Burroughs

66072

IL4-PM2
17 MARCH 1969

REFERENCE MANUAL
FOR

ILLIAC IV ASSEMBLER (ASK)

Burroughs Corporation
Defense, Space and Special Systems Group

PREFACE

This document provides a description of the basic ILLIAC IV assembly

language, ASK version II. Included are:

— A syntactic description of an ASK program,

— A definition of assembly-time arithmetic,

— A definition of assembly-time functions (pseudo operations),

— A definition of assembly-time utilities (control cards), and

— Examples of system control cards necessary to use ASK.

The document assumes some prior familiarity with ASK and a complete

familiarity with the instruction set for ILLIAC IV as defined in the

"ILLIAC IV Systems Characteristics and Programming Manual."

This program was written by Mr, David Grothe of the University of

linois. This manual was prepared by Mr, Grothe and Mrs., Charlene

Luskin, the latter a member of the Special Systems Programming

Department.

Submitted by:

/W

P. Sipfonetti

Project Manager, Programming
ILLIAC IV Program

Electronic Systems Organization

Approved by:

47 Smith
rogram Manager

ILLIAC IV Program
Electronic Systems Organization

TABLE OF CONTENTS

NOTE

The various elements of the ILLIAC IV assembly language
are discussed in paragraphs labeled Syntax, Semantics, and
Restrictions, immediately following each pertinent subject
heading. To avoid needless repetition, these subordinate
headings have been omitted from the Table of Contents.

Section Title Page
I INTRODUCTION o ¢ o &+ o o o o o o o o o o o o s o o o o o @ 1-1
I.A The Assembler . ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o @ 1-1
I.B DPurpose of Manual . « « « ¢ ¢ « ¢ o o o o o o« & 1-1
I.C Card Format . . « v & v ¢« ¢ o« o o o o « o « o & 1-1
I.D Conventions Used in the Description
of the Language .« « ¢« ¢ ¢« o ¢« ¢ ¢« o o o o o « » 1-2

IT ELEMENTS OF THE LANGUAGE . . . « ¢ v ¢ ¢ o o o o o o o o & 2-1

TT.A CharaCte€r .« ¢ « o o o o o o o o o o o o o o o 2-1
IT.B SymbolsS « v v o + o o o o o o o o o o o 0 e o 2-1
TI.C TumbeTS « ¢« o v & o o o s o o o o o o o o o o o 2=-2
IIT ARTTHMETIC AND ARTITHMETIC EXPRESSIONS . ¢ « ¢ ¢ o ¢ o « . 3-1

IIT.A Arithmetic Expression . . . « . + . .+ & « o + . 3-1
III.B Arithmetic with Relocatable Quantities 3-2
IIT.B.1 Addition =« « ¢ o« ¢ ¢« ¢ o o o o o 3-3
TII.B.2 Subtraction « « « « o « « « « « « « 3=4
ITI.B.3 Multiplication . . « « « « . « . . 3=k
III.B.4 Integer Division . . « . . . « . . 3-5
IIT.C Three Modes of Arithmetic: Syllable,
Word, and ROW « « « « o o« « o « o o « o o« o +« o 3-6
v STRUCTURE OF AN ASK PROGRAM . « « ¢ ¢ ¢ & o « o o o o o+ & h-1

v STATEMENTS e 5-1

Section

VI

VII

VIII

IX

XI

XIT

XITT

REGISTER DESIGNATORS AND OPERAND FIELDS

FOR CU INSTRUCTIONS .
VI.A CU Operand Fields

VI.B Register Designators in CU .

REGISTER DESIGNATORS AND OFPERAND FIELDS

FOR PE INSTRUCTIONS .

. e

Title

Page

C e e e e e e e . 621
o
. B

VII.A PE Operand Fields . . . e . 7-1
VII.B Register Designators in PE . « v e . T-k
OPERAND FIELDS FOR MODE SETTING INSTRUCTIONS . . « « « + & 8-1

ASK PSEUDO OPERATTIONS

IX.A
IX.B
IX.C
IX.D
IX.E
IX.F
IX.G
IX.H
IX.I
IX.J
IX.X
X.L
IX.M
IX.N
IX.0
IX.Pp

General . .
EQU Pseudo .
SYL Pseudo .
WDS Pseudo .
BILK Pseudo .
FILL Pseudo
SET Pseudo .
DATA Pseudo
ORG Pseudo .
CHWS Pseudo
REGP Pseudo
REGC Pseudo
SYN Pseudo .
GLOBAL Pseudo
LOCAL Pseudo
DEFINE Pseudo

ASK CONTROL STATEMENTS .

PROGRAM DECK + + « + &

ERROR MESSAGES

IMEX .

e o « o .

.. B §
.. . 9-1
. B)
e e e e e e 9-2
e e e 9-3
. . 9-k
S W 1

.. . 9-5

P e

. > o o o o o ll"l

e e e e 4 e e . 1221

. I .

1.

INTRODUCTTON

I.A THE ASSEMBLER

I.B

I.C

Assembler System K (ASK) is designed to accept a program written
in ILLIAC IV assembly language, and to convert it to an ILLIAC IV binary

object code.

ASK 1s a two pass assembler. The following is a brief
description of the function of each of the two passes PASS I and PASS IT.

In PASS I, ASK determines the values of all gymbols defined
in the program. It thus performs all pseudo-operations which define
symbols. It also checks all instruction mnemoniecs, and allocate storage

as required.

In PASS ITI, ASK evaluates the operand fields of the ILLIAC IV
ingtructions; hence any ILLIAC IV instruction may reference any defined
symbol in its operand field. The ILLIAC IV instructions and data are
bullt and the code is emited to a disk file in a form which is suitable
for the TLLTAC IV loader.

PURPOSE OF MANUAL

The purpose of this manual is to supply the programmer with
information on how to use ASK and to obtain correct machine code as a
result. ASK generates appropriate error messages when incorrect code
is encountered. The manual gradually builds the complete syntax
acceptable to ASK. The syntax at each level is described by a meta
language explained later in this section; the syntax is followed by

semantics, restrictions and examples.
CARD FORMAT

An TLLTAC IV assembly source program is either on punched
cards or on disk or tape as card images. These cards (or card images)

are free form with the following exceptions.

(a) A label must be followed by a colon.

(v) A statement must be followed by a semicolon.

(c) A comment must be preceded by a percent sign. When a
% is found on a card ASK does not interpret the remainder
of the card.

1-1

(a) Columns 73 through 80 are not interpreted by ASK and may

contain identification or sequencing information. This
field is, however, analyzed when changes are merged with

a source tape or disk.

(e) A card containing a $ in column one is recognized as an

ASK control statement and specifier certain assembler

options.

(£f) At least one blank must appear between an instruction and

its operand field. With this exception and a few others
which are noted in the syntax, blanks may be used freely

or omitted without affecting the content of a statement.

(g) Two or more statements (each followed by their required

semicolons) may appear on one card.

(h) Identifiers and numbers may not contain embedded blanks

or be split across card boundaries.

I.D CONVENTIONS USED IN THE DESCRIPTION COF THE LANGUAGE

The syntax of the language is described through the use of

metalinguistic symbols. These symbols have the following meanings:

Q.

<>

{3

Left and right broken brackets are used to contain one or
more characters representing a metalinguistic variable whose
value is given by a metalinguistic formula.

' and separates the

The symbol ::= means "is defined as,'
metalinguistic variabie on the left of the formula from

its definition on the right.

The symbol l means or. This symbol separates multiple
definitions of a metalinguistic variable.

Braces are used to enclose metalinguistic variables which

are defined by the meaning of the English-language expression
contained within the braces. This formulation is used only
when it 1s impossible or impractical to use a metalinguistic

formula,.

The above metalinguistic symbols are used in forming a meta-

linguistic formula. A metalinguistic formula is a rule which will

produce an allowable sequence of characters anq/br symbols. The entire

set of such formulas defines the constructs of ASK (Assembly System K).

1-2

Any mark or symbol in a metalinguistic formula which is not one
of the above metalinguistic symbols denotes itself. The juxtaposition of
metalinguistic variables and/or symbols in a metalinguistic formula denotes

Justaposition of these elements in the construct indicated.

To illustrate the use of syntax, the following example is offered:

<identifier> ::= <letter> | <identifier> <alphanumeric character>

The above metalinguistic formula is read as follows: an identifier is

defined as a letter, or an identifier followed by an alphanumeric character.

The metalinguistic formula defines a recursive relationship by
which a construct called an identifier may be formed. Evaluation of the
formula shows that an identifier begins with a letter; the letter may

stand‘alone, or may be followed by an mixture of letters and numbers.

1-3

IT.

