
66072

IL4"PM2
1 7 MARCH 1969

REFERENCE MANUAL

FOR

ILLIAC IV ASSEMBLER (ASK)

-----Burroughs Corporation---­
Defense, Space and Special Systems Group

PREFACE

This document provides a description of the basic ILLIAC IV assembly

language, ASK version II. Included are:

A syntactic description 01 an ASK program,

A definition of assembly-time arithmetic)

A definition of assembly-time functions (pseudo operations),

A definition of assembly-time utilities (control cards), and

Examples of system control cards necessary to use ASK.

The document assumes some prior familiarity with ASK and a complete

familiarity with the instruction set for ILLIAC IV as defined in the

"ILLIAC IV Systems Characteristics and Programming Manual. "

This program was written by Mr. David Grothe of the University of

lllinois. This manual was prepared by Mr. Grothe and Mrs. Charlene

Luskin, the latter a member of the Special Systems Programming

Department.

Submitted by:

P~netti
Project Manager, Programming
ILLIAC IV Program
Electronic Systems Organization

~---~
r.7.SIDith
~ogram ~anager
ILLIAC IV Program
Electronic Systems Organization

Section

I

II

III

IV

v

TABLE OF CONTENTS

NOTE

The various elements of the ILL lAC IV as sembly language
are discussed in paragraphs labeled Syntax, Semantics, and
Restrictions, immediately following each pertinent subject
heading. To avoid needless repetition, these subordinate
headings have been omitted from the Table of Contents.

Title

INTRODUCTION • • • . • .

I.A The Assembler

I.B Purpose of Manual

I.C Card Format

I.D Conventions Used
of the Language

ELEMENTS OF THE LANGUAGE

II.A Character

II.B Symbols

II.C Numbers

in the

·
. · · ·

· · ·
Description
. . . · · ·

ARITHMETIC AND ARITHMETIC EXPRESSIONS

III.A Arithmetic Expression

· · ·

· · ·

· · ·

III.B Arithmetic with Relocatable Quantities.

III.B.l Addition

III.B.2 Subtraction.

III.B.3 Multiplication ••••

III.B.4 Integer Division

III.C Three Modes of Arithmetic: Syllable,
Word, and Row

STRUCTURE OF AN ASK PROGRAM

STATEMENTS

· · . .

· ·

· ·

Page

1-1

1-1

1-1

1-1

1-2

2-1

2-1

2-1

2-2

3-1
3-1
3-2

3-3
3-4

3-4

3-5

3-6

4-1

5-1

Section Title Page

VI REGISTER DESIGNA'IORS AND OPERAND FIELDS
FOR CU INSTRUCTIONS · · · · · · · · · · 6-1

VI.A CU Operand Fields · · · · · · · · · 6-1
VI.B Register Designators in CU . · · · · · · · · · · 6-5

VII REGISTER DESIGNATORS AND OPERAND FIELDS
FOR PE INSTRUCTIONS · · · · · · · · · · · · 7-1

VII.A PE Operand Fields · · · · · · · · · · · · · 7-1
VII.B Register Designators in FE · · · · · 7-4

VIII OPERAND FIELDS FOR MODE SETTING INSTRUCTIONS · · 8-1

IX ASK PSEUDO OPERATIONS · · · · · · · · · 9-1
IX.A General · · · · · · · · · · · · · 9-1
IX.B EQU Pseudo · · · · · · · · · · 9-1
IX.C SYL Pseudo · · · · · 9-2
IX.D WDS Pseudo · · · · · · · · · · · 9-2
IX.E BLK Pseudo · 9-3
IX.F FILL Pseudo · · · · 9-4
IX.G SET Pseudo · · · · · 9-4
IX.H DATA Pseudo 9-5
IX. I ORG Pseudo · · · · · 9-6
IX.J CHWS Pseudo · · · · · 9-6
IX.K REGP Pseudo · · · · · · · · · 9-7
IX.L REGC Pseudo · · · · · · · · 9-7
IX.M SYN Pseudo · · · · · · · · · · · · · · 9-8
IX.N GLOBAL Pseudo · · · · 9-8
IX.O LOCAL Pseudo · · · · 9-8
IX.P DEFINE Pseudo · · · · 9-9

X ASK CONTROL STATEMENTS · · · · · · · · · · · 10-1

XI PROGRAM DECK . . . · · · · 11-1

XII ERROR MESSAGES · · · · 12-1

XIII INDEX · · · · · · · · 13-1

I. INTRODUCTION

I. A THE ASSEMBLER

Assembler System K (ASK) is designed to accept a program written

in ILLIAC IV assembly language, and to convert it to an ILLIAC IV binary

object code.

ASK is a two pass assembler. The following is a brief

description of the function of each of the two passes PASS I and PASS II.

In PASS I, ASK determines the values of all symbols defined

in the program. It thus performs all pseudo-operations which define

symbols. It also checks all instruction mnemonics, and allocate storage

as required.

In PASS II, ASK evaluates the operand fields of the ILLIAC IV

instructions; hence any ILLIAC IV instruction may reference any defined

symbol in its operand field. The ILLIAC IV instructions and data are

built and the code is emited to a disk file in a form which is suitable

for the ILLIAC IV loader.

I.B PURPOSE OF MANUAL

The purpose of this manual is to supply the programmer with

information on how to use ASK and to obtain correct machine code as a

result. ASK generates appropriate error messages when incorrect code

is encountered. The manual gradually builds the complete syntax

acceptable to ASK. The syntax at each level is described by a meta

language explained later in this section; the syntax is followed by

semantics, restrictions and examples.

I.C CARD FORMAT

An ILLIAC IV assembly source program is either on punched

cards or on disk or tape as card images. These cards (or card images)

are free form with the following exceptions.

(a) A label must be followed by a colon.

(b) A statement must be followed bya semicolon.

(c) A comment must be preceded by a percent sign. When a

% is found on a card ASK does not interpret the remainder

of the card.

1-1

(d) Columns 73 through 80 are not interpreted by ASK and may

contain identification or sequencing information. This

field is, however, analyzed when changes are merged w'ith

a source tape or disk.

(e) A card containing a $ in column one is recognized as an

ASK control statement and specifier certain assembler

options.

(f) At least one blank must appear betw'een an instruction and

its operand field. Wi th this exception and a few others

which are noted in the syntax, blanks may be used freely

or omitted without affecting the content of a statement.

(g) Two or more statements (each followed by their required

semicolons) may appear on one card.

(h) Identifiers and numbers may not contain embedded blanks

or be split across card boundaries.

I. D CONVENTIONS USED IN THE DESCRIPrION OF THE LANGUAGE

The syntax of the language is described through the use of

metalinguistic symbols. These symbols have the follow'ing meanings:

a. < >

b.

c.

d. {}

Left and right broken brackets are used to contain one or

more characters representing a metalinguistic variable whose

value is given by a metalinguistic formula.

The symbol ::= means "is defined as," and separates the

metalinguistic variable on the left of the formula from

its definition on the right.

The symbol I means or. This symbol separates multiple

definitions of a metalinguistic variable.

Braces are used to enclose metalinguistic variables which

are defined by the meaning of the English-language expression

contained within the braces. This formulation is used only

when it is impossible or impractical to use a metalinguistic

formula.

The above metalinguistic symbols are used in forming a meta­

linguistic formula. A metalinguistic formula is a rule which w'ill

produce an allowable sequence of characters and/or symbols. The entire

set of such formulas defines the constructs of ASK (Assembly System K).

1-2

Any mark or symbol in a metalinguistic formula which is not one

of the above metalinguistic symbols denotes itself. The juxtaposition of

metalinguistic variables and/or symbols in a metalinguistic formula denotes

justaposition of these elements in the construct indicated.

To illustrate the use of syntax, the following example is offered:

<identifier> ::= <letter> I <identifier> <alphanumeric character>

The above metalinguistic formula is read as follows: an identifier is

defined as a letter, or an identifier followed by an alphanumeric character.

The metalinguistic formula defines a recursive relationship by

which a construct called an identifier may be formed. Evaluation of the

formula show's that an identifier begins with a letter; the letter may

stand alone, or may be followed by an mixture of letters and numbers.

1-3

II. ELEMENTS OF THE LANGUAGE

II.A CHARACTER

Syntax:

<character> ::= A\BIC\D\EIF\GIH\I\J\KILIMINI~lpIQIRls\TlulvIWlx\Y\z

0\11213\4151 6 17\8\91 ·\[\(I<\~I$*I)I; I~I-I/I,I%I=I

J 1#1 !@I: 1>\~\+lx\fl?ltt

<letter> ::= AIBICID\EIFIGIHII\JIKILIMINI¢lpIQ\Rls\TluIVIWIX!Y\z

<numeric character> ::= 011\21314\5\6\7\8\9

<alphanumeric character> ::= <letter>l<numeric character>

Semantics:

The character set for the assembly language for ILLIAC IV is

the 6-bit character set which exists on the Burroughs B5500. An identifier

may symbolize things such as a machine instruction, an address in FE memory,

or a number. An identifier is restricted to be no more than 63 characters

in length.

