IS

iz

1986 WINTER

dSENIX
TECHNICAL

- CONFERENCE PROCEEDINGS

QA
76

- AEROK PARC L bs
CCHNICAL IMFORIAATION CENTER _ g 4
1956w
USENIX Association

Winter Conference Proceedings

January 15-17, 1986
Denver, Colorado USA

[

For additional copies of these proceedings, write:

USENIX Association
P.O.Box 7
El Cerrito, CA 94530 USA -

Price: $20.00

€ Copyright 1985 by The USENIX Association
All rights reserved.
This volume is published as a collective work.
Rights to individual papers remain
With the author or the author’s employer.

UNIX is a trademark of AT&T Bell Laboratories.
Other trademarks are noted in the text.

ii

ACKNOWLEDGEMENTS

Program Chairs and Committee Members

Window Environments & UNIX

Sam Leffler, Chair Lucasfilm

Mike Hawley, Co-Chair The Droid Works

Jim Gettys Digital Equipment Corp.
James Gosling Sun Microsystems

Rob Pike Bell Laboratories

UNIX on Big Iron

Peter Capek, Chair [BM Research
Jim Lipkis New York University, Courant Institute
Eugene Miya NASA Ames Research Center

Ada and the UNIX System

Charles Wetherell, Chair AT&T Information Systems
Donn Milton Verdix Corporation

Tucker Taft Intermetrics

Larry Yelowitz Ford Aerospace

SPONSORED BY:
USENIX Association, P. O. Box 7, El Cerrito, CA 94350

TUTORIAL COORDINATOR
Michael Tilson, Human Computing Resources

USENIX CONFERENCE COORDINATOR
John Donnelly

USENIX MEETING PLANNER
Judith F. Desharnais

CONFERENCE HOST
UNIVERSITY OF COLORADO
Evi Nemeth, Computer Science Department

iii

1986 Winter USENIX Technical Conference

Window Environments and UNIX
Chair: Sam Leffler and Mike Hawley

Denver, Colorado

Wednesday, January 15, 1986

Wednesday (8:30-10:10) Hardware and Hardware Issues

Opening Remarks
Conference Organizers and USENIX Board

Galadriel: A Display List-Based Window Manager
Bob Lewis, Tektroniz

Next-Generation Hardware for Windowed Displays
S. McGeady,

Real-Time Resource Sharing for Graphics Workstations
Mark S. Grossman and Glen E. Williams, Silicon Graphics, Inc.

Wednesday (10:30-12:00) Applications

GLO - A Tool for Developing Window-Based Programs
Thomas Neuendorffer, Carnegie-Mellon University

A Workstation-Based Inpatient Clinical System in the
Johns Hopkins Hospital

S. N. Kahane, S. G. Tolchin, M. J. Schneider,

D. W. Richmond, P. Barta, M. K. Ardolino,

H. S. Goldberg, Johns Hopkins University Hospital

The Feel of Pi
T. A. Carqill, ATET Bell Laboratories

11

23

34

62

iv

Wednesday (1:30-3:30) Systems and System Issues

Flamingo: Object-Oriented Abstractions for User [nterface Management
Edward T. Smith, David B. Anderson, Carnegie-Mellon University

A Proposal for Interwindow Communication and Translation Facilities
Daniel P. Gill, Exzon Research and Engineering

Problems Implementing Window Systems in UNIX
James Gettys, Massachuseltts Institute of Technology

SUNDEW: A Distributed and Extensible Window System
James Gosling, Sun Microsystems
Wednesday (4:00-5:00) Panel Discussion

"Color? Do We Need It? How Can We Use It? How Do We Deal With It’...

72

79

89

98

19868 Winter USENIX Technical Conference

UNIX on Big Iron
Chair: Peter Capek

Denver, Colorado

Thursday, January 168, 1986

Thursday (8:30-10:00) Applications and Requirements

Opening Remarks
Peter Capek, IBM Research

User Requirements for Future-nix 104
Eugene Miya, NASA Ames Research Center

Experience with Large Applications on Unix 110
Bob Bilyeu, McNeill-Schwindler, Inc.

UNIX Scheduling for Large Systems 111
Jeffery H. Straathof, Ashok K. Thareja,
and Ashok K. Agrawalal, University of Maryland

Thursday (10:30-12:00) Real Systems I

A Straightforward Implementation of a 4.2BSD on a High 140
Performance Multiprocessor
Dave Probert, Culler Scientific Systems Corporation

Porting UNIX to the System/370 Extended Architecture 157
Joseph R. Eykholt, Amdahl Corporation

Full Duplex Support for Mainframes 165
Don Sterk, Amdah! Corporation

vi

Thursday (1:30-3:10) Real Systems II

Concentrix -- A Unix for the Alliant Multiprocessor
Jack Test, Alliant Computer Corporation

A User-Tunable Multiprocessor Scheduler
Herb Jacobs, Alliant Computer Corporation

High Performance Enhancements of C-1 Unix
Rob Kolstad, Convex Computer Corporation

Thursday (3:30-5:30) Real Systems III

Considerations for Massively Parallel Unix Systems on the NYU
Ultracomputer and the [BM RP3

Jan Edler, Allan Gottlieb, Jim Lipkis,

New York University - Courant Institute

Unix of CTSS for the Cray-1, Cray X-MP and Cray-2 Supercomputers
Karl Auerbach, ZERO-ONE Systems and NASA Ames
Research Center; Robin O’Neill, National Magnetic
Fusion Energy Computer Center

Experience Porting System V to the Cray 2
Tim Hoel, Cray Research

172
183

192

193

211

219

vii

1986 Winter USENIX Technical Conference

ADA and the UNIX System
Chair: Charles Wetherell

Denver, Colorado

Friday, January 17, 19886

Friday (9:00-10:30)
Introductory Remarks

Ada and UNIX
Robert Firth, Tartan Labs

UNIX, C and Ada
Herman Fischer, Mark V Business Systems
Friday (11:00-12:00)

Revision Control Tools and the Ada Program Library
Dick Schefstrom, TeleLOGIC AB

Managing Separate Compilation in the AT&T Ada Translator System
G. W. Elsesser, M. S. Safran and T. Tieger, ATST
Friday (1:30-3:00)

Targeting Ada to 68000/UNIX
Mitchell Gart, Alsys Inc.

A Comparison of UNIX and CAIS System Facilities
Helen Gill, Rebecca Bowerman, and Chuck Howell,
MITRE Corporation

SVID as an Interim Basis for CAIS
Herman Fischer, Mark V Business Systems

241

252

261

294

viii

Friday (3:30-4:30)

An Overview of the Ada Shell 302
Lisa Campbell and Mark Campbell, NCR Corporation

Implementing Curses in ADA 314
Karl Nyberg, Verdiz Corporation

ix

1988 Winter USENIX Technical Conference

Author Index

Denver, Colorado

January 15-17, 1986

Author Page
P.Barta 45
Ashok Agrawalal 111
David Anderson 72
M.K. Ardolino 45
Karl Auerbach 211
Bob Bilyeu 110
Rebecca Bowerman 275
Lisa Campbell 302
Mark Campbell 302
T.A. Cargill 62
Jan Edler 193
G.W. Elsesser 252
Joseph Eykholt 157
Herman Fischer 225
Herman Fischer 294
Mitchell Gart 261
James Gettys 89
Helen Gill 275
Daniel Gill 79
H.S. Goldberg 45
James Gosling 98
Allan Gottlieb 193
Mark Grossman 23

Tim Hoel 219

Author Page
Chuck Howell 275
Herb Jacobs 183
S.N. Kahane 45
Rob Kolstad 192
Bob Lewis 1
Jim Lipkis 193
S. McGeady 11
Eugene Miya 104
Thomas Neuendorffer 34
Karl Nyberg 314
Robin O'Neill 211
Dave Probert 140
D.W. Richmond 45
M.S. Safran 252
Dick Schefstrom 241
M.J. Schneider 45
Edward Smith 72
Jeffery Staathof 111
Don Sterk 165
Jack Test 172
Ashok Thareja 111
T. Tieger 252
S.G. Tolchin 45
Glen Williams 23

1988 Winter USENIX Technical Conference

Tutorials

Denver, Colorado

January 15-17, 1986

Wednesday, January 15, 1988

1. Design Considerations for SNA Communications Under UNIX
Danzel Fisher, System Strategies, Inc.

2. UNIX Device Driver Design (4.2BSD)
Daniel Klein, Consultant

3. System V Interprocess Communication Application Programming
Dr. Jon H. LaBadie, AUXCO

4. ADA - From the Top: An Introduction
Putnam P. Tezel, Tezxel & Company

5. UNIX System V Internals
Maury Bach and Steve Buroff, ATET Information Systems
Thursday, January 16, 1986

6. Introduction to 4.2BSD Internals
Dr. Thomas W. Doeppner, Jr., Brown University

7. Windowing Systems Implementations
David Rosenthal, Sun Microsystems, Inc.

8. Language Construction Tools on the UNIX System
Stephen C. Johnson, ATET Bell Laboratories

9. Advanced C Programming
William C. Steward, AUXCO

xi

Friday, January 17, 19886

10. Advanced Topics on 4.3BSD Internals
Mike Karels and Marshal Kirk McKusick, University of California, Berkeley

11. UNIX Networking
Bruce Borden, Silicon Graphics, Inc.

12. Managing a Local Area Network
Evi Nemeth and Andy Rudoff, University of Colorado, Boulder

13. Introduction to UNIX System Administration
Ed Gould, mt Xinu

14. Writing Portable C Programs
Dr. Tom Plum, Plum Hall, Inc.

Window Environments and UNIX

January 15, 1986

Denver, Colorado

Galadriel: A Display List-Based Window Manager

Bob Lewis

Graphics Workstation Division
Information Display Group
P.O. Box 1000, MS 61-277

Tektronix, Inc.
Wilsonville, OR 97070
tektronix'tekecs!bobl

ABSTRACT

This paper presents an architectural description of Galadriel, a window
management system that provides both text and graphics services to client
processes. Unlike most other window managers, Galadriel runs under UNIXt on a
hosted, display list terminal instead of a bitmapped workstation. It discusses the
advantages and disadvantages of this approach as well as areas for further develop-
ment.

1. Introduction

Window managers are gaining increasing acceptance as a part of many engineering environments.
Usually, however, they use a display connected directly to a single-user workstation over a high-
bandwidth communications line such as a memory bus.

This paper discusses a window manager called Galadriel' which shares many characteristics with
previous window managers, but runs on a substantially different hardware configuration.

Galadriel runs under the UNIX operating system residing on a host computer and interfaces to
several different terminal models over an RS-232 communications line. All of the models supported
are display list-based; in additional to conventional ASCII text (alphatext), output to them may
include encoded graphics primitives such as polylines, polymarkers, filled polygons, and graphic text
(graphtext) which can be sent directly to the display processor or put in terminal RAM as a seg-
ment. The host can then change various attributes of the segment, redisplay it, and replicate it
without retransmitting the primitives.

Section 2 describes the target hardware and software constraints. Subsequent sections deal with the
effects of these constraints on traditional window management capabilities. Section 3 covers the
ways Galadriel organizes windows and related objects from the application’s and the user’s points of
view. Section 4 briefly discusses the interfaces to these objects that Galadriel presents. Section 5
goes into more detail on the internal operation of the window manager process itself. Finally, Sec-
tion 6 discusses possible directions for future development.

T UNIX is a trademark of AT&T Bell Laboratorics.
1. From J. R. R. Tolkien's Lord of the Rings, owner of magic mirror is about as close as we could come to a
mythological window manager.

2. Hardware and Software Constraints

Galadriel was originally implemented on a Tektronix 4115B terminal connected over an RS-232 line
to a VAX?t (780) running an internal Tek version of (relativelzl standard) 4.2bsd UNIX. So far,
it’s been ported to a different 4.2bsd variant (Tektronix’s UTek *), two other host compute engines
(Tek 6030 and 6130), and four other terminals (Tek 4111, 4125, 4128, and 4129).

2.1. Hardware Characteristics

Table 1 gives the relevant differences between the various terminals that affected system design.

model(s) 4111 4115B, 4125, 4128, 4129°
display size (pixels) 1024 x 768 1280 x 1024
character size (pixels) 8x16 8 x 16 or 16 x 30
#rows x #columns 48 x 132° 64 x 160 or 34 x 80
number of bit planes 4 25, 4,6,0r8
display list RAM 1.2MB 768KB

Table 1 -- Display Characteristics

All terminals® accept the same set of over 200 commands. Other design-relevant features common
to all of the terminals are:

® 64 viewports (i.e., clipping rectangles)

64 dialog areas (independent alphatext output areas, each emulating most of a VT100%)
signed 32-bit integer display list coordinate space

raster operations between screen, display list RAM, and host

a 24-bit color map, indexed by the value of each pixel

baud rates of up to 19.2 kbaud

the ability to make any segment the cursor

mouse or puck/tablet

2.2. Software Considerations

By far the most serious constraints on the design and implementation of Galadriel arose from two
factors that set it apart from most other window managers now available. The first is that commun-
ication between the host and the terminal must take place over a serial RS-232 line. The second is
that Galadriel’s modus operandi must be acceptable on a host shared with several other users.

The RS-232 communications bottleneck means that the design must use whatever resources it can
on both host and terminal ends to minimize the number of bytes that need to be transferred to get
things done. Having a display list with definable segments is a big help with this, because once
graphic primitives are put into a segment, that segment can be transformed and redisplayed as a
unit — the primitives never have to be sent again.

The shared host requirement limits the desirability of tight interaction loops. For such a loop, the
nature of the interface would require the window manager to poll the terminal continually for the
cursor position. At 9600 baud, the transit time for the 20 or so characters involved in the poll is <

1+ VAX and VT100 are trademarks of Digital Equipment Corporation.

2. The only change nceded in the source code was caused by UTek's allowing 64 open file descriptors (cf. 4.3bsd)
instead of the usual 20.

t UTek is a trademark of Tektronix, Inc.

3. The 4125 is an upgrade of the 4115B. The 4128 and 4129 include three-dimensional capabilitics that Galadriel
doces not currently use.

4. Galadriel only uses the 128 columns that have pixels under them.

5. The 4115B has a minimum of 4 bit planes.

6. We'll use the somewhat inexact term 412x hereafter to refer generically to all of the terminals in Table 1.

-3

0.02 second, so the communications bottleneck is not the culprit here. The problem is that the win-
dow manager would be almost constantly writing to and reading from the terminal. Because input
from both of them goes in though the tty driver, the operating system has no way to distinguish
responses to polling from (asynchronous) user input. The window manager would look like a highly
interactive process, even though there might be no input from the user taking place. The effect is
that a process in a polling loop hogs as much system time as several conventional interactive
processes. Galadriel should therefore avoid polling as much as possible.

The window manager process windman was designed to run as a normal user process and require no
modifications to the 4.2bsd kernel. It has met these goals, although some speedups in the pseudo-tty
driver have improved performance.

Existing programs should work without recompilation. This included not only glass tty programs
like /s(1) and ed(1), but screen-oriented ones like vi(1), emacs(1), and programs using curses(3t)’.

2.3. System Performance Goals

Galadriel was designed to support CAD systems. Its original clients included VLSI layout and
schematic capture editors. As usual for such systems, performance is a critical requirement.

Galadriel maximizes performance by several strategies:
. Minimize the number of bytes sent to the terminal.

® Reduce the number of times scalars are encoded for transmission (most of the time, they are
now encoded only once).

o Reduce the number of byte copies.
® Use 412x features (e.g., macros) to speed things up.
® Use efficient programming techniques (loop unrolling, etc.) in critical areas.

Benchmarks of the layout editor (Tek’s Leia) on a Tek 6130, comparing a version running under
Galadriel with one that outputs directly to the terminal using a compatibility library, show less than
5% overhead (clock time) of the window managed over the non-window managed version.

3. Window Organization

The window manager process exists as a separate process servicing requests from you, sitting at the
terminal, and one or more client processes (see Figure 1).

3.1. Windows and Window Ttys

Each of these clients owns one window tty (wintty) and one or more possibly overlapping, rectangu-
lar windows. Each window has a title bar, which displays the name of its wintty, which is of the
form /dev/tty??.

Internally, each wintty is implemented as a pseudo-tty (pty(4)), so its name is that of the slave end
of the pseudo-tty whose master end Galadriel is watching.

3.2. Panes

Clients may subdivide windows into panes, rectangular areas contained within windows which
display output. Most of a window’s area is devoted to panes. Each window starts out with a single
pane, called its primary pane.

The terminal hardware has no notion of windows or panes. The software treats windows as groups
of panes that get created, deleted, reframed, etc. together, associated with a title bar. It then maps
each pane to a list of virtual viewports.

This list may have no members, one member, or several members depending on whether the pane is
completely obscured or collapsed, completely unobscured, or partially obscured, respectively.

7. Including, of course, rogue(6).

windman
. socket
application 1 library
(windowing)
UNIX 170 it t
library Y [PY
windman
. je——>» socket
application 2 library windman displa
(windowing) P
UNIX 170 " ¢
library y [PY
keyboard |
application 3
(emulating) s
UNIX I/0 v ot = | T
library y [PY

Figure 1 -- The Window Manager Process

Actions affecting this pane, such as making a new segment visible in it, require a traversal of the
list.

Galadriel maps the 64 most recently used virtual viewports to the 64 viewports that the 412x sup-
ports in hardware, so the window manager must maintain a relation between panes and segments to
be able to actualize any virtual viewport at any time. For bookkeeping and memory reasons, how-
ever, each application is arbitrarily limited to 128 panes.

The management of viewports is the counterpart to the management of on-display and off-display
bitmaps that the Blit (see [Pike84]) performs.

3.3. The Client Models

The window manager looks at clients in one of two ways; emulating or windowing, depending on the
functionality the client requires.

3.3.1. Emulating Clients

Galadriel supports terminal emulation for conventional UNIX programs such as mail(1), vi(1),
Is(1), etc. Emulating clients do not require recompilation to run under the window manager. Gala-
driel treats new clients as emulating by default.

By using pseudo-ttys along with the 412x’s dialog areas, each emulating client gets its own VT100-
like screen. Pty(4) lets clients believe that they’re talking to a t1y(4)-like device. Hardware support
allows fast scrolling of even partially obscured windows and an emulating client never has to regen-
erate a window as a result of a window manager command (e.g. Move).

3.3.2. Windowing Clients

As Figure 1 shows, windowing clients are compiled with an additional library of window manage-
ment functions. Section 4.2 will discuss these.

Only windowing clients can own more than one window or more than one pane. They can specify
that one or more of those panes emulate a VT100 as above. They then select one of them to be the

text pane.

Most windowing clients, however, are more concerned with §raphics output. Galadriel does not use
pseudo-ttys for this, but sockets. This allows greater speed” and reduces the need for Galadriel to
demultiplex emulated text from window manager commands.

The graphics that windowing clients can perform is modeled after the Graphical Kernel System
(GKS). Unlike text output, this allows for simultaneous graphics output to multiple panes.

3.4. The Active Process

In the case of mouse’ input, the cursor presence in a particular window implies that the recipient of
the input should be that window’s owning process, but keyboard and function key input has no such
implied destination. Galadriel therefore designates one process as active and takes it to be the
current focus of the user’s attention. The active process gets keyboard and function key input.

There are also certain terminal-wide resources that can have only one controlling process. These
include:

® rubberbanding
® the current color maplo
® the cursor segment

It’s convenient to let the active process also take charge of these, so that whenever a process is
activated, Galadriel takes care of restoring these resources.

4. Window Manager Interface Implementation

Galadriel provides most of the features commonly found in window managers. This section will con-
centrate on how it does so within its design constraints. The window manager has three interfaces:
user, shell, and programmer. The shell interface, however, doesn’t use anything that the user and
programmer interfaces don’t use as well, so it won’t be discussed here.

4.1. User Interface

4.1.1. Mouse Input and the Cursor

The 412x provides the ability to define a particular segment to be the cursor, tracking mouse move-
ment without host intervention (i.e., polling). Whenever the user presses a mouse button, the termi-
nal sends a GIN (graphic input) report to the host. It is up to Galadriel to decide what to do with
the report, depending on what the cursor was pointing at as well as its own internal state.

4.1.2. Pop-Up Menus

One of the buttons on the mouse is designated the window manager button. Pressing it brings up
the system pop-up menu. With it, you can perform all of the basic window manager commands:
Activate, Bury, Collapse, Create, Delete, Expand, Move, Reframe, and Uncover. Reframe is the only
command that requires polling, since the 412x doesn’t have a rubber box cursor to show the new
frame of the window.

All of these commands are postfix or object-verb. This means that you first point at the window
you l\?'ant to act on, request the system pop-up menu, choose a command, and the window manager
acts .

8. On a 6130, for large (4K byte) block sizes, pseudo-tty’s are typically a factor of 10 slower than sockets, which
makes the latter preferable for large segment definitions.

9. Galadriel works with either a mouse or a puck/tablet. We'll use mouse hereafter to refer to both.

10. Galadriel gives each process control of all 2# of planes ojors, although restraint is recommended.

11. One exception to this: because it’s so final, the Delete command requires you to confirm the window you want
to delete.

-6 -

Of course, application programs can define pop-up menus as well.

Pop-up menus must appear and disappear quickly. They could be implemented as titleless windows,
i.e., viewports, but this causes problems when you pop-up a menu over a window containing many
segments. Even though the window would be refreshed at the rate of tens of thousands of vectors
per second, a few seconds is an unacceptable time for a menu to go away.

An alternative is to use the 412x pixel save and restore commands. These copy an area of the
screen to and from display list RAM. Galadriel saves what’s underneath a menu until the selection
is made and then restores it before further output takes place. There are two drawbacks here:

® There can be no output to the terminal while the menu is up, since, unlike the Blit [Pike84],
no output can go to the saved rectangle.

L The size of the menu is restricted, since there are 1.2MB of frame buffer and available display
list RAM is usually much smaller than that.

The first drawback turns out to not be particularly annoying, and Galadriel satisfies the second by
limiting the use of this technique to pop-up menus no larger than 32 characters wide by 16 charac-
ters high. It treats any pop-up larger than that with the previous window creation approach.

4.1.3. Scroll Bars

Clients can specify that any or all of their panes have scroll bars associated with them. Scroll bars
on a pane allow a consistent and convenient way to browse its design space, assuming that that
design space is larger than you can see all at once. Depending on the application, you can pan and
zoom both horizontally and vertically'z. There is also an overview button which toggles a view of
the entire design space with the previous view.

Galadriel performs pans and zooms by sending a short sequence of commands to the terminal to
change the pane’s viewport transformation(s) and redraw the viewport(s). It does not need to
resend primitives contained in segments. Unless the application has requested notification (see Sec-
tion 4.2.2), it won’t know that the pan or zoom has taken place.

Unlike those of other window managers (cf. Smalltalk-801 [Goldberg84]) Galadriel scroll bars are
static. This means that a pane is created (optionally) with scroll bars and the bars stay with the
pane until it is deleted. This has the disadvantage that the scroll bars, if present, always take up
screen area, but this is outweighed by the advantage gained by not requiring the host to poll for cur-
sor presence.

4.2. The Programmer Interface

This interface allows applications to control windows and output to them, as well as receive input
from you. It has three layers: UNIX 1/0, window (WL), and graphics (GL). Within this inter-
face, a program can only control the windows and panes that it owns, but it has a greater measure
of control over those.

4.2.1. UNIX I/0O Layer

This is the only layer available to emulating clients. As we've said before, output is directed to
panes. A pane is created with an attribute that says whether or not it can contain alphatext, i.e.,
whether or not it needs to be able to emulate a VT100. The reason for this is to conserve the 412x’s
64 dialog areas. Each pane that can contain alphatext takes up one dialog area, and, unlike
viewports, dialog areas cannot be virtualized.

To an application, such a text pane appears as a virtual terminal. The most commonly used ANSI
X3.64 commands work in it, and under UNIX it has a TERMCAP entry describing these com-
manc‘is3. Additionally, for emulating clients the TERMCAP includes the proper window dimen-
sions .

12. Zooming maintains aspect ratio, so a vertical zoom also causes a horizontal zoom, and vice versa.
Smalltalk-80 is a trademark of Xerox Corporation.
13. This also applies to windowing clients that don’t split their primary panes.

-7-

The Reframe command causes problems, though. Although the window manager sets the
TERMCAP environment variable to a temporary file containing an up-to-date rermcap(5)-like
description, there is no standard way to inform screen editors and the like that this has happened
while they’re running”.

Input is slightly more complicated. Following GKS, GL considers keyboard input to be part of
graphic input (GIN). There are two keyboard input models corresponding to emulating and win-
dowing clients. Emulating clients have a control tty (/dev/tty) that behaves like a normal tty.
They can call ioct/(2) to control echoing, interrupt characters, line editing, and other t1y(4)
features.

Windowing clients get all of their input from the GL GIN routines, and any attempt to read from
their control ttys will block because GIN doesn’t travel that way's.

4.2.2. The Window Layer

There are 24 functions in this layer. WL duplicates much of the functionality of the user and shell
interfaces for the programmer. In addition, the programmer has greater control over panes, includ-
ing the ability to create and delete individual panes. The application can create non-primary (see
above) panes by splitting existing panes.

A significant departure here from most window managers is the association of two boolean flags
with each of several window manager and user actions. One flag is for permission and the other is
for notification. The permission flag allows the associated action to be carried out on the entity to
which it is bound. If the notification flag is set, after the action is performed (or attempted, if the
permission flag is not set), the owning process learns about it in the form of a detailed GIN report.

Permission/notification flags are bound to both windows and panes. For windows, they control the
actions the user attempts from the system pop-up menu. For panes, they determine the presence
and function of scroll bars.

4.2.3. The Graphics Layer

GL is a set of 102 graphics routines. Although not entirely GKS-compatible (usually for perfor-
mance reasons), about 90% of these routines map into a Level 2b GKS implementation with
enhancements.

S. The windman Process Architecture
Figure 3 shows the flow of data within windman, the window manager process.

Basically, windman is a command-driven finite state machine. Every command, including ANSI
text output and escape codes, WL and GL requests, keystrokes, and mouse button presses, are
awaited by a single select(2) call in the queue manager. Once a command is received, the queue
manager decides which of the four parsers; ANSI, GL, WL, or GIN; to pass the command to.
Apart from saving and restoring some context information, the queue manager is the only part of
the windman process that knows (or cares) that there may be multiple clients.

The ANSI parser is a finite state machine itself. All pseudo-tty output from applications goes
through this parser. It sees that only complete ANSI commands get sent to the terminal and
prevents certain other sequences (such as RESET TERMINAL and non-ANSI commands) from
getting there.

The GL parser is responsible for maintaining client context, so that each client can have the attri-
butes it sets present while it’s writing primitives and defining segments. This parser also queues seg-
ment definitions until the client closes the segment. Both of these features are necessary because
the terminal permits only one set of attributes and one open segment, at most, at a time. It also
manages terminal memory and sends responses to clients when needed.

14. The SIGWINCH and t1y(4) enhancements made to 4.3bsd will be helpful here.
15. A way to permit clients to do this is under consideration.

ANSI
parser

stdio(3) |—s=terminal

graphics /
/ primitives

Graphics

Layer 1\
/ parser |
clients queue window
manager controller
\ Window
Layer m
keyboard parser
mouse GIN state
machine

GIN
parser

responder [clients
o

AN

Figure 3 -- Dataflow Within windman

The WL parser deals with the higher-level commands that make up WL and the shell interface as
well. Most of the time, about all it does is decode the arguments and pass them on to the window
controller, which does the real work.

Both WL and GL parsers converse with the window manager library in each application over sock-
ets using a syntax that resembles a remote procedure call, but is buffered and otherwise optimized
for Galadriel.

The main purpose of the GIN parser is to see who gets keyboard and mouse input. Under most cir-
cumstanc?s, Galadriel permits GINahead — you can perform mouse or keyboard input before it is
requested .

The GIN state machine handles what tight interaction loops Galadriel provides: rubberbanding, rub-
berboxing, and window moving. It also exerts some control over the queue manager. It can restrict
the select(2) call to watch only the terminal when, for example, the user is making a selection from
a pop-up menu.

The responder is called whenever it’s necessary to send a GIN report or a command return to a
client. The latter corresponds to the return mechanism from a remote procedure call, except that no
ANSI and very few GL commands require a return.

All graphics output takes place through stdio(3) via a package of primitives which is the only part
of Galadriel that knows 412x escape codes.

16. Implementing this is not as easy as it sounds.

6. Future Developments

6.1. Faster Communications

As discussed in Section 2, the major bottleneck is the RS-232 communications line. Obvious possi-
bilities are such things as Ethernet or DMA communications between the host and the terminal.
In fact, there already is a Unibust interface card for the 412x, and the Galadriel project is looking
at the capabilities it offers very closely.

As the communication speed increases, the distinction between host/terminal and workstation blurs.
The terminal becomes more like a workstation with an independent display engine and a shared
compute engine (the host).

6.2. Increased Hardware Support

The 412x was not originally designed for window management. Galadriel has indicated some likely
functions to migrate from software to firmware and hardware. These include:

the pane — virtual viewport — hardware viewport mapping
output simultaneously to several panes

better support for tight interaction loops

context settings

retain non-segment output during moves and occultations

6.3. Improved Pseudo-Tty Support

Under 4.2bsd, the number of pseudo-ttys is fixed in the kernel and must be created by
/dev/MAKEDEV. This is rather artificial. It would be preferable to invoke open(2) on /dev/pty
or whatever and have that create a new pseudo-tty automatically. An iocti(2) call would return the
actual names of the pair. The device should go away whenever the opener of the master end closed
it, treating it as a hangup (i.e., SIGHUP) on the slave end.

Alternatively, Ritchie’s streams (see [Ritchie84]) would also provide a better way to implement
pseudo-ttys.

6.4. Bitmaps

Although the 412x has several commands to copy between host, screen, and display list RAM, they
are neither orthogonal nor functionally complete. These should be cleaned up, since as communica-
tions become improved, it will be feasible to treat the 412x as both a bitmapped and display list dev-
ice, and let the clients choose accordingly.

6.5. Distributed Windows

Any emulating client can run rlogin(1), so this feature is already partially present. For windowing
clients, intermachine sockets and a naming server (to get the name of the local windman’s socket to
the remote client and vice versa) are needed.

6.6. More Segment Memory

Large applications can use up the 3/4 megabyte or so of display list RAM in the 412x with relative
ease. Two ways to alleviate this are (1) more display list RAM (obviously) and (2) virtual storage
in the terminal. If there were greater bandwidth between the terminal and the host, it might be
feasible for the terminal to use the host’s virtual memory.

1 Ethernet is a trademark of Xerox Corporation.
% Unibus is a trademark of Digital Equipment Corporation.

-10 -

Acknowledgements

Paula Mossaides is Galadriel’s project manager. In addition to the author, designers, implementers,
and maintainers are/were: Scott Hennes, Donna Nakano, Karen Palmer, Rob Reed, and Bob Toole.
Evaluators were: Keith Koplitz, Larry Jones, and Max Miller.

References

[Goldberg84] Goldberg, A., Smalltalk-80 The Interactive Programming Environment, Read-
ing, MA: Addison-Wesley, 1984.

[Pike84] Pike, R., The Blit: A Multiplexed Graphics Terminal, AT&T Bell Lab. Tech. J.,
63, No. 8 (October, 1984).
[Ritchie84] Ritchie, D. M., A Stream Input-Output System, AT&T Bell Lab. Tech. J., 63,

No. 8 (October, 1984).

Next-Generation Hardware for Windowed Displays

S. McGeady

Intel Corporation
Hillsboro, Oregon

ABSTRACT

Hardware support for windowing on bitmapped displays has historically been
minimal. Indeed, there is a widely-held belief that window management is an
aspect of graphical image generation, to be treated with the same tools. This belief
has been encouraged by the wide use of the bitblt operator in bitmapped systems
for both image generation and windowing. A reliance on the use of bitblt for win-
dowing has hindered the development of windowed color displays, and the perfor-
mance problems involved in moving large amounts of data have made real-time
scrolling and panning an impossibility in bitblt-based systems.

The creation of a distinction between imaging, the drawing of images in bit-
maps, and windowing, the tiling of those images onto displays, makes it easier to
think clearly about how to apply hardware to both aspects of display systems.

This paper presents descriptions of three existing systems to demonstrate how
hardware can be applied to enhance windowing performance: one is a combined
hardware/software approach using traditional hardware; another is a hardware sys-
tem for windowing on a character-mapped terminal; and the third is a fully
hardware-windowed bitmap display.

1. Introduction

Much effort has been expended in recent years in the application of new hardware to enhance
the performance and flexibility of graphics display devices, especially bitmapped displays
[1,2,3,4,5]. Numerous hardware innovations have recently become available that greatly increase
the capability, performance, and flexibility of these displays. During the same period the idea of
dividing a display’s viewable area into independent, overlapping rectangular regions, or windows, has
become popular. Despite the growing popularity of windowed displays, very little effort has been
directed toward hardware for enhancing windowing capabilities and performance. The effort to
move window environments from existing monochrome, medium-resolution displays to high-
resolution multi-planed color displays will make necessary the development of new types of hardware
designed specifically and solely to support windowing.

The rapidly falling cost of bitmap display hardware is bringing windowed-display development
efforts onto an equal footing with graphics image-generation work, yet windowing is still approached
with traditional graphics tools that are peorly suited to window management. This paper shows that
the problem of window management becomes much simpler when it is separated from graphics
image-generation. This separation allows the application of very powerful, but not overly expensive,
hardware to improve windowing performance and simplify window management software while los-
ing none of the flexibility of current schemes.

-12-

2. Imaging versus Windowing

To fully understand the essence of windowing, one must carefully and clearly distinguish it
from imaging. Imaging, used in this context, is the broadest possible term for drawing pictures, and
comprises every manner of line-drawing, area-filling, surface rendering, and other rasterizations.
Imaging systems tend to deal internally in coordinate systems of their own choosing, preducing bit-
maps in the resolution of the display device only at their final stage. A traditional model of graph-
ics is useful here: an imaging system expects to produce a picture, or series of pictures, on a single
display device, for the user to view and interact with. The application driving the imaging system
does not want to deal with clipping boundaries which are not part of its abstraction, with the possi-
bility that the color map may be changed from underneath it, or with the idea that it may be called
upon to redraw some random section of the display which it has already drawn, and it seldom wants
to directly consider transformations into device coordinate space. This view is justified in more
detail in [6] and [7].

On windowing bitmapped systems, the imaging system can be considered to be writing in a
virtual frame-buffer for which it alone is responsible. An application must be presented (barring
active intervention on its part) with the illusion that it is the only application using this virtual
display, in much the same way that the program itself is presented by the underlying operating sys-
tem with the illusion that it alone is running on the processor. The window manager is responsible
for supporting this illusion on a display system, in the same way that the operating system supports
the virtual machine on a timesharing system [7].

Windowing, distinguished from imaging, is the process of layering or tiling these virtual
frame-buffers into a physical frame-buffer or onto a physical display. Windowing systems need not
and should not deal with the content of these virtual frame-buffers, only with their presentation on
the screen.

This segregation of imaging and windowing functions has benefits for both areas: the window-
ing software (and hardware) support is concentrated in a single, shared unit consisting of the win-
dow management process and any supporting hardware; and the imaging systems are simpler,
because they needn’t worry about redrawing themselves at random times, or about clipping to win-
dow boundaries, and because existing, non-window-cognizant applications run without modification.

3. The Failure of Existing Imaging Hardware

New developments in graphics image-generation hardware are coming at such a fast pace that
it is becoming difficult to keep up with them. A comprehensive list of imaging hardware would be
far too lengthy to include, but a few of the more significant developments are:

® Jim Clark’s Geometry Engine [8], a multi-chip processor allowing extremely fast three-
dimensional transformations, clipping, and scaling;

® the NEC 7220 [9] graphics controller chip and other manufacturer’s equivalents, popular
because of hardware implementation of moderately fast line-drawing primitives;

® several hardware bitblt implementations: Silicon Compilers’ chip for Sun Microsystems, Inc.;
Apollo’s proprietary bitmover; Texas Instruments’, Motorola’s, and National Semiconductor’s,
about-to-be-announced mass-market bitblt chips; and others; and

® very-high-performance rendering engines, typified by the Lucasfilm Pixar processor [10].

Several of the low-cost all-in-one CRT controllers make attempts at providing windowing,
often allowing horizontal or vertical split screens, or a small number (typically one) of non-
overlapped hardware windows. In all cases there are restrictions of such severity that this special
hardware is useful only in special-purpose windowing environments.

Manufacturers with high-speed vector- and polygon-drawing engines, such as Tektronix and
Silicon Graphics [11], tend to take the view that windowing can be accomplished by redrawing the
entire screen from a stored display list when window changes are made, using the clipping and
transform capabilities of the vector-oriented hardware. These techniques can be made quite effec-
tive, although the high-speed drawing engines are often toco expensive for those who want windowing

-13 -

and bitmapped graphics without sophisticated and expensive imaging systems. Furthermore, it is
clear that window management is an inefficient and inappropriate use of such hardware.

Manufacturers of color displays who do not use the display-list redraw technique have particu-
lar problems with windowing, due to the extremely high overhead involved in bitblt when more than
one image plane is involved. Moving bitmaps on one plane at a time produces unpleasant color
effects if the transfer cannot occur entirely during the Vertical Retrace Interval of the monitor, an
uncomfortably short period of time. In all color systems, extreme havoc will ensue if an application
running in one window changes the display’s color map. Since the color map controls the entire
display, an application running in a window cannot change it without affecting all the windows on
the screen.

4. Windowing Hardware and the Tyranny of Bitbilt

Although bitblt chips have occasionally been used to good advantage in windowing systems,
and some hardware exists that provides limited split-screen features, little hardware has been
applied to windowing. Because the bitblt operator has been seen as the primary, if not the only
implementation vehicle for windowing systems, most attention by both software and hardware
developers has been toward speeding it up by the use of sophisticated and highly-tuned algorithms,
or with specially-constructed memory arrays which reduce processor/display memory access colli-
sions.

Bitblt’s usefulness as the basic implementation tool for windowing is limited because it is ulti-
mately the wrong approach. The historical use of bitblt for windowing is closely tied to the mono-
chrome bitmapped display hardware on which windowing was first developed [2]. First used for
painting small images in this frame-buffer memory, bitblt came to be used as the basis for the
notion of windows, and has been used that way for over 10 years. Today the whole idea of copying
blocks of data to arrange regions on the screen is as artificial as the ornate program-overlay systems
developed in the absence of virtual-memory hardware on the processors of the 1960’s.

There are performance problems with bitblt which can never be completely resolved, since fun-
damental window operations involve the transfer of such large amounts of data. Performance is a
moderate problem in monochrome systems, and an extremely severe problem in multi-plane color
systems. More importantly, the ALU operations of bitblt such as XOR have no clear correlate in
color systems, where one wants more complex operations like over and under [12], and textures,
used to good advantage in monochrome systems, don’t work on color systems, where one wants shad-
ing. Bitblt forces programs to work in device coordinates in a world that is rapidly moving to
device-independent coordinates. Windows and per-device color maps are ill-suited to one another,
not providing the abstraction desired by the application.

Few have thought to look beyond bitblt at the deeper needs of a windowing system. The prob-
lem of windowing is not one of image generation, it is one of memory management, particularly
memory mapping and access multiplexing. Once we throw away the idea that image-drawing tech-
nology has anything other than historical and incidental use in windowing, it becomes much easier
to apply new ideas to the problem.

5. Advantages of Hardware Windowing

Hardware windowing has many advantages over software approaches, either display-list or
bitblt oriented. The advantages spring partly from the purer embodiment of windowing that is
enforced by the hardware, and partly from the hardware itself.

L] Applicability to Color — the hardware windowing makes moderate-cost windowed color
displays possible: per-window color maps eliminate a major problem area with existing win-
dowing color displays; Window management software written for hardware-windowed mono-
chrome systems is portable to color systems; and Color bitmaps (multi-plane or multi-valued
pixel frame buffers) can be operated on without color swim.

