
49

lAC Doc. No. SG-I1000-0000-C

Rev. 7 -1- 73

SYSTEM GU IDE
for the

ILLIAC IV
USER

Institute for Advanced Computation

Ames Research Center

Moffett Field , California 94035

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

SECTION 8

APPENDIX A

APPENDIX B

APPENDIX C

SYSTEM GUIDE FOR THE ILLIAC IV USER

CONTENTS

INTRODUCTION

SYSTEM OVERVIEW

INTRODUCTION TO ACL

TUTORIAL FOR THE BEGINNING ILLIAC IV SYSTEM USER

DATA TRANSFERS AND THE MAP SUBSYSTEM

COMPLETE ACL STATEMENT FORMAT

COMPLETE SET OF ACL STATEMENTS

ACL JOBS AND USAGES

DED TEXT EDITOR

GLOSSARY

BIBLIOGRAPHY

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 1

INTRODUCTION

lAC D>o(. No. SG-I1000-OOOO .. C
Rev. 7-1-73

SECTION 1

INTRODUCTION

This guide, the first in a series written for the ILLIAC IV System
user, describes the necessary procedures for using the ILLIAC IV: how
to gain access to the System, how to correctly construct a job to run on
the System and to submit the job for processing, and how to transfer
data between the user's entry location and the ILLIAC IV System.

A potential user of the ILLIAC IV will generally have three steps
to go through to successfully use the ILLIAC IV System. He must under­
stand the ILLIAC IV System resources and characteristics sufficiently to
determine their suitability to his problem, design and program his problem
solution, and interact with the ILLIAC IV System to guide execution of
his ILLIAC IV programs. This guide is directed toward the third step in
this sequence, user interaction and control of the ILLIAC IV System. It
includes information, conventions, and suggested procedures to process
work successfully on the ILLIAC IV System.

1.1 CONTROL LANGUAGE FOR THE ILLIAC IV SYSTEM
The primary tool provided to the user to interact with the ILLIAC

IV System is ACL (~fontrol Language). Access is gained to the ILLIAC
IV System through the ARPA Network, and interaction with the ILLIAC IV
System begins through ACL.

Each ACL statement initiates a subsystem that performs a selected
function for the user. All of" the requested processing is directed by
the user through ACL statements. Accordingly, this System User's Guide
is oriented around ACL and the subsystems it initiates.

1-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

1.2 SUGGESTED USE OF THIS GUIDE
The ILLI~C IV System is a complex set of computing resources pro­

vided to its community of users. ACL, the bridge between the user and
the System, will evolve as system resources are implemented, providing
and supporting new capabilities as they become available.

ACL is presented at two levels in this guide. A basic structure
and a basic set of ACL are sufficient for the average user. This basic
set of ACL is presented in tutorial fashion in Sections 2 through 5 of
this guide. These sections must be understood by all users of the
ILLIAC IV System.

The complete set of ACL statements is given in Section 7 and its
intended use ;s for reference purposes. Section 6 provides a broader
coverage of the rules of construction of the language, including all of
the notational conventions used in Section 7. Section 8 provides exam­
ples of some of the more complex capabilities of ACL. It is suggested
that the user acquaint himself with this material in conjunction with
acquiring a thorough understanding of Sections 2 through 5.

This guide begins in Section 2 with a brief overview of the ILLIAC
IV System, intended to give the user some feeling for the resources avail­
able and the structure of the ILLIAC IV System. Further documentation on
the ILLIAC IV System is listed in the Bibliography, Appendix C.

Appendix B is a fairly extensive glossary of the special terminology
used in this guide. Most of the glossary entries contain references to
specific sections of the guide where detailed explanations of the terms
can be found.

1-2 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

SECTION 2

SYSTEM OVERVIEW

lAC Doc. No. SG-I1000 .. 0000-C
Rev. 7-1-73

SECTION 2

SYSTEM OVERVIEW

CONTENTS

2.1 LOCATION AND ACCESS
2.2 FUNCTIONS PROVIDED BY THE ILLIAC IV SYSTEM
2.3 ILLIAC IV SYSTEM RESOURCES
2.3.1 THE CENTRAL SYSTEM
2.3.2 THE ILLIAC IV
2.3.3 FILE STORAGE SUBSYSTEM
2.3.4 THE B6700 COMPUTER SYSTEM

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 2

SYSTEM OVERVIEW

The ILLIAC IV System contains a set of resources available to the
system users. This overview is oriented to a user whose objective is to
run programs on one of these resources, the ILLIAC IV. Users whose
central interest is directed toward resources other than the ILLIAC IV
may find this description of the System not suited to their purposes.

2.1 LOCATION AND ACCESS
The ILLIAC IV System is a complex of computing equipment located

at NASA-Ames Research Center, Moffett Field, California. The data
processing and storage resources of the System are available to remote
users through the ARPA Network. ILLIAC IV System users can access the
System through terminals connected directly to the ARPA Network or
through a remote computer system tied into the ARPA Network (referred
to as a Host system). Data transfers to and from the ILLIAC IV System
comply with the ARPA Network File Transfer Protocol (FTP).

An ILLIAC IV System user communicates with the System using ~
Control Language, ACL. ACL consists of statements, formatted according
to standard rules, containing both fixed and variable information. The
fixed information in an ACL statement identifies the system function the
user wishes to initiate, and the variable information provides control
directions and data which are passed to the function.

ACL statements may be directly communicated to the System and
processed on-line, statement by statement (interactively) or in batch
from a user-created file of ACL. A set of ACL statements defines a
processing sequence to the System.

2-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

2.2 FUNCTIONS PROVIDED BY THE ILLIAC IV SYSTEM
An ILLIAC IV System user sees the System functionally through ACL.

In order to properly use ACL, the user must have some knowledge of the
System configuration and the available resources. In general terms, the
System provides the basic functions of processing, file management, and
file storage. More specifically, the System provides the functions
described in this guide which are initiated and directed by the user
through ACL. Examples of these functions provided through ACL include
language processing, file transfers, and data conversions. The System
providing these functions comprises a number of processors, memories,
mass storage devices, interfaces, peripherals, and supporting software.

In addition to those functions available to the user through ACL,
there are functions provided only to the ILLIAC IV programmer, for
example, data transfers between the ILLIAC IV disk and array memories.
In order to program the ILLIAC IV, the user must have detailed knowledge
of these functions. This information is included in the ILLIAC IV
Programmer's Guide and supporting documentation; the overview presented
here will not attempt to provide this level of description.

A program designed and written for the ILLIAC IV may be translated,
stored, loaded, and run through ACL; data files can be copied, converted,
and transferred to the ILLIAC IV for use in conjunction with the user's
program, again through ACL. In these and other ACL sequences, certain
system functions are involved that are not directly available to the
user either through ACL or the programming languages - for example,
resource scheduling and management. The ILLIAC IV System has been
designed and implemented so that details of these system functions need
not be of concern to the user.

This overview of the System is presented in functional terms since
this is the fundamental concern of the user. Where it is necessary to
understand a physical device, its characteristics, or usage, the informa­
tion is given here and in subsequent sections of this guide.

2-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

2.3 ILLIAC IV SYSTEM RESOURCES
There are four principal resources in the ILLIAC IV System: (1)

the central system, (2) the ILLIAC IV, (3) the file storage subsystem,
and (4) the B6700 computer. See Figure 2-1. Briefly, the functions
performed by these resources are as follows:

• The central system provides the user-ACL interface, performs
overall system scheduling and resource management, provides
and manages the file system, and performs operating system
functions for the ILLIAC IV.

• The ILLIAC IV is the major data processing resource in the
System and is dedicated to the execution of user programs.

• The file storage subsystem consists of a hierarchy of storage
devices ranging from central memory to the UNICON mass storage
laser memory device.

• The 86700 provides the user with utility services including
the ASK assembler, the GLYPNIR compiler, and the ILLIAC IV
Simulator, SSK.

These are the resources in the System which provide services directly to
the user. Each of them is a subsystem of devices and supporting soft­
ware. In general, the user should understand the functions provided by
each subsystem, but is not required to understand the details of devices
to use ACL.

2.3.1 THE CENTRAL SYSTEM
The central system consists of processors, memory, and interface

devices to the other system resources and to the communications subsystem
(see Figure 2-1). Functionally, the central system includes the ACL
executive and executes all of the ACL subsystems, except for the program
preparation utilities provided by the 86700. In order to maximize its
processing efficiency, the ILLIAC IV itself has no operating system. The
central system provides operating system functions for the ILLIAC IV.
These functions are distributed among several processors.

2-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

FILE STORAGE
SUBSYSTEM

ILL lAC IV CENTRAL B6700

SUBSYSTEM SYSTEM SUBSYSTEM

I INTERFACE I
~

ARP A NETWORK

USER

Figure 2-1. Overview of the ILLIAC IV System

2-4 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

The main processor in the central system is a PDP-10. The PDP-10
executes the ACL executive and performs the central management functions
of the System, including resource and job scheduling, and logical file
management.

Other processors in the central system perform specialized tasks
which are transparent to the user. For example, one processor called
the MMP manages data transfers between central memory and the ILLIAC IV
memory system. It also fields and services ILLIAC IV processor inter­
rupts. The functions of the MMP are described in greater detail in the
ILLIAC IV Programmerls Guide. The UNICON memory processor, or UMP, as
another example, performs services analogous to the MMP for the UNICON
laser memory system.

Other processors in the central system perform communications,
diagnostic, and device control functions which will not be described
further here.

The central memory provides program and data storage for the
central system processors. One of these memory modules, termed the

Buffer Input/Output Memory (BIOM), is a 16K (32-bit) word memory which
functions as a staging buffer between the central system and the ILLIAC
IV memory system. All of the central system processors access central
memory and communicate with each other through it. Some of the proces­
sors, such as the MMP and the UMP, have small local memories principally
for program storage.

2.3.2 THE ILLIAC IV
The major processing resource in the System is the ILLIAC "IV (see

Figure 2-2), which is dedicated to user program execution. The ILLIAC
IV processor is capable of operating in parallel on 64 independent data
streams. To achieve this parallelism, the processor structure consists
of a control unit (CU) and an array of 64 individual processing elements
(PEls). Each ILLIAC IV PE is roughly equivalent to a conventional
systemls arithmetic unit. The CU decodes each instruction and generates
control signals for all of the PEls in the array. Each PE in the array
executes the same instruction in parallel, each processing its own data
stream.

2-5 lAC Doc. No. SG-1l000-0000-C
Rev. 7-1-73

N
I

0"\

~ »
n
c
o
n

z
o

Vl

Gl
• ~ -o

::00
CD 0
< •
. 0
...... 0
.!..O
• 0
wn

PEO

48 BIT
CONTROL

CONTROL
UNIT
(CU)

PEl ... PE63

ARRAY
MEMORY

BIOM
MEMORY

MANAGEMENT
PROCESSOR (MMP)

128 BIT
DATA

48 BIT
CONTROL

STORA~" DISK MEMORY
1024 BIT SUBSYSTEM 256 BIT

DATA CONTROLLER DATA UNITS

~

Figure 2-2. ILLIAC IV Block Diagram

Instructions which do not operate on the data streams (such as
JUMP) are executed only by the CU and are called CU instructions.
Instructions operating on the data streams (for example, arithmetic
and logical instructions) are decoded by the CU and control signals
are broadcast to the PElS. The CU itself is modularized so that the
execution of CU instructions may be overlapped with PE operations.

The instruction execution rate of the ILLIAC IV approaches 3x106
operations per second. A high instruction rate is achieved in the PE
array not only through parallelism, but also through very fast logic
circuits and memory access times. For example, the individual PE's
have approximately a 438-nanosecond ADD time and 500-nanosecond MULTIPLY
time for full 64-bit operands. The memory cycle time is 313 nanoseconds.

The memory system for the ILLIAC IV includes two main storage
devices, the Array Memory and the ILLIAC IV Disk Memory system. Working
storage for both instructions and data for the ILLIAC IV Processor is
the Array Memory. The Array Memory is a semiconductor memory consisting
of 128K (64-bit) or 256K (32-bit) words, with a cycle time of 313 nano­
seconds. The Array Memory may be thought of as an array of 64 columns
(each associated with a single PE) by 2048 (64-bit) rows. The CU can
access the entire Array Memory, while each PE accesses only its associated
column.

The ILLIAC IV program is loaded into Array Memory by the ACL RUN
subsystem. Data is structured and loaded into the ILLIAC IV memory
system by the programmer/user.

The main memory store for the ILLIAC IV is the ILLIAC IV Disk
Memory (140M) system. The 140M is a fixed-head rotating disk system
with a capacity of about 16x106 (64-bit) or 32x106 (32-bit) words. The
system is composed of 13 disks attached to two controllers (six disks on
one controller, seven on the other). The disks rotate synchronously
with a 40-millisecond rotation period, and the maximum data transfer
rate is about 109 bits/second.

Data transfers during program execution between the 140M and Array
Memory are program-initiated. Requests are passed from the lLLIAC IV CU
to the central system, where they are executed. Data transfers between

2-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

the central file system and the 140M (typically pre- and post-execution)
are also under the control of the central system, using the BIOM central
memory module as a staging device.

The ACL MOVE subsystem performs the transfers between the central

file system and the 140M. Certain ILLIAC IV memory management functions
are also provided in ACL. A more complete discussion of data transfers
and the ILLIAC IV memory system is included in Section 5 of this guide.

2.3.3 FILE STORAGE SUBSYSTEM
The file storage subsystem encompasses a series of devices ordered

in a hierarchy from central memory to the mass storage laser memory (see
Figure 2-1). The devices in this system, in the present implementation,
include the following:

• Central Memory
• Swapping Drum
• Buffer Disk
• Laser Memory

All files in the system (both program and data) are composed of
pages. Pages are the smallest units of data seen by the file management
supervisor of the central system. File pages are moved through the
storage hierarchy depending on their activity, space availability, and
the total file size. File pages actively being processed by the central
system reside in central memory or on the swapping drums. File pages
being transferred between the file storage subsystem and the B6700 or
the ILLIAC IV transit through central memory and may reside temporarily
on the buffer disk. The perman.ent mass storage reposi tory for user data
files is the laser memory.

The UNICON laser memory device has an on-line storage capacity of
roughly 700 billion bits which are written permanently onto coated Mylar
strips by a laser beam. The access time to a given piece of data on a
strip varies depending on the state of the device and can be as long as
ten seconds. The transfer rate of the device once it is positioned is
roughly four million bits/second. As the Mylar strips become obsolete

2-8 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

or are to be archived, they are dismounted and stored. Fresh strips are
mounted in their place to provide new areas for writing.

ACL statements are provided to perform user-controlled functions on
files; these include CPYNET, MOVE, and COpy (file transfer functio~s), DEL
(delete), and DIR (list the file directory). Files of text may be created
interactively using the DED text entry and editing subsystem. The user
need not be concerned with how the system manages his files or where they
are located in the hierarchy of storage devices, except when he wishes to
retrieve an "arc hived" file from the UNICON, as explained elsewhere in
this guide.

2.3.4 THE B6700 COMPUTER SYSTEM
The Burroughs B6700 computer performs utility functions augmenting

the functions provided by the central system. When an ACL subsystem
requires the B6700, it is noted under the statement description in the
sections of this guide that follow. The ACL user or ILLIAC JV programmer
does not require any additional detail on the B6700.

2-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 3

INTRODUCTION TO ACL

lAC Doc. No. SG-1l000-0000-C
Rev. 7-1-73

SECTION 3

INTRODUCTION TO ACL

CONTENTS

3.1 GENERAL DESCRIPTION
3.2 ECHOING
3.3 CONVENTIONS USED IN THIS GUIDE
3.4 THE BASIC ACL STATEMENT FORMAT
3.4.1 ARGUMENT LIST RULES
3.4.2 ARGUMENTS
3.4.2.1 Rules for the Construction of Filenames
3.4.2.2 Keyword Arguments
3.5 SUBSYSTEM STATEMENTS

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 3

INTRODUCTION TO ACL

ACL (~Control Language) allows users to communicate with the
ILLIAC IV System ;n order to control various user features of the
ILLIAC IV System and submit jobs for processing. Statements in the
language consist of subsystem names which are normally accompanied by
parameters sJpplied by the user (arguments). All ACL statements are
structured according to fixed rules of syntax. The syntax of ACL state­
ments described in this document ;s presented to a great extent through
notational conventions. This section introduces the structure of the
"basic" ACL statement. See Section 6 for a discussion of the "complete"
ACL syntax.

3.1 GENERAL DESCRIPTION
ACL statements may be entered from a terminal in the interactive

mode, with interaction between the user and the subsystem taking place
on-line. A sequence of ACL statements may also be created as a file,
and submitted as a batch processing job. Statements that call subsys­
tems that require use of certain system resources, i.e., the B6700 or
the ILLIAC IV, must be processed in batch mode. B6700 resources are
required for the GLYPNIR compiler, the ASK assembler, and the SSK sim­
ulator. Once the user has prepared a batch job, an ACL statement
(SUBMIT) can be issued in the interactive mode to place the job in the
batch queue; other statements are used in the interactive mode to
determine the status of a batch job. (The languagar is identical whether
an ACL statement is entered interactively or in a batch job.)

3-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

3.2 ECHOING
Characters input by the user at his terminal are received by the

ILLIAC IV System and typed out at the user terminal - a process referred
to as "echoing." This echoing of interactive input gives the user a
permanent record of his session and aids in the detection of transmission
errors.

User passwords which are input at the terminal are not echoed, as a
security precaution (except in the SUBMIT, COPY, and DELJOB statements).

3.3 CONVENTIONS USED IN THIS GUIDE
ACL statements must conform to certain rules which are indicated

in the format representations in this guide. To make these rules clear
to the user, a standard set of conventions is used throughout this guide.

EXAMPLE argumentl,argument2{,argument3}9

The conventions shown in this example of a format representation are:

• Words printed in all capitals must be entered literally, as
illustrated by the word EXAMPLE above.

• Formal arguments to be replaced by the user with actual
arguments are printed in lower-case letters (in the example
above, "argumentl,argument211, and so forth). An argument
may be thought of as information for a subsystem. When
formal arguments are printed in text (outside of the format
representation), they are always underlined, e.g., argumentl,
and refer directly to the format representation.

• Braces are used as a notational convention to indicate that
the enclosed item(s) are optional, but the braces themselves
are not part of the statement, i.e., braces are not characters
to be input to the system.

• All other punctuation marks, i.e., commas, periods, colons,
semicolons, quotation marks, the equal sign, parentheses, and \
carriage returns, must appear exactly as shown. The symbol ~

indicates a carriage return.

3-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The following example of convention usage is taken from Section 7 of
this guide.

LINKED {infilename},outfilename{,OPTIONS=optionstring}V

where LINKED is a call to the link editor and must be entered literally.

• {infilename} is a name to be optionally supplied by the user;
if not supplied, a default action or default name is assumed
by the system as explained in the statement description.

• outfilename is a name that MUST be supplied by the user
(because outfilename is NOT enclosed in braces). The comma
must precede outfilename regardless of whether infilename is
specified (because the comma is not enclosed in the braces).
The comma in ACL is the delimiter which separates arguments
and, when an argument is optionally omitted, the comma is
required and functions as a placeholder.

• optionstring is a string of characters specifying the link
editor processing options the user is selecting. OPTIONS=
optionstring may be omitted, and if so, the final comma may
also be omitted. The word OPTIONS must be entered literally
if optionstring is to be specified, since it is in capitals
in the format; likewise the equal sign (=) must be entered
if optionstring is to be specified.

3.4 THE BASIC ACL STATEMENT FORMAT
The basic format for all ACL statements is as follows:

SUBSYSTEM-NAME {argumentl,argument2, ... ,argumentn}~

In the above simple statement format:

• SUBSYSTEM-NAME is the name of the desired ACL subsystem (such
as DEL, DIR, or INQ) and must be input literally. SUBSYSTEM­
NAME is used hereafter synonymously with the phrase "ACL
statement name."

3-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

• arguments represent parametric information (such as the name
of a file, a macro-call, or a value) supplied by the user and
passed to the subsystem specified by the SUBSYSTEM-NAME. The
rules for specifying actual arguments are discussed in para­
graph 3.4.1 below.

The semicolon (;) performs one of two functions, depending on how
it is used:

(1) When placed immediately after a comma that terminates an
argument, or immediately following the blank(s) after the
SUBSYSTEM-NAME, the semicolon is a continuation character;
it may be followed by a carriage return and the statement
continued on the next line.

(2) When used as the first character on a line that is not a
continuation of the previous line, the semicolon is a com­
ment character; it causes the entire line up to the carriage
return to be interpreted as a comment. The comment may be
any string of characters, terminated by the carriage return.

These two rules are not a complete or rigorous statement of the
semicolon convention; see Section 6 for a complete statement. The fol­
lowing examples illustrate the simple use of the semicolon.

Example 1 DEL DATAFILE.A,DATAFILE.B,DATAFILE.C,;?
DATAFILE.D,DATAFILE.E~

RENAME INFILE.A,DATAFILE.A9

The semicolon at the end of the first line is a continuation character;
the second line is a continuation of the first, and the carriage return
at the end of the second line terminates the first statement; a new
statement appears on the third line.

3-4 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

Example 2 GLYP BIG.SOURCECODE,BIG.OBJECTCODE,BIG.LISTFILE~
;COMPILE BIGPROGRAM TO RELOCATABLE OBJECT CODE9
;AND PRODUCE A LISTING~
DIR BIG.OBJECTCODE,BIG.LISTFILE~

The first line is a statement; the second and third lines are comment,
and the fourth line is another statement.

3.4.1 ARGUMENT LIST RULES
The first argument in an ACL statement must be separated from the

SUBSYSTEM-NAME by at least one space. Subsequent arguments must be sep­
arated by commas and must appear in the order shown in the format repre­
sentations. Blanks may be inserted on either side of the comma. If an
{optional} argument is omitted, its position must be accounted for by
including the comma(s) that would normally separate it from adjacent
arguments. For example, to omit infilename in the LINKED statement

LINKED {infilename},outfilename{,OPTIONS=optionstring}~

the correct form for an actual statement where the outfilename is GOFILE.A
and the optionstring is XM would be

I LINKED ,GOFILE .A,OPTIONS=XM~ I
If the omitted argument is the last one in the calling sequence, the comma
after the next to the last argument may also be omitted. For example,

I LINKED ,GOFILE.A~J

would be a correct construction with both of the optional arguments (in­
filename and OPTIONS=optionstring) omitted.

3-5 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

3.4.2 ARGUMENTS
An argument in an ACL statement is information passed to the sub­

system called. Accordingly, the rules for the construction of arguments
are generally defined by rules within the subsystems, and are not rules
of ACL. Although some subsystems will accept special (non-alphanumeric)
characters, others will not. The user is therefore cautioned against
using special characters within arguments (e.g., AR;G1 or NEW-NAME) unless
explicitly called for in the syntax of the argument (see Section 3.4.2.1
below) .

There are several classes of arguments, and there is uniformity
within the subsystems as to the construction of arguments within certain
classes (for example, filenames have a standard syntax). Several classes
are

(1) filenames
(2) expressions
(3) control parameters
(4) values
(5) keyword arguments

Each of the classes of arguments has rules governing its use and
construction. Throughout this document, the word argument is avoided
wherever possible and the class name to which the argument belongs is
used in its place. This is done to give the reader a better understanding
of each ACL statement, and to allow general rules of construction to be
used throughout.

Note that not all arguments can be readily grouped into classes.
Using the LINKED example above, optionstring is information required
uniquely by the LINKED subsystem. Therefore, no attempt is made to
describe it in general. For arguments not in general use, rules of
construction, values, and usage conventions are included within the
particular ACL statement descriptions (see Section 7).

3-6 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

An example of the use of argument class notation:

I DEL fil ename ~ I (delete the file
named filename)

Here, rather than using the general term argument, the format for this
ACL statement is given with the argument class name.

Certain argument classes are used so extensively in ACL that
general rules of construction may be given. This section includes only
the rules for the construction of filenames. Filenames are the only
argument class required to use the basic set of ACL presented in Section
4, so discussion of the other argument classes is deferred to Section 6.

3.4.2.1 Rules for the Construction of Filenames
A filename has the following format:

where

{<directoryname>}name{.extension}{;version}

• directoryname is the name of the directory with which the file
is associated. In most cases, the file is associated with a
user and the directoryname is the same as the userid. When a
user omits directoryname from a filename, that user's userid
is used as the default directoryname. Most of the ACL subsys­
tems discussed in this guide deal only with files in the user's
own directory; accordingly, it is normal to default the direc­
toryname when specifying filenames in ACL statements. In the
few cases where a directoryname other than the user's own
userid may be specified, this fact is explicitly noted in this
guide.

• name is any combination of up to 39 alphanumeric characters.
Together with the extension (if any), it serves as the user's
primary identifier for a file. If a set of files within the
same directory have the same name and different extensions,

3-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

the name alone may be used in certain ACL statements to desig­
nate the entire set. If a filename has no extension, the name
serves as the primary identifier for the file.

• extension is any combination of up to 39 alphanumeric charac­
ters. The extension is commonly used to differentiate among
a set of files having the same name, or to serve as a descrip­
tive mnemonic supplementing the name for the user's convenience.
Most ACL subsystems that produce output files provide default
extensions for the filenames. These default extensions are
given in the descriptions in Section 7. In addition, certain
subsystems provide default extensions for the filenames of
input files. These are also given in Section 7.

• version is a sequence number assigned to a file to allow the
user to create two or more files with the same name and exten­
sion. If the user omits the version (by leaving out the semi­
colon and number), the system selects a default value according
to the following rules:

(1) If a new file is created (indicated by a new name or
extension), version 1 is assigned.

(2) In reading a file from storage, the highest numbered
version is selected.

(3) If changes are made to a file, and the modified file
has the same name and extension as the original, the
next highest version is assigned to the modified file.

(4) If a file is deleted without specifying a version, the
lowest version is selected.

(5) If a file is renamed without specifying a version, the
highest version is selected.

Caution: There is a limit to the number of versions of a
file (with the same name and extension) that can be kept in
a directory at the same time. The limit is not fixed, and
the user will be kept informed of its current value. As new
(higher-numbered) versions of a file are created, older

3-8 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

(lower-numbered) versions will be automatically deleted to
keep the total number of versions within the assigned limit.
See Section 4.4.1 for further information.

3.4.2.2 Keyword Arguments
A keyword argument has the general form

I KEYWORD=argument I
The OPTIONS=optionstring argument in the LINKED statement shown above is
an example; the KEYWORD in this case is OPTIONS. The KEYWORD and the
"equal" sign must always be entered 1 iterally as s'hown in the syntax
descriptions in this guide.

The following rules apply to keyword arguments:

(1) Keyword arguments are always optional;
(2) Any keyword argument that is valid in a given ACL statement

may be inserted anywhere in the sequence of arguments for the
statement, and separated from the other arguments by commas
in the usual manner.

(3) When a keyword argument is omitted, one does not place commas
in the statement to account for its position - since a keyword
argument has no specific position in the statement syntax.

For example, the following LINKED statements are all equally valid
and all mean exactly the same thing:

(1) LINKED ,GOFILE.A,OPTIONS=XM~

(2) LINKED ,OPTIONS=XM,GOFILE.A~

(3) LINKED OPTIONS=XM"GOFILE.A~
(4) LINKED ,GOFILE.A~

where commas are used as placeholders for the infilename argument, but
are not needed as placeholders for OPTIONS=optionstring in (4).

In the syntax descriptions in Section 7, keyword arguments are
shown in arbitrarily selected positions in the formats of ACL statements
where they are valid, in cases where not many keyword arguments are valid.
In cases where many keyword arguments are valid, they are listed separately.

3-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

3.5 SUBSYSTEM STATEMENTS·
All ACL statements are calls to subsystems that process the argu­

ments provided in the statement and perform the specified function. In
addition to the arguments, certain subsystems require additional state­
ments containing control information. These statements are called
"control statements" or IIsubsystem statements. 1I Interactively, subsys­
tem statements are entered in response to a prompt, in most cases the
colon (~) character.

There are two general formats for subsystem statements:

(1) SUBSTATE argument1,argument2, ... ,argumentn~

(2) argument1:SUBSTATE argument2,argument3, ... ~argumentn~

The subsystem statement sequence provided with the ACL statement
is terminated by:

For example:

LINKED {infi1e},outfi1e{,OPTIONS=optionstring}~
SET address~
segname:SEG~

INCLDE fi1ename(s)V
ENTRY labe1~

END7

is a complete set of ACL statements for a link editor subsystem call.
The notational conventions used in this guide for subsystem

statements are the same as those previously described for ACL state­
ments. Arguments in general follow the same rules for subsystem
statements as for ACL statements. Each ACL subsystem described in
Section 7 which has subsystem statements includes the format and usage
descriptions of these statements.

3-10 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

NOTES: (1) The set of statements for OED, the text editor,
is extensive. They do not conform to the simple
rules above for construction of subsystem state­
ments. Accordingly, a separate manual (Appendix
A) is provided for the OED subsystem.

(2) The text string that is contained in a macro
definition is not an ACL subsystem statement.
This text is not restricted to any formatting
rules (see MACRO, Section 7).

3-11 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 4

TUTORIAL FOR THE BEGINNING ILLIAC IV SYSTEM USER

lAC Doc. No. SG-I1000-0000-C
Rev. '7-1-73

SECTION 4

TUTORIAL FOR THE BEGINNING ILLIAC IV SYSTEM USER

CONTENTS

4.1 INTRODUCTION
4.2 INTERACTIVE AND BATCH OPERATION
4.3 ENTERING THE ILLIAC IV SYSTEM
4.3.1 THE HELP SUBSYSTEM
4.4 FILE TRANSFERS AND FILE MANAGEMENT
4.4.1 FILE ARCHIVING
4.4.2 RESTORING ARCHIVED FILES
4.5 BASIC OPERATIONS AND ACL STATEMENTS
4.5.1 COMPILATION
4.5.2 LINK EDITING
4.5.3 MAPPING DATA AREAS IN THE ILLIAC IV DISK MEMORY (140M)
4.5.4 140M AREA ALLOCATION
4.5.5 TRANSFERRING DATA TO 140M
4.5.6 LOADING AND EXECUTING A PROGRAM ON THE ILLIAC IV
4.5.7 TRANSFERRING DATA FROM 140M
4.5.8 TRANSFERRING DATA FILES FROM THE ILLIAC HOST TO THE USER'S HOST
4.6 BATCH REQUESTS: THE PRIMARY INPUT FILE (PIF)
4.6.1 STRUCTURE OF A PRIMARY INPUT FILE
4.6.2 THE CREATION OF A PIF
4.6.3 EXAMPLE OF PRIMARY INPUT FILE
4.6.4 THE SUBMIT STATEMENT
4.6.5 THE INQ AND DELJOB STATEMENTS

lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

SECTION 4

TUTORIAL FOR THE BEGINNING ILL lAC IV SYSTEM USER

4.1 INTRODUCTION
The following is a tutorial for the beginning ILLIAC IV System user.

It includes a discussion of all the operations necessary to accomplish a
basic ILLIAC IV process, beginning with entry to the System, proceeding
through file preparation and file transfer to the submission of a job
containing steps for compilation, assembly, link editing, layout of disk
memory areas, data transfer to the ILLIAC IV memory system, program
loading and execution, transfer of output data back from the ILLIAC IV,
and finally the transfer of output data back to the user's Host and
logout from the ILLIAC IV System.

The following section provides an introduction to the System's two
basic modes of operation.

4.2 INTERACTIVE AND BATCH OPERATION
The ILLIAC IV System can be used in two modes, batch and interactive.

In the interactive mode, the System accepts ACL statements from the user's
terminal (via the ARPA Network) and responds to these statements by carry­
ing out the operations they specify and by sending messages back to the
user's terminal. As long as you are logged in to the ILLIAC IV System
from a terminal, you are using the System in interactive mode.

In addition, it is possible to write a sequence of ACL statements in
a file and place a request to process this file in the batch queue. While
this request is in the queue, or while the file (which may be thought of
as a deferred job) is being processed, the user may continue to operate
interactively, or he may log out of the system. When the job is scheduled,
the batch ACL file will be opened and ACL statements taken and processed
in order, exactly as if they came from the user's terminal - except that
system responses (messages, lists, etc.) are written out to a file instead
of to the terminai.

4-1 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

A user who has submitted a batch job may still continue to work in
interactive mode although he must be careful about referencing any files
that are also referenced by statements in the batch job file.

The ACL statements in a file placed in the batch queue are sched­
uled and processed noninteractively. Certain statements - currently
GLYP, ASK, SSK, and RUN - may be used only in a batch file.

The file of ACL statements to be processed in batch is called a
primary input file or PIF. The file on which messages and other system
responses are written out in batch is called primary output file or POF.
The details of building an ACL statement file - structure of the PIF, the
SUBMIT statement for entering a request into the batch queue, and other
related statements - are discussed in Section 4.6 below, after a detailed
discussion of the ACL statements required to set up a basic ILLIAC IV
process.

4.3 ENTERING THE ILLIAC IV SYSTEM
It will be assumed here that you have been administratively assigned

a userid and a password for entry to the ILLIAC IV System. This should be
done through the ILLIAC User Liaison Representative for your organization.

