

ILLIAC IV MACHINE REFERENCE

MANUAL FOR THE PROGRAMMER

INSTITUTE FOR
ADVANCED COMPUTATION

1095 EAST DUANE AVENUE
SUNNYVALE, CA 94086

TELEPHONE (408) 735-0635

Preface

The primary purpose of this manual is to describe the instruction set used by I LLiAC IV

programmers. A few instructions that are of interest only for test and maintenance purposes.

are omitted, as are all instructions and instruction variants that apply only to a four-quadrant

machine. Hence the subset of instructions described in this manual is intended primarily for the

user/programmer of the existing ILLIAC IV. As such, it supersedes all previous documentation

of the instruction set used by I LLI~C IV programmers.

iii

CONTENTS

ADVAST INSTRUCTION INDEX
PREFACE iii

LIST OF ILLUSTRATIONS AND TABLES v

SECTION 1 - ILLIAC IV ADDRESSING
1.1 PROCESSOR MEMORY ADDRESSING 1-2

1.1.1 SYLLABLE ADDRESSES 1-2
1.1.2 WORD ADDRESSES 1-2
1.1.3 1/0 WORD ADDRESS 1-3
1.1.4 Row ADDRESSES 1-3
1.1.5 PROCESSING OF WORD ADDRESSES 1-4
1.1.6 ADDRESS FIELD FORMATS 1-5
1.1.7 JUMPS AND SKIPS 1-7

1.2 PE REGISTER ADDRESSING 1-7

1.3 CU REGISTER ADDRESSING 1-7

SECTION 2 - ADVAST INSTRUCTION
2.1 INSTRUCTION FORMAT AND FIELD USAGE 2-1

2.2 ADVAST ARITHMETIC 2-2
2.2.1 ACAR-INDEXING 2-3

2.3 CATEGORIZATION OF ADVAST INSTRUCTIONS 2-3

2.4 REGISTER ALIGNMENT IN ADVAST INSTRUCTIONS 2-6
2.4.1 RULES FOR ALL REGISTERS EXCEPT ICR 2-6
2.4.2 RULES FOR ICR 2-6

2.5 ADVAST INSTRUCTION DESCRIPTIONS 2-10

2.6 GENERAL DESCRIPTION OF TEST-SKIP INSTRUCTIONS 2-45

iv

SECTION 3 - FINST/PE INSTRUCTIONS
3.1 INSTRUCTION FORMAT AND FIELD USAGE 3-1

3.2 CATEGORIZATION OF FINST/PE INSTRUCTIONS 3-5

3.3 GENERAL INFORMATION ON FINST/PE INSTRUCTIONS 3-7
3.3.1 TRANSMISSION OF ADR DATA TO THE PE - ALSO

ACAR-INDEXING AND LITERALS 3-7
3.3.2 64-BIT AND 32-BIT MODES 3-8
3.3.3 THE RGD REGISTER 3-8
3.3.4 CONDITIONS ARISING IN PE ARITHMETIC OPERATIONS 3-11
3.3.5 VARIANTS OF PE ARITHMETIC INSTRUCTIONS

3.4 FINST/PE INSTRUCTION DESCRIPTIONS

FINST/PE INSTRUCTION INDEX

LIST OF ILLUSTRATIONS AND TABLES

ILLUSTRATIONS
FIGURE 1-1 BASIC ORGANIZATION OF PROCESSOR MEMORY
FIGURE 1-2 ADDRESS FORMAT AND ADDRESS FIELDS
FIGURE 2-1 BIT ALIGNMENT IN TRANSFERS To OR FROM ICR

TABLES
TABLE 2-1 SUMMARY OF ADDRESSABLE CU REGISTERS
TABLE 2-2 FUNCTIONS OF BITS IN ADVAST CONTROL REGISTER
TABLE 2-3 MEANINGS OF BITS IN INTERRUPT (AIN) AND

MASK (AMR) REGISTERS
TABLE 3-1 SUMMARY OF ADDRESSABLE PE REGISTERS
TABLE 3-2 OPERAND ADDRESSING AND INDEXING LOGIC
TABLE 3-3 BIT/SHIFT COUNTING AND INDEXING LOGIC

v

(ACR)

3-12

3-13

1-1
1-6
2-10

2-7
2-8

2-9
3-3
3-4
3-4

Section 1

I LLIAC IV Addressing

CONTENTS

SECTION 1 - ILLIAC IV ADDRESSING

1 . 1 PROCESSOR MEMORY ADDRESSING 1-2

1 . 1 . 1 Syllable Addresses 1-2
1 . 1 .2 Word Addresses 1-2
1 . 1 .3 I/O Word Addresses 1-3
1 . 1 .4 Row Address 1-3
1 . 1 .5 Processing of Word Addresses 1-4
1 . 1 .6 Address Field Formats 1-5
1 . 1 . 7 Jumps and Skips 1-7

1 .2 PE REGISTER ADDRESSING 1-7

1 .3 CU REGISTER ADDRESSING 1-7

Figure 1-1 Basic Organization of Processor Memory 1-1
Figure 1-2 Address Format and Address Fields 1-6

Section 1

I LLIAC IV' Addressing

The addressable entities in the ILLIAC IV may be divided into three groups, each with its
own type of addressing: proaessor memory (PM) toaations~ PE registers~ and cu registers.

The addresses are generally contained in the ADR field of an ADVAST or FINST/PE instruction
and may, in general, be indexed in the CU by adding the contents of a specified ACAR.

Each of the following subsections describes one type of addressing.

Processor Memory··
262,144 Syllables,

or
131,072 64·Bit Words,

or
8192 I/O Words,
or 2048 Rows

Rows

r

Row··64 Words or
4 I/O Words ,

II I I II I I I I I I I I I " I I I I I I I I I I I I I " L I I I I I I I I I I I I I d I I I II I I I I " I II "

111111111~:sI~~II~~:~~;S: 1111111211111111
~ 64-8il Words

I, I I " II I I /I I " I I I I I I I I I I I " L I I I I I I " " I I I I I " I II I " " " " "
\. ...
I/O Word··
16 64·Bit Words
or 32 Syllables

j

\. ...
64·Bit Word or
2 Syllables

Figure 1-1 Basic Organization of Processor Memory

1-1

)

1.1 PROCESSOR MEMORY ADDRESSING
Processor memory can be addressed by:

(a) syllables,
(b) words,

(c) I/O words,

(d) rows.

Figure 1.1 illustrates the basic organization of processor memory.

1.1.1 SYLLABLE ADDRESSES

The smallest addressable entity in processor memory is the 32-bit syllable -

not to be confused with the inner or outer portion of a 64-bit word in 32-bit
mode.

Processor memory contains 262,14410 or 1,000,00°8 contiguous syllables,
numbered consecutively from ° to 777,7778.

Note: A syllable address consists pf 18 bits forming a value

from 0 to 7??~?7?8.

Since instructions are the sole entities stored in syllable format, syl­
lable addresses are used only in the instruction counter register (ICR). The
ILLIAC IV instruction set does not include any instructions that contain a
direct syllable address. For example, SKIP instructions modify the contents
of ICR by incrementing or decrementing the syllable address already contained
in ICR. The JUMP instruction contains a word address in its address field;
this word address is loaded into ICR, and in the process it is converted into a
syllable address (by right-appending a Obit - see the following discussion
of word addresses and also p. 1-5). The ILLIAC IV programmer therefore en­
counters syllable addresses only when dealing with assembler pseudo-instructions
and when examining dump files.

1.1.2 WORD ADDRESS

The next type of addressable entity in processor memory hierarchy is the 64-bit
word.

Note: Thirty-two bit "inner" and "outer" portions of -a 64·-bit word

are not separately addressable entities.

A 64-bit word occupies the same space as two syllables. Processor memory

contains 131,07210 or 400,0008 contiguous words, numbered consecutively from

° to 377,7778 "

Note: A word address consists of 1? bits forming a value

from 0 to 3??~???8.

1-2

Word addresses are used in ADVAST instructions to control CU accessing

of processor memory on a word basis (LOAD, LOADX, STORE, and STOREX instruc­

tions), to access a block of eight contiguous PM words (BIN and BINX in­
structions), and to load ICR (JUMP instruction). The word address in a
JUMP instruction is modified by appending a 0 bit to the riqht-hand end
(thus converting it to a syllable address) and then loading it into ICR.

If the rightmost bit is dropped from any syllable address, the result
is the word address of the processor memory word that contains the syllable.

1.1.3 I/O WORD ADDRESS

An II I/O word" is a block,. of 16 contiguous 64-bi t words. On1 y data-transfer
processes use I/O word addressing. Hence the ILLIAC IV programmer encounters
I/O word addresses only when dealing with assembler pseudo-instructions (spec­
ifically, the initialization of processor memory), data-transfers SYSCALLS
or ASK data-transfer macros, and the examination of dump files.

Processor memory contains 8,19210 or 20,0008 I/O words, numbered consecu­
tively from 0 to 177778.

Note: An I/O wo~d addpess consists of 13 bits fOPming a value

fpom 0 to 17777B.

If the rightmost four bits are dropped from any word address, the result­
ing entity is the I/O word address of the I/O word that contains the word.

1.1.4 Row ADDRESSES

A row consists of 64 contiguous 64-bit words. 1 Processor memory contains
204810 rows, numbered consecutively from 0 to 37778.

Note: A pow addpess consists of 11 bits fOPming a value

fpom 0 to 3777 B'

Row addresses are used in FINST/PE instructions, and each row address is
broadcast to the 64 PEs along with the microprogram sequence for performing
an instruction. To understand how the row address is used by the PEs, it ;s
first necessary to consider how processor memory is accessed by each PEe

Every PE has a position number that corresponds to its physical position
in the array of 64 PEs; that is, the position number is a number from 0 to 778

(0 to 6310). Each PE has access to one word in each row of processor memory -
the word whose position in the row corresponds to the PEls position. This set
of 2048 words (one for each row) is sometimes referred to as the processor
memory "column" that is associated with the particular PEe

Note: Remembep that each FE has access only to the wopds in its

"coZwrm" of ppocessop memopy.

lFor data-transfer processes, it may be regarded as four contiguous I/O words.

1-3

When the ILLIAC IV processes a FINST/PE instruction that uses a row address,
this address is received simultaneously by all the PEs. In the simplest case,
each PE will access one word in the row, and the overall effect is to process
the complete row of 64 words.

If a PE has its E and El bits reset (=0), however, it will not alter pro­
cessor ,memory contents. Hence, if one or more PEs have E and El bits reset,
only some of the words in the row will be processed, leaving other words un­
touched.

In the most general case, FE-indexing may be invoked by the instruction.
This means that after receiving the broadcast row address, each PE then modi­
fies it by adding the contents of one of its own registers. Since the indexing
register in each PE may have different contents, the set of words processed
may not be a row at all. It may, for example, be a diagonal or some other
configuration. In the special case where P.E-indexing is invoked and all the
PEs index by the same quantity, the effect will be to process a row (or a row
with gaps) but not the same row specified by the broadcast row address.

In summary, therefore, a row address (11 bits) is associated with a FINST/
PE instruction and is broadcast by the CU to all 64 PEs. Each PE then uses
the row address as a base address to access a single word in its particular
column of processor memory. The overall effect, in the simple case, is to
process one row of processor memory. In other cases, the set of words pro­
cessed may not be a row, but the term "row address" is used nevertheless.

1.1.5 PROCESSING OF WORD ADDRESSES

We will now return to word addresses to learn how the 17 bits of a word address
are actually used. Note that if the rightmost six bits are dropped from any
word address, we are left with the row address of the row containing the word.
Also, the rightmost six bits of the word address are actually the PE position
number of the PE whose "column" in processor memory contains the word. In
other words, the leftmost eleven bits of a word address give the row containing
the word and the rightmost six bits give the position of the word in the row
(beginning with 0 for the first word in the row).

The JUMP instruction converts a word address to a syllable address by right­
appending a 0 bit. The only other instructions that use a word address are LOAD,
LOADX, STORE, STOREX, BIN, and BINX. These instructions treat the word address
as a row address and a position number.

LOAD, LOADX, STORE AND STORE X INSTRUCTIONS

In these instructions, the CU uses a single PE to access a single word of pro­
cessor memo,ry. The last six bits of the word address select the PE; the first
eleven bits (a row address in effect) are sent to this PE. The PE indexes the

1-4

the row address (if the instruction is LOADX or STOREX) and then accesses
the corresponding word in its "column" in processor memory.

BIN AND BINX INSTRUCTIONS

In these instructions, the CU uses a set of eight contiguous PEs to access
eight words in processor memory and then fetch them to the CU, where they
are stored in ADB registers. The first of the eight words must be at an
address that is congruent to 0 mod 8; that is, the block must begin at the
Oth, 8th, 16th, 24th, 32nd, 40th, 48th, or 56th word 2 in some row.

Again, the last six bits of the word address are used to select one PE,
but the last three bits are disregarded and treated as Os. This adjusts the
address to an 8 word boundary. The resulting 6-bit quantity is used to
select eight contiguous PEs, starting at the 8-word boundary; the first eleven
bits of the word address (a row address in effect) are sent to these PEs.
Each PE independently indexes the row address (if the instruction is BINX)
and then uses the result to access one word in its "column" in processor
memory. Finally, each of the eight PEs sends its word to the CU, and the
eight words are stored.

1.1.6 ADDRESS FIELD FORMATS

Although row addresses consist of 11 bits, the address field (ADR) of a
FINST/PE instruction is defined as 16 bits. [Figure 1-2 shows how addresses
are formatted within address fields.] Address arithmetic (indexing) operates
on a~l 16 bits, but only the rightmost 11 bits in the field are used for de­
termining a physical address. The five leftmost bits are unused in the present
ILLIAC IV configuration.

Similarly, a word address consists of 17 bits, but the address field of
an ACAR or the JUMP instruction is 24 bits. Again, all manipulations of the
address field operate on the entire 24 bits, but only the rightmost 17 bits
are used as an address.

Finally, although ICR is 25 bits long, the syllable address it contains
is only 18 bits. When ICR is loaded from an ACAR or processor memory location
(or modified by a SKIP or JUMP instruction), all 25 bits may be affected, but
only the rightmost 18 bits are used as a syllable address.

2These positions are called 8-word boundaries.

1-5

r------------------------ Unused (5 or 7 Bits)

Row Address 0-37778

PE Position No. 0-778

___ 1--______ -1. ________ '---__ 1. 1/0

,

I ,

,

J

Row Address
(AIR 16:16 in FINST/PE Instr. or
ACAR 48:16 for ACAR Indexing in
a FINST/PE Instr.)

Word Address
(ACAR 40:24 in BIN(X), LOAD(X),
and STORE(X); AIR 8:24 in JUMP.)

Syllable Address
(lCR 0:25 -- Bit 24: 1
Selects First or Second
Syllable Within Word.)

..

II

*Note: ICR 24:1 corresponds to ACAR/Memory 0:1 in any ADVAST instruction that loads or stores ICR.

Figure 1·2 Address Format and Address Fields

1-6

1.1.7 JUMPS AND SKIPS

A JUMP instruction, as described previously, loads a word address into ICR,
where it is converted to a syllable address by right-appending a 0 bit. The
result is always an even syllable address! It is impossible to use the JUMP
instruction to branch to an instruction having an odd-numbered syllable address.
The ASK assembler permits the programmer to force any instruction to be located
at a word address (i.e., an even-numbered syllable address).

Certain instructions contain a IIskip" field, which is used to modify ICR.
This field is added to ICR with the least significant bits aligned. In other
words, a syllable address is modified directly to another syllable address,
so the program can IIskipll to any syllable within the range provided by the

8-bit skip field.

1.2 PE REGISTER ADDRESSING
PE register addresses are specified by setting one bit in a l6-bit field (the ADR field)
of a PE instruction word. If more than one of these bits is set, the results are un­

specified. The bit assignments are listed in Table 3-1, p. 3-3.
One ADVAST instruction, LDC, uses a PE register address that is specified by setting

one bit in the instruction word. [See Section 2, p. 2-36.J

1.3 CU REGISTER ADDRESSING
CU registers are addressed by 8-bit codes in the ADR field of ADVAST instructions.
Table 2-1, p. 2-8, lists the codes and provides a brief description of all addressable
CU registers mentioned in this manual. There are also other CU registers (not mentioned
in this manual) that may be legally addressed by ADVAST instructions. However, the
results of addressing these registers are unspecified, and their use is not recommended.

1-7

I
I
I

Section 2

ADV AST Instructions

CONTENTS

SECTION 2 - ADVAST INSTRUCTIONS

2.1 INSTRUCTION FORMAT AND FIELD USAGE

2.2 ADVAST ARITHMETIC

2.2.1 ACAR-Indexing

2.3 CATEGORIZATION OF ADVAST INSTRUCTIONS

2.4 REGISTER ALIGNMENT IN ADVAST INSTRUCTIONS

2.4.1 Rules for All Registers Except ICR
2.4.2 Rules for ICR

2.5 ADVAST INSTRUCTION DESCRIPTIONS

2.6 GENERAL DESCRIPTION OF TEST-SKIP INSTRUCTIONS

Figure 2-1 Bit Alignment in Transfers to or From ICR

Table 2-1 Summary of Addressable CU Registers
Table 2-2 Functions of Bits in ADVAST Control

Register (ACR)
Table 2-3 Meanings of Bits in Interrupt (AIN) and

Mask (AMR) Registers

2-1

2-2

2-3

2-3

2-6

2-6
2-6

2-10

2-45

2-10

2-7 I
2-8 I
2-9

I
I
I
I
I
I
I
I

Section 2

ADV AST Instructions

2.1 INSTRUCTION FORMAT AND FIELD USAGE
This section begins with an illustration of the general format for ADVAST instruction
words, followed by a listing of each field and its usage.

SKIP ADR
1 1 1 I I· 1

__ _....---4 5 I 8

[Fi~ld A OP Code '''' "11'" I n ;:eld B OP Code "

.E.1ill.
Field A OP Code

ACARX

Description

Panty

Global/Local

Bits 0:2 and 2:3. First and second digits of octal OP
code. Bit 0 is "zero ll for ADVAST instructions.

Bits 5:3. When bit 5 is lIone," the contents of the ACAR
specified by bits 6 and 7 are used to index the quantity
found in the ADR field. When bit 5 is "zero," the ADR
field is used without indexing, and the values in bits
6:2 are irrelevant. The SLIT and ALIT instructions
utilize this and the remainder of the fields differently.
See instruction details for exact field definitions.

2-1

SKIP

Operand ACAR

Global/Local

Parity

Field B OP Code

ADR

2.2 ADVAST ARITHMETIC

Bits 8;8. This field is used in Test-Skip instructions
to show sign and magnitude of the skip distance (if a skip
is to be executed). Bit 8 is the sign - lIone" means sub­
tract from ICR, and "zero" means add to ICR. Bits 9:7
specify the magnitude. The JUMP instruction utilizes this
and the remainder of the ~ie1ds differently. See in­
struction details for exact field definitions.

Bits 16:2. Each instruction describes the particular
usage of the ACAR specified in this field. Usually, the
designated ACAR is the source of the first operand and/or
the destination of the result.

Bit 18:1. A "one" indicates "local." Local operation
is the only possibility in the pre~ent ILLIAC IV configur­
ation.

Bits 19:1. This is an odd parity bit. ALIT, SLIT, and
JUMP inst~ctions do not use the parity bit.

t ~

Bits 20:1 and 21:3. Second and third digits of the octal
OP code.

Bits 24:8. The particular usage of this field is described
separately for each instruction. Generally, it is index­
able (see ACARX), and it specifies the CU register to be
used as the source of the second operand or the source or
destination of a data transfer. It indicates the shift
amount in the shift instructions.

Three different formats are used by various ADVAST instructions in handling the 64 bits
in an ACAR or ADB location. The format used depends on the instruction and, in some
cases, the specified operand.

Here, we are concerned with cases in which the index wopd lo~t is used. The
following diagram illustrates this format.

Bits 1:15, the sign and magnitude of the increment, are called the Inerement Field;

bits 16:24 are called the Limit Field; and bits 40:24 are called the Current Index Field.

2-2

All ADVAST arithmetic is 24-bit, twos-complement inteqer arithmetic (addition and
subtraction). It is both performed in and restricted to the Current Index Field of an
ACAR; that is, bits outside the Current Index Field are never affected by ADVAST arith­
metic operations .. The first operand is always found in the Current Index Field of the
operand ACAR, and the result is always left in the same field of that same ACAR. The
second operand can be anyone of the following entities.

(a) Current Index Field of another ACAR or ADS location.
(b) Most significant 24 bits of ICR (a 25-bit reqister).
(c) Least significant 24 bits of some other register.
(d) Increment Field of the same ACAR that contains the first operand.
(e) A 24-bit literal contained in the instruction word (i.e., the 24 least

significant bits of the instruction register, AIR).

ADVAST arithmetic uses unsigned twos-complement operands, except when the second
operand is the Increment Field (a sign-magnitude quantity). In this case, twos-comple­
ment arithmetic is still used, and a negative result produced by subtraction is left
in twos-complement form.

Note: OverfZow is disregarded; thus aZZ resuZts are mod 224.

The Limit Field is used only in certain Test-Skip instructions, where it is com­
pared with the Current Index Field of either the same ACAR or another ACAR. The Limit
Field is never modified or used as an operand in ADVAST arithmetic instructions.

2.2.1 ACAR-INDEXING
Both ADVAST instructions and FINST/PE instructions may be ACAR-indexed. When
an ADVAST instruction is indexed, the eight least significant bits of the in­
struction word (the ADR field) are modified by adding the eight least insignifi­
cant bits of a specified ACAR (ACARX). Overflow is disregarded.

This description of ACAR-indexing applies to aZZ ADVAST instructions where
an ACARX field is shown in the instruction word layout. Hence the instruction
descriptions, presented in a later subsection [see Section 2.5], do not mention
ACAR-indexing except where special cautions apply.

2.3 CATEGORIZATION OF ADVAST INSTRUCTIONS
The following sUbsections are a generalized categorization of ADVAST instructions. Each
instruction mnemonic is followed by a page reference in brackets []. These page numbers
refer to the detailed descriptions of these instructions, which begin on P.2-11. For
a complete alphabetical listing of these instructions, see the inside front cover of
this manual.

2-3

OPERATIONS ON ACARS

Current Index Field Manipulation

ALIT [2-11 J
CADD [2-14J
CSUB [2-27J
SLIT [2-42J
INCRXC [2-34J

Whole Register Manipulation

CAND [2-15J
COR [2-20J
CEXOR [2-17]
CLC [2-18J
COMPC [2-19J
CROT(L/R) [2-22, 2-23J
CSH(L/R) [2-25, 2-26J

LEAD(O/Z) [2-38J

EXCHL [2-30J

LDL [2-37J
LIT [2-39J

STL [2-43]

Bit Manipulation

CCB [2-16J
CRB [2-21J
CSB [2-24J

Half Word Manipulation

DUP(I/O) [2-28, 2-29J

REFERENCE TO PROCESSOR MEMORY

BIN (X) [2-12J
LOAD(X) [2-40J
STORE(X) [2-44J

Add literal to ACAR (40:24)
Add operand to ACAR (40:24)
Subtract CU register from ACAR (40:24)
Replace ACAR (40:24) with literal
Modify ACAR (40:24) by ACAR (1:15)

64-bit "and" of ACAR and CU register
64-bit "or" of ACAR and CU register
64-bit "exclusive" or ACAR and CU register
Clear ACAR
Complement ACAR
Rotate ACAR left/right, end-around
Shift ACAR left/right, end-off, zero fill

Find leading one/zero in ACAR

Exchange contents of ACAR and CU register

Load ACAR from CU register
Load ACAR with literal

Store ACAR contents in CU register

Complement bit in ACAR
Reset (=0) bit in ACAR
Set (=1) bit in ACAR

Duplicate inner/outer 32 bits of ADB word in ACAR.