® Scrolling and Panning — hardware windowing allows fast and simple vertical scrolling and

-14 -

horizontal panning of bitmap images which are represented in a frame buffer without moving
large amounts of data, and this in turn frees the imaging hardware to fill the newly revealed
area, if it does not already reside in the frame buffer.

e Simplification of Graphics Applications — hardware windowing simplifies user-level graphics
applications by: freeing applications from the need to unnecessarily redraw or clip their output,
and thus of the need to maintain a display list; by allowing porting and development of non-
window-cognizant applications; and by freeing applications from the need to use device-
dependent coordinates.

e Simplicity of Window Management Software — Window Managers no longer need to multi-
plex access to the frame-buffer, or have any knowledge of the content of the frame buffer, and
are generally smaller and simpler.

® Speed — in addition to scrolling speed, creation, deletion, and movement of windows is much
faster than in a bitblt system, since no data copies are required.

The only disadvantage of hardware windowing is its current cost. In the absence of inexpen-
sive VLSI solutions, windowing hardware is tco expensive for low- and moderate-cost systems. The
need for a frame buffer that is substantially larger than the total display area is a disadvantage,
although as memory prices continue to fall this will become less of an issue. While a 4k-by-4k bit
frame buffer plane costs $64 today, this is expected to drop to $16 or less in the next few years.
Processing power will continue to cost a great deal more than memory, and hardware windowing
substantially reduces demands on display processors for windowing.

6. Example Systems

In order to illustrate some of the ideas discussed above, and as an existence proof for window-
ing hardware, I am going to briefly discuss four hardware windowing systems, three bitmapped
displays, and an alphanumeric display. Only the two alphanumeric displays are currently available
or likely to become available in the near future.

6.1. Bitmap Displays — Background

Some numbers will be needed in our discussion to relate these ideas to reality, and will be

presented here for future reference. A typical medium resolution (1024x768) monochrome display,
running at 60Hz refresh (non-interlaced), paints a new screen every 16 milliseconds, paints an indi-
vidual line every 15 microseconds, and thus paints a pixel every 10-20 nanoseconds. There is a 4-8
microsecond horizontal interval between each scan line, and a 200-600 microsecond vertical interval
between each frame. A typical bitmap system is represented in Fig. 1.
In such a system, the sequencer, a simple address generator produces a stream of addresses that
sweep across the frame buffer, successively transferring each word to a shift register that outputs
one pixel at a time. Hardware window systems simply replace this trivial address sequencer with a
more complex, table-driven address generator.

The window controller can be conveniently thought of as a memory management unit for the
frame buffer. The window controller must translate between screen addresses, represented by a
combination of vertical (scan line) and horizontal (per-line beam position) components, and frame
buffer addresses, which consist of word-offset and pixel-offset components.

6.2. The Tektronix 6200 Display

The first example is a display system designed at Tektronix, Inc. as part of the Engineering
Computer Systems (ECS)* Division workstation project. The hardware for this system was designed
in 1983, and built in 1984 and 1985. The software architecture described here (and in more detail
in [7]) was designed in 1983. A slightly different version of the architecture, implementing the vir-
tual frame-buffer concept at a higher hardware level, was implemented in 1984 and 1985.

« Now Graphics Workstation Division (GWD).

-15-

addr
. Display t data (32 bits)
Memory '
ata - : Video
Shift Register Output
addr
Dot Clock
* processor addressing Address Horiz Sync
t video addressing Sequencer Vertical Sync

Fig. 1 — Typical Bitmap Hardware

The hardware consists of two processors: the Display Processor (DPU), a general-purpose pro-
cessor which runs processes implementing the imaging and user interaction for each window, and the
overall control and communication code for the display system; and a microprogrammed bit-slice
processor (the MicroEngine) which is responsible for low-level windowing operations and graphics
primitives. While the hardware for this system was powerful, it does not directly support windowing
operations. This paper, however, takes the view that the MicroEngine and its microcode together
comprise a hardware system.

The MicroEngine hardware is similar to analogous drawing processors in other Tektronix ter-
minals, but is used in a much different way. Most terminals use these engines to traverse display
lists of graphics primitives (line-draws and area-fills of sundry types, some transformations, and
character drawing), to generate an image in the frame-buffer. The architecture sought to provide in
addition a transparent virtual frame-buffer abstraction to processes running in the Display Proces-
sor (and by extension, to applications running on the host) by implementing a set of graphics primi-
tives which understood the window structure of the display, and which automatically transformed
and clipped their output to the appropriate window, while writing concealed parts of the image into
non-frame-buffer memory. Thus, portions of the virtual frame-buffer which are not represented in
the physical frame-buffer are cached in main memory. This implementation was formalized in [6]
which presents the layerop concepts, specifically the idea of an automatically clipped bitblt, and the
restartable DDA line algorithm. The MicroEngine is effectively a hardware layerop processor,
automatically clipping images into on-screen and off-screen sections. The principal data structures
of the 6200 are shown in Fig. 2.

A Window Manager process in the Display Processor maintains the Window Descriptions data
structure representing the locations and extents of each window, the location (in physical Display
Processor memory) of the display list (if any) associated with each window, and the locations (also
in physical DPU memory) of any pieces of the window that are cached in the Layer Pool. The
Display List may contain invocations of any graphic primitives implemented by the MicroEngine,
from Ibitblt calls to polygon fills. The Display List with which the Window Manager is concerned
contains only image elements that have not yet been drawn. The Window Process is not required to
retain previously drawn image elements. The Window Manager organizes the Window Description
data by window priority and flags windows which are in need of update. The MicroEngine traverses
the window list, executes the Display List for each window that needs updating, automatically clips
the output of each primitive it executes to the visible area of the window on the screen, and directs
output destined for obscured portions to the cached area in the Layer Pool. If a window extent is
changed to reveal a previously obscured section of frame-buffer, the Window Manager appropriately

- 16 -

Display Operating System
Window window window
Manager process process
r’-: - 2 - — & i l
:._J 1 1 ~—
L3 L-J
Layer Pool Window Descriptions Per-Window Display List
—
Micro
Engine
Frame Buffer

Fig. 2 — Principal Data Structures of original ECS Display Architecture

modifies the tiling information (represented in this case by a list of clipping rectangles) and signals
the MicroEngine, which then copies the cached layer section into position.

Although it uses wholly traditional techniques for both windowing (bitblt) and for imaging
(display list traversal), this architecture keeps these two operations separate throughout the
generally-visible portion of the system. The illusion of the virtual frame-buffer breaks down only
when the system runs out of memory for the Layer Pool, which was expected to be an unlikely
event.

The 6200 Display gained great advantage from providing orthogonal imaging and windowing
interfaces to application programs. Applications could be easily generated which used the imaging
(graphics) interface, but did no windowing, or vice versa. Application code did not have to worry
about having its window moved around the screen by the operator, about the current clipping boun-
dary of the window, or about redrawing newly unobscured portions of the window. This approach
did, however, lack the ability to scroll or pan without moving large volumes of data, and performed
no better than equivalent hardware in this regard.

6.3. The VXL Window Hardware

The VXL*, despite the fact that it is character-mapped rather than bitmapped, is an interest-
ing example of windowing hardware. The VXL is the first generally-available terminal to imple-
ment overlapping, scrollable windows in hardware. The hardware used to provide this capability is
similar in principle to hardware which would be used to perform a similar function on a bitmap

*» VXL is a trademark of Ann Arbor Terminals, Inc., the manufacturer of the terminal. The hardware was
designed by Jim Russo, Michael Sleator, and Marc Schuman, and the software was designed and implemented by
the author and Ken Rhodes.

-17 -

terminal, though somewhat simpler and easier to examine.

The VXL provides a bank of Character Memory (28Kb) which contains a number of virtual
screens (which would be virtual frame-buffers if this were a bitmap). Theses screens are logically
(though not necessarily physically) contiguous strings of characters which, taken as a whole would
represent the entire viewable area of a window. Thus, a 60-line by 80-column screen is represented
by 60+80=4800 bytes of character memory. The terminal processor treats this memory in the
expected way, as a two-dimensional array of characters, and inserts, deletes, or overwrites characters
in the expected fashion. There may be any number of virtual screens in the character memory. All
potentially displayable characters are necessarily contained at all times in this memory. There is
also one special area that contains a long line of background characters (typically spaces).

The hardware provides an additional, distinct area of memory, called Mapping Memory,
which contains a map of which positions in character memory are to be displayed on the physical
screen, and in what order. Mapping memory is organized as a list of records, one for each line of
characters on the screen. Each field in these records corresponds to a successive horizontal region
on the corresponding line. The field encodes the length of this region and an address in Character
Memory from which strings of characters are displayed. As an optimization, a field may also con-
tain literal characters to be displayed.

The VXL Window Controller (represented in Fig. 3), traverses this list every frame, starting
at the beginning every time a vertical sync signal is received. It fetches a word of line-control attri-
butes and the first field of the mapping record, and emits the address, decrements the duration
count, and increments the address. When the duration count reaches zero, the next field is fetched
and the process continues. In this way the Window Controller emits a stream of addresses, one for
each character to be displayed. This stream addresses the character memory in the expected way,
and the resultant stream of character data is directed to a fairly typical alpha-terminal character
generator and video back-end.

addr * Character ¥ data | Character Video
i —a —
Memory Generator Output
data
Processor addr
addr . addr . Font
« [Mapping| , Window Memory
Taia Memory Taia Controller

Vertical Sync
Char Clock

* processor addressing channel

t video addressing channel

Horiz Sync

¥ window map addressing channel

Fig. 3 — Ann Arbor Terminals VXL Hardware

To scroll a window vertically using this scheme, the terminal processor iterates over the win-
dow map replacing the appropriate field in the each record with the analogous field from the previ-
ous record. To scroll a window horizontally, the address in the appropriate field of each record is
incremented or decremented. If these modifications to the display list occur wholly during the verti-
cal retrace interval, the change is effectively instantaneous. Since there can be no empty (zero-
duration) fields in the records, creation and deletion of windows involves some fancy footwork,
specifically the insertion or deletion of the new fields in the record, moving any fields to the right to

-18 -

create or fill the gap. Window borders are handled using the literal-character inclusion facility of
the mapping memory (not otherwise discussed here), and thus do not occur in character memory.
The VXL accomplishes all windowing operations, along with accepting input and decoding com-
mands from four serial lines, with a 6-MHz Intel 8088 processor. The VXL windowing software
consists of about 1000 lines of C code.

The VXL hardware was designed in 1982. In late 1984, both AMD [13] and Intel [14]
announced low-cost alphanumeric CRT controllers that can be used to implement windows in much
the same way and with very similar data structures. The presence of these chips in the market
makes it likely that more windowed alphanumeric terminals will come into existence in the near
future.

6.4. Bitmap Window Controllers

Hardware which applies a control-list based memory-mapping scheme of this nature has been
developed at least twice, independently by John Providenza and Mike Zuhl of Tektronix, Inc, in
1981 and 1982, and by Michael Sleator of Ann Arbor Terminals, Inc, between 1981 and 1985.
Both systems provide similar capabilities, though the two implementations differ significantly. I will
concentrate on the latter system, dubbed the Tessera®[15].

Windowing hardware for a bitmapped terminal is much like that of an alphanumeric terminal,
except that words of frame buffer memory are mapped onto individual scan-lines, rather than map-
ping characters into rows. Two difficulties arise, the first related to the increase of in the number of
potential vertical divisions (rows or scan lines) from fewer than 100 to more than 1000, and the
second the limitation of mapping only word-width units onto the display.

6.4.1. Bitmap Windowing Implementation

A data structure (like the VXL’s) that for each horizontal scan line contains a series of
address/duration pairs will adequately map every 32 pixels on the screen into a word in the frame
buffer. The video-generation hardware clocks the window controller with three signals:

1) a dot clock (one cycle for each pixel), that is divided by the word width, and to which the
window controller responds by emitting an address from which the next displayed word is
read. At the beginning of the scan line an address/duration pair is loaded into registers, and
each time an address is required the contents of the address register is emitted and incre-
mented by one and the duration register is decremented by one. When the duration counter
reaches zero, a new address/duration pair is loaded from mapping memory.

2) a horizontal retrace signal (one cycle for each scan line), which generates no address, but
instructs the window controller to move to the mapping data for the next scan line.

3) a vertical retrace signal (once per screen refresh), again generating no address, but signaling
the window controller to start again from the top of the mapping data, at the first scan line.

Since, for a 1024 by 768 pixel system, up to 192Kb of mapping information would be required
(assuming the naive format mentioned above), an unreasonably large investment in very fast
memory would still be required. Once we realize that window boundaries seldom occur on every
scan line of the display, or rather than many scan lines will contain exactly the same information as
the previous line, we can restructure our mapping information to take advantage of this. If a verti-
cal duration count is placed in front of each line’s worth of address/data pairs, the controller can
repeat those pairs until the that count is exhausted, then proceed to the next vertical section. The
data structure looks like this:

» Tessera is a trademark of Ann Arbor Terminals, Inc.

-19 -

struct memmap {
int vrepeat; /* vertical repeat count */
struct mapfield {
word *addr; /* address of this section */

int hdur; /* horizontal duration */

int hscroll; /* horizontal scroll info */

int color; /* color-map information */
} horiz[$);

} vertlt];

t — there are a variable number of these fields

For typical mappings this reduces the total amount of mapping memory by an order of magnitude.
The total size for a worst-case scenario where a window boundary occurred at every 10 vertical lines
and every 32 horizontal pixels would be somewhat less that 2500 address/horizontal duration pairs
and about 100 vertical duration counts, or less than 20Kb. The Tessera realizes further reductions in
mapping memory size by clever packing of address fields pairs, and in practice uses less 4Kb of
mapping memory.

6.4.2. The Zuhl-Providenza Hardware

The Zuhl-Providenza machine is implemented much differently. It does not require support-
ing software to pre-tile the display into most-horizontal regions, but rather accepts a list of window

locations (upper-left-hand corner) and extents (width and height), and a coverage (z-axis) value, to
wit:

struct memmap {
int *addr; /* address of ULC of window in frame-buf */

Point scrn_ulc; /* screen address of window */
int height; /* height of window */
int width; /* width of window */
int depth; /* z-axis (depth) of window */

)

Many simple engines are each loaded with a individual window descriptions. Each engine
tracks the current horizontal and vertical beam address, and compares it against the bounds of its
assigned window. They then, for each address to be generated, vote on whether their particular win-
dow is to be displayed. In the case of multiple yes votes, the engine with the lowest z-axis value
prevails, and its address is emitted. The engines are straightforward, consisting of only a few
counters and comparators each, and a complete window controller can be implemented by replicat-
ing a large number of them on a chip together with a single z-axis priority resolution circuit. Unlike
the more general (and more expensive to implement) scheme of the Tessera, this technique is lim-
ited in the number of windows it can handle not by the total amount of mapping memory, but by
the number of mapping engines provided.

6.4.3. Boundary Restrictions

In both systems, windows must begin on word boundaries in memory and on the screen. This
restriction can be lifted with the addition of an output buffer on the video stream. If the window
controller, which normally sits idle during horizontal and vertical retrace, can get ahead on the
translation during these periods, buffering up output later clocked out by the video circuitry, it can
access many more words of frame-buffer memory during a single scan line, allowing it, for example,
to fetch extra words when window boundaries are broken across word boundaries. An drawing of
this type of hardware is presented in Fig. 4.

=20 -

data
addr
g Frame-Buffer |,
——2 Memory Barrel Shifter
data
) o T Line Buffer (1024 bits) ¥
horiz :]
scroll
addr preset - -
Line Buf Line Buf
Input Addr Output Addr
Mapping Window addr strobe
e Emm—
Memory Controller Shift
. <—
Register
Video
+ frame-buffer display addressing Sync Signals

t line-buffer input addressing
t line-buffer output addressing

Fig. 4 — Hardware Windowed Display Output Stage

6.4.4. Color

In a multi-plane color system where each plane receives the same stream of addresses from the
window controller, any changes to the window map are simultaneously affect the individual planes.
Thus windows can be created, moved, or scrolled without worrying about the color-swim produced
when the planes are sequentially affected. Color systems with multi-valued pixels are handled tran-
sparently.

The window map can contain data other than address information. In particular, the Tessera
window controller emits several bits of color-map address information every time it emits a frame-
buffer address. This information allows each window to access a distinct section of color map.
Thus, even though a window in an 8-plane color system may only represent 256 distinct colors, each
window (or each region on the screen) can display a distinct collection of 256 colors from a larger
palette. If enough color map memory is available, each window can have its own color map, elim-
inating the problems associated with sharing this critical resource on most color window systems.
Other uses for additional window-map information are left to the imagination of the reader.

6.4.5. Scrolling and Panning

This system can map any rectangular region of memory from the frame-buffer onto the
screen, and by changing a very small amount of data in the mapping memory, (usually only a few
dozen words, loaded during the vertical interval) a window can be easily scrolled (vertically) by
scan-line increments, thus implementing smooth scrolling in real-time. With the additional of the
output buffer, smooth horizontal panning is also supported.

-21-

6.4.6. Implementation

The Tessera hardware has been prototyped in random logic using a bit-slice microprocessor,
some special-purpose hardware, a single 2k by 2k frame-buffer and a monochrome screen, and
works well. Window creation and deletion are instantaneous, and users can scroll the internal
frame-buffer across the screen as fast as desired, all without any visible tearing, inchworming, or
other effects. Virtually no processing power is consumed by windowing operations. This implemen-
tation, unfortunately, is too expensive for inclusion in a Blit-style personal display, and at present, no
implementations of either the Tessera or the Zuhl-Providenza display are available. Despite the
cost, it is clear that hardware such as that described here is a necessity if windowing systems are to
make the leap to color, and if adequate performance is to be had in low-cost windowed displays.

7. Conclusion

The only thing that makes this technology ‘next generation’ is the fact that there are no exist-
ing implementaitons. It should be possible for a clever hardware designer to create a chip imple-
menting a system similar to those described above. Barring another unforeseen breakthrough in
windowing technology, the next generation will have come when it is as common for a windowed
display to use this style of hardware as not. It is hoped that that day will come scon.

In [6] reference is made to[4], in which the statement is made: Research needs to be done to
develop a way in which to conveniently store and manipulate graphics data in the context of a win-
dow manager.” While [6] provides an elegant software solution to this challenge, the hardware solu-
tion, when fully realized, will change the way we implement windows as radically as virtual-memory
changed the way we wrote programs.

Acknowledgements

Thanks to Michael Sleator, who convinced me that hardware isn’t all bad; to Jim Valerio, who
reviewed several early versions of this paper; and to Rob Pike who, as referee, provided helpful and
timely criticism.

1. R.F. Sproull, “Raster Graphics for Interactive Programming Environments,” Computer
Graphics 13(2), (Originally, Xerox PARC CSL-79-6) (August, 1979).

2. D.H.H. Ingalls, “The Smalltalk Graphics Kernel,” Byte 6(8) (August, 1981).
L. Tesler, “The Smalltalk Environment,” Byte 6(8) (August, 1981).

4. N. Meyrowitz and M. Moser, “BRUWIN: An Adaptable Strategy for Window
Manager/Virtual Terminal Systems,” ACM 8th Symposium on Operating System Principles
15(5) (December, 1980).

5. KA. Lantz and R.F. Rashid, “Virtual Terminal Management in a Multiple Process Environ-
ment,” Proc. of the 7th Symposium on Operating Systems Principles, ACM.

6. R. Pike, “Graphics in Overlapping Bitmap Layers,” ACM Transactions on Graphics 2(2)
(April, 1983).

7. S. McGeady, “Window Managers are Operating Systems: Software for a Distributed Graphics
System,” Proc. of the Ist Symposium on UNIX and Graphics, USENIX Assoc., Monterey,
CA, December 1983 (forthcoming).

8. J. Clark, “The Geometry Engine: A VLSI Geometry System for Graphics,” SIGGRAPH 1982
Proceedings (July, 1982).

9. NEC 7220 CRT Controller Data Sheet.

10. A. Levinthal and T. Porter, “CHAP — A SIMD Graphics Processor,” SIGGRAPH 1984
Proceedings (July, 1984).

11. R. Rhodes, Haeberli, and Hickman, “MEX — A Window Manager for the IRIS,” Proceed-
ings of 1985 USENIX Conference (June, 1985).

12. T. Porter and T. Duff, “Compositing Digital Images,” SIGGRAPH 1984 Proceedings (1984).

13.

14.
15.

-22-

Advanced Alphanumeric Display Products Specifications, (Am8052 Data Sheet), February,
1984,

Intel 82720 Data Sheet.

M. Sleator, Methods and Apparatus for Computer Display with Windowing Capability, U.S.
Patent Office (Sept. 18, 1985). Patent Application

Real —Time Resource Sharing for Graphics Workstations

Mark S. Grossman
Glen E. Williams

Silicon Graphics Inc.
2011 Stierlin Road
Mountain View, California 94043
(415) 960-1980

ABSTRACT

The IRIS is a real-time graphics workstation that supports object-space 3-D
graphics. In order to achieve concurrent graphics in windows, we have had to
address several issues involving resource allocation and synchronization. This
requires sharing special-purpose hardware among competing tasks. This paper
discusses solutions that involve UNIX* kernel and hardware cooperation.

1. Introduction

In less than ten years real-time systems have evolved from multi-rack behemoths to deskside
workmates. 32-bit microprocessors and custom VLSI contributed to the creation of color worksta-
tions such as the Silicon Graphics IRIS. All of the power of such a device is meant to be used by a
single user performing multiple tasks with realistic response times. Although this device can be used
in a local area network, all the work for generating real-time displays is performed within the dev-
ice.

The graphics workstation emerged as a productivity tool because it offers a general program-
ming box and the perceptual impact of realistic pictures. In the era of the giant simulator, develop-
ment and modeling were off-line tasks performed under a different operating environment. A
workstation is particularly valuable because it serves both as the prototyping/development tool and
as the end product itself.

Another outgrowth of technology evolution is that users now demand more task handling com-
plexity. Many workstations are thus now providing some kind of window management capability, so
numerous views of a single project or multiple projects can be multiplexed.

The IRIS is based on the UNIX operating and provides a window manager that supports real-
time 3-D displays. One might argue that “real-time”, “multi-window” and “UNIX” are incompati-
ble terms. Real-time implies that any given display process has to be able to respond instantane-
ously to changes in some data base or input event. Multi-window implies that there are multiple
graphics processes, each of which has independent control over its universe of resources. UNIX has
traditionally meant unprioritized interrupts, unpredictable scheduling and substantial interrupt
latency. This paper discusses some ways to resolve these conflicting worlds in a workstation.

2. Some Criteria

A real-time system can be characterized by response time and data rates. System response
time has been defined as “the time within which a system must detect an internal or external event
and respond with an action.” [6] An external event can be as diverse as a mouse movement or the

* UnNix is a trademark of AT&T Bell Laboratories.

-24 -

arrival of a real aircraft’s coordinates coming from a network node.

Vendors of every sort of graphics machine from PCs to visual simulators claim a right to the
“real-time” tag. Given a criterion of adequate response time, they do this by constraining the
system’s generality or scene realism. Even the response time issue may be compromised by reducing
frame update rate for complex scenes. Newman and Sproull define real-time graphics as the ability
to scan-convert a 30 or 60 Hertz monitor with a changing picture at that rate. In these respects, a
$50 video game is a real-time graphics device.

For there to be a fair metric for comparing real-time graphics workstations, system data rates
must be measured at various levels. For example, it is equally important to measure the matrix
transformation rate of high-level database objects as it is to measure the time needed to scan convert
graphical primitives. Moreover, the solution to the data rate problem requires that attention be
focused not only on the performance of each component (such as a matrix multiplier), but the way
each is connected to its neighbors (system tuning).

It is regrettable that criteria in this area are so ill-defined, because response time directly
affects user productivity. For example, in a study performed by IBM [4], sub-second response to
human input was shown to be pivotal in the productivity of users with varying skill levels.

3. The IRIS

The IRIS is a system intended to address the above issues and constraints, yet deliver accept-
able functionality.

The graphics hardware of the IRIS is divided into three pipelined components (Figure 1): the
applications/graphics processor, the Geometry Pipeline, and the raster subsystem. The
applications/graphics processor runs the applications program, and controls the Geometry Pipeline
and the raster subsystem. The key component of the Geometry Pipeline is the Geometry Engine, a
configurable VLSI processing element for graphics [2]. Twelve Geometry Engines are used to build
the Geometry Pipeline subsystem that can map graphic primitives from user coordinate space to
some region of screen space.

HOST GEOMETRY RASTER COLOR
PROCESSOR PIPELINE SUBSYSTEM DISPLAY

Figure 1.

Graphics commands are sent through the Geometry Pipeline, which performs matrix transfor-
mations on the coordinates that can be expressed as 2-D or 3-D in user space, clips the coordinates
to normalized eye space, and scales the transformed, clipped coordinates to screen space. The out-
put of the Geometry Pipeline is then sent to the raster subsystem. The raster subsystem fills in the
pixels between the endpoints of the lines, fills the interiors of polygons, converts character codes into
bit-mapped characters, and performs shading, depth-cuing, and hidden surface removal. A color
value for each pixel is stored in the system’s bitplane memory. The values contained in the bitplanes
are then used to display an image on the monitor, either through a color map or directly to the red,
green, and blue CRT guns.

Users write their applications in C, FORTRAN, or PASCAL. The IRIS Graphics Library
provides a procedural interface to the graphics capabilities of the IRIS. Most graphics primitives
translate into commands and coordinate data that are sent directly to the Geometry Pipeline from
the user’s process. A subset of the graphics primitives is handled by the kernel graphics library
(KGL), which is an augmentation of the UNix kernel. The KGL handles traditional kernel duties,
such as keyboard and mouse 1/0. It is also responsible for directing events from such devices to the
proper window using ‘“‘event queues”. There is one event queue for each graphics process.

-25-

4. Design Considerations
We chose the architecture outlined above because of a few compelling principles.

Generality The user should not need to worry about the physical limitations of the display
medium. Rather, he should be allowed to construct models in a high-precision
representational space. The Geometry Engines allow this level of conceptualization.
Accordingly, movement of a three-dimensional object produced in this space should
be specifiable in an efficient way. The Geometry Engine provides the means to do
this using no more than five “short” integers (16 bits).

Speed We wanted to provide a data rate high enough to be able to display dynamic scenes
with a reasonably high level of complexity (on the order of 4000 graphic primitives
per frame). This is achieved by offloading the geometric computing and the render-
ing tasks to the Geometry Pipeline and the raster subsystem.

Realism We wanted to produce smooth, realistic images. Double buffering allows the system
to generate the next scene without disturbing the displayed scene. In addition, it
provides true rate buffering between the update and refresh tasks. The IRIS
hardware supports smooth shading and depth-cuing of colored objects, which allow
generation of scenes with realistic lighting models and with enhanced 3-D percep-
tion.

5. Questioning Bitblt

These considerations taken together: display space independence, fast scene rendering, and
color us away from the BITBLT approach to graphics.

BITBLT mainly copies pixels; optionally it can perform special logical operations between
source and destination pixels (RasterOp, [8]). We felt we wouldn’t use the features of BITBLT for
three reasons.

1. Using logical operations on bits that represent colors would result in amusing but unacceptable
results.

2. Using BITBLT merely to move bits was simply not useful. A common use of BITBLT is moving
windows. However, a window’s aspect ratio can change when it is moved. On the IRIS, the
contents are resynthesized, taking the new aspect ratio into consideration. Since the objects in
the window could have new shapes or sizes, BITBLT (i.c., a straightforward copy of pixels)
would not be appropriate.

3. Moving all those bits uses bandwidth. The efficiency of the bitplane bus is cut in half by
reading the bits before writing them. In the IRIS, the bits are generated and written by the
scan conversion hardware.

6. Evolution to UNIX

Given all of our hardware resources, the question of how to provide a usable tool remained.
Motivated primarily by the desire to deliver fast graphics, we produced a terminal that is display-list
oriented. The user is provided a graphics library, an interface with which to create and manipulate
display lists in the terminal. The interface resides on the user’s host machine; calls to it generates
tokens that are transmitted to the terminal (the media supported included serial line, IEEE-488,
IP/TCP and Ethernet.) The tokens are parsed in the terminal by an interpreter that has been
downloaded at boot time. The software in the terminal included the graphics library interpreter and
a real-time executive, the V kernel [1], which supplies us with a basic set of resource management
facilities.

The terminal met our expectations: it was fast and could incorporate data from valuators
directly into executing display lists.

However, display lists have limitations. Applications must often maintain two sets of represen-
tations of the same data: the display lists and the application’s data structures. For some applica-
tions, the mapping is direct. However, some applications require that the user’s data structures be

-26-

traversed, issuing graphics commands in passing. That is, rather than draw 100 points by construct-
ing a display list containing 100 sets of coordinates, one could instead create a function that gen-
erates the “point” commands and coordinates directly. Display lists are also difficult to edit.
Again, every change in the user’s data structure must be reflected in the display list. Special tag-
ging and pointer manipulation tools must be invoked to change any entry, especially if the internal
structure of the display list is not known to the programmer. But using the capabilities of a
general-purpose programming language, changes to graphics parameters can be made as part of the
general application maintenance.

Our company’s solution was to create a workstation that extended and optimized the operating
system for faster graphics execution without requiring the user to build display lists. The worksta-
tion by its very nature more tightly couples the general purpose computing engine and the graphics
resources. We were interested in choosing an operating system that could easily accept new peri-
pherals. We wanted an operating system that already had a customer base, and finally, one that
was not too hard to port. We chose UNIX.

Having chosen UNIX, we then set out to minimize what we found to be deficiencies from a
real-time graphics perspective. We also designed a window manager that allows processes to run
real-time graphics simultaneously. In the workstation, there is still the concept of the “host™ proces-
sor, but in this case, it is a Motorola 68020 CPU that both runs UNIX and feeds graphics commands
to the Geometry Pipeline.

In designing the workstation, the numerous problems we encountered fell generally into five
categories: hardware ownership, processes and contexts, scheduling and synchronizing, load balanc-
ing, and sharing hard resources.

7. Hardware Ownership

There are numerous ways to connect a piece of hardware to UNIX. One is to use “device”
protocols, whereby a client can allocate the resource through the open and close system calls, and
access it through read and write calls. In our analysis, this virtually precludes multi-client real-time
use, due to the number of kernel software layers needed to perform the underlying 1/0 operation.

Another connection mechanism is to have the hardware “owned” by a single process that han-
dles requests from other clients and manages the hardware 1/0. This requires at least two context
switches with an intervening scheduler call. The IRIS instead gives direct control over the hardware
to a custom part of the kernel itself, the Kernel Graphics Library. Messages and status information
are communicated to clients through a small section of shared memory. The kernel fields hardware
interrupts from the graphics subsystem, comprising coordinate feedback, vertical retrace, and other
events. In addition, a process that wants to do graphics is given direct write access to the Geometry
Pipeline through its memory space. This is the path over which most drawing primitives, such as
point, line and polygon drawing commands, are sent.

A special advantage in system bandwidth is gained from the pipeline structure of the graphics
hardware. Many commercial architectures treat graphics processing units——geometric computing
engines or rendering engines——as separate peripherals, connected to the system bus but not to each
other. In the IRIS, each unit communicates directly to the its neighbor, freeing the system bus
from the intermediate transfers.

8. Processes and Contexts

SGI conducted a special study on the UNIX System V scheduler in the interest of achieving an
interactive “feel” to the graphics [5]. A notable artifact, eliminated in the Berkeley Version 4.2
UNIX implementation, was the switch of the rescheduler into process 0 before it ran. A less obvious
problem was deciding just how to assign time slots to graphics users. We postulated that if a user
wanted to run some number of different windows, he or she wanted each window to have the same
responsiveness. The most-unused, round-robin scheme was maintained, but two changes were made.
First, the time slice given to each processes decreases according to the number of processes in the
queue, insuring adequate response to external events. Second, since the rescheduler algorithm was
left intact, the real time it takes for any process to decay to inactivity remains invariant with the

-27-

number of competing processes. This means that the user sees consistent behavior no matter how
many windows are on the screen.

8.1. Switching Overhead

One of the drawbacks of scheduling responsive processes under UNIX is the overhead of con-
text switching. Many general microprocessor design tricks have been devised to expedite UNIX’s
job. A common focus is the memory address-mapping hardware. Most schemes embody a
context—segment—page map structure in some form. The page map, subdivided into text, data, and
stack segments, translates from virtual page addresses to physical memory addresses. Several con-
texts, representing UNIX processes, own a set of segments coexisting simultaneously in a dedicated
map memory. Additional hardware detects limit violations to implement protection and demand-
paging schemes. The result is a system that can efficiently switch among processes and maintain
high memory bandwidth.

But in the multi-windowed IRIS, a considerable amount of state data used in the graphics
hardware must be changed as the active window switches. This information—=including transfor-
mation matrices, drawing attributes, and color maps——can be considered the graphics context for
the current graphics process. There is a time lag between the UNIX process and the associated
graphics process, and there is currently insufficient storage in the graphics hardware for its own
inactive contexts. So two problems in swapping arise: the linkage between the two processes and the
overhead required to move graphics contexts.

Parts of the graphics context are sufficiently compact to be treated dynamically. Of these
many are shadowed in a data structure associated with the UNIX process, from which they are
rapidly sent to the hardware as an initialization step. Examples of these are the current color code,
linestyle, and shading mode. The other dynamic attributes—current graphics position and matrix
stack—must be retrieved from the hardware and saved in the data structure of the host processor.
Thus arises the linkage problem: the two parts of the system must cooperate synchronously in order
to perform the context-saving operation. The flow of state information across this graphics—UNIX
interface bears consideration as the secondary problem; it is sufficient to increase the switching time
by several hundred microseconds.

8.2. Context Reservoir

A key to solving the swapping problem is to view the graphics device as a true multi-user
resource. Optimum performance, at the expense of duplicate structures, could be provided in
hardware by placing a process list at every point where a dynamic variable (e.g., line style,
viewport) exists. This way a number of concurrent graphics processes can access their own attri-
butes by means of a simple pointer movement, but this number has a fixed upper limit.

A more flexible solution takes advantage of the directional flow of graphics commands through
the pipeline. By adding a parallel path from the last processing element to the first, a mechanism
can be developed for managing save and restore commands independently of the UNIX processor
(see Figure 2). For a save operation, each element of the pipe passes its state information forward
to a reservoir placed at the end. For a restore, the appropriate command is passed to the “reservoir
reader”, which is capable of issuing data for the new context to the upstream elements. Depending
on the size of the reservoir it can be viewed either as a cache for most-recently-used window states
or as complete storage for windows not currently updating. This enhancement would allow the
switching work to proceed concurrently in the host and in the graphics processors. This concurrency
and information decoupling can facilitate future development of schemes involving multiple
processes per window and multiple windows per process.

.28 -

HOST GEOMETRY RASTER COLOR
PROCESSOR PIPELINE SUBSYSTEM DISPLAY
7 7
[} |
Lemocremamr e m e oo mm e — e ——— === = — — = o
Figure 2.

8.3. Feedback

The Geometry Pipeline can be used in other ways than displaying graphics. Part of making
graphics interactive is to be able to query the current state of the graphics scene. As we will show,
this kind of feedback poses problems in a multiple-graphics window system. The most interesting
uses of feedback are bounding box testing and picking. Here a set of clipping and/or scaling opera-
tions results in the selection of a graphical object or the culling of objects from a display list. The
bounding box command sends a set of world-space coordinates down the pipe in a special operating
mode. In the process of mapping the coordinates to screen space, the results of comparison against
each of the clipping planes are recorded. The “or” combination of these results indicates how a par-
tially visible object falls into the current viewport. The differences between the maxima and minima
of the coordinates indicate the size of the object in pixels. A bounding box that falls completely out-
side the viewport will not produce any transformed output at all, and a message of this fact must be
produced. For a picking operation, the coordinates are discarded and only the object names and
clipping results are collected. Judicious use of local intelligence in the Geometry Pipeline can help
reduce the number of tokens necessary to send back to the requesting process; nevertheless, some
information must be transmitted.

The current scheme for any kind of feedback to the host processor involves the following steps.
The bitslice controller in the raster subsystem generates a hardware interrupt to the host processor
when it has collected the data to be fed back. The kernel, based on a message type code read from
the bitslice, understands the destination and size of the packet. Some messages, such as errors and
matrix stack contents, are directed to other parts of the kernel itself. Bounding box coordinates or
object names are copied directly into the memory space of the requesting process, which must be
locked in memory for the duration of the entire transaction. This is necessary because as long as
the Geometry Pipeline holds data to be fed back it cannot effectively perform any graphics tasks for
other users. Thus, not only must the application block for the interrupt servicing and pipeline
latency, but a special priority demand is placed on the scheduling mechanism.

An aggressive attempt to reduce the various latency times would have payoffs here. But some
amount of power and flexibility can be gained if the request for feedback can be decoupled from the
reception of feedback data. A single-task real-time system might not want to do this, but an optim-
ized multi-task one might, especially if process-switching has been optimized in the system. The
freedom to swap in a higher priority competing process during a lengthy feedback operation may be
valuable. Further, the user may benefit from the ability to perform his own alternative task between
the request and reception.

An alternative to the current scheme which allows normal scheduling is to treat feedback
packets as messages placed in users’ event queues. The kernel would have to perform the buffering
of the data for any inactive process. This buffering would halve the hardware-to-host bandwidth,
and incur additional overhead for the message-passing protocol.

Another alternative involves providing the same sort of reservoir facility in hardware for
context-specific buffering as was shown useful for the save-and-restore function. In this case the
switchability allows the creation of virtual feedback channels. It requires that a given feedback pro-
cess be interruptable at any time at the hardware level. The end-of-pipeline processing element
would manage some number of FIFOs—=cither hard or soft——that would be allocated to graphics
processes performing feedback. The same commands that initiate state saving and restoring could
also control the activation and de-activation of the FIFOs. As with DMA, fed-back data is only

-29.

moved once: directly from hardware to the requesting process.

9. Scheduling and Synchronizing

This section concerns allocating fixed resources in a time-varying manner. Various graphics
subsystem resources must be shared by competing processes: the Geometry Pipeline, the color map
and the frame buffer memory.

9.1. Geometry Pipeline

The Geometry Pipeline is a device that is allocated dynamically. It is connected to the host
processor by means of a hard-connected port addressable by any process. An early problem was
reserving the hardware port long enough for a process to send a complete, atomic multi-word
command/data stream. We devised a “free/busy” token that provided synchronization without
incurring a great deal of switching overhead. As described in the Mex implementation paper [7],
the token bit is manipulated directly by means of a subdivision in the port’s address space: sending
the first word of a command to one address sets the “busy” indicator; sending the last word to the
other address clears it.

When a graphics process is about to be activated, if the synchronization bit is in the “busy”
state, the scheduling of the new process must be delayed and the old one resumed. The time cost of
this, while less than a full context switch, still involves an interrupt period and a kernel startup.

This requirement arose out of the development of an economical data path that makes no
explicit distinction between commands and data, and of an economical state machine in the pipeline
processing elements that does not recognize command interrupts. A proposed enhancement would
provide fully interruptable processors that could respond to state-change requests at any time. Then
streams of commands from different processes could be sent with a compact change command as a
separator. As soon as the first pipeline processing element is through switching, processing the new
commands resumes.

9.2. Color Map Editing

Another interesting example of scheduling behavior concerns the color map. As with most
implementations, a single, shared address port to the color map memory means that host access
must occur when the color map is not being used for displaying visible portions of the screen. Thus
the most logical time to make changes is during the vertical retrace interval, when a relatively large
time window is available. An early solution was to force a process to block until the interval
arrived. In the current IRIS, map changes are sent as requests from the application to the kernel
and are placed in a software queue; when the retrace period arrives, a hard interrupt causes the ker-
nel to send as many of the queue entries to the map hardware as it has time for. Meanwhile, the
application is free to make changes in the current color attribute used for updating the frame buffer.
This freedom must be carefully considered when using a single-buffered display to avoid flashing
items on the screen.