The procedures for establishing a connection to the ILLIAC Host via
the ARPA Network are not covered here, as they will vary from Host to Host.
Once you are connected to the ILLIAC Host, the ILLIAC IV System will type
a prompt character (@) on your terminal. In response to this, you must
type a LOGIN statement, with the following format:

I LOGIN userid password ~ccount~ I
The userid and password are the ones administratively assigned to you. The
password will not be echoed at your terminal.

The account may be any string of digits you wish to enter. It is
not used by the system in the current implementation.

Note that the userid, password, and account are separated by spaces,
not by commas as in the ACL statement format; LOGIN is not an ACL state­
ment.

Once the LOGIN statement is completed, the system will respond with
the ACL prompt character (!) and will be ready to accept an ACL statement.

4-2 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

4.3.1 THE HELP SUBSYSTEM
The HELP subsystem is provided to answer questions about the system

typed in by the user. HELP can be called at any time in response to an
ACL prompt character (!) typed by the system. To get HELP, type

HELP will respond by typing out a herald message followed by HELP's own
prompt character, a question mark (?). In response to this prompt, type
in a question terminated with either a carriage return or a question mark.
HELP will type an answer followed by another question-mark prompt.

Anything typed by the user in response to a question-mark prompt is
interpreted by HELP as a question; in order to enter an ACL statement, you
must exit from HELP by typing

HELP will request an additional carriage return to confirm this, and upon
receiving confirmation will terminate and the system will type an ACL
prompt (!).

HELP operates by identifying keywords in the user's question and
typing out stored answers associated with keywords or combinations of key­
words. It cannot properly answer complex questions or questions requiring
a YES or NO answer. Keep your questions as brief and simple as possible.

HELP's answers are written as succinctly as possible, and it may be
necessary to ask a series of related questions in order to get the complete
information desired on a given topic. When HELP cannot answer a question,
it stores the question for examination by the project staff and requests
the user to rephrase the question.

4.4 FILE TRANSFERS AND FILE MANAGEMENT
Very often the first thing you will want to do upon entering the

system is to transfer files of information from your Host to the central
file system. This system maintains a directory of all active files "owned"
by each user - i.e., active files associated with the user's userid. This

4-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

directory can be listed on your terminal by means of the OIR statement,
which has the following format:

OIR {filename1,filename2, ... ,filenamen}~

If the optional list of filenames is omitted from the statement format, the
system will list the entire file directory; if one or more filenames are
entered as part of the statement, only the directory entries for those files
will be listed (thus providing a way to verify the information on a few
particular files in the directory without listing the entire directory,
which may be quite lengthy).

After verifying the status of your active files, new files may be
transferred into the ILLIAC IV System by means of the CPYNET statement with
the following format:

CPYNET (filename1,hostid,userid{,password{,account}}),filename29

where filename1 is the name of the file to be copied from your Host, hostid
is the name or number of your Host, userid is the name of the user directory
at your Host in which the file is held, password is the password associated
with userid, account is a numeric string for user accounting purposes, and
filename2 is the name of the destination file in the central file system.
Password and account should be omitted if they are not required as part of
the procedure for logging in to your Host.

Alternatively, you may create new files within the ILLIAC IV System
by means of the text-editing subsystem, OED (described in Appendix A). OED
is the most convenient means for creating relatively short files of alpha­
numeric text, such as a primary input file of ACL statements. Text files
in the system may also be edited using OED.

4.4.1 FILE ARCHIVING
A file in the system may be either an active file or an archived file.
An active file is a file in the user's "active file storage space,"

whose name (with other information) appears in the user's file directory.
Active files can be accessed directly by ACL subsystems, and throughout this
guide, the term "file" refers to an active file unless otherwise noted.

4-4 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

An archived file is a file that has been copied from the user's active
file storage space to the UNICON memory, and subsequently deleted from the
user's directory. An archived file cannot be accessed directly by ACL sub­
systems, but must first be "restored," i.e., copied back into the user's
active file storage space, as described below in Section 4.4.2.

The copying of files to the UNICON memory is done periodically during
the day, without the need for any action by the user. Thus the user may
archive an active file by taking the following steps:

(1) Verify that the file has been copied to the UNICON by using the
UDIR statement (described below).

(2) Delete the file from active storage space and from the user's
directory by using the DEL statement (described below).

(3) Save the printout produced on the terminal by UOIR.

The third step is important because in the present implementation,
there is no way for the user to get a directory or listing of his archived
files after they have been deleted from active status. UOIR provides com­
plete information on a file that has been copied to the UNICON, but only
while the file remains in the user's directory, i.e., before the archiving
process has been completed by deleting the file from active storage.

The UOIR statement has the following format:

After this statement is entered, the UOIR subsystem will prompt you by
typing "OUTPUT TO:". Respond by typing in a carriage return if you want
the information typed out on your terminal, or with a filename followed by
a carriage return if you want the information written to a file. (Note:
When UOIR writes out information to an existing file, any information
already in the file is overwritten and lost.)

UOIR will now prompt again by typing out "FILE NAME:". Again you
may respond either with a carriage return or with a filename followed by
a carriage return. In the first case, UOIR will respond by supplying
information on all active files in your directory that have been copied
to the UNICON; in the second case, it will return information on the
specified file only.

4-5 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The information returned by UDIR includes the filename, the number
of pages in the file, the date and time when the file was copied to the
UNICON, and the UNICON address of the file.

To complete the archiving process by deleting a file from your ac­
tive file storage space, use the DEL statement with the following format:

I DEL fi 1 ename~ I
where filename designates the file to be deleted. If this file has not
been copied to the UNICON, it will be irrevocably lost.

The amount of active file storage space assigned to each user is
limited to a certain number of pages, while the amount of space available
for archived files may be regarded as virtually unlimited, since the
UNICON memory has an extremely large on-line capacity and an unlimited
off-line capacity.

To find out how much space is assigned to you for active file stor­
age, use the MAXAFS statement, with the following format:

I MAXAFS? I
The MAXAFS subsystem will respond by typing out the number of pages of
active file storage space assigned to you.

If your active files exceed the assigned number of pages, one or
more of your active files may be archived for you at the end of a working
day - i.e., one or more files that have been copied to the UNICON may be
deleted from your active file storage space and from your file directory
without your intervention.

4.4.2 RESTORING ARCHIVED FILES
To restore archived files, use a NOTIFY statement as described below

to send a message. The message should include the following information:

(1) filename including at least the directoryname, name, and
extension and preferably the version;

(2) Archiving information. If you have UDIR information for the
file, give the UNICON address and the date and time returned

4-6 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

by UOIR. Otherwise, give a pair of dates (and possibly times)
between which the file was copied to the UNICON, or the last
date and time when you know that the file was in your directory.

The more exact the archiving information given in the message, the
faster the file can be restored. If UOIR information is routinely obtained
and saved by the user before files are archived, restoration will normally
be a quick process.

To send a message, use the NOTIFY statement with the following format:

I NOTIFY "message"? I
where the message may be of any length and may include any character except
quotation marks; in particular it may contain carriage returns. The quota­
tion marks delimiting the message may not be omitted. The following
example illustrates the suggested form for the message:

Example: NOTIFY IIRESTORE <JONES>DATA.BATCH;23 (JUNE 25 73,JUNE 30 73).~
RESTORE <JONES>PROG.SUBRS;2 (JUL 11 73 15:04 00021,16571,5).1I~

Here the user is requesting that two files «JONES>DATA.BATCH;23 and
<JONES>PROG.SUBRS;2) be restored to active status. For the first file,
the user does not have UDIR information, so he supplies a pair of dates
between which the file was copied to the UNICON. For the second file,
he gives the date, time, and UNICON address obtained from UDIR while the
file was still in his directory.

A staff member should acknowledge the message within a few minutes
by linking to the user's terminal and typing a message. If no acknowledg­
ment is received within a few minutes, use the NOTIFY statement again to
repeat the message.

Note that when archived files are required for the processing of a
batch job, you are not required to request explicitly that they be
restored; this will be done as matter of routine.

4.5 BASIC OPERATIONS AND ACL STATEMENTS
For purposes of this discussion, we will assume that your objective

is to start with one or more files of GLYPNIR source code and one or more

4-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

files of data, compile, assemble, and link-edit the code, transfer it and
the data to the ILLIAC IV or input it to the ILLIAC IV Simulator (SSK),
and ultimately transfer the output data (if any) back to your Host. We
will now examine this sequence in a little more detail with respect to
the ACL statements required.

4.5.1 COMPILATION
The first step is compilation and assembly of GLYPNIR source code.

This is done by means of the GLYP statement, with the following format:

GLYP infilename,outfilename{,listfilename}~

where infilename is the filename of a file of GLYPNIR source code, out­
filename is the filename of the file to contain the relocatable ASK
object code, and listfilename is the name of the file to contain the
listing produced by the compiler. The outfile and the listfile need not
already exist. If listfilename or outfilename includes a version number
and that version number exists, the contents will be overwritten; if the
files do not exist, new files will be automatically created. Furthermore,
the listfilename may optionally be omitted from the statement in which
case no listing will be produced. The various options of the GLYPNIR
compiler are controlled by statements included in the source code file.

In the current implementation, GLYP is illegal in interactive mode;
it must be used in a batch file.

4.5.2 LINK EDITING

The compilation and assembly process produces relocatable object
code, which must be converted to an absolute-address ILLIAC IV SAVE file
(ISV file) for execution by the ILLIAC IV or SSK. This is done by the
link editor, LINKED. Input to LINKED is in the form of the LINKED state­
ment followed by a sequence of control statements which specify the file(s)
of ASK relocatable code to be included in the ISV file. The LINKED state­
ment has the following general format:

LINKED {infilename},outfilename{,OPTIONS=optionstring}~

4-8 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

where infilename is the name of a file containing LINKED subsystem state­
ments to control the link editor, outfilename is the name of the output
ISV file to be produced by LINKED, and optionstring is a string of letters
specifying various optional features of LINKED.

The infilename may be omitted and the link-editor control statements
entered in-line after the LINKED statement; for simplicity, we will follow
this practice for purposes of this discussion. The OPTIONS=optionstring
argument may also be omitted, and we will omit it throughout this discus­
sion.

The LINKED control statements used in this discussion are INCLDE and
END. There are two others called SET and ENTRY, which will not be discussed
here.

The INCLDE statement has the following format:

INCLDE filenamel,filename2, ... ,filenamen9

where the filename(s) are the names of files of relocatable ASK object code
to be included in the ISV file.

The END statement serves to terminate the sequence of control state­
ments to LINKED, and is mandatory. It has the format

After the END statement, LINKED will perform the link editing, produce a
page map of the output file on the user's terminal or primary output file,
and terminate. The system will then type an exclamation-point (!) prompt
(in interactive mode) to show that it is ready for a new ACL statement.
The file(s) specified in the INCLDE statement are collected into an ISV
file ready for execution on the ILLIAC IV or simulation by SSK. (The ISV
file contains all the necessary information to specify the initial machine
state of the ILLIAC IV.)

4.5.3 MAPPING DATA AREAS IN THE ILLIAC IV DISK MEMORY (I4DM)
Usually data structures to be processed on the ILLIAC IV will be

much too large to load integrally into the working storage (Array Memory)
of the ILLIAC IV Processor. Accordingly, a large dedicated disk memory

4-9 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

system (the 14DM) functions as the main memory for the ILLIAC IV. Data and
programs are transferred to this memory system and then transferred in and
out of working storage.

The time required for 140M data accessing will become great comp~red
to the computation speed of the lLLIAC IV unless the I4DM data layout is
correctly specified; this layout of data areas on the 140M is critical to
the efficient use of the ILLIAC IV Processor and must be specified in
detail by the user.

The 14DM layout is specified by means of a MAP subsystem call. The
MAP subsystem, like the link editor, requires control statements to specify
its operation. As the explanation of these control statements is lengthy,
it will not be discussed here; complete details are to be found in Section
5 and Section 7. The MAP statement itself has the following format:

I MAP {infilenameH ,mapfilename},;> I
where infilename is the name of a file containing control statements for
the MAP subsystem and mapfilename is the name of the file to contain the
I4DM allocation tables generated by MAP.

As with LINKED, the infilename may be omitted and the control state­
ments entered in-line after the MAP statement. In the remainder of this
discussion, however, we will assume that the control statements are in an
infile.

If mapfilename is omitted, no allocation tables are produced. A
time or map listing can be output on the user's terminal (or in his
primary output file in batch); this option may be used to analyze a
tentative 140M layo~t.

The effect of the MAP statement (and its file of control statements)
is to create a file of allocation tables. No actual assignment of disk
memory is performed; this is done with the ALLOC statement (see below).

The specification of an I4DM layout with MAP is always required
when a program is to be run on the ILLIAC IV; however, if the program
is merely to be simulated with SSK, I4DM mapping may be omitted.

4-10 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

4.5.4 140M AREA ALLOCATION
Once the layout of areas in 140M has been defined by means of the

MAP subsystem, we need to request the assignment of physical space on
the disk. This is done by means of the ALLOC statement, with the format

I ALLOC mapfilename{ .allocid}~ I
where mapfilename is the name of the allocation table file to be produced
by the MAP subsystem. The allocid may be omitted and will not be discussed
here.

When the ALLOC statement is processed (immediately prior to loading
the 140M and executing an ILLIAC IV program), the system will examine the
current allocation of 140M space and will, if possible, assign the neces­
sary space while other job(s) still have reserved space in 140M. If it is
impossible to assign all the necessary space, the allocation will fail.
Note that the ALLOC statement does not cause any information to be trans­
ferred to the 140M; it merely assigns the necessary space for data areas
to the user.

The ALLOC statement is omitted if the user merely wishes to simulate
a program with SSK.

4.5.5 TRANSFERRING DATA TO 140M
After 140M space is assigned according to the MAP specification,

data is transferred by means of the MOVE statement. The procedure is to
transfer from a file named in the user's directory to an assigned disk
area. The format for the MOVE statement in this case is

I MOVE fi 1 ename. I40M: areaname~ I
where filename is the name of a data file in the central file system and
areaname is the name of an allocated 140M area (previously defined and
named by means of a control statement to the MAP subsystem). The charac­
ters "I40M:" prefixed to the areaname are mand~tory. Like the MAP and
ALLOC statements, this MOVE statement is omitted if the program is to be
simulated with ASK rather than run on the lLLIAC IV.

4-11 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

4.5.6 LOADING AND EXECUTING A PROGRAM ON THE ILLIAC IV
When all the steps described above have been performed, the system

is ready to load and execute an ILLIAC IV program. This is done by means
of the RUN statement, with the following format (for purposes of this
tutorial):

I RUN fil ename~ I
where filename ;s the name of an ILLIAC IV SAVE (ISV) file produced by
the LINKED subsystem.

When the RUN statement is processed, the ISV file is transferred
to the portion of 140M reserved for programs; is is then loaded into
Array Memory and execution is started with a transfer of ILLIAC IV
control to the initial entry point in the user's program.

In the current implementation, RUN is illegal in interactive mode;
it must be used in a batch file.

4.5.7 TRANSFERRING DATA FROM 140M
Normally, the first thing to do after program execution on the

ILLIAC IV is to transfer the output data from the ILLIAC IV Disk Memory
back to a file or files in the user's directory. This is done by the
exact reverse of the procedure for putting data on the disk, namely a
MOVE statement following the RUN statement. This MOVE statement transfers
data from a disk area to a file. The following format is used:

I MOVE 14DM:areaname. fi 1 ename~ I
where areaname is the name of a disk area (defined by a control statement
to the MAP subsystem) containing output data and filename is the name of
a file to contain that data. The characters "I4DM:" prefixed to the
areaname are mandatory.

This step is not necessary after a program has been simulated by
SSK, as SSK will output data directly to a file in the user's directory.

4-12 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

4.5.8 TRANSFERRING DATA FILES FROM THE ILLIAC HOST TO THE USER'S HOST
The final step is to transfer the file or files of output data back

to the user's Host. Once again, the CPYNET statement is used, with the
following format:

CPYNET f;lenamel,(filename2,hostid,userid{,password{,account}})?

where fi1enamel is the name of a file held in your directory in the central
file system, filename2 is the name of the file at your own Host to which
you wish to copy the contents of filenamel, hostid is the name or number of
your Host, userid ;s your user identification at your Host, password is the
password associated with your userid at your Host, and account is a numeric
string for user accounting purposes. Password and account should be
omitted if they are not required for logging in to your Host.

4.6 BATCH REQUESTS: THE PRIMARY INPUT FILE (PIF)
We have just gone through a discussion of the basic ACL statements

used in preparing and running an ILLIAC IV program, without considering
the means for entering these statements into the system for processing.
As discussed earlier, most ACL statements can be entered directly from the
user's terminal in interactive mode, but some - the GLYP, ASK, SSK, and
RUN statements - are currently illegal in interactive mode and must be sub­
mitted in a batch job. A batch job is the processing of ACL statements
contained in a file and submitted to the batch-processing facility of the
system by means of the ACL statement SUBMIT.

Such a file is called a primary input file or PIF. As a rule, a user
will either bring a PIF into the central file system from his own Host
(using the CPYNET statement) or construct it interactively using the ILLIAC
IV System's text editor, OED. He may then submit a request to process it
with a SUBMIT statement and log out, since the PIF is processed noninter­
actively.

4.6.1 STRUCTURE OF A PRIMARY INPUT FILE
A PIF may contain any legal sequence of ACL statements; here we will

discuss what is essential in order to have a meaningful and useful PIF,

4-13 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

using the same processing sequence discussed above. We assume that the
source code is written in GLYPNIR source language and that program and
data files originate outside the ILLIAC IV System and must be brought in
by means of CPYNET statements.

As a minimum, the PIF must contain the GLYP and RUN statements, since
currently these may be used only in batch. Input data should be transferred
to the 14DM just prior to program execution on the 1LLIAC IV, so the RUN
statement should be preceded by one or more MOVE statements for this pur­
pose; and the MOVE statements must be preceded by an ALLOC statement to
assign 14DM space. Thus we have the sequence GLYP, ALLOC, MOVE, RUN.
Additionally, the PIF must contain any other statements that are required
between the GLYP and RUN statements; for purposes of this discussion,
these are the LINKED statement and its associated control statements.

At the end of the batch job run, all 14DM space assigned in the job
is marked for deal location, and data remaining in 14DM may be lost. There­
fore, the PIF should also contain one or more MOVE statements following
the RUN statement to transfer ILLIAC IV output data from I4DM to files in
the user's directory.

Thus a typical P1F might contain the following broad structure:

(1) One or more GLYP statements to compile and assemble GLYPN1R
source code;

(2) A LINKED statement (with control statements following in-line
or else in another file) to create an 1SV file from the
assembled code;

(3) An ALLOC statement to allocate the I4DM areas defined and
named by control statements to the MAP subsystem;

(4) One or more MOVE statements to transfer information to I4DM;
(5) A RUN statement to load and execute the program (using the

ISV file produced by the LINKED subsystem);
(6) One or mO're MOVE statements to transfer data from 14DM to

files in the user's directory.

4.6.2 THE CREATION OF A P1F
The PIF can be created at the user's Host and then transferred to

the ILLIAC IV System by means of a CPYNET statement used interactively

4-14 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

(assuming that it is in a form compatible with the ILLIAC IV System), or
it can be created by interactive use of the OED text editor. The text
editor is a subsystem called by the ACL statement OED, which has the
format

OED is controlled by a large set of OED command statements, which are
discussed in detail in Appendix A and will not be discussed further in
this section.

The formats of statements written in the PIF are exactly the same
.as if they were being entered from the user's terminal. The character
(!) may be used as the first character of any ACL statement in a PIF,
but the system ignores it and it has no meaning.

Since the system will respond to statements in a PIF exactly as if
they were being entered from a terminal, it must have a place other than
the terminal to write out messages, certain types of listings, etc. A
file in the user's directory is used for this purpose and is called the
primary output file or POF.

4.6.3 EXAMPLE OF PRIMARY INPUT FILE
We will now give an example of a sequence of ACL statements that

would constitute a functionally complete primary input file for a simple
batch job. Functional groups of statements are followed by commentary.
It is assumed that the user's file directory in the ILLIAC IV System con­
tains the following files: SOURCE.ONE and SOURCE.TWO, which are two files
of GLYPNIR source code; DATAFILE.IN, which is a file of input data; and
DISKMAP.FOO, which is a file of allocation tables created by a prior call
to the MAP subsystem (see Section 5). In this MAP call, the user has
declared two 140M data areas named INAREA and OUTARA.

GLYP SOURCE.ONE,ASKCODE.ONE,GLYPLIST.ONE~
GLYP SOURCE.TWO,ASKCODE.TWO,GLYPLIST.TWO~

These two ACL statements cause the GLYPNIR source-code files,
SOURCE.ONE and SOURCE. TWO, to be compiled and assembled one after the

4-15 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

other. The output is relocatable ASK object code, written in files
ASKCODE.ONE and ASKCOOE.TWO, and the compiler listings are written in
files GLYPLIST.ONE and GLYPLIST.TWO.

LINKED ,GOFILE.FOO~

INCLDE ASKCODE.ONE,ASKCODE.TWO~

ENO~

This LINKED statement omits an infilename (a comma is used as a
placeholder for it), and so the control statements are in-line. The
INCLDE statement specifies files ASKCOOE.ONE and ASKCODE.TWO as the ASK
object code for the 1SV file. The output ISV file will be named
GOFILE.FOO.

I ALLOC OISKMAP. F0091

This statement causes space in 140M to be assigned for the areas
specified in file 01SKMAP.FOO.

I MOVE OATAFI LE. IN, 140M: INAREA'II

This causes the contents of file DATAF1LE.1N to be transferred
into 140M area 1NAREA.

I RUN GOFI LE. FOO? I

The ISV file GOF1LE.FOO is placed in 140M and then loaded into
working storage. Execution will begin at the initial entry point. The
program will contain calls for transferring data between working storage
and the data areas in 140M (1NAREA and OUTARA). At program termination,
the output data will be in OUTARA.

I MOVE I40M:OUTARA,OATAFILE.OUT~ I

This transfers the contents of area OUTARA into the central file
system file OATAF1LE.OUT.

4-16 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

NOTE: Ordinarily a user will want to verify the success of his
job before initiating large data file transfers back
across the ARPA Network. Assuming the job is successful,
the following sequence of CPYNET statements will transfer
data back to the user's Host. It is assumed here that
these CPYNET statements are entered interactively.

CPYNET DATAFILE.OUT,(OUTDATA.GOODSTUFF,MOON,FANSOME,XYZ,102)V
CPYNET GLYPLIST.ONE,(GLIST.ONE,MOON,FANSOME,XYZ,102)~
CPYNET GLYPLIST.TWO,(GLIST.TWO,MOON,FANSOME,XYZ,102)~
CPYNET FANPOF.FOO,(DIAG.FOO,MOON,FANSOME,XYZ,102)~

These statements copy files from user Fansome's directory in the
central file system to his directory at his own Host (the Moon Host).
Fansome's password is XYZ. The account number is 102. The first state­
ment copies his output data; the second and third copy the listing files
produced by the GLYPNIR compiler; and the last statement copies the
primary output file, FANPOF.FOO. This file has not yet been created at
the time the primary input file is written; it is specified when the PIF
is submitted for batch processing with a SUBMIT statement. ,

4.6.4 THE SUBMIT STATEMENT
Once a suitable PIF exists in the user's directory, he may submit

it for batch processing with the SUBMIT statement, which has the follow­
ing format:

SUBMIT pifname,{pofname},{runcode},userid,password,account~

where pifname is the name of your PIF, pofname is the name to be assigned
to your POF, userid is your user-identification code, password is your
password, account is a numeric string, and runcode is one of the following:

o if your PIF contains no statements requiring either the B6700
or the ILLIAC IV resources;

1 if your PIF requires the ILLIAC IV resource (i.e., if the PIF
contains a RUN statement or any MOVE statements);

4-17 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

2 if your PIF requires the B6700 resource (i.e., if the PIF
includes any GLYP, ASK, or SSK statements);

3 if your PIF requires both the ILLIAC IV resource and the
B6700 resource.

If the runcode is omitted, the default value is 3.
If the pofname is omitted, the primary output file will have a

filename made up of the pifname as the name and POF as the extension.
After the SUBMIT statement is completed, the system will type a

number called the jobid. This number serves to identify the job in INQ
or DELJOB statements (discussed below). The system then types a prompt
character (1) and awaits a new ACL statement.

You may now log out, as the batch job requires no further inter­
vention; or you may remain logged in, entering further ACL statements
in interactive mode (possibly submitting another batch job, for example).
If you remain logged in, you should be careful not to alter or delete
any files referenced by statements in the submitted PIF.

4.6.5 THE INQ AND DELJOB STATEMENTS
The INQ statement is a means for finding out the status of a batch

job after it has been submitted. The format of INQ is (for purposes of
this tutorial):

I INQ jObid71

where jobid is the number typed by the system in response to the SUBMIT
statement. The system responds to the INQ statement with one of the fol­
lowing messages:

WAITING
RUNNING
COMPLETED

The job is still awaiting its turn for processing.
The job is being processed.
The job is neither waiting nor running. (Note:
This message may be misleading if a considerable
time has elapsed since the job was submitted.)

A batch job that has been submitted with a SUBMIT statement may be
"unsubmitted" with the DELJOB statement. The DELJOB statement has the

4-18 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

following format:

I DELJOB jobi d. useri d .password~ I

where jobid is the number typed by the system in response to the SUBMIT
statement, userid is the userid entered in the SUBMIT statement, and
password is the password associated with that userid. The job will be
deleted from the queue. If the job is being actively processed, the
DELJOB statement has no effect.

4-19 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

,

SECTION 5

DATA TRANSFERS AND THE MAP SUBSYSTEM

lAC Doc. No. SG .. I1000.;;OOOP";C
Rev. 7-1-73

5.1
5.1.1

5.1.2
5.1.3
5.2

5.2.1
5.2.2

5.2.2.1

5.2.2.2

5.3
5.3.1

5.3.2

5.3.3

5.4

5.4.1

5.5
5.5.1

5.5.2

5.5.3

5.6

5.7

SECTION 5

DATA TRANSFERS AND THE MAP SUBSYSTEM

CONTENTS

DATA TRANSFERS - AN OVERVIEW
DATA TRANSFERS BETWEEN THE USER AND THE CENTRAL FILE SYSTEM
DATA TRANSFERS BETWEEN THE CENTRAL FILE SYSTEM AND THE ILLIAC IV
SUMMARY OF DATA TRANSFER OVERVIEW
THE ILLIAC IV MEMORY SYSTEM
THE ILLIAC IV MEMORY HIERARCHY
THE ILLIAC IV DISK MEMORY (140M) SYSTEM
The Physical Disk Memory System
The Logical Disk
ILLIAC IV DISK MAPPING: THE MAP SUBSYSTEM
THE FORMAT STATEMENT
DESCRIBING AN 140M LAYOUT WITH THE MAP SUBSYSTEM
AN EXAMPLE OF 140M LAYOUT PROCEDURE
RELATIONSHIP BETWEEN A LOGICAL DISK LAYOUT AND AN 140M
SPACE ASSIGNMENT
THE AREA AS A VIRTUAL 140M MAP
THE MAP SUBSYSTEM LIST OUTPUTS
THE PRINT STATEMENT
THE TIME STATEMENT
THE END STATEMENT
THE ALLOC SUBSYSTEM
THE DALLOC SUBSYSTEM

lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

SECTION 5

DATA TRANSFERS AND THE MAP SUBSYSTEM

This section includes necessary information and a set of basic
procedures for transferring data between a user's Host system and the
ILLIAC IV Processor. The procedures described here are very general
and are sufficiently detailed only for a limited set of ILLIAC IV users.
Users with more complex data problems will find this discussion useful
in providing a basic understanding of the ACL subsystems supporting data
transfers to and from the ILLIAC IV Disk Memory (140M).

This section includes an extended discussion of the ACL subsystems
MAP and ALLOC which perform 140M preparation tasks for the ILLIAC IV
user. These two subsystems must be called by ACL statements at some
time prior to data transfers to the 140M. Since the 140M functions in
the system as the main memory store for the ILLIAC IV Processor, every
ILLIAC IV user must acquire a working knowledge of these necessary
preparation tasks.

5.1 DATA TRANSFERS -AN OVERVIEW
In this introductory discussion, data movement from its source to

the ILLIAC IV is viewed as having three nodes: a user's own local
computing system (user Host), the central file system, and the 140M.
Data transfer is a two-step sequence using a CPYNET statement and a MOVE
statement, as seen in Section 4. The first step is the transfer of data
from the user's Host to the central file system. The second step is the
transfer of data from the central file system to the 140M. Data movement
from the 140M back to the originating source is the inverse of this
sequence.

The following diagram illustrates the transfers. The arrows in
the diagram represent transfers perfonned by the MOVE and CPYNET sub­
systems.

5-1 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

I4DM CENTRAL FILE
SYSTEM

CPYNET

USER'S HOST
SYSTEM

The data transfer rate across the ARPA Network is something less
than 50K bits/second, while the data transfer rate of the I4DM is
approximately 109 bits/second. One of the functions of the central
file system ;n data transfers is to buffer the data flow from the user's
Host to the ILLIAC IV so as to smooth this difference in transfer rates.

The request to transfer data from the user's Host to the central
file system is shown in the following format:

CPYNET (filename1,hostid,userid{,password{,account}}),filename2~

See Sections 4 and 7 for detailed explanations of this format.
The request to move data from the central file system to the 14DM

is of the following form:

I MOVE fi 1 ename2, 14DM :areaname~ I
In these two calls, filename2 is the name of a file residing in

the centra.l file system. In moving data from a source to the ILLIAC IV,
the user need not be concerned with the system's management of this
file - which may involve, for example, staging on various storage devices
in the file system. A user file in ~he central file system may be
accessed, edited, moved, or deleted by the user through ACL,· without
concern for where it is located in the file system·or how it is managed
by the operating system software.

5-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.1.1 DATA TRANSFERS BETWEEN THE USER AND THE CENTRAL FILE SYSTEM
Data transfers discussed in this section are presumed to be for

the purpose of bringing input data to the ILLIAC IV, processing it there,
and bringing results back to the user. Therefore, this input data must
ultimately conform to the formatting rules of the ILLIAC IV Processor.

• Data Transfer Protocol - The central file system supports the
ARPA Network File Transfer Protocol, FTP.

• Data Word Formats - It is expected that ILLIAC IV user source
data will originate (or be collected) in a variety of formats.
The CPYNET subsystem logically performs, as its basic option,
a serial bit string transfer between the user Host and the
central file system. Data prepared by the user and transferred
with the CPYNET subsystem, without conversion, will subsequently
be written to the I4DM (via a MOVE call) in the bit sequence of
the source file. It is possible, therefore, for the user to
originate or convert data to ILLIAC IV formats external to the
central file system, e.g., within the user's Host environment,
and to transfer the data to the I4DM without further data format
manipulation.

Alternately, source data which is not in ILLIAC IV word formats may
be transferred to the central file system and converted there for subse­
quent use by the ILLIAC IV Processor. To this end, extensive data word
format conversion programs are being prepared and placed in the system
for general use.

User information for these subsystems will be provided as soon as
the programs are available.

Finally, a special conversion program called CONVRT is available
for use with the ILLIAC IV Simulator, SSK. See SSK in Section 7 of this
guide.

• Data File Formats - The CPYNET subsystem transfers files in
strict page sequence. No structure or key information is
assumed to exist within the file pages; if it does, it will
be treated as data.

5-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.1.2 DATA TRANSFERS BETWEEN THE CENTRAL FILE SYSTEM AND THE ILLIAC IV
Once data has been placed in the central file system, it may be

transferred to the 140M. Similarly, output data from ILLIAC IV processes
must be copied from the 140M back to the central file system.

However, prior to a data transfer with the 140M, preparation in the
form of a disk layout and space assignment must be accomplished by the
user. The ACL subsystems supporting these preparation tasks are MAP and
ALLOC. The nature of these preparations will be examined in Section 5.3
and the following.

5.1.3 SUMMARY OF DATA TRANSFER OVERVIEW
The model of data movement presented here is introductory only.

To summarize the process, the user prepares source data external to the
ILLIAC IV System either in the word format required by the ILLIAC IV
Processor or in a format that ;s converted using ILLIAC IV System
resources. Data is transferred first to the central file system, where
it ;s collected and staged (and optionally converted), then to the 140M;
inversely, data is transferred from 140M to the central file system, and
from there to the user's Host. All transfers are performed by the MOVE
and CPYNET subsystems.

The data rate smoothing functions performed by the central file
system should be transparent to the user. However, the user must be
concerned in greater detail with the 140M preparation requirements, and
with data transfers within the ILLIAC IV (i.e., between 140M and Array
Memory). Extensive control of these transfers is critically important
to the ILLIAC IV user. The remainder of Section 5 is principally
concerned with 140M preparation.

5.2 THE ILLIAC IV MEMORY SYSTEM
Data transfers to the ILLIAC IV are accomplished using the COpy

subsystem, which makes the 140M directly accessible to the user through
ACL. The 140M is an integral part of the lLLIAC IV memory structure,
and as such it requires certain preparations before the user may transfer
data to it. The reasons become evident on closer examination of the
ILLIAC IV memory hierarchy.

