank (A) and k = min(m,n).

There are alternative representations of the singular value
decomposition, for example,

A = U L Vt
V V v (2)

Th1S Sect10n 1S based on an art1cle 1n the tAc Newsletter
by Frankl in T. Luk, June 1978 •.

216

I~

Mathematics 217

with

and

Over the past twenty years. various methods have been pro­
posed for computing the singular value decomposition. The stand­
ard method, due to Golub (1965) (4), (6), uses the House-
holder transformations to bidiagonalize the given matrix, and
then the QR method to compute the singular values of the resul­
tant bidiagonal form. Hestenes (1958) (9) proposed a one-sided
orthogonalization method, which is essentially a Jacobi algorithm
and is not as efficient as Golub's method. Similar transformation
algorithms were, however, subsequently studied by Chartres (1962)
(1), who suggested the method for a computer with a magnetic back­
ing store, and by Nash (1975) (12), who developed his version on
a mini-computer. Since the algorithm can also be efficiently
executed on a parallel computer, we (1977) have studied its
implementation on the Illiac IV computer.

218 Applications

A ONE-SIDED ORTHOGONALIZATION METHOD

There are two reasons why the standard singular value dec om·
posit.ion method due to Golub may not be desirable on a parallel
computer. First, although the Householder transformation is in­
herently parallel, the effective vector length decreases at each
step. which may cause inefficiencies. Second, the parallel QR
method (14) may be numerically unstable (see 7). In contrast.
the one-sided orthogonalization method due to Hestenes et al.,
can be easily modified for efficient execution on a parallel
machine.

Since neither Hestenes nor Chartres reported practical
trials, Nash was apparently first to give implementation details.
His algorithm is briefly described here. He uses plane rotations
to orthogonalize the columns of the given m x n matrix A. The
aim is to find an n x n matrix V as a product of plane rotations
so that

AV = B.
with the columns of the m x n matrix B both orthogonal and non­
increasing in norm (euclidean norm) from left to right. Those
columns are then normalized so that

B = (uvlo) (L~~ ,
where Uv and Evare the matrices defined in (2).
Consequently.

A = U L vt
V V v'

where Vv consists of the first v columns of V.
A very similar algorithm based on row orthogonalization is
proposed. m x m matrix U is sought as a product of plane rotations
so that

utA = C
with the rows of the m x n matrix C orthogonal and non-increasing
in length from top to bottom. Normalize those rows to obtain

Hence

C = (E) 0) C~).
A = U L vt

•
V V V

where U consists of the first v columns of U.
v

Consider the effect of a plane rotation on a matrix.
A rotation acts only on two rows of the matrix, say the i-th row
a~ and the j-th row a~, with i <j. We write
~ -J

Mathematics 219

[
c~s $ -sin ~] [~~] [:: J.
S1n ~ cos ~ a j a.

- -J

Choose ~ such that

At a, Ot a,
-1 -J

and
At a, > t a, a,a, .
-1 -1 - -1-1

The second condition ensures that the computation always proceeds
towards an ordering of row norms. Nash suggests the choice so
that

cos ~

and sin ct>

where p = 2a~a,
-1-J

and

t t q = a,a, - a,a,
-1-1 -J-J

r = (2 + 2)Yz p q •

To minimize cancellation errors, Nash examines the sign of q and
computes cos ~ (sin ~) using the above formula if q is positive
(nonpositive). He then computes the other value using the follow­
ing relation

cos <t> sin A, = l
'I' 2r·

220 Applications

As in the traditional Jacobi algorithm, oerform rotations
in a set sequence called a sweep, each consisting of the
~m(m-l) rotations on the row pairs (1,2),(1,3), ... , (l,m),(2,3),
•• q (2,m), (3,4), .•. , (3,m) ... , (m-l,m). The iteration is
continued until all the rows are orthogonal. This guarantees
convergence because the row norms become more ordered in each
sweep. This one-sided method is in essence the Jacobi method im-
plicitly applied to the matrix AAt. Refer to the literature
(8, 15, and 17) for the convergence properties of this method.
It has a very desi rab le quadratic rate ofo:convergence.

This row orthogonalization approach allows one to solve over­
determined linear equations efficiently. Suppose that

Ax = b

is the current system of linear equations. Let R represent the
next plane rotation. Then

(R A)~ = (R~).

Since one can simultaneously apply the rotation on the right­
hand vector as well as the matrix, one need not accumulate the
rotations.

TEST FOR CONVERGENCE

Given the i-th row g~ and the j-th row g1 of the current matrix A
(tassume i < j), the two rows are orthogonal if the parameter

T =

t 2
(a.a.)
-l. ... J

is less than a tolerance tol. If either

t t
~i~i or ~j~j

is less than another preselected value eps, one may also treat the
two rows as orthogonal. One does not transform the orthogonal rows,
but may permute them if necessary to order the row norms.

If all the row pairs satisfy the orthogonality criterion in
a sweep, we terminate the iteration. Usually this takes the order
of 6 to 10 sweeps, i.e., from 3~2 to 5m2 plane rotations (see 13).

Mathematics 221

APPLICAB ILITY

The singular value decomposition has many applications (see 5).
Two are given here.

PSEUDOINVERSE (Subroutine SVD)

An n x m matrix X is called the pseudoinverse of an m x n matrix
if X satisfies the following four properties:

(;) AXA = A ,
(i;) XAX = X ,

(i i i) (AX)t = AX ,

(i v) (XA)t = XA .
+ The pseudoinverse is unique and is denoted by A. It can easily be

verified that if A = UL:V t , then

A+ = VL+U t ,

where 1 l 0
°1

I E+ =
1

. 1
0 i

°v
I

:0 J
nxm

One may use the output from SVD to compute the pseudoinverse.

SOLUTIONS OF MINIMAL LENGTH (Subroutine MINFIT)

Let ~ be a given m-vector. Suppose one wishes to determine an
n-vector ~ so that

II b -Ax 1/ 2 = min.

There is no unique solution if the matrix A is not of full
rank. Usually the imposed condition is thqt the vector is of
minimal length in the solution space. Such a solution, call it

h

~, is unique and is given by
h +
~ = A ~.

222 Applications

The subroutine MINFIT computes the minimal length solution
to m linear equations in n unknowns, where m ~ n.

FORMAL PARAMETER LIST

INPUT TO SUBROUTINE SVD

m
n
withu
withv
A{O:m-l}

CU integer; number of rows of A, m > 64.
CU integer; number of columns of A,-n ~ m.
boolean; true if U is desired, false otherwise.
boolean; true if V is desired, false otherwise.
PE real vector; represents the matrix A to be decom­

posed. The rows of A lie across PEls.

OUTPUT OF SUBROUTINE SVD

D

U{O:m-l}

A{O:n-l}

PE real; a vector holding the singular values of A
in non-increasing order.
PE real vector; represents the orthogonal matrix U
(if withu is true). The columns of U lie across PEls.
PE real vector; represents the matrix V of orthonorm­
alized columns.
The columns of V lie across PEls.

INPUT TO SUBROUTINE MINFIT

m
n
s
cutoff

A{O:m-l}

B{O:m-l}

CU integer; number of rows of A, m < 64.
CU integer; number·.of columns of A,-n < m.
CU integer; number of columns of B, sZ64.
CU real, those singular values of A that are smaller
than cutoff are set to zero.

PE real vector; represents the regression matrix A.
The rows of A lie across PEls.

PE real vector; represents the data matrix B. The
rows of B lie across PEls.

OUTPUT OF SUBROUTINE MINFIT

nrank

X{O:s-l}

CU integer; number of singular values of A greater
than cutoff.

PE real vector; represents the solution matrix X.
The columns of X lie across PEls.

GLYPNIR PROGRAMS

BEGIN
$ SET DBUGA

BOOLEAN WITHU, WITHV: CINT M,N,CMPLWD,ITER,INPROD,K~L; PREAL D;
PREAL VECTOR A{63},U{63};

I LLIACDISPLAY:
AREA OUT;

Mathematics 223

%***

SUBROUTINE SVD(CINT M, CINT N, PREAL OUT 0,
BOOLEAN WITHU, BOOLEAN WITHV);

BEGIN
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

PROGRAMMER : FRANKL! N LUK

DATE:

VISITING APPOINTMENT PROGRAM
INSTITUTE rOR ADVANCED COMPUTATION

AUGUST 1977

THIS SUBROUTINE COMPUTES THE SINGULAR VALUE
DECOMPOSITION OF AN M-BY-N MATRIX A, VIZ.

A = U 0 VI ,

WHEREU IS AN M-BY-M ORTHOGONAL MATRIX,
D IS AN M-BY-N DIAGONAL MATRIX

WITH NONNEGATIVE ELEMENTS,
AND V IS AN N-BY-N ORTHOGONAL MATRIX.

INPUT PARAMETERS :

M, N : CU INTEGERS. THE ROW AND COLUMN

D

DIMENSIONS OF THE INPUT MATRIX A; IT IS
ASSUMED THAT N .LE. M .LE. 64.

PE REAL.

WITHU : BOOLEAN, TRUE IF U IS DESIRED,
FALSE OTHERWISE.

WITHV : BOOLEAN. TRUE IF V IS DESIRED,
I1'ALSE OTHERWISE.

A : PE REAL VECTOR. THE INPUT
MATRIX; ITS ROWS LIE ACROSS THE PElS.

U : PE REAL VECTOR.

224 Applications

% OUTPUT PARAMETERS
%
% 0 : PE REAL. IT CONTAINS THE SINGULAR
% VALUES IN NONINCREASING ORDER ACROSS THE
% PElS.
%
% A : PE REAL VECTOR. THE MATRIX V OF
% RIGHT SINGULAR VECTORS; ITS COLUMNS LIE
% ACROSS THE PE I S (IF WITHV IS TRUE). NOTE
% THAT THE INPUT MATRIX HAS BEEN DESTROYED.
%
% U PE REAL VECTOR. THE MATRIX U OF
% LEFT SINGULAR VECTORS; ITS COLUMNS LIE
% ACROSS THE PElS (IF WITHU IS TRUE).
%
%
% NOTE:
% 1. GLYPNIR DOES NOT ACCEPT VECTOR PARAMETERS;
% HENCE A AND U ARE GLOBAL TO THE SUBROUTINE.
%
% 2. THE OUTPUT MATRIX V WILL BE A MATRIX OF
% ORTHONORMALIZED COLUMNS BUT NOT AN ORTHOGONAL
% MATRIX IF THE INPUT MATRIX A IS NOT OF FULL
% RANK.
%

CINT IORTHG, COUNT, I, J;
CREAL P,Q,R,COSPHI,SINPHI,TOL,EPS,AIAI,AIAJ,AJAJ,LENGTH;
PREAL T;

%
% INITIALIZE U TO THE IDENTITY MATRIX,
% ASSUMING IT IS OF LENGTH 64.
%
IF (WITHU) THEN

BEGIN
FILL U WITH (0.)4096;
U{PEN} := 1.;
END;

%
% INITIALIZE THE CONTROL VARIABLES
%
IORTHG := (M*(M-l)) DIV 2;
TOL := 1.@-24;
EPS := 1.@~3~;
COUNT := 0;
ITER := 0;
INPROD := 0;

%
% ITERATE UNTIL THE ROWS OF A FORM AN ORTHOGONAL
% SET
%

WHILE ((ITER 50) AND (COUNT<IORTHG)) DO
BEGIN % BEGIN WHILE LOOP

COUNT := 0;
ITER := ITERt+ 1;

%

Mathematics 225

% ORTHOGONALIZE ROW I AGAINST ROW J, FOR I < J.
%
LOOP I : = 0, 1, M-2 DO

BEGIN % BEGIN LOOP I

LOOP J : = 1+1,1, M-l DO
BEGIN % BEGIN LOOP J

AJAA : = ROWSUM(I A{J }*P:{J});
INPROD := INPROD + 1;

IF (AJAJ < EPS) THEN
BEGIN

ELSE

%
% SET ROW J TO ZERO IF ITS EUCLIDEAN
% LENGTH SQUARED IS LESS THAN EPS
%
A{J}:=O.;
COUNT := COUNT + 1;
END

BEGIN % BEGIN ELSE BLOCK

AlAI : = ROWSUM(A {I }*A {I});
INPROD := INPROD + 1;

IF (AlAI < EPS) THEN
BEGIN
%
% SET ROW I TO ZERO IF ITS EUCLIDEAN
% LENGTH SQUARED IS LESS THAN EPS;
% INTERCHANGE ROWS I AND J.
%
A{1} := A{J};
A {J }:= 0.;

IF (WITHU) THEN
BEGIN
T : = U {1 };
U{I} := U{J};
U{J} := T;
END;

END
ELSE

BEGIN

%

226 Applications

% BOTH ROWS I AND J ARE NONTRIVIAL
% VECTORS
%
AIAJ := ROWSUM(A{I}*A{J});
INPROD := INPROD + 1;

IF ((AIAJ*AIAJ)/(AIAI*AJAJ) < TOl)
THEN
%
% ROWS I AND J ARE ALREADY
% ORTHOGONAL
%
BEGIN
COUNT := COUNT + 1;

IF (AlAI < AJAJ) THEN
BEGIN
T := AU};
A I := A{J};
A J := T;

IF (WITHU) THEN
BEGIN

END;

T := UU};
U{I} := U{J};
U{J} := T;
END;

END
ELSE

BEGIN

%
% ORTHOGONALIZE ROW I
% AGAINST ROW J
%
P := AIAJ + AIAJ;
Q := AIAJ - AJAJ;
R := SQRT(p*p +Q*Q);

%
%
%
%
%
%

CHOOSE THE APPRORRIATE
FORMULA FOR COMPUTING
COS PHI AND SINPHI TO PRE­
SERVE NUMBERICAL STABILITY

IF (Q>~.) THEN

ELSE

BEGIN
COSPHI := SQRT((R+Q)/(R+R));
SINPHI := P/(2.*R*COSPHI);
END

%

Mathematics 227

BEGIN
SINPHI := SQRT((R-Q)/(R+R));
COSPHI := P/(2.*R*SINPHI);
END~

%
% ORTHOGONALIZE THE I-TH AND
% J-TH ROWS OF A WITH RESPECT
% TO .EACH OTHER, AND ORDER
% THEM SO THAT THE I-TH ROW
% HAS A GREATER EUCLIDEAN
% LENGTH.
%

%

T := A{I}*COSPHI + A{J}*SINPHI;
A{J}:=-A I *SINPHI + A{J}*COSPHI;
A{J}:= T;

% MODIFY THE COLUMNS OF U
% ACCORDINGLY
%
IF (WITHU) THEN

BEGIN
T := U{I}*COSPHI + U{J}*SINPHI;
U J := -U{I}*SINPHI + U{J}*COSPHI;
U{I} := T;
END;

END;

END;

END; % END ELSE BLOCK

END; % END LOOP J

END; % END LOOP I

END; % END WHILE LOOP

% COMPUTE THE EUCLIDEAN LENGTHS OF THE ROWS OF A;
% THEY GIVE THE SINGULAR VALUES OF A. THE NORMAL-
% IZED ROWS BECOME THE ROWS OF VI.
%
LOOP I : = 0, 1, N-1 DO

BEGIN
LENGTH:= SQRT(ROWSUM(A{I}*A{I}));
WORD(I,D) := LENGTH;

IF (WITHV AND (LENGTH > 0.)) THEN
A{I}:= A {I} /LENGTH;

END;

228 Applications

END, % END SUBROUTINE SVD

%**

%
% SET UP MATRIX A
%
M := 64;
N := 64;
WITHU : = TRUE;
WITHV : = TRUE;

FILL A WITH

A{PEN} := 1.;

(0.)4096;

LOOP K :=0, 1, M-2 DO

%

LOOP L := K=l, 1, M-1 DO
WORD(L, A{K}) := -1.;

% IT IS NECESSARY TO OPEN DISPLAY
% BEFORE SETTING CLOCK
%
OPNDISPOUT;

%
% SET CLOCK
%
CODE
USE CMPLWD;
BEGIN
SET CLOCK O,CMPLWD;
PAUSE CMPLWD;
HALT;
END CODE;

%
% CALL SUBROUTINE SVD
%
SVD(M, N, 0, WITHU, WITHV);

%
% READ CLOCK
%
CODE
USE CMPLWD;
BEGIN
READCLOCK CMPLWD;
PAUSE CMPLWD;
HALT;
END CODE;

%
% PRINT RESULTS
%
CODE
USE CMPLWD.ITER,INPROD,D,U,A;
BEGIN
DISPLO "TIME", 16,CMPLWD, CMPLWD;
DISPLO IITER",16,ITER,ITER;
DISPLO IINPROD",16,INPROD,INPROD;
DISPLE "UT",16,U,U+4095;
DISPLF "VT",16,A,A+4095;
CLSDISP OUT;
END CODE;
END.

BEGIN
$ SET DBUGA

CINT M.N,S,NRANK,CMPLWD,K,L;
CREAL CUTOFF;
PREAL VECTOR A{63}, B{63}; X{63};

ILLIACDISPLAY;
AREA OUT;

Mathematics 229

%**

SUBROUTINE MINFIT(CINT M, CINT Nt CINT S, CINT OUT NRANK,
CREAL CUTOFF);

BEGIN
%
%
%
%
%
%
%
%
%

PROGRAMMER :

DATE :
%

FRANKLIN LUK
VISITING APPOINTMENT PROGRAM
INSTITUTE FOR ADVANCED COMPUTATION

AUGUST 1977

% ## I

%
%
% THIS SUBROUTINE USES THE SINGULAR VALUE DECOMPOSI-
% TION TO COMPUTE THE LEAST SQUARES SOLUTION TO THE
% FOLLOWING S SYSTEMS OF M LINEAR EQUATIONS IN
% N UNKNOWNS :
%
% A X = B ,
%
% WHERE A IS AN M-BY-N DESIGN MATRIX,
% X IS AN N-BY-S SOLUTION MATRIX,

230 Applications

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

AND B IS AN M-BY-S DATA MATRIX.

INPUT PARAMETERS :

M, N : CU INTEGERS. THE ROW AND COLUMN
DIMENSIONS OF THE DESIGN MATRIX A; IT IS
ASSUMED THAT N <= M <= 64 •

S CU INTEGER. THE NUMBER OF DATA
VECTORS; IT IS ASSUMED. THAT S <= 64 .

NRANK : CU INTEGER.

CUTOFF: CU REAL. A SINGULAR VALUE IS SET
TO ZERO IF ITS COMPUTED VALUE IS LESS
THAN CUTOFF; HENCE CUTOFF SHOULD·BE GIVEN
A VERY SMALL VALUE, E.G. 1.@-8.

A : PE REAL VECTOR. THE DESIGN
MATRIX WHOSE ROWS LIE ACROSS THE PElS.

B : PE REAL VECTOR. A MATRIX CONSISTING
OF THE DATA VECTORS; THE I-TH DATA VECTOR
LIES IN THE (I-l)-TH PE, FOR 1 <= 1<= S.

OUTPUT PARAMETERS :

NRANK : CU INTEGER. THE NUMBER OF SINGULAR
VALUES OF A THAT ARE GREATER THAN CUTOFF.

X PE REAL VECTOR. A MATRIX CONSISTING

NOTE :

OF THE SOLUTION VECTORS; THE VECTORS LIE
ACROSS THE PElS SO THAT 'X{I-l} IS THE I-TH
SOLUTION VECTOR, FOR 1 <= I <= P .

1. GLYPNIR DOES NOT ACCEPT VECTOR PARAMETERS;
HENCE A, B AND X ARE GLOBAL TO THE SUBROUTINE.

2. THE PE VECTORS B AND X ARE LAID OUT IN
SUCH A WAY THAT HIGH EXECUTION EFFICIENCY CAN
BE ACHIEVED.

3. BOTH INPUT DESIGN AND DATA MATRICES ARE
DESTROYED.

CINT IORTHG, COUNT, I, J;
CREAL P,Q,R,COSPHI,SINPHI,TOL,EPS,AIAI,AIAJ,AJAJ,lENGTH,Sl,S2;
PREAL Y, T;

%

% INITIALIZE CONTROL VARIABLES
%
IORTHG := (M*{M-1)) DIV 2;
TOL : = 1.@-24;
EPS := 1.@-32;
COUNT := 0;

%

Mathematics 231

% ITERATE UNTIL THE ROWS OF A FORM AN ORTHOGONAL
% SET
%
WHILE (COUNT < IORTHG) DO

BEGIN % BEGIN WHILE LOOP

COUNT := 0;

%
% ORTHOGONALIZE ROW I AGAINST ROW J, FOR I < J.
%
LOOP I := 0, 1, M-2 DO

BEGIN % BEGIN LOOP I
LOOPJ : = 1+1, 1, M-l DO

BEGIN % BEGIN LOOP J

AJAJ := ROWSUM{ MJ}*A {J} };

IF {AJAJ < EPS J THEN

ELSE

BEGIN
%
% SET ROW J TO ZERO IF ITS EUCLIDEAN
% LENGTH SQUARED IS LESS THAN EPS
%
A{J} :=:0.;
COUNT := COUNT + 1;
END

BEGIN % BEGIN ELSE BLOCK

AlAI := ROWSUM(A{I}*A{I});

IF (AlAI < EPS) THEN
BEGIN
%
% SET ROW I TO ZERO IF ITS EUCLIDEAN
% LENGTH SQUARED IS LESS THAN EPS;
% INTERCHANGE ROWS I AND J.
%
A {I} : = A {J } ;
A{J} := 0.;
(HI} := iHJ};
iHJ} ;= 0.;

END

232 Applications

ELSE
BEGIN

%
% BOTH ROWS I AND J ARE NONTRIVIAL
% VECTORS
%
AIAJ := ROWSUM(A{I}*A&J});

IF ((AIAJ*AIAJ)/(AIAI*AJAJ) < TOl)
THEN

%
% ROWS I AND J ARE ALREADY
% ORTHOGONAL
%
BEGIN
COUNT := COUNT +1;

IF (AlAI < AJAJ) THEN
%
% PUT THE LONGER VECTOR
%IN ROW I OF A
%
BEGIN
Y := A{I};
A{t} ;= A{J};
Y := B{I};
B{I} := B {J};
B{J}~:= Y;
END;

END
ELSE

BEGIN

%
% ORTHOGONALIZE ROW I
% AGAINST ROW J
%
P := AIAJ + AIAJ;
Q := AlAI - AJAJ;
R := SQRT(p*p + Q*Q);

%
%
%
%
%
%

CHOOSE THE APPROPRIATE
FORMULA FOR COMPUTING
COSPHI AND SINPHI TO PRE­
SERVE NUMERICAL STABILITY

IF (Q>O.) THEN
BEGIN
COSPHI := SQRT((R+Q)/(R+R));
SINPHI := P/(2~*R*COSPHI);
END

%

END;

ELSE
BEGIN

Mathematics 233

SINPHI := SQRT((R-Q)/(R+R));
COSPHI := P/(2.*R*SINPHI);
END;

%
% ORTHOGONALIZE THE I-TH AND
% J-TH ROWS OF A WITH RESPECT
% TO EACH OTHER, AND ORDER
% THEM SO THAT THE I-TH ROW
% HAS A GREATER EUCLIDEAN
% LENGTH.
%
Y := A(I}*COSPHI + A(J}*SINPHI;
A{J} :=-AII}*SINPHI + AIJ}*COSPHI;
MIl := Y;

%
% MODIFY THE DATA VECTORS
% ACCORDINGLY
%
Y := ~{I}*COSPHI + ~{Jl*SINPHI;
B{J} :=-B{I}*SINPHI + B{J}*COSPHI;
iHl} := Y;

END;

END; % END ELSE BLOCK

END; % END LOOP J

END: % END LOOP I

END: % END WHILE LOOP

% 1. COMPUTE THE EUCLIDEAN LENGTHS OF THE ROWS OF
% OF A; THEY GIVE THE SINGULAR VALUES OF A. THE
% NORMALIZED ROWS BECOME THE ROWS OF Vt

•

%
% 2. SOLVE 0 Y = B IN THE LEAST SQUARES SENSE,
S WHERE 0 IS THE DIAGONAL MATRIX CONSISTING OF THE
% SINGULAR VALUES OF At AND Y IS STORED IN B.
%
NRANK := 0;
LENGTH := SQRT(ROWSUM({AIO *{O}));

WHILE ((LENGTH < CUTOFF) AND (NRANK < N)) DO
BEGIN
A{NRANK} := A{NRANK1/LENGTH;
B{NRANK} : = B {NRANK}'fLENGTH;
NRANK := NRANK + 1;

234 Applications

IF (NRANK < N) THEN
LENGTH := SQRT(ROWSUM(A{NRANK}*A{NRANK}) };

END;

%
% COMPUTE X = V Y
%
LOOP I := 0,1, S-l DO

BEGIN
XU}:= 0.;

%
% X{I} IS A LINEAR COMBINATION OF THE ROWS OF VI .
%
LOOP J := 0, 1, NRANK-1 DO

X{I}:= X{I} + WORD(I,B' {J}*A(J};

END;

END; % END SUBROUTINE MINFIT

%**

%
% SET UP MATRIX A
%
M := 64;
N := 64;
S := 64;
CUTOFF := 1.@-8;

FILL A WITH (0.)4096;
A {PEN} : = 1.;

LOOP K := 0, 1, M-2 DO

%

LOOP L := K+1, 1, M-1 DO
WORD(L, A{K}) := -1.;

% SET UP DATA VECTORS B
%
FILL B WITH (0.}4096;

B PEN := 1.;

%
% IT IS NECESSARY TO OPEN DISPLAY
% BEFORE SETTING CLOCK
%
OPNDISP OUT;
%

% SET CLOCK
%
CODE
USE CMPLWD;
BEGIN
SETCLOCK 0, CMPLWD;
PAUSE CMPLWD;
HALT;
END CODE;

%
% CALL SUBROUTINE MINFIT
%
MINFIT(M, N, S, NRANK, CUTOFF);

%
% READ CLOCK
%
CODE
USE CMPLWD;
BEGIN
READCLOCK CMPLWD;
PAUSE CMPLWD;
HALT;
END CODE;

%
% PRINT RESULTS
%
CODE
USE CMPLWD,NRANK,X;
BEGIN
DISPLO "TIME",16,CMPLWD,CMPLWD;
OISPLO "RANK",16,NRANK,NRANK;
DISPLF "X",16,X,X+4095;
CLSDISP OUT;
END CODE;
END.

