TEMPORARY COVER SHEET

OCUMENT NUMBER: 00000104

DOCUMENT ' TITLE: The Illiac IV Processing Element VOL I
AUTHOR: .. Theofanis Economidis
- DATE " ISSUED: April, 1974

INSTITUTE FOR ADVANCED COMPUTATION




IAC DOC. NO. PO-I11100-VvOL I-A

THE ILLIAC IV PROCESSING ELEMENT

VOLUME I

THEOFANIS ECONOMIDIS

AUGUST 1973

REVISED: FEBRUARY, 1974



SECTION A:
I.

IT.

ITI.

SECTION B:
I,

VOLUME 1
TABLE OF CONTENTS

ILLIAC IV PROCESSING ELEMENT CHARACTERISTICS
INTRODUCTION
SUMMARY OF PE LOGIC CHARACTERISTICS

A. Basic PE Logic
B. ECL Characteristics

SUMMARY OF PE INSTRUCTIONS

Instruction Word Format (FINST/PE)
Data Word Format (FINST/PE)
Transfer of Data

Modification of Data

OO w3
. - L] L

PROCESSING ELEMENT ORGANIZATION

INTRODUCTION

A. PE Logic Elements
B. PC Power Distribution

42

42

42
97



VOLUME I

LIST OF TABLES

PE Signal Representation

Truth Table of ADR Use Field and Specified Action
Transfer of Data from PE Register to PEM
Transfer of Data from PEM to PE Register

PE Register to PE Register Transmit Instructions
One~Quadrant Array Configuration (Octal Numbering)
Boolean Instructions

Truth Table of Boolean Functions

Truth Table of Boolean Functions

Nonarithmetic Instructions (Logic Comparison)
Nonarithmetic Instructions (Arithmetic Comparison)
Nonarithmetic Instructions (Modify and Test Index)
Nonarithmetic Instructions (Modify Bit of RGA)
Nonarithmetic Instructions (Transmit Bit of RGA)
Nonarithmetic Instructions (Eight-Bit Byte)
Nonarithmetic Instructions (Modify Exponent)
Right and Left Shift Count Equivalence
Nonarithmetic Instructions (Shift)

Nonarithmetic Instructions (Mode Register)

Mode Register Set Instructions

Nonarithmetic Instructions (Miscellaneous)
Arithmetic Instructions (Addition)

Arithmetic Instructions (Subtraction)

Arithmetic Instructions (Multiplication)
Arithmetic Instructions (Division)

FINST/PE Instruction Index

Shift Count Register Bit Organization

Shift Direction Truth Table

E, E1 Bits Truth Table

CU (Code) Signal for Mode Register

0SG Signal Representation

PE Card Physical Configuration (Card Side)

PAGE

10
15
21
21
21
23
23
24
24
26
25
27
28
28
29
29
30
32
33
33
34
37
38
39
40
41
50
50
52
53
83
96



VOLUME I

LIST OF FIGURES

FIGURE PAGE
1 ILLIAC IV System Functional Block Diagram 2
2 ILLIAC IV Quadrant Functional Block Diagram 4
3 Processing Element Interface Block Diagram 5
4 ILLIAC IV Processing Unit 6
5 Basic ECL Gate 8
6 Transfer Characteristics of Basic ECL Gate 9
7 Switching~-Time vs. Loading 11
8 Switching-Time Waveforms 11
9 ECL Logic Functions with Dual Outputs 12

10 FINST/PE Instruction Word Format 14
11 FINST/PE Data Word Formats 17
12 Processing Element Block Diagram 43
13 Memory Address Chain (Example) 48
14 ILLIAC IV Processing Element Adder 56
15 Functional Block Diagram of CPA and CLA 64
16 PE Barrel Switch 68
17 Functional Block Diagram of Barrel Switch and

Leading ONES Detectors : 76
18 Path of Bit at Position 20 through the Levels

of the Barrel Switch (Example) 78
19 LOG 82
20 0SG 84
21  Registers Directly Associated with PAT 86
22 MSG Input/Output Bit Organization 88
23 MDG Functional Block Interface Diagram 90
24 Driver Functional Block Diagram 91
25 Receiver Register 93
26  PU Cabinet 98
27 Power Distribution 99
28 Power Distribution in the PU 101
29 Current Paths for +1.32 V and -3.20 V Supplies 102
30 Memory Board Power Bus Configuration 104

31 Control Board Power Bus Configuration 105



SECTION A: ILLIAC IV PROCESSING ELEMENT CHARACTERISTICS

I.  INTRODUCTION

The ILLIAC IV Computer, conceived and developed at the University of
Illinois [1], is considered a milestone in the computer industry because
of its fundamental proposition for parallel processing. It is an array of
256 electrically, mechanically, .and functionally identical Processing Units
with four Control Units, each one responsible for the operation of 64
Processing Units. One Control Unit with its associated array of 64 Process-
ing Units constitutes a quadrant.

Because to date there is only one quadrant available, the ILLIAC IV
System (Figure 1) consists of:

a. one Control Unit which decodes those instructions that specify

the commands to the Processing Units (FINST/PE Instructions)
and those instructions for the operation of the Control Unit
itself (ADVAST Instructions).
b. 64 Processing Units each of which functions as an arithmetic-’
logic unit. k

c. the ILLIAC IV Disk File System which consists of two disk files
and 13 storage units (disks). Each disk file consists of an
Electronics Unit, a concentrator, and necessary circuitry to
read and write on any one of its up to 16 disks, whose capacity
is apprbximately 79x108 bits per disk, and has a transfer rate
of about 500x10® bits per second.

d. the ILLIAC IV Input/Output Subsystem used as the interface

between the Control Unit and its 64 Processing Units with the
Central System and the ILLIAC IV Disk File Systeﬁ. This sub-
system conéists of a Descriptor Controller (DC), an Input/Output
Switch (I0S), and two Disk File Controllers (DFC). The DC is
used to receive control words from the Central System over the

Scan Bus and to transmit back result descriptors over the same

;A number enclosed in square brackets signifies a particular document
referenced at the end of this manual.



CENTRAL MMP
MEMORY 86700 CPU INTERFACE
48
A | t 2 *[484
T controi"'?_»i_’:ul
ILLIAC IV lines :T—‘______h”
DISK FILE
SYSTEM '
48 *
i LECTRONICS SCAN BUS L ’
T UNTT 384 DISK FILE 128 4
r{—-—+——n CONTROLLER ‘
(EU)
DFCitl X 48
v 'I DESCRIPTOR 4
CONCENTRATOR CONTROLLER
256 {‘ —_—— ]
DISK FILE 128 4 INPUT/OUTPUT SWITCH
—N CONTROLLER ¢ 7 1(,)‘24
~ DFC#2 256 108
P "
STORAGE !
UNITS , 384
(SU's) , / ILLIAC IV INPUT/OUTPUT SYBSYSTEM
; -
» } ILLIAC IV ARRAY
ELECTRONICS
UNIT
(EU)
CONTROL UNIT
48
I (cu) 7
64
STORAGE
UNTTS | CONGENTRATOR PROCESSING UNITS 1024
(sU's) (PU's)
This symbol is used A
here to indicate that c
'A' or 'B' can
communicate with 'C' B
but not with each
other.
Figure 1. ILLIAC IV System, Functional Block Diagram



path (48 bidirectional lines). The I0S is used to control data
transfers between each Disk File Controller and the array. This
transfer of data is made through 256 bidirectional lines with
each DFC and 1024 bidirectional lines to and from the array.
Because the complete ILLIAC IV Computer provides for four quad-
rants, there are provisions for an expansion to 4096 bidirectional
lines of interface between the IOS and the array. The DFC is
used to provide the interface for transfers between disk and
array, disk and central memory, central memory and array, and
and réal time link and array.

In order to be consistent with the available literature on ILLIAC:IV,
it must be mentioned that the ILLIAC IV System is subdivided into two sub-
systems, namely, the ILLIAC IV computer consisting of one Control Unit and
64 Processing Units, which is usually called a "quadrant" (Figure 2), and
the ILLIAC IV Input/Output Subsystem consisting of the ILLIAC IV Disk File
System and Input/QOutput Subsystem, which is usually called "10."

The PE (Figure 3) is an integral part of the Processing Unit (Figure
4), which operates under the command of the ILLIAC IV Control Unit. Each
PU consists of a PE, a Memory Logic Unit (MLU), a Processing Element Memory
(PEM), and a dual Power Supply Shunt Regulator (Figure 4). The MLU and PEM
have been described separately in NASA/Ames Research Center manuals entitled
"The ILLIAC IV Memory Logic Unit" and "The ILLIAC IV Processing Element
Memory." Whenever applicable, relevant parts of the Dual Power Supply Shunt
Regulator were described in these manuals. Therefore, only those features
of the Dual Power Supply Shunt Regulator that concern the power distribution
to the PE will be described herein. |

The PE contains the necessary logic to execute a full repertoire of
instructions under the compléte control of the Final Station of the Control .
Unit (FINST) which accepts these instructions from the Advanced Station of
the Control Unit (ADVAST) and, after converting them into microsequences,
broadcasts them to the PE. These instructions allow 64-bit, 32-bit, or
8-bit operands to be manipulated by the PE. All operations are fully
synchronized through a clock provided to the PE by the Control Unit (CU).
This synchronization is accomplished through a Receiver-retiming Register
(TUB) which synchronizes the Enables from CU with the clock to the PE
before these enables are distributed within the PE. Two mode control

-3



CONTROL UNIT

“M meEMH®Nn OR HZOHEdDOHHOZwnn Of& Y- =] R A ZAawn ;
- y S i -
e 5 E 5|
| M (&} o O
_ R .
= A
1
g S 0 N IR I I
‘ ! . w i
o o ) ) s ||
oo} Wn..u o] m - - @ - jom) %
L S B M (-9 ! m - m ny
3 ! .
. . ; o L
y T i
e i
o i
ol <ap<un | B A ST, N - 3 T%ﬁ e
= 2 7 j - )
] =z ”
M {
m W M s ﬁlll.*l'-lj
-2z H o) iR — . “ "
~ o _ A
= e e | <3] ———— e — =
. .llll...lt Ay [+ . ] ny ,
T e .
v v v ] e e ta oo ot _§) " ek Bl sy ol
| /N \
~ . SORNS AU N - E— i
| mE =2 Aap Mz m g S Mm
I 2|
SRR N R R 18]
VoEsom A<H <  MPu mOM HEmEomMM «<AAmMMno J o @ -

ILLIAC IV Quadrant Functional Block Diagram -

Figure 2.



CONTROL UNIT

(cv)
D57  Tea 8
g MODE % Iﬁ MEMORY * CDB = Common
E BIT T % PROT. Data Bus
N C R
% /\,‘ : g ERRO
3 SRy
\\/ K} g N/
PE%, ; | L
64 DATA D K64 DATA PE Z +
PROCESSING ELEMENT ('l )
(PEQ) Tes DATR PE (1+1, 148, 1-1, L-8)
» “"“"“"—_"\ ‘ ‘» .
PE 1-8 64 DATA K:64 DATA ‘ PE 1+8
64 - E 11 8 MEMORY
p} |D E % M
Al |a ? L PROT.
T{ |T % u
& [a z : N ERROR
' 3 ENABLES
PROCESSING
MEMORY LOGIC UNIT . [ AD;;;DR;ESS% ELEMENT
t MEMORY (3 )}
2 P ——————
(MLUP) . 64 DATA
(PEMY)
64 DATA >
Figure 3. Processing Element Interface Block Diagram .

-5-



uo .
<

..w

Figure 4, TLLIAC IV Processing Unit



bits protect the contents of the X, S, and A registers (see Section B) by
preventing clocks from strobing data into these registers. Each mode bit
also controls a separate 32-bit data path through the MLU.

The logic elements of the PE include registers for handling data, a
Memory Address Register whose content may be indexed before the address is
transmitted to the respective MLU, a Carry Propagating Adder with Carry
Look Ahead, a Barrel Switch for shifting operations, a Leading ONES Detector
to control the Barrel Switch, a Logic Unit for Boolean and other miscellan-
eous operations, data Receivers and Drivers for interfacing with neighbor-
ing PE's, and other circuits for special Arithmetic and other miscellaneous
operations.

The PE is designed to operate at a maximum frequency of 16 MHz. Thus
a clock period of 62.5 ns mimimum is used and most of the controls for
operation of the PE originate in the FINST portion of the CU.

Because the intent of this manual is to describe how the PE performs
the basic four Arithmetic operations (addition, subtraction, multiplication,
and division), a brief description concerning the family of logic used by
the PE, the type of registers, and other circuits participating in each
operation and other PE hardware is provided so that description of the
theory of operation of the PE which constitutes the core of this manual

will be as simple as possible.



11, SUMMARY OF PE LOGIC CHARACTERISTICS

A. Basic PE Logic

All PE logic circuits belong to the emitter-coupled logic (ECL)
family. The basic ECL gate configuration is shown in Figure 5. Although
several other ECL circuits are in use in the PE, this circuit helps illus-
trate some of the ggneral ECL characteristics discussed below, as it

represents the basic logic gate of the PE circuits.

Vee

— . s - 20 veA+R
ZeA+BC . v
0 Ye ‘.. . « X
O VgglGND}
o= O Vg '.
s R . :
(o) CIRCUIT SCHEMATIC ' - mivosmive Logic DIAGRAM .

Figure 5. Basic ECL Gate



B. ECL Characteristics

1. Logic Levels.* Typical logic levels employed by the basic ECL
gate are 400 mV and -400 mV, when VCC =1.32V, VEE = =3,2 V, and VREF =
0 V. Minimum levels when operating at 25°C and loaded with 50 ohms to
ground and 270 ohms (pulldown) to -3.2 V are *350 mV. These logic levels
are ensured with inputs at +200 mV, which provide 150 mV of dc noise margin.
Since the actual threshold is approximately 150 mV and typical output levels

are 400 mV, typical noise margin in excess of 200 mV can be expected.

Transfer characteristics for the basic gate are shown in Figure 6.

R
+650
+500
Y NON-
s 50 INVERTING (OR)
3 .
W gvivge) z
§ g (Vgs A INVERTING (NOR)
53 . 20 .
25 -350
500
- S R |
£50 1 1 1 1 1
g 8 8 @ 8 g8 8
@ ¥ 8 3 ¥ 3 ¢
. 5
. °
INPUT VOLTAGE (mV)

Figure 6. Transfer Characteristics of Basic ECL Gate

For gating functions which have emitter dots (wired OR), the relative-high
level is increased to 450 mV; the relative-~low level is also increased by

50 mV to -350 mV.

* .
Information is taken from The Integrated Circuits Catalog, Texas Instru-
ments, Incorporated, Dallas, Texas, pp. 4a — 7.

o



2. Loglc Convention. In general, PE logic elements are seen as

performing positive logic functions. For this reason, the more positive
signal values (+400 mV) are considered the logic ONE levels and the more
negative signal values (-400 mV) are considered the logic ZERO levels.

Because, however, the sigpals pass. through different gates where in many
instances an inversion takes place, the following table clearly indicates

at what level the signal is active.

Table 1. PE Signal Representation

PE SIGNAL NAME LEVEL LOGIC
PLW-WXX--1 High 1

 PLW-WXX--1 Low 0
PLW-WXX--0 High 0
PLW-WXX--0 Low 1

3. Gate Speed.* Switching time performance at 25°C, with various
capacitive loadings, is described in Figure 7. This capacitive loading is
directly relatable to ac fan-out, assuming 4 to 5 pF per gate input. Delay
time degradation with increasing fan-out approximates 75 ps per additional
load. Switching-time waveform definitions and output terminations used for
testing are shown in Figure 8. Typical propagation time through a single
ECL gate is 4 ns from leading edge to leading edge and 4 ns from trailing
edge to trailing edge.

* v . R
Information is taken from The Integrated Circuits Catalog, Texas Instru-
ments, Incorporated, Dallas, Texas, pp. 4a-10, 4a-11.

-10-



SWITCHING -
TIME (ns)

° | B | i |

o 10 20 30 40 50 60

e CAPACITIVE LOAD - C; (pF)

L 1 | ]

° 4 s 12
. . .. A<CFANOUT

Figure 7. Switching-Time vs. Loading

INPUT

. IN-PHASE
ouTPUT

OUY-OF-PHASE
OUTPUT

InPhase tp =

Out-of-Phase t’ -

2220208

- PLH

-'Eul *tonL

2 . . QUTPUT
LOADING

PPHL Ly
|

‘-32V

Figure 8. Switching-Time Waveforms

-11-




4., Nonsaturation. ECL circuits operate in the nonsaturated mode.

That is, the transistors in each gate are never fully cut off or in a
saturated state. This is the chief reason for the high switching speed
that is characteristic of these circuits. Because the transistors are
always conducting, even when the inputs to the gate are false, the inputs
do not have to pass a threshold before the logic decision is made. Since
the output transistor does not have to be saturated for the output signal
to be considered true, there is no switching delay caused by the need to
overcome capacitance in the output transistor. For both of these reasons,

the output of an ECL gate is able to follow the inputs almost immediately.

5. Complementary Outputs. Many integrated circuit packages included

in the ECL family provide dual, complementary outputs. This results in the
AND /NAND, OR/NOR, and AND-OR/NOR functions illustrated in Figure 9. Propa-
gation time through these circuits is the same for both outputs; that is,

both outputs become valid at the same time.

' NEGATIVE LOGIC POSITIVE LOGIC
AT
= z =
=L

AND/NAND ’ OR/NOR

coad>
NN

[
Nh?
i

AND - OR/NOR

OR - AND/NAND
A . ‘ ’
. B = A—
[ ‘ z o B
o;;;[:::x”TZQSZIZ;‘¢-> < }'t:E;:::; I
OR/NOR ' ) -~
o abs
o d L. e
. Zz
C : s & (— it
) 4
by > b . |
OR - AND/NAND : AN - oR/NOR

Figure 9. ECL Logic Function with Dual Outputs

-12-



‘6. ECL Symbols. Tramsistors Ql, Q2, and Q3 of Figure 5 constitute a
current switch. The whole circuit, however, can be represented by two sym-
bols:

a) Logic Symbol

>
[+]
N
[
LS
o«

(Inverting)

=

oY=A+B (Noninverting)

b) Electrical Symbol
At >0 z-k"3

Y

f
>
+
o

o
t“" Emitter Follower

t‘“--Current Switch

The ECL circuits can provide additional logic functions by tying col-
lectors together or by tying emitters together. In the case of a collector
tie, a clamp circuit is needed to keep the transistors from saturating. In
practice, the electrical symbol has an advantage over the logic symbol,
because it is easier to show collector and emitter ties and the number of
current switches and emitter followers as well. However, it is easier to
read logic schematics that employ logic symbols consistently and therefore
the ECL gates are represented on PE schematics by logic symbols.

The relatively small swing of ECL logic signals (*400 mV) constitutes
a disadvantage because of the associated low noise immunity. Thus on the
long signal lines between the CU and PE and those of the routing network
between PE, and PE P

i 1417 PBiog PEigg
to relatively high noise transients and also where they pass through areas

PEi—S’ where these paths are exposed
with significantly different temperatures, signals are transmitted in their

true and complement form by line drivers and received by differential line

receivers to suppress common-mode noise.

-13-



IIT. SUMMARY OF PE INSTRUCTIONS

In the Introduction, it was mentioned that the Control Unit decodes
two types of instructions, namely ADVAST and FINST/PE instructions. The
main difference between the two types is that the ADVAST instructions are
used to confrol internal operations of the CU itself, whereas FINST/PE
instructions specify functions to be performed by PE's in the quadrant.

Because the FINST/PE instructions involve both the FINST portion of
the CU concerned with the transmission of data and commands to an individual
PE and requests to the PE to respond to this instruction, and the descrip-
tion required is lengthy, no attempt is made here to describe the FINST/PE
instructions; the reader can find this information in [2]. Since FINST/PE
instructions call for operations involving data, the word format for both

instructions and data is partitioned as follows.