5-4 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

5.2.1 THE ILLIAC IV MEMORY HIERARCHY
Section 2 of this guide presents an overview of the lLLIAC IV Sys­

tem; the reader should be familiar with this overview. This section
describes the ILLIAC IV Memory System in greater detail.

The objective of data transfers to the ILLIAC IV is to provide
data to the ILLIAC IV Processor. This processor is an array of 64 indi­
vidual proc~ssing elements (PE's). Only data resident in the working
storage of the array may be immediately operated on by the PE's. This
working storage is the Array Memory, which has a capacity of 128K (64-
bit) or 256K (32-bit) words and a cycle time of 313 nanoseconds. The
Array Memory is also used, incidentally, for storage of the currently
executing program segment(s).

It is expected that ILLIAC IV processes will require large volumes
of data (compared to PE working storage). The main memory store for the
PE array is the 140M.

5.2.2 THE ILLIAC IV DISK MEMORY (140M) SYSTEM
The following sections describe the disk hardware characteristics

and the "logical disk" presented to the user by the ILLIAC IV I4DM
management software. The hardware is controlled by system utility
software and the user does not ,interact directly with the physical disk
structure. All user interaction with the disk memory system is via
utility software, which presents a convenient logical model of the disk
structure. Accordingly, the- following discussion of the physical disk
system is brief, while the discussio'n of the logical disk is more
extensive and detailed.

5.2.2.1 The Physical Disk Memory System
Physically, the 14DM is a fixed-head rotating disk system with a

capacity of approximately 16x106 (64-bit) words or 32x106 (32-bit)
words. The system is composed of 13 disks attached to two controllers
(six disks on one controller, seven on the other). The disks rotate
synchronously with a 40-millisecond rotation period. The maximum data­
transfer rate is about 109 bits/second.

5-5 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

5.2.2.2 The Logical Disk
The software for management of the 140M presents to the user a

logical model of the disk system, called the "logical disk. 1I The char­
acteristics of this model are derived from the physical disk system,
and are described in detail here. This description is presented from
a logical perspective; that is, the way the system is to be viewed by
a user. It is not necessary to relate this logical structure to phys­
ical characteristics of the disks.

The logical disk system is divided into 52 bands. There are four
bands on each of the 13 disks, arranged concentrically (see Figure 5-1).

4 IDENTICAL BANDS

Figure 5-1. A Logical Representation of One of the 13
Identical Disk Units of the 140M

All bands are identically formatted. Each band has its own read/write
head, and logically only one head may be activated at one time. There
is a time delay (for electronic switching) in accessing from one band
to another (i.e., switching heads), and in switching between the read
and write modes. In conjunction with the implementation of the logical
disk, these delays have been generalized to the following rule. There

5-6 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

is a time delay equal to 266 microseconds or two pages of rotation time
(see below)

(1) between any two successive disk access requests (e.g., read­
read, read-write, etc.);

(2) for each band switch that occurs.

Since every band is formatted identically to every other band, and
since the access time from any band to any other is a constant, there is
no logical contiguity among the bands. That is, no band is closer to a
given band than any other band, in terms of access time. The 52 bands
are numbered 0-51 for identification purposes.

Each band is divided into 300 pages. A page contains 1024 (64-bit)
or 2048 (32-bit) contiguous words. A page is the smallest addressable
unit of information on the disk, and thus the subsequent discussion of
the disk will be principally in terms of pages and sets of pages. The
300 pages on a band are contiguous, and are numbered in sequence from 0
to 299 in the direction of rotation of the physical disks. Within a
band, any given page (say, Page n) is contiguous to the pages before
and after it in the numbering sequence (Pages n-1 and n+1). Page 0 and
Page 299 are contiguous, i.e., Page 299 is followed by Page 0 as the
disk rotates.

This attribute of contiguity for sequential pages within a band
means that the rotational delay to access a set of contiguous pages is
equal only to the rotational delay to access the first page of the set.
An access of a set of noncontiguous pages incurs some rotational delay
between pages of the set.

Since the disks are synchronized, the pages passing the read/write
heads for all bands at any given moment all have the same page number.

Each band can be conveniently visualized as a circular strip of
300 pages, as shown in Figure 5-2. This drawing also illustrates the
fact that the bands are all synchronized. Note that the bands are shown
as identical without a numerical sequence; i.e., the band numbers are
omitted from the illustration to emphasize the fact that they are
strictly notational.

5-7 lAC Doc. No. SG-ll000-0000-C
Rev. 7-1-73

52 READ/WRITE HEADS

--------~~ ~~==~====~~~-
~ CO CO CO ~ -CO

52 BANDS TOTAL

Figure 5-2. Logical Disk Structure, Showing Six of the 52 Bands

Given that the rotational period of the disk is 40 milliseconds,
and that there are 300 pages on a band, each page is under the read/
write heads for 133 microseconds. This is the transfer time for a
page of data. Also, the 266-microsecond switching intervals mentioned
above are thus equal to the time required for two pages to pass the
read/write heads.

5-8 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Summary of the Logical Disk

• There are 52 identical, synchronized bands, with a constant
(266 microsecond) switching time from any band to any other
band.

• Each band has its own head, and logically only one head is acti­
vated at a time; i.e., only one band may be accessed at a time.

• The delay time between any two successive access requests is
equal to 266 microseconds.

• Each band is divided into 300 contiguous pages, numbered 0 to
299, with Page 299 contiguous to Page O.

• Each page = 1024 (64-bit) words or 2048 (32-bit) words. A
page is the smallest addressable unit in 140M.

• Access time for a contiguous set of pages is equal to the
access time of the first page in the set.

• The transfer time for any single page is 133 microseconds.
• Switching time from one band to any other band = delay time

between successive access requests = 266 microseconds = the
rotational time for two pages to pass the heads.

• Because disks are synchronized, the bands are synchronized,
and thus pages with the same number in different bands pass
under the read/write heads at the same time.

5.3 ILLIAC IV DISK MAPPING: THE MAP SUBSYSTEM
Two ACL subsystems must be called prior to transferring data to

the 140M; these are MAP and ALLOC.
The MAP subsystem accepts a user-prepared 140M layout description

and produces a file of allocation tables for input to the ALLOC subsys­
tem. The ALLOC subsystem takes the MAP allocation tables as input.
ALLOC assigns the required 140M pages relatively positioned as described
in the user's layout.

The MAP subsystem may be, run at any time prior to COpy from a file
to 140M .. The ALLOC subsystem ~hould be called immediately prior to the

. COPY. Upon successful completion of ALLOC, the user may call the COpy
subsystem to transfer data to the 140M.

5-9 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

The MAP subsystem call consists of a MAP statement and a series
of control statements. These statements may be contained in a separate
file or they may be in-line following the MAP statement. The control
statements are FORMAT, PRINT, TIME, and ENO. They are described in
detail below. The MAP statement itself has the following format:

where

I fllAP {infilenameH ,mapfilenameH, I

• infilename is the name of a file containing control statements
for input to the MAP subsystem. If infilename is omitted,
control statements are assumed to be in-line directly following
the MAP statement.

• mapfilename is the name of the file given to the MAP subsystem
for output of the disk memory allocation tables. If mapfilename
is omitted, no allocation tables are created. In this case the
user can still process a layout description and obtain timing
and layout analysis information as described below (see Section
5.5).

One complete MAP subsystem call produces one complete set of allo­
cation tables for one 140M layout. A layout is a collection of pages in
a specified relationship to each other. When ALLOe assigns I4DM space
for an area, it assigns one 140M page for each logical disk page specified
in the layout, and preserves the relationships among pages.

It is possible for a user to create two or more layouts with two or
more MAP calls, use two or more ALLOe calls to assign 140M space for them,
and then use the assigned layouts concurrently. However, if this is done,
the relationships between pages in different layouts will be unpredictable,
although the relationships within each layout will be preserved.

Each layout is made up of areas (see below), and the areas are
described by FORMAT statements in the MAP subsystem call. The following
section discusses the FORMAT statement in detail.

5-10 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.3.1 THE FORMAT STATEMENT
The FORMAT statement is used to specify the arrangement on the

logical disk of one area. An area is a named collection of user­
specified pages on the logical disk. The FORMAT statement associated
with the area identifies the pages in the area, specifies the arrange­
ment of these pages on the logical disk, and assigns a name (the area­
name) to the collection of pages.

where

The FORMAT statement has the following format:

I FORMAT areaname,(formatspec)91

• areaname is a user-supplied name to be assigned to the area
described in this FORMAT statement (up to six alphanumeric
characters, with a letter for the first character).

• formatspec is a parenthesized sequence of operators that
identify logical disk pages which are to be assigned to the

area. formatspec defines the arrangement on the logical
disk of these pages. formatspec is discussed in detail in
the following section.

5.3.1.1 The formatspec
The. MAP subsystem maintains a "current page position pointer,"

used in the processing of FORMAT statements, that always points to
some logical disk band and some page within the band, in accordance
with the logical disk of Figure 5-2. For each FORMAT statement, this
pointer is initially set to Page 0, Band O. The operators that make
up the formatspec move the pointer in various ways. The operators
will be considered in detail, starting with the operator used to reserve
pages in the area.

5-11 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.3.1.2 The ±nP Operator
This operator has the form ±nP, where n is a signed integer. The

n in this operator may be omitted if it is 1, and the sign may be omitted
if it is positive.

The effect of ±nP is to reserve a set of n consecutive pages,
starting with the current pointer position as the first page of the set
and proceeding forward or backward on the logical disk (i.e., with or
against the direction of physical rotation), depending on the sign of the
operator. The pointer is left pointing to the next page on the logical
disk, following the last page of the reserved set.

At the beginning of each formatspec, the pointer position is Band 0,
Page o. Thus the simple formatspec

(128P)

would specify an area consisting of 128 contiguous pages starting at
Band 0, Page 0 and extending to Band 0, Page 127. The pages are contigu­
ous because they are all within the same band.

5.3.1.3 The ±nS Operator
The n in this operator may be omitted if it is 1 and the sign may

be omitted if it is positive. The ±nS operator moves the current page
position pointer n pages forward or backward, depending on the sign, and
has no other effect. The formatspec

(32S,64P)

would first move the pointer from its initial position at Page 0, Band 0
to Page 32; the 64P operator would then reserve Pages 32-95. The resulting
area would consist of 64 contiguous pages starting at Page 32, Band 0 of
the logical disk. The pointer would be left at Page 96, Band O.

Another use of the ±nS operator is seen in the following example:

(32P,2S,32P)

5-12 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Here 32 contiguous pages are reserved as part of the area, then the
pointer is moved two pages forward, and another 32 contiguous pages
are reserved.

5.3.1.4 Action of ±nP and ±nS Operators at a Band Boundary
Before discussing other operators, one more characteristic of ±nP

and ±nS operators will be described. When either of these operators
moves the pointer past Page 299 of any given band, the "next ll page (for
the purposes of the operator) will be Page 0 of the "next" band. The
formatspec operators are implemented in this fashion to facilitate the
handling of large data arrays.

The "next" band is the next band in numerical sequence counting
from Band 0 through Band 51, with Band 0 following Band 51. This
sequence is a notational property of the formatspec operators; as stated
before, the bands of the logical disk are equidistant in terms of accesS
time, and thus the sequence does not imply a physical relationship.

When a negative operator moves the pointer past Page 0 of any band,
the "next ll page will be Page 299 of the "previous" band.

For example, if the current pointer position is Page 290 of Band 13
and a 50P operator is encountered, Pages 290-299 of Band 13 and Pages 0-
39 of Band 14 will be reserved, for a total of 50 pages. If the pointer
position is Page 40 of Band 13 and a -50S operator is encountered, the
pointer will be moved to Page 289 of Band 12.

5.3.1.5 The ±nB, ±nL, and ±nR Operators
The n in these operators may be omitted if it is 1 and the sign

may be omitted if it is positive. These ope~ators, like the ±nS operator,

have no effect except to move the pointer; they provide additional conven­
ience and flexibility by moving it in different ways.

The ±nB operator moves the pointer n bands from its current position,
maintaining the pointer at the same page number within the new band. For
example, if the current position is Page 234, Band 16 and a -4B operator
is encountered, the resulting pointer position will be Page 234, Band 12.
If a ±nB operator moves the pointer "pastil Band 51 in a positive direction,'
it moves from Band 51 to Band 0, then to Band 1, etc. in sequence. If the

5-13 lAC Doc. No. SG-11000-0000-C
Rev. 7 -1-73

pointer is moved in a negative direction "past" Band 0, it moves from
Band 0 to Band 51, then to Band 50, etc. in sequence.

The ±nL operator resets the pointer to Page 0, Band 0, and then
moves it to the nth page of the logical disk counting pages consecutively
from Page 0 (Band 0). There is a total of 15,600 pages on the disk, and
for purposes of the ±nL operator they form a continuous sequence, where
Page 0, Band 0 is the Oth page on the disk and Page 299, Band 51 is the
15,599th page on the disk. Page 15,599 is "followed" in this sequence
by Page O. The n in a ±nL operator is taken modulo 15,600. Note that
the pointer position resulting from a ±nL operator is independent of the
previous position.

For example, the formatspec

(500L,10P)

moves the current page position pointer to Page 500 (i.e., Page 200 of
Band 1) and then reserves ten pages, Pages 200 to 209 of Band 1. This
sequence is independent of what precedes the L operator in the format­
spec. For example, in the formatspec

(64P,2S,64P,500L,10P)

the 500L,10P operator sequence again reserves Pages 200 to 209 of Band 1 .
The ±nR operator moves the pointer to the nth page within the

current band, taking n modulo 300 and counting from Page 0 of the current
band. The nth page within the band is counted from Page 0 of the band,
regardless of the pointer position within the band b~fore the operator
is encountered. For example, if the pointer is in Band 10 and Page 100
when a 5R operator is encountered, the resulting position will be Page 5,
Band 10. For purposes of this operator, the pages within a band are
considered to "wrap around" from Page 299 to Page 0; thus a -5R operator,
in the above example, would move the pointer to Page 295 of Band 10, and
a 310R operator would move the pointer to Page 10 of Band 10.

5-14 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.3.1.6 Combinations of Operators
As noted above, operators are separated by commas and are inter­

preted and processed in sequence. Two or more operators may be
enclosed in parentheses prefixed by a signed integer in; the parenthe­
sized sequence of operators is repeated n times. For example,

3(2S,50P)

is exactly equivalent to 2S,50P,2S,50P,2S,50P. If the integer is
negative, the signs of all operators in the parenthesized sequence are
changed, e.g.,

-2(2S,-50P)

is exactly equivalent to -2S,+50P,-2S,+50P. Parenthesized sequences
may be nested as in

2(2S,3(20P,2S))

which is exactly equivalent to 2S,3(20P,2S),2S,3(20P,2S) or 2S,20P,2S,
20P,2S,20P,2S,2S,20P,2S,20P,2S,20P,2S.

5.3.1.7 Laying Out Two or More Areas
As explained above, each FORMAT statement in a sequence of state­

ments to the MAP subsystem names and describes one area. Many layouts
will require more than one area. This is achieved in a straightforward
manner by using two or more FORMAT statements. Note, however, that each
area in a single MAP call is described in terms of a Page 0, Band 0
which is a common reference point for all of the FORMAT statements. For
purposes of any one FORMAT statement, this "(0,0)" is the initial posi­
tion of the current page position pointer.

Areas are assigned physical space on the 140M by the ALLOC sub­
system. If two areas described in a single MAP call have certain pages

of the logical disk in common, they will have corresponding pages of the

5-15 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

physical disk in common after they are assigned, and the user must be
aware of the implications.

5.3.1.8 The Continuation Character in FORMAT Statements
In a FORMAT statement, the formatspec may "be very lengthy. The

semicolon may be used as a continuation character within the format­
spec. The semicolon should immediately follow a comma and should be
followed by a carriage return.

Example FORMAT INDATA,(3P,2S,4P,4S,6P,2S,20(S,P),2S,P,10(S,P),;~

S,15(S,P),2S,10P)~

5.3.1.9 Summary of the FORMAT Statement
The FORMAT statement is used in a MAP subsystem call to name and

describe the arrangement on the logical disk of one area. Within one
MAP subsystem call, all FORMAT statements use a common reference point
(Page 0, Band 0 of the logical disk) for the area descriptions they
contain. The description of an area is called a formatspec and ;s
composed of operators. One operator (±nP) is us~d to reserve n consec­
utive pages in the area; other operators move a logical current page
position pointer that is used to locate on the logical disk the sets
of pages laid out by ±nP operators. The areas described in a FORMAT
statement will be assigned space on the 140M by the ALLOC subsystem.

5.3.2 DESCRIBING AN 140M LAYOUT WITH THE MAP SUBSYSTEM
The following is a procedure for laying out an area:

(1) In two dimensions, layout a 300 vertical by 52 horizontal
grid (or a portion thereof). Each square in the grid
represents a logical disk page.

(2) Number the horizontal axis from 0 to 51 (left to right).
(3) Number the vertical axis from 0 to 299 (top to bottom).
(4) The upper left-hand square then represents Page 0, Band 0

of the logical disk.

5-16 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

(5) Layout the required page sets to be reserved for a data
area for the ILLIAC IV process, marking them in sequence
P1,P2, ... ,Pn, where Pn refers to a set of pages required
in one access.

See Figure 5-3.
When laying

in mind:

Rule 1

Rule 2

out the reserved page sets, two rules should be kept

When laying out a page sequence that crosses over from
one band to another, and which is to be accessed in a
single request, a two-page gap (+2S) should be left at
the band crossover to allow for the electronic band
switching. Conversely, a set of pages required in a
single access should not cross a band boundary.
Between any two successive accesses, a two-page gap
should be left to allow for electronic switching.

Note: Combining these two rules, a single two-page gap is all that is
required, for example, when reading from one band and then writing to
another band.

When using FORMAT operators, two conventions should be remembered:

(1) Notationally, Band 51 is adjacent to Band O.
(2) Logically, Page 299 in any band is contiguous to Page 0 in

any other band. Notationally, Page 299 in any Band n is
adjacent to Page 0 in Band n+1.

5-17 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

BANDS
o 1 Z .3 4- 5 6 7 8 9 !l) II 12 13 /4 /5 /6 /7 /8 19 49 50 51

PAGES () PI PI:, P5
PI Ph P5

J, PI pI, PS

3 PI P6 P£
4- PI P6 p5

5 PI P6

6 PI Pb -
1 PI PI> P3
8 PI PI> P:3 , PI P6 P3

10 P3

/I P3

<.TI
12. PZ P3

1
~

00 13 P2

14- PZ

/5 PZ
Ii>

...... » /7
n
C

18

0 /9
!'

P2

I I I
P2

I I I I I I

P2

P2 _L

Z
~

t~S PI-
'" G)
I

z,,' Pf
~ -,.,0

291

CD 0
< 0 298
• I

P4--

p+

....... 0 2-91

.0 _0
PI-

'0
wn Figure 5-3. Working Disk Layout

5.3.3 AN EXAMPLE OF 140M LAYOUT PROCEDURE
In this example, the FORMAT statement to specify the area illus­

trated in Figure 5-3 is constructed. The example is included to
illustrate the use of the formatspec operators and is not meant to
imply an efficient or typical layout. The areaname in this example
will be EG1.

(1) The first ten-page set, denoted in the figure as {PI},
begins at Page 0, Band o. The formatspec begins with the
pointer implicitly at this position; therefore the operator

lOP

will reserve the set.
(2) The next two pages are to be skipped, accomplished by the

operator 2S. Therefore we have

10P,2S

(3) The set {P2} is reserved by the operator 8P:

10P,2S,8P

(4) The third set {P3} is located in Band 3. Therefore we have
to move the pointer three bands with the 3B operator. The
B operator maintains the pointer at the same relative page
number (i.e., 19), so we have to move it back 12 pages to
get the first page of the set {P3}:

10P,2S,8P,3B,-12S,6P

(5) The set {P4} also requires a band/page skip, so we use the
L operator. The first page of {P4} is at Page 595 (counting
pages from Page 0, Band 0). Therefore the operator 595L

5-19 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

positions the pointer at the first page of {P4}:

10P,2S,8P,3B,-12S,6P,595L,5P

(6) The set {P5} is notationally adjacent to {P4} using the P
operator (since Page 299 of Band 1 is adjacent to Page a
of Band 2). Therefore, the 5P operator used above to
reserve {P4} can be changed to lOP to reserve both {P4}
and {P5}:

10P,2S,8P,3B,-12S,6P,595L,10P

(7) The set {P6} is back one band from {P5}. Therefore the -B
operator is required. Remembering that the relative page
position remains the same with the B operator, we can move
to Page a with the R operator:

10P,2S,8P,3B,-12S,6P,595L,10P,-B,OR,lOP

This string when enclosed in parentheses is a complete
formatspec and can be used in a FORMAT statement:

FORMAT EGl,(lOP,2S,8P,3B,-12S,6P,595L,10P,-B,OR,lOP)?

5-20 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

5.4 RELATIONSHIP BETWEEN A LOGICAL DISK LAYOUT AND AN 140M SPACE
ASSIGNMENT
When a MAP subsystem call has been completed and a file of allo­

cation tables produced, the ALLOC subsystem is used to allocate 140M
space for the layout of the one or more areas described in the alloca­
tion tables. In doing this, ALLOC assigns one 140M page for each
logical disk page reserved in the MAP layout.

There is thus an exact one-to-one correspondence between the
reserved logical disk pages and the assigned 140M pages. The essential
relationships among reserved logical disk pages are preserved in the
arrangement of assigned I4DM pages; these relationships are the conti­
guity of pages within page sets and the rotational delays between page
sets.

The following section describes the resulting mapping of the user's
assigned 140M space.

5.4.1 THE AREA AS A VIRTUAL 140M MAP
A FORMAT statement specifies not only an areaname and a collection

of pages, as described previously, but also a sequence of pages. The
area page sequence is the sequence in which the pages are reserved in
the formatspec: Page sets are sequenced in the exact order in which they
are speci fi ed in the fo-rmatspec by ±nP operators, and wi thi n each
contiguous page set the individual pages are ordered either positively
(i.e., with the rotation of the disk) or negatively (against the rotation
of the disk) according to the sign of the nP operator.

Observe that this sequence is directly determined by the formatspec
used to describe the area, and is not dependent on the sequence in which
the pages occur on the logical disk, since the formatspec operators
permit sets of pages to be reserved anywhere on the logical disk in any
order.

The pages collected in an area are "virtually" arranged in a con­
secutive order according to this sequence, with the areaname pointing to
the first page in the sequence (Page 0 of the area) and each subsequent
page addressed relative to Page 0 of the area. In this sense, then, an

5-21 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

140M area is a virtual 140M map. The following diagram illustrates (for
a simple case) the correspondence between a collection of disk pages and
the virtual page sequence of an area.

14DM PAGES

AREA VIRTUAL PAGES

5.4.1.1 The Area Virtual Map and the COpy Subsystem
When data is transferred from an 140M area to a file by means of

COpy, the COpy subsystem reads 140M pages in the sequence specified by
the area virtual map and writes file pages in sequence starting with
Page 0 of the file. In the inverse operation, where data is transferred
from a file to an 140M area, COpy reads file pages in strict sequence
and writes 140M pages in the sequence specified by the area virtual map,
as shown in the following diagram for a case where the file and the 140M
area contain the same number of pages.

5-22

I4DM PAGES

AREA VIRTUAL PAGES

FILE PAGES

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73'

5.4.1.2 Examples of Virtual Maps
An 140M page may correspond to more than one virtual page, but

every virtual page corresponds to exactly one 140M page. For example,
consider the areas described in the following FORMAT statements (assume
that these FORMAT statements were processed in the same MAP call):

FORMAT AREA2,(4P,2S,4P)~
FORMAT AREA3,(6S,4P,2S,4P)P

The first of these statements reserves Pages 0-3 and 6-9 (Band 0) of
the logical disk; the second reserves logical disk Pages 6-9 and 12-15
(Band 0). Thus logical disk Pages 6-9 (Band 0) are reserved twice, and
this fact is preserved when 140M pages are assigned to the two areas by
ALLOe. The following diagram shows the resulting correspondences.

AREA2 VIRTUAL PAGES

5-23

I4DM PAGES

AREA3 VIRTUAL PAGES

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Finally, note that a logical disk page may correspond to more than
one virtual page in the same area. Consider the FORMAT statement

FORMAT AREA4,(6P,-6S,6P)~

The effect of the statement is to reserve logical disk Pages 0-5 (Band 0)
twice within the same area. ALLOC will assign six contiguous 14DM pages,
each corresponding to two different virtual page numbers in AREA4, as
shown in the following diagram.

I4DM PAGES

AREA4 VIRTUAL PAGES

A six-page file could then be transferred to AREA4 via COPY, with the
result that each of the six pages of information could be addressed in
140M by two different virtual addresses.

5.5 THE MAP SUBSYSTEM LIST OUTPUTS
There are two operators that can be used in a FORMAT statement

which have not yet been described. These are:

x - which means mark the current page for printing;
T - which means mark the current page for timing.

"Current" in the above definitions refers to the current position of
the page pointer.

Note that unlike the other operators, X and T are not prefixed
with a signed integer. The effect of X or T is to mark the current
page for printing or timing, without moving the pointer. Thus the
formatspec

5-24 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

(X,20P,2S,X,30P)

reserves two sets of 20 and 30 pages respectively, with a two-page gap
between them, and the first page of each set is marked for printing.
To mark all reserved pages for printing, in the same layout, one would
write

(20(X,P),2S,30(X,P))

The construction X,T or T,X marks the current page for both timing
and printing. The following formatspec again reserves two sets of 20
and 30 pages respectively, with a two-page gap between them, and marks
the first page of each set for timing and all reserved pages for printing:

(T,20(X,P),2S,T,30(X,P))

Note: It is syntactically permissible to prefix an X or T operator
with a signed integer, e.g., 5T. However, the signed integer in this case
is ignored, and 5T is exactly equivalent to T.

5.5.1 THE PRINT STATEMENT

where

The PRINT statement has the following format:

PRINT areaname1,areaname2, ... ,areanamen~

• areaname(s) have been previously specified with FORMAT state­
ments in the MAP call.

The PRINT statement causes MAP to produce a diagram representing
the logical disk, and indicating all pages marked for printing in
preceding FORMAT statements. The diagram consists of 52 columns and
100 rows; each column represents a band (with Band 0 at the left), and
each row entry within a column represents three contiguous pages within

5-25 lAC Doc. No. SG-1l000-0000-C
Rev. 7 -1-73

the band (with Pages 0, 1, 2 at the top of each column). The three
pages are internally represented by a pattern of three bits - 100 if
the first of the three pages is marked for printing, 110 if the first
and second are marked, etc. On the PRINT diagram, each entry consists
of the corresponding octal number, i.e., 0 if none of the three pages
is marked, 3 if the second and third are marked, etc.

5.5.2 THE TIME STATEMENT

where

The TIME statement has the following format:

TIME areaname1,areaname2, ... ,areanamen~

• areaname(s) have been previously specified with FORMAT state­
ments in this MAP call.

The TIME statement writes out the 140M rotational time delay
between pages marked for timing in preceding FORMAT statements. Time
delays will be computed between pages in the sequence in which they
occur on the logical disk, and not in the sequence of the virtual map.

5.5.3 THE END STATEMENT
The END statement has the following format:

An END statement is required as the last control statement to
the MAP subsystem. Upon recognizing the END statement, MAP will process
all the other control statements in the sequence and will produce a file
of allocation tables, TIME output, and/or PRINT output, as previously
specified by the user.

5-26 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

5.6 THE ALLoe SUBSYSTEM
The MAP subsystem does not assign any actual 140M space, but merely

produces a file of allocation tables for the areas specified in FORMAT
statements. The ALLOe subsystem, using these tables, assigns disk space
in 140M to an ILLIAe IV user.

The ILLIAC IV is a resource shared by a community of users. Although
users may not concurrently use the ILLIAC IV Processor, the 140M component
of ILLIAC IV may be shared. Thus physical 140M space may be assigned to
more than one user. The ALLOC subsystem examines the current status of
the 140M and assigns all of the requesting user's areas, as described to
MAP, if space is available on the 140M. This assignment is all or nothing
for each ALLOe call.

where

The ALLOC statement has the following format:

I ALLOC mapfilename{,allocid}1] I

• mapfilename is the name of an output file from the MAP subsystem,
containing allocation tables for all of the areas described in
one call to the MAP subsystem.

• allocid is an optional identifier of this call to the ALLOe sub­
system. This allocid must be used in a subsequent call to the
OALLOC subsystem, if such a call is made; if the user does not
intend to make a subsequent call to OALLOe, the allocid may be
omitted from the ALLOe statement.

The ALLOC subsystem will attempt to assign all of the space called
for by the allocation tables in the mapfilename. If this is impossible,
it will assign no space at all - it will not assign partial space, nor
will it alter the specified layout to fit it into the available space.

Assuming the ALLOC succeeds in allocating all the necessary space,
this space is then identified with the jobid given to the job in which
the ALLOe call occurs (see SUBMIT, Sections 4 and 8), and with the
allocid, if an allocid was included in the ALLOe statement.

5-27 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

The space remains assigned until marked for release on termination
of the job or when the DALLOe subsystem (see below) is called. Observe
that the ALLoe call must be included in the same job as the user's RUN
statement (see RUN, Sections 7 and 4) since assigned space is marked for
release on job termination.

5.7 THE DALLOe SUBSYSTEM
The user may release space that has been previously allocated in

the same job by using the DALLOe statement, with the following format:

where

I DALLOC allocid!ll

• allocid is the same allocid supplied by the user in the ALLOe
statement that was used to allocate the space that is now to
be released.

5-28 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 6

COMPLETE ACL STATEMENT :FORMAT

lAC Doc. No. SG-I1000-0000 .. C
Rev. 7 -l-73

6.1
6.2
6.2.1

6.2.2

6.2.3

6.2.4

6.2.4.1

6.2.5

6.3

6.4

6.5

6.6
6.7

6.7.1

6.7.2

6.7.3

SECTION 6

COMPLETE ACL STATEMENT FORMAT

CONTENTS

INTRODUCTION
CLASSES OF ARGUMENTS
FILENAMES
VALUES
MACRO-CALLS AS ARGUMENTS
CONTROL PARAMETERS
The STATE Parameter
EXPRESSIONS
USE OF A MACRO-CALL IN PLACE OF AN ACL STATEMENT
CONTINUATION AND COMMENT CONVENTIONS
LEADING AND TRAILING BLANKS IN ARGUMENT FIELDS
QUOTATION MARKS
CONTROL CHARACTERS
EDITING STATEMENTS DURING INPUT
THE tT CHARACTER
THE tC CHARACTER

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 6

COMPLETE ACL STATEMENT FORMAT

6.1 INTRODUCTION

where

The complete ACL statement format is as follows:

{label :}SUBSYSTEM-NAME argument1,argument2, ... ,argumentn~

• label is a name that can be used as an argument of a TEST state­
ment; any labelled ACL statement can be conditionally branched
to by a TEST statement (see Section 7). The label, if used,
must be followed by a colon (:). The colon may optionally be
followed by one or more blanks (spaces or tabs).

• SUBSYSTEM-NAME is the name of the ACL subsystem called by the
statement.

• argument is information supplied by the user. The rules for
specifying arguments are disc~ssed in Section 3. Classes of
arguments are discussed in Section 6.2 below.

• ~ is a carriage return, and terminates the statement (but see
Section 6.4 below).

6.2 CLASSES OF ARGUMENTS
Most of the arguments specified in an ACL statement can be grouped

into one of several classes. Since each class has its own standard
syntax, the rules for the construction of arguments are discussed
separately for each class. The following classes of arguments are
described in this section:

6-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

• Filenames
• Values
• Macro-calls
• Control Parameters
• Expressions

Since some arguments do not fall into any of the above classes, the
rules of construction for these arguments are presented in the description
of the particular ACL statement where they are used (Section 7).

6.2.1 FILENAMES
A filename has the following format:

<directoryname>name{.extension}{;version}

6.2.2 VALUES
A value is any signed decimal or octal integer, and is represented

in the computer as a signed 36-bit word. An octal integer is prefixed by
a # character; thus "#2711 means "27 octal,1I while 1127" means "27 decimal. 1I

A value may be used as an argument in the EQU statement (see Section
7), as a formal argument in a macro-call (see Section 8), and as an ele­
ment in an expression (see Section 6.2.5).

6.2.3 MACRO-CALLS AS ARGUMENTS
It is a general rule that any argument in an ACL statement may be

replaced by a macro-call. This is not explicitly noted in the syntax
descriptions for individual statements, but it is always the case.

A macro-call is defined as consisting of the name of a previously
defined macro optionally followed by a parenthesized list of actual
arguments - i.e., the complete calling sequence of the macro:

I macroname(argl,arg2, .. · ,argn)

For further details, see Sections 7 and 8.

6-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

6.2.4 CONTROL PARAMETERS

A control parameter is a name consisting of up to six alphanumeric
characters with an assigned value. A control parameter can be defined
and a value assigned to it by only one means, namely, the EQU statement
(see Section 7 for details).