Mathematics 235

236 Applications

ORGANIZATIONAL AND NOTATIONAL DETAILS

SUBROUTINE SVD

(I) This algorithm accesses and modifies the matrix A by rows and
the matrix U by columns. Hence layout A such that its rows
lie across PEs, and U such that its columns lie across PEs.
Note that skewed storage is not required.

(2) The assumption that n ~ m is no restriction. One can always
compute the singular value decomposition of the transpose.
A change in the code will drop the constraint: replace n by
min{m,n) in the block where it computes the matrices Land V.

(3) One can handle a matrix with less than 64 columns by disabling
the last (64-n) PEs whenever a row inner product is computed.
One can view the given matrix as an m x 64 array whose last
(64-n) columns are zeros. Take the second approach in this
program.

(4) One can handle a matrix with more than 64 columns in the follow­
ing way. Divide the rows of the given matrix into segments
each of width 64. One can thereby represent the given matrix
A by

k PE real vectors A1,A2, ... ,Ak, each of length m, where

n
k = {~} ,

i.e., k equals the smallest integer greater than 6~ .

There is a need to modify the code accordingly. Observe that it
works with the rows of A to compute (a) their lengths, (b0 their
inner products, and (c) the new rows after a rotation. To
compute the norm squared of a row of A, say the (i+1)-th row;
in the new representation, call

ROWSL~(A1[i]*Al[i] + A2[i]*A2[i]

+ ••• + Ak[i]*Ak[i])

The extension if similar in computing the inner product of two
rows. One may handle (c) by computing the segments of the new
rows one at a time, for example, instead of

A[j] := -A[i)*sinphi + A[j]*cosphi,

Mathematics 237

write the following k lines of code:

AI[j] := -Al[i]*sinphi + Al[j]*cosphi
A2[j] := -A2[i]*sinphi + A2[j]*cosphi

Ak[j] := -Ak[i]*sinphi + Ak[j]*cosphi

Similarly, divide the columns of U into segments and repre­
sent U using k PE real vectors. The modification to codes
involving U is also in the same way.

(5) The subroutine presets the values of the parameters to1 and
eps at 10-24 and 10-32 ,respectively. Experiments indicate
that the computed solution is then accurate to 12 decimal
digits (see Section 6), about the most that one can ask for
from a 14-decima1 digit machine. The user can increase those
preset values to trade accuracy for speed.

SUBROUTINE MINFIT

Since MINFIT is derived from SVD, the appropriate comments
in Section 5.1 apply here as well.

One may choose to layout the data and solution matrices in thp.
"natural" way, which is also the way for efficient computation.
Layout the data matri x B so that its rows 1 i e across PEs t

just as the rows of the regression matrix A do; and layout the
solution matrix X so that its columns lie. across PEs, to facili­
tate output.

DISCUSSION OF NUMERICAL PROPERTIES

Wilkinson (1965) (18) gave an error analysis of the action
of plane rotations on a matrix. His error bound was improved by
Gentleman in 1975 (3). We apply their results to examine the
effects of the rotations in one sweep of our algorithm.
Let M = 1/2 m(m-l} and let R. , l<j<M, represent the j-th rotation.

J --
We can show that the computed matrix ~ after a sweep satisfies
the inequality

II ~-IVM-l·· . RIA IIF~2-48(m+n-2)

(1+2-48)m+n-2 II A II F '

238 Applications

where

II- "F is the Frobenius matrix norm,

The right-hand side of the inequality is an extreme upper bound.
The statistical distribution of the rounding errors reduce
the error to well below the level of the bound; for this
reason alone, a factor of the order of (m + n -2)~ in place of
m + n -2) might be more realistic. This shows that the algo­
rithm is extremely stable.

Since the matrix U is formed as a product of plane rotations, one
is also interested in the deviation from orthogonality of such a
product. Let PM represent the computed product of the rotations
in a sweep. One has the inequality

Again statistical consideration indicates that a factor of the
k k ~

order of m4 (m+n-2) 2 instead of m 2 (m n-2) is probably more
rea 1 i s tic. -
The value of the parameter to1 controls the accurar.y of the solu­
tion. After the Jacobi process has converged,

The previous paragraph showed that U will deviate very
slightly from orthogonality. Indeed experiments show that the
accuracy of the singular values and vectors is of the order of
(tol)\

TEST RESULTS

Tests were carried out on the Illiac IV computer and on an IBM
370/168 computer at the Standord Linear Accelerator Center. In
the following, tal = 10-24 , eps = 10-32 and cutoff = 10-8.

Mathematics 239

First Example:

22 10 2 3 7 -1 1 0

14 7 10 0 8 2 -1 1

-1 13 -1 -11 3 1 10 11

-3 -2 13 -2 4 4 0 4
A =

9 8 1 -2 4 ,B = o -6 -6

9 1 -7 5 -1 -3 6 3

2 -6 6 5 1 1 11 12

4 5 0 -2 2 o -5 -5

The singular values of A are ~, 20, ~, 0, O. The sub­
routine SVD computed those values to machine precision. The
minimal length solution to the overdetermined system is

1
0

1
- 12 -IT

0 0 0

X=
1 0 1
7; 7;

1
0

1
- 12 - 12

1 0
1

12 12

The computed solution from the subroutine MINFIT is accurate to
all 14 significant digits.

240 Applications

Second Example:

A =1 1

-1 -1 -1 -1 .. ·1
1 -1 -1 -1

1 -1 -1

0 1 -1

l 1

nxn

The matrix is ill-conditioned with respect to inversion because
it has a very small singular value, as can be seen by applying
the matrix to the column vector

(1 2-1 2-2 2-n+2 2-n+2)t , " ... , , .

The matrix becomes singular if one adds _2-n+2 to its (n,l) posi­
tion.

The subroutine SVD was applied to this matrix for different values
of n. For comparison purpose, the subroutine SVA in the EISPACK
eigenvalue package from the Argonne National Laboratory was chosen
(2). The EISPACK subroutine implements Golub's method and has
been coded for high execution efficiency. Similar tests with
the Argonne routine on an IBM 370/168 computer at the Stanford
Linear Accelerator Center were run using the FORTRAN H (opt=2)
compil ere

The following table gives the execution time in seconds on the
two machines.

ILLIAC IV IBM 370/168 ILLIAC Time/
n

iter time time IBM Time

16 I 7 0.26 0.101 2.57
32 8 1.25 0.57 2.19
48 8 2.89 1.76 1.64
64 9 5.57 4.03 1.38
96 10 15.94 12.81 1.24

128 1 9 26.81 29.68 0.90

Mathematics 241

Note that the Illiac routine becomes more efficient compared
With the Argonne routine as more of the Illiac parallel
computing ability can be exploited. The latter is an 0{n 3)
process, while the machine time of the former is proportional
to (iter x{ 6~ } x n2); this shows therefore, the potential
of parallel computers with a large number of processing
elements. Unfortunately, the GLYPNIR compiler does not pro­
duce very efficient code. Another program in CFD implement­
ing this method ran on the same matrix withn=64. The
execution time was 3.31 seconds, about 59% of the execution
time of the GLYPNIR code.

MINFIT was applied to the following linear equation

AX = I
with n=64. The execution time was 5.29 seconds. This
example serves to indicate how MINFIT can be an effective
linear equations solver. The exact solution to

Ax =e _n _n

where
t

e = (0,0, ... ,0,1) ,
_n

is
n-2' n-3 t x =(2 ,2 , •.• ,2,1,1) .

-n

A Gaussian elimination method with row pivoting will give
the above solution since the matrix is already upper triangu­
lar. But such solution is likely to be unacceptable because
2n-2 > 1018 for n=64. The computed result from MINFIT is
approxima te1y

-n-2 -n-l -3 -2 t (-2 ,-2 , .•. ,-2,2).

It may be argued that the residual is not close to zero.
But if 'i is the vector obtai nab 1 e from xn by roundi ng the
latter to 14 decimal digits, then the residual produced by y
will be of the order of 104. ~

242 Applications

ACKNOWLEDGEMENTS

The author acknowledges the generous support of the Institute
for Advanced Computation. He is grateful to D. Stevenson and H.
Brown for their invaluable help in programming the ILLIAC IV.

References

1. B. A. Chartres~. Adaptation of the Jacobi method for a
computer with magnetic-tape backing store. Computer J. 5
(1962), 51-60. -

2.

3. W. M. Gentleman, Error analysis of QR decompositions by
Givens transformations. Lin. Alg. Applics. 10 (1975),
189-197. --

4. G. Golub and W. Kahan, Calculating the singular values
and pseudoinverse of a matrix. J. SIAM Numer. Anal., Ser.
B £ (1965), 205-224.

5. G. Golub and F. Luk, Singular value decomposition: appli­
cations and computations. ARO Report 77-1, Transactions of
the 22-nd Conference of Army Mathematicians (1977), 577-605.

6. G. Golub and C. Reinsch, Singular value decomposition
and least squares solutions. Numer. Math. 14 (1970),
403-420. --

7; D. Heller, A survey of parallel algorithms in numerical
linear a1geera. Technical Report, Dept. of Computer Science,
Carnegie-Mellon University (February 1976).

8. P. Henrici, On the speed of convergence of cyclic and
quasicyclic Jacobi methods for computing eigenvalues of
Hermitian matrices, ~. Soc. Indust. Appl. Math. 6 (1958),
144-162. -

9. r·1. R. Hestenes, Inversion of matrices by biorthogona1ization
and related results. J. Soc. Indus. Ap1. Math. 6 (1958),
51-90. -

1Q C. Lanczos, Linear Differential Operators, Van Nostrand,
London (1961).

11. D. H. Lawrie, T. Layman, D. Baer, and J. ~1. Randal,
GLYPNIR - a programming language for ILLIAC IV. Comm AeM 18
(1 975), 157 -164 . --

Mathematics 243

12. J. C. Nash, A one-sided transformation method for the
singular value decomposition and algebraic eigenprob1em.
Computer J. 18 (1975), 74-76

13. H. Rutishauser, The Jacobi method for real symmetric
matrices. Numer. Math. ~ (1966), 1-10.

14. A. H. Sameh and D. J. Kuck, A parallel QR algorithm for
tridiagonal symmetric matrices. Technical Report, Dept.
of Computer Science, University of Illinois, Urbana
(July 1974).

15. A. Schoenhage, Zur Konvergenz des Jacobi-Verfahrens.
Numer. Math. l (1961), 374-380.

16. K. G. Stevens, Jr., CFD - a FORTRAN-like language for
the ILLIAC IV. ACM Sigp1an Notices ~ (1975), 72-76.

17. J. H. Wilkinson, Note on the quadratic convergence of
the cyclic Jacob; process. Numer. Math. 4 (1962),
296-300. -

18. J. H. Wilkinson, The Al~ebraic Eigenvalue Problem.
Clarendon, Oxford (196).

19. J. H. Wilkinson and C. Reinsch, Linear Algebra.
Springer Verlag, New York (1971).

2. Exploitation of Parallelism in Number Theoretic and
Combinatorial Computation

The concept of doing tasks in parallel in order to multiply one's
output has always been an intriguing idea. As applied to com­
puting, this notion has been less than completely successful.
I hope to indicate how some comparatively straightforward serial
problems in Number Theory and Combinatorics can take advantage
Of parallelism in a computer.

The history of parallelism in computing is a rather spotty
one. The earliest reference, that I know, to many computers
working on the same job goes back to the French Revolution. A
large group of computers working together under the direction of
Legendre produced the Tables du Cadastre, high precision tables
of the elementary functions. These were never published. In
the mid-19th century a proposal was made in England to put vast
numbers of school children to work subtabulating highly accurate
logarithm tables to produce in a few.weeks a large easily usable
table to seven or eight decimals. The proposal was never carried
out. The W.P.A. Tables Project of the great depression certainly
accomplished wonderful parallel work.

As regards to parallelism in machines, one can say that
Babbages Difference Engine had the rudiments of what is now
called "pipelining". From their very beginning desk calculators
have used a parallel adding mechanism. Hollerith's original
punched card machines employed mu~h parallelism.

The mechanical sieves that I built from 1927-1936 were
highly parallel devices. As we shall discuss this problem later,
it is perhaps not out of place here to indicate at this time the
difference between such a device and the old hand serial method
of sifting. The problem is to find the least positive integer
not belonging to a given set of arithmetical progressions. In
the serial procedure one began by purchasing a good supply of
paper ruled in small squares. Each square by virtue of its row,
column and page numbers represents a unique positive integer.
Next, one has to guess a reasonable upper bound for the answer
and thereby select the appropriate number of pages to use. In
step three one makes a number of strips of paper of different
lengths and marks their edges in accordance with the given arith­
metic progressions. Each strip in turn is now moved carefully
down the columns of each page. Crossing out squace cells as

This section is based on an article in the lAC Newsletter by D.H.
Lehmer, April, 1978~ 244

Mathematics 245

indicated by the markings on the strip, one finally reduces the
number of surviving cells to a sufficiently small set that can
be examined individually for a minimum answer.

In contrast, with the mechanical sieve all the "strips" are
applied simultaneously. We soon find the least survivor without
having to guess in advance how large it is, and we don't waste
time ruling out all the larger numbers. Small wonder hand sift­
ing, or "crib1age" as the French used to call it, is a lost art.

The first electronic computer, the ENIAC was a parallel
machine in many ways. It had 20 arithmetic units with a paternal
overall supervisor~ Its organization resided in the network of
interconnections, with interlocks, demanded by the problem to be
solved. In contrast, its predecessor the Harvard Mark I was tape
driven and therefore serial in operation. The ENIAC was designed
for systems of five ordinary differential equations. The Harvard
Mark I or "Besse1 Engine" could (and did) make tables of J (x).

It was soon suggested by von Neumann that since e1ectPonic
computing was so very fast, as compared with relay computing, it
was silly to try for para 11 e 1 opera ti ons. "Wha t' s the hurry?"
Following this suggestion the ENIAC was crippled to save set-up
time. Only one arithmetic unit was used as such. The others
were made into one-word registers. From the same idea emerged
the Edvac type machine which was even more serial. Even the
adder was serial, the digits of the sum being produced one after
the other, somewhat like a zipper.

Even before the Edvac became operative, parallelism began
to creep back into the hardware in the form of parallel adders,
parallel data transmission and parallel memory access as in the
SWAC. There was a hurry, after all.

This next period (1960-67) in the history of machine devel­
opment saw big increases in speed due to solid state circuitry.
These increases tended to delay the advance of parallelism. Any
criticism of the architecture of a machine was answered by in­
creasi ng the speed by a factor of 10. Sti 11 they were all "one
bottleneck" machines.

During this era three principles were discovered by the de­
signers that we shall refer to.

Principle Time can be saved by using more space. Space
can be saved by using more time.

Principle 2 Circuits should not be allowed to stand idle.

Principle 3 Versatility can be achieved at almost no cost
by modifying the flow of information.

During this period the development of software systems and lan­
guages began to control the computing styles of the users. This
held back parallelism also. More emphasis was put on recursive
procedures, as in Algol. Those of us who are in Number Theory
and Combinatorics will not have failed to notice how the quest
for speed has damaged the integrity of the arithmetic unit by
the introduction of floating point arithmetic. For some years

246 Applications

now it has been difficult, if not impossible, to obtain the exact
product or the remainder on division, on some machines.

One can almost hear the design engineer asking the rhetori­
cal question: "Who needs it?" The answer is, of course, "We
do!1! By parallelism in computing we can mean any instance of
two or more numerical activities taking place at the same time.
For example in the ENIAC the square rooter was supplied with an
interlock circuit so that once a square root was called for, the
rest of the program could go ahead to the point where the square
root was actually needed. If the square root was ready, it meant
that the square rooter had b,een waiting for the rest of the pro­
gram. If not, the rest of the machine sat down to wait for its
square root.

The modern version of this kind of parallelism is called
"pipelining" and it often serves to increase the speed of cer­
tain operations by a factor of 3-5. This is achieved by segment­
ation of the operation. Each serial segment performs a certain
suboperation on the incoming data. Without pipelining, only one
segment would be active during a given nanosecond. With optimal
timing of input, every segment will be active each with a differ­
ent input. This is an instance of Principle 2.

Thus for floating point addition there might be four seg-
ments

c

Mathematics 247

If we had a large number of additions to make, as in vector
addition, we could pipeline the job by sending in two streams of
components via A and B. At any nanosecond all four boxes would
be active each doing lIits thing" with a different addition prob­
lem. We would get at C one result every minor cycle even though
one addition itself takes 4 cycles. If addition took 6 cycles
the saving would be still greater. It is fair to say that this
is parallelism since several additions are going on simultaneous­
ly.

In the CDC STAR lOa for example, with its 40 nanosecond
minor cycle, 25 million 32 bit floating point sums can be formed
in one second. By using 128 bit words of 4 vectors each, the
star claims lOa million additions per second. What can we say
about this breath-taking performance?

Three things:

1. If we had fixed point addition only one of these
boxes would be needed so the parallelism disap­
pears.

2. The stress on the programmer to keep such a stream
of instructions going would appear to be great.
Of course this problem is as old as the ENIAC.
It is solved by the special STAR vector software.

3. Who needs it?

A more recent machine the CRAY-l also uses pipelining and
vector features are supplied as hardware. In this case 6 addi­
tions occur simultaneously. Oh yes, the speed has gone up. A
minor cycle for the CRAY is only 12.5 nanoseconds. Both machines
give exact results in their address arithmatic registers only and
so are not always suitable for our purposes. The one machine
that takes parallelism seriously is the Illiac IV(=I4) designed
at the University of Illinois, Urbana and operated by NASA,
Moffett Field, California (node 15 on the ARPA network). It is
an ensemble of 64 identical computers supervised by a central
control unit that issues the instructions. Originally it was
planned to have 256 processing elements, not 64. Accounts of the
14 al\'Jays say that all 64 processing elements (= PEls) are execu­
ting the same instruction at any particular nanosecond. Fortuna­
tely for the usefulness of the 14 this is false. What is true is
that some of the PEls are carrying out the same operation while
the others are standing idle. This is an instance of Principle 3
despite Principle 2. We shall see the utility of this versatil­
ity. I plan to discuss the exploitation of the powerful parall­
elism of the 14 in the programming of four different problems.
Enough information on the architecture of the 14 will be given
to render intelligible what I have to.say.

Even what little I have said already makes it evident that
the 14 can bp operated like 64 Harvard Bessel Enqines calcula­
tirlg 64 values of a function In(x) for 64 values of x provided

248 Applications

the same algorithm is applicable to all 64 cases. We consider
such a use of the 14 as laudable but verging on the trivial.
This consideration applies in particular to all vector opera­
tions with 64 or fewer components.

We turn, instead, to a familiar but relatively simple prob­
lem made famous by the llliac IV, namely the discovery of
Mersennes Primes, 2P-l. Most of you will recall the test that
one uses here. For a given Mersenne number 2P-l one forms the
sequence {Sn} defined recursively by

_ 2 _P
Sn+l = Sn-2 (mod Z -1)

with S 1 = 4 , S2 = 14, S 3 = 194, • • • •

Then 2 P-1 is a prime ++S 1 = 0 • p-

For p > 20000, where we must start since Tuckerman's last
search with the IBM 360, the great cost of such a program is the
scarcity of such primes. Only 24 are known. How, you ask, can
we parallel the calculation of S? The answer is simple. We
can test 64 candidates at once. nThis is how it's done. One
chooses a set of 64 primes

that are good candidates in the sense that 2Pi _l is not already
divisible by a known small prime of the form q = Pj x + 1.

We set

Loading this redundant input data we begin by assigning the test
of 2Pi _l to the i-thprocessingelement, PE(i), (i = 0(1)63).
We then compute Sn in parallel for n = l(l)PO-l. At this point,
we "disable" PE(O). We now proceed with flO more steps of the
S sequence and then disable PE(l) etc., until Sp63-l is found
mod 2P63 _l. We now "reenable" all PEls and ask of all PEls, in

Mathematics 249

one instruction, whether its S is zero. If any PE answers "yes"
it does so by raising a flag bit of 1 in an otherwise 0 bit
register. In the next instruction the control unit gathers the
64 votes into a single word and asks itself if this word is zero.
If so, we have just found 64 cases of composite ~1ersenne numbers.
If not, there is a mad scramble to find the position of the 1

bit (or bits) which will identify the Pi for which 2Pi _l is the
largest known prime. Needless to say, this part of the program
need not be very elegant since it is almost never used. Since
6. is small compared with p. the first part of the program, i.e.,

1 1

getting up to SpO is the major effort. Hence it is fair to say

that this is an application of parallelism. A much more elaborate
procedure could attempt to keeo all 64 PEs alive throughout the
calculation in accordance with principle number 2 rather than
number 3. This would save less than 2% of the effort however.
In any case, the 14 would handle tests of Mersenne numbers at
the rate of about 1 per minute. This program has not been
written. There has been coded a somewhat similar program that
searches for primes p for which

The same technique of handling 64 values of p at once
through their differences is used. Of course, in this case the

cycle length is not 0(p3) but rather O(log p) so there is no
time to prepare an input list of primes. Each new p is obtained
by

p + 240 -+ P

since ¢ (240)=64., a procedure which is simple if not optimal.
Needless to say, many composite pIS are proces'sed uselessly.

Soeaking of primes in arithmetic progressions brings me to
a fairly elaborate program for searching for small factors
« 248) of a large multiprecise integer N. Every computer center
has its own version of this useful program (perhaps without the
multiprecise feature). The one run on the 14 examines N for 64

250 Applications

different trial divisors at once. The program has another fea­
ture. It often happens that we know in advance that for some a
and b all the prime factors of N are of the form ax + b
(x=O,l,l11). 'rn a prelude to the main routine the 14 sets up
an optimum set of 64 arithmetic progressions, one for each of the
64 PEs to use as a source of possible divisors of N. This pre­
lude is also done in parallel as explained later.

In a typical problem of triple precision (n had ~ 48 deci­
mal digits) 1178048 trial divisors are oerformed and remainders
examined every second. A still more elaborate use of parallel­
ism, more combinational than number theoretic, has to do with
solving the general diophantine equation in two integer variables
f{x,y) = 0 by Gauss' method of exclusion. Here f is a polynomial
with integer coefficients and we seek solutions (x,y) in integers
~ O. If we can find the x then the y can be easily found. For
f{x,y) to vanish it is necessary that

f{x,y) = 0 (mod E)

where E is any integer> 1. We ask: For which of the E values
of x{mod E) is it true that there exists a y such that the above
congruence holds? This question is easily answered in less than
E2 steps simply by evaluation f{u,v) for u,v = O{l)E - 1. Let
the answers be

x (mod E).

If this set 0 is emoty we are through because the original
e~uation f{x,y) = 0 is then impossible. We can represent 0 by a
characteristic binary word whose k-th bit is 0 or 1 according
as k belongs to 0 or not. We think of this word as infin-
ite, its bits being periodic of period E.

Since E is arbitrary we can take a large number of them,
say 64, and get the 14 to construct 64 different periodic pat­
terns of O's and1's corresponding to 64 different sets 0. If
indeed f(x,y)=O has a solution (xo'YO)' when we come to examine
the xo-th binary bit in each of 64 infinite words it will be a O.

Mathematics 251

Conversely if the k-th binary digit is 0 in all 64 cases, k is
a likely candidate for x in f(x,y) = O.

It is now clear what must be done. We must OR together
these 64 infinite words and search the result for ° bits. The
I4 has a marvelous instruction

LDC(N) ZA

which causes the contents of all 64 A registers of the PEs to
be ORed into the n-th register of the control unit. This regis­
ter can now ask whether its contents consist of all lIs (which
is usually the case) and according transfer control to an appro-
priate part of the program. Thus 642 = 4096 bits are examined
in two instructions. This is parallelism in two dimensions.

Besides these two instructions the rest of the program is
in three parts.

1) Choice of the Es

2) Generation of the bit patterns
3) Shifting and maintenance of pattern words.

As to 1, we need to OR a full word of bits so we must take
E ~ 64. One standard choice is the set of the first 64 primes
or their powers or small multiples. It starts with 64, 81,
100, 98, 121, 65, 68, 76, 69, 87, ... , 293, 307, 311.

I~e ha ve already i ndi cated how to program part 2. I 1 eave
it to your ingenuity as a IIbit pusherll to design part 3 using
address arithmetic and a soecial long shift of 128 bits depend­
i ng on Ei (mod 64). Of course, I'it is best that it be done
quickly, II as this is the main loop. l~ith speeds of up to 15
million values of x per second this program competes strongly
with my best sieve which is capable of 20,OOO,000/sec.

The use of as many as 64 moduli E. is for most equations
1

f(x,y) = 0 a considerable overkill. Forty moduli is usually
enough. However, no time is saved by the use of fewer than 64.
There are polynomial IS f where 64 are needed.

