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SECTION I 

INTRODUCTION 

This report is the second of three reports to be submitted during the Phase I effort 
of the ILLIAC IV Program. At this measured milestone in the development of the 
ILLIAC IV system real progress is indeed evident. 

There exists now a detailed specification of the Processing Element for which a 
fully compatible and complete instruction repertoire has been developed. In addition, 
the data transfer paths establishing the links between the Input-Output and the 
Array, between the Control Unit and the Array, and between the elements of the 
Array have been specified. 

Progress in defining the system hardware has also been made. A family of logic 
circuits has been selected and is currently undergoing an intense packaging effort. 
The size, type and speed of the memory system for the Array ha's been selected. 

,Progress in defining the applications areas, particularly that progress made at the 
University of Illinois, is especially evident. 

The contents of this report in conjunction with the first report contain much of the 
rationale for the present system definition. 

For the remainder of Phase I, much work remains. Although most of the functions 
and specifications of the 110 and the Control Units have been identified some 
additional work is needed. 

In the area of packaging, both at the cabinet level and the logic level, detail design 
remains. Such items as power distribution, system cooling and general installation 
detail must be specified. Finally the entire procurement must be matched to a 
comprehensive program plan of schedule and delivery which is mutually acceptable. 
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SECTION II 

THE ILLIAC IV SYSTEl'vl 

This section contains discussions of specific systerns problems which are con­
sidered to be of major importance in the design of the ILLIA C IV System. 

ROUTING 

One of the instructions in ILLiAC IV is to transfer data residing in the PE array 
to new locations in that array. This is called the "routing" instruction. One 
version of this instruction will take the data from the nth PE and transfer it to 
the (n + m)th PE~ where m is an indexable variant contained within the instructionJ 
and n runs over all PEr s. Disabled PEr s are not to receive any new data or lose 
any of the data they are currently holding as a result of this instruction. 

The immediate reaction to such a requirement is to implement all the required 
various paths by brute force. Such a solution is not only expensive~ but unneces­
sary, and of inferior performance. To find a superior method of inlplementing 
routing, it will help to consider individual properties of the routing process. From 
a functional viewpoint the four properties of concern for routing are the level~ 
the timing, the modulo~ and the increment. 

In the array of 256 PE's the levels of shifting with'which we are concerned may 
be divided into shifts between quadrants, shifts between the same elements of a 
quadrant and shifts within a Processing Element. 

The timing refers to the execution time of the shift and its concurrency with other 
array instructions. 

The modulo is the end-around size of the shift which can be variable up to a given 
maximum size. For instance a 64- bit shifter may be designed to shift 64 bits 
end-around or eight 8-bit bytes end-around depending on the modulo control. 

The increment is the smallest shifting amount of which all shifts are a multiple. 
Bit shifts would have an increment of 1" byte shifts would require 8, etc. 
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The variations on these properties are many, and since the function involves a very 
large number of bits the different variations involve substantial differences in 
cost. 

Shifting at the PE Level 

The first level of consideration is the shifting of operands within the PEe Here 
a barrel switch is provided which will shift in increments of 1-bit-multiples at 
the 64- bit-operand level. 

A modulo control may be employed by adding an additional logic input to the first 
level of gating in the barrel switch and an additional gate to the receiving re­
gister input. Such modulo capability may include 8-, 32-, and 64- bit bytes and 
be extended to link PEts by a full word transfer at the end of the switching cycle 
(figure 2 -1). 

The execution time of this shifting will require one pass through the barrel 
switch for modulo 64 shifts. two passes through the barrel switch for end off 
switching. and four passes for end- around. Otherwise a transfer of Register 
B to the neighboring Register A will extend this capability between PE's. For 
the most part this logic capability exists within.a PE, and there is no con­
currency of execution at this level. 

'Shifting at the Quadrant Level 

At this level of shifting, considering the variety of desirable shifting properties 
available, there are many possibilities. Two seemingly practical forms at the 
Quadrant level are nearest neighbor connections and the quadrant barrel switch. 
These two shifting approaches represent the practical minimum and maximum 
cost for the ILLIA C IV System. 

NEAREST NEIGHBOR CONNECTIONS -Figure 2-2 shows the necessary data 
paths and gates to implement this shift approach. It has the capability of shift­
ing left or right 4096 bits in increments of 64 and 512 bits. Increments smaller 
than this may be shifted with the local barrel switch if desirable since con­
currency is not possible here. 

All shifting must be done in sequence with all arithmetic and logic instructions; 
all shifted amounts are combinations of the basic two increments. Shifting of 
a modulo size smaller than the whole quadrant is done by mode control of the 
PEts. 

THE QUADRANT BA RREL SWITCH - The main advantage of the quadrant barrel 
switch is its ability to execute any shifted amount (in increments of 8) in two, 
passes through it. Each shift can be executed concurrently with other instructions 
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in the PEe Modulo control is accomplished by controlling the contents of the 
Routing Register between partial shifts. 

A COMPARISON OF THE TWO APPROACHES -

1. The two method s can produce identical results with differences in 
execution time and cost. Ignoring time and cost the methods are functionally 
equivalent. 

2. There is an approximate cost difference of six to one. If we ignore 
the requirement for special circuits to transmit signals long distances, the 
simple gate count for the quadrant barrel amounts to 200/0 of the total system. 

3. Physical distance is an important consideration. Figure 2- 3 depicts 
a psuedo physical layout of the quadrant in which the interconnected PE for the 
Nearest Neighbor Connections may be reasonably close. Perhaps a maximum 
distance of 6 feet may be realized. 

With the quadrant barrel however some paths are long. Considering a centrally 
placed barrel switch in the middle of a 27 foot quadrant cabinet row, one row 
per quadra~t, the worst- case distance would be about 30 feet. 

This means that every shift, however short, will involve 30 feet of cable delay 
plus logic. The following computation shows anticipated delay times. 

Barrel Switch 

Cable: 30 1 X 1. 7 nsecsj ft. = 51. 0 nsecs. 

Logic: 8 gates X 3 nsecsj levels = 24. 0 
75. 0 nsecj shift 

Nearest Neighbor 

Cable: 61 X 1. 7 nsecsj ft. = 10.2 nse·cs. 

Logic: 3 gates X 3 nsecsj gate = 9. 0 
19.2 nsecsj shift 

Avera~e Barrel Switch Time = 75.0 nsecs. 

Avera~e Nearest Neighbor Time = * 4 X 19. 2 =76. 8 nsecs. 

* Refer to table 2-1, page 2- 5. 



Table 2-1. Shift Table~ Showing Shifts by One's and Shifts by Eight's 

Desired Shift Shift Desired Shift Shift 
Shift by One's by Eight's Total Shift by One's by Eight's Total 

0 0 0 0 32 0 4 4 
1 +1 0 1 33 +1 4 5 
2 +2 0 2 34 +2 4 6 
3 +3 0 3 35 +3 4 7 
4 +4 0 4 36 -4 -3 7 
5 -3 +1 4 37 -3 -3 6 
6 -2 +1 3 38 -2 -3 5 
7 -1 +1 2 39 -1 -3 4 
8 0 +1 1 40 0 -3 3 
9 +1 +1 2 41 +1 -3 4 

10 +2 +1 3 42 +2 -3 5 
11 +3 +1 4 43 +3 -3 6 
12 +4 +1 5 44 -4 -2 6 
13 -3 +2 5 45 -3 -2 5 
14 -2 +2 4 46 -2 -2 4 
15 -1 +2 3 47 -1 -2 3 
16 0 +2 2 48 0 -2 2 
17 +1 +2 3 49 +1 -2 3 
18 +2 +2 4 50 +2 -2 4 
19 +3 +2 5 51 +3 -2 5 
20 +4 +2 6 52 -4 -1 5 
21 -3 +3 6 53 -3 -1 4 
22 -2 +3 5 54 -2 -1 3 
23 -1 +3 4 55 -1 -1 2 
24 0 +3 3 56 0 -1 1 
25 +1 +3 4 57 +1 -1 2 
26 +2 +3 5 58 +2 -1 3 
27 +3 +3 6 59 +3 -1 4 
28 +4 +3 7 60 -4 0 4 
29 -3 4 7 61 -3 0 3 
30 -2 4 6 62 -2 0 2 
31 -1 4 5 63 -1 0 1 

Average number of shifts = 2~~ = 4 

4. However, real problems are not random with average shifts. The 
data to be shifted often falls into patterns which, with proper programming, can 
be made to somewhat fit the available shifting patterns of the partial shifting 
scheme, and save time over the average time taken for transfer of randomly 
placed data. Some examples of such savings follow. 

(a) The Cooley- Tukey algorithm for spectrum analysis in one form 
involves swapping data between PE's which are half an array apart at the first 
swap, a quarter of an array apart at the second swap, an eighth at the third, 
and so on. Over each 64 -PE quadrant, these transfers are accomplished with 
four, two, and one partial shifts respectively, or an average of 2. 333 partial 
shifts for each actual data transfer. This is considerably faster than the four 
partial shifts required for a random data transfer, and is faster than the data 
transfer effected through the a 11- possible-paths scheme. 

(b) Another use for the data transfer paths which cover the array is 
in the computation of global variables ("Global" here means a variable which 
acquires its definition from data which covers all the PE's). Maximum, minimum, 
logical AND~ across-word parity, sum, product, are examples of functions 
which one might want to perform on corresponding· words in all PE's, more or 
less in parallel acro"ss the array, producing a one-word result. Since PE's are 
only capable of two-operand operations, a combination of the· 64 corresponding 
variables from the 64 PEs of one quadrant into one resulting variable must 
take at least six operational steps, ·consisting of 32 operations on the variables 
by' pairs, then a pairwise combining of the 16 resulting pairs, and so on. Between 
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Figure 2-3. Pseudo Physical Layout ofa Quadrant 

0 17 16 2 15 3 14 4 13 5 12 6 11 7 10 

360 377 361 376 362 375 363 374 364 373 365 372 366 371 367 370 

20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 

340 357 341 356 342 355 343 354 344 353 345 352 346 351 347 350 

40 57 41 56 42 55 43 54 44 53 45 52 46 51 47 50 

320 337 321 336 322 335 323 334 324 333 325 332 326 331 327 330 

60 77 61 76 62 75 63 741 64 73 65 72 66 71 67 70 

1 
300 317 301 316 302 315 303 3141304 313 305 312 306 311 307 310 
---------------r-----~--------
100 117 101 116 102 115 103 1141 104 113 105 112 106 111 107 110 

1 
260 277 261 276 262 275 263 2741264 273 265 272 266 271 267 270 

1 
120 137 121 136 122 135 123 134/ 124 133 125 132 126 131 127 130 

1 
240 257 241 256 242 255 243 254: 244 253 245 252 246 251 247 250 

140 157 141 156 142 155 143 154: 144 153 145 152 146 151 147 150 

220 237 221 236 222 235 223 
, 

234 1224 233 225 232 226 231 227 230 

160 177 161 176 162 175 163 174:164 173 165 172 166 171 167 170 

200 217 201 216 202 215 203 214:204 2 13 205 2 12 206 2 11 207 210 

Figure 2-4. "Nearest Neighbors" Arrangement of Full Array, 
Showing Quadrant Subarrays 

2-6 



each operation a transfer of data occurs to place it in position for the next opera­
tion. Thus a global function takes six binary operations and five data transfer 
times when implemented within the system which has all possible paths. The 
above description of a sequence of steps is correct even if a single instruction 
calls forth the whole sequence. 

Global functions are in the same category as the Cooley- Tukey algorithm as far 
as data transfer is concerned. The data is shifted by 2 and combined with an 
unshifted copy, and so on up to a shift of 32# for the 64- element subarray. For 
the nearest neighbors scheme~ an average of 2. 33 partial shifts per actual 
shift is called for. The nearest neighbor connections would thus seem to have 
a slight advantage in speed over the quadrant barrel in executing global functions 
such as maximum, minimum, global AND, global OR, and across-word parity. 

5. The conclusion is that we do not buy anything by implementing 
schemes which tranfer data across from one side of the array to the other ·with 
a single step. The time it takes for the data to travel across the array is suf­
ficient to permit several logical operations. It is possible to find a set of partial 
data transfer paths which result in simpler mechanization and lesser wiring, 
and which do not degrade performance. Furthermore, by avoiding the barrel, 

we also avoid the necessity for allowing maximum delay on each transfer, and 
when the data is ordered, or partially ordered, a speedup {s accomplished 
which would be impossible in the more expensive system. 

Inter-Quadrant Transfers 

Shifting between quadrants is dependent on the type of intraquadrant shifting 
selected, but the considerations at the interface are similar. The choice of 
transferring all words of a quadrant as a column (row) may be made for either 
case. 

Here also a similar layout of PE ~s was done for the quadrant (figure 2-3) can 
make edge switching faster than quadrant switching. Figure 2-4 shows an 
arrangement of the whole array, 256 PE's, with the same properties for the 
whole array that figure 2-3 has for the 64 PEl sof the single quadrant. PE's 
which differ in number by ±1 or ±16 from a subject PE are physica.l neighbors 
of it, just as in figure 2-3, where PE's which differ in number by ±1 or ±8 of 
a given PE are physical neighbors thereof. Furthermore, each quarter of the 
diagram of figure 2- 4, as indicated by the dotted lines, is a copy of figure 2~ 3. 
To allow one to see this latter point, the PE's in figure 2-4 are numbered from 
o to 377 in octal. To translate from an entire array PE numbering, as shown 
in figure 2-4, to quadrant numbering, one may suppress the first and fifth bit 
of the binary equivalent of the octa.l PE number. When this is done, each quarter 
of figure2-4 is like figure 2-3, with those on the right reflected about the verti­
cal axis, and those on the bottom reflected about the horizontal axis. The lower 
right quadrant, for example,is like figure 2-3 both upside down and backwards. 

2-7 



2-8 

Machine Instruction 

The machine instruction to use this equipment thus req uires considerable equip­
ment to translate the instruction into the var ious shifts required. The number of 
shifts will differ, depending upon how far around a given quadrant, or whole array, 
the data is to be shifted. Variants of the shift instruction will be able to call upon 
the intraquadrant shift even when the entire array is being used. This is of 
advantage during one possible implementation of the Cooley- Tukey algorithm, 
for example. A shift of one in the 32-bit-word mode also involves a transfer of 
half-words betwee'ri.'neighboring PE's, since each one is now acting as two half­
word PEls. 

The shift instruction therefore calls up, possibly an internal barrel shift in the 
PE, possibly a half-word transfer between neighboring PE's, a variable number 
of east-west neighbor shifts, and a variable number of north- south shifts. To 
preserve the contents of the A and B registers of the disabled PE's, intervening 
steps must avoid the A and B registers, which may be only an initial source of 
data, or the destination at the final shift. Either the MDR or the S register, 
therefore, is involved in routing, with strong preference to the MDR, since 
it is desirable, even though maybe not as absolutely necessary, to save the S 
register as well as the A and B. 

THE MULTIPLY ALGORITHM 

The most important single logic function from the standpoint of both performance 
and cost is the multiply. The emphasis placed on this instruction in its design 
and application singles it out for special discussion. 