A. Instruction Word Format (FINST/PE)

Figure 10 shows the various fields in a FINST/PE instruction word
which is 32 bits in length. The meanings of these fields are as follows:

O34 5——7 8—11 12 13«15 16< »31
INDEX z
FIELD A ﬁggg& FIELD B | R Angggss ADR
OP CODE OP CODE | I
on T (ADR)
(ACARX) ¥

Figure 10. FINST/PE Instruction Word Format

1) Field A OP Code: First part of operation code. Bit #0 is always
"1". See Table 4-1 of [2].

2) ACARX: If bit #5 is "1" the contents of one out of four ADVAST
accumulator registers specified by bits #6 and #7 must be added
to the ADR field. If bit #5 is "0" the value contained in bits
#6 and #7 is ignored.

3) Field B OP Code: Second part of operation code. See Table 4-1
of [2]. |

-14-



4) Address Use: The state of these bits specifies the use of the
ADR field as shown in Table 2.

Table 2. Truth Table of ADR Use Field and Specified Action

ADR USE

BIT|BIT|BIT ACTION BEING TAKEN REMARKS

#13{#14#15

0 {00 [CU{is transmitting a literal |Bit #14 is ignored
0 | 0| 1 |[No indexing is required
0} 1| 0 [CU is transmitting a literal [Bit #14 is ignored

0 1 | 1 |Index ADR by the content of
RGX

1| 0| O |CU is transmitting a register|Bit #14 is ignored
code

1|0 1 {Index ADR by the content of
RGS

1] 1| 0 |CU is transmitting a register|Bit #14 is ignored
code

1| 1| 1 |Index ADR by the content of
RGS

5) ADR: This field, depending upon the type of instruction to be
executed, designates the location of an operand (for both read
and write operations), shift count, amount of indexing and
routing distance. The latter is explained later during the
description of PE drivers and receivers. Throughout this manual,
whenever "content" of ADR in instructions other than shift,
indexing bit value and routing distance is mentioned, the content

of a register specified by ADR is meant.

-15-



B. Data Word Format (FINST/PE)

The FINST/PE instruction repertoire provides various options with
regard to data word.formats. Figure 11 shows data word formats involving
operands partitioned into multiples of eight-bit bytes on both floating
and fixed point arithmetic instructions. Figure 11(a) and (b) represents
a number in floating point partitioned into two sections which represent |

the exponent and the mantissa.

1) Exponent: The exponent is represented by an excess or offset
code instead of by sign and magnitude for a number of reasons,

the most important of which are the following:

a) Avoidance of the representation of +0 and -0.
b) Avoidance of recomplementation of the exponent as is

required in sign and magnitude representation.

Because every number in floating point is artificially partitioned
into exponent and mantissa, the number zero may be represented by a zero
mantissa and by an exponent which does not necessarily have to be zero.
The zero number, whose exponent does not have the minimum value that a
particular register can hold, is called "dirty 0" [3]. A zero number
that is represented not only by a zero mantissa, but also by the smallest
exponent (all zeros) the machine can store in the proper register, is
called "clean 0". If a number A were added to a "dirty" zero number,
trouble might be encountered during the alignment step because the number
having the smallest exponent would have to be shifted end off to the
right as many places as the difference of the two exponents and if A
happened to have the smallest exponent significant bits would be lost.
This problem is not encountered if 'clean 0's" are used. It is then

assured that
A+0=A

O0f course "clean 0's" can be produced from "dirty 0's" but this would
require additional hardware or programming — use of the normalize

instruction (NORM) will convert "dirty zeros" to "clean zeros."

-16~



84-Bit, Floating Point

Bit No.: 0 1 15 16 63

a) SIGN OF

, MANTISSA EXPONENT MANTISSA
32-Bit, Floating Point
Bit No.: 0 1 1 8 9 15 16 39 40 63
IGN OF '
b) OUTER | OUTER | SIGNOF | xNmp INNER OUTER
MANTISSA | EXPONENT| 0 0o, | EXPONENT MANTISSA MANTISSA
=+
1
64-Bit, Fixed Point (no sign)

Bit No.: 0 63

c) OPERAND

_ 48-Bit, Fixed Point

Bit No. : 0 1 15 16 63

d) oA AN //’4//(/’/’ . % OPERAND

OPERAND / / / .
24-Bit, Fixed Point
Bit No, : 0 8 9 ———15 16 39 40 63
V277777 7
o) . | StONOF ‘//// SIGN OF //{/ _ INNER OUTER
OUTER [ 77 | INNER ,W/,/{,/{.,V,,,-,,,% OPERAND OPERAND
OPERAND it %] OPERAND /) . :
8-Bit, Fixed Point Ungigned

Bit No.: 7.8 15 18 23 24 31 32 39 40 47 48 55 56 63
f) BYTE#1 | BYTE#2 | BYTE#3 | BYTE#4 | BYTE#5 | BYTE#6 | BYTE #7 | BYTE #8

Figure 11. FINST/PE Data Word Formats

17—




In the excess code notation the zero exponent is represented by
 placing a "1" in the most significant bit position of the exponent field

(Figure 11(a) and (b)) and all "0's" in the remaining part of the exponent
field. Positive exponents are formed by adding to the value of the excess
code the value of the exponent, while for negative components the absolute
value of the exponent is subtracted from the value of the excess code.

With this convention, a "1" in the most significant bit position of
the exponent field means positive exponent, while a "0" means negative
component.

The value of the exponent varies as follows:

EXPONENT FIELD EXPONENT VALUE

11111111111 11 1 1| Maximum Exponent
Value

1 0 00 0 0 0O 0O O O 0O O 0O 0O O/ Zero Exponent

64-Bit Value
Mode .
’ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Negative Exponent
Value (-1)
L /0 0 00 0 000 0O 0 0 0 0 0 O} Minimum Exponent
‘ Value '
EXPONENT FIELD EXPONENT VALUE
11 1 1 1 1 1 | Maximum Exponent Value
32-Bit 1 0 0 0 0 0 O | Zero Exponent Value
Mode 0 1 1 1 1 1 1 | Negative Exponent Value (-1)
0 0 0 0 0 0O O | Minimum Exponent Value

Since
0 000 0 0 O 0 represents 0
64-Bit
0 0 00O 0O 0 0 1 represents +1 Mode
1 1 1 1 1 1 1 1 represents -1
and
represents 0
32-Bit

represents +1

represents -1

-18-



it can be said that the exponent is offset by
10 00 0 0 0= +64)10
in the 32-bit mode and by
100 000O0OUOUOU OUOUOTUO 0= +16384)10

in the 64-bit mode.. This means that the actual value of the exponent is the
content of the exponent field minus 16384)10 or minus 64)10 depending on the
bit mode being used.

With the following definitions:

]

content of the exponent field

= 16384)10 or 64)10 for 64~ or 32-bit mode, respectively

T = E-D
the exponent can take on the values from T = 2+14 -1-= 16383)10 to
T = -2+14 = —16384)10 in the 64-bit mode and from T = 2+6 -1= 63)10 to
T = --2+6 = -64)10.in the 32-bit mode as tabulated below.
E D T = E-D
Max | 2V13 1 | 214 | P14 _ 4. +16383
64 :
Min | 0 2*4 | -2t - 1384
{ Max | 277 -1 | 2t6 | 26 _ 1= +63,
32
+6 +6 _
Min | O 2 2" = 6410

2) Mantissa:. The mantissa is assumed to be a quantity less than 1,

having the binary point in front of the first digit. The exponent tells
how many places the binary point must be moved from its assumed position
toward the right in order to give the true value of the operand. Since a
shift of the binary point to the right by one place is the same as by

multiplying by 2, the exponent indicates by which power of 2 the mantissa
is to be multiplied. The mantissa is represented in sign and magnitude

form, which means that numbers having the same absolute value (magnitude)

-19-



are identical, but differ only in the sign bit. This notation was chosen
to facilitate the implementation of certain arithmetic instructions (parti-
cularly multiplication [4]).

Therefore, a number in floating point can be represented as follows:

bg _
x = ¥ 27z 2733 in 64-bit mode
i
i=1
2y
x= 0¥ 2" [z 27 in 32-bit mode
i=1
where
X0 = gign of mantissa ("0" =+, "1" = -)
T
2" = exponent value
48 _5 24 _4
L 2 Xi or L 2 Xi = mantissa field in binary fractional
i=1 i=1 form in 64~bit and 32-bit mode,
: respectively
2—1 = the weight of the vector Xi

X, = the vector X in the ith position of the register which can
take on the binary values "0" or "1"

The FINST/PE instructions can be classified into two general cate-

gories: the transfer of data and the modification of data.

C. Transfer of Data
These instructions involve the PE, the CU, and the PEM as follows:

1. Transfer of data from CU to PE.

2. Transfer of data from PE register to PEM (Table 3).

3. Transfer of data from PE to CU; this operation is known as PE
to CUB transfer [5].

4. Transfer of data from PEM to PE register;vthis is known as READ
operation [6] (Table 4).

5. Transfer of data from CU to PEM; because there is no other path

available; this transfer is made through the PE and it is similar

-20-



to (2) above with the exception that the E, El bits are over-

ridden no matter what their status is [5].

6. Transfer of data from one register to another within an indi-

vidual PE (Table 5).

Table 3. Transfer of Data from PE Register to PEM

MNEMONIC OPERATION
CODE
STA Store (Write) from RGA to PEM
STB Store (Write) from RGB to PEM
STR Store (Write) from RGR to PEM
STS Store (Write) from RGS to PEM
STX Store (Write) from RGX to PEM

Table 4. Transfer of Data from PEM to PE Register

MNggggIC OPERATION
LDA Transfer (Read) from PEM to RGA
LDB Transfer (Read) from PEM to RGB
LDR Transfer (Read) from PEM to RGR
LDS Transfer (Read) from PEM to RGS
LDX Transfer (Read) from PEM to RGX

Table 5. PE Register to PE Register

Transmit Instructions

SOURCE OF DESTINATION OF DATA
DATA ReA | ReB | RGD | RGR | ReS | Rex
RGA — {wB | * | 1DR | LDS *
RGB DA | — | Lpp | LDR | LDS | LDX
RGD — | B | - - - *
RGR DA | LDB | — — | 1ps | LDX
RGS LDA | LDB — | R | — | DX
RGX DA | LDB| — | LDR | LDS | —

*No direct path available.

-21-



7. Transfer of data between PE's (RTL Instruction). This is a very
important feature of the ILLIAC IV System, because it allows full
data word communication between the PE's of the quadrant. This
communication is called routing; it is used to transmit the
contents of any specified register (except the mode register) of
any PE to register R of PE(i+D) modulo 64, where i = Initial PE
number and D = routing distance specified in bits 22 to 31 of
the ADR field (Figure 9).

NOTE: 1In transfers 1) through 6) the source register retains
the data. '

The PE's in the quadrant are numbered from 00 to 63 as shown in
Table 6. There is a connection between PEi with PEi+l’ PEi+8’ PEi-l’ and
PEi-8 and,~b§cgg§e in the quadrant there are only 64 PE's, the routing
distance along with PE number where the data is initially found must be
modulo 64 in order to make the rotation of data among the PE's possible.
The register of PEi from which the data is transmitted is specified in bits
17 to 21 of the ADR field (Figure 9) and it can, along with D, be indexed
only by an ACAR (Advanced Station Accumulator Register) and not by X or S
PE registers. The specified PE register for transfer of data to the R
register of the PE's designated by the routing distance and its corresponding
address bit (ADR field) are as follows:

PE Register ADR Field Bit
A 17
B 18
X 19
S 20
R 21

If, for example, a route of +15 is requested, the routing action involves
two routes with distances of +8 and one route of -1. The data transfers
mentioned in 1) through 6) with the exception of 5) are known as transmit

instructions, while 5) is known as store instruction.

-22-



Table 6. One-Quadrant Afray Configuration (Octal Numbering)

PUCO | PUC1 | PUC 2 | PUC 3 | PUC 4 | PUC 5 | PUC 6 | PUC 7
t 00 01 02 03 04 05 06 07
10 | 11 12 13 14 15 16 | 17
20 21 22 23 24 25 26 27
p 30 | 31 32 33 34 35 36 37
E 1 40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
\ 70 71 72 73 74 75 76 77

D. Modification of Data

This class of instructions is subdivided into nonarithmetic and arith-

metic instructions.

1, Nonarithmetic instructions: They include —

a) Boolean instructions (Tables 7, 8, 9): Each one of these

instructions performs a_logic operation on two operands (ADR

and RGA). The result is placed into the A register (RGA).2

Table 7. Boolean Instructions

MNEMONIC CODE OPERATION PERFORMED
AND Logic AND of RGA with ADR
ANDN Logic AND of RGA with complement of ADR
EOR Logic exclusive OR of RGA with ADR
EQV | Logic equivalence of RGA with ADR
NAND Logic AND of complement of RGA with ADR
NANDN | Logic AND of complement of RGA with complement of ADR
NOR Logic OR of complement of RGA with ADR
NORN Logic OR of complement of RGA with complement of ADR
OR Logic OR of RGA with ADR
ORN Logic OR of RGA with complement of ADR

2 .
In subsequent discussion, a symbol (such as RGA or RGX) is used alterna-
tively to mean either the register (A or X) or the content of the register.

-23~



NOTES:

l.

Instructions AND, ANDN, NAND, and NANDN perform the logic AND

of the content of the A register with the content of ADR bit

by bit. The content of ADR is first placed in the B register
through the Common Data Bus (ADR is more general than CDB data
in that it may be a PEM or other PE register word), and then
the instruction is executed. (The contents of ADR may also be
a PE or PEM word.) Because the result of this logic function
involves two registers (A and B), the truth table (Table 8)
shows the four combinations of the bits in the A and B registers
and the results. '

Instructions NOR, NORN, OR, and ORN perform the logic OR of the
content of the A register with the content of ADR which is
placed into the B register before the instruction is executed.
The truth table (Table 9) shows the four combinations of the
bits in the A and B registers and the results.

Table 8. Truth Table of Boolean Functions

STATE OF STATE OF
A REGISTER BIT | B REGISTER BIT

LOGIC FUNCTION PERFORMED

AND | ANDN | NAND |NANDN

= - O ©
H © = O
H © o ©
o + o O
o o r ©
© ©o o

Table 9. Truth Table of Boolean Functions

A REGISTER BIT | B REGISTER BIT

LOGIC FUNCTION PERFORMED

NOR | NORN | OR ORN

H = O O

0
1
1
1

- O = o
(T - N
[ S S
H O B

-2~



NOTE:

b)

Comparison instructions (Tables 10 and 11): These instructions

test as to whether the contents of the A or X or S registers of
a PE are greater, equal to, or less than the contents of ADR;
they also check to see if the contents of A are equal to logic 1
or logic 0. The result of this comparison is stored in the I or
J bit of the mode register (RGD) in 64-bit mode or in the I/G or
J/H bits in the 32-bit mode.

Table 10 appears on page 26

Table 11. Nonarithmetic Instructions
(Arithmetic Comparison)

MNEMONIC CODE OPERATION PERFORMED

(I1/3) A (G/L) Determine whether the content of RGA is

arithmetically (A) greater or less than ADR.

IAG Place result of test for RGA arithmetically
. greater than ADR into I.

IAL Place result of test for RGA arithmetically
less than ADR into I.

JAG Place result of test for RGA arithmetically
greater than ADR into J.

JAL Place result of test for RGA arithmetically
‘ less than ADR into J.

These instructions are executed in either 64-bit or 32-bit mode.
In 64-bit mode the result is placed into I or J bit of the mode
register, while in 32-bit mode the result is placed in I or J
for the Outer word and in G or H for the Inner word.

-25-



Table 10. Nonarithmetic Instructions (Logic Comparison)

MNEMONIC CODE OPERATION PERFORMED

(1/3) (L/M) (E/G/L)| Determine whether the 1ogi¢ word (L) or mantissa (M) part of RGA is equal to (E),
greater (G), or less (L) than ADR.

ILE Place result of test for RGA logically equal to ADR into I.

ILG Place result of test for RGA logically greater than ADR into I.

ILL Place result of test for RGA logically less than ADR into I.

IME Place result of test for RGA mantissa logically equal to ADR into I.

IMG Place result of test for RGA mantissa logically greater than ADR into I.
- IML Place result of test for RGA mantissa logically less than ADR into I.

JLE Place result of test for RGA logically equal to ADR into J.

JLG Place ‘result of test for RGA logitally greater than ADR into J.

JLL Place result of test for RGA logically less than ADR into J.

JME Place result of test for RGA mantissa logically equal to ADR into J.

JIMG Place result of test for RGA mantissa logically greater than ADR into J.

JML Place result of test for RGA mantissa logically less than ADR into J.

—9z_

(1/3) (S/X) (E/G/L)| Determine whether the content of RGS (S) or RGX (X) is equal to, greater, or
less than ADR. .

ISE Place result of test for RGS logically equal to ADR into I.

ISG Place result of test for RGS logically greater than ADR into I.
ISL Place result of test for RGS logically less than ADR into I.
IXE Place result of test for RGX logically equal to ADR into I.

IXG Place result of test for RGX logically greater than ADR into I.
IXL Place result of test for RGX logically less than ADR into I.
JSE Place result of test for RGS logically equal to ADR into J.

JSG Place result of test for RGS logically greater than ADR into J.
JSL Place result of test for RGS logically less than ADR into J.
JXE - Place result of test for RGX logically equal to ADR into J.

JXG Place result of test for RGX logically greater than ADR into J.
JXL Place result of test for RGX logically less than ADR into J.

(I/J) (L/M) (0/Z) | Determine whether the logic word or mantissa of RGA is equal to all ONES (0) or
all ZEROS (Z).

ILO Place result of test for RGA logically equal to all ONES into I.

ILZ Place result of test for RGA logically equal to all ZEROS into I.

M0 Place result of test for RGA mantissa logically equal to all ONES into I.
IMZ ‘Place result of test for RGA mantissa logically equal to all ZEROS into I.
JLO Place result of test for RGA logically equal to all ONES into J.

JLZ Place result of test for RGA logically equal to all ZEROS into J.

JMO Place result of test for RGA mantissa equal to all ONES into J.

IMZ | Place result of test for RGA mantissa equal to all ZEROS into J.




NOTES: (for Table 11)

1. Instructions (I/J) (L/M) (E/G/L) are executed either in 64-bit
full word or in mantissa parts. In 64-bit mode the result is
stored in either I or J bit of the mode register while in 32-
bit mode the result is stored in I or J (Outer word) and in G
or H (Inner word).

2. Instructions (I/J) (S8/X) (E/G/L) are used to compare the 1l6-bit
index register (RGX) or the 16 least significant bits of RGS
with the 16 least significant bits of ADR.

3. Instructions (I/J) (L/M) (0/X) are executed either in 64-bit
full word or in mantissa parts. In 64-bit mode the result is
stored in the I or J bit of the mode register, while in 32-bit
mode the result is stored in I or J bit (Outer word) and G or
H bit (Inner word).

c¢) Modify and test index instructions (Table 12): These instructions

modify the content of the X register of a PE by adding or subtract-
ing the content of ADR to or from it. If an overflow results, the
overflow bit is stored in either the I or J bit of the mode register;
the type of instruction determines whether it is the I bit or the \

J bit.
~Table 12. Nonarithmetic Instructions
(Modify and Test Index)
MNEMONIC CODE OPERATION PERFORMED
(1/3) XGI Add the least significant 16 bits of ADR to RGX
and store the carryout (overflow) in I or J bit
of mode register.
IXGI Add ADR to RGX and store overflow in I.
JXGI ‘ Add ADR to RGX and store overflow in J.
(1/J) XD Subtract the least significant 16 bits of ADR

from RGX and store the complement of the carry-
out into I or J bit of mode register.

IXLD Subtract ADR from RGX and store complement of
overflow in I.