Again, the best solution seems to lie in offloading the queuing function to hardware. An
engine in the graphics subsystem would be given direct control over the writing of the color map,
and would receive the vertical retrace signal as an interrupt. This way a map-writing daemon
without the encumbrances of a UNIX process would be activated.

9.3. Frame Buffers

The constraints placed on synchronization by the retrace event extend to the sharing of frame
buffers. The raster subsystem, and hence the window manager, are capable of operating in either
single- or double-buffered mode. In double-buffered mode, a hardware flag determines which of
two sets of bitplanes is available to the update controller and which is actively refreshing the display.
In order to avoid “tearing” a dynamic image, the swap between the two is made only after a com-
plete field sweep is made by the video beam. In an early implementation, when a particular window
had finished producing a new image in the update buffer, it sent a swap request to the kernel and
went to sleep until after the vertical retrace begins. The kernel at that time toggled the display and

- 30 -

reactivated any sleeping graphics processes. More recently, a semaphore was added to the shared
memory space that allowed the kernel to announce the retrace event to the clients. Graphics users
then could not only avoid the mandatory sleep/wakeup overhead, but could opt to schedule interim
subtasks with a simple polling mechanism to signal completion. With the further addition of a
field-locked timer, even more intelligent scheduling decisions could be made, either by the user or by
the system scheduler.

With the color map and buffer swap problems out of consideration, it seems attractive to free
the host of any concern over the display retrace event. By fielding all retrace-related activity and
allowing the buffer mode to be part of the graphics context, a powerful simplification of the
software is made possible.

10. Load Balancing

We have spent time considering how to make each subsystem resource perform graphics tasks
optimally. This section addresses the following concern: how can the user schedule resources in
order to achieve the fastest action possible with as complex a scene as possible?

10.1. Hardware Assistance

Hardware FIFOs have been heavily used as a solution to differential rate problems in real-
time systems. If the data rate distributions can be adequately predicted at the system design phase,
a FIFO of appropriate depth can offer a straightforward tradeoff between the upper limits of
throughput and latency. For example, a longword FIFO between the processor and the Geometry
Pipeline smooths the transmission rate of commands by the graphics library code. In dedicated
flight training simulators built by Evans & Sutherland, a much larger FIFO, combined with careful
ordering of graphic primitives by software, minimized wait time between the geometric and display
processing subsystems.

10.2. Software Optimizing Filter

Certain classes of load predicting can be anticipated and handled with the aid of algorithmic
tools. The appearance of the directives would resemble predicates in theorem-proving languages.
Such directives can be generated by some of the more common latency scenarios in the system. For
example, certain commands bog down the Geometry Pipeline (the actual Geometry Engines), while
others become lodged in the raster subsystem. Currently, the programmer must balance the load if
the graphics is to run optimally fast.

Let’s say a draw point command takes 10 usec to clear the Geometry Pipeline, followed by 2
usec in the raster subsystem. On the other hand, a clear screen command (which completely paints
the current viewport with the current color) takes 2 usec in the Geometry Pipeline and 15 msec in
the raster subsystem. Filled polygons fall between these limits. If 1000 polygons and 3000 points
are to be drawn, it makes sense to intersperse some of the polygons with points. Depending on the
depth of FIFOs within the system, the filter may suggest breaking up the sequence of commands by
sending 25 points for every 10 polygons for a substantial gain in throughput.

Lacking enough disparate commands to decluster (disparate in transformation/imaging
speeds), the filter may generate a suggestion that the application do computation at certain com-
mand intervals. This can be quite useful in applications involving real-time motion, as some amount
of computation is required to guide objects through the scene. One implementation might link the
filter to the program by the filter’s putting the main process to sleep and triggering a subprocess to
perform computation.

The filter can be running concurrently to the graphics process or it can be a preprocessor that
generates “‘good taste” programming suggestions to the graphics programmer. A subsequent version
of the filter could be a filter that actually runs parallel to the graphics process as a UNIX-style
filter. This filter would look for clusters of commands that can be reordered and feed them to the
Geometry Pipeline in a sequence driven by the recent history of what went down the pipe.

231 -

11. Sharing Hard Resources

Certain resources in the graphics subsystem, such as the color map, are too large to be repli-
cated or to be dynamically updated on a time-slice basis. These hard resources must be subdivided
and allocated among competing users, or shared in some cooperative scheme.

A traditional problem for multi-window systems is how to share screen space. A number of
elegant solutions exist in the literature, lying mostly in optimizations of display hardware and
BITBLT algorithms. [9,10]. In a system such as the IRIS, whose strength lies in its ability to rapidly
recreate window contents from a high-level description, the monolithic x-y addressed screen space is
broken into pieces that are managed by the window manager process [7). It is up to the bitslice
processor in the raster subsystem to control the clipping of each graphics primitive to a list of rec-
tangular pieces that make up a viewport. Performance degrades gracefully as complexity of window
overlap increases and pieces are added.

Many commercial systems reserve one or more overlay bitplanes to sidestep the plane-sharing
problem for high-priority displaying purposes. Examples are pop-up menus and special-purpose win-
dows. These guarantee that response to user input is immediate, and the ports can be given highest
visual priority without requiring redraw of the background after erasure. These special planes can
also be given their own color map space, avoiding that particular allocation issue as well.

The color map is also considered a hard resource. Bitplane area has been divided up among
the graphics users, but the planes themselves ordinarily form a monolithic input bussed to a single
color map. Due to the size constraints of map memory (which are costly due to the very high pixel
rates they must accommodate), most systems limit the palette to 256, 1024, or 4096 colors. Allocat-
ing these few among applications that are unable or unwilling to share can frustrate users.

Here the idea of overlay planes can come to the rescue, especially when generalized somewhat
to the idea of identity (ID) planes. We propose reserving a small set of bitplanes that can act as a
guide to the use of the remaining planes without serving as color map inputs. Rather than giving a
single overlay highest viewing priority, the ID planes hold both the priority level and the palette
selection for each viewport on the screen.

We start by assuming that a user may want to see activity in overlapping and non-overlapping
viewports, but may not demand a great depth of viewport overlap. Thus we can assign the same ID
to all non-overlapping viewports at the same depth (Figure 3). So n ID bits translates to 2" layers
of non-overlapping viewports on the screen. Viewports are moved or re-prioritized by erasing and
filling a suitable area in the ID planes with the desired shape or ID number.

ID =1
ID =3 ————— ID=3 ID =2

ID=20

ID=1

Figure 3.

Having entire bitplanes’ worth of memory for IDs may eat up savings made in the color maps,
but certain unique advantages accrue. Window priority level can apply on a pixel-by-pixel basis.
The raster update engine would compare the ID value stored at a pixel location with the current
window layer number before updating that pixel. This permits arbitrary shape viewports to be

-32-

drawn into, trading one serial task for the bitslice processor per rectangular piece for perhaps many
parallel tasks at the pixel level. Second, having decided on a maximum color map size, the ID
planes can be used to select an alternate map of equal or smaller size. As IDs increase linearly, the
number of maps can also increase linearly, rather than by powers of two. Finally, the ID planes can
be used to make per-viewport buffer or bitplane set selections. In conjunction with a set of multi-
plexers or crossbar-type circuitry, a great deal of independence in hardware-to-window assignments
can be achieved.

11.1. Font Management

In the IRIS, the font store is a sharable hard resource. The fonts are stored at the “end” of
the system as two-dimensional masks. The masks are kept in a special font memory integrated with
the bitplane update hardware. Commands to paint characters into the frame buffer are passed
through the pipe; characters are rendered by writing the current color into the bitplanes at pixels
corresponding to *“‘ones” in the masks. This scheme is used because it is compact. Even so, it is not
feasible to swap font sets with processes. The bandwidth required is too large: the font memory is
loaded by passing the font information through the pipe.

We chose not to represent characters as spline outlines that can be scan-converted for two rea-
sons. First, the customers do not yet need a large font mix: the current font store is large enough.
Second, at this resolution, the fonts need to be tuned. While there are methods to tune fonts algo-
rithmically, such a procedure does not lend itself to real-time operation.

To add a larger font set, we have considered providing a character-mask cache with DMA
support. This would allow many more fonts at higher volume. This is also useful when considering
grayscale fonts, which take more space. In either case, storing the fonts near the bitplanes is attrac-
tive for bandwidth considerations. Note that even with the DMA approach, there is no concept of
pairing graphics processes with font sets and that this must be managed through the cooperation of
the concurrently running processes. But given adequate hardware, we could meet the goal of provid-
ing context-sensitive DMA capability. This can be done by maintaining hardware address tables for
fetching fonts associated with the current process.

12, Function Migration

A pattern of migration is emerging in graphics devices—more and more complex functions are
moving to hardware. This continues the trend that started when the original graphics controllers
were introduced in the marketplace. [3] The migrations discussed here suggest that a multi-window
graphics system should be complemented by hardware possessing multiprocess capabilities. Develop-
ing faster and faster rasterizing techniques will of course improve real-time performance; but more
important is the process of adding moderate amounts of intelligence to provide virtualization of the
resources associated with a window (i.e., each user thinks he owns the machine completely). The
pitfall with adding this intelligence is that someone will eventually want to program it in order to
customize it. The proper way to offer this power is to provide a layered procedural interface to the
system. The lowest level might contain a few domains that present their interfaces to the next
higher level. When a user needs to access or modify the system at a given layer, it is his responsibil-
ity to leave the interface intact.

13. Conclusion

General purpose real-time graphics systems are not cheap to build. Demands of a wide variety
of applications create problems that must be handled flexibly by an architecture, meaning a larger
system. User understanding and involvement in the implementation of the real-time aspects of the
package are key to optimal performance. A system that provides comprehensible tools for dealing
with these aspects is a key to users’ success.

-33-

Acknowledgements

Jim Clark and Marc Hannah invented the Geometry Engine. Kipp Hickman, Paul Haeberli,
Peter Broadwell, Rocky Rhodes, Henry Moreton, and Tom Davis implemented the IRIS UNIX and
graphics software. These people and many others contributed to our thinking in this paper.
Bibliography

[1] Cheriton, D.R., and Zwaenepoel, W., “The distributed V kernel 2nd its performance for diskless
workstations”, SIGOPS Operating Systems Review (ACM), 17(5) July 1983.

[2] Clark, J.H., “The Geometry Engine: A VLSI Geometry System for Graphics”, Computer
Graphics, pp. 127-133, 16(3) July 1982.

[3] Clark, J.H., “The Wheel of Reincarnation”, Panel, “Fundamental Algorithms: Retrospect and
Prospect”, proc. ACM SIGGRAPH, July 1985.

[4] Doherty, W.J., and Thadhani, A.J., The Economic Value of Rapid Response Time. 1982; Inter-
national Business Machines Corporation, White Plains, New York, 10604.

[5] Hickman, K., “Some Enhancements to the System V Scheduler”, unpub. memo, 1985.

[6] Hindin, H. J, and Rauch-Hindin, W.B., “Real-Time Systems”, Electronic Design, pp. 288-318,
January 6, 1983. :

[7] Rhodes, R., Haeberli, P., and Hickman, K., “Mex - A Window Manager for the IRIS”, proc.
Portland USENIX conference, 1985.

[8] Newman, W.M., and Sproull, R.F., Principles of Interactive Computer Graphics, 2nd ed.
McGraw-Hill, 1979.

[9] Pike, R., “Graphics in Overlapping Bitmap Layers”, ACM Transactions On Graphics, 2(2)
April 1983,

[10] Wilkes, A.J., et. al., “The Rainbow Workstation”, University of Cambridge Computer Labora-
tory, Cambridge, UK. August 1983.

GLO — A Tool for Developing Window-Based Programs

Thomas Neuendorffer

Carnegie-Mellon University
CDEC, 202 UCC
5000 Forbes Ave.
Pittsburgh, Pa. 15213
tpn%cmu-itc-linus @ @pt.cs.cmu.edu. ARPA

1. Introduction

GLO (the Graphic Layout Organizer) is an application builder’s tool designed to provide easy
access to the facilities of Carnegie-Mellon’s window-oriented Andrew system'. It allows one to
arrange a set of layouts (rectangular sub-windows) within a window, define their actions, create a
working prototype, and ultimately turn that prototype into a final application. Certain built-in lay-
out types are predefined to provide the application’s builder with tools to do text-editing, program
interfaces, control buttons, and simple animated graphics. Applications using only predefined layouts
may be created with no programming whatsoever. More complex applications can take advantage of
GLO’s client interface to create user-defined layouts, define interactions between the various layouts,
or define actions to take place upon a menu selection or a mouse hit. There is also support for appli-
cations that use multiple layout sets.

GLO itself is a combination of three tools. The first is a special-purpose editor designed to
manipulate layout set descriptions, consisting of a graphically-depicted layout set and a series of lay-
out descriptors. The second is a prototyping tool that knows about the predefined types and can
rapidly produce a mock-up of a final application. Lastly is a program library that allows the pro-
grammer to combine the layout set with application-specific functions to create a final product.

The following document describes GLO and steps through the creation of an interactive sym-
bolic debugger like Sun’s DBXTOOL, using GLO and about 100 lines of application specific code.

2. Background

A major development effort is taking place at Carnegie-Mellon University to develop software
for the "3 M" workstation (one million instructions/second, one megabyte RAM, and one million
pixels)z. This effort is centered around Andrew, a software system developed here by the Informa-
tion Technology Center (ITC) and built on top of 4.2 BSD UNIX. The system currently runs on a
variety of hardware, including Suns and Vaxstations.

The ITC has produced some very powerful tools for handling the window environment in a
consistent way. In addition to window manager routines, these include a base-editor library that
allows the client programmer to embed text editing functions within an application, and a layout
manager library to allow an a3pplication to organize and interact with various objects (both textual
and graphic) within a window”. One might consider these ’level 2’ tools, over and above the 'level 1’
tools of BSD Unix.

Unfortunately, while this may be a ’hacker’s heaven’ of sorts, it does not fill the needs of many
faculty and students, who are coming from the world of PC’s, Mac's and Tops 20 mainframes. Our
approach to this problem at CDEC (the Center for Design of Educational Computing) is to provide

-35-

a third level of tools to the applications builder. These are designed to support easier and more
immediate access to many of the level 1 and 2 tools. By simplifying the program creation process,
we hope to facilitate the development of discipline-specific software by faculty and students.

3. User Interface
The GLO program has three basic modes.

3.1. Draw Mode:

This is where one specifies how layouts are to be placed in the window. The mouse may be
used to divide the window into layouts, either creating new divisions or moving existing ones. In this
way, a tree of parent and child layouts is built. The relative position of layouts in this window will
be maintained in the both the prototype and final application.

3.2. Select Mode

In this mode, clicking the mouse inside the desired layout will select it for definition. Parent
layouts (i.e. layouts that contain sub-layouts) are selected by pointing to the line separating its two
children. When a layout is selected, a document describing it will appear in an editor at the bottom
of the window. Document attributes will be described in the form:

<attribute name> = <value>

New layouts are given the type init. When the user chooses a type (by replacing the word init
with the type name), the attributes appropriate to that type will be inserted into that document.
New values may then be assigned to any attribute name.

The following layout types are currently supported:

3.2.1. Base-Editor (be)

Any number of these editor layouts can be defined. They allow the application user to edit
existing documents or create new documents. The GLO programmer may also take advantage of the
client interface of the base-editor to interact with the user via one or more of these layouts. File
names can be wired in, or a user prompt can be provided. Attributes controlling write access, file
checkpointing, keymaps, and menu items may all be specified if desired.

3.2.2. Multiple Base-editor (mbe)

Works as above, except that multiple file names may be specified. A buttons layout may be
associated with this layout to allow the end user to switch between several different documents
within the same layout. Any number of initial files may be specified. Files may be added or
selected at any time by the client program.

3.2.3. Typescript.

A typescript is an editor interface to an executable program. The default program is the
cshell, but any stdio program may be specified (with or without arguments). There is also a facility
for passing the application’s arguments to the program running in the typescript. The client program
may define filters to modify user IO to the program.

The above three layout types are all based on the Andrew Base-Editor and may have Menu-
Map attributes associated with them. The MenuMap attributes have the form

MenuMap=<MenuHeader,>[Prompt]:[Function] <:KeyMap>

and any number of them may be assigned to each layout. These commands will allow the GLO pro-
grammer to customize the actions of a layout by creating menu prompts on the deck-of-cards
menus, and associating these prompts with programmer-defined functions. The optional KeyMap
field may be used to indicate what key-bindings should be associated with the menu action. The
optional MenuHeader field may be used to indicate which menu card is to contain the prompt.

-36-

3.2.4. Buttons.

Here a set of strings may be defined which will translate into labeled control buttons to
occupy the layout. In the running application, a mouse hit on one of these buttons will call a pro-
grammer defined routine specified in an attribute. Multiple buttons layouts with different control-
ling routines may be defined.

3.2.5. Fad.

Fad (for Frame Animation Drawing), is a drawing editor designed for animation of simple
line drawings and icons. The ’artist’ works by creating a ’frame’ of lines and icons using the mouse.
This frame may then be copied to another frame and the lines and icons moved. The program can
then animate these frames by interpolating between the corresponding points. Since frames may also
be displayed individually, and display may be controlled by user routines driven by other layouts,
fad is a useful tool for providing illustrations. Multiple fad layouts are available.

3.2.6. User-defined

By specifying the name of routines to be called for layout redraw and mouse input, the pro-
grammer can completely define the action of any number of layouts.

3.2.7. Other layout attributes

In addition to the type-specific attributes described above, all layouts are given a unique name
which client programs can use to access and alter the layout. Like other attributes, this name can be
set as desired. Box and border attributes may be set to put an n-pixel black box or white border
around a layout.

3.3. Prototype Mode

When all the layouts are set up to the user’s satisfaction, the next step is to enter prototype
mode. At this point, several things happen:
(Note: name represents the name of the GLO application, specified as the main argument to GLO)

1. A file (name.GLO) is created containing the layout descriptions. This file is interpreted by
both GLO and GLO applications and contains all the information necessary to create a layout set. It
is the only file read by GLO when GLO is used to modify an existing GLO application.

2. A second file (name_table.c) is created containing information that must be compiled into
the final application. This is basically just a table relating the various layout names with their asso-
ciated function and keymap pointers.

3. If the -k option was specified, keyboard (kbd) files will be written to indicate the relation-
ship between menu hits and function calls specified in the MenuMap definitions.

4. If the -m option was specified, a makefile (makefile.name) will be written that is capable of
compiling the C files, the keyboard files, and the necessary librarys into the final application. It
assumes that user defined functions will be contained in the file name.c.

Once these files are written, GLO makes layout manager calls to display a prototype of the
final application. This prototype will contain working versions of the predefined layouts, along with
dummy layouts where the user defined layouts will be.

This prototype can be used to test out the feel of the layout set in windows of various sizes. It
can also be used to create the editor files and Fad diagrams.

4. Client Interface

As stated above, the GLO programmer may not need to write any C code at all. A default
main() function is even included in the GLO function library. Between GLO, the base-editor, and the
layout manager however, there are quite a number of client functions that may be called to facili-
tate building complex applications.

The base-editor provides facilities for examining and editing documents while GLO provides

-37-

some higher level interfaces to these functions. The function glo_TellTypescript, for example, will
insert a string into the typescript view and pass the line on the the program running in the typescript
as if it were typed in by the user.

In general, the programming model that is best supported is one where an application program
starts up in some steady state, and actions are initialized by menu hits, mouse clicks, or keyboard
entry.

S. Multiple Layout Sets

A facility is provided to allow an application to deal with a series of layout sets. Each layout
set is created separately with GLO and tested. A separate program (glocombine) exists to combine
GLO table files and makefiles to produce an application that can support multiple calls to glo_init.
This function can create or restore the layout trees described in the .glo files. The makefile produced
is also capable of making any of the applications individually, so one doesn’t need to deal with mul-
tiple makefiles. These *super-applications’ may also be combined or added to with additional calls to
glocombine.

6. GLO-DBXTOOL, a sample application.

GLO-DBXTOOL is a window based interface to the DBX debugger“, functionally similar to the
DBXTOOL program released by Sun Mi(:rosystems.5 By using Andrew and GLO I was able to cap-
ture much of the functionality of the Sun DBXTOOL by writing only about 100 lines of application-
specific C code. In doing so, I also created a machine-independent application that readily recom-
piles on any Andrew machine. Unlike Sun, I made no changes to DBX itself, and I made a few sim-
plifying assumptions (i.e. that the most relevant DBX files will be the .c and .h files in the current
directory). None the less, the resulting program has proven to be useful both on its own merits and
as a demonstration of the power of GLO. It also demonstrates a general facility for creating window
and mouse interfaces to glass tty programs.

-38-

dbxtoot

« Clear
- Redraw

+ Clear last box
b

< Create prototype

a Welcom2 to the graphic layout editor

=

dbxtooi

Layoutname = dbxtool_1
™1 LayoutType = mbe
box = -1
border = -1
multiple base editor layout options
DocumentNames = dbxtool.d
DisplayButtons = true
DisplayButtonsAbove = true
WriteAccess = true
CheckpointFile = false

KeymapName = Default_Keymap
AddMenuProcName = dummy
InitProcame = getfiles
ShutdownProcName = dummy
MenuMap = Find File:findlinecom

MenuMap = [astructions:instruct X,
_J MenuMap = Add File:addfils

hoe!tcl‘- hyoul or Tlmingu 1o exit select mode

Fig. 1: GLO has been initialized and three
mouse clicks have produced the desired layout
arrangement. The menu is being used to enter
selection mode.

dbxtool

new files to the layout have been added.

Fig. 2: The top layout has been selected and at-
tributes for the multiple base-editor type have
been chosen. An initialization procedure (get-
files) will be defined to add default files to the
layout. MenuMap options to find a file
described by DBX, provide instructions, and add

glo dbxtool

Layoutnam= =dbxtype
LayoutType = typescript
TypascriptArgs = dbx
Typescriptimmortal = true
box = -1
border = -1
KeymapXame = Default_Keymap
AddMenuProcNams = dummy
InitProctame = typeinit

ShutdownProcMame = dummy
MensMap = Find File findlinecom
MenudMap = Iastructicns:instrucy

Layoutname =dbxztool_)
LayoutTypes = buttons
ButtonStrings = Currenat File Name.Current Line
Number,Current Selection,Return where,run [args)set <var>,
trace <var>.cont at <line>.trace <line& or var or proc>.trace in
<proc) stop at ¢line>,stop in {proc>.sto
<{vars, status,step.nexe.print <exp> ,whatis <name> whic
(names whereis ‘name> set (var> = <(name) file [filename)
HitProcame = dbxbutton

X

Selact Tayout or flamingn to €Xit sZl=ct mod<

Select layout or Iflamingo 10 exit s2l=ct mode

Fig. 3: A typescript layout to run DBX is
described. Two of the menu choices from above
will be included.

Fig. 4: A buttons layout with DBX commands is
added. For this implementation, I decided to
provide buttons that will insert the current file
name, line number, or selected words from the
editor layout into the DBX layout.

-390 .

dbxtool

indicate desired parent layout options

Layoutname =dbxtool 2

box = 3

border = -1

& The following apply to the two child layouts of this parent
LineBetween = true

AboveorBeside = false

L

Select hyout or Hammgo 10 exit s2lect mode

Fig. 5: This shows the attributes of a parent lay-
out. By setting the box attribute, we put a 3 pix-
el box around the DBX and button layouts.

glo instruct {rwin

weicomes W Dbxtoo.
Files 1

Here are some points|
to remember abouy
using the program:

e

1. The top ling Fad

contains the currently| . ?
available files (ie the N f

. and .h files of the | o pex fame

current directory.).
Clicking the mouse on
a file name will bring
u{r that file for
editing. There are also
options for saveing the
current file, saving all
outstanding files. and
finding your positicn in
a file.

+ Repeat frame
Ik gmm.ne portion

2. The next section is
where the file editing
takes lace. The
standard base editor is
used. A menu option
(Add File) is available
to add additional files
to the available file

list, ﬁ?

3. The bottom right s
the typescript layout
for interacting with
4bx. In addition to the
standard typescript
menu options,

dbxtool

Welcome to Dbxtool

X

yrzent File Name
Cuttent Line Number
Current Selecton
Rewrn
whete
run [args)
sev (var>

__|enter objzct file name (default 15 ‘a.out):

uece <(var)
cont 8t <hne)
Mrace <line# of var o proc)
tzoce 1N <proc>
slop al dine>
sW0p n <proc
stop (var)
status
swep
next
prnt <exp>
whatls (name>
which (hame>
whereis <name>
set (var> « (name> L

file aname]
woitaing deitosid

Fig. 6: Here we have entered prototype mode.
The editor, the buttons, and DBX are all func-
tional though not interacting with each other.

{ dbxtool irwin

SAVE FILE dbxwol.real.c all_wblec
SAVE ALL PILES al2Map.c combo_tablec alt_Menus.c
- WHERE fin_tablec dbxwol_Menus.c dbxiypeMapc
dbxwol.d {nstruct. IMap.c tnstructc 2zz4Map.c

andrew.h fnsuc_tblec dbxtool ¢

b = bu)tl; ob = buf2;
flag = 0;

forlc = 1b; (1 =l getc(inf)) 1= EOF; c+ +){,
o = ;

*c = ‘'\0";
while(l
o)I(nlto;

Current File lame

Current Line Number (dbx) where
Catrent Setection mainfargc = 2, argv = Oxfffe80, Oxfffe8c),

Bans fine 113 in “rotate.c”
| —— | (35%)
un (ar3s)
sel (var)
wace <vap
cont at <line>
tzace <lined or var or procy
uace 1n (proc>
swp ot Cine)
$top In <proc>
swp <var>
staws
step
next
print ‘exp> —
whaus <name>
which <name>
whereis <name)
sel (var> « «nane>
file (filename]

-” Instructions

. Quit

at frame &F15

line 115 10 rotate¢

Fig. 7: GLO has been reinitialized to create the
instruction layout set. We are in prototype
mode to enter the documents text and set up the
fad animations.

6.1. Completing the application

Fig. 8: The completed DBXTOOL in use.

Combining these layout sets is done simply with the one command:

glocombine -0 glodbxtool dbxtool instruct

Once the functions are written in the files dbxtool.c and instruct.c, the command “make -f
makefile.glodbxtool glodbxtool” will produce the final application. The C code for dbxtool.c may be

- 40 -

found in the appendix.

6.2. Running GLO-DBXTOOL
The final application is called just as DBX would be called.

dbxtool [options] [object file] [core file]

The application calls glo_init to bring up all the functioning layouts. Glo_init in turn calls the
application’s getfiles function which adds the .c and .h files of the current directory to the mbe but-
tons layout. Glo-init also starts DBX running in the typescript layout and brings up the glo-defined
buttons layout. At this point the user has a number of options.

Chosing the Instruct menu option will bring up the alternate layout set to instruct the user in
the use of DBXTOOL. Instructions will be displayed in an editor window while a Fad animation pro-
vides illustrations. State information of old layout sets is saved when a new one is initialized. Thus
the menu option return to dbxtool will return the user to the same place he left off.

To edit one of the default files, the user need only click on the button with that file name.
Other mbe buttons will save the current file, save all mbe files that have been modified, or tell the
user what file is being edited.

The user may use the keyboard to interact with DBX in the typescript layout. Alternately,
clicking the mouse on one of the DBX-command buttons will type that command to DBX and click-
ing on one of the buttons prefixed with the word Current will enter information regarding the the
file being edited. Thus DBX commands may be built up and entered without touching the keyboard.
There are also a number of functions built into the typescript layout that facilitate ease of use. For
example, there are key-strokes for repeating or editing previously entered commands, and menu
options for accessing a cut-and-paste buffer common to all layouts.

The locate menu option will attempt to parse the current DBX line for a file name and loca-
tion. Finding this, it will bring up that file in the editor layout and position the cursor at the speci-
fied line. See Fig. 8.

Note that while certain GLO information must correspond to what dbxtool.c expects (the for-
mat of the file information buttons for example), other information is more flexible. Thus, if the
application’s developer decides that a smaller set of DBX commands might make the program easier
to use, or that the DBX buttons should go on top of the DBX layout, these changes can be made sim-
ply by using GLO to modify the dbxtool.glo description. The application does not need to be recom-
piled.

7. Disadvantages of GLO

GLO applications tend to be very large, using sizable portions of virtual memory. There can be
difficulty in debugging applications where control flow is passed around between various tcols of
which the end programmer has little knowledge. And as with all high level tools, it is sometimes not
clear how to perform some low level tasks that were not anticipated by the tool’s designer.

One should note however, that these problems were already apparent in applications using only
the tools that GLO was built on top of. The bottom line is that the amount of functionality provided
seems to make the trade-offs reasonable for many applications.

8. Future

The Andrew Base-editor and Layout Manager are in the process of undergoing a complete
rewrite and GLO will have to be rewritten to accommodate them. A major addition will be a
dynamic linking facility which should further facilitate fast and flexible application development.
Another tool to be incorporated into GLO is C-MuTutor, an Andrew implementation of the Micro-
Tutor language6 developed for the PLATO project at the University of Illinois. C-MuTutor is an
incrementally compiled authoring language, designed for writing educational materials. Within the
context of Andrew, C-MU Tutor is proving to be a very useful tool for handling complex graphic
displays, as well as various types of interactive computer-based instruction. It is hoped its addition

-41 -

to GLO will produce a ‘Swiss army knife’ programming tool that will have something for most every
application.

9. Conclusions

The goal of GLO was to create an environment with which faculty and students could create
useful windowing applications with a minimum of Unix and Andrew experience. What was produced
is a tool that supports several models of applications building.

The first model is a programmer given a project to develop on his own. With GLO as a tool-
box, he can plan out where he wants to go before he gets there. A structured style develops that
encourages separation of function and user-interface.

Similarly, a model where one or more program designers can prototype an application and
experiment with interfaces before turning the result over to an experienced programmer is also sup-
ported.

Lastly there is the case where a program has been (or is being) developed for a glass tty
environment. As in GLO-DBXTOOL, GLO supports interfaces to allow the application to take advan-
tage of the windowing environment, without becoming useless when only a tty is available. There is
also the possibility of running something like a lisp or awk application in the typescript layout and
using the output to drive a graphic simulation.

In all cases, the use of GLO provides a fast prototyping tcol that isn’t just thrown away when
it comes time to do the real application.

10. Acknowledgements

Thanks to Bruce Sherwood, David Trowbridge and Jill Larkin for their support and sugges-
tions regarding GLO. Special thanks to James Gosling, Fred Hansen, Bruce Lucas, Andrew Palay,
David Rosenthal, and all the ITC upon whose work GLO is based.

11. References

1. James H. Morris, Mahadev Satyanarayanan, Michael H. Conner, John H Howard, David
S. H. Rosenthal, F. Donelson Smith, "Andrew: A Distributed Personal Computing Environment",
Communications of the ACM, in press.
2. The Task Force for the Future of Computing, Alan Newell (Chairman). The Future of Com-
puting at Carnegie-Mellon University. Available from author.
3. James Gosling and David Rosenthal, The User Interface Toolkit, Proceedings PROTEXT 1
Conference, 1984,
4. "dbx(1)", Unix Programmer’s Manual - 4th Berkley Distribution, July 18, 1983.
5. Evan Adams and Steven S. Muchnick, DBXT00L, A Window-Based Symbolic Debugger for Sun
Workstations, Proceedings USENIX Users Group Conference, Summer 1985.
6. B.A. Sherwood and J.N. Sherwood, The MicroTutor Language. Stipes Publishing Co., Cham-
paign I, 1985.

-42.

12. Appendix: dbxtool.c

#include "andrew.h"

#define DBXTOOL "/itc/itc/tpn/glo/test/dbxtool”
#define INSTRUCT "/itc/ite/tpn/glo/test/instruct"

struct view »
glo_findview(), stypescriptview;

char *glo_mbewhere();

main(arge, argv)

int argc;
char rargv[];
{
StartTool(argv([0]); /% initialize the base editor and layout

* manager »/
glo_ForwardArgs(argc, argv);/# forward arguments to the program
*# running in the Glo typescript =/
glo_init(DBXTOOL) ; /# create and initialize the layout tree
* for dbxtool =/
while (TRUE)
Interact(); /+ loop forever while interacting with the
* user =/

}

typeinit{(a, b, v)
struct layout =xa;
struct view #v;
{ /# Called by glo on initialization of the
+ typescript layout. =/
typescriptview = v;

}

instruct()

{ /% initializes the instruction layout */
glo_init(INSTRUCT);

}

findlinecom()
{ /% parse a dbx line for file name and line
* number if found, place file in mbe
* window »/
register char *1, xc, #filenm;
char #getviewline();
int Inm = -1;
filenm = NULL;
1l = getviewline(typescriptview);

for (c = 1; #c 1=’ ’; c++) {
if (#c == 1’ && strncmp(c, “line ", 5) == 0) {
c += 5;
sscanf(c, "%d", &lnm);
}
else if (xc == ""’) {

C++}
filenm = c;
while (*c I= ‘"’ && *c 1= *)

-43 -

C++}
if (#c == * ')
break;
}
}
if (1nm < 0 {i filenm == NULL) {
TellUser("Insufficent data on line");

return;
}
glo_mbefindfile(filenm, 1lnm); /+ Displays the file in the mbe
* layout */
}
getfiles()
{ /% add all relevant names in current
directory to the mbe file list »/
DIR *dirpt, *opendir();
struct direct xreaddir(), =dt;
char *malloc();
char #dirname = ".";
if ((dirpt = opendir(dirname)) == NULL)

return (NULL);
for (dt = readdir(dirpt); dt = NULL; dt = readdir(dirpt)) {
if (issource(dt->d_name)) {
glo_MbeAddFile(dt->d_name);

}
}
closedir(dirpt);
return;
}
issource(s)
char *S;
{ /+ return TRUE if string is a .c or .h
* file »/
register char xc;
char srindex();
return ((c = rindex(s, ‘.’))
&& ((#++c == ‘¢’ || %c == ‘h’) && #++c == * ')
}
char *
getcurrent(c)
register char =xc;
{ /+ returns information about the mbe file »/

int i, 3;
static char buf([256];
struct view *v, *glo_mbe_view();
struct document +d;
switch (%*c) {
case ‘L’: /+ return current line number */
if ((¢ = glo_mbewhere(&i)) == NULL)
return (NULL);
sprintf(buf, "%d4d", i);
break;

-44 -

case ‘F’: /+% return current file name %/
if ((c¢ = glo_mbewhere(&i)) == NULL)
return (NULL);
sprintf(buf, "%s", c);
break;
case ‘S’: /+ return current editor selection */
if ((v = glo_mbe_view()) == NULL)
return (NULL);
i v->dot.pos;
d v->document;
if ((j = v->dot.len) == 0)
return (NULL);
for (¢ = buf; j-—-; i++)
#c++ = CharAt(d, i);

¢ 2,
’

*C =

break;
default:

return (NULL);
}
return (buf);

}

dbxbutton(i, c, mask)
register char =#c;
{ /% Insert the buttons string in the
* typescript at the current carrot
* position #/

if (#c == ’C’ && strncmp(c, "Current ", 8) == 0) {
if ((c = getcurrent(c + 8)) != NULL)
FencedInsertString(typescriptview, c, strlen(c));
}
else if (#c == ‘R’ && strncmp(c, "Return ", 7) == 0)
TypescriptReturnCommand(typescriptview);
else {
while (#c 1= ’ ’ && #c 1= ‘[’ && #*c 1= ’<’)
FencedInsertString(typescriptview, c++, 1);
if (%c == " ")
TypescriptReturnCommand(typescriptview);
}
return 1 << i;
}
addfile()
{ /+ Prompts for and adds a new file to the

* mbe layout file list »/
register char #c;
if ((¢c = AskUser("", "File Name? ")) != NULL)
glo_MbeAddFile(c);

WINDOWS IN THE HOSPITAL
or

A WORKSTATION-BASED INPATIENT CLINICAL
INFORMATION SYSTEM

in the JOHNS HOPKINS HOSPITAL

Stephen N. Kahanef, Stephen G. Tolchin*}, Marvin J. Schneider**,
Debra W. Richmond, Patrick Barta,f, Margaret K. Ardolino,
and Howard S. Goldbergft

The Johns Hopkins Hospital
(f and the Johns Hopkins University School of Medicine)
(* and the Applied Physics Laboratory)
(** and SOFTA Technologies, Inc.)
(1 and the Albert Einstein College of Medicine)

ABSTRACT

The Johns Hopkins Hospital (JHH) is developing a new, comprehensive clini-
cal information system. This system integrates many distinct functional subsystems
using a local area network. One such subsystem is a new inpatient clinical manage-
ment system. The components of this inpatient system are workstations, a mini-
computer and a network connecting the workstations to the Hospital Ethernet.
This paper discusses the workstation component of our proposed inpatient system.
The reasons for choosing workstation technology, the attributes deemed important
for medical workstation development, the results of an evaluation of workstations
and the plans to develop the new system are reviewed.

1. Introduction

The Johns Hopkins Hospital is a 1000 bed teaching and treatment facility located in Bal-
timore, MD. The Hospital currently has a collection of clinical information system components
which have been developed and operated by different departments under a decentralized manage-
ment structure. A pre-planned approach for the efficient sharing and transfer of data did not exist
when these systems were implemented. Therefore, ad-hoc special-purpose, low-speed interfaces
between systems were developed when a need existed.

Generally, duplicate data entry into the various systems occurs due to the absence of
comprehensive application-level integration. This is costly and results in data inconsistencies. Furth-
ermore, automated support for clinical functions is minimal. Therefore, in 1984, the JHH initiated
development of a modern comprehensive clinical information system. A key objective of this system
is to achieve functional integration of the current and future clinical systems by applying local area
network technology. The Operational and Clinical Systems (OCS) Division was formed to prepare
and implement the plan.

A major subsystem of the hospital-wide clinical information system is an inpatient clinical

- 46 -

management system that is workstation-based. The Inpatient system will support:
® admissions planning based on pre-admit notice

] inpatient care management - daily care plans, patient event scheduling, clinical data retrieval
and display, generic medical information retrieval, remote order entry, clinical correlations and
analyses

access from terminal, touch-tone phone, personal computer or workstation (local and remote)
concurrent (with hospitalization) practice monitoring and review ("concurrent review")
discharge planning and interface to outpatient service scheduling

production of an automated clinical resume on discharge

patient chart abstraction and diagnosis coding to support the current reimbursement methods
maintenance of census - support for discharge and transfer

generation of billing information

This paper starts with a review of the current operational systems at JHH. This is followed by
a description of the current methods for managing inpatient clinical information and of the architec-
tural alternatives that are available for the development of the Inpatient system. This paper then
discusses the workstation project goals, the clinical functions that need automated support, the
workstation evaluation criteria, our experience developing several demonstration systems (worksta-
tion experience) and workstation project plans.

2. Review of Current Systems and Architecture

There has existed at the JHH a collection of independently developed and operated computer
centers which process various, frequently duplicated clinical, financial and administrative informa-
tion. Several low speed interfaces (4800 baud and less) have been established to exchange informa-
tion for certain very high priority situations. The following is a description of the various computing
centers which are depicted in Figure 1:

® an IBM mainframe shop consisting of a 3081 and 3083 running VM/MYVS in a CICS TP
monitor environment. Clinical applications include an admissions, discharge, transfer (ADT)
system with many add-on functions and an Inpatient Pharmacy system. The Hospital’s finan-
cial systems run on these computers. A separate Patient Identification (PID) system contain-
ing about 1.5 million records in a VSAM file runs on this computer, however most outpatient
services do not have on-line access to this system, nor are other clinical systems functionally
integrated with this system. Information is obtained by telephone calls to Medical Records
personnel; the latter are the only individuals with on-line access.