Fetch 8 words from processor memory to ADB
Fetch 1 word from processor memory to CU register
Store CU register in 1 word of processor memory

2-4

REFERENCE TO PE INFORMATION

CONTROL

LDC [2-36]
SETC [2-41]

CACRB [2-13J
EXEC [2-31J
FINQ [2-32J
HALT [2-33J
JUMP [2-35J

Load ACAR from PE register
Load each ACAR bit with mode bit from a PE

Set/reset one bit in ADVAST Control Register, ACR
Execute instruction in ACAR (32:32)
Stop ADVAST until FINST is idle
Programmed halt; CU comes to orderly idle state
Jump to specified word address

In the following Test-Skip instructions, the notes apply to the "T" case in conditional
skips; that is, skip if test is TRUE. "F" means skip if test is FALSE.

UNCONDITIONAL SKIP

SKIP [2-52J Skip specified number of syllables forward
or backward

SKIP ON CONDITION OF CU TRUE/FALSE FLIP FLOP (TFFF)

SKIP(T/F) [2-53]

SKIP ON VALUE OF BIT IN ACAR

CTSB(T/F) [2-46]

ZEROS AND ONES

ONES(T/F) [2-50]
ONEX(T/F) [2-51]
ZER(T/F) [2-60J
ZERX(T/F) [2-61]

Skip on preexisting TFFF value

Skip if specified ACAR bit is set

Skip if ACAR (0:64) = all "ones"
Skip if ACAR (40:24) = all "ones"
Skip if ACAR (0:64) = all "zeros"
Skip if ACAR (40:24)= all ~I,zeros"

COMPARE ACAR CURRENT INDEX FIELD TO OPERAND CURRENT INDEX FIELD

EQLX{T/F) [2-47J
GRTR(T /F), [2-48]
LESS(T/F) [2-49]

Skip if ACAR (40:24) = CU register (40:24)
Skip if ACAR (40:24) > CU register (40:24)
Skip if ACAR (40:24) < CU register (40:24)

COMPARE ACAR CURRENT INDEX FIELD TO OPERAND LIMIT FIELD

TXE(T/F) [2-54J
TXG(T/F) [2-56J
TXL(T/F) [2-58J

Skip if ACAR (40:24) = CU register (16:24)
Skip if ACAR (40:24) > CU register (16:24)
Skip if ACAR (40:24) < CU register (16:24)

2-5

COMPARE ACAR CURRENT INDEX FIELD TO LIMIT FIELD OF SAME ACAR
AND MODIFY CURRENT INDEX FIELD BY INCREMENT FIELD OF SAME ACAR

Note: The skip is conditional~ but the Current Index Field

modification is unconditional.

TXE(T/F)M [2-55J

TXG (T / F)M [2-57J

TXL(T/F)M [2-59J

Skip if ACAR (40:24) = ACAR (16:24);
mod i fy ACAR (40: 24) by ACAR (1: 1 5)

Skip if ACAR (40:24) > ACAR (16:24);
modify ACAR (40:24) by ACAR (1 :15)

Skip if ACAR (40:24) < ACAR (16:24);
modify ACAR (40:24) by ACAR (1 :15)

2.4 REGISTER ALIGNMENT IN ADVAST INSTRUCTIONS
As indicated in Table 2.1, the addressable CU registers range from 8 to 64 bits in
length. The following rules describe the way in which two registers are aligned with
each other in transfers and in arithmetic operations.

2.4.1 RULES FOR ALL REGISTERS EXCEPT ICR
~ The least significant bits of the two registers are aligned.
• If the destination register in a transfer operation is longer than

the source register, all destination register bits not replaced by
bits from the source register are cleared.

• If the source register in a transfer operation is longer than the
destination register, the excess source register bits are disregarded.

2.4.2 RULES FOR ICR
ICR is a 25-bit register that is used to hold a syllable address. The most
significant 24 bits of ICR contain a word address; the least siqnificant bit
is used to select the first or second syllable of the addressed word (i.e.,
"0" for the first syllable or "1" for the second).

An AD VAST instruction may cause ICR to be aligned with an ACAR or with a
processor memory location - no other combinations are possible. The following
rules describe the alignment.

• The 24 most significant bits of ICR are aliqned with the 24 least

significant bits of the ACAR or processor memory location. In other
words, the word address portion of the ICR aligns with the Current
Index Field of an ACAR.

2-6

Register

ACR (ADVAST Control
Register)

ADB (ADV AST Data
Buffer)

ACARs (Accumulator
Registers)

ICR (Instruction Counter
Register)

AIN (ADVAST Interrupt
Register)

AM R (ADV AST Mask
Register)

AL R (ADV AST Local
Memory Address
Register)

TRI (TMU Input
Register)

TRO (TMU Output
Register)

Table 2-1 Summary of Addressable CU Registers*

Description

A l6-bit register containing l-bit indicators and control bits for various states of
the CU. ACRcan be read by LDL and STORE(X). It cannot be written, but
certain bits can be set/reset by CACRB.
Address Code = 1408'

An array of sixty-four, 64-bit storage registers with general read/write access by
ADVAST instructions. ADB access requires only two clocks, while processor
memory access requires seven clocks. Address Codes = 000 -0778'

An array of four 64-bit, general-purpose accumulator registers.
Address Codes = 1008 • 1038'

A 25·bit register containing the syllable address of the instruction currently
being processed by ADVAST. ICR can be addressed by CADD, CSUB,
EXCHL, LDL, STL, LOAD(X), and STORE(X). See Section 2:4.2 for a
description of bit alignment between ICR and other operand registers.
Address Code = 1048'

A 16·bit register containing l·bit flags set by the hardware to indicate the
occurrence of error conditions. AIN is masked by ·AMR; if the hardware
sets a bit in AIN and the corresponding bit of AMR is set, a HALT occurs.
AIN can be addressed by EXCHL, LOL, STL, LOAD(X), and STORE(X).
AI N is NOT automatically cleared each time it is rcad.
Address Code = 1428'

A 16·bit register used to mask AIN, as described above. AMR can be addressed
by EXCHL, LOL, STL, LOAD(X), and STORE(X).
Address Code = 1458'

An 8·bit register used to store the address code of a CU register addressed in
an ADVAST instruction. ALR can be addressed by EXCHL, LOL, STL,
LOAD(X), and STORE(X). Address Code = 1448'

A 64·bit register used to hold information sent to the ILLIAC IV by the oper·
ating system. TRI can be addressed (read) only by LDL and STORE(X).
Address Code = 1558'

A 64·bit register used to send information from the ILLIAC IV to the oper·
ating system. TRO can be addressed by EXCHL, LOL, STl, lOAD(X), and
STORE(X). When TRO is written by LOAD(X), ACR bit 15 is automatically
set. Address Code = 1568'

* This tdble ~ontains only those registers that arc referenced in this manual.

2-7

Bit No.

o

2

3

4

5

6

7

8

9

11

12

13,;

14

15

Table 2-2 Functions of Bits in ADVAST Control Register (ACR)

Initial Value

OFF

OFF

OFF

OFF

OFF

OFF

OFF

OFF

ON

ON

OFF

ON

OFF

OFF

OFF

OFF

Can Be
Set/Reset
via CACRB

YES/YES

NO/NO

NO/YES

NO/NO

YES/YES

YES/YES

NO/NO

NO/NO

YES/YES

YES/YES

YES/YES

YES/YES

YES/YES

YES/YES

YES/YES

YES/YES

Description

CU TRUE/FALSE Flip-Flop: Used in Test-Skip instruc~

tions. Set for TRUE and reset for FALSE.

Interrupt Processing Mode: When set, CU is in interrupt pro­
cessing mode. Set whenever ACR bit 11 is reset, some bit in
AI N is set, and the correspond ing b it in AM R is also set.
Reset by IN R.

Hardware Mask in Use: When set, all AIN bits except 0-3 are
ignored; AMR is also ignored. Set when ACR bit 1 is set.
Reset by INR.

ALR Busy: Set by a BIN or LOAD instruction that refer- I
ences an ADB location. ACR bit 7 indicates whether BIN or
LOAD caused ALR BUSY condition. Reset automatically
when the BIN or LOAD completes.

Alternate Interrupt Base in Use.

Quadrants Awaiting Sync.: Meaningless in one-quadrant
ILLIAC IV.

FINST Idle: Set whenever FINST is idle.

BIN/LOAD Indicator: When set, it indicates that last oper­
ation to set ACR bit 3 was a BIN. When reset, the oper­
ation was a LOAD.

Nonoverlap Mode: When set, ILLIAC IV operates in nonover­
lap mode. When reset, overlap mode is used.

Exponent Underflow Inhibit: When set, exponent underflow
condition in a PE will not cause F or F1 bit to be set.

32-Bit Mode: When reset, machine is in 64-bit mode.

Halt on Interrupt Condition: When set, a halt occurs instead
of an interrupt.

Partial Overlap:

Spare

Branch Trace Enable: When set, alteration of ICR sets AIN bit
14 and loads old contents of ICR into TRO(40:24).

TRO Loaded: Set automatically by LOAD or LOADX in­
struction that loads TRO. Reset automatically when TRO
has been read by the operating system.

2-8

Bit No.

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Table 2·3 Meanings of Bits in Interrupt (AIN)and Mask (AMR) Registers

Initial Value in AMR Type *

ON 2

ON 2

ON 2

ON 2

ON 2

ON 2

ON 2

ON 2,

ON 2

ON

ON 2

ON 2

ON

ON

ON

OFF

Conditions

Spare: Available for indicating puwer failure.

Parity Error in Instruction: Sum of bits loaded from IWS to
AIR is even. Does not apply to SLIT, ALIT, JUMP, or any
instruction loaded by 411 EXEC instruction.

Undefined OP Code: OP code not a member of total ILLIAC
IV instruction set.

CU Stalled: CU has waited 15 ms for another instruction, or
HALT was executed, or breakpoint was reached, or second·
level interrupt has halted all operations.

Improper Setting of MCa, MCl, MC2 Registers: Configuration
control registers, invisible in one-quadrant ILLIAC IV.

Improper CU Register Address: Nonexistent or inaccessible
CU register address in ADV AST instruction. Not applicable
to BIN or BINX.

ADB Wraparound: Effective ADB address greater than 778 in
BIN or BINX.

Execute Loop: AIR contents replaced by ACAR value having
an identical OP code and ACAR address. This can occur
with an EXEC instruction.

Skip Loop: Skip instruction encountered with skip distance
equal to -1.

User Program Requested Interrupt: INR ins'truction executed,
while ACR bit 1 is reset. (CU not in interrupt processing
mode;)

Spare

Fault Bit Set: F bit is set in any PE; or ACR bit lOis set
(machine is in 32-bit mode) and Fl bit is set in any PE.

Spare

Spare

Branch Trace: ACR bit 14 is set (branch trace enable), and
ICR has been altered by EXCHL, STL, LOAD, LOADX,
JUMP, or any SKIP instruction.

TRI Loaded: TRI has been loaded by the operating system.

*"Typc 1" conditions cause a halt or interrupt after completion of the current instruction. "Type 2" conditions cause a
halt or interrupt on the next clock after the condition is detected.

2-9

, ~
I
I
I
I
I,
I'
I
I

• The least significant bit of ICR is not used in arithmetic operations.
In transfers, this bit is aligned with the most significant-bit of the
ACAR or processor memory location.

• Bits 1:39 of the ACAR or processor memory location are not aligned with
any ICR bits. If the ACAR or processor memory location is the destina­

, tion of a transfer, these bits are cleared. If the ACAR or processor
memory location is the source of the transfer, these bits are dis­
regarded.

Figure 2-1 illustrates these rules.

+ +
I I

t;ICR +

I~I ~,~~~, ~II
23 24

\ I

~-~---------------------------------_/
Not Used for Arithmetic Operations

Figure 2-1 Bit Alignment in Transfers. To or From leR

2.5 ADVAST INSTRUCTION DESCRIPTIONS
Throughout this section the ADVAST instructions are described in detail. Each des­
cription includes the mnemonic code, specification of operands (where applicable),
a description of the operation of the instruction, and the bit layout of the instruc­
tion word. Any fields for which a particular instruction has specific use are
described. Shading is used to indicate those fields that are ignored for a particular
instruction.

2-10

Mnemonia Code: ALIT

Fipst Opepand: Current Index Field, bits 40:24 of operand ACAR.

Seaond Opepand: 24-bit literal found in bits 8:24 of the instruction.

Opepation: 24-bit, unsigned, twos-complement add; overflow disregarded; result
replaces first operand in operand ACAR (bits 40:24).

Instruation Word:

4 ~ 6 7 8

Literal
I I I

31

Any overflow from the addition is disregarded, so bits 0:40 of the operand ACAR are unaltered.
Also bit 5 of the instruction must be a 1'111, while bits 6 and 7 designate the operand

ACAR.l

IThis is an exception to the normal instruction format.

2-11

Mnemonia Codes: BIN, BINX

Operation: Block fetch from processor memory toADB.

Instruation Words:

I 1?
I

ADR I I BIN

4 5 7 Ii 15 16 17 18 19 20 23 24 31

I

I
I

I 11 ADR
I I I I I I I

o . 4 5 7 8 15 16 17 18 19 20 23 24 31

The operand ACAR is assumed to contain a word address. To select a block of eight contiguous
PE positions,2 this address is treated as if its three least significant bits were zero. Each
PE in the selected block receives the row address portion of the word address (modifying it
by RGX if the instruction is BINX) and gets a word from its column of processor memory.
The resulting set of eight words from processor memory is sent to the CU.

The ADR field of the instruction (which may be ACAR-indexed) specifies an address in ADB.
To select a block of 8 contiguous ADB locations (starting at ADBO, 10, 20, 30, 40, 50, 60, or
70 octal), this ADB address is treated as if its three least significant bits were zero. The
eight words received from processor memory are stored in these eight ADB locations.

2The first of these eight positions will be octal PE position 0, 10, 20, 30, 40, 50, 60, or 70.

2-12

Mnemonic Code: CACRB

Oper-ation: Set/reset specified bit in ADVAST Control Register (ACR).

Instruction Wor-d:

4 5 7 8 18 19 20 23 24 25 21 28 31

LIfO
This instruction changes a bit in the AD VAST Control Register (ACR).
specified in bits 28:4 of the instruction and may be ACAR-indexed.

The bit number is
Bit 24 of the instruc-

tion contains a 11111 if the ACR bit is to be set or a 110" if the ACR bit is to be reset.
ACR bits 1,3,6, and 7 cannot be changed by CACRB. If the instruction specifies one

of these bits, the instruction is a no-oPe ACR bit 2 can be reset (=0) but not set (=1)
by CACRB. If the instruction specifies setting ACR bit 2, it is a no-oPe

Caution: Bits 24:8 of the instruction may be modified by ACAR-indexing~ which could

r-esult in an alter-atvon of bit 24~ thus changing the meaning of the instruction.

2-13

Mnemonia Code: CADD

First Operand: Current Index Field, bits 40:24 of operand ACAR.

Seaond Operand: 24-bit field from a CU register specified in ADR field; limited to ADB,
ACARs, IIA and ICR. [See below.]

Operation: 24-bit, unsigned, twos-complement add; overflow disregarded; result
replaces first operand in operand ACAR (bits 40:24).

Instruation Word:

4 5 1 8 15 16 17 18 1~ 20 23 24

I

ADR
I I I

31

If the ADR field designates an ADB location or an ACAR, the second operand is the Current
Index Field (bits 40:24) of the ADB location or ACAR; that is: the 24-bit add is performed
with the least significant bits aligned.

If the ADR field designates ICR or IIA, the second operand is bits 0:24 of ICR or IIA;
that is, the 24-bit add is performed with the second least significant bit of ICR or IIA
aligned with the least significant bit of the operand ACAR. The least significant bit of
ICR or IIA is not used.

Any carry from the addition is disregarded, and bits 0:40 of the operand ACAR are un­
altered.

2-14

Mnemonic Code: CAND

First Operand: Operand ACAR(O:64).

Second Operand: ADB location or ACAR(0:64) specified in ADR field.

Operation: 64-bit logical AND; result replaces first operand in operand ACAR (bits 0:64).

Instruction Word:

4 ~ 1 8

2-15

15 16 11 IS 1~]0 23]4

ADR
I I I

31

MnemoniC! Code: CCB

Opepation: Complement specified bit in operand ACAR.

Instruation Wopd:

11 IACARx~oper 111pI 01 I I 0
I I I . I I ~ACf'R ... I I .

4 5 7 8 15 16 17 18 19 20 23 24 25 26

I

Bit No.
I I I

31

This instruction complements one bit in the operand ACAR. The bit number is specified in
bits 26:6 of the instruction and may be ACAR-indexed.

2-16

Mnemonia Code: CEXOR

Fipst Opepand: Operand ACAR(0:64).

Seaond Opepand: ADB location or ACAR(0:64) specified in ADR field.

Operation: 64-bit logical EXCLUSIVE-OR; result replaces first operand in operand
ACAR (bits 0:64).

Instruation Word:

4 5 1 8

2-17

15 16 11 1~ 1~ 70 23 24

ADR
I I I

31

Mnemonic Code: CLC

Operation: Clear operand ACAR.

Instruction Word:

4 5 15 16 17 IS 19 }O n 24 31

This instruction causes CU to reset the operand ACAR to all zeros.

2-18

Mnemonic Code: COMPC

Operation: Complement operand ACAR.

Instruction Word:

4 5 15 16 17 IS 19 ?O 23 24 31

This instruction causes each bit of the operand ACAR to be replaced by its complement.

Mnemonia Code: COR

First Operand: Operand ACAR(O:64).

Seaond Operand: ADB location or ACAR specified in ADR field.

Operation: 64-bit logical OR; result replaces first operand in operand

ACAR (bits 0:64).

Instruation Word:

'04, IACARX~Oper V81 p l 11; I I ADR:
l I"II~AC~R~"III II

4 "
7 8 15 16 17 18 ,~, 20 lJ 24 31

Mnemonic Code: CRB

Operaation: Reset specified bit in operand ACAR.

Instrauction Worad:

7 8 15 16 17 18 19 20 23 24 25 26

I

Bit No.
I I I

31

This instruction resets one bit in the operand ACAR. The bit number is specified in
bits 26:6 of the instruction and may be ACAR-indexed.

2-21

Mnemonic Code:

Operation:

Instruction Word:

CROTL

Rotate operand ACAR left (end-around).

'00 IACARX~. Oper !'lApl 15' I 0
I I I . I I W~~~~ACf'R~ " I I . I

4 <; 1 8 15 16 17 18 19 20 23 24 ,'i 76

,
Shift Count
I I I I I

31

Bits 26:6 of the instruction (which may be ACAR-indexed) specify a shift distance. The
operand ACAR is shifted left {end-around} by the specified number of bit positions.

2-22

Mnemonia Code:

Operation:

Instruation Word:

GROTR

Rotate operand AGAR right (end-around).

00 IACARx~oper ~pl 17 I 10
I I I _ I I ~ACf.R~ _ I I _ I

4 ~ 1 8 15 16 1) 18 19]0 13 74 ?5 76

I

Shift Count
I I f I I

31

Bits 26:6 of the instruction (which may be AGAR-indexed) specify a shift distance. The
operand AGAR is shifted right (end-around) by the specified number of bit positions.

2-23

Mnemonic Code: CSB

Operation: Set specified bit in operand ACAR.

Instruction Word:

00 IACARx~oper 11 I pi 13 I I ~
I I I " I I ~ACf\R" " " I I "I

4 5 7 8 15 16 17 18 19 20 23 24 25 26

I

Bit No.
I I I

31

This instruction sets one bit in the operand ACAR. The bit number is specified in bits
26:6 of the instruction and may be ACAR-indexed.

2-24

Mnemonic Code:

Operation:

Instruction Word:

CSHL

Shift operand ACAR left (end-off).

00 IACARx~oper ~ p I 14 I I 0
I I I _ I I ~ACf\R~ _ I I _ I

4 5 I 8 15 16 1) 18 19 20 23 24 J~ 76

I

Shift Count
I I I I I

31

Bits 26:6 of the instruction (which may be ACAR-indexed) specify a shift distance. The
operand ACAR is shifted left (end-off) by the specified number of bit positions. The
vacated bit positions at the right end of the ACAR are filled with zeros.

2-25

Mnemonic Code: CSHR

Operation: Shift operand ACAR right (end-off).

Instruction Word:

4 5 7 8 15 16 17 18 19 70 23 74 ?~]6 31

Bits 26:6 of the instruction (which may be ACAR-indexed) specify a shift distance. The
operand ACAR is shifted right (end-off) by the specified number of bit positions. The
vacated bit positions at the left end of the ACAR are filled with zeros.

2-26

Mnemonic Code: CSUB

First Operand: Current Index Field, bits 40:24 of operand ACAR.

Second Operand: 24-bit field from a CU register specified in ADR field; limited to ADB,
ACARs, IIA, and ICR. [See below.]

Operation: 24-bit, unsigned, twos-complement subtraction of second operand from
first operand. Result replaces first operand in operand ACAR (bits 40:24).

Instruction Word:

04 IACARX~Oper ~pl 03 I I
IIII_II~AC~R~_II _

ADR
I I I I

1 8 I~, 16 1) 1 H 1'1 tU n 14 .11

If the ADR field designates an ADB location or an ACAR, the second operand is the Current
Index Field (bits 40:24) of the ADB location of ACAR; that is, the 24-bit subtraction is
performed with least significant bits aligned.

If the ADR field designates ICR or IIA, the second operand is bits 0:24 of ICR or IIA;
that is, the 24-bit subtraction is performed with the second least significant bit of ICR
or IIA aligned with the least significant bit of the ACAR specified in bits 16:2 of the
instruction. The least significant bit of ICR or IIA is not used.

Bits 0:40 of the operand ACAR are unaltered.

2-27

Mnemonic Code:

Opepation:

Instpuction Wopd:

DUPI

Duplicate inner 32 bits of ADB word into operand ACAR.

~1 I I : I

4 5 7 8 15 16 17 18 I~I 10 13 24

ADR
I I I

31

The ADR field of the instruction (which may be ACAR-indexed) contains a CU register address
that is restricted to ADB. The instruction causes the CU to duplicate the inner 32 bits of
the word found in ADB into both inner and outer portions of the operand ACAR, with the
following bit alignment.

