
TEMPORARY COVER SHEET

1CUMEl\""T •• NUMBER,:

OOCUMENT'TITLE:

00000104

The i11iac ~V Processing Element VOL I

AUTHOR: ' Theofanis Economidis

. DATE' ISSUED: April, 1974

INSTITUTE FOR ADVANCED COMPUTATION

lAC DOC. NO. PO-IllDD-VOL I-A

THE ILLIAC IV PROCESSING ELEMENT

VOLUME I

THEOFANIS ECONOMIDIS

AUGUST 1973

REVISED: FEBRUARY, 1974

VOLUME I

TABLE OF CONTENTS

SECTION A: ILLIAC IV PROCESSING ELEMENT CHARACTERISTICS 1

I. INTRODUCTION 1

II. SUMMARY OF PE lOGIC CHARACTERISTICS 8

A.Basic PE logic
B. ECl Characteristics

III. SUMMARY OF PE INSTRUCTIONS

A. Instruction Word Format (FINST/PE)
B. Data Word Format (FINST/PE)
C. Transfer of Data
D. Modification of Data

SECTION B: PROCESSING ELEMENT ORGANIZATION

II INTRODUCTION

A. PE logic Elements
B. De Power Distribution

8
9

14

14
16
20
23

42

42

42
97

TABLE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

VOLUME I

LIST OF TABLES

PE Signal Representation
Truth Table of ADR Use Field and Specified Action
Transfer of Data from PE Register to PEM
Transfer of Data from PEM to PE Register
PE Register to PE Register Transmit Instructions
One-Quadrant Array Configuration (Octal Numbering)
Boolean Instructions
Truth Table of Boolean Functions
Truth Table of Boolean Functions
Nonarithmetic Instructions (Logic Comparison)
Nonarithmetic Instructions (Arithmetic Comparison)
Nonarithmetic Instructions (Modify and Test ~ndex)
Nonarithmetic Instructions (Modify Bit of RGA)
Nonarithmetic Instructions (Transmit Bit of RGA)
Nonarithmetic Instructions (Eight-Bit Byte)
Nonarithmetic Instructions (Modify Exponent)
Right and Left Shift Count Equivalence
Nonarithmetic Instructions (Shift)
Nonarithmetic Instructions (Mode Register)
Mode Register Set Instructions
Nonarithmetic Instructions (Miscellaneous)
Arithmetic Instructions (Addition)
Arithmetic Instructions (Subtraction)
Arithmetic Instructions (Multiplication)
Arithmetic Instructions (Division)
FINST/PE Instruction Index
Shift Count Register Bit Organization
Shift Direction Truth Table
E, E1 Bits Truth Table
CU (Code) Signal for Mode Register
OSG Signal Representation
PE Card Physical Configuration (Card Side)

PAGE
10
15
21
21
21
23
23
24
24
26
25
27
28
28
29
29
30
32
33
33
34
37
38
39
40
41
50
50
52
53
83
96

FIGURE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31

VOLUME I

LIST OF FIGURES

ILLIAC IV System Functional Block Diagram
ILLIAC IV Quadrant Functional Block Diagram
Processing Element Interface Block Diagram
ILLIAC IV Processing Unit
Basic ECL Gate
Transfer Characteristics of Basic ECL Gate
Switching-Time vs. Loading
Switching-Time Waveforms
ECL Logic Functions with Dual Outputs
FINST/PE Instruction Word Format
FINST/PE Data Word Formats
Processing Element Block Diagram
Memory Address Chain (Example)
ILLIAC IV Processing'Element Adder
Functional Block Diagram of CPA and CLA
PE Barrel Switch
Functional Block Diagram of Barrel Switch and

Leading ONES Detectors
Path of Bit at Position 20 through the Levels

of the Barrel Switch (Example)
LOG
OSG
Registers Directly Associated with PAT
MSG Input/Output Bit Organization
MDG Functional Block Interface Diagram
Driver Functional Block Diagram
Receiver Register
PU Cabinet
Power Distribution
Power Distribution in the PU
Current Paths for +1.32 V and -3.20 V Supplies
Memory Board Power Bus Configuration
Control Board Power Bus Configuration

PAGE

2
4
5
6
8
9

11
11
12
14
17
43
48
56
64
68

76

78
82
84
86
88
90
91
93
98
99

101
102
104
105

SECTION A: ILLIAC IV PROCESSING ELEMENT CHARACTERISTICS

I • I NTRODUCT ION

The ILLIAC IV Computer, conceived and developed at the University of

Illinois [1], is considered a milestone in the computer industry because

of its fundamental proposition for parallel processing. It is an array of

256 electrically, mechanically, ,and functionally identical Processing Units

with four Control Units, each one responsible for the operation of 64

Processing Units. One Control Unit with its associated array of 64 Process­

ing Units constitutes a quadrant.

Because to date there is only one quadrant available, the ILLIAC IV

System (Figure 1) consists of:

a. one Control Unit which decodes those instructions that specify

the commands to the Processing Units (FINST/PE Instructions)

and those instructions for the operation of the Control Unit

itself (ADVAST Instructions).

b. 64 Processing Units each of which functions as an arithmetic-)

logic unit.

c. the ILLIAC IV Disk File System which consists of two disk files

and 13 storage units (disks). Each disk file consists of an

Electronics Unit, a concentrator, and necessary circuitry to

read and write on anyone of its up to 16 disks, whose capacity

is approximately 79x106 bits per disk, and has a transfer rate

of about 500xl06 bits per second.

d. the ILLIAC IV Input/Output Subsystem used as the interface

between the Control Unit and its 64 Processing Units with the

Central System and the ILLIAC IV Disk File System. This sub­

system consists of a Descriptor Controller (DC), an Input/Output

Switch (lOS), and two Disk File Controllers (DFC). The DC is

used to receive control words from the Central System over the

Scan Bus and to transmit back result descriptors over the same

lA number enclosed in square brackets signifies a particular document
referenced at the end of this manual.

ILLIAC IV
DISK FILE

SYSTEM

~LECTRONICS
UNIT
(EU)

~r

CONCENTRAT

.'"
~

STORAGE
UNITS

(SU's)

STORAGE

CENTRAL
MEMORY

~

-1- --- _._. -- .,- - -

384 DISK FILE .. 1}8
"'"!-J~/~/'----"'~ CONTROLLER ... F

I DFC#l

,

i
O~ i ,

I

2~6

I DISK FILE L ~8 ,
!.tt ~

rf CONTROLLER :-. /

\ DFC112
~

2~6

I
... /'

MMP
86700 CPU INTERFACE

t- ~8-, +'48+

'-contro~(-- -- R --;
lines T~, I I

_~~----,,"4~--J *' 4,' ~ SCAN BUS } T *'
/ I

DESCRIPTOR
CONTROLLER

r---- - -- -- -

• INPUT/OUTPUT SWITCH

lOS ..
"

)'48

I

I '<...

t..1 Q24
i'" I

I

1I384
I ILLIAC IV INPUT/OUTPUT SYBSYSTEM

i

,
ELECTRONICS

UNIT

(EU)

T

ILLIAC IV ARRAY

CONTROL UNIT

(CU)

~-----------------~

UNITS ~ CONCENTRATO~
(SU's)

64
PROCESSING UNITS

(PU's)

This s'Ymbo1 is us ed
here to indicate that
'A' or 'B' can
communicate with 'c'
but not with each
other.

Figure 1. ILLIAC IV System, Functional Block Diagram

-2-

path (48 bidirectional lines). The lOS is used to control data

transfers between each Disk File Controller and the array. This

transfer of data is made through 256 bidirectional lines with

each DFC and 1024 bidirectional lines to and from the array.

Because the complete ILL lAC IV Computer provides for four quad­

rants,there are provisions for an expansion to 4096 bidirectional

lines of interface between the lOS and the array. The DFC is

used to provide the interface for transfers between disk and

array, disk and central memory, central memory and array, and

and real time link and array.

In order to 1?e consistent with the available literature on ILLIAC IV,

it must be mentioned that the ILLIAC IV System is subdivided into two sub­

systems, namely, the ILLIAC IV computer consisting of one Control Unit and

64 Processing Units, which is usually called a "quadrant" (Figure 2), and

the ILLIAC IV Input/Output Subsystem consis'ting of the ILL lAC IV Disk File

System and Input/Output Subsystem, which is usually called "10."

The PE (Figure 3) is an integral part of the Processing Unit (Figure

4), which operates under the command of the ILLIAC IV Control Unit. Each

PU consists of a PE, a Memory Logic Unit (MLU), a Processing Element Memory

(PEM), and a dual Power Supply Shunt Regulator (Figure 4). The MLU and PEM

have been described separately in NASA/Ames Research Center manuals entitled

"The ILLIAC IV Memory Logic Unit" and "The ILL lAC IV Processing Element

Memory." Whenever applicable, relevant parts of the Dual Power Supply Shunt

Regulator were described in these manuals. Therefore, only those features

of the Dual Power Supply Shunt Regulator that concern the power distribution

to the PE will be described herein.

The PE contains the necessary logic to execute a full repertoire of

instructions under the complete control of the Final Station of the Control

Unit (FINST) which accepts these instructions from the Advanced Station of

the Control Unit (ADVAST) and, after converting them into microsequences,

broadcasts them to the PEe These instructions allow 64-bit, 32-bit, or

8-bit operands to be manipulated by the PEe All operations are fully

synchronized through a clock provided to the PE by the Control Unit (CU).

This synchronization is accomplished through a Receiver-retiming Register

(TUB) which synchronizes the Enables from CU with the clock to the PE

before these enables are distributed within the PEe Two mode control

-3-

C
0

1 M
j

Mj
0;
Ni

D
A
T
A.

. ---- - - ... --.-- -- -

CONTROL UNIT

TMU

F A

I D I

N V L

S A A
TIM S

S T
-_..¥.-.--I-. ____ ..a...-. _____ _

I
t

r
I

1

MODE BIT
'-'--

Figure 2. ILLIAC IV Quadrant Functional Block Diagram

-4-

64

B
I
T
S

PE 101 - 1

PE l.-8

CONTROL UNIT

(CU)

~57
..

;41
8

P M
E MODE L

U
E BIT T

,/, .

i N /~ C
A D ~. .

~ ~. B

\J , ,\) \/

64 DATA~

PROCESSING ELEMENT (1)

(PE\)

64 DATA ':;

64 ;;4 E 11 8
D D E} A M

D
A A B i

L
T T r U
\~ A \V ~/ ~J

MEMORY LOGIC UNIT
(,)

(MLUi)

~

j ~

MEMORY

PROT.

ERROR

k::64 DATA

64 DAT ' PE

* CDB = Co mmon
a Bus Dat

PE l+l

(1+1,
.
1+8,

. ,
t-1, l-8)

f
k:64 DATA L:J

MEMORY

PROT.

ERROR

3 ENABLES::=
PROCESSIN(

11 tV~~ESS) ELEMENT

MEMORY (1)
•. >" K 64 DATA

(PEMl)
.......

64 DATA /

Figure 3. Processing Element Interface Block Diagram

-5-

i
30"

40"

P
f
M

Figure 4. ILLIAC IV Processing Unit

-6-

bits protect the contents of the X, S, and A registers (see Section B) by

preventing clocks from strobing data into these registers. Each mode bit

also controls a separate 32-bit data path through the MLU.

The logic elements of the PE include registers for handling data, a

Memory Address Register whose content may be indexed before the address is

transmitted to the respective MLU, a Carry Propagating Adder with Carry

Look Ahead, a Barrel Switch for shifting operations, a Leading ONES Detector

to control the Barrel Switch, a Logic Unit for Boolean and other miscellan­

eous ,operations, data Receivers and Drivers for interfacing with neighbor­

ing PEls, and other circuits for special Arithmetic and other miscellaneous

operations.

The PE is designed to operate at a maximum frequency of 16 MHz. Thus

a clock period of 62.5 ns mim~um is used and most of the controls for

operation of the PE originate in the FINST portion of the CU.

Because the intent of this manual is to describe how the PE performs

the basic four Arithmetic operations (addition, subtraction, multiplication,

and division), a brief description concerning the family of logic used by

the PE, the type of registers, and other circuits participating in each

operation and other PE hardware is provided so that descrip'tion of the

theory of operation of the PE which constitutes the core of this manual

will be as simple as possible.

-7-

II. SUMMARY OF PE LOGIC CHARACTERISTICS

A.Ba~ic PE Logic

All PE logic circuits belong to the emitter-coupled logic (EeL)

family. The basic EeL gate configuration is shown in Figure 5. Although

several other ECL circuits are in use in the PE, this circuit helps illus­

trate some of the general ECL characteristics discussed below, as it

represents the basic logic gate of the PE circuits.

Vee

--oQ V·-A ••

Val(ONO)
A

..... 't/I+Iv --oQ v ••
• .., ei~c~tT aCHIMATIC Ai-.bSlTIVE LOGIC D'AGRAM •

'0"» , '

Figure 5. Basic EeL Gate

-8-

B. ECL Characteristics

1. Logic Levels.* Typical logic levels employed by the basic ECL

gate are 400 mV and -400 mV, when VCC = 1.32 V, VEE = -3.2 V, and VREF =
o V. Minimum levels when operating at 250 C and loaded with 50 ohms to

ground and 270 ohms (pulldown) to -3.2 V are ±350 mV. These logic levels

are ensured with inputs at +200 mV, which provide 150 mV of dc noise margin.

Since the actual threshold is approximately 150 mV and typical output levels

are 400 mV, typical noise margin in excess of 200 mV can be expected.

Transfer characteristics for the basic gate are shown in Figure 6.

+500

+350

ovevss'

8 .'\'

" I

8 8 ~
~ ~ ~

> o

g 8 8
N • cg
+ + +

INPUT VOLTAGE (mVl

YNON·
INVERTING (OR)

~ :NVERTING INORI

Figure 6. Transfer Characteristics of Basic ECL Gate

For gating functions which have emitter dots (wired OR), the relative-high

level is increased to .450 mV; the relative-low level is also increased by

50 mV to -350 mV.

* .
Information is taken from The Integrated Cirauits Catalog, Texas Instru-
ments, Incorporated, Dallas, Texas, pp. 4a - 7.

-9-

2. Logic Convention. In general, PE logic elements are seen as

performing positive logic functions. For this reason, the more positive

signal values (+400 mV) are considered the logic ONE levels and the more

negative signal values (-400 mV) are considered the logic ZERO levels.

Because, however, the signals pass. through different gates where in many

instances an inversion takes place, the following table clearly indicates

at what level the signal is active.

Table 1. PE Signal Representation

PE SIGNAL NAME LEVEL LOGIC

PLW-WXX--1 High 1

PLW-WXX--l Low 0

PLW-WXX--O High 0

PLW-WXX--O Low 1

3. Gate Speed. * Switching time performan"ce at 250 C, with various

capacitive loadings, is described in Figure 7. This capacitive loading is

directly relatable to ac fan-out, assuming 4 to 5 pF per gate input. Delay

time degradation with increasing fan-out approximates 75 ps per additional

load. Switching-time waveform definitions and output terminations used for

testing are shown in Figure 8. Typical propagation time through a single

ECL gate is 4 ns from leading edge to leading edge and 4 ns from trailing

edge to trailing edge.

* Information is taken from The Integrated Cirauits Catalog, Texas Instru-
ments, Incorporated, Dallas, Texas, pp. 4a-10, 4a-11.

-10-

.... ,....-------------...

CJ
Z_ - .. % c
U­
.. UI
-2
~­...

°O~·--~~--~~--~3~O----4~O-----6~O----~60

o

Figure 7.

u'0Jt . 90%

INPUT 60%

10%

IN·PHASE
OUTPUT

OUT'()F.PHASE

OUTPUT

In-Ph •• tp •

. tpLH+tpHL

z

Ou''''-Ph,. tp. tpHL +'PlH
2

Figure 8.

CAPACITIVE LOAD· CL (pFJ

I I
" . 12

AeC FANOUT

Switching-Time vs. Loading

. -y ~~o.:!.n!.
. ------

. OUTPUT
LOADING

+400±20mV

OmV

-500±20mV

%70 n 50 0

-12 V

Switching-Time Waveforms

-11-

4. Nonsaturation. EeL circuits operate in the nonsaturated mode.

That is, the transistors in each gate are never fully cut off or in a

saturated state. This is the chief reason for the high switching speed

that is characteristic of these circuits. ~ecause the transistors are

always conducting, even when the inputs to the gate are false, the inputs

do not have to pass a threshold before the logic decision is made. Since

the output transistor does not have to be saturated for the output signal

to be considered true, there is no switching delay caused by the need to

overcome capacitance in the output transistor. For both of these reasons,

.the output of an ECL gate is able to follow the inputs almost immediately.

5. Complementary Outputs. Many integrated circuit packages included

in the ECL family provide dual, complementary outputs. This results in the

AND~D,OR/NOR, and AND-OR/NOR functions illustrated in Figure 9. Propa­

gation time through these circuits is the same for both outputs; that is,

both outputs become valid at the same time.

MESATIYl LOGIC "SlTIn LGaIC

<=> ~~z
D~ ~z

AND/NAND ORiNOR

A

z B
¢::? %

Z c --!>r-z c
D

AND· ORINOR OR • ANOINANO

A~ ~D
- 0 --<:i. . C _. z

(~ L£;:== o -z
Z

ORiNOR
ANDIN&NO

B
C. -.".--~

JC)-.--_Z

2.
r-ir----z

.xr---z
o

AND·1I.I8

Figure 9. ECL Logic Function with Dual Outputs

-12-

6. EeL Symbols. Transistors QI, Q2, and Q3 of Figure 5 constitute a

current switch. The whole circuit, however, can be represented by two sym­

bols:

a) Logic Symbol

)) A o Z = A • B (Inverting)

B o y A + B (Noninverting)

b) Electrical Symbol

A Z A • B

B ct. 0 Y = A + B

Emitter Follower

L Current Switch

The EeL circuits can provide additional logic functions by tying col­

lectors together or by tying emitters together. In the case of a collector

tie, a clamp circuit is needed to keep the transistors from saturating. In

practice, the electrical symbol has an advantage over the logic symbol,

because it is easier to show collector and emitter ties and the number of

current switches and emitter followers as well. However, it is easier to

read logic schematics that employ logic symbols consistently and therefore

the EeL gates are represented on PE schematics by logic symbols.

The relatively small swing of EeL logic signals (±400 mV) constitutes

a disadvantage because of the associated low noise immunity. Thus on the

long signal lines between the eu and PE and those of the routing network

between PEi and PEi +l , PEi - l , PEi +8 , PEi _
8

, where these paths are exposed

to relatively high noise transients and also where they pass through areas

with significantly different temperatures, signals are transmitted in their

true and complement form by line drivers and received by differential line

receivers to suppress common-mode noise.

-13-

III. SUMMARY OF PE INSTRUCTIONS

In the Introduction, it was mentioned that the Control Unit decodes

two types of instructions, namely ADVAST and FINST/PE instructions. The

main difference between the two types is that the ADVAST instructions are

used to control internal operations of the Cll itself, whereas FINST/PE

instructions specify functions to be performed by PE's in the quadrant.

