TEMPORARY COVER SHEET

DOCUMENT NUMBER: 00000105
DOCUMENT TITLE: The Illiac IV Processing Element VOL II

AUTHOR: . Theofanis Economidis

DATE ISSUED: April 1974

INSTITUTE FOR ADVANCED COMPUTATION

IAC DOC NO, PO-I1100-VOL II-A

THE TLLIAC IV PROCESSING ELEMENT

VOLUME I1I

THEOFANIS ECONOMIDIS

OCTOBER 1973

REVISED:

FEBRUARY, 1974

VOLUME 11

TABLE OF CONTENTS

SECTION C: THEORY OF OPERATION

I, INTRODUCTION

A.
B.
c
D

ACKNOWLEDGMENT

BIBLIOGRAPHY

Addition
Subtraction
MuTltiplication
Division

110

110

110
179
180
228

277

278

FIGURE
32

33
34

35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69

Exponent Part of B Register in 64-Bit Mode for

VOLUME 11

LIST OF FIGURES

Exponent Correction

Exponent Part of B Register in 32-Bit Mode for

Exponent Correction

Diagrammatic Representation of Rounding Procedure
(Case #4)

Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow

Diagrammatic Representation of Shifting Operation

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

of
of
of
of
of
of
of
of
of

at Time T2

Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Flow Chart

Block Functional Diagram
Participating in Mantissa Manipulation

Multiplication Process (Mantissa)

Corre
Clock
Clock
Clock
Clock
Clock
Clock

~Clock

Clock
Input
Clock
Chart

ction
Time
Time
Time
Time
Time
Time

Time:

Time

Gating of the CPA, Bit Slice Diagram

Time

Showing the Area in which the Quotient is Valid

of
of
of
of
of
of
of
of
of
of
of

Bits for Mantissa Multiplication

T1
T2
T3
T4
T5
T6
T7
T8

T9

Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions

Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions

at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at
at

Time
Time
Time
Time
Time
Time
Time
Time
Time

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

Tl
T2
T3
T4
T5
T6 (PART A)
T6 (PART B)
T7
T1

T2
T3 (PART A)
T3 (PART B)
T4
T5 (PART A)
T5 (PART B)
T6
T7 (PART A)
T7 (PART B)
T8
T9

of the Registers

PAGE

116
117

132
139
141
143
145
147
149
150
152
154

155
156
159
160
162
165
166
168
171
172
174
177

193
195
197
209
211
213
215
217
219
221
224
225
227
235

TABLE
33
34
35
36

37
38

39
40
41

42

VOLUME 11

LIST OF TABLES

Shifting in Normalization and Exponent Adjustment

Truth Table of Conditions in Subtraction (4)

Multiplier Bits to be Recoded

Recoding Multiplier Scheme

Definition of Signals Applied to PAT

Steps of Mantissa Manipulation in 64-Bit Mode
Division - '

Steps of Exponent Manipulation in 64-Bit Mode
Division

Procedure for Interchanging INNER & OUTER Mantissas
of RGB

Procedure for Interchanging INNER & OUTER Mantissas
of RGR ‘

Procedure for Interchanging INNER & OUTER
Remainder (RGB)

PAGE

120
179
183
184
190
239
248
274
275.

276

FIGURE
32

33
34

35
36
37

38
39
40
41
42
43
4

45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69

Exponent Part of B Register in 64-Bit Mode for

VOLUME 1T

LIST OF FIGURES

Exponent Correction

Exponent Part of B Register in 32~Bit Mode for

Exponent Correction

Diagrammatic Representation of Rounding Procedure
(Case {#4)

Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow

Diagrammatic Representation of Shifting Operation

at
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow
Flow

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

of
of
of
of
of
of
of
of
of

Time T2

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

of
of
of
of
of
of
of
of
of
of
of

Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions

Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions
Actions

at
at
at
at
at
at
at
at
at

at
at
at
at
at
at
at
at
at
at
at

Block Functional Diagram
Participating in Mantissa Manipulation
Multiplication Process (Mantissa)

Corre

Clock

Clock
Clock
Clock
Clock
Clock
Clock
Clock

~ Input

Clock
Charvt

ction
Time
Time
Time
Time
Time
Time
Time
Tirme

Gating of the CPA, Bit Slice Diagram

Time

Shewing the Area in which the Quotient is Valid

Bits for Mantissa Multiplication

Tl
T2
T3
T4
T5
Té
T7
T8

T9

Time
Time
Time
Time
Time
Time
Time
Time
Time

Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time

Tl
T2
T3
T4
T5
T6 (PART A)
T6 (PART B)
T7
T1

T2
T3 (PART A)
T3 (PART B)
T4
T5 (PART A)

'T5 (PART B)

T6
T7 (PART A)
T7 (PART B)
T8
T9

of the Registers

PAGE

116
117

132
139
141
143
145
147
149
150
152
154

155
156
159
160
162
165
166
168
171
172
174
177

193
195
197
209
211
213
215
217
219
221
224
225
227
235

SECTION C: THEORY OF OPERATION

I. INTRODUCTION

A. Addition

1. Introduction. In order to present all phases of how addition of

two numbers is performed by ILLIAC IV, the process and the details of float-
ing point addition with the options of rounding and normalization will be
described, since this is the longest and most complicated form of addition
performed by the PE.

In floating point arithmetic, addition rules require that the numbers
to be added have equal exponents. If the exponents are different, the dif-
ference of the exponents is found and the number (mantissa portion) with
the smaller exponent is first shifted, as mahy places to the right as the
difference of the exponents (bits shifted off are lost). This procedure
is called alignment.

After the addition of two mantissas is completed, the leading ONE
might not be in the most significant bit (MSB) position of the mantissa
and the exponent must then be adjusted by subtracting from it the number
of places the mantissa was shifted to the left. This procedure is called

normalization.

2, Alignment.‘ The Barrel Switch has been designed in such a way
that it can shift words in 64-bit mode or words in 32-bit mode. For align-
ment the shifting is always to the right, which means that the shift counter
receives the six least signifcant bits from the Carry Propagating Adder
(CPA) as the result of the difference of the exponents of the two operands
to be added and’applies them to the leading one detector and Barrel Switch
controls to be decoded and then applied to the propér levels of the

Barrel Switch.

-110 -

a) Implementation. The two operands, being 64 bits long,

are brought into CPA as follows:
The True output of the exponent part of B register is
enabled into CPA (bits 65 - 79) while the Complement output of the
exponent part of A register is allowed into CPA (bits 65 - 79). The
two quantities are added together and the result is sent to LOD #4 and
LOD #6 (the six least significant bits go to LOD #4 while the nine most
significant bits are sent to LOD #6). The output of LOD #6 goes to
LOD #15 to determine whether the exponent difference is greater than 47
(PEXD1-L48L). . '
The output of LOD #4 (Shift Count Register) is sent to
LOD #1, 2, 3, and 5 which control the levels of the Barrel Switch, which,
in turn, shifts the mantissa of the operand with the smaller exponent to
the right as many places as indicated by the difference of the exponents.
If the exponent of A register is greater than the exponent
of B register there is no carry (indicates adder output is complement of
ture difference) and therefore the Complement output of LOD #4 is sent to
LOD #1, 2, 3, and 5. If the exponent of A register is less than the exponent
of B register there is a carry (indicates adder output is true difference) and

therefore the True output of LOD #4 is allowed into LOD #1, 2, 3, and 5.

b) Examples.

Example #1

If the exponeht of A register, which holds the Augend is
Aexp = 100000000000001 and the exponent of B register, which holds the
Addend is Bexp = 100000000000010, find the exponent difference.

Solution

100000000000001=+1)

Aexp 10

[

100000000000010=+2)

Bexp 10

The difference is ONE and, because Bexp » Aexp, there is a
carry and the True output of the Shift Count Register (SCR) (LOD #4) must

be ONE.
-111-

Register [A 1 00 00 O0OOOUOU OUOUOTU OO 1
Content
B 1 00 0 00O0OOOTUOU OTUO0UOT1O0
Gated A 01 1111111111110
Output o -
Register |B Partial Tl 0 0 00O 0O0O 00O O 0 0 0 1O
to CPA ¢ Sum
CPA }b 00000 OO OOUOU OTUOU 0O
CARRY ' 1 END AROUND
CARRY
SUM 0 000 0O O OO OO}0 0OV OT O 1
Y Y i
1 /0 0 00 00 O0UOO io 0 0 0 0 1
LOD#6 LOD#4
T ‘J - TRUE OUTPUT TO
LOD#15
This 1 selects LoD #1,2,3 & 5
RGA MANTISSA to
be put into BS
Example #2
if Aexp =100000000111111
' Bexp=100000000111111

Find the exponent difference.

Solution

" Since Aexp = Bexp there is no carry and the
Complement output of LOD#4 is enabled into
LOD#1, 2, 3 and 5.
Because the exponents are equal, their

difference is ZERO.

-112-

A 100000000111111

B 100000000111111
A 011111111000000
CARRY 0] ¢—
cea S| 1 1111111111111
CARRY OUT
LOD#6 ofi1111111114yph11111 LOD#4

v COMPLEMENT
TO LOD#lS[—’ 0 00000

LOD#1,2,3 and 5

 J

This "0" selects

RGB mantissa to be
put into BS

. Examgie #3

if Aexp

0000000011111 11
000000001111100

Bexp
‘Find the exponent difference.

Solution

Since Aexp > Bexp by 3 there is no carry and the
complement output of LOD#4 is enabled into
LOD #1, 2, 3 and 5.

-113-

A 000000000111 111

B 000000000111 1O00O0
A 111111111000000
CARRY 0 4 _
CPA 111111111111100
CARRY OUT
LOD#4 0j11111111 111100
COMPLEMENT
| TO LOD#15 rOOOOll
vy .
This "0" selects
KX LOD#1,2,3
RGB mantissa to be ¥ and 5

put into BS

If the exponent difference (EXPDIF) is less than 4810
then PEDS1-148L (see LOD #15) is true and allows the register with the
smaller exponent to receive the output of the barrel switch; otherwise
the register mantissa is cleared. If rounding is desired, a pseudo-
alignment is performed prior to actual alignment, wherein the most
significant of the bits to be shifted off is saved in the INNER most
significant bit latch (IMSB) for later use. The signal PEXD1-L65H is used
during this pseudo-alignment'cycle and, when trué, allows the INNER most
significant bit (IMSB) latch to hold the '"shifted off" most significant
bit for rounding. Operation of LOD #15 signals PEXD1-L48L and PEXD1-L65H
is displayed below.

=114~

EXPDIF PED1-L48L PEXD1-L65H* REMARKS

0 > 47 TRUE (allows | TRUE (allows | If rounding is
register with| shifted off preferred
smaller expo-| MSB into IMSB '
nent to latch)
receive out-
put of BSW)

48 FALSE (regis-| TRUE (allows | If rounding is
ter with shifted off preferred
smaller expo-| MSB into IMSB
nent will be | latch)
cleared) :

48 - 63 FALSE (same TRUE (allows If rounding is
as above) ZERO into preferred
IMSB since
bits 0-15 are
not enabled
into BS)
64 or FALSE (same FALSE (input | If rounding is
greater | as above) to IMSB is preferred
forced to
ZERO)

* Signal is misnamed; should be 64 instead of 65.

3. Normalization.

For Normalization only, the leading ONE Detectors

(LoD #1, 2, 3) are used to detect where the leading ONE is in the mantissa.

When one of these LOD's detects a leading ONE it generates the proper

controls (shift count) for selection of the proper level of the Barrel

Switch for shifting the mantissa to the left as many places as required to

place the leading ONE in bit position 16 (for 64-bit mode and Inner Word

in 32-bit mode) or
If the leading one
inner mantissa) it

is then set up for

a zero shift.

is already normalized and the LOD is not enabled.

bit position 40 (for the Outer Word_in 32-bit mode).
is in bit position 16 (in 64-bit mode or in 32-bit mode/

The BS

Normalization of the outer mantissa in

32-bit mode is handled differently. In this case the LOD sees the outer

-115-

" mantissa with 24 leading zeros (inner mantissa is not gated out). The
LOD will generate a left shift (of at least 24 which is compensated for by
using the first level of the BSW (Byte Swapping Level)). This level moves
the outer mantissa 24 bits right.

The correction of the exponent of the final sum as a result of
the option of normalization takes place as follows: ,

The output of LOD #1, 2, 3 being enabled by LOD #5 is placed
into bit positions 10 to 15 of the B register in case of 64-bit mode or
32-bit mode Inner word or into bit position 2 to 7 of B register in case of

32-bit mode Outer word.

Bit No: 0 2 3 4 5 6 7 910 11 121314 15 ¢ 63
a) |0 01 1111100000000]
Bit No: 0 2 3 4 5 6 7 9 10 11 12 13 14 15 ;,€& 63
0111111000000 T1O0 }

Figure 32. Exponent Part of B Register in 64-Bit Mode
for Exponent Correction

The mechanization of Exponent Correction, as indicated in
Figure 32 (a) and (b), takes place as follows:
’ A fixed input of 0 01 1 1 11 1 is placed in bit positions
0 through 7 of the B register. The LOD #5 generates bits 8, 9 as zeros
in case of overflow (OV1) or the Leading ONE is at bit position 16 and as
ONE's in any other case. The LOD #5 also enables LOD #1, 2, 3 to generate
‘the amount by which the exponent'is to be reduced by placing it at bit

positions 10 through 15 of the B register as follows:

-116-

00 00 O00O if leading ONE is at bit position 16
00 00 01 if overflow (OV1) has occurred.

The output of B register is brought into CPA which receives, at the
same time, the exponent from A register and adds the two quantities to form
the final exponent.

The main criterion for selecting the output of B register to be
enabled into CPA is the state of bits 8 and 9 (as a result of an overflow
or when bit 16 contains a ONE). If these bits are zero then the complement
of bits 1 to 7 of B register is brought into the CPA which means that the

output of B register is:

01000000 00000000 if the leading ONE is at bit 16
01000000 00000001 if overflow (OV1) has occurred.

If bits 8 and 9 are ONE's, overflow has not occurred (OV1) and
the leading ONE is not at bit 16. Therefore, the mantissa has to be shifted
to the left a certain number of places, which implies that a number must be
subtracted from the exponent of the final sum. The correction bits from the
LOD #1, 2, 3 are placed in bit positions 10 through 15 of B register, but
the TRUE output of B register is brought into the CPA. Bit 1 is then a
ZERO which means that this exponent is negative. For a better understanding
of the exponent manipulation see the discussion on page 19 concerned with
the exponent.

In 32-bit mode the mechanization of exponent correction, as

indicated in Figure 32 (a) and (b), takes place as follows:

0 1 2 3 4 5 67 8 910111213 141516 _ _ _ _ _ _ 63
' — ;
11,00 4 0 00
/1,00 0 0 0 1
[i e o - -
‘0;1‘2>3 4 5 6 7 8 91011 1213141516 _ _ _ _ _ 63
'1,0 00 0 0 0 .
0
110 0°% o0 0 1
{1 e e — —

Figure 33. Exponent Part of B Register in 32-Bit Mode for Exponent Correction

-117-

LOD #5 generates bit 9 as a ONE in 32-bit mode for the Inner
word if OV1 or bit 16 is a ONE and LOD #1, 2, 3 are not enabled. Bits
10-15 of the B register will contain all zeros or zeros and a low order

one as follows:

00 00 00 if the leading ONE is at bit position 16
00 00 01 if overflow (OV1) has occurred.

In this case the TRUE output of B register is brought into the
CPA since the correction bits comprise a positive exponent.

If bit 1 is ONE, the TRUE output of B register is ehabled into
CPA; if bit 1 is a zero the TRUE output of B register indicates a negative
exponent as explained in the description of the 32-bit mode for Inner word.
From the discussion so far it is evident that, for normalization and
exponent correction, the shift counter (LOD #4) does not participate at all
but instead 1LOD #1, 2, 3 and 5 control the shifting operation.

7 At this point a very interesting question arises. What happens
if the program calls for normalization and the mantissa of the result is
ZERO? It is apparent that in this case the LOD #1, 2, 3 will not detect any
leading ONE and therefore the Barrel Switch will not perform any shifting of
the mantissa. Also, the correction bits in B register will be all zeros
which implies that the exponent should not be expected to be affected at all.
Therefore, exponent Underflow_will not occur if the above method was used
when attempting to normélize a ZERO mantissa.

As discussed previously, when representing a ZERO number in float-
ing point arithmetic the mantissa must be ZERO and the exponent must have the
least value that the machine can hold. To accomplish this, when a mantissa
is ZERO there is a signal called ZERO MANTISSA LEVEL which becomes true when
this condition is detected and inhibits the load clocks to the exponent
field of the A register, while at the same time the clear clocks are enabled
into the exponent field of A register, thus forcing the exponent field to
be filled with ZEROS (see the description of LOD #5).

Since the exponent is represented in ekcess code, ZEROS in the

exponent field means that the number has the smallest possible exponent,

-118-

which combined with the ZERO mantissa represents a ZERO result. In this
~way it is assured that the ZERO number is represented by '"Clean Zeros'.

Table 33 indicates the amount of shifting of the mantissa to
the left required to bring the leading ONE to bit 16 for 64-bit mode or
32-bit mode for the Inner word or to bit 40 for the 32-bit mode Outer word.
It also indicates the amount the exponent of the final sum has to be
reduced when the option of normalization is used.

In the discussion of Alignment and Normalization it was said
that in case of an overflow or underflow the sum is properly adjusted in
order to'represent a correct number. Before proceeding into the rounding
procedure, a few explanatofy remarks about overflow (OV) and underflow may
help the reader not only to understand the mechanization of the entire
procedure, but also to appreciate the importance of the logic involved for

such an operation.

4. Overflow. If two numbers of the same sign are added, the magnitude
of the result might be greater than what the register that is to contain the
_ result can hold. This condition is called overflow.

In floating point arithmetic the difference between mantissa

overflow and exponent overflow must be distinguished.

a) Mantissa Overflow can occur -

1) when the mantissas are added and the signs of
addend and augend are the same. The overflow
is indicated by a carry out of the most

significant bit of the sum.

2) when rounding and the signs of addend and augend
are equal, the most significant shifted off bit

is added to the least significant bit of the sum.

If while adding this shifted off bit, the sum contains
all ONES and this bit is a ONE, the result is mantissa

overflow.

~119-

~0C1~

Table 33.

Shifting in Normalization and Exponent Adjustment

Bit Positionk BARREL SWITCH LEVELS EXPONENT ADJUSTMENT

of Leading FIRST LEVEL

One 64-Bit Mode| 32-Bit Mode| SECOND| THIRD|FOURTH | 64~-BIT MODE 32-B1IT MODE

32 Inner Quter LEVEL! LEVEL| LEVEL

ovl 0 - 0 0 1 0100000000000001j01000001
16 0 - 0 -0 0 0100000000000000}j01000000
17 0 - 48 12 3 0011111111111111{00111111
18 0 - 48 12 2 00111il111111110400111110
19 0 - 48 12 1 0011111111111101100111101
20 0 - 48 12 0 001111111*111100j00111100
21 0 - 48 8 3 0011111111111011{00111011
22 0 - 48 8 2 0011111111111010100111010
23 0 - 48 8 1 0011111111111001j00111001
24 0 - 48 8 0 00t1111111111000j00111000
25 0 - 48 4 3 go1i1111111110111f{00110111
26 0 - 48 4 2 0011111111110110(00110110
27 0 - 48 4 1 0011111111110101}j00110101
28 0 - 48 4 0 0011111111110100{00110100
29 0 - 48 0 3 0011111111110011j00110011
30 0 - 48 0 2 0011111111110010j00110010
31 0 - 48 0 1 0011111111110001{00110001
32 0 - 48 0 0 0011111111110000{00110000
33 0 - 32 12 3: 0011111111101111{00101%11
34 0 - 32 12 2 0011111111101110j00101110
35 0] - 32 12 1 0011111111101101]00101101
36 0 - 32 12 0 0011111111101100,00101100
37 0 - 32 8 3 0011111111101011]00101011
38 0 - 32 8 2 0011111111101010]00101010
39 0 - 32 »8 1 0011111111101001j00101001

-1 1=

Table 33.

(Continued) Shifting in Normalization and Exponent Adjustment

Bit Position

BARREL SWITCH LEVELS

EXPONENT ADJUSTMENT

of Leading FIRST LEVEL
One 4-Bit Mode|32-Bit Mode} SECOND| THIRD|FOURTH 64-BIT MODE 32-BIT MODE
32 Inner Outer LEVEL| LEVEL{ LEVEL
ov2 - -0 0 "0 ;R 01000001
40 0 24 Right| 32 8 | 0 |[0011111111101000(01000000
41 0 24 32 4 3 00111111111001111(00111111
42 0 24 32 4 2 00111111111001101{00111110
43 -0 24 32 4 1 0011111111100101 (00111101
44 0 24 32 4 0 00111111111001001{00111100
45 0 24 32 0 3 00111111111000111(00111011
46 0 24 32 0 2 0011111111100010 (00111010
47 0 24 32 0 1 00111111111000011{00111001
48 0 24 32 0 0 0011111111100000{00111000
49 0 24 - 16 12 3 0011111111011111(00110111
50 0 24 16 12 2 00111111110111101{00110110
51 0 24 16 12 1 0011111111011101 (00110101
52 0 24 16 12 0 00111111110111001(00110100
53 0 24 16 8 3 0011111111011011 00110011
54 0 24 16 8 2 0011111111011010 (00110010
55 0 24 16 8 1 0011111111011001100110001
56 0 24 16 8 0 0011111111011000100110000
57 0 24 16 4 3 0011111111000111 (00101111
58 0 24 16 4 2 0011111111000110 /00101110
59 0 24 16 4 1 0011111111000101 (00101101
60 0 24 16 4 0 0011111111000100 (00101100
61 0 24 16 0 3 0011111111000011 (00101011
62 0 24 16 0 2 00111111110000101{00101010
63 0 24 v 16 0 1 0011111111000001100101001

In the first case the overflow is cleared and loaded;

in the second case the latch is simply loaded.

b) Exponent Overflow can oceur -

1) when adding exponents in multiplication or sub-

tracting exponents in division.

2) when mantissa overflow in floating point occurs

and the exponent happens to contain all ONES.

5. Exponent Underflow. If the value of the exponent is reduced

beyond the minimum value that the proper register can hold, it is said
that an "underflow" has occurred. 1In Addition exponent underflow will
occur only when normalization is performed. 1In this case, the number
equal to the amount of places the mantissa is shifted to the left until
the leading ONE is at bit position 16 for 64- or 32-bit mode for Inner
word or bit 40 for 32-bit mode for the Outer word is effectively subtracted
from the exponent.

There are two cases in which a fault may occur, in which,
therefore, the F, Fl bits of mode register are set because of exponent
underflow. |

In one case the following conditions would exist:

a) The operand or result is any number other than zero.
b) Normalization takes place.
c) Exponent underflow occurs.

d) Set F bit in case of exponent underflow.
In the other case the following conditions would exist:

a) Exponent arithmetic only (operations involving the
exponents only).
b) Exponent underflow occurs.

c) Set F bit in case of exponent underflow.
In both cases the resulting word is zero.

-122~

6. Rounding:. 1In the description of the word formats in the 64-bit
mode (subsection III B b) of Section A, a number in floating point arithmetic

is described by

Xb T 48 -i
X = (-1) 2°[= 2 Xi 1.
i=1

In operation of addition there are two operands involved and

they may be described by

v X0 s 48 -3
X=(1) " 2> [z 2%, 1]

. 1

i=1

(64-bit mode)
YO ¢ 48 .

Y=(1) °28 [z 2 JYj]

j=1

where X = Augend

Y = Addend
Xo = Sign of mantissa of Augend
Yo = Sign of mantissa of Addend
25 = Exponent value of Augend
ot = Exponent value of Addend
48 _i o
z 2 Xi = Mantissa part of Augend
i=1
48 .
L2 JYJ = Mantissa part of Addend
j=1

Because the mantissa part of the word in ILLIAC IV occupies bit
positions 16 to 63 the above notations would be absolutely consistent with
the word formats only if the subscripts i and j were considered as varying
from 16 to 63 instead of 1 to 48. But since in this section the changes -

that the mantissas undergo when the option of rounding is used are being

-123-

discussed, and because the mantissa field has 48 bits, the above notation
setting the limits of the mantissa field between 1 and 48 is felt to be
acceptable if only because of its convenience.

Rounding is an option that may be selected by the programmer.
If the exponents of the two operands differ, the mantissa of the operand
with the smaller exponent is shifted off the number of places indicated by
the amount of the exponent difference. If the exponents are equal there is
no need to shift any of the mantissas.

There are many factors that affect rounding operations; some of

these factors are:
a) The value (1 or 0) of the saved bit.

b) Whether the arithmetic operation that requires rounding

involves addition or subtraction.
¢) If addition, whether or not there is overflow.

d) If subtraction, which operand is larger and which

operand the saved bit came from.

e) If subtraction, whether or not the mantissa

difference is zero.