® a Department of Laboratory Medicine (DLM) Information System which runs on three
PDPP1/70 computers running InterSystems MUMPS MI11+ native. Low speed interfaces
connect this system with the IBM mainframe to pass admit and change information to DLM
and to pass lab results back to the mainframe for display on 3278 terminals on the clinical
wards.

° an Oncology Center system which runs on two PDPP1/70 computers running InterSystems
MUMPS M11+ and TEDIUM. This is a sophisticated system which supports many clinical

functions in the Oncology Center. It is connected by low speed lines to the DLM to transfer
lab results.

L] an Anesthesiology and Operating Recom scheduling system which runs on a PDPP1/84 under
InterSystems MUMPS and TEDIUM. This system is stand-alone.

® a VAX 11/750 computer running VMS with InterSystems M/VX MUMPS, the Wollongong
Eunice UNIX emulation system for VMS and the Relational Technology, Inc. INGRES rela-
tional database management system. MUMPS is used to support the current Emergency
Medicine system, which is developed in TEDIUM. The D}ergency Medicine system is
currently stand-alone, yet it keeps the only on-line clinical patient history in the institution.

° two PDP 11/70 computers running InterSystems MUMPS M11+ native support the Johns

-47 -

Hopkins School of Medicine. These computers provide professional fee billing services and
scheduling services for the Johns Hopkins Internal Medicine Associates. These systems are
stand-alone.

® a VAX 11/750 running BSD 4.2 UNIX and INGRES is being developed to support the Wil-
mer Eye Institute. This system will be used primarily for research.

® three Pyramid 98x super-minicomputers running the OSx dual port of AT&T System V
UNIX and BSD 4.2 UNIX currently support the OCS Division of the Johns Hopkins Hospi-
tal. These systems are being used for many new development projects. INGRES and both the
DoD IP/TCP and Xerox XNS/SPP networking protocols run on these machines.

® several special touch-screen reporting stations which allow radiologists to compose reports and
uplink them to the IBM mainframe to support the Department of Radiology. This enables
radiology reports to be available on-line immediately after readings in most cases. Plans call
for changing the type of reporting stations and connecting these to the Pyramid supporting the
radiology information system under development. Reports would then be transferred across the
network to workstations on clinical wards as well as to the mainframe (for an interim period,
to allow access from 3278s currently on the clinical wards.)

Several other computer systems are also operating at the JHH for specialized purposes. None
of these systems process transactions with the IBM mainframe system to obtain PID information;
consequently there have been several, mutually inconsistent PID files extant. Also, functional inter-
faces to support a wide range of clinical and administrative needs do not exist.

An extensive Ethernet has been installed to connect these computing centers. IP/TCP and
XNS/SPP protocols are used on the network. The IBM mainframes have been connected to the
Ethernet using an AUSCOM 8911A block multiplexed channel adapter. This device supports the
XNS/SPP protocols offloaded from the host. The Sun Microsystems Remote Procedure Call
(RPC) and External Data Representation (XDR) (for integer and string types) protocols have been
implemented in MVS/CICS on the IBM and over XNS/SPP on the Pyramids to enable high speed
transaction processing across the UNIX and MVS/CICS environments.

The OCS Division is implementing several new systems under UNIX on Pyramid 98x
machines using INGRES. These include:

® the Long Term Database (LTDB) which is accessible from all the computers across the net-
work. It contains records on approximately 1.5 million patients, including patient identification
(PID) and demographics, clinical encounter summary and some financial information. This
replaces the mainframe PID system. The mainframe admitting system accesses this database
using RPCs. Synchronization of replicated data is handled by an RPC-based commit protocol.

® a new Radiology Department information system, integrated into the network for scheduling,
film tracking, on-line report access, resource management and other functions. A network of
personal computers (MS-DOS based) connected by a 3Com Ethernet that serves the Depart-
ment will also be integrated with the system.

® a new Emergency Medicine system for complete on-line support with special focus on clinical
needs and urgency of care as well as administrative and financial functions.

® an Outpatient clinical information system to support many of the outpatient clinics at JHH.
Initially, patient identification, registration, and appointing will be supported, but the major
long-term focus includes clinical support.

® a new Inpatient system which will itself be a distributed subsystem using workstations on the
clinical wards. The workstations will be connected to the hospital network and will be closely
coupled with a super-minicomputer holding a complete copy of the inpatient clinical database.
OCS has several workstations which it is evaluating for the development of the inpatient clini-
cal system. These include Xerox 6085 and 8010 equipment running the Xerox Development
Environment (XDE) and Viewpoint environments, Sun Microsystems equipment running BSD
4.2 UNIX, and AT&T UNIX PCs running UNIX System 5.2.

-48 -

3. The Inpatient Information System

3.1. Current Method of Inpatient Information Management

On the clinical wards at JHH, patient information management is semi-automated. While
requests for services such as blood tests, radiology studies, and consultations are processed manually,
a subset of inpatient test result reports are available on-line.

At our institution, manual methods have been shown to have detrimental effects (Blum, 1983)
in that they are associated with high transcription error rates, high communication error rates, high
staff requirements and prolonged request processing times. In addition, a variety of problems limit
the on-line system’s (result reporting) clinical usefulness. Results are kept on-line for only three
days. The login procedure is awkward and data access paths are hierarchical and cumbersome.
Displays are static and display formats are not uniform. Only a single test result (or part of a test
result) may be displayed at any given time. There is no support for (generic) medical information
retrieval, and there are no automated (implicit or explicit) decision support tools available. There
are no facilities to support document preparation. With rare exceptions, data collection is via secon-
dary computer data entry or via ad hoc dictation and transcription.

3.2. System Requirements and Architectural Alternatives

3.2.1. Overview

The inpatient system must communicate with all ancillary services for ordering tests and pro-
cedures, scheduling patient events, and receiving results. This requires interfaces to many systems,
including: Department of Laboratory Medicine, Inpatient Pharmacy, the Radiology Information
System, Admission-Transfer-Discharge, various billing systems, and the Long-Term Database. The
inpatient system must maintain a database of clinical information on current and recent inpatients,
including test results for the duration of the encounter. Other databases of generic medical informa-
tion (eg. disease or drug information) should be available.

The inpatient system should support implicit and explicit decision support tools. An example
of the former is the intelligent grouping of clinical data for display (even if components of the
display come from different specimens). Behind the scene cross-checks such as drug-lab test
interactions based on accepted medical protocols is another example. An example of tools providing
explicit decision support is a facility to provide a list of diseases worthy of consideration given some
set of patient signs and symptoms entered by the user.

The system must extend to the clinical wards and support the operation of clinicians and cleri-
cal staff in ordering, requesting, entering, retrieving, displaying, and analyzing patient clinical and
administrative information. This includes generation of care plans, transmission and display of
graphic data, graphing (charting) of values for trend and other analyses, and local printing on the
ward. Integration with the telephone system for call reception/message logging and call generation
is desired. The ability to leave notes and messages electronically and to communicate via electronic
mail with other hospital areas is very desirable.

The user interface must be simple to use. There must be several display/entry devices (3 or
4) per clinical unit as well as quality hard copy output (e.g., a shared laser printer.) The system
should provide the ability to tailor the functional support to the specific needs of different depart-
ments or divisions. Communications and display of simple images must be supported.

3.2.2. The Alternatives

Four architectural alternatives may be identified for the general design of the inpatient sys-
tem. These are:

1 centralized. This approach provides highly centralized logic which is shared by all users. Users
are served by ordinary CRT terminals and, where required, by graphics terminals. This

approach would use a fairly large central computer to handle a heavy interactive and compu-
tational load.

-49 .

2 clustered. This distributed approach provides shared logic in clusters, with each cluster sup-
porting a collection of user communities (several clinical wards.) Users are served by ordinary
CRT terminals and, where required, by graphics terminals. This approach could use several
supermicrocomputers networked together.

3 highly distributed - diskless. This approach distributes logic onto the clinical ward. Each
user’s computer support consists of a bit-mapped display and intelligent device with local
memory. A server for hard disk support and paging across the network would be needed for
every dozen or so workstations. The database support would be provided by either a distri-
buted database across these servers, or by a single "central” networked database server, or by a
combination of both schemes. The central database server could be both a backup to the other
servers as well as a single location for access by CRT terminal users. Sun Microsystems’ and
Apollo’s diskless workstations and servers are representative of this model.

4 highly distributed - local disk. This approach enables each workstation to operate from a
local disk on which the operating system and possibly a portion of the database would reside.
A ‘centralized" processor would network with these devices; both would also connect to the
JHH Ethernet. This processor would contain the backup to the databases kept in all the clini-
cal workstations to provide reliability and to protect against data loss and perhaps to perform
computationally intensive tasks for the workstations. Remote network access to servers such
as databases would be provided. In this scheme, the workstations provide customized support
for each clinical unit and can handle many local management tasks for the ward. The "central”
processor would support a regular CRT terminal community for many functions not requiring
workstations. Xerox 6085 and Sun workstations with local disk are representative of this
model.

3.3. Architecture Discussion

The first alternative is modelled after the classical DP center, but fails to satisfy all of the
requirements and is not particularly cost effective. A networked graphics terminal on each clinical
ward would cost almost as much as a workstation. It would place a very heavy 1/0 load on the cen-
tral machine. The central machine would be a single point of failure for the system. Also, the cen-
tral machine would be used for user display management and other programs as well as database
access and would therefore require considerable computing capacity. Response times probably would
not be as good as if data were stored local to the user on a clinical ward dedicated device and would
probably not be better than remote access to a network database server from the workstations which
would offload display management and user "front-end" support.

The second alternative adds complexity without satisfying the graphics and cost objectives any
better than the first alternative. Perhaps 15 supermicros would be needed with each supporting 3 or
4 clinical wards. This would be expensive and would impose technical difficulties. For example,
which supermicro should Lab send a result to?

The third alternative allows a collection of clinical wards to be supported by a single server
remote from the workstation location. Each such collection forms a distinct subsystem. Data repli-
cation is somewhat reduced as is overall system reliability. The diskless workstations cannot operate
stand-alone, thus a different approach is needed to place workstations in physicians’ offices. How-
ever, this alternative does permit creation of the desired user interface on the workstation.

The fourth alternative is a hybrid solution which provides both a unique central database
server, local data storage as necessary and special capabilities in the workstation for creating sophis-
ticated user applications. Modest central computing capacity is required since display management
and user "front-end"” and other processing are off-loaded from any central computer. The worksta-
tions can access the "central” database system, as well as any other server system on the JHH net-
work (this would include special Al-based expert system servers, library reference systems, as well
as databases and applications on other systems.) The workstations provide improved reliability (no
single point of failure), and scaling (easy to add another workstation).

The distributed approach is the solution adopted for the JHH inpatient system architecture
(see Figure 2). We are evaluating vendor products and the tradeoffs between local hard disk vs.

-50-

subsystems of workstations sharing a server.

The model for distributed computing on which the system design is based is the client - server
model. Remote procedure calls across heterogeneous systems are used to allow processes on one
computer (e.g., workstation) to invoke procedures on remote machines by executing what appears to
be a local subroutine call. This is done in a way that isolates applications programmers from the
details and complexity of network mechanisms. We intend to use this model to allow processors and
workstations to access remote databases, expert system servers and computational servers in a uni-
form manner. Similarly, commitment of updates to replicated data will be treated as a client appli-
cation. To date, the Sun RPC and XDR protocols have been used. If we select Xerox workstations,
then Courier will be implemented in the UNIX systems.

4. The Clinical Workstation

4.1. Introduction

The Clinical Workstation (CWS) is the tool that makes a complicated distributed system
understandable to its users. It transforms medical information from many different sources into a
form familiar and useful to health care personnel. It allows transparent access to systems that pro-
vide a host of auxiliary services. Local processing power allows sophisticated display, manipulation
and analysis of this clinical information. Local processing power also facilitates the use of tools that
provide a multimodal communications interface that should help with data collection and entry
(Johannes and Kahane, 1985).

4.2. Goals

What is unique about the workstation is that it reflects the way health care professionals think
and work; users are not constrained by conventional computer representations of information (eg.
sequential, hierarchical, single-tasking). With these things in mind the specific goals of the CWS
Project may be summarized as follows:

® to build a clinical workstation that allows health care professionals to interact with the
hospital’s computing facilities while hiding the system’s distributed nature;

to employ the desktop metaphor to provide a familiar and flexible user environment;

to provide facilities for consistent and uniform tool manipulation throughout the system (an
easy to learn and easy to use interface);

® to utilize local processing power

— in conjunction with context dependency specifications to capture and display only
required clinical information,

— in conjunction with special purpose tools (eg. voice recognition systems) to facilitate data
capture,

— in conjunction with a local relational database to structure clinical data and support ad-
hoc querying,

— in conjunction with local intelligence and the multi-windowed environment to facilitate
the intelligent display of clinical information (Polister 1984, Streveler and Harrison
1985),

— in conjunction with medical information retrieval and decision support tools to provide
an environment that helps optimize the quality and efficiency of clinical care delivery;

® To build in the hooks necessary to support communication with all other health care delivery
sites. (This paper discusses only the inpatient system.)

-51 -

4.3. Functions

Interfaces for the physician, nurse, clerk, and other allied health professionals are being

developed and will exist in parallel. Though staff functions vary greatly, it is possible to categorize
workstation functions into the following groups:

Request Entry with Automated "Backend Processing” - Examples of facilities that will be sup-
ported include remote request for blood studies, special testing, consultations, and therapeutic
interventions.

Clinical Data Capture - Real time data collection in clinical settings has proven to be a diffi-
cult problem. Because of this, applications have relied on secondary computer data entry or
ad-hoc dictation for data capture and recording. Both of these methods have significant draw-
backs including the requirement for extra staff, the increased time elapsed between event and
computer data capture, the errors incurred secondary to the interposition of another human
process, and certainly in the case of dictation, unstructured data collection. The use of the
computer as a tool for clinical data collection has been delayed because of problems with the
interface and because of a lack of incentive for use. To address these long standing problems,
we are studying the effects of using graphics, icons, pointing devices and voice recognition
technology as tools for improving data collection and documentation for a group of procedures
that report on the visual inspection of a portion of the human anatomy. We hope to develop
systems that structure data collection without limiting data content flexibility. The availabil-
ity of an integrated set of tools to support the practice of clinical medicine will provide the
incentive to use our system.

Clinical Information Display - Display of clinical information supporting concepts of logical
grouping, reduction/emphasis, and segregation/transformation techniques will provide implicit
decision support for health care professionals. Tools for explicit manipulation of clinical infor-
mation will be provided as well. Demographic information will be available since there are
times that such information is clinically important. An on-line patient schedule will be main-
tained as will the problem list and medication list.

Medical Information Retrieval - Methods to access databases of clinical information and data-
bases of medical literature citations will be supported. Several of the databases will be sup-
ported locally (we need laser disk technology or something comparable), while others will
reside at locations outside of the Johns Hopkins Medical Institution. Efficient and easy to use
interfaces will be developed where such interfaces do not already exist.

Clinical Decision Support Tools - Conventional approaches as well as non-conventional
approaches will be supported. Much of the support will be implicit (eg. drug-drug or drug-lab
test interaction checking, dynamic formatting of data display, ...). Facilities for explicit use of
certain tools will be supported as well. Examples of the latter include tools to support building
decision trees, doing risk analyses, doing threshold analyses, doing cost-effectiveness analyses,
and doing sensitivity analysis. As mentioned, tools utilizing artificial intelligence techniques
will also be supported. Some tools will probably use a combination of these conventional and
non-conventional approaches.

Patient Care Plan Development - Certain databases or file browsers will contain information
helpful in the construction of patient care plans. The documents will be created with informa-
tion obtained from a variety of sources including:

— patient-nonspecific information obtained from the databases described above

— patient-specific information obtained from the on-line patient database

— patient-specific information obtained from the individual constructing the plan

The information will be pertinent only for the patient for which it is constructed. The multi-

windowed environment will help facilitate the construction of these patient-specific care plans.
Related to inpatient stays, care plans will be constructed to help with critical path planning,
~ discharge planning, and post-stay follow up care planning (discharge instructions with scheduled and
yet unscheduled follow up visits).

-52-

® Communication Capabilities - Electronic communication facilities will support free-text mail
and forms transmission. Users will have facilities to construct their own forms as well (eg.
history and physical, daily rounds).

4.4. Workstation Evaluation Criteria

The workstation should be based on models of professional / machine interfaces which have
been proven effective in research and actual use. Sufficient resolution to present multiple active win-
dows and subwindows of text, graphic, tabular and form-based information must exist. Windows
should be scrollable, movable, and sizable. Icons, pop-up menus, pointing devices, and subwindows
should be supported. Sufficiently powerful and fast local intelligence to provide memory for the
bit-mapped screen capability, simultaneous active windows with good response times, and hard disk
management must exist. Functional integration of communications capabilities into the JHH Net-
work must be provided. The ability to emulate multiple terminal types, including VT-100 and 3278
is required. Support for additional dumb terminals and a local, inexpensive laser printer is desirable.
A software development environment should provide an interface to all tools, to the window
manager, the pointing device and to certain application programs.

One check list of criteria being used at JHH to aid in the selection of the workstation is shown
in Table 1. Issues related to the system’s price, performance, communication capability, user inter-
face, application development environment, and physical characteristics are being studied.

4.5. User Interface

4.5.1. Introduction

As mentioned, the user interface is extremely important to the goals of clinical information use
and capture. Systems must be capable of displaying a complex collection of integrated clinical infor-
mation in a way that is easy to use and to understand. The presentation of complex medical data in
a useful, informative format leading to rapid, consistent clinical decisions is similar to the presenta-
tion of a collection of complex business information to management. Computer scientists have
recognized this problem for some time and have been developing "executive workstations" as a solu-
tion. Our concept of the clinical workstation is analogous to this.

In addition to clinical information display, the problem of clinical information capture must be
addressed. Historically, the clinician - computer interface has always been a problem. The problems
include: keyboard data entry, difficulties in finding time to learn to use a system, reliance on dicta-
tion and handwritten notes. The challenge is in building usable human interfaces for information
capture and in building tools for structuring "free text" for database entry of clinical and billing
information. The best information is that entered from the clinical source; passage through layers of
clerical personnel is expensive, produces costly errors (of omission and commission) and reduces the
timeliness of information.

4.5.2. Existing Technology

JHH is evaluating technology suitable for constructing clinical workstations. There are three
generic types of workstation product available. At the high end are very high resolution, powerful
devices designed primarily for CAD/CAM/CAE applications. These devices have resolution that
enables display akin to a color photograph in some cases. Examples of these systems are the
MASSCOMP, Apollo and Sun high-end workstations. These systems are too expensive for use as
clinical workstations at JHH, they cost from about $10,000 to $40,000.

At the low end are the PCs with various software products to provide windows, mouse support,
etc. These PC implementations suffer from problems of single-tasking operating systems (only one
active window at a time), slow response times, inadequate screen resolution, inconsistency in the

interface and a non-integrated very weak subset of functionality and limited tools for new applica-
tions development.

The third class of workstations are recent products with lower cost and high performance.
These products include the AT&T UNIX PC (also known as the PC 7300 or the "Safari-4"), the

-53-

Xerox 6085 Professional Computer System, lower cost workstations from Sun Microsystems and
Apollo. Various other UNIX-based products with mouse and window capabilities which are
expected to appear soon. Prototype clinical workstations have been developed using the Xerox and
AT&T systems; work has also begun on the Sun-3.

S. Experience
5.1. The AT&T UNIX PC

5.1.1. Introduction

Our first prototype was built on the AT&T UNIX PC. As a beta test site for this machine,
our organization had an interest in developing a test application which would exercise its capabili-
ties. Also, it had the first available multi-tasking, windowing, and graphics system environment
which met our price/performance requirements. Development proceeded using standard UNIX tools
(C, yacc, uucp, etc.) familiar to the programming staff, plus command- and subroutine-level facili-
ties available in the User Agent. The User Agent is the multi-window user interface provided with
the UNIX PC.

5.1.2. Development of a Demonstration

In about 2 person-months of design, programming and debugging, we developed a system that
demonstrated key CWS goals. The user interface that windows provide was successively refined.

Figure 3 shows what the user sees after logging in. Selecting items on this menu with the
mouse allows the user to request tests, X-rays and consultations, view laboratory data or patient
schedules, browse through on-line medical information, access a citation service, use decision support
tools, or prescribe medications. Figure 4 shows a sample of the system as a user requests a radiol-
ogy study. Pop-up windows prompt the user for information that is then used to construct a requisi-
tion in a second window. The requisition window can be reviewed and then, following some form of
"electronic signature”, information is conveyed to the remote site.

5.1.3. Architecture

The UNIX PC architecture was robust enough to develop a useful prototype with the impor-
tant exception of adequate networking capabilities. We were able to simulate network communica-
tions using uucp to remote systems. We also implemented an ASCII subset of the Sun RPC proto-
col to work via the serial RS232 ports. Despite limited communications speed, this sufficed to
demonstrate workstation communications in a distributed network.

5.1.4. The Development Environment

The main problems we encountered in building this prototype were deficiencies in the software
development tools, in processing throughput and in screen resolution. We were handicapped by hav-
ing only a set of low level tools for creating, manipulating and destroying windows and interacting
with the mouse, and a much smaller set of high level tools for designing forms, menus, type fonts,
icons, and customized windows. Although the low level tools (called TAM-terminal access method)
were reasonably complete, they were primitive and required extensive manipulations of physical
rather than the logical properties of windows. On the other hand, the high level tools directly sup-
ported the logical units that we designed into the prototype such as forms, menus and windows for
displaying text. These tools were simple to use, (eg. a text file to describe the structure and content
of a menu window) but, they were often inflexible.

We were astonished to find that there was no window-like equivalent to the UNIX more com-
mand when we wanted to display text in a window and have it scroll up and down by pointing to
arrow icons in the window borders. Although another command, uahelp, in the UNIX PC develop-
ment software solved this problem (and reformatted the text when the window changed shape, as
well) it was frustrating to have to match the application to the tool (by inserting extraneous control
characters into simple text files). This command also imposed unreasonable limits on the size of the

-54 -

input file. Although we clearly saw that the TAM package could provide primitive building blocks
for a complete windowing package, we were unwilling to develop the bulk of the necessary develop-
ment tools for a windowing environment ourselves. Source code was unavailable, and we realized
that it was important to have the right tools for developing window-based applications.

Many of the applications we envision involve forms, menus and windows containing text, but
our access to their representation on the screen and the flexibility with which we could manipulate
them with the high level tools was too restrictive in the AT&T UNIX PC environment. A signifi-
cant limitation was the lack of subwindow capabilities. None of the supplied tools readily support
the visual concept of tiled windows inside other windows (subwindows or "panes.”) If each menu in
a command sequence comes up within its own window, for example, the visual effect is often either
one of clutter (if all the menus remain displayed) or similar to a flashing neon sign (if windows are
alternately created and destroyed). We feel that the visual metaphor of subwindows considerably
adds to the presentation of information in a logical style as was done in the "System Browser" of the
Smalltalk-80 programming system, or the organization of shape and texture icons in the current
microcomputer programs for freehand drawing, such as MacPaint. Also, forms with headings and
scrollable text or columns need subwindows to group related items appropriately.

The processing speed of the UNIX PC was sometimes slow, especially when using shell scripts.
Since the high level windowing tools are often invoked from the shell, this often led to perceptible
delays in putting up the next window. If the system was loaded with 2 concurrent graphics-intensive
tasks, delays in updating the screen became intolerably long. Unfortunately, the high level tools
available forced us to use relatively inefficient shell scripts rather than calls to C routines. Some of
the performance problems were made even worse by the very slow disk access speed.

The graphics resolution of the UNIX PC was also inadequate. The 720 x 348 pixel array (12
inch diagonal screen) proved to be too coarsely grained for our tastes. One advantage of a window-
based environment is that several windows can be displayed at once. For a given screen size, the
fineness of the resolution determines how many windows can be viewed without objectionable losses
in clarity. The limit to how many windows that we could use in the UNIX PC was controlled not
by the physical size of the windows but by the clarity of the window image. In other words, small
window objects were hard to read because they were poorly resolved, not because they were too
small to see.

At the end of this effort, we had a working prototype, an appreciation of what software tools
were required to develop applications programs for a windowing environment and a rapidly growing
shopping list of applications that we felt would be well-matched to the windowing user interface that
we were designing.

5.2. The Xerox Development Environment - MESA and PILOT

5.2.1. Introduction

The Xerox Development Environment is a software development package that relies heavily on
the use of icons, graphics and the mouse. The muiti-windowed environment provided in XDE runs
on the Xerox 8000 and 6085 series of computers. Currently, all software development is done in
XDE using the MESA programming language running in the PILOT operating system. The target
environment for Xerox workstations is ViewPoint, which provides a more controlled and well-defined
user interface. ViewPoint, the successor to Star, provides an office metaphor, so users manipulate
documents, folders, file drawers, in- and out-baskets, etc. on their "desktops”.

5.2.2. Hardware

We initially worked on the Xerox 8010 hardware. Work has been shifted to their new, lower
cost 6085 Professional Computer System which has the following noteworthy characteristics:

— a proprietary processor running at 16 MHz. (The so-called "Mesa" processor is based on the
Xerox Mesa Architecture, a processor architecture designed for efficient execution of large
scale modular programming systems. The architecture is also used in Xerox’s 8000 and 1100
series processors.)

-55-

— a 32-bit address space

— 2 697 x 880 pixel 15 inch display (80 pixels/inch) - (19 inch is optional)
— a two button optical mouse

— a 10 Mb hard disk (20, 40, or 80 Mb disks are optional)

— 1.152 Mb of main memory (expandable to 3.712 Mb)

— Ethernet interface

— a retail price of about $5000

5.2.3. The MESA Programming Language

MESA is a highly structured and strongly-typed programming language similar to, but much
more capable than PASCAL. MESA provides mechanisms for concurrent execution of multiple
processes; the mechanisms are similar to those supported by the C programming language. In addi-
tion, MESA uses signals to indicate exception conditions. It is our impression that all of the prob-
lems inherent in ISO PASCAL have been worked out (eg. no variable length strings, funny evalua-
tion of compound booleans, etc.)

It is noteworthy that three of our programmers, one experienced with PASCAL and LISP and
the other two experienced with C, found MESA powerful and flexible. All three were able two
write "useful” code after approximately one week of training. Several of the high-level tools, for
example the form layout tool, facilitated our development of a demonstration system in less than one
and one half person-months.

5.2.4. The PILOT Operating System

The operating system, PILOT, is written entirely in MESA. There is virtual memory manage-
ment with process management tools and run-time support for concurrency. While there is support
for multitasking, there is no support for multiple users in XDE. We will have to develop an applica-
tion to handle rapid login and logoff - currently, initialization of a ViewPoint desktop requires
approximately 30 seconds. JHH physicians have told us that rapid access to the system is absolutely
necessary, or the physicians will not use the workstations. Issues of file ownership, access and read-
write management will require some development work.

In addition, for remote procedure calls Pilot uses the Courier protocol. This may represent a
problem for communication with UNIX machines. At the time of writing, it is believed that the
release of BSD 4.3 UNIX will include support for Courier and SPP. We will also have to integrate
Xerox mail with foreign (UNIX) mail formats.

5.2.5. Development of a Demonstration

Using the Xerox 8010 workstation and the Xerox Development Environment (XDE), we
developed a demonstration system that implements a subset of the functions developed on the
AT&T UNIX PC. Specifically, the following functions have been fully developed on the Xerox sys-
tem and run in XDE:

— Laboratory Test Order/Entry -- A simple form is displayed from which laboratory tests
(booleans) can be chosen. To signal a desire to begin the processing of a request the "Order"
command is selected. For feedback to the user, a list of all the chosen tests appear in the
tool’s bottom subwindow. The form layout tool helped generate approximately ninety percent
of the code needed to support this application, including automatic generation of pop-up
menus from enumerated types.

— Laboratory Results Display -- The status (eg. pending, available, lost?) of various laboratory
test results are displayed in a window. Those results which are available may be selected from
this window and displayed by selecting the "Display Results” command. When test results are
displayed, their names are removed from the status window (see Figure 5); when windows con-
taining results are destroyed, test result names are redisplayed in the status window. The
"Destroy” command in the status window destroys the status window only if all result windows

- 56 -

have been destroyed. While the form tool was helpful, we also learned a great deal about the
ease with which one can handle window-to-window communication. In addition, we exercised
some of the low level mouse tracking routines.

— Radiology Request/Entry -- A blank requisition form is displayed containing a header of
patient demographics. From the requisition command subwindow, forms to request radiology
tests can be called. Much clinical information must be collected (data input needs are high)
prior to the performing of certain medical studies. The process of developing this application
provided us with insight into approaches that allow context-dependent data collection. We
wish to minimize questioning (prune a tree of questions) by using knowledge already available
to the application (eg. RPC to remote database machine) and by using information collected
at’s runtime (eg. if the patient has no allergies to medications, don’t ask which medications).
We need tools to support dynamic forms and cascading menus. Xerox provides it all.

We are currently porting this demonstration to run under ViewPoint. The development of our
demonstration has taught us a great deal about the toolset that might facilitate rapid prototyping of
our applications.

5.2.6. The Development Environment

One of the most attractive features of the Xerox workstations is the comprehensive set of
development tools. Xerox adheres to the philosophy that processes exist in a cooperative, not compet-
ing, environment. Each process is responsible for acquiring its own resources, and then releasing
them when no longer needed. This cooperative approach has carried over to the set of development
tools that are available. There are hundreds of tools, ranging from primitive routines to an interac-
tive form layout tool (that generates MESA code), that can be used to speed the development pro-
cess. The form layout tool is an example of a high level development tool that does not limit appli-
cation flexibility. MESA code generated by the layout tool may be customized by the applications
programmer. An application programmer can spend his time developing applications rather than
developing the tools he needs for the application.

Following this cooperative philosophy, XDE provides an environment based on fully integrated
tools that encourages rapid software development. The text editor, compiler, binder (linker), and
source code debugger are tightly coupled so the edit — execution cycle is very fast.

High-level tools and low-level access coupled with powerful debugging tools, a consistent
method for window-to-window and application-to-application communication, and a consistent and
intuitive developer’s interface make XDE an attractive development environment.

5.2.7. ViewPoint

As mentioned, while the XDE interface is consistent and flexible, it is not simple enough for
application users. For this reason, Xerox provides tools that allow the development of ViewPoint
applications from within XDE. The ViewPoint architecture is open and flexible. Like XDE, no
assumptions are made about applications that run above it and a philosophy that the user should be
in charge of the window layout at all times is encouraged.

To help support this concept, the developer is provided with tools that allow the construction of
a host of intelligent window types. Terminal emulation for VT-100 and 3270 is supported. We are
beta-testing a PC emulation board that facilitates the integration of applications available in the
DOS environment. PC emulation can help users in the transition from PC-based systems to worksta-
tions. They have the functionality they are familiar with, plus the new capabilities of the worksta-
tion. Windows can be in an overlap or tiled mode and there is full support for tiled subwindows.

5.2.8. Summary

XDE provides a very attractive development environment to support the types of applications
we have planned. High-level tools would facilitate rapid prototyping; the low-level access provided
keeps the flexibility of the system high. A nineteen inch monitor is available and provides the same
pixel density (80/inch). We feel that this screen size and resolution is what our system will require.

-57-

Product performance (speed and efficiency) is impressive in the XDE environment. We are in the
process of assessing performance of applications running in ViewPoint. While initially the network
issues (the need to support Courier and SPP) were a major concern, we are anticipating support for
Courier and SPP in the BSD 4.3 UNIX release. All in all, the price/performance ratio for the 6085
is impressive; XDE and ViewPoint provide us with an attractive development environment and user
environment respectively.

5.3. Sun-3 and SunView

We are anticipating the arrival of the Sun-3 and SunView for evaluation. The performance
should be excellent, due in part to the MC68020; the physical characteristics (display size and reso-
lution, optical mouse, etc.) are certainly acceptable. The communications environment (IP/TCP
and NFS/XDR/RPC) fit well into our UNIX environment at the Johns Hopkins Hospital.

We need SunView to determine how well the Sun-3 will meet our development environment
and user interface criteria. The documentation provided to us indicates considerable improvements
over the earlier SunWindows tools.

5.4. Other Candidates

We continue to evaluate other workstations. We are talking with Apollo Computer, Inc. about
present and future DOMAIN systems. We find their very highly distributed network attractive.
IBM has met with us. However, they feel that at this time they cannot satisfy our
price/performance requirements. Another major firm, under a non-disclosure agreement, is discuss-
ing with us a future workstation/system that may meet most of our needs.

6. Plans
The development plan for clinical workstations is organized into several phases:

— candidate product selection; identification of minimum hardware and software capabilities;
establishment of vendor relationships for information and support;

— development of a "demonstration” CWS. This was done to provide a concrete example of what
we are trying to accomplish so that user involvement could progress. A team of programmers,
physicians, nurses and other personnel was formed to define specifically the requirements for
physician, nurse and ward clerk workstation capabilities. A "pilot" CWS capability was base-
lined and a set of objectives to be accomplished over a longer term were identified. The
demonstration system was built initially on the AT&T UNIX PC; enhanced demonstration
systems were built on the Xerox Star under the XDE/MESA environment and begun on the
Sun 2/120 under the UNIX operating system using various tools provided by Sun;

— development of a "pilot" system. This system is for actual use on a pilot clinical unit for the
purposes of evaluation and validation of requirements. It is designed to implement the baseline
capabilities which include integration with other hospital systems, these capabilities are a use-
ful subset of the functions listed in the Introduction. An operational pilot is planned for second
quarter 1986;

— proliferation of a modified "pilot". Based on the evaluation, an enhanced and modified pilot
system will be proliferated to other clinical wards for a wider range of feedback. Requirements
for additional functionality will be determined and a "target” system will be developed. This
work will occur during CY 1986.

— development and full proliferation of "target" system. The system will be expanded to all clin-
ical wards (there are approximately 50) in the hospital.

7. Summary

Design criteria for the JHH inpatient system architecture and for the associated clinical
workstations have been discussed. This system is currently under development and examples of the
user interface on the potential workstations have been prototyped. Workstations will be deployed on
clinical wards after pilot evaluation at selected sites. These will be networked with a

-58.

superminicomputer for database redundancy, support of functions not requiring workstation technol-
ogy and cpu-intensive tasks. The supermini and workstations will be connected to the JHH Ethernet.
Workstations will have connectivity with other networked computers, printers and specialized
servers.

8. Acknowledgements

We wish to acknowledge the information and assistance provided by the following vendors:
AT&T Information Systems, Xerox Corporation and Sun Microsystems, Inc.

9. Trademarks

UNIX is a trademark of AT&T Bell Laboratories

UNIX PC is a trademark of AT&T Information Systems

Ethernet, XNS, SPP, Courier, XDE, MESA, Star, 8010, 6085 and ViewPoint are trademarks of
the Xerox Corporation

INGRES is a trademark of Relational Technology, Inc.

98x is a trademark of Pyramid Technology Corporation

VT-100 is a trademark of Digital Equipment Corporation

3270 and 3278 are trademarks of the IBM Corporation

MASSCOMP is a trademark of Massachusetts Computer Corp.

DOMAIN is a trademark of Apollo Computer Inc.

Sun-2, Sun-3, Sun Workstation, SunWindows and SunView are trademarks of Sun Microsystems,
Inc.

10. References

E. S. Bergan, et al., "Using Remote Procedure Call Protocols for a Distributed Clinical Information
System", Proceedings of UNIFORUM, February 1986

B.I. Blum, "Information Systems at the Johns Hopkins Hospital", Johns Hopkins APL Technical
Digest v.4, n.2, 1983,

D. P. Connelly, et. al., "Graphical Representation of Clinical Laboratory Data", Third Annual Sym-
posium on Computer Applications in Medical Care, 1980.

R. S. Johannes, S. N. Kahane, B. Ravich, and H. P. Roth, "The Use of Voice and Graphics in an
Endoscopy Data Collection System" Proceedings of the Voice I/O Systems Application Conference,
September 1985.

P. E. Polister, "Intelligent Display of Laboratory Data", Eighth Annual Symposium on Computer
Applications in Medical Care, pp 402-405, November 1984.

D. J. Streveler and P. B. Harrison, "Judging Visual Displays of Clinical Information", MD Comput-
ing, v.2, no.2, pp27-50, 1985.

S.G. Tolchin, et. al., "Overview of An Architectural Approach to the development of the Johns Hop-
kins Hospital Distributed Clinical Information System", Hawaii International Conference on System
Sciences, January, 1986.

S.G. Tolchin, et. al., "Integrating Heterogeneous Systems Using Local Network Technologies and
Remote Procedure Call Protocols", Ninth Annual Symposium on Computer Applications in Medical
Care, November, 1985.

S. G. Tolchin and W. Barta, "The Johns Hopkins Hospital Network Hawaii International Confer-
ence on System Sciences, January 1986

3PDP 11/70s

3 Pyramid 98Xs
Waboratory | k111750
= =
d
Meyer
i 1SD [
Anesthesiology Terminals
POP 11/84 1BM 3081
(8M 3083 [}___— Emergency
ATAT 385 Room
2PDP 11/70s Witmer
— —
Schaol of] T
Medidne
. J—, . [Optha!mology
Reed Hail VAX 117750
Houck
2PDP11770s —
oncology ———f1 ‘T‘ "
[Medical Records
Neuro-Radiology ————[] Terminals
Terminals [
OCS 0OCS Test
Office i Cable
Terminals, ATAT UNIX PC

Xerox Stars, 6085 workstations

SUN workstatiol

ns

Figure 1: Johns Hopkins Ethernet Network

Nursing Unit Workstations

I

1 L
\ Network of workstations
Super and hosts
minicomputer
. . < Appt. Requests,
. —>
fi’{',’;.‘ fPre-Admit ¢ AdmitPlanner Orders
e Qutreach @ Inpatient Care Mgmt
: <+ Lab, Pathology,
*Scheduling Radiology Reports
Direct Physician — ® Orders /Requests
Access <4—| eResults pr— Zl::n::;acy Profile/
® Concurrent Review
Online Hi ® Abstraction & Coding
l. onng"'ree ' r:!ory — ® Discharge Reports & —> %harge ;
Oatabase Outpatient Interface ransactions
New Radiology Long Term
System Patient Database
| 1
— —
JHH Ethernet
Pharmacy ATD
O.R. Scheduling Lab System
Pro Fee Billing Outpatient Systems

Figure 2: Architecture of the Johns Hopkins
Distributed Inpatient System

69

Tue Nov 26, 9:83 an

l:.i CHS-Physician

1. Request Laboratory Test
. Request Consultation
4. View Today's Clinical Data
S. View Cumulative Clinical Data
6. Uiew Patient Schedule
7a. Hedical Information - Drugs
7b. Hedical Infcrmation - Diseases
7c. Medical Information - Literature Search
Ba. Decision Support Tools - Calculations
8b. Decision Support Tools - Differential Diagnosis
9. Prescribe Medication

W

SECURTT “ PREV NEXT “-FIND SHOW —
WINDOW | HINDOY : LAYOUT

Figure 3: AT&T 7300 Screen After Login

UDICE 1; IDLE DATA 2 Tue Nov 26, 9:65 am
[£s] CNS-Physician L.