ELEMENTS OF THE LANGUAGE

ITI.A CHARACTER

IT.B

Syntax:
<character> ::= A|B|C|D|E|F|G|H|I|J|X|L|M|N|p|P|Q|R|S|T|U|V|W|X|¥Y|Z
olrfz3lu|sl6|7I8]9 - Il C(I<l<I$1*D) 15 I<]-1/1,1%]=]
T# o] [>|2]+[x]#|2]"
<letter> ::= A|B|C|D|E|F|c|H|I|T|k|L|M|N|@|P|Q|R]|S|T|U|V|W|X]|Y|2
<numeric character> ::= 011]2|3|4|5|6]7|8]|9

<alphanumeric character> ::= <letter>|<numeric character>

Semantics:

The character set for the assembly language for ILLIAC IV is
the 6-bit character set which exists on the Burroughs B5500. An identifier
may symbolize things such as a machine instruction, an address in PE memory,
or a number. An identifier is restricted to be no more than 63 characters

in length.
SYMBOLS

Syntax: }
<PE symbol> ::= <identifier>
<CU symbol> ::= .<identifier>
<symbol> ::= <PE symbol>|<CU symbol>
<identifier> ::= <letter>|<identifier>-<alphanumeric character>

Il

il

Semantics:

Although a PE symbol may symbolize an address in PE memory,
its semantic interpretation is not restricted to that alone. A PE symbol
is best interpreted as symbolizing a number, with the understanding that
this number itself takes on quite different meanings depending upon the
context in which it is used. ASK (Assembler System K) attaches no mean-

ing (other than its numeric value) to a symbol at the time it is defined.

A PE symbol may have a numeric value of up to 64 bits of precision.
A CU symbol may symbolize an address in CU memory. All the
remarks about semantic interpretation of PE symbols apply to CU symbols
as well. A CU symbol is restricted to 62 alphanumeric characters in

length (+ 1 for the . = 63) and it may assume a value of no greater than

2-1

8 bits of precision. If a CU symbol is defined by a quantity of greater

precision than 8 bits, the quantity is truncated to 8 bits of precision.

II.C NUMBERS

Syntax:
<integevr> 1= <integer part> <base specifier>
<integer part> ::= <base ten digit> | <integer part> <digit>
<base specifier> ::= :<base ten number> l <empty>
<base ten number> ::= <base ten digit> | <base ten number> <base ten digit>

<base ten digit> ::= 0|1]|2|3|4|5]6]7|8]9
<digit> ::= 0]1|2]3]4]5]6|7|8]9]A|B|c|D|E|F|c|®|T|s|x|L|M|N|g|Pla|R|S|T|U
v|w|x|Y|Z
<real number> ::= <signed real number> |
, <unsigned real number>
<signed real number> ::= +<unsigned real number> |
-<unsigned real number>
<unsigned real number> ::= <base ten number> | <mantissa part> |
<mantissa part> <exponent part> |
<exponent part>

<mantissa part> ::= <base ten number>.
<base ten number>.<base ten number> | .<base ten number>

<exporient part> ::= @<signed base ten number> I

@<base ten number>
<signed base ten number> ::= i+<base ten number> |
» -<base ten number>
<paired number> ::= PAIR (<real number or integer>, <real number or integer>)
<real number or integer> ::= <real number> | <integer>
<number> ::= <integer> l <real number> | <paired number>

Semantics:

A number denotes its value. Integers are represented in fixed
point binary with the binary point at the right. Real numbers are
represented in ILLIAC IV floating point form (see Page 3-3 on data formats
TILLIAC IV Systems Characteristics and Programming Manual for details).

A digit must be such that its assigned weight is less than the
specified base (or ten if the base is unspecified). The weights assigned

to the possible digits are as follows:

2-2

digit: 0123456789 A B CDETF G HIJEKTILMDINDO
PQ RS TUVWZXYZ

weight: 012345678910 111213 14 15 16 17 18 19 20 21 22 23 2k
25 26 27 28 29 30 31 32 33 34 35

The base specifier directs the assembler to convert the preced-
ing integer from the specified base to binary. If no base is specified,

base ten is assumed.

A real number directs the assembler to perform conversion to
6h-bit ILLIAC IV floating point representation. This conversion is
performed if an explicit decimal point is present or if there is an
explicit exponent part. In all other cases, integer conversion is

performed.

The pair construct allows for the formation of two 32-bit
words in inner-outer form. The first number is converted into the

outer position, the second into the inner.

Examples
OA:17
31
77332:8
@ -8

L e+ 37
PAIR (1.3 @ -1, T765:8)

2-3

ITT.

ARTTHMETIC AND ARITHMETIC EXPRESSIONS

ITI.A ARITHMETIC EXPRESSION

Syntax:
<arithmetic expression> ::= <term>|{<adding operator>-<ieTM>|
<arithmetic expression> <adding operator> <term>

<term> ::= <factor>[<term> <multiplying operator> <factor>

<adding operator> ::= + l -
<multiplying operator> ::= x | /
<factor> ::= <arithmetic primary>4<arithmetic primary>

<exponentigtion operator> <arithmetic primary>
<arithmetic primary> ::= (<arithmetic expression>)|<integer>|

<Bymbol>|<allocation counter designator>|
ABS (<arithmetic expression>)|

RELOC (<arithmetic expression>) |

SLA (<arithmetic expression>) |

WDA (<arithmetic expression>)|

RWA (<arithmetic expression>)

<allocation counter designator> ::= <space> @2 <space>
<exponentiation operator> ::= ¥

<space> ::= {one or more comnsecutive blank characters}
Semantics:

An arithmetic expression denotes a sequence of arithmetic
operations to be performed (at assembly time) on certain specified
quantities. The operations allowed are: addition, subtraction,
multiplication, integer division and exponentiation (raised to the

power of). Evaluation is performed in 24-bit two's complement.

ABS specified that the result of the evaluation of the
arithmetic expression is to be made absolute (no matter what the

relocatability of the expression turns out to be).

REIOC acts the same as ABS only the value is made

relocatable.

SLA indicates that the parenthesized expression is to be

evaluated using syllable arithmetic.

3-1

III.B

WDA indicates that the parenthesized expression is to be

evaluated using word arithmetic.

RWA indicates that the parenthesized expression is to be

evaluated using row arithmetic.

Examples:
1
(3)
X + 3

PLACEINMEMORY + Y/(2%(X-1)) + 2 x N
ARTTHMETIC WITH RELOCATABLE QUANTITIES

During the assembly of any particular code segment, it may
not be known where in PE memory the obJject code will actually be
loaded. Therefore, ASK must make provisions as it emits "object"
code, for the placement of that code at an "arbitrary" place in

PE memory. An "object" code file with that property is known as a

relocatable code file. The assembly proceeds as if the code were to

be loaded gt PE memory location zero. At load time, however, the

code mey be loaded at PE memory address R. Therefore, if a PE symbol
symbolizes location m at assembly time, it must symbolize location

R+m at load time. Relocatable arithmetic taskes the term R into account

during the evaluation of arithmetic expressions.
In the following analyses:

Let Rs and RSl stand for PE symbols which symbolize some

PE memory address which may be relocated.

Let AS and Asl stand for either an integer or a symbol which
symbolizes a PE memory address which may not be relocated. Henceforth
a quantity of one of these two types shall be referred to as an sbsolute

quantity.

Let m and m stand for the numbers associated with the symbols,

and R stand for the starting PE memory address of the code at load time.

ITT.B.1 ADDITION

Three cases:
1

(1) R, + R, (R+m) + (n)

R + (mtn)

This result is valid only for intermediate results. An expression
which evaluates to a relocation amount greater than R is invalid and

is flagged as such at assembly time.

(R+m) + (n)

(2) R, + A

R + (m+n)

This result is valid under all circumstances which allow a relocatable

expression. The assembly time result is (m+n) as a relocatable quantity.

(3) AL +AT =m+n

This result is the number (m+n) which is absolute (not relocatable)
and as such is valid under any cilrcumstances which allow absolute

quantities.

ITI.B.2 SUBTRACTION

III.B.3

Four cases:

il

(1) R -R (R+m) - (R+n)

]

(R+R) + (m-n)

=m-n

The result of subtracting two relocatable quantities is an absolute

quantity.

(2) R -A = (Rm) -n

i

R + (m-n)

The result of subtracting an absolute quantity from a relocatable one

is a relocatable quantity (m-n).

(3) A - R

s n - (R+m)

(n-m) - R

This result produces a negative relocation amount which, except as an

intermediate result, is invalid.

() A -A =m-n

The result of subtracting one absolute quantity from another one 1is

their difference (m-n), which is also absolute.
MULTIPLICATION

Three cases:
(R+m) x (R+n)

R2 + RXm+RXn+mXn

v(1) | R, X Ry

Multiplication of two relocatable quantities is invalid under all

circumstances.

(2) RSxAsi(R+m)xn=(Rxn)+(mxn)

Multiplication of a relocatable quantity and aﬁ absolute gquantity is

invalid under all circumstances.

3-k

IIT.B.4

(3) A XA =mXxn
The only valid multiplication is that of two absolute quantities.
INTEGER DIVISION (All address arithmetic is integer arithmetic)

Four cases:

(1) R,/ Ry

Division of one relocatable quantity by another is invalid under all

(R+m) / (R+n) = R / (R+n) + m / (R+n)

circumstances.

(2) R / A= (Rtm) / n = R/n + m/n
Division of a relocatable quantity by an absolute quantity is invalid

under all circumstances.

(3) A,/ R =n/ (Rm)

Division of an absolute quantity by a relocatable gquantity is invalid

under all circumstances.

(1) A/ A, =m/n

The only valid division is that of two absolute quantities.

Summaxry:
The valid constructs in relocatable arithmetic are:

RS + Rs Valid only as an intermediate result.
RS + As Relocatable.
A + A Absolute.

s s
RS - RS Absolute.
Rs - AS ‘ Relocatable.
A - R " Valid only as an intermediate result.
AS X AS Absolute.
A/ A Absolute.