Since the exponent difference constitutes the starting point of the

rounding process, the following cases are examined.

a) s>t and X°.= Y

o

b) s>t and X0 # Y0
c) s <t and X =Y
. o o

d) s<t . and X.0 # Yo

-124-

i. Case where s > t and Xo = Yo:

The number with the smaller exponent is the Y operand and must be

shifted right s-t places. It must have as exponent the exponent of X.

Therefore,
Yo s 48 s
Y shifted = (-1) ° 2° [1 2y, o
j=(s-t)+1 I78
48+(s-t) -3
+ z 27y,]
=49 j=(s-t))
The mantissas of the two operands are then added as follows:
X0 s 48 -i 48 .,
X + Y shifted = (-1) © 2° [27%x, + & Iy,
: j=1 1 j=(s-t)
j=(s-t)+1
48+(s-t) -
+ I 2 7Y, 2
j=49 J—(S-t)] ()
In reality since the adder is not extended to take care of the
shifted off bits given by
48+(s-t) -3
X 2 °Y,
j=49 j=(s-t)
the most significant shifted off bit is added to the least significant
bit of the adder and therefore
: X0 s 48 -1 48 -
X+ ¥ Shlfted)rounded =D 2 [§=12 Xi +or2 Yj-(S-t)
j=(s-t)+1
=48
+ 2 _Y49—(s-t)] : | (3)

-125-

Tf the programmer wishes to truncate instead of rounding, then

the result will be

X . 48
= (-1) %2° [¢ 27'x,
. 1

i=1

X+Y shlfted)truncated

48 .
+ 3 27y

ety (50] (4)

The procedure, therefore, for rounding in case #1 is as follows:
a. Determine which operand has the smaller exponent.

b. Determine the difference of the exponents of the two operands

to be added.

c. Shift off the mantissa of the operand with the smaller exponent

as many places as the difference of the two exponents (1).
d. Perform the summation of the mantissas of the two operands (2).

e. Check for overflowf

If there is no overflow, then add the most significant shifted off bit

to the least significant bit of the sum (4).

NOTE: 1In order to add the 2—49 bit all zeros are forced into B register

(Y operand).

ii. Case where s > t and X0 # Yo:

The operands are represented as in case #1. Because X is the largest

operand, Y must be shifted s-t places end off. Therefore

-126-

Y0 s 48 -j
Y shifted = (-1) %2° [273y

j=(s-t)+1 j-(s-t)

48+(s-0) _,
PR OO ?

Since the signs are different the addend (Ysh) is 1's complemented

B A : 48 iy
Y shifted = (-1) °2° { 1- [z 27y,
{: j=(s-t)+1 I7(s70)
48+(s-t)_j
+ 3 2 6
I : } ©

but only the most significant bit shifted off is saved to be subtracted

from the sum later. The addend then becomes

Y shifted = (-1) 2 1-[= 27y,
j=(i-ty+1 37(s-0)
' -48 ’
* 2 Y49—(s—t)] } 7

Addition of the mantissas of X and Ysh (complement) gives

_ X 48 . 48 .
(X + Y shifted) = (-1) %2%{ 1 277x_ + 1-1 27y,

i=1 j=(s-t)+1 J-(S-F)

-49 ‘
2 Yhg-(s-t) + 2748 } ®

-127-

The term 2"48 is the end around carry which exists only when the
augend (X) is greater than the addend (Y) and then the sign of the sum
is the sign of the augend.

The procedure for rounding in case #2 is as follows:

a. Determine which operand has the smaller exponent.

b. Determine the difference of the exponents of the two operands.

c. Save only the most significant shifted off bit.

d. Shift off the mantissa of the operand with the smaller

exponent as many places as the difference of the exponents (5).
e. Take the 1's complement of the addend.
f. Perform the addition of the two mantissas as follows:
1. Since s > t, the augend is greater than the addend and
a carry (for normalized operands only) is to be expected.

2. The sum is not complemented and it has the sign of

augend.

3. The most significant shifted off bit is subtracted
from the least significant bit of the sum by adding

all 1's to the sum--see equation (8).

Example
X _ 0 3
Given: X =(-1) x2 x1110 (Augend)
1 1.
Y=(1)"x2x1110 (Addend)

Show the mechanization of rounding procedure (case #2).

Solution

a. The addend has the smaller exponent.

b. The difference of the exponents is two (s-t = 3-1 = 2).

-128-

The addend after it has been shifted two places end off
to the right looks like
, 1 3 &—— end of register
Y=(1)"x2 x0011 I 10
KR most significant
shifted off bit

Take the 1's complement of the mantissa of Y

10
K_____ remains unchanged

y=(¢nDtx22x1100

The most significant shifted bit which is ONE is saved in

the latch.

The two operands are added as follows:

X = (-1)0 X 23 x 1110
v=(¢ntx22x 1100
sm=1%x23 (1010
N

1011

1111 «<—Add all ONES in order to
———— subtract the most significant

1011 shifted off bit from the sum

1 «—This ONE is ignored (Carry)

The resulting carry that is produced when adding all ONES to

the sum is ignored and therefore the final rounded sum is:

stm=-1D%x22%x 1010

-129-

NOTE: In order to subtract the 2.49 bit, all 1's are forced into
the mantissa part of B input of the CPA (Y operand) and the
contents of the A register are added to it. If there is any
carry it is ignored.

To check the results:

The X mantissa = 1410

The Y shifted mantissa = -3.5lO

Then 14 + (-3.5) = 10.510

After rounding, and therefore subtracting .5 from the sum we get 1010 =
(101 0)2 which is the same as the rounded mantissa part of the final

sum above.

iii. Case where s < t and X, = Y

The X operand has the smaller exponent and must be shifted end off
t-s places to the right. This gives the X operand the same exponent as

the Y operand.

X 48 .
X shifted = (-1) °2% [z 271x,
i=(t-g)+1 1 (t78)
-49 |
+ 2 X49-(t-5)] (9)
49

The term 2 x 2~ X49-(t-g) 1S the most significant bit shifted off

and is saved to be added into the least significant bit of the sum. The

mantissas of the two operands are then added.

-130-

Y 48

(X shifted + V) = (-1) %2 [z 27K, (teg)
. i=(t-s)+1 +
48
=j -48
+ ¢ 279y, 1+ 27%% (10)
3=1 j 49-(t-s)
If the most significant bit | 2—49X49—(t—s)] shifted off and which

has been saved for rounding is Zero, the sum is:

Y 48

(X shifted + Y) = (-1) °2° [z 2—1xi—(t—s)
i=(t-s)+1
48
+ @ 279] - (11)
=1 |

iv. Case where s < t and XO # Yo (see Figure 30)

Since the addend'(Y) is the largest operand for normalized operands:

a. There is no overflow because the signs are different.
b. There is an end around carry.

~¢. The sum must be complemented.

d. The sign of the sum is the sign of Y.

e. The sum has as exponent the exponent of Y.

The mantissa of X must be shifted by t-s places to the right end off.

. ‘ Xo t 48 i
X shifted = (<1) 2" [= 27X
i=(t-s)+1 i-(t-s)
48
+ £ 27'%x, _
tag 1(E9) : (2

-131-

A RsGISTER (AUGTYD X) B REGISTER (ADDEND Y)

X SHIFTED 7
CP A
s%r
A REGISTER
1
SUH FORCE ONES FROM
¥ Y B REGISTER
CP A
SUM ROUNDED
A REGISTER
FIGURE 34. DIAGRAM"ATIC REPRISENTATION OF

ROUNDING PROCEDURE (CASE # I)

-132-

Because the signs are different the 1's complement of the
Addend (Y) is needed:

_ Yo, 48
Y = (-1) %2 ni-x 273y g (13)
=t

Addition of the two operands gives

B Y 48 1
(X shifted + Y) = (-1) %2% [z 27X,
i=(t-g)+1 17(t=s)
48
+ (- 279y,] (14)
‘j=1 j

where the term

48+(t-s) _;
z 2 Xy (t-g)
i=49 *

is ignored except that, for rounding only, the most significant shifted off
bit is saved to be subtracted from the least significant bit of the sum.
-49

This bit is represented by 2 x 2 Y49—(t-s)'

The sum is now complemented and the most significant shifted off bit

is subtracted from the least significant bit of the sum.

B Y 48]
(X shifted + Y) = (-1) °2 {1— [% 2%, eoey
i=(t-s)+1 i-it=s
48
I
NS U Y49-<t—s):} (15

-133-

Example

Suppose the two operands to be added are

X

Y

-%x2tx1110

3

(—1)1 x2 x1111

Show the rounding procedure.

Solution

The augend has the smaller exponent.
The difference of the exponents is TWO (t-s = 3-1 = 2).

The augend is shifted end off to the right by TWO.

X shifted = (-1)%°x 22 x 0011 10
[N Most significant
! shifted off bit

A End of register

. The martissa of the addend is 1's complemented because the

signs are different.

Y (comp.) = (-1)1 X 23 x0000

Form the sum

Sum = X + Y comp. =’(—1)1 X 23 x0011
Complement the sum

Sum (comp;) = (--1)l X 23 x1100

Insert all ONES to subtract the most significant shifted off

bit from thé mantissa part of the Sum (comp.).

i
Pamn
1
=
~
[
»
n
w
e
-
=
O
o

Sum (comp-)

Final rounded sum = (1)1 x 23 x 1011

This ONE is ignored
(carry)

=134~

7. Summary of the Procedure for Addition of Two Operands in

Floating Point Arithmetic.

~a) Find the magnitude of the difference of the two exponents.

b) Shift the mantissa of the operand with the smaller expon-
ent to the right end off as many places as the exponent

difference (alignment).

c) Save the most significant shifted off bit of the operand

with the smaller eiponent (if rounding is used).

d) The exponent of the operand with the larger exponent
becomes common for both operands and therefore remains the
same for the final sum unless normalization takes place

later.

e) Add the mantissas of both operands.

1) Mantissa of augend is added to the mantissa of
addend (both in true form) if the signs of the

two operands are the same.

2) True form of mantissa of augend is added to the
complement of the mantissa of the addend, if the

signs are different.

f) The resultant sum is taken in true form if the signs of the
two operands are different and there is a carry out of the
most significant bit as a result of the addition of the
mantissas of the two operands. The sum is taken in complement
form if the signs are different but there is no carry out of

the most significant bit.
h) The resultant sum has as sign:

1) The sign which is the same for both operands or

-135-

i)

2) The sign of the augend if there is a carry out of
the most significant bit position (augend > addend)

‘and the signs disagree or

3) The sign of the addend if there is no carry out of
the most significant bit position (addend > augend)

and the signs disagree.

Add the most significant shift off bit to the resultant sum

as follows:

1) 1If the signs are the same, add most significant shifted
off bit to the least significant bit of the un-

normalized sum.

2) 1If the signs are different and Aexp > Bexp and the
magnitude of mantissa of A > magnitude of mantissa of
B after the alignment takes place or if the signs are
different and Bexp > Aexp and the magnitude of mantissa
of B > magnitude of mantissa of A after the alignment
takes place, subtract the most significant shifted off
bit from the least significant bit of the mantissa of

the unnormalized sum.

3) If the signs are different and Aexp > Bexp and the
magnitude of mantissa of B > magnitude of A after the
alignment takes place or if the signs are different and
Bexp > Aexp and the magnitude of mantissa of A > magni-
tude of the mantissa of B after the alignment takes
place, add the most significant shifted off bit to the
least significant bit of the mantissa of the unnormalized
‘sum. In the special case where lAl = IBI after align-

ment (no rounding) the result is 0 0 0 ... O.

-136-

3

k)

Detect the position of the leading ONE in the mantissa

of the sum, shift to left the mantissa until a ONE is at
bit position 16 in 64-bit mode and 32-bit mode for the
Inner word or bit position 40 in 32-bit mode for the Outer
word or shift to the right by one if mantissa overflow
has occurred. (If the option of normalization is used).

Mantissa overflow is corrected for even if not normalizing.
Adjust the exponent of the sum as follows:

1) Add one to the exponent of the final sum if overflow

has occurred.

2) Subtract from the exponent of the final sum the
number of bit positions thé leading ONE was shifted
to be placed at bit 16 for 64-bit mode or 32-bit
mode for the Inner word or at bit position 40 in 32-

bit mode for the Outer word.

3) If the mantissa is all zeros, the result (if
normalizing) is zero for the whole word (sign,

exponent and mantissa).

-137-

ADDITION IN 64-BIT MODE

CLOCK TIME Tl1--Figure 35 (This clock time is skipped if fixed point
arithmetic is used.)

Exponent Difference (Bexp—Aexp) Bexp+Aexp » SCR and LOD #6

1. Enable true fofm of exponent of B (bits 1 through 15) out of B.
2. Enable complement form of exponent of A (bits 1 through 15) out of A.
3. Enable complement of expoment of A into CPA (bits 1 thfough 15).
4. FEnable true form of exponent of B into CPA (bits 1 thrdugh 15).

5. Enable the sign of B mantissa into CPA (actually zero, since B

sign is not gated out of B register; bit 0).

6. Enable the bit carries because of the addition of exponents of

B and A into CPA.

7. TForce zeros into the mantissa part of CPA (this transmits end

around carry into exponent field).
8. Clear and load clocks into SCR.
*
9. Put exponent part of CPA into SCR (8-15) (CPA bits 74 through 79).

10. Clear and load clocks into LOD (CPA bits 64 through 73 and store

carry-out).

11. Clear and load the latch for OSEQ (stores operation, add or

subtract).

*In reality bits 10-15 are put into SCR because only
6 bits are needed for a count number 0 - 63.

-138-

VA S e v A R q
R G A o —— 15'7% ‘€§
e s L LL L o 2L 2L 2]

16////// s 7/ //6/
r 7 Z L s s L 2 Ll /3

R GB o ——15

L OD LOD # § LOD # 1 LOD # 2 LOD #
O,}-l-’8312 0’16,32’1«!-8 0,1,2,

~—IJ.1‘J§I

{ | Y
_— 77777 7 7777 7 77 /36 4
/'////////1////9'1"5 79
ﬂ *
SCR SCR
SHIFT COUNT REGISTER (LOD # L) 10 15
CARRY = 0 CARRY OUT
CARRY =1
| ¢
LODG#6 0 617 15
y
T0 LOD # 15

FIGURE 35, FLOW CHART OF ACTIONS
AT TIME T 1

-139-

CLOCK TIME T2——Figufe 36 (This clock time is skipped if rounding is

not used or if fixed point arithmetic is used.

Rounding (Optional)

Enable true output sign and mantissa of A These enables are
necessary in this
Enable true output sign and mantissa of B clock time,

a. Enable A into LOG if there is (from exp. difference) a

carry (exponent of B > exponent of A).

b. Enable B into LOG if there is mno carry

(exponent A > exponent of B).
Transfer LOG into BSW (bits 16-63).

Enable the 64-bit shift counter from SCR (true value if carry;

complement if no carry).

Enable "force" shift left (control for end off; allows data in

bit zero position).

Load‘most significant shifted off bit (appeafs in BSW bit zero

position) into IMSB latch if exponent difference is less than 64.

-140-

)

KG A o === =15 he 63
. 7z 2 7z

__} 4 T—CARRY#1

e
AL W o3

=
G2
o
o
-

CARRY=0

G

LOG Op———15]16 63

B, 5. W. M16 63

LoD | s U Ul P N R 1 o Ere
— L2) ‘)
_____ — — } —
—
S C.R. 121{ - SCR 5 LoD # 15> EXP DIFF & 6l
(LOD # L) t INFORMATION BHL OW
FROM C.P. A. DASH™D LINE WAS

GIVEN AT TIME T 1

FIGURE 3¢. ®LOW CHART OF ACTIONS
AT TIMET 2

-141-

CLOCK TIME T3--Figure 37

Align Mantissa with Smaller Exponent

1. Enable (select) complement of signs of A and B if unsigned and fixed

point (when used with 2, forces signs to be equal--both ones),
2. Enable (select) true form of signs of A and B,
3. (Clear and load the batch for_OSEQ is signed or fixed point,
4. Enable (select) true form of mantissas of A and B,
5. Enable sign and mantissa of A into LOG if there was a carry,
6. Enable sign and mantissa of B into LOG if there was no carry.
7. Enable 64 shift counter from SCR
a. True out pf SCR if there was a carry
b. Complement of SCR if there was no carry.
8. Transfer LOG into BSW (16-63 bits),
9. a. Transfer the BSW into A (16-64 bits) if there was a carry
b. Transfer the BSW into B (0-15, 16-63 bits) if there was no carry

#10. a. Load A mantissa if there is a carry and exponent difference

is less than 48

b. Load B mantissa if there is no carry and exponent difference

is less than 48.
.11. Enable exponent of B (1-15 bits) out of B.
12. Enable original sign of A (0 bit) into sign bit position of A.
13. Enable B exponént into the exponent part of A.

14. Clear and load the sign and exponent part of A if there was a

carry (Bexp > Aexp).

* Floating point only

-142-

CARRY = 1 { cjamu.-.1
| 777) CLEAR
RGA Opr1>——>— 15116 63 I‘T’xmn

CARRY =
[GIEAR
RG B oA L2 15116 63 '
yaya P LOAD
—- - |
| ' %
77 7] a
LOG 01— 157 16 63
, 22 2
B.S.W. 0|1l—— 15|16 63
0,4,8,12 0,16,32,48 0,1,2,3
LOD LOD # 5 :
LoD # 1 LOD # 2 ’ LoD # 3

——— el B e P s | cov—— — —— — ———— — — L o —— el — —l —

SCR SCR | EXP DIFF 48
S.C.R. LoD # 15
10— 15
10D # 4
CARRY = 0 * FROM C.P-A . | CARRY = 1
INFORMATION BELOW DASHED LINE —___
GIVEN AT T 1

FIGURE 37. FLOW CHART OF ACTIUNS AT TIMB T 3

-143-

CLOCK TIME T4--Figure 38

Addition of Mantissa

1.

10.
11.

12.

13.

14,

15.

Enable true form of mantissa out of B if mantissa signs are equal

(OSEQ true) .

Enable complement of mantissa out of B if mantissa signs are unequal

(OSEQ false).

Enable true form of sign and mantissa out of A.
Transfer mantissa of A into CPA.

Transfer mantissa of B into CPA.

Inhibit EAC from exponent if signs are equal.

Enable bit carries into CPA (resulting from the addition of the

mantissas) .

transmits in
bits O through
15 of CPA.

Transfer sign of mantissa of B into CPA (actually zero) This puts
Transfer the exponent of A into CPA (actually zero)j}

Transfer the mantissa of CPA into A

Set WCMP latch if there is no carry and signs are unequal.

Set overflow if the signs are equal and there is a carry (most

significant bit of mantissa of CPA).
Clear and load clocks into OV1.

Transfer CPA equal signal (all transmits) to RGC (can only occur if

signs are unequal) used for rounding.

Clear and load RGC.

-1l44-

R G

A 01— 15|16 63
A
B 0 i5]16 63
B B
? MANTISSA SIGNS
EQUAL
. MANTIS3A SIGNS
BAC I NOT EQUAL
l 4 L 4
A 16 63|6L|65
Mg;gégbA.> CARRY OUT TRANSHIITS)
EQUAL VI
LATCH
"IGURE 38. ¥LOW CHART OF ACPIONS

AT TIME T L

-145-

CLOCK TIME T5--Figure 39 (This clock time is skipped when not rounding

or in fixed point.)

Complement, Round, Store Overflow

10.

11.

Enable the true form of mantissa out of A if WCMP latch is false,
Enable the complement of mantissa out of A if WCMP latch is true,
Transfer mantissa of A (1 or 2 above) into CPA,

Enable bit carries into CPA (0 - 15) and CPA (16 - 63),

Enable the exponent of A into CPA (65-79) (actually all zeros),
Clear and then load clocks into mantissa of A,

Force zeros into the mantissa part of CPA (from B).

a. Force SGE = 1 TIf ROUNDING and ADD 1 to MSB of mantissa and
if WCMP latch is low

b. TForce SGE = 0 and STE = 0 1If ROUNDING and subtract 1 from
the MSB of mantissa if WCMP latch is low.

Set overflow OV1 using load clock only and if OSEQ is true,
Enable the mantissa sign of B into CPA,

Enable the mantissa part of CPA into A,

-146_

RGA

o« G B

C. b A,

WCMP LATCH=0

- WCMP LATCH=1

e 15 |16 63
K
A
—e 15| 16 63
16 63 64 65 e 79

FIGURE 39-

FLOW CHART OF ACTIONS
AT TIME T 5

-147-

CLOCK TIME T6--Figures 40 and 41

(PART A) Complement, Normalize, Adjust Exponent, Determine Sign

1. Enable RGA (16-63) if WCMP latch = 0 or round variant is used.

2. Enable complementkof RGA (16-63) if WCMP latch = 1 and rounding is not used.
3. Enable RGA (16-63) into LOD when normalizing.

4. Enable RGA (16-63) into LOG.

5. Enable LOG (16-63) into BSW.

6. Enable exponent correction bits into RGB (8-15) when normalizing.

7. Enable clear and load clocks into RGB (0-7).

8. Enable 00 111 111 into RGB (0-7) for exponent correction.

9. Enable clear clock for OV1.

(PART B) If Not Normalizing

1. Enable clear and load clocks for RGA (16-63)-.

2. Enable RGA (0—15)-

3. Enable RGA (1-63) into CPA (65-79, 16-63).

4. Enable RGB (16-63) into CPA (16-63).

5. Enable bit carries into CPA (16-63) but disable CPA (65-79).
6. Compute correct sign of RGA.

7. Restore sign of RGA.

8. Enable CPA (1-15) into RGA (1-15).

9. Enable clear clock for OV1.

-148-

A —WCMP LATCH
' (~ WCMP LATCH

>

R&B 0lM—718—15|16
0111111 3 f

63

15116 63

1411

B.3S. W. 1

v

17
LoD LOD # 5 | LoD #

F
T

-)
233 — 48{L9 63
LOD # 2] LOD # 3

=\

FIGURE40. FLOW CHART OF ACTIONS

AT TIME T 6 (PART A)

~149-

nu

RG B

63.

O —— 1516
a'ds
s 50 63
16 63]6L |65 —79

SIGN COMPUTATION

FIGURE 41, »LOW CHART OF ACTIONS
AT TIME T 6 (PART B)

-150-

CLOCK TIME T7--Figure 42 (This clock time is skipped if in fixed point.)

Correct Resultant Exponent

10.

11.
12.
13.
14.
15.

16.

Enable true’out of RGA (1-15).

Enable true out of RGB (8-15).

Enable true out of RGB (1-7) if normalize and there is:
a. No overflow or

b. Bit 16 of RGA was not a ONE prior to normalizationm.
Enable complement ouf of RGB (1-7) if there is:

a. Overflow or

b. Bit 16 was a ONE prior to normalization.

Enable RGA (1-63) into CPA (65-79, 16-63) (mantissa part is all zeros) .
Enable RGB (1-63) into CPA (65-79, 16-63) (mantissa part is all zeros) .
Enable bit carries into CPA (16-63, 65-79).

Clear mantissa of RGA if there is exponent underflow (conditionally) .

Load clocks to RGA (0-15) or FYEASNOW-T and P-EX-UF--L and P-ZML--H-L.

Enable exponent overflow to mode REGISTER on FYEEXOFM-T and
P-==-E-—--1,

Enable exponent underflow on FYENUF-M-T and P-ZML--H-L.
Clear and load clocks to F.

Set F on underfiow or NO zero mantissa.

Clear clocks ﬁo ovl.

Restore the sign of RGA after computation.

Enable CPA (65-79) into RGA (1-15) -

-151-

C: P A.

1 15116 63
| e 7| 8 =——=15]16 63
TRUE ,
COMPLEMENT
v
16 63 |64 |65 e 79
FIGURE -2. FLOW CHART OF ACTIONS

AT TIME T 7

-152-

ADDITION IN 32-BIT MODE

CLOCK TIME Tl--Figure 43

Exponent Difference of Inner Word

1. Enable true out of RGB (9-15).

2. Enable complement out of RGA (9-15).

3. Enable RGA (0,1-7, 9-15) into CPA (64,65-71, 73-79).

4. Enable RGB (8,9-15) into CPA (72,73-79).

5. Enable WD4 inner and outer mantissa into CPA (16-63)*,

6. Enable bit carries into CPA (72,73-79).

7. Enable CPA sum of inner sign and exponent (72,73-79) into the BSW.
8. Enable clear and load clocks into the SCR.

9. Enable clear and load clocks into LOD.

10. Clear and load clocks into ISEQ and $JSEQ iatch.

11. Enable signal to speed up path around the latch of stored carry.

*Since the part of LOG corresponding to the OUTER and INNER
mantissa has not been enabled, the input to the CPA (16-63)
looks like all zeros have been forced into it.

-153-

V1 7 S A TS/ T/ 7
““A{61 Tpe 1516////3,9“'/////6//
E ,7, 77 L7 77 A
. 7 — 6/
RGB gﬂ/iﬁg >l //// @////L/

vy 7/) 7/
u?z’//'/zégléh

] 10—151s ¢ R

LoD 163132 __ 47|48 63

LOD # ©5 LOD #1 |LoD # 2 |LOD # 3 |

INFORMATION BELOW
DASFED LINES JILL
BE GIVEN AT CLOCK
TIME T.