A control parameter can be used as an argument in the TEST or EQU
statement or as an actual argument in a macro-call. Additionally, it
may be used as an element in an expression (see Section 6.2.5 below).

6.2.4.1 The STATE Parameter
The STATE parameter is a special control parameter that is prede­

fined by the system and normally has a binary value assigned to it by
the user's most recent subsystem call. Various bits are used to signal
various conditions. At present the only consistent meaning of STATE is
that STATE will be negative if the subsystem called by the user's most
recent ACL statement aborted "involuntarily" - i.e., if the subsystem
was interrupted and aborted by a higher fork of the system.

Two ACL subsystems, EQU and TEST, do not assign a value to STATE
but leave its previous value unchanged.

The user may assign a new value to STATE at any time, by using an
EQU statement; however, the system will assign it another value as soon
as it processes the next ACL statement (except EQU or TEST).

6.2.5 EXPRESSIONS
An expression consists of one or more elements in combination with

operators. An element may be either a value, a control parameter, or an
expression enclosed in square brackets ([]). Elements must be separated
by operators. The operators are defined by the following table.

6-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Unary

Shift

Logical

Arithmetic

Precedence Symbol Function

1 + Gives the element following a positive
value.

1

1

1

2

2

3

3

3

4

4

5

5

*

+n

\n

&

@

$

*

/

+

Gives the element following a negative
value.

Complements the element that follows.

Prefix for an octal number.

Shifts the preceding element n bits to
the left (end-off shift with zero fill
on 36-bit word).

Shifts the preceding element n bits to
the ri ght (end-off shi ft wi th zero fi 11 .
on 36-bit word).

Bitwise logical AND.

Bitwise logical inclusive OR.

Bitwise logical exclusive OR (XOR).

Multiply.

Divide (returns integer part of quotient).

Add.

Subtract.

The following are examples of valid expressions.

Example 1 A*[B+C]

Here A, B, and C are previously defined control parameters. The sum of
Band C is multiplied by A and the result (a signed integer) is the value
of the expression. Note that square brackets are used in the same fashion
as parentheses in ordinary algebraic notation.

6-4 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

Example 2 [STATE+4]\35

The value of the system-defined control parameter, STATE, is first
shifted left four bits and then shifted right 35 bits. Values are
represented in the computer as 36-bit words; therefore, after the
specified shifts have taken place only the original Bit 4 of STATE
(fifth bit from the left) remains, and occupies the rightmost position
in the word. The rest of the word is filled with zeroes. Thus the
value of the expression is 1 if Bit 4 of STATE is 1 and 0 if Bit 4 of
STATE is o. Note: The value assigned to STATE is unaffected. An
expression cannot assign a new value to a control parameter; only an
EQU statement can do this.

Example 3 #020000000000&STATE

This is similar in effect to Example 2. The octal number is used as a
mask, i.e., it is ANDed with STATE to pick out Bit 4 of STATE. The
value of the expression will be 0 if Bit 4 of STATE is zero, and positive
if Bit 4 of STATE is a one. (Specifically, it will be #020000000000 in
the latter case.)

When combining elements in an expression, the system performs the
operations in the order of precedence shown in the table. The unary
operations are performed first; the shifts are done next, followed by
the logical operations. Arithmetic operations are then done from left
to right, with multiplications and divisions performed first. (In divi­
sion, fractional parts are truncated.) Additions and subtractions are
then performed, left to right.

Expressions are only evaluated by the EQU and TEST statements; in
the EQU statement an expression may be used as the second argument and
its value assigned to the control parameter used as-the first argument,
and in the TEST statement its value is used as the condition for a
branch (see Section 7 for details). An expression may also be used as
the text of a macro that is intended to be referenced (see Section 7).

6-5 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

6.3 USE OF A MACRO-CALL IN PLACE OF AN ACL STATEMENT
If a macro has been defined and its text consists of one or more

legal ACL statements, a macro-call to that macro can be entered in the
stream of ACL statements as if it were itself an ACL statement.

6.4 CONTINUATION AND COMMENT CONVENTIONS
In Section 3.5 two rules are given for the use of the semicolon

as a continuation or comment character:

(1) When placed immediately after a comma that terminates an
argument, or immediately following the blank(s) after the
subsystem name, the semicolon is a continuation character;
it may be followed by a carriage return and the statement.

(2) When used as the first character on a line that is not a
continuation of the previous line, the semicolon is a comment
character; it causes the entire line up to the carriage
return to be interpreted as a comment. The comment may be
any string of characters, terminated by the carriage return.

Rule (2) is correct and complete as it stands, but Rule (1) may be
augmented by two additional rules to show that a comment can be entered
on the same line as a statement or part of a continuing statement.

(3) When a statement is continued as in Rule (1), the carriage
return need not follow the semicolon immediately; a comment
may be inserted between the semicolon and the carriage
return.

Example

DEL PROG.ONE,PROG.TWO,PROG.THREE,;THIS IS A COMMENT9
PROG.FOUR,PROG. FIVE9

(4) After the last argument of a statement, a comma may be added
followed by a semicolon. The semicolon functions as in
Rule (3), and a comment can be inserted between the semicolon

6-6 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

and the carriage return. However, the semicolon also is a
continuation character under Rule (1), and consequently an
additional carriage return is required to terminate the
statement.

Example

DEL DATA.ONE,; I DONT NEED THIS FILE ANYMORE9

9
RENAME DATA.NEW,DATA.ONE9

6.5 LEADING AND TRAILING BLANKS IN ARGUMENT FIELDS
Any blanks (spaces or tab characters) preceding or following an

argument within the commas that delimit the argument (or between the
argument and a carriage return) are ignored. This applies to single
blanks and also to strings of any number of blanks.

A semicolon used as a continuation or comment character is tech­
nically an argument under the general syntax rules of ACL. This means
that a semicolon used in this fashion may be immediately preceded or
followed by a string of blanks and will still work.

6.6 QUOTATION MARKS
Quotation marks enclosing an argument prevent the argument from

being scanned for break characters, which include blanks, carriage
returns, and semicolons. Thus an argument in quotation marks can
include break characters.

Examples

lI;argone"
lI exp 411

6-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

6.7 CONTROL CHARACTERS
Control characters are indicated in this text by a prefixed up­

arrow: for example, tA means "control A". On terminals that have a
CONTROL key, a control character is input by simultaneously depressing
the CONTROL key and some other key - e.g., tA is input by simultaneously
depressing the CONTROL key and the A key.

Five control characters ar.e usable in ACL. The characters tA, tQ,
and tR are used for editing during input of ACL statements; tT and tC
have different functions which are explained separately below. As a
rule, control characters are only useful in interactive mode.

6.7.1 EDITING STATEMENTS DURING INPUT
tA, entered within a statement, causes the last previous character

in the statement to be deleted from the input. Thus if the user acci­
dentally strikes the wrong character while entering a statement, he may
follow it with a tA, then type the correct character and proceed with the
rest of the statement.

tQ causes the entire line currently being typed to be deleted from
the input. The user may then start over from the beginning of the line.

tR causes the entire current line to be retyped. This is useful
if the user has repeatedly used tA in the line, and it has become
difficult to read. After the line has been retyped, the user may begin
typing again where he left off.

6.7.2 THE tT CHARACTER
tT, entered between ACL statements, causes the system to type out

status information on the ACL subsystem currently being executed (if any).

6.7.3 THE tC CHARACTER
Normal exit from ACL subsystems is by means of an END control

statement (see Section 3.5). In abnormal situations, an executing
subsystem can be halted in a disorderly fashion by entering a tC. The
results of this action are unpredictable and the user is cautioned to
use tC only as a last resort in abnormal situations when END cannot be
used (e.g., if a subsystem is obviously caught in a loop).

6-8 lAC Doc. No. SG-I1000-0000-C
. Rev. 7-1-73

SECTION 7

COMPLETE SET OF ACL STATEMENTS

. lAC Do'c:. No. SG~IlOO()-OOOO-C
Rev. 7 -1 .. 73

SECTION 7

COMPLETE SET OF ACL STATEMENTS

CONTENTS

SUMMARY OF ACL STATEMENTS
ALLOC
ALT
ASK
COpy
CPYNET
DALLOC
DED
DEL
DELJOB
DIR
EQU
GLYP
HELP
INQ
LIB
LINKED
LOGIN
LOGOUT
MACRO
MAP
MAXAFS
MOVE
NEWS
NOTIFY
OUTPUT
RENAME
RUN
SEND
SSK
SUBMIT
TEST
UDIR

lAC Doc. No. SG-11000-0000-C
Rev. 7 -1-73

SECTION 7

COMPLETE SET OF ACL STATEMENTS

The following is a summary of the formats of all ACL statements.
Sections containing full discussions of statements follow the summary
in alphabetical order.

Note that pages are not numbered consecutively in Section 7;
instead each set of pages dealing with one ACL statement is numbered
independently, as is the following surrmary.

7-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

ACL SUMMARY

SUMMARY OF ACL STATEMENTS

I ALLOC mapfilename{,allocid}~ I -Assign ILLIAC IV disk memory space to the

user as specified in the file named mapfilename.

I ALT filename~ I -Use the file named filename as an alternate input source

of ACL statements.

ASK infilename,{outfilename},{listfilename}{,MACRO=macrofi lename}~
Assemble source code from file named infilename, put object code in file
named outfilename, and listing in file named listfilename.

I CKPOINT~ I -Descripti on to be suppl i ed.

I COpy sourcefile ,desti nationfi 1 e~ I - Copy contents of fi le designated by

sourcefile to file designated by destinationfile. Both files must be local;
sourcefile may be in another user's directory.

CPYNET sourcefile,destinationfile{,BYTE=bytesize}{,TYPE=typespec}~ - Data
transfer across the ARPA Network, between the local system and a remote Host.

I DALLOC allocid~ I -Mark for deallocation all ILLIAC IV disk memory space

previously allocated within same job and associated with same allocid.

I DED~ I -Call the text editor subsystem, DED.

DEL filenamel,filename2, ... ,filenamen~ - Delete the specified file(s)
from the system and the filename s from the user's file directory.

DELJOB jobid,userid,password~ - Abort the specified job (if it is being
processed and delete it from the batch queue.

SUMMARY-l lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

ACL SUMMARY
cont'd

DIR {filenamel,filename2, ... ,filenamen}~ - List the user's file direc­
tory, or the entries for specified files.

I EQU name.expression~ I -Define the control parameter name and assign the
value expression to it.

GLYP infilename,outfilename,{listfilename}{,ASSEMBLE=yesno}~ ~ Compile
GLYPNIR source code from file named infilename, put relocatab e ASK object
code in file named outfilename, and listing in file named listfilename.

~ -Answer questions typed in by the user.

I INQ {jobid}~ I - Returns status information on specified job or on all jobs
under a given userid.

LIB libname,filenamel,filename2, ... ,filenamen~ - Construct a user library
of files of relocatable ASK code for use by the link editor.

LINKED {infilename},outfilename{,OPTIONS=optionstring}~ - Convert relo­
catable ASK object-code files to link-edited load modules and put load
modules in file named outfilename. Take control statements from file named
infilename (object-code files are specified by control statements).

LOGIN userid password account~ - Enter user into system (not a genuine
ACL statement. Returns ACL prompt.

I LOGOUT~ I - In a batch job. means terminate batch job. In an interactive
session, means terminate session. Does not disconnect user from ILLIAC IV
System.

I MACRO name{.{argl.arg2 •.•.• argn)}~ I - Define following text as an ACL
macro with name name and formal arguments argl, arg2, etc.

SUMMARY-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

ACL SUMMARY
cont'd

I MAP {infilename}{.mapfilename}7 I -Define a layout for data areas in
ILLIAC IV Disk Memory, using control statements from file named infilename.
Construct allocation tables in file named mapfilename.

I MAXAFS~ I - Type out the number of pages of disk space assigned to the
user for file storage.

I MOVE source.destination~ I -Transfer data between a file in the user's
directory and an I4DM area.

~ - Type out news about ACL subsystems.

I NOTIFY "message"~ I - Route message to system operating staff.

OUTPUT {LINE=mode}{,WIDTH=linewidth}~ - Select full or half duplex
terminal operation and set width of output line on user terminal.

RENAME oldfilename,newfilename~ - Change oldfilename to newfilename in
user s file directory.

RUN infilename,{DMPFIL=dumpfilename}{,MAXTIM=time}; - Transfer load
modules from file named infilename to ILL lAC IV Disk Memory, load root seg­
ment into PE memory, and begin execution.

I SEND~ I - Send a message to a specified set of ACL users.

SSK infilename,listfilename,{VALUE=taskvalue},{arealist){,MAXTIM=time}~
Simulate the object code contained in file named infilename with the ILLIAC
IV Simulator, SSK.

SUBMIT pifname,{pofname},{runcode},userid,password,account~ - Enter a
request into the batch queue for processing of a file of ACL statements
named pifname.

SUMMARY-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

ACL SUMMARY
cont'd

TEST expression,({neglabel},{zerolabel},{poslabel})~ - Branch condition­
ally on whether value of expression is negative, zero, or positive.

I UDIR~I - List a directory of active files in the user's directory that
have been stored on the UNICON, or the entry for a specified active file
that has been stored on the UNICON.

SUMMARY-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

ALLOC

The ALLOC subsystem assigns space on the ILLIAC IV Disk Memory
according to the user layout specifications.

where

I ALLOC mapfilename{ ,al1ocid}~ I

• mapfilename is the name of the output file from the MAP sub­
system which contains a description of the user's required
layout (see MAP) .

• allocid is a user-supplied identification that must be supplied
if a DALLOC statement is to be used later in the same job (see
DALLOC). allocid can be any six-character numeric field.

Description: The ALLOC subsystem absolutely assigns ILLIAC IV
Disk Memory pages according to the relative lay­
out specified in file mapfilename. The assign­
ment of space by ALLOC is "all or nothing"; that
is, either the entire set of pages requested by
the user is assigned or no assignment is made.
The space assignments made by ALLOC are linked
to both the jobid and the mapfilename so that
they may be deallocated (marked for reassignment)
by either of the following:

(1) a termination of job,
(2) a DALLOC subsystem call (see DALLOC).

Disk memory space assignments are marked for re­
assignment whenever the associated job terminates,
either normally (by an EOF or LOGOUT) or abnor­
mally. The user should always call ALLOC, COPY,
and RUN in sequence, in the same job.

ALLOC-1 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

ALT

The ALT statement changes the ACL input source to a specified
file of ACL statements, and causes a return to the main sequence on
completion of processing of the file.

where

I ALT filenameu I

• filename is the name of a file in the user's ILLIAC IV direc­
tory containing a sequence of ACL statements.

Description: ALT causes the input ACL statement stream to be
taken from the file specified by filename rather
than from the current source (e.g., the user's
terminal or an ACL batch file). Any predefined
sequence of legal ACL statements stored in a file
may be initiated by use of the ALT statement
specifying the filename. On completion of pro­
cessing of the file of ACL branched-to with the
ALT statement, processing continues with the ACL
statement immediately following the ALT statement
in the original sequence.

Any ACL statement file may include an ALT state­
ment to any other ACL statement file.

The control parameters referenced in an ACL state­
ment file are globally defined; that is, they may
be defined within the file, or within any previ­
ously processed ACL statement within the same job
sequence.

The ALT statement may be used interactively or in
a batch ACL sequence.

ALT-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example:

ALT
cont'd

I ALT ALPHA.JQS~ I
ACL statements are to be taken from a file named
ALPHA.JQS.

ALT-2 lAC Doc. No. SG-11000-0000-C
Rev. 7 -1-73

ASK

The ASK statement is a request for assembly of an ASK source-code
program. It can only be used in batch mode.

ASK i nfi 1 ename, {outfi 1 ename}, {l i stfi 1 ename}{ ,MACRO=macrofi 1 ename HI

where

• infilename is the name of the file containing ASK source code
to be assembled.

• outfilename is the name of the file for the assembled, relocat­
able object code. If outfilename is omitted, the default file­
name for the output file is the same as the infilename with REL
as the extension. If an outfilename ;s entered without an
extension, the default extension REL is used.

• listfilename is the name of the file for the ASK listing of the
source program. If listfilename is omitted, no listing will be
produced.

• macrofilename is the name of a user file of ASK macros that are
called in the ASK source code in the file named infilename.

Description: The ASK statement is a request for a B6700 assembly
of ASK source code stored in the file named infile­
name. Since it requires the B6700 resource, the
ASK statement can only be used in a batch file.
Syntax and other error messages generated by ASK
will be placed in the user's primary output file
(see SUBMIT). If the assembly is successful, the
relocatable object code will be written in the file
named outfilename in the user's directory. A
listing of the source program with whatever assembler
directives have been included in the file named
infilename will be transferred back to the user's
directory in a file named listfilename.

ASK-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

COpy

The COpy statement causes file transfers within the local system.
In particular, it may be used to copy a file from one user's directory to
another.

where

I COpy sourcefi 1 e ,desti na ti onfi 1 e~ I

• sourcefile designates the file to be copied. This may be an
active file in the requesting user's directory, in which case
it has the usual filename format:

I name. extens ion; vers ion

Alternatively, it may be an active file in another user's
directory, with the format

<directoryname>name.extension;version

where directoryname is the identifier (commonly a userid) asso­
ciated with the file directory in which the file is held. In
either case, version may be omitted, in which case the highest
numbered version of the file will be used.

• destinationfile designates the file to be copied to. This must
be a file in the requesting user's directory, with the usual
format:

I name.extensi on; version I
The version may be omitted, in which case a new version will be
created if there is already a file or files with the same name
and extension.

COPY-l lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Description:

Note:

Examples:

COpy
cont'd

COpy transfers the contents of sourcefile to des­
tinationfile. The name and contents of sourcefile
remain unaltered. If COpy is successful, a message
is returned to the user indicating the number of
bytes transferred. If unsuccessful, COPY returns
an appropriate diagnostic message.

Certain files have "protected ll status, and cannot
be accessed by a user who is not logged in under
the proper userid. If such a file is designated
as sourcefile, COpy will fail.

COpy <JONES>ALGORITHM.SOURCE,PROGRAMl.S0URCE~

Transfer the contents of file ALGORITHM.SOURCE in
user Jones' directory to file PROGRAMl.SOURCE in
the user's directory.

I COpy PROGRAMQ.ASK.PROGRAMX.ASK~ I
Transfer the contents of file PROGRAMQ.ASK in the
user's directory to file PROGRAMX.ASK, also in
the user's directory. The user will then have
two files with different names but identical
contents.

COPY-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

CPVNET

The CPVNET statement causes file transfers between the local system
and a remote Host.

CPVNET sourcefile,destinationfile{,BVTE=bytesize}{,TVPE=typespec}p

where

• sourcefile is the designation of the file whose contents are to be
copied.

• destinationfile is the designation of the file resulting from the
COpy action.

• bytesize specifies the size of byte to be used and may be specified
as 8,32, or 36. In general, there is no need to specify the byte
size, and if BVTE=bytesize is omitted, CPVNET will use an appropri­
ate byte size depending on the particular remote Host involved.

• typespec specifies the type of file transfer to be performed, as
follows:

TVPE=A

TVPE=I

TVPE=L

transfer an ASCII file. This is used for text files
and is the default option if TVPE=typespec is
omitted.
transfer an image file. This is used for binary
files.
used where the remote Host has a word size not equal
to 36 bits.

Legal Argument
Combinations:

One of the two required arguments (sourcefile or
destinationfile) must designate an active file in
the local system, and the other must designate a
file at a remote Host.

The designation of the local file is in the fol­
lowing format:

name{.extension}{;version}

CPVNET-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Description:

CPYNET
cont'd

i.e., a filename subject to the rules given in
Section 3. If version is omitted and sourcefile
is designated, then the highest (newest) version
of the file is selected. If version is omitted
and destinationfile is designated, then a new
version is created.

The designation of the remote file is in the fol­
lowing format:

(filename,hostid,userid{,password{,account}})

where

filename is the name of the file at the remote Host.

hostid is either the name of the remote Host or the
corresponding octal number.

userid is the user identification under which the
file is held at the remote Host.

password is the password (if any) associated with the
userid at the remote Host, and should be omitted if
not required.

account is an accounting number to be used at the
remote Host, and should be omitted if not required.
If password is omitted, account must also be omitted.

The parentheses in the above format are mandatory.

CPYNET makes use of file-transfer programs that
conform to the ARPA Network File Transfer Protocol
(FTP), and the details of its action (byte handling
etc.) are largely dependent upon the FTP conventions

CPYNET-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

Examples:

CPYNET
cont'd

for the particular remote Host being accessed.
These details are published by the various Network
Hosts.

CPYNET gives the appropriate commands to the file­
transfer programs to cause the contents of the
sourcefile to be transferred to the destination­
file. If the transfer is successful, CPYNET
returns a message to the user indicating the
number of bytes transferred; if it is unsuccess­
ful, it returns an appropriate error message.

CPYNET (MDATA,MOON,JONES,XYZ,123),DATA.INPUT~

Transfer the contents of file MDATA, held under
userid JONES at the Moon Host, to file DATA. INPUT
in the user's directory in the local system.
Jones l password at the Moon Host is XYZ, and the
account number used is 123.

CPYNET DATA.TRANS,(TDATA,MOON,JONES,XYZ,123)~

Transfer the contents of file DATA. TRANS in the
user's directory in the local system to file
TDATA under userid JONES at the Moon Host.

CPYNET-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

DALLOC

The DALLOC subsystem releases (marks for deal location) the set of
ILLIAC IV Disk Memory pages assigned to the user's job.

where

I DALLOC al1ocid~ I

• allocid is the same name used as allocid in a preceding ALLOC
statement in the same job.

Description: The DALLOC subsystem should be used when a user
wishes to release an ILLIAC IV Disk Memory space
assignment within a job.

The ALLOC subsystem will automatically deallocate
disk memory space assigned to the user's job when
the job terminates. Therefore, DALLOC is only
required when a user wishes to release a space
assignment within a job.

DALLOC-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

OED

The OED statement calls the text editor subsystem, OED (see
Appendi x A).

Description: OED is a simple text editor, designed to be used
in the interactive mode. The input to OED may be
either characters typed on the user's terminal or
a file in his directory. The contents of a file
may be referenced by line numbers or by a charac­
ter-string search. The output is made a file in
the user's directory. For a full exolanation of
OED, see Appendix A.

DED-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

DEL

The DEL statement deletes the specified file(s) from the user's
active file space and the specified filename(s) from the user's file
directory.

where

DEL filenamel,filename2, ... ,filenamen~

• each filename is the name of an active file in the user's file
directory.

Caution: The user must not delete files that are specified
in a batch ACL file which the user has submitted
(see SUBMIT) but which has not yet completed
processing.

DEL ... 1 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

DELJOB

The DELJOB statement is used to delete a specified job from the
batch queue. If the job is being actively processed, the DELJOB state­
ment will have no effect. To abort a job during processing, the user
must send a message to the system operator via a NOTIFY statement.

where

I DELJOB jobid ,useri d ,password~ I

• jobid is the batch job identification supplied by the system to
the user in response to the SUBMIT statement used to place the
job in the batch queue (see SUBMIT).

• userid is the user identification used to submit the batch job.
• password is the password associated with the userid.

Description: The DELJOB statement can be entered either inter­
actively or within a batch job, to cause a speci­
fied batch job to be deleted from the batch queue.

Example: I DELJOB 89 ,JONES ,XYZ~ I
The job with jobid 89, previously placed in the
batch queue via a SUBMIT statement, will be
deleted from the batch queue if it is not being
actively processed.

DELJOB-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

OIR

The OIR statement lists the contents of the user's file directory,
or lists information on designated files in the user's directory.

where

OIR {filename1,filename2, ... ,filenamen}~

• each filename designates a file or a set of files in the user's
directory~ If filenames are omitted, all filenames in the
user's directory are listed.

To designate a set of files, the user may default one or two of
the three fields in a filename (name.extension;version). The
syntax for doing this is illustrated in the following examples:

name.extension
name
*.extension
name.*;version
.;version
*.extension;version

(version defaulted)
(extension and version defaulted)
(name and version defaulted)
(extension defaulted)
(name and extension defaulted)
(name defaulted)

Example: The following is an example of the use of OIR
without the filename(s):

<FANSOME>

FILE NAME
ASK.REL
ASK.MAC
USER. DOC

LAST WRITE
8-0EC-72 11:34:34
6-0EC-72 14:45:28
5-0EC-72 22:32:17

SIZE
199(8)
2816(8)
2048(8)

where the SIZE entry indicates the size of the
file in bytes. FANSOME is the user's userid in
this example.

OIR-1 lAC Doc. No. SG-I1000-0000-C
Rev: 7-1-73

EQU

The EQU statement defines and names a control parameter (the first
argument in the statement), and sets the control parameter equal to the
integer value of an expression (the second argument).

where

I EQU name,expression9

• name;s a user-supplied name for a control parameter. It must
be made up of alphanumeric characters, must begin with a letter,
and may have no more than six characters.

• expression is any expression which can be evaluated. The
resulting integer value is assigned to name. An expression may
be a signed vaiue or the name of a control parameter defined in
a previous EQU statement or some combination of these (see
Section 6.2.5).

Description: The EQU statement is the only way in ACL to define
and assign a value to a control parameter. A
control parameter, once defined by EQU, may be
used in subsequent ACL statements or expressions
within the same interactive session, or within

Example 1:

the same batch job.

I EQU SWITCH, 1 ~

In this EQU statement the name is SWITCH and the
expression consists of the value +1. SWITCH may
be a previously defined control parameter which
is now given the value +1, or it may be undefined,
in which case it is now defined and given the
value +1. Note: Negative values are also
permitted.

EQU-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example 2:

Example 3:

Example 4:

I EQU TSTNUM, FUNNY ~

EQU
cont'd

Here the name is TSTNUM. As in Example 1, it may
or may not be predefined; if it is undefined, it
is defined at this time. FUNNY should be the name
of a control parameter defined in a previous EQU
statement, in which case its value will now be
assigned to TSTNUM. In the event that FUNNY has
not been previously defined, it will be evaluated
as (unsigned) zero, and this value will be assigned
to TSTNUM.

I EQU GDNAME,DATUM-lp]

Here the name is GDNAME, and the expression is
DATUM-I, where DATUM is the name of a control
parameter defined in a previous EQU statement.
The value of DATUM minus one will be assigned to
GDNAME. (If DATUM was not previously defined, it
will be evaluated as zero, and the expression will
consequently be evaluated as -1 and this value
assigned to GDNAME.)

I EQU VARBLE,DOIT(CHECKl,CHECK2)? I
In this case the name is VARBLE and the expression
is replaced by the macro-call DOlT(CHECK1,CHECK2).
DOlT is the name of a previously defined macro,
and CHECK! and CHECK2 are the names of two previ­
ously defined control parameters passed to DOlT as
arguments. It is assumed that the text of DOlT is
an expression which, when supplied with the arguments

EQU-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Example 5:

EQU
cont'd

CHECKl and CHECK2, will have a single integer
value. If it is not, its value will either be
zero or something unpredictable. In any case,
a value will be returned and assigned to VARBLE.

I EQU MYNAME ,STATE~ I
Here the name is MYNAME and the expression ;s the
special control parameter STATE. STATE is defined
and maintained by the system and contains informa­
tion returned by the subsystem called in the user's
most recent ACL statement (see Section 6.2.4.1).
In this example, the current value of STATE is
assigned to MYNAME and may thus be saved for future
use in an expression or in a TEST statement.

EQU-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

GLYP

The GLYP statement is a request for a GLYPNIR program compilation
and assembly. It can only be used in a batch file.

where

GLYP infilename,outfilename,{listfilename}{,ASSEMBLE=yesno}~

• infilename is the name of the file containing the GLYPNIR source
code to be compiled.

• outfilename is the name of the file for the output.
• listfilename is the name of the file for the GLYPNIR listing of

the source code. If listfilename is omitted, no listing will be
produced.

• yesno is either YES or NO. If it is YES, the ASK assembler sub­
system will be automatically called by the GLYP compiler subsys­
tem and will assemble the ASK source code produced by GLYP into
relocatable ASK object code in the file named outfilename. If
ASSEMBLE=NO, the assembler will not be called and GLYP will out­
put ASK source code into file outfilename. If ASSEMBLE=yesno
is omitted, the default option is that the assembler will be
automatically called by GLYP.

Description: The GLYP statement is a request for compilation
and assembly of GLYPNIR source code. Syntax and
other error messages generated by GLYPNIR and
ASK will be placed in the user's primary output
file (POF). If the compilation is suc~essful,
the ASK object code will be written in the file
named outfilename in the user's directory. A
listing of the GLYPNIR source code will be writ­
ten in the file named listfilename in the user's
directory.

GLYP-l lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

HELP

The HELP subsystem will answer questions input by the user during
an interactive session.

Description: HELP answers questions about the use of the
ILLIAC IV System and ACL. When the user enters
a HELP statement, instructions on the use of
HELP will immediately be typed out, followed by
a question mark (?) which is the HELP prompt
character. The user may then type in a question;
HELP will type an answer and await another
question.

To ex it from HELP, type END fo 11 owed by a
carriage return.

HELP-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

INQ

The INQ subsystem returns information on a specified batch job, or
on all batch jobs under a specified userid.

where

I INQ {jObid}pl

• jobid is the jobid of a particular batch job, returned by the
system after the job was submitted by a SUBMIT statement. If
the jobid is omitted, the system responds as described below
under "Description (2)."

Description (1) When a jobid is entered in the INQ statement,
the system returns one of the following messages
concerning the job specified by the jobid:

Description (2)

WAITING (the job is still in the batch queue)
RUNNING (the job is being processed)
COMPLETED (the job is neither waiting nor

running)

Caution: The response COMPLETED may be misleading,
as the job may have been deleted via a DELJOB
statement or the jobid may have been entered incor­
rectly in the INQ statement.

When no jobid is entered in the INQ statement, the
system responds by requesting a userid. The user
enters a userid followed by a carriage return, and
the system returns status information on all jobs
under that userid. The following is an example of
the form in which this information is typed out:

INQ-l lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

J.ID RC JS U.ID
41 IL W TOM
34 867 R TOM

INQ
cont'd

Explanation: The columns show the jobid (J.ID),
the runcode (RC), the job status (JS), and the
userid. The runcode is IL (ILLIAC IV), 867
(86700), 8T (both ILLIAC IV and 86700), or NE
(neither ILLIAC IV nor 86700). The job status
is W (waiting) or R (running).

INQ-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

LIB

The LIB statement is used to create a named library of relocatable
ASK object code files. This library can then be used by the link editor
(under control of the SEARCH statement in the link editor call - see
LINKED) to link to user programs contained in the library. The output
of the LIB subsystem is a file containing tables referencing the code
files that make up the library and the entry points in those files.

where

LIB libname,filenamel,filename2, ... ,filenamen~

• 1 i bname is a user-supp 1 i ed fi 1 ename to be 'ass i gned to the
library file. If no extension is supplied, the default
extension will be LIB.

• filenames are the names of files of relocatable ASK object
code to be included in the library (i .e., referenced in the
library file). If extensions are omitted from any of these
filenames, the default extension in each case will be REL.

Description: The LIB subsystem builds a file containing two
tables. The first table is a list of the file­
names supplied in the LIB statement, and the
second is a table of all the entry-point labels
in these files. (Entry points are labels
declared to the assembler as entry points.)
The entry-point table can be searched by the
link editor under control of the SEARCH state­
ment (see LINKED).

The addition or deletion of any entry point in
any of the files referenced in the library file
requires the library to be explicitly amended;
this is done by re-creating the library file
with a new LIB statement.

LIB-l lAC Doc. 'No. SG-I1000-0000-C
Rev. 7-1-73

LIB
cont'd

Currently, a library file may contain any number
of filenames and up to 54,000 entry points.

LIB-2 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

LINKED

The LINKED statement calls the link editor subsystem, which converts
relocatable ASK object code into an ILLIAC IV SAVE (ISV) file. The ISV
file is subsequently input to the RUN subsystem for execution on the
ILLIAC IV or to SSK for simulation. LINKED requires control statements to
specify its operation.

where

[LINKED {infilename},outfilename{,OPTIONS=optionstring}9

• infilename is the name of a file containing LINKED control state­
ments for input to the link editor. If infilename is omitted,
control statements are assumed to be in-line directly following
the LINKED statement. If infilename is entered without an
extension, the default extension LNK is used.

• outfilename is the name of the file that will contain the link­
edited ILLIAC IV image file. This image file is referred to as
an ILLIAC IV SAVE file. If outfilename is entered without an
extension, the default extension ISV is used.

• optionstring is a string of letters each of which controls an
optional feature of the link editor. Any or all of these letters
may be omitted. Currently, the following options are available:

X Do not produce an output file if any errors are detected.
N Do not produce a map of the. image file contents.
L Do not search the system library for external symbols.
M Do not produce a disk map listing for the image file.

Option letters may be strung together in any order, and it is
permissible to repeat them within the string.