When first considering the many different ways to implement the multiply the 
ILLIA C array itself offers the first direction. There is a class of algorithms 
which takes advantage of the statistical nature of the ONE and ZERO trains in 
the multiplier. The average execution time of such a multiply is always less 
than a worst-case pattern of ONE and ZERO in the multiplier and, therefore, 
in the course of a program run, the multiply time is the average multiply time. 

However, because of the lock- step synchronous operation of the Array which 
handles up to 256 pairs of operands simultaneously, the average execution time 
becomes the worst-case time. Such methods therefore are not applicable to the 
ILLIA C system. 

Following the above, the next decision to be made is how many bits of the multi­
plier are to be examined and disposed of simultaneously during a single step in 
the" cyclic multiply sequence. Apart from circuit speeds, this is the single basis 
for determining the speed of the multiply. 



Two seoarate, yet interdeoendent, techniaues, are available to do this. One 
technique is to encode fields of the m ultiDlier into a larger number base* ; and the 
second techniaue is to combine manifold summands selected by the conditions of 
the multiolier bits. In practice these two techniaues are combined into a single 
comprehensive design. The following general relation is useful in dete"rmining 
the siz e of the partial multiplier: 

Where: 

Execution time: (MB +3) G· 6 t 
XB 

MB Nunlber of bits in the mantissia 

XB Number of bits in the partial multiplier 

G Number of gates in typical delay chain 

6
t 

Nominal gate delay including loading, wire length, etc. 

Reasonable values for the above paramete rare: 

MB 48 bits 

G 10 gates selected as typical PE logic chain 

6. t = 3 nanoseconds/ gate 

Execution time = memory cycle time = 250 nanoseconds. 

Therefore: XB = 8 bits. 

Table 2-2 shows the relative speed-cost relation for the range of possible partial 
multiply sizes. The important feature in this table is the gate count differences 
for the different selected sizes. In terms of a 10K-gate Processing Element 
the 8- bit selection appears to be a reasonable maximum hardware investment. 

* MacSorley, O. L., "High- Speed Arithmetic in Binary Computer. " 
Proceedings of the IRE, pp. 67 -71, January 1961. 

Wallace, C. S., "A Suggestion for a Fast Multiplier, "IEEE 
Transactions on Electronic Computers, V. EC-13, February 1964. 
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OPERAND SELECT GATE ~ t 
t ! MULTIPLIER DECODE 

CARRY SA VE TREE 1 
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FULL ADDER I-- t 1 

+ 
BARREL SWITCH 
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Figure 2-5. Logic Elements Involved in Multiply Algorithm 

Memory Access Memory Access 
Buffer (512 bits) Buffer (512 bits) 

, 1 8 words 1 8 words , 
Control P.E. P.E. Control 

Unit Array Array Unit 
1 1 2 2 

INTER -QUADRAN~ 
EXCHANGE 

Memory Access Memory Access 
Buffer (512 bits) -I Buffer (512 bits) 

t 8 words 18 words 

Control P.E. P.E. Control 
Unit Array Array Unit 

3 3 4 4 

Figure 2-6. SystelTI for Handling Data From Control Unit to 
Processing Element l Block Diagram 



Table·2-2. Relationship of Gate Size to Multiplier Size 

Number of Logic Gate Count for Estimated Execution Time 
Partial Multiplier Bits Multiply Only (nanoseconds) 

6 2,000 330 

8 2,800 270 

12 4,800 210 

Having decided what constitutes a reasonable number of multiplier bits to handle 
in a single cycle (in this case 8 bits), the next consideration is to determine 
how to maintain a 10- gate delay for the worst- case logic chain. To evaluate 
this criteria the following substeps in the multiply must be completed within a 
10-gate chain: 

1. Decode the partial multiplier. 

2. Add the next summand to the partial product. 

3. Shift the multiplier and the partial product. 

4. Normalize the result. 

Figure 2- 5 is a block diagram of the logic elements involved in the execution of 
this algorithm. The delay chain involved is the time to go from register to 
register. 

The multiply algorithm selected first decodes the 8 bits of the multiplier into a 
base- 4 representation into which 0, + I, -1, and +2 values of the operand are 
selected. This decode is stored in the Operand Select Register (OSR). The 
OSR is 12 bits long for storing the fully decoded four conditions for each of 
four operands. 

Because the 8 bits of the multiplier are taken as bit pairs, four summands must 
be added to the partial product in a single cycle. The carry save tree, which 
contains three full length carry save adders (2 less than the total number of 
summands) combines four summands plus the partial product into a new sum and 
carry value. The full adder now combine s this sum and carry into a new partial 
product. 

In terms of worst-case delay, the logic chain through the operand select gate, . 
the carry save tree, and the full adder represents the worst-case delay. 

Detailed logic design analysis has shown that a nominal 30-nanosecond delay 
through the chains is possible. A breadboard of the actual hardware must be 
built and operated to obtain a true final result. 
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EIGHT-BIT WORD LENGTHS 

The ILLIAC IV is to be built with several different word lengths. Each 64-bit 
PE is capable of being split, effectively, into at least two 32-bit PE's. Another 
desirable word-length breakpoint is at eight 8-bit effective PEl s within any 
given PEe To evaluate this possibility we require, first; to know what it costs 
to expand PE capability to handle eight independent 8-bit words, and second, we 
need to estimate the worth of the extra capability produced by such an expansion 
over and above the capability already inherent in the 64- bit PE for handling 8- bit 

~ pieces. The conclusion is that all logical operations, probably even add and 
. subtract, are easily programmed for the 64- bit PE so that they make effective 

use of the parallelism of the 64- bit machine. The only feature that is lacking 
is the independent mode control of the 8-bit sections of th~ 64-bit PEe 

The price for 8-bit words is mainly in the fragmentation of the controls which 
results. Existing circuit design contemplates a buffer capable of driving 24 
loads. With independent mode control on every 8- bit slice, each 8 bits of a 
64-gate transfer command would have to be independently controlled, thus re­
quiring 8 gates instead of the 3 gates required by straightforward implenlentation 
of the 64- bit PEe Since there are estimated to be 150 command lines, and the 
64-gate transfer command is typical of them, we estimate that 750 gates per PE 
are added by the fragmentation of the command lines. In addition, the barrel 
controls multiply, from the three control signals per level required by only 
one word size, to 24 control signals per level. However, only two levels of 
control are used in the module eight barrel, so that 42 additional gates are added 
from this account. 

The extra mode register bits for 8- bit operation imply extra lines to the control 
unit, and extra drivers and receivers for them Twenty- eight such bits per 
PE will require 28 drivers and 28 receivers in the PE itself, and 3, 584 extra 
drivers and receivers in the control unit. The design difficulties of cable 
bundles of this bulkiness are considerable at the speeds under consideration. 

The 8-bit operation contemplated here assumes we still have no more than one 
index register per PEe To get eight 8- bit words out of independently specified 
memory addresses requires eight memory accesses, a situation which is exactly 
the same as though 8- bit fields were programmatically extracted from64- bit 
words in 64- bit operation. 

The most promising design of the memory currently contemplated for the ILLIA C IV, 
representing the best compromise between cost and cycle time, is a nonde­
structively read memory. W~iting a small field, such as 8 bits, into a memory 
word will require two memory cycles, one to read those portions of the word 
which are not to'be changed, and one to write back the word,· one 8-bit field of 
which has been changed. A store instruction in 8- bit operation, if. independent 
addressing is called for, on each 8-bit word, will require, therefore) 16 memory 
cycles .. 



The above hardware operations are hardly better than programmatic implementation 
in 64- bit mode. A pparently, the chief virtue of implementing 8- bit operations in 
the PE hardware is that mode register control over the individual operations can 
be achieved. 

All the above circuitry amounts to an additional 800 gates in the PE for 8- bit 
operation. Probably 1000 gates is a better estimate. From this we conclude 
that adding 8-bit operation to the 64- bit PE add s about 10o/c to the equivalent 
gate count, and presumably also adds 10o/c to the estimated cost of the PE 
exclusive of memory. 

In addition to the direct cost, there is degradation of the performance in normal 
64-bit mode. Were the equipment packaged as a solid volu.me, lengths would 
be increased by 3. 2o/c as a result of the 10o/c increase in components. In a well­
matched system, equally sensitive to memory and logic speeds, the result 
would be a net 1. 6o/c slowdown. Power and coollng requirements also follow the 
component count. 

The opposite question is to enquire to what extent can 8- bit operations 1::>e carried 
on in parallel in a 64- bit PE without the assistance of specific 8- bit operations 
in the hardware. 

Certain operations" which are expected to be frequent operations in 8-bit pro­
gramming, are independent of word length, such as all bit- by- bit Boolean 
operations" compare all words against zero, set to specified value, read from 
memory, store to memory, and others. 

Certain operations are programmable in such a way as to rnake use of much of 
the parallelism of the 64- bit machine even though the entities being manipUlated 
are only 8 bits long. Add, subtract, and routing, are examples of this class of 
operation. Add, for example, on words of 7 bits plus sign each, can be handled 
by removing the sign bit and using the resulting space for overflow control, thus 
allowing as many adds in parallel as the adder is long. Routing can be partially 
implemented on all eight 8-bit words at once by means of the barrel. End-around 
shifts can be implemented by two shifts, which are then partially blanked in 
accordance with a mask which could be held in the S register, and the two shifted 
words then ORed together. 

The only operations of any signiflgance which are not included in the above 
paragraph are either things such as multiply or independent indexibllity, which 
were never intended for 8- bit operation because of their expense, and mode 
control. 

_ To program mode control, without actually having it in the hardware, requires 
manufacturing masks" which blank out whole 8- bit segments of the 64- bit word, 
in response to decision bits which usually will show up in the sign- bit position 
of the 8-bit words. 
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This programming, while facilitated by the one- clock-time barrel l by the com­
plete set of Boolean operations l and by the fast single-bit instructions, will not 
be trivial. 

COMMON DATA PATHS 

This section describes the various paths by which information is transferred 
between the PE and its memory both to the input-output interface, and to the 
·control unit. A s a result of the .conIlicting requirements on transfer rates, 
frequency of use l and destination, there are three segments of the equipment 
provided for data transfer. These segments are an input- output buffer l a 
memory access buffer with each control unit, and direct lines 'from the control 
unit to and from the PE. The rest of this section describes this hardware in 
terms of its use in each class of signals which must be handled into and out of 
each PE. 

!.nput- Output Buffering 

Present plans are to provide an input-output buffer of 4096 bits for each quad­
rant of the array. Each bit of the I/O buffer has connection to one bit of the 
memory data register of one PE. When data is to be transferred to or from 
a PE memory from the I/O buffer, one memory cycle is taken from PE opera­
tions l and all 64 PE's insert one data word into their memory at that memory 
cycle. 

Data is transferred across the external interface of the I/O buffer in word sizes 
appropriate to the device found at that interface. The external device may be 
a buffer memory with very long words l say 4096 bits each. In this case, I/O 
operations are accomplished by stealing one PE memory cycle from the array 
for each cycle of the external buffer memory. On the other hand, the external 
device could conceivably be a device of lesser word size, 512/bits per word, for 
example, in which case an independent loaqing and unloading control is required 
to assemble the shorter external words into the 4096- bit word in the 110 buffer. 
This independent control communicates with the array control unit both to steal 
memory cycles, and to report I/O complete when a whole biock of data has been 
successfully transferred. 

The design of this interface is almost independent of the rest of ILLIA C IV. 

It is not the intent of this section of this report to discuss the design of the inde­
pendent I/O control unit, as this design is dependent upon matters discussed 
els.ewhere in this report. 



From Control Unit to Processing Element 

Data for the use of the PE, data to be stored in the PE memory for the control 
unit's own use, and commands for the PE are transmitted from the control unit 
to the processing element. Common data lines from the control unit are used 
for data which goes from the control unit to the PE, whether this data is for PE 
use or for the control unit's private use. To avoid continually interrupting PE 
operations for data fetches and stores which are related to control unit purposes, 
many words should be fetched and stored in parallel. A reasonable compromise 
between amount of hardware and interference with PE operation appears to be 
no more than 32 words of data transmitted to the PE array in parallel. Further 
discussion of the buffer size is found below. We plan to provide 32 words of 
buffering. Of these 32 words, eight are assigned to each quadrant. A block 
diagram of the system for handling data is shown in figure 2- 6 (page 2-10). 

It is simplest to describe operation by starting with the isolated quadrant. Eight 
words of data are transmitted to the memory access buffer from the control unit. 
This transmission is overlapped with PE operations provided that the program is 
such that the requirement for transmitting data can be recogni7ed far enough ahead 
of time. This will generally always be recognizable ahead of time when the data 

. is simply to be stored in memory. One clock time per word is expected to be 
required, since the data paths within the control unit are expected to be typically 
one word wide. Each word in the memory access buffer has access to a column 
in the array. The eight words have simultaneous access to one element in every 
column, namely a row. As a result, the eight words can be transmitted in paral­
lel to every row in the array_ If data is to be stored in memory, one row accepts 
the data. 

If data is being broadcast, rows receive the data. In this case, the eight words 
of data are eight copies of a single word whicl} originated in the control unit. 

When the array is operating as a coherent whole, all four control units operate 
on t~e same program str ing and data in parallel, and have identical internal 
states. Out of a package of 32 words to be sent, the f,irst eight can be derived 
from information supplied by the fir st control unit, the second eight can be 
derived from information supplied by the second control unit, and soon. Like­
wise, when broadcasting data, the four control units will have four identical 
copies of the word. to be broadcast, each of the four is copied eightfold into the 
memory access buffers, and each of the resulting 32 copies is then used to 
drive eight PE's. 

Also transmitted from the control unit to all PE's in parallel are control signals . 
. These control signals, are identical for all PE's. Retiming considerations will 
demand that there be a flip-flop in the control unit for each such line. Present 
planning calls for a receiver per cabinet for each such signal, and eight PE's 
per cabinet. 
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Addresses must also be issued from the control unit to all PE's. These will use 
the least significant 12 bits of each word in the memory access register, and the 
broadcast data bus. 

Issuing of addresses and broadcasting of data require a fixed delay of several 
clock times. The design of the microsequences as manufactured by the control 
unit is such as to allow for this constant delay. 

From Processing Element to Control Unit 

When data is fetched from PE to control unit in the isolated quadrant, the 
mechanism is the reverse of the process described above for disseminating data. 
Namely, the information is collected in the form of a single word from each 
single column of the quadrant, and the eight words from each row are then 
transmitted to the control unit. For the instruction" store to broadcast register, " 
the eight words are ORed together to form a single word in the control unit, 
very like a broadcast in reverse. 

When data, or program string, are being fetched in 32-word packages from the 
united array an additional complication sets in, since each one of the memory 
access buffers contains only a quarter (eight words) of the 32-word package and 
each control units wants all 32 word s. In this case it will be necessary to trans­
fer data around among the memory access buffers until each quarter package of 
eight words has shown up once in each of the eight- word memory access buffers. 