II.B SYMBOLS

Syntax:

<FE symbol> ::= <identifier>

<CU symbol> ::= .<identifier>

<symbol> :: = <FE symbol> I <CU symbol>

<identifier> :: = <letter>1 <identifier> <alphanumeric character>

Semantics:

Although a PE symbol may symbolize an address in PE memory,

its semantic interpretation is not restricted to that alone. A FE symbol

is best interpreted as symbolizing a number, with the understanding that

this number itself takes on quite different meanings depending upon the

context in which it is used. ASK (Assembler System K) attaches ~ mean­

ing (other than its numeric value) to a symbol at the time it is defined.

A FE symbol may have a. numeric value of up to 64 bits of precision.

A CU symbol may symbolize an address in CU memory. All the

remarks about semantic interpretation of PE symbols apply to CU symbols

as well. A CU symbol is restricted to 62 alphanumeric characters in

length (+ 1 for the. ; 63) and it may assume a value of no greater than

2-1

8 bits of precision. If a CU symbol is defined by a quantity of greater

precision than 8 bits, the quantity is truncated to 8 bits of precision.

II.C NUMBERS

Syntax:

<integer> ::= <integer part> <base specifier>

<integer part> ::= <base ten digit> 1 <integer part> <digit>

<base specifier> ::= :<base ten number> 1 <empty>

<base ten number> ::= <base ten digit> 1 <base ten number> <base ten digit>

<base ten digit> ::= 0111213141516171819

<digit> ::= 01112131415161718191AIBlc1DIEIFIGIHIIIJIKILIMINI¢lpIQIRlslTlu

VIWIXlylZ

<real number> ::= <signed real number> I

<Unsigned real number>

<signed real number> ::= +<unsigned real number>

-<Unsigned real number>

<unsigned real number> ::= <base ten number> 1 <tnantissa part>

<tnantissa part> <exponent part> 1

<exponent part>

<tnantissa part> ::= <base ten number>. I
<base ten number>.<base ten number> I .<base ten number>

<exponent part> ::= @<signed base ten number>

@<base ten number>

<signed base ten number> ::= +<base ten number>

-<base ten number>

<paired number> ::= PAIR (<real number or integer>, <real number or integer»

<real number or integer> ::= <r'eal number> I <integer>

<number> ::= <integer> I <real number> I <paired number>

Semantics:

A number denotes its value. Integers are represented in fixed

point binary with the binary point at the right. Real numbers are

represented in ILLIAC IV floating point form (see Page 3-3 on data formats

ILLIAC IV Systems Characteristics and Programming Manual for details).

A digit must be such that its assigned weight is less than the

specified base (or ten if the base is unspecified). The weights assigned

to the possible digits are as follows:

2-2

digit: o 1 2 3 4 5 6 7 8 9 A. BCD E F G H I J K L M N 0

P Q R STU V W X Y Z

weight: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35

The base specifier directs the assembler to convert the preced­

ing integer from the specified base to binary. If no base is specified,

base ten is assumed.

A real number directs the assembler to perform conversion to

64-bit ILLIAC IV floating point representation. This conversion is

performed if an explicit decimal point is present or if there is an

explicit exponent part. In all other cases, integer conversion is

performed.

The pair construct allows for the formation of two 32-bit

words in inner-outer form. The first number is converted into the

outer position, the second into the inner.

Examples

OA:17

31

77332:8

@ - 8
.4 @ + 37

PAIR (1.3 @ -1, 7765:8)

2-3

III. ARITHMETIC.AND ARITHMETIC EXPRESSIONS

III.A ARITHMETIC EXPRESSION

Syntax:

<arithmetic expression> ::= <term>l<adding operator> <term> I

<arithmetic expression> <adding operator> <term>

<term> ::= <factor>l<term> <multiplying operator> <factor>

<adding operator> :: = + I -

<lnul tiplying operator> :: = X I /

<factor> ::= <arithmetic primary>l<arithmetic primary>

<exponentiation operator> <arithmetic primary>

<arithmetic primary> ::= «arithmetic expression»I <integer> I

<symbol>l<allocation counter designator>1

ABa «arithmetic expression»I

RELOC «arithmetic expression»I

SLA «arithmetic expression»I

WDA «arithmetic expression»I

RWA «arithmetic expression»

<allocation counter designator> ::= <space>@@ <space>

<exponentiation operator> ::= *
<space> ::= (one or more consecutive blank characters}

Semantics:

An arithmetic expression denotes a se~uence of arithmetic

operations to be performed (at assembly time) on certain specified

quantities. The operations allowed are:' addition, subtraction,

multiplication, integer division and exponentiation (raised to the

power Of). Evaluation is performed in 24-bit two's complement.

ABS specified that the result of the evaluation of the

arithmetic expression is to be made absolute (no matter what the

relocatability of the expression turns out to be).

RELOC acts the same as ABS only the value is made

reloc atable.

SLA indicates that the parenthesized expression is to be

evaluated using syllable arithmetic.

3-1

WDA indicates that the parenthesized expression is to be

evaluated using word arithmetic.

RWA indicates that the parenthesized expression is to be

evaluated using row arithmetic.

Examples:

I

(3)

X + 3
PLACEINMEMORY + Y/ (2*(X-I)) + 2 X N

III. B ARITHMETIC WITH RELOCATABLE QU.ANTITIES

During the assembly of any particular code segment, it may

not be known where in FE memory the object code will actually be

loaded. Therefore, ASK must make provisions as it emits "object"

code, for the placement of that code at an "arbitrary" place in

FE memory. An Itobjectlt code file with that property is known as a

relocatable code file. The assembly proceeds as if the code were to

be loaded at FE memory location zero. At load time, however, the

code may be loaded at FE memory address R. Therefore, if a FE symbol

symbolizes location m at assembly time, it must symbolize location

R+m at load time. Relocatable arithmetic takes the term R into account

during the evaluation of arithmetic expressions.

In the following analyses:

1 Let Rand R stand for FE symbols which symbolize some s s
FE memory address which may be relocated.

1 Let A and A. stand for either an integer or a symbol which s s
symbolizes a FE memory address which may not be relocated. Henceforth

a quantity of one of these two types shall be referred to as an absolute

quantity.

Let m and m stand for the numbers associated with the symbols,

and R stand for the starting FE memory address of the code at load time.

3-2

III.B.I ADDITION

Three cases:

= R + (m+n)

This result is valid only for intermediate results. An expression

which evaluates to a relocation amount greater than R is invalid and

is flagged as such at assembly time.

(2) Rs + As = (R+m) + (n)

= R + (m+n)

This result is valid under all circumstances which allow a relocatable

expression. The assembly time result is (m+n) as a relocatable quantity.

A s
I

+ A = m + n s

This result is the number (m+n) which is absolute (not relocatable)

and as such is valid under any circumstances which allow absolute

quantities.

3-3

III.B.2 SUBTRACTION

Four cases:

(1) R R s s (R+m) (R+n)

(R+R) + (m-n)

= m - n

The result of subtracting two relocatable quantities is an absolute

quantity.

(2) R A = (R+m) - n s s

= R + (m-n)

The result of subtracting an absolute quantity from a relocatable one

is a relocatable quantity (m-n).

A R n - (R+m) s s

(n-m) - R

This result produces a negative relocation amount which, except as an

intermediate result, is invalid.

(4) A -A =m-n
s s

The result of subtracting one absolute quantity from another one is

their difference (m-n), which is also absolute.

III.B.3 MULTIPLICATION

Three cases:

(1) R X R = (R+m) X (R+n) s s
2 =R +Rxm+Rxn+mxn

Multiplication of two relocatable quantities is invalid under all

circumstances.

(2) R X A ~ (R+m) X n = (R X n) + (m X n) s s

Multiplication of a relocatable quantity and an absolute quantity is

invalid under all circumstances.

3-4

(3) A XA =mxn s s

The only valid multiplication is that of two absolute quantities.

III.B.4 INTEGER DIVISION (All address arithmetic is integer arithmetic)

Four cases:

(1) R I R = (R+m) I (R+n) = R I (R+n) + m I (R+n) s s

Division of one relocatable quantity by another is invalid under all

circumstances.

(2) R s lAs = (R+m) I n = RI n + mf n

Division of a relocatable quantity by an absolute quantity is invalid

under all circumstances ..

A I R = n I (R+m) s s

Division of an absolute quantity by a relocatable quantity is invalid

under all circumstances.

(4) A I A = min s s

The only valid division is that of two absolute quantities.

Summary:

The valid constructs in relocatable arithmetic are:

R + R Valid only as an intermediate result. s s

R +A Reloce.table. s s

A +A Absolute. s s

R - R Absolute. s s

R - A Reloce.table. s s

A - R Valid only as an intermediate result. s s

A s x As Absolute.