ADB Location

8:8
16: 24

2-28

Operand ACAR

0:8 and 8:8
16:24 and 40:24

Mnemonia Code: DUPO

Operation: Duplicate outer 32 bits of ADB word into operand ACAR.

Instruation Word:

I ADR;
I I

4 5 1 8 I~ 16 17 18 1'1 lU ?3 14 31

The ADR field of the instruction (which may be ACAR-indexed) contains a CU register address
that is restricted to ADB. The instruction causes the CU to duplicate the outer 32 bits

of the word found in ADB into both inner and outer portions of the operand ACAR, with the

following bit alignment.

ADB Location

0:8

40:24

2-29

Operand ACAR

0:8 and 8:8
16:24 and 40:24

Mnemonic Code:

Operation:

Instruction Word:

EXCHL

Exchange the specified CU register and operand ACAR.

ADR
I I I

31

The ADR field of the instruction (which may be ACAR-indexed) specifies a CU register address
that should be one of the following: an ADS location, an ACR, AIN, ALR, ACARs, AMR, ICR, MCO-2,
IIA and TRO.

The contents of the specified register are interchanged with the contents of the operand
ACAR.

If the specified register is ICR, the incrementing of ICR after completion of the instruc­
tion is inhibited, thus effecting a jump. The bit alignment is: (a) the second least signi­
ficant bit of ICR or IIA is aligned with the least significant bit of the operand ACAR; and
(b) the least significant bit of ICR or IIA is interchanged with the most significant bit of
the operand ACAR.

In all cases, any operand ACAR bits that are not replaced by corresponding bits in the
specified register are cleared.

Loading MCO or MCl clears the IWS presence bits. Loading MCO or MC2 causes the FINST Queue
to empty before the interchange is performed.

2-30

Mnemonic Code: EXEC

Operation: Execute instruction found in operand ACAR (bits 32:32).

Instruction Word:

4 5 15 16 17 1 d ! 9 ~o 23 24 3 !

Bits 32:32 of the operand ACAR are assumed to be an instruction. These bits are transferred
to AIR and are executed as the next instruction following the EXEC instruction.

The normal incrementing of ICR and the fetching of the next instruction from IWS are
inhibited during execution of EXEC - but not inhibited for the instruction placed in AIR by
EXEC. Thus normal operation resumes automatically after this instruction is completed.

No parity check is performed on the instruction loaded into AIR by EXEC.
If the instruction found in the operand ACAR by EXEC is another EXEC instruction speci­

fying the same operand ACAR, the original EXEC instruction is not executed and AIN bit 7 is

set. This avoids the infinite loop that would result if the EXEC were executed.

2-31

Mnemonic Code: FINQ

Operation: Stop ADVAST until FINST is idle.

Instruction Word:

~~110111~
LOOI I ~#~P_ . ~

18 19 20 23 24 31

This instruction causes ADVAST to stall until FINQ empties and FINST becomes idle. As soon
as FINST is idle, ADVAST resumes normal operation.

2-32

Mnemonic Code: HALT

Opepation: CU comes to an orderly idle state.

Instpuction Wopd:

~IIOOI'I~ lOOII~P .. ~
4 5 18 19 70 23 74 31

This instruction causes ADVAST to cease fetching instructions into AIR. FINST continues
to operate normally until FINO is empty; then it becomes idle.

All pending processor memory fetches and data transfer operations being carried out by
the operating system will be completed. Communication between the CU and the operating
system remains open.

A Signal is sent to the operating system to indicate that a HALT has been executed.
(AIN bit 3 is set.)

2-33

Mnemonic Code:

Operation:

Instruction Word:

INCRXC

Modify Current Index Field of operand ACAR by Increment Field of same

ACAR.

4 5 15 16 17 13 19 W 23 24 31

Bits 40:24 of the operand ACAR are modified by the Increment Field (bits 1:15). Bit 1 is
the sign of the increment ("0" for positive or "1" for negative). Bits 2:14 are added to
or subtracted from bits 40:24 with least significant bits aligned. Any overflow is disre­
garded, and a negative result will be in twos-complement form. Bits 0:40 of the operand
ACAR are unaltered.

2-34

Mnemonic Code: JUMP

operation: Jump to specified word address.

Instruction Word:

4 5 7 8 31

Bits 8:24 of the instruction are assumed to contain a word address (right-justified). Bits
24:8 - the eight least significant bits of the address - may be modified (mod 256) by ACAR­
indexing.

The word address is loaded into bits 0:24 of ICR, and ICR bit 24 is reset (=0). This
results in an even 25-bit syllable address; that is, the first syllable in the processor
memory word referenced by the word address. Normal incrementing of ICR is inhibited. The
effect is a jump to the instruction in this syllable location.

It is not possible to jump to an odd-numbered syllable. 3

The ASK assembler provides means for forcing instructions to be located at word addresses
(even-numbered syllable addresses).

3Instructions in the Test-Skip group may be used to transfer to any odd or even syllable
location within 128 syllables of the current syllable address in IeR.

2-35

Mnemonic Code: LDC

Opepation: Transfer specified PE register to operand ACAR.

Instruction Wopd:

4 5) 8 15 16 17 18 19 20 23 24 25 26 30 31

PE Register Code ~

Bits 26:5 of the instruction (which may be ACAR-indexed) specify a PE register code, which
is restricted to the following:

PE Register Code
in Bits 26:5 PE Register

10000 RGA
01000 RGB
00100 RGX
00010 RGS
00001 RGR

Each "enabled" PE (see below) sends the contents of the specified register to the cu.
All of the values are ORed together, and the result is placed in the operand ACAR.

The RGX register in each PE is 16 bits long. If RGX is specified in bits 26:5 of the
instruction, bits 0:48 of the operand ACAR will be cleared, and operand ACAR bits 48:16 will
contain the OR of the RGX registers.

The LDC instruction is affected in a special way by RGD bits E and El in each PE [see
Section 3.3.3J. In 64-bit mode, only those PEs that have both E and El set (=1) will transmit
information to the CU.

This is the only ADVAST instruction affected by the E and El bits. These bits protect
the transfer path itself - unlike FINST/PE instructions, where the E and El bits protect
only certain registers and processor memory. Thus in the LDC instruction, the E and El bits
affect the execution regardless of which PE register is addressed.

2-36

Mnemonic Code: LDL

Operation: Load operand ACAR from specified CU register.

Instruction Word:

04 IACARx~oper ru 0,5 I I ADR
I I I _ I I ~AC~Rra=J ,_ !!!

4 5 7 8 15 16 11 18 19 20 23 24 31

The ADR field of the instruction (which may be ACAR-indexed) specifies a CU register address
that should be one of the following: an ADB location, an ACAR, ACR, AIN, AMR, ALR, ICR, MCO-2,
IIA, TRO, TRI, ACU and PEM(ARE).

The contents of the specified register are loaded into the operand ACAR. Least signifi­
cant bits are aligned, except when the specified register is ICR or IIA. The second least
significant bit of ICR or IIA is aligned with the least significant bit of the operand ACAR,
and the least significant bit of ICR or IIA is transferred to the most significant bit of the
operand ACAR. Any operand ACAR bits not replaced by bits from the specified register are
cleared.

2-37

Mnemonic Codes: LEADO, LEADZ

Operation: Find leading one or zero in operand ACAR.

Instruction Words:

LEADO

4 5 15 16 1 7 18 19 20 23 24 31

LEADZ

4 5 15 16 17 18 19 20 ?3 24 31

This instruction causes the leftmost lIone ll (LEADO) or IIzeroll (LEADZ) in the operand ACAR
to be found. The information is returned in the same ACAR in the following manner.

(a) If no leading lIone ll or IIzeroll is found, the operand ACAR will be cleared.

(b) If a leading "oneil or "zero ll is found, operand ACAR bit 55 will be set (=1)
and the bit position number of the leading lIone li or IIzeroli is placed in operand
ACAR bits 58:6. All other bits in the operand ACAR are cleared.

2-38

MnemoniC! Code: LIT

Operaation: Store next 64 bits in operand ACAR.

InstrauC!tion Worad:

4 5 15 16 17 1 a 19 ,0 23 24 31

This instruction stores a 64-bit literal into the operand ACAR. The literal is found in
IWS in the two syllables immediately following the LIT instruction.

ICR is incremented by 3 instead of 1, to cause the next instruction to be taken from
the location following the literal.

2-39

Mnemonic Codes: LOAD, LOADX

pperation: Fetch word from processor memory to specified CU register.

Instruction Words:

LOAD

4 5 1 8 15 1~ 17 18 19 20

LOADX

4 5 7 8 15 16 1 7 18 19 20

00 I I
I I .

23 24

23 24

ADR
I I I

ADR
I I I

31

31

The ADR field of the instruction (which may be ACAR-indexed) specifies a CU register address
that should be one of the following: an ADB location, an ACAR, AIN, AMR, ALR, ICR, MCO-2,
IIA and TRO.

Bits 40:24 of the operand ACAR are assumed to contain a word address. The row address
portion of this address is sent to the appropriate PE [see Section 1.1.2J, where it is modi­
fied by RGX if the instruction if LOADX. The word is then fetched to the CU and stored in
the specified CU register.

Least significant bits are aligned, except when the selected CU register is ICR or IIA.
The second least significant bit of ICR or IIA is aligned with the least significant bit of
the processor memory word. The least significant bit of ICR or IIA is loaded from the most
significant bit of the processor memory word.

When the specified CU register is TRO, ACR bit 15 is automatically set (=1) after the
transfer is completed.

If ICR is modified by this instruction, normal incrementing of ICR is inhibited; hence
the next instruction fetched will be the one pointed to by the modified contents of ICR.

When ADR references MCO or MC1, the presence indicators are cleared upon completion of
the load.

2-40

Mnemonic Code: SETC

Operation: Copy specified MODE (RGD) bit from each PE to operand ACAR.

Instruction Word:

1 8 I~ 16 11 1M I!I 2U 13 74 31

This instruction causes each bit in the operand ACAR to be loaded with a particular MODE
(RGD) bit from' the corresponding PE; that is, operand ACAR bit 0 gets a MODE (RGD) bit
from PE 0, and so forth.

Bits 24:8 of the instruction (which may be ACAR-indexed) contain the following code
for selecting a MODE (RGD) bit.

Instruction Bits 24:8 RGD Bit
(After Indexing) in Each PE

10000000 H

01000000 G
00100000 J

0001 0000
00001 000 E1
000001 00 E
00000010 F1
00000001 F
00000000 F "OR" F1

If more than one bit in bits 24:8 is set (=1), the results are unspecified.

2-41

Mnemonia Code:

Opepation:

Instruation Wopd:

SLIT

Replace Current Index Field (bits 40:24) of operand ACAR with a literal.

16 10 loper I
I I I .. ACt-R. I

4 5 6 7 8

Literal
I I I

31

Bits 8:24 of this instruction contain a literal quantity, which is stored in bits 40:24
of the specified ACAR. Bits 0:40 of the operand ACAR are not changed.

Bit 5 of this instruction must be 0, while bits 6:2 specify the operand ACAR.4

'4This is an exception to the normal instruction format.

2-42

Mnemonia Code: STL

Operation: Store operand ACAR in specified CU register.

Instruation word:

:
04

1

IACARX~op.r t/Apl ~4 I I
" . 1 " I I ~AC!AA~ " I I I " I

4 5 7 8 15 16 1 7 18 1 ~ 20 23 24

I

ADR
I I I

31

The ADR field of the instruction (which may be ACAR-indexed) specifies a CU register address
that should be one of the following: an ADB location, an ACAR, AIN, AMR, ALR, ICR, MCO-2,
IIA and TRQ. The contents of the operand ACAR are stored in the specified register.

Least significant bits are aligned, except when the specified register is lCR or IIA.
The second least significant bit of ICR or IIA is aligned with the least significant bit of
the operand ACAR. The most significant bit of the operand ACAR is transferred to the least
significant bit of ICR or IIA.

If this instruction is used to change the contents of ICR, the normal incrementing of
ICR is inhibited; so the next instruction executed will be the one addressed by the value
transferred into ICR by the STL instruction.

Storing into MCO or MCl clears the IWS presence indicators. Storing into MC2 causes the
FINST Queue to empty before the storing takes place.

2-43

Mnemonic Codes: STORE, STOREX

Opepation: Store from specified CU register into specified processor memory location.

Instpuction wopds:

IA~A~X~~~~RI1 I pi
,

I STORE 06 02 ADR
I I I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I
I

IA~A~X~~*RI1Ipl
I

I I STOREX 06 03 ADR
I I I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

The ADR field of the instruction (which may be ACAR-indexed) specifies a CU register address
that should be one of the following: an ADB location, an ACAR, ACR, AIN, AMR, ALR, ICR, IIA,
MCO-2, TRI, PEM(ARE) and TRO.

Bits 40:24 of the operand ACAR are assumed to contain a word address. The row address
portion of this word address is sent to the appropriate PE [see Section 3.1.2J, where it is
modified by RGX if the instruction is STOREX. The contents of the selected CU register are
stored in the selected processor memory location.

Least significant bfts are aligned except when the selected CU register is ICR or IIA.
The second least significant bit of ICR or IIA is aligned with the least significant bit of
the processor memory word. All bits in the processor ,memory word that are not replaced by
bits from the CU register are cleared.

If the specified CU register is AIN, it is not automatically cleared after it is read.

2-44

2.6 GENERAL DESCRIPTION OF TEST-SKIP INSTRUCTIONS
The instructions in the remainder of this section cause specific tests to be performed
on the contents of the operand ACAR and (in some cases) on a specified CU register
that must be another ACAR or an ADB location. The CU TRUE/FALSE Flip-Flop {TFFF)5
is set (=l) or reset (=O) according to the result of the test.

A skip is then conditionally performed, according to the test result in the TFFF.
For each type of test, two instructions are provided: skip if the test result is TRUE,
and skip if the test result is FALSE. The skip is performed by modifying the contents
of ICR with the contents of the SKIP field in the instruction. The SKIP field con­
sists of instruction bits 8:8. Bit 8 is the sign of the skip - "0" for a positive
(forward) skip or "1" for a negative (backward) skip. Bits 9:7 are the skip distance;
that is, the number of instructions (syllables) to be skipped. Depending on the value
of bit 8, the skip distance is added to or subtracted from the contents of ICR (with
least significant bits aligned) to yield a new syllable address. As usual, ICR is
also incremented by 1. The following examples illustrate the effects.

SKIP Value

-1

a
+1

Effect

Infinite loop (see Special Actions below)
No effect
Skip next instruction

In certain Test-Skip instructions, the Current Index Field of the operand ACAR is
modified by the Increment Field after the test is performed. This modificaiton of the
operand ACAR is unconditional. The test is performed; the result is saved in the TFFF;
the operand ACAR is modified; and a skip is conditionally performed.

In two instructions, SKIPT and SKIPF, no test is performed. The preexisting value
of the TFFF is used as the sole condition for the skip.

The unconditional skip instruction, SKIP, is also discussed in this section.

Special Actions: A skip of -1 would result in an infinite loop~ executing the

same skip repeatedly. If a skip of -1 is specified~ AIN bit 8

is set.

NOTE: AlthoU(Jh CU arithmetic operations are done in two's complement

ari~hmetic, quantities used in the compapison testing of the

following test instructions are to be considered positive.

Therefope - 1 is (Jonsidered greater than 0 and it follows

-1 > -2.

5The TFFF is ACR bit O.

2-45

Mnemonic Codes: CTSBT, CTSBF

Test Perfo!WIed:

Oper>ations:

Instruction WOr>ds:

CTSBF

CTSBT

Is specified bit in operand ACAR a "l"? (Result toTFFF.)

CTSBT skips if test result is TRUE; CTSBF skips if test result is FALSE.

1 8

4 5 1 8

:SKIP
I I

15 16 11 18 19 2(J

15 16 11 18 19 20

23 24 25 26 31

23 24 25 26 31

Bits 26:6 of the instruction, which may be ACAR-indexed, specify a bit number in the operand
ACAR. This bit is tested, and the TFFF is loaded with the value of the bit. A conditional
skip is then performed, depending on the value in the TFFF. [Please see the general descrip­
tion of the Test-Skip instructions at the beginning of Section 2.6 for a more detailed expla­
nation of the skip action.]

2-46

Mnemonia Codes: EQLXT, EQLXF

Fipst Opepand: Current Index Field (bits 40:24) of operand ACAR.

Seaond Operand: Bits 40:24 of ADB location of ACAR specified in ADR field.

Test Performed: Is first operand equal to second operand? (Result to TFFF.)

Operations: EQLXT skips if test result is TRUE; EQLXF skips if test result is FALSE.

Instruation Words:

I IA~A~xl
I I

1~~~RI1Ip I I I

EOLXT 14 SKIP 15 ADR
I 1 1 I 1 1 I 1 I I I 1

4 5 7 8 15 16 17 18 19 20 23 24 31

I :141 IA~A~xl : SKIP 1~~RI1Ipl
I

I : ADR: I EOLXF 17
1 1 1 I I 1 1 ! ! I I I I

4 5 7 8 15 16 17 18 19 20]J 24 31

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-47

Mnemonia Codes: GRTRT, GRTRF

First Operand: Current Index Field (bits 40:24) of operand ACAR.

Seaond Operand: Bits 40:24 of ADB location or ACAR specified in ADR field.

Test Performed: Is first operand greater than second operand?
(Result to TFFF.)

Operations: GRTRT skips if test result is TRUE; GRTRF skips if test result is FALSE.

Instruation Words:

IA7A~xl
,

1~~~RI1Ip I
,

I
,

GRTRT 15 SKIP 01 ADR
I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I :15, IA7A~xl : SKIP 1~*RI11 P I
,

I
,

I GRTRF 03 ADR
I , I I I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

[Please see the general description of the Test-Skip instructions at the beginninq of Section
2.6 for a more detailed explanation of the skip action.]

2-48

Mnemonic Codes:

First Operand:

Second Operand:

Test Performed:

Operations:

Instruction Words:

LESST

LESSF

LESST, LESSF --___________________ _

Current Index Field (bits 40:24) of operand ACAR.

Current Index Field (bits 40:24) of ADB location or ACAR specified in

ADR field.

Is first operand less than second operand?

(Result to TFFF.)

LESST skips if test result is TRUE; LESSF skips if test result is FALSE.

IA7A~xl 1~~~RI1Ip I
I

I
I 15 SKIP 05 ADR

1 1 1 1 1 I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I :15
1

IA9A~xl : SKIP : 1~*RI1Ipl
I

I I 07 ADR
1 1 I 1 I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20]3 24 31

[Please see the general description of the Test-Skip instructions at the beginning of Section

2.6 for a more detailed explanation of the skip action.]

2-49

Mnemonic Codes: ONEST, ONESF

Test Performed: Does operand ACAR contain a 11 "ones"? (Resul t to TFFF.)

Operations: ONEST skips if test result is TRUE; ONESF skips if test result is FALSE.

Instruction Words:

• :SKIP : l~g~RI1Ip I I

~ ONEST 10 05
! ! I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I • I I

l~g,~RI1 I pi
,
~ ONESF 10 SKIP 07

I I I I I I I I I I I I
4 5 7 8 15 16 17 18 19 20 23 24 31

These instructions test all 64 bits of the operand ACAR. [Please see the general descrip­
tion of the Test-Skip instructions at the beginning of Section 2.6 for a more detailed
explanation of the skip action.]

2-50

Mnemonia Codes: ONEXT, ONEXF

Test Performed:

Operations:

Instruation Words:

ONEXT

Does Current Index Field of operand ACAR contain all "ones"? (Result
to TFFF.)

ONEXT skips if test result is TRUE; ONEXF skips if test result is FALSE.

4 5 7 8

:SKIP
I I

15 16 17 18 19 20 23 24 31

ONEXF I I L10, I • I
SKIP
, , I

4 5 7 8 15 Hi 17 18 19 20 23 24 31

These instructions test bits 40:24 of the operand ACAR. [Please see the general description
of the Test-Skip instructions at the beginning of Section 2.6 for a more detailed explanation

of the skip action.]

2-51

Mnemonic Code: SKIP

Operation: Unconditional skip.

Instruction Word:

4 5 7 8

In this instruction, there is no test and the TFFF ;s not referenced. [Please see the
general description of the Test-Skip instructions at the beginning of Section 2.6 for a
more detailed explanation of the skip action.]

2-52

Mnemonic Codes:

Operations:

Ins true t:-ion Words:

SKIPT

SKIPF

SKIPT, SKIPF

No test is performed. SKIPT skips if value found in TFFF is TRUE; SKIPr

skips if value is FALSE.

[Please see the general description of the Test-Skip instructions at the beginning of Section

2.6 for a more detailed explanation of the skip action.]

2-53

Mnemonic Codes: TXET, TXEF

First Operand: Current Index Field (bits 40:24) of operand ACAR.

Second Operand: Limit Field (bits 6:24) of ADB location or ACAR specified in ADR field.

Test Performed: Is first operand equal to second operand? (Result to TFFF.)

Operations: TXET skips if test result is TRUE; TXEF skips if test result is FALSE.

Instruction Words:

IA~A~XI
I

1~*RI1Ip I I

I
I

TXET 14 SKIP 11 ADR
I I I I I I I

4 5 7 8 15 16 11 18 19 20 23 24 31

I IA9A~xl : SKIP : 1~*RI1Ipl
I

I
I I TXEF 14 13 ADR

I ! ! I I I I I I I I I I I I I
4 5 1 8 15 16 17 18 19 20 23 24 31

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-54

Mnemonic Codes: TXETM, TXEF~'

Test Performed: Is Current Index Field of operand ACAR equal to Limit Field of same ACAR?
(Result to TFFF.)

Operations:

Instruction Words:

TXETM

TXEFM

(a) Test is performed and result saved in TFFF.
(b) Current Index Field is modified (unconditionally) by Increment Field

of same ACAR.
(c) TXETM skips if test result is TRUE; TXEFM skips if test result is

FALSE.

12 • ;SKIP 12t~R111p I I I I I
4 5 7 8 15 16 17 18 19 20 23 74 31

I • I

12t,~RI1 I P I 12 SKIP
I I I I I I I I I I

17.:~
4 5 7 8 15 16 17 18 19 10 73 24 31

The unconditional modification of the Current Index Field (bits 40:24) by the Increment Field
(bits 1 :15) is performed as follows:

(a) Bit 1 is the sign of the increment - "0" for positive or "1" for negative.

(b) Using twos-complement arithmetic, bits 2:14 are added to or subtracted from bits
40:24 with the least significant bits aligned; any overflow is disregarded.

(c) Bits 0:40 of the operand ACAR are unaltered.

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-55

Mnemonia Codes: TXGT, TXGF

First Operand: Current Index Field (bits 40:24) of operand ACAR.

Seaond Operand: Limit Field (bits 16:24) of ADB location or ACAR specified in ADR field.

Test Performed: Is first operand greater than second operand?
(Result to TFFF.)

Operations: TXGT skips if test result is TRUE; TXGF skips if test result is FALSE.