One place where parallelism plays an i~portant role is in
so called modular arithmetic system for dealing easily with large
integers. In this system the integer N is represented by the

252 Applications

vector of small integers

where

(mod m.)
1

{n.} 63
1 a

(small letters stand for one word integers < 248. Thi~ repre­
sentation of N is unique for

1 INI < 2LC~1 (mO,m1,···,m63)·

In this system, addition, subtraction and multiplication
can each be executed in a single step

where ill stands for +, - or . and the quantities inside {} are
understood to be reduced mod m .. The operations are of course

1

done in parallel. Comparing this system with the ordinary multi­
precision package one sees that, whereas in the latter case costs
increase as log N and (log N)2 respectively for addition and
multiplication, in the former case there is no increase at all.
Passing from one system to the other makes only slight use of
the multiprecision package when the mls are chosen relatively
prime in pairs. The use of as many as 64 different moduli is
again overkill.

In the above discussion we have really been comparing modu­
lar arithmetic as done on the 14 with multiprecision arithmetic
as done on a standard machine. The 14 can ~o ~ultiprecise
arithmetici.Q.parallel as we saw in discussing the ~1ersenne Test
problem. We conclude with a couple of remarks or orecepts for
parallel programmers. Of course very few people have access
to the 14 but I predict that soon conglomerations of mini­
arithmetic units will be assembled for special problems that
will involve this type of programming.

Principle 3 is familiar when the information flowing is
data. But we must be prepared to encounter flow modification

Mathematics 253

when the flow is an instruction stream. We meet our simplest problem in
the conditional transfer situation. A familiar instance is exemplified
by the flow chart (Figure 5.32). If this chart is being followed by
64 processing elements in parallel we can expect (if ? is reasonable)
tha t some of them wi 11 answer ? by "yes", and the res t by "no". The
instructions for OP2 would need to be supplied to the former PEls and
those for OP3 to the latter. This is obviously unsatisfactory with
only one control unit.

An alternative procedure is pictured in Figure 5.33. Here D
means disable all PEls where answer is "yes" and E means enable all
PEls that were previously disabled. (The whole diagram could be oper­
ating under a subset of the PEls previously enabled.) OP5 would be
the result of "undoing" OP2 and following this by OP3, assuming that
OP2 has a single valued inverse. With this procedure there is no real
branching in the time sense as there is in Figure 5.32.

Another technique exploiting Principle 1 rather than 3 may be used
in the following situation. A program may consist of pieces that can
be programmed in parallel mode, interspersed with parts that seem to
require serial mode operation.

For example in dealing with matrices with 64 columns one may wish
to perform row manipulations, with row vectors, in parallel but from time
to time the problem requires the calculation of a new vector each com­
ponent of which is obtained by a different formula. Assigning each
column to its own PE and following the preceding idea we could method­
ically disable all but one of the PEls and execute the instruction
appropriate to that col umn. Finally arriving at our new vector, ·.all
PEls would be enabled before entering the next parallel stretch of the
program. Instead, we can use 4096 words of temporary storage and
avoid any disabling of the PEls by the following device. At starting
time we introduce the vector

v = { 0, 1 ,2 , ••. ; 63 }

When we come to the calculation of the separate components of our
new vector we begin by computing its first component not just in PE(O)
but, in parallel, in all PEls. The identical results AO are deposited
in the first row of temporary storage.

R: AO'··· ,AO

next we compute

and fi na lly

R + 63: A63.A63, ... ,A63 .

254 Applications

By using V to set index registers in the PEls, the command
"Fetch R" will fill the A registers with the main diagnonal of the R
matrix with, in fact, the desired vector. The time saved by not dis­
abling and enabling is 17.65 = 1105 clock pulses.

This concludes what I had planned to say about the exploitation
of parallelism. I hope that these ideas, principles, and examples
will serve to interest s~me of you in parallel computing. Perhaps the
next few years will see more hardware development along these lines
and, recalling this 1976 discussion, some of you will be able to con­
sult about machine development of the 1980's. The recent past has
shown that no such consultation took place when the machines in current
use were designed. Meanwhile from time to time I hope to report on
what parallel computations are heing done on the Illiac IV. I wish,
in closing, to acknowledge the assistance given me by the Institute
for Advanced Computation, Sunnyvale, California in carrying out exper­
iments in parallel programming.

Figure 5.32 Algorithm
with branching

Figure 5.33 Algorithm
with branching removed

E. Seismic

Seismic models have been addressed on the Illiac for some time.
Often they are characterized by regular data structures and
computationally intensive algorithms. In these cases the Illiac
is attractive not only for speed but for the large main memory
that allows grid sizes of more realistic size to be addressed.

255

1. A Three-Dimenalanal Finite Difference Code for
Selamic Analyaia an the ILLIAC IV Parallel Processor

EMPIRICAL EVIDENCE

Since empirical evidence for the complex earthquake fault behav­
ior, deep within the earth, is normally gathered from motions at
surface stations, there has been increasing interest in the com­
puterized prediction of the ground motions which would result
from postulated earthquake fault models. In addition, two dimen­
sional models cannot adequately represent the complex three di­
mensional effects surrounding a fault. Therefore, a number of
researchers have developed three dimensional seismic codes. One
such code, TRES, was developed by Systems, Science and Software
for their UNIVAC 1108 computer (1). Unfortunately, this code,
like most three dimensional codes, required excessive amounts of
computational time to run. For even a moderately sized problem
(51x51xlOl finite difference mesh, 253 time steps), 15 minutes of
computer time were required for each time step on the full grid.
To reduce run times to reasonable levels, a decision was made to
implement the TRES code on one of the world's most powerful com­
puters, the Illiac IV.

This paper describes the implementation and some of the re­
sults obtained. To facilitate understanding of the details of
the implementation, descriptions of the architecture of the
ILLIAC IV computer and of the numerical algorithms used by TRES
will first be presented.

THE TRES COMPUTER PROGRAM

The problem predicting ground motions resulting from earthquake
sources may be divided into three smaller problems. The first
step is to simulate the earthquake source and collect motion data
on a sphere surrounding the fault. The second step is to use this

This section is based on a paper by A. Stewart Hopkins presented
to the SAE in 1977. Reprinted by permission, "Copyright©Society
of Automotive Engineers, Inc., 1977. All rights reserved."

256

Seismic 257

data to define an "Equiva1ent e:1astic Source". The Equivalent
Elastic Source is a collection of coefficients of a spherical ex­
pansion (in terms of Bessel functions, trigonometric functions
and associated Legendre functions), where each coefficient is a
function of frequency. The third step is to use these Equivalent
Elastic Source coefficients to analytically predict the motion at
selected sites. The TRES code is only concerned with the first
of these steps. Thus, TRES simulates the earthquake faulting pro­
cess, calculates the resulting wave motion in the earth surround­
ing the fault, and collects divergence and curl histories on a
spherical surface surrounding the fault. The problem geometry is
illustrated in Figure 5.34.

THE FAULT MODEL - Currently, the only fault model is a bilateral
strike-slip fault using a stick-slip rupture mechanism (2). For
this type of fault, the fault plane is vertical and the motion in­
volves symmetric horizontal slip of the sides of the fault rela­
tive to one another. The rupture is initiated at the center of
the fault, the focus, and spreads radially at a specified rupture
velocity until the limit of the fault plane is reached. The grid
is split on the fault plane, that is two nodes are used at each
grid point on the fault plane. Until rupture occurs, the two
nodes must move identically. After rupture, they are free to
slide relative to one another in the plane of the fault. While
they are sliding, the force between them is just the kinetic fric­
tion. When the relative velocity drops to zero, the rupture is
said to heal and no further relative motion between the two nodes
is permitted. The maximum size of the fault plane was 4x6 in the
UNIVAC 1108 version of the code.

THE PLASTIC ZONE - The fault plane is surrounded by a zone in
which inelastic behavior is permitted. The size of this zone was
9x11x9 in the UNIVAC 1108 code. The material in this region is
modeled as ideally e1asto-plastic. The material behaves as if it
were perfectly elastic until the yield strength of the material
is exceeded. The Huber-Von Mises-Hencky yield criterion is used
to determine incipient yield. When this shear-distortion energy
limit is violated, the material behaves in a perfectly plastic
fashion. The usual stress-strain relationships are replaced by
the Prandtl-Reuss equations. That is, the rate of plastic strain
is proportional to the state of stress and the elastic strains
are considered to not exceed the yield surface. Since the stress
is no longer proportional to strain, six stress components are
carried with each node in the plastic zone. In addition, the
work done by the plastic deformation is calculated. So a seventh
plastic variable is carried with each node (the current integrat­
ed total of the plastic work).

THE ELASTIC ZONE - The remainder of the grid (surrounding the
plastic zone) is treated as ideally elastic. In the UNIVAC 1108
version of the code, the total grid is limited to a maximum of
51x51xl01 nodes. Six variables are carried at every node in the
grid. These are the three displacements at each node and the

258 Applications

y

X
A

ELASTIC ZONE'

Figure 5.34 14TRES geometry

Seismic 259

three velocities. Thus, a grand total of 13 variables are carried
at each node in the plastic zone, and 19 variables for the split
nodes in the fault plane.

THE BOUNDARY CONDITIONS - The initial conditions in TRES consist
of zero displacement and velocity. However, a uniform state of
horizontal shear stress is permitted. On the six surfaces of the
grid, either the force or the displacement must be constrained to
be zero. Since the three coordinate directions on each surface
may be independently prescribed, symmetry conditions may be im­
posed. In fact, it is customary to apply symmetry conditions on
both planes normal to the fault, thus treating only a quarter of
the fault. The current fault algorithm does not permit a sym­
metry condition across the plane of the fault (even though such a
condition could be formulated for this class of fault). This is
the reason for the final dimension being double the first two.

THE COMPUTATIONAL ALGORITHM - The basic computational cycle in
TRES consists of integration for one time step. The cycle starts
by numerically approximating the derivative of the displacement
field to obtain the strain field. A central difference of dis­
placement values at adjacent nodes approximates the partial deriv­
ative at the midpoint. By combining these partial derivatives and
averaging, an estimate is obtained for the strains at the center
of the block of material determined by eight nodes. The constitui­
tive relationships (Hooke's Law in the elastic region) are then
used to obtain the stress at the center of the block. Then the
equilibrium relationships (Newton's Law) are used to determine
the acceleration. The partial derivatives of the stress required
in the equilibrium relationships are obtained in a fashion simi­
lar to the strains. In this case, the stresses at the centers of
the eight blocks surrounding the node are used to estimate the
acceleration at that central node. The velocity, V, and the dis­
placement, U, of a node are obtained as

V(T+.5xDT)=V(T-.5DT)+DTxA(T), and U(T+DT)=U(T)+DTxV(T+.5xDT)

where A is the acceleration, T is the current time, and DT is the
time step. This calculation is analogous to the centered differ­
ence technique used for the strain and acceleration calculations.
Although this description covers the more important aspects of
the calculation, it must be noted that there are other features
in the code to treat damping, plasticity and to control a form of
instability observed to occur in such centered difference tech­
niques of a rectilinear grid (3).

260 Applications

IMPLEMENTATION ON THE ILL lAC IV

The Illiac IV (I4TRES) code is designed to handle a substantially
larger grid than the UNIVAC 1108 TRES. The maximum size of the
fault plane is increased from 4x6 to 32x32. Similarly, the max­
imum dimensions of the plastic zone have been increased from
9xllx9 to 32x32x64. Finally, the maximum dimensions for the full
grid have been increased from 51x51xlOl to 80x80x160. The goal
of this project was to implement on the Illiac IV a code which
was computationally equivalent to TRES but executed an order of
magnitude faster on a grid four times as large. Consequently,
the algorithms were redesigned to maximize the number of PEls in
use at any time, to minimize routing costs, and to minimize
ILLIAC IV Disc Memory latency time.

USER INPUT AND OUTPUT - Since reading card input is a highly ser­
ial process and because more flexibility in input was desired, no
direct input is done in the Illiac IV program. Rather an inter­
active preprocessor was written to aid the user in preparing the
program's input data. This preprocessor, the I4TRES File Editor,
executes under the TENEX timesharing system on the Institute for
Advanced Computation's DEC PDP-10 computer. The I4TRES File
Editor prepares a file in Illiac IV binary word representation
which is moved to Illiac IV Disc Memory at the start of a run and
is the sole source of input information for the Illiac IV code.
Similarly, since the creation of formatted output in a program is
highly serial and since extensive post-processing was to be done,
no formatted output is prepared by the Illiac IV program. Rather
binary output files in the user's machine word format are prepar­
ed and transferred to the user. Thus, the Illiac IV time is not
spent on these highly serial tasks, but is reserved for the high­
ly parallel computational tasks.

COMPUTATIONAL METHODOLOGY - Referring again to Figure 5.34, the
basic computational strategy is to calculate results in the X
direction in parallel. Using J, K, and L as the indices in the
X, Y and Z directions of the grid, respectively, results for 60 J
indices are all calculated simultaneously. A second calculation
is then used for the remaining 20 indices. With this technique,
the two outermost PEls are not used. The two PEls adjacent to
the main data block (PE 1 and 62) are used to make it appear as
if there were actually 62 variables. Values from the beginning
of the block of 20 or the end of the block of 60 are moved into
these PEls so the correct differences can be obtained. Boundary
conditions are created by turning off the boundary PE during dis­
placement calculation to enforce a constant zero displacement or
by loading values which produce zero difference, strain, and con­
sequently stress, to enforce a load free boundary condition.

DATA BASE DESIGN - A key element in the design is the data layout
within an Illiac IV disc memory page. Each page in the main data
base contains the three displacements and three velocities for
the nodes at all 80 J indices, for 2 K indices and for 1 L index,

Seismic 261

and is referred to as an elastic page. Recalling that a page is
16 rows in PE memory, the first four rows contain displacements
for all JI S and the first K; the next four contain the correspond­
ing velocities. The remaining eight rows contain the displace­
ments and velocities for all JI S and the second K in the same for­
mat. Within each group of four rows, the first row carries 60
values of the X component of displacement or velocity surrounded
by two zeros on each side (i .e., in PEls 0, 1,62 and 63 when
moved to PE memory). Similarly, the second and third rows each
contain 60 values of the Y and Z components, respectively. The
fourth row contains the values for the remaining 20 J indices for
all three components.

The stress data for the plastic zone is contained in another
block of pages. Each of these plastic pages contains the six
stresses and the plastic work for all 32 Jls, 4 Kls and 1 L. The
first four rows contain values associated with the first K index,
the next four for the second K index, etc. The six stress compon­
ents and plastic work are packed into four rows with half in PEls
0-31 and the remainder in PEls 32-63.

DATA MANAGEMENT SCHEME - In TRES, JI S were scanned most rapidly,
Kis next and Lis last. The net result was that every point had
to be read three times per cycle. To minimize the number of 140M
accesses in I4TRES, a different order was used. In I4TRES, of
course, all JI S were processed simultaneously; this was the paral­
lelization. However, only a quadrant of the Kls was scanned at a
time. Thus, 20 Kls were scanned most rapidly, Lis were next, and
quadrants were scanned least rapidly. The net result of this
strategy was most variables only had to be read once. Only the
Kls at the quadrant interfaces (e.g., K=19, 20, 21, 22) were read
twice.

In both codes data was moved to and from mass storage into
and out of buffers in core. The buffers were configured to per­
mit the minimum number of data transfers for the selected scan­
ning order. In the UNIVAC 1108 version of TRES, the working data
buffer contained all 51 Jls, 5 Kls, and 3 Lis. This buffer was
used in a circular fashioniMith 3 Kls for computation, 1 K for
input, and 1 K for output. A somewhat different system was used
in I4TRES. In I4TRES, the input data buffer contains all 80 Jls,
24 Kls, and 3 Lis (36 elastic pages). Results are calculated and
placed in the output data buffer which contains all 80 Jls, 20 Kls,
and 1 L (10 elastic pages). (The variables at all 24 K indices
cannot be updated for two reasons: first, to update a node all
26 of the surrounding nodes must be present to allow differencing.
And second, only full pages of data are updated.) A plastic in­
put data buffer is used similarly. It contains all 32 Jls, 24 Kls,
and 2 Lis (12 plastic pages) and a plastic output data buffer con­
tains all 32 Jls, 20 Kls, and 1 L (5 plastic pages).

The integration method is explicit. (Calculations are based
only on values at the previous time step.) So new values cannot
replace the old ones until all calculations requiring that value
are complete. In the UNIVAC 1108 TRES, two separate files were
maintained. During a cycle, data (values at T) was read from one

262 Applications

file and results (values at T+DT) were output to the other. Their
roles were then switched for the next time step. For the Illiac·
IV version, I4TRES, the two file scheme was replaced with a dynam­
ic disc allocation scheme which requires only about half as much
space. The key to this technique is keeping two copies of the
interfacing nodes only. For instance, if K=l to 20 have just
been updated, a copy of the old K=19 and 20 page must be kept to
permit differencing at K=21. The way this is implemented on
Illiac IV disc memory is illustrated in Figure 5.34 and may be
described as follows. Imagine for each L that an empty page is
in position zero and the data follows in positions 1 to 40. After
updating, the results for K=l to 20 (10 elastic pages) are written
in positions 0 to 9. Thus, position 9 contains the new values for
K=19 and 20 and position 10 still contains the values from the
previous time step. After updating the complete grid, every value
is one position in front of where it was in the previous step.
The complete data base is treated as circular so that when a page
goes off the front of the data base, it is wrapped around and
added to the vacancy left at the back.

RESULTS OBTAINED WITH THE I4TRES PROGRAM

The I4TRES code was compared to the UNIVAC 1108 TRES code in three
test cases. The first test case was plane wave propagation and
consisted of nine subcases, one for each coordinate direction of
propagation and each coordinate direction of motion. The second
test case involves a smoothly varying load on a small, approxi­
mately circular area on the surface. This test case permits com­
parison with two dimensional (axially symmetric) simulations.
The third test case is an actual earthquake simulation. In each
case, the numerical results obtained with I4TRES on the Illiac IV
were identical to those obtained with TRES on the UNIVAC 1108 in
all of the five digits printed. The solution times on the Illiac
IV are about one and one half minutes per time step, whereas on
the UNIVAC 1108 they were 15 minutes. Moreover, the number of
nodes has been increased from approximately a quarter million to
over one million nodes (an overall speed up to approximately 60).
These solution times are for an IlliacIV code before optimiza­
tion. Optimizing Illiac IV disc memory organization to minimize
latency and overlapping computation and input/output operations
would be expected to make further substantial reductions in run
time.
Activities are currently focused in several areas. Several modi­
fications to I4TRES are being considered. These include taking
advantage of symmetry across the fault plane, allowing material
inhomogeneities, modifying the treatment of the observed instabil­
{ty, as well as code opti~ization. In addition, plans are cur­
rentl'y being made f.qt development of a code based on finite element
(instead of finite difference) technology.

Seismic 263

ACKNOWLEDGEMENT

The design which has been reported here is the result of the
collaborative efforts of a number of members of the Institute
for Advanced Computation. The author wishes to acknowledge
their contributions to the project.

References

1. T. C. Bache, et a1, IIA Deterministic Methodology for
Discriminating Between Earthquakes and Underground
Nuclear Exp1osions. 1I Final Report to Advanced Research
Projects Agency under Contract No. F44620-74-C-0063,
July 1976.

2. J. T. Cherry, et a1, "A Deterministic Approach to the
Prediction of Free Field Ground Motion and Response
Spectra from Stick-S1 ip Earthquakes. II Earthquake
Engineering and Structural Dynamics, Vol. 4, pp. 315-
332, 1976.

3. G. Maenchen and S. Sack, liThe Tensor Code." Methods
in Computational Physics, Vol. 3. Academic Press, 1964.

2. Salamlc Data Pracaaaing

INTRODUCTION

The pu~pose of this study was to determine the suitability of the
Illiac computer for processing seismic data. We have done this
by looking at the computing requirements of each of several algo­
rithms; and then, by comparing these requirements with the charac­
teristics of the Illiac, we have investigated the feasibility of
programming each of the algorithms on the Illiac. Finally, the
procedure FKCOMB was actually coded for the Illiac and the program
has been tested and run. FKCOMB is a long-period seismic signal
analysis procedure, which is important in calculating discrimi­
nants between earthquakes and nuclear explosions; it may become
an integral part of data processing on the seismic network.
FKCm1B was chosen for thi s experiment because the 1 arge amount of
processor time required prohibits its use in-house. Also, known
results are available with which to compare the Illiac version.

This Section is based on IIA Study of the Illiac IV Computer for
Seismic Data Processing ll

, by A. Kerr, G. Hagenbreth, E. Smart,
and Z. Der, SDAC-TR-74-16, Teledyne-Geotech Report to DARPA,
October 1974.

Seismic 265

The first step in designing a seismic algorithm to run on Illiac
is to examine similar or repeated data structures and determine
how they could be organized in the processor memory and to analyze
similar or repeated operations and determine how they could be
divided among the processors.

Long and short period seismic data are recorded at seismic
arrays consisting of a group of sensors sampled at a constant
time interval. The data so recorded consists of a series of data
scans. Each data scan is a time sample from each sensor. There
are two structures repeated throughout the data. First, there are
several channels, each identical in structure to the rest.
Second. there are many identically structured time samples. In
order to utilize either of these structures, time must be spent
transposing the data. It would be convenient if it were possible
to process the data without transposing in any way - but the in;
put consists of data records which are formatted differently for
each array.

Since the data must be restructured, it fs reasonable to
build a new structure which makes processing as fast and straight
forward as possible. The choice between the two data structures
is dependent upon the requirements of the algorithm. General dis.
cussion of the several seismic algorithms and their data require­
ments is contained in Section 3. A detailed discussion of the
design of FKCOMB is found in Section 4.

266 Applications

SEISMIC APPLICATIONS ON THE ILLIAC IV COMPUTER

General

In the following paragraphs we shall discuss the suitability of
the Illiac computer for processing seismic data using several
tested algorithms.

Our investigation has revealed that the Illiac computer is
generally suited for processing of seismic data which involves
frequently repeated or simultaneous identical operations using
different sets of data, and can be programmed in such a way that
the processing is performed simultaneously in the 64 processing
elements of this computer. Thus, if desirable, it will be feas­
ible to use Illiac to process routinely all long-period data for
the planned seismic network. In addition, it can also be used
for off-line processing of selected data.

In this discussion we shall concentrate on the possibilities
of this computer for the detection and discrimination of seismic
events using seismic array data. The computer can also be used
in other seismic applications too numerous to treat here. Seis­
mic arrays record the earth motion in two separate frequency
bands, short-period and long-period, which for some purposes re­
quire different treatments because of the different nature of
seismic waves recorded in the two bands. Some of the processes
discussed are used for data in both bands while others are common­
ly used only for long or short period data.

The most common signals for investigation in the short-period
band are the short-period body waves, particularly the short-per­
iod P first arrival. P waves can arrive at a seismic station with
a wide range of apparent velocities and from all possible azimuths.
Since the bandwidth of the signal is limited, frequency filtering
tends to enhance the signal/noise ratio. The detection threshold
in the short-period band is low relative to that of the long-per­
iod band, and events are usually detected in this band. The ar­
rival azimuth and apparent velocity of the short-period P waves at
an array yield a preliminary epicenter location which can be used
to narrow the search for waves in the long-period band. In the
long-period band, long-period body waves are the signals of inter­
est. When used in conjunction with short-period data, they are
all proven or potential discriminants between explosions and
earthquakes. The most important of these is the long-period
Rayleigh wave, which is used in the Ms-mb discriminant. The
Rayleigh wave has several characteristics which can be utilized
by detection algorithms:

1. Waveform (path-dependent);
2. Particle motion; and
3. Azimuth and apparent velocity.

Since in most cases detection has already occured on the
short-period data, it is only necessary to prove or disprove the
presence of Rayleigh or other long-period waves arriving from

Seismic 267

roughly the direction of the preliminary epicenters, and to meas­
ure the wave amplitude if present.

The following seismic processing algorithms will be discuss­
ed in this report:

1. Frequency (convolution/recursive) fil tering

2. Beamformi ng

3. Matched filtering

4. PHILTRE

5. Maximum likelihood f-k spectra

6. FKCOMB

The last four of these have only limited or no application
for the short period band. One processor (FKCOMB) is discussed
in more detail since it was selected to be demonstrated on the
Il1iac.

Convolution and Recursive Filtering

Simple filtering is the convolution of a seismic trace with some
arbitrary function which limits the bandwidth .of the output. Re­
cursive filtering accomplishes the same result, but makes use of
a feedback loop to reduce the number of arithmetic operations re­
quired.

This operation can be represented mathematically in the form:

m k
Y = L a1x ~1 + L biy -1

n 1=n n i=1 n

where all indices are integers, Xi are values of the original dig­
itized trace and Yi are values of the filtered output, and a1,

bi , n, m, and k are constants the choice of which is dependent on
the filter function to be performed.

The Illiac is well suited to perform convolution of recursive
filtering simultaneously on all processing units. These algorithms
can be used for filtering all elements of an array using the same
filters to enhance a band limited signal in wideband noise, or
utilized for filtering the same trace with a set of filters to
perform a fast Fourier analysis or to compute spectral ratios for
discrimination. The parallel algorithm can also be used to simul­
taneously deconvolve sixty-four seismic traces, remove instrument
response, simulate seismograms produced by different instruments,
or to reduce the seismogram traces simultaneously to accelerations,
velocities, and displacements as functions of time.

268 Applications

Figure 5.35 is a schematic representation of possible arrange­
ments of data in the Illiac memory for frequency filtering. In
Figure 5.35a, a different channel of data is input to each PE,
with the same filter applied to all PEls. In Figure 5.35b, a
given channel of data is input to all PEls, with a different fil­
ter applied to each PE. Figure 5.35c represents a combination of
the previous examples in which the PEls are partitioned into sev­
eral sets, all of the PEls in a given set receiving the same data
channel but operating with different filters.