Single word fetching makes use of the same paths by disabling all but one of 
the words being received. 

Also entering the control unit are lines from each of the mode register flip-flops 
in the PE' s. To the control unit of one quadrant, 'a bit in the mode register 
appears as a 64-bit register to the control unit, which may be set, read, com­
pared with other registers available to the control unit, etc, When operating in 
united mode, control units must cooperate in the sensing of the state or mode 
registers. For example, a "jump on any bit equal to ONE" means to jump if 
any bit in anyone of the four 64- bit registers involved is ONE. Since all four 
control units run the same program instructions at the same time, only twelve 
wires, one to communicate between each pair of control units ,are required to 
secure the necessary cooperation. 

Evaluation 

Some of the above described data-transferring procedures take more time than 
one might at first expect. One 250-nsec. memory cycle is required to load the 
memory access buffer. This memory cycle interferes with the action of the 
PE only insofar as the PE memory or memory data buffer is required. 



The memory access buffer for a single quadrant can be unloaded into the appropri­
ate area in program lookahead or local data buffer in eight clock times. However, 
these potentially interfere with other used of program lookahead or local data 
buffer. With proper implementation of the controls, these eight clock times can 
be largely hidden by being taken from otherwise idle time in the two buffer areas 
in the control unit. 

When the array is in united operation, one must count not only 32 clock times 
rather than 8, one also must transfer the data from one memory access buffer 
to another. 

If cables of up to 30 or 40 feet long separate the memory. access buffers, then 
the time to transfer data from one memory access buffer to another may well 
be three clock times, and three transfers are needed. The conclusion is that 
as much as 41 clock times are needed to transfer the 32 words, read in one 
memory cycle time, into the appropriate areas of the four control units. Seven 
clock cycles in each memory cycle is a likely design choice. In this case, 41 
clock cycles represents 1. 46 microseconds. This 1. 46 microseconds is over­
lapped with other operations as long as a reservoir of instructions for PE 
operation can be maintained in the control unit. 

However, this 1. 46 microseconds often gets in the way when loading the program 
lookahead. It is a penalty to be taken whenever the program jumps to a location 
not contained in program lookahead. Further, the coarser block size means that 
loops between 32 and 64 words long will less often be found within the program 
lookahead, and program fetching will take place more often when the block which 
is fetched is larger. Large block size also interferes with broadcast operations, 
since a larger delay occurs between the instruction to fetch a block of data to the 
data buffer and the first opportunity to broadcast one of those words, when blocks 
are larger. 

Optimum block size is that which finds the best tradeoff between interference 
with the operation of the PE's in the array, and slowing of operations in the 

~ control unit. Block sizes of 8, 16, and 32 words are, easily available with minor 
modifications of the structure here described, and a choice of a smaller block 
size than the 32 words here proposed can be easily made during the early, design 
months of the next contract. 

MODE 

Introductory Considerations 

. Each PE is supplied with a mode register, which it can change as the result of 
tests, and which the control unit can set at will. Instructions will be executed 
or not as a result of the setting of the mode register. This arrangement is in 
lieu of branching at the PE level, since all PE's must share the common 
instruction stream, and therefore cannot independently execute transfers of 
control. 
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Modes should be remembered and recoverable. At the very least, each routine 
which one enters must be supplied with fresh capabiHty for setting and changing 
its mode, while remembering the mode of the calling sequence. Actually, it 
seems that considerably more flexibility is desirable. In the limit, one could 
specify a particular mode register, out of some set of mode registers, for each 
instruction. 

The Problem 

At issue is the question of the location of the backup storage of the noncurrent 
modes. The choice is between supplying back-up mode register storage in the 
PE's, or of supplying the control unit with the capability of reading, storing, 
and restoring the PE modes. The implementation of mode control is con­
siderably different, depending on the results of this choice, so'that we are 
really choosing between two different systems for controlling PE operations 
in response to mod e. 

Back- Up Storage In The Control Unit 

The first system to discuss is that with back-up storage for other than current 
modes in the control unit. In this system, only one mode register's worth 
of flip-flops are in the PE, and the setting of the mode register, for which a 
given instruction will be executed in a specific PE is known at the time of that 
instruction. Either four bits accompany the instruction, specifying which of 
the possible modes perInit the execution of the instruction, or else a pre- existing 
decision, based on the content of the mode register, controls the execution 01' 

nonexecution of instructions in the PE. Bit economy in the instruction stream 
favors the latter, if mode is not to change at every instruction. A decision 
based on speed also favors separation of the mode decision from the execution 
of the instruction, since then less control gating is involved for the individual 
instruction at the PE. 

One of the savings in speed of the ILLIA C IV type of computer ought to lie in the 
fact that the subcommand matrix of a normal computer finds itself mostly in the 
control unit, so that the instruction decoding and timing wpich consumes one 
clock time per instruction in most computers can be spent in the control unit, 
overlapped with useful arithmetic work in the PE. For most complete overlap, 
the PE has an "on- off" flip-flop to control the execution or nonexecution of the 
next instruction. Individual instructions in such a scheme will never wait for 
the decoding of mode information before they can start and noninterferin~ 
microseQuences can freely overlap. Occasionally a one- clock-time instruction 
would be needed to change the setting of the" on- off" flip-flop in response to 
some new interpretation of the mode register. 

The "on-off" flip-flop also must respond (sometimes) to arithmetic overflow 
as well as to programmed tests which change the mode bits. There is an over­
flow flip-flop which appears to the control unit much like third mode bit. 



In this system there are therefore four flip-flops per effective PE with mode-like 
functions. Thus there are four flip-flops per 32-blt word, or eight flip-flops 
per actual PE, two programmatically specifiable mode bits, the overflow flip-flop, 
and the "enable-disable" flip-flop. There are PE instructions to set or reset 
each mode bit in response to programmed tests. Each bit in the PE appears 
to the control unit as a 64- bit word, since there are 64 PEl s per control unit. 
There are instructions to read, save, and set these word s, the instructions 
being control unit instructions rather than PE instructions. The control unit 
is provided with high- speed register storage for such saving. It is also pro-
vided with logical instructions to manipulate the modes, namely AND, OR, and 
COMPLEMENT instructions which can operate on the words formed from the 
mode register bits. Jump instructions in the control unit would test mode bits 
(either "any mode bit" or "all mode bits "). They would also test old modes 
stored in the control unit. 

This system thus has a reservoir of old modes which can be reactivated on 
short notice. This back-up is in the control unit. Response to old mode settings 
is effected in one clock time by setting the "on-off" flip-flop in each. ,?E. The 
instruction stream has no mode field per instruction, but does have mode- mani­
pulating instructions, which are decoded by the control unit in parallel with the 
issuing of instructions to the PE. 

Storage of old modes in the control unit is backed up further by the storage of 
words from old mode registers back to memory. It is assumed that the control 
unit has some means of addreSSing memory, both for read and wr ite. 

Back- Up Storage In The Processing Element 

The second system we discuss is that with back-up storage of old modes assigned 
to the PE's. In this system, where several modes are stored in the PE, a method 
must be chosen for choosing the applicable mode for any given stream of in­
structions~ A settable pointer could be used, and the pointer setting changed 
on command from the control unit, in between actual processing instructions. 
Using the pointer, the operation would be fully equivalent to operation with 
back-up storage in the control unit except for the location of the stored bits. 
Whe,n a mode register address is lissued with each instruction, more flexibility 
is obtained. A s described to us, the system was used with six mode bits with 
each instruction: Two bits of mode register address, and four bits to interpret 
the contents of that register. 

Arithmetic overflows are lost in the implementation unless tested for immediately 
by means of a jump instruction in the control unit. They cannot influence mode 
directly, although, clearly, when tested, they can be used to control modes. 
Even with back-up s,torage of modes in the PEl s, some means of setting new 
modes under control unit control is required. Whether a path directly from 
control unit to PE for loading the mode registers is needed, or whether indirect 
methods suffice, has not yet been determined. 

2-19 



2-20 

Each instruction in the PE must therefore look to the mode register for condi­
tions against which execution is made conditionaL Some instructions are made 
one clock time longer becuase of this. Furthermore, no overlapping of 
non-interfering microsequences appears possible. 

Jump instructions are made dependent on a bit, one per PE, returned to the 
control unit. These instructions are, like any other, conditional on one of the 
mode registers, so that jumps can easily be made conditional on mode register 
settings. This capability is similar to that achieved in the competing system 
by testing old modes in the control unit. 

The system has a limited reservoir of old modes which can be reactivated on 
short notice. This reservoir is limited in length, but very fast of access. The 
instruction stream has a 6- bit mode field per instruction. 

Storage of additional modes is in PE memory. If they are to be packed effcient­
ly in memory, a short mod e- packing routine is necessary. 

Functional Capability 

Both competing systems can execute the same functions. A partial list of 
capabilities follows .. 

• Quick change of control.from one mode register to another. 

• Storage 6f several different mode registers per PEe 

• Transfer of control possible in response to mode register setting. 

Comparison 

A list of features in which the suggested methods of supplying back-up mode 
registers differs reveals none in which the functional capabilities made avail­
able by the one cannot also be made available by the other. However, there 
are other differences. 

"When back-up mode storage is in the PE every microsequence requires the 
operation of mode gating in the PE, and overlapping of microsequences is not 
possible. Six bits of every instruction are expended on mode information. 

"When back-up mode storage is in the control unit, every change of mode requires 
a one t-time operation interleaved between the regular arithmetic operations. 
Each change of mode takes a short instruction, say 16 bits. 

What is needed, to compare the advantages and disadvantages listed above, is 
some estimate of the number of instructions, on the average, executed with­
out change of mode setting, or executed while ignoring mode. Even if average .. 



the string length is only two or three. The speed advantage would appear to lie 
with the system of storing modes in the CD. 

Another difference is in the PE hardware. Considerable savings are expected by 
placing the back -up mode storage in the CD, whose long registers are much 
cheaper per bit than PE short registers. 

At a very detailed machine language level of coding there are differences in 
the progran1.ming of mode control. With back-up modes stored in short registers 
in the PE, a different mode with every instruction is appropriate, but program­
ming compl~xity mounts when mode registers above the fourth are used. With 
control unit back-up storage, programming complexity remains essentially 
constant for any depth of mode storage, although producing'memory interference 
when depth of storage exceeds that available in the high speed registers of the 
control unit. The same assembly language could be used in either case, if 
desired, putting the above differences solely into the assembly program. 
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SECTION III 

REVISED PE LOGIC DESIGN 

This section describes the mechanization and hardware requirements for the PE. 
A block diagram is included containing the data paths for each item required to 
mechanize a PE. The logic requirements per unit are tabulated in table 3-1. 

PROCESSING ELEMENT DESCRIPTION 

The revised PE logic design is shown in figure 3 -1. A PE is essentially a three­
register system which can execute a complete general purpose computer order 
code as described in Section VII of TR66-3 or otherwise modifieq in this report. 
A fourth register was added to store intermediate results. Capabilities of some 
units may be increased or decreased to vary operation code execution times. A 
summary of each unit in the PE follows. 

MEMORY DATA REGISTER (MDR) 

This unit is abuffer register between a PE and its PE's thin film stack and the 
outside world. The register serves as an intermediate buffer when performing 
array shifts or memory stores and fetches. This register is accessible even 
though the PE's mode status is disabled. The MDR receives operands from the 

: Common Data Bus, A Register, Operand Select Gates, Address Adder and its PE's 
.memory. The register's output is connected to the Common Data Bus, Address 
Adder, PE's memory and Operand Select Gates located within its PE's boundaries 
or four nearest neighbors. 
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Table 3-l. PE Logic Requirements 

UNITS FUNCTIONS 
BIT GATES/ TOTAL FLIP DRIVERS/ 

POSITIONS BIT GATES FLOPS RECEIVERS 

Memory Data Register Buffer register between thin film 
stack and logic 64 6 384 64 
Address Adder inputs, bit positions 
52 through 63 12 1 12 
Drivers and Receivers to and from 
Common Data Bus 64/64 
Drivers to adjacent PE Operand 
Select Gates 64/00 
Drivers and Receivers to Input 
Output Registers 64/64 

Operand Select Gates Selects an Operand for PE 
processing 64 6 384 
Receivers from two adjacent num-
bered PE's 00/128 

Multiplicand Select Selects 4-56 bit words based on 
8 multiplier bits 56/ word 16 896 
Control word enable signal gen-
eration, some fan out 288 49 

Carry Propagate Consists of six adder sections: 
Adder Receives mantissa field inputs from 

A-B Registers, Pseudoadder Tree 
and Operand Select Gates. 
Gate and Flip-flop requirement for 
six sections 648 12 
Input Gates: A Register 48 2 96 

B Register and Operand 
Select Gates 48 3 144 

Address Adder Consists of two adder sections: Per-
form address modification, exponent 
summation and supplementary sec-
tions to Carry Propagate Adder 
Gate and Flip-flop requirement for 
two sections 216 4 
Input Gates: Address Modification 12 4 48 

Exponent Summation 16 5 80 
Control Inputs 16 3 48 

Output Gates: 16 3 48 

PE's Index Register Stores Address variable 12 12 

Memory Address Buffer register between thin film 
Register stack and logic 12 12 

A Register Main operand store and Overflow 
flip-flop 64 7 448 65 

B Register Auxiliary operand store 64 6 384 64 
Address Adder input:,: pOSitions 
o through 15 16 1 16 

S Register Intermediate operand store 64 64 

Pseudoadder Tree Converts 4 Words + Partial Product 
into CPA inputs 56 27 1512 

Logic Unit Performs logic functions between 
A-B Registers 64 6 396 

Barrel Switch Performs shifting functions. 65 14 910 1 
Barrel Switch Control Logics 48 

Mode Register Buffer register between a PE and the 
Control Unit 8 8 
Mod.e control input gates 38 
Drivers and Receivers to Control Unit 8/8 

Leading One's Detects position of leading one, 
Detector mantissa field 184 

PE Control Receives apprOximately 200 Signals 
Signal Rec. frqm the Control Unit 000/200 

7228 355 200/264 

A ssurnptions: 1. The flip flops are constructed of 4 gates per element. 
2. The Drivers and receivers are constructed of one logic gate. 

Total gates used. 7228 
1420 

664 
9312 
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OPERAND SELECT GATES (OSG) 

This unit consists of one logic level of decoding gates. The enabled gate selects 
an incoming operand from its MDR or nearest neighbor's MDR for array transfer 
operations or PE processing. During an array transfer operation, . the OSG out­
put is stored temporarily in the MDR. PE processing requirements are that the 
selected operand be connected to the B Register input gates and Multiplicand Select 
Gates. Depending upon the instruction an operand, or multiple thereof, is loaded 
into the recipient register. 

A-B REGISTER (ACCUMULATOR) 

The A Register and B Register provide main operand store and auxiliary operand 
store, respectively. The Barrel Switch output is connected to both registers. 
These register inputs are used to execute operation codes that require main or 
auxiliary operand shifts, or logical combinations thereof. Both register outputs 
are routed to the Carry Propagate Adder (CPA) and Logic Unit. 