JXLD Subtract ADR from RGX and store complement of
overflow in J.
XI Add the least significant 16 bits of ADR to RGX
, and place the result in RGX modulo 16.
XD Subtract the least significant 16 bits of ADR

from RGX (2's complement) and place the result
in RGX modulo 16. :

-27-



d) Modify bit of A register (Table 13): These instructions set,
reset, or complement a selected bit of A register in 64-bit

mode or two bits in 32-bit mode.

Table 13. Nonarithmetic Instructions
(Modify Bit of RGA)

MNEMDNIC CODE OPERATION PERFORMED
CAB Complement bit(s) in RGA
~ CHSA Change sign(s) in RGA
RAB Reset bit(s) in RGA
SAB Set bit(s) in RGA
SAP Reset sign(s) in RGA
SAN Set sign(s) in RGA

e) Transmit bit of A register (Table 14): These instructions

transmit a selected bit of A register to the I or J bit of the
mode register in 64-bit mode or two bits in 32-bit mode in
which case one bit is transmitted to I or J and the other to

G or H bit of the mode register.

Table 14. Nonarithmetic Instructions
-(Transmit Bit of RGA)

MNEMONIC CODE OPERATION PERFORMED

(1/3) (B/SN) Transmit RGA bit (B) or sign
(SN) to mode register:

IB Transfer RGA bit(s) to I bit

(and G bit in 32-bit mode).
ISN Transfer RGA sign(s) to I bit

(and G bit in 32-bit mode).
JB Transfer RGA bit(s) to J bit

(and H bit in 32-bit mode).
JSN Transfer RGA sign(s) to J bit

(and H bit in 32-bit mode).

-28-



£) Eightfbit byte (Table 15): These instructions add or subtract

ADR and A register and also test as to whether the content of
A register 1s greater, less, or not equal to the content speci-
fied by ADR. These operations are performed in eight-bit bytes
whose format is shown in Figure 11(f). Results of the test
instructions are left in RGA. The least significant bit of
each byte is the result; all other bits are ZERO.

Table 15. Nonarithmetic Instructions
(Eight-Bit Byte)

MNEMONIC CODE OPERATION PERFORMED
GB Test for RGA greater than ADR
NEB Test for RGA not equal to ADR
LB | Test for RGA less than ADR
ADB Add ADR to RGA
SBB | Subtract ADR from RGA
OFB Transmit overflow bits of previous 8-bit
byte instructions from RGC to RGB

g8)

Modify exponent (Table 16): These instructions load, add, or
subtract ADR exponents into, to or from the exponent field(s)
of A register in both the 64~ or 32-bit modeé. No change of

sign(s) or the mantissa(s) takes place.

Table 16. Nonarithmetic Instructions
(Modify Exponent)

MNEMONIC CODE OPERATION PERFORMED
LEX Load ADR exponent(s) into RGA exponent field.
ADEX Add ADR exponent(s) to RGA exponent(s).
SBEX Subtract ADR exponent(s) from RGA exponent(s).

-29-



h) Shift instructions (Table 17): There are basically ten shift

instructions whose general characteristics are as follows:

1)

2)

Right shift count with indexing: The shift count is sent

to the Address Adder through the Common Data Bus (CDB) and
Operand Select Gates (0SG) where it may be indexed by X or

S registers. The content of ADA is stored into the shift
count register (LOD #4) as modulo 64 or 32 depending upon

the mode of operation. Because the original shift count

may. be the sum of ADR and the content of one of the ACAR's,
it can be said that the shift count N = ADR + ACARi + X or

S register, where i = 0, 1, --, 3. 1If ACARi, X or S register
is not specified for indexing then they are assumed to be
zero in the above equation [2]. '

Left shift count with indexing: As will be explained later
when the Barrel Switch is diécussed, all shifting is actually
performed to the right. 1In order to perform a left shift,
the ADA receives (through the same channel as in right shift-
ing) the shift count minus one (N-1). This number may be
indexed at ADA and is transmitted to shift count register
(LOD #4). Then the output of LOD #4 is complemented (1's
complement) and the result is equivalent to a right shift

number as shown in Table 17.

Table 17. Right and Left Shift Count Equivalence

B T gy

OUTPUT OF CU OUTPUT OF LOD #4
Right Shift (N) Left Shift (N-1) [Right Shift (N) (Left Shift (ﬁ)

63 0 0

0 1 63

' ' '

' ' 1

' ' '

' ' 1

' ' '

1 ' '

' ' '

1 ' '

v ' 1

1 ' '

62 63 1

=)
w

-30-



3)

4)

5)

6)

7

8)

E bits disabled: Because the mode register has not yet been
discussed, in particular the role of the E, El bits, it is
only mentioned here that whenever one or both the E bits are
not enabled the part of the register corresponding to the
disabled E bit is unchanged by the shift instruction.
End around shifts: 1In addition to the six bits specifying
the shift count (N), the shift count register receives from
the CU (through the CDB and OSé) two bits, the status of
which specifies the direction of shifting, that is, end
around, right end off, or left end off. During the end
around instruction, whatever bits are shifted out of the
right end of one register reappear at the other end of the
register.
End off shifts: During this instruction, whatever bits
have been shifted out of the right or left end of the
register do not reappear at the other end, but instead a
number of "0's" equal to the number of the "shifted off"
bits are forced into the other end of the register.
Mantissa shifts: These instructions refer to the mantissa
part of the register which may be shifted left or right
end off or end around. In left or right end off shifts,
if the shift count is >48 in 64-bit mode or if the shift
count is >24 in 32-bit mode the mantissa portion of the
register is forced to zero.
Logic shifts: These instructions enable the whole word in
64-bit mode or half of the word in 32-bit mode for shifting
operations left or right end off or end around.
Double and single length shifts: When a double length
shift is requested, A and B registers of the PE are treated
as one 128-bit register and their contents may be shifted
left or right end off. These shifts are valid only for 64-
bit mode and may include logic shifts or mantissa shifts.
In this case, E = E1. When single length shifts are
requésted, the content of a register is shifted left or
right end off or end around and may include logic shifts
or mantissa shifts. The single length shifts are valid
for both 64~ and 32-bit mode.

-31-



Table 18.

Nonarithmetic Instructions (Shift)

MNEMONIC CODE

OPERATION PERFORMED

RTAL
RTAR
SHABL
SHABR
SHABML
SHABMR
SHAL
SITAR
SHAML
SHAMR

Rotate (shift left), end around, logic, single length
Rotate (shift right), end around, logic, single length
Shift left, end off, logic, double length
Shift right, end off, logic, double length
Shift left, end off, mantissa only, double length
Shift right, end off, mantissa only, double length
Shift left, end off, logic, single length
Sﬂift right, end off, logic, single length

- Shift left, end off, mantissa only, single length
Shift right, end off, mantissa only, single length

NOTES: 1.

The meaning of the variants for shift instructions is the fol-

lowing:‘

Wr*z-gn»%?—d:
o nunn

Whenever the

Rotate (implies end around)
Shift (implies end off)
RGA (single length)

RGA and RGB (double length)
Mantissa part only

Left

Right

letter M does not appear it is assumed that a

logic shift is requested, which means that all bits of the
word (or half word) are enabled. :

i) Mode register instructions (Table 19): These instructions are

subdivided into two categories:

1) Load instructions: These instructions load the specified

mode register bit(s) with a bit from CU (ACAR). ACAR may

be indexed

as previously explained. In this instruction

the ADR-use field of the instruction word (Figure 10) is

not used.

If the LOAD EEl instruction is requested, how-

ever, the particular bit of ACAR will load both the E and

El bits of

the mode register of the corresponding PE,.

-32-



Table

(Mode Register)

Nonarithmetic Instructions

MNEMONIC CODE

OPERATION PERFORMED

register from ACAR as follows:

(LD) Load mode

LDE Load mode register E bit from ACAR

LDE1 Load mode register E1 bit from ACAR

LDEEl Load mode register E, E1 bits from ACAR

LDG Load mode register G bit from ACAR

LDH Load mode register H bit from ACAR

LDI Load mode register I bit .from ACAR

LDJ Load mode register J bit from ACAR

(SET) Set mode register bit with the result of
a logic function of two bits specified:
in the ADR field as follows:

SET E Set mode register bit E

SET El Set mode register bit El

SET F Set mode register bit F

SET F1 Set mode register bit F1

SET G Set mode register bit G

SET H Set mode register bit H

SET 1 Set mode register bit I

SET J Set mode register bit J

2) Set instructions: These instructions force a particular
bit of the mode register to be set with the result of a
logic function of two bits. These two bits (Bl and B2)
and the logic function occupy bit positions in the
instruction word (Figure 10)'as shown in Table 20.

Table 20. Mode Register Set Instructions
LOGIC FUNCTION MODE BIT B2 MODE BIT Bl
INSTRUCTION INSTRUCTION INSTRUCTION

CONTENT WORD BIT |CONTENT| WORD BIT |CONTENT| WORD BIT

Bl or B2 16 E1 20 H 24

B1 or B2 17 El 21 G 25

Bl and B2| 18 E 22 J 26

Bl and B2 19 23 I 27

El 28
E 29
Fl 30
F 31

-33-




- j) Miscellaneous instructions (Table 21): So far all of the

FINST/PE instructions have been arranged according to a
functional group which is briefly introduced to the reader
by some general comments. Because the set of instructions
shown in Table 21 covers a variety of operations (though
equally as important as the grouped instructions), they are

referred to as "miscellaneous."

Table 21. Nonarithmetic Instructions

(Miscellaneous)
MNEMONIC CODE OPERATION PERFORMED

ASB* Place sign(s) of RGA into sign(s) position
of RGB

CLRA* Clear RGA

COMPA* Complement RGA

SWAP* Interchange RGA and RGB

SWAPX* In;erchange the inner and outer words in RGA

T3A | Transfer contents of RGC to RGA

EAD | Recover extended precision after addition in
floating point arithmetic

ESB Recover extended precision after subtraction
in floating point arithmetic

*See [2] pp. 4-13.

-34-



2. Arithmetic instructions: These instructions are the most imporfant
and will be treated separately later in the theory of operation. They can
be separated into four general categories, each one including a limited
number of options. These instructions involve operands whose formats are
shown in Figure 11. The programmer, in addition to having to deal with the
formats of Figure 11, which involve floating, fixed point, and unsigned
operands, has the option of normalization and rounding. The basic arith-
metic instructions are:

1) Addition (Table 22)

2) Subtraction (Table 23)

3) Multiplication (Table 24)
4) Division (Table 25)

and the variants being used for the above instructions are specified as

follows:
Suffix Meaning
A Unsigned
M Fixed point
N Normalized result
R Rounded result

When unsigned operands_are dealt with, their mantissa signs are forced to
look alike (positive) but the original sign(s) of RGA are retained.

When fixed point arithmetic is requested, the exponent field of the
operand is ignored. If a number A is to be added to a '"zero number" the
order of magnitude is not important. Therefore whether "dirty" or "clean"
0's are being dealt with is of no concern because no alignment is involved
(due to a difference in the exponents of A and the zero number). Thus,
even if the order of magnitude of the zero number (not zero exponent) is

greater than the order of magnitude of A, it is assumed that
A+0=A

When the normalize variant is used, the .result of addition, subtraction,
multiplication, and division of two operands (floating point arithmetic)
must be normalized. Tﬁat is, the leading ONE of the mantissa field should
be brought into bit‘position 16 in 64-bit mode or 32-bit mode Inner word
or in bit 40 in 32—bitlmode Outer word (Figure 11(a) and (b)), and the

exponent reduced accordingly. Also the prdgrammer might normalize (NORM

-35-



instruction) the operands before the actual arithmetic operations begin.
This is an option which is only mandatory in division, where the divisor
must be normalized before the recursive process starts. If the mantissa
part of the operand to be normalized is zero, the leading ONE detectors
will be unable to generate a shift amount for shifting the mantissa to

the left and subsequently to have the exponent reduced. Under these
circumstances the mantissa sign and exponent part of the operand or result
is forced to zeros. This zero operand is called "clean" or true zero.
Using the excess or offset code when representing the exponent, it was
shown previously that the exponent value is 2T where T can vary from
2141 to -2*1% in 64~bit mode and from 2V6-1 to -2+6 in 32-bit mode.

In excess code, all zeros in the exponent field of the operand or of the
result represents the minimum possible exponent value; therefore, the zero

operand or result can be represented by

+1y
X = (-)%%2"2 .0 in 64-bit mode
g +6
X = (-1%%2-2"7" . o in 32-bit mode
where
X = operand or result to be normalized
Xo = mantissa sign 0=+, 1=-)
0 = zero mantissa.

The rounding option (R) is very important when high precision is needed
because it saves significant bits (in the case of addition) which otherwise
could be truncated. .However, because rounding is treated differently in
every individual arithmetic operation, it is described explicitly in the
"Theory of Operation' section of this manual.

Since the intent of this manual is to describe how the PE operates as
anvarithmetic unit from the hardware point of view, the reader is urged to
read Chapter IV of [2] which covers the FINST/PE Instruction Repertoire quite
extensively. For convenience, a "FINST/PE Instruction Index," which was
borrowed from [2], is provided in Table 26 of this manual. A ‘list of refer-
ence pages, which is included in the original table as it appears in [2],

has been omitted from the table.

-36-



Table 22. Arithmetic Instructions (Addition)

MNEMONIC CODE OPERATION PERFORMED
Add the content of ADR to RGA. Variants
are: A, M, N, R
AD Add in floating point
ADA Add in floating point two unsigned numbers
ADM Add in fixed point
ADMA Add in fixed point two unsigned numbers
ADN Add in floating point and normalize
ADNA Add in floating point two unsigned numbers
and normalize
ADR Add in floating point and round
ADRA Add in floating point two unsigned numbers
and round
ADRN Add in floating point, round and normalize
ADRNA Add in floating point two unsigned numbers,
round and normalize '
ADD Add ADR to RGA. The operands are 64-bit,
fixed point, and unsigned

NOTES:

1. If M (fixed point) is specified, the operands and their results
are treated as fixed point numbers. The original content of
RGA exponent field is retained in the result.

2, The content of ADR specifies the source of addend which is
brought into B register before the operation begins.

-37-



Table 23. Arithmetic Instructions (Subtraction)

MNEMONIC CODE OPERATION PERFORMED
Subtract the content of ADR from RGA. Variants
are: A, M, N, R
SB Subtract in floating point
SBA Subtract in floating point two unsigned numbers
SMB Subtract in fixed point
SBMA Subtract in fixed point two unsigned numbers
SBN Subtract in floating point and normalize
SBNA Subtract in floating point two unsigned numbers
and normalize
SBR Subtract in floating point and round
SBRA Subtract in floating point two unsigned numbers
and round
SBRN Subtract in floating point, round and normalize
SBRNA Subtract in floating point two unsigned numbers,
round and normalize
SUB Subtract 64-bit, fixed point number of ADR from
RGA ,

NOTES: 1. If M (fixed point) is specified, both the operands and their
results are treated as fixed point numbers. The original
content of RGA exponent field is retained in the result.

2. The content of ADR specifies the minuend which is placed in

B register before the operation begins.

~38-



Table 24. Arithmetic Instructions (Multiplication)

MNEMONIC CODE OPERATION PERFORMED
“Multiply the content of RGA by the content of ADR.
Variants are: A, M, N, R
ML Multiply in floating point
MLA Multiply two unsigned numbers in floating point
MLM Multiply in fixed point
MLMA Multiply two unsigned numbers in fixed point
MLN Multiply in floating point and normalize
MLNA Multiply in floating point unsigned numbers and
normalize
MLR Multiply in floating point and round
MLRA Multiply in floating point unsigned numbers and
‘round
MLRM Multiply in fixed point and round
MLRMA Multiply in fixed point unsigned numbers and round
MLRN Multiply in floating point, round and normalize
MLRNA Multiply in floating point unsigned numbers, round
~and normalize
MCM Execute one cycle of multiplication
MULT See [2] pp. 4-72
NOTES: 1. MCM and MULT are special instructions and are treated differ-
ently than the ML instruction.

2. When M is specified, the values of the two operands and their
results are treated as numbers in fixed point. The original
content of RGA exponent field is retained in the result.

3. The content of ADR specifies the multiplier which is placed

in B register before the operation begins.



Table 25. Arithmetic Instructions (Division)

MNEMONIC CODE

OPERATION PERFORMED

DV
DVA
DVM
DVMA
DVN
DVNA

DVR
DVRA
DVRM
DVRMA
DVRN
DVRNA

- Divide the mantissa of RGA and RGB (double length)

by the content of ADR which is in RGR. Variants
are: A, M, N, R

Divide

Divide unsigned numbers

Divide numbers in fixed point

Divide unsigned numbers in fixed point

Divide and normalize quotient field

Divide unsigned numbers and normalize quotient
field

Divide and round

Divide unsigned numbers and round

Divide, round and normalize quotient field

Divide unsigned numbers in fixed point and round

Divide, round and normalize

Divide unsigned numbers, round and normalize

NOTES: 1. If M (fixed point) is not specified the division is in floating
point.

2. If both N (normalize) and M are not specified the division is

an unnormalized floating point operation.

3. If M is specified the two operands and their results are treated

as fixed point numbers.

4. The content of ADR specifies the divisor which is brought into

R register before the division process begins.

-40-




Table 26. FINST/PE Instruction Index
Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref.
Code Code Page Code Code Page Code Code Page
AD 3504 4-17 IXL 2310 4-59 NORN 2307 4-31
ADA 3505 4-17 IXLD 2712 4-62 OFB 2506 4-76
ADB 2606 4-22 JAG - 3715 4-52 OR 2304 4-31
ADD 2604 4-23 JAL 3717 4-52 ORN 2306 4-31
ADEX 2500 4-24 JB 3503 4-54 RAB 3701 4-36
ADM 3414 4-117 JLE 3517 4-55 RTAL 3513 4-87
ADMA 3415 4-17 JLG 3315 4-55 RTAR 3512 4-88
ADN 3404 4-17 JLL 3317 4-55 RTG 2413 4-717
ADNA 3405 4-17 JLO 3311 4-57 RTL 2412 4-71
ADR 3506 4-11 JLz 3313 4-517 SAB 3702 4-36
ADRA 3507 4-17 JME 3515 4-55 SAN 3702 4-38
ADRN 3406 4-17 JMG 3115 4-55 SAP 3701 4-38
ADRNA 3407 4-17 JML 3117 4-55 SB 3704 4-179
AND 2704 4-27 JMO 3111 4-57 SBA 3705 4-79
ANDN 2706 4-27 JMZ 3113 4-57 SBB 2607 4-82
ASB 2507 4-26 JSE - 2513 4-59 SBEX 2501 4-83
- JSG 2113 4-59 SBM 3614 4-179
‘ JSL 2313 4-59 SBMA 3615 4-79

CAB 3700 4-33 JSN 3503 4-54 SBN 3604 4-179
CHSA 3700 4-35 JXE 2511 4-59 SBNA 3605 4-19
CLRA 2411 4-39 - JXG 2111 4-59 SBR 3706 4-79
COMPA 2211 4-40 JXG1 2711 4-61 SBRA 3707 4-79
DV 3304 4-4] JIXL 2311 4-59 SBRN 3606 4-79
DVA 3305 4-41 JXLD 2713 4-62 SBRNA 3607 4-179
DVM 3214 4-41 LB 2107 4-63 SCM 2104 4-85
DVMA 3215 4-41 LDA 2617 4-104 || SETE 2514 4-69
DVN 3204 4-41 LDB 2700 4-104 [| SETE1 2515 469
DVNA 3205 4-4) LDD 2212 4-104 i SETF 2516 4-69
DVR 3306 4-41 LDE 2114 4-69 SETF1 2517 4-170
DVRA 3307 4-41 LDE1 2115 4-69 SETG 2714 4-70
DVRM 3216 4-41 LDEE1 2116 4-69 SETH 2715 4-70
DVRMA 3217 4-41 LDG 2314 4-69 SETL 2716 4-170
DVRN 3206 4-41 LDH 2315 4-69 SETJ 2717 4-70
DVRNA 3207 4-41 LDI 2316 4-69 SHABL 3711 4-89
EAD 2010 4-45 LDJ 2317 4-69 SHABML 3713 4-91
EOR 2505 4-29 LDR 2701 4-104 {| SHABMR 3712 4-92
EQV 2504 4-30 SHABR 3710 4-90
ESB 2410 4-48 SHAL 3501 4-93
GB 2106 4-50 LDS 2702 4-104 | SHAML 3511 4-95
1AG 3714 4-52 LDX 2703 4-104 || SHAMR 3510 4-96
IAL 3716 4-52 LEX 2117 4-64 SHAR 3500 4-94
IB 3502 4-54 ML 3104 4-65 STA 2612 4-97
ILE 3516 4-55 MLA 3105 4-65 STB 2613 4-97
ILG 3314 4-55 MLM 3014 4-65 STR 2614 4-97
ILL 3316 4-55 MLMA 3015 4-65 STS 2615 4-97
1LO 3310 4-57" MLN 3004 4-65 STX 2616 4-97
ILZ 3312 4-57 MLNA 3005 4-65 SUB 2605 4-99
IME 3514 4-55 MLR 3106 4-65 SWAP 3103 4-100
IMG 3114 4-55 MLRA 3107 4-65 SWAPA 3303 4-101
IML 3116 4-55 MLRM 3016 4-65 SWAPX 3703 4-102
IMO 3110 4-57 MLRMA 3017 4-65 T3A 2105 4-103
IMZ 3112 4-47 MLRN 3006 4-65 TCY 3100 ---
ISE 2512 4-59 MLRNA 3007 4-65 TCYS 3101 ---
1SG 2112 4-59 MULT 2213 4-72 TCYX 3102 --
ISL 2312 4-59 NAND 2705 4-27 X 2503 4-107
ISN 3502 4-54 NANDN 2707 4-217 X1 2502 4-108
IXE 2510 4-59 NEB 2210 4-73

IXG 2110 4-5¢ NOR 2305 4-31

IXGI 2710 4-61 NORM 2013 4-74

-41-




'SECTION B: PROCESSING ELEMENT ORGANIZATION

I INTRODUCTION

Functionally, the PE logic elements (Figure 12) are partitioned into
three sections: registers, data transfer and modification units, and inter-
face units. Because the Processing Unit is considered a general purpose
computer with the PE functioning as an arithmetic unit, the PE logic elements
are used for the execution of the FINST/PE instruction repertoire. Knowing,
however, the variety of the FINST/PE instruction, one should expect that
these logic elements differ in size and logic and for this reason a brief

description of these elements is provided in this section.