Instruation Words:

IA~A~XI
I

l~g~RI11 pi
I

I
I

TXGT 14 SKIP 01 ADR
I I 1 1 1 1 I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I :141 IA~AfXI : SKIP : 1~*RI1IPI
I

I :
I

I TXGF 03 ADR
1 1 1 1 1 1 I I I I I I 1 I

4 5 7 8 15 16 17 18 19 20 23 24 31

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-56

Mnemonic Codes: TXGTM, TXGFM

Test PerfoPlmed: Is Current Index Field of operand ACAR greater than Limit Field of same

ACAR? (Result to TFFF.)

Operations:

Instruction Words:

TXGTM

TXGFM

(a) Test is performed and result saved in TFFF.
(b) Current Index Field is modified (unconditionally) by Increment Field

of same ACAR.
(c) TXGTM skips if test result is TRUE; TXGFM skips if test result is

FALSE.

4 5 1 8

4 5 1 8

,
SKIP
I I I

15 16 11 18 19 20 23 24 31

15 16 11 18 19 20 23 24 31

The unconditional modification of the Current Index Field (bits 40:24) by the Increment Field
(bits 1:15) is performed as follows:

(a) Bit 1 is the sign of the increment - 110 11 for positive or Ill" for negative.
(b) Using twos-complement arithmetic, bits 2:14 are added to or subtracted from bits

40:24 with least significant bits aligned; any overflow is disregarded.
(c) Bits 0:40 of the operand ACAR are unaltered.

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-57

Mnemonic Codes: TXLT, TXLF

First Operand: Current Index Field (bits 40:24) of operand ACAR.

Second Operand: Limit Field (bits 16:24) of ADB location or ACAR specified in ADR field.

Test Performed: Is first operand less than second operand?
(Result to TFFF.)

Operations: TXLT skips if test result is TRUE; TXLF skips if test result is FALSE.

Instruction Words:

IA~A~XI 1~~~RI1 Ip I
,

I
,

TXLT 14 SKIP 05 ADR
I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I :14, IA~A~XI : SKIP 1~~RI1Ipl
,

I
,

ADR: I TXLF 07 , I , I I , I I I I I I I
4 5 7 8 15 16 17 18 19 20 n 24 31

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-58

Mnemonic Codes: TXL H1, TXLH1

Test Performed: Is Current Index Field of operand ACAR less than Limit Field of the same

ACAR? (Result to TFFF.)

Operations:

Instruction Words:

TXLTM

TXLFM I

(a) Test is performed and result saved in TFFF.
(b) Current Index Field is modified (unconditionally) by Increment

Field of same ACAR.
(c) TXLTM skips if test result is TRUE; TXLFM skips if test result is

FALSE.

;13
1 • :SKIP

1 1 : 1 l~t~RI1Ip I 05:~
4 5 7 8 15 16 17 18 19 20 23 24 31

• I

l~g!~RI1 I pI 13 SKIP
I 1 1 1 1 1 1 1 1 1

07i~
1 1

4 5 7 8 15 16 11 18 19 20 73 24 31

The unconditional modification of the Current Index Field (bits 40:24) by the Increment Field

(bits 1:15) is performed as follows:

(a) Bit 1 is the sign of the increment - 110 11 for positive or "111 for negative.

(b) Using twos-complement arithmetic, bits 2:14 are added to or subtracted from bits
40:24 with the least significant bits aligned; any overflow is disregarded.

(c) Bits 0:40 of the operand ACAR are unaltered.

[Please see the general description of the Test-Skip instructions at the beginning of Section
2.6 for a more detailed explanation of the skip action.]

2-59

Mnemonic Codes: ZERT, ZERF

Test Performed: Does operand ACAR contain all "zerosfl? (Result to TFFF.)

Operations: ZERT skips if test result is TRUE; lERF skips if test result is FALSE.

Instruction Words:

ZERT ~Ol • :SKIP : l~q~RI1Ip I 01
: ~ I I I I I

4 5 7 8 15 16 17 18 19 20 23 24 31

I • I I

1~~~RI11 PI 03 : ~ ZERF 10 SKIP
I I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 73 24 31

These instructions test all 64 bits of the operand ACAR. [Please see the general description
of the Test-Skip instructions at the beginning of Section 2.6 for a more detailed explanation
of the skip action.]

2-60

Mnemonic Codes:

Test PerofoT'l1led:

Operoations:

Instrouction Words:

ZERXT

ZERXF

ZERXT, ZERXF

Does Current Index Field of operand ACAR contain all "zeros"? (Result
to TFFF.)

ZERXT skips if test result is TRUE; ZERXF skips if test result is FALSE.

~Ol • :SKIP
I I : I 1~*RI1Ip I 11;

I I ~
4 5 7 8 15 16 17 18 19 20 23 24 31

I - i

I~RI1Ipl : ~ 10 SKIP 13
I I I I I I I I I I I

4 5 7 8 15 16 17 18 19 20 Z3 24 31

These instructions test bits 40:24 of the operand ACAR. [Please see the general description
of the Test-Skip instructions at the beginning of Section 2.6 for a more detailed explanation
of the skip action.]

2-61

Section 3

FINST IPE Instructions

CONTENTS

SECTION 3 - FINST/PE INSTRUCTIONS

3. 1 INSTRUCTION FORMAT AND FIELD USAGE 3-1

3.2 CATEGORIZATION OF FINST/PE INSTRUCTIONS 3-5

3.3 GENERAL INFORMATION ON FINST/PE INSTRUCTIONS 3-7

3.3.1 Transmission of ADR Data to the PE -
Also ACAR-Indexing and Literals 3-7

3.3.2 64-Bit and 32-Bit Modes 3-8
3.3.3 The RGD Register 3-8
3.3.4 Conditions Arising in PE Arithmetic

Operations 3-11
3.3.5 Variants of PE Arithmetic Instructions

3.4 FINST/PE INSTRUCTION DESCRIPTIONS 3-13

Table 3-1 Summary of Addressable PE Registers 3-3
Table 3-2 Operand Addressing and Indexing Logic 3-4
Table 3-3 Bit/Shift Counting and Indexing Logic 3-4

I
I
I
I

Section 3

FINST /PE Instructions

3.1 INSTRUCTION FORMAT AND FIELD USAGE
Like Section 2, this section begins with an illustration of the general format for
FINST/PE instruction words, followed by a listing of each field and its usage.

Field

ADR

lBits 16:5 are unused.

Description

Bits 16:16. This field may be indexed in the CU by an ACAR before
being sent to the PEs [see ACARX in this list and also Section
3.3.1]. Depending on the'instruction and the contents of the ADR
USE field, ADR may be interpreted as one of the following.

(a) Processor memory address, bit number, or shift count.
Each may be indexed in the PE by RGX or RGS, depending
on ADR USE. The address is a right-justified, ll-bit
rowaddress. l

(b) PE register code. The code is formed by setting (=1)
one bit within bits 17:6 of the instruction [see Table

3-1, p. 3-3].

(c) Literal operand. Via the Common Data Bus (COB), each PE
receives a 64-bit value that is formed in the following
manner.

No ACAR-indexing: CDB (bits 0:48) = 0; COB (bits
48:16) = ADR.
Using ACAR-indexing: CDB (bits 0:48) = ACAR (bits
0:48); CDB (bits 48:16 = ACAR (bits 48:16) + ADR (high­

order carry from the addition is lost). If ADR = 0,
however, the literal operand in COB is the 64-bit value
found in the ACAR.

3-1

ADR LISE

ACARX

Field A OP Code

Field B OP Code

Parity

Bits 13:3. These bits govern the use of the ADR data (possibly
ACAR-indexed) received from the CU. The following are the possible
cases.

(a) Bit 15 set. ADR data is a processor memory address, a

bit position, or shift count. PE-indexing is permitted.
Bits 13 and 14 govern PE-indexing in the following ways.

Bits 13 and 14 reset: No PE-indexing.

Bit 13 set, bit 14 reset: Index by addinq RGS to
ADR data.

Bit 14 set, bit 13 reset: Index by adding RGX to
ADR data.

Bits 13 and 14 set: Unspecified results.

(b) Bit 15 reset, bit 13 set. ADR data is a PE register code
[see Table 3-1J. No PE-indexing is possible. Bit 14 is
disregarded.

(c) Bit 15 reset, bit 13 reset. CU transmitting a 64-bit
literal of which the ADR data is a component [see Section

3.3.1J.

(d) Tables 3-2 and 3-3 [see p. 3-4J summarize the various con­
figurations of ADR USE for two classes of instructions:

those that use operand addressing and indexing logic, and
those that use bit/shift counting and indexing logic.

Bits 5:3. These bits specify ACAR-indexing. If bit 5 is set (=1),
ACAR-indexing is performed; bits 6 and 7 contain the ACAR number
(0 - 3). If bit 5 is reset (=0), no ACAR-indexing is performed;
bits 6 and 7 are disregarded. [See Section 3.3.1 for a description
of ACAR-indexing.J

Bits 0:2 and 2:3. This field contains the first and second digits
of the octal OP code. Bi t 0 is always 11111 for FINST /PE i nstructi ons.

Bits 8:1 and 9:3. This field contains the third and fourth digits
of the octal OP code.

Bit 12:1. Odd parity bit.

3-2

Table 3·1 Summary of Addressable PE Registers*

Register Description

RGA (Accumulator
Register)

RGB ("B" Register)

RGX (Index Register)

RGS (Storage Register)

RGR (Routing Register)

RGD (Mode Register)

A 64-bit, general-purpose accumulator used by the PE for arithmetic and logical
operations. RGA may be protected by the E and E1 bits against modification
by operations performed in the PE.
Address Code: Bit 17 set (=1) in the instruction word [see No.1 and 2].

A 64-bit register used to hold second operands and intermediate results. It is
also used as an extension of RGA in double-precision operations. RGB
cannot be protected against modification by the E and E 1 bits.
Address Code: Bit 18 set (=1) in the instruction word [see No.1 and 2].

A 16-bit register used as an index register for independent modification of
addresses received by the PE ("X-indexing"). RGX may be protected by the
E bit against modification by operations performed in the PE.
Address Code: Bit 19 set (=1) in the instruction word [see No.1 and 2].

A 64·bit, general-purpose storage register that may also be used for indexing
("S-indexing") in the same manner as the RGX. RGS may be protected by
the E and El bits against modification by operations performed in the PE.
Address Code: Bit 20 set (=1) in the instruction word [see No.1 and 2] .

A 64-bit register that receives data routed from another PE and that is also used
in some instructions to hold intermediate results. RGR cannot be protected
against modification by the E and E1 bits.
Address Code: Bit 21 set (=1) in the instruction word [see No.1 and 2] .

An 8-bit register containing control and indicator bits related to the status of
the PE [see Section 3.3.3 for a more detailed discussion].
Address Code: Bit 22 set (=1) in the instruction word [see No.1, 2, and 3] .

* This table contains only those registers that have been referenced in this manual.

In the preceding table [Table 3·1] , three important codicils were referred to and should be kept in mind when­
ever those registers are implemented.

(1) To form a PE register address code, exactly one bit in the ADR field of the instruction should be set (=1).
as indicated in Table 3-1. If more than the ADR bit is set (=1)' the results are unspecified. In the ADR
USE field, bit 15 must be zero and bit 13 must be one to indicate that the AD R field contains a register
code.

(2) All register codes shown in Table 3·1 may be used in any PE instruction that permits a register code,
except instructions RTL and LD (A/D/R/S/X). See descriptions [po 3·45 and 3·59] of these instructions
for details.

(3) Within the PE, a transfer to or from RGD is always between the eight bits of RGD and the eight most
significant bits of RGB. This is the only physical path in the PE hardware. Thus, if eight bits are
transferred between RGD and some other PE register, RGB will always be modified as a side·effect of the
transfer, since the transfer will go via RGB.

3-3

Table 3-2 Operand Addressing and Indexing Logic

ADR USE (Bits 13: 3) Interpretation of ADR Contents

000 CU is transmitting a 64-bit literal*

001 Processor memory address --- no PE-indexing

010 CU is transmitting a 64-bit literal*

011 Processor memory address-- index by RGX

100 PE register code -- no PE-indexing allowed

101 Processor memory address -- index by RGS

110 PE register code - no PE-indexing allowed

111 Unspecified results

*Contents of ADR will be a component of the literal, depending on whether ACAR-indexing is
used [see Section 3.3.1 for a more detailed description I .

Table 3·3 Bit/Shift Counting and Indexing Logic

ADR USE (Bits 13:3) Interpretation of ADR Contents*

000 No PE-indexing

001 No PE-indexing

010 Index by RGX

011 Index by RGX

100 Index by RGS

101 Index by RGS

110 Unspecified results

111 Unspecified results

* In all instructions where this table applies, bit 15 is assumed to be on, and the ADR contents are
interpreted as a bit number or shift count (depending on the instruction). Hence the table indicates
the PE-indexing used on the bit number or shift count.

3-4

3.2 CATEGORIZATION OF FINST/PE INSTRUCTIONS
The following subsections are a generalized categorization of FINST/PE instructions.
Each instruction mnemonic is followed by a page reference in brackets []. These page
numbers refer to the detailed descriptions of these instructions, which begin on p 3-14.
For a complete alphabetical listing of these instructions, see the inside back cover
of this manual.

LOAD REGISTER

LD(A/B/D/R/S/X) [3-45]
LEX [3-49]

STORE REGISTER TO PROCESS MEMORY

ST(A/B/R/S/X) [3-72]

ROUTE

RTL [3-59]

CHANGE RGA CONTENTS

ClRA [3-23J
COMPA [3-24J
CAB [3-21]
RAB [3-57J
SAB [3-57J
CHSA [3-22J
SAP [3-60J
SAN [3-60J

BASIC ARITHMETIC

AD(A,M,N,R variants) [3-14J
ADD [3-17J
ADEX [3-18]
EAD [3-28J
SB(A,M,N,R variants) [3-61]
SUB [3-73J
SBEX [3-64J
ESB [3-31J

Load specified register
load RGA exponent

Store specified register

Route from specified register to RGR of
another PE

Clear RGA
Complement RGA
Complement specified RGA bit
Reset specified RGA bit
Set specified RGA bit
Complement RGA sign
Make RGA positive
Make RGA negative

Add
Add 64-bit logical words
Add exponent fields
Add (extended precision results)
Subtract
Subtract 64-bit logical words
Subtract exponent fields
Subtract (extended precision result)

3-5

ML(A,M,N,R variants) [3-50J
MULT [3-52J
DV(A,M,N,R variants) [3-25J
NORM [3-54J
ASB [3-20J

ADDRESS ARITHMETIC

XI [3-78J
(I/ J) XGI [3-42J
XD [3-77J
(I/J)XLD [3-43]

BOOLEAN

(N)AND(N) [3-19]
(N)OR(N) [3-56]
EOR [3-29]
EQV [3-30J

SHIFT/ROTATE

RTA(L/R) [3-58]
SHA(L/R) [3-70J
SHAM(L/R) [3-71J
SHAB(L/R) [3-68J
SHABM(L/R) [3-69J

LOAD/SET RGD BIT

LD(E/El/EE1/G/H/I/J) [3-47J
SET(E/El/F/Fl/G/H/I/J) [3-65J

LOAD RGD BIT I OR J FROM RGA BIT

(I/J)B [3-34]
(I/J)SN [3-40J

LOAD RGD BIT I OR J WITH RESULT OF TEST

(I/J)A(G/L) [3-33J
(I/J)L(G/E/L) [3-35J
(I/J)M(G/E/L) [3~37J

Multiply
Multiply (32-bit only)
Divide
Normalize
Transfer RGA sign to RGB sign

Add to RGX
Same~ with overflow to RGD bit I or J
Subtract from RGX
Same~ with complemented overflow to RGD bit

I or J

Logical AND (operands may be complemented)
Logical OR (operands may be complemented)
Logical EXCLUSIVE-OR
Logical EQUIVALENCE

Rotate RGA left/right
Shift RGA left/right
Shift RGA matissa left/right
Shift RGA + RGB left/right
Shift RGA mantissa + RGB mantissa left/right

Load RGD bit from one bit of a literal
Set RGD bit to a function of two RGD bits

Load I or J from specified RGA bit
Load I or J from RGA sign bit

Signed floating comparison of RGA and operand
Logical-word comparison of RGA and operand
Mantissa-only comparison of RGA and operand

3-6

(I/J)L(O/Z) [3-36]
(I/J)M(O/Z) [3-38]
(I/J)S(G/E/L) [3-39]
(I/J)X(G/E/L) [3-41]

Test RGA logical word
Test RGA mantissa only
Address-field comparison of RGS and operand
Address-field comparison of RGX and operand

Note: Tests are indicated by G for "greater than~" E for "equal to~"

L for "less than~" 0 for "all ones~" and Z for "all zeros."

BYTE-ORIENTED INSTRUCTIONS

ADB [3-16]
SBB [3-63]
GB [3-32]
LB [3-44]
NEB [3-53]
OFB [3-55]

SWAP INSTRUCTIONS

SWAP [3-74]
SWAPA [3-75]
SWAPX [3-76]

Add bytes
Subtract bytes
Test for RGA bytes "greater than" operand bytes
Test for RGA bytes "less than" operand bytes
Test for RGA bytes "not equal" to operand bytes
Recover byte carries or test results from

RGC to RGB

Swap RGA and RGB
Swap RGA inner and outer words
Swap RGA outer word and RGB inner word

3.3 GENERAL INFORMATION ON FINST/PE INSTRUCTIONS
The following subsections contain general information that applies in broad terms to
the FINST/PE instructions, especially those instructions that are arithmetic. The
reader should become familiar with this general information before proceeding to the
more detailed descriptions of the various FINST/PE instructions. 2

3.3.1 TRANSMISSION OF ADR DATA TO THE PE - ALSO ACAR-INDEXING
AND LITERALS
The 16-bit ADR field of an instruction is sent to each PE on the Common Data
Bus (COB), which is64 bits wide. If ACAR-indexing is not used (instruction
bit 5 reset), the ADR data is in COB bits 48:16; the remaining COB bits (0:48)
are all zeros.

If ACAR-indexing is used (bit 5 set), bits 6 and 7 specify an ACAR. Index­
ing is performed in the CU in the following manner.

(a) The ADR data (16 bits) are added to ACAR bits 48:16, the 16 least
significant bits of the ACAR, and the 16-bit result is placed in
COB bits 48:16. Any carry resulting from the addition is lost.

lThese are arranged alphabetically according to instruction mnemonic, except where instructions
are grouped together under a single description.

3-7

(b) ACAR bits 0:48 are placed in COB bits 0:48.

The handling of the 64 bits in the COB depends on both the OP code and the
ADR USE field [see Section 3.1J. In most cases, only the 16 (or fewer) least
significant bits of the COB are used. Hence the data that is used will effect­
ively consist of the contents of the ADR field plus the contents of the ACAR;
that is, the first 48 bits of the COB do not matter.

When a literal is transmitted, however, all 64 bits of the COB are used.
The programmer must then bear in mind that this quantity is not, strictly speak­
ing, the sum of the ADR and ACAR contents, since the carry from the 16-bit
add is lost.

Note: If ADR = 0., then CDE = ACAR. And if ACAR = 0 01' if ACAR­

indexing is not used., then CDE = ADR., with 48 leading ze1'Os.

This description of ACAR-indexing applies to all instructions where the
instruction word layout shows an ACARX field. Accordingly, the detailed instruc­
tion descriptions [see Section 3.4J do not mention ACAR-indexing or the ACARX
field - except where special cautions apply.

3.3.2 64-BIT AND 32-BIT MODES
At any moment, the ILLIAC IV is in either 64-bit 01' 32-bit mode, as determined
by ACR bit 10. This bit can be reset (=0) programmatically by the CACRB in­
struction for 64-bit mode and set (=1) for 32-bit mode. The CU sends the
current value of this bit to FINST, along with each FINST/PE instruction.

The mode has no effect on the execution of ADVAST instructions. Certain
FINST/PE instructions are also mode-independent, while others operate differ­
ently in each mode. The latter instructions are designed to produce meaningful
results in 64-bit mode (if the operands are formatted as 64-bit words) and in
32-bit mode (if the operands are formatted as 32-bit inner and outer words).

3.3.3 THE RGD REGISTER
RGD is an 8-bit register in each PE. Each of the eight bits is used individ­
ually. Therefore each bit is individually named: E, El, F, Fl, I, G, J, and H
for RGD bit positions 0 through 7, respectively.

When set (=1), the E and El bits lI enable ll operations on the outer and
inner portions, respectively, of RGA, RGS, and all processor memory locations
that are addressable by the PE. When reset (=0), they "disable" operations by
protecting the outer and inner portions of these registers and locations against
writes.

The F, I, and J bits are related to operations in 64-bit mode and to outer­
word operations in 32-bit mode. The Fl, G, and H bits are related to inner­
word operations in 32-bit mode. The following is a more detailed description.

3-8

E BITS

RGD bits E and El in each PE are used to enable changes to the outer and inner
portions, respectively, of RGA, RGS, and all processor memory locations that
are addressable by the PE. In addition, the E bit enables changes to RGX, and
the E and El bits enable changes to the F and Fl bits, respectively. When
the E and/or El bits are reset (=0), the corresponding items are protected;

that is, they cannot be changed by any FINST/PE instruction (except as noted

below).
The action of the E and El bits is independent of the ILLIAC IV mode

(54-bit or 32-bit). The condition of the E and El bits does not affect the
logic of instruction execution, except to prevent an alteration of the protected
items when E or E1 is reset (=0).

As previously stated, RGA, RGS, RGX, processor memory, and the F and Fl
bits may be protected by resetting (=0) the E and El bits.

Note: All other registers in the PE remain enabled (unprotected) at

all times.

Also resetting of the E and El bits does not protect processor memory against
writes performed by the operating system (data transfer operations) or against
writes performed by ADVAST instructions, STORE or STOREX, nor does it protect
the F and Fl bits against the instructions SETF and SETF1.

In 32-bit mode, the E and El bits may be used independently to enable or
disable operations on 32-bit outer and inner operands. In 54-bit mode, the
E and El bits may be set/reset concurrently (E = El always) to enable or dis­
able operations on 54-bit operands. If E ~ El in 54-bit mode, the results in
many cases will be unspecified, so the use of this configuration is not recom­
mended. There is no hardware provision to ensure that E = E1 in 64-bit mode.

The following chart summarizes the effects of all possible configurations
of the E and El bits.

RGA, RGS, and Processor Memory
E El Outer Inner , RGX F Bit Fl Bit
0 0 Protected Protected Protected Protected Protected
0 1 Protected Enabled Protected Protected Enabled
1 0 Enabled Protected Enabled Enabled Protected
1 1 Enabled Enabled Enabled Enabled Enabled

E and El bits are set/reset by the LDE, LDE1, LDEE1, SETE, and SETEl instruc­
tions. The E and El bits have a special effect on the ADVAST instruction LDC
[see Section 2.5J. Also, they do not protect RGA in the DV instructions [see
Section 3.4J.