In addition the A Register receives inputs from the CPA and the Modified Address 
Adder. * The CPA output is gated into the A Register's mantissa field. This 
output, depending on the algorithm, could be a partial product or remainder, a 
summed mantissa or just an operand transfer from the B Register or the OSG. 
During an operand transfer, the appropriate exponent is gated directly into the 
register's exponent field. The Modified Address Adder output is a summed value 
loaded into the exponent field. The A Register's outputs are connected to the 
Leading ONEs De tector, MDR, Special Register (SR) and the Modified Address 
Adder. The B Register receives additional inputs from the CPA; OSG, and SR. 
The CPA input is a completed 8 -bit product obtained in a multiplication micro­
sequence step. The OSG input is the incoming operand from this PE's or an 
adjacent PE's MDR. The SR input is the incoming .operand obtained from a previous 
calculation. Other B Register's outputs are connected to the Multiplicand Select 
Gates and Modified Address Adder. The Multiplicand Select Gate inputs are 
multiplier bits decoded into enable signals for the next multiply step. The Modified 
Address Adder input is the exponent field to be summed in the adder. 

LOGIC UNIT 

This unit performs logic functions between the A Register and B Register. The 
unit receives outputs from both accumulator registers. The various logic functions 
are performed as specified in Section VII of TR66 -3 or otherwise modified in this 
report. This unit provides the input gating function to the Barrel Switch unit. 

* The Modified A.ddress Adder term refers to the Address Adder extended 4 bit 
positions. 



BARREL SWITCH 

The Barrel Switch is a matrix of symmetrical gates which shifts a 64 -bit parallel 
input any number of places to the left or right either end-off or end-around. Oper­
ation is started upon receipt of a 64 -bit parallel input and appropriate control 
signals. The output is connected to both the A and B Registers. 

LEADING ONES DETECTOR 

The input to this unit consists of the A Register's mantissa bit positions. This 
unit detects the location of the most significant set bit, decodes its position as a 
radix 2 power and enables appropriate Barrel Switch displa'cement control signals. 
The unit also senses the absence of a set bit, thereby detecting a zero value. This 
decoded signal is used to zero the exponent field of the A Register. 

MULTIPLICAND SELECT GA TES 

These gates select four multiplicand words each based on 2 bits of the multiplier 
mantissa only. The Multiplicand Select Gates are partitioned into two parts, one 
which receives the next set of multiplier bits to be decoded into multiplicand word 
enable signals and the other which gates the appropriate multiplicand (word) into 
the Pseudoadder Tree. During multiplication, four 2 -bit pairs of multiplier bits 
are received and decoded in advance to form the enable signal that gates the 
required words into the Pseudoadder Tree for the next microsequence step. The 
decoded signal may select multiplicand multiples of times one, times minus one, 
or times two. This word selection enable signal is stored in flip -flops at the 
termination of the current microsequence step. 

During an operand transfer, the word selected' will enter the Pseudoadder Tree so 
that its output is positioned at the A Register mantissa input gates. 

PSEUDOADDER TREE 

The Pseudoadder Tree consists of three carry save adders per bit position. During 
multiplication, this unit receives inputs consisting of four words from the multipli­
cand Select Gates and the current partial product from the A Register. The 
carry save adders reduce these five inputs to two outputs, one being the summand 
sum and the other the summand carry. These outputs are gated into the CPA 
in their true and complemented form. 

CARRY PROPAGATE ADDER (CPA) 

Upon receipt of an input signal set from the Pseudoadder Tree or the A -B Regis­
ters, or the A register and Operand Select Gates, the CPA adds the inputs in a 
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microsequence step. When executing an arithmetic instruction, the extended 
CPA's output bit positions 0 thru 47 are gated into the A Register mantissa field. 
When executing the multiplication algorithm, the CPA's output positions 48 
thru 53 are gated into the B Registers eight most significant locations, and 
positions 0 thru 47 are gated into the A Registers mantissa field. 

During multiplication the CPA functions in two distinct modes: group carry save 
additions, and extended mantissa addition. The saved group carries are dis­
placed 8 bit positions to the right and re -entered into that particular adder group. 
The group carry save addition is performed on those adder sections whose output 
is entered into the A Register's mantissa field. Additional adder sections are 
required to perform this algorithm. These adder sections receive their inputs 
from the most significant 16 bit positions of the B Register and group carry save 
bits from the previous microsequence step. The least significant section 
performs section carry save addition. The saved carry is re -entered into this 
adder displaced eight bit positions to the right. The last step in the multi­
plication algorithm requiring product summation is performed by the CPA oper­
ate mode of extended mantissa addition .. The additional adder sections are 
connected to the CPA to form the· extended tna,ntissa adder. This microsequence 
step allows the carry to propagate throughout the adder to form the completed 
product. 

MODE REGISTER 

The Mode Register is a buffer register between the PE and the Control Unit. The 
PE status (operative or inoperative) is controlled by two bits of this register. 
These two bits are controlled exclusively by the Control Unit. The PE controls 
other register flip -flops when executing specific instructions. 

ADDRESS ADDER 

The Address Adder inputs are received from the Common Data Bus, MDR, PE's 
Index Register and the Memory Address Register. These added sums are con­
nected to the input gates to the MDR, PE's Index Register and the Memory Address 
Register. The Modified Address Adder inputs are received from the exponent 
bit positions of the A -B Registers and the OSG. This added output is either decoded 
to form Barrel Switch control signals or entered into the A Register's exponent 
field. 

PE INDEX REGISTER 

This unit receives inputs from the Address Adder. Its output is connected to the 
Address Adder where compare operation or address modifications are performed. 



MEMORY ADDRESS REGISTER (MAR) 

The MAR is a buffer register between a PE and its thin film stack. The MAR out­
put is the thin film stack operand address location. Depending upon the instruction 
the MAR can be loaded or modified with Address Adder inputs. The Address 
Adder input is gated into the MAR at the start of a memory cycle. 

SPECIAL REGISTER (SR) 

The SR Register is used to store intermediate results obtained during PE pro­
cessing. The operand input is received from the A Register. The SR register's 
output is gated into the B Register, thus providing a buffer 'store for a previously 
computed operand without a memory fetch. 
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SECTION IV 

THE INPUT-OUTPUT SUBSYSTEM 

GENERAL CONSIDERATIONS 

The following design considerations are pertinent to the ILLIAC IV I/O Subsystem. 

1. A disk storage system will provide the principal on-line backup storage 
for the ILLIAC IV System. Present memory state of art singles out disk file stor­
age as the only medium with the necessary volume and cost parameters to satisfy 
the ILLIAC IV requirements. Requirements for the disk file system are further 
considered at the end of this section. 

2. I/O word transfers to and from the PE Array will be in the form of a 
4096 -bit word. This capability makes maximum use of the interrupt time of a 
quadrant and keeps I/O interference with the Array program to a minimum. It 
also provides a separate 1/ a path to each PE to accommodate applications which 
require asynchronous direct inputs to the PE memories. Some real-time problems 
involving large array sensor systems are typical of this application. 

3. Capability to perform interlaced I/O transfers from simple descriptor 
operation is desirable. Considering the variety and number of peripheral devices 
the system may ultimately incorporate, the capability to store and rapidly fetch at 
least 64 I/O descriptors to control the interlaced I/O transfers is necessary. 

4. Much routine I/O processing such as data packing and unpacking, 
descriptor assembly and updating, etc., must be performed external to and inde­
pendent of the Array or Control Unit. Therefore, a processing 'device similar to 
a medium scale computer module would be most suitable. There are, however, 
some 1/ a programs such as code and format conversion which are eminently 
suitable to Array processing. 
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5. The existence of an economical core memory system separate and 
distinct from the Array memories is necessary for the following reasons: 

a) Transfers from tape to disk, or card to disk, or disk to printer, must 
have a buffer area available to collect reasonable block sizes before making trans­
fers to the' disk in order to minimize latency time overhead. 

b) Frequently used subroutines which overflow array storage can be kept 
in random access, zero latency time memory to avoid millisecond delays in 
processing. 

c) To permit I I 0 lookahead transfers from disk to the array to overlap 
latency time with processing, a separate buffer memory is desirable as a staging 
area for such transfers. 

It is possible that the buffer memory required to interface the disk mass memory 
and the PE array memory may be very large. Anum ber of core memory manu­
facturers are being surveyed to identify possible candidates for core memories 
in the capacity range up to 16 million bits (modules independently accessible up 
to 8 million bits), with word-lengths in the range of 1024 to 4096 bits, and cycle 
times in the range of 2 to 8 microseconds. In the indicated capacity range the 
ferrite core memories are currently dominant from the cost standpoint. Memory 
organizations involving only 2 wires per core, such as linear select or variations 
of "2 1/2 D, " are generally indicated to minimize mat fabrication cost. This is 
also a significant consideration here but in this case it is likely that the electronics 
will remain a very significant portion of the cost. For the longer word lengths 
(2K - 4K bits) it appears that" 2 1 / 2 D" would offer little advantage over linear 
select and the large number of sense amplifiers and data bit drivers would reflect 
heavily on the cost per bit. It also appears that practical considerations may 
limit word drivers to something in the order of 1000 cores per line and hence might 
require multiple driver and switch matrices for the longer word lengths. Neces­
sarily tentative extrapolations of fairly recent cost data suggests that it may be 
difficult to obtain costs much lower than 3 cents per bit for a core memory for 
this requirement. 

At this time several core memory manufacturers, including the Burroughs Com­
ponent Division, have been contacted about this requirement. ' The unusual geometry 
of this unit precludes the use of an existing product line item. This fact has delayed 
detailed responses beyond publication of this report. 

DISK STORAGE 

Effort to determine candidates for a disk file mass memory offering high data 
transfer rates and economic storage in capacities in the range of 300 million to 1 
billion bits has continued. Obtaining the high data transfer rates desired in this 
applicat~on (greater than 300 megabits / second) requires a high degree of parallelism 
in the transfer, e. g. a large data storage word. The parallel mode of operation 



increases the amount of read-write electronics required and it is desirable to keep 
this increase to a minimum. It is possible to reduce the number of read -write 
channels below one per bit if basic bit rate capability can be traded to effect. the 
reduction. This tradeoff is indeed a necessity if fewer heads are simultaneously 
accessible than the number of bits required in parallel. 

The reduction of the number of required read -write channels is effected by using a 
multiple zone storage format in which several bits per word time are recorded 
serially in the outer zones. In general a two -zone format allows the greatest 

. reduction in the number of read-write channels for a given sacrifice of maximum 
bit rate while formats of three or more zones afford greater capacity utilization. 
More than three zones are seldom warranted since the required increase in the 
number of clock rates tends to cancel the attractiveness of the small, further incre­
ments to utilization efficiency. The following relations enable specific disk 
organizations to be evaluated. For a three-zone format the number of tracks in 
each zone must be related as follows: 

2n + n = N [nb + 2 '- K] 
1 2 T ~ 

and for a two -zone format 

where 

n
1 

= the number of tracks in the outer zone 

n
2 

= the number of tracks in the !Y'tddle zone 

NT = total number of tracks per disk face 

K = number of bits per track per word stored serially in the outer zone. 

N = the number of bits per word per face n
f 

N = the number of bits per storage word 

n
f 

= the number of disk faces used per word 

4-3 



The number of read-write channels required is: 

n = n. n c n f 

where nh is the number of heads per face which are simultaneously selected. For a 
reduction of read -write channels below one per bit of the parallel storage word it 
is required that 

In order that the available capacity of the disk file be used efficiently it is also 
required that nh be an integral submultiple of the total number of tracks per disk 
face, NT' and that nf shall be an integral submultiple of the total number of faces 
per file, N( 

For the usual ranges of interest the maximum packing density occurs in the inner­
most track of the outer zone. It is at this critical radius, R , that the maximum bit 
packing density, B, applies. C 

where. 

R2 = outermost track radius 

T = the radial track density. 

The number. of storage words per data cylinder, that is, the number of words 
accessible in one disk revolution without head switching, is given by: 

2TT RcB 
~= K 

The word transfer rate, UW, is then determined in terms of the disk rpm as follows: 

• _ (RPMt TT RcB (RPM) 
~ - nW \60)- 30K 

The total file capacity is; 

bits/ file. 
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The ideal packing efficiency# a measure of capacity utilization referred to the 
maximum possible capacity which would be available at uniform packing density 
in all tracks# is given by: 

where R2 and R1 are the radius of the outermost and innermost tracks respectively. 
A related packing factor based on the maximum possible capacity at a constant 
number of bits per track for all tracks is: 

Note that this factor is in general greater than unity because the multizone format 
utilizes available disk area more efficiently than would be possible with a single 
clock rate for the entire disk (as would be required for a straight parallel 
configuration). 

In the multiple zone format every track in the same zone contains the same number 
of bits# but each zone requires a different clock rate. The clock rates for a two­
zone format# for example, would be: 

K nW in the outer zone 

(K -1) nW in the inner zone. 

As previously reported J the Librascope 4800 disk file series is potentially attractive 
because of the large number of heads per face. The model 4802 is of particular 
interest because the increased packing density offers higher basic bit rates and 
more capacity in the same basic unit. The salient characteristics are summarized 
here. 

No. disk per file - 6 (48" dia. ) 

Tracks per face - 432 

Packing density - 2000 bits/inch 

Track density - 48 tracks I inch 

RPM - 900 (35 ms avg. access) 
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Table 4-1. 512-Bit, Parallel Organizations for the Librascope 4802 

No Head All Selected Heads on 
Modifications 

One Disk One Face 

Bits Bits 
3:2 4:3 Format (Out Z Inner Zone) 

3:2 4:3 
er one: 

Head Groups/Head Assembly 1 1 3 4 
Bits/Face/Word 86 128 256 512 
Heads/Sel. /Face/Word 36 36 108 144 
Heads/Group 12 12 4 3 
Faces Sel. /Unit 6 of 12 4 of 12 2 of 12 1 of 12 

Ideal Packing Efficiency 83% 86. 3% 83% 86.3% 

No. Stg. Words/Data Cylinder 83840 58000 84500 58000 
32-Bit Segments/Data Cylinder 2620 1815 2640 1815 

Word Transfer Rate, MHz 1. 26 O. 87 1. 27 0.87 

Read-Write Channels 216 ·144 216 144 

Data Cylinders /Unit 24 36 24 36 

Total Stg. Cap. Words/File (10
6

) 2.0 2.09 2.02 2.09 

Total Stg. Cap. Bits/File (10
6

) 1024 1070 1030 1070 

Clock Rate, Inner, MHz 2. 52 2. 62 2. 54 2. 62 
Clock Rate, Outer, MHz 3. 78 3. 48 3.81 3.48 

No. Tracks, Outer Zone 168 240 160 240 
No. Tracks, Inner Zone 264 192 272 192 

Head Groups, Outer Zone 14 20 40 80 
Head Groups, Inner Zone 22 16 68 64 

Head Sticks, Outer Zone 14 20 13 + 1/3 20 
Head Sticks, Inner Zone 22 16 22 + 2/3 16 

Clock Channels /Unit 12 8 4 2 
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The large number of accessible heads permit a number of possible disk organizations. 
Without sacrificing capacity the following might represent limiting transfer rate 
capabilities. 