A I A Absolute. x s

3 ... 5

An arithmetic expression is correct, with respect to

relocatability, if the final result contains either the term I X R

(as in R) or 0 X R (as in A). A further contextual restriction s s
may be applied where only an absolute or only a relocatable result

is valid.

Examples of Relocatable Arithmetic:

Let a symbol which begins with the letter "R" be under­

stood to be relocatable, and one which begins with the letter "A" be

understood to be absolute.

RX + RY + (-RA) Reloc at able •

.AX - RY + RA Absolute.

(RY - RY)/2 Absolute.

RX + RY Invalid.

2 X RX Invalid.

RX/2 Invalid.

III. C THREE MODES OF ARITHMETIC: SYLLABLE, WORD, AND row

ASK evaluates arithmetic expressions using one of three

modes of arithmetic, depending upon context. Syllable arithmetic

operates on a FE symbol as if it symbolizes the PE memory

address of a 32-bit instruction syllable; word arithmetic

operates on a FE symbol as if it symbolizes the PE memory address

of a 64-bit word; row arithmetic operates on a PE symbol as if

symbolizes the PE memory stack address of an entire row of

64-bit words across a quadrant. Since the s~e PE symbol may,

at different times, appear in all three contexts, it would not

be meaningful to use the same value for the symbol in each of the

three modes of arithmetic.

3-6

Far instance, a PE symbol PLACE which has the value 23 would repre­

sent three entirely different memary lacatians if the number 23 were

used as a syllable address, word address, and raw address. In 'Order

ta avaid this ambiguity, ASK cansiders the value 'Of a PE symbal ta

be divided inta three fields far purpases 'Of evaluating arithmetic

expressians.

I
SYLLABLE FIELD

I WORD FIELD

...
i ROW FIELD

I 17 BITS 6 BITS 1 BIT

•
lsYLLABLE BIT

WORD BITS

--·-----------ROW BITS

The above diagram represents the value 'Of a PE symbal as

it is interpreted by ASK. Syllable arithmetic 'Operates an the

syllable field; ward arithmetic 'Operates on the word field; raw'

arithmetic 'Operates an the raw field.

The interpretatian 'Of a numeric value depends upan haw

that value was specified in the saurce text:

1) The value 'Of a PE symbal is interpreted as
specified in the preceding paragraph.

2) The value 'Of a CU symbal 'Or a numeric canstant
is interpreted as designating the same field as
the made 'Of arithmetic being perfarmed an it.
Far example, the numeric canstant 23 designates
syllable, ward and raw 23 in syllable, word and
raw arithmetic, respectively.

3-7

Examples:

Suppose the PE symbol A has the value 6710•

000000000000000001100001 1
4~ I 4r--Row field

~ Word fiel~

Syllable f~eld

Syllable Arithmetic

Word Arithmetic

Row Arithmetic

3-8 .

A+2 = 69

A+2 = 35

A+2 = 2

IV. STRUCTURE OF AN ASK PROGRAM

Syntax:

<program> .. - BEGIN <compound statement>;

<end statement>.

<end statement> ::= <labeled end statement> I
<unlabeled end statement>

<labeled end statement> ::= <label list> <unlabeled end statement>

<unlabeled end statement> :: = END [

<compound statement>

Semantics:

. '­.. -
END <arithmetic expression>

<statement> I
<compound statement> <statement>

The <end statement> indicates the end of the assembly language

program. The appearance of the mnemonic END causes a halt instruction

to be generated. A jump instruction is generated after the halt. If

no arithmetic expression is present, the jump is to relocatable

location O. If there is an arithmetic expression present, the jump

is to the location indicated by the value of the arithmetic expression

(evaluated using word arithmetic) with the same relocatability as the

value of the expression. The arithmetic expression on the relocatable

location 0 as the case may be, should be the location of the first

instruction to be executed.

4-1

V. . STATEMENTS

Syntax:

< statement> ::= < unlabeled statement> I
< label list > < unlabeled statement > I
< ASK control statement >

< label list> ::= < label> : I
< label list > < label >

< label> ::= < symbol>

< unlabeled statement> ::= < ILLIAC IV instruction>

< ASK pseudo-op >

< ILLIAC IV instruction > :: =

AD

MJA

ADB

ADD

MJEX

ADM

ADMA

MJN

MJNA

ADR

ADM

ADRM

ADRMA

MJRN

MJRNA

ALIT

AND

ANDN

ASB

BIN

BINX

CAB

CACRB

CMJD

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >
< FE address operand >
< FE address operand >
< FE address operand >
< FE address operand >
< FE address operand >
< ACAR selector> < short literal operand> I
< FE address operand >
< FE address operand >

< b lank FE operand > I
< ACAR selector > < CU memory operand >
< ACAR selector > < CU memory operand >

< literal FE operand> I
< CU memory operand > I
< ACAR selector > < CU memory operand > I

5-1

CAND < AGAR selector> < CU memory operand>

CCB < AGAR selector> < CU memory operand>

CEXOR

CHSA

CLC

CLRA

COMPA

COMro

COPY

COR

CRB

CROTL

CROTR

CSB

CSHL

CSHR

CSUB

CTSBF

CTSBT

DUPI

DUro

DV

DVA

DVM

DVMA

DVN

DVNA

DVR

DVM

DVRM:

DVRMA

DVRN

DVRNA

< ACAR selector > < CU memory operand >

< blank. FE operand > I
< AGAR selector> < blank. CU operand>

< blank. FE operand > I
< blank PE operand > I
< AGAR selector> < blank CUoperand > I
< AGAR selector> < CU memory operand> I
< ACAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< AGAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< ACAR selector > < CU memory operand > I
< ACAR selector >

< ACAR selector >

< compare and skip operand >
< compare and skip operand >

< ACAR selector > < CU memory operand >

< ACAR selector > < CU memory operand >

< FE address operand >

< FE address operand >

< PE address operand >

< FE address operand >

< FE address operand>

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >
< FE address operand >
< FE address operand >
< FE address operand >

5-2

EAD <FE add.ress operand >
EOR <FE address operand >
EQLXF < ACAR selector > < compare and skip operand >
EQLXFA < ACAR selector > < compare and skip operand >
EQLXT < ACAR selector > < compare and skip operand >
EQLXTA < ACAR selector > < compare and skip operand >
EQV < FE address operand >
ESB < FE address operand > I
EXCHL < ACAR selector > < CU memory operand > 1
EXEC < ACAR selector > < blank CU operand > 1
FlNQ < blank CD operand >1
GB < FE address operand >
GRTRF < ACAR selector > < compare and skip operand >
GRTRFA < ACAR selector > < compare and skip operand >
GRTRT < ACAR selector > < compare and skip operand >
GRTRTA < ACAR selector > < compare and skip operand >
HALT < blank CU operand >1
lAG < FE address operand >
1AL <FE address operand >
1B < literal FE operand >
1LE <FE address operand >
lLG < FE address operand >
ILL < PE address operand >
lLO < blank FE operand >
1LZ < blank FE operand >
!ME <FE address operand >
IMG <FE address operand >
IML <FE address operand >
IMO < blank FE operand >
IMZ < blank FE operand >
I NCRXC < ACAR selector > < blank CU operand > I

5-3

INR < blank CU operand > I
ISE < FE address operand >
ISG < FE address operand >
ISL < FE address operand >
ISN < blank FE operand > I
IXE! <FE address operand >

IXG <FE address operand >

IXGI < FE address operand >

IXL <FE address operand >

IXLD <FE address operand >

JAG <FE address operand >
JAL < FE address operand >
JB < literal FE operand>

JLE < FE address operand >

JLG <FE address operand >

JLL <FE address operand >

JLO < blank FE operand > I
JLZ < blank FE operand > I
JME <FE address operand >

JMG <FE address operand >
JML < FE address operand >

JMO < blank FE operand > I
JMZ < blank FE operand >]
JSE < FE address operand >

JSG < FE address operand >

JSL < FE address operand >

JSN < blank FE operand > I
JUMP < short literal operand>

JXE <FE address operand >

JXG < FE address operand >
JXGI <FE address operand>

5-4

JXL

JXLD

LB

LDA

LDB

LDC

LDD

LDE

LDEI

LDEEI

LDG

LDH

LDI

LDJ

LDL

LDR

LDS

LDX

LE.ADO

LEADZ

LESSF

LESSFA

LESST

LESSTA

LEX

LIT

LIT

LOAD

LOADX

ML

MLA

MLM

< FE address operand >

< FE address operand >

< FE address operand >
< PE address operand >

< FE address operand >

< ACAR selector > < FE register specifier > I
< register designator > I
< mode pattern operand >