3-9

F AND Fl BITS

These bits are automatically set (=1) to indicate the occurrence of various
fault conditions in PE arithmetic operations. In 64-bit mode, the F bit
indicates a fault; in 32-bit mode, it indicates a fault in the outer word.
A fault in the inner word in 32-bit mode is indicated by the Fl bit. Whenever
any F bit is set in 64-bit mode or any F or Fl bit is set in 32-bit mode due to a PE
error condition, the CU sets AIN bit 11 [causing a halt under normal conditions].

Four conditions may cause the F and Fl bits to be set.

(a) Exponent overflow
(b) Mantissa overflow in mantissa-sized, fixed-point arithmetic
(c) Zero or unnormalized divisor
(d) Exponent underflow, if ACR bit 9 is reset and if, in normalized oper­

ation, the resultant mantissa is nonzero

Remember that if the E bit is reset (=0), the F bit will not be set (=l) auto­
matically and if the El bit is set, the Fl bit will not be set automatically.
However, the F and Fl bits can be set/reset programmatically by the SETF and
SETFl instructions, regardless of the condition of E and El.

Note: In other words~ once an F or Fl bit is set~ it will not be reset

automatically under any circumstances; SETF or SETFl must be used

to reset it programmatically.

I AND J BITS

These two bits are used programmatically to store single bits of information,

such as isolated bits from other registers or the results of tests performed
in the PEe Instructions that can load these bits have mnemonics beginning
with I or J - these letters indicate which of the two bits is loaded by each
instruction. Information stored in the I and J bits may be used in SET in­
structions to cause other RGD bits to be set or reset; they may also be read
by the CU by using the SETC instruction. These bits may also be set or reset
via the SET1 or SETJ instructions.

G AND H BITS

These two bits are used in 32-bit mode in parallel with the I and J bits;
that is, in 32-bit mode the I or J bit is used for the outer 32-bit quantity,
while the G or H bit is used for the inner 32-bit quantity. In 32-bit mode,
instructions whose mnemonics begin with I load the I and G bits, while instruc­
tions whose mnemonics begin with J load the J and H bits. In 64-bit mode
these bits may be used by the programmer to hold logical information. (via
the SETG and SETH instructions). These bits may also be read by the CU
using the SETC instruction.

3-10

3.3.4 CONDITIONS ARISING IN PE ARITHMETIC OPERATIONS

The following conditions, which are briefly discussed, may arise in PE
arithmetic operations on 64-bit or 32-bit operands.

ARITHMETIC ZERO

When a signed, floating-point arithmetic operation produces a zero result
(e.g., a result of exponent underflow or, in normalized operation, when the
resultant mantissa is zero), the entire 64- or 32-bit word is zeroed. A
word of all "zeros" is interpreted as a mantissa of +0 and an exponent of
_(214) for a 64-bit word and _(26) for a 32-bit word. Thus a zero result
from signed, floating-point arithmetic is always +0; it is never -0.

In mantissa-sized, fixed-point arithmetic and in unsigned, floating-point
(e.g., "M'I and "A" variants), the word is not automatically zeroed, so a
result of -0 is possible.

Note: If +0 and -0 are compared arithmetically, they will be considered

unequal; that is, -0 < +0.

MANTISSA OVERFLOW

In mantissa-sized, fixed-point operations, mantissa overflow is a fault condi­
tion, thus causing the F or Fl bit to be set as previously described. In
all other cases, mantissa overflow is automatically adjusted by shifting the
mantissa one place right, then placing a "one" in the leading bit position,
and finally adding a 1 to the exponent. Rounding (if specified) is not affected
by this operation.

EXPONENT OVERFLOW

When exponent overflow occurs in a floating-point operation, the resultant
exponent is the true exponent mod 214 (in 64-bit mode) or 26 (in 32-bit mode).
The resultant mantissa will be correct, unless the exponent overflow occurred

in response to normalizing a mantissa overflow.

EXPONENT UNDERFLOW

In signed, floating-point arithmetic operations, exponent underflow causes
the entire 64-bit and 32-bit word to be cleared [described previously in
"Arithmetic Zero"]. In unsigned operations, this is not done.

Exponent underflow will cause the F or Fl bit to be set (=1) if ACR bit
9 is set and if, in normalized operation, the resultant mantissa is nonzero.

3-11

3.3.5 VARIANTS OF PE ARITHMETIC INSTRUCTIONS

For the arithmetic instructions AD, SB, ML, and DV,- various suffixes maybe
appended to the mnemonic to produce variant OP codes. These suffixes are
composed of various combinations of the letters A, M, N, and R, each denoting
a specific optional type of arithmetic operation.

THE IIA" VARIANT - UNSIGNED OPERANDS

The signs of both operands are ignored during the operation. Hence the sign
bit in RGA is unchanged; that is, the result has the same sign as the operand

found in RGA.

THE IIMII VARIANT - MANTISSA-SIZED, FIXED-POINT OPERATION

The exponent fields of both operands are ignored during the operation. Thus
the exponent field in RGA is unchanged; that is, the result has the same ex­
ponent as the operand found in RGA.

THE IINII VARIANT - NORMALIZATION

The resultant mantissa is shifted so that its most significant bit is placed
in the leading bit position of the mantissa field (i.e., left-justified).
The exponent is adjusted accordingly.

Note: The NORM instruction may be used to normalize an operand found in

RGA without causing any other operation to be performed on it.

When the IINII variant is used with ML or DV, both operands are assumed to
be normalized. In addition, the divisor is assumed to be normalized in all

variations of the DV instruction, and both operands of the MULT instruction
are assumed to be normalized.

THE IIRII VARIANT - ROUNDING

Rounding is always performed by addding 1 to the least significant bit of RGA,
assuming the next bit of the result would be a 1. In the ML and DV instruc­
tions, this makes the results in RGB meaningless.

Note: When both the "N" variant and the "R" variant are used in the same

instruction, rounding is performed before normalization.

4This rule does not apply to the following arithmetic instructions: ADD, ADDEX, EAD, SUB, SUBEX,
ESB, or MULT.

3-12

3.4 FINST/PE INSTRUCTION DESCRIPTIONS
Beginning on the next page and continuing through p. 3-78, the FINST/PE instructions
are described in detail. Each description includes the mnemonic code, specification
of operands (where applicable), a description of the operation of the instruction, a
list of the registers affected, and the bit layout of the instruction word. Any fields

for which a particular instruction has specific use are described. Shading is used to
indicate those fields that are ignored for a particular instruction.

3-13

Mnemonic Codes:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Words:

AD

ADA

ADM

ADMA

ADN

ADNA

ADR

AD, ADA, ADM, ADMA, ADN, ADNA, ADR, ADRA, ADRN, ADRNA
Add floating-point numbers or mantissa-sized, fixed-point numbers.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

64-Bit Mode. The second operand is added to RGA, and the result is

left in RGA. If both E and El bits are reset (=0), RGA will be un­
changed. If E f El, the results are unspecified.

32-Bit Mode. Similar to a 64-bit operation, except the inner and

outer pairs of words are added independently. If E bit is reset (=0),
RGA outer word will be unchanged. If El bit is reset, RGA inner word
will be unchanged.

RGA - Contains result, as enabled by E and E1.
RGB - Contains second operand, which is either modified or unmodified

by bits shifted off in aligning operand mantissas.
RGD - F or Fl bits may be set [see Section 3.3.3 for a detailed ex­

planation].

IA~A~xl
I

I p IA~R~SEI
I

35 04 ADR
1 I I 1 I I I

4 5 I 8 11 12 13 15 16 31

I
I

IA~A~xl
I I P IA~A U1SE I

I I

I 35 05 ADR
1 1 1 1 1 1 1 1 I 1 1 I

4 5 7 8 11 12 13 15 16 31

I :341 IA~A~xl
I

Ip IA~R~SEI
I

I 14 ADR
I 1 1 1 1 1 I I I I

4 5 7 8 11 12 13 15 16 31

I :341 IA~A~xl
I

I p IA9R~SEI
I

I 15 ADR
1 1 I 1 I I I I I I

4 5 7 8 11 12 13 15 16 31

I >41 IA9A~xl
I I p IA~R~SEI

I

I 04 ADR
1 1 I 1 1 1 1 I I I 1 I

4 5 7 8 11 12 13 15 16 31

I :34
1 IA7A~xl 0

1
5 : I p IA~R ~SEI :

I

I ADR
1 1 I 1 I I I

4 5 7 8 11 12 13 15 16 31

I >51 IA7A~xl ~6 : lp IA~R~SEI : ADR
I 1 1 I I I I I

4 5 I 8 Ii 12 13 15 Iti 31

3-14

Instruation Words (Cont.):

ADRA

ADRN I
I

I

ADRNA I I I

35
I

34

34
I

I

4

I

IA9A~xl
~ I 8

IA?ArXI
7 H

07 I I ~ IAOIR USE\ I
I I __ I I _ i

II 1l i J I~ 16

I
IP IA~R~SEI

I
06

I ! ! I f

II 12 13 I'> II>

07 : I P IA~R~SEI : I I
II 12 13 I ~ i {j

ADR
I I I

ADR
I I

ADR
I I I

The following variants are permitted - in the combinations shown above.

31

31

31

(a) No suffix - Both operands are treated as signed, floating-point numbers (no rounding

or normalization).
(b) A - Signs of both operands are igno~ed. The sign of the result is the same as the

sign of the augend found in RGA. A result of -0 is possible.
(c) M - Exponents of both operands are ignored; that is, both are treated as mantissa­

sized, fixed-point numbers. The exponent of the result is the same as the exponent
of the augend found in RGA. A result of -0 is possible.

(d) N - Result is normalized (after rounding, where specified).
(e) R - Result is rounded in RGA.

See Sections 3.3.4 and 3.3.5 for further details.
Alignment for floating-point addition is performed in the following sequence.

(a) The exponent of the result is determined as the larger of the two operand exponents
(which are subsequently adjusted if normalization is used).

(b) The mantissa of the operand with the smaller exponent is shifted right end-off,
until it is properly aligned with the mantissa of the other operand. If the differ­
ence between the exponents is greater than 47 (or 23 in 32-bit mode), this process

will zero the mantissa of the operand with the smaller exponent.
(c) The most significant bit shifted off in aligning the mantissa is saved and used for

rounding (where specified).

3-15

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

ADB
Add bytes.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes (Identical). Each operand is considered to
be eight 8-bit bytes. Corresponding bytes are added, and the results
are left in RGA. The high-order carry from each byte is stored in
the most significant bit of the corresponding byte in RGC. RGC is not
an addressable register. The OFB instruction transfers the contents of
RGC to the least significant bits of corresponding bytes in RGB and
clears the outer bits of RGB.

16 Bit, 24 Bit etc., extended precision from the 8 bit mode is facilitated
by the proper combination of OF8 and ADS instructions.

If the E bit is reset (=0), RGA bytes 0, 5, 6, and 7 will be unchanged.
If the El bit is reset, RGA bytes 1, 2, 3, and 4 will be unchanged.
(The carries from these bytes will still be stored in RGC.)

RGA - Contains results, as enabled by E and El.
RGC - Contains high-order carries in the most significant bit of

each byte; all other RGC bits are cleared.
RGB - Contains second operand.

26
I !

I 8 11 12 13 15 16

3-16

ADR
I I I

31

Mnemonia Code:

First Operand:

Seaond Operand:

Operation:

Registers Affeated:

Instruation Word:

•

ADD
Add 64-bit logical words.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing lo~ic, as shown in Table 3-2.

64-Bit and 32-Bit Modes (Identical). Both operands are treated as
54-bit, unsigned integers and are added together. The result is
left in RGA. Overflow causes an end-around carry. If both E and El
bits are reset (=0), RGA will be unchanged. If E ~ El, the results
are unspecified.

RGA - Contains result, as enabled by E and El.
RGB - Contains second operand.

26 I~CARXI 04 I I ~ IA~RUSEI I

I I I . I I . I I ! .. ! ! . I
1: 12 1:1 1 ~ Iti

3-17

'ADR I

I I ! I I
31

MnemonicCode':';i~~

First Operand:

Second Operand:

Operation:"

Registers Affected:

Instruction Word:

ADEXJ _______ __________ _

Add exponents.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

64-Bit Mode. The exponent of the second operand is added to the
exponent of RGA, and the result is left in RGA. Sign and mantissa
fields are unchanged, unless exponent underflow occurs - then RGA
is cleared. The exponents are treated as exponents in offset nota­
tion, not as binary numbers. If both E and El bits are reset (=0),
RGA will be unchanged. If E f El, the results are unspecified.

32-Bit Mode. Similar to 64-bit operation, except the inner and
outer exponents are added independently. If the E bit is reset
(=0), the outer exponent in RGA will be unchanged. If the El bit
is reset, the inner exponent in RGA will be unchanged.

RGA - Exponent field(s) modified, as enabled by E and El. All 64
bits are cleared in case of exponent underflow (inner or outer
32 bits in 32-bit mode).

RGB - Contains second operand.
RGD - F or Fl bits may be set [see Section 3.3.3 for a detailed

explanationJ.

25
I I

4 0 7 8

ADR
I ! I

11 12 13 10 16 31

Exponents are represented by offset code. This instruction makes the necessary adjustments
for the offset, effectively adding the true exponents, and then puts the result (in offset
code) into RGA.

3-18

Mnemonic Codes:

FiT'st OpeT'and:

Second OpeT'and:

OpeT'ation:

RegisteT's Affected:

InstT'uction WOT'ds:

AND

ANON

NAND

NANDN

AND, ANDN, NAND, NANDN
Logical AND of two operands or their complements.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Bitwise logical AND of two operands or
their complements, where OPl is the first operand and OP2 is the
second operand.

Mnemonic

AND
ANDN
NAND
NANDN

Function

OPl and OP2
OPl and OP2
OPl and OP2
OPl and OP2

The 64-bit result is left in RGA. If the E bit is reset (=0), RGA
bits 0:8 and 40:24 will be unchagned. If the El bit is reset, RGA
bits 8:32 will be unchanged.

RGA - Contains result, as enabled by E and El.
RGB - Contains second operand.

:27, IA9A~XI 04 : , , I P IA~R~SEI :
4 5 I B 11 17 13 1'> 16

I :27 , I , IA9Afxl I ~6 : I P IA~R~SEI :
1 5 I B 11 12 13 I, 1"

I IA1A~xl
,

Ip IA+~SEI
I

27 05
I I I I I I I I

4 , 7 8 11 12 13 '0 Ib

I >7, IA?A~XI
I

I p IA~R~SEI
I

07
I I I I , I

4 5 I B 11 12 13 IS Ib

ADR
I I I

31

:ADR I , I I
31

I ADR
I I I I

J 1

;ADR
I :-:J I I

31

Observe that the mnemonic "NANDI' does not result in a logical "NOT AND" operation.

3-19

Operation:

Register Affected:

Instruction Word:

ASB

Transfer RGA sign to RGB sign.

64-Bit Mode. Transfer RGA bit 0 (sign bit) to RGB bit o.
32-Bit Mode. Transfer RGA bits 0 and 8 (sign bits) to RGB bits 0

and 8.

RGB - Sign bit(s) may be changed.

Notice that the configuration of the E and E1 bits does not affect the operation of this

instruction.

3-20

Mnemonia Code: CAB

Bit Number:

Operation:

Registers Affeated:

Instruation Word:

Complement specified bit in RGA.

Specified by ADR and ADR USE fields, using bit/shift counting and
indexing logic, as shown in Table 3-3.

64-Bit Mode. The bit number is taken mod 64, and the corresponding
bit in RGA is complemented. Other RGA bits are unchanged. If the
E bit is reset (=0), RGA bits 0:8 and 40:24 cannot be changed. If
the El bit is reset, RGA bits 8:32 cannot be changed.

32-Bit Mode. The bit number is taken mod 32 and then used to select
a bit position within each of the two 32-bit inner and outer words
of RGA. For example, if the bit number is 7, it selects bit 7 of
the outer word and bit 7 of the inner word (these are RGA bits 7
and 14). The selected bits are complemented, while other RGA bits
are unchanged. If the E bit is reset (=0), the bit in the outer
word cannot be changed. If the El bit is reset, the bit in the
inner word cannot be changed.

RGA - Specified bit(s) complemented, as enabled by E and El.
RGB - Contains a mask in which bit(s) corresponding to selected

bit(s) in RGA are set (=1), and all other RGB bits are re­
set (=0).

4 " I 8 11 17 13 1., 10

3-21

ADR
i I I

31

Mnemonic Code:

Operation:

Registers Affected:

Instruction Word:

CHSA

Change sign of RGA.

~4-Bit Mode. RGA bit 0 (sign bit of 64-bit word) is complemented if

E bit is set (=1).

32-Bit Mode. RGA bits 0 and 8 (sign bits of 32-bit outer and inner

words) are complemented if E and El bits, respectively, are set.

RGA - Sign bit(s) complemented, as enabled by E and E1.

RGB - Contains a mask in which bit 0 (bit 8 in 32-bit mode) are set

(=1) and all other RGB bit; are reset (=0).

7 8

This is the CAB instruction where ADR and AOR USE equal zero in order to specify the sign
t

bit(s) .

3-22

Mnemonic Code: CLRA

Operation:

Register Affected:

Instruction Word:

Clear RGA.

64-Bit and 32-bit Modes. All bits of RGA are cleared if both E and
El are set (=1). If E is reset (=0), RGA bits 0:8 and 40:24 will be
unchanged. If El is reset, RGA bits 8:32 will be unchanged.

RGA - Cleared, as enabled by E and El.

3-23

Mnemonio C{)de'~

Operation:

Register Affected:

Instruction Word:

COMPA
Complement RGA.

64-Bit and 32-Bit Modes. All bits of RGA are complemented if both

E and El are set (=1). If E is reset (=0), RGA bits 0:8 and 40:24

will be unchanged. If tl is reset, RGA bits 8:32 will be unchanged.

RGA - Complemented, as enabled by E and El.

3-24

Mnemonia Codes:

First Operand:

Seaond Operand:

Operation:

Registers Affeatecl:

Instruation Words:

DV

OVA

DVM

DVMA

DV, OVA, DVM, DVMA, DVN, DVNA, DVR, DVRA, DVRM, DVRMA, DVRN, DVRNA

Divide floating-point numbers or mantissa-sized, fixed-point numbers.

Double-precision dividend found in RGA and RGB.

Single-precision, normaZized divisor specified by ADR and ADR USE
fields, using operand addressing and indexing logic, as shown in
Table 3-2.

64-Bit Mod~. The RGB mantissa is considered to be the low-order ex­
tension of the RGA mantissa. RGB sign and exponent are ignored. The
divisor is assumed to be normalized. The 64-bit quotient is left in
RGA, and the 64-bit remainder is left in RGB. If both the E and E1
bits are reset (=O)~ RGA will be unchanged. If E ~ E1, the results
are unspecified.

32-Bit Mode. Similar to the 64-bit operation, except the inner and
outer pairs of operands are divided. RGA and RGB outer portions con­
tain outer double-precision dividend; RGA and RGB inner portions
contain inner double-precision div·idend. Tvlo 32-bit quotients are
left in RGA, and two 32-bit remainders are in RGB. If the E bit is
reset (=0), the outer portion of RGA is unspeaified rather than un­
changed. Simildrly, if the El bit is reset, the inner portion of
RGA is unspeaifz:ed rather than unchanged.

RGA - Contains quotient(s).
RGB - Contains remainder(s).
RGR Contains copy of divisor(s); in 32-bit mode inner and outer

mantissas are swapped.
RGD - F or Fl hits may be set [see Section 3.3.3 for a detailed ex­

planation].

33 \ACARX\ 04 1 I~ I~~RUSEI~ 1 'ADR .----1----,
I I _ I I _ I I I _ _ I I LLl_.l-LLl I I I I I I I I I I

I ~ '1 11 U 1'> ib 'll

I
1

IACAR ~T--;-~IA~R USEI
1 '---.-

I 33 ADR
I I I I t I t I I t I I I I ! t

4 " I H 11 1/ \.: }I, 1,1 31

I
I

IA~A~xl I 14

1
I p IA~R~SEI

I

'(32 ADR
I I I ! i..L-L I I I I I I I I

4 , I h 11 11 I.', 1'1 if; 31

I
I

1;9A~xl 115JP1~_~~1~~:l~_] :Q ADR
I I I I I 1 I I I I I I I

" ~, h 11 I! n l' it 31

3-25

Instruction Words (Cont.):

OVN :32
1 IA9A~xl 04 : I p IA~R~SEI : ADR

1 I I ,
4 , 7 8 11 17 13 1, 16 31

I :32
1 IA9A~xl

I

I p IA~R~SEI : I DVNA 05 ADR
I I I I , , I I I , I !

4 5 7 8 11 1? 13 10 lb 31

I IA9A~xl
I

I P IA~'R ~SEI
I I

'~LJ OVR 33 06 ADR
I I 1 I I I , 1 I I

4 5 7 8 11 12 13 1, lb 31

I
I

IA?Arxl
I

I p IA~R~SEI
I

I
DVRA 33 07 ADR

I 1 I I I I 1 , I 1 1 ! i

4 1 7 8 11 12 13 IS Ib ,I

DVRM I 32 IA?ArXI 16 : I p IA~R ~SEI :
ADR I ~

I I I I 1 I I 1 : ,
4 0 7 H l' 12 H 1., 16 31

I
I

IA?Arxl
I

I P IA~R ~SEI
I

I
DVRMA 32 17 ADR

I I I , I 1 1 I , , , , ,
4 5 7 8 11 12 13 10 16 31

I
I

IA9A~xl
I

I P IA~R U,SEI
I

I DVRN 32 06 ADR
I I I I I , , , I I I

4 , 1 8 11 12 13 15 16 31

I
I

IA?ArXI
I

I P IA~R ~SEI
I

~ DVRNA 32 07 ADR
I I I 1 , , , , I , I i

4 5 7 8 11 12 13 1., 16 31

If the divisor is not normalized, the results are unspecified and the F or Fl bit will be
set (=1).

The following are variants of the preceding combinations. 5 Note, in particular, the
cautions that apply to the M option (mantissa-sized, fixed-point operation).

(a) No suffix - Both operands are treated as signed floating-point numbers. No rounding
or normalization.

(b) A - Signs of both operands are ignored.

sign of the dividend (first operand).
The sign of the result is the same as the

A result of -0 is possible.
(c) M - Exponents of both operands are ignored; that is, both are treated as mantissa­

sized, fixed-point numbers. The exponent of the result is the same as the exponent
of the dividend (first operand). A result of -0 is possible.

(d) N - Result is normalized (after rounding, when specified). Both operands are assumed
to be normalized; the result will not be normalized unless the operands are.

(e) R - Result is rounded in RGA. The remainder left in RGB is meaningless if this var­
iant is used.

5 See Sections 3.3.4 and 3.3.5 for further details.

3-26

Cautions: Side-Effects. RGR is altered.

Unnorma1ized Divisor. The divisor (second operand) must be normalized
for all variants of DV, including mantissa-sized, fixed-point variants
(M variants). In effect, this means that the most significant bit in
the mantissa of the divisor must be "1". If this bit is not "1", the
F or Fl bit will be set (=1) and the result will be unspecified. In
most cases, this makes fixed-point division impractical.