Because the FINST/PE instructions involve both the FINST portion of

the CU concerned with the transmission of data and commands to an individual

PE and requests to the PE to respond to this instruction, and the descrip­

tion required is lengthy, no attempt is made here to describe the FINST/PE

instructions; the reader can find this information in [2]. Since FINST/PE

instructions call for operations involving data, the word format for both

instructions and data is partitioned as follows.

A. Instruction Word Format (FINST/PE)

Figure 10 shows the various fields in a FINST/PE instruction word

which is 32 bits in length. The meanings of these fields are as follows:

0~E--~),4 5+--+-7 8:+E-~)11 12 13+--415 16+E-----------+)31

INDEX P
A

FIELD A INFOR- FIELD B R ADDRESS

OP CODE MATION OP CODE I USE ADR
on T (ADR)

(ACARX) y

Figure 10. FINST/PE Instruction Word Format

1) Field A OP Code: First part of operation code. Bit #0 is always

"1". See Table 4-1 of [2].

2) ACARX: If bit #5 is "1" the contents of one out of four ADVAST

accumulator registers specified by bits #6 and #7 must be added

to the ADR field. If bit 115 is "0" the value contained in bits

#6 and #7 is ignored.

3) Field B OP Code: Second part of operation code. See Table 4-1

of [2].

-14-

4) Address Use: The state of these bits specifies the use of the

ADR field as shown in Table 2.

Table 2. Truth Table of ADR Use Field and Specified Action

ADR USE

BIT BIT BIT ACTION BEING TAKEN REMARKS

{113 {I 14 1115

0 0 0 cti is transmitting a literal Bit 1114 is ignored

0 0 1 No indexing is required

0 1 0 eu is transmitting a literal Bit #14 is ignored

0 1 1 Index ADR by the content of
RGX

1 0 a eu is transmitting a register Bit #14 is ignored
code

1 0 1 Index ADR by the content of
RGS

1 1 0 CU is transmitting a register Bit 1114 is ignored
code

1 1 1 Index ADR by the content of
RGS

5) ADR: This field, depending upon the type of instruction to be

executed, designates the location of an operand (for both read

and write operations), shift count, amount of indexing and

routing distance. The latter is explained later during the

description of PE drivers and receivers. Throughout this manual,

whenever "content" of ADR in instructions other than shift,

indexing bit value and routing distance is mentioned, the content

of a register specified by ADR is meant.

-15-

B. Data Word Format (FINST/PE)

The FINST/PE instruction repertoire provides various options with

regard to data word. formats. Figure 11 shows data word formats involving

operands partitioned into multiples of eight-bit bytes on both floating

and fixed point arithmetic instructions. Figure ll(a) and (b) represents

a number in floating point partitioned into two sections which represent

the exponent and the mantissa.

1) Exponent: The exponent is represented by an excess or offset

code instead of by sign and magnitude for a number of reasons,

the most important of which are the following:

a) Avoidance of the representation of +0 and -0.

b) Avoidance of recomplementation of the exponent as is

required in sign and magnitude representation.

Because every number in floating point is artificially partitioned

into exponent and mantissa, the number zero may be represented by a zero

mantissa and by an exponent which does not necessarily have to be zero.

The zero number, whose exponent does not have the minimum value that a

particular register can hold, is called "dirty 0" [3]. A zero number

that is represented not only by a zero mantissa, but also by the smallest

exponent (all zeros) the machine can store in the proper register, is

called "clean 0". If a number A were added to a "dirty" zero number,

trouble might be encountered during the alignment step because the number

having the smallest exponent would have to be shifted end off to the

right as many places as the difference of the two exponents and if A

happened to have the smallest exponent significant bits would be lost.

This problem is not encountered if "clean a's" are used. It is then

assured that

A+O=A

Of course "clean a's" can be produced from "dirty a's" but this would

require additional hardware or programming - use of the normalize

instruction (NORM) will convert "dirty zeros" to "clean zeros."

-16-

64-Bit. Flo.Un. Point

Bit No,: o 1 -------------------------15 16------------------------------------63
a) I ~IGN OF I . MANTISSA _ EXPONENT MANTISSA

32-Bit. Floating Point

Bit No,: o 1---7 8 9 ---15 16 ------- 39 40 ----------- 63
b)

SIGN OF OUTER SIGN' OF INNER INNER OUTER OUTER INNER MANTISSA EXPONENT' MANTISSA EXPONENT MANTISSA MANTISSA
- -

64-Bit. Fixed Point (no .lln)

8:;°':1 :O~::::::::::::::::::::::::::::O:P:E:R:A:N:D::::::::::::::::::::::::::::::::::::::~:63~1

Bit No.:

d)

Bit No.:

e)

Bit No.:

:r)

o
SIGN OF

OPERAND

) 7

BYTE Nt

8 15
BYTE 12 .

4a-Bit. Fixed Point

24-Bit, Fixed Point

8
SIGN OF
INNER OPERAND

-----------------------------------63

INNER OPERAND

OPERAND

39

OUTER
OPERAND

63

a-Bit. Fixed Point Unsigned

16 23 24 31 32 39 40 47 48 55 56 63

BYTE *3 BYTE 14 BYTE 15 BYTE *6 BYTE 17 BYTE' '8

Figure 11. FINST/PE Data Word Formats

-17-·

In the excess code notation the zero exponent is represented by

placing a "1" in the most significant bit position of the exponent field

(Figure 11(a) and (b» and 'all "O's" in the remaining part of the exponent

field. Positive exponents are formed by adding to the value of the excess

code the value of the exponent, while for negative components the absolute

value of the exponent is subtracted from the value of the excess code.

With this convention, a "1" in the most significant bit posit;lon of

the exponent field means positive exponent,'whi1e a "0" means negative

component.

64-Bit
Mode

The value of the exponent varies as follows:

EXPONENT FIELD

1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0

EXPONENT VALUE

1 1 Maximum Exponent
Value

0 0 Zero Exponent
Value

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Negative Exponent

32-Bit
Mode

Since

and

0

1

1
0

0

1

1

0

1

1

0

0 0 0 0 0 0

EXPONENT FIELD

1 1 1 1 1 1

0 0 0 0 0 0
1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

Value (-1)

0 0 0 0 0 0 0 0 Minimum Exponent
Value

EXPONENT VALUE

Maximum Exponent Value

Zero Exponent Value
Negative Exponent Value (-1)

Minimum Exponent Value

0
.

0

)
0 0 0 0 0 0 0 represents

0 0 0 0 0 0 0 1 represents +1 64-Bit
Mode

1 1 1 1 1 1 1 1 represents -1

represents 0

) represents +1 32-Bit
Mode

represents -1

-18-

it can be said that the exponent is offset by

1 0 0 0 0 0 0 = +64)10

in the 32-bit mode and by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = +16384)10

in the 64-bit mode.· This means that the actual value of the exponent is the

content of the exponent field minus 16384)10 or minus 64)10 depending on the

bit mode.being used.

the

T =

T =

With the following definitions:

E = content of the exponent field

D = 16384)10 or 64)10 for 64- or 32-bit mode, respectively

T = E-D

exponent can take on the values from T = 2+14 - 1 = 16383) to

_2+14 = -16384) in the 64-bit mode and
+6 10

from T = 2 - 1 = 63)10
+6 10

-2 = -64)10' in the 32-bit mode as tabulated below.

E D T = E-D

{ Max
2+15 - 1 2+14 2+14 - 1 = +16383

64 10

Min 0 2+14 _2+14 = -16384
10

{ Max
2+7 - 1 2+6 2+6 - 1 = +63

32 10
2+6 +6 Min 0 -2 = -64 10

to

2) Mantissa:. The mantissa is assumed to be a quantity less than 1,

having the binary point in front of the first digit. The exponent tells

how many places the binary point must be moved from its assumed position

toward the right in order to give the true value of the operand. Since a

shift of the binary point to the right by one place is the same as by

multiplying by 2, the" exponent indicates by which power of 2 the mantissa

is to be multiplied. The mantissa is represented in sign and magnitude

form, which means that numbers having the same absolute value (magnitude)

-19-

are identical, but differ only in the sign bit. This notation was chosen

to facilitate the implementation of certain arithmetic instructions (parti­

cularly multiplication [4]).

where

Therefore, a number in floating point can be represented as follows:

(_l)Xo 2T 48 -i
in 64-bit mode X = [1: 2 X.]

i=l 1.

(_l)xo 2T 24 -i
in 32-bit mode X = [E 2 Xi]

i=l

Xo = sign of mantissa ("O" = +, "1" = -)

2T = exponent value

48 -i
E 2 Xi
i=l

24 -i
or 1: 2 X.

i=l 1.

= mantissa field in binary fractional
form in 64-bit and 32-bit mode,
respectively

-i
2 = the weight of the vector Xi

Xi = the vector X in the ith position of the register which can
take on the binary values "0" or "1"

The FINST/PE instructions can be classified into two general cate­

gories: the transfer of data and the modification of data.

C. Transfer of Data

These instructions involve the PE, the CU, and the PEM as follows:

1. Transfer of data from CU to PE.

2. Transfer of data from PE register to PEM (Table 3).

3. Transfer of data from PE to CU; this operation is known as PE

to CUB transfer [5].

4. Transfer of data from PEM to PE register; this is known as READ

operation [6] (Table 4).

5. Transfer.of data from CU to PEM; because there is no other path

available, this transfer is made through the PE and it is similar

-20-

toa) above with the exception that the E, El bits are over­

ridden no matter what their status is [5].

6. Transfer of data from one register to another within an indi­

vidual PE (Table 5).

Table 3. Transfer of Data from PE Register to PEM

MNEMONIC
CODE

OPERATION

STA Store (Write) from RGA to PEM

STB Store (Write) from RGB to PEM

STR Store (Write) from RGR tOo PEM

STS Store (Write) from RGS to PEM

STX Store (Write) from RGX to PEM

Table 4. Transfer of Data from PEM to PE Register

MNEMONIC OPERATION CODE

LDA Transfer (Read) from PEM to RGA

LDB Transfer (Read) from PEM to RGB

LDR Transfer (Read) from PEM to RGR

LDS Transfer (Read) from PEM to RGS

LDX Transfer (Read) from PEM to RGX

Table 5. PE Register to PE Register Transmit Instructions

SOURCE OF DESTINATION OF DATA

DATA RGA RGB RGD RGR RGS RGX

RGA - LDB * LDR LDS *

RGB LDA - LDD LDR LDS LDX

RGD - LDB - - - *

RGR LDA LDB - - LDS LDX

RGS LDA LDB - LDR - LDX

RGX LDA LDB - LDR LDS -
*No direct path available.

-21-

7. Transfer of data between PE's (RTL Instruction). This is a very

important feature of the ILLIAC IV System, because it allows full

data word communication between the PE's of the quadrant. This

communication is called routing; it is used to transmit the

contents of any specified register (except the mode register) of

any PE to register R of PE(i+D) modulo 64, where i = Initial PE

number and D = routing distance specified in bits 22 to 31 of

the ADR field (Figure 9).

NOTE: In tra~sfers 1) through 6) the source register retains

the data.

The PE's in the quadrant are numbered from 00 to 63 as shown in

Table 6. There is a connection between PEi with PEi +l , PEi +8 , PEi - l , and

PEi _8 and, . b~~~~~se in the quadrant there are· only 64 PE' s, the routing

distance along with PE number where the data is initially found must be

modulo 64 in order to make the rotation of data among the PE's possible.

The register of PEi from which the data is transmitted is specified in bits

17 to 21 of the ADR field (Figure 9) and it can, along with D, be indexed

only by an ACAR (Advanced Station Accumulator Register) and not by X or S

PE registers. The specified PE register for transfer of data to the R

register of the PE's designated by the routing distance and its corresponding

address bit (ADR field) are as follows:

FE Register

A
B
X
S
R

ADR Field Bit

17
18
19
20
21

If, for example, a route of +15 is requested, the routing action involves

two routes with distances of +8 and one route of -1. The data transfers

mentioned in 1) .through 6) with the exception of 5) are known as transmit

instructions, while 5) is known as store instruction.

-22-

Table 6. One-Quadrant Array Configuration (Octal Numbering)

PUC 0 PUC 1 PUC 2 PUC 3 PUC 4 PUC 5 PUC 6 PUC 7

1
00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

P 30 31 32 33 34 35 36 37
E 40 41 42 43 44 45 46 47

1
50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

D. Modification of Data

This class of instructions is subdivided into nonarithmetic and arith­

metic instructions.

1. Nonarithmetic instructions: They include -

a) Bool~an instructions (Tables 7, 8, 9): Each one of these

instructions performs a~logic operation on two operands (ADR

and RGA). The result is placed into the A register (RGA).2

Table 7. Boolean Instructions

MNEMONIC CODE OPERATION PERFORMED

AND Logic AND of RGA with ADR

ANDN Logic AND of RGA with complement of ADR

EOR Logic exclusive OR of RGA with ADR

EQV Logic equivalence of RGA with ADR

NAND Logic AND of complement of RGA with ADR

NANDN Logic AND of complement of RGA with complement of ADR

NOR Logic OR of complement of RGA with ADR

NORN Logic OR of complement of RGAwith complement of ADR

OR Logic OR of RGA with ADR

ORN Logic OR of RGA with complement of ADR

2In subsequent-discussion, a symbol (such as RGA or RGX) is used alterna­
tively to mean either the register (A or X) or the content of the register.

-23-

NOTES: 1. Instructions AND, ANDN, NAND, and NANDN perform the logic AND
of the content of the A register with the content of ADR bit
by bit. The content of ADR is first placed in the B register
through the Common Data Bus (ADR is more general than CnB data
in that it may be a PEM or other PE register word), and then
the instruction is executed. (The contents of ADR may also be
a PE or PEM word.) Because the result of this logic function
involves two registers (A and B), the truth table (Table 8)
shows the four combinations of the bits in the A and B registers
and the results. .

2. Instructions NOR, NORN, OR, and ORN perform the logic OR of the
content of the A register with the content of ADR which is
placed into the B register before the instruction is executed.
The truth table (Table 9) shows the four 'combinations of the
bits in the A and B registers and the results.

Table 8. Truth Table of Boolean Functions

STATE OF STATE OF ~OGIC FUNCTION PERFORMED

A REGISTER BIT B REGISTER BIT AND ANDN NAND NANDN

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

Table 9. Truth Table of Boolean Functions

LOGIC FUNCTION PERFORMED
A REGISTER BIT B REGISTER BIT

NOR NORN OR ORN

0 0 1 1 0 1

0 1 1 1 1 0

1 0 0 1 1 1

1 1 1 0 1 .1

-24-

b) Comparison instructions (Tables 10 and 11): These instructions

test as to whether the contents of the A or X or S registers of

a PE are greater, equal to, or less than the contents of ADR;

they also check to see if the contents of A are equal to logic 1

or logic O. The result of this comparison is stored in the I or

J bit of the mode register (RGD) in 64-bit mode or in the I/G or

J/H bits in the 32-bit mode.

I TabZe 10 appears on page 26

Table 11. Nonarithmetic Instructions
(Arithmetic Comparison)

MNEMONIC CODE OPERATION PERFORMED

(I/J) A (GIL) Determine whether the content of RGA is
arithmetically (A) greater or less than ADR.

lAG Place result of test for RGA arithmetically
greater than ADR into I.

IAL Place result of test for RGA arithmetically
less than ADR into I.

JAG Place result of test for RGA arithmetically
greater than ADR into J.

JAL Place result of test for RGA arithmetically
less than ADR into J.

NOTE: These instructions are executed in either 64-bit or 32-bit mode.
In 64-bit mode the result is placed into I or J bit of the mode
register, while in 32-bit mode the result is placed in I or J
for the Outer word and in G or H for the Inner word.

-25-

I
N
0\
I

Table 10. Nonarithmetic Instructions (Logic Comparison)

MNEMONIC CODE OPERATION PERFORMED

(I/J) (LIM) (E/G/L)

ILE
ILG
ILL
!ME
IMG
IML
JLE
JLG
JLL
JME
JMG
JML

(I/J) (SiX) (E/G/L)

ISE
ISG
ISL
IXE
IXG
IXL
JSE
JSG
JSL
JXE
JXG
JX.L

(I/J) (LIM)

ILO
ILZ
IMO
IMZ
JLO
JLZ
JMO
JMZ

(o/z)

Determine whether the logic word (L) or mantissa (M) part of RGA is equal to (E),
greater (G), or less (L) than ADR.
Place result of test for RGA logically equal to ADR into I.
Place result of test for RGA logically greater than ADR into I.
Place result of test for RGA logically less than ADR into I.
Place result of test for RGA mantissa logically equal to ADR into I.
Place result of test for RGA mantissa logically greater than ADR into I.
Place result of test for RGA mantissa logically less than ADR into I.
Place result of test for RGA logically equal to ADR into J.
Place-result of test for RGA logically greater than ADR into J.
Place result of test for RGA logically less than ADR into J.
Place result of test for RGA mantissa logically equal to ADR into J.
Place result of test for RGA mantissa logically greater than ADR into J.
Place result of test for RGA mantissa logically less than ADR into J.
Determine whether the content of RGS (S) or RGX (X) is equal to, greater, or
less than ADR.
Place result of test for RGS logically equal to ADR into I.
Place result of test for RGS logically greater than ADR into I.
Place result of test for RGS logically less than ADR into I.
Place result of test for RGX logically equal to ADR into I.
Place result of test for RGX logically greater than ADR into I.
Place result of test for RGX logically less than ADR into I.
Place result of test for RGS logically equal to ADR into J.
Place result of test for RGS logically greater than ADR into J.
Place result of test for RGS logically less than ADR into J.
Place result of test for RGX logically equal to ADR into J.
Place result of test for RGX logically greater than ADR into J.
Place result of test for RGX logically less than ADR into J.
Determine whether the logic word or mantissa of RGA is equal to all ONES (0) or
all ZEROS (Z).
Place result of test for RGA logically equal to all ONES into I.
Place result of test for RGA logically equal to all ZEROS into I.
Place result of test for RGA mantissa logically equal to all ONES into I.
Place result of test for RGA mantissa logically equal to all ZEROS into I.
Place result of test for RGA logically equal to all ONES into J.
Place result of test for RGA logically equal to all ZEROS into J.
Place result of test for RGA mantissa equal to all ONES into J.
Place result of test for RGA mantissa equal to all ZEROS into J.

NOTES: (for Table 11)

1. Instructions (I/J) (LIM) (E/G/L) are executed either in 64-bit
full word or in mantissa parts. In 64-bit mode the result is
stored in either I or J bit of the mode register while in 32-
bit mode the result is stored in I or J (Outer word) and in G
or H (Inner word).

2. Instructions (I/J) (SIX) (E/G/L) are used to compare the l6-bit
index register (RGX) or the 16 least significant bits of RGS
with the 16 least significant bits of ADR.

3. Instructions (I/J) (LIM) (O/X) are executed either in 64-bit
full word or in mantissa parts. In 64-bit mode the result is
stored in the I or J bit of the mode register, while in 32-bit
mode the result is stored in I or J bit (Outer word) and G or
H bit (Inner word).

c) Modify and test index instructions (Table 12): These instructions

modify the content of the X register of a PE by adding or subtract­

ing the content of ADR to or from it. If an overflow results, the

overflow bit is stored in-either the I or J bit of the mode register;

the type of instruction determines whether it is the I bit or the

J bit.