X S

III.C

An arithmetic expression is correct, with respect to
relocatability, if the final result contains either the term 1 X R
(as in RS) or 0 X R (as in As)' A further contextual restriction
nay be applied where only an absolute or only a relocatable result

is wvalid.

Examples of Relocatable Arithmetic:

Let a symbol which begins with the letter "R" be under-
stood to be relocatable, and one which begins with the letter "A" be

understood to be sbsolute.

RX + RY + (-RA) Relocatable.
AX - RY + RA Absolute.
(RY - RY)/2 Absolute.
RX + RY Invalid.

2 X RX Invalid.

Rx/2 Invalid.

THREE MODES OF ARITHMETIC: SYLLABLE, WORD, AND ROW

ASK evaluates arithmetic expressions using one of three
modes of arithmetic, depending upon context. Syllable arithmetic
operates on a PE symbol as if it symbolizes the PE memory
address of a 32-bit instruction syllable; word arithmetic
operates on a PE symbol as if it symbolizes the PE memory address
of a 6L-bit word; row arithmetic operates on a PE symbol as if
symbolizes the PE memory stack address of an entire row of
6L-bit words across a quadrant. Since the same PE symbol may,
at different times, appear in all three contexts, it would not
be meaningful to use the same value for the symbol in each of the

three modes of arithmetic.

For instance, a PE symbol PLACE which has the value 23 would repre-
sent three entirely different memory locations if the number 23 were
used as a syllable address, word address, and row address. In order
to avoid this ambiguity, ASK considers the value of a PE symbol to

be divided into three fields for purposes of evaluating arithmetic

expressions.
| SYLLARLE FIELD
v
i WORD FIELD
v
i— ROW FIELD
v
17 BITS 6 BITS 1 BIT
A ' A A

L{QIJABLE BIT

WORD BITS

ROW BITS

The above diagram represents the value of a PE symbol as
it is interpreted by ASK. Syllable arithmetic operates on the
syllable field; word arithmetic operates on the word field; row

arithmetic operates on the row field.

The interpretation of a numeric value depends upon how

that value was specified in the source text:

1) The value of a PE symbol is interpreted as
specified in the preceding paragraph.

2) The value of a CU symbol or a numeric constant
is interpreted as designating the same field as
the mode of arithmetic being performed on it.
For example, the numeric constant 23 designates
syllable, word and row 23 in syllable, word and
row arithmetic, respectively.

3-7

Examples:

Suppose the PE symbol A has the value 6710.

00000000000000000 | 100001 |1
&—FRow field

Word field

Syllable field———

Syllable Arithmetic A42 = 69
Word Arithmetic A+2 = 35
Row Arithmetic Av2 = 2

3-8 .

Iv.

STRUCTURE OF AN ASK PROGRAM

Syntax:
<program> ::= BEGIN <compound statement>;
<end statement>.

<end statement> ::= <labeled end statement>]
<unlabeled end statement>

<labeled end statement> ::= <label list> <unlabeled end statement>

<unlabeled end statement> ::= END |
END <arithmetic expression>

<compound statement> ::= <statement> |

<compound statement> ; <statement>

Semantics:

The <end statement> indicates the end of the assembly language
program. The appearance of the mnemonic END causes a halt instruction
to be generated. A Jjump instruction is generated after the halt. ITf
no arithmetic expression is present, the jump is to relocatable
location O. If there is an arithmetic expression present, the jump
is to the location indicated by the value of the arithmetic expression
(evaluated using word arithmetic) with the same relocatability as the
value of the expression. The arithmetic expression on the relocatable
location O as the case may be, should be the location of the first

instruction to be executed.

L1

V. STATEMENTS

Syntax:
< statement > ::= < unlabeled statement > I
< label list > < unlabeled statement >
< ASK control statement >
< label list > ::= < label > : |
< label list > < label > :
< label > ::= < symbol >
< unlabeled statement > ::= < ILLIAC IV instruction >
< ASK pseudo-op >

< ILLIAC IV instruction > ::=

-AD < PE address operand > |

ADA < PE address operand > |

ADB < PE address -operand > |

ADD < PE address operand > |

ADEX < PE address operand > l

ATM < PE address operand > |

ADMA < PE address operand > |

ADN < PE address operand > |

ADNA < PE address operand > |

ADR < PE address operand > l

ADRA < PE address operand > |

ADRM < PE address operand > |

ADRMA < PE address operand > I

ADRN < PE address operand > |

ADRNA < PE address operand > |

ALIT < ACAR selector > < short literal operand >
AND < PE address operand >]

ANDN < PE address operand > I

ASB < blank PE operand > |

BIN < ACAR selector > < CU memory operand > |
BINX < ACAR selector > < CU memory operand > |
CAB < literal PE operand > |

CACRB < CU memory operand >]

CADD < ACAR selector > < CU memory operand >

5-1

CAND
CCB
CEXOR
CHSA
CLC
CLRA
COMPA
COMEC
COFY
COR
CRB
CROTL
CROTR
CSB
CSHL
CSHR
CSUB
CTSBF
CTSBT
DUPT
DUFRO
v
DVA

DVMA
DVN
DVNA
DVR
DVRA
DVEM
DVEMA
DVRN
DVRNA

< ACAR selector > < CU memory operand > |
< ACAR selector > < CU memory operand > |
< ACAR selector > < CU memory operand > |
< blank PE operand > |
< ACAR selector > < blank CU operand > |
< blank PE operand > |
< blank PE operand > |

< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR
< ACAR

< PE address
< PE address
< PE address
< PE address
< PE address
< PE address
< PE address
< PE address
< PE address
< FE address
< PE address
< PE address

selector
selector
selector
selector
selector
selector
selector
selector
selector
selector
selector
selector
selector

selector

5.2

>

V

vV V.V V VYV VYV VYV

>
>

operand
operand
operand
operand
operand
operand
operand
operand
operand

operand

< blank CU operand > |
< CU memory operand
< CU memory operand
< CU memory operand
< CU memory operand
< CU memory operand
< CU memory operand
< CU memory operand

< CU memory operand

VV VYV VYV VVYV

< CU memory operand]
< compare and skip operand > |
< compare and skip operand >»|
< CU memory operand > |

< CU memory operand >-|

operand > |

operand > |

V VV VYV VYV YV VYV

l
|
l
I
|
|
|
l
I
|

EAD
EOR

EQLXFA

EQLXTA
EQV
ESB
EXCHL
EXEC
FINGQ
GB
GRTRF
GRIRFA
GRTRT
GRTRTA
HALT
IAG
IAL

IB

ILE
ILG
ILL
1o
ILZ

MG

MO

INCRXC

< PE address operand > |

< PE address operand > |

< ACAR selector >
< ACAR selector >
< ACAR selector >
< ACAR selector >

< compare
< compare
< compare

< compare

< PE address operand > |

< PE address operand > |

and
and
and

and

skip operand
skip operand
skip operand

skip operand

< ACAR selector > < CU memory operand > I
< ACAR selector > < blank CU operand > |
< blank CU operand > |

< PE address operand > |

< ACAR selector >

< ACAR selector > < compare

< ACAR selector >
< ACAR selector >

< compare

< compare

< compare

< blank CU operand > l

< PE address operand > |

< PE address operand > I

< literal PE operand > [

< PE address operand > I

< PH address operand >]

< PE address operand >]

< blank PE operand >]
< blank PE operand > |

< PE address operand > |

< PE address operand > |

< PE address operand > |
< blank PE operand > |
< blank PE operand > |
< ACAR selector > < blank CU operand >

and
and
and

and

skip operand
skip operand
skip operand

skip operand

V V VYV

vV V.V V

INR < blank CU operand > |

ISE < PE address operand > |
ISG < PE address operand > |
ISL < PE address operand > |
ISN < blank PE operand > |
IXE < PE address operand > |
IXG < PE address operand >]
IXGI < PE address operand > |
XL < PE address operand > |
IXLD < PE address operand > l
JAG < PE address operand > |
JAL < PE address operand > |
JB < literal FE operand > |
JLE < PE address operand > |
JLG < PE address operand > l
JLL < PE address operand > |
JLO < blank PE operand > |
JLZ < blank PE operand > |
JME < PE address operand > |
IMG < PE address operand > I
JML < PE address operand > |
JMO < blank PE operand > |
IMZ < blank PE operand > |
JSE < PE address operand > |
JSG < PE address operand > I
JSL < PE address operand > |
JSN < blank PE operand > |
JUMP < short literal operand > |
JXE < PE address operand > |
JXG < PE address operand > |
JXGI < PE addréss operand >]

5-4

JXL < PE address operand > I

JXLD < PE address operand > |

LB < PE address operand > |

LDA < PE address operand > |

1DB < PE address operand >]

LDC < ACAR selector > < PE register specifier >

1DD < register designator > |

LDE < mode pattern operand > I

LDE1 < mode pattern operand >]

LDEEL < mode pattern operand > l

LDG < PE address operand >]

IDH < PE address operand >]

D1 < PE address operand > [

LDJ < PE address operand > I

LDL < ACAR selector > < CU memory operand >

LDR < PE address operand > l

LDS < PE address operand > l

LDX < PE address operand > l

LEADO < ACAR selector > < blank CU operand > l

LEADZ < ACAR selector > < blank CU operand > |

LESSF < ACAR selector > < compare and skip operand > |
LESSFA < ACAR selector > < compare and skip operand > |
LESST < ACAR selector > < compare and skip operand >]
LESSTA < ACAR selector > < compare and skip operand > |
LEX < PE address operand > |