< mode pattern operand >

< mode pattern operand >
< PE address operand >

< FE address operand >
< PE address operand >

< PE address operand >

< ACAR selector > < CU memory operand > I
< PE address operand >

< FE address operand >

< FE address operand >
< ACAR selector > < blank CU operand >

< ACAR selector > < blank CU operand >

< ACAR selector > < compare and skip operand >

< ACAR selector > < compare and skip operand >

< ACAR selector > < compare and skip operand >

< ACAR selector > < compare and skip operand >

< FE address operand > I
< ACAR selector> < long literal operand>

< ACAR selector> = < long literal operand>

< ACAR selector > < CU memory operand >

< ACAR selector > < CU memory operand >

< FE address operand >
< FE address operand >

< PE address operand >

5-5

MLMA < FE address operand >
MLN < FE address operand >
MLNA < FE address operand>

MLR < FE address operand >

MLRA < FE address operand >

MLRM

MLRMA

MLRN

MLRNA

MULT

NAND

NANDN

NEB

NOR

NORM

NORN

OFB

ONE SF

ONESFA

ONEST

ONESTA

ONEXF

ONEXFA

ONEXT

ONEXTA

OR

ORAC

ORN

RAB

RTAL

RTAR

< FE address operand >
< FE address operand >
< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >
< FE address operand >

< FE address operand >

< PE address operand >

< blank FE operand > I
< FE address operand >

< blank FE operand > I
< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< PE address operand > I
< ACAR selector > J < blank CU operand >

< FE address operand >

< literal PE operand>

< literal FE operand>

< literal FE operand>

5-6

RTG

BTL

SAB

SAN

SAP

SB

SBA

SBB

SBEX

SBM

.SEMA

SBN

SBNA

SBR

SBRA

SBRM

SBRMA

SBRN

SBRNA

SETC

SETE

SE'I'EI

SETF

SETFI

SETG

SETH

SETI

SETJ

SHABL

S:H:AJ:.t.1L

SHABMR

< routing operand > I
< routing operand > I
< literal FE operand>

< blank. FE operand > I
< blank FE operand > I
< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand>

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< FE address operand >

< ACAR selector> < mode bit specifier> I
< mode setting operand >

< mode setting operand >

< mode setting operand >

< mode setting operand >

< mode setting operand >

< mode setting operand >

< mode setting operand >

< mode setting operand >

< literal FE operand>

< literal FE operand>

< literal FE operand>

5-7

SHABR

SHAL

SHAML

SHAMR

SHAR

SKIP

SKIFF

SKIFFA

SKIPr

SKIPrA

SLIT

STA

STB

STL

STORE

STOREX

STR

STS

STX

SUB

SWAP

SWAPA

SWAPX

TCCW

TCW

TXEF

TXEFA

TXEFAM

TXEFM

TXET

TXETA

< literal FE operand>

< literal PE operand>

< literal PE operand>

< literal FE operand >

< literal FE operand>

< skip operand >

< skip operand >

< skip operand >

< skip operand >

< skip operand >

< ACAR selector> < short literal operand>

< literal FE operand> I
< literal PE operand> I
< ACAR selector > < CU memory operand >

< ACAR selector > < CU memory operand >

< ACAR selector > < CU memory operand >

< literal FE operand>

< literal FE operand>

< literal PE operand>

< FE address operand>

< blank FE operand >

< blank PE operand > 1

< blank FE operand >1

< ACAR selector > < blank CU operand >

< ACAR selector > < blank CU operand >

< ACAR selector > < compare and skip operand >

< ACAR selector > < compare and skip operand >

< ACAR selector > < skip operand > I
< ACAR selector > < skip operand > I
< ACAR selector > < compare and skip operand >

< ACAR selector > < compare and skip operand >

5-8

TXETAM

TXETM

TXGF

TXGFA

TXGFAM

TXGFM

TXGT

TXGRA

TXGTAM

TXGTM

TXLF

TXLFA

TXLFAM

TXLFM

TXLT

TXLTA

TXLTAM

TXLTM

WAIT

XD

XI

!lERF

ZERFA

ZJ:RT

ZERTA

ZERXF

ZERXFA

ZERXT

ZERXTA

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >
< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< ACAR selector >

< AGAR selector>

< ACAR selector >

< skip operand > I
< skip operand >, I
< compare and Sk~p operand >

< compare and skip operand >

< skip operand >

< skip operand >

< compare and skip operand >

< compare and skip operand >

< skip operand >

< skip operand > I
< compare and skip operand >

< compare and skip operand >

< skip operand >

< skip operand > I
< compare and skip operand >

< compare and skip operand >

< skip operand >

< ACAR selector > < skip operand >

< blank CU operand > I
< FE address operand >

< FE address operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

< ACAR selector > < skip operand >

5-9

Semantics:

A <label list> may be as many as 64 labels in length. Each

label is given the same value. An <ILLIAC IV instruction> may be

labeled w'i th a <CU symbol>, but the user is advised that the value is

truncated to 8 bits of precision. The value given to a <label> which

labels an <ILLIAC IV instruction> is the value of the allocation

counter (syllable bit included) at the time the <label list> is

encountered, i.e., the location of the instruction being labeled.

The value given to a <label> which labels an <ASK pseudo-op>

is defined individually for each pseudo. The user is advised to consult

the section on pseudo operations for these definitions.

The <ASK control statement> is restricted in that it must

begin in column one of a card or card image. Thereafter no restrictions

are placed on the card format of a control statement except those which

apply to card formats in general.

Detailed descriptions of each of the instruction mnemonics

may be found in the ILLIAC IV Systems Characteristics and Programming

Manual.

Restrictions:

The LDD instruction may address only RGB ($B).

The LDB instruction is the obly instruction which may have

RGD ($D) as its operand.

5-10

VI. REGISTER DESIGNATORS AND OPERAND FIELDS FOR CU INSTRUCTIONS

VI.A CU OIERAND FIELDS

Syntax:

<compare and skip operand> ::= <CU memory address specifier> <ACARX>

<skip field> <global-local specifier>

<CD memory operand> ::= <CU memory address specifier> <AC.ARX:>

<global-local specifier>

<skip operand> ::= <skip field> <global-local specifier>

<blank CU operand> ::= <global-local specifier>

<short literal operand> ::= <arithmetic expression>1

= <arithmetic expression>

<long literal operand> .0_ <number> I
<symbol> I
<index specifier>

<FE register specifier> ::= <FE register designator>

<mode bit specifier> ::= <mode bit>

<mode bit> ::= EllEllFllFllGIHII IJ

<]CAR selector> ::= <arithmetic expression>

<CU memory address specifier> ::= <arithmetic expression> I

<CU register designator>

<skip field> ::= ,<arithmetic expression>

<global-local specifier> ::= ,GI,LI<empty>

<ACARX> : := <arithmetic expression>I

<empty>

<index specifier> ::= <arithmetic expression>,

<arithmetic expression>,

<arithmetic expression>

Semantics:

Operand fields for CU instructions provide a symbolic

method of determining the value of each field of the instruction

syllable except the op-code. field.s.

A <blank CU operand> sets no fields except the global/local

field.

A <short literal operand> sets the low order 24 bits of the

instruction to the value of the arithmetic expression.
\

6-1

A <long literal o]erand> sets the next 64 bits (two instruction

syllables) after the LIT instruction to the value of the number, symbol or

index specifier.

A <PE register specifier> encodes a PE register in the address

field of the instruction.

A <mode bit specifier> encodes a mode bit in the address of the

instruction.

The <ACAR selector> sets the ACAR field of the instruction to the

value of the arithmetic expression.

A. <CU memory address specifier> sets the address field to the

value of the arithmetic expression or to the CU memory address of the

indicated register.

The <skip field> sets the skip field of the instruction to a

value which is determined as follows:

The expression is evaluated using syllable arithmetic. If the

result is relocatable, ASK sets the skip field to a displacement such that

the destination of the skip is the instruction whose address is the value

of the expression. That is, if the expression were simply Land L were

relocatable, a skip to L would be generated by ASK. If the result is

absolute, ASK uses that value as the skip distance itself.

The <global-local specifier> indicates that the instruction being

generated is to be flagged as global (G), local (L), or in the same global­

local mode as the "rest" of the program (see explanation of pseudos GLOBAL

and LOCAL).

The <ACARX>, if nonempty, sets the ACARX enable bit and bits 1:2

of the ACARX field to the value of the arithmetic expression modulo 4;
otherwise, the ACARX field 0:3 is set to zero.

The <index specifier> indicates that 64 bits are to be set as

three fields: bits 1:15, bits 16:24, and bits 40:24. These fields are set

by the three arithmetic expressions respectively. Bit 0 of the 64 bits

is not able to be set by this construct. In field one (bits 1:15), ASK

6-2

forms a l5-bit sign-magnitude representation of the arithmetic expressiono

In fields two and three the 24-bit two's cotrq?lement value is inserted as is 0

With the exception of the <skip field>, all arithmetic expressions

are evaluated using word arithmetico With the exception of the <skip field>,

<short literal operand>, and fields two and three of the <index specifier>,

arithmetic expressions must have an absolute result. The above-mentioned

exceptions may have either a relocatable or an absolute value.