MNEMONIC CODE

(I/J) XGI

IXGI

JXGI

(I/J) XLD

IXLD

Table 12. Nonarithmetic Instructions
(Modify and Test Index)

OPERATION PERFORMED

Add the least significant 16 bits
and store the carryout (overflow)
of mode register.

Add ADR to RGX and store overflow

Add ADR to RGX and store overflow

of ADR to RGX
in I or J bit

in I.

in J.

Subtract the least significant 16 bits of ADR
from RGX and store the complement of the carry­
out into I or J bit of mode register.

Subtract ADR from RGX and store complement of
overflow in I.

JXLD Subtract ADR from RGX and store complement of

XI

XD

overflow in J.

Add the least significant 16 bits of ADR to RGX
and place the result in RGX modulo 16.

Subtract the least significant 16 bits of ADR
from RGX (2's complement) and place the result
in RGX modulo 16.

-27-

d) Modify bit of A register (Table 13): These instructions set,

reset, or complement a selected bit of A register in 64-bit

mode or two bits in 32-bit mode.

Table 13. Nonarithmetic Instructions
(Modify Bit of RGA)

MNEMONIC CODE OPERATION PERFORMED

CAB Complement bites) in RGA

CHSA Change sign(s) in RGA

RAE' Reset bites) in RGA

SAB Set bites) in RGA

SAP Reset sign(s) in RGA

SAN Set sign(s) in RGA

e) Transmit bit of A register (Table 14): These instructions

transmit a selected bit of A register to the I or J bit of the

mode register in 64-bit mode or two bits in 32-bit mode in

which case one bit is transmitted to I or J and the other to

G or Hbit of the mode register.

Table 14. Nonarithmetic Instructions
(Transmit Bit of RGA)

MNEMONIC CODE OPERATION PERFORMED

(I/J) (B/SN) Transmit RGA bit (B) or sign
(SN) to mode register:

IB Transfer RGA bites) to I bit
(and G bit in 32-bit mode).

ISN Transfer RGA sign(s) to I bit
(and G bit in 32-bit mode) ..

JB Transfer RGA bites) to J bit
(and H bit in 32-bit mode).

JSN Transfer RGA sign(s) to J bit
(and H bit in 32-bit mode).

-28-

f) Eight-bit byte (Table 15): These instructions add or subtract

ADR and. A register and also test as to whether the content of

A register is greater, less, or not equal to the content speci­

fied by ADR. These operations are performed in eight-bit bytes

whose format is shown in Figure ll(f). Results of the test

instructions are left in RCA. The least significant bit of

each byte is the result; all other bits are ZERO.

MNEMONIC

GB

NEB

LB

ADB

SBB

OFB

Table 15. Nonarithmetic Instructions
(Eight-Bit Byte)

CODE OPERATION PERFORMED

Test for RGA greater than ADR

Test for RGA not equal to ADR

Test for RGA less than ADR

Add ADR to RGA

Subtract ADR from RGA

Transmit overflow bits of previous
byte instructions from RGC to RGB

8-bit

g) Modify exponent (Table 16): These instructions load, add, or

subtract ADR exponents into, to or from the exponent fie1d{s)

of A register in both the 64- or 32-bit modes. No change of

sign(s) or the mantissa{s) takes place.

MNEMONIC CODE

LEX

ADEX

SBEX

Table 16. Nonarithmetic Instructions
(Modify Exponent)

OPERATION PERFORMED

Load ADR exponent(s) into RGA exponent

Add ADR exponent (s) to RGA exponent{s).

field.

Subtract ADR exponent(s) from RGA exponent{s).

-29-

h) Shift instructions (Table 17): There are basically ten shift

instructions whose general characteristics are as follows:

Right

1) Right shift count with indexing: The shift count is sent

to the Address Adder through the Common Data Bus (CDB) and

Operand Select Gates (OSG) where it may be indexed by X or

S registers. Th~ content of ADA is stored into the shift

count register (LOD #4) as modulo 64 or 32 depending upon

the mode of operation. Because the original shift count

may be the sum of ADR and the content of one of the ACAR's,

it can be said that the shift count N = ADR + ACAR. + X or
1

S register, where i = 0, 1, --, 3. If ACAR., X or S register
1

is not specified for indexing then they are assumed to be

zero in the above equation [2].

2) Left shift count with indexing: As will be explained later

when the Barrel Switch is discussed, all shifting is actually

performed to the right. In order to perform a left shift,

the ADA receives (through the same channel as in right shift­

ing) the shift count minus one (N-l). This number may be

indexed at ADA and is transmttted to shift count register

(LOD #4). Then the output of LOD #4 is complemented (l's

complement) and the result is equivalent to a right shift

number as shown in Table 17.

Table 17. Right and Left Shift Count Equivalence

OUTPUT OF CU OUTPUT OF LOD #4

Shift (N) Left Shift (N-l) Right Shift (N) Left Shift 6h
0 63 0 0

1 0 1 63 ,
63 62 63 1

-30-

3) E bits disabled: Because the mode register has not yet been

discussed, in particular the role of the E, El bits, it is

only mentioned here that whenever one or both the E bits are

not enabled the part of the register corresponding to the

disabled E bit is unchanged by the shift instruction.

4) End around shifts: In addition to the six bits specifying

the shift count (N), the shift count register receives from

the eu (through the eDB and OSG) two bits, the status of

which specifies the direction of shifting, that is, end

around, right end off, or left end off. During the end

around instruction, whatever bits are shifted out of the

right end of one register reappear at the other end of the

register.

5) End off shifts: During this instruction, whatever bits

have been shifted out of the right or left end of the

register do not reappear at the other end, but instead a

number of "D's" equal to the number of the "shifted off"

bits are forced into the other end of the register.

6) Mantissa shifts: These instructions refer to the mantissa

part of the register which may be shifted left or right

end off or end around. In left or right end off shifts,

if the shift count is >48 in 64-bit mode or if the shift

count is >24 in 32-bit mode the mantissa portion of the

register is forced to zero.

7) Logic shifts: These instructions enable the whole word in

64-bit mode or half of the word in 32-bit mode for shifting

operations left or right end off or end around.

8) Double and single length shifts: When a double length

shift is requested, A and B registers of the PE are treated

as one l28-bit register and their contents may be shifted

left or right end off. These shifts are valid only for 64-

bit mode and may include logic shifts or mantissa shifts.

In this case, E = El. When single length shifts are

requested, the content of a register is shifted left or

right end off or end around and may include logic shifts

or mantissa shifts. The single length shifts are valid

for both 64- and 32-bit mode.

-31-

Table 18. Nonarithmetic Instructions (Shift)

MNEMONIC CODE OPERATION PERFORMED

RTAL Rotate (shift left), end around, logic, single length

RTAR Rotate (shift right), end around, logic, . single length

SHABL

SHABR

SHABML

SHABMR

SHAL

SITAR

SHAML

SHAMR

Shift left, end off, logic, double length

Shift right, end off, logic, double length

Shift left, end off, mantissa only, double length

Shift right, end off, mantissa only, double length

Shift left, end off, logic, single length

Shift right, end off, logic, single length

. Shift left, end off, mantissa only, single length

Shift right, end off, mantissa only, single length

NOTES: 1. The meaning of the variants for shift instructions is the fol­
lowing:

RT = Rotate (implies end around)
SH = Shift (implies end off)
A = RGA (single length)

AB = RGA and RGB (double length)
M = Mantissa part only
L = Left
R = Right

2. Whenever the letter M does not appear it is assumed that a
logic shift is requested, which means that all bits of the
word (or half word) are enabled.

i) Mode register instructions (Table 19): These instructions are

subdivided into two categories:

1) Load instructions: These instructions load the specified

mode register bit(s) with a bit from CU (ACAR). ACAR may

be indexed as previously explained. In this instruction

the ADR-use field of the instruction word (Figure 10) is

not used. If the LOAD EEl instruction is requested, how­

ever, the particular bit of ACAR will load both the E and

El bits of the mode register of the corresponding PEe

-32-

Table 19. Nonarithmetic Instructions
(Mode Register)

MNEMONIC CODE OPERATION PERFORMED

(LD)

LDE
LDEI
LDEEI
LDG
LDH
LDI
LDJ

(SET)

SET E
SET El
SET F
SET Fl
SET G
SET H
SET I
SET J

Load mode register from ACAR as follows:

Load mode register E bit from ACAR
Load mode register El bit from ACAR
Load mode register E, El bits from ACAR
Load mode register G bit from ACAR
Load mode register H bit from ACAR
Load mode register I bit from ACAR
Load mode register J bit from ACAR

Set mode register bit with the result of
a logic function of two bits specified
in the ADR field as follows:

Set mode register bit E
Set mode register bit El
Set mode register bit F
Set mode register bit Fl
Set mode register bit G
Set mode register bit H
Set mode register bit I
Set mode register bit J

2) Set instructions: These instructions force a particular

bit of the mode register to be set with the result of a

logic function of two bits. These two bits (B1 and B2)

and the logic function occupy bit positions in the

instruction word (Figure 10) as shown in Table 20.

Table 20. Mode Register Set Instructions

LOGIC FUNCTION MODE BIT B2 MODE BIT B1
INSTRUCTION INSTRUCTION INSTRUCTION

CONTENT WORD BIT CONTENT WORD BIT CONTENT WORD BIT
-Bl or B2 16 El 20 H 24

Bl or B2 17 El 21 G 25

Bl and B2 18 E 22 J 26
-Bl and B2 19 E 23 I 27

El 28

E 29

Fl 30

F 31

-33-

j) Miscellaneous instructions (Table 21): So far all of the

FINST/PE instructions have been arranged according to a

functional group which is briefly introduced to the reader

by some general comments. Because the set of instructions

shown in Table 21 covers a variety of operations (though

equally as important as the grouped instructions), they are

referred to 'as "miscellaneous."

Table 21. Nonarithmetic Instructions
(Miscellaneous)

MNEMONIC CODE OPERATION PERFORMED

ASB*

CLRA*

COMPA*

SWAP *

SWAPX*

T3A

EAD

ESB

Place sign(s) of RGA into sign(s) position
of RGB

Clear RGA

Complement RGA

Int,erchange RGA and RGB

Interchange the inner and outer words in RGA

Transfer contents of RGC to RGA

Recover extended precision after addition in
floating point arithmetic

Recover extended precision after subtraction
in floating point arithmetic

*See [2] pp. 4-13.

-34-

2. Arithmetic instructions: These instructions are the most important

and will be treated separately later in the theory of operation. They can

be separated into four general categories, each one including a limited

number of options. These instructions involve operands whose formats are

shown in Figure 11 •. The programmer, in addition to having to deal with the

formats of Figure 11, which involve floating, fixed point, and unsigned

operands, has the option of normalization and rounding. The basic arith­

metic instructions are:

1) Addition (Table 22)

2) Subtraction (Table 23)

3) Multiplication (Table 24)

4) Division (Table 25)

and the variants being used for the above instructions are specified as

follows:

Suffix Meaning

A Unsigned

M Fixed point

N Normalized result

R Rounded result

When unsigned operands are dealt with, their mantissa signs are forced to

look alike (positive) but the original sign(s) of RGA are retained.

When fixed point arithmetic is requested, the exponent field of the

operand is ignored. If a number A is to be added to a "zero number" the

order of magnitude is not important. Therefore whether "dirty" or "clean"

O's are being dealt with is of no concern because no alignment is involved

(due to a difference in the exponents of A and the zero number). Thus,

even if the order of magnitude of the zero number (not zero exponent) is

greater than the order of magnitude of A, it is assumed that

A + 0 = A

When the normalize variant is used, the result of addition, subtraction,

multiplication, and division of two operands (floating point arithmetic)

must be normalized. That is, the leading ONE of the mantissa field should

be brought into bit position 16 in 64-bit mode or 32-bit mode Inner word

or in bit 40 in 32-bit mode Outer word (Figure ll(a) and (b», and the

exponent reduced accordingly. Also the programmer might normalize (NORM

-35-

instruction) the operands before the actual arithmetic operations begin.

This is an option which is only mandatory in division, where the divisor

must be normalized before the recursive process starts. If the mantissa

part of the operand to be normalized is zero, the leading ONE detectors

will be unable to generate a shift amount for shifting the mantissa to

the left and subsequently to have the exponent reduced. Under these

circumstances the mantissa sign and exponent part of the operand or result

is forced to zeros. This zero operand is called "clean" or true zero.

Using the excess or offset code when representing the exponent, it was

shown previously that the exponent value is 2T where T can vary from

2+14_1 to _2+14 in 64-bit mode and from 2+6_1 to -2+6 in 32-bit mode.

In excess code, all zeros in the exponent field of the operand or of the

result represents the minimum possible exponent value; therefore, the zero

operand or result can be represented by

where

+14
X = (_l)X02-2 • 0 in 64-bit mode

X +6
X = (_1)02-2 • 0 in 32-bi t mode

X = operand or result to be normalized

XO mantissa sign (0 = +, 1 = -)
o = zero mantissa.

The rounding option (R) is very important when high precision is needed

because it saves significant bits (in the case of addition) which otherwise

could be truncated. However, because rounding is treated differently in

every individual arithmetic operation, it is described explicitly in the

"Theory of Operation" section of this manual.

Since the intent of this manual is to describe how the PE operates as

an arithmetic unit from the hardware point of view, the reader is urged to

read Chapter IV of [2] which covers the FINST/PE Instruction Repertoire quite

extensively. For convenience, a "FINST/PE Instruction Index," which was

borrowed from [2], is provided in Table 26 of this manual. A list of refer­

ence pages, which is included in the original table as it appears in [2],

has been omitted from the table.

-36-

Table 22. Arithmetic Instructions (Addition)

MNEMONIC CODE OPERATION PERFORMED

AD
ADA
ADM
ADMA
ADN
ADNA

ADR
ADRA

ADRN
ADRNA

ADD

Add the content of ADR to RGA. Variants
are: A, M, N, R

Add in floating point
Add in floating point two unsigned numbers
Add in fixed point
Add in fixed point two unsigned numbers
Add in floating point and normalize
Add in floating point two unsigned numbers

and normalize
Add in floating point and round
Add in floating point two unsigned numbers

and round
Add in floating point, round and normalize
Add in floating point two unsigned numbers,

round and normalize .
Add ADR to RGA. The operands are 64-bit,

fixed point, and unsigned

NOTES: 1. If M (fixed point) is specified, the operands and their results
are treated as fixed point numbers. The original content of
RGA exponent field is retained in the result.

2. The content of ADR specifies the source of addend which is
brought into B register before the operation begins.

-37-

Table 23. Arithmetic Instructions (Subtraction)

MNEMONIC CODE OPERATION PERFORMED

SB
SBA
8MB
SBMA
SBN
SBNA

SBR
SBRA

SBRN
SBRNA

SUB

Subtract the content of ADR from RGA. Variants
are: A, M, N, R

Subtract in floating point
Subtract in floating point two unsigned numbers
Subtract in fixed point
Subtract in fixed point two unsigned numbers
Subtract in floating point and normalize
Subtract in floating point two unsigned numbers

and normalize
Subtract in floating point and round
Subtract in floating point two unsigned numbers

and round
Subtract in floating point, round and normalize
Subtract in floating point two unsigned numbers,

round and normalize
Subtract 64-bit, fixed point number of ADR from

RGA

NOTES: 1. If M (fixed point) is specified, both the operands and their
results are treated as fixed point numbers. The original
content of RGA exponent field is retained in the result.

2. The content of ADR specifies the minuend which is placed in
B register before the operation begins.

-38-

Table 24. Arithmetic Instructions (Multiplication)

MNEMONIC CODE OPERATION PERFORMED

ML
MLA
MLM
MLMA
MLN
MLNA

MLR
MLRA

MLRM
MLRMA
MLRN
MLRNA

MCM
MULT

Multiply the content of RGA by the content of ADR.
Variants are: A, M, N, R

Multiply in floating point
Multiply two unsigned numbers in floating point
Multiply in fixed point
Multiply two unsigned numbers in fixed point
Multiply in floating point and normalize
Multiply in floating point unsigned numbers and

normalize
Multiply in floating point and round
Multiply in floating point unsigned numbers and

. round
Multiply in fixed point and round
Multiply in fixed point unsigned numbers and round
Multiply in floating point, round and normalize
Multiply in floating point unsigned numbers, round

and normalize
Execute one cycle of multiplication
See [2] pp. 4-72

NOTES: 1. MCM and MULT are special instructions and are treated differ­
ently than the ML instruction.

2. When M is specified,. the values of the two operands and their
results are treated as numbers in fixed point. The original
content of RGA exponent field is retained in the result.

3. The content of ADR specifies the multiplier which is placed
in B register before the operation begins.

-39-

Table 25. Arithmetic Instructions (Division)

MNEMONIC CODE OPERATION PERFORMED

DV
DVA
DVM
DVMA
DVN
DVNA

DVR
DVRA
DVRM
DVRMA
DVRN
DVRNA

Divide the mantissa of RGA and RGB (double length)
by the content of ADR which is in RGR. Variants
are: ,A, M, N, R

Divide
Divide unsigned numbers
Divide numbers in fixed point
Divide unsigned numbers in fixed point
Divide and normalize quotient field
Divide unsigned numbers and normalize quotient

field
Divide and round
Divide unsigned numbers and round
Divide, round and normalize quotient field
Divide unsigned numbers in fixed point and round
Divide, round and normalize
Divide unsigned numbers, round and normalize

NOTES: 1. If M (fixed point) is not specified the division is in floating
point.