1. Regquest Laboratory Test
-2. Request Radiology Stud

3. Request Consultation

4. Vieu Today's Clinical Data

5. Uiew Cumulative Clinical Data
6. VUiew Patient Schedule

29. Eeq4ca{4§n§ornatgon - Egugs
€3] 2. Request Radiology Study
ame:Barta, Nendy

questing Physician: Dr. Jones

Patient is pregnant
Patient's LMP is unknown

Patient pobility:

fible to malk
Kheelchair

-Stretcher

Hist No:11-222-33 Hey-324

i i [UREHTHRET

i B R T R R R R T H R R T
Make a selection

Figure 4;: AT&T 7300 Screen After Selecting
"Request Radiology Study"

TR = T o
Gial VEEE__)

S @
)

Thrsaey Scp & - 16250
Volums: CoPiloe 13181 pages

Qoo Patsiox| -0

utlax: (Jones, J.) Roow sester; Halsted 478 C5F QeExISIRY
o 0: 3632 N Pt sz Jves, Jorm
o my 2, 1347 s N XYCEE
sex: ale Reondig Rysictan: Trail), T, %ﬁ% ;ﬁ:zgm:,un
Sarg; e Reqesting Rysiclan: Gileers, u, bidilee : 8
Qrvee age; N torml fanpe

!
fogest Ltoreiory Syl View Toy's il Dviat Vi Atdene Schoatel] Cloese + 0 wpral .
Rogest Radlology Scudy! Vies Qautetive Outa) Qwrgn Patiaw Scrotutel %1 ;Protein o N mg/0) 28 - 39 og/cth
Reqert Corouteat it View Cata 2y Oiscase typothesisy I

£1 | ‘oeecs on 1 alie of glucase
Rearest soras glucose o 184 o Jid ot 9%

Ml : 975 1 30

PIUITLS CF LELTTATTY RIS e e e Oate : July 4, 1385
" Tios: 105

1Bispley Remsleat Ocztroy!

Text e
OF Glurcs
-6
a8

T

Patior Mase | Jones, Jom

CF {OrRoey

A
-

2

g

:

(=]
&30
9’««1\

T

YT
53
s S

TEE
g‘ 2

¥

g

g_

§

Figure 5: Xerox 8010 Screen After Selecting " View Today’s Clinical Data"

and Each of the Available Results

- 61 -

JHH CLINICAL WORKSTATION CRITERIA

Issue

Comments

PRICE

workstation units
laser printer
options (eg. disks, PC emulation, etc.)

PERFORMANCE

acceptable CWS demonstration
architectural design (quality, open, distributed, etc.)
results from running a selection of benchmarks

COMMUNICATION

with other workstations, minis, JHH ethernet
electronic mail capability

with UNIX machines (uucp capability)
remote access to workstations

via telephone

USER INTERFACE

display size, resolution

windows (multi, scrollable, movable, sizable)
icons, pop-up menus, pointing devices

ability to customize display (interface flexibility)
context driven data capture and display
emulation of terminals (VT-100, 3278)
emulation of IBM-PC on the workstation
support of crts hung off workstation

support of remote crts

DEVELOPMENT ENVIRONMENT

array of tools for software development

- editlcompileltestidebug tools

- high level software design tools

- tools for development of charting & graphing functions
data base support
source code availability or comprehensive documentation
ability to interface with window manager, pointer, applications
future maintenance issues
training (of the developers) required
how much background processing can be done
effort required to create a ‘foolproof’ user environment
ability to use standard security system
tools for adhoc charting & graphing
ability to send screen-print to network printer
local data management
artificial intelligence support (i.e. LISP)

PHYSICAL CHARACTERISTICS

reliability

ruggedness

ease of unit replacement
power required, quietness, size

MISCELLANEOUS

solid vendor with good field support, reputation & finances
product family future plans
availability of sister workstations (gray scale, color)

Table 1: Workstation Issues

The Feel of Pi

T.A. Cargill
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Pi is an interactive debugger for C and C++ on Eighth Edition Unixt sys-
tems. Its user interface uses multiple windows on a DMD 5620 terminal. Pi does
not feel like a debugger with a sequential command language, nor does it feel like
a debugger where commands from a bitmap display are translated into a sequen-
tial command language. In contrast, Pi’s multiple windows display multiple active
views of its multiple subject processes, allowing the programmer to browse
through a network of information. The programmer interactively wanders
through a set of executing processes, probing for insight with a tool that really
helps.

Each window displays a specific view of a subject process in parallel with the
other windows. The contents of pop-up menus are determined by context — the
current window and the line of text selected within it.

Pi is written in C+ + and uses Eighth Edition’s /proc to access arbitrary live
subject processes.

Introduction

Pi (Process Inspector) is an experiment in debugging with an interactive, bitmap graphics
user interface. The debugging technology is conventional: breakpoints are planted in the subject
process so that the states the process moves through may be examined. But the user interface is
unconventional.

In a conventional debugger, the programmer inputs a sequence of commands that are inter-
preted by the debugger. The debugger responds with information about the subject process.
Several problems arise. First, the debugger can usually accept only the subsct of its commands
applicable to the debugger’s current state. For example, breakpoints can only be set in the current
source file, or expressions can only be evaluated in the current activation record. Second, the
debugger’s output is passive and cannot be used to obtain further information about, or other views
of, the process. For example, if a value is displayed by some command in an inappropriatc for-
mat, the programmer must re-issuc the command, specifying another format, or take the value and
manipulate it elsewhere. The effect is that any non-trivial debugging is accomplished by combining
the debugger with some of our oldest tools — pencil and paper. Third, a debugging command
language must necessarily be very large, if it is to be useful. Generally, keyboard languages are
complicated, and often cryptic.

The goal in writing Pi was to create a full-function interactive debugger with a good user
interface: menu-driven, reactive, usable without a scratch pad or reference manual.

¥ Unix is a trademark of AT&T Bell Laboratorics.

- 63 -

Interface Model

Pi’s user interface assigns each view of a subject process to a separate window. Each window
has its own menu of operations, appropriate to the view presented. Within each window are lines
of text providing details of the window’s view. Each line has its own menu of operations,
appropriate to the information presented. Interaction is driven by the programmer selecting opera-
tions from these menus. In response to each operation, the debugger adds or removes windows, or
lines, or their menus. A window or line may also choose to accept a line of input from the key-
board.

On the DMD 5620, a layer is subdivided into a set of scrolling, overlapping windows. The
mechanics of the user interface are derived from Jim, a text editor by Pike[2,4]. There is a current
window (with a heavy border), and within it a current line (video-inverted). Each button on the
three-button mouse serves a specific role. Button number 1 is for pointing. If the cursor is outside
the current window, button 1 selects a new current window. If the cursor is inside and over a line
of text, that line becomes current. If inside and in the scroll zone, the window scrolls to center the
proportional scroll bar over the cursor. Buttons 2 and 3 raise the pop-up menus for the current
line and window, respectively. Menus also scroll and may have pop-up sub-menus, making large
menus relatively easy to use.

An Example

I will demonstrate Pi by examining the copy of Jim that I am using to write this paper. Jim
is two processes, one in the host computer and one in the terminal. I will work with its host pro-
cess. 1 create a new layer on my 5620’s screen and simply invoke Pi:

pi

After about 20K bytes of user interface code has downloaded into the 5620, Pi’s cursor icon
requests me to sweep a rectangle for a new window — the “Pi” window, the master window
through which Pi may be bound dynamically to processes and core dumps. | now have one (almost
empty) window in Pi’s layer:

/bin/ps a
pi = 3.141592 /bin/ps x
kernel pi

Selecting */bin/ps’ from this window's menu runs the ps command and lists the output in the
window, one process per line:

/proc/10887 I |
S . open process
roc/ 10918 . 1) take over
/proc/10949 1 pi open child
/proc/11145 R /bin/ps mavma s
cut
sever

It shows me with a light load — I am only editing. To examine Jim, I point to process 10918 in
this list and select ‘open process’ from its menu. | am now requested to sweep a “‘Process”
window. The Process window has overall control of the process and can create windows with more
detailed views. The process window shows the state of the process, and a callstack if the process is
stopped. The state of process 10918 is:

rrocess: /proc/10918
R

UNNING: 3.6u 2.5s pe=read()+4

- 64 -

This is usual state for Jim’s host process — it is blocked reading from the terminal. Pi polls the
state of the process every second and updates the Process window asynchronously with respect to
the user and the subject process. After some more editing the consumed processor time has
increased.. I raise the Process window’s menu:

Process: /proc/10918
RUNNING: 4.5u 2.8s pc=read()+4

RawMenory
Assembler
Signals
kill?
Journal

‘stop’ stops the process asynchronously. ‘run’restarts it. ‘src text’ crcates windows for view-
ing source text. ‘Globals’ creates a window for evaluating expressions in global scope.
‘RawMemory’ creates a “‘memory editor,” in which uninterpreted memory cells may be viewed and
modified. ‘Assembler’ creates a window that disassembles memory and provides instruction level
operations. ‘Signals’ creates a window that monitors signals to the process. ‘kill?’ kills the
process; the question mark calls for a confirming button hit. ‘Journal’ creates a window that
records significant events in the process — a trace.

First, 1 choose to look at some source text. If there were a single source file, ‘src text’
would create a *“Source Text” window for it. Jim has several source files; so Pi asks me to sweep
a “‘Source Files” window that lists them:

Process: /proc/10918
RUNNING: 4.5u 2.8s pc=

Source Files: /proc/10918
alloc.c
file.c
gcalloc.c
jim.c

open source file

cut
sever
trunca.te

.C
string.c

I point to pattern.c and choose ‘open source file’ from its menu. | sweep a Source Text
window. It fills with the first few lines of pattern.c. I raise its menu:

Source Text: pattern.c Tun
#include "jim.h"

; - " current stmt
#include "file.h step 1 stnt
#define PATSIZ 128 Step 2 stmts

step 3 stmts
. step 4 stmts
Short this: - SIeL <patps step >4 stmts ™

reshape

short searching; /* we need only SteE into fen |,

[1 have not looked at this code before starting to write this example. 1 believe I will find Jim’s reg-
ular expression pattern matcher here. | know no details of its implementation. It is as if 1 were
starting from scratch to find a bug in Pike’s code.|

-65 -

Moving the cursor over the arrow at the right of ‘index by fcn’ pops up a sub-menu that is a
table of contents by function (with line number) of pattern.c:

run
current stnt
addtolist()....394
advpat().......
bexecute().....

execute()......
expr().........
fexecute()..... 420
killlater()....699

new().......... 375
newmatch()..... 656
old().......... 387
optimize(}...... 36
It suggests, as | expected, that Jim compiles regular expressions into a representation from which
they can be interpreted efficiently. To see some of this code, I select ‘compile()....... 79’
This scrolls the window so that the line with the opening brace of compile() is in the center:
int nmatch;
— char *compilepat; m
compile(s, save) trace on
char »s: cond bpt
assenbler q'
if(strlen(s)>=PATSIZ) open frame
error(“pattern too long\n", (char |~~~~vv~vvaes
forwvard=1; cut
startpat(compilepat=s); sever
expr(); fold

To set a breakpoint, I point to a line of source text, say the opening brace, and select ‘set bpt’
from its menu. To indicate the breakpoint, ‘>>>" appears at the beginning of the source line:

int nmatch;

[~ char *compilepat;

compile(s, save)
char »s;

if(strlen(s)>=PATSIZ)
error("pattern too long\n", (char *)0);
forward=1;
startpat(conpilepat=s);
expr();

Note that the breakpoint was set while Jim executed asynchronously.

To force Jim to execute the breakpoint, 1 type (in Jim’s layer) a search command whose pat-
tern matches a non-empty sequence of ‘a’ followed by a non-empty sequence of ‘b /a+b+.

- 66 -

When Jim hits the breakpoint, Pi asynchronously notices its change of state and reports it in the

Process window, along with as much of the callstack as fits (here, only the deepest activation
record):

Process: /proc/10918
BREAKPOINT:

pattern.c:?9 compile(s=0xDD09="a+b+",save=1)

In the Source Text window, the breakpoint source line is selected to show the current context. To
see more of the callstack I reshape the Process window, making it larger:

Process: /proc/10918
BREAKPOINT :

pattern.c:79 conpile(s=0xDD09="a+b+"
Jim. ¢ 368+11 commands(f=0xBECAC)

jim.c:206 message()
jin.c:100+7 main(argc=0,argv=0x7FFFES5C)

To see the context from which compile() was called, I select the commands (£=0xBCAC) line
from the callstack and choose ‘show jim.c:368’ from its menu. | am prompted to sweep
another Source Text window, jim.c, to see this context. To catch the process before it calls
execute(), I change the selection from the line

compile(p, TRUE);

to the if statement four lines below and set a breakpoint:

break;
case °'?’: set bpt
case ’/’: trace on
1f(»++p) cond bpt
conpile(p, TRUE); assembler
- else open frame
dprintf("%c%s\n“ c, pattern), idetdtadatadiate
H 0, (char *)0); cut
if(e.\ecute(f, ‘;ear(‘hdlr ¢)) sever
moveto(f, loc1, loc2), fold
I then ‘run’ from the Source Text window’s menu:
dprintf("#c3s\n", ¢, pattern); |
send(0, O_SEARCH, 0, 0, (char =)0);
»> if(execute(f, searchdir=c))

moveto(f, locl, loc2); current stnt

step 1 stat

When Jim reaches this breakpoint, 1 choose ‘step into fen’ from the same menu to step
the process into execute(). (The other source stepping commands step over called functions.)
The source context for execute() is back in the first source file, pattern.c.

-67 -

Pattern.c’s Source Text window moves to the front of the screen and highlights the opening
brace of execute():

run
current stnt

execute(f, c¢)
File =f;
int c;

step 2 stnts
step 3 stnts
step 4 stnts

if(nustconpile) step >4 stmts
B compile(pattern, TRUE); step into fcn
if(c=="/") index by fcn
return fexecute(f);
else reshape
move
close

It appears that the real work will be done by fexecute(). I could set a breakpoint there, but I
use ‘step 1 stmt’ from the source window’s menu a few times until I get to:

return fexecute(f);

and then use ‘step into fcn’ again. The context shown from pattern.c changes:

return bexecute(f);

}
fexecute(f)
register File »f;

register Node #*n;

= register long startposn=f->selloc+f->nsel;
long 1=length(f);

register flag;

register char »s;

fexecute() looks non-trivial. Before going further, I would like to understand the data
structure driving it. 1 do not know what this data structure is. Looking forward through the
source text of fexecute() | understand very little of the code. But three lines do make sense:

/% fast check for first char */
if(startchar && #s!=startchar)
goto Continue;

Surely, startchar holds a literal character and s is a pointer into a scanned string. To test this |
set a breakpoint on the if and ‘run’. At the breakpoint | need the value of startchar. Choos-
ing ‘open frame’ from the source line's menu:

» fast check for first char */
if(startchar && e¢s'=startchar)
goto Continue;

if(flag){
nl=list[1];
tl=list[0];

clear bpt
assembler
open frame

- 68 -

creates a “Frame” window for the activation record of the function corresponding to the source
line. A Frame window evaluates expressions with respect to its activation record. The menu con-
tains local variables, each flagged as an argument, an automatic or a register:

pattern.c:461 fexecute(f=0xBCAC): glag ;sg--
i aut
lastwasnl aut
1 aut
n rea
startposn reg
s reg
wrapped aut
registers -'|

startchar=97

Is that an ‘a’? The value is in decimal because startchar is declared int. To override the
default format, I select ‘format’ from the expression’s menu, and ‘ascii on’ from the sub-
menu. The expression re-displays itself:

pattern.c:461 fexecute(f=0xBCAC):

startchar=’a’=97

The value of startchar looks right and probably came from the data structure | am after.
Scrolling back a few lines in pattern.c I find an assignment to startchar:

nnatch=0;
match{0].b=0X7?FFFFFFF;
match[0]. e=0x?FFFFFFF;
startchar=0;
if(fstart->op<0200)
startchar=fstart->op;
= i=Fseek(f, startp)-1;
1f(i<0 || f=->str.s[i]=="\n’)
lastwasnl=TRUE;
Restart:

fstart may be the pointer I need, but it does not appear in fexecute()’'s menu. It must be a
global. Rather than open the global expression evaluator window and look in its menu, | enter the
expression

fstart

from the keyboard, with fexecute()’s Frame window sclected as the target.

- 69 -

The Frame window now contains two expressions:

pattern.c:461 fexecute(f=0xBCAC):
startchar=’a’=97

.
What type is £start? | can almost tell from its menu. Most of the entries in an expression’s
menu are new expressions that may be derived from it. The $->’s tell me that I have a pointer to
a structure. (In the menu, and from thc keyboard, $ denotes the current expression.) Choosing

‘typeof $’ confirms it:

cast $
pattern.c:461 fexecute(f=0xXBCAC): typeof $
startchar=’'a’=9? sizeof $
fstart=0x71C0

typeof(fstart): =»struct Node

Choosing ‘$->left’, followed by ‘$->op’, and ‘$->right’ yiclds:

startchar='a’=97
fstart=0x71C0
typeof(fstart): sstruct Node
fstart->op=97

fstart->left=0

fstart->right=0x71CC

Reformatting £start->op in ASCII leaves:

peof (fstart): sstruct Node typeot $
fstart->right=0571CC sizeof §
fstart->op=’'a’=97
fstart->left=0

So here is some kind of tree, where an operator code less than octal 200 is to match its own value
in the scanned text. The left sub-tree is empty; the right looks promising. Dereferencing with

‘» $ yields:

pattern.c:461 fexecute(f=0xBCAC):
startchar='a’=97

fstart=0x71C0
peof(fstart): *struct Node

fstart->right=0x71CC

sfstart->right=§op='\202'=130,left=0x71C0, right=0x71D8}

fstart->op='a’=97

fstart->left=0

- 70 -

The left field of £start->right is equal to £start itself; maybe this is a doubly-linked list.
Applying ‘$->right’ to £start->right, I get:

fstart=0x71C0
typeof(fstart): =struct Node
fstart=>right=0x71CC
fstart=->right->right=0x7108
fstart->op=’'a’=9?
fstart->left=0

I already know this, but applying ‘*» $’ produces (showing Pi’s entire layer for the first time):

Process: /proc/1
BREAKPOINT:

pattern.c:461 fexecute(f=0xBCAC):
startchar=’a’=97
fstart=0x71C0
typeof(fstart): sstruct Node
fstart->right=0x71CC
fstart=>right->r ht-0x7108
+fstart=>right=>right=fop="b"=98,left=0, right=0x71if0
fstart->op=’a’=9?
fstart->left=0

pattern.c:461 fe
pattern.c:414+10
jim.c:372+22 con
jin.c:206 peccan
jin.c:100+;

Jim.cC

msgs.c TN pattern), |
startchar=0; " .
Ig%ﬁ}ﬁ;néc if(fstart->op<0200) shar +)0);
’ startchar=fstart->op; M
- i=zFseek(f, startp)-1; ,
if(i<o || f->str.s[il=="\n’ \
lastwasnl=TRUE; W\", pattern)

Restart:

Note that the value of the op field for the current expression is displayed in ASCII as ‘b’. The
ASCII format explicitly requested for that field earlier was saved in the symbol table and is now
the default. The left pointer is zero here. It now looks as though left points back to the
beginning of the sub-pattern controlled by the closure operator.

Let me stop here. I have started to unravel the data structure and understand the program.
I hope this paper description conveys something of the feel of Pi.

Programmer Reaction

Most programmers take somewhere from a few hours to a few days to make the transition
from drowning in a sea of windows to considering Pi an indispensable tool. At the outset, they do
not expect dynamic binding to subject processes and cannot see why there are so many windows.
Invoking a debugger without specifying a dump or program is a foreign notion. Expectations of a
debugger are very low: “‘l only want the value of x when f{) is called — why all the windows?"
With increased confidence and ambition they use Pi with more sophistication. Styles vary consid-
erably. Each programmer uses idiosyncratic sizes, shapes and placements of windows, especially

when debugging multiple processes. Some prefer to enter most of their expressions from the key-
board, others never touch it.

There are two main problems. First, binding Pi to subject processes is too complicated for
novices. Experts demand many special facilities, which have been allowed to complicate what the
novice encounters. Second, demand for programmable debugging is growing among the expert
users. Programmability was excluded from Pi in order to concentrate on interactive behavior. Pi
does have “'spy” expressions, which re-display themselves if their values change, and conditional
breakpoints, but it is not programmable, say, to step 10 instructions after encountering a break-
point. It is now time to think about how programmability and interaction can be combined.

=71 -

Asynchronous Multiple Processes

An arbitrary set of processes may be examined simultaneously. For each subject process
there is an independent network of windows. Since all the windows are in a flat space on the
screen, each successive action from the programmer may be in an any window, associated with an
any process. Events in the set of subject processes are reported as they occur. For example, the
programmer might step source statements alternately between a pair of processes while watching
the changing values of spy expressions in a third process. This simplifies debugging situations that
were difficult or impossible in the past. For example, it becomes straightforward to (i) compare
the behavior of two similar programs; (ii) compare the effects of different inputs on a single pro-
gram; (iii) observe the interaction between related processes, say child and parent.

Implementation
Pi depends on the Eighth Edition’s /proc[1,4], and object-oriented programming in C+ +[3].

/proc permits Pi to bind itself dynamically to any processes, and execute asynchronously with
them. For each process, Pi can tell the kernel how to handle an exec() by the process and signals
received from other processes. A breakpoint in code executed by a child of a subject process
suspends the child so that it may be opened and examined. Code sharing is managed transparently
by /proc.

The browsing and asynchrony are driven by object-oriented programming in C++. A large
host C++ program communicates with a small 5620 C program. Everything the programmer can
identify on the screen is a C+ + object, an instance of a class. The host program binds an object
identifier (which can be thought of as a host address) and a menu of operations to each window
and each line of text as it describes them to the terminal. When the programmer selects an opera-
tion from a menu associated with an object’s image, the terminal sends back a remote invocation of
one of the object’s member functions. Generally, executing this function creates, changes or
removes host objects and their images in the terminal. Host-terminal communication is asynchro-
nous; the programmer need not wait for results to appear on the screen before issuing another
operation. There is no ambiguity in this “mouse-ahead”; the identity of the object on which a
menu operates is frozen when the menu is raised. A crude object registration scheme in the host
detects (with high probability) and ignores operations for objects that have been destroyed.

Conclusion

Pi’s easy access to information about arbitrary processes has made programmers more sophis-
ticated in their debugging practices. Programmers working with large programs written by others
are happier. Programmers who would not normally read assembly code can sometimes spot code
generation bugs in the compiler. Programmers with families of interacting processes have a handle
on them. In general, programmers understand their programs better.

References

1. T. Killian, “Processes as Files in Eighth Edition Unix,” Proceedings of the Summer 1984
USENIX Conference, Salt Lake City, Utah

2. R. Pike, “The Blit: A Multiplexed Graphics Terminal,” AT&T Bell Laboratories Technical
Journal, Computing Science and Systems, October 1984

3. B. Stroustrup, “The C++ Programming Language,” Addison-Wesley, 1985

4. Unix Time-Sharing System Programmer’s Manual, Eighth Edition, Volume 1, AT&T Bell
Laboratories, February 1985

Flamingo: Object-Oriented Abstractions for User Interface
Management

Edward T. Smith and David B. Anderson

Carnegie-Mellon University

ABSTRACT

This paper describes the Flamingo User Interface System designed for use by
programs running on Spice machines. Flamingo is designed to use the remote pro-
cedure call mechanism available through the various operating systems running on
Spice machines to provide a flexible, robust, machine-independent interface to a
variety of different machines communicating over local area networks.

Flamingo separates the abstractions of the objects used by the program to
communicate with the user from the actual devices used to read or write informa-
tion. A window manager is provided that makes a suitable mapping from output
objects known to the program to those objects seen by the user. A user interface is
provided to map input events from real devices to either window management rou-
tines or to a form suitable for input by a program.

Flamingo itself can be divided into different processes running on different
machines each implementing different parts of the system. All exported objects
used for communicating between users and programs are implemented with specific
methods defining the operations available for those objects. New methods can be
substituted for the standard ones either for an instance of a particular object or for
all objects of a class in a given running Flamingo system. These mechanisms pro-
vide a flexible framework within which a variety of window managers and user
interfaces can be realized and evaluated.

1. Goals

Flamingo (FLexible, Asynchronous Manager for Interactive Network Graphics Operations) is
a system for building user interfaces to programs running within the Spice environment. The Spice
environment! consists of a heterogeneous set of machines, typically large personal workstations (and
a few mainframes, file servers, supercomputers, etc.), each of which supports the IPC 2 (inter-
process communication) message passing model. This mechanism provides a transparent, language
and machine independent means of communication between programs and all system resources they
may need (screens, keyboards, pointing devices, file systems, other processes, and so on). A basic
goal of the Flamingo effort is the creation of a system that can take advantage of this common
message-passing mechanism to provide a powerful, flexible interface between programs running in
the Spice environment and the human user on some Spice workstation.

A part of this goal is to address the issue of providing upward compatible user interface

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract F33615-84-K-1520.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

-73-

support to all our older software. The Spice environment currently consists of about two hundred
machines representing several manufacturers. There is a large and growing base of software written
on all these machines that complicates the ability to port software as new machines appear. Often
in fact, some software is simply not suitable to port, since some special machine may still perform a
service that other machines are not capable of performing. Thus, Flamingo should allow users to sit
at any Spice machine and run programs on any other Spice machine, despite differences in the
underlying input and output mechanisms of the machines being used.

A final goal, and one that has guided much of our design, has been to simplify the task of
implementing and modifying user interfaces and window managers. As we surveyed the needs of
the researchers in our group, we found our clients (including ourselves) wanting to be able to
approach a display manager at many different levels, and to modify or replace components of the
system without being required to deal with the complexity of the entire system. Our researchers
need to take advantage of the Spice environment’s powerful workstations, message-passing operating
system, distributed file system, and large software base, but have been unable to easily modify and
extend the existing user interface system to suit their particular needs. In general, buying into any
particular window manager also means getting a particular style of human/computer interaction and
a particular program-to-window-manager interface. We see our problem as one of wanting to define
just exactly those interfaces for our various systems in such a way to support our researchers more
than supporting some particular style of interaction. No particular style or set of operations has
proven itself capable of answering all the desires of its users in this respect, so we set out to work on
this problem for users of the Spice environment.

2. Object-Oriented Graphics Structures

The current implementation of Flamingo is written in C under Berkeley UNIX* 4.2 running
on a MICROVAX.t Our version of this Unix, called Mach 34 , has been modified at CMU to
fully support the IPC mechanism in use between existing Spice machines.

To meet the criteria mentioned above, we have adopted a hierarchical, object-oriented design.
The Flamingo system exports various objects related to input and output of information between the
client program and the user. For input, the primary object is the input device, which includes input
device state information plus methods for handling input events. For output (by client programs),
the exported object is a pixel array. A pixel array (PA) is a 2-dimensional region with a shape
defined by a mask (defined shortly), and a list of mappings, which map the pixel array to other
PAs, to memory, or to the screen. Several classes of pixel arrays are provided; lower levels of the
system export pixel arrays (PAs) with implementations of methods for raster operations, character
drawing, and so on, while higher levels export these operations as well as window managements
functions, input hooks, etc.

An object defined for use by both input and output objects is a mask. Masks are used
throughout Flamingo wherever there is a need to represent shape: the shapes of pixel arrays, mouse
sensitive areas, clipping regions, and the uncovered portions of overlapped windows are all
represented with masks.

Each of Flamingo’s graphics operations takes one or more masks as input to specify the clip-
ping that is to be performed to the source and destination arguments. For example, our bitblt
operation, which we call rasterop, has this signature:

mask_rasterop(srcPA, srcMask, sx, sy, X, y, dstPA, dstMask, dx, dy, op)

The source bits for this operation are those bits contained within the shape specified by the

* UNIX is a trademark of AT&T Bell Laboratories.
T MICROVAX is a trademark of Digital Equipment Corporation.

-74 -

source mask when it is mapped to the location (sx, sy) within the source pixel array. The destina-
tion bits are determined in an analogous fashion, and the source bits are mapped to the location (x,
y) within the space of the destination pixel array, where the raster operation op is performed. (One
might think of the source and destination masks as 2-dimensional bitmaps that are logically ANDed
into the source and destination pixel arrays, where the ones in the masks denote those bits in the
source and destination that participate in the operation.)

Masks are represented internally as a list of rectangles, organized by scanline. This represen-
tation permits a compact encoding of the shapes which typically arise from overlapping rectangular
windows, and also allows efficient coding of the methods for masks that we have found useful: inter-
section, union, difference, and the conversion of a mask to a list of rectangles. The latter is very
useful: most raster graphics operations that clip to masks are implemented as a loop which performs
the operation clipped to each of the rectangles comprising the mask. This approach has allowed us
to take advantage of much existing graphics code to perform rectangle-clipped rasterops, and line
and character drawing, etc., without having to modify this code (often written in assembly language
or microcode) to clip to arbitrarily shaped regions.

3. Methods, Implementations and Classes

Flamingo operations are implemented as a set of methods for each object exported by the sys-
tem. Each instance of a Flamingo object has a list of pointers to implementations for the methods
available for that object, and a pointer to the object’s parent (or class). Any given method, such as
NewPA, RasterOP, or DrawLine, may have several implementations -- for example, the window
manager has its own implementation of NewPA that creates lower-level pixels arrays for the body,
sides and corners of the window, and associates these together in a private structure that represents
the window. Usually, any given object inherits its implementations from several classes -- its parent,
its parent’s parent, and so on. For instance, a pixel array used with a window manager has methods
associated with just being a pixel array, with being part of a window, with its ownership by a client
process, and with getting input from an input device.

Each of the layers in our current system is listed below, along with the data type (data type
name in parenthesis) and method implementations added by that layer. Each of the following layers
that exports pixel arrays is built on top of the preceding layer, inheriting some of the methods from
that lower layer, and re-implementing others. In many cases this re-implementation is accomplished
through a super construct, borrowed from Smalltalk 56 , whereby an implementation invokes the
parent class’ method. We give an example of how this is used in the next section.

- mask(Mask): mask intersection, union, difference, etc.
- flim(Input Device): machine dependent input device drivers
- flam(PA): machine dependent output primitives;
rectangular raster operations, unclipped string and line drawing
- fligraph(PA4): machine independent graphics;
raster operations, string and line drawing over masks
- coverup(PA): overlapping, mapped pixel arrays
- frawd(PA4): window management functions
- user interface(PA): mappings from input events
to window manager functions
- 119 (the first Flamingo application): provides a terminal emulator
and a shell within a Flamingo window

A special method called SeztMethod can be used to add new methods or to replace old ones in
any instance of an object. When the system is initialized, a distinguished object for each class is
created, from which subsequent instances of that class inherit their methods. SetMethod can be
used with these class objects (ClassMask, ClassInputDevice, ClassPA, ClassCoverupPA and
ClassWindow) to replace a method for an entire class of objects. Presently our inheritance is done
via copying: when an object is created, the methods of the parent object are copied into the new

-75 -

object. What this means for replacing class methods is that the only objects to inherit the new
method are those created after the method has been replaced. We are now re-thinking our inheri-
tance mechanism; in the future we will probably delay this binding of methods to implementations.

In our current implementation these layers are all part of a single, monolithic process, but it
has been our intention from the beginning to split off parts of the system into separate processes.
The communication between processes will initially be done through Unix sockets, so that we can
easily port Flamingo to other Unix environments. Later we will take advantage of the more power-
ful IPC mechanism provided throughout the Spice environment, which allows communication with
non-Unix hosts. The list of procedure pointers within each object will be replaced by a list of Unix
sockets and/or IPC ports, one for each method, corresponding to the location of the process that
implements that method for that object. To implement methods over a network using message-
passing, we will use Matchmaker’ , a remote procedure call generator. With these interfaces, a sin-
gle Flamingo system (that is, the complete collection of processes providing a single user with Flam-
ingo services) could exist as a multitude of processes on a multitude of machines.

These remote procedure call mechanisms, coupled with the ability to substitute new methods
for any object, or class of objects, will make it easy for client programs to alter or extend any of the
system’s default behaviors.

4. Examples

As an example of how this system structure actually works, we will consider what happens
when a Flamingo application performs a raster operation (e.g. copybits) within one of the
application’s windows. Several different layers of the system export raster operations: PAs exported
by flam, fligraph, coverup, frawd, and the user interface level all have a method for rasterop. In this
case, we will assume that the PA inherits its methods from the ClassWindow class, implemented by
frawd.

The window manager, frawd, inherits its rasterop method from coverup. Initially, then, when
the user level code calls rasterop, it gets the rasterop procedure within coverup, providing as argu-
ments the source and destination pixel arrays and masks within those pixel arrays specifying the
region to be copied and the destination’s clipping region.

Coverup is responsible for maintaining mappings that connect higher-level pixel arrays to
lower-level pixel arrays. These mappings allow a process other than the client to intervene easily in
the management of the actual display of information created by the client program. Mappings can
be as simple or as complex as necessary to implement the particular mapping abstraction at hand.
For the current implementation, a set of mappings is defined for the graphics operations that takes
into account the rank or height of a mapping over other mappings on the same lower-level pixel
array. This particular process of mapping a graphic operation from a higher-level overlapped pixel
array to a lower-level one involves substituting different destination masks representing the actual
shape of the pixel array after all mappings "above" or "covering” the pixel array have been sub-
tracted from the mask. The client program can continue to think of its individual pixel array as
being whole, while the mapping process takes into account covered-up parts of the result when actu-
ally performing graphical operations.

In our example, for each of the pixel array’s mappings, coverup’s rasterop method intersects
the argument masks with that mapping’s uncovered masks, and calls the rasterop method from fli-
graph with these clipped masks. The fligraph rasterop decomposes the masks into rectangles, and
uses the machine dependent rectangle rasterop procedure in flam to actually move the bits.

As a further example that illustrates other aspects of the system design, we will go through the
steps that are taken to ‘apply DeletePA (the method that is used to destroy pixel arrays) to a PA
obtained from ClassWindow.

Like all of our procedures that implement methods, the procedure DeletePA performs the
method lookup task -- it locates the implementation of the delete function for the specified pixel

-76 -

array. The default implementation of ClassWindow is provided by frawd. So assuming that the
method hasn’t been replaced, DeletePA will determine that the correct implementation of the dele-
tion method for this PA is frawdDeletePA.

Our default window manager creates windows as a set of pixel arrays (supplied by coverup)
representing the border, corners and body of the window, and keeps track of its windows through a
private data structure. What frawdDeletePA does is to free this ancillary window data structure,
call DeletePA to destroy each of the window’s component pixel arrays, and then call
DeletePA_SUPER on the window pixel array to delete its lower-level structures.

At this point those structures which made a window out of this pixel array have been des-
troyed, but its deletion method pointer still refers to frawdDeletePA. What we want to do is to use
the implementation of DeletePA provided by this object’s class’ parent class, coverup, to delete the
remaining parts of this pixel array. DeletePA_SUPER does exactly that: it chains through the pixel
arrays’ parent pointers to locate coverupDeletePA. This implementation frees each of the pixel
array’s mappings, calls DeletePA on each of the pixel arrays to which the original pixel array was
mapped, and then calls DeletePA_SUPER to destroy lower-level pixel array structures. This time
the super method is flamDeletePA, which frees the lowest level elements of the pixel array, includ-
ing the 2-dimensional bitmap.

S. The Creation of User Interfaces with Flamingo

As a demonstration of the features of Flamingo, we have already implemented an interpreter
for Andrew®? socket calls. This interpreter, currently built into Flamingo, asserts itself via the
appropriate Unix socket calls as an actual instance of Andrew, and then waits for Andrew calls from
Andrew programs. Note that we are running Andrew binaries. No changes to any of the Andrew
processes are necessary. People writing Andrew code are actually writing Flamingo code! We
should emphasize that Flamingo only resembles Andrew at the program interface level; what the
user perceives is quite different. For example, Andrew only provides tiled windows, while Flamingo
provides overlapped windows, and potentially other arrangements as well.

This interpreter demonstrates the basic functionality of the Flamingo primitives. It has also
made it possible to create an entirely new operating environment for the user with numerous hooks
for implementing still more features and functionality, without rendering the system unusable by the
mass of software written for previous systems. (This is of course simply an argument in favor of
upward compatibility, but has proven to be an equally powerful mechanism to develop the system as
it evolved from just a graphics package.)

Flamingo’s object-oriented architecture has provided a flexible mechanism for separating the
display and graphics abstractions important to the application process from the lower level abstrac-
tions that are important to the system. Each of these Andrew processes sees only one pixel array,
namely that pixel which represents its window, and more importantly, knows nothing about the
details of that pixel array’s method implementations. This pixel array could be a standard top-level
Flamingo window, or it could just as easily be a sub-window inside of a window running someone
else’s window manager scheme.

6. Future Work

Flamingo was officially released within our departmental community in October 1985. Now
that we have a system in place, and a growing user community, we are beginning to do some of the
research for which Flamingo was originally intended.

The first issue that needs to be addressed is the creation of a programming interface to Flam-
ingo. We have already begun work on a Unix socket interface, and have sketched out a design for
an IPC/Matchmaker interface. Our first application of these interfaces will come from separating
f19 from the rest of the system. Later we intend to experiment with separating the Andrew

-77-

interpreter, and also flim and flam, the input and output device drivers. The motivation for this
latter split is to provide display support for remote computers, probably Pergs or personal computers,
and to take advantage of special properties of these displays, such as graphics hardware, color, etc.
By porting flim and flam to such hosts, users with suitable network access will be able to connect to
the full Flamingo system and use it through whatever display device they have available.

Currently a few weeks away is a Sapphire !0 interpreter. This interpreter will call on Flam-
ingo primitives from within the server half of the matchmaker remote procedure call interface for
the Sapphire window manager. An interesting demonstration is planned once we have these inter-
faces in place: we intend to run, inside a couple of Flamingo windows, both window manager pro-
grams, Andrew and Sapphire. These window managers depend only on having some definition of an
underlying graphics output device, a keyboard and a mouse for input devices, and a Unix file sys-
tem. From the Flamingo windows, we can provide the virtual graphics necessary for the window
managers to appear in different, overlapping areas of the screen. The Flamingo window can also
provide the appropriate input events as part of its usual mapping of events to user processes. Obvi-
ously, certain input operations will have to be reserved for use by Flamingo’s user interface in order
to maintain control over the separate processes.

There are a number of performance issues that have yet to be addressed when considering the
task of separating a Flamingo system into communicating processes. One major concern is the pos-
sibility that the interfaces between these processes will create substantial communications demands.
How to structure these interfaces so as to achieve reasonable system performance is an open
research problem, but this is precisely the kind of issue that Flamingo has been designed to help us
investigate, and we will be looking at it more in the future.

An interesting use of mappings has been proposed that will allow high-quality images of the
screen to be generated. A typical method for getting pictures of a screen is to simply dump the
state of the raster memory used to generate the screen bits and display this using either a dot-matrix
printer, laser printer, or other suitable, non-alphanumeric device. Such devices as laser printers have
a much finer resolution than that of the screen hardware, and the resulting image is often unclear or
distorted. A Flamingo mapping could be defined for PAs displayed on the screen that would map
all raster operations to a generator of a file of laser printer commands. Line drawing, character
drawing, and all raster operations would all be done in a scale appropriate to that of the printer’s
capabilities rather than to the scale of the screen.

Finally, other work needs to be done to make the system more comfortable to use; we will be
adding menus, title bars, icons, etc. Another area of interest is to provide support for experimental
input devices being developed by other groups within the department. Also, we are interested in
examining different styles of window management and user interface; our first step in this direction
will problalbly be to implement the constraint-based tiling algorithm developed by Cohen, Smith and
Iverson..

7. Final Remarks

Flamingo addresses the problem of flexible, robust access to multiple processes running on
multiple machines. Our most pressing problem is one of distributed resource management. Using
the Spice Sesame !2 distributed file system, users of Spice machines have uniform access to the data
located on a large number of distributed machines, but Spice users have never had uniform access to
the processing power of those machines.

We gratefully acknowledge the entire Flamingo working group, which has at times included
Rich Cohn, Roger Dannenberg, Dario Giuse, Mark Hjelm, Paul McAvinney, Rob MacLachlan,
Randy Pausch, Rick Rashid, Walter Smith, Pedro Szekely, Avie Tevanian, and Skef Wholey, for
their insights, arguments and ideas. The first running Flamingo system came up on June 5, 1985,
and many subsequent versions were written during the summer and fall of 1985 by Ed Smith, David
Anderson, and Walter Smith, with some help from Avie Tevanian and the entire MACH operating
system crew.