Examples:

COtrq?are and skip operand:

.DELTA, I¢¢P

$C3 , L+l

.DELTA -1 (3) , LABEL, G

CU memory operand:

$D34 2 , L

N x 0 STUFF PRESENTACABX

$TRI , L

Skip operand:

,L¢¢P

,L + 2

,- 14
,DESTINATION - (@@ + 1),G

Blank operand:

,G

,L

Short literal operand:

= SUBR¢UTDJE

= 77777777:8
2* (N-l)

6-3

Long Ii teral operand:

= INCREMENT, LIMIT, INITIALV AL

= -1, 0, 64

= SCALEFACT¢R

= 1.7325 @ 18

= 1000000000000000000000:8

= -(2*14-1), -1, -1

ACAR selector:

(REGISTER -1)

3
(2)

au memory address specifier:

ACARX.:

.L¢CAL + 3 X (.Q-2*(N-l)+I)

$D2

$3D40

$C1
$ICR

$ACR

(REGISTER -1)

3
(2)

6-4

VI. B REGISTER DESIGNATORS IN CU

Syntax:

<CU register designator> ::= $<quadrant specifier> <register mnemonic> I

$<register mnemonic>

<quadrant specifier> ::= 0111213

<register mnemonic> ::= DOIDlID21D31D41D51D61D71D81D91D10lDllID121D131D141

D151D161D171D181D191D20lD21lD221D231D241D25 ID26 I
D271D281D291D30lD3llD321D331D341D351D361D371D381

D391D401D4l1D421D431D441D451D461D471D481D491D501

D5llD521D531D541D551D561D571D581D591D60lD6llD621

D63Icolcllc2Ic3IICRIACRIALRIAMRI.AINIMCOIMClIMC21
TRIITRO

Semantics:

A <CU register designator> denotes an addressable register in

the CU. Each CU register designator symbolizes the 8-bit encoding of

the address of a register in CU memory. If the quadrant specifier is

present, the leading two bits of the 8-bit field are assigned the

specified number.

DO, D1, ••• , D63
CO, Cl, C2, C3

Denote' the 64 ADB loc ations •

Denote the 4 .ACAR registers.

The remaining register mnemonics denote the register which

they abbreviate.

Examples:

$CO

$D32

$2D32
$ICR

6-5

VII. REGISTER DESIGNAIDRS AND OPERAND FIELDS FOR PE INSTRUCTIONS

VII.A PE OPERAND FIELDS

Syntax:

<blank PE operand> ::= <empty>

<FE address operand> :: = <A.])R use indicator>

<address field> <AGARJ:> I
<address field> <ACARX> <ADR use>

<register designator> <ACARX>

<Ii teral PE operand> ::= <ADR use indicator>

<address field> <ACARX>

<address field> <ACARX> <ADR use>

<routing operand> ::= <routing specifications> <ACARX>

·<address field> ::= <arithmetic expression>

<lIDR use indicator> ::= * 1#1 = 1#* 1*#
<ADR use> ::= ,<arithmetic expression>

<empty>

<routing specifications> ::= <arithmetic expression> 1

<arithmetic expression> <routing distance> I
<FE register designator> I
<FE register designator> <routing distance>

<routing distance> : := ,<arithmetic expression>

Semantics:

The <address operand> specifies the ACARX., AnR use and

address field for those PE instructions which specify an operand address.

The <literal operand> specifies the ACARX., ADR use and

address field for those PE instructions which do not require an operand

but, rather, a shift count or bit number encoded in the address field

of the instruction.

The <routing operand> is used in conjunction with only two

instructions, RTG and RTL.

The <address field> sets the 16-bi t address field of the

instruction to the value of the arithmetic expression. The expression

is evaluated using row arithmetic and may be either relocatable or

absolute.

The <AnR use indicator> sets the AnR use field of the

instruction. The convention used is as follows:

7-1

ADR USE FIELD
Symbol Bits 13 14 15 Meaning

* a 1 1 RGX indexing

1 a 1 RGS indexing

#1# 1 1 1 Combined indexing

= a a a Literal

The <ADR use> sets the ADR use field of the instruction to the

value of the arithmetic expression. Word arithmetic is used in evaluating

the expression and the expression must be absolute. If the <ADR use> is

<empty>, the ADR use field of the instruction is set to 1 (memory fetch-­

no indexing). Thus the ABR use field of the instruction may be set by

either the <ADR use indicator> or <ADR use>.

A <register designator> causes one of two things to happen. If

the specified register is a FE register, the ABR use field is set to 4
(register code) and the address field is encoded so as to specify the

indicated register. If the specified register is an ACAR, the ADR use

field is set to a (literal), the address field is set to a and the ACARX

field is set to the indicated ACAR and the enable bit set.

The <routing specifications> indicates the register connectivity

and routing distance for the route instructions. a) If a single <arithmetic

expression> is used, ASK assembles a route of that distance, setting the

register connectivity to the R register.

b) If the construct <arithmetic expression> <routing distance>

is used, the first expression sets the register connectivity portion of the

address field and the second sets the routing distance portion of the

address field.

c) If only a <FE register designator> is used ASK sets the

register connectivity portion of the address field to the indicated

register and sets the routing distance portion of the address field

to zero.

d) The construct <FE register designator> <routing distance>

is self explanatory.

The <ACARX> sets the ACARX field enable bit of the instruction

to one and encodes the ACAR indicated by the value of the expression

(taken modulo 4). Word arithmetic is used to evaluate the expression

and the expression must be absolute.

7-2

Examples:

Address operand:

* X-I (2)
P2 AGAR

* MATRIX + (Q - R)

S'IUFF (2),3
qRY,1

qRY

= X + 14:8

= ° (3)
$C3

$B
$R (2)

Literal operand:

SHIFTC¢UNT
BITNUMBER (2) ,5

#BITNUMBER (2)

* (SHIFTC¢UNT) (2)

Routing operand:

Address field:

ADR use:

DISTANCE

2*WHICHREGISTER,DISTANCE

$S,DISTANCE
DIST (2)

CHUZREG,DIST (1)

$A,o (2)

$A (2)

PQ

PDQ + 2*N

3
-1

,3
,WHICH¢NE/2
,LITERAL + MAY.BEN¢T

. 7-3

Routing specifications:

HERET¢THERE

REGISTER, 24

$B,l

$A

Routing distance:

,DIST

,-1

,0

,NUMBER¢FPES -1

VII.B REGISTER DESIGNATORS IN FE

Syntax:

<register designator> ::= $<register mnemonic>

<register mnemonic> ::= AIBIDIRlslxlcolcllc21c3

<PE register designator> ::= $<FE register mnemonic>

<PE register mnemonic> ::= AIBIRlslDlx

Semantics:

A <PE register designator> denotes a register in the ~.

In addition, a <register designator> can denote the common

data bus as defined by the contents of a specified ACAR. A. <FE register

designator> causes the encoding for that register to be placed in the

address of the instruction. If a <register designator> specifies an

ACAR, the address field of the instruction is set to zero, the ADR-USE

field is set to zero (literal) and the ACARX field is set to the

specified ACAR and the ACARX field enable bit is set.

Examples:

$A

$X
$Cl

7-4

VIII. OPE.R.AND FIElDS FOR MODE SETTING INSTRUCTIONS

Syntax:

<mode pattern operand> ::= <.arithmetic expression> <ACARX>

<AGAR designator>

<mode setting operand> ::= <left mode specifier> <mode operator>

<right mode specifier> <ACARX>

<AGAR designator> ::= cOIcll$C21$C3

<left mode specifier) ::= <mode bit> I -<mode bit>

<mode bit> ::= EIElIFIFIIGIHIIIJ

<mode operator> ::= AND lOR 1 • .A.ND.I.oR.

<right mode specifier> ::= EIEll-EI-El

Semantics:

The <mode pattern operand> is used in conjunction with the mode­

bit loading mnemonics (LD-). In these instructions, the ILL~C IV hardware

ignores the ADR use field, i.e., the address field is treated as a literal

and is AGAR indexable.

The <mode setting operand> is used in conjunction with the mode

setting mnemonics (SET-). The address field of the instruction is encoded

for the same operation as is indicated by the operand field. The convention

-<mode bit> means the logical negation of the specified mode bit.

If the mode operator AND or ~Rare used a space must immediately

precede and succeed them.