2. If both N (normalize) and M are not specified the division is
an unnormalized floating point operation.

3. If M is specified the two operands and their results are treated
as fixed point numbers.

4. The content of ADR specifies the divisor which is brought into
R register before the division process begins.

-40-

Table 26. FINST/PE Instruction Index

Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref.
Code Code Page Code Code Page Code Code Page

AD 3504 4-17 IXL 2310 4-59 NORN 2307 4-31
ADA 3505 4-17 IXLD 2712 4-62 OFB 2506 4-76
ADB 2606 4-22 JAG· 3715 4-52 OR 2304 4-31
ADD 2604 4-23 JAL 3717 4-52 ORN 2306 4-31
ADEX 2500 4-24 JB 3503 4-54 RAB 3701 4-36
ADM 3414 4-17 JLE 3517 4-55 RTAL 3513 4-87
ADMA 3415 4-17 JLG 3315 4-55 RTAR 3512 4-88
ADN 3404 4-17 JLL 3317 4-55 RTG 2413 4-77
ADNA 3405 4-17 JLO 3311 4-57 RTL 2412 4-77
ADR 3506 4-17 JLZ 3313 4-57 SAB 3702 4-36
ADRA 3507 4-17 JME 3515 4-55 SAN 3702 4-38
ADRN 3406 4-17 JMG 3115 4-55 SAP 3701 4-38
ADRNA 3407 4-17 JML 3117 4-55 SB 3704 4-79
AND 2704 4-27 JMO 3111 4-57 SBA 3705 4-79
ANDN 2706 4-27 JMZ 3113 4-57 SBB 2607 4-82
ASB 2507 4-26 JSE 2513 4-59 SBEX 2501 4-83

JSG 2113 4-59 SBM 3614 4-79
JSL 2313 4-59 SBMA 3615 4-79

CAB 3700 4-33 JSN 3503 4-54 SRN 3604 4-79

CHSA 3700 4-35 JXE 2511 4-59 SBNA 3605 4-79

CLRA 2411 4-39 JXG 2111 4-59 SBR 3706 4-79

COMPA 2211 4-40 JXGI 2711 4-61 SBRA 3707 4-79

DV 3304 4-41 JXL 2311 4-59 SBRN 3606 4-79

DVA 3305 4-41 JXLD 2713 4-62 SBRNA 3607 4-79

DVM 3214 4-41 LR 2107 4-63 SCM 2104 4-85

DVMA 3215 4-41 LDA 2617 4-104 SETE 2514 4-69

DVN 3204 4-41 LDB 2700 4-104 SETEI 2515 4.:.69

DVNA 3205 4-41 LDD 2212 4-104 SETF 2516 4-69

DVR 3306 4-41 LDE 2114 4-69 SETF1 2517 4-70

DVRA 3307 4-41 LDEI 2115 4-69 SETG 2714 4-70

DVRM 3216 4.-41 LOEE1 2116 4-69 SETH 2715 4-70

DVRMA 3217 4-41 LOG 2314 4-69 SETL 2716 4-70

DVRN 3206 4-41 LDH 2315 4-69 SETJ 2717 4-70

DVRNA 3207 4-41 LOI 2316 4-69 SHABL 3711 4-89

EAD 2010 4-45 LOJ 2317 4-69 SHABML 3713 4-91

EOR 2505 4..;29 LOR 2701 4-104 SHABMR 3712 4-92

EQV 2504 4-30 SHABR 3710 4-90

ESB 2410 4-48 SHAL 3501 4-93

GB 2106 4-50 LDS 2702 4-104 SHAML 3511 4-95

lAG 3714 4-52 LOX 2703 4-104 SHAMR 3510 4-96

IAL 3716 4-52 LEX 2117 4-64 SHAR 3500 4-94

IB 3502 4-54 ML 3104 4-65 STA 2612 4-97
ILE 3516 4-55 MLA 3105 4-65 STB 2613 4-97
ILG 3314 4-55 MLM 3014 4-65 STR 2614 4-97
ILL 3316 4-55 MLMA 3015 4-65 STS 2615 4-97

ILO 3310 4-57 MLN 3004 4-65 STX 2616 4-97
ILZ 3312 4-57 MLNA 3005 4-65 SUB 2605 4-99
IME 3514 4-55 MLR 3106 4-65 SWAP 3103 4-100
IMG 3114 4-55 MLRA 3107 4-65 SWAPA 3303 4-101
IML 3116 4-55 MLRM 3016 4-65 SWAPX 3703 4-102
IMO 3110 4-57 MLRMA 3017 4-65 T~A 2105 4-103
1M2 3112 4-47 MLRN 3006 4-65 TCY 3100 ---
ISE 2512 4-59 MLRNA 3007 4-65 TCYS 3101 ---
ISG 2112 4-59 MULT 2213 4-72 TCYX 3102 ---
ISL 2312 4-59 NAND 2705 4-27 :\.'1) 2503 4-107
ISN 3502 4-54 ~ANON 2707 4-27 :Xi 2502 4-108
IXE 2510 4-59 ~EB 2210 4-73

IXG 2110 4-5~ r-.;OH. 2305 4-31
IXGI 2710 4-61 NORM 2013 4-74

-41-

SECTION B: PROCESSING ELEMENT ORGANIZATION

I • I NTRODUCT ION

Functionally, the PE logic elements (Figure 12) are partitioned into

three sections: registers, data transfer and modification units, and inter­

face units. Because the Processing Unit is considered a general purpose

computer with the PE functioning as an arithmetic unit, the PE logic elements

are used for the execution of the FINST/PE instruction repertoire. Knowing,

however, the variety of the FINST/PE instruction, one should expect that

these logic elements differ in size and logic and for this reason a brief

description of these elements is provided in this section.

II. LOGIC ELEMENTS AND PE ORGANIZATION

A. PE Logic Elements

1. PE Registers. These are the logic elements that are used to hold

data whose word format is shown in Figure 11. These data may be an operand

or the result of an operation (arithmetic or nonarithmetic). The PE regis­

ters are the following:

a) A Register (RGA): This register holds

(1) the augend in addition

(2) the minuend in subtraction

(3) the multiplicand in multiplication

(4) the dividend in division (most significant 48 bits)

It is also used as an accumulator because it receives the result from the

Carry Propagating Adder at the end of each arithmetic operation and the

result of the nonarithmetic operations from the logic elements involved.

-42-

(PE NUMBERS)

-8 -I +1 +8 -8 -I +1+8

~
DRIVERS

RECEIVER
SELECTION

GATING

~
R REGISTER

MLU COB . CONTROL UNIT

l t 1
REC ElVER

DRIVER MODE·

AND ~ RE GISTER
REGISTER

RECEIVER (RGD)

r----.------------------------------~

ADDRESS
..... (RGR)

~-y ~
~ ADDER

, ,..-1- (ADA) ...

~
MULTIPLICAND

SELECT
GATES
(~ SG)

PSEUDOADDER
TREE

(PAT)

CARRY
PROPAGATE

- ADDER
CPA)

C REGISTER
(RGC)

I

A REGISTER

S REGISTER - (RGs)
~

MULTIPLIER
DECODER

f- GATES
(MDG)

(R GA) ~----1f--~

LOGIC

UNIT
(LOG)

LEADING
ONE

DETECTOR
lL 0 0)

BARREL
.. CONTROL

BARREL
SWITCH
(BSW)

OPERAND
SELECT
GAT"ES
(OS G)

B REGISTER
(RGB)

MLU·

-=

I
\
I

• L...... X REGISTER
'r-- (RGX)

I

MEMORY
ADDRESS
REGISTER

(MARl

~
MLU

Figure 12. Processing Element Block Diagram

-43-

MLU

RGAi
Bit

There are eight cards in the PE comprising the RGA, as follows:

RGA 1 }

RGA 2

RGA 3

RGA 4

RGA 5

RGA 6

RGA 7

RGA 8

These are AOl-A type cards holding the exponent part
of the word and also providing special gating for
the sign of the mantissa(s).

These are AOI type cards and are used to hold the
mantissa part(s) of the word whose format is shown
in Figure 11.

Both types of cards take care of eight bits each as follows:

RGAI RGA2 RGA3 RGA4 RGA5 RGA6 RGA7 RGA8

Position .0-7 8-15 16-23 24-31 32-39. 40-47 48-'55 56-63

The logic of A register is shown in "Logic Schematic Gated

Register AOI and AOl-A."

b) B Register (RGB): This register holds

(1) the addend in addition

(2) the subtrahend in subtraction

(3) the multiplier in multiplication*

(4) the dividend in division (least significant 48 bits)t

* In multiplication the multiplicand is temporarily stored in R register
while B register is used to provide the space for the partial product
and also to provide the inputs to the multiplier decoding gates.

tIn division the divisor is stored in R register and B register holds the
least significant 48 bits (mantissa) of the dividend, which is usually
96 bits long (only the mantissa part). If the option of rounding, how­
ever, is used, then B register receives half of the quantity or all of
the divisor from R register but still this quantity is considered .as
part of the dividend. This register is also used to hold the result
whenever operations involving double length operands are performed.

-44-

RGBi
Bit

There are eight PE cards comprising the RGB, as follows:

RGB 1 }

RGB 2

RGB 3

RGB 4

RGB 5

RGB 6

RGB 7

RGB S

These are AOl-A type cards holding the exponent part
of the word and also providing special gating for
the sign of the mantissa(s).

These are AOI type cards and are used to hold the
mantissa part(s) of the word whose format is shown
in Figure 11.

Both AOI and AOl-A cards take care of eight bits each as follows:

RGBI RGB2 RGB3 RGB4 RGB5 RGB6 RGB7 RGBS

Position 0--7 8-15 16--23 24-31 32-39 40-47 4S-55 56-63

c) C Register (RGC): This register is used for saving carries (par­

tial) from the Carry Propagating Adder during the execution of multiplication.

These partial carries are fed back to the PAT during each iterative cycle,

but in the final cycle the carries are brought into CPA in order to form the

final sum (product).

There are four PE cards of ADS type which can take care of 16 bits

each as follows:

RGCi RGCl RGC2 RGC3 RGC4
Bit 16-31 32-47 4S-63 64-79 Position

The logic of C register is shown in "Logic Schematic Gated

Register AOS."

-45-

d) R Register (RGR): This register is used for

(1) communication with other PE's (+8, +1, -8, -1); this is

known as routing.

(2) temporary storage of one of the operands (i.e., the multi­

plicand in multiplication).

(3) holding the divisor in division.

(4) extended addition and subtraction.

There are eight PE cards of AOI type which can take care of eight

bits each as follows:

RGRi RGR1 RGR2 RGR3 RGR4 RGR5 RGR6 RGR7 RGR8
Bit 0-7 8-15 16-23 24-31 32-19 40-47 48-55 56-63 Position

The R register communicates with PAT through the MSG during multi­

plication, with the CPA and B register during division (see division process),

and with the receiver selection gating and drivers during routing. Because

R register is not protected by E, El bits, the programmer should be very care­

ful about how the operand stored in R register is used. The logic of R regis­

ter is shown in "Logic Schematic Gated Register AOl."

e) S Register (RGS): This register is a spare register, which may be

used for temporary storage of an operand for subsequent instructions. This

resul·ts in saving time (memory cycles). The 16 least significant bits of

this register (48 -63) may also be used for indexing purposes whenever an

additional index is required.

There are four PE cards of A08 type in the S register and each

card accommodates 16 bits as follows:

RGSi RGSI RGS2 RGS3 RGS4
Bit

0-15 16-31 32-47 48-63 Position

-46-

The S register communicates with the Address Adder (16 least sig­

nificant bits) to index the address, with the logic unit (LOG) in order to

provide the operand which has been stored temporarily in the appropriate

register,and with the barrel switch in order to receive the operand for

storage from RGA, RGB, RGR, RGX, or PEM.

The logic of S register is shown in "Logic Schematic Gated

Register A08."

f) X Register (RGX): This is a 16-bit register used for indexing

purposes. The type of card used is AD8 which takes care of 16 bits through

16 latches.

The X register communicates with RGB, RGR, RGS, and PEM through

the Address Adder (ADA) and Operand Select Gates (OSG). Because it has only

16 bits, whenever transfers are being made during the transmit instructions,

only the 16 least significant bits of the source register are enabled into

X register. For transfers from X register to the above-mentioned registers,

their 48 most significant bits are cleared and not loaded.

As shown in Figure 13, the content of X register may specify

indexing of the memory address, in which case the output of ADA (ADR+RGX)

is brought into the Memory Address Register (MAR) and thereafter into MLU

or it may specify indexing of shift count N (see details in shift instruc­

tions) in which case the output of ADA (N indexed by RGX) is brought into

the Shift Count Register (LOD4). Because the index amount for memory

address from ADA can be brought into X register, it can be said that the

content of RGX = ADR or (ADR + content of RGX) or (ADR + content of RGS).

-47-

48

RG

(ADR) 0000 r --- ._-_._-_._ _ ... _- . B-

F------(-)~
: l

I I

bits

I

63 bits a

S(48:16)
i

RG X(0:16)

I
Content of S i Content of X I

t I

1
~ -,

I I
l

ADDRESS ADDER I (ADA) I
i _ ... _ .. __ J
~---....

00008
or

00008 + Content of X register
00008 + Content of S register

r
y

MEMORY ADDRESS
I
I REGISTER

! (MAR)

NOTE: In this illustration, the ADR value 00008 was used
arbitrarily as an example. Continuing this example, the
following instructions have the meanings shown:

(a)
(b)
(c)

TCY:
TCYX:
TCYS:

Transfer
Transfer
Transfer

00008 into MAR
0000 8 + content of RGX into MAR
0000 8 + content of RGS in to MAR

Figure 13. Memory Address Chain (Example)

-48-

15 bits

." M L U

g) Memory Address Register (MAR): This is an A08-type-card, l6-bit

register used to drive the 11 (presently used) bits of address to the PEM

through MLU.

The content of MAR (Figure 13) may be the address specified by

ADR field indexed by the contents of RGX or RGS. If indexing is not

required, it is evident that the content of MAR is ADR itself.

h) Shift Count Register (SCR): This eight-bit register holds the

shift amount and direction of shifting. It controls the Barrel Switch

Controls (LOOl, 2, 3) which in turn contro~ the three levels of the Barrel

Switch and is used in both 64- or 32-bit modes of operation.

The shift count N (see equation in shift instructions) is received

by the Operand Select Gates (OSG) over the Common Data Bus (COB) path in

bits 58 through 63 and from there it is brought into the Address Adder (ADA)

where it may be indexed by the contents of RGX or RGS. The output of ADA

(bits 10 through 15) is enabled into the six least significant bits of the

shift count register, but always modulo 64 for the 64-bit mode. If the

shift is done in 32-bit mode, the Inner and Outer words are acted upon

separately and the shift amount is the shift count modulo 32.

The Barrel Swiech has been designed to always shift right, but a

left shift can be accomplished if the amount of left shift is converted

appropriately to a right shift that produces the same result. The bits

which specify the direction of shift (Table 27) are enabled into the OSG

(bits 56, 57) over the CDB path and from there they are brought directly

to the SCR (LOD4) at bit positions specified by SHL and SHR (Table 28).

For shift left the SCR receives from CU through ADA the shift count N-l.

This number may be indexed at ADA as in the case of right shift. Because

the 2's complement of the left shift number is required, the output of the

SCR is complemented (l's complement) and then applied to LODl, 2, 3 in

order to control the Barrel Switch levels.

-49-

Table 27. Shift Count Register Bit Organization

E OUTPUT OF ADA ~

FROM OSG FROM OSG
BIT 56 BIT 57 bit bit bit bit bit bit

LEFT SHIFT RIGHT SHIFT 10 11 12 13 14 15

-+--OUTPUT OF CPA WHEN ALIGNED--+-

bit bit bit bit bit bit
74 75 76 77 78 79

66 67 68 69 70 71

al a2 aO

Table 28. Shift Direction Truth Table

STATE OF BIT STATE OF BIT SHIFT DIRECTION
AT SHL AT SHR PERFORMED

0 0 Not applicable

0 1 Right end off

1 0 Left end off

1 1 End around

The SCR not only generates the shift amount received from CU

when a shift operation is requested through a CU decision, but also stores

the shift amount, in the case of alignment (addition or subtraction),

received from CPA, bits 74 through 79 in 64-bit mode or 32-bit mode for

the Inner word or CPA bits 66 through 71 in 32-bit mode for the Outer word.

Since there are actually three levels and four possible displacements

in each level of the Barrel Switch, the shift count (SC) for a right shift

may be described by the following equation:

S.C. right
2 i

= Ea.r
i 1

where the value of a. (i = 0, 1, 2) may be any of the combinations of "0"
1

and "1" at the SCR (Figure 12) and therefore may equal 0, 1, 2, or 3. The

-50-

symbol r represents a number with a base of four, because as was mentioned

earlier, the SCR sends the shift amount to LOD1, 2, 3 to control the Barrel

Switch shifting levels which can shift by 0, 1, 2, 3 (4th level), 0, 4, 8,

12 (3rd level), and 0, 16, 32, 48 (2nd level). Thus the above equation can

be written in a more explicit form as follows:

2
i 2 S.C. right = L a r = a O+4a1+16a

i=O i

where aO controls the 4th level of the Barrel Switch, a
1

controls the 3rd

level of the Barrel Switch, and a 2 controls the 2nd level of the Barrel

Switch.

In order to left shift, the content of the SCR is complemented (l's

complement) and therefore the shift count for left shift may be described

by the following equation:

2 .
1

S.C. left = 64 10 - L a.r
i=O 1

i) Mode Register (RGD): This is an A13-A-type-card, eight-bit

register which is used to store results of instructions executed in the

PE or results coming from the CU. It is also used to specify the status

of aPE.

(1) E, E1 bits: These bits are called enable bits, because

they control the gating clocks (clear, load) for the word

(Figure 11) stored in PE registers A, S, and X as follows.

When E bit is disabled, the Outer word (bits 0-7, 40-63)

of A and S registers and the contents of the index register

RGX are protected (that is, the Outer word contained in the

register is not affected by any instruction). When E1 is

disabled the Inner word (bits 8-39) is protected. In 32-bit

mode the E, E1 bits are independent of one another, while

in 64-bit mode they must both be set programmatically to the

same state (E = E1).

-51-

The E and EI bits control the movement of data from the PE

to the PEM (PE write data) and from the PE to. the CUB (trans­

fer data). The E bit enables one half (32 bits) of the PE

write/transfer data path through the MLU; the EI bit enables

the other half of that data path through the MLU. The E and

El bits protect the PEM only when a Write operation from the

PE to the PEM is performed, but they are ignored regardless

of their state if a Write operation from the Input/Output Sub­

system (1055) or the CU is requested. Table 29 lists the

various states of the E, EI bits and the indicated operation.

Table 29. E, EI Bits Truth Table

ENABLE BITS 64-BIT MODE 32-BIT MODE

E EI (FULL WORD) INNER WORD OUTER WORD

0 0 Is disabled Is disabled Is disabled

0 I These conditions Is enabled Is disabled
should be avoided

I 0 because they cause Is enabled Is disabled
undefined results.

1 1 Is enabled Is enabled Is enabled

The E, EI bits can be set or reset by the LD(E, EI, EEL)

instructions, in which case the E, El bits are loaded from

ACAR, and by the SET(E, El) instructions, in which case the

E, EI bits are set with the result of a logic function (see

mode register instructions).

(2) F, FI bits: These bits are used to indicate a fault due to

any of the following conditions:

• Exponent overflow

• Exponent underflow if normalization takes place and the
resultant mantissa is not zero, or in floating point
multiply or divide

• Mantissa overflow in fixed point arithmetic

• Zero divisor

• Unnormalized divisor (the divisor is always assumed to be
normalized)

-52-

The F bit, when present, indicates a fault in 64-bit mode or

in 32-bit mode for the Outer word, while the Fl bit indicates

a fault in the Inner word (in the 32-bit mode). The setting

or resetting of the F, F1 bits can be made by the SET(F, F1)

instructions, in which case these bits are set with the result

of a logic function (see mode register instructions) indepen­

dently of the state of E, E1 bits. The setting of the F and

Fl bits, due to the presence of a fault, as a result of the

above con~itions, depends upon the state of the E and El bits.

(3) G, H, I, J bits: These bits are used to store results of

certain instructions (compare, indexing test, etc.) They can

be used individually or combined in pairs as follows:

• I, G: When the instruction involves operands in 64-bit

mode, I is used to hold the result. In 32-bit mode, how­

ever, the I bit is used when the Outer word is involved,

while G holds the result when the Inner word is involved.

• H, J: In 64-bit mode the J bit is used to hold the result,

while in 32-bit mode J bit holds the result if the Outer

word is involved or H is used for the result if the Inner

word is involved.

For more details, see the instructions involving the use of the mode

register.

At the beginning of this manual it was said that the mode register

bits can be controlled by signals from the CU. Table 30 shows these (code)

signals and the resulting status of the mode bits.