-8 -

8. References

1.

10.
11.

12,

CMU Computer Science Department, Proposal for a Joint Effort in Personal Scientific Com-
puting, August 1979.

R. F. Rashid, G. G. Robertson, “Accent: A Communication Oriented Network Operating Sys-
tem Kernel,” in Proceedings of the 8th Symposium on Operating Systems Principles
(December 1981).

R. V. Baron, R. F. Rashid, E. H. Siegel, A. Tevanian, M. W. Young, “MACH-1: An Operat-

ing System Environment for Large-Scale Multiprocessor Applications,” IEEE Software (July
1985).

R. V. Baron, R. F. Rashid, E. H. Siegel, A. Tevanian, M. W. Young, “MACH-1: A
Multiprocessor-Oriented Operating System and Environment,” SIAM Computing (to appear).

D. H. H. Ingalls, The Smalitalk-76 Programming System Design and Implementation, Xerox
PARC (1980).

A. Goldberg, D. Robson, Smalitalk-80, Addison-Wesley (1983).

M. B. Jones, R. F. Rashid, M. Thompson, “MatchMaker: An Interprocess Specification
Language,” in ACM Conference on Principles of Programming Languages (January 1985).

J. A. Gosling, D. S. H. Rosenthal, 4 Window Manager for Bitmapped Displays and
UNIX(tm), Information Technology Center, Carnegie-Mellon University (1984).

J. A. Gosling, D. S. H. Rosenthal, 4 Network Window-Manager, Information Technology
Center, Carnegie-Mellon University (1984).

PERQ Systems Corporation, User’s Guide to the Sapphire Window Manager, 1984.

E. S. Cohen, E. T. Smith, L. A. Iverson, “Constraint-Based Tiled Windows,” in Proceedings
of the Ist International Conference on Computer Workstations (1985).

M. B. Jones, R. F. Rashid, M. Thompson, Sesame: The Spice File System, Department of
Computer Science, Carnegie-Mellon University (1982).

A Proposal for Interwindow Communication and Translation Facilities

Daniel P. Gill

Exxon Research and Engineering Company
180 Park Avenue
Florham Park, New Jersey 07932
(201) 765-6593

ABSTRACT

With the increasing levels of sophistication of windowing systems being intro-
duced for Unixt today, new capabilities are now needed to allow cooperating
window-based processes to communicate easily and initiate transformations on live
data flowing between these cooperating processes . This paper proposes a high-
level interwindow communication scheme whereby arbitrary window-based
processes can dynamically set up communication links between one another and
optionally invoke a series of translation filters to perform appropriate data transfor-
mations (translations) on the data flowing though the communication links between
the windows.

Each of the new proposed facilities will be described together with the inter-
nal data structures that must be maintained. Also a 4.2BSD Unix implementation
of the proposed interwindow communication (IWC) primitives and an interactive
window-system-driven interface constructed from these primitives is discussed.

The motivation for the work described herein is a result of the author’s
experience with developing a window-driven integrated environment for engineering
workstations at Exxon Research and Engineering Co. The work was performed on
a 68010-based Sun Workstationt, part of which involved the customization of and
addition to the Sun-provided software for control of their window system, and
represents some of the ongoing software environment research at Exxon Research
and Engineering Co.

Introduction

A number of Unix-based windowing systems have been introduced in the last few years and
their design and capabilities have been well documented in the literature [7], [8], [9], [10], [11],
[12]. In general, these systems present a powerful, general purpose operating environment, provid-
ing a wide array of multi-window facilities. However the one area which these window systems have
not yet addressed is the area of window-related interprocess communication. By its omission, the
burden is placed on each application developer to incorporate their own interwindow facilities.

In the context of a windowing system, mechanisms to allow processes to communicate once
they are bound to windows (without any pre-conceived preparation to communicate), either are
unapplicable (e.g. pipes) or are too low-level and cumbersome to use directly (e.g. sockets). Furth-
ermore, none of these mechanisms were designed to be used in an interactive mode (the way in
which one typically interacts with a window system). In other words there is no easy way to
dynamically create channels of communication between processes running in windows and redirect

t Unix is a trademark of AT&T Bell Laboratories
$ Sun Workstation is a trademark of of Sun Microsystems, Inc.

- 80 -

information flows. Moreover, it would also be desirable to be able to insert translation filters in the
connection stream. In fact, the desire for just this type of capability has been alluded to by the
designers of an existing window system [7]: “More general IPC under UNIX would be nice -- - we
would like to be able to use the window manager dynamically to connect programs in building block
fashion.”

Window systems should have the facilities to allow processes to cooperate and thus not force
application programs to handle these operating system interactions directly. Therefore, what is
needed is a high-level set of interwindow communication (IWC) facilities. They should be invokable
by a series of point-and-click operations (mouse-driven) on a graphical interface and have a reason-
able high-level programmatic interface. They should be integrated and included as part of a win-
dow management system’s overall functional working set (or as part of a library extension).

Implementation Approaches

The two most obvious methods of implementing these interwindow facilities would be either at
the nucleus level of an operating system (e.g., kernel of the Unix operating system) or at a higher
window system level (e.g., SunWindows?).

Of these two methods, arguments commonly made for incorporating these kinds of facilities at
the kernel level raise points such as:

1. Since interwindow communication embodies many of the same concepts as an operating system,
they should be implemented within the kernel.

2. Since IPC facilities vary from operating system to operating system (or even version to version of
the same operating system %), this issue should be addressed on a per application basis using the
available kernel-based IPC facilities of the particular operating system.

Arguments against putting interwindow communication in the kernel are:

1. There would be too much kernel overhead associated with such a set of facilities which would
degrade window-system performance and also possibly increase the size of the kernel.*

2. It would be desirable to have a reasonably portable (and thus, higher level) set of interwindow
interprocess tools.

The way window-bound processes communicate is most certainly an operating system issue, but a set
of high-level facilities can be designed in such a way that most operating systems (certainly all
modern versions of Unix) could provide the needed underlying mechanisms. In this manner a stan-
dard higher level protocol for interwindow communication can be developed with the added bonus of
not having to implement new low-level, kernel-based IPC mechanisms to specifically support
interwindow communication. It is the author’s opinion that higher level window systems can realist-
ically handle interwindow IPC.

Furthermore, these facilities can be built using existing IPC mechanisms.

t SunWindows is a trademark of Sun Microsystems, Inc.

For example, System III Unix v.s. System V Unix.

* Admittedly, kernel overhead considerations raise important performance questions regarding low level implemen-
tations. However with the advent of faster processors (e.g., the Motorola 68020, the National Semiconductor
32332 and the Intel 80386) supporting these operations, it becomes less of an issue.

- 81 -

Existing Unix IPC Facilities

At the kernel level the existing variants of the Unix System offer a wide array of interprocess
communication facilities. The ubiquitous pipe, common to all Unix Systems, provides a powerful
mechanism for related processes to communicate with. However with this form of communication,
processes that decide to communicate after they have been created (without connections having been
set up in a common ancestor), are not able to do so. To remedy the limitations of the pipe, each
variant of the Unix System has incorporated their own IPC extensions.

AT&T’s System V [1] offers, in addition to the unnamed pipe, named pipes, semaphores,
shared memory and message queues. These are useful for specific applications, but they are by no
means what might be considered general IPC mechanisms. In addition they are extremely low-level
and awkward to use for application programs.

Berkeley’s 4.2BSD System offers an extremely general set of IPC mechanisms based on sock-
ets [2]. They have the added bonus of allowing communication between processes residing on dif-
ferent machines.

The AT&T Bell Laboratories Eighth Edition streams [3] mechanism is probably the most
general, elegant and easy to use IPC method proposed thus far. Although the Eighth Edition ver-
sion of Unix is not generally available, the ideas presented are an excellent model on which to base
higher level mechanisms.

Interwindow Communication Primitives

In order to describe the proposed set of interwindow communication primitives, some new ter-
minology must first be introduced. In this paper we are only considering communicating windows
which are of tty emulation window or subwindow type since this is most intuitive and we are dealing
exclusively with byte stream communications.

An interwindow channel is a unidirectional connection wultimately between two windows
(window-bound processes). In other words this channel is capped at either end by a window-bound
process (as opposed to an arbitrary possibly non window-bound process) and forms a virtual circuit
connection similar to a Unix pipeline. When an interwindow channel is constructed, it is assigned a
unique interwindow channel descriptor. From then on during its existence it is referred to by that
unique tag.

A translation filter (window-bound process or non window-bound process which transforms a
byte stream) may be inserted dynamically at intermediate points along the interwindow channel.
An interwindow channel (node) address is assigned upon insertion (each node gets one) and can be
used to reference points of interest (processes) in the infrastructure.

What follows are the basic building block primitives to support interwindow communication.
They can used to-easily construct interactive, window-system-driven /WC tools. The proposed calls
are designed so as to be relatively operating system independent. The notation used is the C-like
description language used in [14].

An interwindow channel, connecting two window-bound processes, is initiated by the call:

iwchan = iwc_request(windowidl, windowid2, iwaddrI)

result int iwchan /* interwindow channel descriptor */

result int *iwaddrl /* interwindow channel address of windowl */
char *windowidl /* source window */

char *windowid?2 /* sink window */

in the potential sending process (here windowidl), and completed by the call:

.82 -

iwchan = iwc_accept(windowidl, windowid2, iwaddr2)

result int iwchan /* interwindow channel descriptor */

result int *iwaddr2 /* interwindow channel address of window2 */
char *windowidl /* source window */

char *windowid2 /* sink window */

in the potential receiving process (here windowid2).

This successful completion of these calls sets up a producer-consumer relationship between
windowidl and windowid2 respectively, with both processes being returned an interwindow channel
descriptor. Also returned to each process is an interwindow channel (node) address which
represents the particular process’s position on the interwindow channel. These calls obviously pro-
vide a distributed interface, similar to the programming language Ada’st rendezvous mechanism.
They are executed by processes that are currently disjoint and wish to establish a producer-
consumer relationship. A centralized call:

iwchan = iwc_connect(windowidl, windowid2, iwaddrl, iwaddr2)

result int iwchan /* interwindow channel descriptor */

result int *iwaddrl /* interwindow channel address of windowl */
result int *iwaddr2 /* interwindow channel address of window?2 */
char *windowidl /* source window */

char *windowid2 /* sink window */

also creates an interwindow channel. This call would be used in conjunction with a connection
server, and is functionally equivalent to the iwc_request - iwc_accept pair. The primary reason for
including a somewhat redundant IWC mechanism is ease of invocation; with this primitive, informa-
tion need only be supplied at one centralized location (whereas with the above mentioned distributed
primitives, the required information must be supplied at two places).

To disconnect an interwindow channel, a window-bound process issues the following call:

iwc_close (iwchan)

int iwchan /* interwindow channel descriptor */

This is done by/for processes on both ends of the channel.

A process may redirect output for display in a specified window by the call:

iwc_redir(windowid)

char *windowid /* output redirection window */

Note, this call does not set up a producer-consumer relationship between a process and a window-
bound process, it merely redirects the output flow from a process to a particular window for display

t Ada is a registered trademark of the U.S. Government - Ada Joint Program Office

-83-
puposes only.

Once an interwindow channel has been successfully set up, it may be desirable to dynamically insert
a translation filter into the connection stream. This is accomplished by the call:

iwaddr = iwe_tfin(trfilter, iwchan, iwprocl, iwproc2)
result int iwaddr /* interwindow channel address */
int iwchan /* interwindow channel descriptor */
char *trfilter /* translation filter to be inserted */
char *iwprocl /* process on interwindow channel */
char *iwproc2 /* process on interwindow channel */

which interposes trfilter between iwprocl and iwproc2 on the interwindow channel identified by
iwchan.

A translation filter can be removed from the connection stream, thereby reconnecting its predeces-
sor and successor on the interwindow channel by the call:

iwe_tfout(¢rfilter, iwchan)

int iwchan /* interwindow channel descriptor */
char *trfilter /* translation filter to be removed */

This call removes connected process trfilter from the interwindow channel identified by iwchan.

An Experimental 4.2BSD Unix Implementation

A prototype implementation of the above described interwindow communication primitives was
developed for a Sun Microsystems Workstation running 4.2BSD Unix. They were for the most part
constructed with standard 4.2BSD file system and IPC system calls. However, some additional /WC
system structures and manipulation routines also had to be built.

There is an interwindow channel table which contains one entry for each interwindow channel
that has been constructed. The table is of fixed length and the indices into this table are the
interwindow channel descriptors themselves. Each entry contains a pointer to a structure called an
interwindow node reference table. One fixed length node reference table exists for each interwindow
channel. Each table contains the same number of entries corresponding to number of available nodes
for an interwindow channel. The indices into the node reference table are the interwindow (node)
addresses themselves and each entry in the table contains either a null pointer (for an unallocated-
uninserted node) or a pointer to an interwindow node attribute structure (for currently allocated-
inserted nodes). Each node attribute structure contains:

1) a process ID

2) a successor pointer (to an interwindow (node) address)

3) a predecessor pointer (to an interwindow (node) address)

4) an associated window namet (if process at this node is window-bound)
or windowless name (if this process is non-window-bound)

An IWC service daemon was constructed to provide a single point of contact for requesting

t Window names were arbitrarily chosen to be a series of character strings (i.e. "winl®, "win2"....,"winN"). The
particular naming convention has no inherent importance. However, taken in the context of the node attribute

-84 -

IWC services (these services are only requested by IWC primitives). This service server is a con-
tinuously existing process which listens (at a well known address) on a socket. It accepts connec-
tions from client IWC processes, obtaining a message over the newly connected socket which con-
tains (among other things) the type of service required and parameters needed to carry out the ser-
vice. The service daemon then creates (via a fork/exec sequence) the appropriate server process
(note: the child server process inherits the client-server socket connection) which finally carries out
the client request. An important function of the IWC service daemon is to provide support services
for IWC system structures. The general outline of the IWC service daemon is as follows:

create socket to detect client requests at well known address
establish queue to allow simultaneous connection requests
for ;) {
accept client connection thereby creating socket in which
client-server transmission will take place
receive message from client to ascertain required service
if (fork()==0){
close detection socket
exec appropriate server process

close connection socket

With the above described IWC system structures and support services as given, the implemen-
tation of the IWC primitives can now be outlined.

Here is a rough sketch for the iwc_request and iwc_accept calls:

iwc_request(...) iwe_accept(...)
{ {
create socket create socket
initiate interprocess connection accept interprocess connection
via socket via socket
make interwindow channel just created make interwindow channel just created
- standard output - standard input
update IWC structures update IWC structures

This particular implementation of the calls uses the 4.2BSD IPC mechanism - sockets to create a
pipe-like connection between unrelated processes (it could be viewed as a simulation of AT&T’s
System V named pipes). First, a socket is created in the source window-bound process (the one that
invokes iwc_request) and also in the sink window-bound process (the one that invokes iwc_accept),
then a process to process connection is arbitrated by the cooperating window-bound processes (the
rendezvous is made) thereby creating an interwindow channel. Then standard output of the source
window becomes the interwindow channel, and standard input of the sink window becomes the other
end of the interwindow channel. TWC structures are then updated (via IWC service daemon service
requests) to reflect the creation of the interwindow channel and its two end point nodes and the
producer-consumer relationship between the two window-bound processes is consummated.

The algorithm for iwc_close is as follows:

structure described above, what is provided is a process name to process ID mapping for window-bound (and non-
window-bound) processes existing and being manipulated in the window system.

-85 -

for (interwindow channel to be closed)
for each interwindow node {
terminate associated process
update associated IWC structures

insert null pointer in interwindow channel table entry

Here, an extremely simplified approach was taken. Basically the interwindow channel is shut down
(including all processes associated with the interwindow channel). This approach poses no real
problems since everything can be reconstructed interactively in building block fashion.

Iwc_redir was trivial to implement. This call causes output from the invoking window to be
continually redirected to the slave side of the pseudo terminalt associated with the target of redirec-
tion window. This in turn causes all output that normally would have went to the source window to
show up in the target of redirection window.

Iwc_tfin inserts an arbitrary (translation filter) process (window-bound or non window-bound
process) between two currently existing interwindow processes (processes currently residing on an
interwindow channel). This transaction actually involves the cooperation of three processes; the
predecessor process, the IWC service daemon and the successor process. The algorithm/process
interaction is as follows:

Predecessor Process IWC Service Daemon Successor Process
create socket create socket create socket
initiate connection to

IWC service daemon............ccoeunecns accept connection from
send message requesting predecessor process

tfin service create and start tfin service process

(in tfin service process)

make predecessor-to-tfin channel, initiate connection to

standard output SUCCESSOT PTOCESS....veeensreseonesess accept connection

from service process
make tfin-to-successor channel,
standard input
make predecessor-to-£fin channel,
standard input
make tfin-to-successor channel,
standard output
exec translation filter
(translation filter now reads
from predecessor process
and writes to successor
process via IWC channel)

iwe_tfin (the primitive) is invoked from the potential predecessor process. It initiates a socket con-
nection to the WC service daemon and sends a message (upon successful completion of the

t Pseudo Terminals are two part software devices that simulate the actions of hardware associated with a glass
teletype. The slave side presents an hardware-like interface which fools programs into believing that they actually
have control of dedicated display terminal. The master side allows a program such as a window manager to actual-
ly control what is displayed on a partitioned screen and where it is displayed.

- 86 -

connection) containing information needed for the service daemon to carry out the tfin service. The
service daemon accepts the connection, receives and acts on the request-for-service message and
Sorklexecs the tfin service process. Concurrent with this activity, the predecessor-to-IWC service
channel becomes the standard output channel in the predecessor process. Meanwhile in the tfin ser-
vice process, a socket connection is initiated to establish a communication channel to the potential
successor process. The successor process accepts the connection from the tfin service process and
makes that channel it’s standard input. Concurrent with this activity, the #fin service process makes
the channel from it’s predecessor process, standard input, and the channel to it’s successor process,
standard output. Then it overiays itself with the desired translation filter, which inherits the prede-
cessor and successor connections.

Iwc_tfout removes a translation filter from the interwindow channel. This primitive has not
yet been implemented.

Interactive Window-System Interface

An interactive window system interface can easily be constructed out of the above primitives.
As an example of this, we will look at the structure and usage of an interactive interface (that runs
under SunWindowst [17]) that allows one to establish interwindow channel.

Pop-up menus are used as a selection mechanism. A user accesses IWC facilities by first
pointing to the border of an existing window which exposes the tool managert [17] pop-up menu.
Then by bringing the /WC menu to the foreground (the menu is stacked behind the tool manager
pop-up menu). This reveals a number of /WC options from the previously obscured pop-up menu.
The options appear as follows:

IWC

Request channel

Accept channel

Request filter out

Accept filter in

Remove filter

Disconnect channel

To create an interwindow channel using this interactive interface is a a two-part process and may be
accomplished as follows; A user positions himself (with a pointing device) in the border of the
potential source window, brings up the the IWC menu (as described above) and selects
[Request channel| This event causes a program to execute which prompts the user for the name of
the sink window. By inspection (window names are displayed in the namestripes of open windows),
the user ascertains the window name and responds to the prompting program. Once the information
is successfully entered, iwc_request is invoked which initiates the interwindow connection. The user
must then position himself in the potential sink window and select This event
causes a program to execute which prompts the user for the name of the source window. Once the

t SunWindows is a trademark of Sun Microsystems, Inc.

t The tool manager is Sun-provided window manipulation menu that allows a user to move, expand, shrink, open,
close,...etc. existing windows in the SunWindows system.

-87-

information is successfully entered, iwc_accept is invoked which completes the interwindow connec-
tion. The whole process can be described as follows:

on events (IWC selections - request channel, accept channel)
prompt for names of the windows to be connected
invoke iwc_request and iwc_accept
which then cooperate to consummate an interwindow channel
connection via sockets.

Other options selected work in a similar fashion; an event or events (i.e. selecting an option
from a pop-up menu(s)), cause a group of IWC processes to interact and provide the desired end
result.

Conclusions

This was a first attempt at the design and implementation of high-level interwindow communi-
cation primitives. A number of alternatives and additions have been considered. An interface
extension to the 4.2BSD socket facility to allow dynamic reconnection of sockets was suggested by
one of the authors of the X window system [22]. This would facilitate the easy implementation of
many of the IWC primitives, especially the ones involving translation filters.

A set of interactive interwindow communication facilities has proven to be a useful add-on to a
window management system. They allow users to interface with a window system in a purely
interactive mode of operation in building block fashion. This alleviates the necessity for program-
mers to pre-construct static interprocess links between potential communicating window system
processes. It is hoped that future developers of windowing systems recognize the need for these kinds
of capabilities and provide them as part of their window system toolbox.

Future Work

Future research in this area centers around alternate ways of expressing the ideas presented,
and alternate implementation strategies. For instance, using remote procedure calls [18], [19], [20],
[21] to build IWC facilities or using Eighth Edition Unix System [5] IPC Primitives (when they
become available) as a foundation.

Acknowledgements

I would like to thank George Lyon for his contributions and feedback. Also, I would like to
thank Len Barnstone, Jay Dev, Mark Eisner, Paul Nunn, Dan Sarnowski and Jack Wiesenthal.
Without their continuing support and encouragement none of this would have been possible. Drew
Wright provided suggestions on some of the early drafts. In reviewing this paper, Jim Gettys sup-
plied many useful suggestions and much food for thought. Finally, special thanks go to Mike Cat-
tolico and Frank Greco who provided valuable comments and suggestions on some of the more
technical issues.

References

[1l UNIX System V - Release 2.0 Programmers Reference Manual, AT&T Technologies (1984)
[2] Leffler, S., Joy, W. and Fabry, R., A4 4.2BSD Interprocess Communication Primer, Computer
Science Division, Department of Electrical Engineering and Computer Science, University of Cali-
fornia, Berkeley, CA 94720 (July 1983)

[3] Ritchie, D.M., “A Stream Input-Output System", AT&T Bell Laboratories Technical Journal,
Vol. 63, No. 8, (October 1984)

[4] Killian, T.J., “Processes as Files", USENIX Summer Conference Proceedings, Salt Lake City,
UT (June 1984)

[5] Presotto, D.L. and Ritchie, D.M., “Interprocess Communication in the Eighth Edition Unix

-88 -

System", USENIX Summer Conference Proceedings, Portland OR (June 1985)

[6] Pike, R., “Graphics in Overlapping Bitmap Layers’, ACM Transactions on Graphics 2, 2
(April 1983)

[7] Rhodes, R., Haeberli, P. and Hickman, K., “Mex - A Window Manager for the IRIS",
USENIX Summer Conference Proceedings, Portland OR (June 1985)

[8] Evans, S.R., “Windows with 4.2BSD", Unicom Conference Proceedings, San Diego CA (Janu-
ary 1983)

[9] Pike, R., “The Blit: A Multiplexed Graphics Terminal", AT&T Bell Laboratories Technical
Journal, Vol. 63, No. 8, (October 1984)

{10] Jacob, R.J.K., “User Level Windows for Unix", Uniforum Conference Proceedings, Washington
D.C. (January 1984)

[11] X Window System Protocol Specification , MIT Project Athena (1985)

[12] Programmers Guide to the Window Manager: A Guide for the Uninitiated (for Release 1 of
the ITC Prototype Workstation), Information Technology Center, Carnegie Mellon University (June
1985)

[13] User's Manual for Release 1 of the Andrew System, Information Technology Center, Carnegie
Mellon University (June 1985)

[14] Joy, W., Cooper. E., Fabry, R., Leffler, S., McKusick, K. and Mosher, D., 4.2BSD System
Interface Overview, Computer Science Division, Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA 94720 (July 1983)

[15] Wulf W.A., Levin R., Harbison S.P., “HYDRA/C.mmp: An Experimental Computer System",
McGraw Hill (1981)

[16] Gehani, N., ““Ada Concurrent Programming”, Prentice Hall (1984)

[17] Programmers Reference Manual for SunWindows, Sun Microsystems, Inc., Mountain View,
CA 94043 (May 1985)

[18] Nelson, B.J., “Remote Procedure Call”, Tech. Report CSL-81-9, XEROX Palo Alto Research
Center, Palo Alto, CA (1981)

[19]) Courier: the remote procedure call protocol, XEROX System Integration Standard XSIS-
038112, XEROX Corporation, Stamford Connecticut (December 1981)

[20] Birrell, A.D., Nelson, B.J., “Implementing Remote Procedure Calls", ACM Transactions on
Computer Systems 2, 1 (February 1984)

[21] Networking on the Sun Workstation, Sun Microsystems, Inc., Mountain View, CA 94043
(May 1985)

[22] Gettys, J., MIT Project Athena, Personal communication, (November 1985)

Problems Implementing Window Systems in UNIX}

James Gettys

Digital Equipment Corporation
Project Athena
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Over that last 18 months the X window system has been implemented under
4.2BSD UNIX at MIT at the Laboratory for Computer Science and Project
Athena. While on the whole the resulting design is reasonably clean and pleasing,
UNIX strongly limited the possible implementation strategies. This paper discusses
the problems encountered, how they influenced our design decisions, and suggests
issues for future study and development as UNIX evolves toward a distributed
environment.

X Window System Design

While this paper is not specifically about the X window system, X will be used as an example
for much of the discussion. X is best described using a client/server model. X consists of a collec-
tion of client programs which communicate with the window system server. They are implemented
entirely in user code. All communications with the window system occur over a stream connection
to the window system. X is completely network transparent; i.e. a client program can be running on
any machine in a network, and the clients and the server need not be executing on the same
machine architecture. The block diagram shown in Figure 1 describes the structure of the system.

X supports overlapping possibly transparent windows and subwindows to arbitrary depth.
Client programs can create, destroy, move, resize, and restack windows. X will inform clients on
request of key presses, key releases, button presses, button releases, mouse window entry and exit,
mouse motion, a number of types of window exposure, unmap (removal of a window from the
screen), and input focus change. Cut and paste buffers are provided in the server as untyped bytes.
Graphic primitives provided include dashed and dotted multi-width lines, and splines. There is a
full complement of raster operations available. The implementation supports color, though the
current protocol limits the depth of a display to 16 bits/pixel.

The X window system consists of a collection of UNIX programs providing various services on
a bitmap display. There is only a minimal device driver to field interrupts from mouse, keyboard,
and potentially a display engine. The X server accepts connections from client applications pro-
grams. Window, text and graphics commands are all multiplexed over (usually) a single connection
per client. Multiple clients may connect to the server.

The X protocol is the only way to communicate to the window system. The X server enforces
clipping, does resource allocation, multiplexes output from multiple clients, performs hit detection
for mouse and keyboard events, and performs graphics primitives in windows. The protocol is
entirely based on a stream. The current implementation uses TCP as its stream transport layer;
though it has been run experimentally using DECNET stream connections. A client program may
run on any machine in a network. On a local net, performance is the same or better when run

t UNIX is a Trademark of AT&T Bell Laboratories.

-90 -

remotely as when run locally given two identical unloaded processors.

The X server is a single threaded server program. Requests from clients are processed in a
round robin fashion to provide apparently simultaneous output. This has proven to be sufficient, and
vastly simplified the design and implementation. Single threading provides all locking and syn-
chronization without any complex structure. The X server must therefore be very careful never to
block waiting on a client, and exploits the observation that each individual graphics operation is very
fast on a human time scale (though it may be slow on a systems time scale). The 4.2BSD facilities
that make this easy to implement include select(2), non-blocking 1/0, and the network mechanism
(IPC to unrelated processes).

The current X server implementation does NOT maintain the contents of windows. Refresh of
a damaged window is the responsibility of the client. The server will inform a client if the contents
of a window has been damaged. This was motivated by a number of observations: 1) clients often
have their own backing store, and this must be maintained by most programs when resized anyway;
if the window system provides backing store, it is often duplicating existing facilities. 2) keep the
window system simple and FAST. 3) the amount of data that would have to be stored for bitmap
backing store on color displays is very large. Naive UNIX applications are run under a terminal
emulator which provides the refresh function for them.

X delegates as much to a client as possible. It provides low level “hooks” for window manage-
ment. No less than three window manager programs (a separate client program in the X design
from the window system) have been written to date, and provide quite different user interfaces.
Menus are left to client code to implement, using the flexible primitives X provides. There have
been four different styles of menus implemented to date, including a quite sophisticated “deck of

cards” menu package.
[Window '
PTY/TTY

X-lb X-lib

X-protocol network interface

X-Window
Server

shared device
memory dependent
queue X output

display
device hardware
driver
keyboard
mouse

Figure 1: Block Diagram Structure of X

X runs as of this writing on four quite different types of hardware, from very intelligent to
very simple. An example of a very intelligent (and reasonably well designed) piece of hardware
from the programmers point of view is the DEC Vs100, though it suffers due to the nature of its
interface to a VAX, which adds overhead and latencies to each operation. A QVSS display on a
MicroVAX (VS1 and VS2) is at the opposite end of the spectrum, being a simple bitmap with no
hardware assist. Other ports are in progress.

-9] -

Alternatives to User Process Window Systems

As currently implemented on most machines, the UNIX kernel does not permit pre-emption
once a user process has started executing a system call unless the system call explicitly blocks. Any
asynchrony occurs at device driver interrupt level. UNIX presumes either that system calls are very
fast or quickly block waiting for I/O completion.

This has strong implications for kernel window system implementations. While window system
requests do not take very long (if they did, the presumptions made in X would be unacceptable),
they may take very long relative to normal system calls. If a system call is compute bound for a
“long period”, interactive response of other processes suffers badly, as the offending process will
tend to monopolize the CPU. One might argue that this is not offensive on a single user machine
but it is a disaster on a multiuser machine. If graphics code and data is in the kernel for sharing, it
permanently uses that much of kernel memory, incurs system call overhead for access, and cannot
be paged out when not in use.

Similarly, in X as well as most other window systems, if a window system request takes too
long, other clients will not get their fair share of the display. This is currently somewhat of a prob-
lem during complex fill or polyline primitives on slow displays. The concept of interrupting a graph-
ics primitive is so difficult that we have chosen to ignore the problem, which is seldom noticeable. If
such graphics primitives occur in system calls, they have a much greater impact on process schedul-
ing.

An alternative to a strictly kernel window system implementation splits responsibility between
the kernel and user processes. Synchronization, window creation and manipulation primitives are
put in the kernel, and clients are relied on to be well behaved for clipping. Output to the window is
then performed in each user process. This has several disadvantages (presuming no shared libraries,
not available on most current UNIX implementations). Each client of the window system must must
then have a full copy of graphics code. This can be quite large on some hardware, replicated in
each client of the window system. For example, the current bit blit, graphics and clipping code for
QVSS is approximately 90kbytes, or 18000 lines of C source code. Fill algorithms may also require
a large amount of buffer space.

Even worse (as the number of different display hardware proliferates with time on a single
machine architecture) is that this split approach requires the inclusion in your image of code for
hardware you do not currently have. Upward compatibility to new display hardware is also impossi-
ble without shared libraries, but dynamic linking is really required for the general solution.

With much existing hardware it is hard to synchronize requests from multiple processes if the
hardware has not been designed to efficiently support context switching. There are sometimes work
arounds for these problems by “shadowing™ the write only state in the hardware. We have seen
displays which incur additional hardware cost to allow for such multiprocess access. One must also
then face the locking of critical sections of window system data structures if the window system is
interruptible.

UNIX internal kernel structuring currently provides most services directly to user processes. It
would be difficult to provide network access to the window system if it were in the kernel due to this
horizontal structure but a better ability to layer one facility on another would improve this situation.
Again, this is a failure of the kernel to be sufficiently modular to anticipate the evolving environ-
ment.

X finesses all of these problems: 1) X and client applications are user processes; ergo no
scheduling biases. 2) There is only one copy of display code required, in the server, which can be
paged since it is completely user code. This also saves swap space, in short supply on most current
workstations. The resulting client code is thus small. Minimal X applications are as small as 16k
bytes. No graphics code is in an application program. 3) Client code can potentially work with new
hardware without relinking, as no display specific code appears in a client program image. 4) Net-
work access to the window system comes at no additional cost, and no performance penalty (in prac-
tice, performance is often gained). 5) X avoids system call overhead by buffering requests into a
single buffer and delaying writing in a fashion similar to the standard I/O library. The system call

-92.

overhead for output is therefore reduced by well over an order of magnitude per X operation. 6)
User process code is easy to debug. Some complications can arise due to the distributed nature of
the system. In practice, this has rarely been a problem. 7) Applications requiring a “compute
server” can be run from the user’s workstation.

Kernel lightweight processes could be used to solve the non-preemptable nature of system calls
and would create more options for window system implementations. Since raster operations can be
quite long lived, performing these in the current structure allows one process to monopolize the sys-
tem to the detriment of other processes. Since all context in the system call layer of the kernel is
associated with a user process, there is currently no way to divorce such operations from a process
"and schedule them independently.

While lightweight processes would unnecessarily complicate the X server design (requiring us
to lock data structures and perform synchronization), they could be used prevent the most common
X programming mistake. Programmers new to X invariably forget to flush the output buffer when
testing their first program. A timer driven lightweight process in clients would be useful to guaran-
tee automatic flushing of the buffers.

Shared Memory

On a fast display and processor, X may be performing more than one thousand operations (X
requests) per second. If every access to the device requires a system call, the overhead rapidly
predominates all other costs. X uses a shared memory structure with the device driver for two pur-
poses: 1) to get mouse and keyboard input and 2) to access the device or write into a memory bit-
map.

As pointed out before, X is a single threaded server. Since client programs should be able to
overlap with the window system as much as possible (remember that you may be running applica-
tions on other machines), it is particularly important to send input events to the correct client as
soon as possible. It is therefore desirable to test if there is input after each graphic output opera-
tion. This test can be performed in only a couple of instructions given shared memory, and would
otherwise require either one system call/output operation (to check for new input) or a compromise
in how quickly input would be handled.

All input events are put into a shared memory circular buffer; since the driver only inserts into
the buffer, and X only removes from the buffer, synchronization is easy to provide with separate
head and tail indices (presuming a write to shared memory is atomic).

Output on the QVSS is directly to a mapped bitmap. In the case of the Vs100, a piece of the
UNIBUSY and a shared DMA buffer are statically mapped where both the driver and the X server
can access them. Output requests to the Vs100 are directly formated into this buffer, minimizing
copying of data.# This permits the device dependent routines to start 1/O transfers without system
call overhead (by directly accessing device CSR registers), and avoids UNIBUS map setup overhead
that DMA from user space requires.

These changes dramatically increased performance and improved interactive feel when imple-
mented, while greatly reducting CPU overhead. Since proper memory sharing primitives are lacking
in 4.2BSD, it was implemented by making pages readable and writable in system space, where they
are accessible to any process. In theory, any program on the machine could cause a Vs100 imple-
mentation to machine check (odd byte access in the UNIBUS space), though in practice it has
never happened. None the less, it is the ugliest piece of the current X implementation. We are
more willing to allow a server process to access hardware directly than kernel code, as it is much
easier to debug user processes than kernel code.

The current X implementation uses a TCP stream both locally and remotely, though one could

+ UNIBUS is a trademark of Digital Equipment Corporation.

$ Our thanks go to Phil Karlton, of Digital's Western Research Lab, for the first implementation of this mechan-
ism.

-93 -

easily use UNIX domain sockets for the local case at the cost of a file descriptor. For current appli-
cations, the bandwidth limitations (of approximately 1 million bits/second on 780 class processor) is
not major, though faster devices (and image processing applications) would probably benefit from
implementation of a shared memory path between the X server and client applications.

Current shared memory implementations in variants of UNIX are not sufficient. Memory
sharing primitives should allow appropriately privileged programs to both share memory with other
processes and map to both kernel space and 1/0 space. Shared libraries (available in some versions
of UNIX) would also increase the options available to window system designers (see below).

File Descriptors

Andrew, the window system developed at the ITC at CMU [1] uses one connection (file
descriptor) per window. While simple from a conceptual level, also allowing naive applications to do
output to a window, it ties an expensive resource (file descriptor and connection) to what should be
a cheap resource (a window or sub-window). It requires more kernel resources in the form of socket
buffers for each file descriptor. In addition, the handshaking required for opening a connection is
expensive in terms of time and will become more so once connections become authenticated. The
attraction of having a simple stream interface to a window can be had by other means [2]. In addi-
tion, if a window is tied to a file descriptor, the application loses the implicit time sequencing pro-
vided by the event stream coming over a single connection.

One X application uses more than 120 subwindows, all multiplexed over a single connection.
One could postulate a single connection per client for input, and a single connection per window for
output; with the limited number of file descriptors in 4.2BSD and other current versions of UNIX,
this was eliminated as a possibility. Sixteen client programs seems to be sufficient for most people,
(this is limited by 20 file descriptors on standard UNIX, with four file descriptors needed for X; one
for the display, keyboard and mouse, two to listen for incoming connections, and one for reading
fonts). Sixteen is not a tolerable limit on the total number of (sub)windows, however.

4.3BSD lifts this limit to sixty four. (It can be configured to any size.) While this increase in
the number of file descriptors is beneficial, it is still too expensive a resource to use one per window.

Terminal Emulation

The current terminal emulator for X (xterm) is a client application, in principle similar to any
other application. In practice, xterm is probably the most complex and least graceful part of the
package. Pseudo teletypes (hereafter called pty’s) are used to implement this in 4.2BSD. As
currently implemented, ptys consist of a device driver which presents a terminal on one side and a
master controlling device on the other side. Data is looped back from one side to the other, with full
terminal processing occurring (tab expansion, cooked/raw mode, etc.)

These present a number of problems: 1) pty’s are a limited resource. Typical systems have 16
or 32 ptys. On a single user machine, this limit is seldom reached, but on a timesharing machine it
can be inconvenient. 2) Since they appear statically in the file system, protection on the tty/pty
pairs can be a problem. A previous process that terminates unexpectedly can leave the pty in an
incorrect state. Xterm is the only application that must run set user id to root to guarantee it can
make the tty/pty pair properly accessible and to set ownership on the slave to the user.

The net result is that xterm is the most UNIX dependent (and least likely to port between
UNIX implementations) of any of the X clients currently existing. Dennis Ritchie’s [3] stream
mechanism appears to eliminate most of these problems by allowing stacking of terminal processing
on IPC.

Window System Initialization

Most displays capable of running a window system bear little resemblance to UNIX's model
of a terminal connected by a serial line. Current display hardware may require involved initializa-
tion before it is usable as a terminal, and may have an interface that looks nothing like the

-04 -

conventional view of a serial device. As soon as the window system is running, however, it is easy to
provide a terminal emulator to a user.

Unix currently realizes someone has logged out by the eventual termination of the process
started by init(8). Init is also the only process which can detect when an orphan process terminates,
so the restart of a terminal line (or window system) after logout can only be performed by init.

The solution taken to support X (or Andrew, which has a similar structure) was to generalize
init. Getty(8) or (in X’s case, xterm) now opens and revokes access to a terminal or pty rather than
init. The format of the /etc/ttys file, already extended at Berkeley, was further extended to allow
the specification of an arbitrary command to be run as gerty. For X, this would normally be the
terminal emulator. Init will also restart an optional window system server process associated with
the pty. Init must start this process, since init is the only process in UNIX that can detect its exit.
The initial xterm can not be started from a window system server, since the server must exist all the
time, and init has to know the process id in order for it to detect the login process has terminated.
The X server process itself opens the display device and performs whatever initialization may be
required (for example, the Vs100 requires loading with firmware stored in a file).

Once xterm starts execution, it exec’s getty on the slave side of the pty, and a user can log in
normally. When the user’s shell exits, xterm exits, and init can then detect the user has logged out
normally.

Init can now be used to guarantee that a process will be kept running despite failures as long
as the system is multi-user. Another approach not seriously examined would have made it possible
for an orphan process to have a parent other than init.