1. Up to 128 bits per face or 1024 bits per file at a word 
transfer rate of approximately o. 8 megaHertz without 
modifications to head stick wiring. 

2. Up to 512 bits per face or 2048 bits per file at a word 
transfer rate of approximately o. 8 megaHertz if head 
stick wiring is revised to enable simultaneous 
selection of four heads per stick. 

3. Up to 256 bits per face or 1024 bits per file at a word 
transfer rate of approximately 1. 2 megaHertz if head 
wiring is revised to enable simultaneous selection of 
three heads per stick. 

Still larger word lengths would be possible by revising head stick wiring to permit 
simultaneous access to all heads but the resulting increase in the nun1.ber of head 
wires from 15 to 39 would likely be troublesome. With no fewer than 3 heads per 
group the number of wires per stick can be held to 23 for completely flexible head­
track sparing, or to 14 wires per head stick if restriction to group sparing is 
acceptable. At the word lengths of interest it is necessary to either subdivide the 
head stick wiring or concurrently select heads over several diskfaces. Both have 
some potential disadvantages; the latter from the possible necessity for skew cor­
rection due to relative timing errors between several faces and/ or head plates, 
and the additional clock channels required. At a word length of 512 bits either 
approach is a possibility. Table 4-1 presents a summary for four different organ­
izations: two involve no head stick revisions, and two require head revisions but 
involve only one disk or one disk face, respectively. Two different two -zone for­
mats (indicated in the table as the number of serial bits per word time in outer 
zone: the number of serial bits per word time in the inner zone) offer words trans­
fer rates of O. 8 to 1. 2 megaHertz. At the initial contact with General Precision, 
Inc., they indicated a tentative preference for organizations involving concurrent 
head selection on a single face because they did not think they had adequate 
information at that time with respect to the skew problem. 
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SECTION V 

PROGRAMMING 

PE OPERA TIONS 

This section describes modifications and additions to the list of instructions ex­
ecuted, at least in part, by the logic within Processing Elements. A11 instruc­
tions not mentioned here are functionally unchanged from those described in Sec­
tion VII of Progress Report No.1 (TR-66-3; August 26, 1966). However, some 
changes in instruction forma.ts are contemplated to accommodate certain new in­
structions. In particular, some of the new instructions will be ma.de var iants of 
old instructions instead of new op- codes and these old instructions will have their 
formats changed to incorporate variant fields. 

In 32-bit mode, bits 0 and 32 are the sign-bits of the two operands in either the 
A or the B Register; bits 1-7 and 33-39 are the exponents; bits 8-31 and 40- 63 
are the mantissa magnitudes. Fixed- point operations always involve the mantissa 
magnitudes and the mantissa signs only. Thus, in 32- bit mode fixed- point, op­
erations are performed on 24-bit-plus-sign quantities. When an operation uses 

-operands from both the A and the B Registers, corresponding bits from the two 
registers are involved. A s an example, a double-length arithmetic shift (SHD) 
treats bits 8- 31 of the A and B Registers as one 48- bit quantity and bits 40- 63 of 
the two registers as another 48-bit quantity. Shlft counts are interpreted modulo 
32 in 32-blt mode. 

The PE Index Register is not affected by the word-length mode. For example, 
Load Index from A Register (LXA) always transmits bits 52- 63 of the A Register 
'to the Index Register. . 

There are now nine mode-bits per PE, designated as the \V, E, E1, F, F1, G, 
I, and J bits. The \\1'- Bit is always set or reset by the Control Unit and designates 
the word-length (ZERO implies 64-bit operands, ONE implies 32-bit operands'). 
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In 64-bit mode the E-Bit enables or disables the changing of full operand registers 
and the E1- Bit is not available for program use. In 32 - bit mode, the E- Bit con­
trols the changing of bits 0- 31 of the registers and the E1- Bit controls bits 32- 63: 
In test instructions executed by PEts, any register bit which is disabled from 
being changed is also disabled from being tested to generate a change in any "mode 
bit. In 64-bit mode, the F-Bit is set to ONE whenever an arithmetic fault occurs 
in the PE and the F1-Bit is not available for program use. In 32-bit mode, the 
F-Bit is set to ONE whenever a fault occurs in arithmetic performance on bits 
0-31 of operands and the F1-bit is set to ONE whenever a fault occurs in bits 
32-63. In 64-bit mode, the instruction list is augmented to permit specification 
of anyone of the G, H, I, and J bits to hold the result of any test. For example, 
the tests for the A-Register being zero now include GAZ and HAZ (Set G/H if A 
Equals Zero) as well as IAZ and JAZ. The Control Unit can enable or disable a 
PE as a result of the condition of the G and H bits in a manner identical to the 
previous capability with the I and J bits. In 32-bit mode, the IAZ instruction sets 
the G-Bit if bits 0-31 of the A-Register are zero and sets the I-Bit if bits 32-63 
of the A-Register are zero. Of course, if the E-Bit equals ZERO, the G-Bit 
is unchanged and if the E1-Bit equals ZERO, the I-Bit is unchanged. Similarly, 
JAZ affects both the Hand J bits in 3~-bit mode. The operations of instructions 
calling for setting of the G and H bits (e. g. GAZ, HAZ) are presently undefined 
for 32-bit mode. 

The new register in each PE is designated the ItS Register" (for Save Operand 
Register or Special Register). The contents of the S Register are not involved 
or altered by any arithmetic or shift instruction. Three instructions have been 
defined involving the S Register: 

SAS Store A Register in S Register 

Copy all of the A Register into the S Register. If in 64- bit mode and 
E = ZERO, do not change the S Register. If in 32-bit mode and E = ZERO, 
do not change bits 0-31 of the S Register. If in 32- bit mode and 
E1 = ZERO, do not change bits 31-63 of the S Register. 

IBS 

SWAPS 

Load B Register from S Register 

Swap A, Band S Registers 

A Goes to S 

B Goes to A 

S Goes to B 

There is now a set of instructions which permit operand transmissions to begin 
and/ or end at the MDR without involving the A and B Registers. These instruc­
tions are designed so that intermediate PE's can participate in multi- PE routing. 
without having their operand registers altered.. The Control Unit has a single 
instruction which causes a sequence of transfers among neighboring PE's to 
accomplish the desired multi-PE routing. The instructions transmitted to the 
PE's by the Control Unit in response to the single instruction executed by the· 



Control Unit are also available for the program to call upon individually. These 
instructions include MDR-to-MDR transmission with direction specified, storage 
from the A or the B Register to the MDR of the same PE, and leading of the A 
or B Register from the MDR of the same PEe A disabled PE does not execute 
those instructions which load its A or B Register but does participate in the 
others. This control of which PEls finally receive multi-PE transmissions, 
coupled with the programmed control of the path distance and directions, permit 
the single Control Unit instruction required. In effect, all PE' s originate 
transmissions but, after the path control has been counted down, only enabled 
PE's accept the result of the transmission. The operands which arrive at 
disabled PE' s are retained in their MDR' s and may be discarded by the next 
instruction causing their replacement. However, some saving of transmission 
time may be accomplished, for certain routing patterns, if the first multi-PE 
transmission is followed by a new transmission that starts with MDR-to-MDR 
transmissions and which terminates with a different set of PEls being enabled 
to accept the transmission results from their MDR's into their A and B Registers. 

There are now instructions which cause the clearing of the exponent field of the 
A or the B Register. Clearing of the mantissa field has always been available 
as an end-off arithmetic shift with any shift count exceeding the length of the 
mantissa. With the Barrel, shifting to clear a field takes no longer than the 
execution of a special clear field instruction. Obviously, in assembly language 
a clear mantissa instruction may exist which would assemble as a shift. 

There is now a round variant on each of the pertinent arithmetic instructions. 
In floating-point, rounding is accomplished before normalization to preserve 
the prope r significance. 

There are now instructions which add address fields to the previous contents of 
the Memory Address Register, with the address fields being optionally provided 
by fields within the instruction or the PE Index Register or both. This permits 
straightforward, multi-level, indirect addressing when the level is known. 

There is now an instruction which stores an operand from the A, B or Memory 
Data Register of an enabled PE to the Common Data. Bus. When only one PE is 
enabled, this provides the required transmission of an operand from a PE to the 
Control Unit without requiring memory access. When two or more PEls are 
enabled, the result of this instruction is undefined. 

There are now instructions which carry an indexable- 6-bit field specifying one 
bit within either the A or the B Registers. The bit number is interpreted modulo 
64 in 64-bit mode.. In 32-bit mode, the bit number is interpreted modulo 32 and 
as modulo 32 plus 32, allowing specification of corresponding 'bits in both 
halves of the Register. The operations on and with the specified hit are: 

• Set either the G, H, I or J bit to equal the specified bit. 
In 32-bit ~ode, only I and J are defined. ) 
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• Change the specified bit. 

• Set the specified bit to ZERO. 

• Set the specified bit to ONE. 

There are now instructions which perform arithmetic on the magnitudes of the 
operands. 

There are now instructions which compare the magnitude of the A Register with 
the magnitude of the B Register. Also, the magnitude of either register may 
be compared with the Common Value. Comparison with the magnitude of the 
Common Value is not included as a separate PE inst ruction since this may be 
accomplished by having the Control Unit broadcast the magnitude only of the 
Common Value. 

The instructions which operate upon or compare the value of the PE Index 
Register have been augmented so that the Index Register may be stored in, 
loaded from,or compared with the least significant twelve bits of the B Register 
or a memory word. When a memory word is involved in any of these instruc­
tions, the address in memory is indexable. 

CONTROL UNIT INSTRUCTIONS 

In the following numeric list of instructions, the first syllable is given in octal. 
Op-code "000" is interpreted by the CU as a halt. Op-codes "001-177" are ex­
ecuted in part by the CU and part by the PE array. Op -codes" 200 -377" are 
interpreted fully by the CD and no direct PE action results. 

In ulti -syllabic instructions, the following abbreviations are used to indicate the 
coding of the syllables other than the first: 

A bit which does not affect the operation of the instruction being 
described. 

a A bit which is part of an address or literal field. 

b A bit which is part of a field which designates a bit- number within 
a register. 

c A bit which is part of a shift count ( in some instructions a 
bit-number). 

C An eight-bit syllable used to designate an address within CU 
local memory. 

d A bit which designates shift direction. 

e A bit which distinguishes between end -off and end -around shifts. 
End -around shifts are mnemonically referred to as "Rotate. II 



i A variant bit which is defined as ONE for the specific variaI1t being 
discussed. 

o A variant bit which is defined as ZERO for the variant being discussed. 

L An eight -bit syllable which is part of a literal field. 

M An eight -bit syllable which is part of an address field used by the CD 
to address IVlain Memory. 

v A variant bit which has meaning in defining a variant described 
elsewhere. Examples of this are given following this list. 

x A variant bit which controls indexing, by the PE Index Register, 
of the address, shift-count or bit-number field given in the in­
struction. 

As an example of the use of these abbreviations in the instruction list, consider 
the instructions which transmit data between neighboring PE's. Each of these 
instructions starts with an op -code syllable equal to octal 120 and has a second 
syllable specifying variants. The variants permit the choice of the A Register, 
the B Register or the Memory Data Register as the transmission origin; the same 
three registers, or the Memory Address Register, may be the destination; the 
transmission-direction may be North, East, South, or West. Two bits are used 
for each of these variants, leaving two undefined bits in the variant syllable. The 
two most significant bits specify the originating register, the next two bits specify 
the destination register and the two least Significant bits specify the direction. 
Transmission from the Memory Data Register to the Memory Data Register of the 
North neighbor is indicated by coding" 10" for each of the register -designation 
bits and "00" for the direction: 1010 .. 00, where the periods indicate the undefined 
bits. In the instruction list this would appear "ioio .. 00". However, to avoid 
listing each possible variant separately, the list contains the following t.hree 
entries: 

120 iovv .. vv 

120 vvio .. vv 

120 vvvv .. 00 

D-T­

-DT-

--TN 

The first entry denotes the coding of the bits that specify the origin and indicates 
that the other variant bits have no affect on the origin. Similarly, the second entry 
denotes destination and the third entry denotes direction. The mnemonic abbre­
viations show the characters that represent the variants and hyphens are used for 
character positions that are used to denote other variants. In the specific example 
being considered, "DDTN" means MDR -to-MDR transmission North and is encoded 
"ioio .. 00". 
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Elements of the Control Unit 

The control unit is conveniently described in terms of its registers and other 
functional entities. The registers consist of: 

• Eight mode function registers, E l' E 2, F l' F , G, H, I and J 
although physically located in the processing e~ements, are addressed 
by program as though they were registers of the control unit 

• Index· registers, each 32 bits long 

• 64-bit registers in high speed scratchpad storage. Sixty-four of 
these can be used as the broadcast buffer. 

• Program counter 

• Interrupt register and mask, or interrupt control, register 

• Local register address pointer, 8 bits of register address. 

The above registers are addressible uniformly using an 8 -bit register address 
in the instructions. In addition, there are several registers which are not 
addressible by the 8 -bit field, but are implicity addressed by all instructions 
which are relevant to their use. They are: 

'. Program lookahead, for holding a reservoir of program steps 
independently of memory accessing. 

• Address register, which serves as an accummulator for address­
sized fields. It is 24 bits long. 

• A ccumulator (for want of a better name), a common register 
referenced by all data manipulating instructions. It is 64 bits long. 

• A queue of instructions and q,ata, which decouples the operations 
which are solely within the CU from those that refer to the PE's. 
This queue, like that in the B8500, has no effect on the operations 
of the instructions except to permit a certain amount of parallelism, 
and therefore is not discussed further. 

Discussion of the Instructions 

All registers within the CU are uniformly addressed by an 8 -bit field, which is in­
dexable. The operation of transferring the I Register to the E Register, which is 
"enable those PE's which had a true result on the most recent test involving the 
I-Bit, " is accomplished by the same sequence of instructions as transferring 
register number 24 to register number 42 which merely moves data around the 
scratchpad. Similarly, a jump is accomplished by storing a new value in the 
numbered register which is the program counter. 



A bonus which comes from this approach is that capabili ty which is invented for 
the use of one special case, such as reading a PE number from the E register, can 
be used on any data within the CD, thus increasing programming flexibility. 

The CUAccummulator is central to most CU operations. Its use is implied in 
most CD data transmission instructions. Whenever an instruction is transmitted 
from the CD to the PE array, the CD Accummulator may modify the PE instruction 
or otherwise participate in the operation of the PEt For example, the PE in­
struction "Load A Register from Common Value" (LAC) transmits the contents of 
The CD Accummulator to the A Registers of all enabled PE's. The accummulator 

also receives the transmission from the PE in the "Store A Register to Common 
Data Bus" Instruction (SAC). 