Table 30. CU (Code) Signal for Mode Register

CU (CODE) MODE REGISTER BITS

SIGNALS E El F F1 I G J H

FYELD1IH-T .1 0 1 0 1 0 1 0
FYELDlOH-T 0 1 0 1 0 1 0 1
FYELD1EHJT 1 1 0 0 0 0 1 1
FYELDIIHJT 0 0 0 0 1 1 1 1

-53-

In summary, the mode register is the means by which the CU knows

how many PE's are in 64-bit or 32-bit mode; i.e., by the state of the mode

bits (E, El). For this and other reasons explained previously, the mode

bits can be sent to or received from the CU over the mode lines, so that

constant monitoring can be achieved. The mode bit may be conditionally

cleared by any PE (as a result of any arithmetic or logic operation).

2. PE Data Transfer and Modification Units: These are logic elements,

which are used to modify data according to a particular instruction or to

transfer this data from one logic element to another. The PE data transfer

and modification units include Adder (CPA and CLA), ADA, Barrel Switch, LaD,

LOG, OSG, PAT, MSG, and MDG.

a) Adder (Carry Propagating Adder and Carry Look Ahead): During

the execution of the arithmetic operations in ILLIAC IV, the Carry Propagat­

ing Adder' (CPA) is used to add two operands and the Carry Look Ahead (CLA)

adder is used to determine whether a "Carry" is required, depending upon the

two operands to be added. If there is a Carry it is properly fed into the

CPA, which produces the final Sum within a clock time period. It is appar­

ent, however, that during the time when the Carry is generated and which

takes approximately nineECL gates time delay (55 ns), the two operands to

be added must be present at the Select gates of the CPA.

As indicated above, the Adder is subdivided into two parts,

namely, the CPA which consists of 16 cards (A05) with each Card (group)

taking care of four bits at a time and the CLA which consists of two cards

(All) with each card taking care of two sections (eight groups) at a time.

Because the Adder participates in the formation of the result

during the execution of the basic arithmetic operations, it needs, in addi­

tion to the two operands to be added to one another, Control Signals to

enable the Adder to perform each specific arithmetic operation. At this

point, only the mechanization for the formation of the Sum of two operands

is discussed. Later, when the multiplication and division processes are

described the Adder (CPA in particular) is again discussed with regard to

those peculiar characteristics that are essential to the implementation of

the basic arithmetic operations.

-54-

The Adder can be looked upon as a five-stage grid where each

stage,with the exception of the last one, participates in the formation

of the bit ,carries ,which, along with the original operands, form the

final sum within one clock time period (Figure 14).

Stage 111

This stage generates 64 "Bit Transmits" (BT) and 64 "Bit Gen­

erates" (BG) according to the following equations:

BT. = Ai (±) B .
1 1

where

A. = ith bit of A register
1

Bi = ith bit of B register

i = 0, 1, ... , 63.

Stage 112

Each CPA card takes care of four bits and the output of Stage 111

is brought into Stage /12 to form 16 "Group Transmits" (GT) and 16 "Group

Generates" (GG) according to the following equations:

(1) Mantissa Part

GGi = BG j +15 + BG j +16 • BTj +15 + BG j +17 • BTj +16 • BTj +15

+ BG j +18 • BT j +17 • BT j +16 • BT j +15

where i = 1, 2, 3, ••• , 12 and j = 1 + 4(i-1) = 4i-3

(2) ExponentPart

GT.
1

BT.
] • BTj +1 • BTj +2 • BTj +3

BG. + BG j +1 • BT. + BG j +2 • BT j +1 J J

+ BGj +3 • BTj +2 • BTj +1
. BT.

J

where i = 13, 14, 15, 16 and j = 4(i-13).

-55-

• BT j

11'),-""

:;,:;,
00

~~

!

I
I .
i
I

i

STAGE 2

STAGE 3

STAGE 4

I
I STAGE 5

·1
I
I

(

,GC
1

.- ----- ---_.- -. ·-'·r-
A61 A62 A63 A64

. . - -' . - ~ . , .

Figure 14. I~LIAC IV Processing Element Adder

-56-

: ..
I

The above equations indicate that, on each CPA Card, there is

only one Group Transmit and one Group Generate gated out and at that stage

there is no communication among the CPA Cards for the formation of the

Group Transmit and Group Generate. However, each Group Transmit and Group

Generate is a function only of the operand bits taken care of by the parti­

cular CPA Card and is not influenced by the output of its preceding CPA

Card, where the order of precedence is from right to left.

Stage 113

The 16 Group Transmits and Group Generates from the CPA are gated

into a different type of card, namely, the Carry Look Ahead (CLA) consisting

of four Sections where each Section takes care of four Group Transmits and

Group Generates. These Sections interchange information among themselves so

that the Group Carries generated in this stage are a function not only of

the Section Transmits and Generates but also of the Carry into each Section.

To be more specific, each Section produces a "Section Transmit" (ST) and a

"Section Generate" (SG) acco.rding to the following equations:

SG.
l.

GG j + GGj +l • GT j + GGj +2 • GTj +l • GTj

+ GG j +3 • GTj + 2 • GT j +l • GTj

where i = 1, •.• , 4 and j = 1 + 4(i-l) = 4i-3.

These Section Transmits and Section Generates feed into all Sections

of the Carry Look Ahead in order to form the Carry (Incoming Carry) for each

Section, which, along with the Group Transmits and Group Generates, forms

four Group Carries .per Section.

The Incoming Carry for Section i (ICSi) is given by the following

equation:

ISCi = SG[i+l] + SG[i+2] • ST[i+l] + SG[i+3] • ST[i+2] • ST[i+l]

+ SG[i+4] • ST[i+3] • ST[i+2] • ST[i+l]

where i -- 1, 2, 3, 4 and [] = modulo 4.

The reader should bear in mind that since there are only four

Sections in the Carry Look Ahead, the above general equation is consistent

-57-

with the implementation of the Adder only when it is assumed that the

S~ction with subscript 0 on the right side of the equation is the same

as the Section with subscript 4. Also, it is important to note that the

Section Transmits and Section Generates are used only on Stage 113 to form

the Incoming Carry for each Section; they are never gated into Stage 114,

which belongs to the CPA.

Stage //4

The output of the CLA, in terms of the 16 "Group Carries" (GC),

is fed back to the CPA, where the formation of 64 Bit Carries takes place.

Because all the Group Carries within the same Section do not have the same

number of terms, there are four general equations that describe the 16

Group Carries.

(1) GCi = GCi +1 + GGi +2 • GTi +l + GGi +3 • GTi +2 • GTi +l

+ ICS j • GTi +3 • GTi +2 • GTi +l

where i = 1, 5, 9, 13 and j = 1 + (i-1)/4 = (i+3)/4.

(2) GCi = GGi +l + GGi +2 • GTi +l + ISC j • GTi +2 • GTi +l

where i = 2, 6, 10, 14 and j = 1 + (i-2)/4 = (i+2)/4.

(3) GCi = GGi +1 + ISC j • GTi +l

where i = 3, 7, 11, 15 and j = 1 + (i-3)/4 = (i+l)/4.

(4) GC. = ICS.
1 J

where i = 4, 8, 12, 16 and j = 1 + (i-4)/4 = i/4.

Stage 115

Each of the 64 "Bit Carries" (BC) is a function of the Group

Carry into each CPA and the Bit Transmits and Bit Generates which precede

that particular hit within the CPA. As in the case of the Group Carries,

however, where the lower-order Group Carry within the Section, with the

order of significance taken from left to right, is a function only of the

-58-

Incoming Carry for the Section to which the particular Group Carry belongs,

the least significant Bit Carry within the Group is only a function of the

Group Carry for the Group (CPA Card) to which the particular Bit Carry

belongs.

For the reasons explained in the case of Group Carries, the 64

Bit Carries are described by the following equations:

(1) Mantissa Part

• BCi = BGi+1 + BGi +2 • BTi +1 + BGi +3 • BTi +2 • BTi +1

+ GC j • BTi +3 • BTi +2 • BTi +1

where i = 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 and

j = 1 + (i-16)/4 = (i/4) - 3.

•
where i = 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 and

j = 1 + (i-17)/4 = (i-13)/4.

•
where i = 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62 and

j = 1 + (i-18)/4 = (i-14)/4.

•
where i = 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63 and

j 1 + (i-19)/4 = (i-15)/4.

(2) Exponent Part

• BCi = BGi +1 + BGi +2 • BTi +1 + BGi +3 • BTi +2 • BTi +1

+ GCj +13 • BTi +3 • BTi +2 • BTi +1

where i = 0, 4, 8, 12 and j = i/4.

-59-

•
where i 1, 5, 9, 13 and j = (i-1)/4.

•
where i = 2, 6, 10, 14 and j = (i-2)/4.

•

where i = 3, 7, 11, 15 and j = (i-3)/4.

Stage 116

This is the final stage where the 64 Bit Carries from Stage #5,

along with the two 64 operand bits that are still present at the CPA Select

gates, produce the final sum according to the equation S. = Ai (t) B. ® C .
111

which when reduced gives

S. = A. . Bi 1 1

+ Ai .
. Ci

B . .
1

+ Ai

c.
1

• B·C. + A • Hi • Ci i 1" i

where Ai = ith bit of A register, Bi = ith bit of B register, Ci = ith Bit

Carry, and i = 0, 1, ... , 63.

The sum (S.), once it is formed, is fed into the A register, which
1

plays the role of an Accumulator. The Select gates of the CPA for the Addi-

tion of two operands allow only the Bit Carries and the two operands into

the exclusive OR gate for the formation of the sum and, if there are any

Carries as the result of that Add operation, they are ignored.

In the case of Multiplication, however, during the iterative

cycles where the partial sum is generated, the Carries from the Pseudo

Adder Tree (PAT) are fed into the Select gates, which provide the same

path as for the Bit Carries in the case of Addition. In the same way, the

partial sum (PAT~) is fed into the gates which are used for the "A. path"
1

of the above equation and Word #4 (WD4) is gated into the gate used for B.
1

of the same equation. During these iterative cycles the Carries out of the

CPA are allowed to be stored in the C register; in this case the CPA acts

as a Carry Save Adder while the sum is stored in the A and B registers. In

-60-

the final cycle of Multiplication the partial sum in the A register is

brought into the appropriate Select gate, while the Carries from the C

register are brought into the Select gates that take care of WD4 during

the iterative cycles of Multiplication or B register during Addition.

The final sum is produced in the same way as explained for the Addition

of two operands.

It is evident, therefore, that during the iterative cycles of

Multiplication where the partial product (SUM) is produced only the CPA

(operating as a Carry Save Adder) is used, but in the last cycle, where

the final product (SUM) is produced, the Adder (CPA and CLA) is used in

the same way as for the Addition of two operands. However, if there are

any Carries out of the CPA they are not allowed into the Cregister because

they are not needed.

During the recursive process for the formation of the quotient

field and remainder as a result of the Division of two operands, the Adder

(CPA and CLA) is used in a way similar to its use in the case of Addition

with the exception that, if .the Subtraction (Division) is successful, the

remainder, which is nothing else but the sum in the CPA, is brought }nto

the A register (through the wires which are effectively one position to

the left with respect to the wires bringing the sum into the A register

for any Arithmetic operation other than Division). In this case the CPA

is like a shift register that allows a "one-bit" left shift.

Example REGISTER 16 31

Given A = 1

Given B

Given the operands A and B above show the state of Section Generate One (SG1).

-61-.

Solution

The presentation below shows A and B operands and Carries (Group

and Section) in the CPA and CLA.

Group
Generat~

SG1

BIT II: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 Register

B 0 0 0 1 VI 1 1 1 /1 1 1 1 0 1 0 0 Register

'" .1

l t
+--1 Group 1--+ +-Group 2 Group 3--+ +-Group 4--+

Section 1

BG16 = Al6 . Bl6 = 1 · 0=0

BTl6 = Al6 <±> Bl6 = 1 (±) 0 = 1

BG17 = Al7 • Bl7 = 1 · 0=0

BTl7 = A17®B17 = 1 (±) 0 = 1

BGl8 ="AIS • Bl8 = 1 · 0=0

BTl8 = AIS(±) Bl8 = 1 (±) 0 = 1

BGl9 = Al9 • Al9 = 1 · 0=0

BTl9 = A19<±>B19 = I(±) 0 = 1

GG l = BGl6 + BGl7 • BTl6 + BGl8 • BT17 • BTl6

+ BGl9 • BTl8 • BTl7 • BTl6

= 0 + 0 • 1 + 0 • 1 • 1 + 0 • 1 • 1 • 1

= 0

GT = BTl6 • BTl7 • BT18 • BT19

= 1 • 1 • 1 • 1

= 1

By the same procedure as above,

GG2 = 1

GT2 = 0

GG 3 = 1

GT3 = 0

GG4 = 0

GT4 = 1

SG I =GGI + GG2 • GTI + GG3 • GT2 • GTI + GG4 • GT3 • GT2 • GTI

= 0 + 1 • 1 + 1 • 0 ~ 1 + 0 • 0 • 0 • 1 = 1

-62-

In other words, the Group Generates and Group Transmits of the CPA

are fed into the Carry Look Ahead whose Group Carry outputs are fed back to

the CPA which finally performs the sum.

STI == GTI • GT2 • GT3 • GT4

= 1 • 0 • 0 • 1

= 0

For this ,example, SGI = 1 which means that the next Section will

have a Section Input Carry coming from Section I and therefore the Group

Carries of the next Section are a function of this Input Section Carry and

the Group Generates and Group Transmits which precede that particular Group

within the next Section.

The sequence of operations of the CPA and Carry Look Ahead for the

addition of two operands can be described as follows (Figure 15):

(1) In the CPA

(a) the Bit Transmit and Bit Generates are produced.

(b) the Group Transmits and Group Generates are produced.

They' are fed into the Section Carry Look Ahead.

(2) In the Carry Look Ahead the Group Carries are produced as

a function of:

(3)

(a) the Group Transmits and Group Generates from the CPA.

(b) the Section Transmits and Section Generates from all

the other Sections of the Carry Look Ahead.

The CPA receives the Group Carries from the Carry Look Ahead

and produces the Bit Carries as a function of:

(a) the Incoming Group Carry from the Section Carry Look

Ahead.

(b) the Bit Transmits and Bit Generates which precede that

particular bit within the Group (CPA).

(4) The CPA takes the Carries and, in conjunction with the two

inputs from the operands to the particular bit position of

the CPA, performs the addition, thus producing the sum in

one clock time because there is no recycling of Carries

involved.

-63-

I
0'\
~
I

r------~·-·-~'~·----·-'-~-MAN~~S~A PART ADDER EXPONENT PART--]

Jc'-~--··< ... -~.,,~ .. -~-~.== .. _=~=~~,_==~~=~~-=-~:._~-~.:-~.-~-:~-.~'--:---'---"--~--~~ f _ .A. _ ~
~ .. g~G~~~ CPAl CPA2 CPA3 CPA4; CPA5 : CPA6 : CPA7 : CPA8 . CPA9 CPA10: CPAll CPA12 CPA13 CPA141 CPA15 CPA16!
~ t· :. . (0-3) (4-7)1 (8-11 (12-15)
f REGISTER i 16-19' 20-2~ 24-27 28-31; 32-35 36-39' 40-43,' 44-47: 48-51; 52-55: 56-59i 60-63: 64-67 68-71 72-75 76-79 ~

! i I j: . I. J' 1 I I! I ,. j '1

i I 1 ;' \ I j ! . I . I I I f ; :'.' .!; I j, • I I • .. " '. I l ,I j.
• ; :. .! . .: I! .t.. f! I ~' I • .
t ? 'I! I" i l'; '; , f

i ~ .' S. G...JL :.' , I I iii f II 11 f : : j I I SG 4
it ... 1 1 j fl. f I! ! f i ~ '1"-

i SG ,; . I j j I J t . ~ I.! SG 3
~--~~ ... >.-. . +- I 1 ."-.

I ~Y _Y 1 - if c1LJ,.- -T,j-ri_t·t· .1 1
TO j SECTION 1F] SECTION: 1F 2 I :1 pECTIOr 1F ~ J StCTION 1 1F 4' I ~ TO

CLA i) CAlj.RY. LOOK AlIIWl CARJ.ty LOOK AHEAD 1: ~Y L()()~ AHEA~ .. CAMY LO~K AmJ.n . ICLA

~~C2_~9CU_MtLtC;,L1,QC;6 j GCl-~-p~&JfC9JfClO t GfCl1:~iC~+.:3-='(;P14\~F15 IGf16
I I ; ::" -'f~"~--{ ·· ·T-==-...... --"-_.-L"~-~""",,,-~,,,,~v ... ---~--r-"~ .. -. ~'~k-4"'_'-"'~'~ - w-i-- .. ·~-l,---· .-4.-+------.

~ i I ;

If \JUi L ~--r::r:: I :J---'----Tt--.--,J.------r1.-- ... ··-~r'-- .. '-· J ... ~, ... ~_ .. t .. 'I .. f. -T~o~:i) :.:' (4:'7)-!8~liJ.~(t2-i~.·)
-r----,-.--~-.. ~ . ~ : i i : I r ! I

. 116-19120-23i24-2~28-31132-35!36-39140-43144-47 I 48-5~ 52-5~ 56-5~ 60-63)64-67'68-71 72-75176-791
., ~ .(~. 1 I . " ; i ':

~
.< ~ : 1;· l' . I I 1

. I til! !' I
~ . I I I I ,!
..... ~... . ---"".'-~"-.-•. "'~' . . 7.!, ' I,., ' I

; ! ~ .,: fIr

I CPAl ~ CPA2 i CPA3 t CPA4 ~ CPA5 ~ CPA6 lCPA7 j CPA8 lCPA9 jCPA10; CPAll CPA12~ CPA13; CPA14 CPAI5: CPAI6~
,,1 1· ~ J' 81 I~TT-r-'rT-rrJ'- rl ·r---r .. ~ J'" r-~"r'-I-'; '''J---J.''~'' ~'-- '~-'''d--r'--r- --~-- J I

"'-...... -.,~.-' ' ... --~--..'- ... --~----.---... -..... --
~-,... -•. _- -'-------- -.-'.~ 4 each .~~-.-.--.---..

s = sum Figure 15. Functional Block Diagram of CPA and CLA
c = carry

b) Address Adder (ADA): This is a l6-bit register consisting of

four A05 and one All type cards. The operation of ADA is exactly the same

as that of CPA and CLA with the exception that its inputs are the outputs of

the OSG, S, or X registers and its output is the input to the X register,

the S register through OSG, LOD4 (Shift Count Register), and MAR (Table 1).

The ADA receives the 11 bits of address from the OSG and if indexing by X

or S is not required it passes the address through to the Memory Address

Register or, if necessary, it can store the address in the X register. If

indexing is requested, the amount of indexing from X or S registers is added

to the address coming into the ADA from the OSG in the same way as was

explained when describing the Adder. Because the ADA uses the same type of

cards and operates in the same fashion as the Adder, it can be said that

ADAI through ADA4 and CLA5 comprise the Address Adder. Since there are only

four ADA cards (similar to the one the CPA uses) it is evident that there

are Group Transmits and Group Generates coming out of the ADA cards. How­

ever, Section Transmits and Section Generates are not used for the formation

of the Incoming Carry for the Section, because there is only one Section

(CLA5). In order to avoid confusion, however, the Section Transmit and

Section Generate out of CLA5 are not used when the ADA is used as an address

adder; but whenever two positive numbers being added produce'a Carry, this

is sent to the mode register as a Section Generate to indicate that an over­

flow has occurred. For specific instructions calling for comparison of X

with other registers, the Section Transmit and Section Generate, which are

strictly a function of the four Group Transmits and Group Generates, parti­

cipate in the formation of the result which is stored in either the I or J

bit of the mode register. If the Address Adder performs subtraction rather

than addition, the quantity to be subtracted is complemented (2's complement).