B.S.W

FIGURE 43. FLOW CHART OF ACTIONS

AT TIME T 1

-154-

CLOCK TIME T2--Figures 44 and 45

Save MSB to be Shifted Off for Rounding in Inner Word

1. Enable true out of inner sign and inner mantissa of A (8,16-39).

2. Enable true out of inner sign and inner mantissa of B (8,16-39).

3. Enable RGA into LOG if there is a carry (Aexp < Bexp).

4. Enable RGB into LOG if there is no carry (Aexp > Bexp).

5. Enable LOG (0-39) into BSW (24-63)*,

6. Enable CPA into shift count
a. SCR true out if there is a carry
b. SCR complement out if there is no carry.

7. Enable force shift left#k.

8. Enable clear and load clocks into IMSB latch.

* Because of restrictions arising from signal controls LOG bits (0-39)
are enabled into BSW, but bits (0-39) of LOG are effectively placed in
the BSW (24-63 bits) by simply shifting each byte by 24 places to the
right in order to be able to save the MSB in position 64,

*% This is required in the case where there is no carry to complement the

content of SCR into LOD and for shift to right to have the same result
as left shift.

P o A At 715 et A A T
TSI M . M

SEFTEY 32 L P 1 L7 S IR T Al 7
¥ ’ I |
4

t Serr7 Lok (8,76 39) IMT0 BSw (32 vo-63) .—1

BS.w X 3|22 3] wo y7| 8 relss £ 3!
!0//4‘_, c2 08 S s /s 221 2v Sitz2 Sy
t CONTENIS 0F LOG 1070 BSev -

Figure 44. Diagrammatic Representation of Shifting
"~ Operation at Time T2

-155-

26 A O ——7|8|9 —— 1516 —— 39|40 —— 63

l—‘— CARRY = 1 ~¢—<— CARRY

R GB 01_;—789—e———1516 39 |y0 — 63
- t oy CARRY =
LOG 0f1——1718}9 15 90 — 63
|
' ' SHIFTED BY 24
l PLACES
IMSB
B.S.W. o 15116 |32 39,1;0—-———-— 63 ™ 1rarcm

THE CONTROLS TO BSW COME FROM LOD WHICH RECEIVES THE AMOUNT OF
SHIFTING FROM THE SHIFT COUNT REGISTER AS A RESULT OF THE OUTPUT
OF CPA (SEE FLOW CHART OF TIME T1 -- FIGURE 39)

FIGURE - 45. FLOW CHART OF ACTIONS
AT TIME T 2

-156-

1

CLOCK TIME T3--Figures 46 and 47

(PART A) Difference of Exponents of Outer Word

1.

10.

11.

Enable true out of RGB (1-7).

Enable complement out of RGA (0,1-7).
Enable RGA (1-7) into CPA (65-71).

Enable 01 111 111 into CPA (72-79).

Enable RGA (8-15) into CPA (72-79).

Enable RGB (0,1-7) into CPA (64,65-71).
Enable WD4 inner mantissa into CPA (16-39)%*,
Enable bit carries into CPA (64,65-71),

Enable CPA sum of outer sign and exponent (64,65-71) into
Barrel Switch (through the SCR).

Enable clear and load clocks into SCR,

Enable clear and load clocks into LOD.

(PART B) Align Mantissas of Inner Word with Smaller Exponent

1.

2.

Enable true out of RGA (8, 16-39).
Enable true outvof RGB (8, 16-39).
Enable RGA (8,16-39) into LOG (8,16-39) if there is a carry.

Enable RGB (8,16-39) into LOG (8,16-39) if there is no carry.

The WD4 inner mantissa is brought into CPA (16-39) to insert
zeros to CPA (16-39) because since the part of MSG corresponding
to WD4 has not been enabled, its output looks like a zero.

-15%-

10.

11.

12.

13.

14.

15.

16.

Enable CPA into SC from SCR depending upon the end around

carry. Also enable SC > 48 detection for inner exponent

a. SCR true out if there is a carry

b. SCR complement out if there is no carry.

Enable LOG (16-39) into BSW (16-39).

Enable BSW (16-39) into RGA (16-39).

Enable BSW exponent into RGB exponent.

Enable BSW (16-39) into RGB (16-39).

Enable clear and load clocks into RGA (16-39) if there is a carry.
Enable clear and load clocks into RGB (16-39) if there is no carry.
Clear and load clocks to the ISEQ latch.

Enable true out of RGB (9-15).

Enable RGB exponent into RGA exponent.

Enable clear and load clocks into RGA (8-15) if there is a carry
and E1 = 1.

Restore sign of RGA (8).

-158-

N

RGA ol —— 7807 15T 2L < 39 M0 637
L s 2 YLl A2 2 L
i
7T 7
RGB olh—7 BE’/71'5/16’ 9uo-—63;
- L L £ AL 2 & Moo L2o 0111111
er : Jl
28 \ 4
/' 7 7 7/ 7 4
cPa |16——39[1, 53]6u [65—171 |72 73—179
7 J/ S 7 L ‘
SGR 10—————15
LOD 16— 31|32 47|48 — 63
LoD # 5| LoD # 1 |Lop # 2 |LoD # 3 THR INFORMATION
: BELOW DASHUED LINES
l l l IS GOING TO BE
GIVEN BY A FUTURE
ssw. o 63 CLOCK TIME.
FIGURE 46, FLOW CHART OF ACTIONS

AT TIME T 3 (PART A)

-159-

N7 77 7] / /7 /7 /7 7 /,
RG A OA1 — 718 |9 — 15|16 39&9//13//
ﬁ T CARRY=1
L.' SPECIAL CIRCUIT *
L/ ’/ Vd / /7 /7 /7 7
RGB //0,1/ /7‘8 9—15 16 39’uo///6,3
‘SPEGIAL CIRCUIT CARRY=0
YT 7777777
LOG O/IH789-——1516—I-39 9/,,,633/
B.S.W. ——[0 - 1516 —— 39|40 — 63
C. P. A. 16 — 39{40 — 63]6L 65—71} 2173— 179
i X R R v
LOD 16 ——31| 32— L7/ 18— 63 10 15
LOD # 5 LOD # 1 |LOD # 2| LoD # 3 LOD # I

FIGURE 47.,

FLOW CHART OF ACTIONS
AT TIME T 3 (PART B

-160-

THIS INFORMATION BELOW
DASHED LINES WAS GIVEW
AT PREVIOUS CLOCK TIME,

)

CLOCK TIME T4--Figure 48

Save MSB of Bits to be Shifted Off of Outer Word

1. Enable true out of outer sign and mantissa of A (0,40-63).
2. Enable true out of outer sign and mantissa of B (0,40-63).
3. Enable A into LOG if there is a carry (Aexp < Bexp).
4. Enable B into LOG if there is no carry (Aexp > Bexp).
5. Enable LOG (40-63) into BSW (40-63).
6. Enable CPA out into SC from
a. SCR true out if there is a carry
b. SCR complement out if there is no carry.
7. Enable force shift left.

8. Enable clear and load clocks into OMSR latch.

-161-~

RGA oMM—1718]9 ——15 16 —— 39|40 63

_}“ 41 - CARRY=1

R G B ojM— 7189 — 1516 — 39|40 63

L -_— j—-‘ CARRY=0

CP A

U | v
LOG ol 15 16 : 63
B. S. Wi o1 15116 63

LOD CONTROLS WHICH ARE
THE RESULT OF THE
EXPONENT DIFFKRENCE

- FOUND IN A PREVIOUS
CLOCK TIME

FIGURE 48. FLOW CHART OF ACTIONS
AT TIME T L

-162-

CLOCK TIME T5--Figures 49 and 50

(PART A) Align Mantissas of Outer Word with Smaller Exponent

1. Enable true out of outer sign and mantissa of A (0,40-63).
2. Enable true out of inner sign and mantissa of B (0,40-63).
3. Enable A into LOG (0,40-63) if there is a carry.
4, Enable B into LOG (0-,40-63) if there is no carry.
5. Enable CPA into shift counter and then
a. SCR true out if there is a carry
b. SCR complement if there is no carry.
6. Enable LOG into BSW (40-63).
7. Enable BSW (40-63) into A (40-63).
8. Enable BSW (0-15,40-63) into B (0-15,40-63).

9. Enable load clocks to OUTER mantissa of A if there is . a carry
' and PEXDI-L48H is true.

10. Clear and load clocks to outer mantissa of B if there is no carry.
11. Enable outer exponent of B (1-7).

12. Clear and load clocks into outer sign and exponent of A (0-7).

13. Enable exponent of B into exponent of A (0-15).-

14. Restore outer sign of A (0:1).

(PART B) Add MantiSsas of Inner Word Store Overflow (OV1) (if there is any)

1. Enable clear and load clocks to outer sign and exponent of

RGA if E = 1 and there is a carry.
2. For addition FYE-K----T is 0 from CU.

3. Enable true out of inner mantissa of RGB if P--ISEQ--H.

-1&3 =

10.

11.

12.

13.

14.

15.

16.

17.

Enable complement out of inner méntissa of RGB if P--ISEQ--L.
Clear and load clocks to outer sign equal latch.

Enable true out of inner mantissa of RGA.

Enable the complement out of SCR.

Enable RGA (1-7,9-15,16-39) into CPA.

Enable RGB (8,16-39).

Force zeros into CPA (WD4 outer mantissa to CPA outer mantissa).
Enable the bit carries into CPA.

Inhibit end around carry through exponent if ISEQ high.
Enable CPA (16-39) into RGA (16-39).

Clear and load clocks into inner CMP latch.

Clear and load clocks into inner mantissa of RGA (16-39).
Enable to set OV1 (for inner word).

Enable true output of RGA inner sign.

=164~

R G

p)

R,

FIGURE 45.

FLOW CHART OF ACTIONS
AT TIME T 5 (PART A)

-165-

777 77777
01— 718}9 1;9 /39&0 63
P P
=| — < I CARRY = 1
RESTORE
A VL L
— Q) e : 0 6
011 7 8[; ‘/1‘/’6 — ,/29 I 3
}__. CARRY = O
P77 777 7] *
01— 7|8]9 —— 15 [16 —————39]140 63
Y
0 63
16 — 31132 L7 {u8—— 63
LOD # 5 | LOD # 1~ |LoD # 2 LOD # 3
| S—
T L
16 39 {40 63|6u|65 —71|72 |73 —7¢
CAYE L koarry = o |
SCR SCR
10 15

RGB

C.P. A.

///
1—_7l8lo 1516 39[L ////
- ///
777
1—22T71819 1516 —0_39 b,o ////63
///////
16 3940 6316L|65—T1|72}73—79
FIGURE .0. FLOW CHART OF ACTIONS
AT TIME T5 (PART B)

-166-

CLOCK TIME T6--Figure 51

Complement (if necessary), Round, Store Overflow (if there is any)

of Inner Word

10.

11.

12.

13.

14,

Enable

true out of inner mantissa of RGA (16-39) if inner CMP

latch output is low.

Enable

complement of inner mantissa of RGA (16-39) if inner CMP

latch output is high.

Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable
Enable

Enable

RGA (16-39) into CPA (16-39). -
bit carries into CPA inner sign and exponent (72, 73-79).
bit carries into CPA mantissa.

zeros into CPA (enable RGA (40-63) into CPA (40-63)).

to set OV1 (for inner word).

RGB inner mantissa (16-39) into CPA (16-39).

adder to round properly.

RGB outer sign (0) to CPA outer sign (64).

RGB outer exponent (1-7) to CPA (65-71).

inﬁer sign of RGB into CPA (72).

RGA (9-15) into CPA (73-79).

CPA (16-39) into RGA (16-39).

01——7|8]9—15[16——39L0 63
IF INNER CMP LATCHl A Iy IF INIER CMP LATCH
IS LOW — (16-39)] (16-39) | Is HIGH
ON———78]|9—15[16 — 39|40 63
16‘—-——f9 Lo ~—Z=63] el |65 =71 72 {73—79
3 e L 2L 13 I 7331

FIGURE 51. FLOW CHART OF ACTIONS
AT TIME T 6

-168-

CLOCK TIME T7--Figures 52 and 53

(PART A) Add Mantissas of Quter Word, Store Overflow (if there is any)

1. Enable true out of RGB (40-63) if outer sign equal latch output is
high.

2. Enable complement out of RGB (40-63) if outer sign equal latch output

is low.
3. Enable true out.of RGA (40-63).
4. Enable RGA (0) to CPA (64).
5. Enable RGA (1-7,8) into CPA (65-71, 72).
6. Enable RGB (9-15) into CPA (73-79).
7. Enable RGA (40-63) into CPA (40-63).
8. Enable RGB (40-63) into CPA (40-63).

9. Enable zeros into CPA (16-39) (because the signal calls for WD4 inner

mantissa into CPA inner mantissa).
10." Enable bit carries into CPA.

11. 1Inhibit end around carries through exponent if outer sign equal latch

is high.
12. Enable CPA (40-63) to RGA (40-63).

13. Clear and load clocks to outer CMP latch.

(PART B) Complement (if needed), Normalize, Adjust Exponent of Inner Word

1. Clear and load clocks into RGA (40-63).
2. Enable true out of RGA (16-39) if inner sign equal latch output is low.

3. Enable complement out of RGA (16-39) if inner sign equal latch output
is high.

4. Enable RGA (16-39) into LOG (16-39).

-169-

5. Enable LOG (16-39) into barrel switch (16-39).

6. Enable exponent adjustment into Inner exponent of RGB.

7. Enable clear and load clocks into LOD.

8. Clear 0V2 if no overflow exists.

9. Load OV2 if there is overflow.

10. Clear and load RGA (16-39) and RGB (8-15).
11. Enable LOD (8,9-15) to RGB (8,9-15).
12. sShift right by ONE if overflow exists.

13. Enable (conditionally) to set F bit if F bit has been set and
there is OV1.

14. Inhibit the clear clocks to RGD.
15. Enable barrel switch (16-39) into RGA (16-39).

16. Clear overflow (OV1).

-170-

RGaA

RGB

C.P.A.

IF OSE \ LATCH HIGH

1 718 19 ——=15 16 ——=39 |40 —— 63
71819 —15 6 —=39 |40 63

B

IF OSE \LATCH LOow

16239440 —_ 63 J6l f6571 [72]73 79
Z
Y

PIGURE 52.

-171-

FLOW CHART OF ACTIONS
AT TIME T 7 (PART A)

v

RGA o 71819 —15}16 39 |40 ———563
A
L1p 1sma=0 IF 133Q LATCH=1

7] 7 7/ A7/ 7 7 //f7v7’
LOG ol1]9 15116 ———— 39 [}0 —————63 /]
K/[/j/’/////s] VAR

SHIFT RIGHT ONE

9 —15 |16 ——39 |40 63

1B ofp—— 71810 —15 116 ———— 39|30 ———— 63

R Cht— or— — . e— | <—— C—— ~— —— am—— —— —

IF BIT 9=1 IF BIT 9=0

16——39 |10 636465 —T71 (72|73 — 79

THE PART BLLOW DASHED LINE

DOES NOT sSELONG T0 TIME T7 BUT IS
SHOWH 03 THI SAKR OF CLARITY OF
PRESENTATION, '

"IGURE 53. FLOW CHART OF ACTIONS
AT TIME T 7 (PART B)

-172-

CLOCK TIME T8--Figure 54

Complement (if needed), Round, Adjust Exponent of Outer Word

1. Enable true out of RGA (40-63) if outer CMP is low.

2. Enable complement out of RGA (40-63) if outer CMP is high.
3. Enable RGA (40-63) into CPA (40-63).

4. Enable bit carries into CPA (64-71).

5. Enable RGB (0) into CPA (64).

6. Enable RGB (40-63) into CPA (40-63).

7. Enable RGA (1-39) into CPA (65-79, 16-39).

8. Clear and load clocks to RGA (40-63).

9. Round properly.
10. Enable to set QVZ (for outer word).

11. Enable CPA (40-63) to RGA (40-63).

-173-

RGB

C.P.A.

AT TIME T 8

1 718l9__15]16___39|ho___63
R e
|
) /7
| 16—-3/9uo—63 6| 65=71)72]73—179
' / .
. F§ 13
[} l.---J'
le v o e wm e e e o e e e o - e = - - -
FIGURE 54. FLOW CHART OF ACTIONS

CLOCK TIME T9--Figure 55

Complement (if needed), Normalize, Adjust Exponent of Outer Word or

Correct Exponent and Sign of Inner Word

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

200

21.

Clear and load clocks into RGA (40-63).

Enable
Enable
Enable

Enable

Enable

Enable

Enable

Enable

true out of RGA (40-63) if OCMP latch output is low.
complement out of RGA (40-63) if OCMP latch output is high.
RGA (40-63) into LOG (40-63).

L.0G (40-63) into barrel switch (40-63).

load clocks to RGA (40-63).

LOD (0-7) to RGB (0-7).

(conditionally) underflow if mantissa is not ZERO.

Inhibit clear clocks to RGD.

exponent adjustment RGB (8-15).

Clear and load RGB (0-15).

Enable
Enable
Enable
Enable
Enable
Enable

Enable

during
Enable

Enable

RGA (9-15) into CPA (73-79).

RGA (16-39) into CPA (16-39).

RGB (16-39) into CPA (16-39).

carries into CPA (16-39).

CPA éum (72-79) to RGA (8-15).

clear clocks to RGA (8-15) if E1 = 1.

clear clock to RGA (16-39) if there is exponent overflow

normalization.
exponent overflow into mode register.

load clocks into RGA (8-15) in case of overflow or under-

flow of exponent.

Enable

clears and loads to Fl.

-175-

22,
23f
24,
25.
26.
27.
28.

29.

Restore sign of RGA (8).

Enable set of F1 if F1 bit has been set and there iS'OVZ;
Compute correct sign of RGA (8).

Enable RGB (9-15) to CPA (73-79).

Enable bit carries into CPA (n, 73-79).

Enable CPA sum (72, 73-79) into RGA (8, 9-15).

Force a shift right ONE if overflow occurs.

Inhibit Section carries.

-176-

R G A 0|1 1116 39
}’*r _ “4—= CARRY =
R G B Jofr——115}16 63
- - * CARRY =
\ T
B ' B A
LO0G 01 15 |16 63
3.S.W. O—— 15 16 _ ’ 63
LOD # 5 16 LOD #1 31|32 LoD # 2 47|48 LoD # 3 65

LOD 7 L (3CR)|

T

]

"IGURE . 55. FLOW CHART OF ACTI ONS

AT TIME T 9

-177-

CLOCK TIME T10

Correct Resultant Exponent and Sign of Outer Word

1. Enable RGA (0-7).

2. Enable true out of RGB (1-7) (for exponent adjustment) .
3. Enable RGA (1-15) into CPA (65-79).

4., Enable RGB (1-15) into CPA (65-79).

5. Enable bit carries into CPA (72-79).

6. Enable CPA sum (64-71) to RGB (8-15).

7. Enable bit carries into CPA (64-71).

8. Enable clear clocks to RGA (0-7) if E = 1.

9. Enable clear clocks to RGA (40-63) if E = 1 and exp. UF.

10. Enable load clocks to RGA (1-7) if FYEASNOO-T is true which
conditionally clears OUTER word of RGA in exponent overflow or

underflow or_if there is underflow and P-ZML--H-L is true.
11. Enable CPA sum (64-71) to RGA (0-7).
12. Clear the 0V2 latch.

13. Enable (conditionally) underflow into RGD on E = 1 and when

mantissa is not ZERO.
14. Enable exponent underflow or overflow if any of them occurs.
15. Enable clear and load clocks to F.
16. Inhibit clear clocks to RGD.
17. Restore the sign of RGA (0).

18. Compute correct of RGA (0).

-178-

B. Subtraction

This instruction is executed in a manner similar to that used for
addition. The minuend is held in A register and the subtrahend specified
by the content of the ADR field is held in B register. Before the
process begins the sign of the subtrahend changes and the two operands'
are added exactly as in the implementation of the addition previously
described.

Table 34 provides a complete summary of the actions during sub-
traction, but it is suggested that the information given in the latter
part of addition (summary of actions) be thoroughly considered before
attempting to analyze the contents of this table. It is felt that the
following remarks might be of help in analyzing this table. They are

consistent with the procedure of implementation of the addition instructions.

Table 34. Truth Table of Conditions in Subtraction (4)

COMPLE- DOES
CARRY MENT COMPLE- (MAN-
OUT OF | SIGN SUBTRA- | MENT TISSA
MSB OF | OF SIGN OF END | HEND MAN- OVER- {SIGN
MAN- MAN- SUBTRA- || AROUND|MAN- TISSA |FLOW OF
TISSA | TISSA | HEND CARRY |TISSA OF SUM |OCCUR?|SUM REMARKS

0 0) 0 1 1 0 1 '0" denotes
0 0 1 0 0 0 0 0 FALSE, 1"

0 1 0o 0 0 0 0 1 lenotes TRUE
0 "1 .1 0 1 1 0 0 In all cases
1 0 0 1 1 0 0 0] Lexcept for

1 0 1 0 0 0 1 0 Lsign where

1 1 0 0 0 0 1 1 "o = +

1 1 1 ; 1 1 0 0 1 """ = -

-179-

1. End Around Carry is used when the signs of the original
operands (prior to changing the sign of subtrahend) do
not disagree and there is a Carry out of the most

significant bit of the sum when these two operands are added.

2. When the two operands are added the mantissa of the sub-
trahend is complemented (1's complement) only if the

signs of both operands are the same.

3. The sum (mantissa) is complemented (1's complement) only
if the signs of the original operands are the same and
there is no Carry out of the most significant bit of

|
the mantissa sum.

4. Mantissa overflow (sum) is expected to occur only when
the signs of the original operands disagree and there
is a Carry out of the most significant bit of the

mantissa sum.

5. The sign of the sum is a function of the sign of the
minuend and the complement of the sum (sign of minuend ®

complement mantissa of sum).

Since subtraction follows the same procedure as addition it is
proper to say that it needs the same number of clock times to be imple-
mented in both the 64~ and 32-bit modes of operation. It is apparent,
therefore, that if the option of Rounding is not used, clock times T2 and
T5 in 64-bit mode and T2, T4, T6 and T8 in 32-bit mode are not used and
thus the execution of addition and subtraction can be accomplished

in 5 clock times in 64~bit mode and 6 clock times in 32-bit modes.

C. Multiplication

1. Introduction. Multiplication in general is the addition of

partial sums which are the partial product of the multiplicand and one or

more digits of the multiplier.

180-

Since speed is important and since the multiplication time in the
PE's is limited by the fact that the control unit proceeds into the next
operation only when all PE's in the quadrant have completed the multi-
plication, acceleration of the process of multiplication is greatly
dependent upon the reduction of the number of the partial sums, the speed
with which these sums are formed and the speed with which these sums are

added in order to give the final product of multiplicand and multiplier.

2. Implementation

a) Mantissa: In ILLIAC IV the bits of the multiplier are used
in pairs to control the addition of the multiplicand as required by these
pairs. These pair bits may also require subtraction or a left shift of
the multiplicand. '

When the pair of bits is 00 the multiplicand must be
multiplied by zero; i.e., no addition is required. '

When the pair of bits is 01 the multiplicand is to be
multiplied by ONE (addition of the multiplicand to the partial product
is required). ;

When the pair of bits is 10 multiplication of the multiplicand
by TWO is required, which is in actuality the multiplicand itself shifted
to the left one position.

When the pair of bits is 11 the multiplicand must be
multiplied by THREE, which cannot be accomplished by either shifting or
complementing the multiplicand. Shifting the multiplicand one position
to the left has the effect of multiplying the multiplicand by TWO;
shifting it two positions to the left has the effect of multiplying by four.
Multiplication by three can be (and is) effected by multiplying by four in
this way and then subtracting the multiplicand from this partial product.

The bits of the multiplier are recoded as X0, X1, X2,

X-~-1 corresponding to 00, O1, 10, 11, respectively. When the recoded stage
happens to be X-1 the multiplicand is just complemented and then added to

-181-~

the partial product. This is the same as subtracting the multiplicand
once from the partial product. At a later time (in a manner that will
be described subsequently), the multiplication by four is accomplished.