E and El Bits. In 32-bit mode, the E and E1 bits do not protect the
contents of RGA against modification. If one or both of these bits
are set (=1), the corresponding portion of RGA will contain unspecified
results.

Remainder. The remainder left in RGB will be meaningZess if rounding
(R variant) is used. Furthermore, even when rounding is not used, the
remainder is meaningful only if the magnitude of the divisor is greater
than the magnitude of the dividend. (Note &lso that the exponent of
the remainder is not meaningful.) Therefore, when the quotient is nor­
malized (N variant), the remainder mantissa may be correct but its
positional significance is unspecified. To summarize: the remainder
in RGB is meaningful only in unnormalized, unrounded operations in
which the magnitude of the divisor is greater than the magnitude of
the dividend.

Timing. The number of clocks required to execute DV instructions
ranges from 52 to 56 (in 64-bit mode) or from 63 to 69 (in 32-bit mode).
ML instructions require only 8 or 9 clocks (in 64-bit mode) or 10 clocks
(in 32-bit mode).

3-27

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

EAD

Floating-point add with extended-precision result.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

64-Bit Mode. The operands are treated as signed, 64-bit, floating­

point numbers and are added without rounding or normalization. The

result left in RGB is the same as what would be produced in RGA by

an AD instruction. RGA will contain a low-order result. The mantissa

will contain any bits shifted off the mantissa of one of the operands

for alignment, modified by any bit shifted off in adjusting for man­

tissa overflow during the addition. The exponent will be 48 less than

the exponent in the high-order result in RGB. The siqn will be the

sign of the original operand with the smaller exponent. (The siqns of

the high-order and low-order results may differ.) If both the E and

El bits are reset (=0), RGA ~ill be unchanged but RG8 will still con­

tain the high-order result. If E i E1, the ~esults are unspecified.

32-Bit Mode. This instruction will produce unspecified ,esults in

32-bit mode.

RGB - Contains high-order result.

RGA - Contains low-order result, as enabled by E and El.

RGR - Contains copy of low-order result.

RGD - F bit may be set [see Section 3.3.3 for a detailed explanation].

'20, IACARXI 10' I p IA~RUSEI '
1 . , _ I I _ I I I __ , , _ I

4 5 ., 8 11 12 13 1', 1~

ADR
I I I

31

See AD instruction and Section 3.3.4 for a more detailed description.

3-28

Mnemonic Code: EOR

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

Logical EXCLUSIVE-OR of two 64-bit operands.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Bitwise logical EXCLUSIVE-OR or two
64-bit operands. The result is left in RGA. If the E bit is
reset (=0), RGA bits 0:8 and 40:24 will be unchanged. If the
El bit is reset, RGA bits 8:32 will be unchanged.

RGA - Contains result, as enabled by E and El.
RGB - Contains second operand.

25
I I

4 5 1 8 11 12 13 15 16

3-29

:ADR
I I

31

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

EQV
Logical EQUIVALENCE of two 64-bit operands.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Bitwise logical EQUIVALENCE of the two

64-bi t operands. (Each bi t of the ·res·ul tis True if the correspond­
ing bits of the two operands have the same value and False if the
corresponding bits of the two operands have different values.) The

result is left in RGA. If the E bit is reset (=0), RGA*bits 0:8
and 40:24 will be unchanged. If the El bit is reset, RGA bits 8:32
will be unchanged.

RGA - Contains result, as enabled by E a~d El.
RGB - Contains second operand.

25
, I

4 5 7 8 11 12 13 15 16

3-30

ADR
I I I

31

Mnemonia code: ESB

Fi'Pst Opexaand:

Seaond Ope'Pand:

Ope'Pation:

Registexas Affeated:

Instxauation Woxad:

Floating-point subtraction with an extended-precision result.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit Mode. The operands are treated as signed, 64-bit, floating­
point numbers. The second operand is subtracted from the first
without rounding or normalization. The result left in RGB is the
same as what would be produced in RGA by an SB instruction. RGA will
contain a low-order result. The mantissa will contain any bits shifted
off the mantissa of one of the operands for alignment, modified by
any bit shifted off in adjusting for mantissa overflow during the sub­
traction. The exponent will be 48 less than the exponent of the high­
order result in RGB. The sign will be either the sign of the first
operand (if it had the larger exponent) or the complement of the sign
of the second operand (if it had the larger exponent).6 If both the
E and El bits are reset (=0), RGA will be unchanged but RGB will still
contain the high-order result. If E ~ El, the results are unspeci­
fied.

32-Bit Mode. This instruction will produce unspecified results in
32-bit mode.

RGB - Contains a high-order result.
RGA - Contains a low-order result, as enabled by E and El.
RGR - Contains a copy of the low-order result.
RGD - F bit may be set [see Section 3.3.3 for a detailed explanation].

;ADR
1 .1

4 5 7 8 11 12 13 15 16 31

See SB instruction and also Section 3.3.4 for a detailed description.

6 The signs of the high-order and low-order results may differ.

3-31

Mnemonic Code:GB

Firs t Operand:

Seoond Operand:

Operation:

Registers Affeoted:

Instruotion Word:

Test bytes for RGA byte "greater than" second operand byte.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Each 8-bit byte in RGA is compared with the
corresponding byte in the second operand. If the RGA byte is greater
than the second operand byte, the least significant bit of the RGA
byte is set (=1) and the other bits in the byte are cleared. If the
RGA byte is not greater than the second operand byte, all bits in the
RGA byte are cleared. The OFB instruction transfers the contents of
RGC to the least significant bits of the corresponding byte in RGB
and clears the outer bits of RGB. 16-Bit, 24-Bit, 32-Bit (etc.) ex­
tended precision from the 8-Bit mode is facilitated by the proper
combination of byte mode instructions. If the E bit is reset (=0),
RGA bytes 0, 5, 6, and 7 will be unchanged. If the El bit is reset,
RGA bytes 1, 2, 3 and 4 will be unchanged.

RGA - Contains test results in the least significant bit. of each
byte with other bits cleared, as enabl'ed by E and E1.

RGC - Contains test results in the most significant bit of each
byte with other bits cleared.

RGB - Contains second operand.

:
21, I~CARXI 06 I I ~ IA~A USEI I ADR

- - , - I I _ I I I __ I I _ I I I I I
4 5 7 8 11 12 13 15 16

3-32

31

Mnemonia Codes:

Firs t Operand:

Seaond Operand:

Operation:

Registers Affeated:

Instruation Words:

lAG

tAL

JAG

JAL

lAG, lAL, JAG, JAL
Test for RGA arithmetically "greater than ll or "l ess than ll second
operand.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

64-Bit Mode. The two operands are considered to be signed, floating­
point numbers and are tested to find RGA either II grea ter than ll or
IIl ess thanll the second operand. ~lhich test is indicated by the last
letter of the mnemonic code. The test result is placed in either the
I or J bit in RGD, depending on the first letter of the mnemonic code.

32-Bit Mode. Similar to the 64-bit operation - outer and inner words
are tested independently. Results for outer and inner words are
placed in the I and G bits (lAG and IAL), respectively, or in the J
and H bits (JAG and JAL), respectively [see Section 3.3.3J.

Note: Operation of these instruations is unaffeated by thQ

aonfiguration of the E and El bits.

RGD - I, J, G, and H bits may be ~hanged.
RGB - Contains second operand.

:37
1

IA~A~xl
I

Ip IA~R~SEI
I

14
1

4 5 7 8 11 17 13 15 16

1 I

I
I

IA~A~xl
I

I p IA~R~SEI
, ,"-37 16

1 1 I I I 1 I I I I
4 5 I 8 11 12 13 15 16

I >71
IA~A~X[1

1
5 : I p IA~R~SEI

,
I I I I

4 5 7 8 II 12 13 15 16

I :37
1

IA9A~xl : I p IA~R~SEI :
17

I I I 1
4 5 7 8 II 12 13 IS 16

I

ADR
I i I

I ADR
I I I I

,
ADR
I I I I

,
ADR
I I I I

31

I
31

I
31

I
31

No IIIAEII or "JAEII instruction is provided for testing for arithmetic equality. Instead, this
can be accomplished by testing for logical equality with the ILE or JLE instruction.

3-33

Mnemonia Codes:

Fir'st Oper'and:

Oper'ation:

Register's Affeated:

Instruation WoX'ds:

IB

JB

IB ,'JT3

Transfer specified RGA bit to RGD bit I or J.

Specified by ADR and ADR USE, using bit/shift counting and indexing
logic, as shown in Table 3-3.

64-Bit Mode. The bit number is taken mod 64, and the corresponding
bit from RGA is transferred to either the I or J bit in RGD, depend­
ing on the first letter of the mnemonic code.

32-Bit Mode. The bit number is taken mod 32 and is used to select a
bit position within each of the two 32-bit outer and inner words of
RGA. For example, if the bit number is 7, it selects bit 7 of the
outer word and bit 7 of the inner word (RGA bits 7 and 14, respectively).
The selected bits are transferred from the outer and inner words to
the I and G bits (IB instruction), respecttv~ly, or the J and H bits
(JB instruction), respectively [see Section 3.3.3].

Note: Oper'ation of these instruations is unaffected by the

aonfigUX'ation of the E and El bits.

RGD - I, J, G, and H bits may be changed.
RGB - Contains bit number.

IA~A~xl
I

I p IA~R~SEI
I

35 02
I I I I

4 5) 8 11 12 13 15 16

I I

IA~A~xl
I

I p IA~R~SEI
I

35 03
I I I I I I I I

4 ~ 7 8 11 1l 13 15 16

3-34

ADR
I I I

ADR
! ! ! !

31

I
31

Mnemonia Codes:

Fipst Opepand:

Seaond Opepand:

Opepation:

Registeps Affeated:

Instruation Wopds:

ILE

ILG

ILL

JLE

JLG

JLL

ILG, ILE, ILL, JLG, JLE, JLL
Test logical words for RGA "greater than", "equal to", or "l ess thanll
second operand.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit Mode. Two 64-bit logical words (treated as 64-bit positive
integers) are tested to find RGA "greater than", lIequal toll, or IIl ess
than" the second operand. Which test is indicated by the last letter
of the mnemonic code. The test result is placed in the I or J bit in
RGD, depending on the first letter of the mnemonic code.

32-Bit Mode. Similar to the 64-bit operation - outer and inner 32-bit
logical words are tested independently .. Results for outer and inner
operands are placed in I and G bits (ILG, ILE, and ILL), respectively,
or in J and H bits (JLG, JLE, and JLL), respectively [see Section 3.3.3].

Note: Opepation of these instpuations is unaffeated by the

aonfigupation of the E and El bits.

RGD - I, J, G, and H bits may be changed.
RGB - Contains second operand.

;35
1 I IA9A~XI I

1,6 : I P IA~R~SEI :
4 5 I H 11 12 13 1 ~ lti

I IA?AFXI
i

I P IA~IR ~SEI
i

33 14
! I I I I I I

.~ ~ I a 11 12 i3 15 16

I
I

IA~A~xl
I

Ip IA~R~SEI
I

33 16
I I I I I I

4 5 7 8 11 12 13 15 16

I 35 IA9AfxI 1? : I p IA~R~SEI : I I I I

4 5 7 8 11 12 13 15 16

I
I

IATAfxl
I

I p IA~R~SEI
I

33 15
I I I I I I I

4 5 7 8 11 12 13 15 16

I
I

IA?ArXI
I

I p IA~R~SEI
I

33 17
I I I I I I I I

4 5 7 8 11 12 13 15 16

3-35

;ADR
! I

,. :ADR
I I I

;ADR
I I I

:ADR
I I I

ADR
I I I I

ADR
I I I I

31

I
31

I
31

I
31

I
31

I
31

Mnemoriic Codes:

Opexaation:

Register Affected:

Instruction Words:

ILO

ILO, ILZ,JLO, JLZ
Test RGA for lIall ones ll or lIall zeros··.

64-Bi t Mode. RGA is tested for ei ther'lI a 11 ones II or II a 11 zeros II •

Which test is indicated by the last letter of the mnemonic code.
The test result is placed in the I or J bit in RGD, depending on
the first letter of the mnemonic code.

32-Bit Mode. Similar-to the 64-bit operation - outer and inner por­
tions of RGA are tested separately. Results for outer and inner words
are placed in I and G bits (ILO and ILZ~, respectively, or in the J
and H bits (JLO and JLZ), respectively [see Section 3.3.3J.

Note: Opexaation of these instructions is unaffected by the

configuration of the E and El bits.

RGD - I, J, G, and H bits may be changed.

33
!

4 5

4 5

4 5

4 5

7 8

7 8

7 8

1 8

11 12

11 12

11 12

11 12

3-36

31

31

31

31

Mnemonia Codes:

Fipst Opepand:

Seaond Operand:

Operation:

Registers Affeated:

Instruction Words:

IME

IMG

IML

JME

JMG

JML

IMG, IME, IML, JMG, JME, JML
Test for RGA mantissa "greater than", "equal to", or "l ess than"
second operand mantissa.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit Mode. The operand mantissas are tested to find RGA mantissa
"greater than", "equal to", or "less than" second operand mantissa.
Which test is indicated by the last letter of the mnemonic code. The
test result is placed in the I or J bit in RGD, depending on the first
letter of the mnemonic code.

32-Bit Mode. Similar to the 64-bit operation - outer and inner mantis­
sas are tested independently. Results for outer and inner operands are
placed in I and G bits (IMG, IME, and IML), respectively, or in J and
H bits (JMG, JME, and JML), respectively [see Section 3.3.3].

Note: Opepation of these instruations is unaffeoted by the

oonfigu,mtion of the E and El bits.

RGD - I, J, G, and H bits may be changed.
RGB - Contains second operand.

IA~A~xl
I

I p IA9R~SEI
I

35 14
1 I I I

4 ~ I 8 11 12 13 1& 16

I
,

IA~A~xl
,

I p IA~R~SEI
,

31 14
1 1 1 1 I I I I

4 , 1 8 11 12 13 15 16

I :31
1

IA~A~xl
,

Ip IA~R~SEI
,

16
I 1 I I I I

4 5 1 8 11 1) 13 15 16

I
I

IA~A~xl
I

I p IA~R~SEI
,

35 15
1 I I 1

, ,
1 I

4 5 1 8 11 12 13 15 16

I
I

IA~A~xl 1,5 : I p IA~R~SEI
,

31
1 I I 1

, I
4 5 7 8 11 12 13 15 16

I :31
1

IA?A~XI : I p IA~R~SEI : 17
1 1 I

4 5 7 8 11 12 13 15 16

ADR
I I I

I

ADR
I I I I

,
ADR
I I I I

:ADR , I ,

:ADR
I I ,

,
ADR
I I I I

31

I
31

I
31

I
31

I
31

I
31

These instructions do not use the sign bits in the operands.

3-37

Mnemonic Codes:

Operation:

Register Affected:

Instruction Words:

IMO

IMO, IMZ, JMO, JMZ
Test RGA mantissa for lIall ones" or "all zerosll.

64-Bit Mode. The mantissa field of RGA is tested for either lIall ones"
or "all zeros". Which test is indicated by the last letter of the
mnemonic code. The test result is placed in the I or J bit in RGD,
depending on the first letter of the mnemonic code.

32-Bit Mode. Similar to the 64-bit operation - outer and inner man­
tissa fields of RGA are tested independently. Results for outer and
inner mantissas are placed in I and G bits (IMO and IMZ), respectively,
or in J and H bits (JMO and JMZ), respectively [see Section 3.3.3J.

Note: Operation of these instructions is unaffected by the

configuration of the E and El bits.

RGD - I, J, G, and H bits may be changed.

4 5 7 8 11 12

4 5 7 8 11 12

4 5 7 8 11 12

4 5 7 8 11 12

3-38

31

31

31

31

Mnemonia Codes:

First Operand:

Seaond Operand:

Operation:

Registers Affeated:

Instruation Words:

ISE

ISG

ISL

JSE

JSG

JSL

ISG, ISE, ISL, JSG, JSE, JSL
Test for RGS bits 48:16 "grea ter than", lIequa1 toll, or 1I1ess thanll
second operand.

Found in RGS. Only the 16 least significant bits are used.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2. Only the 16 least significant
bits are used.

64-Bit and 32-Bit Modes (Identical). The two 16-bit operands are
tested to find RGS "greater than", "equa1 to", or "1ess than" the
second operand. Which test is indicated by the last letter in the
mnemonic code. The result of the test is placed in the I bit (ISG,
ISE, and ISL) or the J bit (JSG, JSE, and JSL). The second operand
(all 64 bits) ;s left in RGB.

Note: Operation of these instruations is unaffeated by the

oonfiguration of the E and El bits.

RGD - and J bits may be changed.
RGB - Contains 64-bit second operand.

:26, IArA~XI 12 : I P IA~R~SEI : ,
4 5 I ti I I Il 13 15 Iti

I IA?ArXI
,

I P IA~iR ~SEI
i

21 12
I I I I I , , I ,

·1 , I a 11 12 iJ 15 16

I I
:23
I I , IArA~XI ! 1,2 : I P IA~R~SEI :

4 5 I 8 II 12 13 1, Iti

I I :26, , IA?ArXI , ?: I P IA~R~SEI :
4 5 7 R 11 12 13 1~ 16

I I IA9Afxf
I I P IA~R~SEI

I

21 13
! I ! ! ! ! ! !

4 5 7 8 11 12 13 15 16

I
I

IA7AfxI
I

I P IA~R~SEI
I

23 13
I I I I I I I I

4 5 I S 11 12 13 15 16

3-39

:ADR I ,

ADR
I I , !

:ADR
I I I

;ADR
I ! I

:ADR
I I I

ADR
I I I I

31

I
31

I
31

I
~1

I
31

I
31

Mnemonic Codes:

Operation:

Registers Affected:

Instruction Words:

ISN

ISN, JSN

Transfer RGA sign bit to RGD bit I or J.

64-Bit Mode. RGA bit 0 (sign bit of 64-bit word) is transferred to
RGD bit I or J, depending on the first letter of the mnemonic code.

32-Bit Mode. RGA bits 0 and 8 (sign bits of outer and inner 32-bit
words) are transferred to I and G bits (ISN instruction), respectively,
~r to J and H bits (JSN instruction), respectively [see Section 3.3.3J.

Note: Operation of these instructions is unaffected by the

configuration of the E and El bits.

RGD - I, J, G, and H bits may be changed.
RGB - Contains all zeros~

4 5 7 8 11 12 13 31

JSN I I '1351 I 0 0 0 I 03' H 0 : 0 0 0: 0 0 0: 0 0 0' 0 0 0 I 0 0 0' 0 0 0 I
.... I _ I I. I I I_! I I! I I. I I I I II II I I I.

4 5 1 8 11 12 13 31

The ISN and JSN instructions are the same as the IB and JB instructions. ADR and ADR USE.

fields are equal to 0 in order to specify the sign bit(s).

3-40

Mnemonic Codes:

Firast Opepand:

Second Operaand:

Operaation:

Registeras Affected:

Instrauction Worads:

IXE

IXG

IXL

JXE

JXG

JXL

IXG, IXE, IXL, JXG, JXE, JXL _____________ _

Test for RGX "greater than", "equal to", or "less than" second operand.

Found in RGX.

Specified by ADR and ADR USE fields, using operand addressing and in­
dexing logic, as shown in Table 3-2. Only the 16 least significant
bits are used.

64-Bit and 32-Bit Modes (Identical). The two l6-bit operands are tested
to find RGX "greater than", "equal to", or "less than" the second op­
erand. Which test is indicated by the last letter in the mnemonic code.
The result of the test is placed in the I bit (IXG, IXE, and IXL) or
in the J bit (JXG, JXE, and JXL). The second operand (all 64 bits) is
left in RGB.

Note: Operaation of these instrauctions is unaffected by the

configut'ation of the E and El bits.

RGD - and J bits may be changed.
RGB - Contains 64-bit second operand.

25 IA1A~XI 10 I P IA~jRUISEI
I I I I I

4 5 7 & 11 12 13 15 16

:ADR
I I I I I

31

I
I

IA?A~XI
I

I P IA~R~SEI : ;ADR
I ;-:J 21 10

I I I I I I i I I

4 5 7 8 11 12 13 15 16 31

I 23 IA?ArXI 10 : I P IA~R~SEI :
ADR I 1 , I 1 I 1 I I I I

4 ~ 7 8 11 12 13 15 16 31

I I

IAyAFxl
I

I P IA~R~SEI
I

I 25 11 ADR
1 I I 1 1 1 1 I I I I I

4 5 7 8 11 12 13 15 16 31

I >11 IA1A~xl
I

I P IA~R~SEI
I I

I 11 ADR
I I I I I I I I I I

4 ~ 7 8 11 12 13 15 16 31

I
I

IA?Arxl
I

I P IA~R~SEI
I I

I 23 11 ADR
I I I I I I I I I I I I

4 5 7 8 11 12 13 15 16 31

3-41

Mnemonic Codes:

Firast Operaand:.

Second Operaand:

Operaation:

Registeras Affected:

Instruction Worads:

IXGI

JXGI

IXGI, JXGI
Add to RGX and place carry in I or J bit.

Found in RGX.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2. Only the 16 least significant
bits are used.

64-Bit and 32-Bit ~1odes (Identical). The two 16-bit operands are
added, and the result is placed in RGX. The high-order carry is
placed in the I bit (IXGI) or the J bit (JXGI). If the E bit is
reset (=0), RGX will be unchanged, but the carry will still be stored
in I or J. The second operand (all 64 bits) is left in RGB.

RGX - Contains sum, as enabled by the E bit.
RGD - I or J bit contains high-order carry.
RGB - Contains 64-bit second operand.

>7, IA9A~xl
I I P IA~R~S~I

I

10 , I , I I
4 5 7 8 11 12 13 15 16

I
I

IA~A~XI
I

I P IA~R~SEI
I 27 11

I , , , I I I
4 5 7 8 11 12 13 15 16

ADR
I I I

I

ADR
I I I

31

31

The correct interpretation of the carry stored in the I or J bit depends on the operand values.

3-42

Mnemonia codes:

Pipst Opepand:

Seaond Opepand:

Opepation:

Registeps Affeated:

Instpuation Wopds:

IXLD

JXLD

IXLD, JXLD
Subtract from RGX and place complement of carry in I or J bit.

Found in RGX.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2. Only the 16 least significant
bits are used.

64-Bit and 32-Bit Modes (Identical). The second 16-bit operand is
s~btracted from RGX using twos-com~lement ari~hmetic, and the result
is placed in RGX. The complement of the high-order carry is placed
in the I bit (IXLD) or the J b"jt (JXLD). If the E bit is reset (=0),
RGX will remain unchanged and the complement of the 'carry will still
be stored in I or J. The second operand (eleven 64 bits) is left in
RGB.

RGX - Contains difference, as enabled by E bit.
RGD - I or J bit contains complement of high-order carry.
RGB - Contains 64-bit second operand.

27
I I

4 5

4 5

J 8

7 8

11 12 13 15 16

11 12 13 15 16

I

ADR
I I I

31

31

The correct interpretation of the carry stored in the I or J bit depends on the operand values.