When an instruction with an address, shift-count, or bit-number field is trans­
mitted to the PE's, the contents of the CU Accumnlulator are added to this field 
before transmission. Thus, multiple indexing with CU index registers is accom­
plished by ordinary addition to the CD Accummulator before issuance of the PE 
instruction. 

The CU also has_ one special index register for its own use in addressing w:ithin 
its local memory. The act of placing a value in this index automatically causes 
the addition of this value to the next instruction with a CD register number. This 
register is always cleared after its use. 

000 HALT Halt All Operations 

002 CHSA Change Sign of A Register 

003 CHSB Change Sign of B Register' 

004 SAP Set A Register Positive 

005 SBP Set B Register Positive 

006 SAN Set A Register Negative 

007 SBN Set B Register Negative 

010 CEA Clear Exponent of A Register 

011 CEB Clear Exponent of B Register 

013 CMB Complement B Register 

015 CLB Clear B Register 

016 NORM Normalize A Register 

020 SAD Store from A Register to Memory Data Register 

021 SBD Store from i3 Register to Memory Data Register 

022 LAD Load A Register From Memory Data Register 
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023 

024 

025 

026 

027 . 

030 

031 

032 

033 

034 

035 

036 

037 

040 

041 

042 

043 

044 

045 

046 

047 

050 

051 

052 

053 

054 

055 

06_0 

061 

062 

063 

064 

LBD 

SAC 

SBC 

LAC 

LBC 

LMA 

LMB 

LMC 

LMD 

LXA 

LXB 

LXC 

LXD 

SXA 

SXB 

SXC 

SXD 

ADAX 

ADBX 

ADCX 

-ADDX 

LDAM 

LDBM 

STAM 

STBM 

LDMM 

LDDM 

SAS 

LBS 

SWAP 

SWS 

DBA 

Load B Register from Memory Data Register 

Store from A Register to Common Data Bus 

Store from B Register to Comn1on Data Bus 

Load A Register from Common Value 

Load B Register from COlnmon Value 

Load Memory Address Register from A Register 

Load Memory Address Register from B Register 

Load Memory Address Register from Common Value 

Load Memory Address Register from Memory Data Register 

Load Index Register From A register 

Load Index Register from B Register 

Load Index Register from Common Value 

Load Index Register from Memory Data Register 

Store Index Register in A Register 

Sotre Index Register in B Register 

Store Index Register to Common Data Bus 

Store Index Register in l\1emory Data Register 

Add A Register to Index Register 

Add B Register to Index Register 

Add Common Value to Index Register 

Add Memory Data Register to Index Register 

Load A Register as Designated by Memory Address Register 

Load B Register as Designated by Memory Address Register 

Store A Register as Designated by Memory Address Register 

Store B Register as Designated by Memory Address Register 

Load Memory Address Register as Designated by Memory 
Address Register 

Load Memory Data Register as Designated by Memory 
Address Register 

Store A Register in S Register 

Load B Register from S Register 

Swap A and BRegisters 

Swap with S Register (A to S: S to B: B to A) 

Duplicate B Register from A Register 



100 xdcc cccc SHA Shift A Register Mantissa 

101 xdcc cccc SHB Shift B Register Mantissa 

102 xdcc cccc SAL Shift A Register Logical 

103 xdcc cccc SBL Shift B Register Logical 

104 xdcc cccc RAL Rotate A Register Logical 

105 xdcc cccc RBL Rotate B Register Logical 

106 xdcc cccc SHD Shift Double -Length Mantissa 

107 xdcc cccc SDL Shift Double -Length Logical 

110 x. bb bbbb CHBA Change Specified Bit of A Register 

111 x. bb bbbb CHBB Change Specified Bit of B Register 

112 x. bb bbbb SBA Set Specified Bit of A Register 

113 x. bb bbbb SBB Set Specified Bit of B Register 

114 x. bb bbbb CLBA Clear Specified Bit of A Register 

115 x. bb bbbb CLBB Clear Specified Bit of B Register 

120 oovv .. vv A-T- Inter -PE Transmission frorn A Register 

120 oivv .. vv B-T- Inter -PE Transmission from B Register 

120 iovv •. vv D-T- Inter-PE Transmission from Memory Data Register 

120 vvoo •. vv -AT- Inter -PE Transmission to A Register 

120 vvoi .. vv -BT- Inter-PE Transmission to B Register 

120 vvio .. vv -DT- Inter -PE Transmission to Memory Data Register 

120 vvii .. vv -MT- Inter - PE Transmission to l\1emory Addres s Re gister 

120 vvvv •• 00 --TN Inter-PE Transmission North 

120 vvvv · . oi --TE Inter - PE Transmis sion East 

120 vvvv · . io --TS Inter-PE Transmission South 

120 vvvv · . ii --TW Inter-PE Transmission West 

121 oioo ioio CLA Clear A Register 
BOOOO Boolean Function 0000 

121 oHi ioio AND A AND B; Result to A Register 
BOO01 Boolean Function 0001 

121 oiii ioii NIMP Not (A Implication B); Result to A Register 
B0010 Boolean Function 0010 

121· oiii iiio NRIMP Not(B Implication A); Result to A Register 
BO 100 Boolean Function 0100 
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121 oooi ioio 

121 ioii ioio 

121 ooii ioio 

121 o iii iiii 

121 ioii ioii 

121 oooi ioii 

121 ooii ioii 

121 ooio iiio 

121 ooli iiio 

12 1 iiii iiii 

122 oovv vvvv 

122 oivv vvvv 

122 vvvv vvvo 

122 vvvv vvvi 

122 vvoo ooov 

122 vvoo ooiv 

122 vvoo oiov 

122 vvoo oiiv 

122 vvoo ioov 

122 vvoo ioiv 

122 . vvoo iiov 

122 vvoo iiiv 

122 vvoi ooiv 

DAB 
'B0101 

EOR 
BOlIO 

OR 
BOllI 

NOR 
BIOOO 

MEQ 
B100l 

NOTB 
B1010 

RIMP 
BI011 

CMA 
Bl100 

IMP 
BIlOl 

NAND 
B1ll0 

Duplicate A Register fromB Register 
Boolean Function 0101 

A Exclusive OR B; Result to A Register 
Boolean Function 0110 

A OR B; Result to A Register 
Boolean Function 0111 

Not (A or B); Result to A Register 
Boolean Function 1000 

A Material Equivalence B; Result to B Register 
Boolean Function 1001 

Complement of B Register Transmitted to A Register 
Boolean Function 1010 

B Implication A; Result to A Register 
Boolean Function 1011 

Complement A Register 
Boolean Function 1100 

A Implication B; Result to A Register 
Boolean Function 1101 

Not (A AND B); Result to A Register 
Boolean Function 1110 

Perform A rithmetic on Sign and Magnitude 

----M Perform Arithmetic on Magnitude Only 

----R No Rounding of Result 

----R Round Result 

ADD Fixed Point Add A to B; Result to A Register 

UFAD Unnormalized Floating Add A to B; Result to 
A Register 

SUB Fixed Point Subtract B from A; Result to A Register 

UFSU Unnormalized Floating Subtract B from A; 
Result to A Register 

MUL Fixed Point Multiply A by B; Result to A & B 

UFMU Unnormalized Floating Multiply A by B; Result 
toA & B 

DIV Fixed Point Divide A by B; Quotient to A~ 
Remainder to B 

UFDV Unnormalized Floating Divide A by B; Quotient to A~ 
Remainder to B 

FAD Float:ing A dd A to B; Result to A 



122 :vvoi oiiv 

122 vvoi ioiv 

122 vvoi iiiv 

122 vvio ooiv 

122 vvio oiiv 

122 vvio iiov 

123 iiii iiio 

123 iiii ioii 

123 ioii ioii 

130 oovv vvvv 

130 oivv vvvv 

130 iovv vvvv 

130 iivv vvvv 

130 vvoo vvvv 

130 vvoi vvvv 

130 vvio vvvv 

130 vvvv oovv 

130 vvvv oivv 

130 vvvv iovv 

130 vvvv vvoo 

130 vvvv vvoi 

130 vvvv vvio 

131 oovv vv .. 

131 oivv vv .. 

FSU 

FMU 

FDV 

EAD 

ESU 

IDV 

GR8 

LS8 

EQ8 

G---

H---

1---

J---

Floating Subtract B from A; Result to A 

Floating Multiply A by B; Result to A & B 

Floating Divide A by B; Quotient to A, Remainder, to B 

Extend Precision After Floating Add; Extension of 
Sum to A Register 

Extend Precision After Floating Subtract; Extension 
of Difference to A Register 

Integer Divide A by B; Quotient to A, Remainder to B 

Te st 8- bit Bytes for A Greater than B; Result to A 

Test 8- Bit Bytes for A Less than B; Result to A 

Test 8-Bit Bytes for A Equal to B; Result to A 

Set G-Bit as Result of Comparison of A Register 
with B Register 

Set H-Bit as Result of Comparison of A Register with 
B Register 

Set I-Bit as Result of Comparison of A Register with 
B Register 

Set J -Bit as Result of Comparison of A Register with 
B Register 

Compare Sign and Magnitude of A Register with 
Specified State of B Register 

- M- - - Compare Magnitude only of A Register with Specified 
State of B Register 

- L--- Compare Logical Value of A Register with Specified 
State of B Register 

-- -- - Compare Sign and Magnitude of B Register with 
Specified State of A Register 

- - -- M Compare Magnitude Only of B Register with Specified 
State of A Register 

----L Compare Logical Value of B Register with Specified 
State of A Register 

-- EQ- Test for A Equal to B 

-- LS- Test for A Less than B 

--GR- Test for A Greater than B 

G--- Set G-Bit as Result of Test of A or B Register 

H--- Set H-Bit as Result of Test of A or B Register 
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131 iovv vv .• l--- Set 1- Bit as Result of Test of A or B Register 

131 iivv VV •• J--- Set J - Bit as Result of Test of A or B Register 

131 vvov vv .. -A-- Test A Register 

131 vviv vv .. -B-- Test B Register 

131 vvoo oi. . --Z Test for Plus or Minus Zero 

131 vvvo io .. --PZ Test for Plus Zero 

131 vvvo ii. . --0 Test for ALL ONES (Minus Full Scale) 

131 vvvi 00 •• --S Copy Sign- Bit to Designated Test Bit 

132 oovv vv .. GX-- Set G-Bit as Result of Index-Register Test 

132 oivv vv .. HX··- Set H-Bit as Result of Index-Register Test 

132 iovv vv .. IX-- Set I-Bit as Result of Index- Register Test 

132 iivv vv .. JX-- Set J -Bit as Result of Index- Register Test 

132 vvoo vv .. -XE- Compare Index Register for Equality with Specified 
Quantity 

132 vvoi vv .. -XL- Test for Index Register Less than Specified Quantity 

132 vvio vv .. -XG- Test for Index Register Greater than Specified 
Quantity 

132 vvii vv .. -XZ Test for Index Zero 

132 vvvv 00 •• -X-A Compare Index Register with A Register 

132 vvvv oi. . -X-B Compare Index Register with B Register 

132 vvvv io .. -X-C Compare Index Register with Common Value 

132 vvvv ii .. -X-D Compare Index Regsiter with Memory Data Register 

134 xobb bbbb GBA Set G-Bit to Designated Bit of A Register 

134 xibb bbbb GBB Set G-Bit to Designated Bit of B Register 

135 xobb bbhb HBA Set H-Bit to Designated Bit of A Register 

135 xibb bbbb HBB Set H - Bit to Designated Bit of B Register 

136 xobb bbbb lBA Set I-Bit to Designated Bit of A Register 

136 xibb bbbb lBB Set l- Bit to Designated Bit of B Register 

137 xobb bbbb JBA Set J - Bit to Designated Bit of A Register 

137 xibb bbbb JBB Set J -Bit to Designated Bit of B Register 
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140 oovv aaaa aaaa aaaa GX-L Set G-Bit as Result of Comparison of 
Index Register with Literal 

140 oivv aaaa aaaa aaaa HX-L Set H-Bit as Result of Comparison of 
Index Register with Literal 

140 iovv aaaa aaaa aaaa IX-L Set I- Bit as Result of Comparison of 
Index Register with Literal 

140 iivv aaaa aaaa aaaa JX-L Set J -Bit as Result of Comparison of 
Index Register with Literal 

140 vvoo aaaa aaaa aaaa -XEL Test for Index Equal to Literal 

140 vvoi aaaa aaaa aaaa -XLL Test for Index Less than Literal 

140 vvio aaaa aaaa aaaa -XGL Test for Index Greater than Literal 

141 · ovv aaaa aaaa aaaa L-L Load Specified Register with Literal 

141 · ivy aaaa aaaa aaaa ADL- Add Literal to Specified Register 

141 · voo aaaa aaaa aaaa LALj 
ADLA Specify A Register 

141 · vol aaaa aaaa aaaa LBLj 
ADLB Specify B Register 

141 • via aaaa aaaa aaaa LXLj 
ADLX Specify Index Register 

150 x. 00 aaaa aaaa aaaa STA Store A Register 

150 x.oi aaaa aaaa aaaa STB Store B Register 

150 x. io aaaa aaaa aaaa STD Store Memory Data Register 

150 x.ii aaaa aaaa aaaa STX Sotre Index Register 
..... 