Suppose the selected mode is the 64-bit mode, which means

that the mantissa has 48 bits. The mantissa can then be represented as

Y (1)

= Y(1+i) Y(2+i) Y(3+i)""°"'°'"Y(48+i)

where 1 = 15.
Assuming the mantissa is in fractional form (floating point
arithmetic), and therefore the binary point is just left of the most

significant bit position (Y i))’ the weight of each position is Z-k,

(1+
where 1+i<k<48, v
The mantissa of an operand in floating point can be

represented in a simpler form, as follows:

48 _iY
Y=1I2 .
i=1 i+l5
- _ . \
where 2 = weight of the vector Yi+15
Y the vector Y in the (i+15)th
i+l5 =

position of the register which
can take on the binary values
"0" or "1"

Bit 63 of RGB does not participate at all in the recoding
process of the multiplier, but is used as a flag that determines whether
the multiplicand i$ to be left in register A (if it happens to be a ONE)
or that register is to be cleared (if it is a ZERO). The remaining 47
bits of the RGB (multiplier) mantissa are grouped by two from right to
left and segregatéd into six sections (iterations), each section
containing eight bits and therefore four bit pairs. Each bit pair controls
a word (multiplicand times recoding of bit pair). Word 1 contains the two
least significant_bits of that particular section, while word 4 contains
the two most significant bits of that particular section. Table 35 shows

-182-

{

the multiplier bits that are to be recoded, with respect to word and

iteration number, wherein:

WRD#1 | WRD#2 | WRD#3 | WRD#4
i=1]o0 1 | 2 for Iteration #1
) i= i ‘ll-- i 5. T 6’ R for Iterat;’.on #2
i= '-5.“’ --é--- -ib ———————— for Iteration #3
i-= .1ﬁ2—4—~ {3-"__il"- —————] for Iteration #4
i=116 |17 | 18 |19 for Iteration #5
i-= wid-d— 21 |22 |23 for‘Iteration #6
Table 35. Multiplier Bits to be Recoded
'ITERATION WORD #4 WORD #3 WORD #2 WORD #1
Ye1-21]Y62-21 | Yo1-2i1%62-21 |-Yo1-21|Y62-21 | Y61-21|Y62-21
1 55 | 56 57 58 59 60 61 62
2 47 | 48 49 50 51 52 53 | sS4
3 39 | 40 61 | 42 43 | 44 45 | 46
4 31 | .32 33 34 35 36 37 38
5 23 24 25 26 27 28 29 30
6 16 17 18 19 20 21 22

(For those who like closed expressions for variables, it is evident from

the above that i=4I+J-5, when I = iteration number and J = word number.

Thus:

where

WORD #J = (

I=1,2,3,4,5,6 and J = 1,2,3,4.)

¥71-81-23, Y72-81-27

-183-

By taking out of the recoding scheme the 48th bit and by grouping
the rest of the mantissa in groups of two bits, word 4 of the last
section has bit 1 (with a value of either 0 or 1) and a zero (in bit 2).
This zero is esséntial to handle a carry into word 4 from the previous
word; if then bit YyZ—Zi of this word happens to be a ONE, word 4 will
be 10 which means that there will be a request for addition two times
of the multiplicand to the partial product. In this way there will be
no way to have a carry out of the word 4 of the last section (remember

bit Y62—2i
bit numbers are assigned to each word and not bit location it can be

of last word corresponds to bit 16 of the register). Since

said that the genéral recoding stage (four such stages per section) is
a function of the pair of bits of each word and the carry into the stage.
In this notation the output of recoding stage RS47_21 can be
0, X1, X2, x-1.
Consider the pair of bits Y61—2i and Y62-21 with carry coming
into the stage in the first step at a particular section (Table 36).
In the second step not only that particular wofd, but any carry into the

stage must be considered.

Table 36. Recoding Multiplier Scheme

A CARRY CARRY
STEP | Yoy os | Yepopy | T BS)7 oy | OUT
0 0 0 0 0
1 | o 1 0 X1 0
1 0 0 %2 0
1 1 0 X-1 1
0 0 1 x1 0
0 1 1 X2 0
2 1 0 1 X-1 1
1 1 1 0 1

~184-

The recoding stage specifies how much the multiplicand must
be multiplied (hoﬁ many times the multiplicand must be added or sub-
tracted from the partial product). From Table 36, the equations for the
carry out from a particular stage and the equations for the (47-2i)th recod-
ing stage corresponding to each of the four values (X0, X1, X2, X-1) that

this stage can take can be derived.

R547-2i = X0 = Y61—21°Y62-21'Carry In + Y6l_2i.Y62_21.Carry In
= C — = — (2)
RS o= Xl = Y61_2i.Y62_21.Carry In + Y61_2i.Y62_21.Carry In
47~21
RS47—21 = X2 = Y61_21.Y62_21.Carry In + Y61_21.Y62_21.Carry In
RS, 701 X1 = Yq 5.:Yeq og-Carry In + Yo, oYy 5, .Carry In
Carry Out = Y61_21.Y62_2i.0arry In + Y61_21.Y62_21.Carry Ig
+

Y61_21.Y62_21.Carry In

(Carry In)Y

(Carry In + Carry In) + Y 62-21

= Ye1-21 Y62-21 61-21

(Y Carry In) (3)

= Y121 T62-21 + Y62-21

(because of the Boolean Identity A + A = 1). From the Boolean Identity
A+ AB = A + B:

Y .. Carry In (4)

Carry Outk= Y61_21‘Y62-21 + 61-21i

Further study of Table 35 reveals that in the initial step
there will be no case where a carry can come into the first recoding stage

and also no carry can come out of the last stage of the last step.

~185~

The carry into a recoding stage is interpreted as a
request for an addition of four times the multiplicand to the partial
product in the next step, because at the current step, when the carry
out is generated, the multiplicand is subtracted once from the partial
product. Therefore any time the stage (or word) comes out to be 11 the
multiplicand is subtracted from the partial product and a request is
made for the multiplicand to be added four times in the next step
(Iterative Cycle).

Every time the word is recoded the multiplicand is shifted
a number of positions to the left but, at that point, it is necessary to
" determine which recoding stage is in effect (i.e., which multiple is used).
If it is at X1 or X2 and word 1 of the first iteration (steps) is being
dealt with, the multiplicand is placed into the pseudo adder tree (PAT)
but shifted left one or two positions, respectively. Of course if it is
X0 there is no problem, because that means that there is no request for
addition of the multiplicand. If it is X-1 then the multiplicand is sub-
tracted from the partial product. In the next step things are different
because there may be a carry into the stage. If the stage is X0 which
means no request for addition of the multiplicand, the carry in forces
the multiplicand to be added one time to the partial product because
carry into the stage is equivalent to a request for addition of the multi-
plicand four times;. This is accomplished by shifting the multiplicand
two positions relative to where the multiplicand was placed in the
previous word. If the stage is X1, the appearance of the carry forces
the multiplicand to be added two times. This is done by shifting the
multiplicand two positions to the left compared to where the multiplicand
was placed in the previous word. If the stage happens to be X2 which
normally requires addition of the multiplicand two times, now the appear-
ance of the carry forces it to look like X-~1 which means subtraction of
the multiplicand once from the partial product and a request to the next
step for an addition of the multiplicand four times. .

If the stage is X-1, which normally requires the addition
of the multiplicand three times, the carry into the stage forces no
operation at this time, but a request for the addition 6f the multiplicand

four times to the partial product in the next stép is made.

~186~

Table 35 shows that there are six sections (iterations)
each of which contains four words. Each section requires one clock
time for the formation of the partial product. Since there are eight
bits in each section or four words of two bits each, the multiplier

can be represented in terms of recoding stages as follows:

5
B -48 - (47-81) -(45-81)
Y = Y63 .2 + ? (RS47-81 . 2 + RS45-81 . 2
i=0
-(43-81) -(41-81)
+ RS&3—81 .2 + RS41—81 . 2) (5)
Therefore the final product of the multiplicand X and multiplier Y is
given by [4]:
XY = X [Y 2-48‘.’. g (RS 2-(47-81) + RS 2—(45—81)
63 ° i=o 47-8i ° 45-81 °
-(43-81) ~(41-81)
2 + RS, g; + 2)] (6)

* R43-81 -

Dealing with positive numbers there are some cases which must be thoroughly
investigated. What happens if the two bits of word 1 of the first section
of the multiplier are 11? 1In this case the multiplicand is subtracted

once from the partial'product and a request is sent to the next step to add
the multiplicand four times to the partial product. This subtraction
should normally force the partial product to decrease more and more. If
the multiplier happens to be such that the next pairs of bits are 10 the
carry from the first pair will force the partial product to decrease more
and more until it may become negative and also an extra clock time would

be required to perform the request of adding the multiplicand four times

to the negative partial product. This extra clock time is not desirable

at all because of its costs in terms of speed. 1In order to cure this

problem a ZERO is forced in front of bit position 16 so that if bit

~187-

position 16 has a ONE and there is a carry from the previous pair,
this carry will force the last pair to look like 10 which indicates
addition of the multiplicand two times to the negative partial
product. At this point, being in the last step of the last section,
the multiplicand is shifted two places to the left compared to where
the multiplicand was placed in the immediately previous level of the
pseudo adder and, therefore, this number has a greater weight than

the negative partial product, which makes the final product a positive
number.

Since multiplication has been defined as successive additions
of multiplicand, it is evident that the use of a very fast adder is
critically essential. However, instead of using the old scheme of
addition of two numbers in order to produce the sum, a new adder has
been designed which adds three numbers and produces, instead of a single
sum, two numbers (sum and carry) which are equivalent to ;he three numbers
being added. This adder is called PSEUDOADDER (or Carry Save Adder).

The pseudoadder has three levels and can accommodate 56 bits.
Its high speed is due to the fact that there is no carry propagation but
instead, the carry constitutes one of the three inputs to each level of
the pseudoadder, every level having as output the sum and a carry, which
along with the mﬁltiple of the multiplicand, constitutes the three inputs
to the next level.

The output of the third level of the pseudoadder is applied
to the Carry Propagating Adder (used, in this case, as a Carry Save Adder)
which along with fhe multiple of the multiplicand as a result of the
recode stage (word 4) produces the final sum and carries of a particular
iteration. The first 48 bits of the sum are stored in A register which
holds the partial product, while the other 8 least significant bits
are placed into B register. The B register is shifted through the BSW
in every clock time 8 bits to the right end off. The carries from the
carry propagating adder are stored in C register to be used as one of the

inputs into the first level of the pseudoadder in the next iteration.

-188-~

The correction bits (Table 37) are necessary in all levels of the PAT

and for WORD #4 in the CPA, because, if any of the words happen to require
the multiplicand to be multiplied by three, then instead of multiplication
a subtraction of the multiplicand from the current partial product is
performed. Since the sum is taken in 2's complement form the multiplicand
is complemented (1's complement) and added to the partial sum. Also an
extra bit is added to the least significant bit (bit 71). This extra bit
is forced into bit position 71 of the PAT or CPA depending on which word

requires such an addition, by the signal:

PW1-C—---1 for WORD #1
PW2E-X-1-1 for WORD #2
PW3E-X~1-1 for WORD #3
PW4-C---1 for WORD #4

Details concerning the use of the correction bits ére given later in
Example #2.

In the process of multiplication it may happen that the
multiplicand is ZERO and the multiplier is such that, in one of the
iterations, one or more of its words calls for a multiplication by three.
The expected result is ZERO but in this case it is necessary to get rid
of the carry which resulted from the extra bit inserted in bit location 71
in order to obtain the result in 2's complement. There is a signal called
PW1-K~----1 which inserts eight ONES in the most significant bit locations
of the PAT thus insuring that the final product will contain all ZEROS.
This signal requires special logic, in order to cover all the possible
cases and depends mainly on whether or not the multiplicand is normalized.

The equation for this signal (K function) is as follows (i = 1,2,-—-,6):

PW1-K----1 = R, [WORD #4x-1 + WORD #4x2 (WORD #1x-1+
‘ Ti .

+WORD #2x~1 + WORD #3x-1) + PWl—K-—--l)TO]
+R, . [WORD #4x-1 + (WORD #1x-1 + WORD #2x-1

+WORD #3x-1) + PW1l-K----1) (7

To]

-189-

Table 37. Definition of Signals Applied to PAT

S IGNAIL NAME DESCRIPTTION
PWl -WXX--1 WORD 41 bit XX from MSG into the first
level of PAT
PW2 -WXX--1 WORD #2 bit XX from MSG into the second
level of PAT
PW2 -WXX--1 ' WORD #3 bit XX from MSG into the third
level of PAT
PWI1EX1T
X1¢
X-1
X2
PW2EX1T , These signals come from the MDG and are
Xl@ applied into the MSG through the CTL's.
X-1 They represent the recoding scheme i.e.
X2 the amount of multiplication of multiplicand,
PW3EX1I
X1¢
X-1
X2
PWLUEX1T
X1¢
X-1
X2
* | PW1eCmmm=1 Correction bits ena’le when WORD #l= -1
PW2ECX~1~1 Correction bits enable when WORD #2= -1
PW3ECX-1-1 Correction bits enable when WORD #3= -1
*% | PWhaCmm el Correction bits enable when WORD #4= -1
PPW-WXX--1 PAT SUM for bit XX of the 3rd level of PAT
* PW1-C----1 is used also to insert an extra bit (,l,) at bit location

71 when WORD #1=X-1

. %% PY4-C----1 1is used to iﬁsert an extra bit (,1,) at bit location 71
when WORD #4=X-1 :

-190-

Table 37. (Continued) Definition of Signals Applied to PAT

’P51-wxx--1
P52-WXX~--1
P5W-WXX--1
P3R-WXX--1
PAW-WXX -~

PWoE-1-w--
PW3E

PWl-K----1

Carry out of 1lst Level of PAT for bit XX
Carry out of 2nd Level of PAT for bit XX
Carry out of 3rd Level of PAT for bit XX
RGC bit XX into the first Level of PAT
RGA bit XX into the first Level of PAT

Enable of an extra bit at bit location T1
in the Second Level of PAT when WORD #2= -1

Enable of an extra bit at bit location 71
in the third level of PAT when WORD #3= -1

A special enable of eight ONES to insure
that when the multiplicand is ZERO, the
result as U be ZERO too. See more details
below.

-191-~

It is evident that in the first iteration, if the multiplicand is not
normalized and bit 16 happens to be ZERO, this signal is true and there-
fore will insert eight ONES (only if any one of the words calls for

‘ multiplication by three).

During the multiplication process, in addition to the
registers shown on Figure 56, there are two more units used. These units
are the logic unit (LOG) which feeds the barrel switch and the barrel
switch and its associated controls which perform the shifting of 40 bits,
8 bits at a time, thus returning to B register only 32 bits. The reason
for this is the fact that at the conclusion of every iteration, a space
of 8 bits is needed (bits 16-23) to hold the extra least significant bits
of the 56-bit partial product. However, at the beginning of each iteratiomn
the 8 least significant bits of B register are recoded and thus are not
needed any more. Thus, from the end of clock time T2 until the end of
clock time T6 the barrel switch receives 40 bits (once in every clock time)
and returns to B register 32 bits (Figure 4 in Volume 1).

For an illustration of the multiplication process consider
two operands of 13 bits each. 1In order to understand the process better
assume that the two operands have filled in the registers A and B in such
a way that the least significant bit of the 13 bit operands is at bit
location 63 (Example #1 - page 187).

At the start the multiplicand is in register A and during T1
it is transferred into R. Bits 55 through 62 of the multiplier, which are
in B register, have been recoded and since bit location 63 of the multiplier
is a ONE the multiplicand in A'register remains unchanged.

The multiplicand being in R register is applied to multipli-
cand select gates (MSG) and being ANDed with the selection controls leaves
the MSG shifted to the left in the following manner. The multiplicand
from A register occupies 48 bit positions (in 64-bit mode), the output of
MSG is shifted to the left one position because word 1 is recoded as X1
and since this is the first word of the first section there is no carry

to be added to them.

-192-

|

63

MULTIPLICAND MANTISSA MULTIPLITR

RGR

RGB

|

MULTIPLIER DECODING GATES
(MDG)

CTL

1 # SELECTION CONTROL

MULTIPLICAND SELECT GATES

CARRY REGISTER

RGC

!

(Ms Gg)
49 BITS CLEAR CLOCK
(WORD 1 v
WORD 2 MULTIPLICAND
[=

'} Y EH‘

PSEUDO ADDER TRE

(PAT)

49 BITS (WORD L)

3 v

|CARRY PROPAGATING ADDER

(CcPaA)

FIGURE 56. BLOCK FUNCTIONAL DIAGRAM OF

THE RWGISTERS PARTICIPATING
IN MANTI3SA MULTIPLICATION

-193-

The sum and carries out of the first level of the pseudo-
adder are placed into the second level of the pseudoadder. There, the
oufput of the MSG corresponding to word 2 is also applied, but shifted
just two positions to the left as compared to the output of MSG correspond-
ing to word 1. The output of the second level (and therefore input to the
third level of the pseudoadder) is the sum and carry which are added to
the output of the MSG corresponding to word 3, which is shifted two
positions to the left compared to that corresponding to word 2 of the
second level of the pseudoadder. The output of the third level of the
pseudoadder (sum and carry) is supplied to the carry propagating adder
(CPA) along with the output of the MSG corresponding to word 4.

In this first iteration the sum, consisting of 56 bits, is
placed into registers A and B in the following manner. The 48 most
significant bits of the sum from the CPA are placed into A register (bits
16-63). The remaining 8 least significant bits of the sum are placed into
bit positions 16 to 23 of B register (Figure 57). This space (16 to 23 bit
positions of B register).is available because in the clock time 1 the
mantissa of B register is shifted end off to the right. The shifted off
8 bits of the multiplier are not needed any more because they have already
been recoded for the first iterétion. At this time the carries of bit
locations 65 to 72 are held in C register until the next clock time. At
that time they are forced into the CPA at bit positions 72 to 79 to be
added with the 8 bits of the sum being stored temporarily in bit positions
16 to 23 of B registei. This new sum is brought back to B register, but
in bit locations 24 to 31 because the bit locatioms 16 to 23 are needed
for the 8 bit partial sum of the next iteration. At this point, if there
is a carfy because of the addition of the 8 bits of partial sum and carries,
the carry is placed in bit position 72 of register C to be added to the
partial sum of the next iteration in CPA bit positions 72 to 79 along with
the rest of the 8 bit carries of this iteration. If there is a carry in
bit position 64 of register C, this carry is kept in a special latch and
placed in bit position 79 of CPA to be added to the sum of the next iteration
in CPA bit positions 72 to 79 along with the rest of the 8 bit carries of

this iteration. The reason for doing this is that the carry at bit position

-194-

48 BITS

15 16 63 0
— 1 =

L
RGB:
16 t 63
L RGR 1
16 ‘ 63 n . 62
B ¥5G | T E {1 wmc |
WD #/, 49 BITS | WD #2 49 BITS
WD #3 49 BITS
_ - |w A
__48 BITS , 49 BITS
7 BITS)
16 2 3¢ l) 9. 7N s
, 1
o l‘ : S — LEVEL 0___16 'I 63
o . SUM | GARRIES PAT [IOG
- i —— LEVEL 16 63
SUM | CARRIES PAT [BSW (SHIFT FY 8)]
16 18 19 y g 6566 M | C
- q 3rd
-— : LEVEL 17 63 6L 65 M
kv 1 | 7]
SUM | CARRIES , RGC
16 17 ¢ Y 63 64 65 0 5 B |
1 L)
[k e
8 BI 8]|BITS CARRY
SIM CARRIES IATCH
_ , ! :
56 BITS

FIGURE 57. MULTIFLICATION PROGESS (MANTISSA)

64 is the least significént bit of the carries of the next iteration
and the most significant bit of the carries (8) which are added to the
partial sum of the present iteration.

It is evident that in every clock time the mantissa of B
register is shifted off 8 bits so that it will provide, by the end of
the last iteration, the space for the 48 least significant bits of the
final product. \

It was previously stated that every time one iteration is
completed the partial product is 56 bits long. This is due to the follow-
ing reasons. The multiplicand (Figure 58), due to the least significant
bit of the multiplier (bit 63), will occupy bits 24 to 71 of pseudoadder.
If then, word 1 is X1 the multiplicand will occupy bits 23 to 70 of 22
to 69 if word 1 is X2.

If word 2 is X1 the multiplicand will occupy bits 21 to 68;
if word 2 is X2 it will occupy bits 20 to 67. If word 3 is X1 the
multiplicand will occupy bits 19 to 66 or, if it is X2, 18 to 65. 1If
word 4 is X1 the multiplicand will occupy bits 17 to 64 or 16 to 63 if
word 4 is X2 in the CPA.

Therefore the multiplicand related to word 1, 2, 3 or 4
can be 49 bits long because, if word 1, 2, 3 or 4 is X2, the multiplicand
is shifted one position to the left more than if the word is an X1. So
wiring for 49 bits from the MSG to the pseudoadder (word 1, 2, 3) and to
the CPA (word 4) is provided. 1In case any of the words (word 1, 2, 3, 4)
is recoded to be X1 the most significant bit (the extra one provided) is

brought into PAT and CPA as a ZERO.

Example #1

1010101010101 and
0000010101011

Given the multiplicand X

the multiplier Y

Find the final product of the first iteration.

-196-

IFWORD #1 =X -1

IFWORD # 2 = & = 1

]
S |
Y IFWRD#3=X-1

NOTE

1'S COMPLEMENT OF WD # 1 FROM MSG

71

16 17 18 19 20 21 22 23 _ |
1st LEVEL OF PAT 1
1 FORCED "1

111|111

1

1l

FROM MSG

1'S COMPLEMENT OF WD # 2

16 17 18 19 202/_,—-4\6269 0N
1|1 |1
FORCED "1"

1

111111

2nd LEVEL OF PAT

FROM MSG

1% COMPLEMENT OF WD # 3

16 17 18 19 66 67 68 69 M T
- 111111]2 :
1 FORCED ™1*

1] 1)1 3rd LEVEL OF PAT
_1'S COMPLEMENT OF WD # 4 FROM MSG
16 17 6L 65 66 67 68 69 ® T T M
1| c.P.A. I A I A I O I R I
1 FOMEDHI"

"FIGURE 58.

SEE EXAMPLE #2 ON A SUBSEQUENT PAGE FOR AN EXPLANATION ©F THE "FORCED ONES*™,

CORRECTION BITS FOR MANTLISSA MULTIPLICATION

Solution

-198-

63
RGA|] 1010101010101 WORD1 = X1
WORD2 = X1 .
RGC| 0000000000000 WORD3 = x1 | Recoding Stage
'WORDL = x1°
RGB] 0000010101011
RGR| 1010101010101
RGA *B63 (TL fonly) 1010101010101
: \Im)uts
RGC (ZERO 0000000000000 | CSAL to
NITIALLY)
RGR.WORD1 1010101010101 .
E
SUM 11111111111111 0
CARRY 0000000000000O | CSA2 ?2
RGR-WORD2 010101010101 o
E
[sum 001010101010111 R
CARRY 101010101010000 | csa3
' 4 J
RGR.WORD3 1 0101010101
SUM 1 l10l01010100111 |)
CARRY 101010101 000
01010101010000 ¢ (Used
P as
RGR- (WORD 4 101 010101010000000 |
() 0 ?A csa)
PARTIAL SUM 100 110101010000111
| CARRY 10 101010101000000 ||
1617 18 192021223
RCA 100L1110 0 10000111 RGB
RGC 10 01010101000000

To see the result at this point, it is necessary to (carry propagate)

add the carry to the partial sum; which gives:

e

RGA & RGB 10011110101010000111
+ RGC 01000101010101000000

FINAL SUM 11100011111111000111

ul
=
o

OOOOOOOOOOOOOOOUOO\I\)
OOOOOOOOOOHM-P‘CDOOHI\)

OOOOOOOP—'N\HOOOD—‘OOOP‘
OOOOOOO\N\J‘IHI\)-I:’\O\OOON-F“(IJ

OOOOOOOOOOOOOOOO!—‘N
'—'FD-I:‘OOO-F‘ODO\I\J-F'COO\T\JOOI\J:(D

o

93383 110

-199-

To check the result the equivalent decimal numbers of multiplicand
and multiplier are found and multiplied to see if the result is the

same as that found by the process of iteration through the computer.

MULTIPLICAND = 1010101010101

MULTIPLIER = 0000010101011

Lo9é6
0000
L0214
0000
0256
128 0000
000 0064
032 0000
000 0016
008 0000
000 0004
002 0000
001 0001
1714 5k61,,

546110 x 171 0= 933831l

1 0

-200-

Example #2

Given the operands:

110000001
010111101

X
Y

Find the product (XY).

Solution
a. The operands are placed in the proper registers:

X - RGA and RGB (Multiplicand)
Y - RGB (Multiplier)

b. Recode the multiplier

1. 63 bit position of multiplier = 1

2. WD#1 = X2

3. WD#2 = X-1 (forces a carry into WD#3)
4. WD#3 = X2

5. WD#4 = X1

c. WD#2 = -1 means that the multiplicand has to be subtracted

from the partial product as follows:

1. Place the 1l's complement of the multiplicand in the
second level of the pseudoadder tree starting at bit

position 68 towards the left up to bit position 21.

2. Insert 1's from bit position 71 through 69 and from
59 through 55%.

3. Force a one into bit position 71 of the pseudoadder tree

to form the 2's complement of the multiplicand**,

* See page 203
*% See page 204

-201-

d. In the final product (sum and carry) neglect the end around

carry because the product is in 2's complement.