Description: The function of LINKED is to convert relocatable
ASK object-code programs to absolute ILLIAC IV
(Array Memory) addresses, to resolve linkages,
and to create an ILLIAC IV SAVE (ISV) file. The

LINKED-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Control Statements
for LINKED Subsystem:

LINKED
cont'd

output from LINKED may be input directly to SSK for
simulation.

Each call to LINKED results in a single output ISV
file containing an ILLIAC IV Array Memory image and
additional information to set the initial machine
state. The ISV file will be subsequently loaded by
the RUN subsystem or simulated by SSK. LINKED will
assign a standard address to the origin of the
user's program; the user can assign a different
origin address with an optional control statement
called SET. (Control statements are described
individually in detail below.) The user may also
specify an initial entry point other than the first
entry point of the first relocatable file specified
to LINKED, using an optional control statement
called ENTRY.

The statements used as control input to the LINKED
subsystem are called INCLDE, SET, ENTRY, and END.
The first, INCLDE, is used to specify the files of
relocatable ASK object code to be included in the
image file.

The INCLDE Statement: The INCLDE statement has the following format:

INCLDE filenamel,filename2, ... ,filenamen~

The filenames are the names of files of relocatable
ASK object code to be processed by the link editor
and included in the output image file. If a file­
name is entered without an extension, the default
extension REL will be used. The files will be
processed by the link editor in the order given in
the INCLDE statement. The format

LINKED-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The SET Statement:

INCLDE filenamel,filename2~
INCLDE filename3,filename4~

is exactly equivalent to

LINKED
cont'd

INCLDE filenamel,filename2,filename3,filename4~

The SET statement is used optionally to specify an
address for the origin of the user's program. It
may be entered anywhere in th~ sequence of state­
ments for the LINKED subsystem. If more than one
SET statement is used in the sequence of statements
following the LINKED statement, the last SET state­
ment prevails. If no SET statement is used, a
standard address will be used. The SET statement
has the following format:

I SET address? I
where address is a syllable address in Array Memory.
A IIsyllable ll is a 32-bit half-word; syllable ad­
dresses are numbered sequentially across rows,
starting from syllable 0 at the beginning of Row 0
and ending with syllable 262,144 at the end of Row
2047.

The address may be given in either decimal or octal
notation. To indicate octal notation, a "pounds"
sign (#) is used as a prefix; otherwise, decimal
notation is assumed. For example, there are 128 =

#200 syllables on each row.

The address should specify a syllable that is the
first syllable on a row. Observe that syllables
#0, #200, #400, #600, #1000, ... , #777,600 are the

LINKED-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The ENTRY Statement:

The END Statement:

LINKED
cont'd

syllable addresses at the beginning of rows, since
there are #200 syllables on each row. If the
address does not lie at the beginning of a row, the
assigned origin address will be the next syllable
address that does lie at the beginning of a row -
for example, if the address given is #236, the
assigned origin address will be #400.

The ENTRY statement is used optionally to specify an
initial program entry point other than the first
entry point in the first file included in the INCLDE
statement. The ENTRY statement may be used anywhere
in the sequence of statements for LINKED. If more
than one ENTRY statement is used, the last one pre­
vails. If no ENTRY statement is used, the entry point
of the program will be the first entry point in the
root segment. The ENTRY statement has the format

I ENTRY 1 abel~ I
where label is the label of an instruction in the
user's relocatable ASK code and has been declared
as an entry point at assembly time.

The END statement is used at the end of the sequence
of statements for the LINKED subsystem. It may not
be omitted. The END statement has the format

The END statement has the effect of terminating the
call to the LINKED subsystem; LINKED will then per­
form all the necessary opera.tions to create the image
file as specified in the preceding control statements.

LINKED-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

LOGIN

The LOGIN statement is not an ACL statement but is included here
for reasons that will be obvious. It is the means for starting an inter~

active ACL session on the ILLIAC IV System, and must be the user's first
statement upon establishing a Network connection to the ILLIAC Host.

where

Note:

I LOGIN useri d password account~ I

• userid is the user's identification, administratively established
beforehand.

• password is the password associated with the userid and will not
be echoed at the user's terminal when entered.

• account is a string of digits chosen by the user (in the current
implementation it is not used by the System).

Unlike ACL syntax, the syntax of the LOGIN state­
ment calls for the arguments to be separated by
spaces, 'not commas.

Description: On completion of LOGIN, the ILLIAC IV System
responds with a (!) prompt signal to indicate
that it is ready to accept an ACL statement.

LOGIN-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

LOGOUT

The LOGOUT statement causes a normal termination of an ACL batch
job or interactive session. LOGOUT does not disconnect the user terminal
from the ILLIAC Host.

Description:

Caution:

I LOGOUT\l1

In the interactive mode LOGOUT causes normal
termination of the session. The status of any
batch jobs submitted (see SUBMIT) by the user
during this interactive session will be
unaffected even though the user has logged out.

If the LOGOUT statement is included in an ACL
statement file, it is equivalent to an EOF. It
may be used in this sense to create alternative
exit points in a batch job.

In the interactive mode, LOGOUT terminates an ACL
session but ~oes not cause a disconnect. The
user then has two options:

(1) Disconnect from the ILLIAC Host

(e.g., TELNET, tZ)

(2) Resume ACL interaction

(e.g., TELNET, tC followed by LOGIN)

LOGOUT has this effect whether it is entered
from the terminal or in a file of ACL statements
processed via an ALT statement.

LOGOUT-l lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

MACRO

The MACRO statement causes the sequence of text that follows it
(enclosed in square brackets []) to be defined as an ACL macro. Subse­
quent to the macro definition, the macro may be called in ACL by its name.

where

IMACRO name{,(argl,arg2, ... ,argn) H) I

• name is the user-supplied name by which the macro will be called.
The name may be any string of alphanumeric characters .

• (argl,arg2, ... ,argn) is the formal argument list of the macro.
The macro subsystem imposes no restrictions on the construction
of formal arguments other than the general caution against arbi­
trary use of special characters such as the semicolon. The
parentheses enclosing the formal argument list are required, as
is the comma separating the argument list from the name.

Text of a Macro: The text of a macro is a character string, an
expression, or one or more ACL statements in
legal combination and is enclosed in square
brackets.

Description: Macro processing occurs in two steps:

Step 1 is the process of defining the bracketed
sequence of text as an ACL macro. After this,
the macro name is IIknown ll to the system and may
be subsequently called.

A macro definition is global with respect to the
job within which it is defined. Here IIjob ll means
(a) a user's interactive session, not including
any batch job that he submits during that session;
or (b) a batch job, including secondary sequences
of ACL statements not contained in the PIF (files

MACRO-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MACRO
cont'd

branched to by ALT statements, for example).
Within a job, a macro defined in one file may be
called in another, assuming that the definition
has been processed before the call is processed.

Step 2 is the macro expansion, which occurs (after
the macro definition) when the defined macro is
called. A macro is called either when it is invoked
directly as if it were an ACL statement or when the
macro name is referenced as an argument in another
ACL statement.

An example of invoking a macro:

EQU JAZZ,JAZZ+l~
~QU BIT5,[CHECK+5]\35~

.
~AFETY(JAZZ,BIT5)~

where SAFETY is the name of a previously defined
macro having two formal arguments; JAZZ and BITS
are control parameters passed to SAFETY as actual
arguments. JAZZ and BITS will be inserted in the
text of SAFETY in place of the formal arguments.

An example of referencing a macro:

I EQU PARAM,CALC(STRNUM,5 ,UNK)~ I

where CALC is the name of a previously defined
macro having three formal arguments and STRNUM
and UNK are previously defined control parameters
passed to CALC as the first and third actual
arguments; the value 5 is passed as the second
actual argument.

MACRO-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

MACRO
cont'd

(This distinction between invoking and referencing.
a macro is not a rule of construction imposed by
the MACRO subsystem. The terminology is intro­
duced here to explain the effects of this
difference in usage.)

A defined macro may be referenced in place of any
ACL statement argument, but may not appear in an
expression. A macro may be called from another
macro.

The expansion process of a macro is an in-line
string insertion of the text contained in the
defined macro (with actual arguments inserted in
place of formal arguments). When a macro is
referenced, the macro text is inserted in-line in
the referencing ACL statement. After this inser­
tion of the text, the MACRO subsystem processing
is complete.

A macro which is to be invoked may contain any
combination of ACL statements. A macro which is
to be referenced may contain either a character
string or an expression. A referenced macro which
yields an expression is analogous to a FORTRAN
function call.

The text of a macro is not checked for violation
of ACL construct;-on rules by the macro subsystem.
For this reason, the content of a macro definition
should be viewed as text. After the macro is
expanded, norma 1 ACL rul e·s of constructi on app ly.

A macro definition must include a macro name, and
may include a formal argument list, (argl,arg2, ... ,
argn), enclosed in parentheses. A macro defined

MACRO-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Exampl e 1:

MACRO
contld

with a formal argument list may be called (i .e.,
invoked or referenced) with or without the
arguments included in the calling sequence.
Arguments which are omitted in a calling sequence
must be delimited with the 11,11 so that a correct
argument sequence correspondence is established.
When arguments are omitted in the calling sequence,
a IInullll character is inserted for the omitted
parameter in the text of the macro expansion. A
IInullll character is not equal to zero. Unless
caution is exercised, a formal argument omitted
in a calling sequence may cause a subsequent
syntactic error. See Example 4 below.

Examples of macro usage:

The macro definition:

MACRO NEWNAME~
[PROC.JDATA]7

when referenced in:

I OrR NEWNAME~ I

results in the processing of the ACL statement:

I OrR PROC.JOATA~ I
This is an example of a macro used to insert a
character string in a referencing ACL statement.
It illustrates the explanation above, that the
macro expansion process is simply a string inser­
tion of the text contained in the macro definition.

MACRO-4 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Example 2:

Example 3:

MACRO
cont'd

Note also that a macro definition does not have
to include a formal argument list.

The macro definition:

MACRO CHECK,(THIRD)~
[EQU THIRD,STATE+3 ~
EQU THIRD,THIRD\35]Q

when invoked in

I CHECK(TESTl)b I
sets the value of TEST1 to the value of the Bit 3
of the STATE parameter. TEST1 is now deflned and
a value assigned to it, and it may be subsequently
tested with the TEST statement.

Assuming the ACL statements immediately before and
after the macro call are STATEMENT1 and STATEMENT2,
the macro invocation above would result in:

STATEMENT1~ .
EQU TEST1 5TATE+3h } macro expanslon , ~ and
EQU TE5T1,TE5T1\359 text insertion.
STATEMENT2Q

The macro definition:

MACRO DEFILE,(FILENAME)~
[DEL FILENAME?
DIRQ
EQU CHECK,l]~

MACRO-5 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Example 4:

when invoked in:

I DEFILE(MYFILE,SOURCE;l)? I

MACRO
cont'd

causes the file named "MYFILE.SOURCE;I" to be
deleted, the user directory to be listed, and
a control parameter CHECK set to a positive 1.

The CHECK control parameter may be subsequently
used in an ACL statement. For example,

TEST CHECK,(NEGCASE,ZEROCASE,POSCASE)~

The subsequent use of CHECK in this example
illustrates the fact that control parameters
defined in a macro expansion are global defini­
tions even when not in the argument list of the
macro.

. The macro definition:

MACRO EVALU,(CC)~
[AA+[BB*CC]]?

when referenced in the sequence:

EQU AA,I~
EQU BB ,O~

EQU DD,EVALU(5)9

causes DD to be assigned the value +1. This is
an example of the macro capability being used in

MACRO-6 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MACRO
cont'd

a manner analogous to a FORTRAN function. Since
the macro expansion process is a string insertion,
the expansion results in the ACL statement:

I EQU DD,AA+[BB*51~ I
which causes the expression AA+[BB*5] to be evalu­
ated (as +1) and the value assigned to DO. From
this example it should be noted that when a macro
call is referenced in an EQU (or TEST) statement,
its text must be a legal expression - i.e., a
legal argument of the statement. If the ACL
sequence in the example above were

EQU AA,lD
EQU CC,09
EQU BB,5~

EQU DD,EVALU~

with the actual argument in the macro call omitted,
the macro expansion of EVALU would be successful,
but a syntax error would occur in the evaluation
of the resultant statement,

I EQU DD,AA+[BB*lQ I

because "88*" is not a valid expression; hence
"AA+[BB*]II is not a valid expression, and thus it
is not a valid second argument for the EQU state­
ment.

MACRO-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MAP

The MAP subsystem accepts a user-defined ILLIAC IV Disk Memory
(140M) layout and creates a file of allocation tables for subsequent
input to the ALLOC subsystem. The disk memory layout is specified by
means of control statements.

where

I MAP {infilenameH ,mapfilename}~ I

• infilename is the name of a file containing control statements
for the MAP subsystem. If infilename is omitted, MAP subsystem
statements are assumed to be in-line following the MAP statement.

• mapfilename is the name of the file to be used by the MAP sub­
system for output of the disk memory allocation tables. If
mapfilename is omitted, no allocation tables are created.
Normally this option would be used only if TIME or PRINT control
statements were included (see below) and the user wanted to
produce MAP output listings.

Reference: See Section 5 of this guide for a detailed
discussion of how to layout the ILLIAC IV
Disk Memory.

Discussion: The MAP subsystem accepts and processes control
statements entered directly (in-line) or in a
file. These statements describe an 140M layout
which is used by MAP to create a file of alloca­
tion tables; these tables are in turn used by
the ALLOe 'subsystem to assign 140M space in
preparation for execution of an ILLIAC IV
program.

The user's description of an 140M layout, as
expressed in control statements to MAP, is in

MAP-l lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

The Logical Disk:

Page Identification:

MAP
cont'd

terms of the logical disk, which is a logical
model of the physical 140M system presented to
the user by the disk utility software. The
following is a condensed discussion of the
logical disk and page-identification conventions
associated with it; for a full discussion, see
Section 5.2.

The smallest collection of data on the 140M system
that is logically addressable is a~. A page
of data is a contiguous collection of 1024 (64-bit)
or 2048 (32-bit) ILLIAC IV words. The 140M layout
is structured at a page level.

Contiguous pages are grouped in sequential sets of
300 into bands. A total of 52 bands, or 15,600
pages, are available on the 140M.

There is a time delay (caused by electronic switch­
ing) equivalent to two pages of rotational time
delay when (1) accessing pages across a band
boundary (anyone band to any other band), or (2)
between any two successive data transfer requests.
Note that all bands are "equidistant" from each
other in terms of time.

The page and band layout is a logical structure of
disk memory space. Pages and bands are uniquely
identified to the MAP subsystem relative to the
position of Band 0, Page O. See Section 5 for
further explanation.

All band or page assignments made in a layout are
denoted to the MAP subsystem relative to Page 0,
Band 0 of the logical disk. Bands are identified

MAP-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MAP
cont'd

in sequence from 0 to 51. Notationally, Band 52

is the same as Band 0 (i.e., band numbers are
considered modulo 52). Each band has 300 pages
numbered from 0 to 299. Page 299 of any band is
contiguous to Page 0 of the same band; page
numbers are considered modulo 300.

As implied by this structure, the 140M may be
conceptually viewed as a cylinder, with Pages 0
to 299 running around the cylinder in 52 bands
and with Page 299 contiguous to Page 0 in anyone
of the bands. Band 51 is notationally adjacent
to Band 0 (recalling that there is a two-page time
delay to access from Band 0 to Band 51 just as
there is between ~ two bands). See Figure MAP-I.

52 READ/WRITE HEADS

~-----------== ~ ~~
C[5 GJ GJ GJ GJ

52 BANDS TOTAL

Figure MAP 1. Logical Disk Structure, Showing 6 of the 52 Bands

MAP-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Control Statements
for the MAP Sub­
system:

MAP
cont'd

The MAP subsystem statements are FORMAT, PRINT,
TIME, and END. A complete call to the MAP sub­
system consists of a MAP statement, followed by
at least one FORMAT statement. PRINT and TIME
statements are optional. The call is terminated
by the END statement. The control statements are
discussed individually below.

The FORMAT Statement: The FORMAT statement is used to specify the
arrangement on the logical disk of one area. An
area is a named collection of user-specified pages
on the logical disk. The FORMAT statement associ­
ated with the area identifies the pages in the
area, specifies the arrangement of these pages on
the logical disk, and assigns a name (the areaname)
to the collection of pages.

The FORMAT statement has the following format:

FORMAT areaname,(formatspec)Q

where

areaname is a user-supplied name to be assigned to
the area described in this FORMAT statement (up to
six alphanumeric characters, with a letter for the
first character).

formatspec is a parenthesized sequence of operators
that identify logical disk pages which are to be
assigned to the area. formatspec defines the rela­
tive arrangement on the logical disk of these
pages. formatspec is discussed in detail in the
following section.

MAP-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The formatspec:

The ±nP Operator:

MAP
cont'd

The MAP subsystem maintains a IIcurrent page posi­
tion pointer,1I used in the processing of FORMAT
statements, that always points to some logical
disk band and some page within the band, in
accordance with the logical disk of Figure MAP-I.
For each FORMAT statement, this pointer is ini­
tially set to Page 0, Band o. The operators that
make up the formatspec move the pointer in various
ways. The operators will be considered in detail,
starting with the operator used to reserve pages
in the area.

This operator has the form ±nP, where n is a signed
integer. The n in this operator may be omitted if
it is 1, and the sign may be omitted if it is
positive.

The effect of ±nP is to reserve a set of n consec­
utive pages, starting with the current pointer
position as the first page of the set and proceed­
ing forward or backward on the logical disk (i .e.,
with or against the direction of physical rotation),
depending on the sign of the operator. The pointer
is left pointing to the next page on the logical

disk, following the last page of the reserved set.

At the beginning of each formatspec, the pointer

position is Band 0, Page O. Thus the simple
formatspec

(128P)

would specify an area 'consisting of 128 contiguous
pages starting at Band 0, Page 0 and extending to
Band 0, Page 127. The pages are contiguous because

they are all within the same band.

MAP-5 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The inS Operator:

Action of ±nP and
inS Operators at
a Band Boundary:

MAP
cont'd

The n in this operator may be omitted if it is 1
and the sign may be omitted if it is positive.
The inS operator moves the current page position
pointer n pages forward or backward, depending on
the sign, and has no other effect. The formatspec

(32S,64P)

would first move the pointer from its initial
position at Page 0, Band 0 to Page 32; the 64P
operator would then reserve Pages 32-95. The
resulting area would consist of 64 contiguous
pages starting at Page 32, Band 0 of the logical
disk. The pointer would be left at Page 96, Band
O.

Another use of the inS operator is seen in the
following example:

(32P,2S,32P)

Here 32 contiguous pages are reserved as part of
the area, then the pointer is moved two pages
forward, and another 32 contiguous pages are
reserved.

Before discussing other operators, one more charac­
teristic of ±nP and inS operators will be described.
When either of these operators moves the pointer
past Page 299 of any given band, the "next" page
(for the purposes of the operator) will be Page 0

of the "next" band. The formatspec operators are
implemented in this fashion to facilitate the
handling of large data arrays.

MAP-6 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

The ±nB, ±nL, and
±nR Operators:

MAP
cont'd

The "next" band is the next band in numerical
sequence counting from Band 0 through Band 51,
with Band 0 following Band 51. This sequence is a
notational property of the formatspec operators; as
stated before, the bands of the logical disk are
equidistant in terms of'access time, and thus the
sequence does not imply a physical relationship.

When a negative operator moves the pointer past
Page 0 of any band, the "next" page will be Page
299 of the "previous" band.

For example, if the current pointer position is
Page 290 of Band 13 and a 50P operator is encoun­
tered, Pages 290-299 of Band 13 and Pages 0-39 of
Band 14 will be reserved, for a total of 50 pages.
If the pointer position is Page 40 of Band 13 and
a -50S operator is encountered, the pointer will
be moved to Page 289 of Band 12.

The n in these operators may be omitted if it is 1
and the sign may be omitted if it is positive.
These operators, like the ±ns operator, have no
effect except to move the pointer; they provide
additional convenience and flexibility by moving
it in different ways.

The ±nB operator moves the pointer n bands from
its current position, maintaining the pointer at
the same page number within the new band. For
example, if the current position is Page 234,
Band 16 and a -4B operator is encountered, the
resulting pointer position will be Page 234,
Band 12. If a ±nB operator moves the pointer
"past" Band 51 in a positive direction, it moves

MAP-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MAP
cont'd

from Band 51 to Band 0, then to Band 1, etc. in
sequence. If the pointer is moved in a negative
direction "past" Band 0, it moves from Band 0 to
Band 51, then to Band 50, etc. in sequence.

The ±nL operator resets the pointer to Page 0,
Band 0, and then moves it to the nth page of the
logical disk counting pages consecutively from
Page 0 (Band 0). There is a total of 15,600
pages on the disk, and for purposes of the ±nL
operator they form a continuous sequence, where
Page 0, Band 0 is the Oth page on the disk and
Page 299, Band 51 is the 15,599th page on the
disk. Page 15,599 is "followed" in this sequence
by Page o. The n in a ±nL operator is taken
modulo 15,600. Note that the pointer position
resulting from a ±nL operator is independent of
the previous position.

For example, the formatspec

(500L,10P)

moves the current page position pointer to Page
500 (i.e., Page 200 of Band 1) and then reserves
ten pages, Pages 200 to 209 of Band 1. This
sequence is independent of what precedes the L
operator in the formatspec. For example, in the
formatspec

(64P,2S,64P,500L,10P)

the 500l, lOP operator sequence again reserves
Pages 200 to 209 of Band 1.

MAP-8 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Combinations of
Operators:

MAP
cont1d

The ±nR operator moves the pointer to .the nth page
within the current band, taking n modulo 300 and
counting from Page a of the current band. The nth
page within the band is counted from Page a of the
band, regardless of the pointer position within
the band before the operator is encountered. For
example, if the pointer is in Band 10 and Page 100
when a 5R operator is encountered, the resulting
position will be Page 5, Band 10. For purposes of
this operator, the pages within a band are consid­
ered to II wrap around ll from Page 299 to Page 0; thus
a -5R operator, in the above example, would move
the pointer to Page 295 of Band 10, and a 310R
operator would move the pointer to Page 10 of
Band 10.

As noted above, operators are separated by commas
and are interpreted and processed in sequence.
Two or more operators may be enclosed in paren­
theses prefixed by a signed integer in; the
parenthesized sequence of operators is repeated
n times. For example,

3(2S,50P)

is exactly equivalent to 2S,50P,2S,50P,2S,50P.
If the integer is negative, the signs of all
operators in the parenthesized sequence are
changed, e.g.,

-2(2S,-50P)

is exactly equivalent to -2S,+50P,-2S,+50P.
Parenthesized sequences may be nested as in

MAP-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The Continuation
Character in FORMAT
Statements:

Summary of the
FORMAT Statement:

2(2S,3(20P,2S))

MAP
cont'd

which is exactly equivalent to 2S,3(20P,2S),2S,
3(20P,2S) or 2S,20P,2S,20P,2S,20P,2S,2S,20P,2S,
20P,2S,20P,2S.

In a FORMAT statement, the formatspec may be very
lengthy. The semicolon may be used as a continua­
tion character within the formatspec. The semi­
colon should immediately follow a comma and should
be followed by a carriage return.

Example

FORMAT INDATA,(3P,2S,4P,4S,6P,2S,20(S,P),2S,P,IO(S,P),;~
S,15(S,P),2S,IOP)~

The FORMAT statement is used in a MAP subsystem
call to name and describe the arrangement on the
logical disk of one area. Within one MAP subsystem
call, all FORMAT statements use a common reference
point (Page 0, Band 0 of the logical disk) for the
area descriptions they contain. The description
of an area is called a formatspec and is composed
of operators. One operator (±nP) is used to reserve
n consecutive pages in the area; other operators
move a logical current page position pointer that
is used to locate on the logical disk the sets of
pages laid out by ±nP operators. The areas
described in a FORMAT statement will be assigned
space on the 140M by the ALLOC subsystem.

MAP-IO lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Important Note:

The Map Subsystem
List Outputs:

MAP
cont'd

One aspect of the FORMAT statement is not dis­
cussed in this section: the sequence in which
pages are reserved in the formatspec. This
sequence is significant, and two formatspecs
are not equivalent if they reserve the same
logical disk pages but in a different sequence.
See Section 5.4 for a complete discussion.

There are two operators that can be used in a
FORMAT statement which have not yet been
described. These are:

x - which means mark the current page for
printing; marked pages are recognized
by the PRINT statement (see below).

T - which means mark the current page for
timing; marked pages are recognized by
the TIME statement (see below).

"Current" in the above definitions refers to the
current position of the page pointer.

Note that unlike the other operators, X and Tare
not prefixed with a signed integer. The effect
of X or T is to mark the current page for printing
or timing, without moving the pointer. Thus the
formatspec

(X,20P,2S,X,30P)

reserves two sets of 20 and 30 pages respectively,
with a two-page gap between them, and the first
page of each set is marked for printing. To mark
all "reserved pages for printing, in the same lay­
out, one would write

MAP-II lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

The PRINT Statement:

(20(X,P),2S,30(X,P))

MAP
cont'd

The construction X,T or T,X marks the current page
for both timing and printing. The following
formatspec again reserves two sets of 20 and 30
pages respectively, with a two-page gap between
them, and marks the first page of each set for
timing and all reserved pages for printing:

(T,20(X,P),2S,T,30(X,P))

Note: It is syntactically permissible to prefix
an X or T operator with a signed integer, e.g.,
5T. However, the signed integer in this case is
ignored, and 5T is exactly equivalent to T.

The PRINT statement has the following format:

PRINT areaname1,areaname2, ... ,areanamenp

where

areaname(s) have been previously specified with
FORMAT statements in this MAP call.

The PRINT statement causes MAP to produce a dia­
gram representing the logical disk, and indicating
all pages marked for printing in preceding FORMAT
statements. The diagram consists of 52 columns
and 100 rows; each column represents a band (with
Band a at the left), and each row entry within a
column represents three contiguous pages within
the band (with Pages 0, 1, 2 at the top of each
column). The three pages are internally repre­
sented by a pattern of three bits - 100 if the

MAP-12 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

The TIME Statement:

The END Statement:

MAP
cont1d

first of the three pages is marked for printing,
110 if the fi rst and second are marked, etc. On
the PRINT diagram, each entry consists of the
corresponding octal number, i.e., a if none of
the three pages is marked, 3 if the second and

third are marked, etc.

The TIME statement has the following format:

TIME areanamel,areaname2, ... ,areanamen~

where

areaname(s) have been previously specified with
FORMAT statements in this MAP call.

The TIME statement writes out the 140M rotational
time delay between pages marked for timing in
preceding FORMAT statements. Time delays will be
computed between pages in the sequence in which
they occur on the logical disk, and not in the
sequence of the area virtual map (see Section 5.4
for a discussion of the 140M area as a virtual
map) .

The END statement has the following format:

An END statement is required as the last control
statement to the MAP subsystem. Upon recognizing
the END statement, MAP will process all the other
control statements in the sequence and will produce
a file of allocation tables, TIME output, and/or
PRINT output, as previously specified by the user.

MAP-13 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MAXAFS

Each user is assigned a certain amount of active file space, which
is used for active file storage. The MAXAFS statement causes the system
to type out the maximum number of pages currently assigned to the user
for active file storage.

Description:

I MAXAFS~ I
Type the maximum number of active file storage
pages assigned to the user.

MAXAFS-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

MOVE

The MOVE statement is used to transfer the contents of an active file
in the user's directory to an area on the 140M, or to transfer the contents
of an 140M area to a file in the user's directory. MOVE can only be used
in a batch job.

where

I MOVE source,destination~ I

• source designates the file or 140M area to be copied from.
• destination designates the file or 140M area to be copied to.

One of the two arguments must designate a file in the user's directory.
specified by a filename; the other argument must designate an 140M
area which the user has described in a MAP subsystem call and which
has had space assigned to it on the I40M by the ALLOC subsystem. An
140M area is specified as source or destination as follows:

I 14DM: areaname

where areaname is the name used in a FORMAT statement within the MAP
subsystem call. The characters 114DM:" must be entered literally in
the MOVE statement.

Description: MOVE transfers the contents of the source (file or
I4DM area) to the destination (file or I4DM area).
If the transfer is successful, a message is
returned to the user indicating the number of
bytes transferred. If unsuccessful, MOVE returns
an appropriate diagnostic message.

MOVE-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Note:

Examples:

MOVE
cont'd

An 140M area has a fixed number of pages assigned
to it. Therefore, if destination is an 140M area
and the source file contains more pages than are
assigned to the area, the area will contain a
truncated copy of the file after MOVE is accessed.

I MOVE DATA. INPUT, I4DM: INDATA~ I
Transfer the contents of file DATA. INPUT to area
INDATA.

I MOVE I4DM:OUTDAT ,DATA. OUTPUT? I
Transfer the contents of area OUTDAT to file
DATA.OUTPUT.

MOVE-2 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

NEWS

The NEWS subsystem types out news about ACL subsystems.

Description: When the NEWS statement is entered, the NEWS sub­
system prompts the user by typing IINEWS ABOUT:"
and then awaits further input. The user may then
type in the name of a topic (such as an ACL sub­
system) followed by a carriage return. NEWS will
then type out the news relating to the specified
topic. One of the available topics is IIGENERAL II

,

which includes instructions on the use of NEWS and
a list of other available topics.

The user may also respond with nothing but a car­
riage return, which causes all the news to be
typed out.

After typing out news on whatever topic the user
has selected, NEWS again prompts the user by
typing IINEWS ABOUT:II. The user may then respond
with another topic, or exit from NEWS by typing
"END~".

While NEWS is typing out, the user may interrupt
by striking control 0 (strike IICONTROL II and "0 11

keys simultaneously). NEWS will stop typing (not
necessarily immediately) and prompt for a new
topic.

NEWS-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

NOTIFY

The NOTIFY statement routes a message to the system operating staff.

I NOTIFY "message"'ll

where

• message is a character string of any length, enclosed in quotes.
Carriage returns may be used within the message.

Description: NOTIFY displays a user's message to the system
operating staff. If the message requires action,
the staff can communicate with the user by return­
ing a message to the user's terminal, or by leaving
a message in a file in the user's directory. The
NOTIFY statement may only be input interactively.
Messages sent with a NOTIFY statement will have a
header added automatically which identifies the
user and provides the time and date.

System Response:

If the message is a report of a problem in the
system, the message will be directed to the appro­
priate system operating staff member for informa­
tion and action. For messages that report system
problems, operating procedures require the staff
to acknowledge the user's message.

Successful execution of the NOTIFY subsystem
causes the following message to be typed on the
user's terminal:

NOTIFY-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example:

NOTIFY
cont'd

LINK FROM userid, TTY number~
ACL NOTIFY MESSAGE TO OPERATOR date time,
message~

BREAKp

where userid and number are the user's userid and
teletype number, and message is a repeat of the
user I s message.

If the user's message is not successfully sent,
the system will type:

CONSOLE TTY BUSY OPERATOR ENGAGED AT THIS TIME?

If no message ;s included in the NOTIFY statement,
the system will type:

I MESSAGE MAY NOT BE DEFAUL TED91

!NOTIFY liMY JOB DISAPPEARED FROM THE BATCH QUEUE~
FOR NO APPARENT REASON"~
LINK FROM FANSOME, TTY 25p

ACL NOTIFY MESSAGE TO OPERATOR 29-FEB-73 9:48:319
liMY JOB DISAPPEARED FROM THE BATCH QUEUEp
FOR NO APPARENT REASON"~
BREAK~

NOTIFY-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

OUTPUT

The OUTPUT statement is used to specify full or half duplex
terminal operation and the output line width on the user's terminal.

where

OUTPUT {LINE=mode}{,WIDTH=linewidth}~

• mode is either FULLDUPLEX or HALFDUPLEX and specifies the com­
munication mode between the system and the user's terminal.
(Actually, only the first character of mode is scanned, so
mode may be any arbitrary word starting with F or H.) The
default mode ;s FULLDUPLEX. The mode must be preceded by the
string "LINE=".

• linewidth is the desired output line width on the user's
terminal in characters, e.g., WIDTH=50 for a 50-character
line width. The default line width is 72 characters. WIDTH
may not be set to less than 8 characters. The linewidth must
be preceded by the string "WIDTH=".

Description: When the user logs in, the ACL executive assumes
full duplex operation with a 72-character line
width. The OUTPUT statement is used to change
to half duplex mode and/or to change the line
width.

Note: Both arguments (LINE=mode and WIDTH=linewidth)
are "keyword arguments." They need not be
specified in the order shown above, i.e., their
positions in the OUTPUT statement may be reversed.
If either of the two arguments is omitted, no
comma is needed. The only rule is that if both
arguments are used, they must be separated by a
comma.

OUTPUT-l fAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Examples:

OUTPUT
cont'd

I OUTPUT LINE=HALFDUPLEX .WIDTH=64~ I
I OUTPUT WIDTH=50~ I

I OUTPUT LINE=H? I
I OUTPUT WIDTH=70 .LINE=H~ I

OUTPUT-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

RENAME

The RENAME statement changes the filename of a user's file in the
ILL lAC IV System.

I RENAME 01 dfil ename ,newfil ename~ I
where

• oldfilename is the name of the file to be renamed.

• newfilename is the new name for the file.