Resource Location and Authentication

At this time, UNIX lacks good network authentication and resource location. The only exam-
ple of a real name server in widespread use is the internet name server. As UNIX moves toward a
distributed systems environment, questions of distributed resource location become important. X at
this time does little to solve this problem, relying on either command line arguments or an environ-
ment variable to specify the host and display you want the application to use. In reality, it should
be closely tied to the user’s name, since the name of a machine is basically irrelevant as users often
move. X seems to highlight some issues in the future design of such servers that may not be widely
appreciated.

The model used to best describe distributed computing goes under the name of the
“client/server” model. That is, a client program connects to a “server” which provides a service
somewhere in the network. The additional twist is that the window system is a “server” in this
model, and other network services may become “clients” of the X server. For example, one can
envision using services that want to interact with the user’s display. The result is that the “name”
of the X server must somehow propagate through such service requests, along with whatever authen-
tication information may be required to connect the X server in the future. This “cascaded” ser-
vices problem has not been well explored.

The access control currently in X requires no authentication, but is only adequate for worksta-
tions, and fails badly in an environment which includes timesharing systems. X can be told to only
accept connections from a list of machines. Unfortunately, if any of them are timesharing
machines, and you allow access from that machine, then anyone on that machine may manipulate
your display arbitrarily. This has the unfortunate side effect of making it trivial to write password
grabbers (across the net!) or otherwise disturb the display if access is left open.

The “name” of the user’s display server also comes and goes with some frequency, as each
time you log out, any previously authenticated connection information needs to be invalidated, so no
background process from a previous user will disturb the user’s display. It is also not uncommon
that a single user may use multiple displays, possibly on multiple machines simultaneously. This
might be common, for example, in a laboratory environment. Interesting questions arise as to which
display to use on what machine. (For example, the user may initiate a request on a black and white

-95.-

display that really works better on a color display; which display on what machine should be used?)
We do not believe these issues, in particular the transient and cascading nature of such display ser-
vices and authentication information, have been properly taken into account in the design of
resource location and authentication servers.

Stub Generators and the X Protocol

The X protocol is not a remote procedure call protocol as defined in the literature [4,5], as
client calls are not given the same guarantee of completion and error handling that an RPC protocol
provides. The X protocol transports fairly large amounts of data and executes many more requests
than typically seen in true RPC systems. Given this generation of display hardware and processors,
X may handle greater than 1000 requests/second from client applications to a fast display.

X clients only block when they need information from the server. Performance would be
unacceptable if X were a synchronous RPC protocol, both because of round trip times and because
of system call overhead. This is the most significant difference between X and its predecessor W,
written by Paul Asente of Stanford University. On the other hand, a procedural interface to the
window system is essential for easy use. We spent much time crafting the procedure stubs for the
several library interfaces built during X development.

The original implementation of the client library would always write each request at the time
the request was made. This implies a write system call per X request. There was implicit buffering
from the start in the connection to the server due to the stream connection. Over a year ago, we
received new firmware for the Vs100, and were no longer able to keep up with the display. We
changed the client library to buffer the requests in a manner similar to the standard 1/0 library;
this improved performance dramatically, as the client library performs many fewer write system
calls.

Many current RPC [6] argument martialing mechanisms perform at least one procedure call
per procedure argument to martial that argument. This is almost certainly too expensive to use for
this application. Even if martialing the argument took no time in the procedure, the call overhead
would account for “10% of the CPU. Stub generators need to be able to emit direct assignment
cede for simple argument types. Complex argument types can probably afford a procedure call,
but these are not common in the current X design.

Proper stub generation tools would have saved several months over the course of the project,
had they been available at the proper time. Arguments could be made that the hand-crafted stubs
in the X client library are more efficient than machine generated stubs would have been. On the
other hand, to keep the protocol simple, X often sends requests with unused data, for which it pays
with higher communications cost. It would be instructive to reimplement X using such a stub gen-
erator and see the relative performance between it and the current mechanism.

Machine dependencies in such transport mechanisms need further work. The protocol design
deserves careful study. Issues such as byte swapping cannot be ignored. With strictly blocking
RPC, the overhead per request is already so high that network byte order is probably not too expen-
sive, given the current implementation of RPC systems on UNIX. With the higher performance of
the X protocol, this issue becomes significant. It is desirable that two machines of the same archi-
tecture pay no penalty in performance in the transport protocols. Our solution was to define two
ports that the X server listens at, one for VAX byte order connections, and one for 68000 byte order
connections. At a late stage of X development, after X client code had already been ported to a
Sun workstation and would interoperate with a VAX display, another different machine architecture
showed that the protocol was not as conservatively designed as we would like. Care should be taken
in protocol design that all data be aligned naturally (words on word boundaries, longwords on long-
word boundaries, and so on) to ensure portability of code implementing them.

X would not be feasible if round trip process to process times over TCP were too long. On a
MicroVAXY II running Ultrix#, or on a VAX 11/780 running 4.2, these times have been measured
between 20 and 25 milliseconds using TCP. As this time degrades, interactive "feel" becomes worse,

t VAX is a trademark of Digital Equipment Corporation.

- 96 -

as we have chosen to put as much as possible in client code. Birrell and Nelson report much lower
times using carefully crafted and tuned RPC protocols on faster hardware; even extrapolating for
differences in hardware, UNIX may be several times slower than it could be. Given a much faster
kernel message interface, one should be able to improve on the current times substantially. The X
protocol requires reliable in order delivery of messages.

The argument against using such specific message mechanisms are: 1) the buffering provided
by the stream layer is used to good advantage at the server and client ends of the transmissions. 2)
Less interoperability. X has been run over both TCP and DECNET, and would be simple to build a
forwarder between the domains if needed. This reduces the number of system calls required to get
the data from the kernel at either end, particularly when loaded.

These times have been improved somewhat by optimizing the local TCP connection, and could
be further improved by using UNIX domain connections in the local case.

In general UNIX needs a much cheaper message passing transport mechanism than can
currently be built on top of existing 4.2BSD facilities. Stub generators need serious work both for
RPC systems and other message systems particularly in light of some of the issues discussed above.
We would make a plea that there be further serious study of non-blocking protocols[7]. There
should be some way to read multiple packets from the kernel in a single system call for efficient
implementation of RPC and other protocols.

Select and Non-blocking I1/0

Without select(2), building X would have been very difficult. It provides the only mechanism
in UNIX for multiplexing many requests in a single process. It is essential for the X server to be
able to block while testing for work to do on any client connection and on the keyboard device. X
will then wake up with the information required to determine which device or connection needs ser-
vice.

In actual interactive use of X on a very fast display, select accounts for both the most CPU
time and the most subroutine calls. Over an afterncon’s use on this display, it accounted for more
than 20% of the CPU time used. This is not surprising, since most use of the window system is gen-
erated by input events going to editors (in our environment), and output character echoing as well
as clock and load monitor graphics calls. When not loaded, one would expect on the order of one
select call per X request performed. In fact, there are approximately two X requests performed per
select call.

One should remember that select’s overhead diminishes as the load on the window system
increases, both because you are likely to have many requests on a single connection, and because
multiple connections may be processed on a single call. Profiling of the server when the display is
loaded shows select using a much smaller percentage of the total CPU time.

Note that for the typical case under normal use, TWO system calls will be occurring where
one might potentially do. In the output case (from a client), X will be blocked in select awaiting
input (one call). It must then read the data from the client and process it (second call). Due to the
shared memory described above, we are avoiding a write system call to the display. On input (key-
board or mouse), X will be blocked in select (one call). It then gets the input event out of the
queue, determines which client should get the event, and writes it (second call). Again, we have
saved a system call to read the data. Note that since buffering may occur on both input and output,
the overhead per graphics operation performed will diminish as the load on the server goes up, since
the server will perform more work for the same amount of overhead.

Optimally, select should be very cheap. On fairness grounds, one would like to see if more
input from a different client is available after each X request. The original X request handler
would check after every request for more requests. The current scheduler only checks for more
input when all previously read data has been processed, and provides an approximately 30% reduc-
tion in X server overhead (all in the select and read system calls).

% Ultrix is a trademark of Digital Equipment Corporation.

-97.

Summary

The current UNIX kernel implementation is quite inflexible, closing off what might be
interesting design choices. Lightweight processes both in the kernel and in user processes could be
used to good advantage. The kernel is not properly structured to allow easy use of different facili-
ties together. Streams may be a decent first step in this direction.

Stub generators, message passing and RPC transport protocols all need substantial work as
UNIX moves into the distributed world. Using these protocols without stub generators is like a day
without sunshine.

Resource location, authentication and naming are issues UNIX has not faced in the distributed
environment. Cascaded services present another level of issues which need to be faced in their
design.

UNIX has ASCII terminals ingrained into its very nature. It will take much more work to
smooth the rough edges emerging from the forced marriage of workstation displays with UNIX.

If a system resource is in short supply (as file descriptors are), the correct solution is to lift the
limit entirely. Doubling or tripling a limit on a resource only delays the day of reckoning, while still
preventing those design strategies that found them in short supply originally.

Shared memory should allow sharing of memory between processes, between the kernel and a
process, and between a process and hardware. Shared libraries would open up design opportunities.

More work needs to be done on performance of some of the new kernel facilities. The X
server uses select more heavily than any other system call, accounting for the largest single com-
ponent of CPU time used, though select is not the limit in absolute performance.

Acknowledgements

Without Bob Scheifler of MIT’s Laboratory for Computer Science, there would be no X win-
dow system.

The list of contributors is now too long for an exhaustive list, and includes Paul Asente, of
Stanford University, Mark Vandevoorde, Tony Della Fera, working for Digital at Project Athena,
Ron Newman of Project Athena, the UNIX Engineering Group and the Workstations group of Digi-
tal. My thanks also go to Sam Leffler, Steve Miller and Noah Mendelsohn for helpful comments
during the writing of this paper. My thanks also go to Branco Gerovac for Figure 1.

References

[1] Gosling, J. and Rosenthal, D. “A Window-Manager for Bitmapped Displays and UNIX,” to
be published in Methodology of Window-Managers, F. R. A. Hopgood et al (eds) North-
Holland.

[2} Newman, R., Rosenthal, D., Gettys, J. “User Extensible Streams,” In preparation.

[3] Ritchie, D. M., “A Stream Input-Output System,” AT&T Bell Laboratories Technical Jour-
nal, Vol. 63, No. 8, Part 2, pp. 1897, October 1984.

[4] Birrell, A. D. and Nelson, B. J., “Implementing Remote Procedure Calls,” Transactions on
Computer Systems, vol. 2, no. 1, February 1984.

[5]1 Nelson, B. J.,, “Remote Procedure Call,” Technical Report CSL-81-9, Xerox Palo Alto
Research Center, 1981.

[6] “Sun Remote Procedure Call Specification,” Sun Microsystems, Inc. Technical Report 1984.

[7]1 Souza, R. J. and Miller, S. P., “UNIX and Remote Procedure Calls: A Peaceful Coex-
istence?,” Project Athena Internal Paper, 1985.

SUNDEW: A Distributed and Extensible Window System

James Gosling

Sun Microsystems

ABSTRACT

SUNDEW is a distributed, extensible window system that has arisen out of an
effort to step back and examine various window system issues without the usual
product development constraints. It should really be viewed as research into the
right way to build a window system. The key unique feature of SUNDEW is the
ubiquitous use of an extension mechanism. The extensibility of the system has pro-
ven to be crucial to its functioning well in a distributed environment. Performance
is enhanced through closer interaction between client and server; data compression
on the communication channel can be done in an application-specific way; semantic
issues are cleared up by having a centralized authority; and user interface changes
are easier to make.

The paper is organized as two parts. The first provides some background to
motivate the design of SUNDEW, and the second presents the design. Several
aspects of the design are rather unusual, and hence need a lot of motivation.

1. Background

There is a wide range of flexibility in window systems. On the one extreme are systems like
Andrew! and the Macintosh? where essentially nothing can be changed in either the user or pro-
grammer interface. In the middle are systems like X3 which have provisions for new menu packages
or new layout managers, but where the difficulty of exploiting the flexibility is fairly high. At the
other end are totally open systems like Smalltalk where it is fairly trivial for a skilled user to
modify parts of the system’s behavior.

Take as an example what you must do to change the background grey pattern on the window
system’s desktop. On the Mac, this is easy because someone thought to include it as a configuration
option. On the other hand, if the scrollbar grey needs to be changed, you're stuck. With Andrew,
since changing the background grey isn’t a configuration option you're stuck unless you can get at
source. X is somewhat better since it is more broken up, but you’re still faced with rebuilding a
large part of the system. Smalltalk makes it fairly easy since the component of the window system
that deals with the background grey is small and well-contained and can be replaced incrementally
without disturbing the things around it. The hard part is finding out which piece to replace and
what its specification is. Smalitalk systems generally have the full source available along with a
powerful browsing facility: this makes the task possible and easy, but only for a skilled person.

Window systems have a wide range of complexity in their user interfaces. Some, like the
Macintosh, have very simple and clean interfaces that are easy for novices to learn. The Andrew
window system has a very simple style that is easy to teach, easy to use, and easy to document; but
this simplicity comes at the cost of a more rigid system. In some window systems experienced users
find that all the help and menu interaction can get in the way, so at the other end of the scale are
systems that are tuned to expert use but which novices find hard to learn. Systems are rarely at one
of these extremes: they usually have accelerators for expert users or simple menu interfaces for
novices. The one thing that is clear is that no interface style is satisfactory or even adequate in all
situations.

-99.

Similar comments can be made about the programming interfaces to window systems. Simple
interfaces often make unusual operations difficult; it can become necessary to take pliers to the
beast and bend it in unintended directions. For instance, in the Andrew system, direct program
manipulation of bitmaps is almost impossible. In the SunWindows® system it is impossible to avoid.
Powerful interfaces tend to be baroque. This is partly an inherent problem, and partly due to the
tendency of systems to accrete features as they mature. The best compromise seems to be an inter-
face that can be viewed in parts, starting out at a simple but complete base, and having complexity
that can be incrementally learned.

Another sort of flexibility that varies widely between window systems is their device indepen-
dence. Many window systems start out being intended for a particular technological base, and the
assumptions built into that base often creep into the higher levels of the design. A common problem
is the use of the ‘bitbit’ graphics model. While this deals fairly well with monochrome displays, it
doesn’t extend in a clean and useful way to color. Boolean combination functions between color
pixel values don’t make much sense. For instance, one often draws transient rubber band lines by
XORing them with the image. XORing color map indices can lead to some pyrotechnic effects.

Most window systems are initially built for a particular piece of hardware. Decisions tend to
be made less in favor of what is ‘right’ and more in favor of what fits in with the hardware at hand.
A good example of this is the X window system. It has been going through substantial growing
pains as it has developed. X started life as a window system for VAXes with VS100 displays. The
communication protocol between the X server and client programs was based on C structures, whose
internal representation was very VAX-specific. It also started out using the VS100 font format.
Unfortunately, the VS100 font format has some major technical problems, and the VAX C struc-
tures don’t map well to other machines. The process of cleaning out these VAX-specific aspects has
taken quite a while.

Andrew is a good example of a window system that was designed without a specific piece of
hardware in mind. This was an accident of the political situation at the time it was being written:
the hardware that it was being designed for didn’t exist, hadn’t really been designed, was being
designed in relative isolation from the design of Andrew, and, in fact, there were several display
designs going on simultaneously. Andrew was designed for a black box; all that was known about
the eventual system was that it would run some kind of Unix and that it would have some kind of
bitmap display. At the time, this was a very painful situation, but in retrodpect, it was a great bless-
ing.

The correct choice of a graphics model is crucial to achieving device independence. The more
abstract the model, the more room there is for the underlying implementation to accommodate dif-
ferent technologies. For example, consider the representation of color. There are three common
ways that color is represented in display devices: 1-bit black and white (constant small set of colors);
8-bit color with a colormap (variable small set of colors); and 24-bit color (all possible colors avail-
able everywhere). Integrating the views of color that these three implementations present is a very
hard but important problem.

The choice of a graphics model has a strong impact on the usefulness of the window system
for doing graphics. Many systems provide only rasterop, vector drawing, and simple text. On the
other hand, systems like the Macintosh which have a much richer graphics model, have a flair for
much more graphically interesting applications. This is a balancing act: richer models are more dif-
ficult to implement and more difficult to understand.

In the kind of distributed networked environment that Sun promotes, it is natural to want to
be able to access windows on another machine as naturally as the Network File System supports
accessing remote files. The experiences with Andrew and X have shown that the flexibility that this
allows in the choice of where a client program runs is very valuable. Non-networked systems like
Smalltalk or SunWindows have, by contrast, a very closeted feeling.

- 100 -

2. The Design

SUNDEW is based on a novel sort of interprocess communication. Interprocess communication
is usually accomplished by sending messages from one process to another via some communication
medium. Messages are usually a stream of commands and parameters. One can view these streams
of commands as a program in a very simple language. What happens if this language is extended to
being Turing equivalent? Programs don’t communicate by sending messages, they communicate by
sending programs that are elaborated by the receiver. This has interesting effects on data compres-
sion, performance and flexibility.

The POSTSCRIPT programming language defined by John Warnock and Charles Geschke at
Adobe Systems is used in just this way.® What Warnock and Geschke were trying to do was com-
municate with a printer. They transmit programs in the POSTSCRIPT language to the printer that
are elaborated by a processor in the printer, and this elaboration causes an image to appear on the
page. The ability to define a function allows the extension and alteration of the capabilities of the
printer.

This idea has powerful implications within the context of window systems: it provides a grace-
ful way to make the system much more flexible, and it provides some interesting solutions to perfor-
mance and synchronization problems. For example, if you want to draw a grid, you don’t have to
transmit a large set of lines to the window system, you just send down a loop. Downloading pro-
grams to the server is not just a nice feature that has been tacked on: it’s an integral part of the
window system.

POSTSCRIPT is the extension language used by SUNDEW. It is a clean and simple language, it
has a well-designed graphics model, and it is compatible with most of the printers that Sun supports.

SUNDEW is structured as a server which contains a POSTSCRIPT interpreter. Within this server
process is a collection of lightweight processes that execute POSTSCRIPT and C programs. Client
programs talk to SUNDEW through byte streams (4.2 BSD sockets). Each of these streams gen-
erally has a lightweight POSTSCRIPT process within the SUNDEW process that executes the stream.

SUNDEW server
keyboard
ient
ostScript
roces;
ient’
ostScript
roces; menu
ostScript .
roces display

Messages pass between client processes, that exist somewhere out on the network, and
POSTSCRIPT processes that exist within the SUNDEW server. These processes can perform opera-
tions on the display and receive events from the keyboard. They can talk to other POSTSCRIPT
processes that may, for example, implement menu packages.

Everything in SUNDEW is centered around POSTSCRIPT as an extension language. All that is
provided by SUNDEW is a set of mechanisms; policies are implemented as POSTSCRIPT procedures.
For example, SUNDEW has no window placement policy. It has mechanisms for creating windows
and placing them on the screen given coordinates for the window. The choice of those coordinates is
up to some POSTSCRIPT procedure.

What is usually thought of as the user interface of a window system is explicitly outside the
design of this window system. User interface includes such things as how menu title bars are drawn
and whether or not the user can stretch a window by clicking the left button in the upper right hand

- 101 -

corner of the window outline. All these issues are addressed by implementing appropriate pro-
cedures in POSTSCRIPT.

The rest of this paper presents SUNDEW in four parts: the imaging model, window manage-
ment, user interaction, and the client interface. The imaging model refers to the capabilities of the
graphics system — the manipulation of the contents of a window. Window management refers to
the manipulation of windows as objects themselves. User interaction refers to the way a user at a
workstation will interact with the window system: how keystrokes and mouse actions will be handled.
The client interface defines the way in which clients (programs) will interact with the window sys-
tem: how programs make requests to the window system.

2.1. Imaging

Imaging in SUNDEW is based on the stencil/paint mcdel, essentially as it appears in
Cedar/Graphics” and POSTSCRIPT. A stencil is an outline specified by an infinitely thin boundary -
that is piecewise composed of spline curves in a non-integer coordinate space. Paint is some pure
color or texture — even another image — that may be applied to the drawing surface. Paint is
always passed through a stencil before being applied to the drawing surface, just like silkscreening.
This is the total model: lines and characters can be defined using stencils. Lines are done as narrow
stencils. Underneath it all, it isn’t really done this way: special cases are exploited wherever possi-
ble. One can think of a stencil as a clipping region. Stencils may be composed by union, intersec-
tion and difference to create new stencils.

One of the attractive characteristics of this imaging model is its very abstract nature. For
example, the definition of a font allows many implementations: as bitmaps, as pen strokes, or as
spline outlines. No commitment is made about exactly which pixels are affected, or even that there
are pixels at all. The extension of the system to deal with anti-aliasing will not affect the interface.

The specification of this model is simple and elegant, but the way in which its various features
can be combined leads to a very tricky implementation. For example, the mechanism for specifying
a stencil allows straight lines, arcs and higher order curves to be a part of its boundary. Stencils
can be used both for clipping and for filling. This implies that it must be possible to compute the
intersection of curved boundaries. This is difficult, but possible, to do fast.

The work done by Vaughan Pratt on Conic Splines provides-a fast way to deal with the gen-
eration of curves.8 A further set of algorithms for putting these curves together and dealing with the
various operations on shapes that results has been developed.?

2.2. Window management

The basic windowing object is something called a canvas. This nonstandard term was picked
to avoid the semantic confusion that surrounds the word ‘window’. A canvas is just a surface on
which an image may be drawn. A set of canvases, called a scene, can be laid out in three dimen-
sions on a display surface. The actual implementation of canvases depends heavily on the graphics
package described in the previous section. Each canvas is made up of two parts: one on the screen,
and one not. By playing with these two parts one can get double-buffered, retained and non-
retained behavior.

Canvases are cheap and easy to create. Menus, windows and pop-up messages are all based on can-
vases. POSTSCRIPT has been extended with primitives to create and manipulate canvases. All
POSTSCRIPT graphics operations are performed on some canvas.

oA

- 102 -

2.3. User interaction — Input

Each possible input action is an event. Events are a general notion that includes buttons going
up and down (buttons may be on keyboards, mice, tablets, or whatever else) and locator motion.

Events are distinguished by where they occur, what happened, and to what. The objects spo-
ken about here are usually physical, they are the things that a person can manipulate. A example
of an event is the ‘E’ key going down while the mouse is over canvas x. This might trigger the
transmission of the ASCII code for E to the process that created the canvas. These bindings
between events and actions are very loose; they are easy to change.

The actions to be executed when an event occurs can be specified in a general way, via
POSTSCRIPT. This strongly resembles the squeak language, with lightweight processes replacing
concurrency compilation.!® The triggering of an action by the striking of the ‘E’ key in the previous
example sends a message to a POSTSCRIPT process that is responsible for deciding what to do with
it. It can do something as simple as sending it in a message to a Unix process, or as complicated as
inserting it into a locally maintained document. POSTSCRIPT procedures control much more than
just the interpretation of keystrokes: they can be involved in cursor tracking, constructing the bord-
ers around windows, doing window layout, and implementing menus.

2.4. Client interface

A client program exists in two parts: one that is written in POSTSCRIPT and lives inside SUN-
DEW, and one that lives outside SUNDEW and talks to it through a byte stream. This leads to a
number of levels at which the client interface can be viewed. At the lowest level, the programmer is
writing POSTSCRIPT programs and is dealing with an entirely POSTSCRIPT universe. Menu pack-
ages and window layout policies are examples of objects that will usually be implemented this way.

One step above that, the programmer is writing programs in C, or some other language, that
write POSTSCRIPT programs — the programmer is explicitly aware of the existence of POSTSCRIPT.
SUNDEW emulators for other window systems are generally implemented this way.

The highest level, and the one at which most programmers deal, the existence of POSTSCRIPT
and message passing is completely hidden by an interface veneer. The flexibility of POSTSCRIPT
allows this veneer to have many possible appearances: it can emulate other window systems like X or
Andrew.

3. An Example

This example defines a POSTSCRIPT function that pops up a message on the screen under the
mouse and removes the message when the user clicks a mouse button on it.

/popmsg { { HighlightFont setfont
dup stringwidth pop 15 box
createcanvas setcanvas
0 3 moveto show
currentcanvas currentlocator movecanvas
/MouseButtonUp enableevent
waitevent
} fork pop
} def

POSTSCRIPT is a completely postfix language. There is an operand stack from which arguments are
taken and onto which results are pushed. Literal numbers like 0, and literal names like /popmsg
are just pushed on the stack. Names which correspond to variables, like HighlightFont, have their
values pushed onto the stack. The construction ‘{stuff})’ defines a program block whose contents is
stuff. Ipopmsg {...} def defines the function popmsg by first pushing the name popmsg on the stack,
then a program block, then calling def to define the function based on these two arguments.

- 103 -

Setfont takes a single argument, a font, and makes it be the current font. Popmsg is written to take
a single string argument on the top of the stack. Dup duplicates this argument and stringwidth cal-
culates its width. Pop throws away the y component of the width. Box uses the width and 15 to set
the current path to be a box with those dimensions. Createcanvas then creates a canvas of that
shape, which is installed as the current canvas by setcanvas. 0 '3 moveto show moves to the starting
position of the string and draws it. currentcanvas currentlocator movecanvas draws the canvas on
the display positioned by the mouse. The MouseButtonUp event is then enabled and waited for.
This whole block of code is run as a separate process so that it doesn’t block the rest of the system
and so that its canvas and font get cleaned up automatically when the mouse is clicked. The pop
gets rid of the unwanted process handle.

4. Conclusion

Extensibility has proven to be very beneficial in the construction of a distributed window sys-
tem. It can be used to improve both the effective bandwidth and latency of the communications
network. The bandwidth improves by tighter encoding of the operations and the latency improves
by reducing the number of situations where messages need to be sent. The flexibility it provides,
even in a non-distributed environment, allows a clean separation of policy and mechanism, which
aids in user interface design.

1. David Rosenthal and James Gosling, “A Window Manager for Bitmapped Displays and
Unix,” in Methodology of Window Managers, ed. F. R. A. Hopgood et al., North Holland
(To be published).

2. C. Espinosa and C. Rose, QuickDraw: A Programmer's Guide, Apple Computer (March,
1983).

3. James Gettys, “Problems Implementing Window Systems in Unix,” Usenix Proceedings
(January, 1986).

4. Adele Goldberg and David Robson, Smalltalk-80: The Language and Its Implementation,
Addison-Wesley (May, 1983).

5. Programmer’s Reference Manual for SunWindows, Sun Microsystems (April, 1985).
PoSTSCRIPT Language Reference Manual, Addison-Wesley (July, 1985).

7. John Warnock and Douglas Wyatt, “A Device Independent Graphics Imaging Model for Use
with Raster Devices,” Computer Graphics 16(3) (July, 1982).

8. Vaughan Pratt, “Techniques for Conic Splines,” Siggraph Proceedings (July, 1985).

9. James Gosling, “If the Earth is Round, Why is the Sun Square,” Usenix Workshop on Com-
puter Graphics (December, 1985).

10. Luca Cardelli and Rob Pike, “Squeak: A Language for Communicating with Mice,” Siggraph
Proceedings (July, 1985).

UNIX on Big Iron

January 16, 1986

Denver, Colorado

User Requirements for UNIXt on “Big Iron”’
E. N. Miya

Computational Research Branch
NASA Ames Research Center
Moffett Field, CA 94035
eugene(@ames-nas.ARPA
UUCP: {ihnp4,hplabs,hao,decwrl}!ames!amelialeugene

ABSTRACT

The UNIX operating system was developed during an unusual period when mini-
computers were prominent. This is the source of many problems hampering the
scale-up of the system. Some historical perspective is useful for determining
near-term and far-term problem areas of UNIX running on large-scale systems
including multiprocessors, increased file system size, new performance criteria,
and the like.

Recently, a user was asked ‘what will the operating system of the 22nd Century would look like’
He said, “I don't know what it will look like, but it will be called UNIX.”

>From an anonymous computer rag in the year 2085.

Introductory Comments

The development of the UNIX operating system [1] was largely “user”-driven. Users, as his-
tory has frequently shown, have tended to demand ever-increasing quantities of computer speed
and storage (typically at rates faster than Ofn)). This placed a greater burden on UNIX to
operate in new and unintended environments. These environments were identified by Thompson
and Ritchie years ago in a now ancient (classical) issue of the Bell System Technical Journal:
e.g., multiprocessors, (2] high-speed input/output (I/O) devices, [3] and other realms, This
demand strains traditional resources like the file system.

It is ridiculous to think that file system size, for instance, should be bounded when there
exist requirements for greater speed and storage. Dennis Ritchie in his Turing award lecture [4]
even mentions the possibly of “a future Ken Thompson finding a little used CRAY-1% ...” Ironi-
cally, Ken and Dennis have just received a CRAY-X/MP.

The bottom line for any discussion of Big Iron? must be:
We must not sacrifice performance (either human or machine)!

The intention of this paper is to contrast the large-scale environment to the UNIX environment.
Specific features mentioned in the original Thompson and Ritchie paper (1] are briefly analyzed
from the large-scale perspective.

Big Iron

What constitutes “Big Iron?” The dividing line is difficult to draw: it is beyond a super-
minicomputer, and less than a “mainframe.” Both of these are vaguely defined terms. Many

*UNIX is a trademark of AT&T Bell Laboratories.
iCRAY is a trademark of Cray Research, Inc.

-105-

new multiprocessors are composed of collections of microprocessors: they are certainly interest-
ing. To avoid ambiguity, it is best to discuss user requirements at the high-end to understand
big iron requirements.

Supercomputers are defined as the fastest machines existing at a given point in (relative)
time. Supercomputer applications tend to have extreme requirements for both memory and
speed. These program cannot trade time for space or vice versa. These applications are not
restricted to ‘“scientific programming.” Big-iron skeptics might question the above statement.
Fortunately, a popular, easy to understand example exists in computer graphics: making high-
quality, “Lucasfilm” or “Star-Wars*”’ movies.

Consider the development of spatial resolution in computer graphics. Frame buffers
started with 256 by 256 pixel resolution. Color was added, so more bits were added. Next, spa-
tial resolution increased from 256 pixels to 512 pixels per side, then to 1024 pixels, and now we
have 2048 pixels. Resolution increases (at a rate of O(nz)), but aliasing problems still exist for
big screen cimena. Aliasing can only disappear with a combination of adequate resolution
(greater than 2048 pixels) and anti-aliasing techniques.

Note that the design of resolution went up linearly, but the storage requirements squared
with each linear increase. The execution time may similarly square. Suppose the film-maker
decides that 16K by 18K resolution is needed. Improving the resolution a factor of 64 (over 256
pixels) yields a 4096 fold increase in processing time and storage. The solution is to make the
execution time constant (ideal), linearly increasing, or at least, increasing at a manageable non-
linear rate.

The motion picture example could easily generalize to an image or signal processing prob-
lem, or even modeling the motion of air/space craft. If realism is a goal, why not model more
than the surface characteristics using the real equations of motion? The processing here may
easily exceed O(ns).

One computing faction says that large systems should be used in a “batch” mode.
Another faction says that interactive computing is the wave of the future. The batch-
proponents argue the problem with interaction is the cost of interrupt handling is too expensive.
The interaction-proponents counter that the bulk of data is larger than the ability for humans
to comprehend. Interaction and graphics are now required to do large-scale computation.

The reality will probably come with a middle ground, perhaps, a transaction type of dis-
tributed system with some local interactive processing and more powerful remote facilities.

UNIX?

Our perspective might be a little different if Bell Labs had approved Thompson and
Ritchie’s request for a DECSYSTEM-10 or if they had used an Interdata 8/32 for their first
CPU. The UNIX operating system was developed on minicomputers: now an uncommon backwa-
ter of computing. The design span of minicomputers was short, and it cast an uncommon per-
spective. The microcomputer community sees UNIX as an operating system for “big’” machines,
and the mainframe environment sees UNIX as a system for “small” machines. Nobody is design-
ing 16-bit minicomputers any more. Our problem comes from the terminology (prefixes really)
of computing. Technology overpowered terminology.

Another problem is that microcomputers are gaining more computing power and catching
up to if not exceeding the power of many past mainframes. Cycle time improves first. The next
area is memory hierarchy. Storage requirements are beginning to drive computer requirements
as much as speed which in turn requires more speed to process the large memories. Big disks in
1970 were measured in the tens of Megabytes. Big mass-storage is now measured in the

“Lucasfilm and Star-Wars are probably trademarks of Lucasfilm, Ltd.

-106-

terabytes.

The fundamental debate regarding the use of large expensive computers raises a question
from non-UNIX people:

Is an operating system designed for yesterday’s 16-bit mini-computer appropriate for the 64-bit
supercomputers of today and/or the 84-bit ultra(?) micros of tomorrow (having gigaword address-
ing and teraword secondary storage)?

This question can be broken into several subproblems: reliability, economy of scale, and
existing problems.

Computational reliability is one concern. Today’s fault-tolerant computers are adequate
for the jobs for which they are designed: transaction and switching systems. Computation
designed to run a lifetime (i.e., the set of all computations for which the answer is 42) need some
restart facility without extensive user coding. Computation of this type is becoming more fre-
quent in the engineering and science domains.

The scale-up in both hardware and software is probably the most difficult issue to address.
Is an operating system for 1 to 4 CPUs adequate for 18? for 100? for 1,000 or for 1,000,000
CPUs?

On a more technical level, how closely will the operating system kernels of today match
those of 20 years from now? [i.e., UNIX the FORTRAN of operating systems| Will the functional-
ity be identical? Will UNIX run on radical data flow architectures? Will UNIX run on the CRAY
(or 370) on a desk? On the wrist?

Every UNIX programmer has his or her own set of gripes: better I/O, problems with small
critical sections, and so forth. The remainder of this paper briefly surveys these problems from
the perspectives of the original six features that made UNIX popular.

A Review of Six Features

It is said that no single feature accounts for the popularity of UNIX, but rather, in the
combination of these six features mentioned by Thompson and Ritchie in their seminal paper: [1]

A hierarchical file system incorporating demountable volumes
Compatable file, device, and inter-process [/O

The ability to initiate asynchronous processes

System command language selectable on a per-user basis
Over 100 subsystems including a dozen languages

High degree of portability

The issues facing the UNIX operating system are prefaced in the light of these six features.
These features have sometimes succeeded, while in other cases, they have reached limitations far
beyond the minicomputer environment for which the system was developed. The following sec-
tions summarize the apparent success and future problems faced by each UNIX feature.

Portability

High degree of portability --
Clearly successful, but . ..
System portability /high-level language -- Yes
Applications portability -- less so

Portability is mentioned first because it is the first issue any new UNIX implementation
faces. There is beauty in system portability, and the degree of UNIX portability cannot be ques-
tioned as this is the first operating system to be suggested as a standard. No other operating
system can yet make the claim that it spans the smallest to the largest machines.

Our first concern involves getting the operating system running on a new piece of
hardware. The second concern involves moving software tools and running applications. We

-107-

have amassed significant quantities of experience with the former. A programmer can open(2) a
file (i.e., dataset if you come from the [BM-world) regardless of the underlying hardware. The
latter is still a major problem.

Porting an application involves analysis of the intended operating environment. Program-
ming environments and languages are made much less portable if the operating environment
differs significantly between machines. The different non-UNIX ways of opening files require a
slew of different source code and job control language changes. UNIX should standardize this.

So then, why are C portability classes and discussions suddenly cropping up? Is C less
portable than tauted? Probably. It is now used in a wider variety of environments than prob-
ably intended. Consider these novel environments:

16-bit, NUXI (reversed word) systems

32-bit, XINU systems {reversed byte-patterns)
36-bit, word-oriented Univacs

64-bit, byte oriented CDC systems

64-bit, word-oriented CRAY

and other systems

Symptoms (features?) of non-portable code are includes and conditional compilation. The
reader is given an exercise of considering some of the features which might appear in the follow-
ing header files or machine specific code blocks:

#ifdef CRAY

#include <cray.h>
#tifdef CRAY?2

#include <cray2.h>
#ifdef IBM370

#include <ibm370.h>
#ifdef IBM3090

#include <ibm3090.h >
#ifdef ul100

#include <ul100.h>

#ifdef iPSC5d
#include <iPSC5d.h>
#ifdef iPSC7d
#include <iPSC7d.h>

#include <4.2.h>
#ifdef 4.2BSD

#include <8V.2.h>
#tifdef SV.2

Ideally, code should not need any of the above conditions, but the reality is that we can expect
more statements of this type to appear as we explore architectural diversity in the future.
Currently, we can only try to isolate machine dependencies.

File System
A hierarchical file system -- Largely successful, but . . .

Success: the simplicity of the UNIX file system is helpful although many future UNIX-users
do not fully appreciate this fact. There are four main issues: capacity, performance, structure,
and reliability. The UNIX community must quickly address the issue of file system capacity. File
system organization is not an immediate issue, but capacity limitations, large-scale [/O perfor-
mance, and reliability are issues. Dennis Ritchie's advice {5} in the use hierarchical file systems
was heeded by developers of new operating systems. Performance is covered in the next section.

-108-

Reliability is given considerable attention by the business community. This leaves capacity.

There are applications where a 16-gigabyte file space is not adequate. It is not simply a
matter of saying that hydrodynamics is a special application or that users should use many
small files. On a gut-level, the high-resolution Star Wars images are an example, again. 16K
pixels per side represents 256 M pixels (words) total image for a composition. ‘Cat‘-ing pieces of
an image together is a joke. The original developers of computers never thought there was
much use for computers with greater then 8 Kwords of memory. We must not make their mis-
take.

One last thought regarding structure. Simple hierarchies may not have enough structure
for organizing vast quantities of data. Scientific database systems are lacking in particular.
Our imperfect movie analogy breaks down with its mostly pure sequential structure. This
author is unable to comment on business database systems, but their requirements are probably
also severe. Some compatibility between these supplementary organization schemes requires
consideration.

Compatible I/O
Compatable file, device, and inter-process I/ O -- Successful in principle, but

Ken Thompson (3] noted the potential inadequacies of the UNIX file system and I/O in his
Bell System Technical Journal paper on implementation. Low latency devices, Thompson noted,
would be problems. Devices with low latency like RAM-disks are now on the market. While the
overall issue of compatible [/O was important, the issue of some degree of performance was also
important.

Several non-UNIX operating systems, noteably Cray’s and CDC'’s, have used disk striping
across spindles as a means of increasing disk I/O, but this technique has reached its limit. It is
understood that some microprocessor users are considering this technique for higher disk
throughput. So high-end machines pave the way for their less expensive peers.

The next problem with [/O and the file system occurs with extremely large processes (e.g.,
our Star Wars movie again). Accessing files from disk is painfully slow. As the volume of data
increases, our capability to swap data out of secondary storage has not kept pace with main
memory movement. This in turn has an effect on the UNIX scheduler which requires change
(swap time taking longer than a time slice). The reader should visualize extremely large
processes whose swap times might be measured in whole seconds. Partial swapping offers one
answer to this problem. There are likely to many side-effect problems of this type which will
affect UNIX.

Another major problem in the area of I/O is the increased use of high-speed communica-
tion networks. Large-scale systems are rarely, if ever, used in a stand-alone mode. Large quan-
tities of data need to be moved from remote storage units or data collection devices and
buffered (staged) for execution.

Software Tools
Over 100 subsystems including a dozen languages (software tools) -- Largely successful

There are two issues here: the tools that exist and those that need to be developed. The
business community thinks it needs a COBOL compiler. The scientific community does need a
better FORTRAN compiler with vectorization, multitasking, and other features.

In the first case, most end-users have amassed their own software tools. These require
porting a better FORTRAN or COBOL compiler or whatever language was used before. A
‘better’ compiler is an example of the second type of tool. Once this happens, the end-user
applications can follow. So there are a variety of obvious dusty deck related problems.