3-43

MneinonicDod-e {' LB

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

Test bytes for RGA byte "l ess than ll second operand byte.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Each 8-bit byte in RGA is compared with the
corresponding byte in the second operand. If the RGA byte is less than
the second operand byte, the least significant bit of the RGA byte is
set (=1), and the other bits in the byte are cleared. If the RGA byte
is not less than the second operand byte, all bits in the RGA byte are
cleared. The OFB instruction transfers the contents of RGC to the least
significant bits of the corresponding bytes in RGB and clears the outer
bits of RGB. l6-bit, 24-bit, 32-bit (etc ..•) extended precision from
8 bit mode is facilitated by the proper combination of byte mode instruc­
tions. If the E bit is reset (=0), RGA bytes 0, 5, 6, and 7 will be un­
changed. If the El bit is reset, RGA bytes 1, 2, 3, and 4 will be un­
changed.

RGA - Contains test results in the least significant bit of each byte
with other bits cleared, as enabled by E and El.

RGC - Contains test results in the most significant bit of each byte
with other bits cleared. [Refer also to the comments following
the ADB instruction.]

RGB - Contains second operand.

21
I I

4 5 7 8 11 12 13 15 16

3-44

ADR
I I I

31

Mnemonie Codes:

Soupee:

Operation:

Register Affected:

Instruetion Words:

LOA

LOB

LOO

LOR

LOS

LOX

LOA, LOB, LOO, LOR, LOS, LOX
Load specified PE register from specified source.

Specified by AOR and AOR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Load the specified register from the speci­
fied source. The destination register is specified by the OP code,
as indicated by the last letter of the mnemonic code.

RGO is 8 bits long and can be transferred onZy to or from RGB.
Transfers to RGO (via the LOO instruction) are from the 8 most signifi­
cant bits of RGB; transfers from RGO"are to the 8 most significant bits
of the RGB; the ~emaining bits of RGB are unspecified.

Note: IndividuaZ-bits of RGD may be aeeessed by other instruetions.

RGX is 16 bits long. Transfers to RGX (via the LOX instruction)
are from the 16 least significant bits of the source; transfers from
RGX are to the least significant"16 bits of the destination register;
the'remaining bits of the destination register are cleared.

In the LOA and LOS instructions, if the E bit is reset (=0), the
outer portion of RGA or RGS will be unchanged; if the El bit is reset,
the inner portion of RGA or RGS will be unchanged. In the LOX instruc­
tion, if the E bit is reset, RGX will be unchanged.

Oestination register specified by OP code. Alteration is specified
by the instruction and enabled by E and El in cases involving the
LOA, LOS, and LOX instructions.

IA~A~XI
I

I P IA~R~SEI
I

26 17 . AOR
'I 1 1 1 1 1 1 I I I

4 ~ 7 8 11 11 13 15 16 31

I :27
1

IA~AfXI
I

I P IA~R~SEI : :AOR
I

I 00
1 1 f 1 'I I I I

4 ~ 7 8 11 17 I:i 15 16 31

I
I

IA~A~XI
I

IP IA~R~SEI : :AOR I 22 12
1 1 1 1 I I I I I I

4 ~ , 8 11 11 13 15 16 31

I
I

IA~Afxl
I

I P IA~R~SEI
I

I
27 01 AOR

1 I 1 1 1 1 1 1 I I I I
4 ~ 7 8 II 12 13 loin 31

I :271 IA~Afxl 02 : I P IA~R U1SEI : AOR
I I 1 1 1 I I I I

4 5 7 8 11 17. 13 15 16 31

I :27
1 IA9Afxf 03 : I P IA~R~SEI : AOR II 1 1 I I I I 1

4 ~ 7 8 11 12 13 1~ I~ 31

3-45

The following chart shows the permissible variations of and restrictions on these instructions
in terms of source/destination combinations. A mnemo~ic code means that the compination can
be used normally; an "U" means that the combination is illegal or will produce unsp~cified
results.

Destination Register
Source RGA RGB RGD RGR RGS RGX

RGA U LDB U LOR LOS U

RGB LOA U LOO LDR LOS LDX
RGO U LOB U U U U

RGR LDA LOB U U LOS LDX
RGS LDA LOB U LOR U LOX
RGX LOA LOB U LOR LOS U

PM LDA LOB U LOR LOS LOX
Literal LDA LOB U LDR LDS LDX

3-46

Mnemonic Codes:

Opemtion:

ADR:

ADR USE:

Registep Affected:

Instpuction Wopds:

LOE

LOE1

LOEE1

LOG

LOH

LDE, LDE1, LDEE1, LnG, LDH, LDr, LDJ
Load RGD bit from literal.

64-Bit and 32-Bit Modes. Using a 64-bit literal specified by the ACARX
and ADR fields, load a specified bit in RGD with the value of one bit
in the literal. The bit in RGD is specified by the OP code, as indicated
by the last letter of the mnemonic. LDEEl loads both E and E1 with the
same value. The bit in the literal used to load the RGD bit is the bit
corresponding to the PE number of the PE executing the instruction.
Hence PE 0 will load an RGD bit from bit 0 of the literal, and so forth.

Note: The opepation of these instpuctions is unaffected by the

configupation of the E and El bits.

This field is used as a component of a literal. Hence if ACAR-indexing
is not used, bits 0:48 of the literal are zeros, and bits 48:16 of the
literal are equal to ADR. But if ACAR-indexing is used, bits 0:48 of
the literal are equal to bits 0:48 of the ACAR, while bits 48:16 of the
literal are the sum of ADR and bits 48:16 of the ACAR (any high-order
carry is lost).

Note: If ACAR-indexing is used and ADR equals O~ then the liteml

is equal to the 64-bit value found in the ACAR.

This field is ignored and assumed to be zero, thereby indicating the
transmission of a literal.

RGD - Altered as specified by the instruction.

:21, IA9A~xl 14 : IP. : :AOR
I I I

4 5 7 8 11 12 13 15 16 31

I ;21, IA?A~XI 15 : IP. : :AOR I , , I , I I I
4 5 7 8 11 12 13 15 16 31

I 21 IA9A~XI 16 : IP. : :AOR I , , , , I , I I I
4 5 7 8 11 12 13 IS 16 31

I :23, IA9ArXI 14 : IP. : :AOR I , , I I I I I
4 S 7 8 11 12 13 IS 16 31

I :23, IA?ArXI 15 : IP
• : ;AOR I , , I , I I I

4 5 7 8 11 12 13 15 16 31

3-47

Instruction Words (Cont.):

;23, IA9ArXI 16 : IP
• : : :AOR , I ,

LOt

4 5 1 8 11 12 13 15 16 31

LOJ I ;23, IA9ArXI 17 ; IP
• : :AOR I , , , , , I ,

• 4 5 1 8 11 12 13 15 16 31

3-48

Mnemonia Code: LEX

Pipst Opepand:

Seaond Opepand:

Opepation:

Registeps Affeated:

Instpuation Wopd:

Load RGA exponent from second operand exponent.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexinq logic, as shown in Table 3-2.

64-Bit Mode. The exponent field of the second operand is transferred
to the exponent field of RGA. Other fields in RGA are unchanged. If
E and El bits are both reset (=0), RGA will be unchanged. If E ~ El,
the results are unspecified.

32-Bit Mode. The outer and inner exponent fields of the second operand
are transferred to the outer and inner exponent fields of RGA. Other
fields in RGA are unchanged. If the E bit is reset, the outer exponent
in RGA will be unchanged. If the El bit is reset, the inner exponent
field in RGAwill be unchanged.

RGA - Exponent field(s) altered, as enabled by E and El bits.
RGB - Contains second operand.

4 & 1 8 11 12 13 1~ 16

3-49

31

Mnemonic Codes:

Fir-st Oper-and:

Second Oper-and:

Oper-ation:

Register-s Affected:

Instruction Wor-ds:

ML

MLA

MLM

MLMA

ML, MLA, r~LM, MLMA, MLN, MLNA, MLR, MLRA, MLRM, MLRMA, MLRN, MLRNA

Multiply floating-point numbers or mantissa-sized fixed-point numbers.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and in­
dexing logic, as shown in Table 3-2.

64-Bit Mode. The two operands are multiplied. The sign, exponent,
and 48 high-order mantissa bits are left in RGA, while 48 low-order
mantissa bits are left in the mantissa field of RGB. If both E and
El bits are reset (=0), RGA will be unchanged but other registers
will be affected. If E 1 El, the results are unspecified.

32-Bit Mode. Outer and inner words are multiplied independently.
Single-precision outer and inner results are left in RGA. The 48-bit
mantissa for the outer word is left in RGB (with an exponent of -1).
If either E or El is reset, the correspondinq portion of RGA will be
unchanged but other registers will be affected.

RGA - Contains high-order results, as enabled by E and El.
RGB Contains 48-bit mantissa as described above (with 0 sign and

-1 exponent).
RGD - F and Fl bits may be set [see Section 3.3.3 for a more detailed

explanation].
RGR - Contains intermediate results.

IA~A~xl
I

I p IA~A~SEI
,

31 04
I 1 I 1 1

ADR
I ! I

4 ~ 1 8 11 12 13 1~ 16 31

I :31
1 IA9A~xl

,
I p IA~A~SEI

,
05

1 1 1 1 1 1
ADR I I I I

4 ~ 1 8 11 12 1] 1~ 16 31

I
,

IA~A~XI
,

I P IA~A~SEI
,

30 14
1 1 1 I 1 I 1

ADR I I I I I ; 1

4 5 , 8 11 12 13 15 16 31

I
,

\A9AfX\
,

I P IA~A~SEI
,

30 15
I I 1 1 1 I I 1

I :J ADR
I I I

4 5 1 8 11 12 13 15 16 31

3-50

Instruation Words (Cont.):

IA9A~XI 04 : I P IA~R~SEI : MLN :30, ADR , 1 I I I I

4 ~ } 8 11 17 13 1~ 16 'I

MLNA
I :30, IA~A~xl ~5 : I P IA~R~SEI : ADR

I I 1 1 1
,

1 1
4 ~ I 8 I I 12 13 I~ 1~ 31

I IA9A~xl
I I P IA~R~SEI

i

:ADR I MLR 31 06
1 I ,

1 1 1 1 1 I , 1 1
4 ~ I k II 11 13 I ~ lb :,1

I >\ IA?A~xl
I I p IA~R~SEI : ;ADR ::J MLRA 07

1 1 1 1 , 1 1
4 ~ I H II I? 13 I~ II> n

MLRM I 30 IAyArXI 1
1
6 : I p IA~R~SEI : :A?Ri I I , 1 1 1 I

4 ~ } H " 12 1.1 1~ 16 ~ 1

I :30, IA?AFXI
I

I P IAO;R U,SEI : :ADR I MLRMA 17
1 1 I 1 1 I I I

4 ~ I 8 11 Il 13 15 16 31

I :30
1

IA9A~xl
I

I P IA~R U,SEI : :ADR I
MLRN 06

1 1 I I , I 1 I
4 ~ I 8 11 12 13 I~ 16 31

MLRNA I :30, IA9Arxi ~7 : I P IA~R~SEI : :ADR I 1 1 I I I I
4 ~ 7 8 11 12 13 lb 16 31

Caution: The contents of RGR are aZtered by these instructions.

The following variations are permissable on the preceding combinations.

(a) No suffix - Both operands are treated as signed floating-point numbers. No rounding
or normalization.

(b) A - Signs of both operands are ignored. The sign of the result is the same as the
Sign of the first operand. A result of -0 is possible.

(c) M - Exponents of both operands are ignored; that is, both are treated as mantissa­
sized, fixed-point numbers. The exponent of the result is the same as the exponent
of the first operand. A result of -0 is possible.

(d) N - Result is normalized (after rounding, if specified). If both operands are not
normalized, the result will not be normalized.

(e) R - Result is rounded in RGA. RGB mantissa field(s) will be cleared.

[See Sections 3.3.4 and 3.3.5 for further details].

3-51

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affeated:

Instruction Word:

MULT
Multiply 32-bit, signed, floating-point numbers.

Found in RGA. Assumed to be normalized.

Specified by ADR and ADR USE, using operand addressing and indexing
logic, as shown in Table 3-2. Assumed to be normalized.

64-Bit Mode. Operation in 64-bit mode is the same as in 32-bit mode.
If the operands are not formatted as 32-bit inner/outer pairs, the re­

sults will be meaningless.

32-Bit Mode. The two pairs of operands (inner and outer) are treated
as signed, floating-point numbers and are multipled (without rounding

but with normalization).

Note: Both operands are assumed to be normalized.

The result for the outer operands is left in RGB. The sign is in
bit 0, the exponent is in bits 1:7, and the double-length mantissa is

in bits 16:48. In other words, the sign and exponent are in the normal

fields for a 32-bit outer word, and the double-length mantissa is in
the normal position for a 48-bit mantissa. Bits 8:8 are cleared.

The result for the inner operands is left in RGA. The sign is in

bit 8, the exponent is in bits 9:7, and the double-lenqth mantissa is

in bits 16:48. Thus the sign and exponent are in the normal fields

for a 32-bit inner word, and the mantissa is in the normal position for

a 48-bit mantissa. Bits 0:8 are cleared.
If either the E or the El bit is reset (=0), the result in RGA is

unspecified. If both E and El are reset, RGA will be unchanged but

other registers will be changed.

RGA - Contains inner word result, as described above.
RGB - Contains outer word result, as described above.

RGD - F or Fl bits may be set [see Section 3.3.4 for a more detailed

explanation].

22
I I

4 5 1 8

13 I I p IA~R USEI :
I I __ I I _ I

11 12 13 15 16

ADR
I I I

31

[See Section 3.3.4 for further details.]

3-52

Mnemonic Code: NEB

First Operand:

Second Operand:

Operaation:

Registeras Affected:

Instruction Worad:

Test bytes for RGA byte "not equal to" second operand byte.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Each 8-bit byte in RGA is compared with the
corresponding byte in the second operand. If the RGA byte is not equal
to the second operand byte, the least significant bit of the RGA byte
is set (=1) and the other bits in the byte are cleared. If the RGA
byte is equal to the second operand byte, all bits in the RGA byte are
cleared. If the E bit is reset, RGA bytes 0, 5, 6, and 7 will be un­
changed. If the El bit is reset, RGA bytes 1, 2, 3, and 4 will be
unchanged.

RGA - Cont~ins test results in the least significant bit of each byte
with other bits cleared, as enabled by E and E1.

RGC - Contains test results in the most significant bit of each byte
with other bits cleared. [Refer also to the comments following
the ADB instruction.]

RGB - Contains second operand.

7 8 11 II 13 15 16

:ADR I

I I
31

The OFB instruction transfers the contents of RGC to the least significant bit of the corres­
ponding byte in RGB and clears the outer bits of RGB. 16 bit, 24 bit, 32 bit, etc
extended precision from the 8 bit mode is facilitated by combinations of byte mode instructions.

3-53

Mnemonic Code: NORM

OpeT'ation:

RegisteT's Affected:

InstT'Uction WOT'd:

Normalize.

64-Bit Mode. If the RGA mantissa field does not contain a "111 in the
leading (most significant) bit, the mantissa is shifted left (with
zeros entering at the right) until a leading "1" is detected. The
exponent is then adjusted by the number~f bits shifted. The exponent
adjustment is left in RGS. If both E and El are reset (=0), RGA will
be unchanged but RGB will be changed. If E f El, the results are un­
specified. F bits may be set if exponent adjustment caused underflow

and ACR09 is set.

32-Bit Mode. Similar to 64-bit mode, except inner and outer words in
RGA are normalized independently. The outer and inner exponent adjust­
ments are left in the outer and inner exponent fields of RGB. If either
E or El is reset, the corresponding portion of RGA will be unchanged.

RGA - Mantissa and exponent fields altered, as enabled by E and El.
RGB - Contains exponent adjustment(s).
RGD - F or.Fl bits may be set [see Section 3.3.3 for a more detailed

explanationJ.

4 5 7 8 11 12 13 31

The operation performed by this instruction is the same as the normalization performed
on the results from AD, SS, DV, and ML instructions, when the "N" variant has been used.
Any number with a zero mantissa (regardless of value of sign and exponent fields) is
set to all zeros by NORM.

3-54

Mnemonic Code: OFB

Operation:

Register Affected:

Instruction Word:

Recover carries or test results from previous byte instructions (from
RGC to RGB).

64-Bit and 32-Bit Modes. The ADB and SBB instructions leave high-order
carries in the most significant bit of each byte in RGC. The GB, LB,
and NEB instructions leave test results in these same bits. The OFB
instruction transfers these bits to the teast significant bits of
corresponding bytes in RGB and clears the other bits of RGB. RGC;s
unchanged.

Because certain instructions may alter the contents of RGC, an OFB
instruction should immediately follow the byte instruction whose results
or carries are to be recovered.

Note: Operation of this instruction is unaffected by the configur­

ation of the E and El bits.

RGB - Least significant bit of each byte contains a copy of most sig­
nificant bit of corresponding byte in RGC. Other bits are
cleared.

25 _ 061Ip~~~
III III ~

1 8 11 17 13 31

This instruction is not needed after GB, LB, or NEB, since these instructions automatically
place the test results in RGA .

•

3-55

Mnemonic Codes:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Words:

OR

ORN

NOR

NORN

OR, ORN, NOR, NORN

Logical OR of two 64-bit operands or their complements.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and

indexing logic, as shown in Table 3-2.

54-Bit and 32-Bit Modes. Bitwise logical OR of two operands 'or their

complements, as shown in the following listing, where OPl is the first

operand and OP2 is the second operand.

Mnemonic

OR

ORN

NOR

NORN

The 64-bit result is left in RGA.

0:8 and 40:24 will be unchanged.

will be unchanged.

Function

OPl OR OP2

OPl OR 0J52
OPl OR OP2

OPl OR OP2

If the E bit is reset (=0), RGA bits

If the El bit is reset, RGA bits 8:32

RGA - Contains result, as enabled by E and El.

RGB - Contains second operand.

IA~A~xl
I

I p IA~R~SEI
I

23 04 ADR
I I I I I I 1 I I I

4 ~ 7 B 11 12 13 15 16 31

I :23
1 IA~A~xl ~6 : I p IA~R~SEI : ADR I I 1 I I I 1 1

4 5 7 8 11 12 13 1~ 16 31

I :231 1]A9A~xl 05 : I p IA~R~SEI : ADR :=uJ 1 I ! 1 1 I
4 5 I 8 Ii 11 13 1, 1~ 31

I IA?ArXI
I

I ~A~'R~SEI
I

I 23 07 ADR
I I I ! 1 I I i I L I ! I 1

I

.\ ~ I a 11 II OJ 1~ 16 31

3-56

Mnemonic Codes:

Bit Nwnber:

Operation:

Registers Affected:

InstPUation Words:

RAB

SAB

RAB, SAB

Reset or set specified bit in RGA.

Specified by ADR and ADR USE fields, using bit/shift counting and in­
dexing logic, as shown in Table 3-3.

64-Bit Mode. The bit number is taken mod 64, and the corresponding
bit in RGA is reset (RAB) or set (SAB). Other RGA bits are unchanged.
If the E bit is reset (=0), RGA bits 0:8 and 40:24 cannot be changed.
If the El bit is reset, RGA bits 8:32 cannot be changed.

32-Bit Mode. The bit number is taken mod 32 and used to select a
bit position within each of the two 32-bit inner and outer words of
RGA. For example, if the bit number is 7, it selects bit 7 of the
outer word and bit 7 of the inner word (these are RGA bits 7 and 14).
The selected bits are set or reset; other RGA bits are unchanged. If
the E bit is reset, the bit in the outer word cannot be changed. If
the El bit is reset, the bit in the inner word cannot be changed.

~GA - Specified bit(s) set or reset, as enabled by E and El.
RGB - Contains a mask in which bit(s) corresponding to selected bit{s)

in RGA are set and all other RGB bits are reset.

37 1~9A~XI t t t
4 ~ I

I I

IA?ArXI 37
I I I I

4 ~ !

I ~1 : I P IA~R~SEI
H 11 12 13 1 ~ 16

I ~2 : I P IAqR~SEI
~ 11 12 1:1 1~ 16

3-57

:

: ADR
I I I

31

Jl

Mrlemonic Codes:

Shift Co un t :

Operation:

Register Affected:

Instruction Words:

RTAL

RTAR

RTAL, RTAR

Shift left/right, end-around, logical, sinq1e-length.

Specified by ADR and ADR USE fields, usinq bit/shift counting and in­
dexing logic, as shown in Table 3-3.

64-Bit Mode. RGA is considered as a single 64-bit (i.e., logical)
entity and is shifted end-around by the shift count, which is taken
mod 64. The direction of the shift is specified by the OP code, as
indicated by the last letter of the mnemonic code. If both E and
El bits are reset (=0), RGA will be unchanged. If E f E1, the result

is unspecified.

32-Bit Mode. Similar to the 64-bit operation, except RGA is considered

as two 32-bit logical entities (outer and inner) that are shifted in­
dependently. The shift count is taken mod 32. If the E bit is reset,
the outer portion of RGA will be unchanged. If the E1 bit is reset,
the inner portion of RGA will be unchanged.

RGA - Altered as specified by the instruction and as enabled by E and

E1.

IA~A~xl
I

I p IA~R~SEI
I --,-

35 13 ADR
I I I 1 1 I I I

4 ~ , 8 I: 12 13 I'> lti Ii

I :35
1

IA7A~xl 12 : I p IA~R~SEI :-LL: ADR I I I I I I I I I I I

4 5 7 H 11 12 13 1~ :6

3-58

Mnemonic Code: .RTL

Operation:

SOURCE FieLd

Send data from specified register to RGR of another PE.

64-Bit and 32-Bit Modes. Transmit contents of specified register
[see SOURCE Field below] to the RGR register of the PE in position
number N + 0, where N is the position number of the PE executing the
instruction and 0 is a specified routing distance. N + 0 is taken
mod 64.

Note: Operation of this instruction is unaffected by the con­

figupation of the E and El bits. Every PE will execute

the instruction, and aftep execution, the RGR pegister

of every PE will contain a value sent from another PE.

(Bits 17:5): One bit ·in this field is set (=1) to specify the source register, as
shown in the following listing.

Source Bit Number in
Register Instruction

RGA 17

RGB 18
RGX 19
RGS 20
RGR 21

RGD may not be used as the source register. If more than one bit is
set in the SOURCE field - or if none is set - the results are unspeci­
fied.

D Field (Bits 22:10): This field contains the routing distance (right-justified).

ADR USE:

Register Affected:

Instpuction Word:

RTL

The SOURCE and 0 fields in this instruction are really an ADR field
that may be altered in the CU by ACAR-indexing. If ACAR-indexing is
used, the effective SOURCE and D fields will be the sum of bits 17:15
of the instruction and bits 49:15 of the ACAR.

Bit 13 should be set and bit 15 reset to indicate the presence of a
register code. Bit 14 is ignored. If bit 13 is reset or bit 15 is
set, the results are unspecified.

RGR - Contains data sent from the source register of PE number N - 0

mod 64, where N is the number of this PE and 0 is the routing
distance.