II, LOGIC ELEMENTS AND PE ORGANIZATION

A. PE Logic Elements

1. PE Registers. These are the logic elements that are used to hold

data whose word format is shown in Figure 1l. These data may be an operand
or the result of an operation (arithmetic or nonarithmetic). The PE regis-

ters are the following:

a) A Register (RGA): This register holds
(L the augend in addition
(2) the minuend in subtraction
(3) the multiplicand in multiplication
4) the dividend in division (most significant 48 bits)

It is also used as an accumulator because it receives the result from the
Carry Propagating Adder at the end of each arithmetic operation and the

result of the nonarithmetic operations from the logic elements involved.

-42-



{ PE NUMBERS)
-8 -1 +1+48-8-141+8

DRIVERS

MLUY

coB

|

"CONTROL UNIT

\

RECEIVER
SELECTION
GATING

¥

R REGISTER
(RGR)

RECEIVER
REGISTER

AND

DRIVER

RECEIVER

MODE -
REGISTER
(RGD)

3= MLU

> RGS)

S REGISTER

v ¥ |

SELECT
GATES
(M SG)

MULT IPLICAND

1 GATES
(MDG)

MULT!PLIER
DECODER

'y

OPERAND
SELECT
GATES
0sG)

ADDRESS
ADDER
(ADA)

- -

0

PSEUDOA DDER
TREE

(PAT)

Y v ¥ |

B REGISTER
(RGB)

\ AR A

CARRY
PROPAGATE
ADDER

€ PAa)

!

C REGISTER
{RGC)

[

¥

A REGISTER

(RGA)

LEANDING
DETECTOR

LOGIC
UNIT

(LOG)

— MLU '

(LOD)

BARREL
CONTROL

X

BARREL
SWITCH

(BSw)

(RGX)

X REGISTER

|

MEMORY

Figure

12,

-43-

(MAR)

ADORESS
REGISTER

!

MLY

Processing Element Block Diagram



There are eight cards in the PE comprising the RGA, as follows:

RGA 1 | These are AO1-A type cards holding the exponent part
of the word and also providing special gating for

RGA 2 the sign of the mantissa(s).

RGA 3 )

RGA 4

RGA 5 These are A0l type cards and are used to hold the
+ mantissa part(s) of the word whose format is shown

RGA 6 R . .

v in Figure 11. :

RGA 7

RGA 8

Both types of cards take care of eight bits each as follows:

RGAiL RGA1 | RGA2 | RGA3 | RGA4 | RGA5 | RGA6 | RGA7 | RGAS
Bit 0—7 | 8—15{16—23}24—31|32—39|40—47|48—55|56—63

Position

The logic of A register is shown in '"Logic Schematic Gated

Register A0l and AO01-A."

b) B Register (RGB): This register holds
(1) the addend in addition

(2) the subtrahend in subtraction
(3) the multiplier in multiplication#*
(4) the dividend in division (least significant 48 bits)t

*

.t.

In multiplication the multiplicand is temporarily stored in R register
while B register is used to provide the space for the partial product
and also to provide the inputs to the multiplier decoding gates.

In division the divisor is stored in R register and B register holds the
least significant 48 bits (mantissa) of the dividend, which is usually
96 bits long (only the mantissa part). If the option of rounding, how-
ever, is used, then B register receives half of the quantity or all of
the divisor from R register but still this quantity is considered as
part of the dividend. This register is also used to hold the result
whenever operations involving double length operands are performed.

Y-



There are eight PE cards comprising the RGB, as follows:

RGB 1 These are AOl-A type cards holding the exponent part
of the word and also providing special gating for
RGB 2 the sign of the mantissa(s).
A
RGB 3
RGB 4
RGB 5 These are AOl type cards and are used to hold the
r mantissa part(s) of the word whose format is shown
RGB 6
in Figure 11.
RGB 7
RGB 8 |

Both A0l and AOl1-A cards take care of eight bits each as follows:

RGBi RGB1 | RGB2 | RGB3 | RGB4 | RGB5 | RGB6 | RGB7 | RGBS

Bit 0—7|8—15|16—23}24—31|32—39|40—47 4L8—55{56—63
Position :

c) C Register (RGC): This register is used for saving carries (par-
tial) from the Carry Propagating Adder during the execution of multiplication.
These partial carries are fed back to the PAT during each iterative cycle,
but in the final cyclé the carries are brought into CPA in order to form the
final sum (product).

There are four PE cards of AO8 type which can take care of 16 bits

each as follows:

RGCi RGC1 | RGC2 | RGC3 | RGC4

Bit
Position 16—31|32—47)|48—63|64—79

The logic of C register is shown in '"Logic Schematic Gated
Register A08."

-45-



d) R Register (RGR): This register is used for
(1) communication with other PE's (+8, +1, -8, -1); this is

known as routing.

(2) temporary storage of one of the operands (i.e., the multi-
plicand in multiplication).

(3) holding the divisor in division.

(4) extended addition and subtraction.

There are eight PE cards of AOl type which can take care of eight

bits each as follows:

RGRi RGR1 | RGR2 | RGR3 | RGR4 | RGR5 | RGR6 | RGR7 | RGR8

o |0——7|8—15|16—23| 24—31|32—39| 40—47 | 48—55| 56—63
osition

The R register communicates with PAT through the MSG during multi-
plication, with the CPA and B register during division (see division process),
and with the receiver selection gating and drivers during routing. Because
R register is not protected by E, El bits, the programmer should be very care-
ful about how the operand stored in R register is used. The logic of R regis-—

ter is shown in '"Logic Schematic Gated Register A0l."

e) S Register (RGS): This register is a spare register, which may be

used for temporary storage of an operand for subsequent instructions. This
results in saving time (memory cycles). The 16 least significant bits of
this register (48 — 63) may also be used for indexing purposes whenever an
additional index is required.

There are four PE cards of AO8 type in the S register and each

card accommodates 16 bits as follows:

RGSi RGS1 | RGS2 | RGS3 | RGS4

poorn |0—15|16—31|32—47 | 48—63
osition

~46-



The S register communicates with the Address Adder (16 least sig-
nificant bits) to index the address, with the logic unit (LOG) in order to
provide the operand which has been stored temporarily in the appropriate
‘register,and with the barrel switch in order to receive the operand for
storage from RGA, RGB, RGR, RGX, or PEM.

The logic of S regisfer is shown in "Logic Schematic Gated
Register A08."

f) X Register (RGX): This is a 16-bit register used for indexing

purposes. The type of card used is A08 which takes care of 16 bits through
16 latches.

The X register communicates with RGB, RGR, RGS, and PEM through
the Address Adder (ADA) and Operand Select Gates (0SG). Because it has only
16 bits, whenever transfers are being made during the transmit instructionms,
only the 16 least significant bits of the source register are enabled into
X register. For transfers from X register to the above-mentioned registers,
their 48 most significant bits are cleared and not loaded.

As shown in Figure 13, the content of X register may specify
indexing of the memory address, in which case the output of ADA (ADR+RGX)
is brought into the Memory Address Register (MAR) and thereafter into MLU
or it may specify indexing of shift count N (see details in shift instruc-
tions) in which case the output of ADA (N indexed by RGX) is brought into
the Shift Count Register (LOD4). Because the index amount for memory ‘
address from ADA can be brought into X register, it can be said that the
content of RGX = ADR or (ADR + content oflRGX) or (ADR + content of RGS).

47~



ot

(ADR) 00005

438 v 63 bits

48 63 bits 0

15 bits

RG S(48:16) 3 | RG X(0:16)

|
|

- Content of S Cohtent of X

|

i

Ll
Yy w

ADDRESS ADDER

(ADA) i

0000g

i

or :
? 0000, + Content of X register
. 0000g + Content of S register

:

L 4
MEMORY ADDRESS
REGISTER

i gy

(MAR) ‘

NOTE: In this illustration, the ADR value 00008 was used
arbitrarily as an example. Continuing this example, the
following instructions have the meanings shown:

(a) TCY: Transfer 0000g into MAR
(b) TCYX: Transfer 0000 + content of RGX into MAR
~(c) TCYS: Transfer 0000g + content of RGS into MAR

Figure 13. Memofy Address Chain (Example)

-48-

MLU
>



g) Memory Address Register (MAR): This is an AO8-type-card, 16-bit

register used to drive the 11 (presently used) bits of address to the PEM
through MLU.

The content of MAR (Figure 13) may be the address specified by
ADR field indexed by the contents of RGX or RGS. If indexing is not
required, it is evident that the content of MAR is ADR itself.

h) Shift Count Register QSCRZ: This eight-bit register holds the

shift amount and direction of shifting. It controls the Barrel Switch
Controls (LOD1, 2, 3) which in turn control the three levels of the Barrel
Switch and is used in both 64— or 32-bit modes of operation.

The shift count N (see equation in shift instructions) is received
by the Operand Select Gates (0SG) over the Common Data Bus (CDB) path in
bits 58 through 63 and from there it is brought into the Address Adder (ADA)
where it may be indexed by the contents of RGX or RGS. The output of ADA
(bits 10 through 15) is enabled into the six least significant bits of the
shift count register, but always modulo 64 for the 64-bit mode. If the
shift is done in 32-bit mode, the Inner and Outer words are acted upon
separately and the shift amount is the shift count modulo 32.

The Barrel Switch has been designed to always shift right, but a
left shift can be accomplished if the amount of left shift is converted
appropriately to a fight‘shift that produces the same result. The bits
which specify the direction of shift (Table 27) are enabled into the 0SG
(bits 56, 57) over the CDB path and from there they are brought directly
to the SCR (LOD4) at bit positions specified by SHL and SHR (Table 28).
For shift left the SCR receives from CU through ADA the shift count N-1.
This number may be indexed at ADA as in the case of right shift. Because
the 2's complement of the left shift number is required, the output of the
SCR is complemented (1l's complement) and then applied to LOD1l, 2, 3 in

order to control the Barrel Switch levels.

49~



Table 27. Shift Count Register Bit Organization

FROM 0SG | FROM 0SG OUTPUT OF ADA

BIT 56 BIT 57 bit | bit | bit | bit | bit | bit
LEFT SHIFT|RIGHT SHIFT| 10 11 12 13 14 15

«+——OUTPUT OF CPA WHEN ALIGNED —

bit | bit | bit | bit | bit | bit
74 75 76 77 78 79

66 67 68 69 { 70 71

R e
al a2 a0

Table 28. Shift Direction Truth Table

STATE OF BIT STATE OF BIT SHIFT DIRECTION
AT SHL AT SHR PERFORMED
0 0 Not applicable
0 1 Right end off
1 0 Left end off
1 1 End around

The SCR not only generates the shift amount received from CU
when a shift operation is requested through a CU decision, but also stores
the shift amount, in the case of alignment (addition‘or<subtraction),
received from CPA, bits 74 through 79 in 64~bit mode or 32-bit mode for
the Inner word or CPA bits 66 through 71 in 32-bit mode for the Outer word.

Since there are actuall& three levels and four possible displacements
in each level of the Barrel Switch, the shift count (SC) for a right shift
may be described by the following equation: 3 |

N

- = i_ 1 2
S.C. right ?air = a0+a1r +a2r

=

where the value of ay (i = 0, 1, 2) may be any of the combinations of "O"

and ""1" at the SCR (Figure 12) and therefore may equal 0, 1, 2, or 3. The

-50-



symbol r represents a number with a base of four, because as was mentioned
earlier, the SCR sends the shift amount to LOD1l, 2, 3 to control the Barrel
Switch shifting levels which can shift by 0, 1, 2, 3 (4th level), 0, 4, 8,
12 (3rd.level), and 0, 16, 32, 48 (2nd level). Thus thé aboVe-equation can
be written in a more éxplicit form as follows:

S.C. right = r o= a0+4a1+16a2

He M N
[

=0

where a, controls the 4th level of the Barrel Switch, a, controls the 3rd

level of the Barrel Switch, and a, controls the 2nd lev;l of the Barrel
Switch. '

In order to left shift, the content of the SCR is complemented (1l's
complement) and therefore the shift count for left shift may be described

by the following equation:

S.C. left = 6410 - I a.r
i

i) Mode Register (RGD): This is an Al3-A-type-card, eight-bit

register which is used to store results of instructions executed in the

PE or results comihg from the CU. It is also used to specify the status
of a PE.

(1) E,‘El bits: These bits are called enable bits, because
they control the gating clocks (clear, load) for the word
(Figure 11) stored in PE registers A, S, and X as follows.
When E bit is disabled, the Outer word (bits 0-7, 40-63)
of A and S registers and the contents of the index register
RGX are protected (that is, the Outer word contained in the
register is not affected by any instruction). When El is
disabled the Inner word (bits 8-39) is protected. In 32-bit
mode the E, El bits are independent of one anothér, while
in 64-bit mode they must both be set programmatically to the
same state (E = E1).

~5]-



(2)

Thé E and El1 bits control the movement of data from the PE

to the PEM (PE write data) and from the PE to.the CUB (trans-
fer data). The E bit enables one half (32 bits) of the PE
write/transfer data path through the MLU; the El bit enables
the other half of that data path through the MLU, The E and
El bits protect the PEM only when a Write operation from the
PE to the PEM is performed, but they are ignored regardless

of their state if a Write operation from the Input/Output Sub-
system (I0SS) or the CU is requested. Table 29 lists the

various states of the E, El bits and the indicated operation.

Table 29. E, El Bits Truth Table

ENABLE BITS 64~BIT MODE 32-BIT MODE

E | E1 (FULL WORD) | 1xNER WORD | OUTER WORD
Is disabled Is disabled|Is disabled
These conditions {Is enabled |Is disabled
should be avoided \

1 | O |because they cause/Is enabled |Is disabled
undefined results.

1 1 |Is enabled Is enabled {Is enabled

The E,;El bits can be set or reset by the LD(E, E1l, EEL)

instructions, in which case the E, El bits aré loaded from
ACAR, and by the SET(E, El) instructions, in which case the
E, E1 bits are set with the result of a logic function (see

mode register instructions).

F, Fl bits: These bits are used to indicate a fault due to
any of the following conditioms:
o Exponent overflow

e Exponent underflow if normalization takes place and the
resultant mantissa is not zero, or in floating point
‘multiply or divide

e Mantissa overflow in fixed point arithmetic
e Zero divisor o

e Unnormalized divisor (the divisor is always assumed to be
normalized)

-52-



The F bit, when present, indicates a fault in 64-bit mode or
in 32-bit mode for the Outer word, while the F1l bit indicates
a fault in the Inner word (in the 32-bit mode). The setting
or resetting of the F, Fl bits can be made by the SET(F, F1l)
instructions, in which case these bits are set with the result
of a logic function (see mode register instructions) indepen-
dently of the state of E, E1 bits. The setting of the F and
Fl bits, due to the presence of a fault, as a result of the

above conditions, depends upon the state of the E and E1 bits.

(3) G, H, I, J bits: These bits are used to store results of
certain instructions (compare, indexing test, etc.) They can
be used individually or combined in pairs as follows:

e I, G: When the instruction involves operands in 64-bit
mode, I is used to hold the result. In 32-bit mode, how-
ever, the I bit is used when the Outer word is involved,
while G holds the result when the Inner word is involved.

e H, J: 1In 64-bit mode the J bit is used to hold the result,
while in 32-bit mode J bit holds the result if the Outer
word is involved or H is used for the result if the Inner

word is involved.

For more details, see the instructions involving the use of the mode
register.

At the beginning of this manual it was said that the mode register
bits can be controlled by signals from the CU. Table 30 shows these (code)
signals and the resulting status of the mode bits. | '

Table 30. CU (Code) Signal for Mode Register

& (GO MODE REGISTER BITS

SIGNALS | v 'milr |F1l 1|6 |J|®m
FYELD1IH-T {1 {0 f{1j{04{1}0/(11}{0
FYELDIOH-T | 0 | 1 o {1]o0o |10 |1
FYELDIEHJT | 1 (1[0 [0 {0 |0 |11
FYELDITHIT |0 |0 |0 | o |1 |1]1]1




In summary, the mode register is the means by which the CU knows
how many PE's are in 64-bit or 32-bit mode; i.e., by the state of the mode
bits (E, El). For this and other reasons explained previously, the mode
bits cén be sent to or received from the CU over the mode lines,‘so that
constant monitoring can be achieved. The mode bit may be conditionally

cleared by any PE (as a result of any arithmetic or logic operation).

2. PE Data Transfer and Modification Units: These are logic elements,

which are used to modify data according to a particular instruction or to
transfer this data from one logic element to another. The PE data transfer
and modification units include Adder (CPA and CLA), ADA, Barrel Switch, LOD,
LOG, 0SG, PAT, MSG, and MDG. |

a) Adder (Carry Propagating Adder and Carry Look Ahead): During

the execution of the arithmetic operations in ILLIAC IV, the Carry Propagat-
ing Adder;(CPA) is used to add two operands and the Carry Look Ahead (CLA)
adder is used to determine whether a "Carry" is required, depending upon the
two operands to be added. If there is a Carry it is properly fed into the
CPA, which produces the final Sum within a clock time period. It is appar-
ent; however, that during the time when the Carry is generated and which
takes approximately nine ECL gates time delay (55 ns), the two operands to
be added must be present at the Select gates of the CPA.
' ‘ As indiéated above, the Adder is subdivided into two parts,
namely, the CPA which consists of 16 cards (A05) with each Card (group)
taking care of four bits at a time and the CLA which consists of two cards
(Al1l) with each card taking care of two sections (eight groups) at a time.
Because the Adder participates in the formation of the result
dﬁring the execution of the basic arithmetic operatiomns, it needs, in addi-
tion to the two operands to be added to one another, Control Signals to
enable the Adder to perform each specific arithmetic operation. At this
point, only the mechanization for the formation of the Sum of two operands
is discussed. Later, when the multiplication and division processes are
described the Adder (CPA in particular) is again discussed with regard to
those peculiar characteristics chat are essential to the implementation of

the basic arithmetic operations.