151 x.oo aaaa aaaa aaaa LDA Load A Register 

151 v.oi aaaa aaaa aaaa LDB Load B Register 

151 x. io aaaa aaaa aaaa LDD Load :LyIemory Data Register 

151 x.ii aaaa aaaa aaaa LDX Load Index Register 

152' xooo aaaa aaaa aaaa LDM Load Memory Address Register 

152 xioo aaaa aaaa aaaa ADM Add to Memory Address Register 

152 xiii aaaa aaaa aaaa ADMX A dd from Memory to Index Register 

200 DUP Duplicate Non-Zero Half of CU 
A ccummulator 

.201 FULL Enter Full- Word (64-bit) Mode 

202 HALF Enter Half- Word Mode 

204 ZEROF If CU Accumulator Is Not All ZEROS~ 
Skip Until the Next "UNSKIpl! 
Instruction 
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205 ZEROT If CU A ccumulator is All ZEROS, Skip 
Until the Next "UNSKI P" Instruction 

206 ONESF If CU Accumulator Is Not All ONES, Skip 
Until the Next "UNSKIP" Instruction 

207 ONEST If CU A ccum ulator is all ONES, Skip 
Until the Next "UNSKIP" Instruction 

210 SKIPF If the Result of the Last Test was False, 
Skip Until the Next "UNSKIP" In-
struction 

211 SKIPT If the Result of the Last Test was True, 
Skip Until the Next "UNSKIP" In-
struction 

212 UNSKIP Resume Executing All Instructions 

220 LEA DO Find Leading ONE in the CU Accum-
ulator; Put Bit- Number in CU 
Accumulator 

221 LEADZ Find Leading ZERO in the CU Accum-
ulator; Put Bit- Number in CU 
Accumulator 

230 CCL Clear CU A ccumulato!' 

231 CCOM Complement CU Accumulator 

232 XCUA Index by CU Accumulator 

240 aaaa aaaa STL Store CU A ccumulator in CU Local 
Memory 

241 aaaa aaaa STLC Store CU A ccumulator in CU Local 
Memory, Complemented 

242 aaaa aaaa LDL Load CU f.. ccumulator from CU Local 
Memory 

244 aaaa aaaa EXCH Exchange CU. A ccumulator with CU 
Local Memory 

245 aaaa aaaa EXCHC Exchange Complement of CU Accumulator 
with CU Local Memory 

246 aaaa aaaa CADD Add to CU Accumulator 

247 aaaa aaaa CSUB Substract from CU Accumulator 

250 aaaa aaaa CAND AND to CU Accumulator 

251 aaaa aaaa COR OR to CU Accumulator 

252 aaaa aaaa CEOR Exclusive OR to CU Accumulator 
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260 oobb bbbb CCLB Clear Designated Bit 

260 oibb bbbb CSBO Set Designated Bit to ONE 

260 iobb bbbb DDHB Change De signated Bit 

261 edcc cccc CSHIFT Shift 

262 oobb bbbb CTSBZ Test Bit for ZERO 

262 oibb bbbb CTSBO Test Bit for ONE 

270 aaaa aaaa EQUALT 

271 aaaa aaaa EQUALF 

272 aaaa aaaa GRTRT 

273 aaaa aaaa GRTRF 

274 aaaa aaaa LESST 

275 aaaa aaaa LESSF 

276 aaaa aaaa XADD Add to CU Index 

277 aaaa aaaa SUB Subtract from CU Index 

30U ooVY nnnn nnnn RTA- Route from A Registers 

300 oivv nnnn nnnn RTB- Route from B Register s 

300 iovv nnnn nnnn RTD- Route from Memory Data Registers 

300 vvoo nnnn nnnn RT-A Route to A Registers 

300 vvoi nnnn nnnn RT-B Route to B Registers 

300 vvio nnnn nnnn RT-D Route to Memory Data Registers 

300 vvii nnnn nnnn RT-M Route to Memory Addr(;ss Registers 

310 LLL SLIT Short (24- bit) Literal to CU Accumulator 

311 MMM STO Store One "Vord from CU Accumulator 
to Main Memory 

312 MMM LOAD Load One Word from Main Memory to 
CU Accumulator 

320 CMMM BIN Block Transfer into CU Memory from 
Main Memory 

321 CMMM BOUT Block Transfer Out from CU Memory 
to Main Memory 

3"30 LLLLLLLL LIT Full- Word Literal to CU Accumulator 
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SECTION VI 

ILLIAC IV APPLICATIONS STUDY 

The implementation on ILLIAC IV of the Cooley-Tukey algorithm for the calculation 
of complex Fourier series has been studied. A method is described in this section. 

DESCRIPTION OF THE COOLEY-TUKEY ALGORITHM 

This is a method for evaluating the function X{j) for N values of the argument 
(j = 0,1, ... ,N-1) when we are given the N complex coefficients A(k), k = 0,1, ••. , 
N -I, appearing in the Fourier sum that is used to define the function X(j). 

N-1 
X (j) = I A (k). Wj k 

k=O 
j = O. 1 •••. , N-1. 

Here W is defined to be the principal N -th root of unity. 

w = e 27Ti
/ N 

I (i =J-T). 

(1) 

(2) 

rhe inverse problem can also be solved by the same method. for if the N values 
of X(j) corresponding to j = 0.1 •••.• N-1 are given. then the Fourier coefficients 
appearing in equation (1) are defin ed by 

N-1 
A(k) =; L X(j) W~jk 

j= 0 

which is similar in form to equation (1). 

k = O. 1 ••••• N-1 (3) 
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The following discussion is concerned with the problem as stated in the form given 
in equation (1). 

The straightforward use of equation (1) is equivalent to pre-multiplying the N­
component vector A(k) by the NxN matrix Wjk to obtain the N -component solution 
vector X(j). This is easily implemented on ILLIAC IV which computes the com­
ponents of X in parallel. The total number of operations required would be about 
N2 where an operation is considered to be a complex multiplication followed by a 
complex addition. The algorithm des cribed by Cooley and Tukey* can achieve the 
same result with much less computation. The number of operations, in the most 
favorable case, is proportional to N. log N rather than to N2. It is also economical 
in st'orage requirements. These features make it a highly desirable method for 
this problem, especially for large values of N. 

Cooley and Tukey* showed that choosing N to be a power of 2 (N = 2m) has par­
ticular advantages for computation on a binary machine. "Vith this choice, the 
algorithm takes the form of generating iteratively a sequence of m N-component 
vectors. The first member of the sequence is derived by iteration on the vector 
A(k) and the final member is the required vector X(j). 

It is assumed throughout what follows that the choice N = 2m has been made. 

To define the sequence of vectors the indices are written in binary form. 

The equation (1) can then be written 

, ... , L 
k 
m-1 

(4a, b) 

By evaluating the indicated sums sequentially, the following definition of the sequence 
Ar (r = 1, 2, ••• , m) is obtained. The notation used is that of Cooley and Tukey 
except that the iteration parameter is represented by r instead of Z,. for ease of 
typing. 

* J. W. Cooley and J. W. Tukey: An Algorithm for the Machine Calculation of 
Complex Fourier Series. Mathematics of Computation, Vol. 19 (1965). pp. 297 - 301. 



(5) 

A (jo'· •• ' j l' k l' • • ., k o>:= I r r- m-r- k 

Pr 
A 1 (jo' • • • , j 2' k , • • • , k O>· W r- r- m-r 

m-r 

where 

p := j • k • 2m - 1 
1 0 m-1 

(6) 

p := (j • 
r r-1 

r -1 + . ) k • 2m - r 2 +, ••• , J
O m-r 

Writing out the two terms of the sum in equation (5) we obtain 

A (jo, •.• ,j l,k 1,···,kO):=A l(jO,···,j 2: 0, k I'···' kO) + (7) r r- m-r- r- r- m-r-

( - 1 ) j r -1 A 1 {j 0' • . • ,j 2' 1, k l' • • • , k 0>. W qr 
r- r- m-r-

r := 2, 3, ••• , m 

where 

- (J' 2r -2 + + J' ). 2m - r 
qr - r - 2 • , . . . , 0 (8 ) 

The desired components of X are then defined by the last menlber of the sequence. 

(9) 

MACHINE IMPLEMENTA TION 

It was the suggestion of Cooley and Tukey that the value of 

A (j 0' • • ., j I' k l' • • . , k O) . r r- m-r-

calculated by means of equation (7) be stored in a location whose address is 

.• 2m-1 + m-r m-r-l 
JO ' • • • t + j 1· 2 + k 1· 2 + , .• q + kO· . r- m-r-
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When this is done the storage requirements are minimized and the last array cal­
culated gives the desired Fourier sum s, equation (9), in such an order that the 
index of an X must have its binary bits put in. reverse order to yield its index in 
array Am. 

On any iteration, the components of Ar may be computed in parallel since the cal­
culations defined by equation (7) may be carried 0 ut with all values of jo' . • ., j r- 2 
and kO' • •. , k 1 simultaneously. m-r-

IMPLEMENTATION ON ILLIAC IV 

In order to perform the calculations indicated on ILLIAC IV, it is necessary, on the 
r-th cycle, to have the values of both 

A 1 (jo' •• • '. j 2' 0, k l' ••• , kO) r- r- m-r-

and 

q 
available in the same PE memory. The value of W r must also be available to 
the PE. One then computes, according to equation (7), the value of Ar with the 
same two indices. 

To obtain the values of A with the desired pair of indices in the same PE memory 
it may be necessary to slln'l data from PE to PE during the course of the calculations. 

The constant powers of W required by each PE, during the entire course of the 
computation, are predetermined by the method in which the original coefficients 
A{k) are distributed within the PE memories and by the scheme adopted for shifting 
data between PE memories as the compu tation proceeds. These details will now 
be discuss ed. 

STORAGE OF THE COEFFICIENTS A(k) 

Use is made of the fact that N has been chosen to be a power of 2: N:: 2m. It is 
further assumed that m is greater than 8. To determine the location in which a 
particular A(k) is stored, the representation of k as a binary number as in 
equation (4b) is used. Let the last eight bits (k7, ••• ,kO) of this binary representa­
tion of k define the PE in which A(k) is stored. The las t two of these bits (k 1, kO) 
d.etermine the number o~ the quadrant, the preceeding six bits (k7, ••• ,k

2
) deter­

mine the number of the PE within the quadrant. 



The remaini.ng m - S bits (km-I, •.• , kS) may be interpr eted as the add res s of a 
storage location within the PE memory. To allow for the storage of both real and 
imaginary parts of A(k), the real parts can be stored in the indicated location while 
the imaginary part can be stored in the corresponding location of another block of 
m emory, congruent to the block in which the real parts are stored. The size of 
each of these blocks of m emory will be 2m- a words. 

The interpretation of the binary representation of the index k is thus as shown in 
figure 6-1. 

! 
Storage Location Withill PE 

(

PE Number Within Quadrant 
If" Quadrant 

I km - 1 ka k7 k2 I kl kO I 
m-S bits 6 bits 2 bits 

Figure 6-1. Interpretation of k as a Binary Number to Define Storage 
Location of A(k). 

The quadrants of the ILLIAC IV array are numbered 0, 1, 2, 3. The numbering of 
the PE's within the quadrant is shown in figure 6- 2. If p is the PE number then the 
last 3 bits of the binary representation of p are the column and the first 3 bits are the 
row numbers. When the initial data is stored as described, its distribution through­
out the arrays is shown in figure 6-3. The number shown are k mod 256. 

~ Row 0 1 2 3 4 5 6 7 

. 
0 0 1 2 3 4 5 6 7 

1 8 9 10 11 12 13 14 15 

2 16 

Row 

I Col 
; 

3 24 3 bits 3 bits 

4 32 

5 40 

6 48 

7 56 57 58 59 60 61. 62 63 

- Figure 6-2. The Numbering of the PElS withIn a Quadrant 
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0 4 8 12 16 20 24 28 1 5 9 13 17 21 25 29 

32 36 40 33 37 41 

64 68 65 69 

o 96 97 
1 

/ 
128 

160 

192 

224 228 232 236 240 244 248 252 225 253 \ 
QUADRANT 
NUMBERS 

2 6 10 14 18 22 26 30 

34 38 

66 70 

3 7 11 15 19 23 27 31 

35 39 43 

67 71 I 
3 

98 99 

226 254 227 255 

Figure 6-3. The .Distribution of the Coefficients A (k) in the A rray Initially 

COMPUTATION AND STORAGE OF INTERMEDIATE RESULTS 

The calculations fall naturally into two parts, the first m- 8 iterations and the 
final 8 iterations. In the following de scr iption, the binary bit s (always n~ in number) 
of the locations referred to are to be interpreted in the same manner as the bi-
~ary .representation of k just described. 



The first m-S cycles r = 1,2, ... ,m-S. 

1. Calculate A (j, ... , j I' k l' ... kO)' by use of equation (7). 
r 0 r- m- r-

2. Store the result in location (jo' ... ,j l' k . 1'" . ,kO)' i. e., at r- m-r-
address (j "", j l' k 1" •. , k

S
) of PE (k

7
, ... , kO)' Note that on the (nl-S /th o . r- m-r-

cycle it is address (jo' ... , jm- 9) of PE (k
7

, ... , kO) that is meant. 

The calculation is performed for all values of (jo' ... ,j -1) and of (k
m 

_ _ l' ... , kO)' 
It is seen from equation (7) that for the computation of tbe A for any Inaex, the 
storage locations defined for the quantities on both the left ~~d right hand sides of 
the equation are in the same PE memory (the last S bits are the salne). Hence no 
transfer of data between PE's is required. Thus all PE'sScompute in parallel and, 

m-
on each cycle, each PE computes the value of A for 2 different values of the 
. d r In ex. 

The final S cycles r = m-7, m- 6, ... , n1. 

1. ShiftA l(jO,···,j 2,k , ... ,k
O

) from location (jo, ... ,j 10,j 2) r- r- m- r . m- r-
in PE (j 9 I • • • I j 3' k I • • ., k O> to location (j 0' ... , j 10' k ) in P~ m- r- m-r m- m-r 
(j 9' ... , j 2' k l' ... , kO)' Note that on the (m-7 )th cycle the shift meant m- r- m-r-

is from location (jo' ... , jm- 9) in PE (k7 , ... , kO) to location (jo' ... , jm-l 0' k7) 

inPE (jm- 9' k
6

, ... , kO)' Note also, on the mth cycle the shift meant is from 

location (jo' ... , jm-lO' jm-2) in PE (jm- 9' ... , jm-3' kO) to location (jo' ... , jm-l 0' 

kO) in PE (j 9' ... , j 2)' m- m-

2. Calculate A (jo"'" j l' k I' ... , k
O

> by use of equation (7). r r- m-r-
Note on the mth cycle it is A (jo"'" j 1) that is calculated. r r-

3. Store the result in location (jo' ... , j 10' j 1) in PE (j 9' ... , m- r- m-

j 2' k I' ... ,kO)' Note on the mth cycle it is location (jo' ... , j 10' j 1 > r- m-r- . m- m-
in PE (j 9' ... , j 2) that is meant. m- m-

Again the calculation is performed for all values of (jo' ••• ' jr-l) and of 

(k I" • • • I kO). The shift called for in step 1 is designed to bring together in . m-r-

the same PE the values of A 1 with the two indices. They differ only in the r-th r-
bit appearing on the right-hand side of equation (7). Once the shifts have been 

accomplished all PEls compute in parallel and each computes the values of A for 

2ffi
- S .. r 

values of the index. 
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The shifts required in step 1 are determined by the values of the bits j 2 and 
k . Since only four possible combinations of the values of these blt§-are pos-
sillrl, the corresponding shifts may be tabulated. 

Table 6-1. Shifts Required for Combinations of Bits j 2 and k r- m-r 

Bit Shift 

jr-2 k 
m-r 

0 0 No shift. 

0 1 Shift to PE of lower number (_2m - r ). 
Increase location by 1. 

1 0 Shift to PE of higher number (+2 m - r). 
Decrease location by 1. 

1 1 No shift. 
'----. 

Since the possible combinations of bit values occur with equal frequency it is seen 
from the above table that on any cycle (r) precisely half the data has to be shifted 
by inter-PE shiftin£. Of the data that is shifted, half goes to a PE of higher 
number (+2

m
- r ) and half goes to a PE of lower number (_2

m
- r ). This shifting is 

such that on cycle r, two PE's whose number in the array differ only in the r- (m- 8) 
bit position exchange a word of data, for each two word s they contain. 

The required shifting of data between PE memories is accomplished by one or two 
routing instructions. In the fir st cycle requiring such a shift each PE in the block 
of 128 PE's (those numbered 0-127) sends and receives words from the corres­
ponding PE in the second block of 12~ PE's (128- 255). Examination of the PE 
numbering system of figure 6-3 shows that the first four rows of PE's in each 
quadrant exchange words with the second four rows. The end-around cylindrical 
connection of the PE's on the North and South edges of each quadrant are such that 
sending and receiving can be accomplished in one instruction, since all PE's in a 
quadrant shift a word 4 rows South, end- around, simultaneously. 