ILIT - < ACAR selector > < long literal operand > |
LIT < ACAR selector > = < long literal operand > |
LOAD < ACAR selector > < CU memory operand > |

LOADX < ACAR selector > < CU memory operand > |

ML < PE address operand > }

MLA < PE address operand > |

MLM < PE address operand > I

>-5

MLMA < PE address operand > |

MLN < PE address operand > |

MLNA < PE éddress operand > l

MLR < PE address operand > |

MLRA < PE address operand > I

MLRM < PE address operand > |

MLRMA < PE address operand > |

MLRN < PE address operand > |

MLRNA < PE address operand >]

MULT < PE address operand > |

NAND < PE address operand > |

NANDN < PE address operand > |

NEB " < PE address operand > |

NOR < PE address operand > |

NORM < blank PE operand > |

NORN < PE address operand > |

OFB , < blank PE operand > |

ONESF < ACAR selector > < skip operand > |
ONESFA < ACAR selector > < skip operand > |
ONEST < ACAR selector > < skip operand > |
ONESTA < ACAR selector > < skip operand > |
ONEXF < ACAR selector > < skip operand > |
ONEXFA < ACAR selector > < skip operand > |
ONEXT < ACAR selector > < skip operand > |
ONEXTA < ACAR selector > < skip operand > |
OR < PE address operand > |

ORAC < ACAR selector > | < blank CU operand >
ORN < PE address operand >]

RAB < literal PE operand > |

RTAL < literal FE operand > |

RIAR < literal PE operand > |

5-6

RTG . < routing operand > |

RTL < routing operand > |

SAB < literal PE operand > |
SAN < blank PE operand > |
SAP < blank PE operand > |

SB < PE address operand > |
SBA < PE address operand > |
SBB < PE address operand > |
SBEX < PE address operand > |
SEM < PE address operand > |
SEMA < PE address operand > |
SBN < PE address operand > |
SBNA < PE address operand > |
SBR < PE address operand >]
SBRA < PE address operand > |
SBERM < PE sddress operand > I
SBRMA < PE address operand > |
SBRﬁ < PE address operand > |
SBRNA < PE address operand > |
SETC < ACAR selector > < mode bit specifier >
SETE < mode setting operand > I
SETE1 < mode setting operand > |
SETF < mode setting operand > |
SETF1 < mode setting operand > |
SETG < mode setting operand > |
SETH < mode setting operand > |
SETT < mode setting operand > |
SETJ < mode setting operand > |
SHAEL < literal PE operand > |
SHABML < literal PE operand > |
SHAEMR < literal PE operand > |

=T

SHABR
SHAL
SHAML
SHAMR
SHAR
SKIP
SKIEFF
SKIFFA
SKIFT
SKIPTA
SLIT
STA
STB
STL
STORE
STOREX
STR
STS
STX
SUB
SWAP
SWAPA
SWAPX
TCCW
TCW
TXEF
TXEFA
TXEFAM

TXET
TXETA

< literal PE operand > |

< literal PE operand > |

< literal PE operand > |

< literal PE operand > |

literal PE operand > |

skip operand > |

skip operand > |

skip operand > |

skip operand > |

skip operand > |

ACAR selector > < short literal operand >
literal PE operand > l

literal PE operand > | |

ACAR selector > < CU memory operand > |
ACAR selector > < CU memory operand >]
ACAR selector > < CU memory operand > l
literal PE operand > |

literal PE operand > I

< literal PE operand > |

AANNNNANNANANANNNANANNA

< PE address operand >]

< blank PE operand > |

< blank PE operand > |

< blank PE operand > |

< ACAR selector > < blank CU operand > |
< ACAR selector > < blank CU operand > |
< ACAR selector
< ACAR selector
< ACAR selector

> < compare and skip operand > |
>
>
< ACAR selector >
>
>

compare and skip operand > |
skip operand > |
skip operand > |
< ACAR selector
< ACAR selector

compare and skip operand > l

A AN AN AN A

compare and skip operand > l

skip operand > |

TXETAM < ACAR selector > <

TXETM < ACAR selector > < skip operand >Jf|

TXGF < ACAR selector > < compare and skip operand
TXGFA < ACAR selector > < compare and skip operand
TXGFAM < ACAR selector > < skip operand > |

TXGFM < ACAR selector > < skip operand > |

TXGT < ACAR selector > < compare and skip operand
TXGRA < ACAR selector > < compare and skip operand
TXGTAM < ACAR selector > < skip operand > |

TXGIM < ACAR selector > < skip operand > |

TXLF < ACAR selector > < compare and skip operand
TXIFA < ACAR selector > < compare and skip operand
TXLFAM < ACAR selector > < skip operand > |

TXTFM < ACAR selector > < skip operand > l

TXLT < ACAR selector > < compare and skip operand
TXTTA < ACAR selector > < compare and skip operand
TXLTAM < ACAR selector > < skip operand > |

TXLIM < ACAR selector > < skip operand > |

WAIT < blank CU operand > |

XD < PE address operand > |

XTI < PE address operand > |

ZERF < ACAR selector > < skip operand > |

ZERFA < ACAR selector > < skip operand > |

ZERT < ACAR selector > < skip operand > |

ZERTA < ACAR selector > < skip operand > |

ZERXF < ACAR selector > < skip operand > |

ZERXFA < ACAR selector > < skip operand > |

ZERXT < ACAR selector > < skip operand > |

ZERXTA < ACAR selector > < skip operand > |

>=9

vV V

vV Vv

vV Vv

vV Vv

Semantics:

A <label list> may be as many as 64 labels in length. Each
label is given the same value. An <ILLIAC IV instruction> may be
labeled with a <CU symbol™, but the user is advised that the value is
truncated to 8 bits of precision. The value given to a <label> which
labels an <ILLIAC IV instruction> is the value of the allocation
counter (syllable bit included) at the time the <label list> is

encountered, i.e., the location of the instruction being labeled.

The value given to a <label> which labels an <ASK pseudo-op>
is defined individually for each pseudo. The user is advised to consult

‘the sectlon on pseudo operations for these definitions.

The <ASK control statement> is restricted in that it must
begin in column one of a card or card image. Thereafter no restrictions
are placed on the card format of a control statement except those which

apply to card formats in general.

Detailed descriptions of each of the instruction mnemonics

may be found in the ILLIAC IV Systems Characteristics and Programming

Manual.

Restrictions:

The LDD instruction may address only RGB ($B).

The LDB instruction is the only instruction which may have
RGD ($D) as its operand.

5-10

VI. REGISTER DESIGNATORS AND OFERAND FIELDS FOR CU INSTRUCTTIONS

VI.A CU OPERAND FIELDS

Syntax:
<compare and skip operand> ::= <CU memory address specifier> <ACARX>
<skip field> <global-local specifier>
<CU memory operand> ::= <CU memory address specifier> <ACARX>
<global-local specifier>

<skip operand> ::= <skip field> <global-local specifier>
<blank CU operand> ::= <global-local specifier>
<short literal operand> ::= <arithmetic expression>

= <arithmetic expression>
<long literal operand> ::= <nuMber>1

<symbol>|

<index specifier>
<PE registef specifier> ::= <PE register designator>
<mode bit specifier> ::= <mode bit>
<mode bit> ::= E1|EL|F1|F1|c|H|I|T
<ACAR selector> ::= <arithmetic expression>
<CU memory address specifier> ::= <arithmetic expression>|

<CU register designator>
<skip field> ::= ,<arithmetic expression>
<globsl-local specifier> ::= ,G|,L|<empty>
<ACARX> ::= <arithmetic expression>|
<empty>
<index specifier> ::= <arithmetic expression>,
<arithmetic expression>,

<arithmetic expression>

Semantics:
Operand fields for CU instructions provide a symbolic

method of determining the value of each field of the instruction

syllable except the op-code fields.

A <blank CU operand> sets no fields except the global/local
field.

A <short literal operand> sets the low order 24 bits of the

instruction to the value of the arithmetic expression.

6-1

A <long literal operand> sets the next 64 bits (two instruction
syllables) after the LIT instruction to the value of the number, symbol or

index specifier.

A <PE register specifier> encodes a PE register in the address

field of the instruction.

A <mode bit specifier> encodes a mode bit in the address of the

instruction.

The <ACAR selector> sets the ACAR field of the instruction to the

value of the arithmetic expression.

A <CU memory address specifier> sets the address field to the
value of the arithmetic expression or to the CU memory address of the

indicated register.

The <skip field> sets the skip field of the instruction to a

value which is determined as follows:

The expression is evaluated using syllable arithmetic. If the
result is relocatable, ASK sets the skip field to a displacement such that
the destination of the skip is the instruction whose address is the value
of the expression. That is, if the expression were simply L and L were
relocatable, a skip to L would be generated by ASK. If the result is
absolute, ASK uses that value as the skip distance itself.

The <global-locgl specifier> indicates that the instruction being
generated is to be flagged as global (G), local (L), or in the same global-
local mode as the "rest" of the program (see explanation of pseudos GLOBAL
and LOCAL).

The <ACARX>, if nonempty, sets the ACARX enable bit and bits 1:2
of the ACARX field to the value of the arithmetic expression modulo 4;
otherwise, the ACARX field 0:3 is set to zero.