=54—



The Adder can be looked upon as a five-stage grid where each
stage, with the exception of the last one, participates in the formation
of the bit carries, which, along with the original operands, form the
final sum within one clock time period (Figure 14).

Stage #1
This stage generates 64 '""Bit Transmits" (BT) and 64 '"Bit Gen-

erates" (BG) according to the following equationms:

BT, = Ai@Bi
BGi = Ai . Bi
where
i = ith bit of A register
Bi = ith bit of B register
i=0,1, ..., 63.
Stage #2

Each CPA card takes care of four bits and the output of Stage #1
is brought into Stage #2 to form 16 "Group Transmits" (GT) and 16 "Group

Generates" (GG) according to the following equations:

(1) Mantissa Part

6T; = BT 415 * BTy ° Blit17 ° BTy+418

GG B

17 BCyu1s F BCyug6 ¢ Blyugs ¥ BOyuy ¢ BTiige © BTyaas

+ BG " BTi417 ° BTy416 ° BTy4as

j+18
where 1 =1, 2, 3, ..., 12 and j = 1 + 4(i-1) = 4i-3

(2) Exponent Part

GTi = BTj . BTj+l . BTj+2 . BTj+3

GG

BGj + BGj+1 . BTj + BGj+2 . BTj+l . BTj

+ BGj+3 . BTj+2 . BTj+l . BTj

where i = 13, 14, 15, 16 and j = 4(i-13).

i .

-55-



100 SHEETS S SQUARE
42 329 200 51SETS 5 SQUARE

42.382

SR

rATIONAL

Ay 1Ay 183 Ay i As1 Be2 (%63 %64
By 1B, B3 | Bs1 [Be2 (P63 |Pea

) i

T s‘: FEER IR
:BTl BT2 BT3 BT4§ BT61 BT62 BT63 BT64
STAGE 1 i oovv :
Bgl BG2 BG3 BG4 BG61 BG62 BG63lBC;§ij

STAGE 2

STAGE 3

STAGE 4

‘ ) N

/ ¢ ve s e o[BGy (BCoy BCGy Bl

. O O 6 _D_

N N R T I

STAGE 5 @ @ @ @

sor s o e B I By 1 Beg i Bey

ksl S2 183 [ 84| - - e o e e v 1611562 | S636u

Figure ~14. ILLIAC IV Processing Element Adder

-56-




The above equations indicate that, on each CPA Card, there is

" only one Group Transmit and one Group Generate gated out and at that stage
there is no communication among the CPA Cards for the formation of the
Group Transmit and Group Generate. However, each Group Transmit and Group
Generate is a function only of the operand bits taken care of by the parti-
cular CPA Card and is not influenced by the output of its preceding CPA

Card, where the order of precedence is from right to left.

Stage #3

, The 16 Group Transmits and Group Generates from the CPA are gated
into a different type of card, namely, the Carry Look Ahead (CLA) consisting
of four Sections where each Section takes care of four Group Transmits and
Group Generates. These Sectipns interchange information among themselves so
that the Group Carries generated in this stage are a function not only of
the Section Transmits and Generates but also of the Carry into each Section.
To be more specific, each Section produces é "Section Transmit" (ST) and a
"Section Generate" (SG) according to the following equations:

ST,
i

GTj . GTj+1 . GTj+2 . GTj+3

: . + . ‘ .
SGi GGj + GGj+l GTj GGj+2 GTj+1 GTj

+ . . )
GGj+3 GTj+2 GTj+1 GTj

where 1 =1, ..., 4 and j = 1 + 4(i-1) = 4i-3.

These Secfion Transmits and Section Generates feed into all Sectioms
of the Carry Look Ahead in order to form khe Carry (Incoming Carry) for each
Section, which, along with the Group Transmits and Group Generates, forms
four Group Carries per Section. ' .

The Incoming Carry for Section 1 (ICSi) is given by the following

equation:

IsC | + SG

17 5Cpaa1]

7t 56544y 0 STraesy t STran)  STraen

(1421 ° STraea) ¥ SCrae37 * STraw2) © STrasn)

where i = 1, 2, 3, 4 and [T = modulo 4.
The reader should bear in mind that since there are only four
Sections in the Carry Look Ahead, the above general equation is consistent

-57-



Qith the implementation of the Adder only when it is assumed that the
Section with subscript O on the right side of the equation is the same

as the Section with subscript 4. Also, it is important to note that the
Section Transmitsvand Section Generates are used only on Stage #3 to form
the Incoming Carry for each Section; they are never gated into Stage #4,
which belongs to the CPA.

Stage {4

The output of the CLA, in terms of the 16 '"Group Carries" (GC),
is fed back to the CPA, where the formation of 64 Bit Carries takes place.
Because all the Group Carries within the same Section do not have the same
number of terms, there are four general equations that describe the 16

Group Carries.

(1) GCi = GC. . + GG « GT. . + GG . GT . GT

i+1 i+2 i+1 1+3 i+2 i+1
+ICS; + GT g * Ty * GTyy
where i =1, 5, 9, 13 and j =1 + (i-1)/4 = (i+3) /4.
(2) 6C, = GG, + GG, * G .+ ISC; * 6Ty, * 6Ty
where i = 2, 6, 10, 14 and j = 1 + (i-2)/4 = (i+2)/4.
(3) GCy = GGy, + ISC, * 6T,
where 1 = 3, 7, 11, 15 and j = 1 + (i-3)/4 = (i+1)/4.
(4) ey = 1ICS,
where i = 4, 8, 12, 16 and j = 1 + (i-4)/4 = i/4.
Stage 5

Each of the 64 "Bit Carries" (BC) is a function of the Group
Carry into each CPA and the Bit Transmits and Bit Generates which precede
that particular bif within the CPA. As in the case of the Group Carries,
- however, where the lower—-order Group Carry within the Section, with the

~ order of significance taken from left to right, is a function only of the

-~58-



Incoming Carry for the Section to which the particular Group Carry belongs,v
the least significant Bit Carry within the Group is only a function of the
Group Carry for the Group (CPA Card) to which the particular Bit Carry
belongs.

For the reasons explained in the case of Group Carries, the 64

Bit Carries are described by the following equations:

(1) Mantissa Part

® BC; =BGy +BCyp " BTyyy *BCiy3 @ BTyyy " BTin

+GCy - BT 5 BTy4p * BTin

where i = 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 and
j=1+ (i-16)/4 = (i/4) - 3.

. BCi BGi+l + BGi+2 . BTi+1 + GCj . BTi+2 . BTi+l

where i = 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 and
=14 (i-17)/4 = (i-13)/4.

i i+1

f BC, = BG + GCj . BTi+1

where i = 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 and
j =1+ (i-18)/4 = (i-14)/4.

) BCi = GCj

where i = 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 and
j= 1+ ({-19)/4 = (i-15)/4.

(2) Exponent Part

® BC, =BGy, +BG;,, * BT;,; +BG 3 BTy, BTy

+GCiig3 " BTyyg * BTypp « BTy

where i = 0, 4, 8, 12 and j = i/4.

-59-



+ BG * BT + GC * BT * BT

e BC, =BG 142 i+1 5413 BTyt i+1

where i = 1, 5, 9, 13 and j = (i-1)/4.

° ?Ci = BGypp + CChpq3 * BTy
where i = 2, 6, 10, 14 and j = (i-2)/4.

o BCi = GCj+13
where i = 3, 7, l;, 15 and j = (i-3)/4.
‘Stage #6

This is the final stage where the 64 Bit Carries from Stage #5,
along with the two 64 operand bits that are still present at the CPA Select
gates, produce the final sum according to the equation Si = Ai@Bi@Ci

which when reduced gives

where Ai = ith bit of A register, Bi = ith bit of B register, Ci = ith Bit
Carry, and i = 0, 1, ..., 63.

The sum (Si)’ once it is formed, is fed into the A register, which
plays the role of an Accumulator. The Select gates of the CPA for the Addi-
tion of two operands allow only the Bit Carries and the two operands into
the exclusive OR gate for the formation of the sum and, if there are any
Carries as the resuit of that Add operation, they are ignored.

In the case of Multiplication, however, during the iterative
- cycles where the partial sum is generated, the Carries from the Pseudo
Adder Tree (PAT) are fed into the Select gates, which provide the same
path as for the Bit Carries in the case of Addition. In the same way, the
partial sum (PATS) is fed into the gates which are used for the "Ai path"
of the above equation and Word #4 (WD4) is gated into the gate used for Bi
of the same equation. During these iterative cycles the Carries out of the
CPA are allowed to be stored in the C register; in this case the CPA acts

as a Carry Save Adder while the sum is stored in the A and B registers. In

-60-



the final cycle of Multiplication the partial sum in the A register is
brought into the appropriate Select gate, while the Carries from the C
registér are brought into the Select gates that take care of WD4 during
the iterative cyéles of Multiplication or B register during Additionm.
The final sum is produced in the same way as explained for the Addition
of two operands.

It is eVident, therefore, that during the iterative cycles of
Multiplication where the partial product (SUM) is produced only the CPA
(operating as a Carry Save Adder) is used, but in the .last cycle, where
the final product (SUM) is produced, the Adder (CPA and CLA) is used in
the same way as for the Addition of two operands. Howéver, if there are
any Carries out of the CPA they are not allowed into the C register because
they are not needed.

During the recursive process for the formation of the quotient
field and remainder as a result of the Division of two operands, the Adder
(CPA and CLA) is used in a way similar to its use in the case of Addition
with the exception that, if .the Subtraction (Division) is successful, the
remainder, which is nothing else but the sum in the CPA, is brought into
the A register (through the wires which are effectively one position to
the left with respect to the wires bringing the sum into the A register
for any Arithmetic operation other than Division). In this case the CPA

is like a shift register that allows a "one-bit" left shift.

'Example REGISTER |16 : | 31

Given A= 1|1l1|0|1]1Ti[1|0|1}111]1|d]1|1

Gi B ={0,00,1;1,1,1,1,1,1:1,1 1 0
ven PO A O

Given the operands A and B above show the state of Section Generate One (SGl).

-61-.



Solution

The presentation below shows A and B operands and Carries (Group
and Section) in the CPA and CLA.

BIT #: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A
Register 11101111011 1|1 011
B
Register 0001 /1 1 11 /1 1 1 1{0 1 0 O
Group
Generat ] ‘;%““‘“‘“’\?fr~’-~*\—~/r~,/~,\,_,_
[ ] —¢—Group 1l—*—Group 2—}—Group 3——Group 4

SG1

Section 1

BGijg = Ajg * Bjg =1 0
BT16 = A1g@ B1g = 1P 0 =
BGj7 =Aj7 * By =1+0=
BTy7 = Aj7®By7 = 1@0 =
BGjg = Ajg * Bjg=1+0 =
BT1g = A1g@ By = 1@ 0 =
BGjg = Ajg * Ajg =1+ 0 =
BT19 = Ajg@B1g = 1@ 0

= O B O© B O K+ O

GG, = BGyg + BGyy * BTyg + BGyg * BTy7 + BTjg
+ BGjg * BTyg * BT;7 * BTyg
=0+0+1+40+1+1+0+1+1¢+1
=0
GT = BT; * BTy; + BT;g * BT;q
=1 +1+1+1
=1

By the same procedure as above,

GGy = 1 GGy = 1 GG, = 0
GT2=0 GT3=O GTQ=1
SGy = GGy + GGy + GT; + GG3 * GTp » GTy + GGy * GT3 * GTp * GT,

0+1+«1+4+1<0+14+0+0¢°0+1=1

-62-



In other words, the Group Generates and Group Transmits of the CPA
are fed into the Carry Look Ahead whose Group Carry outputs are fed back to
the CPA which finally performs the sum.

STl GTl . GT2 . GT3 . GT4
1+-0-+-0-1

=0

For this}example, SG; = 1 which means that the next Section will
have a Section Input Carry coming from Section 1 and therefore the Group
Carries of the next Section are a function of this Input Section Carry and
the Group Generates and Group Transmits which precede that particular Group
within the next Section.

The sequence of operations of the CPA and Carry Look Ahead for the

addition of two operands can be described as follows (Figure 15):

(1) 1In the CPA
(a) the Bit Transmit and Bit Generates are produced.

(b) the Group Transmits and Group Generates are produced.
| They are fed into the Section Carry Look Ahead.

(2) 1In the Carry Look Ahead the Group Carries are produced as
a function of:

(a) the Group Transmits and Group Generates from the CPA.
(b) the Section Transmits and Section Generates from all
the other Sections of the Carry Look Ahead.

(3) The CPA receives the Group Carries from the Carry Look Ahead
and produces the Bit Carries as a function of:

(a) the Incoming Group Carry from the Section Carry Look
Ahead.

(b) the Bit Transmits and Bit Generates which precede that
particular bit within the Group (CPA).

(4) The CPA takes the Carries and, in conjﬁnction with the two
inputs from the operands to the particular bit position of
the CPA, performs the addition, thus producing the sum in
one clock time because there is no recycling of Carries

involved.

-63-



T s i e e P T e ©

-179-

ADDER ‘ ‘ —

] MANTISSA PART EXPONENT PART
A

E .
et e e v e tmeen s N — e
- v S

A REGISTER ; CPAl CPA2 CPA3 CPA4 CPA5 *CPAb CPA7 CPA8 CPA9 CPAlO CPAlICPA12 CPA13| CPAl4| CPALS CPA16
; (O 3) (4 7) (8 11 (12 13)

f GT; Gby G-Tz G GT< ‘“62 3Ty 6’54{ UECGSCMo;, -y '~\r7 GTé CG,&GT? CG‘PCE:‘A ™ Crru Geuf(ﬂl;z @;;:;%M 7l r G&‘i}_?_h_, ‘}_“}»_‘.{9;'1 ;

t i F] i :

H : § ! i .

N o
e amu NN 4,
o sez ol L L)L Ll 56 3_
' | y % v vV v b ¥ AR JR 25 2K 25 BE 2R MK ) IR ENEIE Xov

L £L1T'—1‘ ; : ”!T’”“!"S'L*'{' T gi .iT : F’ 4.1 vy v ¥ ¥ | |

] SECTION # 1 . SHECTION ' # 21 ! SECTION # 3 © sEcTION' # 4 | | TO

; ! i ' i ;i i H y

' e CLA

LA 3 . CARRY LOOK AHEAD | cARRY LOOK AHEAD . caRRY Look AHEAD CARRY LOOK AHEAD

i6cl fec2 _ Ge3 | | GC4 . GC5 iiccs ccz,Liam GC9 ;9010 éGCll tgc1z §§13 ac14 GClS fecie
T e S e s g —

i
: e -.J i ,.\..4_,-.:

ST3
1
””f‘”"’”;“"” Y e e e o 1 : ,
1

; CLA 1 J WJ L * ' ' ’

N PSS 3 S i s

...,.._....‘m,.;.

i

16-19220-23 24~ 27 28~ 31 32- 35136 39!40-43*44 ~47 | 48~ 51 52-55; 56~ 59 60- 63 64-67 68-71 72- 75 76- 793
i : : ; i

!
§ { ? [ ] @7y e-11fa2-19)
| | |
§ ¥
% | i | ’ ; ; ; | ;
f : ! ; ; : f ’ . i
f i

i

b e e st et

_CPAl . CPA2 | CP 3

TR v——
A i

CPAS éCPA? jEPA?.“FPég CPA9 CPA%O CPA%%MQ?AIZ C?A%?NCPA14 ?PA;§“9P416
BUBUITEERisi N S el
3 © Cc s ¢ 8 ¢ 8 kb sc s ¢ s ¢ s § ¢ 8§ ¢ c 8 ¢c s

s ¢ s8 ¢ s
| T e - =
T e \\«/"—-' -\’\—\-\._\‘”_’ . s

\\\ PO —— e
T 4 each R

CPA4

sum Figure 15. Functional Block Diagram of CPA and CLA

carry

0
n o



b) Address Adder (ADA): This is a 16-bit register consisting of

four AO5 and one All type cards. The operation of ADA is exactly the same
as that of CPA and CLA with the exception that its inputs are the outputs of
the 0SG, S, or X registers and its output is the input to the X register,
the S register through 0SG, LOD4 (Shift Count Register), and MAR (Table 1).
The ADA receives the 11 bits of address from the 0SG and if indexing by X
or S is not required it passes the address through to the Memory Address
Register or, if necessary, it can store the address in the X register.b If
indexing is requested, the amount of indexing from X or S registers is added
to the address coming into the ADA from the 0SG in the same way as was
explained when describing the Adder. Because the ADA uses the same type of
cards and operates in the same fashion as the Adder, it can be said that
ADAl through ADA4 and CLAS comprise the Address Adder. Since there are only
four ADA cards (similar to the one the CPA uses) it is evident that there
are Group Transmits and Group Geﬁerates coming out of the ADA cards. How-
ever, Section Transmits and Section Generates are not used for the formation
of the Incoming Carry for the Section, because there is only one Section
(CLA5). In order to avdid confusion, however, the Section Transmit and
Section Generate out of CLA5 are not used when the ADA is used as an address
adder; but whenever two positive numbers being added produce a Carry, this
is sent to the mode register as a Section Generate to indicate that an over-
flow has occurred. For specific instructions calling for compafison of X
with other registers, the Section Transmit and Section Generate, which are
strictly a function of the four Group Transmits and Group Generates, parti-
cipate in the formation of the result which is stored in either the I or J
bit of the mode register. If the Address Adder performs subtraction rather
than addition, the quantity to be subtracted is complemented (2's complement).
This is accomplished by forcing a ONE into the least significant bit of the
ADA by the use of the FYE--Z3LD1l signal. No end around Carry is generated
thus eliminating the need for additional logic which normally would be
required to take care of a possible carry out of the ADA.

The operation of ADA is exactly the same as the one described for
the Adder, but the reader should bear in mind that, even though the addition
of two bits produces a Bit Transmit and Bit Generate according to the fol-

lowing equations

-65-



BT, = K, G-)osc;i
BGj = Ki . OSGi
where
Ki = ith bit of the X or S registers
OSGi = ith bit of ADR field through 0SG
0,1, ..., 15 if X register is géted into ADA
i =

48, 49, ..., 63 1if S register or 0SG is gated into ADA

the value of j depends upon the register gated into ADA (X or S register).

The Group Transmits and Group Generates are given by the following

equations:

CT; = BT 44y ° BTj+48 " BT a9 © Bli4s0
GGy = BCips7 * BCyhug " BTy447 ¥ BCyisg * BTiusg * BTytay
+BGj+50 . BTj+49 D BTj+48 . BTj+47

where 1 = 17, 18, 19, 20 and j = 1 + 4(i-17).

- These four Group Transmits and Group Generates form the Section
Transmit and Section Generate and, along with the ONE forced into the least
significant bit position of ADA, generate the Group Carry. For the reasons
given in the explanation of the operation of the Adder, there are four equa-

tions to describe each one of the four Group Carries.