Examples:

MOde pattern operand:

1

o
o (2)

$C2

MOde setting operand:

E ¢R El

I AND -E (2)

H .~R. -El

8-1

IX. ASK PSEUDO OPERATIONS

IX.A GENERAL

Syntax:

<ABK pseudo-op>

Semantics:

.. -.. - EQU <mU operand>

SYL <SYL operand>

WDS <WDS operand>

BLK <ELK operand>

FILL <FILL operand>

SET <SET operand> I
DATA <DATA operand>

¢RG <¢RG operand> I
CHWS <CHWS operand>

REGP <:REGP operand>

EEGC <:REGC operand>

SYN <SYN operand>

GL¢BAL I
L¢CAL I
DEFINE <DEFINE part>

ASK pseudo operations are instructions directly to ASK which

may or m~ not generate ILLIAC IV code. Each pseudo is discussed

individually below:

IX.B EQU PSEUDO

Syntax :

<EQU operand> : := <arithmetic expression> I
= <long literal operand> I

<CO register designator>

Semantics:

The EQU pseudo operation must have a <label list>. The function

of the pseudo operation is to assign a value to the symbol(s) in the label

list. If the EQU operand is an arithmetic expression, the result of

the expression (evaluated using word arithmetic) is put in the word

field portion of the symbol f s value. (refer to diagram p. 3-7). The

syllable bit is set to zero. If a CU register designator is used, the

symbol(s) receives the CU memory address of the indicated register in the

word field portion of its value. If a long literal operand is used, a PE

9-1

symbol assumes the 64-bit value of the long literal operand; a CU

symbol receives the rightmost 8 bits of the value of the operand, i.e.,

the value is truncated to8 bits.

Restrictions:

All symbols in the label list must not have been previously

defined.

All symbols referred to in the operand field must have been

previously defined.

Examples:

ONE: :EQ,U = 1.0

P:Q:R: EQU $D14

X: EQU A. - (B + 2 x N) where A,B,N have been previously

defined

LOOICONTROL: EQU = 1, 63, 0

IX. C SYL PSEUDO

Syntax:

<BYL operand> ::= <arithmetic expression> I
<empty>

Semantics:

The SYL pseudo operation serves to reserve a block of 32-bit

syllables. A label list is optional. If any labels are present, they

receive the value of the allocation counter at the time the SYL pseudo

is encountered. ASK then emits the number of no-ops indicated by the

value of the arithmetic expression (evaluated using word arithmetic),

i.e., the requested block of 32-bit syllables is filled with no-ops.

The value of the arithmetic expression must be absolute. If the

<SYL operand> is <empty>, an expression value of zerp is assumed.

Examples:

X: SYL 31

CURRENTACV ALUE: SYL

IX. D WDS PSEUDO

Syntax:

<WDS operand> : := <arithmetic expression> I
<empty>

9-2

Semantics:

The WDS pseudo operation serves to reserve a block of 64-bit

words, of length equal to the value of the arithmetic expression

(evaluated using word arithmetic). The allocation counter is first

adjusted to a 64-bit word boundary (even syllable), if necessary. If an

adjustment is made, a no-op is placed in the syllable which is skipped

over. At this point, all labels receive the value of the allocation

counter (the label list is optional). The block of 64-bit words is then

created by filling the appropriate number of words with zeroes. The

allocation counter then points to the next available 32-bit syllable

at the end of the block of 64-bit words. The value of the arithmetic

expression must be absolute. If the <WDS operand> is <empty>, the

expression value of zero is assumed.

Examples:

P: WDS

Q: WDS 64

WDS

IX. E BLK PSEUDO

Syntax:

<BLK operand> ::= <arithmetic expression> I
<empty>

Semantics:

The BLK pseudo operation serves to reserve a block of 4096-bit

'vords", i.e., rows of 64-bit words across FE memory. The number of rows

is determined by the value of the arithmetic expression (evaluated using

word arithmetic). If necessary, ASK adjusts the allocation counter to

a quadrant boundary, filling in no-ops if the adjustment has to take

place. All labels then receive tre vaJ.ue of the aJ.location counter. The

requested number of 'vords" is then spaced over (inserting zeroes) and the

allocation counter is set to the next available syllable beyond the

requested block of storage. The allocation counter will point to a

quadrant boundary after "execution" of this pseudo.

If the <BLK operand> is <empty>, the ,expression value of zero

is assumed.

Examples:

X: BLK 64

BLK

9-3

IX. F FILL PSEUDO

Syntax:

<FILL operand> ::= <arithmetic expression> I
<empty>

Semantics:

Let V be the value of the arithmetic expression. V determines

a nonzero power of two, M, which is the smallest power of two not less

than V. The directive to the assembler is to adjust the allocation

counter to a position--syllable address--such that the allocation

counter is congruent to V modulo M. Word arithmetic is used in

evaluating the arithmetic expression. If the value of the expression

is zero or if the operand field is empty, M is defined as being equal

to 2. . If the allocation counter has to move, no-ops are filled into the

syllables skipped over. Labels are optional and, if any are present,

receive as their value the value of the allocation counter after

adjustment.

Examples:

FILL 2

FILL 7
X: FILL 16

Even syllable

Seventh syllable in a block of 8

Head of a block of 16 syllables

IX. G SET PSEUDO

Syntax:

<SET operand> ::= <arithmetic expression> I
<empty>

Semantics:

See definition of EQU with an arithmetic expression as operand

for the operation of SET. There are three differences:

1) No multidefinedness check is made on the symbols being

defined, i.e., one or more symbols in the label field

may have been previously defined,

2) The labels are" redefined at the same points in the

program in PASS II, and

3) If the operand field is empty, the symbol (s) is defined

as the current value of the allocation counter.

9-4

The SET pseudo operation requires a label list. Word arithmetic

is used in evaluating the arithmetic expression.

Examples:

P: SET 1

P: SET P+l

HEREIAM: SET

IX.H DATA PSEUDO

Syntax:

<data operand> :: = <data list>

<data list> ::= <data list element>

<data list>, <data list element>

<data list element> ::= <number> I <symbol> I <string>

«data list» <repeat part>

<repeat part> o 0_
o 0- <arithmetic expression>

Semantics:

The DATA pseudo operation provides for the loading of data

into PE memory. A label list is optional. If necessary, the allocation

counter is first adjusted to a word boundary and a no-op is inserted in

the skipped syllable. The specified data is then placed in PE memory as

64-bit words.

If a number is used, its converted value (64-bit) is placed

in memory.

If a symbol is used, the value of its syllable field is placed

in memory, right justified, in a field of zeroes.

A repetitive list is placed in memory element by element,

repeated as many times as is indicated by the value of the repeat part

(word arithmetic).

Examples:

DATA -1

STUFF: DATA 2, 3, 1.2, 01.3 @ -8, (1, -1) N-l, X, 774:8

9-5

IX. I ORG PSEUDO

, Syntax:

<ORG operand> : := <arithmetic expression>

Semantics:

The ORG pseudo operation sets the allocation counter to the

value of the arithmetic expression. Any labels are also given this

value (in the syllable field). The expression is evaluated using

syllable arithmetic. The allocation counter will have the same

relocatability as the value of the expression, i.e., symbols defined by

labeling an ILLIAC IV instruction will henceforth be absolute or

relocatable, depending upon whether the value of this expression is

absolute or relocatable.

Examples:

ORG ~ + 3

ORG X

IX. J CHWS PSEUDO

Syntax:

<CHWS operand> <arithmetic expression>

Semantics:

The CHWS pseudo operation emits one ILLIAC IV instruction

which sets the word size bit in the ACR register for 32 or 64 bit

arithmetic in the PE's. The setting of this bit is according to the

value of the arithmetic expression (word arithmetic).

Value of Expression

o
1

32
64

Anything Else

Examples:

CHWS 64
CHWS 1

Word Size Setting Generated

64 bit

32 bit

32 bit

64 bit

Undefined

9-6

IX.K BEGP PSEUDO

Syntax:

<REGP operand> ::= <hew PE register designator> = <register designator>

<hew FE register designator> ::= $<identifier>

Semantics:

The REGP pseudo operation serves to rename register designators

which may appear in the operand field of a FE instruction. This pseudo

must not have a label list. At any point in the program after the

appearance of the BEGP pseudo-operation the defined <hew FE register

designator> may be used interchangeably with the <register designator>

which defined it.

Restriction:

If any label of this pseudo operation is identical to a label

used elsewhere in the program, the REGP pseudo which defines that label

must be placed physically before the other definition of the label.

Examples:

BEGP $AREGISTER = $A

BEGP $BROADCASTNUM = $Cl

Examples of uses of the defined register designators:

LDA $BROADCASTNUM

RTL $AREGISTER,3

IX.L BEGC PSEUDO

Syntax:

<REGC operand> ::= <hew CU register designator> <CU register designator>

<new CU register designator> ::= $<identifier>

Semantics:

The REGC pseudo operation serves to rename CU register

designators which may appear in the operand field of a CU instruction.

The operation of this pseudo is the same as that of the BEGP pseudo.

Examples:

REGC $INSTREG = $.AIR

REGC $COUNTER = $Cl

Examples of Use:

LDL (0)

STL (0)

9-7

IX.M SYN PSEUDO

Syntax:

<SYN operand> .. -.. - (any defined ILLIAC IV-op mnemonic or ASK pseudo-op

mnemonics)

Semantics:

The SYN pseudo operation serves to make the label (s) of the

label list (which must be present) synonymous with the ILLIAC IV

instruction mnemonic or ASK pseudo-op mnemonic. At any point in the

program after the appearance of the SYN pseudo operand, the defined label

may be used interchangeably with the operation which defined it.