Bit Position

RGA
CARRY
RGR(WD#I)(XZ)

" 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

o

o

o)
0

1

P. SUM
(1)
CARRY

RGR(WD#Z)(X—l]

P. SUM(
CARRY

RGR(WD#3)(X2)

2)

p. SUM(
CARRY

'RGR(WD#M)(XI)

3)

. S
O
CARRY

FINATL PRODUCT

1

(neglected)

-202-

1t

e. To check the result

"
[
o
o
o

1110000111101

1. Final product 9

N eNoNoNoNoNoNoNol
nNEeENNHOOOOO
LMOOOOOOOO
WoOoHEFNDNWHFHEFOOO
(o)) We T L (S Re e R N

~
N
~
o))
W

10

]
[
[
o
o

2. Multiplicand 0000 12

=38 510

L]
o
-

3. Multiplier 011110 12

=18 910

il
~
N

4. 385 x 189 765

10
In general, whenever the bit pair is 11 (recoding stage) the 1l's
complement of the multiplicand is placed in the proper level of the PAT
and at the bit position which normally corresponds to WD#1 = X1 (i=1,2,3,4).
Since the partial product is 56 bits long, as previously explained, 8

ones are inserted into the same level as follows:

If Wp# 1 = X-1 (a) Place 1's complement of multiplicand at bit
positions 70 through 23.
(b) Insert a ONE at bit position 71 and 7 ONES
in bit position 22 through 16.
If WD# 2 = X-1 (a) Place 1's complement of multiplicand in bit

positions 68 through 21.
(b) Insert 3 ONES at bit position 71 through 69
and 5 ONES in bit position 20 through 16.

-203-

If Wi 3

= X-1 (a) Place 1l's complement of multiplicand in bit
positions 66 through 19.
(b) Insert 5 ONES at bit positions 71 through 67
and 3 ONES in bit positions 18 through 16.
If WD# 4 = X-1 (a) Place 1's complement of multiplicand in bit

positions 64 through 17.
(b) Insert 7 ONES in bit positions 71 through 65
and a ONE in bit position 16.

The reason for doing the above is that out of the 56 bits of the PAT, only
the 48 bits of the multiplicand have been put in the 1's complement form
but from bit 71 through 16 there are 8 bits (unoccupied) which look like
zeros. Taking the 1's complement of the whole 56 bits, forces these 8
bits to become ONES.

By forcing a carry into the least significant bit of PAT (71) the
partial sum in that particular level of PAT takes the form of the 2's
complement. This is done so that in case there is an end around carry
in the partial product, which is in 2's complement, the end around carry

can be neglected.

b) Exponent: In multiplication, the exponents of the operands
are added. There are a few points which should be brought up before
attempting to compute the exponent.

The input to the CPA that is not enabled appears as all ONES.
For this reason, any carries from Section #1 (Bit 16-31) into Section #4
(Bits 64-79) should be inhibited. The exponehts of both operands are
added, but the sign bit of the exponent is determined by the appearance
or absence of a carry. This cérry is placed in a special circuit and is
brought back to the sign bit position as a 1 or 0 as illustrated by the

following examples.

=204~

(No Carry]
pecial

Circuit

RGA| 1Jloooo00000000O0O1O
RB| 1l00000000000001
SUM 00000000000011
FINAL SUM |/1]l]0 0000000000011
Car
Special
Circuit
B
RGA 00000000000001
RB| Off11111111111100
sM|/11111111111101
FINAL SUM [10f111111111111 oq1
!
{

Aexp = +2
Bexp = +1
CPA

Sum = +3

Aexp = +1
Bexp = -4
CPA

Sum = -3

's complement form

Sum

Sum

In this way, the carry from the most significant bit of the exponent

(Bit 65) does not affect the sign of the mantissa.

The mantissa sign

being a function of Ao ® BO and the inverse of the enable for computation

of the mantissa sigh (FYEMDOSGNT = 1) depends on the sign of both operands

as the following. examples illustrate.

1)

if A =0=+
o

if B =0=+
o

The mantissa sign must = +.

-205-

+3

-3

2)

3)

(L.14+40.0)

-206-

The mantissa sign must

The mantissa sign must

MULTIPLICATION IN 64-BIT MODE

CLOCK TIME Tl--Figure 39

Add Exponents - Recode 8 Bits of Multiplier Mantissa for First Iteration

1.

100

11.

12.

13.

14.

15.

16.

Enable Registers A & B (bits 0-63).

Enable Register A into R (bits 16-63).

Enable Register R (bits 16-63).

Enable cléar and load clocks into inner and outer word of register R.
Enable clear and load clocks in Register C.

Enable clear and load clocks to underflow latch.

Enable exponent underflow into mode register (D) if not normalizing
and ACAR(9).

Enable overflow into Register D.
Inhibit clear clocks into Register D.
Enable clear and load clocks into F if floating point.

Enable clear clocks into Outer sign and exponent of register A (0-7)

if E=1.

Enable clear.clocks into Inner sign and exponent of register A (8-15)

Enable clear clocks into inner mantissa of Register A (16-39) if El=1
and B63=0.

Enable clear clocks into outer mantissa of Register A (40-63) if
E=1 and B63=0.

Enable load clocks into outer sign and exponent of Register A (0-7)
if E=1.

Enable load clocks into inner sign and exponent of Register A (8-15)

if El=l.

-207-

17.

18.

19,
20.
21.
22.
23.
24,

25,

26.
27.
28.
29.

30.

Enable clear clocks into inner and outer mantissa of Register B

(16-63).

Enable load clocks into Inner and outer mantissa of Register B

(16-63).

Enable the content of Register B into LOG.

Enable LOG (16-63) into barrel switch.

Enable a shift to the right by 8 into the barrel switch controls.

Enable Barrel Switch (16-63) into Register B (16-63).

Enable the complement output of the outer exponent of Register B (1-7) ';;r
Enable the complement outﬁut of the inner exponent of Register B (9-15) gg?ii

Operand
Enable Registers A and B (1-15) into CPA (65-79). B only if floating

point.

Enable the bit carries into CPA (64-79) if floating point.
Inhibit section carries from Sectiomn 1.

Enable the oﬁter sign and exponent of CPA into Register A (0-7).
Enable the inner sign and exponent of CPA into Register A (8-15).

Restore the sign of Register A (0) if unsigned.

~208=-

“buU¢™

0 15 16

0 15 16 5 62 63

63 |
EXPONENT RGA l&omm | rResB
r_/, /
55 62
16 63
MD G
RGR
: 16 63
16 65 i { vl LoG
CPA
16 63
BSW (SHIFT RIGHT
END OFF 8)
16 17 72 48 BITS
00 00
RGC
END OF T 1 :
0 15 63 0 16 23 63
EXPONENT MILTIPLICAND IF DON'T 00-00 | MULTIPLIER
SUM RGB 63 = 1, CARE 8 PLACES RIGHT
RG A RG B
17) 55 62
A 00 00 RECCDED BITS OF
RGB (55«62)
RGC MDG
FIGURE 59. LOCK TIME T 1

CLOCK TIME T2--Figure 60

First Iteration - Recode 8 Bits of Multiplier Mantissa for Second
Iteration :

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) to LOG (16-63).

5. Enable LOG (16-63) into BSW (16-63).

6. TForce a shift right end off 8 places into the BSW controls.
7. Enable PAT sum and carry bits (16-71) to CPA.
8. Enable CPA sum (16-63) to RGA (16-63).

9. Enable CPA sum (64-71) to RGB (16-23).

10. Enable CPA sum (72-79) to RGB (24-31).

11. Enable BSW (32-63) into RGB (32-63).

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable WD4 (64-71) into CPA (64-71).

14. Enable RGB (16-23) into CPA (72-79).
15.° Enable RGC (65-72) into CPA (72-79).
16. Enable bit carries into CPA (72-79).

17. 1Inhibit section carries.

18. Enable clear clocks to RGA (16-63) if E=E1=1.'
19. Enable load clocks to RGA (16-63) if E=E1=1.
20. Enable load clocks to RGB (16-63).

21. Enable clear and load clocks to RCC (CPA carries are the input).

22. Select K function.

-210-

~11¢-

RGB

16 63 16 2
WOLTIPLICAND IF RGB G3=1 0-00] MULTIPFLIER
OTHERWISE ZEROS
RGR MULTIPLICAND l WG
T Fo2?
16 63
¥EC CONTROLLED BY RECODED E
BITS OF RGB (55 - 62) -
| 48 BITS WD#l | wD#L 49 BITS 16 Y 63
49 BITS | wD# 40 BITS 10G ,
49 B 2
18 vl
| 1st LEVEL OF FAT
} 5 ; T 16 63
R n BSW (SHIFT END OFF RIGHT 8)
| , 2nd LEVEL OF PAT]
s [¢
16 1 7 32 BITS
L 3rd LEVEL OF PAT
, S G 17 63
16 ‘ ‘ Y ¢ 67 ?Y mﬁzj—mcs
CPA | % o~
‘ - —
48 BITS SUM 56 _BITS
- ' CARRIES SUM 8 BITS B
END OF T 2 ; N | 47 BITS
16 63 16 23 24 3 63
PARTIAL PRODUGT (1) NOT 0000 | MULTIPLIER 16
NOT FINAL l FIRAL PIACES RIGHT |
- RGA TGB
17 72
RECODED BITS ORIGIMALLY CARRIES (1)

AT RGB }S_ﬁég-%

)

FIGURE

60.

CILOCK TIME T 2

RGC

CLOCK TIME T3--Figure 61

Second Iteration - Record 8 Bits of Multiplier Mantissa for Third Iteration

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

Enable true out of RGA (16-63).

Enable true out of RGB (16-63).

Enable true out of RGR (16-63).

Enable RGB (16-63) to LOG (16-63)%.

Enable LOG (16-63) into BSW (16-63).

Force a shift to éight 8 positions end off to the BSW controls.
Enable PAT sum and carry bits (16-71) to CPA.
Enable WD4 (16-63) into CPA (16-63).

Enable CPA sum (16-63) into RGA (16-63).
Enable BSW (32-63) into RGB (32-63).

Enable PAT sum and carry bits (16-71) to CPA.
Enable RGB (16—23) into CPA (72-79).

Enable RGC (65-72) into CPA (72-79).

Enable bit carries’into CPA (72-79).

Inhibit section carries.

Enable load clocks to RGA (16-63) if E=E1=l.
Enable clear clocks to RGB (16-63).

Enable load clocks to RGB (16-63).

Enable clear and load clocks to CPA carries.
Enable clear clocks to RGA (16-63) if E=E_=1.

1

Select K function.

*Effectively RGB (0-63) is sent to LOG (0-63) but RGB (0-15) has no
significance for the mantissa; there is one control signal allowing
RGB (0-63) into LOG (0-63).

-212-

16 ‘ 63 169 23 24& 31 32 48 62 63
RGA PARTIAL PRODUCT (PPy) POP} 00-00 MUL|[TIPLIER
NOT FINAL N
48 BITS | FINAL|
. RGB e
[RGR MULTIPLICAND]
55 ¢ 63
MDG
16 _ &4 T
- G ' CONTROLLED BY RECODED BITS
: OF RGH (47 -) - :
49 BITS WD#3 | 1 [[49 BITS WD#y 16 I | 63
' 49 BITS| 49 BITS 2 10G]
16 ¥ - i =
] 1st LEVEL OF PAT] :
35 C ‘ 16 63
16 MR i = '
. | 2nd LEVEL OF PAT] BSW (SHIFT RIGHT EnD OFF 8)
o ‘ S ‘ c
i A | | 7 32 BITS
L 3rd LEVEL OF PAT 1 [
S C 17) 639 65 72
16 | 163 64 7y ¥ <
/ RGC CARRI|IES| (1)
CPA ‘ —— ‘
48 BITS 8 [BITS 47 BITS
56 BI1S .
ENDCF T3 ¢
6 63 6 3132 39
PARTIAL PRODUCT (2) PP, :;'f%rl 00-00 | MULTIPLIER 2%
NOT FINAL NOT"FINAL PLACES RIGHT END OFF
RGA RGB
16 J /)
CARRIES (2) |

"RGC

FIGURE

ol.

CIOCK TIME T 3

_ 62
RECODED BITS ORIGINALIY
IN RGB (39 - 46)

MDG

CLOCK TIME T4--Figure 62

Third Iteration - Recode 8 Bits of Multiplier Mantissa for
Fourth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).)

4. Enable RGB (16-63) to LOG (16-63)--see footnote for clock time T3.
5. Enable LOG (16-63) into the BSW (16-63). |

6. Force shift right end off 8 positions to the BSW controls.
7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable WD4 (16-64) into CPA (16-63).

9. Enable CPA sum (16-63) into RGA (16-63).

10. Enable BSW (32-63) into RGB (32-63).

11. Select K function.

12. Enable the stofed carry in the latch to be placed in CPA bit 79.
13. Enable PAT sum and carry bits (16-71) into CPA.
14. Enable RGB (16-23) into CPA (72-79).

15. Enable RGC (65-72) into CPA (72-79).
16. Enable bit carries into CPA (72-79).

17. 1Inhibit section carries.

18. Enable clear clocks to RGA (16-63).
19. Enable load clocks to RGA (16-63).

20. Enable clear clocks to RGB (16-63).

21. Ehable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-214-

[—1]

16 ‘ 63 3 24 *31 32 47 48 2 63
RGA PARTIAL PRODUGT (2) NOT FINAL Pg% PP, 00-00 | MULTIPLIER
N
48 BITS | FINAL
16 63 - RGB
| RGR MULTIPLICAND |
55 62
¥OG
16 5 ’ 3 |
M5G CONTR "BY REDODED BITS OF|m
RGB (39 - 46) ' —
49 BITS WD#3 WD#1 | |49 BITS | WD#4 16 * 63
49 BITS| 79 BITS | WD#2 ’ [LOG
6 oy ~] T
lst LEVEL OF PAT l
| 5) , 16 3
16 | 7 BSW (SHIFT RIGHT OFF END 8)
. 2nd SL OF PAT 1
= £ C
i 16 [] * > * ‘ 7 32 BITS
[3rd IEVEL OF FAT | , T
5 ‘c 17] 63 §_65 72
16 4 6 n7 9 RGC CARRI[ES[(2) |
CFA i] 4
[}
48 BITS 47 BITS | IATCH
56 BITS
END OF T 4 :
16 63 16 2324 3132 3940 4748 63
PARTIAL PRODUCT (3) NOT FIMAL PP, NOT | PP, PP, 00-00 | MULTIPLIER 32
L PLACES RIGHT END OFF |
. RGA Te)]
72| % CARRY OUT FROM 55 62
A cARrriEs (3) il IATCH RECODED BITS ORIGINALLY
RGC IN RGB (m’% - 38)

FIGURE 6z.

F3{ R 73 %

CLOCK TIME T 4

CLOCK TIME T5--Figure 63

Fourth Iteration - Recode 8 Bits of Multiplier Mantissa for
Fifth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) into LOG (16-63)--see footnote for clock time T3.
5. Enable LOG (16-63) into BSW (16-63).

6. Force shift right end off 8 positions to the BSW controls.
7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable BSW (32-63) into RGB (32-63).

9. Enable the stored carry in the latch to be placed in CPA bit 79.
10. Enable CPA sum (16-63) into RGA (16-63).

11. Enable PAT sﬁm and carry bits (16-71) to CPA.

12. Enable WD4 (16-63) into CPA (16-63).

13. Enable RGB (16-23) into CPA (72-79).

14. FEnable RGC (65-72) into CPA (72-79).

15. Enable bit carries into CPA (72-79).

16. Inhibit section carries.

17. Select K fuﬁction.

18. Enable clear clocks to RGA (16-63).

19. Enable load c10cks to RGA (16-63).

20. Enable clear clocks to RGB (16-63).

21. Enable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-216-

'

63 47 48 5L 5%~ 6
00-00] MUL[TIPLIER
RGA PARTIAL PRODUCT (3) NOT FIMAL
78 BITS]
16 -
[RGR YDLTIPLICAND .
55 62
MDG
16 . ~]
MSG CONTROLIED Y RECODED BITS OF
RGB (31 - 38) .
49 BITS WD#3 wo#1 |l49 BITS |wDdy 16 Y 63
49 BITS| 49 BITS | whgo [LOG
16 . 71
1st LEVEL OF PAT |
S c *
16 il 16 63
\ | 2nd ngEL OF TAT] [BSW (SHIFT RIGHT END OFF 8)
| C
F 16__ ¥ * ‘ vyl 32 BITS
L 3rd LEVEL OF FAT | ,
| ls lc 17 y 6§65 7
L~
16 — {63{61, 7 - RGCCARRIES(B') I
48 BITS 47 BITS LATCH
, 56 BITS L
ENDOFTS5 s v
16 63 16 24 3132 39 40 4748 55 56 6
PARTIAL FRODUCT (4) NOT FINAL PP, N PP, s [PP 00-00 | MULTI -
- FINAL : < 40 PIACES RIGHT
RGA RGB
17 72 H
P o (%) 8 ODED BITS ORIGINALLY

FIGURE 63.

CLOCK TIME T 5

IN RGB (22 - 30)

MDG

CLOCK TIME T6--Figure 64

Fifth Iteration - Recode 8 Bits of Multiplier Mantissa for
Sixth Iteration

1. Enable true out of RGA (16-63).
2. ‘Enable true out of RGB (16-63).
3. Enable true out of RGR (16-63).
4. Enable RGB (16-63) into LOG (16-63)--see footnote for clock time T3.
5. Enable LOG (16-63) into BSW (16-63).
6. TForce shift right end off 8 positions to the BSW controls.
7. Enable PAT sum and carry bits (16-71) to CPA.
8. Enable BSW (32-63) into RGB (32-63).
9. Enable the stored carry in the latch to be placed in bit 79 of CPA.
10. Enable CPA sum (16-63) into RGA (16-63).
11. Enable PAT,sum and carry bits (16-71).
12. Enable WD4 (16-63) into CPA (16-63).
13. Enable RGB (16-23).
14. Enable RGC (65-72) into CPA (72-79).
15. Enable bit carries into CPA (72579).
16. Inhibit section carries.
17. Select K function.
18. Enable clear clocks to RGA (16-63).
19. Enable load clocks to RGA (16-63).
20. Enable clear clocks to RGB (16-63).
21. Enable load clocks to RGB (16-63).

22. Enable clear and load clocks to CPA carries.

-218-

-61¢C-

62 63

63 31 48
[Tm PARTIAL PRODUCT (4) KOT FINAL NOT | PPy A FP; | 00-00 40
FINAL | PIACHS RIGHT
48 BITS RGB
16 63
RGR MULTIFLICAND 55 62
MDG
16 . 63 |
)BG CONTROLLED BY RECODED BITS
OF RGB (23 = 30)
VOFL_ BITS | wDf 16 B | 63
| 49 BITS |49 BITS WDF2 1.0G
L OF PA'I B
I 16 63
l gggLEVEL OF PAT BSW (SHIFT RIGHT END OFF 8)
16, 32 BITS
{ 3rd LEVEL OF FAT i :
S C 17 & 63‘ 65 72
16 y 6364 LY §79 Z
vy] R CARRIES(ll)
48 BITS 47 BITS | IATCH
56 BITS J
END OF T 6:
16 63 16 23 2, 3132 3940 4LT48 55 56 63
PARTIAL FRODUGT (5§) NOT FINAL PP NOT FINAL| PP, PP, PP, FPy 00 - 00
RGA RGB
17 55 62
% CARRIES (5) RECODED BITS ORIGINALLY IN
RGB (16 = 22)
RGC 2=
CIOCK TIME T 6

FIGURE 64,

CLOCK TIME T7--Figure 65

Sixth Iteration

1. Enable true out of RGA (16-63).

2. Enable true out of RGB (16-63).

3. Enable true out of RGR (16-63).

4. Enable RGB (16-63) into LOG (16-63)--see footnote for clock time T3.
5. Enable LOG (16-63) into BSW (16-63).

6. Force shift right end off 8 positions to the BSW controls.
7. Enable PAT sum and carry bits (16-71) to CPA.

8. Enable BSW (32-63) into RGB (32-63).

9. Enable the stored carry to be placed in bit 79 of CPA.
10. Enable CPA sum (16-63) into RGA (16-63).
11. Enable PAT sum and carry bits (16-71) to CPA.
12. Enable WD4 (16-63) into CPA (16-63).

13. Enable RGB (16-23) into CPA (72-79).

14. Enable RGC (65-72) into CPA (72-79).

15. Enable bit carries into CPA (72-79).

16. Inhibit section carries,

17. Select K function.

18. Round (optional).

19. Enable cleaf clocks to RGA (16—63),

20. Enable load ciocks to RGA (16-63).

21. Enable clear clocks to RGB (16~-63).

22. Enable load clocks to RGB (16-63).

23. Enable clear and load clocks to CPA carries.

-220-

16 v 63 +— 23 2,9 313 7D 4748 55
RGA PARTIAL PRODUCT (5) NOT FINAL FP, PP, PP, PP, PPy 00 - 00
NOT FINAL _
48 BITS RGB
16 63
RGR MULTIPLICAND
55 62
16 I - 63 MDG .
|¥sc conTROLIED BY RECODED BITS F
OF RGB { 16 = 22) ‘
49 BITS WD#3 | WD#1 |49 BITS _%L 16 K| 63
49 BITS| 49 BITS 2
16 y 71 LOG
, OF PAT 1
s is I C
S 16 71 63
= | 2nd LEVEL OF PAT 1 BSW (SHIFT RIGHT EKD OFF g)
| S C -
16 v 7 32 BITS
LEVEL OF PAT 1
S c -]
' 17 63Y 65 72
16 | 63 6 RGCCARRIE[S (]5)
[o&
48 BITS 47 BITS TATCH |
56 BITS ,
END OF T 7 :
16 63 16 2324 3132 3940 63
PARTIAL PRODUCT (6) NOT FINAL PP6 NOT FIMAL PPS PP, FP3 | PP, PPy
RGA | RGB 55 62
17 72
NO FURTHER RECODING
2 CARRIES (6)
MG
RGC
65. CLOCK TIME T 7

FIGURE

CLOCK TIME T8--Figures 66 and 67

Form the Final Product

1. Enable

2. Enable

3. Enable

4, Enable

5. Enable

6. Enable

7. Enable

8. Enable

9. Enable

10. Inhibit section carries.

11. Enable
12. Enable
13. Enable
14. Enable
15. Enable
16. Enable

17. Enable

true out of RGA (16-63).

true out of RGB (16-63).

the group carries within the CPA.

RGA (16-63) into

bit carries into

bit carries into

RGB (16-23) into

CPA (16-63)--see footnote for clock time T3.
CPA (64-79).
CPA (16-63).

CPA (72-79).

RGB (0-7) into CPA (64-71)%*.

RGC (65-72) into

CPA (72-79).

stored carry in latch to be placed in bit 79 of CPA.

CPA (16-63) into
RGB (16-63) into
LOG (16-63) into
CPA (72-79) into
BSW (24-63) into

00111111

case of normalization.

RGA (16-63).
LOG (16-63).
BSW (16-63).
RGB (16-23).
RGB (24-63).

into RGB (0-7) for exponent correction in

18. Enable clear clocks to RGB (16-63).

*The gates in CPA (64-71) which receive RGB (0-7) are enabled, but RGB
(0-7) are not enabled out of the B register. Thus all zeros are placed
on one input to each of the corresponding CPA input gates that receive

At the same time those gates are not enabled (S=1, see

Figure 67, so that CPA (64-71) receives all ones.

RGB (0-7).

-222-

19.

20.

21.

22.

23.

Enable load clocks to RGB (16-63) if not rounding.
Clear RGA (0-15) on EXP UF and not normalized.
Clear RGA (16-63) on EXP UF and not normalized.
Load RGA (16-63) when normalizing and E=E1=1.

Enable load and clear clocks to LOD latches.

-223-

16

'

RGB

RGA PARTIAL PRODUCT (6)
NOT FINAL

63 16 § 23 2 3940 47 63
PP PP PP PP PP PP
o 5 4 3 2 1
FINAL

63

R
m RGC CARRIE

48 BITS

16 :U62*64 n 7

i 6 o

CPA CONTAINS BSW (NO SHIFT IS
. TRANSMITS FERFORMED)
~ FOR POSSIBLE
8 " CARRY
48 BITS 8 BITS
VEND OF T 8: FORCE - 110 IF NORMALIZE
0 15 16 63 0 1 f 7 8 15 16 63
N EXPONENT PARTIAL PRODUCT + 0l1—11 DON'T PARTIAL PRODUCT
RGA RGB
FIGURE 66. CLOCK TIME T 8

TR.

BSW 0
| i 0
| 1
| | TRUE 1
crPA |)
| P
CPA(L1) \ c
_ COMPLEMENT
(1) RGA; S=SELECT
CARRY PROPAGATING ADDER (CPA)
s _D___
| OUT = Xs
(2) PATS. j Xi
)
_ 5%, ® Y1 ® 23
(3) RGB.
=1)—
(L) WDy
s]) S E
—_———‘J Y - - -
i Ci-XiYiZi+XiZiYi+YiZiXi
() RGCi ‘
S
(6) BC.
}__ a; | s |lour
. 110 |]4
2.
.] l 1
(OPADci - A 2. ol1 Il
‘ IN MULT (T.-T.,) use (2), (ui, (7)s
(15) 7" use (105 (5); (6)
FIGURE 67. T

CLOCK TIME T9--Figure 68

Normalize Final Product

1.