Description:

Example:

RENAME replaces the oldfilename (i .e., name.
extension;version) in the user's directory with
newfilename (i.e., name.extension;version). The
standard ACL file naming conventions apply to
the RENAME statement. Once the RENAME statement
is processed, the oldfilename no longer exists
and will not be recognized by the system. If
version number is not specified with newfilename,
it will be the highest existing version number.

I RENAME ALPHA.NDF ,BETA.RD~ I
The highest numbered version of file ALPHA will
be renamed.

RENAME-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

RUN

The RUN subsystem is used to load an ILL lAC IV program and initiate
its execution. The RUN statement can only be used in a batch file.

where

RUN infilename,{DMPFIL=dumpfilename}{,MAXTIM=time}?

• infilename is an ILLIAC IV SAVE (ISV) file produced by the LINKED
subsystem. If the infilename is entered without an extension,
the default extension ISV will be used.

• dumpfilename is the name of a file to contain an image of the
contents of Array Memory upon any termination of the ILLIAC IV
program. If DMPFIL=dumpfilename is omitted, no dump file is
created.

• time is the maximum number of seconds the user's ILLIAC IV program
will be allowed to run. If time is exceeded, the program will be
terminated; this will cause a dump file to be created if a dump­
filename has been specified. If MAXTIM=time is omitted, no
maximum time is set.

Description: The RUN subsystem goes through four steps:

(1) Allocate space for the program in ILLIA~ IV
Disk Memory (two bands are required for this·
purpose) .

(2) Transfer the input ISV file to ILLIAC IV Disk
Memory.

(3) Transfer the information from disk memory to
Array Memory and the ILLIAC IV Processor.

(4) Initiate execution.

Step (1) will fail if the user has not left at least
two bands clear in disk memory when laying out disk
areas with the MAP subsystem. If any of Steps (1)
through (3) fail, Step'(4} will not occur.

RUN-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

RUN
cont'd

Program execution will begin at one of the follow­
ing locations within the user's program:

(1) If a starting location was specified with an
ENTRY statement to LINKED (see LINKED), exe­
cution will begin at the specified location.

(2) If no ENTRY statement was used, execution will
start at the first entry point (entry points
are labels declared to the ASK assembler as
entry points).

(3) If no ENTRY statement was used and no entry
points have been declared, execution will
start at the origin of the user's program.

After a RUN statement is processed, the next state­
ment in the job will not be processed until execu­
tion terminates on the ILLIAC IV. Execution may
terminate under program control, or because the
time set by the user is exceeded, or for other
reasons. In any case, the RUN subsystem will pro­
duce a dump file upon termination if DMPFIL=dump­
filename has been specified.

RUN-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SEND

The SEND statement causes a message to be sent (as a file) to one or
more other users who have file directories in the ILLIAC IV System.

System Response:

Description:

Control Characters:

When the SEND statement has been entered, the SEND
subsystem prompts the user with "TYPE LIST OF USERS.II
The user may then type in any number of directory­
names, separated by commas and terminated by a car­
riage return. (Note: The directoryname for a
given user is that user's userid.) Next the system
prompts the user to type in a message, which will
be sent to each of the specified file directories.
The message may be edited while it is being typed
in (see below), and is terminated by a control Z
(+Z).

In each addressee's file directory, the SEND sub­
system creates a file called MESSAGE.TXT, contain­
ing the message with a header identifying the
sender and giving the time and date. In addition,
a temporary file called MESSAGE.COPY is created in
the sender's file directory. Each addressee will
receive a herald message on his terminal the next
time he logs in, notifying him that he has a mes­
sage. He may then use OED to type out the contents
of file MESSAGE. TXT.

If the file MESSAGE. TXT already exists, the new
message is appended to it.

The following control characters may be used for
editing during entry of the message:

SEND-l lAC Doc. ,No. SG-IlOOO-OOOO-C
Rev. 7-1-73

SEND
cont'd

tA Delete the last input character.
tQ Delete back to the beginning of the line.
tR Retype the current line. (User may then

continue typing line; useful when tA has
been used several times and the line is
hard to read.)

tX Delete back to the beginning of the
message.

tZ Terminate message and exit from SEND.
tB Insert the contents of a file into the

message. When tB is entered~ the system
prompts the user to supply a filename.
The filename is terminated with a carriage
return or line feed. The user may then
continue typing in the remainder of the
message, if any, or terminate the message
with tZ.

SEND-2 lAC Doc. No. SG-1l000-0000-C
Rev. 7-1-73

SSK

The SSK statement is a request to simulate the execution of an

ILLLAC IV program. The SSK Simulator runs on the B6700.

SSK infilename,listfilename{,arealist}~

Keyword Arguments: The following keyword arguments may be inserted in

the above syntax in any position. All arguments

must be separated by commas:

where

I VALUE=taskvalue I
MAXTIM=time

IDMPFIL=dumPfilenamel

• infilename is the name of an ILLIAC IV SAVE (ISV) file

containing the ILLIAC IV program to be simulated. If the

infilename is entered without an extension, the default

extension ISV will be used.

• listfilename is the user-assigned name for the output file

from SSK.

• arealist is a list of up to eight entries (separated by

commas), each of the form

I4DMn=filename

where n is an integer from 0 to 7. The filenames are the names

of data files to be accessed by SSK, in place of ILLIAC IV Disk

Memory transfers. Data transfer calls in the program should

refer to I4DMO, I4DMI. I4DM2, etc. as I4DM areanames. (See

"Data Input/Output" below.)

SSK-I lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

SSK
contld

• taskvalue specifies the timing options selected, according to the
following table:

taskvalue

1

2

4

8

16

Timing Option

Static timing only
Average number of PEls enabled
Dynamic timing without memory conflict
Dynamic timing with memory conflict
Detailed timing

Any combination of these basic options can be specified by a task­
value which is the sum of two or more of the entries in the above
table - for example, to select static timing, average number of
PEls enabled, and dynamic timing with memory conflict, the task­
value would be 11 (i.e., 1+2+8). If VALUE=taskvalue is omitted
from the statement, a taskvalue of 1 is assumed as the default
value. A detailed description of the timing information returned
is provided in the SSK Userls Manual.

• time is the number of seconds that the simulation will be allowed
to run on the 86700. If time is exceeded, the program will be
terminated. If MAXTIM=time is omitted, no time limit is set.

• dumpfilename is the name of a file to contain a simulation dump
at termination of the simulation (for any reason). This file has
the form of an ordinary ISV file and may be input to SSK as the
infile in a subsequent SSK statement. If dumpfilename is entered
without an extension, the default extension ISV will be used. If
DMPFIL=dumpfilename is omitted, no dump file is produced.

Description: SSK simulates ILLIAC IV execution of a user's pro­
gram, and writes out in the designated listing file
various performance timing statistics and informa­
tion requested in DISPLAY statements in the program.
Data transfers between Array Memory and ILLIAC IV
Disk Memory are not time simulated, but READ calls

SSK-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Data Input/Output:

SSK
contld

in the ILLIAC IV program are simulated (see "Data
Input/Output " below).

SSK simulates programs written in GLYPNIR or ASK
source code language, compiled and/or assembled to
ASK object code, and link-edited with LINKED. The
program is "loaded" and "executed" exactly as if
it were being run on the ILLIAC IV, except for data
transfers as noted above.

If the SSK statement includes a MAXT1M=time argument,
specifying a maximum number of seconds, execution of
SSK on the B6700 will be terminated after the speci­
fied number of seconds. If a DMPFIL=dumpfilename is
included, a simulated ILLIAC IV SAVE (ISV) file is
written out to the specified file upon termination
of the simulation (either under program control, or
for any other reason such as the expiration of the
specified maximum time). This dump has the form of
an ordinary ISV file, and can be input to SSK as the
infile in a subsequent SSK statement; the effect of
this is to restart the simulation where it left off
(assuming that it did not run to completion).

If the source program was written for the ILLIAC IV,
then data transfers within the program are specified
by areaname (see MAP). SSK does not use the ILLIAC
IV Disk Memory. In order to avoid modifying the
ILLIAC IV program, the user, to run with SSK, should
name his 14DM areas I4DMO, 140M!, ... , 140M? (SSK
can only simulate up to eight ILLIAC IV disk areas.)
In the SSK statement a correspondence is set up, by
the user, between each area and a data file. SSK
will then handle a READ call that specifies an area­
name (e.g., 140M3) by reading or writing the associ­
ated data file.

SSK-3 lAC Doc. No. SG-I1000-0000-C
Rev .. 7-1-73

SSK
cont'd

Data File Conversion: The input data files may be created using the ACL
CONVRT subsystem. This subsystem converts input
data files written in either ASCII code or B6700
word formats into ILLIAC IV word formats.

CONVRT infilename,outfilename,{SIZE=nn}{,TYPE=intype}p

where

infilename is the name of the input data file which
is to be converted into ILLIAC IV word formats.

outfilename is the name of the output data file
where the ILLIAC IV formatted data is to be written.

SIZE=~ specifies the ILLIAC IV word size required
for the converted output data; where

nn = 32 means ILLIAC IV 32-bit format
nn = 64 means ILLIAC IV 64-bit format

If SIZE=nn is omitted, the 64-bit word format is
selected.

TYPE=intype specifies the input data format type
where

intype = CHARACTER means the input data is
ASCII coded numeric data

intype = SINGLE means the input data is 86700
single-precision binary

intype = DOUBLE means the input data is 86700
double-precision binary.

If TYPE=intype is omitted, the input data is
assumed to be ASCII coded numeric data.

SSK-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SUBMIT

The SUBMIT statement enters a request for the processing of a speci­
fied file of ACL statements in the batch queue.

where

SUBMIT pifname,{pofname},{runcode},userid,password,account~

• pifname is the name of a file containing a sequence of ACL state­
ments, to be used as a "primary input file" or PIF.

• pofname is the name of a file to contain all system messages and
certain listings produced as a result of processing the PIF.
This file is called the "primary output file" or POF. If pofname
is omitted from the SUBMIT statement, the default pofname will
have the same name as pifname, with "PDF" as its extension.

• runcode is a one-digit number from 0 to 3 indicating the system
resources required by the job being submitted. If the PIF con­
tains a RUN statement or a MOVE statement, the ILLIAC IV resource
is required. If it contains any GLYP, ASK, or SSK statements,
the B6700 resource is required.

runcode

o
1

2

3

Resources Required

Neither ILL lAC IV nor B6700
ILL lAC IV but not B6700
B6700 but not ILLIAC IV
Both ILLIAC IV and B6700.

If runcode is omitted, the default value is 3.
• userid is the user identification under which the PIF is to be

processed.
• password is the password associated with userid.
• account is a string of digits chosen by the user.

SUBMIT-l lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Description:

SUBMIT
cont'd

SUBMIT is the ACL statement which enters a job
request (associated with a file of ACL statements)
into the ILLIAC IV System batch job queue. During
the initial implementation of the ILLIAC IV System,
all statements which require access to the B6700
or the ILLIAC IV resources can only be entered as
part of a file submitted in this fashion. Any
other statements except OUTPUT, NEWS, and NOTIFY
may be submitted in a batch processed ACL file.

The SUBMIT statement is normally entered interac­
tively from a user's terminal, although it may be
entered in a previously submitted batch job. Upon
receiving the SUBMIT statement, the ILLIAC IV Sys­
tem will respond by outputting a jobid on the
user's terminal (or in the user's POF if the SUB­
MIT is part of a batch sequence). The jobid is
used for subsequent batch job control (see INQ,
DELJOB) .

The sequence of ACL statements in the file named
pifname is deferred for subsequent scheduling and
processing by the ILLIAC IV System. It will not
be processed interactively. The user may continue
his ACL interactive sequence or may log out to
await processing of the batch submission.

The primary input file (PIF) may be entered into
the system in any of the normal ways a file may
be created; e.g., it may be built at a user Host
and transferred to the ILLIAC Host, or it may be
interactively created at the ILLIAC Host using
the DED text-editing subsystem. The PIF can con­
tain any sequence of ACL statements (except OUT­
PUT, NEWS, or NOTIFY), terminated either by EOF
or by a LOGOUT statement.

SUBMIT-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example. 1:

SUBMIT
cont'd

SUBMIT MYJOB.PIF,OUTFILE.POF,3,JONES,GILES,4920~
10=89

where

MYFILE.PIF is the primary input file, OUTFILE.POF
is the primary output file, the job requires access
to both the ILLIAC IV and the B6700, JONES is the
user identification, the password is GILES, and
4920 is the account. 89 is the job identification
assigned by the system to this job.

SUBMIT-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

TEST

The TEST statement, used in a file of ACL commands or a macro,
numerically evaluates an expression and branches to one of three labeled
ACL statements within the file or macro, depending on whether the value
of the expression is less than, equal to, or greater than zero.

where

TEST expression,({neglabel},{zerolabel},{poslabel})v

• expression is

(1) any previously defined control parameter;
(2) the STATE parameter;
(3) any legal expression (see Section 6.2.5).

• neglabel is the ACL statement label to branch to if the evalua­
tion of the expression is less than zero. If omitted, and
expression < 0, the branch is to the next statement following
the TEST statement.

• zerolabel is the ACL statement label to branch to if the evalu­
ation of the expression is zero. If omitted, and expression = 0,
the branch is to the next statement following the TEST statement.

• poslabel is the ACL statement label to branch to if the evalua­
tion of the expression is greater than zero. If omitted, and
expression> 0, the branch is to the next statement following
the TEST statement.

Description: TEST determines the value of expression and jumps
to neglabel if expression < 0, to zerolabel if
expression = 0, or to poslabel if expression > O.
These labels may reference fQrward or backward in
the ACL statement sequence.

The TEST subsystem takes no action when initiated
from the terminal.

TEST-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example 1:

TEST
cont'd

The values of previously defined control parameters
may be used within the expression. If an undefined
control parameter is encountered by TEST, unsigned
zero is used for its value and it remains undefined.

A special control parameter, called STATE, has a
reserved definition in ACL. The STATE parameter is
a word of information returned by the subsystem
called in the user's most recent ACL statement. In
particular, if the sign of STATE is negative, the
statement preceding the TEST statement aborted
abnormally. With the exception of EQU and TEST,
every ACL statement causes a new value to be
assigned to STATE.

When the TEST statement is used in a macro or in a
file of ACL statements to be processed via an ALT
statement, the dollar-sign character ($) may be
used in place of neglabel, zerolabel, or poslabel.
The branch will then be not to a labeled statement
in the same file or macro, but rather to the state­
ment immediately following the ALT statement or
macro-call; in other words the $ causes a return
from the file or macro. It cannot be used in a
primary input file because there is no meaning to
a return from a batch job; thus the $ does not
have the effect of a LOGOUT statement.

I TEST LIST, (RETURN,EXIT ,ERROR)" I
The ACL statement labeled RETURN will be branched
to if the value of the control parameter LIST is
less than zero; the statement labeled EXIT will
be branched to if the value of LIST is equal to

TEST-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Example 2:

Example 3:

TEST
cont'd

zero; and the statement labeled ERROR will be
branched to if the value of LIST is greater than
zero~

TEST NUMBER+COUNT-2~(BACKUP,NOGOOD,EXIT)~

Here the expression NUMBER+COUNT-2 is tested, where
NUMBER and COUNT are control parameters defined in
preceding EQU statements, and therefore have
integer values. The expression is evaluated arith­
metically; if its value is less than zero the
system will branch to an ACL statement labeled
BACKUP; if it is equal to zero, it will branch to
a statement labeled NOGOOD; if it is greater than
zero, the system will branch to the statement
labeled EXIT.

TEST LASTCH(A,B,EX),(OKAY~ABORT,RETURN)~

Here the expression is replaced by the macro-call
LASTCH(A,B,EX), where LASTCH is the name of a
previously defined macro and A, B, and EX are the
names of control parameters defined in preceding
EQU statements, now being passed as arguments to
LASTCH. It is assumed that the text of the macro
LASTCH is an expression which, when supplied the
arguments A, B, and EX, will result in an integer
value. If this value is less than zero~ the
system will branch to the ACL statement labeled
OKAY; if it is equal to zero, the system branches
to statement ABORT; and if it is greater than
zero~ the system branches to statement labeled
RETURN.

TEST-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

Example 4:

TEST
cont'd

TEST OLDNUM+NEWNUM,($,ZOT,NEXT)~
NEXT:EQU NEWNUM,OLDNUM+NEWNUM~

ZOT:ALT ZEROCASE.BAILOUT~

These statements are assumed to be part of a
sequence of ACL statements in a file named DO.NOW, .
which is branched to by an ALT statement in another
file named CALLFILE.MASTER. The TEST statement in
file DO.NOW evaluates the expression OLDNUM+NEWNUM
(where OLDNUM and NEWNUM are previously defined
control parameters). If the value of the expres­
sion is negative, the next statement processed
will be the one immediately following the ALT
statement in file CALLFILE.MASTER; if it is zero,
the next statement processed will be the one
labeled ZOT, which branches to another file of
commands named ZEROCASE.BAILOUT; if the expression
has a positive value, the statement labeled NEXT
will be processed, causing the value of OLDNUM+
NEWNUM to be assigned to NEWNUM.

TEST-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

UDIR

The UDIR subsystem returns information on a file or files in the
user's directory that have been copied to the UNICON, i.e., lI arc hived"
(see Section 4.4.1). Since retrieval of archived files can be done much
more quickly when exact information is sent to the system operator (see
Section 4.4.2), the user is advised to execute UDIR routinely and save
the output.

Description:

Example:

UDIR prompts the user by typing "OUTPUT TO:". To
specify output to a file, respond by typing a file­
name terminated by a carriage return; to specify
output to the terminal, respond by typing a car­
riage return.

UDIR next prompts by typing "FILE NAME:". To get
information on a specific file, type the filename
and terminate with a carriage return. To get
information on all files in your directory that
have been archived, type a carriage return.

For each file, UDIR responds by typing the file­
name, the page count, the date and time when the
file was archived, and the UNICON address.

lUDIR~

OUTPUT TO:~
FILE NAME:PROG.SUBRS;2?

<JONES>
PROG.SUBRS;2 4 PGS FRI 11 JUL 73 15:04 -- 00021,16571,5

(Underlining indicates material typed by the
system.)

UDIR-l lAC Doc. "No. SG-I1000-0000-C
Rev. 7-1-73

SECTION 8

ACL JOBS AND USAGES

lAC Doc. No. SG-I1000-OOOO .. C
Rev. 7 -1-73

SECTION 8

ACL JOBS AND USAGES

CONTENTS

8.1 THE ACL JOB
8.1.1 IDENTIFICATION OF A JOB
8.1.2 CONSTRUCTING A JOB
8.2 EXAMPLES
8.2.1 EXAMPLE 1: SUBMITTING A BATCH JOB
8.2.2 EXAMPLE 2: PRIMARY INPUT FILE
8.2.3 USE OF MACRO IN A PIF

lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

SECTION 8

ACL JOBS AND USAGES

8.1 THE ACL JOB
A job is described by a sequence of ACL statements. ACL statements

may be transmitted directly from the user's terminal to the ACL executive,
causing immediate initiation of ACL subsystems, or they may be contained
in files.

A file of statements is passed to the ACL executive by either of
two ACL subsystems, ALT or SUBMIT. A file passed via the SUBMIT subsystem
becomes the primary input source of a batch job, and is then called the
primary input file or PIF. A file passed via the ALT subsystem becomes
an alternate input source of either a batch job or an interactive job.

A batch job is defined as a job whose primary input source is a file
(passed via SUBMIT). A batch job cannot take any input directly fr'om the
user's terminal. It may use other files (passed to the ACL executive via
ALT) as alternate input sources.

An interactive job is defined as a job whose primary input source
is the user's terminal. It may also use files as alternate input sources,
if they are passed via ALT. The interactive job begins with the user's
LOGIN statement and ends with his LOGOUT statement.

These definitions merely serve to distinguish between the two cate­
gories of jobs; there are further characteristics and attributes associated
with batch and interactive jobs which are explained in this section.

8.1.1 IDENTIFICATION OF A JOB
Associated with every job is a userid entered by the user in his

LOGIN statement (for an interactive job) or in the SUBMIT statement (for
a batch job). This userid corresponds to an entry in a permanent table

8-1 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

maintained by the system, and is associated with a particular user. How­
ever, an individual IS userid may be shared by several users; if these
users are logged in at the same time, several different jobs with the
same userid will be running concurrently.

The userid associated with a job is used by the system to identify
the file space assigned to the job and in certain cases to assign privi­
leges. It is also used for accounting purposes by the system. Thus con­
current jobs with the same userid will share the same file space, i.e.,
they will have the same file directory and will have access to the same
set of files at all times (on a first-come, first-served basis in case
of conflicts).

Also associated with every job is an account, which is not used by
the system in the initial implementation. The account is intended for
use as an accounting subcategory under the userid.

The unique identification of each. job is its jobid. This is an
identifier generated by the system at the initiation of every job; for
example, if there are two or more concurrent jobs with the same userid,
they will have different jobidls. The jobid of an interactive job is
transparent to the user but is associated with everything he does during
his interactive session.

In one sense a job is defined within the system as everything asso­
ciated with a unique jobid, including the userid (not necessarily unique)
that identifies a file space and a single account (not necessarily unique).
When the interactive or batch job terminates, the jobid is purged, along
with all information associated only with the jobid. (But the userid is
permanent, therefore the file space and the files it contains are also
pennanent.)

The information associated uniquely with the jobid includes the
following:

• Definitions and values of all control parameters defined by
EQU statements in the same job.

• The definition and value of a STATE parameter.
• Definitions of all macros defined by MACRO statements in the

same job.
• Assorted tables and other information associated with the, job

but not referenced explicitly by the user.

8-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

When an ALT statement is included in a job to process ACL state­
ments contained in a file, the processing of these statements is part
of the same job that contains the ALT statement. Moreover, the file of
statements may contain another ALT statement to another file, and so
forth to arbitrary level; everything processed as a result of any ALT
statement is part of the same job in which the ALT statement occurs.
The same is true for macro-calls; a macro-call may invoke a macro that
consists of a sequence of ACL statements, and the processing of these
statements will be part of the same job.

8.1.2 CONSTRUCTING A JOB
A batch job and an interactive job are in most respects exactly

alike. This section is concerned with listing and explaining the
differences.

The SUBMIT statement references a file of ACL statements and
places in the batch job queue a request for processing of this file.
The SUBMIT statement may occur in another batch job or in an interactive
job, and specifies the following:

• The name of the file to be used as the PIF for this batch job.
• The userid to be associated with the batch job. This may be

the userid associated with the job containing the SUBMIT state­
ment that creates the batch job, and in this discussion we will
assume that this is the case. Accordingly the batch job will
use the same file space and file directory as the job that
created it.

• An account to be associated with the batch job. This has
exactly the same meaning as the account supplied for an inter­

. active job and may in fact be the same number.

• Other information not relevant to this discussion.

Once initiated with a SUBMIT statement, the batch job is independent
of the job that created it. It is a separate job. If the SUBMIT state­
ment is entered by the user in an interactive job, the user may log out,
terminating his interactive job, and this will in no way interfere with

8-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

the batch job. The user may obtain information about the status of the
batch job by means of an INQ statement in his interactive job (or in
another batch job), and he can interfere with the batch job in two ways:
he can abort it completely with a DELJOB statement, or he can alter or
delete files in the shared file space that are referenced by the batch
job.

Alteration or deletion of files referenced by a given job will
interfere with the job. It is worth pointing out that this can happen
quite easily if two or more batch jobs with the same userid exist
concurrently, or if two or more users are logged in simultaneously in
interactive jobs with the same userid.

In an interactive job, system messages and responses and certain
types of listings are output directly to the user's terminal. In a
batch job, all such material is written sequentially into a file called
the primary output file or POF. This is a file in the file space
associated with the batch job's userid; its name may be specified by the
user in the SUBMIT statement or it may have a default filename with the
name of the job's primary input file (PIF) as the name and POF as the
extension.

A batch job may contain statements that are illegal in an inter­
active job - i.e., statements that require access to the ILLIAC IV or
B6700 resources.

It is important to bear in mind that although an interactive job
is delimited by the user's LOGIN and LOGOUT from his terminal, and its
primary input source is the stream of ACL statements entered from the
terminal, it may also contain any num~er of ALT statements which initiate
the processing of files of ACL statements under the same jobid. Likewise,
the primary ACL sequence of a batch job is the PIF, but the job is not
limited to the PIF; ~xactly like an interactive job, it may also include
ALT statements referencing files of ACL other than the PIF.

Statements requiring access to ILLIAC IV or B6700 resources may not
appear anywhere in an interactive job. This restriction applies equally
to a file of ACL initiated by an ALT statement within an interactive job.

Batch jobs are typically more complex in structure than interactive
jobs, simply because they do access ILLIAC IV and B6700 resources and
because they must function properly without the user's intervention.

8-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

More complex structures can be built into a file of ACL statements than
can be entered directly to the ACL executive, using labeled statements
and the EQU and TEST statements. These structures are normally associ­
ated with batch jobs. However, even though the primary input source of
an interactive job is'not a file and therefore cannot meaningfully con­
tain labeled statements, an interactive job can still make use of condi­
tional loops, tests, etc. in files initiated via the ALT statement.

8.2 EXAMPLES
These examples are included for the purpose of demonstrating how a

primary input file might be constructed, and the ways in which various
ACL statements might be used.

8.2.1 EXAMPLE 1: SUBMITTING A BATCH JOB
The following example illustrates an ACL sequence used to submit a

simple batch job for processing. User Jones at the Moon Host wishes to
have a file containing GLYPNIR source code compiled, and transfer the
resulting listing back to his directory at the Moon Host. Note that the
primary input file could be constructed directly at the ILLIAC System
using OED, in which case the first CPYNET statement below would not be
necessary.

@LOGIN JONES 123~

User Jones logs in.
JOB 74 15-JAN-73 10:30U

The System provides the user a jobid, 74.
lCPYNET (MYFILE,MOON,JONES,BANJO,123),COMP. P1FU

The primary input file MYFILE has been created at the Moon Host
and is now copied from Jones' directory at the Moon Host to a
file named COMP.PIF in Jones' directory in the central file sys­
tem. (BANJO is Jones' password.)

lSUBMIT COMP.PIF,,2,JONES,BANJO,123?

ID=89~

The PIF is submitted for batch processing. The primary output
file will have the default name COMP.PDF. The jobid assigned
by the System is 89.

8-5 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

lLOGOUT,
The job is in the batch queue and requires no further intervention,
so the user logs out.

The primary input file, COMP.PIF, contains the following sequence of
ACL statements:

CPVNET (SOURCE,MOON,JONES,BANJO,123),ALPH.GLVPNIR~

Copy the file of GLVPNIR source code named SOURCE from Jones' direc­
tory at the Moon Host to a file named ALPH.GLVPNIR in Jones' directory
in the central file system.

GLVP ALPH.GLVPNIR,OUT.OBJ,LIST.GLVPNIR,ASSEMBLE=NO~
Compile the GLVPNIR source code in file ALPH.GLVPNIR, output the ASK
source code to file OUT.OBJ, and the listing to file LIST.GLVPNIR.
Do not call the assembler. Syntax and error messages will be placed
in the user's primary output file COMP.POF.

CPVNET LIST.GLVPNIR,(TEST,MOON,JONES,BANJO,123)~
Copy the listing to file TEST in Jones' directory at the Moon Host.

CPYNET COMP.POF,(ERRORS,MOON,JONES,BANJO,123)V
Copy the primary output file to file ERRORS in Jones' directory at
the Moon Host.

8.2.2 EXAMPLE 2: PRIMARV INPUT FILE
The following example illustrates a sequence of ACL statements in a

primary input file. Figure 8-1 (at the end of Section 8) is a flowchart
for the sequence. The user wishes to compile, assemble, and execute a
GLVPNIR source program. It is assumed that the PIF has been created at
the user's Host and then transferred to the central file system by means
of a CPYNET statement used interactively (see Example 1).

Note: The specific use of the STATE parameter in the following
example is unrealistic but is included so as to demonstrate ACL's test­
and-loop capability. For details see Section 8.2.2.1 below.

EQU RETRy,2~
Initialize the retry counter. (An operation that fails is retried
once.)

8-6
lAC Doc. No. SG-IlOOO-OOOO-C

Rev. 7 -1-73

CPYNET (PROGRAM,MOON,JONES,BANJO,123),PROG.GLYPNIR~

The file containing GLYPNIR source code (PROGRAM) has been created at
the Moon Host, and is now copied from Jones' directory there to a file
named PROG.GLYPNIR in the central file system.

CPYNET (INFILE,MOON,JONES,BANJO,123),DATA.INPUT~

Copy the file containing input data (INFILE) from Jones' directory at
the Moon Host to file DATA. INPUT in the central file system.

COMP:GLYP PROG.GLYPNIR,PROG.OBJ,PROG.LIST~
Compile and assemble the GLYPNIR source code; write the ASK object
code in file PROG.OBJ and the listing in file PROG.LIST.

TEST STATE,(CHECK,NEXT,NEXT)~
Test the STATE parameter to see if the previous subsystem (GLYP)
aborted catastrophically. If so (STATE is negative), go to CHECK
to see if it has been retried. If STATE is zero or positive, go
to the statement labeled NEXT.

CHECK:EQU RETRy,RETRY-l~
Decrement the retry counter.

TEST RETRY,(,D02,COMP)y
If RETRY=O, the operation has been retried, in which case go to an
ALT statement labeled 002; if RETRY is positive, go to CaMP to try
the GLYPNIR compilation again.

NEXT:EQU RETRy,2~
Initialize the retry counter.

LINKED ,EXECUTE?
Convert the relocatable ASK object code into an ISV file named
EXECUTE. ISV. Since no file is specified for LINKED control state­
ments, these statements (i.e., INCLDE and END) follow in-line.

INCLDE PROG.OBJ?

END~

Take the relocatable ASK object code from file PROG.OBJ.

Terminate the sequence of control statements to the LINKED subsys­
tem.

ASSIGN:ALLOC DISK.MAP~
Assign 140M space as specified in DISK.MAP. DISK.MAP;s a file
containing the user's 140M layout description created at some
earlier time by the MAP subsystem.

8-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

TEST STATE,(CHECK2,NEXT2,NEXT2)~
Test the STATE parameter to see if the previous subsystem (ALLOC)
aborted catastrophically. If so (STATE is negative), go to CHECK2
to see if it has been retried. If STATE is zero or positive, go
to the next statement (labeled NEXT2).

CHECK2:EQU RETRy,RETRY-1~
Decrement the retry counter.

TEST RETRY,(,D02,ASSIGN)V
If RETRY=O, the operation has been retried, in which case go to an
ALT statement labeled 002; if RETRY is positive, go to ASSIGN to
try the ALLOC operation aqain.

NEXT2:MOVE DATA.INPUT,I4DM:INAREA~
Copy the input data into a disk area (INAREA) declared in a previ­
ous MAP subsystem call.

RUN EXECUTE9
Load the ISV file EXECUTE.ISV and initiate its execution.

MOVE I4DM:OUTARA,DATA.OUTPUT~

Copy the ILLIAC IV process output data from OUTARA (a disk area
declared in a MAP subsystem call) to a file called DATA.OUTPUT in
the central file system. The user can now copy this output data,
GLYP listing file, and primary output file back to his Host.

LOGOUT?
Terminate the job.

D02:ALT CLEANUP.ACL~
Initiate processing of the ACL statements contained in the file
named CLEANUP.ACL.

8.2.2.1 Note on the STATE Parameter
As indicated above, a negative value of STATE indicates a "catas­

trophic failure" of the previous subsystem. More specifically, it
indicates a termination not specified by the subsystem itself, such as
an interrupt from a higher level in the system. It is presently planned
that ACL subsystems will use various bits of STATE in a consistent
manner to indicate specifically whether the subsystem terminated normally,
aborted for a specific reason, etc.; however, this has not yet been

8-8 lAC Doc. No. SG ... I1000-0000-C
Rev. 7-1-73

implemented. When implemented, this consistent usage of STATE will
permit the user to make more useful tests than are shown in the above
example (e.g., failure of ALLOC because of insufficient 140M space).

8.2.3 USE OF MACRO IN A PIF
The following example illustrates the use of a macro in a primary

input file. The sequence of statements used in the previous example to
test for catastrophic failure of a subsystem can be replaced by one
macro-call. The macro is defined as follows:

MACRO TLOOP,(LABEL)~
[TEST STATE,(FAIL,OK,OK)?
FAIL:EQU RETRy,RETRY-l~
TEST RETRy,(,D02,LABEL)~
OK:EQU RETRY,2]U

where

LABEL is the label of the statement which will be retried once if a
catastrophic failure occurs.