This is accomplished by forcing a ONE into the least significant bit of the

ADA by the use of the FYE--Z3LDI signal. No end around Carry is generated

thus eliminating the need for additional logic which normally would be

required to take care of a possible carry out of the ADA.

The operation of ADA is exactly the same as the one described for

the Adder, but the reader should bear in mind that, even though the addition

of two bits produces a Bit Transmit and Bit Generate according to the fol­

lowing equations

-65-

BT. = Ki <±> OSGi J

BG~ = Ki • OSG
J i

where

K. = ith bit of the X or S registers
l.

OSG. = ith bit of ADR field through OSG
1

{ 0, 1, ... , IS if X register is gated into ADA
i =

48, 49, ••• , 63 if S register or OSG is gated into ADA

the value of j depends upon the register gated into ADA (X or S register).

equations:

The Group Transmits and Group Generates are given by the following

GTi = BTj +47 • BTj +48 • BTj +49 • BTj +SO

GGi = BGj +47 + BGj +48 • BTj +47 + BGj +49 • BTj +48 • BTj +47

+BGj +SO • BTj +49 • BTj +48 • BTj +47

where i = 17, 18, 19, 20 and j = 1 + 4(i-17).

These four Group Transmits and Group Generates form the Section

Transmit and Section Generate and, along with the ONE forced into the least

significant bit position of ADA, generate the Group Carry. For the reasons

given in the explanation of the operation of the Adder, there are four equa­

tions to describe each one of the four Group Carries.

(1) Ge17 = GGIB + GG
19 • GTIB + GG20 • GT19 • GT18

+ GC 20 • GT19 • GTIB

(2) GC
lB = GG

19
+ GG20 • GT19 + GC20 • GT20 • GT19

(3) GC
19

= GG20 + GC
20 • GT20

(4) GC
20 = FYE--Z3LDI

-66-

Once the Group Carries are formed in the Carry Look Ahead (CLA5), they are

fed back to ADA cards to form the Bit Carries as follows:

(1) BCi = BGi +l + BGi +2 • BTi +l + BGi +3 • BTi +2 • BTi +l

+ GC j +16 • BTi +3 • BTi +2 • BTi +1

where i = 0, 4, 8, 12 and j = 1 + i/4.

(2) BCi = BGi +l + BGi +l • BTi +l + GC j +16 • BTi +2 • BTi +l

where i = 1, 5, 9, 13 and j = 1 + (i-l)/4 = (i+3)/4.

(3) BCi = BGi +l + GC j +16 • BTi +l

where i = 2, 6, 10, 14 and j = 1 + (i-2)/4 = (i+2)/4.

(4) BCi = GC
j
+16

where i = 3, 7, 11, 15 and j = 1 + (i-3)/4 = (i+l)/4.

Because the ADA is an extension of CPA in that ADA 1 through 4

corresponds to CPA 17 through 20, the Groups (Transmits and Generates)

follow this notation, while the Bit Carries are numbered from ° to 15 in

order to be consistent with the output of ADA.

It must be mentioned, however, that the content of ADA (indexed

or not) does not always represent the PEM address, but may represent the

Shift Count N (see Shift Count Register, subsection l.h).

The 16 Carries along with the two operands (content of X or S

registers and ADR field through OSG) which are still present at the Select

Gates of ADA 1 through 4 produce the final sum described by the following

equation:

where Ki = ith bit of X or S register, OSGi = ith bit of ADR field through

OSG, Ci = ith bit Carry, and i = 0, 1, ••• , 15.

-67-

c) Barrel Switch (BSW): The shifting operation is accomplished

by the use of the Barrel Switch (BSW). The Barrel Switch has four levels

and can shift from 0 to 63 bits to the left or right, either end around or

end off in one clock period. The end around shift is performed when both

the controls for, left and right shift are true.

The Barrel Switch receives from the Logic Unit (LOG) a parallel

input of 64 bits and passes these inputs through its first level without

any shifting. It can, however, swap bytes by 0, 24, and 32, and then

through the next three levels force four displacements for each bit in

each level (Figure 16).

3!1 ~I: iI6117I1e~19:20121:22i23!24)~"'IC."!c., I T I
" ',. I ~ ;:

!, I10j" :12:13jI4:15!16:171'8;19i201 iii I I
! ;v. ,~~ ~~.!

1 ! 'v iv (1,)°1-''' 'V,
"I.: ,\, ~"''';-''

~, 6 7! 8': 9)10: 1I;12;13:14;15i,,61 17i18119i201zd22! I I 1 I
: ': 'I 1 ::

i i 2 i:; i 4 i 51 6 ! 7; 81 9 :'0 1 "E,:nI14115:'6i rl'~ IQ:?A'

,
, -I" -I' 'I -I 1 -I

~-----
10 I 2 ,; '+ 5 6 -; () 9 1 __ -;~-'~'~~;l;I7' ~ 20212223242526272829303132333435363738394041424344454647 849505: 5253545556575859

i
OJ

"

o I 234 5 6 7 8 910111213141516 1718 192021222324252627282930313233343536373839404142434445'4647484950515253545556575859 :\

,-''''

~
o I 2 ,3 4 5 6 7 8 9 ,'0 II 12 13 14 15 16 17 18 192021222324252627 28 29~01131 323334353637393940414243444546

1
748495051 5253545556 575859

r%~ ~ ;~ __ ~,_~~_~_ ~~~~I 12 13 14 15 16 17 18 19202122232425 26 27 28 2930313233343536373839404-1424344'45464748495051525354 55 565758 5

- • ~ .,LSECTIONl > 6---SECTION2 > ,--SECTION -3 r G:---SECTION 4- :;;;.

(b)

Figure 16. PE Barrel Switch: a) Description, b) Physical Configuration

-68-

2nd
level

3rd
level

4th
level

2nd
level

3rd
level

4th
level

Every level of the Barrel Switch is divided into four sections,

each section accommodating 16 bits. The following tabular information,

containing information about the specific level, quantity, and type of

PE cards being used, bits being accommodated, and amount of shifting, is

given to provide a better picture of the Barrel Switch. Information about

the way the levels are connected between one another is also given below.

1st Section
(Card)

FIRST LEVEL OF THE BARREL SWITCH

2nd Section
(Card)

3rd Section 4th Section
(Card) (Card)

Bit Position Bit Position Bit Position Bit Position

o
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

1
5
9

13
17
21
25
29
33
37
41
45
49
53
57
61

2
6

10
14
18
22
26
30
34
38
42
46
50
54
58
62

3
7

11
15
19
23
27
31
35
39
43
47
51
55
59
63

Amount
of

Shift

N

o

N

E

Note: A06 card type used for all four sections

o
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

SECOND LEVEL OF THE BARREL SWITCH

1
5
9

13
17
21
25
29
33
37
41
45
49
53
57
61

2
6

10-
14
18
22
26
30
34
38
42
46
50
54
58
62

3
7

11
15
19
23
27
31
35
39
43
47
51
55
59
63

Note: A07-A card type used for all four sections

-69~

M
U
L
T
I
P
L
E
S

o
F

1
6

;===-- -- -

THIRD LEVEL OF BARREL SWITCH
=='''''=

1st Section 2nd Section 3rd Section 4th Section Amount (Card) (Card) (Card) (Card) of

Bit Position Bit Position Bit Position Bit Position Shift

0 1 2 3
4 5 6 7 M
8 9 10 11 U

12 13 14 15 L
16 17 18 19 T
20 21 22 23 I
24 25 26 27 P
28 29 30 31 L
32 33 34 35 E
36 37 38 39 S
40 41 42 43
44 45 46 47 0
48 49 50 51 F
52 53 54 55
56 57 58 59 4
60 61 62 63

Note: A07-B card type used for all four sections

FOURTH LEVEL OF BARREL SWITCH

0 16 32 48
1 17 33 49 M
2 18 34 50 U
3 19 35 51 L
4 20 36 52 T
5 21 37 53 I
6 22 38 54 P
7 23 39 55 L
8 24 40 56 E
9 25 41 57 S

10 26 42 58
11 27 43 59 0
12 28 44 60 F
13 29 45 61
14 30 46 62 1
15 31 47 63

Note: A07-C Note: A07-B card type Note: A07-C
card type used for Sections 2 & 3 card type
used for used for
Section 1 Section 4

-70-

The sections of the Barrel Switch are signified by BS, followed

by two decimal digits. The first digit refers to the level of the Barrel

Switch and the second digit specifies the particular section (i.e., BS11 =
first section of the first level of the Barrel Switch.

follows:

The levels of the Barrel Switch, by section, are connected as

BSll ~ BS21 ~ BS31

BS12 + BS22 ~ BS32

BS13 + BS23 ~ BS33

BS14 ~ BS24 ~ BS34

BS3l

} + BS41
BS32

bits BS33
BS34

BS3l

Bit-by-bit correspondence

of the Barrel Switch levels

o to 15

} + BS42
BS32

bits 16 to 31 BS33
BS34

BS3l

} + BS43
BS32

bits 32 to 47 BS33
BS34

BS31

} + BS44
BS32

bits 48 to 63 BS33
BS34

For special shifting purposes there are additional interconnec­

tions between the levels of the Barrel Switch.

(1) The second level of the Barrel Switch is connected,to two

pla'ces of the third level of the Barrel Switch for bit

positions listed below:

BS21 ~ BS31
BS22 ~ BS32
BS23 + BS33
BS24 ~ BS34

bits 52 56 60
bits 53 57 61
bits 54 58 62
bits 55 59 63

-71-

(2) The third level of the Barrel Switch (except Section 1 of that

level) is connected to the fourth level as follows:

BS32 -r { BS4l
BS42

BS33

BS34

BS32

BS33

BS34

BS32

BS33

BS34

BS32

BS33

BS34

{
BS4l
BS42

{
BS41
BS42

{
BS42
BS43

{
BS42
BS43

{
BS42
BS43

{
BS43
BS44

{
BS43
BS44

{
BS43
BS44

{
BS41
BS44

{
BS41
BS44

{
BS41
BS44

for bit 13

for bit 14

for bit 15

for bit 29

for bit 30

for bit 31

for bit 45

for bit 46

for bit 47

for bit 61

for bit 62

for bit 63

The physical configuration of the Barrel Switch as given by

R. Davis of [4] (Figure 16) shows that any number (bit position) can be

shifted a number of places to the left or right using .the above informa­

tion with respect to the interconnections between the levels of the

Barrel Switch.

In order to be able to describe the shifting action, it is best

to deal with one bit position and trace its path from the beginning to

the end. Suppose bit position 32 is to be shifted 27 places to the right.

This means that it will be shifted 16 to the right by the second level of

-72-

the Barrel Switch, the third level will shift it 8, and the fourth level 3,

a total of 27 places, thus bringing the 32 bit position into bit position

59.

The input to the Barrel Switch is through the logic unit (LOG).

It then passes through the first level of the Barrel Switch without being

shifted at all and is then brought into the first section of the second

level of the Barrel Switch where it is shifted 16. At the left end of BS2l

(Figure l6(b» the number 16 represents the amount of shifting. Following

this row toward the right the fourth number (bit position 32) which was

brought into this level goes into position 48 which is straight up one

position on the previous (first) row. Since there is a bit-by-bit connec­

tion between the second and third levels of the Barrel Switch and because

the third level is to shift it by 8, the output of the second level (bit

position 48) is found on the third row of the third level still as bit

position 48. After the shift (by 8) the output of the third level is bit

position 56 (first row of the first section of the third level of the

Barrel Switch). Since there is a connection of BS3l and BS44 for bits 48

to 63, the output of BS3l (bit position 56) becomes the input to the fourth

section of the fourth level of the Barrel Switch, on the fourth row because

it is to be shifted by 3. The output of this level and therefore the output

of the Barrel Switch is bit position 59 (first row of the fourth section of

the fourth level· of the Barrel Switch).

A left shift is accomplished in the same fashion as a right shift

except that the amount of right shift is taken as 6410 minus the amount of

left shift desired. For example, if bit position 16 is to be shifted left

16 places, it will be brought into bit position O. This is the same as if

it were shifted 48 places to the right (64 - 16 = 48). Bit position 16 is

in the fourth row of the first section of the second level of the Barrel

Switch in Figure l6(b), which shows that after being shifted by 48 places

the bit is in bit position O.

As stated previously, the Barrel Switch can shift left or right

either end around or end off. In an end around shift, there is simply a

displacement of the bit position equal to the right shift amount when

shifting right.or 6410 (minus the left shift amount when shifting left)

and therefore none of the bits is lost. In the case of shifting end off

either right or left, as many bits as the number of shifts are lost. If,

-73-

for example, the mantissa of A register were to be shifted right end off 16

places, bit position 16 would be moved to bit position 32, bit position 17

would be moved to bit position 33, and finally bit position 47 would be

moved to bit position 63. Bits 48 to 63 would be lost and bit positions 16

to 31 of A register after the shifting would contain zeros.

To see how the zeros are inserted into the mantissa of A register

(bit positions 16 to 31, for example), refer to Figure l6(b). In the second

row of the second level of the Barrel Switch, there are crosshatch lines

directed upward and to the right covering the numbers:

48,52,56,60 49,53,57,61 50,54,58,62 51,55,59,63

These numbers when placed in sequence are 48 to 63 which are lost when shift­

ing by 16. What is really happening from the hardware standpoint is that

these bit positions are never enabled when shifting by 16' to the right end

off. The result of this action (blocking) is that since these bit positions

are not enabled, the output of the Barrel Switch corresponding to bit posi­

tions 0 to 15 is zero. In the meantime, bit positions 0 to 15 have been

moved 16 places to, the right and therefore occupy bit positions 16 to 31.

Since only the mantissa was to be shifted right end off 16 places, bit

positions 0 to 15 of the A register were not enabled to enter into the first

level of the Barrel Switch, which means that zeros were inserted at the

input of the first level of the Barrel Switch for bit positions 0 to 15.

In the same way, those bits not being enabled when shifting left

can be found. These bits are covered by the crosshatch lines directed up-

ward and

then:

to the left.

Defining:

C = the amount of shifting to the right end off

T the amount of shifting to the left end off

E = the number of bit positions which become zero
(0 through E)

H = the number of bit positions which become zero
(H through 63)

E = C - 1

H = 64 - T

for an end off right shift

for an end off left shift.

-74-

As stated previously, the first level of the Barrel Switch does

not do any actual shifting, but it can swap bytes. Another feature of the

first level of the Barrel Switch is the capability it possesses to block

certain bits from entering as inputs to the second level of the Barrel

Switch. This is interpreted as if the Barrel Switch (second, third, and

fourth levels) receives zeros at these particular inputs, which, after

being shifted a number of places, force the output of the Barrel Switch

corresponding to these bits to be zero. One reason for having this addi­

tional feature in the first level of the Barrel Switch is because it is

possible for a certain portion of a register which cannot be blocked to

come into the Logic Unit, since there are no controls enabling the logic

unit by parts. Instead, the whole word from the Logic Unit is enabled

into the first level of the Barrel Switch. This level therefore must have

control signals which can enable the word by parts into the rest of the

Barrel Switch.

The Barrel Switch is one of the most important logic elements of

the PE. It participates in the execution of every arithmetic instruction

which, without the use of the Barrel Switch, could not be executed as

rapidly.

During the description of the Barrel Switch no mention was made

of what causes the different levels of the Barrel Switch to be acted upon

and a shift operation to take place. This shifting operation is a combi­

nation of two logic elements, namely, the Barrel Switch and the Leading

ONES Detectors.

Each level of the Barrel Switch receives special controls which

determine the actual amount of shifting (as in the case of alignment).

These controls, prior to their application to the Barrel Switch, originate

from the Shift Count Register (LOD4), whose two most significant bits are

decoded and applied to the second level of the Barrel Switch as controls

for shifting by 0, 16, 32, and 48. The other two bits (bit positions 2

and 3) of the shift counter are decoded and applied to the third level of

the Barrel Switch as controls for shifting by 0, 4, 8, and 12. Finally,

the two least significant bits of the shift counter, after being decoded,

are applied to the fourth level of the Barrel Switch as controls for

shifting by 0, 1, 2, and 3 (Figure 17).

-75-

ro ----.~'""'-.---.. ~-""--... -.y. 63

J LOGIC UNIT (LOG)
l..-__ ... """ "~~_,,,_ .. _,_~ "' __ . ,," "'r"'~"" _ " ,-.. " , ----

Figure 17. Functional Block Diagram of Barrel Switch
and Leading ONES Detectors

-76-

B

A

R

R

E

L

S

W

I

T

C

H

The amount of shifting, which involves the Shift Count Register,

is concerned with shifts for alignment or shifts due to CD decision (Shift

Count N). The Barrel Switch, however, performs shift operations due to PE

decisions (in case the option of normalization is used), in which case the

amount of shift is determined by the Leading ONES Detectors 1, 2, 3, while

the shift operation is executed by the Barrel Switch.

Example

Solution

Suppose the mantissa of A register is required

to be shifted right end around by 3 (CD deci­

sion). Show illustratively the path of bit at

position 20.

Figure 17 shows that the Shift Count Register (true output) sends

the following number 000011
2

= 3
10

to LOD 1, 2, 3. This number is decoded

there and LOD3 which received AO = 11 enables the gate of the Barrel Switch

corresponding to a displacement of a number by three positions. This means

that, since LOD3 controls the fourth level of the Barrel Switch, the bit at

position 20 passes through the second and third levels through the gates

corresponding to a zero shift and "comes out" at bit position 23 (Figure 18).

-77-

Bit at position 20
A register

1......-

-7-. 1
,J ./ /1

(, I

st
1 Level

nd
2 Level

B
I

. ! A
i

. i R

'R f

28

~: rd
3 Level

t S
IW
I

8 12 jI
I
IT
1
l

C

H

t-1~----~- -~--~->:.j 4th Level t 21 2 22 ~---------------. 23

Figure 18. Path of Bit at Position 20 through
the Levels of the Barrel Switch (Example).

-78-

1

d) Leading ONES Detector (LOD): This unit is used to control

the Barrel Switch when shifting from ° to 63 left or right, or both, end

off or end around. It is also used to detect where the leading ONE in the

mantissa of an operand is located and then to generate the proper controls

to cause the Barrel Switch to shift left (normalize).

The previous description of the Shift Count Register (LOD4) men­

tions that its contents (least significant six bits) may come from the CU

over the Common Data Bus path or from the CPA. The latter is the source

of the contents of LOD4 for mantissa alignment (see Alignment in the sub­

section dealing with addition).

In order to control the Barrel Switch due to a CU decision (shift

amount is received from the CU) or due to a PE decision (in which case an

alignment or normalization is performed), the Leading ONES Detector, which

is subdivided into six subunits, operates as follows:

(1) LODl, 2, and 3: These are l6-bit-long units whose logic

appears on A09-D, E, and F type cards schematic diagrams;

LODI receives bits 17 to 32 from A register, LOD2 receives

bits 33 to 48 from A register, and LOD3 receives bits 49

to 63 from A register (one bit not used). The logic of

LODl, 2, and 3 can be characterized as priority logic in

that whenever the option of normalize is used and a ONE is

detected in one of the three LOD's, and within each LOD in

one of the four groups which are categorized as shifts by

0, 1, 2, and 3, these particular controls dominate and the

Barrel Switch shifts left accordingly. It is evident,

therefore, that if a ONE is detected by LODI and LOD3,

LODI will predominate in 64-bit mode or 32-bit mode for

the Inner word.