The <index specifier> indicates that 64 bits are to be set as
three fields: bits 1:15, bits 16:24, and bits 40:24., These fields are set
by the three arithmetic expressions respectively. Bit O of the 64 Dbits
is not sble to be set by this construct. In field one (bits 1:15), ASK

6-2

forms a 15-bit sign-magnitude representation of the arithmetic expression.
In fields two and three the 24-bit two's complement value is inserted as is.

With the exception of the <skip field>, all arithmetic expressions
are evaluated using word arithmetic. With the exception of the <skip field>,
<short literal operand>, and fields two and three of the <index specifier>,
arithmetic expressions must have an absolute result. The above-mentioned

exceptions may have elther a relocatable or an absolute wvalue.

Examples:
Compare and skip operand:
.DELTA, Ipgp
$C3 , L+l

.DEIITA "l (3) 3} I.IA.B.EH-_I, G‘
CU memory operand:

$p34 2 , L
N x .STUFF PRESENTACARX
$TRI , L

Skip operand:

SLigP
Lo+ 2
s= 1h
,DESTINATION - (@@ + 1),G

Blank operand:

»G
sL

Short literal operand:

1

SUBRPUTINE
TTTTTT77:8
2% (N-1)

6-3

Long literal operand:
= INCREMENT, LIMIT, INITIALVAL
= -1, 0, 64
= SCALEFACTPR
= 1.7325 @ 18
= 1000000000000000000000 :8
= -(2%14-1), -1, -1

ACAR selector:
(REGISTER -1)
3
(2)

CU memory address specifier:
JIPCAL + 3 x (.Q-2%(N-1)+1)
$D2
$3Dk0
$C1
$ICR
$ACR

ACARX :
(REGISTER -1)
3
(2)

VI.B REGISTER DESIGNATORS IN CU

Synteax:
<CU register designator> ::= $<quadrant specifier> <register mnemonic>

$<register mnemonic>
<quadrant specifier> ::= 0|1]2]3

<register mnemonic> ::= DO|D1|D2|D3|Dk|D5|D6|D7|D8|D9|D10|D1L|D12|DL3| D1k |
D15 |D16| D17 |D18| D19 | D20 | D21 | D22 | D23 | D2k | D25 | D26 |
D27 |D28|D29 |D30| D31 | D32|D33 | D3k | D35 | D36 | D37 | D38|
D39 |D4O | D1 | Dh2 | D43 | Dlk | DU5 | DA6 | Dl | DU8 | DU9 | D50 |
D51 |D52|D53| D54 | D55 | D56 | DST | D58 | D59 | D60 | D6L | D62
D63|co|c1|c2|c3|ICR| ACR| ALR| AMR | ATN |MCO |MCL |MC2 |
TRI | TRO

Semantics:

A <CU register designator> denotes an addressable register in
the CU. Each CU register designator symbolizes the 8-bit encoding of
the address of a register in CU memory. If the quadrant specifier is
present, the leading two bits of the 8-bit field are assigned the

specified number.

DO, D1, ..., D63 Denote the 64 ADB locations.
co, ¢1, ¢c2, C3 , Denote the 4 ACAR registers.

The remaining register mnemonics denote the register which

they abbreviate.

Examgles:
$Co
$D32
$2D32
$ICR

6-5

VII. REGISTER DESIGNATORS AND OPERAND FIELDS FOR PE INSTRUCTIONS

VII.A PE OPERAND FIELDS

Syntax :
<blank PE operand> ::= <empty>

<PE address operand> ::= <ADR use indicator>
<address field> <ACARC- |
<address field> <ACARK> <ADR use> |
<register designator> <ACARX>
<literal PE operand> ::= <ADR use indicator>
<address field> <ACARX> |
<address field> <ACARX> <ADR use>
<routing operand> ::= <routing specifications> <ACARX>
<address field> ::= <arithmetic expression>
<ADR use indicator> ::= *|#|=|#*|*#
<ADR use> ::= ,<arithmetic expression> |
<empty>
<routing specifications> ::= <arithmetic expression> |
<arithmetic expression> <routing distance>
<PE register designator> |
<PE register designator> <routing distance>

<routing distance> ::= ,<arithmetic expression>

Semantics:
The <address operand> specifies the ACARX, ADR use and

address field for those PE instructions which specify an operand address.

The <literal operand> specifies the ACARX, ADR use and
address field for those PE instructions which do not require an operand
but, rather, a shift count or bit number encoded in the address field

of the instruction.

The <routing operand> is used in conjunction with only two
instructions, RTG and RTL.

The <address field> sets the 16-bit address field of the
instruction to the value of the arithmetic expression. The expression
is evaluated using row arithmetic and may be either relocatable or

absolute.

The <ADR use indicator> sets the ADR use field of the

instruction. The convention used is as follows:

7-1

ADR USE FIFLD

Symbol Bits 13 14 15 Meaning
* ¢ 1 1 RGX indexing
_ 1 0 1 RGS indexing

*oft| » 1 1 1 Combined indexing
= 0 0 0 Literal

The <ADR use> sets the ADR use field of the instruction to the
value of the arithmetic expression. Word arithmetic is used in evaluating
the expression and the expression must be absolute. If the <ADR use> is
<empty>, the ADR use field of the instruction is set to 1 (memory fetch--
no indexing). Thus the ADR use field of the instruction may be set by
either the <ADR use indicator> or <ADR use>.

A <register designator> causes one of two things to happen. If
the specified register is a PE register, the ADR use field is set to k4
(register code) and the address field is encoded so as to specify the
indicated register. If the specified register is an ACAR, the ADR use
field is set to O (literal), the address field is set to O and the ACARX
field is set to the indicated ACAR and the enable bit set. |

The <routing specifications> indicates the register connectivity
and routing distance for the route instructions. a) If a single <arithmetic
expression> is used, ASK assembles g route of that distance, setting the

register connectivity to the R register.

b) If the construct <arithmetic expression> <routing distance>
is used, the first expression sets the register connectivity portion of the
address field and the second sets the routing distance portion of the
address field.

c¢) If only a <PE register designator> is used ASK sets the
register connectivity portion of the address field to the indicated
register and sets the routing distance portion of the address field

to zero.

d) The construct <PE register designator> <routing distance>

is self explanatory.

The <ACARX> sets the ACARX field enable bit of the instruction
to one and encodes the ACAR indicated by the value of the expression
(taken modulo 4). Word arithmetic is used to evaluate the expression

and the expression must be absolute.

7-2

Examples:

Address operand:

* x-1 (2)

P2 ACAR

* MATRIX + (Q - R)
STUFF (2),3
MEMGRY , 1
MEMPRY

= X + 14:8
=0 (3)

$c3

$B

$R (2)

Literal operand:

SHIFTCHUNT
BITNUMBER (2),5
#BITNUMBER (2)

*(SHIFTCPUNT) (2)

Routing operand:

Address field:

ADR use:

DISTANCE
S¥WHICHREGISTER,DISTANCE
$5,DISTANCE

DIST (2)

CHUZREG,DIST (1)

$4,0 (2)

s (2)

PQ

PDQ + 2%N
3

-1

23
,WHICHANE/2
,LITERAL + MAYBEN@T

T-3

Routing specifications:
HERETY)THERE
REGIsm,eh
$B,1
A

Routing distance:
,DIST
,=1
»0
,NUMBER@FPES ~1

VII.B REGISTER DESIGNATORS IN FE

Syntax£

<register designator> ::= $<register mnemonic>
<register mnemonic> ::= A|B|D|R|S|x|co|c1|c2|c3

<PE register designator> ::= $<PE register mnemonic>

<PE register mnemonic> ::= AlBlRISID]X

Semantics:

A <PE register designator> denotes a register in the FE.

In addition, a <register designator> can denote the common
data bus as defined by the contents of a specified ACAR. A <PE register
designator> causes the encoding for that register to be placed in the
address of the instruction. If a <register designator> specifies an
ACAR, the address field of the instruction is set to zero, the ADR-USE
field\is set to zero (literal) and the ACARX field is set to the
specified ACAR and the ACARX field enable bit is set.

Examples:
$A
$x
$c1

T-h

VIII.

OPERAND FTEIDS FOR MODE SETTING INSTRUCTIONS

Syntax:
<mode pattern operand> ::= <arithmetic expression> <ACARY> |
<ACAR designator>

<mode setting operand> ::= <left mode specifier> <mode operator>
<right mode specifier> <ACARX>

<ACAR designator> ::= $CO|$C1|$c2|$C3
<left mode specifier> ::= <mode bit> | -<wmode bit>
<mode bit> ::= E|EL|F|F1|c|H|I|J

'A-ND. .OR.

<mode operator> ::i= AND|OR

<right mode specifier> ::= E|ELl|-E|-E1

Semantics:

The <mode pattern operand> is used in conjunction with the mode-
bit loading mnemonics (ID-). In these instructions, the ILLIAC IV hardware
ignores the ADR use field, i.e., the address field is treated as a literal

and is ACAR indexable.

The <mode setting operand> is used in conjunction with the mode
setting mnemonics (SET-). The address field of the instruction is encoded
for the same operation as is indicated by the operand field. The convention

-<mode bit> means the logical negation of the specified mode bit.

If the mode operator AND or ¢R‘are used a space must immediately

precede and succeed them.