Beamforming

Beamforming is the process of time-shifting several channels of
array data and summing them to form a single channel. The time
shifts chosen are the natural delays in time of arrival of a
hypothetical signal crossing the array. The delays are defined
with respect to some arbitrary point in space. For plane waves
of constant velocity, the delays are

-+ -+
Ti = r i • S

where i is the index of the ith sensor, ; is the location of the
sensor and the slowness of the signal is:

-+ -+ -+-+
S = V/(V'V)

-+
where V is the velocity of the signal across the array. If one
has computed delays from the true ~ of a given signal, that is,
from its true speed and arrival azimuth, and has assumed that the
signal waveform does not vary during transit, the effect of time
shifting is to make all the channels appear to have been recorded
at the arbitrary reference point. The effect of summing, there­
fore, will be to add the signal to itself N-l times, where N is
the number of channels. The signal is thus reinforced. If the
noise is random and uncorrelated between array elements, it is
reduced to N- 1/ 2 of its original amplitude by the summation.
Thus beamforming has the function of increasing the effective
signal-to-noise ratio.

One can estimate the speed and direction of propagation of
signals by finding the maximum of the time average of the squared

beam values (denot~d 82) on the S-plane:

- J-l N 2 J-l 2
B2 = L [1 L xi (j6t-Ti] = L B.

j=O N i=l j=O J

where B. is the expression in brackets, the beam of the array;
xi are ~he ith channel data samples; 6 t is the sampling interval,
j is the time index; J is the number of time points over which
average is taken.

a.)

FIL TER

DA TA CHANNEL

b.)

FIL TERS

CHANNEL 1 CrlANNEL 2

c.)

ETC.

Figures 5.35 a, b, c Sugges ted Data Schemes
for Convolution-Recursive Filtering

Seismic 269

270 Applications

The probability of the presence of the signal can be estimat­
ed-by the statistic

N-l
F =-

N N 2
L (x.-B)

i=l 1

where the denominator is the time average of the sum of the
square (or power) of the individual input traces xi after the
beam is subtracted.

This statistic is distributed approximately as a non-central
F variable with degrees of freedom determined by the number of
channels, bandwidth, and the time length of averaging (assuming
that only uncorrelated noise is present).

The standard F tables can be used to determine the signifi­
cance of detection, or the detection can be automated (Blandford,
1971) •

The beams can also be displayed for the visual detection of
the waves of interest. For detection of surface waves and the
measurement of Ms this is still the best procedure. Experienced
analysts can recognize and measure seismic wave arrivals in many
cases where automatic machine detection schemes fail. Routine
computation of long-period beams and their storage in the mass
store event files would be a valuable routine function for the
NEP and would require a substantial computational power easily
met by the Illiac. Therefore beamforming might well be the single
most useful algorithm for implementation on the Illiac computer.

Several basic computational configurations can be used in
beam processing. These are shown in Figure 5.36 in the first con­
figuration (a) each PE contains one sensor trace and the beam
values are accumulated by forming row sums on the several PEls.
This configuration is suitable to process several arrays simul­
taneously, and computing the desired beams from a single data set
sequentially may use long time windows such as those needed for
the recognition of dispersed surface wave trains. Another advan­
tage of this configuration is that preprocessing of traces such
as filtering processing can also be performed simultaneously
prior to beaming without the need to remove the data from memory.
The output of such a scheme can be directly used in network event
processing. This configuration, uniquely possible on the Illiac'
IV, is the most efficient if the maximum number of PEls can be
utilized. This can be achieved if the total number of sensors in
the arrays are close to sixty-four, or alternatively the remain­
ing PEls are used to compute different beams on the same arrays.
To obtain continuous seismograms of long duration this seems to
be the most efficient approach, since various preprocessing
scbemes, such as convolution filtering, coordinate rotation to
obtain Rayleigh Love, SH and SV components can be performed on
them without the need for excessive numbers of overlaps in the
successive time windows which would be required if, as we discuss

..) LASA

BEAtt n

b.)

SEMI M

TIl

4

ETC

P~EP:mCESSUR

OPTln;IAl

(COIIV1lUTl');I, ,IXIS
R1T.\TJn:: IIIITCHE~

flL TE~, (iC.)

BlAlunr.
("!WSUlts)

n=I,2,3 •...

n. I. 2. 3, ...

~~,~ ~----~----~----~-- m.

UE '[~

1
BEAli

DlAl1 It

BEAll

3

tHJ\I! ,j

BEAll

4

BEArl II

dEAl!

5

... ETC.

Seismic 271

Figure 5.36 Suggested data schemes for beamforming

272 Applications

below, each PE were to contain all the channels of data required
for a particular beam. Incidentallj, PHILTRE can be used as a
postprocessor for 64 array beams previously obtained (for 64
events) which can be run in parallel.

There are two other al ternate but generally less effective
computational configurations which are indicated in Figure 5.36.
One loads all sensor traces from one array into one PE and each
PE contains a different time window. The desired beams for a
given time window may then be computed sequentially (Figure 5.36b).
The other scheme (Figure 5.36c) loads the same time window, all
traces, into as many PElS as there are desired beams and the beams
are computed simultaneously. The disadvantage of the last mention­
ed methods is that since each PE contains all traces the corres­
ponding time windows must be shorter due to PE memory limitations.
This processing, including beaming, will require more complicated
buffering schemes between core and disk. Therefore it seems that
the first computational scheme has the most practical value,
although the others may be used advantageously, for instance, for
enhancing short body wave arrivals. The maximum utilization of
the computer requires the consideration of the type of processing
required, number of traces or arrays and the length of time win~
dows to be processed.

Matched Filtering

This technique utilizes the waveform of the signal to be detected
(Alexander and Rabenstine, 1967a,b). The expected waveform of
the signal is used on the seismic trace as a convolution filter.
Ideally the expected waveform is identical to the actual one and
in the resulting output trace the signal is transformed into a
pulse which is shaped like the autocorrelation of the signal
waveform. In practice it is not possible to predict the actual
waveform precisely, so the matched filtering results in the con­
traction of the actual signal, which for surface waves can be a
long wave train, into a much shorter waveform. By compressing
the same amount of energy into a shorter time interva], the sig­
nal/noise is increased. It also de-emphasizes signals which do
not match the waveform used for filtering. The technique has
been successful in detecting surface waves, and preliminary re­
sults indicate that it is a very effective preprocessor for f-k
spectra analysis (FKCOMB or maximum likelihood f-k spectra) if it
is applied to all elements of an array. Application of matched
filtering requires that the signal waveform be known, which in
turn presupposes knowledge of the approximate epicenter, which
may be acquired by short-period detection. If the epicenter is
known, the recordings of a nearby large event can be used as the
expected waveforms. Alternatively, if the dispersion character­
istics of the path are known sufficiently well, the signal wave­
forms can be synthesized and the resulting waveform used as a
matched filter.

An alternative application of matched filtering can be rela­
tive location of events. If recordings of a reference event
(preferably of an explosion) are available at a set of seismic

Seismic 273

stations, the times of maxima resulting from the matched filter­
ing of seismic traces of nearby events with waveforms of the ref­
erence event, can be considered as relative arrival times for the
purpose of event relocation in the general region surrounding the
reference event. The technique also has a potential as a discrim­
inant since azimuthal variations in the initial phases of earth­
quakes will cause inconsistencies in the times of occurrences of
matched filter output maxima when compared to explosions.

Matched filtering is essentially convolution, and the compu­
tational advantages of convolution or recursive filters on the
Illiac stated above apply in this case.

Possible applications of the Illiac (Figure 5.37) include
matched filtering of many sites simultaneously (each with a dif­
ferent matched filter), filte}'1ing several sets of array elements
simultaneously with matched filters corresponding to each array,
or filtering independent sites (such as LRSM sites) with their
own respective matched filters. One can also use matched filters
corresponding to several areas of interest routinely on the data.

PHILTRE

This process is designed for a single three-cbmponent set of long­
period data. It uses a nonlinear weighting scheme of Fourier
spectral components in overlapping time windows to enhance Love
or Rayleigh particle motion associated with a given arrival direc­
tion (Simons 1968). First the three components of long period
recordings are rotated to obtain radial transversal and vertical
motion. The rotated traces are broken up into overlapping time
windows and Fourier transformed, yielding the Fourier coefficients

where c (T) is the radial, transverse or vertical component to be

analyzed, T is time, n = O,1,2,3, ... ,N-1, Nf - folding frequency,

and f = t = fundamental harmonic of Fourier series.

Using the absolute value of a Fourier component

one computes three quantities used in the weighting scheme

274 Applications

HNME HBOK NPNT (lRSM SITES)

a.) J1 FILTER

FJ FZ F3 ••• ETC.

CHArmEl J CHZ

U
AlPA

SENSOR I SENSOR 2 SENSOR 3

b.)

FilTER
COr·M)N FOR All

ARRAY
Fl Fl ••• ETC.

NORSAR ALPA lASA

Figure 5.37 Suggested data schemes for matched filtering

Seismic 275

a.) The apparent horizontal azimuth (the angle from the
radial direction)

A (n£)
t

S(nf) = arctan A (nf)
r

b.) A measure of the accentricity of the particle motion
ell ipse

'l'(nf) arctan
Ar

2 (nf) + At
2(nf)

A (nf)
z

c.) The phase difference between the vertical and radial
components

a(nf) = 0 (nf) - 0 (nf).
r z

The Fourier amplitude coefficients of each direction compon­
ents are then weighted in the following manner

M K N
A~(nf) = Az(nf)·cos [S(nf)]-cos ['l'(nf)-.21nJ·sin [a(nf)]

M K N
A~(nf) = Ar(nf)·cos [S(nf)]-cos ['l'(nf) - .21n]-sin [a(nf)]

A'(nf) = A (nf)esinM[S(nf)]-sinK['l'(nf)]-l
t t

where N () 2 sin [a(nf)] = 0 if TI ~ a nf ~ TI.

The A~(nf) are the "weighted amplitude coefficients". No
weights or adjustments are applied to the phase angles. The ex­
ponents M, K, and N are parameters that are read into the program.
Values of M, Kt and N which have worked reasonably well in prac­
tice range from 4 to 8. Note that on the vertical radial compon­
ents all weighting factors vary from 1 to a as powers of sines
and cosines depending upon the degree to which the particle motion
resembles pure Love or Rayleigh waves.

The effects of the first weighting factors (functions of S)
are to attenuate transverse energy on the vertical and radial
components and radial energy to the transversed component.

The second set of weighting factors depends upon the angle ~
- a measure of the accentricity of the Rayleigh orbit providing
transversal trace does not contain too much non-Rayleigh type
motion.

276 Applications

On the vertical and radial traces, the angle desired (O.21nl
is the one corresponding to a representative value of the hori­
zontal/vertical displacement ratio (~O.8) for fundamental long­
period Rayleigh waves.

The resulting Fourier coefficients are subsequently trans­
formed back into the time domain to yield transverse traces con­
taining only Love motion and radial and vertical traces with only
Rayleigh motion and greatly reduced noise since the weighting
scheme de-emphasizes noise which, even if coherent, is liable to
come from a direction different from that of the epicenter.

The data dependent nature of this algorithm does not lend
itself well to utilize the parallel computing feature of Illiac.
However if large sets of data need to be processed each PE can
process three components of data from a given location (Figure
5.38). This may make PHILTRE a practical preprocessor for arrays.
Recent work by von Seggern and Sobel (1974) indicates that it is
effective in revealing Rayleigh waves hidden in noise. Although
further tests are needed to establish its effectiveness as a
preprocessor for an f-k detector, it utilizes a neglected aspect
of surface wave detection.

Maximum Likelihood f-k Spectra

A maximum likelihood f-k spectrum is the mapping of the power passed
by a_ set of maximum likelihood filters in the plane. A maximum
likelihood filter is an optimum filter which is constrained to
pass a plane wave in the direction to be looked at while rejecting
all the rest of the energy present, in a least mean square sense.
It has the mathematical form for a given frequency

P(K) = _-"-~l::::....-_
u~-l-"-t

u

where ~ is the power sepctral matrix of the sensors, K is the
wavenumber and u is a vector

iKr1 u = (e ,e
iKr

c

-+
The position vector of the ilth sensor of the array is r i .

The maximum likelihood f-k spectrum is one of a wide family
of high-resolution spectral estimators. It is characterized by
reduced side lobes and higher resolution as manifested in the re­
duction of the width of the main lobe when compared to the simple
frequency domain beam used in FKCOMB. The processor requires the
estimation of the inverse of the input spectral matrix; there are
fast practical ways to make this estimate, after which the multi­
plications with the various ·~vectors can be done rapidly by us­
ing all 64 parallel processors. The parallel feature can also be
used to Fourier transform the individual seismic trace segments
simultaneously. Algorithms are available to estimate the inverse
of the array spectral matrix without actually inverting a matrix

SITE 1

RAYLEIGH TRACE
OR

LOVE TRACE

PHIL IRE

SITE 2

Seismic 277

SITE 3

••• ETC.

Figure 5.38 Suggested data schemes for PHILTRE

278 Applications

(J. W. Woods, personal communication. 1972).
If the detection of surface waves from a known epicenter is

desired, the range of search in the ~ plane is reduced. Moreover,
the absolute value of k is fixed for a given frequency, since the
surface wave phase velocity for a given frequency at a given array
site can be determined. Matched filtering or PHILTRE can be used
as preprocessors to this processing scheme to utilize the disper­
sion and/or the particle motion characteristics of the signal and
reduce the false alarm rate. The most practical way to use the
Illiac computer is to apply sixty-four ~ vectors simultaneously
using the same estimate of the computation by a factor of 64 re­
lative to sequential processing and is the most efficient for the
computation of finely spaced values in the f-k plane needed by
this high-resolution process. A flow diagram in Figure 5.39 shows
how the unique parallel computing feature of Illiac can be used to
increase the efficiency of computing maximum likelihood f-k spec­
tra.

FKCOMB

FKCOMB is a fast f-k analysis program that was first used in an
automatic processing system for microbaragraph data (Smart and
Flinn 1971). It has since been adopted for use with LP seismic
data. It computes and finds the maximum of the function

P(w,k)
N

1 L {A (w) exp[ia (w)]}-exp(ik-r) 12
n=l n n n

which is essentially the power in the frequency domain beam.
Here w is the angular frequency, {A{w) exp i (w)} is the Fourier

n
transform of the n'th seismic trace, N is the number of traces,
and exp{tkr~) are the components of the vector U in the previous
section. The maximum of the function can be associated with the
presence of a signal. The F test is used to determine whether a
signal is present.

The methods take advantage of the fact that the siqnal-to­
noi se rati 0 vari es with frequency, so beamformi ng is done fre­
quency by frequency. Also, by staying in the frequency domain a
great many beams can be examined rapidly, the number being limit­
ed only by the resolution cell of the array response. The low
resolution of the process is actually an advantage when one de­
sires to search f-k space rapidly, since the wide main lobe of
the process enables one to use a wide grid spacing in the search.

The azimuth and velocity of a signal need not be assumed:
one merely accepts the beam with maximum power. This fact is

DATE FROM

SITE 1 SITE 2 SITE 3 SITE 4 SITE 5

PREPROCESSOR (OPTIONAL)

(/IATCHED, FREQUEUCY FILTER)

PHILTRE, AXIS nOTATIOIl)

•• , FAST FOURIER TRANSFORfl

COMPUTE HlVERSE

OF SPECTRAL fIW\ TRIX
(SINGLE PE OPERATIO:!)

COf·IPUTE f-k SPECTRA USIflG

VARIOUS BEE VECTORS FOR A

Seismic 279

SET OF UAVENUftlERS kI' k2, ... ,

"m nl SETS OF 64.

Figure 5.39 Computation of maximum likelihood f-k spectra

280 Applications

important for signals such as long-period seismic surface waves,
which not only are dispersive (i.e., their phase velocities vary
with frequency) but whose arrival azimuth may also vary witch fre­
quency because of lateral inhomogeneities in their paths.

Since the main advantage of the FKCOMB method is the possi­
bility of fast search in the wavenumber vector space at a given
frequency,·' changing frequencies as the search requires, we pro­
grammed the processor to operator on sixty-four successive time
windows. This uses the Illiac most effectively for signal detec­
tion. The other type of application, searching sixty-four fre­
quency levels simultaneously on the same time window, is not so
efficient, since not all of the frequency bands may be needed for
the search in a given iteration.

FKCOMB ALGORITHM DESIGN

General

The FKCOMB algorithm can be divided into the following steps:

1. Input raw long period data. Separate it by array.
txtract the long period data samples and the timing words associ­
ated with those samples.

2. Divide the input into time windows. As originally input
the data is ordered in the following manner:

T(lt1)tT(2tl), ... T(N,I), T(l,2),T(2,2)t ... T(N,2),
T(l.S),T(2,S), ... T(N,S)

where T(i,j) represents the data sample from channel j at time j,
N is the number of channels and S is the number of time periods.
After division into time windows the data is ordered as follows:

T(lt1),T(l,2), ... T(l,TW, T(2,1),T(2,2), ... T(2,TW), ...
T (N ,1) , T (N, 2)t' .•• T (N t TW) , T (1, TW+ 1) , T (1 , TW+2) , ... T (1 , 2TW) t ...

where TW is the time window length and T(i,j) and N are as above.

3. The data is converted from the raw data format to the
internal representation of the machine used. Glitches or spikes
are removed and dead or noisy channels are detected and removed.
(Portions of this step may be performed before step 2.)

Seismic 281

4. A Fourier transform is applied to each time window.
After FFT the data is arranged as follows:

F(1.1.1),F(1,1,2), ... F(1,l,TW),F(1,2,l),F(l,2,2), ...
F(1.2,TW) •...
F(1,N,l),F(1.N,1), •.. F(1.N,TW),F(2,1,1),F(2,1,1), ...
F(2,1,TW),
F(2,2,1),F(2,2,2), ... F(2,2,TW), ...

where F(i.j,k), the Fourier transform output, represents fre­
quency k, channel j, time window i.

5. Re-order the data so that it is arranged by frequency.
It is then arranged as follows:

F{1,1,1).F{1,2,1), ... F{1,N,1),F{1,1,2),F{1,2,2), ...
F(1,N,2), ...
F(l,l,TW),F(1,2,TW), ... F,N,TW),F(2,1,1), ...

where F(i,j,k), TW, and N are defined as above.

6. Search frequency - wavenumber space for power maxima.

Data Editing Module One (OEMl)

Since step one is a process common to all seismological algorithms
and because large input/output buffers are required it was coded
as a stand alone module. The input to this module (OEMl) is the
raw data as read from a low rate tape. The format of input re­
cords is shown in Figure 5.40. The output consists of several
files, one per array, containing only the data samples applicable
to long period processing. The data movement required to isolate
and properly structure this data is nonparallel. There are no
general structures repeated often enough to allow efficient use
of the ROUTE instruction. The CU ;s used to move one word at a
ti me between input buffers and output buffers. (Actually the
BIN instruction is used to move blocks of eight words to the CU.)
A description of each array format is given in the block data sub­
routine initialization of the vector CNTRL.

The reordering of data in steps 2 and 5 is not required if
all data is available on a random access device, since it reflects
the order in which the data will be accessed. It is necessary on
Illiac since the size of core and long disk access time prohibit
random access.

Assuming approximately 20 channels for each of three arrays,
each sampling at the rate of once per second, one twenty-four hour
tape conta i ns :

282 Applications

IJATA

TIME SCAN.

REP LilTED 10 OR 15 TJr1ES.

DATil

~ IlIOICIITES ,\P-Ei\S n:/ Tl\rE. ~'1I11CII DO ImT CO:ITAItl
~ nllTIl F,IR LOIIf; PERIOD PKOCESSII~G

Figure 5.40 Memory allocation

Seismic 283

3 arrays/sample * 20 channels/array * 1 sample/second *

60 seconds/minute * 60 minutes/hour * 24 hours/day =

5,184,000 channels.

Movin9 each sample involves two memory accesses (one load and one
store). Given that a memory access from the CU takes approximate­
ly .5 microseconds, the total time spent in memory accesses by
DEM1 to process twenty-four hours of data is on the order of 5
seconds. This is small enough that more complicated algorithms
which may have permitted use of the ROUTE instruction were not
considered.

Twenty-four hours of data is approximately ten to the eight
bits. In order to read these into core without losing a great
deal of time waiting for disk access a buffer of 128 rows
(512,000 bits) of core is used. 200 disk accesses are required
for input. This takes up to eight seconds. Since there are
several output files, the output buffers are somewhat smaller.
The total size of the output is smaller, since at least half of
the input is not used in long period processing. The I/O time
spent in output is therefore approximately equal to that spent
in input even though the output buffers are smaller.

The actual movement of data by DEM1 is done within three
nested loops. The outermost loop is gone through once for each
input record.

The next inner loop is gone through once for each time scan
in each record. The innermost loop is gone through once for each
channel per time scan. All buffering is handled by an input rou­
tine and an output routine called once for each channel to trans­
fer. In order to reduce overhead spent in subroutine calls it may
be necessary to recode calls on these routines as in line code.

DEM1 transposes data in a serial fashion. It is coded so as
to minimize time lost in disk and memory accesses. It puts array
data in a standard format to reduce the size of the data and allow
the straight forward execution of subsequent modules.

Data Editing Module Two (DEM2)

Steps 2 through 5 are performed by DEM2. The primary reason that
this module was coded separately from step 6 was to shorten coding
and debugging time. The relatively small amount of core memory
available in each PE would necessitate the overlaying of various
vectors used by step 6 and those included in DEM2 if all were
included in one module. The I/O times spent writing the output
from DEM2 and reading it in before step 6 would be saved, but this
time is estimated to be less than 5 seconds.

Steps 2 through 5 are performed one time window at a time.
A complete multi-channel time window is taken through steps 2
through 5 and the resulting output placed in an output buffer
before the next time window is processed.

One multi-channel time window consists of approximately 20
channels of up to 512 samples each or approximately 10,000 data
items. During step 2 it is impossible to indlude a complete

284 Applications

multi-channel time window within one processing element memory.
It is possible to include a single channel time window within one
processing element memory, but due to the variable number of chan­
nels used for each time window, keeping track of which channels
and time windows have been processed is complicated, though feas­
i bl e.

An alternate approach is to use 64 PEls to process each time
window. An FFT routine is available (written at the University
of Illinois) which utilizes all 64 PEls to perform one FFT which
runs very close to 64 times faster than one PE would do. Conver­
sion to floating point involves no interaction between processing
elements. Deglitching involves the comparison of each sample with
the previous and next sample. With this data arrangement these
samples are in adjacent PEls and the ROUTE instruction can be
effectively utilized. The original structuring of the data into
time windows (step 2) and the final transposition (step 3) are
each performed serially by the CU, so are not affected by the
data arrangement chosen. Spreading time windows across PEls was
the approach chosen for steps 2 through 5.

Step 2 thus consists of extracting timing information from
the input and, using this information, from time windows. Each
time window is spread across the PEls, occupying between one and
eight rows per channel, depending upon the time window size in
use. Overlapping of time windows is performed by retaining what­
ever part of the most recent time window is still of interest and
using the ROUTE instruction to back it up properly. For this
reason, the buffer in which time windows are built is alternated
between two halves of an array so that the last time window built
is not overwritten.

Conversion to internal floating point format is the first
step performed once the time windows have been formed. Each PE
converts all samples within its memory and no inter PE communica­
tion is required. Deglitching is performed by routing the values
from adjacent PEls and adjusting them if a gl itch is encountered.
(See program documentation for exact procedure.) The rowsum pro­
cedure described in section 2 is used in the variance calculation,
since a summation across PEls is required. The FFT is then per­
formed and the frequencies prepared for output. Due to the fact
that not all frequencies output by FFT are of seismological int­
erest, the output from step 4 is much smaller than the input to
step 4. This data reduction is significant in that after FFT a
multi-channel time window consists of approximately 20 channels
and 20-30 frequencies and will fit within one processing element
memory. Placing each separate time window wholly within one PEM
is very convenient since the search of frequency wavenumber space
for one time window is completely self contained and independent
of other processing (see Figure 5.41). In step 5, the FFT output
is written into one PEM of an output core buffer. This is done
serially by the CU. When the buffer is full it is written to
disk.

Seismic 285

FKCOt1l

TW3 TW64

Figure 5.41 Input format for FKCOMB

286 Applications

FKCOMB Algorithm

Since each PE completely contains one time window after step 5,
the algorithm used in the search of frequency wavenumber space is
essentially the same as that used in the serial version. The pro­
gram reads the data file created by DEM2, which has been arranged
as shown in Figure 5.41. Each time window contains the frequen­
cies of interest and the algorithm is executed in parallel on
the data. A search for maximum power is made on a coarse grid
and then a series of finer grids is searched simultaneously in
all processing elements until a maximum is found. In a given
PE the mode for that PE is disabled until a maximum is found in
all other PElS. The Fisher statistic, period, signal azimuth and
velocity, and associated parameters are calculated and stored,
and the process is continued on the next time window of data.
The design of the algorithm was straightforward, and the reader
is referred to the program documentation (Kerr and Wagenbreth,
1974) for a more detailed discussion of the software.

Seismic 287

PROJECT NOTES

The operational aspects of using Illiac differ significantly
from those of other machines. In addition to the parallel archi­
tecture, there are two other characteristics which are important
considerations for the user of the Illiac system. First, all of
the support software such as editors and compilers run on proces­
sors other than Illiac. There is currently support software avail­
able on DEC, IBM, and Burroughs machines. The choice of which
machines and software to use is an integral part of system devel.
opment, for Illiac is accessible only via the ARPA Network and is
routinely used remotely. The bandwidth, availability, and relia­
bility of the network directly affect the performance of the
Illiac system as seen by a user.