10.

i1.

12.

13.

Enable true out of RGA (0-63).

Enable true out of RGB (1-7, 16-63).
Enable CPA sum (64-79) to RGA (0-15).
Enable CPA sum (16-63) to RGA (16-63) .
Clear RGA (0-63) on UFL or bit 16 is ZERO (UFL + Al6).
Load RGA (0-63) on UFL; UF; Al6; Al7.

Enable clear and load clocks to F bit mode register.
Enable exponent underflow into mode register.
Inhibit clear clocks to RGD.

Enable RGA (1—63) into CPA (65-79, 16-63).

Enable RGB (1-7) into CPA (65-71).

Inhibit section carries.

Restore the sign of RGA (0).

-226-

0 0 1 7 8 15 16 17 63
+
G A OR | EXPONENT PARTIAL FRODUCT RGB 0111111 | DON'T PARTIAL PRODUCT
- SUM (48 M.S.B.) CARE (48 L.S.B.)
/ C——
| .
16 ' 63 6 T 72
CPA 0111111 | 1111111 IF NOTHING IS ENABLED
' INTO CPA (71 - 79) FROM
RGB (8 - 15) THEN
. CPA "SEES™ 1'S FROM
IF RGA 17 =1 RGB (8 - 15).
IFRGA 17 =1
' END OF T 9:
N
N
.
0 1 15 16 63 0 15 16 63
SIGN FINAL NORMALIZED 1 DON'T PARTIAL PRODUGT
EXPONENT PARTIAL PRODUCT CARE (48 L.S.B.)
SUM (48 M.S.B,)
RGA RGB
FIGURE 68. CLOCK TIME T 9

D. Division

1. Introduction. 1In ordinary division, given two integers X and Y

called dividend and divisor, respectively, two other integers are found;
namely, the quotient Q and remainder R which satisfy the following

conditions:

a. R=X-YQ
‘ <
b ||

Division is always performed by comparing the divisor with the
dividend or the partial remainder and forming the quotient by guess. The
correctness of the guess is determined by subtracting the product of
the newly guessed digit of the quotient and the divisor from the dividend
in the initial step and from the partial remainder in the consecutive
steps. From the above relations it is concluded that if the signs of
dividend and divisor are the same (+ or -), then the sign of the quotient
is positive, otherwise it is negative. The sign of the remainder is
always the same as the sign of the dividend. The factor that determines
whether or not the newly selected digit of the quotient is wvalid is the
sign of the result of the subtraction. If the sign of the result is the
same as the sign of the dividend or partial remainder, then the selected
quotient, is considered to be correct. If a sign change takes place,
then the newly chosen digit (of the quotient) is not correct. In that
case new guesses are made until the sign of the result of the subtraction
is the same as the sign of dividend or partial femainder. In binary
arithmetic the product of the quotient and the divisor is never greater
than the divisor and thus only the divisor is subtracted from the dividend
or partial remainders. Only one guess is required each time, because
if the result has a different sign than that of the dividend or partial
remainder, the guessed quotient bit had to be "1" and the proper choice

is 0.

-228-

2. Methods of Division. There are several kinds of division;

among them the common ones are: restoring, nonrestoring, and nonperforming.

In restoring division, the divisor is successively subtracted
from the dividend or partial remainder to generate at least one quotient
bit at a time. In single bit division which generates one quotient bit in
each clock period, the quotient bit becomes ONE any time the result of the
subtraction is positive and ZERO otherwise. The partial remainder or the
dividend in the initial subtraction and the quotient are sﬁifted to the
left by 1 when the quotient becomes ZERO and the dividend or current
partial remainder is restored.

In nonrestoring division, the cycle has two subcycles. The first
one takes care of the subtraction of the divisor from the dividend or
partial remainder, the second subcycle forms the quotient bit and shifts
the quotient and partial remainder to the left by 1. 1In this method there
is no restoration required due to a negative result in the cycle where the
negative result was detected, but in the next cycle the divisor is added
to instead of being subtracted from the new partial remainder. This, however,
requires extra logic gates to pick up (locally) the TRUE or COMPLEMENT
output of the register containing the divisor, which, from the hardware
point of view, results in an increase in cost and complexity of the machine.

Nonperforming division is the sort used in the PE. As described
above in the restoring division method if the sign of the quotient is
‘positive and the result of the subtraction is positive a ONE is entered
into the quotient; if the result is negative a ZERO is entered. If the
sign of'the quotient is negative, a ZERO is entered in the quotient bit
if the result of the subtraction is positive, or a ONE otherwise. Non-
performing division is similar to restoring division, but if the sign
of the result is the same as that of the current partial remainder
then a ONE is entered in the quotient bit if the sign of the quotient is
positive and a ZERO if the sign of the quotient is negative. If the sign
of the result and that of the current partial remainder disagree, the
result of the subtraction is ignored, the old partial remainder is shifted
to the left by one place and if the quotient sign is positive a ZERO is

inserted in the quotient register; a ONE otherwise.

-229-

3. Implementation.

a) Mantissa: The PE of ILLIAC IV has adopted the nonperforming
division method because, from the hardware point of view, it is simpler
and more economical to implement. The division can be characterized as
a "long" operation because it requires a recursive process for the generation
of the quotient field one bit at a time. This process can be described by

the following general equation:

Xi+1 = rXi - Qi+lY , 1=1,2, . . .,48 (1)
where:
X.,, = Partial remainder after the (i+1)th step of
i+l P

the division

Xi = Partial remainder after the ith step of the
division

X0 = Dividend

= The (i+1)th bit of the quotient to the right

Q.

i+l of the binary point
Y = Divisor
r = Radix

The remainder of the first step is given by:
X, =X, - QY (2)

because at the start of the recursive process the dividend is not shifted
to the left and, therefore, the first step of the division cannot be
described by (1). Further study of (1) leads us to the mechanization of
the recursive process as follows:

Since the remainder from the first step is given by:

230-

for i = 1, (1) becomes:
X2 = 2X1 - QZY »
= 2Xg - 2Q;Y - QY | (3
for i = 2, (1) becomes:
= 22x, - (2?Q1Y + 2Q,Y + Q3Y) %)
for i = 47, (1) becomes:

4T, _ (b7 46
X,g = 277Xy = (2Qp¥ + 27°QY + .o+ Qug¥) (5)

for i = 48, (1) becomes:

_ o4Bx . (48 47
Xy = 240Xy - (2%8QqY + 2VQ,Y +....+ QD) (6)

The dividend being 96 bits long occupies the A and B registers
with the most significant bits placed in A register. The dividend need not
be normalized. The divisor, which is 48 bits, must be normalized before
the division starts; it is placed in R register. Since the recursive
process requires subtraction of the divisor from the dividend, the 1's
complement of the divisor is taken into the CPA where an extra ONE is added
to the least significant bit in order to form the 2's complement of the
divisor and the result is added to the dividend. If the subtraction is
"successful," in other words the result is positive, then the quotient
bit is a ONE; if the result is negative the quotient bit is a ZERO. This
is determined by Group Carry 16 only for the first execution because the
"R sign'" latch at the beginning contains a ZERO. In the remaining steps

of the recursive process the quotient bit is determined by the content

-231-

of "R sign" latch (ONE), or Group Carry 16 which is a result of an
end-around carry from the subtraction of the divisor from the dividend
or partial remainder. An overflow can also force the Group Carry 16
to be a ONE.

Since the state of the quotient bit Q2 depends on the
state of the Group Carry 16 (G.C. 16) and "R sign" latch, it is important
to know what the variables are what set the "R sign' latch. At the

beginning, the "R sign" latch is cleared and therefore

R sign(o) =0

From the logic diagram (card B06) the equation for setting

the new "R sign'" latch is given by:

+ Al6 + CPAlé - (Rsign(i) + G.C.16)
+ Al6 - CPAl6 - (Rsign(i) + G.C.16)
+ CPAl6 ° (Rsign(i) + G.C.16) (7

!

After minimization (7) is reduced to:

Rsign(i+1) = Al6 - (Rsign(i)' G.C.16) + CPAl6 - (Rsign + G.C.16)

(1)

(8)

-232-

where i=0,1,, 48

Alé = Bit position 16 of "A'" register
CPAl6 = Bit position 16 of Carry Propagating Adder
It can be said that Rsign is set when

(i+1)

Al6 - Qi or CPAl6 - Qi are true

= Rsi .C.1
where Q Rs1gn(i+l)+ G.C.16

This means that when Qi = 0 the content of A register is
shifted to the left by 1 through the PAT because the subtraction was un-
successful. If Al6 is a ONE, this sets the R sign latch. 1If Ql = 1, the
result in CPA is shifted through the CPA to the left by 1 and it is
brought back to A register. If CPAl6 then happens to be a ONE, that sets
the Rsign latch.. In general, the Rsign latch looks like an extension of
A register to the left by 1 position.

The status of quotient bit Q1 determines the procedure
in the second step of the recursive process. If Q1 = 1, the subtraction
was "successful" and, therefore, the result is positive. This result,
which is the remaihder, is taken through the CPA back to A register, but
shifted to the left by one place. If Q = 0, the subtraction was "un-
successful," in which case the result of the subtraction is ignored and
the dividend from A register is passed through the PAT and, after being
shifted by one to the left, is placed back into A register. At the time
that the shifting of the remainder or of the dividend takes place, the
mantissa of B regiéter is shifted to the left by one place directly to
A register, thus bringing bit 16 of B register into bit 63 of A register.
At the same time bit position 63 of B register receives the first quotient
bit (Ql). After the end of the second iteration, quotient bit Q2 will
be either ONE or ZERO, depending on the sign of the result of the
subtraction of the divisor in 2's complement form from the first partial
remainder shifted»by one place to the left if Q1 = 1 or from the dividend
also being shifted by one to the left if Q1 = 0.

-233-

For the third, fourth, etc., steps the process is repeated
and performed in the same way as in the second step, but it should not

be forgotten that if Qi = 0, then X = 2Xi’ which means that if the

previous quotient bit was a ZERO, tizlnew remainder for the next execution
will be the remainder from which the divisor was subtracted to give
Qi = 0, but shifted through the PAT by one place to the left (which is
the same as multiplying it by 2).

At the end of the 48th step, equation (5) indicates that
the original dividend has been shifted 47 times to the left and the
quotient bit Q48 has been formed and, thereforfasinserted into bit location
63 of B register. The weight of this bit is 2 . Rewriting (5):

=48

2 X48 = 2

1 -1 -2 -48
Xg = (277QY + 277Q,¥ + ..oo 4+ 27, gY) (9)

In this step an additional operation takes place when a certain
condition exists. This condition is a function of the magnitude of the
dividend and divisor. It has been said that the dividend need not be
normalized while the divisor must be normalized before the division begings.

This means that:

0x< X0 <1 and L<y<1

This condition will force the quotient to be:
0<Q<1

because, as shown on the chart in Figure 69 (due to R. Davis), the quotient
varies from O to 1 only when the divisor takes on values greater than or

equal to % but less than 1.

-234-

[ty

Quotient

Range

0 L 1

Figure 69. Chart Showing the Area in which the Quotient is Valid

When the dividend is greater than or equal to the divisor
the quotient in this case would be 1 £ 0 < 2. To circumvent this the
quotient is forced to take the value % < 0 < 1 by shifting it one place
to the right and adding a ONE to the final exponent. The actual
mechanization to take care of this case is performed in the following way.

At the beginning of the recursive process (Clock Time T4)
when the divisor is subtracted from the dividend, the quotient bit Ql will

be

ONE if the dividend is greater than or equal to
the divisor,

ZERO if the dividend is less than the divisor.

At the end of the 48th step of the recursive process (Clock
Time T51) the qudtient bit Ql will be at bit position 16 of the B register
because in every clock time there is a shift of the quotient bit Ql to the
left by one place. The result of the subtraction has already determined
the quotient bit Q48 and if Q48=1’ then the result is shifted one position
to the left and is placed back into A register to become the partial

remainder for the 49th execution of the recursive process. If Q48=0 the
-235-

previous remainder is shifted one place to the left and placed into A
register through the PAT.

In the next clock time no "execution step" takes place, but
a test is made to adjust the quotient field and force it to be in the
range of % < Q < 1 in the case in which the dividend is greater than, or
equal to, the divisor. 1If bit position 16 of B register contains a ONE,
which means Q1=1,’the exponent which has already been formed (end of Clock
Time T3) is increased by ONE. If bit position 16 of B register contains
a ZERO, the exponent remains unchanged. In this clock time also, if an
exponent overflow occurs or might occur because of the increase of the
exponent by ONE, the mode register is armed to set the F bit for a fault
indication.

At the end of the 49th step (Clock Time T53), if the bit in bit
position 16 of the B register is a ONE, this register is blocked to prevent
insertion of the final quotient bit into bit position 63 and no shifting
of the quotient field is per%ormed. If bit position 16 of B register is
a ZERO, the final quotient bit is allowed to be inserted into bit
position 63 of B register, while at the same time the quotient field is
shifted to the left one place.

Rearrangement of equation (6) gives:

~48

— -1 -2 ~48
27 R, g = X = (QY + 277QY + 27°QY + o + 277, V) (10)

49
This equation indicates that Q1 has a weight of 2O and, therefore, this
bit in floating point arithmetic is to the left of the binary point. If
Ql=0 it is allowed to be shifted off the most significant position of the
quotient field and, since Q2 has a weight of 2_1, this guarantees the

range of the quotient field to be:
0<Q<1

because Q2 can be either a ZERO or ONE. This matches the requirements set
up by the chart of Figure 1 for a valid quotient. If Q1=l this implies
that Xo > Y and, thefefore, the remainder will be invalid. In this case

it was said that the exponent must be increased by one and the quotient

236~

should be shifted by one to the right. The exponent indeed is increased
in Clock Time T52, but in the 49th step B register was blocked and even
though the divisor was subtracted from the partial remainder (X48) the
quotient bit Q49 was neither inserted into B register nor was the
quotient field shifted and Q1=1 was forced to remain in the bit position

of weight 2_1, thus guaranteeing a valid quotient field:
<Q<1

The remainder in this case is not valid. The programmer has an option to
force the dividend XO to be less than the divisor by shifting XO

end off when XO > Y assuming that the divisor has already been normalized.

In this case he will guarantee Q1=0, a quotient field 0 £ Q < 1 and a valid

right one

remainder. This shifting should be made prior to the beginning of the
recursive process. If Q49=l, the‘final remainder will be equal to the
result of the subtraction of the divisor from the partial remainder of the
49th step, which is put into A register; if Q49=0 it is equal to the
remainder (X48) of the 48th step which was placed into A register as
previously described.

Therefore, the final remainder of the recursive process

which has been shifted to the left 48 times may be described by:

' 48 _. =1
-48 -i e Q1
2 X9 = X - Yi§12 Q gy =1 (11)
48 Q; =0
-48 -i+l . 1
- - if
2 X, = X, Yiglz Qg Qg = O (12)

Remember that when Q49 is not allowed to be gated into the
least significant bit of B register the state of Q49 determines the

remainder. If Q1=0 and Q49=1, then equation (12) becomes:

274 - x - 4282’i (13)
S M9 T X T Y22

-237-

In the next clock Time (T54) the final remainder which
is in the mantissa part of A register is transferred into B register
while, at the same time, the quotient which was placed one bit at a
time into the mantissa part of B register is transferred into A register.

Table 38 summarizes the steps for the development of the
quotient field. 1If the result of the subtraction of the divisor from
the dividend or partial remainder is equal to or greater than ZERO, in
which case the quotient bit is ONE, the new partial remainder is the
result of the subtraction being shifted through the CPA by one place to
the left and placed into A register. If the result of the subtraction is
less than ZERO, in which case the quotient bit is ZERO, then the new partial
remainder is the previous partial remainder, which after being shifted
through the PAT toAthe left by one is placed in A register. The latter
case can be interpreted as avoiding restoration of the remainder, a character-
istic of restoring-division, thus saving the considerable amount of time
required for the restoration of the remainder. 1In this way the result of
the subtraction is ignored because the subtraction is said to be
"unsuccessful."

Because all PEs are subject to a lock-step synchronous
operation, if the method of restoring division was used in ILLIAC 1V, it
would require an extra 49 clock times to perform the restoration, even
though some of the PEs would not have to restore. This, in conjunction
with the requirements of the nonrestoring division which has been previously
explained, was the dominating factor for the adoption of the nonperforming
method of division in ILLIAC IV. |

An example of division in the ILLIAC IV PE is to be found

on the next six pages.

-238-

Table 38. Steps of Mantissa Manipulation in 64-Bit Mode Division

CLOCK
TIME ’ ACTION TAKING PLACE REMARKS

Tl Clear "C" register for future use of PAT

T2 Shift mantissa of R register through barrel Only for
switch right end off one place and place it rounding
into mantissa part of B register.

T3 Set signs of A and B register equal. Clear
R sign latch. Set controls for shift left by

one into shift count register,

Check bit 16 of R register and set F bit if
bit 16 is zero.

T4 If result of subtraction <O, shift mantissa of
A register through PAT left by one end off, If
result of subtraction > O, then shift it through
CPA by one to the left, Shift the most signifi-
cant bit of B register into the least signifi-
cant bit of A register, Bring Q. into the
least significant bit of A regis%er.

51 Bring Qi into the least significant bit of B

register,

T52 No action concerned with the mantissa occurs
during this clock time.

153 1f result of subtraction > 0, bring it through

CPA back to A register. If Q = O, then
shift mantissa of B to the left by one and
place th into bit position 63 of B register.

T4 Interchange mantissa of A and B registers,

55 Shift mantissa of ‘A to the left through barrel b

switch until leading one is at bit 16 of A
register. Only when
normalized

6 Clear mantissa and insert zeros into sign and

exponent part of A register if exponent 4
underflow occurred.

-239-

-0%C~

EXAMPLE

GIVEN:

The dividend X, of 96 bits long, the 48 most significant of which are placed in

A register and the rest, 48 bits, in B registér and the divisor Y is placed in R register.

FIND:
The quotient field and the remainder.

SOLUTION

111100

1001

100000000000000000000000000000000O0O0O0O0O0O0OO00O0OO0OODOOO0O

D

"A" Register [I
v

I

?D

E

. N
"B" Register D

"R" Register

HOWNH<SHYO

=1%C-

Q¢= Rs
0
1
10
11
Qll 1 01
11
Q,1 1 01
11
Q31 1 01
10
Q41 1 00
00
Q50 0 10
00
Qg0 0 10
00
Q0 0 10
00
Qg0 0 10
00
Qg0 0 10
00
Qloo 0 10
00
Q1101 © 10

Rs = "R" Sign

[
oy
=

O O O O O O O © O O © © O O O ©O O O W kB KB = O
O O O © O O O O O ©0 © O O OO0 © O 0O O O K1 = O
O O O 0O 0O 0O O 0O OO O 0O o O 0o oo o oo o o o

Latch

[
=
[y

O ©O O 0O O 0O O © ©0 O O 0O 0o 0O 0O©o o O o o o o

©O O O © O © 0O 0O O 0O © O OO O © 0o © o ©o o o

= O
-t
ey

O O O 0 © © O 0 0O © © O 0o O 0o o oo © o o

©O O O O O © © © O O O 0O 0o O © o ©o o o o o o

O O O © O O O O O 0O OO OO0 © O oo oo o o o

= O
oy
[y
[
=

O O O O O ©O O © O 0 O 0O 0O © © oo 0o o o o o

©C O O O O 0O 0O © 0O 0 O 0O O 0O 0o OO0 o © o © o o

O O O O O O O O OO © 0O O o O O oo o o o o o

©O O O O O ©O O O O O © O OO0 O O oo o © o o o o

O O © ©O0.0 O O © © © O O © OO O 0o 0o O o o o o

= O
=
)

C O O O O O O 0O © O OO © O O © oo 0o o o o o

O O O © O O O O O 0O O O O O O O 0 o oo o ©o o

©C O O O 0O 0O O 0O O 0O O 0o ©Oo © 0o 0o O o ©o o o

= o
-

©O O O O © © O O O 0O 0O 0O OO © © o o O o © © o

©C O O O O O O 0O O O 0O O OO 0O O 0o o o o o o

= O

= O
-

©O O © O © O O © O O O O O O O © o o O o ©o o o

© O O O © 0O O O © O 0 0o OO O 0o 0o O o o o o

= O
=
—
[y
oy
=
awy

© O © O O O © 0 O 0O O 0o 0O 0 O © oo 0o o o o

©C O O O © © © © O O O O O © O © © 0o © © ©o o o

O O O O ©O 0O O ©O O 0O O OO O o © 0O o o o O o o

© O ©O O O © © O O 0O O 0O O 0O O © ©o O o oo o o

O O O O O O O O O 0O O O O O © O 0O o o o o o

O O O O O O O O O O O O O OO O o o 0o o o o o

© O O O O © O O O O 0O O 0 © O © 0 0o 0o ©o o o

= O

©C O © O O © O © O O 0O O 0 O 0o © 0o 0 © ©o o o o

= o

O O O O O O O O O © O O O o O O 0O 0o oo ©o o o

- O
-
-
[y
-
-
ooy
oy
[
[y
(=
[y
foy
[usy

O O O O O © O O © O © ©0 0O O 0O ©o oo O o ©o o o

© O O © © © O © © O © O O O © © 0o 0o 0o o o o o

O O © O O O O © O O © 0O OO © © © 0o © 0o o ©o o

O O O O O O O O O O O 0O OO0 © O 0o 0o 0o o o ©o o

O O O O O © ©O O O O 00 o 0o 0o o O o ©o o o o o

H M O O O O O O O O 0O 0O O OO0 © O O 0o o ©o © o

© O M +H O O O O © © © 0 O 0O © © 0o 0o oo ©o o o

O O O O = = O O O O 0O 0O 0O OO0 O 0o o O o o o o

© O O O O O B B OO O O O 0O O O O O O O o o o

O O O O O O O O = =~ O 0O 0O 0O 0 OO0 0 0o o o o o o

© O O O O ©0 © O O O H +HH O o C© O 0 0 © o © o o

O © O O O © O © O © © O =B = O OO0 O © © © o o

©C O O O ©O © O O O O ©O 0O 0O O = = O O O O © o o

O O ©O O O O O O 0O O O 0O 0O 0O © © = M= O O O O O

O O O O O O O O O O O O 0 0O 0o © © © +H +H O O O K+ = O

IR

T+1
X

Xg +Y¥+1
2x1
2x1+%Y
2x2
2x2+%Y
2x3
2x3+%Y
2x4

2 x4 +%
2x2x4
2x2x4
23x 4
x4+
24x 4

24x 4+ Y
25x 4
x4+
26x 4

26x 4+
27x 4

2% 4+ ¥

Clock Time

T4

5

T6

T7

T8

T9

T10

Tl1

T12

T13

Tl4

A A

Q4= | Rs Clock Time
000000000000000000000000000000000000010000000000 28x 4
Q120 0 100000000000000000000000000000000000010000000000 Bra+v 41 Tlé
000000000000000000000000000000000000100000000000 2% 4
Q30 © 100000000000000000000000000000000000100000000000 x4 +T+1 T17
000000000000000000000000000000000001000000000000 21ox 4
Q40: O 100000000000000000000000000000000001000000000000 2% 4+7+1 T18
000000000000000000000000000000000010000000000000 2y 4 '
Q150A 0 100000000000000000000000000000000010000000000000 x4 +7+1 T19
000000000000000000000000000000000100000000000000D0 212x 4
Q01 O 100000000000000000000000000000000100000000000000 22 4+ 7 +1 T20
000000000000000000000000000000001000000000000000 23x 4
Q170 0 100000000000000000000000000000001000000000000000 2B 4 +T4+1 T21
000000000000000000000000000000010000000000O0OOO0DO0O0O 21%% 4
Q180 © 100000000000000000000000000000010000000000000000O0 4+ T +1 T22
000000000000000000000000000000100000000000000000O0 2Bx 4
0 100000000000000000000000000000100000000000000000 215x 4+Y+1 T23
0000000000000000000000000000010000000000000000O00O0 2165 4
? 0! 100000000000000000000000000001000000000000G0QO0O00COCGOO 216x 4+Y%+1 T24
} j 000000000000000000000000000010000000000000000000O 217x 4
Q10 f 0 100000000000000000000000000010000000000000000000O x4+ 7 +1 T25
: 000000000000000000000000000100000000000000000000 218 4
Q01 O 100000000000000000000000000100000000000000000000 288y 4+ 7 +1 T26
000000000000000000000000001000000000000000000000 21% 4
Q230 0 100000000000000000000000001000000000000000000000 Zzzx 4+Y+1 T27
000000000000000000000000010000000000000000000000 2°7x 4
iQu01 0 100000000000000000000000010000000000000000000O0O0DO 2200 4 + T+ 1 T28