Examples:
Mode pattern operand:

1
0
o (2)
$c2
Mode setting operand:
E §r E1
IAND -E (2)
H /R, -E1

8-1

IX.

ASK PSEUDO OPERATTIONS

IX.A GENERAL

IX.B

Syntax:

<ASK pseudo-op> ::= EQU <EQU operand> l
SYL, <SYL operand> |
WDS <WDS operand> |
BIK <BLK operand> |
FILL <FILL operand> |
SET <SET operand> |
DATA <DATA operand> |
$RG <PRG operand> |
CHWS <CHWS operand> |
REGP <REGP operand> |
REGC <REGC operand> |
SYN <SYN operand> |
GLYBAL |
LfCAL |

DEFINE <DEFINE part>

Semantics:
ASK pseudo operations are instructions directly to ASK which
may or may not generate ILLIAC IV code. ZEach pseudo is discussed

individually below:
EQU PSEUDC

Syntax:

<EQU operand> ::= <arithmetic expression> |

<long literal operand> |

<CU register designator>

Semantics:

The EQU pseudo operation must have a <label list>. The function
of the pseudo operation is to assign a value to the symbol(s) in the label
list. If the EQU operand is an arithmetic expression, the result of
the expression (evaluated using word arithmetic) is put in the word
field portion of the symbol's value. (refer to diagram p. 3-7). The
syllable bit is set to zero. If a CU register designator is used, the
symbol(s) receives the CU memory address of the indicated register in the

word field portion of its value. If a long literal operand is used, a PE

9-1

IX.C

IX.D

symbol assumes the 6lU-bit value of the long literal operand; a CU
symbol receives the rightmost 8 bits of the value of the operand, i.e.,
the value is truncated to 8 bits.

Restrictions:

A1l symbols in the label list must not have been previously

defined.

All symbols referred to in the operand field must have been

‘previously defined.

Examples :
ONE: EQU = 1.0
P:Q:R: FQU $D1k
X: EQU A - (B + 2 x N) where A,B,N have been previously

defined
LOOPCONTROL: EQU = 1, 63, O
SYL, PSEUDO
Syntax:

<BYL operand> ::= <arithmetic expression>
<empty>

Semantics:

The SYL pseudo operation serves to reserve a block of 32-bit
syllables. A label list is optional. If any labels are present, they
receive the value of the allocation counter at the time the SYL pseudo
is encountered. ASK then emits the number of no-ops indicated by the
value of the arithmetic expression (evaluated using word arithmetic),
i.e., the requested block of 32-bit syllables is filled with no-ops.
The value of the arithmetic expression must be gbsolute. If the

<SYL operand> is <empty>, an expression value of zer¢ is assumed.

Examgles:
X: SYL 31

CURRENTACVALUE: SYL

WDS PSEUDO

Syntax:
<WDS operand> ::= <arithmetic expression>

<empty>

9-2

IX.E

Semantics:

The WDS pseudo operation serves to reserve a block of 6h-bit
words, of length equal to the value of the arithmetic expression
(evaluated using word arithmetic). The allocation counter is first
adjusted to a 64-bit word boundary (even syllable), if necessary. If an
adjustment is made, a no-op is placed in the syllable which is skipped
over. At this point, all labels receive the value of the allocation
counter (the label list is optional). The block of 6L4-bit words is then
created by filling the appropriate number of words with zeroes. The
allocation counter then points to the next available 32-bit syllable
at the end of the block of 6lU-bit words. The value of the arithmetic
expression must be absolute. If the <WDS operand> is <empty>, the

expression value of zero is assumed.

Examgles:
P: WDS

Q: WDS 6L
WDS

BLK PSEUDO

Syntax :
<BILK operand> ::= <arithmetic expression>

<empty>

Semantics:

The BIK pseudo operation serves to reserve a block of L096-bit
"rords", i.e., rows of 64-bit words across PE memory. The number of rows
is determined by the value of the arithmetic expression (evaluated using
word arithmetic). If necessary, ASK adjusts the allocation counter to
a quadrant boundary, f£illing in no-ops if the adjustment has to take
place. All labels then receive the value of the allocation counter. The
requested number of "words" is then spaced over (inserting zeroes) and the
allocation counter is set to the next available syllable beyond the
requested block of storage. The allocation counter will point to a

quadrant boundary after "execution" of this pseudo.

If the <BIK operand> is <empty>, the expression value of zero

is assumed.

Examgles:
X: BIK 64

BILK
9-3

IX.F

IX.G

FILL. PSEUDO

Syntax :
<FILL operand> ::= <arithmetic expression>
<empty>

Semantics:

Let V be the value of the arithmetic expression. V determines
a nonzero power of two, M, which is the smallest power of two not less
than V. The directive to the assembler is to adjust the allocation
counter to a position--syllable address--~such that the allocation
counter is congruent to V modulo M. Word arithmetic is used in
evaluating the arithmetic expression. If the value of the expression
is zero or if the operand field is empty, M is defined as being equal
to 2. . If the allocation counter has to move, no-ops are filled into the
syllables skipped over. Labels are optional and, if any are present,

receive as their value the value of the allocgtion counter after

adjustment.
Examples:
FILL 2 Even syllable
FILL 7 Seventh syllable in a block of 8
X: FILL 16 Head of a block of 16 syllables
SET PSEUDO
Syntax:

<BET operand> ::= <arithmetic expression>
<empty>

Semantics:
See definition of EQU with an arithmetic expression as operand

for the operation of SET. There are three differences:

1) No multidefinedness check is made on the symbols being
defined, i.e., one or more symbols in the label field
may have been previously defined,

2) The lsbels are redefined at the same points in the
program in PASS II, and ,

3) If the operand field is empty, the symbol (s) is defined

as the current value of the allocation counter.

9-k

IX.H

The SET pseudo operation requires a label list. Word arithmetic

is used in evaluating the arithmetic expression.

Examgles:
P: SET 1

P: SET P+1
HERETAM: SET

DATA PSEUDO

Syntax:
<data operand> ::= <data list>
<data list> ::= <data list element> |
<data list>, <data list element>
<data list element> ::= <number> | <symbol> | <string> l
(<data list>) <repeat part>
<repeat part> ::= <arithmetic expression>

Semantics:

The DATA pseudo operation provides for the loading of data
into PE memory. A label list is optional. If necessary, the allocation
counter is first adjusted to a word boundary and a no-op is inserted in
the skipped syllable. The specified data is then placed in PE memory as
6h-bit words.

If a number is used, its converted value (6L4-bit) is placed

in memory.

If a symbol is used, the value of its syllable field is placed

in memory, right justified, in a field of zeroes.

A repetitive list is placed in memory element by element,
repeated as many times as 1s indicated by the value of the repeat part
(word arithmetic).

Ixamples:
DATA -1
STUFF : DATA 2, 3, l.2, ol.3@ -8, (1, -1) N-1, X, T7T7k4:8

IX.I ORG PSEUDO

- Syntax:
<ORG oberand> ti= <arithmetic expression>
Semantics:

The ORG pseudo operation sets the allocation counter to the
value of the arithmetic expression. Any labels are also given this
value (in the syllable field). The expression is evaluated using
syllable arithmetic. The allocation counter will have the same
relocatability as the value of the expression, i.e., symbols defined by
labeling an ILLIAC IV instruction will henceforth be absolute or
relocatable, depending upon whether the value of this expression is

absolute or relocatable.

Examples:
ORG @2 + 3
ORG X

IX.J CHWS PSEUDO

Synteax:
<CHWS operand> ::= <arithmetic expression>
Semantics:

The CHWS pseudo operation emits one ILLIAC IV instruction
which sets the word size bit in the ACR register for 32 or 6l bit
arithmetic in the PE's. The setting of this bit is according to the

value of the arithmetic expression (word arithmetic).

Value of Expression Word Size Setting Generated

6l bit

32 bit

32 32 bit

6L 64 it

Anything Else Undefined
Examples:

CHWS 6k
CHWS 1

9-6

IX.K

IX.L

REGP PSEUDO

Syntax:
<REGP operand> ::= <new PE register designator> = <register designator>
<new PE register designator> ::= $<identifier>

Semantics:

The REGP pseudo operation serves to rename register designators
which may appear in the operand field of a PE instruction. This pseudo
mist not have a label list. At any point in the program after the
appearance of the REGP pseudo-operation the defined <new PE register
designator> may be used interchangeably with the <register designator>
which defined it.

Restriction:

If any label of this pseudo operation is identical to a label
used elsewhere in the program, the REGP pseudo which defines that lgbel
must be placed physically before the other definition of the ldbel.

Examples:
REGP $AREGISTER = $A
REGP $BROADCASTNUM = $C1

Examples of uses of the defined register designators:
LDA $BROADCASTNUM
RTL, $AREGISTER,3

REGC PSEUDO

Syntex:
<REGC operand> ::= <new CU register designator> <CU register designator>

<new CU register designator> ::= $<identifier>

Semantics:

The REGC pseudo operation serves to rename CU register
designators which may appear in the operand field of a CU instruction.
The operation of this pseudo is the same as that of the REGP pseudo.