Program Entry and Storage

A basic requirement for any long-term coding effort is a
reliable file system permitting easy access and modification of
source codes. Two basic options were available in using the
Illiac system. One, used by several Illiac coding efforts, is
to maintain files on a host computer and transfer the files to
the Illiac system via the ARPA Network whenever necessary. The
second is to utilize the Tenex file system and editors included
in the Illiac system. The first approach required frequent
ARPA Network transfers and a reliable and economical host machine.
Since such a host was not available to SDAC, the Tenex file sys­
tem was used and was found reliable and convenient. No work was
lost due to disk or file system failures during the duration of
this project. The editor OED fulfilled all requirements regard­
ing both modification and examination of source files.

Languages

Three languages are available for preparation of Illiac code.
There are two high-level languages, GLYPNIR and CFD, and an assem­
bly language, ASK. The large amount of coding necessary made the
use of assembly language impractical except for specific portions
where bit manipulation or efficiency made it a necessity. The
majority of coding was done in high-level language. A comparison
of the syntax and semantics of GLYPNIR and CFD revealed the
following significant differences:

1. Ease of understanding - CFD looks much like FORTRAN and
is easily interpreted or learned by a scientific programmer.
GYLPNIR resembles ALGOL and is somewhat more confusing and diffi­
c u 1 t to 1 ea rn .

2. Ease of coding - Once learned, GLYPNIR permits faster and
clearer coding than CFD. GLYPNIR's macro facilities are a con­
veniente not provided by CFD. GLYPNIR has some higher level con­
structs. which require several CFD statements to implement.

288 Applications

3. Efficiency - CFD produces more efficient code than
GLYPNIR in many instances.

The two languages are very similar in their treatment of
unique Illiac characteristics and both provide all facilities
necessary for the implementation of seismic analysis programs.
Certain types of code are better suited to one language than the
other, but consideration of the syntax and semantics alone indi­
cated no clear preference.

The choice of language ultimately depended upon the support
and availability of GLYPNIR and CFD. GLYPNIR is supported by
the Institute for Advanced Computation as part of the' Illiac
system. It is implemented on a Burroughs 6700 located at the
Illiac computer center and" must be accessed via the Illiac batch
queue (as discussed below), CFD is implemented on the IBM 360/67
located at NASA Ames Research Center. It is accessible routinely
via the ARPA Network. The source for CFD is transportable, and a
version of CFD is available on the UCLA IBM 360/91. Also support­
ed on the Ames IBM 360/67 is a translator, CFDX, which translates
CFD to FORTRAN. With some modification due to I/O differences
and inserted assembly language code, CFD programs may be trans­
lated to IBM FORTRAN. The translator is designed to generate
code equivalent to that generated by CFD for'Illiac. CFDX is not
designed to replace Illiac in production mode since the FORTRAN
generated by writing a CFD program and translating it will not be
nearly as efficient as coding in FORTRAN directly.

Due to the superior availability of CFD and the existence of
the CFDX translator, the decision was made to implement the
FKCOMB algorithm in CFD.

As actually experienced, the availability of CFD was not as
good as had been hoped, for several reasons. First, availability
of the Ames IBM 360 is very poor. Between the hours of 8:00 am
and 12:00 midnight (PST) use of the machine by non-priority
accounts is restricted. During the eight remaining hours, the
requirement that both the Illiac Tenex system and the Ames IBM
360 be operational for file transfers caused much lost programmer
and computer time. The hours were also inconvenient. The UCLA
version of CFD, due to lack of overlays, requires 400K core and
runs in a slow queue (6-8 hours turnaround). Efforts to imple­
ment CFD on the SDAC IBM 360/44 were frustrated due to incompati­
bility of the operating systems of the IBM 360/44 and the IBM
360/67. The large core requirement also posed a serious problem.
It was found that the effort required to implement CFD at SDAC
would not be worth the convenience of an in-house compiler. The
availability of Illiac was sufficient (see below) to make the use
of the CFDX translator uneconomical due to the alterations neces­
sary to accommodate I/O differences and inserted assembly language
statements.

Seismic 289

Run Procedures

Coding of the FKCOMB algorithm in CFD began in April 1974.
What follows is the set of procedures developed for the day to day
process of running and debugging an Illiac program, along with ex­
perience gained and observations made during the use of these pro­
cedures.

The primary site at which compiles were done was the Ames
IBM 360/67. A CFD restriction is that all subroutines must be
separately compiled. Our code was divided into three programs,
each consisting of a main driver and four to six subroutines.
Initially all subroutines had to be compiled, but thereafter only
those with code modifications required compilation. Compiling a
module consists of four steps. First, after having logged in on
the Ames 360/67, the source file is transferred over the ARPA
network from the I4-Tenex File System, where the source files are
maintained, to the Ames 360. This process is done interactively
and typically takes one to ten minutes of real time, depending
upon the length of the source and the load average on each
machine. Approximately one out of three transfers terminated
abnormally and had to be reinitiated. The failure rate increased
greatly when the load on either machine was heavy. The next step
is to initiate the CFD compiler. The time between the submission
of a compile and its completion varied from five minutes to sev­
eral hours, again dependent upon the machine load. After termina­
tion of the compile the listing generated by the CFD compiler
is examined with the TSS editor, REDIT, to check for syntax errors
or other abnormal termination. If errors are detected, they are
corrected (being careful to make the same corrections to the
original source at I4-Tenex) and the compile reinitiated. After
a successful compile, the ASK assembly language source module is
copied back to I4-Tenex via network transfer. This file is
usually several times larger than the original source and the
time taken to transfer the file is several times longer than that
for the source. If several subroutines are to be recompiled, this
process can consume several hours. When only small changes are
necessary, this time can be saved by changing the assembly lan­
guage code directly with the text editor at 14-Tenex, again being
careful to make the same changes to the original source.

Once the necessary assembly language modules have been
created, a batch job ;s submitted at I4-Tenex to perform the
following tasks:

1. Assemble the ASK modules

2. Linkedit the resultant relocatable modules

3. Create a disk map file describing the actual layout
of any III i ac di s k areas to be used by thi s run

4. Allocate the map file created in the last step

5. Move any input files required to the appropriate Illiac
disk area

290 Applications

CONCLUSIONS

6. Run the Illiac code

7. Move any output from the appropriate Illiac disk area
to the I4-Tenex file system

8. Release the Illiac disk areas used.

Seismic Processing on Illiac

The Illiac computer programmed to perform seismic process­
ing on large data bases can be a valuable tool in the development
of seismic event detection and discrimination procedures. It is
feasible to implement some existing algorithms on the Tlliac which
are not currently used to process large data bases, or some algo­
rithms which are proposed but not tested due to a lack of comput­
ing power. Our experience with one algorithm (FKCOMB) which is
representative of seismic analysis programs shows that a major
benefit of the Illiac to seismic processing is its ability to
operate in parallel on sixty-four different data streams, thereby
reducing the time required to process 'large data bases. Effi-,
ciently arranging these data streams for the processing element
memories is an important consideration for designing any seismic
algorithms for the Illiac.

It is feasible to program Illiac to perform the algorithms
reviewed in this study: convolution-recursive filtering, PHILTRE,
matched filtering, beamforming, and maximum likelihood f-k estima­
tion. Since a major factor in programming any of these algorithms
is the data arrangement in core, a more detailed study of the data
configurations for these algorithms would be needed to optimize
the use of the computi ng power of III i ac. One a 1 gori thm (FKCOMB)
was studied in detail and implemented on Illiac IV. Data editing
schemes were devised for FKCOMB which can be used with appropriate
modifications for all the seismological algorithms we received.

Two independent uses for Illiacare suggested. First,
FKCOMB and other algorithms now used selectively could be run
routinely on larger data bases to better provide the services they
already give on conventional machines. Second, experimental meth­
ods impractical to test via conventional machines could be tested
on Illiac. The experience of implementing FKCOMB illustrates that
the design and coding of new algorithms for Illiac is not signifi­
cantly more difficult than for serial machines. The only phase
not experimentally explored by this effort is the operational
problems of manipulating the large amounts of data involved in
routine processing of long and short period data on Illiac.

Seismic 291

References

1. S. S. Alexander and D. B. Rabenstine, 1967a, Detection
of surface waves from small events at teleseismic distance:
SDL Report No. 175, Teledyne Geotech, Alexandria, Virginia.

2. S. S. Alexander and D. B. Rabenstine, 1967a, Rayleigh
wave signal-to-noise enhancement for a small teleseismic
using LASA, LRSM and observatory stations: SDL Report No.
194, Teledyne Geotech, Alexandria, Yirginia.

3. R. R. Blandford, 1971, An automated event detector at TFO:
SOL Report No. 263, Teledyne Geotech, Alexandria, Virginia.

4. J. Capon, 1969, High-resolution frequency-wavenumber
spectrum analysis, Proc. IEEE 57, 1408-1418.

5. CFD, A Fortran based language for ILLIAC IV, 1973, Compu­
tational Fluid Dynamics Branch, Ames Research Center,
National Aeronautics and Space Administration.

6. ILLIAC IV Systems Characteristics and Programming Manual,
1971, Burroughs Corporation, Defense, Space and Special
Systems Group.

7. A. U. Kerr and G. Wagenbreth, A long-period processing
package for ILLIAC IV, 1974 (in preparation).

8. H. Mack, 1972, Evaluation of the LASA, ALPHA, NORSAR long
period network: Seismic Array Analysis Center Report No.
6, Teledyne Geotech, Alexandria, Virginia.

9. R. S. Simons, 1968, PHILTRE, A surface wave particle
motion discrimination process. Bull. Seism. Soc. Amer.,
58, p. 629-637.

10. E. Smart, 1971, Erroneous phase velocities from frequency
wavenumber spectral sections: Geophys. J. Roy. Astr. Soc.,
26, p. 247-254.

11. E. Smart and E. A. Flinn, 1971, Fast frequency-wavenumber
analysis and Fisher signal detection in real time infrason­
ic array data processing: Geophys. J. Roy. Astr. Soc.,
26, p. 279-284.

12. J. E. Stevens, 1971, A fast Fourier transform subroutine
for ILLIAC IV: C.A.C. Document No, 17, Center for Advanced
Computation, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801.

13. System Guide for the ILLIAC IV User, 1974, Institute for
Advanced Computation, Ames Research Center, Moffet Field,
California 94035.

292 Applications

14. D. H. von Seggern and P. Sobel, 1974, Performance of the
PHILTRE processor at low signal to noise ratios (in
preparation) .

15. J. W. Woods and P. R. Lintz, 1972, Plane waves at small
arrays: Geophysics, 38, p. 1023-1041.

F. Astronomy

Introduction

Very little astronomical research has been undertaken using the
Illiac. The following galaxy simulation is an exception. It can
be expected, however, that stellar collapse with inhomogeneous
mixing and rotation will be modelled on a machine of the Illiac
class in the not too distant future.

293

1. Three Dimensionel Balaxy Simulations

THE ASTRONOMICAL,PROBLEM

The dynamic properties of galaxies are not adequately under­
stood. This is especially true of the galaxy in which we live.
Because stars represent most of the mass of galaxies and because
a star moving in a galaxy is well represented as a mass point, a
dynamic model of a galaxy consists of a large number of point
masses that move in the force field generated by the Newtonian
gravitational attraction of the stars themselves. This is a form
of the gravitational n-body problem. In computer simulations of
galaxies, n is usually in the range of 10,000 to 250,000 -- far
fewer than the lOll stars in a typical galaxy. But a difficulty
arises: models intended to represent the galaxy collapse within
the period of one galactic rotation. The difficulty is physical
in origin and does not result from the relatively small number of
particles in the model nor from other computational features.

As part of a study directed toward understanding the origin
of this difficulty and toward discovering the physical principles
that must be included in order to build stable models that agree
with our observations, we have used a fully three-dimensional
galaxy simulation on the Illiac IV. The fully three-dimensional
form is important. Several earlier computer simulations have
been designed with restricted geometries, and it is important
to understand the consequences of these restrictions. For exam­
ple, a restricted geometry which admits only axisymmetric forms
misses essential features of galactic dynamics because the domi­
nant instabilities of galactic models are non-axisymmetric and
because angular momentum transfers among particles are not prop­
erly handled. Most galaxies are non-axisymmetric: The beauti­
ful spiral galaxies often shown in -phOtographs are dominated by
twofold symmetries in the plane.

ThlS Sect10n 1S based on an article 1n the lAC Newsletter by
R. H. Miller, May/June, 1977~

294

Astronomy 295

The stability problem first became apparent from two-dimensional
disk galaxy simulations with point m~sses constrained to move ona
plane. The masses interact with l/r forces. The models devel-

loped from such simulations showed spiral density waves, but the
velocity dispersions were much too large. Systems with s~aller
velocity dispersions quickly formed bar-like structures and
later developed large velocity dispersions. Since real galaxies
do not haVe these propertfes, something "must be present to stabi-
1ize the galaxy--possibly some mass that is stable and pro-
duces a gravitational potential within which the observed stars
move; otherwise the velocity dispersion in the galaxy would be
too small for stability. This has ramifications far beyond the
immediate question: if typical galaxies have much more mass
than has been thought, the universe may be fairly close to the
critical density for closure. Other possible physical stabiliz­
ing mechanisms include a dissipative drag on stars as they move
through the interstellar medium.

While stability questions provided the principal motivation
for undertaking the development of the three-dimensional program
on the Illiac IV, many other problems can be studied with this
tool. Several have been investigated so far.

1) Early Stages of Galactic Evolution

Any particle in the simulation can be made to represent either a
star or a gas cloud, but the dynamics are different. Gas clouds,
unlike stars, undergo inelastic collisions, which may result in
the formation of a star. A galaxy is thought to form from the
collapse of an initially extended, turbulent, gravitationally
unstable gas cloud. Experimentally, the system does not behave
as expected. The gas quickly settles into a thin sheet in the
equatorial plane, and continues to form stars long after star
formation should have stopped. The stars formed in the early
stages of the collapse have velocities that do not agree with
observation. More detailed studies of these collapse and forma­
tion processes may be carried out with two-dimensional disk gal­
axy simulations because the most important processes happen
after the gas settles into a thin sheet.

2) Stability of Bar-Like Systems

Particle systems settle into a prolate bar that rotates end-over­
end in space. This bar is a long-lived form, but the reasons for
its peculiar stability are not known. We have studied the dyna­
mics of the bar by graphic methods: computer-generated motion
pictures of particle motions, as viewed from a rotating coordi­
nate system in which the bar is at rest, show a net streaming
motion around the bar in the direction of rotation. Individual
particle orbits are similar to trajectories in an anisotropic
harmonic oscillator within a rotating coordinate system. There
is empirical evidence for extra isolating integrals of the
motion. This study is well started, but not yet complete.

296 Applications

3) Are Elliptical Galaxies Prolate?

The peculiar stability of prolate systems raises the question
whether elliptical galaxies that have a flattened outline on the
sky are oblate objects seen in projection, as is commonly sup­
posed. They are more likely to be prolate. Systems that appear
d rcul ar on the sky may well be spherical in three-dimens ions.
This opens the question of .how flat an oblate object can exist
stably. A series of experiments is underway to study this
question. First, a spherical equilibrium system had to be con­
structed and shown to be stable in the computer. Next, the spher­
ical system was made to rotate, which caused it to flatten. Pre­
sumably; it should assume an oblate form. At a certain degree
of flattening, the oblate form becomes unstable and shifts over
to a prolate form. We are now searching for that stability
1 imi t.

4) Colliding Galaxies

An interesting set of planned experiments refers to colliding
galaxies. This problem is inherently three-dimensional. The
initial galaxies must be self-consistent and stable, like those
used for (3) above. Self-gravitation in the bridges and tails
formed during the collision can be taken into account in an
Illiac simulation. This has not been possible with previous
simulations. The galaxies may merge into one large galaxy. The
dynamics of merging is not well understood -- a lot of energy
gets transferred from the center-of-mass motion of the colliding
galaxies into internal degrees of freedom of the resulting sys­
tem. The Illiac simulation will provide information on this
exchange.

5) Ring Galaxies

Another form of galaxy that is occasionally observed is a ring
structure. The usual picture for the formation of rings re­
quires a collision. But a ring g-alaxy was formed in the col­
lapse of a rotating stellar configuration in one simulation, which
demonstrates that rings can be formed by means other than galaxy
collisions. Rings are very short-lived forms. The ring in the
Illjac IV simulation was formed under circumstances favorable
for a long lifetime, but it became oval-shaped and collapsed into
a bar in less time than that required for a star in the ring to
complete one circuit around the center.

6) Reliability of Disk Galaxy Simulations

The three-dimensional Illiac IV simulation of collapsing stellar
configurations has shown why disk galaxy simulations are so re­
liable for stability studies. The reliability results from an
essential separability of the motion into directions along an
axis of rotation and directions perpendicular to the axis of
rotation. Since components of the motion along the axis of ro-

Astronomy 297

tation, do not affect the stability significantly, simulations
that take account of motions perpendicular to the axis of ro­
tation provide a good representation of the stability problem.
The basic stability problem that motivated the development of
the three-dimensional simulation is still open, but it can be
studied by means of disk galaxy simulations.

PROGRAM DESIGN

The three-dimensional n-body program constructed for theI.11iac
IV 1~ designed to be quite general so that it can be used for a
variety of astronomical problems. It can handle as many as 106
particles within a cubic volume, with forces computed in a man­
ner that allows details dewn to 1/64 of the linear dimension of
the configuration space. Long-range effects are correctly han­
dled by the force calculation. Each particle is represented by
one TIliac word. In addition to the configuration coordinates
and the velocities, 10 bits are allowed for other attributes.
These attributes may be defined to suit the particular problem.

Computationally, the program designs are pleasing in the
w~iY,they fit the Illiac IV architecture and utilize the parallel
features of the Illiac. Like most large n-body programs.~esigned
for the Illiac IV it consists of two principal parts: the
~otential solver or subroutine in which the forces are calcula­
ted, and the particle-pusher or subroutine in which the particle
velocities and positions are advanced according to these calcu­
lated forces. The potential solver makes use of the densities
(or the projection of the particle phase space density onto the
configuration space), which are tabulated by the particle-pusher
as the new velocities and positions are computed. Summaries and
tabulations are handled by other subroutines, as is the estab­
lishment of starting conditions.

Although two-dimensional calculations can be core-contained,
this is no longer possible for reasonably sized three-dimensional
calculations. However, it is not necessary that all of the par­
ticle data be available at once, since data for one particle can
be completely processed independently of the rest. Particle in­
teractions occur through the force field. One way to handle such
a three-dimensional calculation is to sort the particles so that
only a portion of the force field and of the density count need
be in the core at anyone time. All of the particles whose con~
figuration coordinates are within a limited reg~on are processed
to completion before starting another region. In the design of
our Illiac IV program, matching ~ortions of the particle data,
of the force field, and of the density count are in the memory
at the same time, during the particle~pushing part of the calcu-
1 a ti on.

The cubic volume occupied by the system of particles is parti­
tioned into 64 subdivisions along each edge; the force of calcu-
1ation returns values at the center of each subdivision. Force
values at points other than at the(,centers are found by linear
interpolation. Densities are determined by counting the ~arti­
cles in each subdivision. The Cartesian coordinates are desig­
nated as follows: the 64 subdivisions along the x-coordinate

298 Applications

are each assigned respectively to one of the 64 PEs of the
nli~c IV. All 64 subdivisions of the y-coordinate and 8 of the
64 subdivisions of the z-coordinates are in the PE memory simul­
taneously. Eight such loadings are required to process the en­
tire accessible configuration space. Each band of 8 subdivisions
of the z-coordinate is called a IIz-sheet" (see Figure 5.42).

The cube represents the entire accessible configuration
space. The x-coordinate increases to the right, the z-coordinate
increases upward, and the y-coordinate increases iJ.'Ito the page.
The eight z-sheets are shown. The volume of configuration space
for which particle data can be in one PE is the long thin rec­
tangular parallelopiped that extends from one face of the cube to
the other in the y-direction. extends the depth of a z-sheet
(8 subdivisions = 8 L) in the z-direction, and for just one sub­
division in the x-direction. All particles present in the vol­
ume shown are processed by one PE (PE number 25 in z-sheetnumber
2, starting from 0); the entire set of 64 PEls handle the full
volume of the z-sheet in parallel.

Allowable velocities are limited to +8 subdivisions per
time-step. After the particle pushing part of the integration,
those particles initially in one PE and in a certain z-sheet have
x- and z~values such that they may now belong in a different PE
(within 8 of the present PE number). Because diffusion is a dy­
namic process, those particles initially contained in one PE will
have diffused to other parts of the configuration space while
other particles will have diffused into this volume during the
same integration step. The particles now belong somewhere with­
in the larger, dashed volume in Figure 5.42, but the data which
represent the particles are still in the original PEs.

The programming problem is to arrange for the particle's
data to be reassigned to the correct PE and broyght back in the
proper z-sheet on the next integration step. This feature, along
with the need for frequent access to backup storage on the
Illiac disk, is the principal complication in the design of par­
ticle-pushing programs. With this partitioning of the configur­
ation space, only those potential values which correspond to the
current z-sheet and those density counters which correspond to
the current z-sheet plus its immediate neighbors need be in the
core during the integration. The part of the program which
handles the actual integration is divided into several subpro­
grams for readability and to simplify debugging.

Values for the potential at the center of each subdivision
are calculated from the new density data. Potentials go to zero
at infinite distance, the boundary condition that is appropriate
for the gravitational problem. The calculation proceeds through
Fourier transformations of the density; then the convolution the­
orem is used to obtain the transformed 'potentfa IS, which are fi­
nally retransformed to yield values of the potentials at the grid
points. Forces are obtained in the particle' pusher by.quadratic
interpolation of the potential values.

These potential values need be in the core only for the
eight z-values in the current z-sheet; an additioaal z-value
above and below the current z-sheet is also in the core to facil­
i tate interpolation • Potential S are packed two per III rac wor.d,

Astronomy 299

Figure 5.42 Memory allocation

300 Applications

with logical packing that permits full use of all 64 bits.
Density counters need be in the core only for the present z-sheet
and for the two neighboring z-sheets. Density counters are
packed four per Illiac word.

All data which refer to a certain particle are packed into
a single 64-bit Illiac word in seven sections: the position re­
quires three lO-bit numbers; the velocity, three 8-bit numbers.
The remaining 10 bits may be used to describe other attributes
of the particle. such as different masses. At present, one bit
is used to flag a particle for plotting into an output file
which is used to construct motion pictures. Another bit has
been used to distinguish between gas and stars. The lO-bit des­
criptors allow the position of particles to be defined within
1/16 of the interval between PEs or up to 1/1024 of the edge of
the full configuration. All velocities and coordinates are pack­
ed as positive integers. A word of all O's (not a valid particle
descriptor) is used to flag an empty location.

A major design consideration for a program such as this is
the selection of an output form which will make the state of the
program comprehensible. As we are able to manipulate increas­
ingly massive data bases and more complex programs, the results
may be overwhelming. The author strongly believes that graphic
forms are the best means of comprehending large systems and their
components. The principal output from these simulations is taken
in the form of motion pictures that show the development of par­
ticle configurations, though other run summaries are occasionally
generated for special purposes (see Figure 5.43). These are gen­
erated on other computers from plot files produced in the Illiac
IV at run time. Approximately 2000 particles are flagged for
plotting. At each integration step, both the position and the
velocity of each flagged particle are copied onto the plot file.
Flagging assures that the same set of particles appears in the
plot file at each step. This provides continuity in the motion
pictures and also permits individual partfcle orbits to be fol­
lowed. The plot file is generated by a special subroutine that
is called at each integration step, after the particle-pushing
and before looping back to the potential solver subroutine.

Figure 5.43 shows three orthogonal views of the configuration at
fixed times near the end of the run sequence. The body rotation axis
is along z. The three views in a row, left to right, are (x,y)
(x horizontal, y vertical), (y,z), and (x,z). The corner marks
show the limits of the available configuration space. The first
set of three views shows the configuration at step 108, while
there remains a part of a transient S-shape, with tails trailing
off the vertical bar. The second set of three views shows the
bar reached at the end of this run. This bar rotates end-over-
end in space. and has been followed for 1 1/2 complete rotations
past the end of this run. It is a long-lived fonn. and may rep­
resent the prolate shape of an elongated elliptical galaxy.

'.

;ilf

Astronomy 301

co
N

co'
N

Figure 5.43 Development of particle configurations

302 Applications

OPERATING EXPERIENCE

The galaxy simulation routines were first used in a production
run in July 1976. Since then we have made about 50 production
runs and 40 debugging runs. Most of the debugging runs were
used to design and check out new initial conditions, but some
involved modifications to incorporate different intermediate
file formats, gas dynamics, and so on. While concurrently con­
ducting other research, the. author designed, wrote, and checked
the programs in about one year, though some help with day-to-day
operations was available.

Galaxy simulations are initial value calculations. Other
experiments can use the same routine and the same boundary con­
ditions with different initial loads. Most simulations have been
run with about 116,000 particles. Normal experimental sequences
span 128 integration steps, which represent about eight times as
long as the characteristic "dynamic" period for the system. Cal­
culations of this kind are useful for studying phenomena which
occur on a "dynamic time scale"; eight of these units are normal­
ly adequate to probe the stability which is the object of these
i nves ti ga ti ons.

A run is usually interrupted after a certain number of in­
tegration steps with the state of the run saved in checkpoint
files. This permits verification that the program is running
satisfactorily and that it has not degenerated into some unin­
teresting condition, such as all particles having escaped, or all
having collapsed to a very small region. Runs are interrupted
after 16 integration steps and tape copies of the checkpoint
files are saved after each 32 steps. Checkpoints require space
for 1158 flliac pages of storage (4632 TENEX pages); safe opera­
tion requires space for both the input and output files on the
TENEX disk as well as the dump file (34 Illiac pages of output).
A tape copy of the checkpoint file fills one reel.