4 5 I 8 11 12 13 14 15 16 11

3-59

II 12

o
I

31

Mnemonie Codes:

Operation:

Registers Affeeted:

Instruetion Words:

SAN

SAP

SAN, SAP
Set RGA sign negative or positive.

64-Bit Mode. RGA bit 0 (sign bit of 64-bit word) is set to "1" (SAN)
or reset to "0" (SAP). If the E blt is reset, RGA is unaffected.

32-Bit Mode. RGA bits 0 and 8 (sign bits of 32-bit outer and inner
words) are set to Ill." (SAN) or reset to 110" (SAP). If the E bit is

reset, RGA bit 0 is unchanged. If the E1 bit is reset, RGA bit 8 is
unchanged.

RGA - Sign bit(s) set or reset, as enabled by E and fl.
RGB - Contains a mask in which bit 0 and bit 8 (in 32-bit mode) are

set and all other RGB bits are reset.

4 5 7 8 11 1i 13 31

4 5 1 8 11 12 13 31

SAN and SAP are the SAB and RAB instructions, respectively, with ADR and ADR USE equal to 0

to specify the sign bit(s).

3-60

Mnemonia Codes:"

First Operand:
(Minuend)

Seaond Operand:
(Subtrahend)

Operation:

Registers Affeated:

Instruction Words:

SB

SBA

SBM

SBMA

SBN

SBNA

SB, SBA, SBM, SBMA. SBN, SBNA, SBR, SBRA, SBRN, SBRNA
Subtract floating-point numbers or mantissa-sized, fixed-point numbers.

Found in RGA.

Specified by ADR and ADR USE, using operand addressing and indexing
logic, as shown in Table 3-2.

64-Bit Mode. Second operand is subtracted from RCA and result is left
in RGA. RGB will contain the second operand, which is either unmodi­
fied or modified by mantissa portion shifted off to align operands. If
both E and El bits are reset (=0), RGA will be unchanged but RGB will
be changed. If E f El, the results are unspecified.

32-Bit Mode. Similar to 64-bit mode, except outer and inner operand
pairs are subtracted independently. If E bit is reset, the outer word
in RGA will be unchanged. If El bit is reset, the inner word in RGA
will be unchanged. RGB will be chanqed in all cases.

RGA - Contains result(s), as enabled by E and El.
RGB - Contains second operand, either unmodified or modified by man­

tissa portions shifted off to align operands.
RGD - F or Fl bits may be set [see Section 3.3.3 for a more detailed

explanation.

IA~A~xl
I

Ip IA+~SEI
I I

37 04 ADR
I I I I I I I I I I

4 , I 8 11 I? 13 I, 16 11

I :37
1 IA9A~xl

I

I p IA~R~SEI
I

:ADR
I

I 05
I I I I I I I I I

4 I, 7 8 11 11 I:i 1', lti Jl

I I

IA~A~xl
I

I p IA~R~SEI : I 36 14 ADR
I I I I I I I I I I I

4 ~ I 8 11 12 13 \'. 16

I I

IATA~xl 1
1
5 : ! p IA~R UISE!

I I :J 36 ADR
I I I I I I I I I

4 5 , B \I I? 13 1'; 11; 31

I :36 IA9A~xl 04 : I p IA~R UISEI : ADR I I I I I I I I-LI I
4 ~ 7 8 \I 17 13 PI If) :n

I IATA~xl ~5 : I p !A~R U1SEI :
;-

I 36 ADR
I l I I I I I I I

4 " 7 8 II 11 1:: 10 It, 31

3-61

Instruation Words (Cont.):

SBR

SBRA

SBRN I >6: IA?ArXI 06 : I p IAD:R~SEI : ADR I I I t I t I 1 I
I

~ ~ I R l' 12 L! 1~ 16 31

I
I

IA?Arxl

I

! P !AO;R ~SEI
I

I SBRNA 36 07 ADR
I I I I I I I I I I I I

4 ~ 7 8 11 12 13 1, 16 :11

The SB instructions operate the same as the AD instructions, except that the sign of the

second operand is changed before addition is performed.
The following variations are permitted in the preceding combinations.

(a) No suffix - Both operands are treated as signed, floating-point numbers. No rounding

or normalization.
(b) A - Signs of both operands are ignored. The sign of the result is the same as the

sign of the minuend found in RGA. A result of -0 is possible.
(c) M - Exponents of both operands are ignored; that is, both are treated as mantissa­

sized, fixed-point numbers. The exponent of the result is the same as the exponent

of the minuend found in RGA. A result of -0 is possible.
(d) N - Result is normalized (after rounding, if specified).

(e) R - Result is rounded in RGA.
[See Sections 3.3.4 and 3.3.5 for further details.]

Alignment for floating-point subtraction is performed in the following sequence.

1. The exponent of the result is determined as the larger of the two qperann exponents

(subsequently adjusted if normalization is used).
2. The mantissa of the operand with the smaller exponent is shifted right end-off, until

it is properly aligned with the mantissa of the other operand. If the difference be­

tween the exponents is greater than 47 (or 23 in 32-bit mode), however, this process
will zero the mantissa of the operand with the smaller exponent.

3. The most significant bit shifted off in aligning the mantissa is saved and used for
rounding (if specified).

3-62

Mnemonic Code: SBB

First OpeZ'and:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

Subtract bytes usinq ones-complement arithmetic.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit and 32-Bit Modes. Each operand is considered as eight 8-bit
bytes. Each byte of the second operand is complemented and added to
the corresponding byte of RGA, and the results are left in RC,A. The
high order carry from each byte is stored in the most significant bit
of the corresponding byte in RGC. The OFB instruction transfers the
corresponding bytes in RGB and clears the outer bits of Rr,B. l6-bit,
23-bit, 32-bit (etc ...) extended precision from the 8 bit mode is
facilitated by combinations of byte mode instructions.

Bytes 0, 5, 6, and 7 will be unchanged. If the El bit is reset,
RGA bytes 1, 2,3, and 4 will be unchanged. Furthermore, the carries
from these bytes will still be stored in RGC.

RGA - Contains results, as enabled by E and El.
RGC - Contains carries (for positive results) in the most significant

bit of each byte, with other bits cleared.
RGB - Contains second operand.

26 /ACARXI 07 I I ~ ~D:RUSEI I

I I I . I I . I I I . L! I . I
4 f> 1 8 11 12 11 1~ 16

3-63

ADR
I I I

31

Mnemonic Code: SBEX

First OpeX'and:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

Subtract exponents.

Found in RGA.

Specified by ADR and ADR USE fields, using operand addressing and
indexing logic, as shown in Table 3-2.

64-Bit Mode. Subtract exponent field of second operand from RGA ex­
ponent field, thus treating these fields as offset exponents rather
than as binary numbers. Sign bit and mantissa in RGA are unchanged
unless exponent underflow occurs (in which case RGA is cleared). If
both E and E1 bits are reset, RGA is unchanged. If E r El, the re­
sults are unspecified. The second operand is left in RGB in all cases.

32-Bit Mode. Similar to 64-bit mode, except the inner and outer ex­
ponents are subtracted independently. If the E bit is reset, the
outer exponent in RGA will be unchanged. If the E1 bit is reset,
the inner exponent in RGA will be unchanged. In all cases, the second
operand is left in RGB.

RGA - Exponent fie1d(s) altered, as enabled by E and El. Exponent
underflow causes RGA or inner or outer word to be cleared, as
enabled by E and El.

RGB - Contains second operand.
RGD - F or Fl bits may be set [see Section 3.3.3 for a more detailed

explanationJ.

25
i I

01 I I p IA~RUSEI I

I .. I I . I
11 12 13 1~ 16

ADR
I ! I

31

Exponents are represented by offset code. This instruction makes the necessary adjustments for
the offset, effectively subtracts the true exponents, and then puts the result (in offset code)

into RGA.

3-64

Mnemonic Codes:

First Operand:

Second Operand:

Operation:

SETE, SETE1, SETF, SETF1, SETG, SETH, SETI, SETJ

Set RGD bit to value of logical function of two RGD bits.

Value of a bit hi RGD, specified by the setting of one bit in the Bl
field of the instruction [see 81 listing below].

Value or complement of the E or El bit, as specified by the setting of

one bit in the B2 field of the instruction [see 82 listinq below].

64-8it and 32-8it Modes. Load a bit in RGD with the value of a~logical
function of the two operands. The bit to be loaded is specified by

"~
the OP code, as indicated by the last letter of the mnemonic c~de. The . \

logical function is specified by the LOG FUNC field 9f the inst;ruction
[see LOG FUNC, p. 3-66J.

Note: The operation of these instructions is unaffected by the

configuration of the E and E1 bits.

B1 FieZd (Bits 24:8): One of these bits is set to specify the first operand bit, as shown in
the following listing.

First 8it Number
Operand Value in Instruction

H 24
G 25
J 26
I 27

El 28

E 29
Fl 30
F 31

If more than one bit is set in 81 or if no bits are set in 81, the re­
sults are unspecified.

B2 Fietd (Bits 20:4): One of these bits is set to specify the second operand bit, as shown in
the following listing.

Second Bit Number
O~erand Value in Instruction

IT 20

El 21

E 22

E 23

If no bits are set in 82, the results are unspecified. If all bits are
set in 82, the second operand value will be O.

3-65

LOG FUNC FieZd
(Bits 16:4):

ACAR-Indexing:

ADR USE:

Register Affeated:

Instruction Words:

SETE

SETE1

SETF

SETF1

SeTG

SETH

One of these bits is set to specify the logical function used. For

example, the following listing shows that BITl is the value of the
first operand (as specified by the 81 field) and BIT2 is the value
of the second operand (as specified by the 82 field).

Logical Function Bit Number
of BITl and BIT2 in Instruction

BITl OR BIT2 16
BITl OR BIT2 17
BITl AND BIT2 18
BITT AND BIT2 19

If more than one bit is set in the LOG FUNC field, the results are un­

specified. If no bits are set in the LOG FUNC field, the logical

function is BITl OR BIT2.

The B1, B2, and LOG FUNC fields are actually an ADR field treated as
a component of a literal. PE-indexing is not allowed, but ACAR-index­
ing may normally be used. Only the last 16 bits (bits 48:16) of the
64-bit literal are used in executing these instructions. If ACAR­
indexing is used, these bits will be the sum of instruction bits 16:16

and ACAR bits 48:16.

Bits 13:3 are ignored. They are also assumed to be all zeros, thus

indicating transmission of a literal.

RGD - Altered, as specified by the instruction.

IArA~xl
I I P_L~G tUrcl

I

I
I

25 14 82 81
I I I I I I I ! I I I

4 5 7 8 11 12 13 15 16 19 20 23 24 31

I
,

IA~A~xl
I

Ip.L~G rurcl
I

I
I

I 25 15 82 81
I I I I I I I I I I I I I I

4 5 7 8 11 12 13 15 16 19 20 23 24 31

I :25
1 IA~A~xl

I

Ip_L~G rurcl
I

I
I

I 16 82 81
I I I I I I I I I I I

4 5 7 8 11 12 13 15 16 19 20 13 24 31

1 :25: IA~A~xl
I

Ip_L~G ru~cl
I

I
I

II
17 82 81 I I I I I ! I I I

4 5 7 8 11 12' 13 15 16 19 20 23]4 31

I
I

IA~A~xl
I

Ip.l~G rurcl
I

I
I

I I 27 14 82 81
I I I I I I I I I I I I

4 5 I 8 II 12 13 15 16 19 20 2.1 24 31

II :27
1

IArA~xl : Ip _L~G rurcl
,

I I 15 82 81 I I I I I I I I I I
4 5 1 8 11 12 13 15 16 19 20 23 ,4 31

3-66

Instruation Words (Cont.):

SETI :27
1 IA~A~xl 16 : Ip.LO:G ru~cl ~2 : II : B1

I I
4 5 I H 11 12 13 1~ 16 I~ llJ n /4 31

I IA~A~xl
,
Ip.LO~ FUNCI

,
I SETJ 27 17 B2 B1 I I 1 I I I I I , I I I l I I

4 5 I 8 11 12 13 1~ lti 19 20 " .)4 \I

3-67

Mnemonic Codes:

Shift Count:

Operation:

Registers Affected:

Instruction Words:

SHABL

SHABR

SHABL, SHABR
Shift left/right, end-off, logical, double-length.

Specified by ADR and ADR USE fields, using the bit/shift counting and
indexing logic shown in Table 3-3.

64-Bit Mode. RGA and RGB are considered as the left and right halves,

respectively, of a single l28-bit logical entity. This entity is
shifted end-off (zero fill) by the shift count, which is taken mod 64.
The direction of the shift is specified by the OP code, as indicated
by the last letter of the mnemonic code. If both E and El bits are
reset, RGA will be unchanged. RGB, however, will be altered irrespec­
tive of the E and El bits. If E ~ El, the result is unspecified.

32-Bit Mode. In 32-bit mode, these instructions produce unspecified

results.

RGA - Altered, as specified by the instruction and as enabled by E
and El.

RGB - Altered, as specified by the instruction.

IA~A~xl
I

I P IA~R ysel
I

37 11 ADR
I I I I I I I I

4 ~ I 8 II 17 1:1 I~ 16 ,I

I
I

IA~A~xl
I I P IA~R ysel

I

I 37 10 ADR
I I I I I I I I I I

4 ~ 1 8 11 17 13 1~ 16 31

3-68

Mnemonic Codes:

Shift Count:

Operation:

Registers Affected:

Instruction Words:

SHABML

SHABMR

SHABML, SHABMR
Shift left/right, end-off, mantissa only, double-length.

Specified by ADR and ADR USE fields, using the bit/shift counting and
indexing logic shown in Table 3-3.

64-Bit Mode. RGA and RGB mantissa fields are considered as the left

and right halves, respectively, of a single 96-bit logical entity.

This entity is shifted end-off (zero fill) by the shift count, which
is taken mod 64. The.direction of the shift is specified by the OP
code, as indicated by the last letter of the mnemonic code. If both
E and E1 bits are reset, RGA will be unchanged. RGB, however, will
be altered irrespective of the E and El bits. If E f El, the result
is unspecified.

Note: If the shift count (mod 64) is greater than 47, the RGA

and RGB mantissa fieZds will be cleared.

32-Bit Mode. In 32-bit mode, these instructions produce unspecified
results.

RGA - Mantissa field (bits 16:48) altered, as specified by the instruc­
tion and as enabled by E and El.

RGB - Mantissa field (bits 16:48) altered, as specified by the instruc­
tion.

:37
1

IA~A~xl
I

I p IA~R~SEI
I

13 ADR
I 1 I I 1 I I I

~ 7 H 11 17 13 1~ 16 31

I
I

IA~A~xl
I

I p IA~R~SEI
I I

I
37 12 ADR

I I I I I I I I I I I I
4 ~ I 8 11 12 13 I~ It; JI

3-69

Mnemonic Codes:

Shift Count:

Operation:

Registers Affected:

Instruction Words:

SHAL

SHAR

SHAL, SHAR
Shift left/right, end-off, logical, sinqle-length.

Specified by ADR and ADR USE fields, usinq the bit/shift counting and
indexing logic shown in Table 3-3.

64-Bit Mode. RGA is considered as a single 64-bit (i.e., logical)
entity and is shifted end-off (zero fill) by the shift count, which

is taken mod 64. The direction of the shift is specified by the OP
code, as indicated by the last letter of the mnemonic code. If both
E and El bits are reset, RGA will be unchanged. If E 1 El, the result

is u~specified.

32-Bit Mode. Similar to the 64-bit operation, except RGA is consid­

ered as two 32-bit logical entites (outer and inner) that are shifted

independently - the shift count is taken mod 32. If the E bit is re­
set, the outer portion of RGA will be unchanged. If the El bit is

reset, the inner portion of RGA will be unchanged.

RGA - Altered, as specified by the instruction and as enabled by E

and El.

:351 IA9A~xl
I

! P IA~R U1SE!
I

01 ADR
1 I I I

4 ~ , 8 11 12 13 IS 16 31

1'1

I

IA?Afxl
I

I p IA~R~SEI
I

I 35 00 ADR
1 1 1 I I I I I I I I I 1

4 5 , 8 11 17 11 15 16 31

•

3-70

Mnemonic Codes:

Shift Count:

Oper'ation:

Register' Affected:

Instr'uation WOr'ds:

SHAML

SHAMR

SHAML, SHAMR
Shift left/right, end-off, mantissa only, single-length.

Specified by ADR and ADR USE, using the bit/shift counting and index­
ing logic shown in Table 3-3.

64-Bit Mode. The RGA mantissa field (48 bits) is shifted end-off
(zero fill) by the shift count, which is taken mod 64. The direction
of the shift is specified by the OP code, as inrlicated by the last
letter of the mnemonic code. If both E and El bits are reset, RGA
will be unchanged. If E r El, the result is unspecified.

Note: If the shift count (mod 64) is gpeater than 47, the RGA

mantissa field will be clear'ed.

32-Bit Mode. Similar to the 64-bit operation, except RGA outer and
inner mantissas are shifted independently. The shift count is taken
mod 32. If the E bit is reset, the outer mantissa in RGA will be un­
changed. If the El bit is reset, the inner mantissa in RGA will be
unchanged.

Note: If the shift count (mod 32) is gr'eater' than 23, the RGA

mantissas will be cZear'ed.

RGA - Mantissa field(s) altered, as specified by the instruction and
as enabled by E and El.

IA~A~xl
I I p IA~R~SEI

I

35 11 ADR
I I I I I I I I

4 !J J d II 12 13 I!J 16 31

(
I

IA~A~xl
I

I P IA~R U1SEI
I I

I
35 10 ADR

I I I I I I I I I I I I
,1 ~ I 8 11 12 13 I!J 16 31

3-71

Mnemonic Codes:

Destination:

Operation:

Registers Affected:

Instruction Words:

STA

STB

STR

STS

STX

STA, STB, STR, STS, STX
Store from specified register to processor memory.

Specified by ADR and ADR USE fields, using the operand addressing
and indexing logic shown in Table 3-2, with the restriction that a
processor memory location must be specified (instruction bit 15

must be set).

64-Bit and 32-Bit Modes. Store the contents of the specified PE reg­
ister into the processor memory location specified as its destination.
The PE register is specified by the OP code, as indicated by the last

letter of the mnemonic code. If the E bit is reset, the outer portion
of the processor memory location will be unchanged. If the E1 bit is
reset, the inner portion will be unchanged.

The RGX register is 16 bits long. The STX instruction stores these
16 bits in bits 48:16 of the processor memory location and clears bits
0:48.

The processor memory location contains the contents of the source reg­
ister, as enabled by E and El.

:26, IACARXI
I

I P IA~R u,SEI
I

12 ADR
I I I I I I I ,

~) H II II I! 15 16 ,sI

I
1

IA9A~XI
I

I P IA~R U:SEI
I

I 26 13 ADR
I , , , I , I I I , I I I I

1 5 I a II 12 13 I~ It; JI

[I

IA~A~xl
I

I P IA~R~SEI
,

I 26 14 ADR
I , I I I I I I I I I I ,

4 5 I 8 II 12 13 IS 16 31

I :26, IA9A~xl 15 : I P IA~R~SEI : ADR I I I I I I I I I I I
4 S 7 8 II 12 13 15 16 31

L 126 ~CARXI 16 : I P IAqR~SEI : ADR I I I I \ \ \ i I ! I 1
., 5 I H 11 12 13 I~ Ih 31

3-72

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction-Word:

SUB
Subtract 64-bit unsigned integers using ones-complement arithmetic.

Found in RGA.

Specified by ADR and ADR USE fields, using the operand addressing and
indexing logic shown in Table 3-2.

64-Bit and 32-Bit Modes (IdeD~ical-L. The second operand ;s complimented
and added to RGA, and the result ;s left in RGA. Overflow causes an end
around carry. The second operand is left in RGB. If both E and E1 bits

are reset, RGA will be unchanged but RGB will be changed. If E r El, the
result is unspecified.

RGA - Contains result, as enabled by E and El.
RGB - Contains second operand.

3-73

1

ADR
: I I

31

Mnemonic Code:

Operation:

Registers Affeated:

Instruation Word:

SWAP
Interchange RGA and RGB contents.

64-Bit and 32-Bit Modes (Identical). The contents of RGA and RGB are
swapped. If the E is reset. the outer portion of RGA will be unchanged.
If the El bit is reset, the inner portion of RGA will be unchanged. RGB
is altered regardless of the E and El bits.

RGA ~ Contains original contents of RGB, as enabled by E and El.
RGB - Contains original contents of RGA.

4 5 1 8 11 12 13 31

3-74

Mnemonic Code: SWAPA
Interchange inner and outer words of RGA.

Operation: 64-Bit and 32-Bit Modes. The inner and outer words of RGA are inter-----------
changed. If the E bit is reset, the outer word is unchanged. If
the El bit is reset, the inner word is unchanged.

Register Affeeted: RGA - Inner and outer words interchanged, as enabled by E and E1.

Instruetion Word:

4 , I H 11 II 13 Jl

3-75

Mnemonic Code:

Operation:

Registers Affected:

Instruction Word:

SWAPX
Interchange RGA outer word and RGB inner word.

64-Bit and 32-Bit Modes. The outer word cf RGA and the inner word of
RGB are interchanged. If the E bit is reset, RGA will be unchanged
but RGB will be changed. The El bit has no effect.

RGA Outer word contains original contents of RGB inner word, if the
E bit was set (=1).

RGB - Inner word contains original contents of RGA outer word.

4 S 7 8 11 12 13 31

3-76

Mnemonie Code:

First Operand:

Seeond Operand:

Operation:

Registers Affeeted:

Instruetion Word:

XD
SubtrJct from RGX.

Found in RGX.

Specified by ADR and ADR USE fields, using the operand addressing and
indexfng logic shown in Table 3-2.

64-Bit and 32-Bit Modes (Identical). The 16 least significant bits of
the second operand are subtracted from the contents of RGX, using twos­
complement arithmetic, and the result is left in RGX. No end-around
carry is generated; that is, any high-order carry resulting from the
subtraction is lost. If the E bit is reset, RGX will be unchanged.
The second operand (all 64 bits) is left in RGB.

RGX - Contains difference, as enabled by E bit.
RGB - Contains second operand.

25
I I

4 , / ~

03 I I p IA~RUSEI I

I I .. I I . I
II 12 Li I, 10

3-77

ADR
I 1 I I

31

Mnemonic Code:

First Operand:

Second Operand:

Operation:

Registers Affected:

Instruction Word:

XI
Add to RGX.

Found in RGX.

Specified by ADR and ADR USE fields, using the operand addressing and

indexing logic shown in Table 3-2.

64-Bit and 32-Bit Modes (Identical). The 16 least significant bits
of the second operand are added to the contents of RGX, and the result

is left in RGX. Any high-order carry is lost. If the E bit is reset,

RGX will be unchanged. The second operand is left in RGB.

RGX - Contains sum, as enabled by E bit.

RGB - Contains second operand.

25 ·/ACARX/
! ! ! - ! ! -

02 I I P IAO'R USEI :
I ! __ I ! _ i

ADR
! : !

I 8 11 12 13 1 ~ 16

3-78