Rs = "R" Sign Latch

A

Q= | ®s
Q50 1 0
Q60 | ©
Q70 | ©
Q0 | ©
Qg0 | ©
Q300 | 0
Q310 | ©
Q3,0 } O
Q330 } ©
Q3,0 § ©
Q350 | ©
Qe | O
Q370 } 0
Qg0 £ 0

©O B O H O H O B O B O +H © i+ O+ O H O = O = O = O R O
O O O O O O © O O O O 0O © 0 OO0 O O OO0 © 0O o O 0o o o
©O O O O O 00 © O 0 © 0 0 000 O o O O o 0o o © o o o
O O O O O O © O © 0O O O O O O OO O O © oo o o o o o ©

1

0

0

Rs = "R" Sign Latch

O O O © © O 0O 0O © O O O O O O OO O 0O 0O o 0O O o O © ©o ©
©C O © © © O © O © © © © © © © OO0 O O O © o 0o o o o o o
© O O © © © © O © 0 O O O O O OO0 O © O © O © o o o o o
© O O O O © O 0O © © O 0O O 0O 0O 00O O O O O © 0o © o ©o o
©C O © O O O O O O O © © © 0O O OO 0O O © 0O oo 0 o o o o o

© O O O O O © O 0O 0O O 0O 0O 0O O OO O OO0 o o o o ©o o o o

© O O O O O O O 0O O 0O O 0O 0 0O 0O 0 0 oo © o 0o o 0o o o o

= = 0O O O 0 O O O O ©0 O 0O O © ©O0 O 0 © ©o ©o 0 0o ©o o o o

O O = H O O O O O O O O O O OO0 oo o O o © © o o ©o o o
© O O O # B O O O O O 0O O O O © 0O 0O 0O O 0O 0o 0o © o o ©

© O O ©O O O B +H O 0O O © 0O 0O 0O 00 O O 0o oo o o o o o
© O O © O © © O = = O 0O O 0 0 OO O O O 0O o O o 0O o o o

© O O © O O © © © O = H# O O O OO0 O O © 0 0o 0O o © 0 o ©

© © ©O © O © © O O 0O © O = mHEH O OO0 O O O O 0O O o © © © o

© © O © O O O O O 0O O O O O+ HOOO OO OoO OoOo o o o o o
O O © © O © © 0O 00 O 0O O © O O = 0O O o0 0 0 o 0o o o o

© O O O O © O O O O O 0O O 0O O OO0 O - m O O O 0O © o o o
© © O O © O O O 0O O O O 0O O O OO0 O O© O r e# O O © © o o

© © O O O © © ©0 O 0O © 0O O O © 00 © © © O O = = O 0 O ©

© O © O O O O O © O O O O O © OO0 O O 0O © © O © © O - M=

© O © ©O © O O 0O O O 0O O O 0O O 0o o O o © o oo o o o o

O O 0O 00 0O 00 OO0 0O 00 00 000 0 00 0 0 o 0 o0 o o
O O O O O O O 0O O 0O © O O 0O 0o OO0 O O o o O O o o o o o
© O O O O O © 0O 0O O 0O 0O 0 0O 0O 00O O o O O © o o o oo o o

© O O 0O O ©0 0O 0O 0O 0 © © OO 0O O 00 o0 o o o o © 0 ©O© o o

© ©O O O 0O 0O © 0O 0O 0O O O 0O 0O OO0 O O 0o © O o o o o o
© O 0O 0O © O 0O 0O 0O 0O 0 0O O 0O 0 00 0O O 0o o o o o o o o o

©O O O 0O 0 0O 00 0 O 0 0 0 OO0 o000 0 o0 0 0 00 O o0 o o

O © © O 0O O O O O O 0O O OO o oo O o oo © oo ©ooo o o
o O O O O O O 0O O © © O O 0O 0O OO0 o oo o O o o o o o o
o O O O 0O O 0O 0 OO O O OO0 0o o o o o ©o oo o o o o
o ©O © O O © © © O © © © © © 0O 00O © O O 0o 0 o o o o o o

©O O O O O O O O O © © © O 0O O OO0 O © O O 0 0o O O o ©o ©
© O O O O 0O O O O O O O O 0O O OO0 O O O O o © o o o o o
S O O O O O O O O O O 0 0O 0O O 00 O O o0 oo o o o o o

o
o
o
o

O O O O O O O O © O 0O O O 0 OO0 o oo o o ©o © o o o o
© O O © O © © O © ©O O O © 0 OO0 0 o o0 0o o o o o ©
©O O © O O 0 © © O O O O O OO0 o o o o o o o o o o o
O O O O O © O O O © © O O O OO0 O O 0o O oo o o o ©o o

©O ©O O © © © O 0O © © © © O O 0O OO0 o O 0O © 0o o o oo o o

o
o
(=}

©O O © O 0O O O O O © © O O 0O OO0 0o ©0 oo © o o ©o o ©o o
O © © O © © © © O O © O 0O 000 O O o O O 0o o o o o o
O O O O © O O O O O 0O 0O O 0 OO0 o O Oo© O o o o o o o

221x 4

24ty
222x 4
222x 4 + Y
223¢ 4
223x 4+3
22% 4
2% 4 4+ T
225x 4
225x 4+ ¥
226x 4
2254 + %
227x 4
2%7x 4 +
228x 4
228x 4+
229x 4

229x 4L+ Y

230x 4
230x 4 +
231x 4
231x 4+
232x 4
2320 4 + ¥
233x 4
233x 4 +Y

234y 4

]

=l

1]

234x 4+Y

Clock Time

T29 ‘
T30
31
T32
T33

T34

T35
T36
137
138
39
T40

T41

T42

-7hC-

Qi= Rs
000
Q390 | 0 100
000
Qe | 0 100
000
Q410 0 100v
0600
Q0 | 0O 100
000
Q430 0 100
000
Q0! 0 100
000
Q50 | 0 100
000
Q460 0 100
001
QM | 0 101
010
Qgd | 0 110
100
Qol |1 000

Rs = "R" Sign Latch

O O O © © © = = © OO0 O 0O O © O 0 0 o © ©o o
© O O O O © © ©O = O O O © O O © ©0 o o ©o o
O O O O © O © O O Ok = O O O O O O © ©o ©o o
© O O O O O O O 000 O+ H+H O O O O o o o o

O © O O © O 0O O 0O OO0 © © O B O O O o © ©
©O O O O © © © O 0O OO0 O 0O ©O © ©O = =~ O O O ©
©C © O O O O © O O OO0 © O O © © © © = = O O

© O © © © © 0O O © OO0 © O O © O © © © © K =

O O ©O O O O 0O 0O 0 OO0 OO ©O O 0o o 0o o o o o

©C O O © © © 0O O 0O OO0 O © © © O © o o o ©o o

© O O O © © O O O OO0 O © © © O o 0o o o o o
O O O O ©O O O 0O OO0 © 0 © O 0o 0o o o o o o
O O O O O O O O O OO0 0O 0O 0O 0O O O 0O 0o O o o
O © O O © © O O © OO0 © 0 © © O ©0 © 0o o ©o ©
O O O O O O 0O O 0 OO0 O O O O O o o o o o o
©C O © O O O O 0 OO0 OO 0o oo o o o o o

O O O O O O O O O © 0O o O o o o o o o o o©
© O O O © 0O 0O 0O O OO0 OO O © oo o © o o o
© O O O © © 0 © ©0 ©O0 © O 0 © 0o ©o ©o o o o
O © O O © © O OO 000 © o © © 0o ©o o © o ©
O 0 0O 0O O O 0O 0O 0O OO0 O 0 o o oo © o ©o o o
©O O O O O 0O 00000 OO0 0o 0o 0 0o 0o ©o o o o

O O O O O © O © 0O OO0 O O O O O O O ©o o o o©
O 0O O O © O 0O O 0O OO0 OO0 O 0o o 0o o0 oo o o o

O O O O © © 0O 0O O © 0O © © O O O O © © ©o O O

©O O O O O O O © 0O OO0 OO0 © 0o © © © © o o ©
O O O ©O © O 0 O O OO0 OO0 © o 0o ©o © ©o o ©o o

O O O © O © © O 0O © 0O ©© © 0o 0o o0 0o o o o
0O 0O O © O 0O 0 OO0 OO0 OO O O O © ©o o o o o
O 0 O O 0O O 0O 0O 0O OO0 OO o ©O oo © o o o o
O ©O O O O O 0 O O OO0 OO © ©O 0o ©o O o o o

©O O O ©O O O © O O OO0 © o O O o ©o © o ©o o ©
O O 0O 0O O O 0O OO0 OO0 OO ©o ©o 0o ©o o o o o o
O O O O O O 0O O O OO0 O 0O O o 0O oo O o o o

©O O O O © O ©O 0O 0O OO0 © 0O 0 © 0o oo o o o o

© O O © © ©O O O O OO0 © o © 0o o o0 o o o ©
O O O O O O 0O O O OO0 © O O © © © © ©o o oo ©
O O O O © O O O O OO0 ©O 0O 0 O OO 0o 0o o o o o
O O O © O O 0O 0O O OO0 OO O 0o 0O 0O 0o © o o o

©C © O © O O 0O 0O OO0 OO0 o o 0o ©o © o o o o
©O O O O O O 0O OO OO0 O O oo o ©o oo © ©o o o
O O O © © © O O O OO0 © O O O © © ©o o o o-©°©
O O O O O © 0O O 0 OO0 OO 0o ©0 o o o o o o o

M O O O O 0 OO 00 © 0O 0o oo o o o o o o

235x 4
235x 4+
236x 4
23%% 4 +
2% 4
237x 4 +
238x 4
238x 4 +
23'9x 4
P4+
2 x4
240}{ 4+ 9
241x 4
241x 4 +
242x 4
242x 4 +
243x 4

243x 4+

244:: 4
244:: 4+3
Zl‘sx 4
245x 4+%

=]

=l

]|

<l

=

=

Clock Time

T43

T44

Th5

T46

T47

T48

T49

T50

51

T52

53

0

00 0 6 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 O
Q27 Q28 Q29 Q30 1 2 3 4 Ws 6 B7 Ws Wy Uo U1 U2 Uz Us Us Ue U7 Us

1 12 11 0 0 06°0 0 0 0 0 0 0 0 0 0 O O 0 O O 0 0 0
Q Q Q Q Qb Q% Q Q@ QW Qo 1 A2 U3 Us Us e U7 Qs Uy Wo W1 W2 W3 W4 W5 e

o 0 6 0 0 0 0 0 0 0 O O O O O O 1

‘0o 0 0 0 0 0 O 0 O O O ©

»
»

o 0 0o 0 0 0 0 0 0 0 O O0 O
R EM A I NDER

0 0 06 0 0 0
B1g B17 Big Big Byo Bp1 Bap Ba3 Byy Bys Byg Byy Bag Bag Byg By Bap Bas B3y Bys Byg Bsy Byg Byg Bao Bay Bap B3 By Bus Bue Baz Bag Bag Bsp Bsy Bsp Bsy Bsy Bss Bsg Bsy Bsg Bsg Bgg Bgy Bgy Bgs

-S%g~

»

A" Register

"B" Register

154

Let us now check our answer:

- 1,1,1_.1
The dividend = 3 + 5 + 3 + 16
L]
= 76 (base 10)
1 , 1
The divisor = 2 e =3 (base 10)
The expected 15
quotient = 16 15 7
'—j:— = 5 (base 10) = 1-§ (base 10) = 1.1112
2

The quotient is greater than 1. Since Q1=1 the 49th quotient
bit is ignored, but at the same time the exponent is increased by one and
Q1=1 remains in position 16 of B register. Increasing the exponent by one
is equivalent to multiplying the mantissa.by 2.

The quotient obtained is:

1

15
16 16 (base 10)

1
+§+

&=

= _1
quotient = .11112 =3 +

but with the exponent increased by one, the result is:

emt = 15, o 15 .7
quotient = 16 * 2 = 8 (base 10) =1 3 (base 10)

which is that expected.

b) Exponent: In division the exponent'of the divisor is sub-
tracted from the exponent of the dividend and the result is placed in the
exponent part of A register. As stated previously, the dividend is placed
in A and B registers and the divisor in R register. At the beginning of
the division process (Clock Time T1l) the exponent of the divisor, through
the operand select gates (0SG), is gated into the exponent part of B

-246-

register which has just been cleared and allowed to be loaded with the
exponent of R register. 1In Clock Time T2, the exponent remains un-
changed because this time is used only to adjust the mantissa of B
register when the option of rounding is used. 1In Clock Time T3 the

TRUE output of the exponent part of A register is taken into CPA, while

at the same time the COMPLEMENT output of the exponent part of B register
is brought into CPA. The result of the addition (difference of two
exponents) is brought into the exponent part of A register. If the option
of normalization is not used this exponent is the final exponent of the
quotient, unless the first bit of the quotient happens to be a one, in which
case this exponent has to be increased by one. If normalization is to
take place in Clock Time T3, the binary number 0 111 111 is placed in the
OUTER exponent part’of B register for exponent édjustment as was explained
in the description of addition. In Clock Time T56 the exponent of A
register is adjusted by the ambunt-of-cortection bits from thé exponént
parf of B register, which is direct1y~re1ated to the amount of places

the leading ONE of the quotient filed was moved to the left in order

to occupy bit position 16 of A register. The leading ONE detection and
the insertion of the correction bits into the exponent part of B register
is done at Clock Time T55. '

Since the exponent is formed and subject to changes in
different clock times of the division process, Table 39 summarizes
the steps for the formation of the exponent.

It was said that the divisor must be normalized before the
recursive process begins while the dividend need not be normalized. The
need for normalization of the divisor stems from the need to establish a
fixed reference point for the alignment of divisor and dividend or partial
remainder and to allow determination of the difference in their magnitudes.
This reference point corresponds to the binary point of the A and R
registers.

The way the machine has been implemented if the leading one
of the divisor is not placed at least one place to the left of the leading

one of the dividend the result of the division will not be correct. But

~247-

Table 39. Steps of Exponent Manipulation in 64-Bit Mode Division

CLOCK
TIME ACTION TAKING PLACE : REMARKS
Tl Exponent of R register is transferred to L
- the exponent part of B register.
T2 This clock time does not concern the exponent.
T3 Exponent of A and B registers is brought
into CPA, The result of addition is brought
back to exponent of A .
The binary number O 111 111 is inserted into
OUTER exponent of '"B" register. Tests for ex-
ponent overflow / underflow are made.
T4-T51 .
No action concerned with the exponent occurs
T53-T54 during these clock times.
T52 Increase exponent of A by 1 if Qi =1 and
set F bit if exponent overflow occirred,
T55 The leading one detector determines amount
exponent is to be adjusted. This amount is inserted
into the exponent of B. Only if
‘ : normal -
T56 The exponent of A and B registers is brought ized
into CPA, The result is transferred back to the e
exponent part of A register. '

~248-

when the comparison and the proper shifting of the divisor (so that its
leading one, compéred to the leading one of the dividend, would be one
place to the left) are aﬁtempted it 1s much simpler to normalize the
divisor, because the magnitude of the divisor does not change. This is
true because, when we normalize the mantissa, the exponent of the divisor
is reduced as much as the leading one was shifted to the left in order
to be at bit position 16 of the R register. Another advantage obtained
by normalizing the divisor is that, when bit position 16 of R register
and is found to be a ZERO, it indicates that the divisor is ZERO because
the divisor is assumed to be normalized. 1In this case the F bit is set
to indicate that there is an exponent and mantissa overflow and therefore
the result of the division is not correct. Another approach to the
assurance of a correct result that could be implemented is, instead of
shifting the leading one of the divisor at least one place to the left of
the leading one of the dividend, the leading one of the dividend could be
shifted one place‘to the right of the leading one of the divisor, but such
would require extra programming time. When the divisor is normalized the
dividend does not have to be less than the divisor but in some cases it
must be less than twice the divisor.

There will be a case, however, when the programmer may decide
not to normalize the divisor, even though he is aware that the F bit will
be set anyway, because.the machine has been implemented in such a way that
if bit 16 of R register (divisor) is ZERO, the F bit is set. The process
may continue and the result can be considered as correct if XO < 2Y. Since
the F bit is set also when the divisor is ZERO, the programmer can check
his result. In this case the qubtient field will contain all ONES, because
the divisor in 2's complement will produce a carry which will result in
setting the quotient bit to ONE in every execution of the fecursive
process. The same reéult will be obtained even if the dividend contains
all ZEROSFprovided the divisor is a ZERO number also.

It was also said that the dividend being 96 bits long is
placed in A and B registers and the divisor, which is 48 bits long, is

placed in R register. The reader may wonder why the dividend must be twice

-249-

as long as the divisor and also what happens if the dividend is restricted
into a 48 bit long register.

The dividend represents a number which can be used either
in floating point or fixed point arithmetic, and therefore, it is best to

examine each case separately.

1) Floating point: In multiplication, the final product

of two operands 48 bits long comes out to be 96 bits
long. When a program calls for division, this
operation is executed after the operation calling for
multiplication, if there is any, the result of which
is 96 bits long, with its most significant bits
placed in A register and the least significant bits
in B register. Recalling that by definition the
accuracy of a nunmber is the number of bits which have
significance, the dividend being 96 bits long allows
accuracy in the division process consistent with that
of other arithmetic operations performed by the PE.
We can arrive at the same conclusion through the
argument that, since it is desired that the quotient
field be a 48 bit number as a result of division of
‘a dividend X by a divisor Y 48 bits long and since
the dividend can be obtained by multiplying the
quotient by the divisor, provided the remainder is
ZERO, the dividend X must be a 96 bit number. If
accuracy is not of great concern, the dividend can be
a 96 bit number with the most significant bits in A
register and éll ZEROS in B register (case of rounding).
In this case

dividend X .| < 2 x divisor Y

0

-250-

2) Fixed Point Arithmetic:

e Fractional number: In this case the A register
can be filled with ZEROS, while B register will
contain the number representing the dividend.
The binary point may be considered to be between

A and B registers. In this case

divisor Y

dividend XO <
-Also, B register might contain all ZEROS in which
case the binary point will be considered to be at
the left of bit 16 of A register.

o Integer: 1In this case proper scaling of the
dividend must be performed in order to be able to

execute the recursive process. Since the

dividend X divisor

0 >

the number, after being scaled, will occupy both
registers (A’and B). It is evident that the
quotient will be an integer which cannot be held
in the proper register. By appropriate scaling, the
dividend is shifted to the right as many places.as
the programmer feels is needed, so that the result
will be a number that will not impose an overflow
condition. Of course, it will be the programmer's
responsibility to adjust the quotient by shifting
to'the left the quotient field as many places as
were imposed by the scaling factor. The binary
point in this case is considered to be at the left

of bit position 16 of A register.

-251-

Throughout this subsection shifting the dividend or
partial remainder one place to the left, either through the PAT or CPA,
has been mentioned often. But so far there has been no reference to PAT
or CPA in regards to their possession of the capability for shifting
their contents. The reader should recall the function of both CPA and
PAT during the mﬁltiplication process. The PAT has three levels, each
level receiving three inputs; namely, the partial sum, carry and word #1,
2, 3 depending on the level of the PAT. 1In division and precisely in the
first clock time (T1l) the content of C register is cleared and therefore,
there is no carfy coming into the first level of PAT. In division also
the register for the recoding scheme (MDG) is not accessed and therefore
only the content of A register is allowed to come into the first level of
PAT. The PAT is designed in such a way that the input of the first level
of the PAT, which is hard wire connected directly to A register, on the
absence of carry and word #1, 2, 3 is directed to the third level of the
PAT; the output of PAT is hard wire connected back to A register, but one
place to the left compared to the output of A register connected to the
first level of PAT. 1In other words bit position 63 of A register comes
into bit position 71 of the first level of PAT and gets out of bit
position 71 of the third level of PAT to go back to bit 62 of A register.
The interconnection of CPA and A register is similar. A-registef is wired
to the CPA, the output of which goes back to A register, but one place to
the left.

DIVISION IN 64-BIT MODE

CLOCK TIME T1

Transfer Exponent of "R" into "B" - Prepare SCR for Shifting

1.

2.

10.
11.

12.

*%

Clear RGC (0-63).

Enable COMPLEMENT OUT OF RGR EXP (0-15)*,

Enable TRUE AND COMPLEMENT OUT OF RGR mantissa (16-63)%.
Enable RGR (0-63) into 0SG.

Clear RGB exponent and sign (0-15).

Enable load clocks into RGB exponent and sign (0-15).

Enable 0SG into RGB (0-15).
IF ROUNDING

Clear shift count register (SCR).
Enable load clocks into SCR.

Enable shift right one from Common Data Bus into 0SG.
*%

Enable 0SG into Address Adder (ADA) (Outer Exponent (.

Enable ADA into Barrel Swiﬁch.

Since the contents of RGR pass through 0SG which is an inverter,
in order to have the TRUE form of RGR out of 0SG the COMPLEMENT
of RGR is gated into 0SG.

Steps 10, 11, 12 are necessary, because "shift right one enable"
into the shift count register is a CU decision and this is the
correct route.

-253-

CLOCK TIME T2

If Rounding Transfer Mantissa of RGR into RGB Shifted to the Right

End Off by One

1.

Enable COMPLEMENT of RGR (16-63).

Enable RGR (16-63) into 0SG.*

Enable 0SG into LOG.

Enable LOG into Barrel Switch (16-63).

Enable OUT from shift count register.

Clear mantissa of RGB (16-63).

Enable load clocks into mantissa of RGB (16-63).

Enable Barrel Switch into RGB (16-63).

The whole word of RGR is enabled into 0SG, but since only the
mantissa of RGB is enabled, the exponent part of RGR is already
in RGB from the previous clock time and need not be inserted
again. Therefore the mantissa of RGR shifted to the right by
one is allowed to come into RGB.

-254-

CLOCK TIME T3

Computation of the Exponent

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

Enable COMPLEMENT of RGR (16-63).

Enable the WORD # 4 x 2 path through MSG.

Enable TRUE out of sign and exponent of RGA (0-15).
Enable TRUE out of sign of RGB (0).

Enable COMPLEMENT out of exponent of RGB (1-15).
Enable exponent of RGA into CPA (65-79).

Enable exponent.of RGB into CPA (65-79).

Enable bit carries into CPA (0 -15).

Compute sign of RGA.

Clear exponent énd sign of RGA (0-15).

Enable load clocks into RGA (0--15).

Restore sign of RGA. v

Enable CPA (64-79) into RGA (90-15).

Clear R sign latch.

Clear Barrel Switch (shift counter register).

Enabie load clocks into Barrel Switch (shift count register).
Enable shift left end around from CDB inté 0SG.
Enable 0SG into ADA.

Enable ADA into Barrel Switch (shift count register).
Inhibit cleér clocks into mode register.

Enable exponent underflow depending on Valﬁes of E, El.

Enable exponent underflow into mode register (decision of CU).

-255-

23.
24,

25.

26.
27.

28.

29.

Enable exponent overflow into mode register.
Enable clear and load clocks to F bit.

Enable clear and load clocks into the INNER and OUTER underflow
latches.

Clear OUTER exponent and sign of RGB (0-7).
Enable load clocks to OUTER exponent and sign of RGB (0-7).

Enable 00111111 into OUTER exponent and sign of RGB (0-7) for

exponent correction during normalization.

Initialize iteration counter 47 times.

-256-

CLOCK TIME T4 -~ T51

Form the Quotient Field

10.

11.

12.

13.

14.

15.

16.

17.

18.

*%

Enable TRUE out of mantissa of RGA (16~63).

Enable COMPLEMENT out of mantissa of RGR (16-63).
Enable theiWORD #4 x 2 path through MSG.*

Enable mantissa of RGA (16-63) into CPA (16-63).
Enable WORD # 4 x 2 into CPA (16-63).

Enable exponenﬁ of RGA (1-15) into CPA (65;79).
Enable bit carries into CPA (64-79).

Enable bit carries into the mantissa of CPA (16-63).
Enable TRUE out of shift count register (SCR).
Enable TRUE out of mantissa of RGB (16-63).

Enable RGB (16-63) into LOG (16-63).

Enable LOG (16-63) into Barfel Switch.**

Clear mantissa of RGB (16-63).

Enable load clocks into mantissa of RGB (16-63).
Enable Barrel Switch into RGB (shifted left one).
Enable quotient bit into least significant bit of RGB (63).
Clear mantissa of RGA (16-63).

Enable load clocks into mantissa of RGA (16-63).

In step 3 WORD # 4 x 2 path through MSG must be enabled because
this is the only way to get RGR (16-63) into CPA.

In step 16 the whole word of LOG is enabled into Barrel Switch
but since the load clocks of mantissa of RGB must be enabled,

~in reality the mantissa part of RGB will pass through the Barrel

Switch and will go back to RGB shifted left one.

-257-

19.

20.

21.

22.

23.

24,

Enable PAT sum [RGA (16-63) shifted 1ef£ one] into mantissa
of RGA (16-63) if difference < O.