(1) GCl7 = GG18 + GG19 . GT18 + GG20 . GT19 . GT18
+ GC20 . GT19 . GT18
(2) GC._, = GG,, + GG « GT., + GC » GT  GT

18 19 20 19 20 20 19

(3) GC

GG,, + GC * GT

19 20 20 20

(4) GC FYE--Z3LD1

20

-66-



Once the Group Carries are formed in the Carry Look Ahead (CLA5), they are
fed back to ADA cards to form the Bit Carries as follows:

(1) BCi = BG + BG, * BT, + BG * BT, * BT

i+l i+2 i+l i+3 i+2 i+l
+G6Cii16 * BTivs © BTy " BTy
where i = 0, 4, 8, 12 and j = 1 + i/4.
(2) BOy = BGjyq + BOypy © BTy *6Chine ° BTyap * BTy
where i = 1, 5, 9, 13 and j = 1 + (i-1)/4 = (i+3)/4.
(3) BC, =BG, + GCiyrg * BTyyy
where 1 = 2, 6, 10, 14 and j = 1 + (i-2)/4 = (i+2)/4.
(4) BCi = GCj+16
where 1 = 3, 7, 11, 15 and j = 1 + (i-3)/4 = (i+1)/4.

Because the ADA is an extension of CPA in that ADA 1 through 4
corresponds to CPA 17 through 20, the Grouﬁs (Transmits and Generates)
follow this notation, while the Bit Carries are numbered from 0 to 15 in
order to be consistent with the output of ADA.

It must be mentioned, however, that the content of ADA (indexed
or not) does not always represent the PEM address, but may represent the
Shift Count N (see Shift Count Register, subsection 1.h).

The 16 Carries along with the two operands (content of X or S
registers and ADR field through 0SG) which are still present at the_Sélect
Gates of ADA 1 through 4 produce the final sum described by the following

equation:

z, = Ki@OSGi@Ci

where Ki = ith bit of X or S register, OSGi = ith bit of ADR field through

0SG, C; = ith bit Carry, and 1 = 0, 1, ..., 15.

-67-



c)

Barrel Switch (BSW):

by the use of the Barrel Switch (BSW). The Barrel Switch has four levels

The shifting operation is accomplished

and can shift from O to 63 bits to the left or right, either end around or

end off in one clock period.

The end around shift is performed when both

the controls for left and right shift are true.

The Barrel Switch receives from the Logic Unit (LOG) a parallel

input of 64 bits and passes these inputs through its first level without

any shifting.

It can, however, swap bytes by 0, 24, and 32, and then

through the next three levels force four displacements for each bit in

each level (Figure 16).

‘ N \ \ \ . N
2 \>\ Y \Q\\}* \\t\\\«; \\‘\\\\\\ﬁ\}{k\\ \Q\\ \‘& ‘\\@\\ R \\\\\‘ \\\\ \\\ ‘\ \\' 8la ‘gl[sl 525354 55]55’57153];9 som}sz#ca
s r'/ 7 7 /’l N \ N\ \ \ W \\‘ N 333435'3557w594q4u42n',n aslagla7
2 % / / / s // ;/ > \\ > 2 \ W 17,1819, zoz:zzzaizmzs 26j27i28/20(30/31
8 , i //% e ~0|21l a|s(sj7|8|slioln]i2|myals
iy B A A = el
T ™
) V%a's’no‘an 3hia| »s||e||7||e 9] 20‘2;?2‘23*24'2525 acalaLo 3l 323334!% 151739%39];04!;2 3144444&47% 505',52 3
! 0l1l2ls 4]s 16 7,8 1001 |2 13014 lshs n|ns |9|zo 21122(2324125 26{27|28(29 30131 32[33(34135 36 u;w;vao'auaza:samas«:ear N 5557|5s‘59
3 o1 z|314 6|7.69, no'n el 13'14|s'|s;17 8 |920‘2.(2?23242525!279!%,'?9%63:3? u‘;uissassrvsess{‘zoac 4214314414546, 4 TRERORAAN 52153 i
2 W (23145 i7! 8|9 1011 123 16/17/1¢ 19 20|21 22} 412526127/28/29i30; 31 32/33/34:35 36 nnuom' 2/a3(aaiaslacla7 0/5t
/ﬁu,l zj314] le 9110{1 12i13}14)15 sn Rk 28(29/30/31,32,333435.36'3 o j4slaslar i

T T T

T
) 0 | 2 3. 4 5 671 {8,910 1] IZ 13 l4'15|l6 I7ll8|19l202!|22}Z3|24|2‘]26

7

0.1 IZ 3|4 i5 G|7 8[9 lO I IZ l3|l4 15 116 . I7 !8|l9'20!211222324:25
o1 2 3 4! 5 G 7 B|9|l0|ll IZ}B!M I5HSII7 l8'19|20 2I2223v24
0 b 2’3 4 516 7 8! 9[!0[” 12113 14'15 ISIIT'lGA_IZOIZIZ’?B

| |
25 26‘27:2" I29 30 31132 33 34, 35 3637 3839 4041 42434445 46 47 48 49" 50 St 52 |53 545556 57

24|25 |<o|4! 23[29'30 31 32 33 34, 35 35 3738 59 40141 424314445 46‘47’4849 50 Si 52'53'54 55'56

—— : Y —
27i28129;30;3! 32'33 34! 35’35 3713839 4041 42 43 44]45 4647 434950 51 5253/54/55|56'57'58 59&\\\%\&\%
26,27 26,25130|31{323 33/34,35,36/37,38,39'90 411424344 45.46 47 48 49 50 51 52 53!54 55565758 ssao\%\m

5839
57, 58:59%%
el

, b, y
'

hl

‘ -

-z 3

_0 4 8 1216 20242832364043 \ 60 | 5 9 1317 21 2529333741 45 \ 61j2 6 10 14 18 22 26 30 34 3842 46 2 3 T 11 15 19 327 31 35394347
0O 4 8 121620242832 364044 ‘f 2 6 10 14 18 22 26 3034384246 sﬁ& 37 115192327 313539434

0 4 812 lb 2024 28 32 3640 4+

(a)

)

I 5 91317 212529333741 4
1 5 913172125 "93337‘!45 2 6 1014 1822 26303438424 3 T 1519232731 3539434

/{&O 4 8 l2 16 2024 283236404448% 15 9131721 2529 33 3741 439 //ﬁ/z 6 101418 22263034384246% ﬁyS T 115 192327 31 353943475
4

9 1.

nNoed oo
[P R
A O o -~
a oo N o

LT
il

8 9 10 1 1213 1415 16 17 18 19 20 2122 23 2425 26 27 28 2930|3| 32 33 34 3536 37 38 3940 4! 4243444546'
7 8 9101121314 1516 |7 18 19202122 232428 2627 2829
6 7 8 91011 12{I13 1415 16 I7 18 1920 21 22 23 24 25 26 27 28|

B IIS 17 ¢+ 22021 222324 2526 27 2829 3031 (32 333435 36 37 3839404142434445 4647t8 4950 5! 525354 5556 57 58 5}3

74849 50 5! 52 53 54 55 56 57 58 59
30 31 32 3334 35 36 37 38 3940 41 42 43 4445/46 4748 49 50 51 52 53 5455 56 57 58 &
29 30 3! 32 3334 3536 3738 39404142 4344i45 4647 484950 51 52 53 54 55 56 57 58 5!

~-SECTION1—— «———SECTION2

Figure 16.

PE Barrel Switch:

> & SECTION 3— 3> o SECTION 4.
(b)

a) Description, b) Physical Configuration

-68-

SR

2nd
level

3rd
level

4th
level

2nd
level

3rd
level

4th
level



Every level of the Barrel Switch is divided into four sections,
each section accommodating 16 bits. The following tabular information,
containing information about the specific level, quantity, and type of
PE cards being used, bits being accommodated, and amount of shifting, 1s
given to provide a better picture of the Barrel Switch. Information about

the way the levels are connected between one another is also given below.

FIRST LEVEL OF THE BARREL SWITCH
1st Section | 2nd Section { 3rd Section | 4th Section Amount
(Card) (Card) (Card) (Card) of
Bit Position|Bit Position|Bit Position|Bit Position Shift
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 417 18 19 N
20 21 22 23
24 25 26 27 0
28 29 30 31
32 33 34 35 N
36 37 38 39
40 41 42 43 E
44 45 46 47
48 : 49 50 51
52 53 54 55
56 57 58 59
60 61 62 63
.Note: AO06 card type used for all four sections
SECOND LEVEL OF THE BARREL SWITCH
0 1 2 3
4 5 6 7 g
8 9 10 11 L
12 13 14 15 T
16 17 18 19 1
20 , 21 22 23 P
24 25 26 27 L
28 : 29 30 31 E
32 33 34 35 S
36 37 38 39 :
40 41 42 43 0
44 45 46 47 F
48 v 49 50 51
52 53 54 55 1
56 e - 57 58 59 6
60 61 62 63
Note: AO7-A card type used for all four sections

-69-



THIRD LEVEL OF BARREL SWITCH

1st Section | 2nd Section | 3rd Section | 4th Section Amount
(Card) (Card) (Card) (Card) of
. . . . s Shift
Bit Position|Bit Position|Bit Position|Bit Position
0 1 2 3
4 5 6 7 M
8 9 10 11 U
12 13 14 15 L
16 17 18 19 T
20 21 22 23 I
24 25 26 27 P
28 29 30 31 L
32 33 34 35 E
36 37 38 39 S
40 41 42 43
44 45 46 47 0
48 49 50 51 F
52 53 54 55
56 57 58 59 4
60 61 62 63
Note: AQ07-B card type used for all four sections
FOURTH LEVEL OF BARREL SWITCH
0 16 32 48 :
1 17 33 49 M
2 18 34 50 U
3 19 35 51 - L
4 20 36 52 T
5 21 37 53 I
6 22 38 54 P
7 23 39 55 L
8 24 40 - 56 E
9 25 41 57 S
10 26 42 58
11 27 43 59 0
12 28 44 60 F
13 29 45 61
14 30 46 62 1
15 31 47 63
Note: AQ07-C| Note: AQ7-B card type |Note: A07-C
card type used for Sections 2 & 3 card type
used for used for
Section 1 Section 4

-70-




The sections of the Barrel Switch are signified by BS, followed
by two decimal digits. The first digit refers to the level of the Barrel
Switch and the second digit specifies the particular section (i.e., BS1l =
first section of the first level of the Barrel Switch.

The levels of the Barrel Switch, by section, are connected as

follows:

BS11 » BS21 - BS31

BS12 - BS22 ~» BS32 Bit-by-bit correspondence
BS13 » BS23 - BS33 of the Barrel Switch levels
BS14 > BS24 » BS34

BS31
BS32 .
BS33
BS34

+ BS41 bits O to 15

BS31 )
BS32
BS33
BS34 J

r > BS42 . bits 16 to 31

BS31
BS32
BS33
BS34

y > BS43 bits 32 to 47

BS31
BS32
BS33
BS34 |

> BS44 bits 48 to 63

For special shifting purposes there are additional interconnec-

tions between the levels of the Barrel Switch.

(1) The second level of the Barrel Switch is connected.to two
places of the third level of the Barrel Switch for bit

positions listed below:

BS21 » BS31 bits 52 56 60
BS22 » BS32  bits 53 57 61
BS23 » BS33 bits 54 58 62
BS24 » BS34  bits 55 59 63

-71-



(2) The third level of the Barrel Switch (except Section 1 of that

levei) is connected to the foutth level as follows:

BS32 ~» { g:z; for bit 13
B33 { Lot for bit 14
BS34  { borl for bit 15
BS32  { pogs for bit 29
BS33  { boss for bit 30
BS34 | Los2 for bit 31
BS32  { boad for bit 45
BS33 | 2222 for bit 46
BS34 | ggzz for bit 47
BS32  { bodl for bit 61
BS33 | boud for bit 62
336 { e for bit 63

The physical configuration of the Barrel Switch as given by
R. Davis of [4] (Figure 16) shows that any number (bit position) can be
shifted a number of places to the left or right using the above informa-
tion with respect to»the interconnections between the levels of the
Barrel Switch.

In order to be able to describe the shifting action, it is best
to deal with one bit position and trace‘its path from the beginning to
the end. Suppose bit position 32 is to be shifted 27 places to the right.
This means that it will be shifted 16 to the right by the second level of

-72-



the Barrel Switch, the third level will shift it 8, and the fourth level 3,
a total of 27 places, thus bringing the 32 bit position into bit position
59.

The input to the Barrel Switch is through the logic unit (LOG).
It then passes through the first level of the Barrel Switch without being
shifted at all and is then brought into the first section of the second
level of the Barrel Switch where it is shifted 16. At the left end of BS21
(Figure 16(b)) the number 16 represents the amount of shifting. Following
this row toward the right the fourth number (bit position 32) which was
brought into this level goes into position 48 which is straight up one
position on the previous (first) row. Since there is a bit-by-bit connec-
tion between the second and third levels of the Barrel Switch and because
the third level is to shift it by 8, the output of the second level (bit
position 48) is found on the third row of the third level still as bit
position 48. After the shift (by 8) the output of the third level is bit
position 56 (first row of the first section of the third level of the
Barrel Switch). Since there is a connection of BS31 and BS44 for bits 48
to 63, the output of BS31 (bit position 56) becomes the input to the fourth
section of the fourth level of the Barrel Switch, on the fourth row because
it is to be shifted by 3. The output of this level and therefore the output
of the Barrel Switch is bit position 59 (first row of the fourth section of
the fourth level of the Barrel Switch).

A left shift is accomplished in the same fashion as a right shift
except that the amount of right shift is taken as 6410 minus the amount of
left shift desired. ' For example, if bit position 16 is to be shifted left
16 places, it will be brought into bit position 0. This is the same as if
it were shifted 48 places to the right (64 - 16 = 48). Bit position 16 is
in the fourth row of the first section of the second level of the Barrel
Switch in Figure 16(b), which shows that after being shifted by 48 places
‘the bit is in bit position O.

As stated previously, the Barrel Switch can shift left or right
either end around or end off. In an end around shift, there is simply a
displacement of the bit position equal to the right shift amount when
shifting right .or 64;9 (minus the left shift amount when shifting left)
and therefore none of the bits is lost. In the case of shifting end off

either right or left, as many bits as the number of shifts are lost. If,

-73-



for example, the mantissa of A register were to be shifted right end off 16
places, bit poéition 16 would be moved to bit position 32, bit position 17
would be moved to bit position 33, and finally bit position 47 would be
moved to bit position 63.  Bits 48 to 63 would be lost and bit positions 16
to 31 of A register after the shifting would contain zeros.

To see how the zeros are inserted into the mantissa of A register
(bit positions 16 to 31, for example), refer to Figure 16(b). In the second
row of the second level of the Barrel Switch, there are crosshatch lines

directed upward and to the right covering the numbers:
48,52,56,60 49,53,57,61 50,54,58,62 51,55,59,63

These numbers when placed in sequence are 48 to 63 which are lost when shift-
ing by 16. What is really happening from the hardware standpoint is that
these bit positions are never enabled when shifting by 16 to the right end
off. The result of this action (blocking) is that since these bit positions
are not enabled, the output of the Barrel Switch corresponding to bit posi-
tions 0 to 15 is zero. In the meantime, bit positions O to 15 have been
moved 16 places to the right and therefore occupy bit positions 16 to 31.
Since only the mantissa was to be shifted right end off 16 places, bit
positions O to 15 of the A register were not enabled to enter into the first
level of the Barrel Switch, which means that zeros were inserted at the
input of the first level of the Barrel Switch for bit positions 0 to 15.

In the same way, those bits not being enabled when shifting left
can be found. These bits are covered by the crosshatch lines directed up-
ward and to the left. ‘
| Defining:

C = the amount of shifting to the right end off
T = the amount of shifting to the left end off

E = the number of bit positions which become zero
(0 through E)

H = the number of bit positions which become zero
(H through 63)

then:

=
i

c -1 . for an end off right shift
64 - T for an end off left shift.

-74~



As stated previously, the first level of the Barrel Switch does
not do any actual shifting, but it can swap bytes. Another feature of the
first level of the Barrel Switch is the capability it possesses to block
certain bits from entering as inputs to the second level of the Barrel
Switch. This is interpreted as if the Barrel Switch (second, third, and
fourth levels) receives zeros at these particular inputs, whiéh, after
being shifted a number of places, force the output of the Barrel Switch
corresponding to these bits to be zero. One reason for having this addi-
tional feature in the first level of the Barrel Switch is because it is
possible for a certain portion of a register which cannot be blocked to
come into the Logic Unit, since there are no controls enabling the logic
unit by parts. Instead, the whole word from the Logic Unit is enabled
into the first level of the Barrel Switch. This level therefore must have
control signals which can enable theiword by parts into the rest of the
Barrel Switch. |

The Barrel Switch is one of the most important logic elements of
the PE. It participates in the execution of every arithmetic instruction
which, without the use of the Barrel Switch, could not be executed as
rapidly.

During the description of the Barrel Switch no mention was made
of what causes the different levels of the Barrel Switch to be acted upon
and a shift operation to take place. This shifting operation is a combi-
nation of two logic elements, namely, the Barrel Switch and the Leading
ONES Detectors.

Each leﬁel of the Barrel Switch receives special controls which
determine the actual amount of shifting (as in the case of alignment).
These controls, prior to their application to the Barrel Switch, originate
from the Shift Count Register (LOD4), whose two most significant bits are
decoded and applied to the second level of the Barrel Swifch as controls
for shifting by 0, 16, 32, and 48. The other two bits (bit positions 2
and 3) of the shift counter are decoded and applied to the third level of
the Barrel Switch as controls for shifting by 0, 4, 8, and 12. Finally,
the two least significant bits of the shift counter, after being decoded,
are applied to the fourth level of the Barrel Switch as controls for
shifting by 0, 1, 2, and 3 (Figure 17).

-75=-



64 Bit Shift Counter (LOD#4)

R ———
o

H
I
: s
PN i e—
Y wv.s

Qg 0TI 3T
da_: |
. Qo A,

S o g
Qui

Qo

o,

LODHS L

DING ONE
BARREL SWIT

LoD#2 |

CH CONTROL

LOD#3
'5ﬁiﬁaia§3a'°‘
S

LOGIC UNIT (LOG)

0 \ S

63

S

15t LEVEL OF BSW
SWAP BY 8 BITS

k 4 e

7

i 2nd LEVEL OF BSW
SHIFT BY 0, 16, 32, 48 BITS

Y i -

arr————

" 3rd LEVEL OF BSW
41 SHIFT BY 0, 4, 8, 12 BITS

A

i
i
R 4
i 4th LEVEL OF BSW
SHIFT BY 0, 1, 2, 3 BITS

e ot ARBRB 8

b s §

R 1
i L ' o
3 SR B
i
:
H
{
Adcara s AL e
;
’
3
Figure 17.

Functional Block Diagram of Barrel Switch

and Leading ONES Detectors

-76-

[l E S I A

w0 H - R w;m



The amount of shifting, which involves the Shift Count Register,
is concerned with shifts for alignment or shifts due to CU decision (Shift
Count N). The Barrel Switch, however, performs shift operations due to PE
decisions (in case the option of normalization is used), in which case the
amount of shift is determined by the Leading ONES Detectors 1, 2, 3, while

the shift operation is executed by the Barrel Switch.

Example
Suppose the mantissa of A register is required
to be shifted right end around by 3 (CU deci-
sion). Show illustratively the path of bit at
position 20.

Solution

Figure 17 shows that the Shift Count Register (true output) sends
the foliowing number 0000112 = 310 to LOD 1, 2, 3. This number is decoded
there and LOD3 which received A0 = 11 enables the gate of the Barrel Switch
"corresponding to a displacement of a number by three positions. This means
that, since LOD3 controls the fourth level of the Barrel Switch, the bit at
_ position 20 passes through the second and third levels through the gates

corresponding to a zero shift and "comes out'" at bit position 23 (Figure 18).

-77~



!

Bit at position 20

LOGIC UNIT
| 247 U{"ﬂ V77y7]
b
e e y 20 v 22 v 04
[ LOD # 2
DECODES OL 1 o
L?WWMW.mmeZ 0 P 32 48
AT A/ /4
i vy 20 v28 v 32
LOD #1
DECODES OL,
1 0 8 8 12

/]

A register

H = ™ P W

w\1:

m O H H = W

1St Level

an

3rd

th

4

3

4 V74 A 79
i LOD # 3 20 v 21 b2 1
+ DECODES OL y

Figure 18.