The efficiency of 16-step runs is due mainly to the handling
of output files. Longer runs or more particles in the plot files
would entail correspondingly larger output files, which are more
troublesome to handle. The need to inspect results frequently,
the mean time to failure, and the priority ranking of jobs in the
batch queue also make shorter runs more desirable. Other fea­
tures make longer runs preferable; because slow turnaround is
compunded by restricted access to the computers used to process
output files, four turnarounds per week represent good perform­
ance. The system overhead is also more costly with shorter runs
because most of it appears in Illiac-TENEX file transfers.

Recently a program revision has been tested which reduces
the size of the checkpoint files at a considerable loss of par­
allelism in the program's execution. It represents about a 50%
increase in Iliac run time for the particle-pusher subroutines
but works with 268 Illiac pages of checkpoint files. Yet be­
cause of system overhead, the total Illiac IV sequence time is
reduced so that the revision achieves an overall savings. A sub­
stantial increase in throughput is achieved because several run
sequences can proceed concurrently within the same file space on
TENEX.

Astronomy 303

CONCLUSION

In addition to the investigation of the stability problem in
'current disk galaxy models. other studies planned or in progress
with the three-dimensional Illiac galaxy simulation programs are:
(1) The effects of gas dynamics and star formation on the early
collapse history of a galactic model; (2) An investigation of
how flat a stellar system can remain oblate; (3) The generality
of the phenomenon of strongly anisotropic velocity distributions
among collapse models; (4) Particle motions in the final state
bar ina free collapse of a rotating sphere of stars; '(5) A vari­
ety of solar-system problems, in which particles may collide
inelastically. Readers are invited to send questions to the
author in care of the lAC Newsletter.

VI. Commentary

The Illiac IV is a controversial machine. It cost too much t it took
too long to get to work t it was offered to users before it was ready,
and so on. Still it was a quantum jump forward in computer technology
and it has produced some handsome accomplishments.

It is i nappropria te to judge the real i ty of the III i ac in terms
of the original goals for the Illiac. Rather, the Illiac should be
assessed in terms of the progress it has achieved in computer technol-
ogy and the utility it exhibits for today's requirements. .

There have been many failed application projects on the Illiac.
For the most part these have been software failures. at least since
the Il1iac was declared operational on November 1, 1975. Users of the
I1liac were just not prepared for how different coding for a parallel
computer is from coding for a conventional comp~ter.

To some degree these issues have been addressed earlier in this
book. This chapter looks more closely at these and tries to provide
a sense of perspective for the reader.

304

A. Comments on Some Csse
Studies

The following are some selected observations on several programs which
have been written for the I11iac. The intention is that they may shed
some light on the nature of scientific computing that may be amenable
to parallel computation. These case studies are important both for
the problem formulation strategies, program design decisions and cod­
ing techniCjues.

1. Sparse matrix multiply

The following three paragraphs are a somewhat edited quotation
from a report on three-dimensional stress wave simulation for the
Illiac, authored by Gerald Frazier and Christian Peterson (DNA 331F
report by Systems, Science and Software), pages 48 and 49.

The time stepping process for this problem consists of
the calculation U=V+A*W for each time step,. The first
term V is a vector and its calculation involves vector
operations which require no interaction among the I1liac
PEls. As a result, it is easily computed in parallel.
Similar operations are involved in the calculation of
the vector W. The significant calculation is the mul­
tiplication of the vector W by the large sparse matrix
~. This multiplication accounts for almost all of the
computation time that is required to complete one numeri­
cal time step. A sophisticated but simple mechansim
has been deve1eped to perform" the sparse inatrix multiply
in paral1el~ The non-zero terms of A lie in 3x3 sub­
matrices of At no more than 27 such submatrices in any
row of A. These are arranged on disk so that when read
into memory each arrives in the PE which contains the
three elements of W which enter into the computation
of the product of the submatrix of A and W. Further­
more, as successive terms of Aa,re read from disk the
matrix row numbers increase monotonically (but not

'Based on "Programmlng the Iiiiac", by David Stevenson, Sept. 1975
Appendix.

305

306 Commentary

necessarily sequentially). This is done so that the
sparse matrix multiply can be completed in the order
of ascending row number.

The first submatrix to arrive in each PE from
the disk is multiplied by the appropriate three com­
ponents of the vector Wand the results are accumulated
in a buffer along with the row number identifier. This
operation allows some PEls to work ahead on other row
numbers. Since several rows may be processed simul­
taneously, a look-ahead buffer is mainta'ined in each
PE which contains both the elements and their row num­
bers. Since rows will ~ontinuously be completed as new
ones are started, the buffer need only be large enough
to contain the maximum number to be worked on at one
time in any given PE. On the average, all of the mul­
tiplies for about 2.4 rows of the sparse matrix multi­
ply are completed at a time.

During the matrix multiply, a test is made to see
if all contributions from the sparse matrix multiply
a~e ready to be summed for the node numbered n~ If all
of the row numbers from the submatrix multiply are great­
er than n, then all contributions for n are calculated
(all PEls are now working on contributions to higher node
numbers). The contributions for n are then summed and
added to the other terms to obtain the advanced nodal
displacement U(n). This displacement vector is stored
in PEk, where k=n mod 64. If the contributions from row
n+l are completed, then node n+l is also advanced in
time, otherwise the next submatrix multiply in line for
each PE is performed. The parallel submatrix multiplies,
row sums, and disk reads continue until all of the A
matrix has been processed and all nodes have been ad­
vanced in time. The entire operation is repeated for
each time step.

This ends the quotation from the text. Some points are worth
mentioning here. First of all is the surprise that the matrix-vector
product is not programmed as vector operations but rather as separate
processes (the Illiac is being used not as a vector processor, but as
multiple processors, each working largely in its own "context"). The
difference in this case is e,ssentially 99 vector component-wise multi­
plies (of vectors of length 3N, where N is the number of mesh nodes)
plus aligning and summing the 99 result vectors, versus 27N matrix­
vector products (involving 3x3 matrices) plus aligning and summing the
27N vectors (of length 3), The vector formulation costs about 18%
more storage -- the added padding of zeros is necessary for alignment
purposes -- plus the concomitant increase in arithmetics -- the multi­
plications by the padding zeros; the use of zero here is exactly anal­
ogous to its use for positional notation in number systems. On the
other hand, the vector formulation eliminates the control structure
which tests to see when all information for updating each node has
been assembled and can be combined. It also eliminates the buffer
-management for these intermediate resul ts. The real subtl e"ty of the
problem lies in the aligning and summing involved in the two approaches,

Comments on Some Case Studies 307

plus the possible ne~essity (based on small core m~~ory) to partition
long vectors,but we will leave the matter here.

The non-vector approach does lend itself to matrices which arise
from arbitrarily connected grids. But the automatic grid generation
used by this project generates grids which are unions of regions homeo­
morphic to a cubical lattice, hence the structure of the matrix A will
have large blocks along its diagonal where the above vector approach
will hold, and its off-diagonal blocks, most of which are identically
zero, will have an analogous vectorizab1e structure.

2. A Model for Disaster

The Tensor code (Final Report of the Tensor/Il1iac IV Project,
ARPA Order 1839 (UCRL-51467) by Tad Kishi, 1973) is base.d ·on a grid
which moves with the material; the solution at a grid point involves
information from nine neighboring points nearest to it. Here whatever
regularity exists in the grid at the beginning of the simulation is
rapidly destroyed over the iterations, so a vector formulation of the
sparse matrix is clearly inappropriate. The next question is, can an
I11iac-type architecture, viewed as each processor working in its
separate context but doing roughly the same thing, provide a suitable
environment for such calculations? Or is this a formulation best
suited for some other type of computer?

Unfortunately, the project gives no answer, since it was a com­
plete failure. In fact, the charitable thing would be to forget this
fiasco entirely, but since a computer is what it appears to its users
to be, it is important to consider this project, if only as a study in
cognitive psychology.

The project was essentially doomed by its charter.
"Bound by the primary requirement to reconfigure an
existing production code, the development of effec­
tive parallel processing methods for the Illiac com­
puter system has been an exceedingly difficult one.
It could not have been accomplished by a simple trans­
lation of the existing FORTRAN code to a comparable
language for the Illiac. The FORTRAN listing of the
Tensor code is a poor substitute for documentation.
It is next to impossible to understand the Tensor
code· or to derive effective algorithms for parallel
processing from a code that was programmed in assembly
language for a conventional computer and then brute
force converted to FORTRAN. The task has only been
accomplished by refurmulating and reexamining the basic
finite difference equations. Unfortunately, neither a
consistent nor complete set of equations of the exist­
ing code was available and had to be redeprived (sic)
by members on the ARPA Tensor project." (One can only
wonder what the sequential code has actually been com­
puting all this time). (Ji). 3)

To sea 1 the proj ectl s fate, it was deci ded -fo code in an assem­
bler language. The reasons given were that the higher level languages

308 Commentary

were undergoing development and hence tal did not generate reasonable
object code (which is irrelevant; bad code can be selectively tuned)
and (b) their programming support was minimal at best. The result of
this decision was predictable. "Once a course of action wa's decided
upon, ; t wa s 1 i tera 11 y embedded in II cemen t I. Programmi ng ina ssemb 1 y .
language left little or no flexibility in our code development"
(pp. 3-4).1 Thus the conclusions drawn by this project were largely due
to the propagation of poor early design decisions. A stunning example
of this occurred when the program was restructured, proving "that skew­
ingof data, which we originally believed to be essential for efficient
boundary calculations, was immaterial. To reconsider the skewing of
data at this point in our code development was next to impossible.
This is the price one pays when a code of this complexity is programmed
in assembly language." (p. 14) There was an even greater price:
the code never ran. "Two simulation runs have been attempted in this
configuration. The code has crashed in loop 1 in the k=O boundary
routine. The results have been evaluated, but there are no plans to
continue debugging." (p. 15)

What were the perceived problems of programming this formulation
on the Illiac? There were essentially three, First, "The inherent
geometric structure of the 64-PE Illiac computer system imposes an
artificial boundary (modulo 64) on the grid system and must be contend­
ed with throu~hout the program for an array not commensurate with this
base". (p.6) Second, "considerations of the boundary calculations .••
required skewing as a fundamental requirement of the problem logistics
for efficient PE usage. However, a given storage assignment for one
phase of the calculation may not be suited for another part of the
calculation." (p.7) And finally, third, "the calculational proce­
dures of the slip lines for the Illiac array processors require exten­
sive movement of data across the PEls in order to meet the nearest
neighbor requirements for the nine-point difference scheme. This is
the result of the change in the nearest neighbor relationship with
time. Thus the values necessary for interpolation may be in some ar­
bitrary assignment across the processing elements." (p. 63)

The first perceived problem is illusory; it is solved by logic­
ally programming in a system of N processing elements and then simula­
ting N processors using 64 or fewer processors (this is what a higher
level language should be able to do). As seen above, the second prob­
lem actually turned out to be a red herring, and probably a costly one
at that. The third problem, which is the heart of the matter of wheth­
er this formulation can be effectively used on an Illiac-type co~puter,
arises from assuming a fixed data structure; but if the grid moves with
the physics of the process, it seems reasonable to entertain the notion
that its representation moves with the computation of the algorithm;
this probably won't solve the problem, but it might mitigate its pre­
sumed seriousness. Another possible approach would be to use a grid
structure fine enough so that slip lines and any other physically in­
teresting phenomenon could be derived from calculations performed on
the fixed grid--this would be an example of using raw computational
power in place of the potentially staggering overhead of bookkeeping
and routing of information needed for a more sophisticated formula­
tion. This solution may not be aesthetically pleasinq, but it miqht
be the best cost-effective method (or even the only technologically

Comments on Some Case Studies 309

feasible method for very large models). Since the purpose of comput­
ing is insight. the only question is whether this insight should be
derived directly from the mechanics of the algorithm or be inferred
from the results of the calculation.

Notice that all three problems have a common thread: the vagar­
ies of the programming language. in revealing all of the machine char­
acteristics, have given the greedy programmer more than enough rope to
hang himself in trying to pull the last bit of speed out of the machine.
This is a very serious problem. since it distracts from the real issues.
"Skewing and the pseudo 64-PE boundary are new experiences and add to
the difficulties in visualizing parallel processes in the Illiac."
(p. 7)

3. Monte Carlo Methods on the Illiac

The real problem with the slip-line is the interaction among dy­
namically varying groups of nodes, and the attendant bookkeeping nec­
essary to locate specific nodes or assemble the necessary information.
Monte Carlo methods which are formulated so that interactions among
constituent elements are implicit can effectively minimize this over­
head p~oblem, but at the expense of substituting an apparent "random­
ness" in the control-flow. That this substitution can be successful
on the Illiac must certainly be one of the ironies of contemporary
computing, since "conventional wisdom" had held that the single-instruc­
tion stream was the constraining factor to the efficient utilization
of the Illiac, which does not obviously lend itself to branch-driven
programs. (Conventional wisdom also ignored completely the impact of
the memory structure on effective data utilization, which probably will
be the constraining factor once more experience with the Illiac is
reported) .

A successful Monte Carlo code for the Illiac is reported in
SAM-IV: a three dimensional Monte Carlo radiation penetration code
for the Illiac IV by E. S. Troubetzkoy, M. H. Kalos and H. Steinberg
of Mathematical Applications Group, Inc., DNA 3303F, 1973. Of partic-
ular interest are the mechanics used to implement a disorderly control
flow (one which takes many different branches when executed succes­
sively of different data by a sequential computer).

"The major difficulty with attempting to implement
a Monte Carlo code ... on the Illiac lies in the
intrinsic disorderly nature of Monte Carlo logic .
.•. The order and the nature of the physical events
have little, if any, correlation from (particle to
particle). The naive approach of following 64 his­
tories simultaneously is therefore not feasible as
the parallelism breaks down almost immediately.
Our approach is to initiate many histories in each
PE, and hold all of them in abeyance until any cal­
culation is required" -- that is, until enough PEls
have particles upon which the same calculation can
be performed. (p. 10)

The basic idea here is reminiscent of the control mechanism in a

310 Commentary

production system, or Markov algorithm, where, at least conceptually,
proc~sses are activated in an associative manner whenever certain
specified conditions in the data base arise. In the Monte Carlo pro­
gram. certain computations are performed whenever a certain amount of
parallelism is possible.

4. Conclusions

A general statement of the philosophy underlying the successful
programming strategy would be: divide the problem formulation into
as many independent steps as possible -- steps which would have to be
executed repeatedly on varying data by a sequential computer -- and
then at each point of the parallel computation, choose to execute that
step which will utilize the greatest amount of parallelism. The ulti­
mate success of any code seems to lie·in the ability to minimize the
overhead of bookkeeping, either implicitly (as for example, when the
computation required for a particular node is known to be completed
when all PEls are working on computations involving higher numbered
nodes) or explicitly (as where the formulation is in theory without
any dynamically varying interrelationships among distinct components;
that is, the aggregate effects of interest can be viewed as data re­
duction which can be done without regard to order and in a cumulative
fashion, and hence lends itself well to homogeneous parallel process­
ing).

One of the unifying characteristics of these three projects is
their unwillingness to view the Illiac as a vector computer. This may
be because of the small random access memory or because of the short
natural vector length. Or it could be a (perhaps deserved) infatua­
tion with a sequential program. However, if one generalizes the notion
of a vector operation from component-wise scalar operations to more
complex operations on structured components, then these programs may
be interpreted as attempts to simulate generalized vector computations.

B. Assessing the ILLIAC for Wind
Tunnel Simulations

The ever-increasing complexity and broadening performance envelopes of
modern aircraft have fostered a dramatic increase in the quantity and
quality of flow simulation data required in the aerodynamic design pro­
cess. As this trend continues, the cost in both time and money to ob­
tain these data by experimental means becomes increasingly burdensome.
If this rise continues, the test time for each new aircraft will, by
1980, exceed 10 years (equivalent, for example, to two wind tunnels
working day and night for 5 years) at a corresponding cost of approxi­
mately $100 million. The situation is further complicated by the fact
that, in many case~, it is impractical or even impossible to obtain
needed data by ground-based experimental facilities. Consequently,
there is a strong motivation to seek more efficient methods for provid­
ing reliable flow-field simulations.

An alternate approach receiving growing attention is to use large,
high-speed computers. The differential equations governing fluid
motion are solved for a large number of grid points appropriately
spaced throughout the flow field. Such simulations, which form the
basis of computational aerodynamics, can be intricate and very time­
consuming if the geometries are realistic and the flow has regions of
turbulence. Thus, the completeness and accuracy of computed flow sim­
ulations depend heavily on the computer power available.

*Based on "Computational Aerodynamics-Illiac IV and Beyond", by
F. R. Bailey, Digest Compcon, Spring 1977, pp 8-11.

311

312 Commentary

STATUS OF COMPUTATIONAL AERODYNAMICS

The set of nonlinear, partial differential equations (Navier­
Stokes equations) governing fluid flows has been known for over
a century. However, solution of these equations for realistic
aerodynamic flowdields defies analytical treatment, and a purely
computational approach requires a resolution many orders of mag­
nitude beyond present computer capability. As in analytical tech­
niques, progress to obtain numerical solutions is made by invest­
igating suitable approximations to the full fluid-dynamic equa­
tions. These approximations can be conveniently classified into
Tour stages' (1) outlined in Table 6.1. For each stage, the table lists
the nature of the approximation,' its principal limitations, its
developmental status, and the computer class needed for its ap­
plication to three-dimensional aerodynamic design simulations.
Briefly, the four stages are summarized as follows:

Stage I - Linearized Inviscid Approximation

This highly simplified approximation, whose roots go back to the
1930's, is based on the superposition of basic known solutions
and requires spatial divisions only along the configuration sur­
face. With the development during the 1960's of computers of the
IBM 360/65 and CDC 6600 class, it became practical to compute
linearized, inviscid flows over quite realistic aircraft config­
urations. This approximation is limited, however, to purely sub­
sonic and supersonic flows and does ~not treat viscous effects.

Stage II - Nonlinear Inviscid Approximation

The addition of nonlinearity requires numerous evaluations of
the flow variables at grid points in the fluid volume surrounding
the configuration as well as on its surface. The computation of
nonlinear, inviscid flows about three-dimensional configurations
is practical today with CDC 7600 class computers. Although lim­
ited to attached boundary-layer flows where viscous effects are
not large, this stage makes possible the sim4lation of important
transonic and hypersonic flows.

Stage III - Viscous, Averaged Navier-Stokes Equations

This approximation describes the mean fluid motion of turbulent
flows by averaging the Navier-Stokes equations. No terms in
these equations are neglected, but the averages0f certain terms
involving the turbulent mass, momentum, and energy transfer must
be modeled, which is the main limitation to the accuracy. This
approximation is a significant step toward the simulation of tur­
bulent flow regions critical to the prediction of aerodynamic
forces. While it is now possible to obtain two-dimensional sim­
ulations on the CDS 7600 and 11liac IF class computers, three­
dimensional simulations for aircraft design are estimated to need
a computing power at least 100 times larger.

Approximation to
State of approximation governing flow Principal limitations

equations

I
Inviscid linearized

II
Invistid honlinear

III
Viscous, averaged
Navier-Stokes

IV
Large eddy simula­
tion

Viscous and nonlinear
inviscid terms
neglected

Vi scousterms
neglected

No terms neglected,
turbulent transport
terms modeled

Subgrid-scale motion
modeled

Slender configura­
tions; small angle
of attack; perfect
gas; no transonic
flow; no hyperson­
ic flow; no flow
separation
No flow separation

Accuracy of tur­
b u 1 en ce mo de 1

Accuracy of Nav­
ier-Stokes equa­
tions and model­
ing

Status
Computet class for
practical three­
dimensional engi­

neering calculations

Two-dimensional
flows, 1930 IS;
three-dimensional
flows, 1960 IS;
used in current
aircraft design

Two-dimensional
flows, 1971; three­
dimensional flows,
1975; early stages
of application to
a i rcra ft des i gn
Two-dimensional flow
development; early
stages of three­
dimensional develop­
ment

Development for very
simple flows

IBM 360/65
CDC 6600

CDC 7600
ILLIAC IV
STAR 100

102 x CDC 7600

102 x CDC 7600

Table 6.1 Stages of approximation in computational aerodynamics

:>
C/l
C/l
(l)
C/l
C/l

~
I)Q

rt
::r'
(l)

H
I-'
I-'
II)
()

HI
o
11

::e:::

~
p.

~
(l)
I-'

til
~
I-'
II)
rt
o
::s
C/l

w
......
w

314 Commentary

Stase IV - Large Eddy Simulation

For practical aerodynamics purposes, this could well be the final
stage of approximation in which the significant large-scale tur­
bulent eddies would be computed from the Navier-Stokes equations
for a sufficiently long time to yield a satisfactory solution of
both attached and separated turbulent flaws. The relatively large
eddies responsible for most mass, momentum, and energy transport
would be computed directly, while transport due to subgrid motion
would be modeled to permit use of the largest practical grid spac­
ing. Even so, the number of grid points required for good reso­
lution may be very large, and iresent estimates indicate a com­
puter power on the order of 10 larger than the CDC 7600 would
be needed.

Clearly. the realization of the full potential of computa­
tional aerodynamics depends heavily on advances in computer tech­
nology as well as .modeling accuracy and algorithm efficiency.
That is not to say, however, that activity is stalled, for a great
deal of research and development is currently under way in all
four stages using present computers. For example, Figure 6.1
shows the dramatic improvements that have been achieved in numer­
ical methods for stages II and III. (2)

Another area of activity, centerid at Ames Research Center,
is the application of the Illiac IV computer to aerodynamic prob­
lems. which consumes about 20% of the machine availability. The
goal of this effort is to use the parallel computing ability of
Illiac IV to take advantage of the parallel nature of most fluid
dynamics problems. that is, the dynamics at one location in the
flow are described by the same equations that apply to neighbor­
ing locations and can be solved simultaneously using the same
a 1 gori thm·~.

Improvement In 2-D Inviscid Transonic
Method (Stage II) Efficiency

o

(5 q,
Improvement In 2-D Time-Averaged

Navier-Stokes Method (Stage III) Efficiency

Figure 6.1 Improvements in numerical methods

Assessing the Illiac for Wind Tunnel Simulations 315

LESSONS ON EFFICIENT USE OF ILLIAC IV

The introduction of the Illiac IV initiated a learning process
for its efficient use in aerodynamic simulations which is still in
progress. It became apparent at once that efficient use of the ma­
chine's architecture required the user to become much more familiar with
its hardware capabilities than is the case with conventional serial
~computers. To meet this requirement and still be able to communicate
with the machine in a straightforward manner, Ames developed CFD, a
FORTRAN-like vector language tailored to the IJliac-IV architecture.
As a result, efficient programs are generated with little more than
the normal FORTRAN coding effort. However, because of the machine's
primitive system software and its single-job operation, it is diffi­
cult to use the llliac itself for program debugging. Therefore, CFD
can also be translated into serial FORTRAN for code development and
debugging on conventional computers such as the IBM 360/65 and the
CDC 7600.

Having been provided with an efficient high-level language, the
Illiac IV user concentrates on taking full advantage of the machine's
parallel computation capabilities in terms of both algorithm develop­
ment and coding. Again, it quickly became apparent that data manage­
ment plays a key role in the efficient use of the parallel array arch­
itecture. Parallel computation also means parallel data structure
because, for strictly parallel computations, PE 1 s can only operate on
data within their respective memories. Practical two- and three-dimen­
sional computational methods call for the solution of multiple tridiag­
onal systems arranged in sets, each set coupling grid points in a dif­
ferent coordinate direction. With these so-called dimensionally split
implicit procedures, maximum parallelism is achieved by initially align­
ing the PEM's with grid variables in one dimension, solving the systems
in parallel, and then realigning the variables for the next direction.
The data realignment or transpose is efficiently done using the PE rout­
ing network at a penalty of only a few percent in overhead. The maxi­
mizing of parallelism via data transposes has wide application to fluid
dynamics problems and has been applied, for example, to fast Fourier
transforms contained in spectral methods and to a variety of boundary
conditions.

With a knowledge of the Illiac array structure and the availabil­
ity of CFD, the user can efficiently program the machine with relative
ease so long as the problem fits within the collective l3l,072-word
storage of the PBM1 s. Unfortunately, many problems do not fit, includ­
ing three-dimensional problems and efficient two-dimensional problems
that require large amounts of scratch storage. Scratch storage can
increase significantly in parallel computations. These larger problems
must use the 16-mill ion word, disk memory. This memory has a 600 mil­
lion bit/sec transfer rate, but the access time may be large due to the
40-msec disk rotation period. The disk may be mapped, that is, data
may be stored in predetermined locations, and the user must use this
unusual capability carefully to minimize access time.

316 Commentary

EXAMPLES OF ILLIAC IV PERFORMANCE

As a measure of the Illiac IV performance for computational aero­
dynamic problems, a comparison of Illiac IV and CDC 7600 computational
speeds for four sample problems, coded by typical users, is shown in
Figure 6.2. The comparison includes two speeds for Iniac IV, one with
CU instruction overlap and one without. The speeds for the CDC 7600
are those obtained using the FTN-OPT2 compiler. Without overlap, the
III i ac IV shows a 3-5 times improvement over the CDC 7600 and an aver­
age gain of about 3.5. From initial test results, overlap mode (to be
operational early in 1977) will provide additional improvements by a
factor of 2.