If the shifting operation is due to a CU or a PE decision

(alignment), in which case LOD4 holds the shift number

(amount), LODl, 2, and 3 receive this number and direction

of shift from LOD4, decode it, and generate the proper

controls to cause the Barrel Switch to shift as much as

requested. In the case when normalization is to be per­

formed, the output of LOD4 to LODl, 2, and 3 is zero,

-79-

(2)

because LOD4 does not participate in this operation at all.

The Interface of LODl, 2, and 3, LOD4, and the Barrel Switch

is shown in Figure 17.

LOD5: This is an AlO-C type card which contains supplementary

logic of LODl, 2, and 3 and is used to communicate with LOD4

(true and complement form), thus to generate shift left and

right controls for LODl, 2, and 3, and to block the Barrel

Switch from shifting any amount if the leading ONE is at bit

position 16 when normalizing, and to generate a special signal

(Zero Mantissa Level) for LOD6 when normalizing and the man­

tissa is a zero number. LOD5 also participates, when the

option of Rounding is used, to save the most significant

shifted off bit (right end off) during the process of aligning

the mantissa when addition or subtraction is requested and

the exponents of the operands are unequal.

During the process of normalizing an operand or the result

of an operation, LOD5 generates proper controls for the

exponent~ correction (see the subsection concerned with Nor­

malization).

(3) LOD6: This unit receives the higher-order bits of the result

of exponent subtraction from the CPA (bits 65 through 73) and

the Zero Mantissa Level signal from LOD5. This signal, when

active, clears the mantissa, sign, and exponent fields of A

register when the result is being normalized and the mantissa

field contains zeros.

(4) LODlS: This is an AlO-B type card and receives the nine most

significant bits of the exponent difference and is used to

generate the proper controls so that, when the amount of

shifting of an operand (mantissa) as a result of the exponent

difference is greater than the mantissa field itself, the

mantissa of the operand with the smaller exponent is zeroed

and the Barrel Switch does not have to participate in this

operation.

-80-

Because theLOD is a complex unit which participates in the

shifting operations due to either CU or PE decisions, it is

suggested that the reader familiarize himself with LOD logic

so that when the alignment and normalization processes are

discussed he will be able to follow the process of a shifting

operation as implemented in the machine.

e) Logic Unit (LOG): This is an A03 type card logic element used

as a select gate for data whose destination is the MIR portion of the MLU or

Barrel Switch. It is also used to perform the logic "AND" and "OR" of two

operands. It consists of eight cards, each one handling eight bits.

Because the basic gate of LOG is a NOR gate tied to four other NOR

gates, the output. of LOG undergoes an inversion before it is brought to the

MIR of MLU or to the Barrel Switch.

Each two-input gate receives two lines, with one line representing

the data from A, B, S, and C registers or Operand Select Gates (OSG) and the

other representing the enable signal. The enable for each register is dif­

ferent from that for every other, but is the same for all the bits of a spe­

cific register. This means that if, for example, the output of B register

is selected by LOG, the enable signal will be the same for all the gates of

LOG that are wired directly to B register, but, because there are eight cards

in the LOG, this enable signal feeds eight cards and is common for the eight

bits of B register per LOG card. The same scheme applies to the other inputs

to LOG (Figure 19). Because all the sources of data to LOG are 64 bits long,

there is a bit-by-bit correspondence with respect to LOG with the exception

of Cregister. The bits of C register are numbered from 16 to 79 and, for

reasons of implementing eight-bit byte instructions (i.e., A register is

less, greater than, or equal to B register, etc.), only C register bits 16,

24, 32, 40, 48, 56, 64, and 72 are seat directly to LOG bits 23, 31, 39,47,

55, 63, 7, and 15, respectively.

-81-

it No: 0

a)

b)

.... "'.

.'
LOG

1

.

•

7 8-

• Enable

OSG

Enable

LOG

2

.r ,

15 16 23 24 31 32 39 40 47 48 55 56 6i
LOG LOG LOG LOG LOG LOG

3 '4 5 6 7 8

.-----------~------ff ---. BIT 1 - 63

BIT

o

r-------*-*---...;....---+------Jr----~ BIT 1 - 63
,..----,

BIT

A register data o

Enable

BIT 1 - 63
------------~------~ff~. -- ~

1----""" ** OUTPUT : MLU (MIR)
BIT

(BIT 0)
BARREL

~--------~~SWITCH

B register data 0

~---------*-*------------+---------4,)f---- BIT 1 - 63

Enable
BIT

S register data 0

~--------*-*----------+----------~Jf---- *
Enable

BIT

C reeister data o

•

* See details about C Register

** See subsection II.A. for the
meani~g of this symbol.

Figure 19. LOG: a) Bit Organization, b) Logic Configuration'"

-82-

f) Operand Select Gates (OSG): This is an A03 type card logic

element used to select data transferred to the PE registers from MIR (MLU)

or CU data over the Common Data Bus. Data from MLU to PE is known as "PEM

read data." Data from the CU may be transferred to PE registers, or after

it passes through OSG and LOG it may be sent to the MLU, in which case this

data is known as "cu write data to PEM." Since OSG is an A03 type card its

operation is similar to that of LOG. It is organized into eight cards, each

one taking care of eight bits (Figure 20(a».

The inputs to OSG are CDB; MIR (MLU); B, R, and mode register; and

Address Adder. Data from CDB and MIR and the Band R registers may be 64

bits wide, while data from the mode register are only eight bits wide, and

data from the Address Adder are 16 bits wide.

Because the OSG output consists of five two-input NOR gates tied

together (Figure 20(b», data from the mode register is wired directly to

OSG #1 and data from the Address Adder is wired to OSG #7 and #8. In this

way, a significant amount of logic is saved. The output of OSG is wired to

LOG, Band R registers (64 bits), and to the Address Adder (16 least signi­

ficant bits of OSG). This data undergoes an inversion while passing through

OSG and, in order to be consistent with the description in the PEM manual,

Table 31 provides signa11eve1 information before and after it passes through

OSG.

Table 31. OSG Signal Representation

OSG INPUT OSG OUTPUT
REMARKS

SIGNAL NAME LEVEL LOGIC SIGNAL NAME LEVEL LOGIC

TVW-WXX--O HIGH 1 PDW-WXX--O LOW 1 In ac·tua1i ty , (CDB) the CDB input

TVW-WXX--l LOW 1 PDW-WXX--l HIGH 1
to OSG is the

(CDB)
output of the
latch follow-

TVW-WXX--O LOW 0 PDW-WXX--O HIGH 0 ing a differ-

(CDB) ential receiver
(Receiver and

TVW-WXX--l HIGH 0 PDW-WXX--l LOW 0 Register).

(CDB)

-83-

·t No: 0

a)

b)

78· 1516 2324 3132 3940 47 48 5556 63

OSG OSG OSG OSG OSG OSG OSG OSG

1 . 2 3 ;4 5 6 7 8

Bit 1 ... 63

~------------n---~
ENABLE [>

BIT

CDB data 0

ENABLE

BIT

ML U (MIR) data 0

ENABLE

BIT

B REGISTER data
0

ENABLE
BIT

R REGISTER data
0

ENABLE &

BIT

MODE REGISTER ...
ADA data

f r--~
Bit 1 ... 63

(

1 f
Bit 1 ... 63

OUT PUT TO: .. - LOG

lA
, B & R REGISTERS

DDRESS ADDER (BIT 0)

Bit 1 - 63

)

* J

,~ Data from Mode
register feed OSGI (bits 0-7)

Data from -:t . ADA
feed OSG# 7, 8 (bits 48-63)

Figure 20. (OSG: a) Bit Organization, b) Logic Configuration

-84-

g) Pseudo Adder Tree (PAT): This is an A04 type card logic ele­

ment used primarily in multiplication and division only if the dividend is

smaller than the divisor. It consists of three levels which function as a

Carry Save Adder: the first level has as inputs the multiplicand or partial

sum, the partial carries, and the recoded multiplicand; the second level has

as inputs the sum and carry from the first level and the recoded multiplica­

tion; and the third level has as inputs the sum and carries from the second

level and the recoded multiplicand.

Because the multiplication process is described later in terms to

which the reader has not yet been introduced, the levels are not defined here

in terms of the bits they can accommodate. Also, there are signals in every

level that are used specifically in PAT and which have not been defined

previously. For these reasons, only the bit organization and functional

Interface of PAT are provided at this point; in a later subsection concerned

with multiplication a more complete description of PAT, from the functional

point of view, will be given. The PAT is subdivided into 14 parts (cards),

with each part taking care of four bits as follows:

PAT II: PAT PAT PAT PAT PAT PAT PAT PAT PAT PAT PAT PAT PAT PAT
1 3 5 7 9 11 13 15 17 19 21 23 25 27

16- 20- 24- 28- 32- 36- 40- 44- 48- 52- 56- 60- 64- 68-
19 23 27 31 35 39 43 47 51 55 59 63 67 71

BIT II:

The output of the third level of PAT is directly wired to the CPA

and, because PAT takes care of the mantissa part of an operand, there is a

bit-by-bit correspondence between PAT 1 through PAT 23 with CPA 1 through

CPA 12, respectively. The purpose of PAT 25 and 27 and the exact bit con­

figuration of each level of PAT are shown during the description of the

multiplication process. Figure 21 shows the functional block diagram of

PAT and its interface with the logic elements participating in the multi­

plication process.

-85-

I

'·_-1
RGB

"
.... ..

MDG MSG

RGR

__ 48

~r

RGA RGC

_~ 48

PAW-WXX--1

_ 48
P3R-WXX--l

~--:~el of P:T' .~
~6 I P51-WXX--1

I-~-~*.

PW1-WXX--1

PW2-WXX--1

PW3-WXX--1

1-------------· ~PW4-WXX--1 2nd Level of PAT

P

A

T
)6 Ip52-WXX--l

• •
3rd Level of PAT

~~-----------r~l~
56 Ip5W-WXX--1 PPW-WXX-l -/ . .

CPA

__ 49 -- 56

, "
CARRY TO RGC SUM TO RGA & RGB

~: Since only 56 bit locations are accommodated by the

PAT, the WXX notation refers to bits 16 - 71.

Figure 21. Registers Directly Associated with PAT

-86-

h) Multiplicand Select Gates (MSG): This is an A02 type card

logic element, which is used primarily for the implementation of the

instructions regarding multiplication of two operands. It consists of six

cards, each one taking care of eight bits (Figure 22).

The MSG is interfaced with:

(1) the R register from which it receives the mantissa part of

the word representing the multiplicand, which has been

stored in R register prior to starting the multiplication

process (48 bits long).

(2) the Multiplier Decoder Gates CMDG) from which the MSG

receives controls forcing its outputs to represent the

multiplicand times ONE, times TWO, times minus ONE, or

times ZERO.

(3) the three levels of PAT, with the first level receiving the

output of MSG corresponding to Word #1, the second level

receiving the output of MSG corresponding to Word #2, and

the third level receiving the output of MSG which corre­

sponds to Word #3.

(4) the CPA which receives the output of MSG which corresponds

to Word #4.

The Interface'of MSG with the PAT and CPA is made through 49 lines

instead of 48 (number of bits of mantissa part) for reasons explained in the

subsection concerned with multiplication.

In division,however, where R register holds the divisor, the MSG

is used as a receiver of the mantissa and, through the path for Word #4,

sends the divisor to the CPA to be subtracted from the dividend (see the

subsection concerned with division). Because, as mentioned in the subsection

dealing with multiplication, there are functional block diagrams and bit

organization figures tying all the associated logic elements together for a

better understanding of the multiplication process, the reader is urged to

look ahead into that subsection for any additional information about MSG.

-87-

RGR
INPUT WORD III WORD 112 WORD 113 WORD 114

MSG II BIT II BIT II BIT II BIT II BIT II

1 16-23 22-29 20-27 18-25 16-23

3 24-31 30-37 28-35 26-33 24-31

5 32-39 38-45 36-43 34-41 32-39

7 40-47 46-54 44-52 42-50 40-48

9 48-55 55-62 53-60 51-58 49-56

11 56-63 63-70 61-68 59-66 57-64

Figu.~e 22. MSG Input/Output Bit Organization

-88-

i) Multiplier Decoder Gates (MDG): This is an A12 card type

logic element used exclusively for the implementation of the multiply

instructions. It decodes the multiplier taken eight bits at a time (each

clock time) into four words, each of which may have one of three values:

Xl, X2, or X-I. For each word, these controls (Xl, X2, X-I) are fed into

the MSG which gates out the multiplicand received from the R register

directly, shifted left by one or in one's complement form, respectively.

In the subsection dealing with the multiplication of two oper­

ands it is thoroughly explained how and why the multiplier is decoded by

pairs (eight bits per clock time period).

The MDG consists of two cards (MDG#l, MDG#2) , each of which

receives four bits (two bit-pairs) and two inputs for the CARRY and

CARRY NOT and generates the controls for MSG corresponding to Xl, X2, and

X-I (Figure 23).

Because MDG#l decodes the four least significant bits of the

multiplier, there is a Carry if the first pair is 11 and the second pair

is 10 or if the second pair is 11. This Carry is sent to MDG#2 which

combines it with the third and fourth pairs of bits from the B register

and generates the controls for Words 113 and 114. If, however, the third

and fourth pairs of bits are such that a Carry is formed, this Carry is

then brought to a gate whose true and complement outputs are brought to

MDG#1 to be used in the next iterative cycle. It is evident that in the

first iterative cycle MDG#l does not receive any Carry from MDG#2.

-89-

55 11--__ _ BIT NUMBER ,-__ --III....... 62

B REGISTER

~'----.---------.~]
~----

CARRY

CARRY NOT
MULTIPLIER DECODER GATES

(MDG 112)

,
~ I
i I
WORD 11 4

X2 Xl Xl X-I
o I

m-
WORD it 3

X2 Xl Xl X-I
o I

CARRY
MULTIPLIER DECODER GATES

(MDG ill)

WORD iF 2
X2 Xl Xl X-l

o I

WORD 11 1
X2 Xl Xl X-l

o I

MULTIPLICAND SELECT GATES

Figure 23'. "MDG Functional Block Interface Diagram

-90-

3. Interface Units: These are logic elements which are used to

enable the ProceRsing Elem('nt to communicate with the outside world and

particularly with the neighboring PE's and CU. These logic elements are

the Driver, Receiver Selection Gating, Receiver Register, and Driver and

Receiver.

a) Driver (DRV): This is an A15 type card logic element, used

as an interface between the R register of PEi and PEi +l , PEi +S' PEi_I' and

PEi_S. It consists of four cards (Figure 24) and can take care of 64 bits

of data. This is strictly a dual line driver (true and complement outputs

are used) to drive the data to the routing logic of the corresponding

Processing Units. The use of the dual line driver helps to eliminate

common-mode noise created on the relatively long signal lines between PEi
and PEi +l , PEi +S' PEi - i , and PEi_S. Each card consists mainly of IS line

drivers for a total of 72. Sixty-four are used for routing, one for the

Mode Bit to the CU, and another for Memory Fault to the CU. Six are unused.

o ~.--~. 63

R REGISTER OF PEi

,~ ~. ~,

"

DRIVER DRIVER DRIVER DRIVER
(DRV 01) (DRV 02) (DRV 03) (DRV 04)

....

I +~ T J
+1 -1 -8

1 L
ROUTING LOGIC OF CORRESPONDING PU's

Figure 24. Driver Functional Block Diagram

-91-

b) Receiver Selection Gating (RSG): This is an A16 card type

logic element. It has differential receivers and select gates. It is

used to select data from PEi+l , PEi +8
, PEi _l , or PE

i
_

8
and bring it into

the R register. The RSG select logic consists of NOR gates tied together

and controlled by enables corresponding to PEi +l , PEi +S' PEi _l , and PEi _S•

The use of differential receivers provides the advantage of eliminating

common-mode noise created on the long signal lines between PEi and PEi +1 ,

PEi +8 , PEi - l , and PEi _S' which are exposed to high noise transients and

significantly different temperatures. The RSG consists of 13 cards, each

one able to acconnnodate five bits (one circuit is unused).

RSG RSG RSG RSG RSG RSG RSG RSG RSG RSG RSG RSG RSG
1 2 3 4 5 6 7 S 9 10 11 12 13

c) Receiver Register (RC5): This is an A14 type logic element,

which consists of differential receivers and latches, and is used to store

data from the CU received via the Common Data Bus path which can then be

gated into the Operand Select Gates (OSG). There are four cards (Figure

25(a» in the Receiver Register; each one consists of 16 differential

receivers and 16 latches which are clocked with early clocks.

Because the true output of each latch is gated into the OSG, it

is evident that the input to OSG will always have the same logic level as

the output of the differential receiver (Figure 25(b». The input signals

to RC501 - RC504 are designated TVW-W(OO-63)--O and TVW-W(0063)--1.

-92-

ROM
CDB

RC5 RC501 RC502 RC503 RC504
4f

BIT 0 15 16 31 32 47 48 63
4F

(a)

_TVW~-WXX--O ,.."

L>
TVW-WXX--l

tn~'YtR

EARLY CLOCK

EARLY CLOCK

to. -
I -...,..

~

OSG

\ LATCH

(b)

Figure 25. Receiver Register: a) Bit Organization, b) Logic Configuration

-93-

'd) Driver and Receiver: This logic element consists of two

parts, namely, the Driver which is a part of the DRV04 used to drive only

one line back to the CU, and the Receiver part which is an A14 card type

logic element used to receive the enables of the mode register (see the

mode register description). The Driver and Receiver, therefore, is not a

separate unit, but is mentioned separately because its function concerns

an extremely different register (mode) which is constantly monitored by

the CU through this portion of A14 and Al5 card type logic.

4. Other Logic Elements: All of the logic elements shown in the

Processing Element Block Diagram (Figure 12) have been described, but

Table 32, which shows the physical location of the logic elements of the

PE by type of card, lists a few logic elements in the PE which neither

appear in Figure 12 nor have been mentioned elsewhere. These logic ele-

ments are:

• TUBOI - TUB17: They are used to buffer and retime the dif­

ferent enable signals for the operation of the PEe They

are A14 card type logic elements. TUBOl, 02, 05, 06, and

09 require early clocks, while the remaining TUB's require

late clocks •

• CTL01 -CTL12: These 12 Control (CTL) cards are used to

provide all the control signals to the PE logic, without

the presence of which no operation could be implemented in

the PEe Because the CTL's consist of different card types,

a summary of CTL versus card type used is shown in tabular

form below.

CTL NUMBER CARD TYPE REMARKS

CTLOl BOI
CTL02 B02
CTL03 B03
CTL04 B04
CTL05 B05-A
CTL06 B6 Clocked
CTL07 B7 Clocked
CTLOB BB
CTL09 B9-A
CTLIO BIO Clocked
.CTLll BII Clocked
CTL12 Bl2

-94-

• Group Look Ahead (GLAOl - GLA04): This logic element was

mentioned in its use as part of the Adder, but after the

logic for the generation of section transmits and section

generates and group carries are distributed to the CPA and

CLA, these cards are used to buffer different enable signals

because of heavy loading.