In the second cycle requiring a shift, each PE in 2 blocks of 64 PE's (0- 63; 128-191) 
exchanges words with the corresponding PE in the corresponding block of the re­
maining 2 blocks of 64 PEls (64-127; 192-255). This requires the first two rows 
of PEls within a quadrant to exchange words with the second two rows and the 
third pair of rows to exchange words with the fourth pair of rows. In this case 



the end- around connection cannot be used and the exchange takes place under 
mode control in the two parts. First, rows I, 2, 5, 6 transmit data two rows 
South to rows 3, 4, 7, 8 respectively. Second, rows 3, 4, 7, 8 transmit data 
two rows North to rows I, 2, 5, 6 respectively. 

In the third cycle information is exchanged between adjacent rows. 

The following three cycles repeat the same pattern of shifts but between columns 
rather than rows. Next a shift of 8 rows is required. This involves the whole 
array as data moves from quadrant to quadrant for the first time. Use could be 

. made of the end- around cyclindinal connection of the whole array, as in the first 
shift described. The final shift is similar, being of distaI1ce 8 between columns. 
This pattern of shifts is listed in table 6-2. 

Table 6- 2. Shifting Required for the Final Eight Iterations 

Block s of PEl s 
Distance of 

Cycle 
Shift Required 

Number Size Nearest Number 

m-7 2 128 * 4 NS 

m-6 4 64 2 NS 

m-5 8 32 1 NS 

m-4 16 16 4*~~ WE 

m-3 32 ~ 2 WE 

m-2 64 4 1 WE 

m-l 128 2 8* NS 

m 256 1 8** WE 

* Denotes that end- around connectivity may be used to allow both of the shifts to 
occur simultaneously. 

** Shifts can also use end- around connectivity, but will require one more step in 
routing than "*" shifts, because of the differences in edge connectivity patterns. 
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We now consider the powers of W that have to be available in each PE. According 
to equation (7) the computation on the r-th iteration, of A (jo"'" j -1' k _ -1"'" 
k ) requires the use of W

qr 
where q is given by equation f8). With 1he dJra r 

sPorage scheme described the addre§s of A within the PE determines the power 
. r . 

of W required in its calculation. According to equation (8), on the first m-8 
He rations, put the first r-1 bits of the address in reverse and m.ultiply the resul­
tant number by 2

m
-

r
• This gives the required powerOof W. On the first iteration, 

no bits are selected by this rule--corresponding to W • For these iterations all 
PEls require the same power of the W at the same time. Thus, these powers should 
be broadcast, and not stored repetitively in each PE. 

On the final 8 iterations one has Ar_1 (jo, .•. , jr-2 k m - s ' •.• , k O> stored in location 
jo,".' jnl-10' k m _r > in PE (jm-9,"" jr-2' km - r - 1, •. ·, k O)" After the required 
shifting has taken place, take the r-1 bits that have been underlined (the first 
m-9 in the memory address followed by the first r-m + 8 in the PE number), invert 
these bits and multiply the number obtained by 2m-r. This is the power of W 
required. Since these powers of W depend on the PE number they should be stored 
within the PE memories. 

On each iteration one power of W for each pair of indices of Ar within the PE is 
required. The number of such pairs is 2m - 9 and the number of iterations in this 
mode is 8. Thus 2m - 6 values of powers of Ware required by each PE. 

A s in the standard algorithm, at the completion of the m-th iteration, to f.ind the 
location of X(j) in the A array, one interprets the bits of j in reverse as a lo­
cation in the PE memorTes. However, after reversing the bits of j it is necessary 
to shift the final bit (j -1) left eight plac es (to between j -10 and j -9> before 
terpreting the locatio!?as in figure 6-1. m m 

COMPUTA TIONS REQUIRED 

To give some idea of the magnitudes involved some figures are given here for 
N = 4096 = 212. (m = 12). 

1. 

2. 

3. 

Number of iterations required (m) = 12 

Number of coefficients A (k) in each PE(2 m- 8) = 16 

m-6 
Number of values of W stored in each PE (2 ) = 64 

4. Computation required for each pair of coefficients (2 m - 9 = 8) per 
P~, is indicated by equation (7), 1 complex multiplication and 2 complex additions. 
This in terms of real arithmetic, amounts to 4 multiplications and 6 additions for 
each pair of coefficients. On the final 8 iterations data transfers occur and 2 
words (real and imaginary part of one of the pair) are transmitted and 2 words 
received for this amount of calculation. Since there are 8 pairs of coefficients 



in each PE, for each iteration a PE: 

1. Transmits 16 word s of data 

2. Receives 16 words of data 

3. Performs 32 multiplications 

4. Performs 48 additions. 

} Not required on first 
4 of the 12 iterations 

During the first 4 iterations one is effectively solving 256 problems in parallel 
(one in each PE), each problem being of size N = 16. Duripg the final 8 itera­
tions one is solving equivalently, 8 problems, each problem being of size N = 512. 
These last problems are distributed uniformly throughout the array. 
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SECTION VII 

CIRCUIT DESIGN - THE ECL CIRCUIT 

The basic logical circuit for ILLIAC IV is the current switch, or ECL circuit, 
shown in figure 7 -1. Logical operations can be performed in this circuit by sup­
plying input transistors in parallel, by tying collectors together into a common 
collector resistor, and by connecting together the output ernitters. Gating on the 
input transistors appears as "not OR" for positive -going signals when seen at the 
inverting output "b, " or as OR when seen at the noninverting output, Ila." For 
negative -going signals, gating at the input transistors appears as "not AND" and 
AND, respectively, at the inverting and noninverting outputs. Logic gating can also 
be done by sharing a single resistor among otherwise independent collectors. Such 
sharing produces an OR for negative signals or an AND for positive signals, and 
would appear to be a way of adding another gate to the logic without adding any 
components or any delay_ However, one must take care of the case that two col­
lectors are delivering current into the resistor simultaneously, either by clamping 
the voltage, which costs components, or by ensuring in the logical design that no 
more than one current flows at anyone time. Mixing outputs by tying the emitters 
together performs exactly the same function as mixing inputs of the next stage in 
the input transistor, namely negative AND or positive OR. Implementation of any 
logic equation using such gates can always be found by translating the AND - OR 
description implicit in the 19ical equation into a NAND-NAND description, level for 
level. As reference to the logical design of the processing element elsewhere in 
this report will show, designs can often be simplified considerably from the 
directly translated version. 

The use of ECL circuits differs depending upon the amount of wiring which must be 
driven and the speed to be obtained. When integrating within the semiconductor 
array, freedom to use the ECL gates just described is virtually' unlimited. When 

_ any wiring is involved, however, the low impedance point, namely the emitter 
outputis used as the source when signals must be sent along conductors from one 
circuit package to another. Further, fanout suffers on signals which must leave 
the circuit package because of the need to supply damping and terminating 
resistors for the wiring. 
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A t the collector, signal levels are approximately +1. 2v and +0. 4v. The swing is 
set essentially by the current in the emitter, it is related therefore to V , V 
and resistor ratios. The more positive level departs from V by an arrrcrunt cc 
determined by base current in the outp.1 t transistor, a few peF8ent at most of the 
"on" current. At the II output" emitter in figure 7 -I, the voltage is downshifted by 
an amount equal to the base -to-emitter voltage of the output transistor. The outp.1 t 
therefore swings from +0. 4v approximately to -0.4v approximately. These output 
voltages are made meaningful with respect to the nominally zero volt input thresh­
old whatever gate receives the. 

Signals which must travel considerable distance, such as between cabinets, for 
instance, may need more margin than that supplied in the signals at the output of 
the ECL gates. The extra margin is needed to overcome distortions in the signal 
due to imperfect impedance matching in the wiring, unwanted components due to 
crosstalk, noise from external sources, and discrepancies in temperature and 
perhaps even in "zero volts" between the two cabinets. The requirements for 
these non -EeL signals appear to be as follows: 

• Compatibility with ECL levels at the input of the driver and the 
output of the receiver 

• Larger signal swing (3. Ov based upon previous Burroughs experience) 

f) Drive capability for several transmission line characteris impedances 
in parallel (at least two; or 36 ohms load .on each signal, if 72 -ohm 
line is used) 

• Fanout of 64 (from control unit to all 64 P. E' s); this implies an input 
inlpedance of over 2. 3k ohms per receiver if 32 receivers are to be 
attached to a single 72 -ohm line. ) 

A driver circuit which satisfies these requirements is shown in figure 7 -2. Note 
that the portion of the circuit to the left of the dotted line in the driver circuit is 
identical (except for a somewhat lower "impedance .level) to our standard EeL gate. 
When this driver circuit is implemented as a portion of a large-scale integrated 
array, the portion of the circuit on the left, which is "the same" as the standard 
EeL circuit, is ·available for performing some logic function. Only the non­
inverted output, which feeds the large -swing signal, would be unavailable for 
normal EeL use. 

A receiver circuit which satisfies these requirements is shown in figure 7 -3. 
Note that the portion of the circuit to the right of the dotted line in the receiver 
circuit is identical to our standard EeL gate. When this receiver circuit is im­
plemented as a portion of a large -scale intregrated array, the portion of the 
circuit on the right, which is the same as the standard EeL circuit, is available 
for performing logic functions within the array. 
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The signal across the interface, in this system, swings from +2. 5v to -0. 4v. 
Threshold is at 1. 2v, at room temperature, and has a slight negative temperature 
coefficient. Since rise times no faster than 15 ns are of interest, the gain of the 
transistors at 25 mc or thereabout controls the input impedance of the receiver. With 
transistors whose cutoffs are in the hundreds of n'legacycles, gains of 30 are easily 
available. The +3. 5v supply can be disabled to control intercabinet transfers. 

An alternative dirver -receiver circuit has been suggested in which each signal 
is transmitted balanced with respect to ground. This circuit is shown in figure 
7 -4. It has a signal swing of 1. 6v, the differential signal between the two outputs, 
but makes up for lowered signal swing with increased noise immunity. The noise 
immunity is almost equal to half the minimum signal swing, compared to a noise 
immunity of 30% to 350/0 of the signal swing in the system exemplified by the driver 
and receiver of figures 7 -2 and 7 -3. This scheme has a further advantage in 
rejecting noise, in that some noise sources tend to induce a common mode com­
ponent in the line. This single -ended scheme rejects common mode noise 
essentially perfectly up to some maximum amplitude, while the scheme depends 
on the coupling between the two conductors of the line to induce a noise com­
ponent in one conductor equal to the noise component induced on the other by some 
external source. The latter scheme is extreluely effective, but not as effective 
as balanced signaJs. 

An advantage of the balanced signal driver and receiver is that they are identi­
cal in design and fabrication with standard EeL gates. 

Disadvantages of the balanced signal scheme are severe for certain proposed 
uses. In particular, it is not possible to put more than one driver on one signal 
wire. For the connections from the PE's back to the memory access buffer, 
it would be necessary to give each PE its own expensive wire back to its own 
private receiver at the memory access buffer. Using the unbalanced, 3.0 v 
signal, one can combine all eight drivers on a single data line. This defect 
will be general, whenever several data sources converge on a common destina­
tion. 

A second defect of the balanced signal scheme arises because the wiring must 
be balanced with respect to ground. Thus one must use pairs of wires, either 
twisted pair, or shielded twisted pair. Twisted pair is inferior to coaxial cable 
or ribbon cable in terms of crosstalk; shielded twisted pair is considerably more 
expensive both to buy and to install than coaxial cable and ribbon cable. Even 
unshielded twisted pair, when procurred in belted form, can be surprisingly 
expensive. 

A third limitation of the balanced signal scheme arises because of the difficulty 
in designing for low .output impedance. As described to us, the drive capability 
of the balanced driver was only sufficient to drive a single transmission line. In 
the case of data being transmitted from one PE to neighboring PE's, the data 
transmission paths go in both directions from the transmitting PEa For optirEum 
per.formance, it is necessary to drive two transmission lines, one going in each 
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direction. Therefore, two balanced driver circuits are required to handle the 
signal. Greater fan -out at the receiver end is also available with the un­
balanced design. 

The conclusion is that either driver and receiver design is satisfactory for use 
in cables up to some maximum length, where not more than one driver per sig­
nal set is required. Ordinary twisted pair can probably be driven by the balanced 
driver design in medium length runs of up to 10 or 30 feet where the unbalanced 
driver would require coaxial cable or the equivalent. Beyond that, in either 
case, higher quality wire is required, such as ribbon cable using three wires 
per signal, coaxial cable, or shielded twisted pair. For this last class of signals, 
single -ended signals would be more economical of wiring, would be directly 
compatible with popular types of "foreign" logical circuitry which is likely to 
be found in external equipment, and would be more compatible with any require­
ment such as r. f. filtering. A table of "long lines" signals is in table 7-1. 

Table 7 -1 contains our conclusions on the implementation of such "long lines" 
Signals. Either balanced or unbalanced signals will be acceptable within each 
quadrant, assuming each quadrant to be packaged within a single unit, a set of 

Table 7 -1. Signals Requiring Driver and Receiver 

Estimated Suitable 
Class of Signals Length (feet) Driver Design 

Pe to PE (same cabinet) short 

Pe to PE (different cabinets)" 6 either 

PE to 110 Buffer 30 either 

PE to memory access buffer 30 single ended 

PE from CD, control signals 
and mode control I 30 either 

CD to CD, different quadrants 80 single ended 

CD to peripheral devices 200 single ended 

Comments 

no driver needed, stand­
ard ECL signals suitable 

- - --

- - --

drivers must be aRable 

- ---

economically more 
attractive wiring 

compatibility with 
foreign signals. 



cabinets bolted together. For longer runs, the lower price of coaxial c;~::., .. 
the greater compatibility of unbalanced signals at a "foreign" interface ~.,(,.'::,' , 
call for the use of 3. Ov unbalanced signals between quadrants, and frGrn th .. : 
array processor to the outside. 

Figure 7 -5 shows an example of how the unbalanced system nlight be used ~(' 

distribute control signals from the CU to the 64 PE's assunling tha t the I'~: :';: :," 
receiver in each PE. A fanout of 64, as shown, may be beyond the C'~qnL~l: ~:' 
of either scheme at the required speed, especially the balanced signal SC!:(·~ .... 
However, the grouping of the PE s is such that one receiver should do for ;1<'.::' 

or eight PE' s. 

Drive r 
(in CU) 

32 Receivers 
(in PE's) 

r----4f-+-----1~---_t>_+------- - - - - - - ----e---f---

r----*-----*-----+------------------------... - ... -... -.. 

32 Receivers 
(in PE's) 

L.-...1f---Clf-+-----1~---~>_+------ - - - - - - ----.e---t--
L.. ....... _________ -----+----------.--------->-----~-." .. '" .. 

Figure 7-5. Use of Drivers and Receivers for Distributing COc.tI>,.)1 
Signals from C U to PEl S 
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