Enable CPA sum into RGA (16-63) shifted left one if difference > O.
Enable clear clock to R sign latch.
Enable load clock to R sign latch.

Test iteration and if the iteration counter has not counted 47

iterations repeat all steps T4 - T51. If the counter has counted

47 interactions then go to T52.

Increment iteration counter after the above testing.

-258~

CLOCK TIME T52

Increase Exponent of RGA by One if Ql =1

10.
11.
12.
13.
14.

15.

Enable COMPLEMENT out of RGR mantissa (16-63).

Enable the WORD # 4 x 2 path through the MSG.

Enable TRUE out of sign and exponent of RGA (0-15).

Enable COMPELEMENT out of sign and OUTER exponent of RGR (0-15).

Enable TRUE out of INNER mantissa of RGB (16-39) in order to see
if bit 16 of RGB is a ONE.

Restore sign of RGA (0).

Enable exponent of RGA into CPA (65-79).

Enable sigh and exponent of RGB into CPA (65-79).

Enable bit carries into CPA exponent (64-79).

Clear exponent of RGA if Ql = 1 (RBG bit 16 must be ONE in tﬁis case).
Enable load clocks to RGA if Q1 = 1.

Enable CPA sum (64-79) into RGA (0-15).

Inhibit clear clocks to mode register.

Enable clear and 1oéd clocks to F bit.

Enable exponent overflow into mode register.

-259-

CLOCK TIME T53

Test Q1 in Order to Determine Use of Q49

1. Enable TRUE out of mantissa of RGA (16-63).

2. Enable COMPLEMENT out of mantissa of RGA (16-63).
3. Enable the WORD # 4 x 2 path through MSG.

4., Enable TRUE AND COMPLEMENT out of sign of RGB (0).

5. Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or
P-—--71--1 have been enabled.

6. Force ONE from RGB (8) conditionally on R sign if FYEDITER-T or

P~=~-7I--1 have been enabled.

7. Enable ﬁantissa of RGA into CPA (16-63).

8. Enable WORD # 4 mantissa into CPA (16-63).

9. Enable exponent of RGB into CPA (65-79).

10. Enable bit carries into CPA (16-~79). j |

11. Enable output of shift count register.

12. Enable TRUE out of mantissa of RGB (16-63).
13. Enable RGB (16-63) into LOG (16-63).

14. Enable LOG (16-63) into Barrel Switch (16-63).

15. Enable clear clocks to mantissa of RGB (16-63) if bit 16 of RGB
is ZERO (Ql =0).

16. Enable load clocks to mantissa of RGB (16-63) if bit 16 or RGB
is ZERO (Q; = 0).

17. Enable Barrel Switch into mantissa of RGB (16-63).
18. Enable Quotient bit into least significant bit (bit 63) of RGB.

19. Enable clear clocks to mantissa of RGA (16-63) if the difference > 0.

-260-

20.
21.
22,
23.

24,

Enable load clocks to mantissa of RGA (16-63) if the difference > O.
Enable CPA sum directly to RGA mantissa (16-63).

Inhibit clear clocks to mode registér.

Enable clear and load clocks to F bit.

Enable clear and load clocks into mantissa of B register if bit 16
of B register is a ZERO (Ql = 0).

-261-

CLOCK TIME T54

Interchange Mantissas of RGA and RGB

10.
11.
12.
13.

14,

15.
16.

17.

k¥

Enable TRUE from mantissa of RGA (16-63).
Enable RGA into LOG (16-63).%*

Enable LOG into the Barrel Switch.

Enable TRUE from mantissa of RGB (16-63).
Enable RGB into CPA (16-63).

Enable clear clocks into RGB mantissa (16-63).
Enable load clocks into RGB mantissa (16-63).

Enable Barrel Switch (which contains RGA mantissa)_into RGB mantissa
(16~-63).
Enable clear clocks to RGA mantissa (16-63).

Enable load clocks into RGA mantissa (16-63) .%*%*

Enable CPA éum (which contains RGB mantissa) into RGA mantissa (16-63).
Enable clear clocks into RGA mantissa (16-63) .%*

Enable load clocks into RGA mantissa (16-63).%*

Enable COMPLEMENT out of RGR INNER mantissa (16-39) in order to test
whether bit 16 is ZERO or 1 and therefore to detect if the divisor

is normalized or not.
Enable RGR (COMPLEMENT) into mode register for unnormalized divisor.
Inhibit clear clocks into mode register.

Enable clear and load clocks into F bit.

In actuality the whole word of RGA is enabled into LOG but, since
only the mantissa of RGA was enabled, only the mantissa part of LOG
is effectively used.

From steps 10 and 13 above it can be seen that: The mantissa of RGB

is allowed to be transferred into the mantissa of RGA only if normaliz-
ation is performed or the exponent underflow latch is low (contains
ZERO) and normalization is not performed. However, step 12 clears the
mantissa of RGA and therefore the mantissa of RGA contains ZEROS only
if the exponent underflow latch is HIGH (contains ONE) and normaliz-
ation is not performed.

-262-

CLOCK TIME T55

If Normalize, Adjust Exponent in Two Clock Times (TSS’ T56) Detect

the Leading ONE of Mantissa of RGA and Shift Accordingly

10.

11.

12.

13'

Enable the leading one detector (LOD) for divide-64.
Enable TRUE out of RGA mantissa (16-~63).

Enable RGA into LOG (16-63).

Enable LOG into Barrel Switch (16-63).

Clear LOD. |

Enable load clocks into LOD.

Clear sign and exponent of RGB (0-15).

Enable load clocks into sign and exponent of RGB (0-15).

Enable 001111111 corrections bits into OUTER sign and exponent
of RGB (0-7).

Enable LOD into INNER sign and exponent of RGB (8-15).
Clear mantissa of RGA (16-63).
Enable load clocks into RGA (16-63).

Enable Barrel Switch into mantissa of RGA (16-63). At this time
the leading one of mantissa is at bit position 16 of RGA.

-263-

CLOCK TIME T56

Adjust Exponent of RGA, Check for Exponent Underflow

1.

2.

10.

11.

12.

13.

14,
15.

16.

Enable TRUE out of RGA sign and exponent (0-15).

Enable COMPLEMENT of corrections bits of RGB (1-7) if there is
OVERFLOW and bit 16 is ONE.

Enable TRUE of correction bits of RGB (1-7) if there is no
OVERFLOW and bit 16 = 0.

Enable the INNER sign and exponent of RGB (8-15).
Enable RGA into CPA (64-79).

Enable RGB into CPA (64-79).

Enable bit carries into CPA (64-79).

Restore sign of RGA (0).

Clear sign and exponent of RGA (0-15).

Enable load clocks into sign and exponent of RGA (0-15) if there is
no exponent underflow and mantissa is not ZERO or exponent underflow

latch is low.
Enable CPA (64-79) into RGB (0-15).

Clear mantissa of RGA (16-63) if there is an overflow or the latch

for exponent underflow is HIGH.

Failure to mode register conditional upon whether there is exponent

underflow or the exponent underflow latch is HIGH and the mantissa # O.
Enable exponent underflow into mode register (decision of CU).
Inhibit clear clocks into mode register.

Enable clear and load clocks into F bit.

- 264~

4.

therefore both OUTER and INNER words are enabled.

pivision in 32-Bit Mode. In this mode E = E1 = 1 and

This means that the

A register contents are not protected, which is something that the

programmer should always have in mind.

Since the recursive process was fully explained in 64-bit

mode, and because essentially the same steps are used for the 32-bit

mode, with the exception that more clock times are required for the

completion of the division, only a summary of the actions being taken in

each clock time is provided and the reader is urged to refer to the

POSFILE for more detailed information.

-265-

CLOCK DESCRIPTION OF ACTIONS BEING TAKEN REMARKS
TIME
Tl Clear RGC to allow proper use of PAT
Transfer OUTER sign and exponent of RGR into
RGB
Transfer INNER sign and exponent of RGR into
.RGB v
Prepare the SCR for shifting right by 1 end If
off ' rounding
T2 Shifted to the right by 1 end off, OUTER Only if
mantissa of RGR is transfered through rounding
the Barrel Switch into RGB
T3 Shifted to the right by 1 end off, INNER Only if
mantissa of RGR is transfered through the rounding
Barrel Switch into RGB
Subtract INNER exponent of RGB from the INNER If do not
exponent of RGA and put the result into RGA || ignore
Subtract OUTER exponent of RGB from the OUTER exponent
exponent of RGA and put the mesult into RGA
Enable INNER and OUTER signs into sign logic If do not
- and restore the sign into the sign of RGA } ignore
signs
Clear R sign latch
Check exponent overflow and underflow and set If do not
F, Fl bits ignore
exponent

T4

T5

T6

T7-T30

T31

Insert 0111111 into OUTER exponent of RGB for
exponent correction during normalization
Shift left by 8 end around enable into SCR

Enable shift right 16 end around into the
shift count register from CDB through 0SG
and ADA ‘

Set F bit if bit 16 of R register is a ZERO

INNER mantissa of RGB is placed into the
OUTER mantissa of RGB

OUTER mantissa of RGB is placed into the

INNER mantissa of RGB

The OUTER mantissa of RGA is transfered into
the OUTER mantissa of RGB

The OUTER mantissa of RGB is transfered into
the OUTER mantissa of RGA

Insert 0111111 (077)g) into the INNER expo-
nent of RGB (which contains the INNER
exponent of R register)

Initialize iteration counter to count up to
25

Enable shift right 63 end around into the
shift count register from Common Data
Bus. (CDB) through

08G and Address Adder (This is like shift-

~ ing left by 1 end around)

If the result of subtraction of TNNER mantis-
sa of R register from the INNER mantissa
of A register is > O then this result is
transferred through the CPA shifted left by
1 into RGA, 1If the result is < 0 then the
mantissa of RGA is transferred through
the PAT shifted left by 1 back to RGA.

Shift mantissa of RGB through the Barrel

- Switch left by 1 end around to provide
space for the quotient bit.

Transfer the most significant bit of RGB into
the least significant bit of RGA

Transfer the quotient bit into bit 63 of RGB
(if the difference is >0 Q, = 1, if the

-~

difference is < O then Qi = 03

Check bit 4O of RGB which contains g%. If

=1 then increase the INNER exponent of
'RGA by 1
Enable F. bit if an exponent overflow
occurred.

-266-

This is
Cu
decision

See Table
40 for

Inter-

Achanging
INNER &

OUTER
mantissas
or RGB

This is
Cu
decision

If do not
ignore
exponent

32

T33

Check quotient bit. If Q% = 0 shift
OUTER mantissa of RGB thrdugh the Barrel
Switch left by 1 end around to provide
space for Q. into bit 63 of RGB.

If the result 6f the subtraction of INNER
mantissa of R register from the INNER
mantissa of A register is >.0 then this
result is brought back to RGA through the
CPA but not shifted at all and Q25 is
equal to 1.

If the result < O then gz = 0 and the remaind-

" er is the mantisss of°RGA used for the 25th
execution of the recursive process.

Check bit 40 of RGB. If it is a ONE enable F
to indicate fault, because in this case the
-remainder is invalid.

Transfer INNER mantissa of RGA into INNER man-
tissa of RGB through Barrel Switch.

Transfer INNER mantissa of RGB into INNER man-

. tissa of RGA through CPA.

Enable shift left by 8 end around into the
shift count register from CDB through OSG
and ADA.

At this time the contents of A and B re-
gisters are as follows?

A REGISTER _
0 7 8 15 16 39 40 63
OUTER | INNER
EXP. of |EXP. of | A A B.| B.[B
A REG. | A REG. | '/ g L B
__ B REGISTER
o 7 8 1516 39 L0 63
REMATINDER QUOTTENT
0778 0778
By [R5 [Re | & | & | %

If
ignore
exponent

This is
Cu
decision

PREPARE FOR DIVISION OF OUTER MANTISSA OF
A & B REGISTERS BY THE OUTER MANTISSA
OF R REGISTER

-267-

T34

T35

T36

T37

T738-T61

At the end of clock time T

Transfer the INNER mantissa of ‘R into the
OUTER mantissa of R register

Enable shift right 16 end around into shift

count register from CDB through OSG and
ADA

Transfer the OUTER word of 'R register into
the INNER word of R register

Enable shift right 63 end around into shift

count register from CDB through OSG and
ADA. »

Initialize iteration counter to count up to
23.

Set F bit if bit 16 of R register is a
7ZERO because the divisor is assumed to
be normalized before the division begins.

If the result of subtraction of INNER man-
tissa of R register from the INNER
mantissa of A register > 0 then this
result is transferred through the CPA

- (WD # 4 x 2) shifted by one to the left

. into A register.

If this result < O then the mantissa of A
register through the PAT, but shifted by
one to the left.

Shift mantissa of B register through the
‘Barrel Switch left by one end around to
provide space for the quotient bit.

Transfer the most significant bit of B
register into the least significant bit
of A register. ‘

Transfer the quotient bit into bit 63 of B

register which will be =1 if the re-
sult of subtration > 0 or Q 1 = 0 if the
result is < O.

the contents of
A and B registers aré as follows:

-268~-

1 inter-

See
Table 41

This is
CU
decision

Remember
that the
mantissas
have been

changed

A REGISTER

A A REMATNDER
OUTER INNER
EXPONENT | EXPONENT R7 R8 R9 Rh R5 R6
B REGISTER
QUOTTIENT
o7 | 0774 -
o | % | %| 4| %%

T62

T63

If

If

Check bit 40 of B register.

Check

If it is a ONE
Q1 of the OUTER quotient is

equal to ONE in which case increase the
OUTER exponent of A register by 1.

_Enable F bit if an exponent overflow occurred.

of OUTER quotient field. If Q, =0
chif} the OUTER mantissa (Q,, Qu, Q.J Of
B register through the Barrel Swifeh left
by 1 end around to provide space for

of OUTER quotient field. In this case®”
transfer Q, into bit 63 of B register.
the result gf the subtraction of the OUTER
mantissa of R register from the OUTER
mantissa of A register is > O then this
result is brought back to A register

‘through the CPA (WORD # 4 x 2) but not

shifted to the left as in the previous
clock times. In this case Q25 = 1., If
the result is < O then Q o5 = 0 and the
remainder is the mantissg»gf A register
used for the 25%1 step of the recur-

sive process. '

bit 40 of B register (Q, = 1) is a ONE
then set T bit to indicatd fault because
since the exponent is ignored the remaind-
er will be invalid as has been previously
explained (Xo > Y case).

-269-

"ignore

If do not
exponent

is
16cated
at bit
position
LO of B
register

If
ignore
exponent

164

T65

T66

Pransfer mantissa of A register into mantis-
sa of B register through the Barrel
Switch.

Transfer mantissa of B register into man-
tissa of A regicter through the CPA.

Enable shift left by 8 end around from CDB in-
to shift count register through OSG and
ADA.

Enable clear and load clocks to F bit. At
this time the contents of A & B reg-
isters are as follows:

‘A REGISTER

QUOTIENT

OUTER INNER

EXPONENT | EXPONENT Qh Q5 Q6 Q7 Q8 Q9

B REGISTER

, REMAINDER
orT COTTg —

8 8
R| Byl Byl Ry| Bs| B

Transfer INNER mantissa of B register into
OUTER mantissa of B register.

Enable shift right 16 end around into shift
count register from CDB through OSG and
ADA.

Complete the transfer of INNER mantissa of
‘B register into the OUTER mantissa of
B register. :
Clear OUTER exponent and mantissa of A
register if do not normalize and the ex-
ponent underflow latch for the OUTER word
" is high (ONE).

Clear INNER exponent and mantissa of A re-.
~gister if do not NORMALIZE and the expo-
nent underflow latch for the INNER word

is high (ONE).

-270-

This is
CU
decision
See
Table 40
This is
CU
decision
See ,
Table 40

T67

T68

Enable TRUE of INNER mentissa of A register
into Barrel Switch through LOG.

Enable LOD to detect the leading ONE.

Enable exponent adjustment into INNER expo-
net.of B register.

Enable Barrel Switch back to A register.
At this time the contents of A & B
registers are as follows:

‘A REGISTER

A A NORMALTIZED UNNORMALIZED

OUTER INNER

EXPONENT | EXPONENT Qh Qs Q6 Q7 Qg Q9

B REGISTER

EXPONENT REMAINDER

o077
) 8 ADJUSTED| R
o il B %l %71 Bl By

Enable OUTER mantissa of A register into
Barrel Switch through LOG.

Enable IOD to detect the leading ONE.

Enable exponent adjustment into the OUTER
exponent of B register.

Enable Barrel Switch back to A register.

Enable TRUE out of INNER exponent of A
‘register and bring it into CPA.

Enable adusted exponent out of INNER exponent
of B register and bring it into CPA.

Enable CPA into INNER exponent of A re-
gister if:

There is no exponent underflow, the ex-
ponent underflow latch for the INNER
exponent is low, the INNER mantissa of
A register is not ZERO and normaliza-
tion takes place.

If exponent underflow of INNER exponent (Exp.
UF1) has occurred and the INNER mantissa is
not ZERO then the mode register indicates
failure provided that.F1 has been set on

-271-

Only if
normalize
=11~
-11-

-11-

Only if
normalizsg
-11-
-11-

-11-
Only if
normalizg

-11-

-11-

-11l-

Te69

underflow and normalization takes place.
At this time the contents of A and B

registers are as follows:

A REGISTER
A |A TINNER NORMALIZED
OUTER | ADJUSTED ,
EXPONENT| EXPONENT| Q) | @ | Q| & Qg |
‘B REGISTER
EXPONENT | EXPONENT REMAINDER
JUSTED | ADJUSTED
PD Rh Rﬁ R6 R? Ro

. Enable TRUE out of OUTER exponent of A
register and the adjusted exponent out
of OUTER exponent of B 'register, and

bring both into CPA.

Enable CPA into OUTER exponent of A re-

gister if:

There is no exponent underflow, the ex-

‘ponent underflow latch for the OUTER ex-

ponent is low, the OUTER mantissa of A
‘register is not ZERO and normalization

“takes place.

If exponent underflow of OUTER exponent
(Exp. UF) has occurred and the OUTER
~mantissa of A register is not ZERO

then the mode register indicates failure
provided F bit has been set on underflow
" and normalization takes place.

The final contents of A and B registers
-are as follows:

-272-

Only if
normalize

-11-

Only if
normalize

-11-

A REGISTER

A OUTER A INNER NORMALIZED

ADJUSTED |[ADJUSTED

EXPONENT [EXPONENT | Q| Q| 9| & | &

* B REGISTER

ADJUSTED | ADJUSTED REMATNDER

EXPONENT | EXPONENT

Rll- R5 R6 R,Z R8

-273-

2)

Table 40. Procedure for Interchanging INNER &
OUTER Mantissas of RGB

BYTES g T
I
0
A B c D c g
1 3/73 L 5 6 7 | 8 | 9 |K
IN. EXP.
B REGISTER oT7 of R B B B 1 B B T3
\ ® |REGISTER b > 6 7 2
IN. EXP,
LOG o77 of R | B B, B B B, B
8¢ | REGTSTER 4 5 6 7 8 9
IN. EXP.
BARREL SWITCH Bg of R Bg Bg OTTg B, B, Bg
REGISTER T4
SHIFT BY 8 IN, EXP,
LEFT END of R ‘B8 B9 orT7 B, B4 B5 By
AROUND KGIS. , :
IN. EXR :
B REGISTER of R Bg ‘Bg {0TTg B7 B& Bg Bg
fEGIS. /
BARREL SWITCH By | Bg B9 OTTg B, Bg Bq |077Tg
SHIFT RIGHT
BY 16 END By | OTTg B, | Bgl By |OTTg: By | Bg| TS
AROUND
CLEAR | CLEAR|CLEAR|CLEAR | / /
SRS
IN. EXP,
‘B REGISTER of R| OTTg B; | Bg| Bg' By| Bs| Bg
[REGIS. I
NOTES: 1) The shaded area indicates bytes which have not been enabled

out of RGB and therefore at the end of Clock Time T5 they
are found unchanged in their location in RGB.

B stands for B register and the subscripts 4, 5, 6, etc.,
indicate 8 bit bytes as they have been defined in the
description of the organization of the word format.

-274-

Table

41, Procedure for Interchanging INNER &
OUTER Mantissas of RGR

BYTES _ CLOCK
A B L 5 6 7 8 9 TIME
R R OUT| R IN . R . R . .
REGISTER | Exp. *|Exp. *| B4 Rs Rg R, Rg Ry
R oUT| R IN. N N N R R R
05G wxp. *|Exp. *| % | %5 Y| B Y| By ¥ Rg i Fg
R our| R 1IN
L0G EXP. |EXP. | "4 Rs | B¢ | B2 | B | B
T34
BARREL R TN R 0T o 2
SWITCH Re |mxp. | Bs Ry | mxp. 7 4 Ry
SHTFT LEFH R IN. R -OUT,
. R R
by 8 EA | EXP. Rs | Ro |Exe. 5 4 | Bs 6
R R IN. R OUT|
' REGISTER | EXP. Rg | Ro |Exp. R, o Ry Re
ENABLE SHIFT RIGHT 16 END AROUND INTO SHIFT 135
COUNT REGISTER FROM CDB THROUGH OSG & ADA
056G B R & |ROU o V) V/
EXP. 8 9 | EXP. 7 / / //
— , / /!
R IN. R OUT] R OUT
LOG EXP. Rg Ry | Exp. R, Rg Ry | Exp.
BARREL, R OUT R OUT
SWITCH Ry Rg Ry | Exp. Ry Rg Ry | Exp.
iﬁ R ROUL g R R R OUg R, R e
* . 7 8 9 . 8
T A 9 |mxp EXP
N/ CLEAR | CLEAR | CLEAR { CLEAR / / 1A
_ /& LOAD R LOAD [& LOAD fe: LOAD // / j
R R IN.R oug | R . R
REGISTER | EXP. | EXP. Bl B | Ba |By ™R *IRg

* The complement OUT of RGR is enabled because the 0SG gates use
negative logic and therefore in order to get a TRUE ouput from
the 0SG gates they must receive an input in COMPLEMENT form.

-275-

Table 42. Procedure for Interchanging INNER & OUTER
Remainder (RGB)

ES o
BYT g .
i c M
A|B | 4% |5 {6 |7 |8 | 9 |gE
B REGISTER 0778 0774 REMAINDER
R, | Rg | By | Ry | R | Re
LOG 077 |OTTg | B, | Bg | By | B, | Bs | R
BARREL SWITCH | Ry |OTTg | Ry | Rg [077g | R, | R | Ry | T65
SHTFT IEFT
by 8 EA OTTg | Bs | R [OTTg| B, | By | Bg | By

B REGISTER 8 5

. , "
AR/

TTq
BARREL SWITCH | R

y | Bs | Bg |OTTg Ry 5 6 8

SHIFT RIGHT

B O7Tg |OTTg

R | Ry | Be | Ry [Ry | By

-276-

ACKNOWLEDGMENT

The author wishes to express his thanks to Terry Gore and George Marmarou
of Burroughs Corporation for their explanatory remarks on the operation of
the PE Logic elements. The cooperation of Carl Semmelhaack of Burroughs
in clarifying the implementation of certain PE Instructions is greatly
appreciated. The author also wishes to express his gratitude to Morris
Knapp of the University of Illinois and Theodore Edlin of NASA/AMES
Research Center for their administrative assistance which helped to bring
this manuscript into existence. Special thanks are extended to Mrs.
Cynthia Economidis of the University of Wisconsin in Milwaukee for her
constructive suggestions regarding the development of this document and

to Mrs. Mildred Pape and Mrs. JoAnn Kuehl for their invaluable help during
the typing of the manuscript. ’

«277-

(1]

[2]

(3]

(4]

[5]

[6]

(7]

[8]

[91]

BIBLIOGRAPHY

" D. L. Slotnick, "The Fastest Computer," IEEE Transactions on
Computers, V.C-17, No. 8, August 1968, pp 746-757

"ILLIAC IV Systems Characteristics and Programming Manual,"
Burroughs Corporation, 66000D, IL4~PMl, Revised May 16, 1972

I. Flores, "The Logic of Computer Arithmetic," Englewood
Cliffs, N.J.: Prentice-Hall, 1963

R. L. Davis, "The ILLIAC IV Processing Elements,” IEEE
Transactions on Computers, V-C-18, No. 9, September 1969,
pp 800-816

T. Economidis, "Principles of Operation of The ILLIAC IV
Memory Logic Unit," NASA/AMES Research Center, December 1,
1971

T. Economidis, "The ILLIAC IV Processing Element Memory,"
NASA/AMES Research Center, March 7, 1972

C. S. Wallace, "A Suggestion for a Fast Multiplier," IEEE
Transactions on Electronic Computers, Vol. EL-13, pp 14-17,
February 1964

J. E. Robertson, "A New Class of Digital Division Methods,"
IEEE Transactions on Electronic Computers, Vol. EC-7,
pp 218-222 :

T. Economidis, "Power Distribution to Illiac IV Computer"
NASA/AMES Research Center, November 29, 1973

-278-

	001
	002
	003
	004
	005
	006
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278