Using the previous example, the macro-calls would be inserted as follows:

EQU RETRY,2~
CPYNET (PROGRAM,MOON,JONES,BANJO,123),PROG.GLYPNIR~
CPYNET (INFILE,MOON,JONES,BANJO,123),DATA.INPUT~
COMP:GLYP PROG.GLYPNIR,PROG.OBJ,PROG.LIST~
TLOOP(COMP)~
LINKED ,EXECUTE~
INCLDE PROG.OBJ~
END V
ASSIGN:ALLOC DISK.MAPV
TLOOP(ASSIGN)?
MOVE DATA.INPUT,I4DM:INAREA~
RUN EXECUTE~
MOVE I4DM:OUTARA,DATA.OUTPUT~
LOGOUT~
D02:ALT CLEANUP.ACL~

8-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

EQU RETRY,2
(initialize

MOVE to
14DM

MOVE from
14DM

LOGOUT

EQU RETRY,RETRY-l
~;;;;.;;:..---~ (decrement retry ~---_~f

counter)

EQU RETRY t RETRY-1
~;;;:;....---~ (decrement retry ~------1~

counter)

YES

To statement
in file

CLEANUP. ACI

NO

Figure 8-1. Flowchart for E)

8-10
lAC Doc. No. SG-1l000-0000-C

Rev. 7-1-73

APPENDIX A

DED TEXT EDITOR

lAC Do'c. No.SG-11000-0000-C
Rev_ 7.;..1-73'

APPENDIX A

OED TEXT EDITOR

This appendix to the System Guide for the ILLIAC IV User is a
detailed description of the operation and use of the OED text editor.

Section A-I describes the basic concepts and features of OED;
Sections A-2 and A-3 provide detailed descriptions of the OED commands;
Section A-4 describes the use of control characters in OED; and Section
A-5 is a quick reference summary of OED commands.

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION

A.I
A.I.I
A.I.2
A.I.3
A.I.4
A.I.5
A.I.5.1
A.I.6
A.I.7
A.I.8
A.I.9

A.2
A.2.1
A.2.2
A.2.3
A.2.4
A.2.5

A.3

A.4
A.4.1
A.4.2
A.4.3
A.4.4

APPENDIX A

DED TEXT EDITOR

INTRODUCTION
GENERAL DESCRIPTION
~JORKING STORAGE

CONTENTS

THE TWO DED OPERATING MODES
LINES
LINE NUMBERS AND THE LINE POINTER
SPECIFYING LINE NUMBERS
DED PROMPT CHARACTERS
BASIC OPERATING PROCEDURES
EDITING TEXT WITHIN LINES
CONVENTIONS AND TERMINOLOGY

NORMAL MODE: COMMAND DESCRIPTIONS
TYPEOUT COMMANDS
EDITING COMMANDS
SEARCH COMMANDS -
FILE COMMANDS
MISCELLANEOUS COMMANDS

CHARACTER EDITING MODE: COMMAND DESCRIPTIONS

CONTROL CHARACTERS

PAGE

A-I-I
A-I-I
A-I-2
A-I-2
A-I-3
A-I-4
A-I-5
A-I-5
A-1-6
A-I-7
A-I-8

A-2-1
A-2-1
A-2-4
A-2-9
A-2-11
A-2-12

A-3-1

A-4-1
USE OF tQ TO ABORT A PARTIALLY TYPED NORMAL MODE COMMAND A-4-1
USE OF CONTROL CHARACTERS TO EDIT TEXT DURING TYPEIN A-4-1
CONTROL CHARACTERS FOR TAB, LINE FEED, ETC.
tC, tT, AND to

A-4-3
A-4-3

lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

SECTION

A.4.5
A.4.5.l
A.4.5.2

A.5
A.5.l
A.5.2
A.5.3
A.5.4
A.5.5
A.5.6

PAGE

ENTERING CONTROL CHARACTERS AS TEXT A-4-4
tV A-4-4
tt (CONTROL UPARROW) A-4-4

COMMAND SUMMARY BY FUNCTION A-5-l
TYPEOUT COMMANDS {NORMAL MODE} A-5-l
EDITING COMMANDS {NORMAL MODE) A-5-1
SEARCH COMMANDS {NORMAL MODE} A-5-2
FILE COMMANDS (NORMAL MODE} A-5-2
MISCELLANEOUS COMMANDS {NORMAL MODE) A-5-3
CHARACTER EDITING COMMANDS {CHARACTER EDITING MODE) A-5-4

lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

SECTION A.1

INTRODUCTION

A.1.1 GENERAL DESCRIPTION
OED is a line-oriented text entry and editing subsystem operating

under ACL; it is initiated by the ACL statement OED. OED is normally
used interactively from the user's terminal, and may be used to type out
an existing file of text for examination, alter an existing file of text
by means of various editing operations, or create a new file containing
text input from the user's terminal (or a combination of these functions).

"Text" in this application means ASCII-coded character sequences.
There are only two constraints on the text handled by OED:

(1) It must be ASCII coded (and may use the entire ASCII character
set) .

(2) It must be organized into consecutive lines separated by car­
riage returns.

When OED creates a file, the file contains a body of text divided
into one or more lines. No other information or formatting is added by
OED. Conversely, when OED reads an existing file, it is assumed to con­
tain text only.

OED is similar to other line-oriented interactive text editors
employing ASCII code, and in many cases ASCII text files created with
other text editors are fully compatible with OED.

Typical applications of OED include (but are not limited to) the
following:

(1) Typing out symbolic listing files.
(2) Creating and editing symbolic code files for input to com­

pilers, assemblers, etc. In particular, OED may be used to
create and edit files of ACL statements.

(3) Creating and editing files of natural-language text, such as
messages, documents, etc.

A-1-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.l.2 WORKING STORAGE
Although one of the primary uses of DED is to edit the contents of

an existing file, it is important to bear in mind that the editing commands
of DED do not operate directly upon the file.

Instead, DED makes a temporary copy of the file and operates upon
this copy. The copy is stored in an area of memory called IIworking
storage,1I which is maintained by DED and is not part of the user's assigned
file-storage space. Upon explicit command from the user, DED copies the
total contents of working storage into a file in the user's directory
(either a new file, or an old or new version of an existing file). This
is the only way in which DED modifies an actual file.

Working storage can be loaded by copying a file into it as described
above, or by entering lines of text into working storage directly from the
keyboard. At any time when there are two or more lines of text in working
storage, the editing commands can be used to modify them.

The text contained in working storage is organized into lines. One
line of stored text normally corresponds 'to one typed line on the paper of
the user's terminal. Each line position in working storage is numbered
for reference (see below); working storage has a maximum capacity of 30,000
lines or 700,000 characters. If either of these limits is exceeded, some
of the text will be lost.

'A.l.3 THE TWO DED OPERATING MODES
OED operates in two distinct modes, called "normal mode" and "char­

acter editing mode." There is a separate set of commands for each mode.
Normal mode commands are used for reading and writing files, typing

out lines of text from working storage, searching the text in working
storage for lines containing a specified string, editing the text in work­
ing storage, and various miscellaneous functions. Specifically, the edit­
ing functions performed in normal mode are the following:

• Enter lines of text into working storage, either from a file or
from the keyboard.

• Delete lines of text from working storage.
• Copy lines of text from one location to another within working

storage.

A-1-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

• Edit the text within a line by making a string substitution,
i.e., searching for a specified string of characters and
replacing it with another specified string.

The string substitution method is a powerful means for editing the
text of a line, but does not permit the user to edit on a character-by­
character basis. Character-by-character editing is done only in the
"character editing mode. II A normal mode command (IIC II) causes OED to go
into character editing mode to edit a specified line in working storage;
the user may then enter a series of character editing commands to modify
the text in the line, returning to normal mode by means of an explicit
conmand.

The normal mode commands are fully described in Section A.2, and
the character editing mode commands in Section A.3.

A.l.4 LINES
As noted above, the text in working storage is divided into lines.

It is necessary to distinguish clearly between a line in working storage
and a typed line (either input or output) on the user's terminal, as they
are not the same and do not necessarily correspond.

A line in working storage is a sequence of ASCII characters, of any
length; specifically, it is not limited to the line width of the user's
terminal. When a lin~ is longer than the line width on the user's termi­
nal, OED will automatically break it up into two or more lines at the
terminal, but it remains a single line in working storage (see below).

Lines in working storage are separated by user-supplied carriage
returns, and their positions are consecutively numbered as explained
below in Section A.I.5. The term "line," as used in this guide, always
refers to a line in working storage, not to a typed line at the terminal,
unless explicitly referred to as a "terminal line," meaning a single line
typed on the terminal.

When OED types out a line in working storage that is too long to
fit on a single terminal line, it automatically breaks the line into two'
or more terminal lines. Each break is made by inserting into the typeout
a carriage return followed by two asterisks (**), which appear at the
beginning of the next terminal line. The two asterisks at the beginning

A-1-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

of a terminal line are an indication that the line is a continuation of
the preceding terminal line, i.e., part of the same line in working
storage. The carriage return and asterisks are only inserted into the
typeout - the line in working storage is not altered in any way.

The same thing is done when the user is typing in a line and it
becomes too long to fit on a single terminal line: OED types out a car­
riage return followed by two asterisks, and the user may continue typing.
This may go on through any number of terminal lines until the user types
a carriage return, which ends the line. All of the terminal lines are
then taken by OED to be a single line, which is placed in working storage.

A.l.S LINE NUMBERS AND THE LINE POINTER
As noted above, the positions occupied by lines in working storage

are consecutively numbered. The first line is always Line 1.
The number of a line position is referred to as a "line number."

It is important to understand that a line number is not a permanent
identifier for a particular line of text, since editing may cause a line
to be moved to a new position. The line number identifies the position
of a line in working storage, not its content.

In this document, the term "line number" always refers to a posi­
tion; the term "line" refers to a particular line of text. In entering
a OED command in normal mode~ the user identifies a line by reference to
its line number, i.e., its present position relative to the other lines
in working storage. (There is also a command that allows the user to
locate a particular line by reference to its content, i.e., search for a
line starting with a specified character string.)

OED maintains a line pointer that always points to one of the line
positions in working storage. The line pointed to by the line pointer is
called the "current line." The line pointer may be moved explicitly by
the user, and it is moved by DED as part of the processing of certain
commands. In the command descriptions in Section A.2, the position of
the line pointer after the processing of each command is explicitly noted
where applicable.

Many normal mode commands take a line number as an optional portion
of the command, to be supplied by the user. This is indicated by the
notation {#} in the syntax descriptions in Section A.2. The line number

A-I-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

in these commands specifies the line to be operated on by the command, or
the starting line for a search. In all of these commands, the user may
omit the line number, in which case the current line is used by default.
In character editing mode, the line pointer remains at the line specified
by the user in entering character editing mode.

A.l.5.l SPECIFYING LINE NUMBERS
In the command descriptions in Section A.2, the symbol {#} is used

to indicate that the user may optionally specify a line number. The effect
of this specification is to update the line pointer; the command then oper­
ates upon the new current line, i.e., the line in the position specified by
the user. If the specification is omitted, the line pointer is unchanged
and the command operates upon the current line.

If the specification is a single decimal integer, this number becomes
the new current line number. For example, the character "/" ;s a command
that causes the current line to be typed out on the user's terminal. The
command 52/ causes the line pointer to be set to Line 52 and Line 52 typed
out.

If the specification is a plus or minus sign followed by an integer,
the line pointer is incremented or decremented by the specified amount.
For example, if the current line is 15, the command +1/ causes the line
pointer to be set to 16 and Line 16 typed out. Then, if the next command
is -2/, it will cause the line pointer to be set to 14 and Line 14 typed
out.

The largest possible line number is the number of the last line in
working storage. If the user specifies a larger number, the line pointer
is set to the last line in working storage.

A.1.6 DED PROMPT CHARACTERS
In normal mode, DED uses two prompt characters with distinct meanings.

A colon (:) prompt indicates that DED is ready for a normal mode command,
while an asterisk (*) prompt indicates that DED is ready for the user to
type in a sequence of text characters. This sequence may be a line of text
to be placed in working storage, or it may be a string to be searched for
or substituted, depending upon the command being executed. DED does not
prompt in character editing mode.

A-1-5 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

A.l.7 BASIC OPERATING PROCEDURES
The following is a basic outline of the procedures for using OED.

(1) Enter the DED statement from ACL. This initiates the DED sub­
system, which types out a herald and then a colon prompt,
indicating that it is ready to receive a DED command.

(2) You may now either read a file into working storage or begin
entering lines of text from the terminal, as follows:

(a) To read a file into DED working storage, type the letter
R (the DED "READ" command). DED will respond by typing

INPUT FILE:
Type in the filename (including the extension) of the
file to be read, terminated with a carriage return. DED
will respond with

[OLD VERSION]
Type a second carriage return to confirm. OED will first
copy the contents of the file into working storage, and
then type out the number of lines in the file, followed
by a colon prompt to show that it is ready for the next
command. The commands described in Sections A.2.2 and
A.3 may now be used to edit the text in working storage.

(b) To enter lines of text from your terminal into working
storage, type the letter A (the OED "APPEND" command).
DED will respond with an asterisk prompt to show that it
is ready to receive text. Any number of lines of text
can now be typed in. Each line is terminated with a car­
riage return, except the last line, which is terminated
with a tZ ("control" and "I" keys depressed together­
see Section A.4). OED will then respond with a colon
prompt to show that it is ready for another command.
The text lines are now in working storage.

(3) When two or more lines of text are in working storage, you may
use the editing commands described in Sections A.2.2 and A.3.

A-1-6 lAC Doc. No. SG-IIOOO-OOOO-C
Rev. 7-1-73

(4) To write the contents of working storage into a file, type the
letter W (the OED "WRITE" corrmand). OED will respond with

OUTPUT FILE:
Type in the filename (including the extension) of the output
file, terminated with a carriage return. OED will respond
with:

[NEW FILE]

or
[NEW VERSION]

or
[OLD VERSION]

if the filename does not already
exist in the user's directory

if the filename already exists and
the user does not supply an old
version number as part of the file­
name

if the user supplies an existing
filename with an existing version
number.

Type a second carriage return to confirm. OED will write out
the file, type out the number of lines written, and type a
colon prompt and await a new command.

(5) To write the contents of working storage into a file and
terminate OED, type the letter Q (the OED "QUIT" command).
The action is exactly the same as the WRITE command (see
above), except that OED automatically terminates after writing
out the file.

(6) To terminate OED without writing a file, type the letter E
(the OED E X I T command) . OED wi 'i 1 respond wi th

[CONFIRM]
Type a carriage return to confirm, and OED will terminate.

A.I.B EDITING TEXT WITHIN LINES
The "C" command (SET CHARACTER EDITING MODE) causes OED to go into

character editing mode. In character editing mode, OED takes a different
set of commands, which are described fully in Section A.3. When editing
of the line is completed, character editing mode is terminated and OED
returns to normal mode.

A-I-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Note that the character editing mode is not the only means provided
for editing text within lines. There are also two string-substitution
commands (see Sections A.2.2.7 and A.2.2.8), which cause a specified text
string to be searched for and replaced with a second string. These com­
mands may be used on a single line or on a set of lines, and afford con­
siderable power to the user.

A.l.9 CONVENTIONS AND TERMINOLOGY
The following conventions are used throughout this appendix:

• Uppercase letters, digits, and special characters must appear
exactly as shown in the command descriptions.

• Information in lowercase letters is variable data to be entered
by the user.

• Braces ({}) indicate that the item enclosed is optional.
• Underlined text in the examples indicates information typed out

by OED, as distinguished from user-typed input. Explanatory
notes appear in parentheses.

The special symbols used in this document are defined below:

Symbol

{I}

ta

~ or CR
LF

Meaning

Indicates that a line number may be specified by
the user. This is always optional.
where "a" is any character - "CONTROL a"
Carriage Return
Line Feed

The following terms are defined according to their specialized use
in this appendix.

chapactep: Any member of the ASCII character set.
current line: The line of text in working storage that the line

pointer points to at any given time.
line: A sequence of characters in working storage, terminated by

a user-supplied carriage return. See Section A.l.4.

A-1-8 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

line pointer: A pointer to one of the lines into which the text
in working storage is divided. This line is called the "current line."

terminal line: A single physical line typed on the user's terminal.
text: Data in the form of a sequence of ASCII-coded characters.

Text in working storage is organized into lines.
working storage: The space used by DED to store a body of text.

Working storage is not part of the user's assigned file storage space.
Working storage may be loaded from a file or from the user's terminal.
The contents of working storage may be altered by means of DED commands
and may be written out to a specified file; this is the only way in which
OED modifies a file. See Section A.l.3.

A-1-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION A.2

NORMAL MODE: COMMAND DESCRIPTIONS

DED's commands consist of one or more characters - letters, digits,
or special symbols. Some commands require a terminating carriage return,
indicated in the following descriptions by the symbol~. Others execute
immediately. Do not use a terminating carriage return where it is not
required, as this may have unfortunate effects.

In the following command syntax descriptions, the notation {I} is
used to indicate the optional specification of a line number. This spec­
ification is always optional; if it is omitted, the "specified line"
referred to in the command description will be the current line.

For certain commands, the optional line number specification is
omitted from the syntax description. However, it is always permissible
to use a line number specification as the first element of a normal mode
command. The effect of this is always the same, namely to move the line
pointer to the specified line before carrying out the command. The spec­
ification is omitted from the syntax description for commands where there
is ordinarily no reason to specify a line number.

All normal-mode OED commands, divided into functional categories,
are described in this section. Each category has the following format:

(1) A general description of the functions performed by this set
of corrmands.

(2) A listing of each command in this category, describing the
syntax and function of each.

A.2.1 TYPEOUT COMMANDS
The typeout commands cause the contents of one or more lines or the

current line number to be printed on the terminal. All commands that cause
lines to be typed out also cause the line numbers to be typed at the

A-2-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

beginning of each output line, with the exception of the P command. Note
that the line number is not part of the stored content of the line. The
typing out of line numbers can be suppressed by means of an 04 command
(see Section A.2.5.3).

A.2.1.1 TYPE LINE NUMBER OF CURRENT LINE
Syntax: =

Description: Type out the number of the current line. (Line 1 is
the first line of text in working storage.)

Examp 1 e : : = 17

A.2.1.2 TYPE SPECIFIED LINE
Syntax: {#ll

Description: Position the line pointer to the specified line and
type the line.

Example: Print 9th line of text, then increment line pointer and
print 17th line.

~91

9 NINTH LINE OF TEXT

~+81

17 SEVENTEENTH LINE OF TEXT

A.2.1.3 TYPE PRECEDING LINE
Syntax: t

Description: Position the line pointer to the line preceding the
current line and type the line.

A.2.1.4 TYPE FOLLOWING LINE
Syntax: LF (line feed)

Description: Position the line pointer to the line following the
current line and type the line.

A-2-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7 -1-73

A.2.1.5 TYPE LINE NUMBER OF LAST LINE OF TEXT AND MOVE LINE POINTER
Syntax: $

Description: Type the number of the last line in the text and move
the line pointer to this line.

A.2.1.6 TYPE n LINES
Syntax: {#} Tnt?

Description: Type out ~ consecutive lines beginning with the speci­
fied line. The line pointer is positioned to the last
line typed out. This command can be terminated during
output by typing +0. The line pointer ;s positioned to
the last line typed.

Example: Type four consecutive lines beginning with Line 11.
:11T4
11 A QUICK BROWN FOX
12 JUMPS OVER THE LAZY DOG
13 NOW IS THE TIME
14 FOR ALL GOOD MEN TO
:=14

A.2.1.7 TYPE ENTIRE CONTENTS OF WORKING STORAGE
Syntax: P

Description: Print (type out) the entire text in working storage,
omitting line numbers. The line pointer is unchanged.
This command can be terminated by typing +0.

Exampl e: : P
THE TYPEOUT COMMANDS (first line of text)
CAUSE THE CONTENTS OF
ONE OR MORE LINES
TO BE PRINTED ON THE TERMINAL (last line of text)
4 LINES PRINTED

A-2-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.2.2 EDITING COMMANDS
The editing commands enable the user to delete one or more lines,

insert text before a specified line, add text after the last line, copy
lines from one position to another in the working storage area, or modify
the text of one or more existing lines.

All of the lines in working storage are always numbered consecutively
starting with Line 1, according to the positions they occupy. There are no
gaps in the numbering sequence; if a line is deleted, all higher-numbered
lines are "moved Up" to fill the gap. Conversely, if a new line is inserted
into the sequence, all higher-numbered lines are "moved down ll to make room
for it. For this reason, it is important to remember that the line number
associated with any particular line may change several times during an
editing session. A line number identifies only a position in working
storage, not the content of the line presently occupying that position.

In the present implementation, no editing commands except ItA" can be
used unless there are at least two lines of text in working storage. The
"A" (APPEND) command is used to insert lines of text from the keyboard into
working storage.

The "R" (READ) command is not described in this section; it is de­
scribed as a "file conmand" in Section A.2.4. However, it may also be
thought of as an editing command since it modifies the text in working
storage.

A.2.2.1 DELETE SPECIFIED LINE
Syntax: {#}D
Description: Delete the specified line. The line pointer is left

at the line following the deleted line. If the last
line ;s deleted, the line pointer is positioned to
the new last line.

Example: Delete the last line in the above example, and type out
the new text.
:4D

.:...1T49
1 THE TYPEOUT COMMANDS
2 CAUSE THE CONTENTS OF
3 ONE OR MORE LINES

A-2-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.2.2.2 DELETE n LINES
Syntax: {#}Kn~

Description: Delete n consecutive lines beginning with the specified
line. The line pointer is left at the line following
the deleted lines. If the last line is deleted, the
line pointer is positioned to the new last line.

Example: Delete two consecutive lines starting at Line 3 .

.,;..3K2~

Lines 3 and 4 are deleted.

A.2.2.3 INSERT TEXT BEFORE SPECIFIED LINE
Syntax: {#}I
Description: Insert one or more lines of text before the specified

line. Each line except the last is terminated with a
carriage return; the last line is terminated with a tZ,
which terminates the command. The line pointer remains
at the specified line regardless of the number of new
lines inserted. (Note that line numbers will change
after the insertion.)

See Section A.2.7 for the use of control characters
while typing in text.

Example: Type out Lines 1 through 4, then insert one line before
Line 4 .

...:..lT4P
1 THE TYPEOUT COMMANDS
2 CAUSE THE CONTENTS OF
3 ONE OR MORE LINES
4 TO BE PRINTED ON THE TERMINAL
: I

*OR THE CURRENT LINE NUMBERtZ
.,;..lT5p

1 THE TYPEOUT COMMANDS
2 CAUSE THE CONTENTS OF
3 ONE OR MORE LINES
4 OR THE CURRENT LINE NUMBER
5 TO BE PRINTED ON THE TERMINAL

A-2-5 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

A.2.2.4 APPEND TEXT AFTER LAST LINE
Syntax: A

Description: Enter one or more lines of text (terminated by tZ)
into working storage. If working storage is empty,
the first line appended becomes Line 1; if it is not
empty, the new lines are appended after the last line
in working storage. Each new line except the last is
terminated with a carriage return; the last new line
is terminated with tZ, which terminates the command.
The line pointer is positioned to the last new text
line.

See Section A.2.7 for the use of control characters
while typing in text.

Example: Enter the following four lines of text.
:A
*TO INPUT A BODY OF TEXT FOR THE~
*FIRST TIME, TYPE THE LETTER A'9
*DED PROMPTS WITH AN ASTERISK~
*AND LINES OF TEXT CAN BE TYPED IN.tZ

A.2.2.5 COpy n LINES
Syntax: {# }M{n}. {m}~

where a carriage return may be used in place of the period.

Description: Copy ~ lines, starting with the specified line, and
insert them in order above line m. The line pointer
remains at the specified line. If ~ is omitted, every
line from the specified line to the last line in work­
ing storage is copied; if m is omitted, the copied .
lines are inserted above the last line.

Example: Type out Lines 1 through 5, then move Lines 1 through 3
above Line 5.

A-2-6 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

..;..lT5~

1 THE TYPEOUT COMMANDS
2 CAUSE THE CONTENTS OF
3 ONE OR MORE LINES
4 OR THE CURRENT LINE NUMBER
5 TO BE PRINTED ON THE TERMINAL
..;..lM3. 5~

..;..T8~

1 THE TYPEOUT COMMANDS
2 CAUSE THE CONTENTS OF
3 ONE OR MORE LINES
4 OR THE CURRENT LINE NUMBER
5 THE TYPEOUT COMMANDS
6 CAUSE THE CONTENTS OF
7 ONE OR MORE LINES
8 TO BE PRINTED ON THE TERMINAL

A.2.2.6 SET CHARACTER EDITING MODE
Syntax: {#}C

Description: DED types out the specified line and goes into char­
acter editing mode, permitting the user to edit the
text of the specified line on a character-by-charac­
ter basis. In character editing mode, DED accepts
the character editing commands described in Section
A.3. When the editing of the line is completed, one
of several character editing commands may be used to
terminate character editing mode and return to normal
mode. At termination of character editing mode, the
line pointer remains at the specified line.

Note: There are three ways to edit the text within a line:
the character editing commands and the two SUBSTITUTE
commands, IISII and "Z" (described below). In many
cases, a SUBSTITUTE command is more convenient and
efficient than the character editing commands.

A-2-7 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.2.2.7 SUBSTITUTE A STRING IN SPECIFIED LINE
Syntax: {#}S{stringl}tZstring2~

where each string may be terminated by either tZ or ~.

Description: Find the first occurrence of string2 in the specified
line, and replace it with string!; the line pointer
is left at the specified line. If string2 is found,
DED types out ! SUBSTITUTION MADE; if string2 is not
found, DED types out SEARCH FAILURE. If string! is
omitted, string2 is erased.

Example: Substitute IIterminal li for the first occurrence of IItele­
type ll in the current line.
~ (print current line)
8 TO BE PRINTED ON THE TELETYPE
~S*TERMINALtZ~TELETYPE~

! SUBSTITUTION MADE
~ (print current changed line)
8 TO BE PRINTED ON THE TERMINAL

A.2.2.8 SUBSTITUTE A STRING IN n LINES
Syntax: {#}Z{n}.{string!}tZstring2~

where a carriage return may be used in place of the period
and/or tZ.

Description: Replace every occurrence of string2 with string! in
the next ~ lines (starting with the specified line).
The line pointer is positioned to the last line
searched. If ~ is omi tted, every occurrence oJ
string2 is replaced from the specified line to the
last line in working storage and the line pointer is
left at the last line. OED types out XX SUBSTITUTIONS
MADE, where XX is the number of strings replaced. If
string! is omitted, every string2 is erased.

A-2-8 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

Example: Replace every occurrence of "THE" with "YOUR" in Lines 1
through 5.
~lZ5.:YOURtZ*THE~

4 SUBSTITUTIONS MADE

A.2.3 SEARCH COMMANDS
The search commands cause DED to position the line pointer to a line

starting with a specified character string or to type out lines starting
with or containing a specified character string.

Note that DED takes a string to be just an arbitrary sequence of
characters, not necessarily a word. In formulating a search command to
search for a word, remember that the word may appear as a string embedded
in some other word; for example, a search for the word "train" may find
the word "training" or "untrained." In some cases, this problem can be
avoided by including a space at the beginning or end (or both) of the
string to be searched for, as in the examples below.

A.2.3.1 JUMP TO LINE STARTING WITH SPECIFIED STRING
Syntax: {#}Jstring~

Description: Jump to the next line in the text (starting at the
specified line) that starts with the specified string
of characters; the line starting with string is typed
out, and the line pointer is positioned to this line.
Every line in the user's text will be searched until
string is found; i.e., the search will continue to the
last line in working storage, then resume at Line 1 and'
continue to the line preceding the specified line. If
string is not found, the specified line is typed out
and the line pointer is left at the specified line.

Example: Find the next line beginning with the string "CAUSE II (note
the space at the end of the string).

~J*CAUSE ~

2 CAUSE THE CONTENTS OF

If the space were omitted, DED might instead find a line
starting with the word "CAUSED"

A-2-9
lAC Doc. No. SG .. I1000 .. 0000 .. C

Rev. 7 .. 1 .. 73

A.2.3.2 TYPE LINES STARTING WITH SPECIFIED STRING
Syntax: {#}Lstring~

Description: Locate and type out lines in the text that start with
the specified string of characters; the search begins
at the specified line. If string is not found, the
specified line is typed out. In either case, the line
pointer remains at the specified line. This command
can be terminated during typeout by typing to.

Example: Locate and type out lines in the text beginning with the
string liTO II (note the space), starting the search at the
current line .
.:..L*TO ~
8 TO BE PRINTED ON THE TERMINAL

If the space were omitted, OED might find lines starting
with "TOTAL", II TOO II , "TODAY", etc.

A.2.3.3 TYPE LINES CONTAINING SPECIFIED STRING
Syntax: {#}F{n}.string~

where a carriage return may be used in place of the period.
Description: Search for the specified string of characters anywhere

in the ~ consecutive lines starting with the specified
line, and type out the lines that contain string. The
line pointer is positioned to the last line searched.
If ~ is omitted, all lines are searched from the speci­
fied line to the end of working storage and the line
pointer is left at the last line.

Example: Search Lines 1 through 5 for the string "OR II (note the
space), and type out those lines containing the string .

.:..lF5. *OR ~

3 ONE OR MORE LINES
4 OR THE CURRENT LINE NUMBER

If the space were omitted, DED might find lines containing
IIORDER", etc. Note, however, that with the space included,
DED will not find lines containing IIOR,II or IIOR:" or ending
with IIORII.

A-2-10 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.2.4 FILE COMMANDS
The file commands cause DED to copy a file into the working storage

area, and to write the contents of working storage to a specified output
file.

A.2.4.1 READ A SPECIFIED FILE
Syntax: {#}R

After "R" is typed, DED requests a filename; see example
below.

Description: Insert a copy of the contents of the specified file
into working storage after the specified line. The
line pointer is positioned to the last line inserted.

Example: Read the file named MYFILE into working storage after the
current line (Line 9).
:=9

:R
INPUT FILE: MYFILE.DED~[OLD VERSION]~

238 LINES READ
:=247

A.2.4.2 WRITE A SPECIFIED FILE
Syntax: W

After "W" is typed, OED requests a filename; see example
below.

Description: Copy all of the text in working storage to the speci­
fied file, replacing the content of the specified
file. The line pointer is unaffected.

Example: Copy the text in working storage to a file named
SOURCE.SUBRS.
:W
OUTPUTFILE: SOURCE.SUBRS~[NEW FILE]~

65 LINES WRITTEN

A-2-11 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.2.4.3 WRITE A SPECIFIED FILE AND QUIT
Syntax: Q

After "Q" ;s typed, OED requests a filename; see example
below.

Description: Copy all of the text in working storage to the speci­
fied file, and then terminate OED.

Example: Copy the text in working storage to a file named
SOURCE.SUBRS, and terminate OED.

-=-Q
OUTPUTFILE: SOURCE.SUBRS~[NEW VERSION]~

75 LINES WRITTEN

A.2.4.4 WRITE BACKUP FILE
Syntax: B

Description: Copy all of the text in working storage into a new
version of the last file read (with an "R" command).
If no file has been read, store the text into a new
version of file BACKUP.DED. (If file BACKUP.DED
does not already exist, it is created automatically
by OED.)

A.2.5 MISCELLANEOUS COMMANDS

A.2.5.1 EXIT FROM OED WITHOUT WRITING FILE
Syntax: E

Description: Exit from OED without writing an output file. When
this command is given, OED responds with the message
[CONFIRM]. To exit from OED, the user must enter a
carriage return. Any other character typed in will
be taken as the first character of a new command, and
OED continues.

A-2-12 lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

A.2.5.2 TYPE COMMAND SUMMARY
Syntax: ?

Description: Type out a list of all DED commands with a brief
description of their functions. This command can
be terminated by typing to.

A.2.5.3 OPTIONS
Syntax: On~ (Note: Letter "0", not zero.)

where ~ specifies an option. The option is set by the
value of ~, as described below.

Description: n=1 Suppresses the typing of line numbers when
lines are typed out by DED.

A.2.5.4 HELP
Syntax: H

n=2 Suppresses prompt characters.
n=4 Causes each uppercase letter entered as text

to be shifted to lower case, unless immediately
preceded by tS; an uppercase letter can be
entered by preceding it with a tS. This feature
permits upper/lower case input from terminals
that have only one case for letters.

n=8 Suppresses all bells.
n=16 Read 8-bit ASCII file (default is 6-bit).
n=32 Write 8-bit ASCII file (default is 6-bit).
n=O Resets all options to their normal status.

NOTE: Combinations of the above options may be ob­
tained by adding the numbers - for example, 03 would
suppress both line numbers and prompt characters
(since 3 = 1+2).

It is not normally necessary to use 016 or 032.

Description: This command transfers from the DED subsystem to the
HELP subsystem, initializing HELP with a spe~ial data
base that enables it to answer questions about DED.
Instructions on the use of HELP will be inmediately

A-2-13 lAC Doc. No. SG-11000-0000.,.C
Rev. 7-1-73

typed out, followed by a question mark (?) which is
the HELP prompt character. The user may then type
in a question, terminated with either a carriage
return or a question mark; HELP will type an answer
and await another question. To exit from HELP, type
END followed by a carriage return. This causes a
transfer back to OED, with everything as it was before
HELP was called. OED will type a colon (:) prompt
and await another normal mode command.

A-2-14 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

SECTION A.3

CHARACTER EDITING MODE: COMMAND DESCRIPTIONS

It is important to bear in mind that although a few of the character
editing commands have the same one-letter mnemonics as the commands used
in normal mode, and sometimes perform analogous functions at the character­
editing level, they are in fact different commands operating in a different
mode.