Examples:

MULTIPLY: SYN MLRN

DIVIDE:

DIV:

SYN DVRN

SYN DVM

IX. N GLOBAL PSEUDO

Semantics:

This pseudo-operation causes ASK to assemble CU instructions

in the Global mode unless

1) A. local pseudo-operation appears later, or

2) A. CU instruction has a non-empty <Global-local specifier>,

in which case that instruction only is assembled with the

indicated Global-localness.

IX.O LOCALPSEUro

Semantics:

This pseudo-operation causes ASK to assemble CD instructions

in the local mode unless

1) A global pseudo-operation appears later, or

2) A CU instruction has a non-empty <global-local specifier>,

in which case that instruction only is assembled with the

indicated global-localness.

9-8

IX.P DEFINE PSEUDO

Syntax:

<define pseudo> :: = DEFINE <define part>

<define part> ::= <define element> I
<define part>, <define element>

<define element> ::= <define identifier> =
<define text> #11=

<define identifier> ::= <identifier>

<define text> ::= {any sequence of characters not including the character

unless enclosed in string quotes}

Semantics:

The define pseudo causes the <define identifier> to serve as an

abbreviation for the text bracketed by the = and the ##. From that point

on in the program, whenever the <define identifier> is written, ASK will

substitute for it the <define text> with which it is associated.

Restrictions:

Example:

1) The <define text> must not contain any unmatched If symbols.

2) A defined identifier may not appear as a FE or CD

register mnemonic.

3) A defined identifier may be used alone as a <mode operand>

but may not be used alone as a <left mode specifier>

<mode operator> or <right mode specifier>.

Define

LASTWORD = FILL 126; WDS ##
y = 3 #/1=;

X: LASTWORD Y ,

is the same as:

X: FILL 126; WDS 3 ;

9-9

x. ASK CONTROL STATEMENTS

Syntax:

<ASK control statement> ::= $<verb list>

<verb list> ::= <verb> I <verb list> <verb>

<verb> ::= <input specifier> I
<output specifier> I
<patch specifier> I
<option specifier>

<input specifier> ::= <input file designator> <label eCluation>

<input file designator> ::= CARD I TAPEI I TAPE2 I TAPE3 I TAPE4

TAPE5 I TAPE6 I TAPE7 I TAPE8 I
TAPE9 I TAPEIO I TAPEll I TAPE 12 I
TAPE13 I TAPE14 I TAPE15

<label eCluation> :: = <empty> I
= <multi-file id>/<file id> <disk or tape file>

<disk or tape file> ::= SERIAL I <empty>

<multi-file id> ::= <identifier>

<file identifier> ::= <identifier>

<output specifier> ::= <output file designator> <label eCluation>

<output file designator> ::= NEWDISK I NEWTAPE

<patch specifier> ::= MERGE <label equation> I
VOID <base ten number>

<option specifier> .. - LIST I SYNTAX I
XREF I BLOWUP I RJNCH I
SEQ I SEQ + <base ten number>

Semantics:

A <control statement> causes the assembler to change its mode

of operation with respect to file handling or listing options.

An <input specifier> directs ASK to accept symbolic input from

a file of the user's choice. The file CARD is the main input file for

ASK, i.e., ASK must find its first input in file CARD. If ASK is

directed to another input file, it assembles from that file until

either it encounters a control card with an input specifier or reads the

end of file marker. In the former case, ASK begins assembling

from the new file and "remembers" which file it was assembling

from. In the latter case, ASK closes the file from which the

10-1

EOF was read and continues assembling from the file which contained the

control statement which directed it to the file it has just closed.

Assembly proceeds from the card image immediately following the control

statement in this case. If the <label equation> part is non-empty, ASK

attaches itself to the specified tape or disk file.

If more than one <input specifier> are given in an <ASK control

statement>, ASK will assemble from the file which is listed last until an

EOF is reached. Then it will assemble from the file listed next to last

until an EOF is reached. ASK will continue in the fashion until all input

files listed on the control statement are exhausted. It will then go back

to assembling the file in which the <ASK control statement> appeared.

An <output specifier> directs the assembler to create a new

symbolic tape or disk file. This file will contain the totality of card

images which ASK has processed from whatever files their origin may have

been. Once an output specifier has been used, it is not necessary to

specify it on subsequent control cards, since the option remains on for the

rest of the assembly. It is possible, however, to direct ASK to create

different output files for different sections of code by placing several

control statements with an output specifier and label e~uation in the

source file.

If the <patch specifier> is used, ASK considers the totality of

card images from the files available as input file designators as an update

deck for file MERGE. The functions of replacement, deletion and insertion

are available. The selection criterion for which card image ASK will next

process is the se~uence number comparison between the next available card

image from file MERGE and the designated input file. The selection

algorithm is as follows:

Relation between Sequence File from Which Input
Numbers is Taken

1) "PATCH" sequence < MERGE sequence "patch"

2) "PATCH" sequence = MERGE se~uence "patch"

3) "PATCH" sequence > MERGE sequence MERGE

In case 1), the card from the MERGE file is retained for sub­

sequent comparisons. In case 2), the card from the MERGE file is d.iscarded

so that the next card from that file can be used for the next comparison.

10-2

In case 3), the card from the "patch" file is retained. for subsequent

compari sons.

If the VOID option is used, ASK discards card images from file

MERGE as long as the sequence number from card images in file MERGE

remains less than or equal to the value of the <base ten number>. The

VOID is performed when its sequence number is less than or equal to the

sequence number of the next card from file MERGE. Once ASK begins

merging it continues to do so until the assembly is terminated or an

IDF is read from file MERGE, at which point the user may choose to

complete the assembly from the "patch" file or attach .ASK to another

file MERGE. The user may at any time attach ASK to another file MERGE

through the use of the label equation construct.

At the time that a control statement is encountered, each of

the options which may be an <option specifier>, except SEQ, is set to

FALSE. The presence of the option specifier verb enables that particular

option. The options and their effects are as follows:

LIST The source program and instructions being generated

are listed on the printer file.

SYNTAX The generated object code is inhibited from being written

into the object code file.

XREF

BL¢wup

RJNCH

SEQ

ASK is to cross-reference all identifiers, register

designators, and control verbs as they are encountered

and print out the cross-reference table at the end

of the assembly.

When printing the generated instructions, ASK will print

all ILLIAC IV instructions in an "exploded view" with

each field of the instruction displayed individually in

octal separated from neighboring fields by a single space.

Causes ASK to punch each card image as it is processed.

"Dollar cards", <ASK control statements>, are not punched.

Causes ASK to resequence whatever source code output it

is creating. The sequence increment is set equal to the

value of the arithmetic term (evaluated using word

arithmetic). If no term is given, a default value of

100 is used.

10-3

Examples:

Control statement:

$ LIST SYNTAX XREF

NEWDISK = SpURCE/ CPDE SERIAL

SEQ + 1000

$ TAFEl = SINE/RPUTrNE SERIAL

LIST X REF

$ LIST PUNCH SEQ + 10000

$ NEWTAFE

$ LIST VOID 19300 SYNTAX

$ TAPEI = LA.ST/DONE TAPE5 = THIRD/DONE

TAPE3 = SECOND/DONE TAPE12 = FIRST/DONE

10-4

XI, PROGRAM DECK

Syntax:

< program deck > ::= < execution card > < file cards > < data card >

< program > < end card >

< execution card> ::= ?EXECUTE ASK/ASK II

< file cards> :: < empty> I < file cards> < file card>

< file card> :: ?FlLE < file identifier> = < data file designator>

<: medium>

< file identifiers> ::= < source identifier> I
< object code identifier > I
< symbolic output identifier >

< source identifier> ::= CARD I MERGE I TAFEl ... I TAPE15

< object code identifier> ::= CODE

< symbolic output identifier> ::= NEWDISK I NEWTAP.E

< data file designator> ::= < multi-file identifier> / < file identifier>

< medium. > ::= SERIAL I < empty>

< data card> ::= ?DATA CARD I ?DATA < data file designator> I < empty>

< end card> ::= ?END

Semantics:

The < program deck > is the standard B5500 execution deck.

More detailed information may be found in the Burroughs B5500 Electronic

Information Processing System Operation Manual.

All illegal characters must appear in column one of the cards.

Note that the < file card > supplies information to the MCP

whereas the < ASK control statement >, the "$ card", specifies file

options to the assembler.

As stated in the discussion on < ASK control statement >, ASK

must obtain its first input from the file card. By default the file CARD

is the card reader. The < file card > may be used to direct the MCP to

look for card on tape or disk, and if so, < data card> should also be

< empty>. The < file card> could also be used to rename CARD, in which

case the < data file designator > of the < file card > and of < data card >

must be the same.