• Clock Generation (CLKOl): This is a Cal card type logic

element which generates, after receiving the main clock

from the CU, three other clocks necessary to the internal

operation of the PEe These clocks are the Early Clock, the

Late Clock, and the Register Clock.

• Clock Buffer (CLK E, L. R): This is a C02 card type logic

element used to buffer the Early, Late, and Register Clocks

from the Cal card to the PE circuitry. Since these clocks

are very important, it has been proven through experience

that the Early Clock measured at TUB02 (D2-l3) should be

about 7.0 ns wide and its leading edge should occur about

25 ns prior to the leading edge of the reference signal

measured at TUBl3 (D2-l4). The Late Clock should have the

same width as the Early Clock, but its leading edge should

occur about 6 ns prior to the leading edge of the reference

signal, while the Register signal should have the same

measurements as the Late Clock.

• BIAS: This is a DOl card type circuit used to provide

proper bias for unused gate inputs.

-95-

Table 32. PE Card PhYsical Configuration (Card Side
Column Row
Number 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ~5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Number

Name I. I. It ~ I. I. R. I. I. C C C C C L L ~ B
of S S 'S S S S S S S L L L L L 0 0 P I A Logic G G G G G G G G G K K K K K D D ~6 ~

Element 01 02 03 04 05 06 07 08 09 E L 0 I. R. 04 05 S '
3 2 1 5 4, -

- "

Type of Card A16 A16 A16 A16 A16 A16 A16 A16 A16 C2 C2 Cl' C2 C2 AlA J\10C A10B Dl

Remarks IWt tAT Gmi I.E(REG 'C C

Name R. I. I. I. D D R M P P P P I. I. C C L L ~ C C I. I. C B B B B L L 0 0 I. a
of S S S S I. I. G S A A A A G G P P 0 0 ~ p P G G T S S S S 0 0 S S G S B Logic Gi G G G V V R G T T T T B A A A D D ~2 A A A B L G G G G C S

Element 10 11 12 13 01 02 03 01 01 03 05 07 03 03 01 02 01 15 04 03 04 04 05 42 32 22 12 03 04 03 04 02 02

Type of Card A16 A16 A16 A16 A15 A15 Al A2. A4 AI+ AI+ AI+ Al Al AS A'- ~9D ~10B ~I! AS AS At Al BSA A7B A7B A7A, A6 A3 A3 A3 A3 AS AS

R.euaarka C C C f;c C C C C

Name I. I. I. I. R M C M P P P P R R C C L 'c ~ c C R R C B B B B L L 0 0 I. R
,

of C C C C G S T S A A A A G G P P 0 L P P G G T S S S S 0 0 S S G G C Logic 5 5 5 5 I. G L G T T T T B A A A D iA r.. A A A B L G G G G C S
Element 01 02 03 04 04 03 09 05 09 11 13 15 05 05 05 06 :01 .01 03 08 07 06 06 08 43 33 23 13 05 06 05 06 03 03

, ,

Type of Card A14 ~14 ~14 ~14 Al A2. ~9A A2. AI+ AI+ AI+ AI+ Al Al AS AS; A9E ~ii' ~B AS AS Al Al B8 iA7B 1A7B iA7A A6 A3 A3 A3 A3 A8 AS

Remarks C C C C C C C C C C C

Name T T T T T I. I. M M P P P P I. I. C C L C G C C I. R C B B B B L L 0 0 • II
, of U U U U U G G S S A A A A G G P P 0 L L P P G G T S S S S 0 0 S S c;. G D Logic B B B B B I. I. G G T T T T B A A A D A A A A A B L G G G G C S

:, Element 01 02 03 04 15 06 07 07 09 17 19 21 23 07 07 09 10 03 03 04 12 li 08 08 07 44 34 24 14 07 08 07 08 04 04

Type of Card A14 1A14 iA14 1814 1A14 Al A1 A2 A2 A4 AI+ AI+ A4 A1 A1 AS AS A9F All ~B AS AS Al A1 B7 A7C iA7B A7A A6 A3 A3 A3 A3 A8 AS

Remarks C C C C C C C C C C C C C C

Name T T T T T I. M C C M I. M P P R I. C C G C C R I. C C B B B B L L 0 0 I. I.
I

of U U U U U G D T T D G S A A G G P P L P P G G T T S So S S 0 0 S S G G E Logic B B B B B R G L L G I. G T T B A A A A A A A B L L G G G G C S

Element 05 06 07 08 16 05 02 02 01 01 08 11 25 27 01 01 13 'M1' ,"01 16 ~.i5 02 02 04 06 41 31 21 11 01 02 01 02 01 01

Type of Card A14 iA14 iA14 fA14 A14 Al A12 B2 Bl A12 A1 A2 A4 A4 AlA AlA AS AS AsB AS AS AlA AlA B4 B6 A7C A7B A7A A6 A3 A3 A3 A3 AS AS

Remarks C C C C c C C C C C C C C C C C

Name T T T T T T T D D I. I. I. I. C C C C M R A A C G A A M M M

of U U U U u u U R I. G G G G T T T T A G D D L L D D L L L F Logic B B B B B B B V V I. I. D D L L L L I. X A A A A A A U U U

Element 09 10 11 12 13 14 17 03 04 01 02 01 11 10 03 12 11 01 01 01 02 05 05 03 04 01 02 03

Type of Card A14 A14 A14 A14 A14 A14 A14 A15 A15 A1 A1 j\l3A tAll! 'B1(B3 B12 Bll A8 A8 AS AS All ASB AS AS

Remarks a C C C C C C C C C C C C C '. X X X

-

NOTES: 1. EAR denotes early clock 4. C denotes card is being clocked
2. LAT denotes late clock 5. X denotes interface connector
3. REG denotes register clock

-96-

B. DC POWER DISTRIBUTION

a) Description

In each Processing Unit Cabinet (Figure 26) there are two power

supplies that provide +4.8 V and ground, two power supplies that

provide - 2.0 V and ground, one power supply that provides + 1.32 V

and - 3.20 V for the routing logic and eight power supplies (pre­

regulators) that provide 4.52 V (+ 1.32 V and - 3.20 V). These power

supplies provide power for the eight Processing Units (PUs) that are

contained in each of the eight PU Cabinets of the Quadrant. Figure 26

also depicts the physical location of each one of the twelve power

supplies and location of the PUs which receive power from these power

supplies.

From the PU Cabinet, the above voltages (+ 4.8 V, - 2.0 V, ground

and 4.52 V) are brought into the Processing Unit in two groups. The

first group brings + 4.8 V, - 2.0 V and ground; it is used exclusively

for the PEM and the Up and Down converters of MLU. The second group,

which brings 4.52 V to the PU, is used for the PE and MLU circuits; the

4.52 V corresponds to + 1.32 V and - 3.20 V necessary for the ECL circuits

of the PE and MLU.

On the top of the PE there is a section called Dual Power Supply

Shunt Regulator (Figure 27). This regulator contains two main busses

used to transfer the grouped voltages into the individual subunits of

the Processing Unit (PE, MLU and PEM). Both busses consist primarily

of large laminated planes that are properly isolated from one another.

One bus is used for + 4.8 V, - 2.0 V and ground; the other bus is used

for + 1.32 V, - 3.20 V and ground.

The + 4.8 V power is tapped from the bus plane for use by the MLU

level conversion circuits. A two-plane strip routes the + 4.8 V power

to the MLU and provides a path from the MLU to the ground plane of the

large bus. This ground path is used to shield the Cabinet Clear signal

and as the ground level for the I/O circuits in the MLU.

-97-

I
\0
00
I

a)

b)

+4.8v 430AMP +1.32, -3.2V 50AMP -2.0V 220AMP +4.8v 430AMP

A2 A3 A4 A5
TO TO TO TO

B2,C2,D2,E2 ROUTE LOGIC B2,C2,D2,E2,F2,G2,H2, F2,G2,H2,J2
and J2

PRE/REG 4.52V PRE/REG 4.52V PRE/REG 4 . 52V PRE/REG 4. 52V

A6 A7 A8 A9
TO TO TO TO
C2 E2 G2 J2

PRE/REG 4. 52V PRE/REG 4.52V PRE/REG 4.52V PRE/REG 4.52V

AlO All A12 A13
TO TO TO TO
B2 D2 F2 H2

PU PU PU PU PU PU PU PU
B2 C2 D2 E2 F2 G2 H2 J2

Figure 26. PU Cabinet: a) Power Supply Location, b) PU Power Distribution

I

I
J

I
I

I
\0
\0
I

~.:::--­
~.-:---. -~~Tt?

"<~<:~;~~'~il~l ~. '------~ .. ,~--'..: . () ... ':', I, 1')
''-- . ..:::t 't ~1 0 C; ~I -. .~ lj j~ 0 .-~. I

"I ... {) I in 0
1 \ q , . ',"
t/ni;
~L·J

'"

Fi gure 27.,

(0 INPUT CONNECTOR MS3102A-24-28P

® INPUT CONNECTOR MS3102A-28-6P(-2.0V64.8V)

® OUTPUT CONNECTOR - .. CAM LOX"

0) PRINTED WIRING BOARD

+1.32-Volt, -3.2-Volt, 240-Ampere
Shunt Regulator, Outline Drawing

A wire between the control card in the Dual Power Supply Shunt

Regulator and the MLU provides the path for the Cabinet Clear signal

(MCABCLR--O); this is the signal that resets the flip-flops in the

MLU when power is first applied to the PU. This is necessary because

the MLU acts as a large electronic switch and it must be cleared before

any action starts. In this way it is assured that when the PE or PEM

accesses the MLU, the latter should contain no prior information in its

memory devices (flip-flops) and it therefore must be ready to transmit

the new information that the particular instruction dictates.

The ground plane of the bus for 1.32 V and 3.20 V is connected at

one end with the chassis (PU) and with the ground plane of the second bus

at the other end. This assures a connnon ground for all the subunits of

the PU.

The + 1.32 V, - 3.20 V and ground levels are provided to the MLU and

PE circuits via the large, three-plane bus shown in Figure 28. These

laminated planes are, of course, fully isolated from one another.

Figure 29 depicts the basic current paths involved in the distribution

of the + 1.32 V and - 3.20 V. This is consistent with the basic structure

of the EeL circuits of the PE and MLU.

Each power supply shunt regulator includes an overcurrent detector.

This detector compares the current through a 50 amp, 50 mV shunt resistor,

with a fixed reference current. If the current through the shunt resistor

exceeds the reference current significantly, the detector opens the

circuit breaker in the preregulator.

Similarly, the over voltage/under voltage detector in the power supply

shunt regular senses an excessive or insufficient voltage level being

applied to a load. If the detector determines that a voltage is outside

some specified limit, it opens the appropriate circuit breaker.

Test points for the various MLU voltages are available on the MLU

backplane.

-100-

Figure' 28. Power n" 1stribut" 10n in

-101-

the PU~

Pi/"£:"
r<,e.Cl

Figure 29. CUrrent Paths for + 1.32 V
and - 3.20 V Supplies

-102-

The power for the PEM is distributed from the Power Bus

through the three designated leads into the power distribution board, which

contains large ground and voltage planes of 2 ounces of copper. In order

to reduce the voltage drop, the power base picks up the power from the

power distribution board through approximately 110 contact pins and dis­

tributes the power to the control and memory boards (Figure 21 and 22)

through its cam-operated connectors.

Each memory board and the control board as well use three intermeshed

power grids for V = + 4.8 V, V - 2.0 V, and ground for power distribu-cc ee
tion to the CT",L, TT,.L, and M)'tL 4100 devices. In order to achieve low DC

characteristic impedance, these power lines (V ,V and ground) run cc ee
parallel to one another. Figures 30 and 31 show only the main power busses,

but" the reader should realize that there are power distribution line picking

up the power from their corresponding power busses on each board. Any

sudden variation in voltage due to spikes of high frequency noise is greatly

minimized by the use of high-frequency filter (bypass) capacitors, connected

between V Iv and ground and also between V and V cc ee cc ee

The power grid network as it has been implemented on the control and

memory boards provides an effective ground shield, which helps to obtain,

in the case of relatively long transmission signal lines, a characteristic

impedance of about 100~. It has been calculated that the total power dis­

sipation is distributed as follows:

1) One Memory Board:

a. CT~L, TT~L, and WRITE transistors require 3.66 amperes

at + 4.8 V and 2.98 amperes at - 2.0 V.

b. MJ'4L 4l00's require 16.00 amperes at + 4.8 v.

2) Control Board:

a. Because the Control Board uses only C1)-\L devices, it

requires 4.53 amperes at + 4.8 V and 3.56 amperes at - 2.0 V.

Since the above numbers represent worst-case PEM power requirements, it

can be concluded that a power dissipation of about 400 watts per PEM is

equivalent to 3milliwatts per memory bit (400 watts + 131072 bits).

-103-

,COMPONENT SIDE

1[F;----· 2fT-;-TOP-' ---1- ·-U-;D---:
I GNDI --- ,

Vee .r I Vee [--_________________________________ ~
,..-----:::J GND I

Vee I QI,
171c:=J ~

: ~========:::JIV £E ' V£~~~E -c -= -= -= -= ---<~~ :

17~ c::=:> [Vee II

: Veer- IGND I:
I ----...., GND I Vee II
I Vee,~ ----------------------~-------- ~I
1516_~TP ~!

: ~~[)~ ~. Vee 1--1 ---EJ I
VecL---__________________________ ~ ----I

i50i~

I
, I
I
I
I GND

,f __ --II

-IGNDP

I Vee I:
IGNDI:

VCC~I ------------------------------------~I

IGNDI' ~L~ -I

I ~-:1 VEE ,r------, ~ 1
IL~~ ~_--.-J'VEE Vee r----~

126r:=:J, ~ I
I EJI
I
I I veeI'

I
I Vce~L------------------------~---- IGNDII
I

: I vee]:

I Vce~c:----------- IVEEI'

lk;_1L ~~~~ __ p-.~_-__ -_-_----_-_-__ -v..::.;..::~. -_-_-_-=f:1:
Figure 30. Memory Board Power Bus Configuration.

1 AI.

COMPONENT SIDE

:7 - - -- - -1- - - ~ ~~p - -. - - -1----. - - ~--- -:

171 C==>
I~
I L.::J

170C=:>
I

I

I
GND I

I
......-1

[vee II
~--------------------------~~: I Vee I :

I
I

.IL-_______ . __ ~I VEE IGNol:

151~

: 12NOI
150C:::::>

I Vee II
r:-:l l.
~I

[vee I:
[GN;}] I
[vee I:
IGNol:

~I
I

127c::::J [GNO_II

E~ ~- I I Vee V I ~~----.------.------------------------------------~c I
126r::=.:) ~

~I

I
I
I

Il~ f ?: 0 II
n .. -- '"----. L.:.:..-=--__

I I Vee II
IGNO I:
I vee] I

I I VEE II
_ _ _ ___ _ _ ____ __ __ _~ _ __ __ _ r::~j_:

Figure 31~ Control Board Power Bus Configuration
1f'\C

b) Grounding

Grounding is an issue of great importance because even though it

seems at first a simple and "clean" area to work with, indeed it gets

as complicated as the system itself. It is an area that requires

particular attention, because bad grounding may result in problems

that are not always easy to detect and therefore the reliability of the

system is reduced significantly.

As it was explained "in'[9], the AC p\nTer is provided t() the

ILLIAC IV Computer via the Substation of the.NASA/Ames Research Center

facility on a 11 to Y formation. The Y constitutes the secondary of the

main transformer in the facility and allows the three-phases and the

neutral to be brought to the second transformer used to provide power

to the computing facility.

This trans former is of the Y to Y' ,marm and provides three-phases

and a neutral which is grounded (earth ~ on the wall power panel.

Normally the neutral is at a different potential than the earth ground

because the loads on each phase are not ideally equal and according to

Kirchoff's current law the current in the common return wire (neutral)

which is equal to the sum of the three phase currents is not zero because

these three currents are not equal. If the loads WEre equal in which

case we would have a balanced system the neutral and earth ground would

be the same. For safety purposes; this is a requirement of the Elec­

trical Code, the neutral at the wall power panel is connected to earth

ground. The earth ground is a point that we will talk about later on.

The reason for connecting the neutral to ground is to force the circuit

breaker to close if accidentally one of the phases touches the neutral.

Had not the neutral been connected to ground and by accident one of the

phases was touching it, a man not suspicious of the danger that the

neutral carries high-voltage, could be killed instantly upon touching it

because he wom~d establish a closed circuit to earth ground via his body.

This neutral along with the three phases is brought into each PUC and

from there to the primaries of each transformer of each power supply

(voltage regulators). The secondary winding of each transformer in

-106-

the voltage regulators provides the DC voltages that we have already

talked about. These voltages are with respect to chassis ground; the

ground wire form each power supply 'is connected to the chassis of the

. power supply and also to the chassis of the PU. Every PU and its

~'s's'eciated pGWer sllPply are connected via the chassis ground wire to

the main frame of the PUC. At this point it mast be mentioned that

when the three phases and the neutral are applied to each PUC, an extra

cable called Ground is brought along with it. It originates in the

power wall panel and is tied to the main frame of the PUC. The other

end of this cable in the wall power panel is connected to a plate made of

copper whtth in turn connects via a long copper rod to the earth. The

same configuration exists for&all the PUCs and the CU. In this way the

DC power ground, ,the chassis ground and the PUC mainframe ground are all

at the same level with respect to earth ground; measurements have shown

a potential of about 35 MV with respect to earth. This ground configur­

ation serves two purposes. First, it provides safety to the personnel,

since an accident could occur if the V was shorted to the frame. A cc
man could receive a good shot upon touching the frame if the latter was

not grounded. Second, all the voltages in each PUC. are conSidered to be

the same with respect to earth. This is important because the Quadrant

sonsists of 64 processors and a CU and the operating voltages should

be the Same.

The Quadrant has been completely isolated from the ground floor via

an insulating mayerial and it can be consiaered as floating with respect

to the ground floor and touches the earth only via the nine earth cables

through the copper plate that we mentioned before. The reason in doing this

is avoidance of the ground loops which would have a termendous impact if

the Quadrant was allowed to touch the ground (earth). It must be empha­

sized that two points connected to earth via s~parate cables will not have

the same voltage drop across because the two grounds are different. It

is almost practically impossible to achieve an ideal ground (earth). For

this reason it is much more preferable to have one common point which

approaches the potential of earth and connect to it different parts of a

computing system than to have the system touching the earth in several

points and suffer the consequences due to the presence of ground loops.

-107-

The grounding scheme of the ILLIAC IV, therefore, may be viewed

as a huge tree with nine limbs each representing the earth ground of

the CU and corresponding PUC. Each limb in turn contains eight main

branches, representing the ground chassis of the PUs in each PUC. Each

of the main branches supports three smaller branches which correspond to

the PE, MLU and PEM power and signal grounds. The leaves of the indi­

vidual small branches may be thought as representing the ground pins

of the hardware of each subunit in the System.

The nine limbs meet the trunk of the tree at approximately the

same point with its roots at the other end, found about 18 feet deep

into the ground (earth).

THE ILLIAC IV TREE GROUND

-108-