BEYOND ILL lAC IV

Even thoygh Illiac IV is classified as a supercomputer, it is not
nearly powerful enough to take computational aerodynamics to the next
step - timely and accurate simulations of three-dimensional flows gov­
erned by the stage III approximation. This;s truly a large problem
by present standards. The size of the problem is appreciated by not­
ing that it requires about a two-order~of-magnitude' cincrease in com­
puted information over that needed for two-dimensional simulations per­
formed on Illiac IV. The necessary processing capability is estimated
at a billion floating point operations per second with a memory of 40
million words. This represents a 100-fo1d increase over the CDC 7600
and nearly as much over Illiac IV. Because of the large benefits that
can be gained by such a capability, however, serious consideration is
being given to the development of such a machine as the heart of a com­
putational aerodynamic design facility to be available early in the
next decade. Tee purpose of the facility is to provide, at reasonable
cost, a steady stream of computed flow simulations to be used in air­
craft design.

The stated performance goal will undoubtedly be achieved by taking
advantage of the parallel nature of fluid dynamics problems. This will
be reflected both in the organization of the solution algorithm and in
the computer hardware. The interdependency of the two may point to a
specially designed processor or an enhanced general purpose deSign. In
either case, many critical issues involving tradeoffs between algorithm
and hardware must be studied.

One issue is how to obtain the raw computing power. This is like­
ly to come about through the design of complex hardware organi'zations
made possible by high-density circuit technology. However, limits on
circuit density and on the number of devices that can be assembled and
expected to work reliably in a coherent manner imply a limit on the
number of concurrent operations a processor can handle. Currently,
this limit appears to be much smaller than the number of concurrent
operations present in the problem. For parallel and pipeline processor,
it is the number of parallel operations that count, and nonparallel
operations, although concurrent, can seriously degrade performance.
One solution is to design a machine with the capability of performing
concurrent operations that need not be parallel; the other is to design
solution methods for whi.ch the nonparallel part is insignificant. Re­
~ent developments in three-dimensional flow algorithms indicate that

Assessing the Illiac for Wind Tunnel Simulations 317

the latter may well be possible.
An even 'more critical issue is how to achieve the memory bandwidth

necessary to support the raw computing power. Here, the manner in
which the solution methods access data may be a determining factor.
Certain implicit methods require the flow variables (five for each grid
point) be accessed by successive sweeping of grid planes, each sweep in
a different coordinate direction. This is done on Illiac IV, for
example, by the data transpose mentioned earlier. On the other hand,
explicit methods can be constructed to continually cycle through memory
along the same path. Sophisticated numerical analysis is required to
assess the possible tradeoffs between hardware and algorithm organiza­
tion.

A final issue is the usability of the machine. To be used effi­
ciently, the machine must be reliable in both hardware and software.
The user should be able to take full advantage of the hardware through
an easily manageable, rational, hierarchy of programming languages.
Tasks such as disk mapping must be eliminated insofar as possible.
Finally, the high cost of software development must be kept at a mini­
mum by concurrent software-hardware design and development, keeping in
mind the computer's application.

10

'U'U
Q.I Q.I

Q.I ~ 8
(J)(J)

o Current ILLIAC IV
~ Estimated Improvement

With Instruction Overtop

2D
Shock

Boundary Layer
20 Transonic Interaction

Airfoil <Time- Ave. N-S)
<Time-Ave. N-S)

"FTN OPT 2 Compiler

3D
Space Shu1tle

64.64.64
Turbulence

(Time-Dep. N-S)

Figure 6.2 Comparison of Illiac IV and CDC 7600 computation speeds

References

1. D. R. Chapman, H. Mark, and M. W. Pirtle, "Computers vs. Wind
Tunne 1 s for Aerodynami c Flow Simul ati ons ", Astronauti cs and Aero­
nautics, April 1975.

2. D. R. Chapman, "Status and Prospects of Computati onal Fl ui d Dynami cs ",
von Karman Institute for Fluid Dynamics Lecture Series 87, Rhode-Saint­
Genese, Belgium, March 15-19, 1976.

c. ILLIAC Instruction Speedup

THE MEGAFLOP GAME

Whereas computers like the illiac are used to do a lot of float­
ing point operations, the rate that these machines can do these
operations in a particular, special case is in some way a measure
of merit. These special cases represent absolute upper bounds on
arithmetic bandwidth and therefore can give the user some idea of
the feasibility of using a particular machine in a particular ap­
plication.

None of these measurements can give a very accurate picture
of what the final outcome will be in any application. Generally,
however, the more I benchmarks I one has with which to measure a
machine's peak rate capabilities, the better chance one has to
understand whether use of the machine is feasible and how to
approach a particular problem to possibly take advantage of a
machine's strong points and avoid its weak points.

With this in mind it does not seem fatuous to examine partic­
ular mechanisms in the Illiac and to increase their speed, there­
by improving the peak rates and the potential speed of the ma­
chine.

It also seems probable that some educated guessing as to the
frequency of use of particular operations might be useful in pre­
dicting the payback for any particular speed~up change. It would
be better to replace guesswork with actual measurements of inter­
esting programs by a hardware monitoring device.

SOME SEMI-HARD CONSTRAINTS ON ILLIAC SPEED

The control unit (CU) was originally designed to run at
25MHz (40 nsec cycle) and very early in the game the speed was
reduced to 20 IMHz on paper. Some of the old memorabilia from the

thlS Section is based on an article in the lAC Newsletter by
Steve Tulloh, March, 1978.

318

Illiac Instruction Speedup 319

design days show the processing element (PE) design running at
20 MHz. The processin9 element memory (PEM) was designed to r.un
at a 10 MHz (pipelined) rate and it probably can be run at 8 Mhz
now.

The PEM rate is additionally limited by the fact that the
operand select ~ate (OSG) in the PE is used both for sending the
address to the PE from the CU and receiving the data from the
PEM. This constrains the fetch rate to once per two cycles, which
fits well with the 8 MHz PEM rate. The current PEM access time
is about 200 nsec and with the various delays that are added in
the PE ~y sending the address and receiving the data into some
register, the PEM access time is probably limited to 4 cycles at
16 Mhz.

The instructions, ADRN and MlRN, seem to be the most popular
PE instructions, and indeed the PEs were designed to be floating
add and floating multiply functional units. Consequently PE
arithmetic speed-up potential is very limited. The original de­
sign called for a 7 cycle ADRN and a 9 cycle MlRN (64 bit mode).
At this moment the ADRN also takes 9 cycles because of some long
paths in the PE. A couple of extra cycles were added to give the
PE more time to process in the cycles where the long paths are
used. There is a possibility that at least one of the cycles in
the 7-cycle ADRN can be eliminated and this would reduce it to 6,
limiting the arithmetic bandwidth for this particular instruction
to 170 Mflops at 16 MHz. Again, though this is an upper bound,
it is certainly not the only one since there is no time alloted
for accumulating operands and saving away results.

REVIEW OF ADVAST SPEED-UP FOCUS

The processing of instructions in the CU starts in the In­
struction look ahead (IlA) portion where blocks of 16 instructions
are fetched from the PEM as a resul t of ei ther a JUMP/SKI P type'
instruction executed by ADVAST or the crossing of a midblock
boundary in the program. The prefetching goes on in parallel
with other ADVAST functions but JUMP/SKIPs and IWS fetches are
executed by IlA while ADVAST waits. It's not known how much in­
terference such waiting introduces into programs or how much
ADVAST waits for FINST queue positions.

Once the instructions get into ADVAST there are many extra
cycles in common instructions. For all simple operations such as
adding, leading ones detection, logical operations, shifts, etc.,
one clock should be enough. In the case of ADVAST local memory
(ADB) references, two cycles are enough. In the instructions
which use functional units more than once (e.g., CSB) more than
one step must be taken.

The problems faced in implementing these speed-ups are
of two kinds: (1) long delay paths and (2) excessive design
allowance for long delays which don't exist.

These kinds of ADVAST speed-ups require very little actual hard­
ware work, but do require a great amount of engineering time which
is very difficult to estimate. They also require a fair amount of

320 Commentary

machine time for testing to verify that the ramifications are
innocuous.

SOME EXAMPLES

The load accumulator from local memory (LDL) and the store
accumulator to local memory (STL) instructions take 3 cycles when
not indexed, and 5 cycles when indexed. The speed-up should re­
duce these times to 2 and 3 cycles respectively. This kind of
speed-up approaches 50% and is easy enough to take advantage of
since most programs are filled with these instructions.

Other thinqs remaininq in ADVAST for speed-up are the BINI
LOAD instructions which are not overlapped now. SETC and LOC in­
structions can be speeded up somewhat since they now wait too
many cycles for the PE data.

The machine currently takes 16 cycles to execute this loop
once, which when itemized amounts to 9 or 10 cycles for the LDA
and 4 or 5 for the STA with a dead cycle (included in all FINST
instructions) between each. This amounts to a transfer rate
(which is some measure since no flops exist in the loop) of 1 row
per 1.28 usec or 3.2 gigabits.

Were the memory to be overlapped in FINST such that a new
memory cycle could be prepared before the old one finished, the
same loop could take as few as 6 cycles which is a speed-up of
2.5 times. An example of how to take advantage of such overlap
follows:

LOOP: LOA X(ACO)
LDB X+l(ACO)
STA V(ACO)
STB V+l(ACO)
TXLTM ACO,LOOP

Here the effective rate is increased because the PE can fetch
the next word while the first word is coming in. The new rate is
2 rows per 8 cycles or a speed-up factor of 4. Such programming
currently buys nothing in terms of speed because the data must be
in the register before FINST will even think about executing
another instruction. The new transfer rate, with 16 Mhz added in,
would be 16.384 gigabits or a factor of 5.12. Incidentally,
AOVAST takes 15 cycles in the former loop (2 for each indexed PE
instruction and 11 for the TXLTM) and 19 cycles in the second
loop so quite a few ADVAST speed-ups would have to be installed
in order that FINST could be used effectively in these cases.
For example, a 1 cycle indexed PE instruction and a 4 cycle TXLTM
would handle it nicely.

Consider another loop:

STRTUP: LOS W(ACO)
LOOPL LOA

ADRN X(ACO)
ADRN Y(ACO)
LOS W+L(ACO)
STA Z(ACO)
TXLTN ACO,LOOP

I11iac Instruction Speedup 321

which is a rather trivial Z=W+X+Y and contains a prefetch of the
next W row to take advantage of FINST full overlap of memory op­
erations with arithmetic. There are 4 memory operations (3 fetch­
es and 1 store) which account for most of the 38 clocks that
this loop takes. The 10 cycles in each of the two ADRNs are
hidden. At 12.5 Mhz, the current frequency, this amounts to about
42 Mf10ps. If all possible improvements were made, such a loop
would require only 14 cycles at 16 Mhz or 146 Mf10ps or a speed­
up of 3.5.

The possible ADB extension discussed elsewhere should also
improve the speed because most likely the technology of the new
memory would allow one cycle access to ADB.

Enhancements to the instruction set for extended memory
bandwidth improvement would not significantly affect ADVAST ex­
cept for the obvious changes to the control logic for those things
that ADVAST may need to do to get the instruction ready for FINST.

REVIEW OF FlNST SPEED-UP FOCUS

Considering the importance of the PEM resource, an effort
has been started to streamline the use of PEM by FINST. Present­
ly FINST overlaps a memory operation with a previous arithmetic
operation but will not overlap a previous memory operation.
Successive memory operations now take 10 clocks each. The target
is to reduce each memory operation to 4 clocks and overlap them
as well.

In the attempt to make Illiac operational certain modifica­
tions were installed which made the llliac work, but also de­
graded the performance. In the attempt to increase performance
of the Illiac J lAC is systematically and temporarily removing the
modifications t uncovering the design errors concealed by the mod­
ifications, and installing new changes which allow the llliac to
perform more effectively. Examples of this process are removal
of the dead time between all FINST instructions, reducing the
ROUTE steps from two clocks to one and permitting ROUTE to be
overlapped.

Presently the ROUTE instruction is not overlapped because it
inhibits the PU clocks. In an effort to produce a two-clock per­
iod data pulse with no spikes, the ROUTE instruction inhibits the
intermediate spike producing clock to the latches. An overlap­
ping instruction would have no knowledge of this inhibited clock
and could perform its function without knowing that it had no
effect in the PU. To prevent errors of this type, no instruction

322 Commentary

is permitted to overlap ROUTE. However, a one clock time ROUTE
would not need to inhibit PU clocks and hence could be overlapped.

SPECIAL ENHANCE~ENTS

Enhancements to the llliac,'s useability such as additional
instructions, bigger local memory and better route capability,
probably do not significantly affect the speed-up effort or the
memory enhancement possibilities. Some comments, however, are
probably in order.

Were the 140M to be replaced or enhanced by a relatively
fast random access external memory it may be profitable to add
an instruction or set of instructions that would allow full ad­
vantage to be taken of the potentially high bandwidth between the
PEM and the external memory. Additional local memory in CU of
any appreciable size may suggest special move capabilities be­
tween this local memory and other memories in the Illiac system
to enhance the useability of such a memory addition.

CONCLUSION

Enhancements to the PEM could slow down the overall speed of
the llliac because of the need for very large amounts of memory
in the 111iac system. Changes to the PEM are likely to be more
costly than replacement of the 140M in several ways. Chips chos­
en for the job should be fairly fast and therefore more costly.
They may need refresh and page mode mechanisms in the CU which
have potentially high cost as well.

Other speed-up modifications mentioned above are not affect­
ed by memory enhancements nor do they affect each other very much.
The amount of speed-up is in the 1 to 3 times range and conse­
quently probably does not place as significant a burden on PEM
size or 140M size as do other aspects of 111iac problem solving.

D. The Effects of the ILLIAC IV
System on Computing Technology

This section, based on an internal memo at the Institute for-­
Advanced Computation by G. Feierbach and D. Stevenson in August
1976, outlines some of the contributions of the Illiac project
to computer science and technology. Sixteen distinct advances
in four categories are described.

COMPONENT AND HANUFACTURING TECHNOLOGY

A. Major Impetus to ECl Development

The 14 system was the first large scale use of ECl inte­
grated circuits. The circuits developed for the 14 system
were subsequently improved by TI and used for their ASC com­
puter. (Of the 33 IC types used in the 14 main frame, 14
ASC parts can be directly substituted. It is questionable
whether TI would have built the ASC computer had the devel­
opment of the IC fami 1y not been underwri tten by the n 1 i ac
requirements.)

B. Test Bed for Design Automation

The circuit cards in the Illiac main-frame were designed
using a design automation system. This was the earliest
successful large scale use of design automation outside of
IBM. The Illtac contract provided both the financial re­
sources and the level of difficulty to mature this process
significantly. This is now a widespread practice in the
computer industry.

C. New Contribution to logic Circuitry

The barrel switch is a major circuit innovation in the
Ill-iac that enables full word length shifts in one machine
clock. This is used for floating point normalization and
alignment and for shifting in general. Current supercom­
puter designs incorporate the barrel switch in one form or
another. It has become popular enough that Fairchild has
created an Isoplanar TI ECl part (F100158) which is essen­
tially an 8 bit slice of a bar~el switch.

323

324 Commentary

D. First Significant Use of Semiconductor Memory

The 256x1 bipolar RAMs in the 14 PE memories are the first
use of bipolar semiconductor memories in a large scale com­
puter main memory. Since thin film memories were also con­
sidered (even prototyped) but rejected in favor of semi con­
ductormemories, this was probably a significant turning
point for the two technologies. The memory systems devel­
oped for the Illiac IV became the father for the first
commercially available semiconductor memories offered by
Fairchild.

A minor additional note: by using an interlocking mesh
for power and ground distribution on the memory PC boards
and judicious placinq of ground strips between signals re­
quiring isolation, it was possible to arrange the memory on
a two sided PC board for a significant cost savings. Up to
that time it was felt mandatory to have separate power and
gr.ound planes in addition to the circuit layers.

E. Definitive Contribution to Interconnection Technology

The system was the first to make use of extremely dense
belted cables which are soldered to paddle card PC boards
using infrared light and then covered with epoxy. These
cable assemblies are a major constituent of the system but
have been responsible for very few failures. The current
state of the art in cabling (excepting fiber optic technol­
ogy) can not do better today.

F. A Major Milestone in Multilayer PC Cards

The 14 control unit PC cards are 16" x 20" and have as many
as 12 layers. Not only was this the first successful util­
ization of large multilayer laminated boards, but it is
still a state of the art achievement.

MACHINE ARCHITECTURE

A. Definitive Demonstration of Array Approach to Computat~on

An operational r.lliac validates the design concept of array
processors; it has become the standard against which to
measure proposals for increasing computer speed through
architectural innovations involving replication of compon­
ents.

B. Synchronous Control to Focus Research on Efficiency of
Computation

The Illiac demonstrates the sufficiency of a single instruc­
tion stream to control the multinle data streams encountered
in scientific computing. In a single stroke, this approach
(via the route instruction) solves the problem of synchron-

The Effects of the Illiac IV System on Computing Technology 325

izing processor communication. This has permitted research
to focus on the efficient utilization of the array using the
single instruction stream, in contrast to the case of asyn­
chronous, independent processors, where research has focused
largely on synchronization issues and only recently turned
to the efficiency of algorithms 1n such an environment.

C. First Large Scale Computer to be Microprogrammed

The 14 control unit contains a ROM driven microprocessor
which converts single instructions into a sequence of enable
signals for the PEs. At the time the 14 was designed, the
only significant machines to be microprogrammed were the
lower model numbers of the IBM 360 series. The prevailing
opinion in the computer community at the time was that micro­
programming was slow and that fast main frames could only
be designed using hardwired logic. Today, major supercom­
puters (including the Star-100 and ASC) contain micro-coded
control logic.

D. Synchronization of Independent Disk Drives

All the 14 disk memories are synchronized to within 2 degrees
of a revolution. This was formerly thought to be impossible
on theoretical grounds: a continuous feedback mechanism re­
quires instantaneous acceleration and this was felt imprac­
tical to obtain without very cO!11plex detection and control
circuitry and elaborate sensors and control effectors. The
method actually used is a startlingly simple use of an os­
cillator as a virtual disk. Some manufacturers have shown
interest in utilizing this innovation since it makes poss­
ible very high bandwidth synchronous transfers from multi­
ple drives.

E. Exhaustive Simulation as a Realistic Diagnostic Tool

PESO is a PE simulator that runs on the Illiac (even when
some PEls are down). The ratio of the computer power of
the entire 14 system to the simplicity of a single PE makes
it possible to simulate completely the complex operations of
a single PE in a few milliseconds of 14 time. This has
opened the door to a novel diagnostic technique not possible
on other machine architectures: exhaustive simulation of
all possible single gate faults. Over four thousand cases
can be tested at the same time so that within about five
minutes a list of possible fault locations that match the
failure symptom is in the hands of a technician. About a
third of the PE faults show up in this manner, making it a
powerful tool in system maintenance which would otherwise
be unavailable.

326 Commentary

F. Test Bed for Future Machines

The Illiac IV has taught some important lessons which will
have significant impact on future parallel processors. In
particular, the processor interconnection scheme has been
found to be wanting. It is both inflexible and difficult
to program.

Research in this area has focused on the optimum inter­
connection scheme and on the most efficient way to use a
given interconnection pattern. All this has been predicated
on the assumptions that the connection network must be fixed
(hardwired) and that each processor can be connected to only
a few other processors (because of fan-out limitations or
cost considerations). These assumptions are no longer valid
since there are other alternatives than interconnection
schemes based on cabling, and the next generation of array
computers should re-focus the attention that the Illia~'has
inadvertently misdirected.

Further, the Illiac IV is a fixed configuration with no
self-repair capability. Current research into self-repair­
ing processors (multi-processors such as C,MMP and array
processors such as PEPE) are inadequate as a base for mass­
ive computing power required by scientific computaUon be­
cause those prototypes in practice admit only extremely
narrow bandwidth paths of information flow among processors.
Future systems will have modular configurations for improved
problem matching and will be able to switch ailing PEs out
and good PEs into the configuration all under software con­
trol.

SYSTE~ ARCHITECTURE

To quote from Bouknight, et. al., in the Proceedings of the
IEEE, April, 1976, lilt should be remembered that the 111 iac
IV project was initially directed toward experimenting
with the feasibility of building a massive hardware config­
uration." In a word, the result is yes, it is feasible.

·The 14 system is a massive implementation of .. the con­
cept of a functionally distributed operating system. It can
be viewed as the culmination of a progression which started
with early computers originally designed to execute effic­
iently different types of computing tasks, joined together
to execute different steps of the same computing job (e.g.,
the front end user interface preparing the job for a large
number-cruncher). Historically, these were incorporated in­
to the main-frame design of more recent large computers.
The 14 system approaches the problem by dedicating function­
ally separate mini-computers and memory module buffers to
the independent functions of system support. For example,
file transfers to prepare jobs for execution are handled by
a separate mechanism from the one in charge of the movement
of program data from backing store to I4 PTocessor memory

The Effects of the Illiac IV System on Computing Technology 327

during program execution. The advantages of this approach
are fault tolerance (jobs which require only part of the
system can run whenever this part is available, whether or
not the whole system is working) and technology independence
(as technology advances are made, system components can be
enhanced on a module basis). An additional benefit is that
when modif1'cations are to be made to the system to add unan­
ticipated capabilities, at most only the relevant modules
which are to interface with the new capability need be mod­
ified (or 'replaced) ; this is in contrast to the more usual
situation where the maximum system capability is determined
by the initial main-frame design.

AP PLI CAT IONS

A. New Horizons in Solvable Problems

The size and speed of the Illiac makes feasible the solution
of many computational problems which were computationally
intractible when the machine was originally designed. The
essential reason for this is the large memory and the high
bandwidth between this memory and the processing power (more
conventional super-computers which have access to large back­
ing store disks suffer from a narrow bandwidth between this
store and the processing unit, resulting in very large prob­
lems being essentially I/O bound -- this is especially true
of the CD C Sta r-100). The s i tua ti on is exacerbated by the
general rule of thumb that for many scientific problems,
larger data bases (for a finer resolution of the physical
phenomenon) both take longer to pass through the data base
and, more importantly, have to pass through the data base
more often (because the iteration process converges more
slowly or because smaller time steps have to be taken).

B. Spurring the Development of New Algorithms

The concept of an array computer had provided a model for
developing parallel algorithms, but the announcement that a
powerful computer was to be based on this concept unleashed
a spate of activity in the area. At the present time, more
research has been based on the array model of computation
than on any other, save for the classic von Neumann (or
sequential random access) computer and the Turing machine~

C. Rethinking Problems for Parallel Processors Pays
Dividends on Other Processors

A machine architecture which is a radical departure from
conventional sequential computers (as the Illiac is) encour­
ages users to re-formulate, or re-code, their problems to
make use of the additional capabilities. Before the Illiac
(and the Star) were available, some of the re-formatted
codes were debugged in a CDC-7600, whereupon it was found

328 Connnentary

that they ran faster in their new parallel-formulated
version than in the original sequential version. The
reason for this unexpected phenomenon is that parallel
formulation leads to short compact code sequences and
regular memory accessing, and these two characteristics
describe code which the 7600 is particularly efficient at
executing. As a result of this experience, the design
philosophy and algorithms originally designed for the
Illiac are being adopted as codes for the 7600.

Appendix

ASK - the ILLIAC Assembly
Language

ASK is the assembly language for Illiac. It was written at the
University of Illinois by Dave Grothe. ASK is a cross assembler.
It runs on a Burroughs 6700.

The Illiac characteristics aff~ct the assembly language, but not"
to as great an extent as the high-level languages. The existence
of 64 processing elements and a control unit give rise to many
different instruction formats. ASK does not attempt to remedy
this by the introduction of some sort of unified syntax, and is
somewhat tedious to learn and use. The major item affecting the
assembler is the two-dimensional memory. This affects the assem­
bler in two ways. First, each memory location is addressed in a
different manner by different instructions. For example, the be­
ginning of the second row of memory is word 64 to the CU. But it
is row 1 to PE(O); it is syllable 128 when fetching instructions;
and it is I/O word 4 when doing I/O. This creates many ambigui­
ties. For example, in the instruction LOA 4, does the 4 mean 4
rows, 4 syllables, or 4 I/O words? The solution involves a com-
plex set of assumptions and intrinsic functions never well-under­
stood by the general user. Fortunately, the assumptions are
sound enough that the typical user is unaware of the problem.

The two-dimensional memory introduces more storage allocation
pseudo-instructions than generally encountered. Facilities "
exist for skipping to the next syllable which is an integral
multiple of 2**N, filling with zeroes of NO-OPs. This facility
frequently is useful.

Based on tAc boc. No. PG-IBOOO-0062-A.

329

330 Appendix

The non-machine-dependent features of ASK warrant comment.
Card images are completely free format. Instructions, ter­
minated by a semicolon. may be packed several per card or
extend across card boundaries. Identifiers may be 63 char­
acters in length. The language is block-structured using
BEGIN - END pairs. Multiple allocation counters permit
code to be written in an order other than that in which it
is used. Macro and scanner level intrinsics are provided.
Access to I/O routines and the real-time clock are provided
by a set of macros included in one of the two macro librar­
ies allowed.

Programming in assembly language for Illiac is much the same
as programming in assembly language for a serial machine.
It is just as tedious in spots (there is no path from $X to
$A so don't write 'LDA $XI) and yet permits the efficient
coding avaiiable in a higher level language.

ASK --The I11iac Assembly Language 331

This discussion is a preliminary attempt at describing ASK,
the Illiac IV assembly language, to readers not experienced
in using the Illiac IV.

1. SIMPLE ASK PROGRAM FORM

An ASK program has the form:

BEGIN
statement 1;

s ta tement 2;

starting-l bel: statement i;

sta tement n;

END starting~label.

Note that the statements are separated by semicolons (11;11) and
that a period (11.11) i; required after the (optional) starting­
label after the END.