If many source files are to be used they may be "label equated"

here or on an < ASK control statement >. In the former case, the information

is given to the MCP, and in the latter to the assembler directly.

11-1

The file CODE is the object code file of <program> produced

by ASK. It is a disk file as stated in the discussion on <ASK control

statement>, the SYNTAX option will inhibit the object code from being

put on this file. Naturally, the file CODE is not produced if a fatal

error is encountered during the complication. If the file code is not

label equated to a <data file designator>, it is written into the

file ooooooo/C¢DE which is a temporary file whose contents may be

destroyed after the present job is completed.

<data card> should be <empty> only if CARD has been label

equated to a tape or disk file.

Examples:

1) The following system control card sequence was used to

generate a symbol disk file, SYMBOL/DISK, by assembling a disk file,

DISK/FILE.

PROGRAM DECK

" EXECUTE ASK/ASK II

,,' FILE NEWDISK = SYMJ30L/DISK

7 FILE CARD = DISK/FILE SERIAL

7' END

COMMENTS

output disk file in source code

input disk file

The first card image of DISK/FILE was

$ CARD LIST SYNTAX NEWDISK;

The SYNTAX option inhibited the object file CODE.

2) The following was used to assemble a program from the

symbol tape, TAPE/INRJT, and generate the object code or a d.isk file

MY/NAME.

PROGRAM DECK

7 EXECUTE ASK/ASKII

,,' FILE CARD = TAPE/INPUT

,,' FILE CODE = MY/NAME SERIAL

7 END

COMMENTS

input tape file

output disk file

Since there were no control statements in TAPE/INPUT the default

$CARD LIST; was in effect.

11-2

3) The following sequence of system control card was used to

generate object code onto the disk file, SAVE/DISK, from the card input

file, READER.

PROGRAM DECK

? EXECUTE ASK/ASK II

? FILE CARD = READER

?' FILE CODE = SAVE/DISK

?' DATA READER

$ CARD LIST XREF BLOWUP; .
program

? END

COMMENTS

input card file

output code file

options specified

4) In the following example a card file, a tape file, and a

disk file are merged together. The output source code is placed on a

type file, and the object code is placed on disk.

PROGRAM DECK

? EXECUTE ASK/ASK II

?' FILE CARD = CARD/FILE

?' FILE TAPE3 = TAPE/FILE

?' FILE TAPEIO = DISK/FILE SERIAL

?' FILE CODE = OBJECT/CODE

? FILE NEWTAJE = SOURCE/OUTPUT

? DATA CARD/FILE

$ CARD ~IST NEWTAPE;

main ILLIAC IV program deck
part 1

$ TAFEl? LIST NEWTAPE;

main ILLIAC IV program deck
part 2

$ TAPE 3 LIST NEWTAPE

main ILLIAC IV program deck
part 3

? END

11-3

COMMENTS

input card file

input tape file

input disk file

output object code

output source code

(card images are put on
l. SOURCE/ OUTRJT

f
TAPEIO file is opened and

all of DISK/FILE is put
onto SOURCE/OUTPUT

(card images are put on
l SOURCE/OUTRJT

f
TAPE3 file is opened and

all of file TAPE/FILE is
put onto SOURCE/OUTRJT

(card images are put onto
t SOURCE/ OUTIUT

At completion the output disk file CODE = OBJECT CODE has

[Main program part 1

[Contents of disk file, TAPElO

[Main program part 2

[Contents of tape file, TAPE3

[Main program part 3

11-4

XII. ERROR MESSAGES

ASK generates error messages when it encounters incorrect ILLIAC IV

symbolic code. These messages are to be used by the programmer to help

him in debugging his program. A list of the possible error message are

given below. Their meaning is clear from the context. The only error

which is not fatal is the omission of an end card.

ERROR MESSAGES

UNDEFINED OP-CODE

MULTIPLY DEFINED SYMIDL IN LABEL FIELD

UNDEFINED SYMBOL

IMPROPER LEFT MODE SPECIFIER

IMPRoPER MODE OPERATOR

IMPROPER RIGHT MODE SPECIFIER

SKIP FIELD MISSING

SKIP DISTANCE TOO LARGE

-END CARD MISSING. INSERTED BY ASSEMBLER­

DISALLOWED CU MEMORY ADDRESS

THIS INSTRUCTION MAY NOT BE CARD INDEXED

CONTROL STATEMENT ERROR. NEXT INRJT FROM FILE CARD

TOO MANY LEFT PARENTHESES

TOO MANY RIGHT PARENTHESES

MULTIPLY DEFINED SYMBOL

RELOCATABLE ARITHMETIC WITH MULTIPLICATIVE OPERATOR

EXPRESSION YIELDS IMPROPER RELOCATION F ACTOR

IMPROPER SEPARATOR

SEMICOION MISSING OR TOO MANY FIELDS

THIS INSTRUCTION MAY NOT SPECIFY A REGISTER

IMPROPER PE REGISTER DESIGNAIDR

NON-EMPIY OPERAND FIELD

IMPROPER CO REGISTER DESIGNATOR

NON-DIGIT APPEARS IN NUMBER

EXR)NENT OVERFLOW

FILE IDENTIFIER TOO LONG

BASE SPECIFIER GREATER THAN 36

INTEGER TOO LARGE

THIS INSTRUCTION REQUIRES A LABEL

12-1

XIII. INDEX

< ACAR designator > 8-1

< ACAR selector > 6-1

< ACARX > 6-1

< adding operator > 3-1

< address field> 7-1

< ADR use> 7-1

< ADR use indicator> 7-1

< allocation counter designator > 3-1

< alphanumeric character > 2-1

< arithmetic expression> 3-1

< arithmetic primary> 3-1

< ASK control statement > 10-1

< ASK pseudo-op > 9-1
< base specifier > 2-2

< base ten digit> 2-2

< base ten number > 2-2

< blank CU operand > 6-1

< blank FE operand > 7-1

< BLK operand> 9-3

< character > 2-1

< CHWS operand > 9-6

< compare and skip operand > 6-1

< compound statement > 4-1
< CU memory address specifier > 6-1

< CU memory operand > 6-1

< CU register designator > 6-5

< CU symbol > 2-1

< data card> 11-1

< data file designator > 11-1

< data list > 9-5

< data list element > 9-5

< data operand > 9-5

13-1

< define element > 9-9

< define identifier > 9-9
< define part > 9-9
< define pseudo > 9-9
< define text > 9-9
< digit> 2-2

< disk or tape file > 10-1

< end card > 11-1

< end statement > 4-1
< EQU operand > 9-1
< execution card > 11-1

< exponentiation operator > 3-1

< exponent part > 2-2

< factor> 3-1

< file card > 11-1

< file cards > 11-1

< file identifier > 10-1

< file identifiers > 11-1

< FILL operand > 9-4

< global-local specifier > 6-1

< identifier> 1-3, 2-1

< ILLIAC IV instruction > 5-1
< index specifier > 6-1

< input file designator > 10-1

< input specifier > 10-1

< integer > 2-2

< integer part > 2-2

< label> 5-1
< labeled end statement > 4-1
< label equation > 10-1

< label list > 5-1
< left mode specifier > 8-1

< letter > 2-1

< literal FE operand> 7-1

< long literal operand> 6-1

< mantissa part > 2-2

< medium> 11-1

< mode bit> 6-1, 8-1

< mode bit specifier> 6-1

< mode operator > 8-1

< mode pattern operand > 8-1

< mode setting operand> 8-1

< multi-file id > 10-1

< multiplying operator> 3-1

< number >. 2-2

< numeric character > 2-1

< object code identifier > 11-1

< option specifier > 10-1

<.ORG operand> 9-6

< output file designator > 10-1

< output specifier > 10-1

< paired number > 2-2

< patCh specifier > 10-1

< FE address operand > 7-1

< FE register designator> 7-4
< FE register mnemonic > 7-4
< FE register specifier > 6-1

< PE symbol > 2-1

< program> 4-1

< program deck > 11-1

< quadrant specifier> 6-5
< real number > 2-2

< real number or integer > 2-2

< REGC operand > 9-7

< register designator > 7-4
< register mnemonic> 6-5, 7-4
< REGP operand > 9-7

13-2

< repeat part > 9-5
< right mode specifier > 8-1

< routing distance > 7-1

< routing operand > 7-1

< routing specifications > 7-1

< SET operand > 9-4

< short literal operand> 6-1

< signed base ten number > 2-2

< signed real number > 2-2

< skip field > 6-1

< skip operand > 6-1

< source identifier > 11-1

< space> 3-1

< statement > 5-1
< SYL operand > 9-2

< symbol > 2-1

< symbolic output identifier > 11-1

< sm operand > 9-8

< term> 3-1

< unlabeled end statement > 4-1

< unlabeled statement > 5-1
< unsigned real number > 2-2

< verb> 10-1

< verb list > 10-1

< WDS operand> 9-2