-78=-

Path of Bit at Position 20 through -
the Levels of the Barrel Switch (Example).

v

Level

Level

Level
23



d) Leading ONES Detector (LOD): This unit is used to control

_ the Barrel Switch when shifting from 0 to 63 left or right, or both, end
off or end around. It is also used to detect where the leading ONE in the
mantissa of an operand is located and then to generate the proper controls
to cause the Barrel Switch to shift left (normalize).

The previous description of the Shift Count Register (LOD4) men-
tions that its contents (least significant six bits) may come from the CU
over the Common Data Bus path or from the CPA. The latter is the source
of the contents of LOD4 for mantissa alignment (see Alignment in the sub-
section dealing with addition).

In order to control the Barrel Switch due to a CU decision (shift
amount is received from the CU) or due to a PE decision (in which case an
alignment or normalization is performed), the Leading ONES Detector, which

is subdivided into six subunits, operates as follows:

(1) LoDl, 2, and 3: These are 16-bit-long units whose logic
appears on A09-D, E, and F type cards schematic diagrams;
LOD1 receives bits 17 to 32 from A register, LOD2 receives
bits 33 to 48 from A register, and LOD3 receives bits 49
to 63 from A register (one bit not used). The logic of
LOD1, 2, and 3 can be characterized as priority logic in
that whenever the option of normalize is used and a ONE is
detected in one of the three LOD's, and within each LOD in
one of the four groups which are categorized as shifts by
0, 1, 2, and 3, these particular controls dominate and the
Barrel Switch shifts left accordingly. It is evident,
therefore, that if a ONE is detected by LOD1 and LOD3,
LOD1 will predominate in 64-bit mode or 32-bit mode for

the Inner word.

If the shifting operation is due to a CU or a PE decision
(alignment), in which case LOD4 holds the shift number
(amoun;),,LODl, 2, and 3 receive this number and direction
of shift from LOD4, decode it, and generate the proper
controls to cause the Barrel Switch to shift as much as
requested. In the case when normalization is to be per-

formed, the output of LOD4 to LOD1l, 2, and 3 is zero,

=79~



(2)

(3)

(4)

because LOD4 does not participate in this operation at all.
The Interface of LOD1l, 2, and 3, LOD4, and the Barrel Switch
is shown in Figure 17.

LOD5: This is an Al0-C type card which contains supplementary
logic of LOD1l, 2, and 3 and is used to communicate with LOD4
(true and complement form), thus to generate shift left and
right controls for LOD1l, 2, and 3, and to block the Barrel
Switch from shifting any amount if the leading ONE is at bit
position 16 when normalizing, and to generate a special signal
(Zero Mantissa Level) for LOD6 when normalizing and the man-
tissa is a zero number. LOD5 also participates, when the
option of Rounding is used, to save the most significant ‘
shifted off bit (right end off) during the pfocess of aligning
the mantissa when addition or subtraction is requested and

the exponents of the operands are unequal.

During the process of normalizing an operand or the result
of an operation, LOD5 generates proper controls for the
exponent, correction (see the subsection concerned with Nor-

malization).

LOD6: This unitkreceives the higher-order bits of the result
of exponent subtraction from the CPA (bits 65 through 73) and
the Zero Mantissa Level signal from LOD5. This signal, when
activé, clears the mantissa, sign, and exponent fields of A

register when the result is being normalized and the mantissa

field contains zeros.

LOD15: This is an Al0-B type card and receives the nine most
significant bits of the exponent difference and is used to
generate the proper controls so that, when the amount of
shifting of an operand (mantissa) as a result of the exponent
difference is greater than the mantissa field itself, the
mantissa of the operand with the smaller exponent is zeroed
and the Barrel Switch does not have to participate in this

operation.

-80-



Because the 1LOD is a complex unit which participates in the
shifting operations due to either CU or PE decisiomns, it is
suggested that the reader familiarize himself with LOD logic
so that when the alignment and normalization processes are
discussed he will be able to follow the process of a shifting

operation as implemented in the machine.

e) Logic Unit (LOG): This is an AO03 type card logic element used

as a select gate for data whose destination is the MIR portion of the MLU or
Barrel Switch. It is also used to perform the logic "AND" and "OR" of two
operands. It consists of eight cards, each one handling eight bits.

Because the basic gate of LOG is a NOR gate tied to four other NOR
gates, the output of LOG undergoes an inversion before it is brought to the
MIR of MLU or to the Barrel Switch.

Each two-input gate receives two lines, with one line representing
the data from A, B, S, and C registers or Operand Select Gates (0SG) and the
other representing the énable signal. The enable for each register is dif-
ferent from that for every other, but is the same for all the bits of a spe-
cific register. This means that if, for example, the output of B register
is selected by LOG, the enable signal will be the same for all the gates of
LOG that are wired directly to B register, but, because there are eight cards
in the LOG, this enable signal feeds eight cards and is common for the eight
bits of B register per LOG card. The same scheme applies to the other inputs
to LOG (Figure 19). Because all the sources of data to LOG are 64 bits 1ong,
there is a bit-by-bit correspondence with respect to LOG with the exceptiqn
of C register. The bits of C register are numbered from 16 to 79 and, for
reasons of implementing eight-bit byte instructions (i.e., A register is
less, greater than, or equal to B register, etc.), only C register bits 16,
24, 32, 40, 48, 56, 64, and 72 are seat directly to LOG bits 23, 31, 39, 47,
55, 63, 7, and 15, respectively.

-81-~



it No: O _ 78 15 16 23 24 31 32 39 40 47 48 55 56 6

) LOG LOG LOG ‘LOG LOG LOG LOG ‘ LOG
a .
1 2 3 4 5 6 7 8
// > BIT 1 - 63
. Enable {>
BIT
0SG 0
( > BIT 1 - 63
| - i
Enable
_ BIT >
A register data 0
{4 > BIT 1 -~ 63
» })
: *%
b v MLU (MIR)
) Enable BIT ~~ Og’;};"g
' v ( ) BARREL
—————%sw1TCH
B register data 0
({ : > BIT 1 - 63
F% }
Enable
~ BIT > .
S register data 0
) » —f > *
Enable ~
’ BIT v . .
* See details about C Register
. ) 0 *% See subsection II.A. for the
YLLxgglsxgx_daLa__ meaning of this symbol.

Figure 19. LOG: a) Bit Organization, b) Logic Configuration

-82-



f) Operand Select Gates (0SG): This is an AO3 type card logic

element used to select data transferred to the PE registers from MIR (MLU)
or CU data over the Common Data Bus. Data from MLU to PE is known as ''PEM
read data." Data from the CU may be transferred to PE registers, or after
it passes through 0SG and LOG it may be sent to the MLU, in which case this
data is known as '"CU write data to PEM." Since 0SG is an A03 type card its
operation is similar to that of LOG. It is organized into eight cards, each
one taking care of eight bits (Figure 20(a)).

The inputs to 0SG are CDB; MIR (MLU);_B, R, and mdde register; and
Address Adder. Data from CDB and MIR and the B and R registers may be 64
bits wide, while data from the mode register are only eight bits wide, and
data from the Address Adder are 16 bits wide.

Because the 0SG output consists of five two-input NOR gates tied
together (Figure 20(b)), data from the mode register is wired directly to
0SG #1 and data from the Address Adder is wired to 0SG #7 and #8. 1In this
way, a significant amdunt of logic is saved. The output of 0SG is wired to
LOG, B and R registers (64 bits), and to the Address Adder (16 least signié
ficant bits of 0SG). This data undergoes an inversion while passing through
OSG and, in order to be consistent with the description in the PEM manual,
Tab1é31 provides signal level information before and after it passes through
0SG. '

Table 31. OSG Signal Representation

0SG INPUT . - 0SG OUTPUT
REMARKS

SIGNAL NAME |LEVEL|LOGIC|SIGNAL NAME |LEVEL|LOGIC

TVW-WXX~--0 | HIGH 1 |PDW-WXX--0 | LOW 1

(CDB) In actuality,

the CDB input
to 0SG is the
|output of the
“llatch follow-
ing a differ-
ential receiver
(Receiver and
Register).

TVW-WXX--1 | LOW | . 1 |PDW-WXX--1 | HIGH 1
(CDB)

TVW-WXX—-0 | LOW 0 |PDW-WXX--0 |HIGH| O
(CDB)

TVW-WXX~--1 | HIGH 0 |PDW-WXX--1 | LOW 0
(CDB)

-83-




.t

7

3940 47 48

No: 0 78 _1516 2324 3132 5556 63
0SG 0SG 086G 0SG 0SG 0SG 0SG 0SG
a)
1 -2 3 4 5 6 7 8
Bit 1 - 63
J >
ENABLE I~
- | %
BIT
CDB data 0
(f Bit 1 - 63
ENABLE 5
BIT :
MLU (MIR) data 0
Bit 1 - 63
(( >
1}
b) ENABLE ~ "OUTPUT TO:
| 2 .
BIT LOG, B & R REGISTERS
B REGISTER data . ¥ ADDRESS ADDER (BIT 0)
; Bit 1 - 63
>
ff
ENABLE . !
BIT v >
R REGISTER data) 0
({ %*
) >
 ENABLE ~
IT -
B * Data from Mode .
) register feed 0SGI (bits 0-7)
MODE REGISTER - »
ADA data Data from ADA

feed 0SG# 7, 8 (bits 48-63)

~

Figure 20. (0SG: a) Bit Organization, b) Logic Configuration

-84-



g) Pseudo Adder Tree (PAT): This is an AO04 type card logic ele-
ment used primarily in multiplication and division only if the dividend is

smaller than the divisor. It consists of three levels which function as a
Carry Save Adder: the first level has as inputs the multiplicand or partial
sum, the partial carries, and the recoded multiplicand; the second level has
as inputs the sum and carry from the first level and the recoded multiplica-
tion; and the third level has as inputs the sum and carries from the second
level and the recoded multiplicand.

. Because the multiplication process is described later in terms to
which the reader has not yet been introduced, the levels are not defined here
in terms of the bits they can accommodate. Also, there are signals in every
level that are usedvspecifically in PAT and which have not been defined
previously. For these reasons, only the bit organization and functional
Interface of PAT are provided at this point; in a later subsection concerned
with multiplication a more complete description of PAT, from the functional
point of view, will be given. The PAT is subdivided into 14 parts (cards),
with each part taking care of four bits as follows:

PAT #: PAT | PAT | PAT|PAT |PAT | PAT | PAT | PAT | PAT | PAT | PAT | PAT | PAT | PAT
’ 11315179 11{13}15117|19|21|23|25]|27
BIT #: 16-[20~-|24~|28~|32-|36~ |40~ |44~ {48-]52-|56-|60- |64~ |68~
* {19 |23 |27 {31 {35 {39 |43 {47 {51 |55 |59 (63 |67 |71

The output of the third level of PAT is directly wired to the CPA
and, because PAT takes care of the mantissa part of an operand, there is a
bit-by~-bit correspondence between PAT 1 through PAT 23 with CPA 1 through
CPA 12, respectively. The purpose of PAT 25 and 27 and the exact bit con-
figuration of each level of PAT are shown during the description of the
multiplication process. Figure 21 shows the,functional block diagram of
PAT and its interface with the logic elements participating in the multi-

plication process.

-85-



RGB

RGR

1=

MSG

|

RGA RGC
) -+ 48
P3R-WXX--1
PAW-WXX-~1 i
56 ] ll
PW1-WXX~-1 T
ke 15t Level of PAT
PW2-WXX--1
| ;6 | P51-WXX--1
PW3-WXX--1 E— ]
nd
1PW4-WXX--1 2 Level of PAT
56 |P52-WXX--1

vy

3% [evel of PAT

56 | PSW-WXX--1 l
Y

“vf
H > N

PPW-WXX-1

CPA

T,

CARRY TO RGC

NOTE: Since dnly 56 bit locations are accommodated by the

Figure 21.

-86~

PAT, the WXX notation refers to bits 16 - 71.

Registers Directly Associated with PAT

SUM TO RGA & RGB



h) Multiplicand Select Gates (MSG): This is an AO2 type card

logic element, which is used primarily for the implementation of the
instructions regarding multiplication of two operands. It consists of six
cards, each one taking care of eight bits (Figure 22).

The MSG is interfaced with:

(1) the R register from which it receives the mantissa part of
the‘word representing the multiplicand, which has been
stored in R register prior to starting the multiplication
process (48 bits long).

(2) the Multiplier Decoder Gates (MDG) from which the MSG
receives controls forcing its outputs to represent the
multiplicand times ONE, times TWO, times minus ONE, or
times ZERO.

(3) the three levels of PAT, with the first level receiving the
output of MSG corresponding to Word #1, the second level
recéiving the output of MSG corresponding to Word #2, and
the third level receiving the output of MSG which corre-
sponds to Word #3.

(4) the CPA which receives the output of MSG which corresponds
to Word #4.

The Inteffaée'of MSG with the PAT and CPA is made through 49 lines
instead of 48 (number of bits of mantissa part) for reasons ekplained in the
subsection concerned with multiplication.

In division, however, where R register holds the divisor, the MSG
is used as a receiver of the mantissa and, through the path for Word #4,
sends the divisor to the CPA to be subtracted from the dividend (see the
subsection concerned with division). Because, as mentioned in the subsection
dealing with multiplication, there are functional block diagrams and bit
organization figures tying all the associated logic elements fogether for a
better understanding of the multiplication process, the reader is urged to

look ahead into that subsection for any additional information about MSG.

-87-



IES%T WORD #1|{WORD #2|WORD #3|WORD #4

MSG # BIT # BIT # BIT # BIT # BIT #
1 16-23 22-29 20-27 18-25 16-23

3 24-31 | 30-37 | 28-35 | 26-33 | 24-31

5 © 32-39 | 38-45 | 36-43 | 34-41 | 32-39
7 40-47 | 46-54 | 44-52 | 42-50 | 40-48

9 48-55 | 55-62 | 53-60 51-58 49-56
11 56—63 63-70 | 61-68 | 59-66 | 57-64
Figure 22. MSG Input/Output Bit Organization

-88-~




i) Multiplier Decoder Gates (MDG): This is an Al2 card type

logic element used exclusively for the implementation of the multiply
instructions. It decodes the multiplier taken eight bits at a time (each
clock time) into four words, each of which may have one of three values:
X1, X2, or X~-1. For each word, these controls (X1, X2, X-1) are fed into
the MSG which gates out the multiplicand received from the R register
directly, shifted left by one or in one's complement form, respectively.

In the subsection dealing with the multiplication of two oper-
ands it is thoroughly explained how and why the multiplier is decoded by
pairs (eight bits per clock time period).

The MDG consists of two cards (MDG#1, MDG#2), each of which
receives four bits (two bit-pairs) and two inputs for the CARRY and
CARRY NOT and generates the controls for MSG corresponding to X1, X2, and
X-1 (Figure 23).

Because MDG#1 decodes the four least significant bits of the
multiplier, there is a Carry if the first pair is 11 and the second pair
is 10 or if the second pair is 11. This Carry is sent to MDG#2 which
combines it with the third and fourth pairs of bits from the B register
and generates the controls for Words #3 and #4. If, however, the third
and fourth pairs of bits are such that a Carry is formed, this Carry is
then brought to a gate whose true and complement outputs are brought to
MDG#1 to be used in the next iterative cycle. It is evident that in the
first iterative cycle'MDG#l does not receive any Carry from MDG#2.

-89-



55 BIT NUMBER

U Y/

5

B REGISTER

4th PAIR = {3rd PAIR

2nd PAIR

lst PAIR

ONE | ONE I ONE 7 ONE
BIT | BIT { BIT : BIT

N posipon pryrewiosirt

o
Y

!

ONE | ONE
BIT

[
!
|
;

ONE | ONE ‘
BIT | BIT | BIT
LT TjoN IPOSITION [POSITIO

L

3y

o SRR

MULTIPLIER DECODER GATES

1 CARRY

CARRY NOT
. e S

MULTIPLIER DECODER GATES

DG #2) | carry (MDG #1)
I i H T
R I |
N | | | ]
WORD # 4_ WORD # 3 WORD # 2 WORD # 1
X2 X1 X1 X-1 X2 X1 X1 X-1 X2 X1 X1 X-~1 X2 X1 X1 X-1
0 I 01 0 I 01
. Lt P b T
% i ; ’ |
! i ! -
| [ ; ‘3 éi
LYYV \ 1

MULTIPLICAND SELECT GATES

Figure 23. 'MDG Functional Block Interface Diagram

-90-




3. Interface Units: These are logic elements which are used to

enable the Processing-Element to communicate with the outside world and
particularly with the neighboring PE's and CU. These logic elements are
the Driver, Receiver Selection Gating, Receiver Register, and Driver and

Receiver.

a) Driver (DRV): This is an Al5 type card logic element, used

as an interface between the R register of PEi and PE1+1, PE1+8’ PEi-l’ and
PEi—S' It consists of four cards (Figure 24) and can take care of 64 bits
of data. This is strictly a dual line driver (true and complement outputs
are used) to drive the data to the routing logic of the corresponding
Processing Units. The use of the dual line driver helps to eliminate
common-mode noise created on the relatively long signal lines between PEi
and PEi+1’ PEi+8’ PEi—l’ and PEi-S'

drivers for a total of 72. Sixty-four are used for routing, one for the

Each card consists mainly of 18 line

Mode Bit to the CU, and another for Memory Fault to the CU. Six are unused.

0 <« ' » 63

R REGISTER OF PE4

L1 1

DRIVER - DRIVER DRIVER DRIVER
(DRV 01) (DRV 02) (DRV 03) (DRV O4)
L]
) | g ° 1 l
+1 + -1 -8

b ! | |

ROUTING LOGIC OF CORRESPONDING PU's

Figure 24. Driver Functional Block Diagram

-~91~




b) Receiver Selection Gating (RSG): This is an Al6 card type

logic element. It has differential receivers and select gates. It is

used to select data from PE and bring it into

1417 PByeg> PEy_q» OF PE; g
the R register. The RSG select logic consists of NOR gates tied together
and controlled by enables corresponding to PEi+1’ PE1+8’ PEi-l’ and PEi-S'
The use of differential receivers provides the advantage of eliminating

common-mode noise created on the long signal lines between PEi and PE1+1,
| PEi+8’ PEi—l’ and PEi—S’ which are exposed to high noise transients and
significantly different temperatures. The RSG consists of 13 cards, each

one able to accommodate five bits (one circuit is unused).

RSG |RSG [RSG {RSG | RSG |RSG | RSG |RSG | RSG | RSG | RSG | RSG (RSG
112 31415 6 7 8 19 (10{11)12|13

c) Receiver Register (RC5): This is an Al4 type logic element,

which consists of differential receivers and latches, and is used to store
data from the CU received via the Common Data Bus path which can then be
gated into the Operand Select Gates (0SG). There are four cards (Figure
25(8)) in the Receiver Register; each one consists of 16 differential
receivers and 16 latches which are clocked with early clocks.

Because the true output of each latch is gated into the 0SG, it
is evident that the input to 0SG will always have the same logic level as
the output of the differential receiver (Figure 25(b)). The input signals
to RC501 — RC504 are designated TVW-W(00-63)--0 and TVW-W(0063)—-1.

-92-



ROM
CDB

RC5

Figure 25.

Receiver Register:

~93.