2. LABELS

Each statement may be preceded by one or more labels.

Examples:

START: statement i;

LABELl: I ABEL2:

s ta tement j;

332 Appendix

3. COMMENT CONVENTIONS

After encountering a 11%11 in a source line, ASK ignores all
subsequent characters in the line.

Examples:

%THIS IS A COMMENT LINE

statement i; %THIS IS A COMMENT FOR STATEMENT I

4. ILLIAC IV INSTRUCTION FORMS

One characteristic of the 111iac IV instruction set is the
wide variety of instruction types. Not only are there both
CU (ADVAST) and PE (FINST) instructions, but there are a
number of types within each of these categories. This
section illustrates the most commonly used types, using
examples of correct ASK instructions for each type.

This material should be read in conjunction with Sections III
and IV of the ILLIAC IV-S stems Characteristics and Pro ram­
ming Manual (hencefort abbrevlated as 'I4SCP ,w lC des­
cribes the machine instructions in detai~l instruction
formats given here are ASK instructions; these are accompan­
ied by references to pages in the 14SCPM where the corres­
ponding machine instructions are covered. The same general
names for various entities e.g., lIacarll, "acarxll, etc.) are
used here and in the machine instruction descriptions.

4.1 CU INSTRUCTIONS

Most CU (ADVAST) instructions have the following form in
ASK (see page 3-1 of 14SCPM):

instr(acar) adr(acarx);

where

• instr is the mnemonic of the instruction.

• acar specifies which ACAR is to be used as accumulator
1nIexecuting the instruction.

• adr is an 8-bit CU address or value.

• acarx specifies which ACAR, if any, is to be used to
index the adr field.

ASK --The Illiac Assembly Language 333

Example 1 (see page 3-45 of 14SCPM)

LOL(2) $010

where

• acar = "2" to specify ACAR2 as the accumulator.

• adr = 11$010" to specify ADB location 10 (decimal) as the
address.

• acarx is omitted.

Note that acarx is optional. ASK register designators begin
with a IIS", and a "0" followed by a decimal number is used to
indicate an AOB location. Thus the range of possible AOB add~
resses is $00 to $063.

Example 2 (see page 3-56 of 14SCPM)

STL(1) 0(2);

where

• acar = "111 to specify ACAR1 as the accumulator.

• adr = O.

• acarx = "211 to specify ACAR2 as index register.

The effective CU address is contained in the low-order 8 bits
of ACAR2, since a base address of 0 is given and ACAR2 is the
index register.

Example 3 (see page 3-18 of 14SCPM)

CANO(3) $C2;

where

• acar = 113" to specify ACAR3 as the accumulator.

• adr = I$C2" to specify ACAR2 as the address.

• acarx is omitted.

Note that the register designators for the four ACARls are
$CO, $C1, $C2, and $C3.

334 Appendix

Example 4 (see page 3-25 of I4SCPM)

CRB(O) 63;

where

• acar = "0" to specify ACARO as the accumulator.

• adr = 1163 11 •

• ~ is omitted.

Note that constants are in decimal unless an alternate base is
specified. Thus the adr value in the above example is 63:10
(63 decimal); the same-Yalue could be specified as 77:8 or
3F:16.

The second most common type of CU instruction involves the use
of the IIskip" field (see page 3-1 of I4SCPM). The general form
of CU instructions with a skip field ~

instr(acar) adr(acarx), skip;

Example 5 (see page 3-32 of I4SCPM)

CTSBT(O) 63,1;

where

• acar = 110 11 to specify ACARO as the accumulator.

• adr = 1163 11 •

• acarx is omitted.

• skip = 11111 to specify a skip of one syllable if the test
condition is satisfied.

Note that the skip field in the ASK instruction specifies the
number of syllables to be skipped. Therefore, a ~ of 0
would cause a transfer to the next instruction.

ASK --The Illiac Assembly Language 335

Example 6 (see page 3-67 of 14SCPM)

ONESF(2) .NOTALLONES;

where

• acar = "2" to specify ACAR2 as the accumulator.

• adr is omitted.

• acarx is omitted.

• ~ = "NOTALLONES" to specify a skip to label NOTALLONES.

Note that if the skip in the ASK instruction is a label, ASK
computes the distance from the present location to the specified
label and places this distance in the skip field of the machine
instruction.

Example 7 (see page 3-75 of 14SCPM)

TXLTM(O) .-1;

where

• acar = "0" to specify ACARO as the accumulator.

• adr is omitted.

• acarx is omitted.

• S~iP = "-4" to specify a backward skip of 4 syllables if
t e test condition is satisfied.

Note the backward skip of 4 syllables (a skip of -1 would be an
infinite loop). The TXLTM instruction is often used for loop
control.

There are four commonly used CU commands that have special
formats. Three of these involve literal fields and the fourth
is for JUMPing to a location.

336 Appendix

Example 8 (see page 3-55 of I4SCPM)

SLIT(2) LOCN;

where

• acar = "211 to specify ACAR2 as the accumulator.

• adr = "LOCN" to specify the word address corresponding
tolabel LOCN.

• ~ is not used in this instruction.

The adr field of a SLIT instruction is a 24-bit literal (note
that an 11=" sign is not used). If a label is used as the adr,
its word address will be assembled into the adr field of the
machine instruction. The SLIT instruction prates the contents
of its adr field in the low-order 24 bits of the accumulator.
Thus the-Tnstruction

SLIT(O) 0;

clears the low-order 24 bits of ACARO.

Example 9 (see page 3-12 of I4SCPM)

ALIT(3) -1;

where

• acar = "3" to specify ACAR3 as the accumulator.

• adr = "_111 to specify the constant -1 as the literal.

• acarx is not used in this instruction.

The ALIT instruction adds the adr value to the low-order 24 bits
of the accumulator; thus in the above example the low-order 24
bits of ACAR3 are decremented by 1. Note that 2 l s-complement
arithmetic is used.

ASK --The Illiac Assembly Language 337

Example 10 (see page 3-48 of I4SCPM)

LITO) 1,63,0;

where

• acar = "1" to specify ACARI as the accumulator.

• adr = "1,63,0" to specify a 64-bit literal in the form of
a-Toop index (see below).

• acarx is not used in this instruction.

The LIT instruction places a 64-bit literal in the specified
accumulator. In this example, the literal is a loop index
containing an increment, a limit, and a current index value,
as explained on page 3-11 of I4SCPM; the increment is 1, the
limit is 63, and the current index value is O. After this
instruction is executed, ACARI will contain

16 24 24

The following instruction illustrates a different type of 64-bit
litera 1.

LIT(2) -4.7@-7;

Here the literal is a 64-bit floating-point operand, which will
be placed in ACAR2. The literal may also be a decimal, octal,
or hexadecimal quantity:

LIT(O) OFFFFCCC000800001:16;

Note that a "0" is used as the first character of this hexadeci­
mal literal; if the first character were alphabetic, ASK would
attempt to treat i= as an identifier instead of constant. A
constant must always begin with a digit.

338 Appendix

Example 11 (see page 3-4 of I4SCPM)

JUMP LABEll

where

• acar is not used in this instruction.

• adr = "LABELlII to specify a jump to the word address
corresponding to the label LABELl.

• acarx is omitted (but may be used in this instruction).

This causes an unconditional transfer to LABELl. Note that
LABELl must be aligned on a word boundary. A double colon
after the label will force this word alignment:

LABELl:: statement;

4.2 PE INSTRUCTIONS

The first thing usually done in an Illiac IV program is to
enable all PEls. The following example does just that.

Example 12 (see page 4-69 of I4SCPM)

SETE E.OR.-E;

SETEl E.OR.-E;

The following is an alternate way of doing the same thing:

CLC(3);

This clears ACAR3 (see page 3-21 of I4SCPM).

COMPC(3);

This complements ACAR3, making it all lis (see page 3-22 of
I4SCPM).

LDEEI $C3;

This loads the E and El bits in the PEls from ACAR3 (see page
4-69 of I4SCPM).

The general form for almost all PE instructions is

instr adr(acarx);

where

ASK --The Illiac Assembly Language 339

• instr is the mnemonic of the instruction.

• adr is a 16-bit address value.

• acarx is the number of the ACAR to be used to index the adr
.. f'l'eTd (which may then be indexed again in each PE as ex ... -
p 1 a i ned be 1 ow) •

Example 13 (see page 4-104 of 14SCPM)

LDA *ROW1;

where

• adr = I*ROW1" to specify the row corresponding to label
ROW1, indexed by the RGX register in each PEe

• acarx is omitted.

Note that "*" preceding a row address indicates indexing by RGX;
a "#" is used to indicate indexing by the RGS register in each
PEe This instruction loads the RGA registers of all enabled PEls
from the locations determined by indexing ROW1 with the contents
of RGX in each PEe

Example 14 (see page 4-17 of 14SCPM)

AD ROW2(3);

where

• adr = "ROW2" to specify the row corresponding to label ROW2.

• acarx = "3" to specify indexing by the contents of ACAR3.

Note that in this case no indexing is performed in the PEls (thus
all enabled PEls will access the same row of memory); however,
the row address ROW2 is indexed by the contents of ACAR3 before
being sent to the PEls. This instruction adds the contents of
the addressed locations to the RGA registers of all enabled PEls.

340 Appendix

Example 15 (see page 4-104 of 14SCPM)

LDR =2(1)

where

• adr = "=2" to give a 16-bit literal value equal to 2.

• acarx = "1" to specify indexing by the contents of ACARI.

Note that "=" is necessary to indicate a literal value as opposed
to a row address. In this instruction, the RGR register in each
enabled PE receives the 64-bit value in ACARI plus the value 2.

Example 16 (see page 4-55 of 14SCPM)

ILE 2;

where

• adr = "2" to specify row 2 of memory.

• acarx is omitted.

Here memory row 2 is the operand. The instruction loads a word
from row 2 into the RGA of each enabled PE, tests to see if it
is logically equal to 0, and stores the result of the test in
the I bit of the mode register of each PEe

Example 17 (see page 4-27 of 14SCPM)

NAND $Cl;

where

• adr = "$Cl" to specify the contents of ACAR! as a "broad­
cast" address to the PEts.

• ~car~ is omi tted.

Here all PEls use the same literal value, taken from ACARI. The
instruction causes each enabled PE to take the logical NAND of
its RGA register and the ACARI value, placing the result in RGA.
The following syntax is equivalent:

NAND =0(1);

ASK --The Illiac Assembly Language 341

Example 18 (see page 4-41 of I4SCPM)

DVRN $S;

where

I adr = "$S" to specify the RGS register in each enabled PEe

I acarx is omitted.

PE registers are designated $A, $B, $S, $R, and $X. This in­
struction causes the contents of RGS to be loaded into RGB; then
RGA is divided by RGB (in each enabled PE).

Example 19 (see page 4-97 of I4SCPM)

STR #ROW3;

where

I adr = I#ROW3" to specify the row corresponding to label
ROW 3 , indexed by the RGS register in each enabled PE.

I acarx is omitted.

Note that the operand in a PE register store instruction must
be a memory location. In this example, the RGR register of each
enabled PE is stored into ROW3 modified by the contents of RGS.

The PE routing instruction has the form

RTL register distance{acarx);

where

I register is the register in each PE used to send data to
another PEe

I distance is the distance (in terms of PE numbers) to send
the data.

342 Appendix

Example 20 (see page 4-77 of 14SCPM)

RTL 3(2};

wh~re

• register is omitted (note that the comma is omitted also).

ell di stance = "3" to specify a di stance of 3 PE I s to the ri ght.

• acarx = "2" to specify that the contents of ACAR2 are to be
used to modify the distance.

If the register is omitted, the RGR register is used by default.
A positive distance indicates a route to the right (i.e., the
distance, modified by the contents of acarx, is added to each PE
number to produce the PE number of the destination of data routed
from each PE). In this example, the contents of the RGR register
in each PE are sent to a PE at a distance of 3 (to ~he right),
modified by the contents of ACAR2.

Caution: ACAR indexing of an RTL instruction may modify the Y
field of the machine instruction, which specifies the PE register.
See page 4-77 of 14SCPM.

Example 21 (see page 4-77 of 14SCPM)

RTL $8,-16;

where

• register = "$8" to specify RGB as the register used as the
source of the routed data.

• distance = "-16" to specify a distance of 16 PElS to the
left.

• ~ is omitted.

Note that a negative distance indicates a route to the left.

ASK --The Illiac Assembly Language 343

5. ASK PSEUDO-INSTRUCTION FORMS

Pseudo-instructions are not assembled to machine instructions,
but are used to allocate, initialize, and label storage space.
They are also used for symbol equating and macro definitions
(DEFINE's), but these uses are not covered here. Page ref.er­
ences in this section refer to the Reference Manual for the
ILLIAC IV Assembler (ASK), abbreviated RMASK.

Example 22 (see page 9-3 of RMASK)

ROW1: BLK 3;

This reserves 3 rows of memory, initialized to 0, with IROW1" as
the label for the first of these rows.

Example 23 (see page 9-5 of RMASK)

WORD2: DATA 3.14159265;

This reserves one 64-bit memory location, labeled IWORD2" and
initialized to 3.14159265.

Example 24 (see page 9-2 of RMASK)

FOURWORDS: WDS 4;

This reserves four 64-bit words in memory, initialized to 0, with
"FOURWORDS IJ as the label for the first of these words.

Example 25 (see page 9-3 of RMASK)

BLK;

Align the instruction counter to the next row boundary, without
allocating any storage. This statement is equivalent to

BLK 0;

344 Appendix

CATEGORIZATION OF ADVAST INSTRUCTIONS

OPERATIONS ON ACARS

• CURRENT INDEX FIELD MANIPULATION

ALIT
CADD
CSUB
SLIT
INCRXC

(add literal to ACAR (40:24))
(add operand to ACAR (40:24))
(subtract CU register from ACAR 40:24))
(replace ACAR (40:24) with literal)
(modify ACAR (40:24) by ACAR (1:15)

• WHOLE REGISTER MANIPULATION

CAND
COR
CEXOR
CLC
COMPC

CROT (L/R)
CSH (L/R)

LEAD(O/Z)

EXCHL
LDI
LIT
STL

(64-bit "and" of ACAR and CU register)
(64-bi t "or" of ACAR and CU regi ster)
(64-bit "exclusive or" of ACAR and CU register)
(clear ACAR)
(complement ACAR)

(rotate ACAR left/right end-around)
(shift ACAR left/right end-off, zero fill)

(find leading one/zero in ACAR)

(exchange contents of ACAR and CU register)
(load ACAR from CU register)
(load ACAR with literal)
(store ACAR contents in CU register)

• BIT MANIPULATION

CCB (complement bit in ACAR)
CRB (reset bit in ACAR)
CSB (set bit in ACAR)

• HALF-WORD MANIPULATION

DUP(I/O} (duplicate inner/outer 32 bits of ADB word in
ACAR)

REFERENCE TO PROCESSOR MEMORY

BIN(X}
LOAD(X}
STORE(X}

(fetch 8 words from processor memory to ADB)
(fetch 1 word from processor memory to CU reg.)
(store CU reg. in 1 word of processor memory)

REFERENCE TO PE INFORMATION

LDC
SETC

(load ACAR from PE reg.)
(load each ACAR bit with mode bit from aPE)

ASK --The Illiac Assembly Language 345

CONTROL

CACRB (set/reset one bit in ADVAST control register
ACR)

EXEC (execute instruction in ACAR (32:32))
FINQ (stop ADVAST until FINST is idle)
HALT (programmed halt; CU comes to orderly idle state)
JUMP (jump to specified word address)

"TEST-SKIP,J' instructions (notes apply to "T" case in conditional skips
--i .e., skip if test is TRUE. "F" case means skip if test is FALSE.)

UNCONDITIONAL SKIP

SKIP (skip specified number of syllables forward or
backward)

SKIP ON CONDITION OF CU TRUE/FALSE FLIP-FLOP (TFFF)

SKIP (skip on pre-existin~ TFFF value)
SKIP ON VALUE OF BIT IN ACAR

CTSB(T/F) (skip if specified ACAR bit is set)
ZEROS AND ONES

ONES(T/F) (skip if ACAR (0:64 = all "ones")
ONEX(T/F) (skip if ACAR (40:24) = all "ones")
ZER(T/F) (skip if ACAR (0:64) = all "zeros")
ZERX(T/F) (skip if ACAR (40:24) = all "zeros")

COMPARE ACAR CURRENT INDEX FIELD TO OPERAND CURRENT INDEX FIELD
EQLX(T/F) (skip if ACAR (40:24) = CU reg. (40:24))
GRTR(T/F) (skip if ACAR (40:24) > CU reg. (40:24))
LESS(T/F) (skip'if ACAR (40:24) < CU reg. (40:24))

COMPARE ACAR CURRENT INDEX FIELD TO OPERAND LIMIT FIELD
TXE(T/F) (skip if ACAR (40:24) = CU reg. (16:24))
TXG(T/F) (skip if ACAR (40:24) > CU reg. (16:24))
TXL(T/F) (skip if ACAR (40:24) < CU reg. (16:24))

COMPARE ACAR CURRENT INDEX FIELD TO LIMIT FIELD OF SAME ACAR, AND
MODIFY CURRENT INDEX FIELD BY INCREMENT FIELD OF SAME ACAR

(Note: The skip is conditional, but the address modification
is unconditional)

TXE(T/F)M (skip if ACAR (40:24) = ACAR (16:24); modify
ACAR (40:24) by ACAR (1:15))

TXG(T/F)M (skip if ACAR (40:24) > ACAR (16:24); modify
ACAR (40:24) by ACAR (1 :15))

TXL(T/F)M (skip if ACAR (40:24) < ACAR (16:24); modify
ACAR (40:24) by ACAR (1:15))

346 Appendix

CATEGORIZATION OF FINST/PE INSTRUCTIONS

• LOAD REGISTER

LD (A/B/D/R/S/X)
LEX

(load specified register)
(load RGA exponent)

• STORE REGISTER TO PROCESSOR MEMORY

ST (A/B/R/S/X)

• ROUTE

RTL

• CHANGE RGA CONTENTS

CLRA
COMPA
CAB
RAB
SAB
CH5A
SAP
SAN

• BASIC ARITHMETIC

AD (A, M,
N, R variants)

ADD
ADEX
EAD
5B (A, M,

N, R variants)
SUB
5BEX
ESB
ML (A, M,

N, R variants)
MULT
DV (A, M,

N, R variants)
NORM
ASB

• ADDRESS ARITHMETIC

XI
(I/J) XGI
XD
(I/J) XLD

(store specified register)

(route from specified register to
RGR of another PEl

(clear RGA)
(complement RGA)
(complement specified RGA bit)
(reset specified RGA bit)
(set specified RGA bit)
(complement RGA si9n)
(make RGA positive)
(make RGA negative)

(add)
(add 64-bit logical words)
(add exponent fields)
(add, extended precision results)

(subtract)
(subtract 64-bit logical words)
(subtract exponent fields)
(subtract, extended precision result)

(mul ti ply)
(multiply, 32-bit only)

(divide)
(normalize)
(transfer RGA sign to RGB sign)

(add to RGX)
(same, with overflow to RGD bit I or J)
(subtract from RGX)
(same, with complemented overflow to

RGD bit I or J)

•

•

BOOLEAN
(N)AND(N)

(N)OR(N)

EOR
EQV
SHIFT/ROTATE
RTA(L/R)
SHA(L/R)
SHAM(L/R)
SHAB(L/R)
SHABM(L/R)

ASK --The Illiac Assembly Language 347

(logical AND -- operands may be comple­
mented)

(logical OR -- operands may be comple­
mented)

(logical EXCLUSIVE-OR)
(logical EQUIVALENCE)

(rotate RGA left/right)
(shift RGA left/right)
(shift RGA mantissa left/right)
(shift RGA + RGB left/right)
(shift RGA mantissa + RGB mantissa
left/right)

• LOAD/SET RGD BIT
LD{E/El/EE1/G/

H/I/J) (load RGD bit from one bit of a literal)
SET(E/El /F /Fl /

G/H/I/J) (set RGD bit to a function of two RGD bits)
• LOAD RGD BIT I OR J FROM RGA BIT

(I/J)B (load I or J from specified RGA bit)
(I/J)SN (load I or J from RGA sign bit)

• LOAD RGD BIT I OR J WITH RESULT OF TEST
Note: Tests are indicated by G for "greater than", E for "equal
to", L for "less than" 0 for "all ones", Z for "ail1 zeros",
(I/J)A(G/L) (signed floating comparison of RGA and

operand)
(I/J)L(G/E/L) (logical-word comparison of RGA and

operand)
(I/J)M(G/E/L) (mantissa-only comparison of RGA and

operand)
(I/J)L(O/Z) (test RGA logical word)
(I/J)M(O/Z) (test RGA mantissa only)
(I/J)S(G/E/L) (address-field comparison of RGS and

operand)
(I/J)X(G/E/L) (address-field comparison of RGX and

operand)
• BYTE-ORIENTED INSTRUCTIONS

ADB
SBB
GB

LB

NEB

OFB

(add bytes)
(subtract bytes)
(test for RGA bytes "greater than"
operand bytes)

(test for RGA bytes "less than" operand
bytes)

(test for RGA bytes "not equal to" oper­
and bytes)

(recover byte carries or test results
from RGC to RGB)

348 Appendix

• SWAP INSTRUCTIONS

SWAP
SWAPA
SWAPX

(swap RGA and RGB)
(swap RGA inner and outer words)
(swap RGA outer word and RGB inner word)

Sources

The Fastest Computer by D.L. Slotnick, Scientific American 1971
Reaching for a Gigaflop by Howard Falk, IEEE Spectrum 1976
The lAC Computational Facility-An Overview by C.T. Markee 1977
Overlap in the Illiac IV Control Unit by E. Sternberg 1976
Overlap: Now Available on 14 to lAC Users, lAC Newsletter
Coding for Overlap Mode (Parts 1 & 2) in lAC Newsletter
Evaluation of the Illiac IV in Non-overlap and Overlap Modes by Chris

Jesshope in lAC Newsletter
CFD-A Fortran-like Language for the Illiac IV by K.G. Stevens in lAC

Newsletter
Glypnir-A Programming Language for Illiac IV by D.H. Lawrie et al,

Comma ACM 1975
A Critical Look at Some Programming Languages for Illiac IV by

F. Richard in lAC Newsletter 1977
lAC Annual Report for FY78
Computational Aerodynamics, lAC Newsletter
Parallel Computation of Unsteady, 3-D, Chemically Reacting, Nonequili­

brium Flow Using a Time-split Finite-Volume Method on the Illiac IV
by W.A. Reinhardt, lAC Newsletter

The Illiac Is a Wind Tunnel for the CFD Branch at NASA/Ames, lAC
Newsletter

TRIOIL IV, A Three Dimensional Hydrodynamics Code for the Illiac IV
Computer, by L. L. Reed and D.R. Henderson, Report to DNA, 1975

An Illiac Program for the Numerical Simulation of Homogeneous Incom­
pressible Turbulence by R.S. Rogallo, lAC Newsletter

Image Line Detection on the Illiac by Hough Transform by R.M. Hord,
lAC Newsletter

Use of Illiac IV in Analysis of Landsat Satellite Data by M. Ozga, lAC
Newsletter

Image Skeletonizing on the Illiac by R.M. Hord in lAC Newsletter
Two Dimensional Hadamard Transform on the Illiac IV by R.M. Hord in

lAC Newsletter
lAC Support for SAR Digital Processing Research by R. Hale in lAC

Newsletter
Computing the Singular Value Decomposition on the Illiac IV by F.T. Luk

in lAC Newsletter
Exploitation of Parallelism in Number Theoretic and Combinatorial Com­

putation by D.H. Lehmer in lAC Newsletter

349

350 Sources

A Three Dimensional Finite Difference Code for Seismic Analysis on the
llliac IV Parallel Processor by A.S. Hopkins, lAC Newsletter

Three Dimensional Galaxy Simulations by R.H. Miller in lAC Newsletter
Illiac Memory Speed-up by Steve Tulloh in lAC Newsletter
FKCOMB
Optimal Use of Supercomputers

About the Book
The !Iliac IV - conceived as a massive breakthrough in computer
technology - succeeded so well that it defined a new category of
processors and gave rise to the term "supercomputer." For readers
interested in the advance of technology this book captures the
e'ssence of the !Iliac story and explains its meaning for everyone
concerned with scientific computation. The architecture and hard­
ware are described in detail and in their historical context. The
impact of parallU prosessing and overlapped execution on pro­
gramming languages, data structures and computation strategies
is aSFessed. Applications in fluid dynamics, image processing,
research rnathematcs, seismic analysis and astronomy explore
the power and capacity of this unique national reSOl.." ce. But a
phenolTlenon of this magnitude is not without controversy. The
developrnent problems and operational shortcomings are candidly
considered as well as the achievements. Both the computer
professional and the ..;ducated layman will share the sense of
majesty in the recounting of this exciting project.

About the Author
R. Michael Hord served as Manager of Applications Development
for the Institute for AdvanGed Computation, the NASNDARPA
interagency organization charged with the development and
operation of the !Iliac IV parallel computer. In thin capacity he and
his staff planned and coordinated Institute programs in response to
advanced computational requirements of government agencies.
Prior to this Mr. Hord managed the Institute's participation in the
major DARPA-soonsored Fixed/Mobile Experim~nt, an effort that
for the first time called for the I Iliac IV :0 process satell ite data in real
time. A graduate of Notre Dame and the University of Maryland in
Theoretical Physics, Mr. Hord is widely published in the :lrea of
digital image processing, and advanced computation. Today as
Directorof Space Systems for General Research Corporation, he is
engaged in satellite technology development planning.

ISBN 0-914984-71-4