Examples:
REGC $INSTREG = $AIR
REGC $COUNTER = $C1

Examples of Use:
IDL (0) $INSTREG
STL (0) $COUNTER

9-7

IX.M SYN PSEUDO

Syntax:

<SYN operand> ::= {any defined IILIAC IV-op mnemonic or ASK pseudo-op
mnemonics}

Semantics:

The SYN pseudo operation serves to make the lsbel(s) of the
label list (which must be present) synomymous with the ILLIAC IV
instruction mnemonic or ASK pseudo-op mnemonic. At any point in the
program after the appearance of the SYN pseudo operand, the defined label
may be used interchangeably with the operation which defined it.

Examples:
MULTIPLY: SYN MLRN
DIVIDE: SYN DVRN
DIV: SYN DVM

IX.N GLOBAL PSEUDO

Semantics:
This pseudo-operation causes ASK to assemble CU instructions
in the Global mode unless

1) A local pseudo-operation appears later, or

2) A CU instruction has a non-empty <Global-local specifier>,
in which case that instruction only is assembled with the
indicated Global-localness.

IX.0 TOCAL PSEUDO

Semantics:
This pseudo-operation causes ASK to assemble CU instructions
in the local mode unless

1) A global pseudo-operation appears later, or

2) A CU instruction has a non-empty <global-local specifier>,
in which case that instruction only is assembled with the
indicated globél-localness.

9-8

IX.P DEFINE PSEUDO

Syntax:
<define pseudo> ::= DEFINE <define part>

<define part> ::= <define element>
<define part>, <define element>
<define element> ::= <define identifier> =
<define text> ##
<define identifier> ::= <identifier>
<define text> ::= {any sequence of characters not including the character

unless enclosed in string quotes}

Semantics:

The define pseudo causes the <define identifier> to serve ag an
abbreviation for the text bracketed by the = and the ##. From that point
on in the program, whenever the <define identifier> is written, ASK will

substitute for it the <define text> with which it is associated.

Restrictions:

1) The <define text> must not contain any unmatched " symbols.
2) A defined identifier may not appear as a PE or CU
register mnemonic.
3) A defined identifier may be used alone as a <mode operand>
but may not be used alone as a <left mode specifier>
<mode operator> or <right mode specifier>.

Example:
Define
LASTWORD = FILL 126; WDS ##
Y = 3 #5
X: LASTWORD Y ;

is the same as:
X: FILL 126; WDS 3 ;

9-9

X. ASK CONTROL STATEMENTS

Syntax:
<ASK control statement> ::= $<verb list>
<verb list> ::= <verb> | <verb list> <verb>
<verb> ::= <input specifier> |

<output specifier> I

<patch specifier> |

<option specifier>
<input specifier> ::= <input file designator> <label equation>
<input file designator> ::= CARD | TAPEl | TAPE2 | TAFE3 | TAPEL |

TAPES | TAPEG | TAPET | TAPES |
TAPEOQ | TAPE1O | TAPELl | TAPE 12 |
» TAPE13 | TAFELL | TAPE1S

<label equation> ::= <empty>]

= <amlti-file id>/<file id> <disk or tape file>
<disk or tape file> ::= SERIAL | <empty>
<mlti-file id> ::= <identifier>
<file identifier> ::= <identifier>
<output specifier> ::= <output file designator> <label equation>
<output file designator> ::= NEWDISK | NEWTAFE
<patch'specifier> t:= MERGE <label equation> |

, VOID <base ten number>
<option specifier> ::= LIST | SYNTAX]
XREF | BLOWUP | PUNCH |
SEQ | SEQ + <base ten number>

Semantics:
A <control statement> causes the assembler to change its mode

of operation with respect to file handling or listing options.

An <input specifier> directs ASK to accept symbolic input from
a file of the user's choice. The file CARD is the main input file for
ASK, i.e., ASK must find its first input in file CARD. If ASK is
directed to another input file, it assembles from that file until
either 1t encounters a control card with an input specifier or reads the
end of file marker. In the former case, ASK bégins assembling
from the new file and "remembers" which file it was assembling

from. In the latter case, ASK closes the file from which the

10-1

FEOF was read and continues assembling from the file which contained the
control statement which directed it to the file it has Jjust closed.
Assembly proceeds from the card image immediately following the control
statement in this case. If the <label equation> part is non-empty, ASK
attaches itself to the specified tape or disk file.

If more than one <input specifier> are given in an <ASK control
statement>, ASK will assemble from the file which is listed last until an
EQF is reached. Then it will assemble from the file listed next to last

until an EOF is reached. ASK will continue in the fashion until all input
files listed on the control statement are exhausted. It will then go back

to assembling the file in which the <ASK control statement> appeared.

An <output specifier> directs the assembler to create a new
symbolic tape or disk file. This file will contein the totality of card
imageé which ASK has processed from whatever files their origin may have
been. Once an output specifier has been used, it is not necessary to
specify it on subsequent control cards, since the option remains on for the
rest of the assembly. It is possible, however, to direct ASK to create
different output files for different sections of code by placing several
control statements with an output specifier and label equation in the

source file.

If the <patch specifier> is used, ASK comnsiders the totality of
card images from the files available as input file designators as an update
deck for file MERGE. The functions of replacement, deletion and insertion
are available. The selection criterion for which card image ASK will next
process is the sequence number comparison between the next available card
image from file MERGE and the designated input file. The selection

algorithm is as follows:

Relation between Sequence File from Which Input
Numbers is Taken
1) "PATCH" sequence < MERGE sequence "pateh"
2) "PATCH" sequence = MERGE sequence "patch
3) "PATCH" sequence > MERGE sequence MERGE

In case 1), the card from the MERGE file is retained for sub-
sequent comparisons. In case 2), the card from the MERGE file is discarded

so that the next card from that file can be used for the next comparison.

10-2

In case 3), the card from the "patch'" file is retained for subsequent

comparisons.

If the VOID option is used, ASK discards card images from file
MERGE as long as the sequence number from card images in file MERGE
remains less than or equal to the value of the <base ten number>§ The
VOID is performed when its sequence number is less than or equal to the
sequence number of the next card from file MERGE. Once ASK begins
merging it continues to do so until the assembly is terminated or an
EOF is read from file MERGE, at which point the user mey choose to
complete the assembly from the "patch" file or attach ASK to another
file MERGE. The user may at any time attach ASK to another file MERGE

through the use of the label equation construct.

At the time that a control statement is encountered, each of
the options which may be an <optioen specifier>, except SEQ, is set to
FALSE. The presence of the option specifier verb enables that particular

option. The options and their effects are as follows:

LIST The source program and instructions being generated

are listed on the printer file.

SYNTAX The generated object code is inhibited from being written
into the object code file.

XREF ASK is to cross-reference all identifiers, register
designators, and control verbs as they are encountered
and print out the cross-reference table at the end

of the assembly.

BL¢WUP When printing the generated instructions, ASK will print
all ILLIAC IV instructions in an "exploded view" with
each field of the instruction displayed individually in

octal separated from neighboring fields by a single space.

PUNCH Causes ASK to punch each card image as it is processed.

"Dollar cards", <ASK control statements>, are not punched.

SEQ Causes ASK to resequence whatever source code output it
is creating. The sequence increment is set equal to the
value of the arithmetic term (evaluated using word
arithmetic). If no term is given, a default value of
100 is used. "

10-3

Ex les:

Control statement:
$ ILIST SYNTAX XREF
NEWDISK = SPURCE/C{DE SERIAL
SEQ + 1000

$ TAPEL = SINE/ROUTINE SERTAL
LIST X REF

$ LIST PUNCH SEQ + 10000
$ NEWTAPE
$ LIST VOID 19300 SYNTAX

$ TAPEL = LAST/DONE TAPE5 = THIRD/DONE
TAPE3 = SECOND/DONE TAPE12 = FIRST/DONE

10-k

XT.

PROGRAM DECK

Syntax:

< program deck > ::= < execution card > < file cards > < data card >
< program > < end card >

< execution card > ::= ?EXECUTE ASK/ASK IT

file cards > :: < empty > | < file cards > < file card >

A

< file card > :: 2FILE < file identifier > = < data file designator >
< medium >

< file identifiers > ::= < source identifier >]

< object code identifier > |

< symbolic output identifier >
source identifier > ::= CARD | MERGE | TAPEl ... | TAPEL5
object code identifier > ::= CODE
symbolic output identifier > ::= NEWDISK | NEWTAFE
data file designator > ::= < multi-file identifier >/ < file identifier >
medium > ::= SERIAL | < empty >
data card > ::= 7DATA CARD | ?DATA < data file designator > | < empty >
end card > ::= 2END

AN AN AN AN AN ANA

Semantics:
The < program deck > is the standard B5500 execution deck.
More detailed information may be found in the Burroughs B5500 Electronic

Information Processing System Operation Manual.

A1l illegal characters must appear in column one of the cards.

Note that the < file card > supplies information to the MCP
whereas the < ASK control statement >, the "$ card", specifies file

options to the assembler.

As stated in the discussion on < ASK control statement >, ASK
must obtain its first input from the file card. By default the file CARD
is the card reader. The < file card > may be used to direct the MCP to
look for card on tape or disk, and if so, < data card > should also be
< empty > The < file card > could also be used to rename CARD, in which
case the < data file designator > of the < file card > and of < data card >

must be the same.

If many source files are to be used they may be "label equated"”
here or on an < ASK control statement >. In the former case, the information

is given to the MCP, and in the latter to the assembler directly.