¢ RC501 RC502 RC503 RC504
Bf O0————15 | 16———31 | 32———47 | 486———3
(a)
| TyH-wxx--0
| TVW-WXX--1
| Recowved
EARLY CLOCK
EARLY CLOCK
2”1
g ]
LATCH
(b)

a) Bit Organization, b) Logic Configuration

0SG



d) Driver and Receiver: This logic element consists of two

parts, namely, the Driver which is a part of the DRV0O4 used to drive only
one line back to the CU, and the Receiver part which is an Al4 card type
logic element used to receive the enables of the mode register (see the
mode register description). The Driver and Receiver, therefore, is not a
separate unit, but is mentioned separately because its function concerns
an extremely different register (mode) which is constantly monitored by

the CU through this portion of Al4 and Al5 card type logic.

4., Other Logic Elements: All of the logic elements shown in the

Processing Element Block Diagram (Figure 12) have been described, but
Table 32, which shows the physical location of the logic elements of the
PE by type of card, lists a few logic elements in the PE which neither
appear in Figure 12 nor have been mentioned elsewhere. These logic ele-

ments are:

e TUBOl — TUB1l7: They are used to buffer and retime the dif-
ferent enable signals for the operation of the PE. They
are Al4 card type logic elements. TUBO1l, 02, 05, 06, and

09 require early clocks, while the remaining TUB's require

late clocks.

e CTLOl — CTL12: These 12 Control (CTL) cards are used to
provide all the control signals to the PE logic, without
the presence of which no operation could be implemented in
the PE. Because the CTL's consist of different card types,
a summary of CTL versus card type used is shown in tabular

form beldw.

CTL NUMBER CARD TYPE | REMARKS
CTLO1 BO1
CTLO2 BO2
CTLO3 BO3
CTLO4 BO4
CTLO5 BO5-A
CTLO6 B6 Clocked
CTLO7 B7 Clocked
CTLOS8 . B8
CTLO09 B9-A
CTL10 B10O Clocked
.CTL11 B11 Clocked
- CTL12 B12

-4~



e Group Look Ahead (GLAOl — GLAO4): This logic element was

mentioned in its use as part of the Adder, but after the
logic for the generation of section transmits and section
generates and group carries are distributed to the CPA and
CLA, these cards are used to buffer different enable signals

because of heavy loading.

e Clock Generation (CLKOl): This is a COl card type logic

element which generates, after receiving the main clock
from the CU, three other clocks necessary to the internal
operation of the PE. These clocks are the Early Clbck, the
Late Clock, and the Register Clock.

e Clock Buffer (CIK E, L, R): This is a C02 card type logic

element used to buffer the Early, Late, and Register Clocks
from the COl card to the PE circuitry. Since these clocks
are very important, it has been proven through experience
that the Early Clock measured at TUB02 (D2-13) should be
about 7.0 ns wide and its leading edge should occur about
25 ns prior to the leading edge of the reference signal
measured at TUB13 (D2-14). The Late Clock should have the
same width as the Early Clock, but its leading edge should
occur about 6 ns prior to the leading edge of the reference
signal, while the Register signal should have the same

measurements as the Late Clock.

e BIAS: This is a DOl card type circuit used to provide

proper bias for unused gate inputs.

-95-



Number

E

0

G
s

(2]
=HAabo

G
Cc

o
2=ADOo

S
G
S
G

-l
2ERAPO

S
G
S
G

o]
G
0
G

[0}
G
0
G

aa<d

<n<3

D1
S

n
[LERE R]

8
S

2]
OAa«o

9
S

<a<S

S {42 |32 |22 |12

c
T
L
0
T
L
L

<A<d

G
B
T
L

-
MOKo

G
G
B

=24

4
G

-
OpFHA-

P

(Card Side
P

(]
OpFHA

16|°15] 02 |02 |04 |06 |41 |31 |21 {11 {01 [02 |O1 |02 {01 |O1

L
P

:

[
OHWO

01 103

A JAJA |A A
A |JA |A A
$01

i

c
L
A
L
L

omaa)

G
B
P
T

ol ! | 1
. LODM on PA_,, MoAd |
b
-t <
] orad P el Moad | Q
2] - a |~
~ Oondd LI 04D Moxd | <
m -l -t
<) MowdS < ©m Moxd | 2
[>]
m [Ta)
r (=3

c2 |c2 |c1jc2 | ¢2 |ALApLOC|AL0B

P |R
A ]e
T |B
15
A A
T

EAR

A
T
P

1/23]07}07|09]{10]03 |03 Joa]12]1i |08 |08 |07 |44 |34 |24 {14 |07 |08 |07 {08

PE Card Physical Configuratio:

P
A
T
13
S
G

A |A
T |T
1912

G
R

Table 32
M |R |M
G

|»
D

S
G
C
T
L

S
T
L

A15]|A1 |A2 {A4 |A4 [A4 [A4 [AL |AL |AS AiAQDlAlO} 8] AS | A5 A1l |Al B5A|A7B|A7B{A7A]A6 |A3 A3 A3 |A3 [AS |AS8

G
0’
G

AL [A2 [BoA |2 |a4 |a4 | a4 | A4 A1 |A1 A5 |aAs: A9EkAii‘ngBA5 AS Al |Al |B8 |A7B jA7B JA7A |A6 A3 |A3 A3 |A3 ]A8 |AS8

R |R |M |M
R |R |e
¢

G
R

T
i)
B
U
B

U
B
i)
B

U
B
U
B

U
B
U
B

34 |33 |32 |31 |30 [29 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 {5 |14 {13 j12 J11 (10
B

05 |06 |07 |08 |16 |05 | 02 {02 01 o1 {03 |11} 25} 2701

o1 {02 |03 |04 |15 |06 |07 |07 |09

U
B
i}

of
Logic
Element
of
§ Logic
} Element
. of
- Logic
{:. Element
of

Logic
Type of Card [Al4 |Al4 JAl4 [A141A14) AL JA12] B2 B1 |A12| A1 | A2 | A4 A4 ]A1a] A1A] AS| A5 [ASB |AS| A5 |A1A[A1A| B4 | B6 |ATC|ATB |A7A| A6 |A3 |A3 |A3 |A3 | A8 | A8

Typeof‘Ca,rd A141A14|A14I514A1'4 AL |A1 A2 |a2 |a4 |a4 [ A4 | A4 | AL ] AL | A5 | A5 [AOF JA11 ASB| A5 | A5 Al |AL |B7 |A7C|A7B JA7A'|A6 |A3 [A3 |A3 [A3 1A8 {A8

Type of Card |Al4 Al4 Al4 14

Columm
Number
Logic
Element
Remarks
Name -
Remarks
Remarks
Name
Element
Remarks

Name

1 Type of card | a16|a16 [a16 |a16 |a16 [a16 [a16 |ar6 [a16

 Type of Card | A16|A16|A16 |A16]A15

' Remarks

Element

Name
of
Logic

‘10083 | B12| B11| A8 | A8 | A5 | A5 |a11]AS5B)AS [ AS

C denotes card is being clocked

X denotes interface connector

4.
5.

REGC denotes register clock
~06-

EAR denotes early clock
IAT denotes late clock

1.
2.
3.

Type of Card |Al4 |Al4 |ALAL |A14]ALL[AL4|AT4[AL5]AL5
NOTES:

~ Remarks



DC POWER DISTRIBUTION
a) Description

In each Procéssing Unit Cabinet (Figure 26) there are two power
supplies that provide +4.8 V and ground, two power supplies that
provide - 2.0 V and ground, one power supply that provides + 1.32 V
and - 3.20 V for the routing logic and eight power supplies (pre-
regulators) that provide 4.52 V (+ 1.32 V and - 3.20 V). These power
supplies provide power for the eight Processing Units (PUs) that are
contained in each of the eight PU Cabinets of the Quadrant. Figure 26
also depicts the physical location of each one of the twelve power
supplies and location of the PUs which receive power from these power

supplies.

From the PU Cabinet, the above voltages (+ 4.8 V, - 2.0 V, ground
and 4.52 V) are brought into the Processing Unit in two groups. The
first group brings + 4.8 V, - 2.0 V and ground; it is used exclusively
for the PEM and the Up and Down converters of MLU. Thé second group,
which brings 4.52 V to the PU, is used for the PE and MLU circuits; the
4,52 V corresponds to + 1.32 V and - 3.20 V necessary for the ECL circuits
of the PE and MLU.:

On the top of the PE there is a section called Dual Power Supply
Shunt Regulator (Figure 27). This regulator contains two main busses
used to transfer the grouped voltages into the individual subunits of
the Processing Unit (PE, MLU and PEM). Both busses consist primarily
of large laminated planes that are properly isolated from one another.
One bus is used for + 4.8 V, - 2.0 V and ground; the other bus is used
for + 1.32 Vv, - 3.20 V and ground.

The + 4.8 V power is tapped from the bus plane for use by the MLU
level conversion circuits. A two-plane strip routes the + 4.8 V power
to the MLU and provides a path from the MLU to the ground plane of the
large bus. This ground path is used to shield the Cabinet Clear signal
and as the ground level for the I1/0 circuits in the MLU.

-97-



_86—

a)

C+4.8v  L30AMP

A2
TO
B2,02,D2,E2

+1.32, =3.2V  50AMP

A3
TO

ROUTE LOGIC

-2.0V  220AMP

Al
TO

B2,C2,D2,E2,F2,G2, H2,

and J2

+4.8v  L30AMP

A5
TO
F2,G2,H2,J2

PRE/REG L.52V

A6
TO
co

PRE/REG 4.52V

AT
TO
E2

PRE/REG 4.52V

A8
TO
G2

PRE/REG 4.52V

A9
TO
J2

PRE/REG L.52V

PRE/REG L.52V

PRE/REG 4.52V

PRE/REG 4.52V

Al10 All A12 Al3

TO TO TO TO

B2 D2 2 H2
PU PU PU PU ix4) . PU FU PU
B2 - c2 D2 E2 F2 G2 H2 Je

Figure 26. PU Cabinet: a) Power Supply Location, b) PU Power Distribution




_66-

Figure 27..

(D INPUT CONNECTOR MS3102A-24-28p
(2) INPUT CONNECTOR MS3102A- 28~ 6P (-2.0V8 4.8V)
(:) OUTPUT CONNECTOR - " CAMLOX"

(@) PRINTED WIRING BOARD

+1.32-Volt, -3.2~Voit, 240-Ampere
Shunt Reguiator, Outline Drawing



A wire between the control card in the Dual Power Supply Shunt

| Regulator and the MLU provides the pathAfor the Cabinet Clear signal
(MCABCLR--0); this is the signal that resets the flip-flops in the

MLU when power is first applied to the PU. This is necessary because
the MLU acts as a large electronic switch and it must be cleared before
any action starts. In this way it is assured that when the PE or PEM
accesses the MLU, the latter should contain no prior information in its
memory devices (flip-flops) and it therefore must be ready to transmit

the new information that the particular instruction dictates.

The ground plane of the bus for 1.32 V and - 3.20 V is connected at
one end with the chassis (PU) and with the ground plane of the second bus

at the other end. This assures a common ground for all the subunits of

the PU.

The + 1.32 V, - 3.20 V and ground levels are provided to the MLU and
PE circuits via the large, three-plane bus shown in Figure 28. These

laminated planés are, of course, fully isolated from one another.

Figure 29 depicts the basic current paths involved in the distribution
of the + 1.32 V and - 3.20 V. This is consistent with the basic structure

of the ECL circuits of the PE and MLU.

Each power supply shunt regulator includes an overcurrent detector.
This detector compares the current through a 50 amp, 50 mV shunt resistor,
with a fixed reference current. If the current through the shunt resistor
exceeds the reference current significantly, the detector opens the

circuit breaker in the preregulator.

Similarly, the over voltage/under voltage detector in the power supply
shunt regular senses an excessive or insufficient voltage level being
applied to a load. If the detector determines that a voltage is outside

some specified limit, it opens the appropriate circuit breaker.

Test points for the various MLU voltages are available on the MLU

backplane.

-100-



_GND

McCARCL

--0

€~
R

e FRAMAL 6 ND

JUMPEIR,

Power Distribution in the PU

- N

- .n..,u.,
1 4¢Aﬂﬂd
RN R

\

—-z.0oV

\

S
\ .w /m
> 2

Figure 28.

-101-



1PRE -
Kag

P T o e it e

SHUNT REG & PEAMLV CIRCUITS

(Veed

ey

=1
i ') ]
"‘,‘ A )
\(J
)

:}?_
98
o e .
-t ‘ <

. ,...!_-,.3

CotTROLLUE R

1

L——-——~~-~.--~a———-..-~-__.~

Figure 29. Current Paths for + 1.32 V
and - 3.20 V Supplies

-102-



The power for the PEM is distributed from the Power Bus
through ‘the three designated leads into the power distribution board, which
contains large ground and voltage planes of 2 ounces of copper. In order
to reduce the voltage drop, the power base picks up the power from the
power distribution board through approximately 110 contact pins and dis-
tributes the power to the control and memory boards (Figure 21 and 22)

through its cam-operated connectors.

Each memory board and the control board as well use three intermeshed
power grids for Vcc =+ 4.8V, Vee = - 2,0 V, and ground for power distribu-
tion to the CTuL, TTFL, and MyL 4100 devices. In order to achieve low DC
characteristic impedance, these power lines (Vcc’ Vee and ground) run
parallel to one another. Figures 30 and 31 show only the main power busses,
but the reader should realize that there are power distribution line picking
up the power from their corresponding power busses on each board. Any
sudden variation in voltage due to spikes of high frequency noise is greatly
minimized by the use of high-frequency filter (bypass) capacitors, connected

between V. /V__ and ground and also between V. and V_ .
cc' Tee ce ee

The power grid network as it has been implemented on the control and
‘memory boards provides an effective ground shield, which helps to obtain,
in the case of relatively long transmission signal lines, a characteristic
impedance of about 100n,. It has been calculated that the total power dis-

sipation is distributed as follows:
1) One Memory Board:

a. CIxL, TIuL, and WRITE transistors require 3.66 amperes
at + 4.8 V and 2.98 amperes at - 2.0 V.
b. MuL 4100's require 16.00 amperes at + 4.8 V.

2) Control Board:

a. Because the Control Board uses only CTPL devices, it

requires 4.53 amperes at + 4.8 V and 3.56 amperes at - 2.0 V.

Since the above numbers represent worst-case PEM power requirements, it
can be concluded that a power dissipation of about 400 watts per PEM is

equivalent to 3 milliwatts per memory bit (400 watts + 131072 bits).

-103-



- COMPONENT SIDE

| e e T T T T T e e o e e e o T
: Fmo &;}TP TOP U GND
[ GND! ]
VCC L 1
| Vce I B
|  — 0115
”ll = Vee ¢ vee
] - VEg CC————]
| VEE WEE Veg ———— VEE
] '
l 1 Vee
| f
| Vce 1 GND
: ———1GND Vee
N Veer 7 |GND
IS:[:D LZQTP - : :
||GND r———ﬂ ' — Vee E——"] Vcc
Bo___ Veei 3
lL—M—) {GND
| 1vee
|
: ,
| GND . GND
| Vecer : Vee
| N |
; | GND
| VeE ———— Ve
cC
| c——— VEE Vee
6 . .
GND
\ Vee
Ve = Sm— GND
vee
Vect ' : k - VEE
Vce
————=1 1P VEE GND
ot J . .

Figure 30. Memory Board Power Bus Configuration

LAY A



COMPONENT SIDE

3

]

| GND

|

]

| ' Vece
(3 )

; VEE | ‘ VEE
Y a— | |

; Vcee-

I Y o [ew

] VCC

l GND

[ s , . . !

: CND ' ' Vee
150D ' v S
Jl‘ GND

| Vee

|

| GND

[

l Vce

l GND
RIS WU,

T  ——

| \’CEJ : L\_,CC

26 - o —

l GND

| Vee

|

| . GND

| Viee

I

| VEE

| |

. - G
[z 51 .

Figure 31. Control Board Power Bus Configuration

1Nne

T dre de e vn e s Gwmn ameen e Smemm s Sete e o it bmin e ot e Smvman | e reess  woirw e moen  memm i v wi— oo Sure  wowwn ey Sweo Sy wmn o



b) Grounding

Grounding is an issue of great importance because even though it
seems at first a simple and 'clean" area to work with, indeed it gets
as complicated as the system itself. It is an area that requires
particular attention, because bad grounding may result in problems
. that are not always easy to detect and therefore the reliability of the

system is reduced significantly.

As it was explained in [9], the AC power is provided to the
ILLIAC IV Computer via the Substation of the NASA/Ames Research Center
facility bn afdro Y formation. The Y constitutes the secondafy of the
main transformer in the facility and allows the three-phases and the
neutral to be brought to the second transformer used to provide power

to the computing facility.

This transformer is of the Y to Y :ferm and provides three-phases
and a neutral which is grounded (earth ) on the wall power panel.
Normally the neutral is at a different potential than the earth ground
because the loads on each phase are not ideally equal and according to
Kirchoff's current law the current in the common return wire (neutral)
which is equal to the sum of the three phase currents is not zero because
these three currents are not equal. If the loads were equal in which
case we would have a bidlanced system the neutral and earth ground would
be the same. For safety purposes; this is a requirement of the Elec-
trieal Code, the neutral at the wall power panel is connected to earth
ground. The earth ground is a point that we will talk about later on.
The reason for connecting the neutral to ground is to force the circuit
breaker to close if accidentally one of the phases touches the neutral.
Had not the neutral been connected to ground and by accident one of the
phases was touching it, a man not suspicious of the danger that the
neutral carries high-voltage, could be killed instantly upon touching it
because he wol¥d establish a closed circuit to earth ground via his body.
This neutral along with the three phases is brought into each PUC and
from there to the primaries of each transformer of each power supply

(voltage regulators). The secondary winding of each transformer in

-106-



the voltage regulators provides the DC voltages that we have already
talked about. These voltages are with respect to chassis ground; the
ground wire form each power supply is connected to the chassis of the
-power supply and also to the chassis of the PU. Every PU and its
asseciated pewer sppply are connected via the chassis ground wire to

the main frame of the PUc; At this point it mmst be mentioned that

when the three phases and the neutral are applied to each BUC, an extra
cable called Ground is brought along with it. It originates in the

power wall panel and is tied to the main frame of the PUC. The other

end of this cable in the wall power panel is connected to a plate made of
copper whith in turn connects via a long copper rod to the earth. The
same configuration exists forzall the PUCs and the CU. 1In this way the
DC power ground, the chassis ground and the PUC mainframe ground are all
at the saﬁe level with respect to earth ground; measurements have shown
a potential of about 35 MV with respect to earth. This ground configur-
ation serves two pufposes. First, it provides safety to the personnel,
since an accident could occur if the Vcc was shorted to the frame. A
man could receive a good shot upon touching the frame if the latter was
not grounded. Sécond, all the voltages in each PUC. are condidered to be
the same with respect to earth. This is important because the Quadrant
sonsists of 64 processors and a CU and the operating voltages should

be the dame.

The Quadrant has been completely isolated from the ground floor via
an insulating mayerial and it can be considered as floating with respect
to the ground floor and touches the earth only via the nine earth cables
through the copper plate that we mentioned before. The reason in doing this
is avoidance of the ground loops which would have a termendous impact if
the Quadrant was allowed to touch the ground (earth). It must be empha-
sized that two points connected to earth via spparate cables will not have
the same voltage drop across because the two grounds are different. It
is almost practically impossible to achieve an ideal ground (earth). For
this reason it is much more preferable to have one common point which
approaches the potential of earth and connect to it different parts of a
cémputing system than to have the system touching the earth in several

points and suffer the consequences due to the presence of ground loops.

~107-



The grounding scheme of the ILLIAC IV, therefore, may be viewed
as a huge tree with nine limbs each representing the earth ground of
the CU and corresponding PUC. Each limb in turn contains eight main
branches, representing the ground chassis of the PUs in each PUC. Each
of the main branches supports three smaller branches which correspond to
the PE, MLU and PEM power and signal grounds. The leaves of the indi-
vidual small branches may be thought as representing the ground pins

of the hardware of each subunit in the System.

The nine limbs meet the trunk of the tree at approximately the

same point with its roots at the other end, found about 18 feet deep

into the ground (earth).

-108-