The character editing commands are also unlike the normal commands
in that they are not entered in response to a prompt and are not echoed
on the terminal.

The basic text-editing functions - insertion, deletion, and replace­
ment - are not performed directly upon the line being edited. Instead,
the following three-stage process occurs.

(1) In response to the SET CHARACTER EDITING MODE command,
{#}C

DED types out the specified line and goes into character edit­
ing mode, awaiting character editing commands to edit the
specified line. This line is henceforth referred to as the
"old" line.

(2) In response to the user's character editing commands, DED
constructs a new line, which is typed out character by char­
acter just below the old line as it is constructed.

(3) In response to one of three specific commands, DED replaces
the old line with the new one in working storage and terminates
character editing mode. A colon prompt is typed out and DED
awaits a new command in normal mode.

The character editing commands permit the user to construct the new
line as a modified copy of the old line by copying portions of the old

A-3-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

line to the new line, skipping past other portions of the old line,
inserting characters from the keyboard into the new line, etc. Thus
when the old line is replaced by the completed new line, the effect is
the same as a direct edit of the old line.

A IIcharacter pointer ll is maintained during the process, which
always points to a character in the old line; this character is called
the "current character. 1I Initially, the character pointer is positioned
at the first character in the old line, and is then moved from left to
right in response to various commands. When the character pointer is
advanced past the last character of the old line, it is "off the line"
and remains so. When the character pointer is "off the line" there is
no current character.

The following is a capsule description of the basic character
editing functions provided. The actual commands perform these functions
and various combinations of them.

(1) Copy one or more characters from the old line (always start­
ing at the current character) to the new line. The charac­
ters are appended one by one in sequence to the end of the
new line. The character pointer is advanced to the character
following the last character copied. This is the basic
process of "constructing the new line from the old."

(2) Advance the character pointer in the old line without affect­
ing the new line. This has the effect of skipping over char­
acters in the old line; the skipped characters are not copied
to the new line and may therefore be thought of as being
deleted.

(3) Append input characters from the keyboard to the end of the
new line. This accomplishes the effect of insertion.

(4) A combination of 2 and 3 above accomplishes replacement of
characters.

(5) Replace the old line with the new line in working storage
and terminate character editing mode.

The following sections describe the complete set of character
editing commands in detail.

A-3-2 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

A.3.1 COpy CHARACTER FROM OLD LINE TO NEW LINE
Syntax: space

Description: When a space is typed by the user, the current charac­
ter is copied to the new line. The character pointer
is advanced to the next character in the old line.
(If the current character is the last character on
the old line, the character pointer is advanced "off
the line.")

A.3.2 COpy UP TO A SPECIFIED CHARACTER IN OLD LINE
Syntax: Fa

where ~ may be any character.

Description: When an F followed by any character is typed by the
user, DED copies into the new line the sequence from
the current character up to (but not including) the
first occurrence of a in the old line. The character
pointer is left pointing at~. If ~ is not found,
all characters from the current character to the end
of the old line are copied and the character pointer
is 1 eft lIoff the 1 ine. II

A.3.3 COpy UNTIL END OF OLD LINE
Syntax: E

Description: When an E is typed by the user, DED copies into the
new line all characters from the current character
through the last character in the old line. The
character pointer is left "off the line. 1I

A.3.4 "DELETE" (SKIP) ONE CHARACTER IN OLD LINE
Syntax: D

Description: When a D is typed by the user, the character pointer
is advanced one character to the right in the old
line. The new line is not affected. Thus the result
is that a character in the old line is omitted or
"deleted" from the new line.

A-3-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.3.5 INSERT TEXT FROM KEYBOARD TO NEW LINE
Syntax: I

Description: When an I is typed by the user, subsequent input char­
acters from the keyboard are appended one by one to
the end of the new line, until the user types a tZ,

line feed, or carriage return. The position of the
character pointer in the old line is not changed
during this process, so the effect is that the input
characters from the keyboard are "inserted" in front
of the current character. Various control characters
may be used to edit the string of characters during
typein (see Section A.4).

If the input string of characters is terminated with
tZ, the next character from the keyboard will be
interpreted as a new character editing command. If
the input string is terminated with a line feed, OED
will immediately replace the old line with the new
one and terminate character editing mode. If the
input string is terminated with a carriage return,
OED will copy into the new line all characters from
the current character to the end of the old line,
and terminate character editing mode.

A.3.6 "REPLACE" ONE CHARACTER
Syntax: Ra

where ~ may be any character.

Description: When the user types an R followed by any character ~,
the character ~ is appended to the new line and the
character pointer is advanced to the next character
in the old line. Thus the effect is to "replace"
the current character with a.

A-3-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.3.7 TERMINATE WITH EXISTING NEW LINE
Syntax: line feed

Description: When the user types a line feed, OED immediately
replaces the old line in working storage with the
new line as it stands, and terminates character
editing mode. DED then awaits a new command in
normal mode.

A.3.B COpy REMAINDER OF OLD LINE AND TERMINATE
Syntax: carriage return

Description: When the user types a carriage return, OED copies
into the new line all characters from the current
character to the end of the old line, replaces the
old line in working storage with the resulting new
line, and terminates character editing mode. OED
then awaits a new command in normal mode.

A.3.9 ABORT
Syntax: X

Description: When the user types an X, OED throws away the new
line and terminates character editing mode, leaving
the old line unaffected in working storage. DED
then awaits a new command in normal mode.

A.3.10 NOTE
When the character pointer has been advanced "off the line" (i.e.,

past the last character of the old line), only the I, X, line feed, and
carriage return commands can be used. The effect of an I command in this
situation is simply to append the subsequent sequence of typed characters
to the end of the new line; the effects of line feed and carriage return
are identical, i.e., replace the old line with the new line and terminate
character editing mode.

When the character pointer is "off the line," any command except I,
X, line feed, or carriage return will ·have no effect.

A-3-5 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

SECTION A.4

CONTROL CHARACTERS

Control characters are input by depressing the CONTROL key and
holding it down while depressing and releasing some other key; for
example, to type in a control Q, hold down the CONTROL key and strike
the Q key. Throughout this guide, the notation ta (where ~ is any
character) means "control ~II.

A.4.1 USE OF tQ TO ABORT A PARTIALLY TYPED NORMAL MODE COMMAND
When the user has partially typed a normal mode corrmand and wishes

to cancel it, he may do so by typing a tQ. Subject to the limitations
given below, this will cause OED to abort the command, perform a carriage
return, and type a colon (:) prompt to show that it is ready for a new
normal mode command.

Limitations: If the tQ is entered while the user is typing the
string portion of a SEARCH or SUBSTITUTE command (J, F, L, S, or Z), it
does not abort the command; instead, it deletes the portion of the string
that has already been typed in as explained below in Section A.4.2.

If a line number has already been typed in when the tQ is used to
abort the command, the line pointer will be set to the specified line,
although no other portion of the command is carried out.

A.4.2 USE OF CONTROL CHARACTERS TO EDIT TEXT DURING TYPEIN
When text is being typed in, either as lines of text under an

APPEND or INSERT command in normal mode or as a string in a SEARCH or
SUBSTITUTE command (J, F, L, S, or Z), the following control characters
may be used to edit the text while it is being typed in. In addition,
some of these control characters may be used when typing in text charac­
ters under an I command in character editing mode.

A-4-1 lAC Doc. No. SG-11000-0000-C
Rev. 7 -1-73

tA Delete last character typed in. Echoes 11\" followed by the
character deleted. May be used repeatedly to delete a
sequence of characters from right to left. If the first
character of a line or string is deleted~ echoes a leftarrow
(+) followed by a carriage return and an asterisk (*) prompt,
exactly as if tQ (see below) had been used to delete the
entire line or string. tA may be used under an I command
in character editing mode.

In addition, tA may be used while typing in a filename in a
FILE command. In this case, the restriction is that tA
cannot delete past the beginning of one of the fields in a

filename; e.g., if the user is typing the extension portion
of a filename, tA can be used to delete back to the period
separating the name from the extension, but no farther.

tQ When a line of text is being typed in under an APPEND or
INSERT command, tQ deletes the line (but does not delete
any previous lines). When a string is being typed in under
a SEARCH or SUBSTITUTE command, tQ deletes back to the
beginning of the string. In either case, tQ echoes a left­
arrow (+) followed by a carriage return and a colon (:)
prompt, and the user may start over on the line or string.
tQ cannot be used in character editing mode.

tR This causes OED to retype the line or string being typed in,
i.e., perform a carriage return and type out the part of the
line or string that the user has already typed in. The user
may then continue where he left off typing in. This feature
is useful when tA has been used repeatedly and the line or
string has become hard to read. tR cannot be used in charac­
ter editing mode.

tS This causes the next character typed in to be stored as an
uppercase letter (if it is a letter). This is used for
entering uppercase characters when input characters are being
forced into lowercase as the result of an 04 command (see
Section A.2.5.3). Thus if your terminal has only one alpha­
betic case, you can enter both upper and lowercase letters
by using 04 to force lowercase, then using tS to enter

A-4-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

capital letters. If the next character typed in after a tS
is not a letter, the tS has no effect. tS may be used under
an I command in character editing mode.

tZ This causes termination of text input when typing in a string,
a sequence of lines under an APPEND or INSERT command in
normal mode, or a sequence of characters under an I command
in character editing mode.

A.4.3 CONTROL CHARACTERS FOR TAB, LINE FEED, ETC.
The following control characters may be used for special terminal

functions on terminals that do not have the corresponding special function
key - e.g., on a terminal that has no TAB key, tI may be used as explained
below.

tG BELL.
tI TAB. DED has preset tab positions every eight spaces along

the output line. The effect of a TAB or tI is to space over
to the next tab position.

tJ LINE FEED. Typing a tJ is equivalent to striking a LINE FEED
key.

tL FORM FEED. Typing a tL is equivalent to striking a FORM FEED
key.

tM CARRIAGE RETURN. Typing a tM is equivalent to striking a
CARRIAGE RETURN key.

CAUTION: Various terminals have their peculiarities, and a given
type of terminal may not conform to the above description. For example,
on a TI 700 Series terminal, tM is not equivalent to CARRIAGE RETURN, but
merely echoes "t]". The user is advised to experiment with his terminal
before assuming that the above information is correct.

A.4.4 tC, tT, AND to
These three control characters have special effects that do not

depend on what the user is doing when he types one of them in.

tC Causes DED to be terminated. The contents of working storage
are not written out to a file, and are lost.

A-4-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

tT Causes the system to type out a message on system status.
to If typed in while DED is typing out text or writing out a

file, causes the output to be terminated prematurely. If
DED is not in the midst of an output process, to has no
effect.

A.4.S ENTERING CONTROL CHARACTERS AS TEXT
The control characters described in the above sections are not

entered literally into a line or string when typed in, but instead cause
the various special actions described above.

In addition, if any other control character is typed in, it will be
echoed but will not be entered into the line or string being typed in.

The following methods may be used to enter a control character into
the line or string being typed in, in the same way as any ordinary charac­
ter.

A.4.S.1 tV
Any control character except tC, tT, or to can be entered as an

ordinary text character by preceding it with a tV. The tV is not stored
as a text character, but causes the immediately following control charac­
ter to be stored in the line or string as if it were an ordinary character.
A tC, tT, or to is not affected by the preceding tV, and will cause the
effect described in Section A.4.4 when it is typ~d in.

A.4.S.2 tt (CONTROL UPARROW)
Any control character including tC, tT, and to can be entered as an

ordinary text character by the following procedure:
First type in a tt (control uparrow; see "Note" below). Then type

in the ordinary character corresponding to the control character you wish
to have stored in the line or string being typed in. The tt causes the
immediately following character to be converted to the corresponding
control character and stored in the line or string.

For example, to cause a tC to be stored as part of a line being
typed in, first type tt and then type the letter C. The C will be con­
verted to a tC and stored in the line.

A-4-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Note: The ASCII character tt (control uparrow) cannot always be
input by holding down the CONTROL key while striking the t key; the
procedure for inputting this special character depends on the particular
type of terminal being used. On a Texas Instruments TI 700 Series termi­
nal, hold down the CONTROL key while striking the period key.

A-4-5 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

SECTION A.5

COMMAND SUMMARY BY FUNCTION

A.5.l TYPEOUT COMMANDS (NORMAL MODE)

Syntax

=

{#}/

t

LF (line feed)

$

{#}Tn~

P

Description

Type out number of current
line.

Type out specified line.

Type out line preceding
current line.

Type out line following
current line.

Type out number of last line
in working storage.

Type out n lines beginning
with specified line.

Type out all lines in working
storage.

A.5.2 EDITING COMMANDS (NORMAL MODE)

Syntax

{#} 0

{#} Knp

{#} I

A

Description

Delete specified line.

Delete n consecutive lines,
starting with specified line.

Insert one or more new lines
before specified line.

Append one or more new lines
after last line in working
storage.

Line Pointer
Left at:

Unchanged.

Specified line.

Line preceding
current line.

Line following
current line.

Last line in
working storage.

Last line typed.

Unchanged.

Line Pointer
Left at:

Line following
deleted line.

Line following
last deleted line.

Specified line.

Last new line
appended.

A-5-l lAC Doc. No. SG-I1000-0000-C
Rev. 7 -1-73

Syntax

{ # }M { n } • {m} ~

{#}C

Description

Copy n lines starting with
specified line, inserting
them above line m.

Enter character editing mode
(see Section A.S.6) to edit
text of specified line.

{#}S{stringl}tZstring2~ Substitute stringl for first
occurrence of string2 in
specified line.

{#}Z{n}.{stringl}tZstring2~ Substitute stringl for
each occurrence of string2
within the n lines starting
with the specified line.

A.S.3 SEARCH COMMANDS (NORMAL MODE)

Syntax

{#}Jstr;ng~

{#}Lstring~

{#}F{n}.string~

Description

Starting with specified line,
find next line that starts
with string. Move line
pointer to this line and
type it out.

Starting with specified line,
find all lines starting with
string and type them out.

Starting with specified line,
find all lines within the next
~ lines that contain string
and type them out.

A.S.4 FILE COMMANDS (NORMAL MODE)

Syntax

{#}R

w

Description

Copy contents of a specified
file into working storage
after the specified line.

Write out working storage to
a specified file.

Line Pointer
Left at:

Specified line.

Specified line.

Specified line.

Specified line.

Line Pointer
Left at:

Line found.

Specified line.

Last line
searched.

Line Pointer
Left at:

Last new line
inserted.

Unchanged.

A-S-2 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

Syntax

Q

B

Description

Write out working storage to
a specified file and terminate
OED.

Write out working storage to
a new version of last file
read; if no file has been
read, write out to file
BACKUP.DED (new version).

Line Pointer
Left at:

n/a

Unchanged.

A.5.5 MISCELLANEOUS COMMANDS (NORMAL MODE)

Syntax

E

?

On~

H

Description

Terminate OED.

Type out a summary of OED
commands.

Set options according to the
following values of ~:

o Reset all options to
default state.

1 Suppress typeout of line
numbers.

2 Suppress prompt characters.

4 Shift all input characters
to lower case.

8 Suppress all bells.

16 Read 8-bit ASCII file.

32 Write 8-bit ASCII file.

Transfer to HELP. On exit from
HELP, return to OED with every­
thing unchanged.

Line Pointer
Left at:

n/a

Unchanged.

Unchanged.

Unchanged.

A-5-3 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

A.S.6 CHARACTER EDITING COMMANDS (CHARACTER EDITING MODE)

Syntax

space

Fa

E

D

I

Ra

line feed (LF)

carriage return (CR)

x

Character Pointer
Description .;:;;.Le..:...f_t;;....-:...a~t_: ___ _

Copy current character from Next character.
old line to new line.

(a = any character) - Copy First occurrence
characters from old line to of a.
new line, starting with cur-
rent character and continuing
up to (but not including)
first occurrence of a.

Copy characters from old line IIOff the line. 1I

to new line, starting with
current character, and contin-
uing to end of old line.

Advance character pointer Next character.
without affecting new line,
effectively deleting current
character.

Append subsequent input char- Unaffected.
acters to new line, without
moving character pointer.
Sequence of input characters
is terminated with tZ, LF, or
CR; LF and CR have the effects
described below.

(a = any character) -Append a Next character.
to end of new line and advance
character pointer, effectively
replacing one character of old
line with a.

Replace old line with new line, n/a
and terminate character editing
mode.

Copy characters from old line to n/a
new line, starting from current
character and continuing to end
of old line (same action as "E");
then replace old line with new
line and terminate character
editing mode.

Abort edit - throwaway new line, n/a
leave old line unaffected, and
terminate character editing mode.

A-5-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

APPENDIX B

GLOSSARY

lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

APPENDIX B

GLOSSARY

The following terms are defined according to their specialized
use in this guide. The vocabulary reflects the use of language in an
environment influenced by the ILL lAC IV and its associated hardware
and software.

The glossary makes detailed reference to sections in the guide,
and may therefore be used as an index.

lAC Doc. No. SG-IJOOO-OOOO-C
Rev. 7-1-73

GLOSSARY

ACL - A Control ~anguage for user interaction with the ILLIAC IV System.
ACL consists of a set of statements; each ACL statement is a call
to a subsystem that executes a selected function for the user.
See ACL executive~ ACL statement~ ACL subsystem~ subsystem calZ~

and Sections 3 and 6.

ACL executive - the program resident in the ILLIAC IV System that pro­
cesses ACL statements. The ACL executive takes ACL statements as
input and initiates the subsystems called by these statements.
See ACL statement~ ACL subsystem.

ACL statement - a user statement that is passed to the ACL executive and
causes initiation of an ACL subsystem. An ACL statement is thus
effectively a subsystem call. See ACL subsystem~ ACL executive~

ACL~ subsystem caZZ~ and Sections 3 and 6.

ACL subsystem - a program residing in the ILLIAC IV System that can be
called by the user (using an ACL statement) to perform a specific
function. See subsystem caZl~ ACL statement~ and Section 3.

active fiZe - a file stored in a user's assigned active file space and
listed in his file directory. Active files can be accessed by ACL
subsystems under user control. See archived fiZe~ directory~ UNI­

CON~ and Sections 4.4.1 and 4.4.2.

actual argument - information supplied by the user in an ACL statement
or macro-call, in place of a formal argument in the statement
format representation or macro definition. See formal argument.

archived file - a file that has been copied from active file space to
the UNICON, and deleted from active file space. An archived file
can be restored to active file space, but cannot be accessed by

B-1 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

ACL subsystems unless this is done. See active file~ directory~

UNICON~ and Sections 4.4.1 and 4.4.2

area - a named, ordered collection of pages on the 14DM. An area is
declared, named, and described in a FORMAT statement within a MAP
subsystem call, and then assigned physical space on the 140M by
the ALLOC subsystem. See areaname~ FORMAT statement~ I4DM~ layout~

logical disk~ and Sections 5.3 and 5.4.

areaname - the name of an 140M area. The areaname is initially assigned
by the user in the FORMAT statement used to declare, name, and
describe the area (as part of a MAP subsystem call). After the
area has been assigned space on the 14DM by the ALLOC subsystem,
the areaname points to the first page of the area. An areaname
consists of up to six alphanumeric characters, and must begin with
a letter. See area~ FO~T statement~ and Sections 5.3 and 5.4.

argument - variable information passed to a subsystem as part of an ACL
statement or a subsystem control statement, or to a macro as part
of a macro-call. See Sections 3 and 6.2.

Array Memory - wqrking storage for the ILLIAC IV Processor. Array Memory
consists of 128K (64-bit) or 256K (32-bit) words, with a 313-nano­
second cycle time. Each processing element in the ILLIAC IV Pro­
cessor has access to one 2K (64-bit) or 4K (32-bit) block of Array
Memory; each of these blocks is called a Processing Element Memory
(PEM). The Control Unit has access to all of Array Memory. See
ILLIAC IV~ Processing Element Memory~ and Sections 2.3.2 and 5.2.1.

ASK - the assembly language for the ILLIAC IV; also the assembler for this
language, which resides as an ACL subsystem in the ILLIAC IV System.
See Section 7 (ASK and GLYP).

batch job - a job whose primary input source is a file of ACL statements
processed via a SUBMIT statement. The SUBMIT statement places in
the batch queue a request to process the file; processing does not

B-2 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

occur until the request reaches the top of the queue. See job~
batch queue~ and Sections 4.6 and 8.

batch queue - a system-maintained queue containing requests to process
batch jobs. See job~ batch job~ and Section 8.

central file system - the set of facilities within the ILLIAC IV System
used to store and manage user files. The term is also used loosely
for the storage space used for files. See Sections 2.2.3 and 5.1.

control parameter - a named parameter with a signed decimal integer value.
Control parameters are global to a job (see job) and the user can
define them and assign values to them by means of EQU statements.
One special control parameter named STATE is maintained by the
system for each job; STATE always has a value assigned to it by
the ACL subsystem called most recently within the job. This value
is used to represent information about the execution (or failure)
of the subsystem. Control parameters are used as elements in
expressions. See element~ expression~ and Section 6.2.4.

control statement - see subsystem control statement.

Control Unit - the Control Unit of the ILLIAC IV Processor. See ILLIAC

IV Processor~ Processing Element~ ILLIAC IV~ and Section 2.3.2.

CU - see Control Unit.

directory - a named collection of information on a particular set of ac­
tive files. The name is called a directoryname. One directory is
assigned to each user, to contain information on active files
"owned" by the user. The directoryname of the user's directory is
the same as the user's userid. The DIR subsystem permits the user
to obtain listings of one or more of the filenames of files in his
directory, with the file size and date last written for each file.
UDIR permits the user to obtain information on files in his direc­
tory that have been copied to the UNICON. Most ACL subsystems

8-3 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

permit the user to access only files in his own directory; the COPY
subsystem permits the user to create a copy (in his own directory)
of a file in another directory. See active file~ userid~ central

file system~ directoryname, Section 7 (OIR and UDIR), and Section
3.4.2.1.

directoryname - the name associated with a particular collection of files
(i.e., a directory) in the central file system. If the directory
is a user's directory, the directoryname is the same as the user's
userid. A directoryname enclosed in angle brackets is used option­
ally as the first f.ield in a filename; if the user is referring to
a file in his own directory, the directoryname and the angle brack­
ets may be omitted and the user's userid will be used as the default
directoryname for the filename. See directory~ filename, userid,

and Section 3.4.2.1.

element - part of an expression. An element may be a value (signed
decimal integer), the name of a previously defined control parameter,
or an expression enclosed in square brackets. See expression~
control parameter~ and Section 6.2.5.

entry point - a label within an ASK program that is declared to the
assembler as an external entry point for the program. See
Section 7 (LIB and LINKED).

expression - a sequence of elements and operators that can be evaluated
as a signed decimal integer by the TEST and EQU subsystems. See
element~ operator~ and Section 6.2.5.

extension - an optional portion of a filename. See filename and Section
3.4.2.1.

file - a named, ordered collection of information associated with a par­
ticular directoryname. Within the ILLIAC IV System files are held
and managed by the central file system and may be deleted by means
of the DEL statement and transferred by means of the COpy, MOVE,

B-4 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

and CPYNET statements. Files may be edited interactively or listed
on the user's terminal by means of the OED text-editor subsystem;
additionally, OED may be conveniently used to interactively create
files of alphanumeric text (such as files of ACL statements). A
file is uniquely identified within a user's set of files by its
filename. See filename~ directory~ central file system~ active file~

archived file~ and Section 2.2.3.

file directory - see directory.

filename - the user identification of a particular file. A filename is
made up of an optional directoryname, a name, and an optional
extension and version; the directoryname is enclosed in angle
brackets, the name and extension are separated by a period, and
the extension and version are separated by a semicolon. See direc~
toryname~ name~ extension~ version~ and Section 3.4.2.1.

formal argument - (1) a name used in a macro definition as a placeholder
for information that will be included in the macro-call as an
actual argument. In macro expansion, all formal arguments found
in the macro definition are replaced by actual arguments supplied
by the user in the macro-call. See Section 7 (MACRO). (2) a name
of a class of arguments for ACL subsystems, used in the format
representations in this guide to indicate information to be sup­
plied by the user. See Sections 3 and 6.

formatspec - the portion of a FORMAT statement in a MAP subsystem call
that describes the arrangement of one area on the logical disk.
A formatspec is made up of operators separated by commas. See
operator, FORMAT statement, layout~ area, logical disk, and
Sections 5.3.1.1 and 7 (MAP).

FORMAT statement - a control statement for the MAP subsystem. Each
FORMAT statement declares, names, and describes one area. See
area, areaname, formatspec, layout, logical disk, and Sections
5.3.1 and 7 (MAP).

8-5 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

GLY.PNIR - a high-level language for writing programs to be executed on
the ILLIAC IV. Also the GLYPNIR compiler, resident as an ACL sub­
system in the ILLIAC IV System. GLYPNIR source code is compiled
to ASK source code, which can then be assembled, link-edited, and
transferred into Array Memory for execution. See ASK and Section
7 (GLYP).

Host - a computer system forming one node in the ARPA Network.

hostid - the unique identification of a Host in the ARPA Network. Either
the Network name of the Host, or a corresponding octal number.

ILLIAC IV - the ILLIAC IV computer, as distinguished from the rest of the
ILLIAC IV System. The ILLIAC IV includes the ILLIAC IV Processor,
the Array Memory, and the 140M. See Section 2.3.2.

ILLIAC IV Processor - the data processing components of the ILLIAC IV,
comparable in function to the CPU of a conventional computer. The
ILLIAC IV Processor consists of a Control Unit (CU) and 64 individ­
ual Processing Elements (PEls). The Processor is capable of
parallel operation on 64 data streams. See ILLIAC IV and Section
2.3.2.

ILLIAC IV SAVE file - a file containing a complete ILLIAC IV memory image,
together with loader instructions to set the initial machine state.
ILLIAC IV SAVE files are produced by the LINKED subsystem for input
to the RUN or SSK subsystems; in addition, the dump files produced
by RUN and SSK are ILLIAC IV SAVE files. The term IIILLIAC IV SAVE
file ll is commonly abbreviated to IIISV file,1I and the characters ISV
are used as the default extension in the filename of an ISV file.
See Sections 4 and 7 (LINKED, RUN, and SSK).

ILLIAC IV System - the system discussed in this guide.

interactive job - a job whose primary input source is a sequence of ACL
statements typed in at the userls terminal. These statements are

8-6 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

transmitted directly to the ACL executive and are processed immed­
iately. See job and Section 8.

ISV file - see ILLIAC IV SA VE fi le.

I4DM - the ILLIAC IV Disk Memory, which serves as the main memory store
for the ILLIAC IV. See Section 5.2.

job - the processing of a sequence of ACL statements from a primary input
source. In an interactive job, the primary input source is the
user's terminal, and the job begins with the user's LOGIN and ends
with his LOGOUT. In a batch job, the primary input source is a file
of statements (i.e., a PIF) named in a SUBMIT statement in another
job. The batch job begins with the entry of a request into the
batch queue as a result of the SUBMIT statement. The processing of
a batch job is the processing of the ACL statements contained in the
PIF (and in any alternate input sources) and ends with a LOGOUT
statement or the EOF in the PIF. See batch job~ interactive job~

jobid~ primary input file~ primay.y output file~ and Sections 4 and 8.

jobid - a unique identifier assigned by the system to each job. The
jobid is generated by the system when the job begins. The jobid
must be entered by the user in OELJOB and INQ statements. See job

and Section 8.

label - (1) the name of an ACL statement. Labeled ACL statements can be
branched to under control of the TEST statement. See Sections 6.1,
7 (TEST), and 8. (2) the name of an ASK instruction.

layout - the relative arrangement of one or more 140M areas. See area~
FORMWT 8tatement~ format8pec~ logical di8k~ I4DM~ and Section 5.3.

library - a collection of files of relocatable ASK object code, together
with a library file created by the LIB subsystem that lists all
files in the library and all the entry points within the files. A
specified library file can be searched by the link editor to resolve

B-7 lAC Doc. No. SG-11000-0000-C
Rev. 7-1-73

external references in a program being link-edited, and the corre­
sponding files of code will be link-edited into the program. See
Section 7 (LIB and LINKED).

libr~y file - see library.

LINKED - the link-editor subsystem in the ILLIAC IV System. LINKED takes
files of relocatable ASK object code as input, and creates an ILLIAC
IV SAVE file for the ILLIAC IV or SSK. See ILLIAC IV SAVE file and

Section 7 (LINKED).

link editor - see LINKED.

logiaal disk - the logical model of the 140M presented to the user by the
140M utility software, for purposes of describing 14DM layouts. See
area~ I4DM~ formatspea~ FORMWT statement~ layout~ and Section 5.2.

name - the first portion of a filename. See filename and Section 3.4.2.1.

operator - (1) one of the items making up a formatspec. The formatspec
operators have the forms ±nP, ±nS, ±nB, ±nR, ±nL, X, and T (where
n is any integer). See Sections 5.3 and 7 (MAP). (2) one of the
set of arithmetic, logical, shift, and unary symbols used in an
expression. See Section 6.2.5.

page - a page is the smallest addressable unit of data words in a file .or
in an 140M area. In an area, a page is a collection of 1024 (64-bit)
or 2048 (32-bit) contiguous words on the 140M.

parameter - see aontrol parameter.

password - a unique alphanumeric string associated with each userid for
security purposes.

PE - see Proaessing Element.

PEM - see Proaessing Element Memory.

B-8 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

PIF - see primary input file.

POF - see primary output file.

primary input file - a file of ACL statements used as the primary input
source for a batch job. See job, batch job, and Sections 4 and 8.

primary output file - a file used for writing out system messages and
responses resulting from a batch job (in an interactive job these
messages and responses are sent to the user's terminal). See job,

batch job, and Sections 4, 7 (SUBMIT), and 8.

Processing Element - one of the array of 64 identical arithmetic units in
the ILLIAC IV Processor. The 64 Processing Elements (PEls) are con­
trolled by the Control Unit, which decodes instructions and sends
the same control signal to each PE in the array; all PEls then
execute the same operation in parallel, each using data stored in
its own portion of Array Memory. See Section 2.3.2.

Processing Element Memory - the portion of Array Memory that can be ac­
cessed by one of the 64 Processing Elements. Each PEM is 2K (64-
bit) or 4K (32-bit) words. See Array Memory, ILLIAC IV Processor,

Processing Element, and Section 2.3.2.

SSK - a subsystem in the ILLIAC IV System that simulates execution of a
program on the ILLIAC IV, returning various performance timing
statistics and information requested in DISPLAY statements in the
userls ASK program. SSK uses the B6700 resource of the ILLIAC IV
System. See Section 7 (SSK).

statement - (1) an ACL statement. (2) a subsystem control statement.
See ACL statement, subsystem control statement, and Sections 3
and 6.

8-9 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

STATE paPameter - a special control parameter defined for each job by
the system and having a value assigned to it by the subsystem
most recently executed within the job. See control parameter and
Sections 6.2.4 and 7 (EQU and TEST).

subsystem - see ACL subsystem.

subsystem call -most subsystems are called by a single ACL statement,
containing all the information necessary for the subsystem to
execute. Certain subsystems (e.g., LINKED and MAP) require one or
more control statements following the ACL statement to make up a
complete call. Functionally, a subsystem call is a request to ini­
tiate processing of information contained in the call; processing
is actually initiated by the ACL executive. See ACL statement~ ACL

subsystem~ ACL executive~ and Section 3.

subsystem control statement - a statement that may be entered as part of
the calling sequence for a particular ACL subsystem. Examples are
the SEG, SET, and INCLDE control statements for the LINKED subsys­
tem, and the FORMAT, PRINT, and TIME control statements for the MAP
subsystem. See ACL subsystem, subsystem call~ and Section 3.5.

system - see ILLIAC IV System.

UNICON - the system's mass information storage resource. The UNICON uses
a laser to write and read information on coated Mylar strips, and
has a capacity of approximately 700 billion bits of on-line storage.
The UNICON cannot be addressed or accessed by the user or by ACL
subsystems under user control; however, files stored on the UNICON
can be retrieved by the system operator as explained in Section
4.4.2. See Sections 2.3.3, 4.4.1, and 4.4.2.

userid - an identification name associated uniquely with a particular user
of the ILLIAC IV System. userid's are administratively assigned,
and are supplied by the user in the LOGIN and SUBMIT statements.
See Section 8.1.1.

B-10 lAC Doc. No. SG-I1000-0000-C
Rev. 7-1-73

value - a signed decimal integer. In ACL usage, values may be assigned to
control parameters by the user via EQU statements; and expressions
used in TEST statements result in values when evaluated. See
expression, aontrol parameter, and Sections 6.2.4, 6.2.5, and 7
(EQU and TEST).

version - a number used as the last part of a filename to distinguish among
files with the same name and extension. The version may be created
and handled by the system without explicit reference by the user.
See fiZename and Section 3.

B-11 lAC Doc. No. SG-IlOOO-OOOO-C
Rev. 7-1-73

APPENDIX C

BIBLIOGRAPHY

(To be suppZied)

lAC 'Doc. No. SG-I1000-OOOO-C
Re·v.7 -1-73