11-1

The file CODE is the object code file of <program> produced
by ASK. It is a disk file as stated in the discussion on <ASK control
statement>, the SYNTAX option will inhibit the object code from being
put on this file. Naturaily, the file CODE is not produced if a fatal
error is encountered during the complication. If the file code is not
label equated to a <data file designator>, it is written into the
file 0000000/CPDE which is a temporary file whose contents may be
destroyed after the present job is completed.

<data card> should be <empty> only if CARD has been label
equated to a tape or disk file.

Examples:
1) The following system control card sequence was used to

generate a symbol disk file, SYMBOL/DISK, by assembling a disk file,
DISK/FILE.

PROGRAM DECK COMMENTS

? EXECUTE ASK/ASK IT

? FILE NEWDISK = SYMBOL/DISK output disk file in source code
7 FILE CARD = DISK/FILE SERTAL input disk file
? END

The first card image of DISK/FILE was
$ CARD LIST SYNTAX NEWDISK;

The SYNTAX option inhibited the object file CODE.

2) The following was used to assemble a program from the
symbol tape, TAIE/INIUT, and generate the object code or a disk file
MY/ NAME.

PROGRAM DECK COMMENTS

? EXECUTE ASK/ASKIT

? FILE CARD = TAPE/INFUT input tape file
? FILE CODE = MY/NAME SERTAL output disk file
? END

Since there were no control statements in TAPE/INFUT the default
$CARD LIST; was in effect.

11-2

3) The following sequence of system control card was used to
generate object code onto the disk file, SAVE/DISK, from the card input
file, READER.

PROGRAM DECK COMMENTS

? EXECUTE ASK/ASK II

? FILE CARD = READER input card file

? FILE CODE = SAVE/DISK output code file

? DATA READER

$ CARD LIST XREF BLOWUP; options specified
proéram

? END

L) TIn the following example a card file, a tape file, and a
disk file are merged together. The output source code is placed on a

type file, and the object code is placed on disk.

PROGRAM DECK COMMENTS

? EXECUTE ASK/ASK IT

? FILE CARD = CARD/FILE input card file

? FILE TAPE3 = TAPE/FILE input tape file

? FILE TAPE1O = DISK/FILE SERIAL input disk file

? FILE CODE = OBJECT/CODE output object code
? FILE NEWTAPE = SOURCE/OUTFUT output source code

? DATA CARD/FILE
$ CARD LIST NEWTAPE;

main IILIAC IV program deck {card images are put on
. part 1 SOURCE/ OUTFUT

* TAPE10 file is opened and
$ TAPE1O LIST NEWTAPE; all of DISK/FILE is put
. onto SOURCE/OUTFUT

main ILLIAC IV program deck {card images are put on
. part 2 SOURCE/ OUTFUT

: {TAPE3 file is opened and

$ TAPE3 LIST NEWTAPE all of file TAPE/FILE is
put onto SOURCE/OUTRUT

main ITLIAC IV program deck card images are put onto
. part 3 SOURCE/ OUTEUT

é

11-3

At completion the output disk file CODE = OBJECT CODE has

[Main program part 1
[Contents of disk file, TAPELO
[Main i)rogram part 2
[Contents of tape file, TAPE3
[Main program part 3

ll—l}

XIT.

ERROR MESSAGES

ASK generates error messages when 1t encounters incorrect ILLIAC IV
symbolic code. These messages are to be used by the programmer to help
him in debugging his program. A list of the possible error message are
given below. Their meaning is clear from the context. The only error

which is not fatal is the omission of an end card.

ERROR MESSAGES

¥UNDEFINED OP-CODE*
MULTIPLY DEFINED SYMBOL IN LABEIL, FIELD

¥*¥¥UNDEFINED SYMBOL*¥%

¥¥IMPROPER LEFT MODE SPECIFIERX¥**

¥¥IMPROPER MODE OPERATORX

*¥**TMPROPER RIGHT MODE SPECIFIER*¥%

*¥¥¥SKIP FIELD MISSING***

¥¥¥SKIP DISTANCE TOO LARGE*¥¥

-END CARD MISSING. INSERTED BY ASSEMBLER-

¥%¥DISALLOWED CU MEMORY ADDRESS¥*¥%

¥¥¥THLS INSTRUCTION MAY NOT BE CARD INDEXED¥*
*¥¥¥CONTROL STATEMENT ERROR. NEXT INPUT FROM FILE CARD¥¥¥
*¥¥%¥T00 MANY LEFT PARENTHESES**¥

¥¥¥TO0 MANY RIGHT PARENTHESES¥*

*¥$¥MULTTPLY DEFINED SYMBOL¥**

¥¥¥RELOCATABLE ARITHMETIC WITH MULTIPLICATIVE OFPERATOR¥¥
¥¥X¥EXPRESSION YIELDS IMPROFER RELOCATION FACTOR¥**
***¥TMPROPER SEPARATOR**%

*¥¥¥SEMICOLON MISSING OR TOO MANY FIELDS***

¥¥¥THLS INSTRUCTION MAY NOT SPECIFY A REGISTER***
#%*TMPROPER PE REGISTER DESIGNATOR¥*¥

¥¥NON-EMPTY OPERAND FIELD¥*

%¥TMPROFER CU REGISTER DESIGNATOR¥*¥

XNON-DIGIT APPEARS IN NUMBER¥*¥

*#*X¥EXPONENT OVERFLOWX*%%

¥¥¥FILE TDENTIFIER TOO LONG¥%*%

*¥¥BASE SPECIFIER GREATER THAN 36%%%

***¥INTEGER TOO LARGEX%*

¥¥¥THIS INSTRUCTION REQUIRES A LABEL%%

l2-1

XIII.

ANNNNNANNNANNNNNNNNANANANANNANANANANNANANNANAANANNAANAANA

INDEX

ACAR designator > 8-1

ACAR selector > 6-1

ACARX > 6-1

adding operator > 3-1
address field > 7T7-1

ADR use > T-1

ADR use indicator > T7-1
allocation counter designator > 3-1
alphanumeric character > 2-1
arithmetic expression > 3-1
arithmetic primary > 3-1
ASK control statement > 10-1
ASK pseudo-op > 9-1

base specifier > 2-2

base ten digit > 2-2

base ten number > 2-2

blank CU operand > 6-1
blank PE operand > 7T-1

BLK operand > 9-3

character > 2-1

CHWS operand > 9-6

compare and skip operand > 6-1
compound statement > L4-1

CU memory address specifier > 6-1
CU memory operand > 6-1

CU register designator > 6-5
CU symbol > 2-1

data card > 11-1

data file designator > 11-1
data list > 9O-5

data list element > 9-5

data operand > 9-5

13-1

NNANNNANNANNANNNNANNNANANANNNANNANNANNANNANANANNANNANANAANAANA

define element > 9-9

define identifier > 9-9
define part > 9-9

define pseudo > 9-9

define text > 9-9

digit > 2-2

disk or tape file > 10-1
end card > 11-1

end statement > L-1

EQU operand > 9-1

execution card > 11-1
exponentiation operator > 3-1
exponent part > 2-2
factor > 3-1

file card > 11-1

file cards > 11-1

file identifier > 10-1

file identifiers > 11-1
FILL operand > 9-4
global-local specifier > 6-1
identifier > 1-3, 2-1
ILLIAC IV instruction > 5-1
index specifier > 6-1

input file designator > 10-1
input specifier > 10-1
integer > 2-2

integer part > 2-2

label > 5-1

labeled end statement > L-1
lgbel equation > 10-1

label list > 5-1

left mode specifier > 8-1

<
<
<
<
<
<
<
<
<

ANNNNANNNANNANANNANNANANNANANANNANANANANNANNANANNANANANANANANNA

<

letter > 2-1

literal PE 6perand > T7-1
long literal operand > 6-1
mantissa part > 2-2

medium > 11-1

mode bit > 6-1, 8-1

mode bit specifier > 6-1

mode operator > 8-1

mode pattern operand > 8-1
mode setting operand > 8-1
multi-file id > 10-1
multiplying operator > 3-1
number > 2-2

numeric character > 2-1
object code identifier > 11-1
option specifier > 10-1

ORG operand > 9-6

output file designator > 10-1
output specifier > 10-1
paired number > 2-2

patch specifier > 10-1

PE
PE
PE
PE
PE

address operand > T-1
register designator > T-h
register mnemonic > T-k4
register specifier > 6-1
symbol > 2-1

program > k4-1

program deck > 11-1

quadrant specifier > 6-5
real number > 2-2

real number or integer > 2-2
REGC operand > 9-7

register designator > T-L
register mnemonic > 6-5, T-k4
REGP operand > 9-7

13-2 -

ANNNNANNNANNNANNANNANANNANAANANAANNA

<
<
<
<
<
<

repeat part > 9-5

right mode specifier > 8-1
routing distance > T7-1
routing operand > T-1
routing specifications > T-1
SET operand > 9-L

short literal operand > 6-1
signed base ten number > 2-2
signed real number > 2-2
skip field > 6-1

skip operand > 6-1

source identifier > 11-1
space > 3-1

statement > 5-1

SYL operand > 9-2

symbol > 2-1

symbolic output identifier > 11-1
SYN operand > 9-8

term > 3-1

unlabeled end statement > L4-1
unlabeled statement > 5-1
unsigned real number > 2-2
verb > 10-1

verb list > 10-1

< WDS operand > 9-2