-109-

Remembering that user requirements increase with time, we can be certain that newer
software tools must incorporate things which were not a concern in the easiest days of UNIX:
better schemes for organizing data on top of the file system, more graphics tools, better
network/distributed systems communication. With the hundreds of tools floating within UNIX, a
navigation system would help the user to put tools together: a tool to help use tools.

Software tools on portable operating systems bring up some interesting issues. If company
X (using UNIX) develops in-house package Y, should this package run on company Z’s UNIX
machine? There is some tendency for a manufacturer to customize UNIX, its surrounding pack-
ages, and the associated hardware as new features. This is the portability issue again. This is
a touchy area, since hardware companies make their money selling boxes, not software.

Shells

System command language selectable on a per-user basis -- Largely successful

The problems of obscure command naming are well documented. [6] Obscure command
names are typically not shell problems but utility-name problems that are distinct from specific
shells or system calls. The functional capabilities of most UNIX shells are unmatched by most
vendor operating systems. Thoughtful exposition on improving shell functionality is scarce. [7]

Users need a variety of more graphical and more intelligent (perhaps voice?} interfaces.
UNIX had its earliest origins on a graphics system and graphical interaction has a degree of
human-interaction that is unmatched.

Parallelism
The ability to initiate asynchronous processes (parallelism) -- Clearly successful

User-controllable parallelism became a issue when the Fifth-Generation Project announced
it would solve its problems using parallelism. Highly parallel systems appear to be the only
architectural way of increasing performance as designers reach the physical limits of semi-
conductors: e.g., Silicon and Gallium. No further comment about this is necessary.

Conclusion

The UNIX operating system is unquestionably a successful system. To remain successful,
historical issues must now be addressed to increase performance and adapt to new environ-
ments. This paper has outlined some of the areas where we may expect to see change to the
operating system.

References

(1] Dennis M. Ritchie and Ken Thompson, “The UNIX Time-Sharing System,” Communica-
tions of the ACM 17(7), pp. 365-375 (August 1974).

[2] J. A. Hawley and W. B. Meyer, “MUNIX, A Multiprocessing Version of UNIX,” M.S. Thesis,
Naval Postgraduate School, Monterey, Cal. (1975).

(3] K. Thompson, “UNIX Time-Sharing System: UNIX Implementation,” Bell Sys. Tech. J.
57(6), pp. 1931-1946 (1978).

(4] Dennis M. Ritchie, “Reflections on Software Research,” Communications of the ACM
27(8), pp. 758-760 (August 1984).

(5] D.M. Ritchie, “UNIX Time-Sharing System: A Retrospective,” Bell Sys. Tech. J. 57(8), pp.
1947-1969 (1978).

6] Don A. Norman, “The Trouble with UNIX,” Datamation 27(12) p. 139 (1981).
(7] Rob Pike, “Shells, features and interaction,” net.uniz 46756@alice. UUCP(17 Nov 1985).

=110~

Experience with Large Applications on Unix

Bob Bilyeu
MeNeill-Schwendler, Ine.

‘Didn't make deadline. Copies available at the Co;iference.

UNIX Scheduling for Large Systems

Jeffrey H. Straathof, Ashok K. Thareja, Ashok K. Agrawala
Department of Computer Science

University of Maryland
College Park, MD 20742

ABSTRACT

UNIX" derives much of its power and versatility from its simple and elegant design.
While simplicity and elegance have been hallmarks of UNIX, there is an important aspect
of UNIX that does not exhibit these characteristics, i.e., the UNIX scheduler. A close
examination of most implementations of UNIX reveals that the scheduling concepts are ad

hoc, cumbersome, and full of hacks.

Most large computer systems require the management of a vast number of processes
arising from a diverse population of users, applications, and requirements. This makes the
role of a scheduler very important in a large system. This paper identifies the requirements
imposed by a large system on a scheduler., The fundamentals of the UNIX 4.2BSD and
UNIX 4.3BSD schedulers are described in detail along with their design and
implementation drawbacks. These drawbacks are discussed in light of the scheduling
requirements imposed by a large system. This discussion is followed by the description of a
new scheduler for UNIX that has been designed and implemented at the University of
Maryland. The new scheduler is aimed at eliminating the shortcomings of UNIX 4.2BSD

and UNIX 4.3BSD schedulers.

* UNIX is a trademark of AT&T Bell Laboratories.

-112-

1. Introduction

Each version of UNIX succeeding the original has included implementation changes in
the cpu scheduler. The collection of scheduler changes over the years has produced a
UNIX 4.2BSD implementation that can consume as much as ten percent of total cpu time
just recomputing priorities every second, as estimated in [2). The current scheduler
implementations show the signs of hacking, complete with outdated comments and messy

code.

This paper explains the critical issues involved in large system scheduling and the
fundamentals of the UNIX schedulers. The design and implementation shortcomings of the
current UNIX schedulers are examined, and a description of the design and implementation

of a new scheduler is presented.

2. Critical Scheduling Issues In Large Systems

In order to understand the impact of schedulers, consider the simplest single user
environments which place very few demands on a scheduler. The scheduler in such an
environment never has to decide as to which of many processes the cpu should be given.
Even when the case of background processes is allowed, demands increase only by a small
amount as all of the processes still belong to the same user and it is his work that is always
being done. In short, in a single user environment the role of a scheduler is a) to manage
multiple tasks, and b) to utilize the hardware in a manner that allows for maximum
overlap of processing between different devices, thus providing the maximum throughput

for a given system configuration.

As systems and environments grow to accommodate many users, and then to allow
each user to have many active processes, scheduling demands increase dramatically. A

large system can have a few thousand processes active simultaneously, requiring the

-113-

scheduler to make process selections from a much larger set of choices. A large machine
has an instruction time of a few nanoseconds, thus a new process may have to be scheduled
every few tens of microseconds. Furthermore, the scheduler must be flexible enough to
operate under changing load conditions, since large systems serve both small and large user

groups.

The increase in demands of a large system makes the scheduler a more significant
factor in system performance. An effective scheduler must maintain a reasonable amount
of responsiveness and utilize the hardware to optimize throughput so the best system
performance can be achieved. Large system schedulers must also allow convenient ways to
alter the usual priorities of processes so users can regulate the workload of a running
system. These goals of effective schedulers must be met under the variety of system loads
experienced by large systems and in the variety of user environments large systems reside.

Let us examine each of these objectives of a scheduler for large systems.

Responsiveness

The interactive response time has always been an important performance measure of a
large system. Large systems running UNIX place even more importance on the interactive

response time, since UNIX supports primarily interactive processing.

Most interactive users prefer a small and stable response time. A small response time
means that users can retrieve results quickly; a stable response provides a sense of
performance predictability to the users. Before requests are made, users can accurately
weigh the time needed to retrieve results against the benefits of the results. Thus, a
primary goal of a large system scheduler is to provide users with a stable response time
that is proportional to the size of user requests. Several studies have been conducted in
which system responsiveness has been related to user goals such as productivity, creativity

and satisfaction.

-114-

Throughput

The throughput of a system has also always been an important performance measure
of a large system. Large systems not only support a few thousand active processes
simultaneously, but also support a large number of peripheral devices. These devices,
whose speeds and capabilities vary, make the task of reaching optimal throughput more
complex. Reaching the optimal throughput of a system requires each device to operate at
its best throughput, since the lagging device will be the bottleneck of a system. The
scheduler must select processes in an order so that the devices are utilized to maximize the

throughput of a system.

One common device in all systems is the cpu. The throughput of a busy cpu is
increased when the processing overhead is decreased, since the cpu can then use the
overhead time saved to complete user requests. Therefore, running a scheduler that

consumes little overhead is very desirable.

Maintaining the high throughput of a system, accomplished through good process
scheduling and reducing overhead, is another important goal of a scheduler for a large

system.

External Control of Resource Usage and Response Time

With the vast number of active processes in a large system, more processes are
available for user-imposed priority increases and decreases. Externally decreasing the
priority of unimportant processes, done usually during peak hours, is a quick way to
artificially decrease the workload and thereby shorten the response time of a system.
Externally increasing the priority of important processes is a quick way to make the

scheduler favor them, thereby shortening their individual response times.

Convenient mechanisms for the external adjustment of priorities have been prevalent

in operating systems used on large systems. There are several desirable characteristics of

-115-

such mechanisms. It is highly desirable that a priority adjustment algorithm produce

predictable results. It should also be possible to reverse the effects of manual intervention.

Adaptability

Most large systems vary considerably in the application mix, performance
requirements, system configuration, and system load. A scheduler is one of the basic

entities that must be tunable to adapt a system to different environments.

3. Fundamentals of UNIX Scheduling

The original implementation of UNIX described in {4] and [5] included a simple
scheduler that based the priority of a process on its compute-to-real-time ratio. A process
that used a lot of compute time in the last real time unit was assigned a low priority, and a
process that had received little compute time received a high priority. Runnable processes
were kept in a multilevel queue, higher priority processes could preempt lower priority
processes, and a quantum ended every second. Use of the compute-to-real-time ratio made
the scheduler favor interactive processes, albeit also nonserviced cpu bound processes. No
major considerations were given to the cost of the scheduling, since the goals of UNIX were

elegance and simplicity.

A look at the current implementations of the UNIX 42BSD and UNIX 4.3BSD
schedulers reveals that they operate in primarily the same manner. Priority assignments
do occur more often and consider more parameters than just the compute-to-real-time ratio,
and the clock frequency has been increased permitting quantums to end more frequently.
Their core design is still that of the original scheduler, though as we will see in the next

section, their elegance and simplicity have faded and their cost risen.

-116-

The remainder of this section presents and explains most of the code used in the
implementation of the UNIX 4.3BSD scheduler . To understand its working, it is
important to remember that the implemented scheduler is not a process; it is a collection of
kernel procedures executed at fixed frequencies or upon the occurrence of certain events.
This description explains those procedures and their role in a running system. It is

assumed that the reader is very familiar with the C programming language.

Process Activity in the Run Queue

At the end of a system reboot when all system processes have entered blocked states,
Swtch() is called to idle the cpu and wait for the first user to login. As users log in, new
processes desiring service from the cpu are created. These processes are made runnable by
inserting their process table slots into the multilevel run queue. The procedure setrq() is
called to perform an insertion. The level of the run queue in which a process is placed is
determined by the value of the process’ priority, p_pri. The lower the value of p_pri, the
higher the level. A process is removed from the run queue with a call to remrg(). An
invocation of swich() will remove a process from the run queue and give it cpu service.
Swich(), setrq() and remrq() are written in assembly language. Their code need not be
examined to understand the operation of the scheduler; only familiarity with their functions

is required.

Scheduling Event Waits and Timer Interrupts

When a process has control of the cpu but desires to wait for an event before
continuing, it places itself in a blocked state and releases the control via a call to swich().
Swtch() idles the cpu if the run queue is empty, or gives control of the cpu to the first

process in the top level of the run queue if it is not.

* The UNIX code excerpts have been taken from the Fourth Berkeley Software Distribution under license
from the Regents of the University of California.

-117-

Clock interrupts in UNIX 4.3BSD occur every ten milliseconds. At every tenth clock
interrupt, the process that has control of the cpu is forced to release the control. This
release of control, referred to as a quantum expiration, occurs regardless of when the
currently running process gained its control of the cpu. This type of quantum expiration

occurs in the following manner.

When a kernel procedure needs execution at a specific future time, its starting address
and wakeup time are placed in the kernel’s callout queue using the procedure timeout(). The
system’s clock interrupt handler hardclock(), among other things, examines the contents of
the callout queue for the existence of any procedures that need to be called out and
executed. If any are found, a low priority interrupt is scheduled that will occur as soon as
the interrupt priority level of the cpu drops to a low level. The low priority interrupt

handler, softclock(), will execute each of the called out procedures.

Timeout() and the portions of hardclock() and softclock() responsible for examining and
executing procedures in the the callout queue follow. The text enclosed by ** and **/ are

comments not part of the original source.

/** Arrange that (*fun)arg) is called in t/hz seconds by placing it in the callout queue.
hz represents the frequency of the clock interrupt. In 4.3, hz is 100 **/

timeout(fun, arg, t)
int (*fun));
caddr_t arg;
register int t;

register struct callout *pl, *p2, *pnew,;
register int s = spl7(); /** raise the cpu interrupt priority level **/

/** Procedure addresses are inserted in the callout queue such that their order from
front to back represents the order in which they are to be executed. The
wakeup time of a procedure is stored as a delta from the time of the
procedure in front of it. This method makes searching for a “"due”
event fast, but requires scanning of the callout queue at every insertion.
Arguments used when the procedure is finally executed are also stored. **

if(t <= 0) /** make sure wakeup time is in future **/

t=1,
pnew = callfree; /** get the head of free callout queue element list **/
if (pnew == NULL) /** test for empty free list *~

-118-

panic("timeout table overflow");
callfree = pnew->c_next;** remove a free element **/
pnew->c_arg = arg; /** load the new callout queue **/
pnew->c_fune = fun; /** element **/

/** find the right place in the callout queue for the insertion and make the wakeup
time of the new queue element a delta from the previous element’s time **/
for (p1 = &calltodo; (p2 = pl->c_next) && p2->c_time < t; pl = p2)
if (p2->c_time > 0)
t -= p2->c_time;

pl->c_next = pnew; /** insert the new element **/
pnew->c_next = p2;
pnew->c_time = t;

if (p2) /** update the time of the next element **/
p2->c_time -= t;

splx(s); /** return to previous interrupt level **/

}

** Portion of the clock interrupt handler executed every 10 msec. **/

hardclock()
{
register struct callout *pl; /** points to callout queue element **/
register struct proc *p; /** points to a process table slot **/
register int s;
int needsoft = 0;

/** look at the procedures on the callout queue and if we find any that should
be called, remember it so we can cause a low priority interrupt later to
execute them. We cannot call the procedures directly from here, since
doing so might make this execution of hardclock so long that we would
miss the next clock interrupt. **/

pl = calltodo.c_next;

while (p1) {
if (--p1->c_time > 0)

break;
needsoft = 1;
if (pl->c_time == 0)
break;
pl = pl->c_next;
}

if (neécis;ai't) {
if (BASEPRI(ps)) {

** Since we were operating at a low interrupt priority
level when the clock interrupt occurred, the
low priority interrupt will sccur as soon as
we return. We can call softclock{) here to
save the overhead of the interrupt. **/

-119-

(void) splsoftclock();
softclock(pc, ps);
} else
setsoftclock(); /** cause the low priority
interrupt **/

}

/** Softclock() is called directly from hardclock() or as a result of an interrupt caused
by hardclock() to execute some procedures in the callout queue. **/

softclock()
{
for (;;) {

register struct callout *pl;

register caddr_t arg;

register int (*func)();

register int a, s;

s = spl7(); /** raise interrupt priority level **/

/** if there is nothing on the callout queue, or the next procedure on
it is not to be executed yet, return **/

if ((p1 = calltodo.c_next) == 0 || pl->c_time > 0) {
splx(s);
break;

}

/** get the address and calling arguments of the procedure on the front of
the callout queue, advance the head of the callout queue, return
the used element to the free list, reset the interrupt priority
level to its previous level, and execute the procedure **/

arg = pl->c_arg; func = pl->c_func; a = pl->c_time;

calltodo.c_next = pl->c_next;

pl->c_next = callfree;

callfree = pl;

splx(s);

(*func)arg, a);

}
L RN
}

Round-robin Scheduling

One procedure that is usually found in the callout queue, absent only when it is being
executed, is roundrobin(). Roundrobin() is placed in the queue during system initialization

by invoking it. Its execution causes an asynchronous system trap, AST, to occur as soon as

-120-

the interrupt priority level of the cpu drops to a low level. The AST handler removes
control of the cpu from the running process by placing it back in the cpu run queue. The
handler then gives control of the cpu to the next process via a call to swich(). The periodic
execution of roundrobin() forces a rescheduling of processes every tenth of a second, never

permitting a single process to keep exclusive control of the cpu.

The code for roundrobin() and a portion of the AST handler follows. It is important to

see that roundrobin() always places itself back in the callout queue.

/* Force switch among equal priority processes every 100ms. */

roundrobin()
{
runrun+ +; /** informs code to be executed before the next AST
that a rescheduling is about to occur. **/
aston(); ** #defined as mtpr{ASTLVL, 3) which will cause the AST. **/
/** call to timeout() places the address of roundrobin() back on
the callout queue to be executed 100ms from now, thereby
setting up the next quantum expiration. **/
timeout(roundrobin, (caddr_t)0, hz / 10);

}
/** Portion of trap code executed when an AST occurs. **/
trap()
{
xR
(void) spl6(); /** increase cpu interrupt priority level. **/
setrq(p); /** put slot of current process back in the run queue. **/
swtch(); i** give cpu control to the next process. **/
i
}

Priority Recomputation

Another procedure that is usually found in the callout queue, absent only when it is
being executed, is schedcpu(). Schedcpu(), like roundrobin(), is placed in the queue during
system initialization by invoking it. Its execution causes process priorities tb be recomputed
every second. The method used to determine the priority of a process incorporates many

parameters, some of which are updated by the clock interrupt handler, hardclock(). The

-121-

portion of hardclock() relevant to schedcpu(), and all of schedcpu() follows. It is important
to see that schedcpu() always places itself back in the callout queue, just as roundrobin()

does.

/** Called out to recompute process priorities every second. **/

#define filter(loadav) ((2 * (loadav)) / (2 * (loadav) + 1))
#define NQS 32

#define PPQ (128 / NQS)

f* fraction for digital decay to forget 90% of usage in 5*loadav sec */
double ccpu = 0.95122942450071400909; * exp(-1/20) */
schedcpu()

{

register double ccpul = (1.0 - ccpu) / (double)hz;
register struct proc *p; /** points to a process table slot **/
register int s, a;

/** avenrun[0] contains the average number of runnable processes over
the last minute. Its value is recomputed every 5 seconds. **/
float scale = filter(avenrun[0]);

1r* cee. ¥

/** for every process table slot ... **
for (p = allproc; p != NULL; p = p->p_nxt) {

/** increment the time the process has been in core **/
if (p->p_time != 127)
p->p-time+ +;

/** increment the time the process has been blocked **/
if (p->p_stat= =SSLEEP || p->p_stat==SSTOP)
if (p->p_slptime != 127)
p->p-slptime+ +;

/** if the process has been blocked for more than a second,
stop recalculating its priority. **/

if (p->p_slptime > 1) {
p->p-pctepu *= ccpu; /** updated for “T and ps command. **/
continue;

}

** update the percent cpu usage of the process for "T and the ps
command. p_cpticks is the number of times a clock interrupt
occurred while this process had control of the cpu over the last
second, estimating its cpu usage **/

p->p-pctcpu = ccpu * p->p_pctcpu + ccpul * p->p_cpticks;

p->p-cpticks = 0; /** reinitialize for next interval **

-122-

/** begin actual priority computation. p_cpu is the value of ‘a’ from the
previous call to schedcpu(). p_nice is a user imposed priority
value, ranging from -20 to 20. ‘scale’ was #defined above. **/

a = (int) (scale * (p->p_cpu & 0377)) + p->p-_nice;

if (a < 0)
a=0;
if (a > 255)
a = 255;

p->p_cpu = a;
(void) setpri(p); /** finish priority computation in setpri() **/

/** increase the interrupt priority level of the cpu to ensure atomicity
while examining and manipulating the run queue **/
= splhigh();

** if the signal reception level of the process is low, then
we can reset the priority **/
if (p->p-pri >= PUSER) {

/** if the process is in the run queue and its new priority would
require it to move levels, remove it from the queue,
change its priority, and insert it into the new level. Note
the range of p_pri is 0..127 and must be divided by 4 to
make is correspond to a queue level.

if it is not in the run queue, simply change its priority. **/
if ((p != u.u_procp || noproc) &&

p->p-stat == SRUN &&

(p->p-flag & SLOAD) &&

(p->p—pri / PPQ) != (p->p_usrpri / PPQ)) {

remrq(p);
pP->Pp-_pri = p->p..usrpri;
setrq(p);
} else

p->p-pri = p->p_usrpri;

b

splx(s); /** restore old cpu interrupt priority level **/

he e

/** call to timeout() places the address of schedcpu() back on the callout queue
to be executed a second from now, thereby setting up the next priority
recomputation. **/

timeout(schedcpu, (caddr_t)0, hz);

}

/** Setpri() is called from schedcpu() to complete the remainder of a single priority
recomputation. If the new priority computed is better than the priority of the
process running when schedcpu() was called out of the callout queue, a process
rescheduling will be forced to occur via an AST. This occurs even if new priority
belongs to a blocked process. **/

-123-

setpri(pp)

register struct proc *pp; /** points to a process table slot **/
{

register int p; /** the new priority **/

p = (pp->p-cpu & 0377)/4; /** p_cpu was computed above **/

/** PUSER is #defined as 50; p_nice is the process’ user imposed
niceness parameter, ranging from -20 to 20. **/
p += PUSER + 2 * pp->p_nice;

/** p_rssize is process’ resident set size; p_maxrss is the process’ maximum
resident set size; freemem is the amount of free real memory in the system;
desfree is the desired amount of free real memory in the system. **/

if (pp->p_rssize > pp->p_maxrss && freemem < desfree)

p += 2%4; /* effectively, nice(4) */

if (p > 127)
p = 127;
if (p < curpri) { /** if the priority is better than the current process’, **/
runrun++; /** force a process rescheduling **/
aston();
}
pp->p_usrpri = p;
return (p);
}
/** Portion of the clock interrupt handler executed every 10 msec. **/
hardclock()
{

register struct proc *p;
register int s;

Jx*® ok

/** if the cpu was not idle when the clock interrupt occurred, charge the running
process for using the cpu the entire last interval. if this is a fourth clock
interrupt the process has fielded, then recompute its priority to allow
others to preempt it more easily. **/

if (!noproc) {

P = u.u_procp; /** get process slot of current process **/
p->p-cpticks + +; /** charge process with this interval **/
if (+ +p->p-cpu == 0)

p->p-cpu--;
if ((p->p_cpu&d) == 0 { ** fourth clock interrupt fielded? **

(void) setpri(p); /** recompute priority **/
if (p->p_pri >= PUSER)
p->p-pri = p->p_usrpri;

i)

~124-

Unblocking Processes

Preemption of the cpu occurs not only when setpri() is called from schedcpu() or
hardclock() as shown above, but when a process exits a blocked state and enters the cpu run
queue. The kernel procedure wakeup() is called by interrupt handlers when events
complete and processes should be unblocked. The following code is the portion of wakeup()

that completes the priority recomputation, run queue insertion, and preemption.

/** Unblock all processes that were waiting for the completion of
the event identifiable by the value of chan. **/

wakeup(chan)
register caddr_t chan;
{

register struct proc *p; /** points to a process table slot **/
int s;

s = splhigh(); /** raise interrupt priority level **/
PE L R

/** if the process being unblocked was in the blocked state for
more than a second, recompute its priority. **/

if (p->p_slptime > 1)
updatepri(p);

/** reinitialize the blocking time; set the process runnable, and
put it in the cpu run queue if it is not swapped. **/
p->p-slptime = 0;
p->p-stat = SRUN;
if (p->p_flag & SLOAD)
setrq(p);

#* Always cause a process rescheduling to occur. **/
runrun + +;
aston();

splx(s); /** restore interrupt priority level **/

-125-

/** Updatepri() is called by wakeup() to recompute the priority of a process that was
blocked for more than a second. Setpri() and its variables were explained earlier. **/

updatepri(p)
register struct proc *p; /** points to a process table slot **/
{
register int a = p->p_cpu & 0377;
float scale = filter(avenrun[0));
p->p-slptime-; /* the first time was done in schedcpu() */
while (a && --p->p_slptime)
a = (int) (scale * a) /* + p->p_nice */,
if(a < 0)
a =0
if (a > 255)
a = 255;
p->p-cpu = a;
(void) setpri(p);
}

The combination of the described procedures yields the standard UNIX 4.3BSD
scheduler. The implementation involves procedures executed at fixed frequencies to
recompute priorities and force process reschedulings, and involved procedures executed as
events completed to unblock and recompute the priority of blocked processes. The next

section examines the design and implementation problems associated with the standard

UNIX schedulers.

4. Shortcomings In UNIX 4.2BSD AND UNIX 4.3BSD Schedulers

4.1, Design Specific Problems

Design specific problems are those that can be attributed to poor planning in the
earliest stages of problem solving. These problems are engrained in the respective
solutions, correctable only through completely new designs. The UNIX schedulers

incorporate several design specific problems.

-126-

Costly Priority Assignments

As observed in the last section, the process priorities in UNIX are based on: 1) the
amount of time the process has existed, 2) the amount and percent of cpu time it has
consumed, 3) the amount of time it has spent in a blocked state, 4) the amount of real
memory it has accrued, 5) the amount of real memory currently free, 6) the current load of
the system, and 7) a user imposed niceness parameter. The many values are passed
through an algorithm which produces a value deemed the process’ scheduling priority. The
algorithm, coded in schedcpu() and setpri(), is costly to execute, difficult to understand, and
almost impossible to modify with predictable results. A separate, but just as complex,

priority computation algorithm exists in updatepri().

Not only are many parameters used in the algorithms, the ones measuring time are
merely estimates. Hardclock(), the clock interrupt handler, and schedcpu(), the priority
recomputing procedure, increment several time values when they are executed, including
values not presented in the code excerpts of this paper. Each procedure examines the
current state of the system when its execution occ.urs and assumes that the system was in
that state since the last execution. For example, hardclock() charges the process that had
control of the cpu when the interrupt occurred with use of the cpu for the entire ten
millisecond interval since the last clock interrupt. This method of measuring time based on
snapshots of the system produces values that are inaccurate and nonrepeatable. Using

these values contributes to the complexity of the algorithms that recompute priorities.

In addition to their complexity, priority recomputations occur at somewhat arbitrary
times. The priorities of processes waiting for cpu service and of those in the first second of a
blocked state are recomputed every second by schedcpu(), requiring a complete pass of a
process table that can contain a few thousand slots in a large environment. The running
process has its priority recomputed every 40 milliseconds in hardclock(), and the priority of

a process gets recomputed when it exits a blocked state by updatepri(). The tremendous

-127-

amount of overhead associated with priorities creates a negative impact on system

throughput, since the cpu cannot service user requests while computing priorities.

Few Tuning Opportunities

Another significant shortcoming engrained in the design is that no simple methods for
tuning were considered in such a complex priority computation algorithm. The
arbitrariness in the frequency and points of priority computations also yields little room for
tuning. All environments running UNIX 4.xBSD, large and small, rely on primarily the
same untunable schedulers. Large systems are particularly affected since a very significant
amount of the cpu is wasted irrespective of whether an environment needs these

computations.

Unpredictable External Control

The only way a user can affect the normal priority of a process in UNIX 4.xBSD is to
alter the process’ nice parameter. The nice,parameters, used in the priority computation
algorithms, make priorities rise or fall relative to those of other processes. An examination
of the code does not reveal what the exact effect of a change in a nice parameter is, only

that a general scheduler favoring or shunning will take place.

4.2. Implementation Specific Problems

We can consider implementation specific problems as those problems that can be
attributed to the coding of a solution. Such problems can be corrected without a
corresponding redesign. The UNIX 4.xBSD schedulers also suffer from several

implementation specific problems.

-128-

Fluctuating Quantum Sizes

In the currently implemented UNIX, a quantum expires every tenth of a second,
regardless of when the running process obtained control of the cpu. The fixed frequency of
quantum expirations hampers higher throughput when a system is lightly loaded since the
cpu must service an unnecessary trap and perform an unnecessary context switch each

tenth of a second.

When a large system has many active processes and voluntary context switching
occurs frequently, it is often the case that a process must relinquish control of the cpu
immediately after obtaining it because the next tenth of a second had arrived. These
context switches also contribute to the UNIX scheduling overhead and the resulting impact

on throughput.

Priority Misuse

A process’ priority is rewritten with a value designating its signal reception level
every time the process enters a blocked state. When the process exits a blocked state that
it had been in for less than a second, updatepri() is not called from wakeup() for priority
recomputation; the signal reception level is used as the new priority of the process. If the
process had been in the blocked state for more than a second, a new priority must be
computed since the one available before the block was overwritten. This 20 line priority
computation algorithm, updatepri(), uses most of the parameters stated earlier and includes
a loop whose execution time is proportional to the time spent in the blocked state, limited to
a time of 127 seconds. Interactive processes, e.g. editors, must execute the costly priority
assignment algorithm frequently since they often block more than a second for terminal
input. This could have been avoided by simply providing an additional field in each process

table slot for the signal reception level.

-129-

4.3. Scheduler Implementation Differences of UNIX 4.2BSD and 4.3BSD

All of the problems described above still exist in the field test versions of UNIX
43BSD. The previous version, UNIX 4.2BSD, had more severe scheduler problems. Two
UNIX 4.3BSD scheduling changes described in [3] were implemented to relieve some of the

vast scheduling overhead of UNIX 4.2BSD.

In UNIX 4.2BSD, when the process table was scanned every second by schedcpu() to
recompute the priorities of processes, all blocked processes also had their priorities
recomputed. Furthermore, a process never had its priority recomputed when it exited a
blocked state. Also in UNIX 4.2BSD, a frequent type of unnecessary process rescheduling

described in (3] occurred.

4.4. Summary of UNIX 4.2BSD and UNIX 4.3BSD Shortcomings

The concepts and methods of priority assignments used in the UNIX 4.xBSD
schedulers are too complex and involve far too much overhead. The schedulers are difficult
to modify and provide no facilities for tuning. The mechanism provided for user

adjustments of priorities is simple but not predictable.

Problems in the current implementation of the UNIX 4.xBSD schedulers justify the
need for their reworking. The fluctuating quantum size used in the run queue and the

misuse of a process’ priority field are two of the problems.

5. An Alternate Approach to UNIX Scheduling

This section describes the design and implementation of a new UNIX 4.3BSD
scheduler developed at the University of Maryland. Our goal was to undertake a surgical
operation of the UNIX 4.xBSD scheduler, leaving all of the fundamental design and
implementation concepts of the remainder of UNIX intact. The explicit goals of the

scheduler were maximizing responsiveness, maximizing throughput and available

-130-

adaptability, where maximing responsiveness took priority over the latter two. We
recognized that in order to fit these in with UNIX, the design had to be very simple. The

simplicity was also an approach to keep the scheduler overhead to a minimum.

5.1. Design Specifications

5.1.1. Run Queue Structure and Operation

The cpu run queue is of the multilevel feedback type [1]. When a process is created, it
is first placed in the run queue. A process in an upper level of the queue receives cpu
service before a process in a lower level. Control of the cpu is taken away from a process
when a) it enters a blocked state and releases control voluntarily, b) a different process with
a higher priority exits a blocked state and preempts the running process, or ¢) the running
process’ quantum expires. Quantum sizes vary with each level of the queue, being smaller
at the upper levels and larger at the lower levels. The quantum of a process begins when

the process is removed from the run queue and given control of the cpu.

5.1.2. Process Priorities

The priority of a process waiting for the cpu directly determines the level of the run
queue in which it resides. The higher priority processes are in the upper levels; the lower
priority processes are in the lower levels. Changes to the priority of a process occur strictly
on an event basis. When a process performs some type of interactive activity its priority is
boosted, and when it completes an entire quantum of cpu service its priority is bumped.
The small quantum sizes at the upper levels, and priority boosting for interactive events are
designed to make interactive processes receive quicker service than their cpu bound

counterparts.

-131-

5.1.3. Available External User Control

Each process has an associated priority-min and priority-max. The priority of a process
never decreases below its priority-min, and never increases above its priority-max. The
priority-max is never set above the highest level of the run queue, and likewise the
priority-min is never set below the lowest level. Users are able to modify the priority-max
and priority-min values of a process, thereby limiting the range of run queue levels in

which it can reside.

5.2. Implementation Specifications

5.2.1. Run Queue Structure

The multilevel feedback queue is implemented as an array of 32 linked lists, similar to
the one in UNIX 4.3BSD. Each linked list contains process table slots and corresponds to
one level of the run queue. When a process desires service from the cpu, its process table
slot is appended to the linked list associated with its priority value by the procedure setrg().
When the process is selected to receive cpu service, its process table slot is removed from

the linked list by swtch() and the process is then referred to as the running process.

The quantum sizes for the levels are kept in a 32 element array of integers. When a
process switch occurs, the quantum size associated with the level from which the next
running process was selected is copied to a placed referred to as the current quantum. The
quantum size unit is dependent upon the frequency of the system’s clock interrupt. At a
clock interrupt frequency of 50 hz, the quantum unit is 20 msec; at a clock interrupt
frequency of 100 hz, the quantum unit is 10 msec. The value of the current quantum is
decremented at each clock interrupt in hardclock(). When the value reaches zero, the
current quantum has expired and another process switch occurs. This implementation does

allow for some variance in the actual current quantum of a process, since processes do not

-132-

necessary gain control of the cpu immediately after clock interrupts. The quantum
decrementing occurs during clock interrupts to avoid the overhead of having a separate
interrupt timer run for scheduling purposes only, and because hardware does not usually

provide an additional interrupt timer.

5.2.2. Priority Boosting and Bumping

A new process’ priority, priority-min, and priority-max are copied from its parent
during process creation. Priorities, bumped only at quantum expirations, are boosted at the

execution of several interactive events.

Creation Boosts

The first place a boost occurs is during the process’ creation. This permits a new
process born from a cpu bound parent to demonstrate its interactive nature quickly. If the
new process is not interactive, its rapid set of quantum expirations at the upper levels of

the run queue will force it to a lower level along with the other noninteractive processes.

Disk Operation Boosts

A priority boost also occurs when a process performs a block disk read. Giving boosts
for disk operations keeps the disks active and the system throughput high. If the block
already exists in the operating system’s block cache though, the boost is not given. This is
done to prevent a process from constantly reading the same disk block, then always found
in the cache, just to keep its scheduling priority high. Boosts are also not given for block
disk writes, since a process usually does not wait for them to complete before continuing. A
properly contrived process could then constantly write the same disk block, which would
only periodically get written to the disk from the block cache, just to keep its scheduling

priority high.

-133-

Terminal Operation Boosts

A large number of priority boosts are given to a process that demands terminal
interaction. A boost is given each time a process executes a terminal input command.
Giving boosts for terminal input will keep a highly interactive process in the top levels of
the run queue and interactive response time low. A boost is not given for terminal output
because a process usually never waits for the write to complete before continuing. A

process could then simply perform terminal output just to keep its scheduling priority high.

Priority boosting for terminal input is distinguished by the type of input being done.
Most window editors and other extremely interactive processes operate in raw input mode,
for which a small boost is given each time a character is read. Other very interactive
processes, usually ones producing a lot of information for very little input, operate in cbreak
mode and are given a moderate boost for each character read. The majority of interactive
processes operate in cooked mode, for which a significant boost is given each time a line of
input is read. The implementation recognized the distinction so that scheduling can be

accomplished properly between the interactive processes themselves.

Message Passing Boosts

Sending or receiving a message through an interprocess communication channel also
generates a priority boost for a process. Giving a boost for message passing is done to
prevent filters from sharply decreasing the response time of a set of concurrent processes

whose outputs are piped to other inputs.

Termination Boost

Receiving a signal requiring immediate termination generates a large boost to the
priority of a process. This permits a process executing at a very low scheduling priority to

terminate quickly and free its system resources, providing the user with fast external

=134~

control.

5.2.3. User Control

The system call setpriority() permitting user programs to change the priority of a
process has been modified. For example, the user program renice created before the
implementation of the new cpu scheduler, assumes its call to setpriority() medifies the nice
parameter of a process. The modified setpriority() instead maps the argument to an
appropriate priority-min and priority-max for the process. A new user program has been

created to allow explicit setting of a process’ priority-min and priority-max.

The swapper, page daemon and init are the only processes created during the
initialization of UNIX. All other processes are created from init or its descendents, and
have copied the priority-min and priority-max from those specified for init during
initialization. Setting the initial priority values for init appropriately can lead to any of the

following control scenarios.

If the priority-min and priority-max for init are zero and 31 respectively, then all
processes created from init or its descendents will use the full range of priority run queue
levels for scheduling purposes. If the priority-min for init is set to a value greater than
zero, then all of the processes will not use the lowest run queue levels, referred to as the
basement, for normal scheduling purposes. Processes that should receive service only when
no normal process needs service should have its priority-min and priority-max set to values

less than the priority-min of init.

If the priority-max for init is set to a value less than 31, then all of the processes will
not use the highest run queue levels, referred to as the attic, for normal scheduling
purposes. Processes that should receive service before any normal process needs service
should have its priority-min and priority-max set to values greater than the priority-max of

init.

-135-

In all cases, the priority-min and priority-max of any or all processes can be set to

cover any range of run queue levels.

5.2.4. Scheduler Tuning

The ability to tune the new cpu scheduler is inherent in its design and
implementation. All environments have the ability to select the parameters best suited for
their needs. Quantum sizes, quantum size resolution, priority boost values, and initial

values for the priority minimum and maximum of init are available for individual setting.

In environments where copious amounts of cpu intensive work is undertaken, tuning
would be geared to emphasize the maximum throughput of a system. The quantum sizes
would be considerably large, the quantum resolution coarse, and the priority boost values
high. In environments where a significant percentage of the work is highly interactive,
tuning would be geared to emphasize a stable and minimum response time. The quantum
sizes of the upper levels would be small, the quantum resolution fine, and the priority boost
values low. In either case, the initial values for the priority minimum and maximum of init

would depend upon the applicable control requirements.

5.3. Implementation Details

This section presents and explains most of the code used in the implementation of the new
scheduler. The new scheduler, like the UNIX 4.3BSD scheduler, is not a process; it is a
collection of kernel procedures. It does not use most of the procedures of the old one,
including roundrobin(), schedcpu(), setpri(), and updatepri(). It is much smaller, in terms of
the number of lines of code, and is primarily event driven as opposed to clock driven. The
following description assumes that the reader is very familiar with the C programming

language.

-136-

The assembly routines swich(), setrq(), and remrq() are basically the same. The
procedure seirg() has been modified to reflect the fact that the priority of a process now
directly determines the level of the run queue into which it is to be placed. Swich() has
been expanded from its original 40 lines to include one line which reinitializes the current
quantum. The value is taken from the array of quantum sizes and corresponds to the level

from which the next running process came.

The implementation of quantum expirations is unique in the new scheduler. The
overhead involved in every insertion and removal from the callout queue of the procedure
roundrobin() has been completely eliminated. Quantum expirations occur directly in

hardclock() as follows.

/** Portion of the clock interrupt handler executed every 10 msec. **/

hardclock()
{

/** if there was a process running, decrement the current quantum. if the current
quantum becomes zero, decrement the process’ priority so long as it doesn’t
go below the process’ priority-min, and then cause a rescheduling via
the AST. *¥/

if ('noproc) {
if (--quantum) {

if (--p->p_prior < p->p_min) {
p->p-prior+ +;

runrun + +;
aston();

i |

Because the design associated with priority assignments in the new scheduler is so
very different from the old one, the corresponding implementation is also very different.
The old procedure to recompute priorities every second is never called, the priority of the
running process is not recomputed every fourth clock interrupt it fields, and the priority of a
process is not recomputed when the process exits a blocked state. Priorities, now bumped in

hardclock(), are boosted as described in the implementation specifications. The boosting for

-137-

a particular event is done in the upper layers of the respective device driver code. The

boost given for a block disk read, as an example, follows.

/* Read in (if necessary) the block and return a buffer pointer. */

struct buf *

bread(dev, blkno, size)
dev_t dev;
daddr_t blkno;
int size;

register struct buf *bp;/** points to a block cache buffer **/
register struct proc *p; /** points to a process table slot **/

i

/** try to get the block from the block cache. return if obtained. **/
bp = getblk(dev, blkno, size);
if (bp->b_flags&B_DONE) {
return(bp);
}

/** active the low level device driver to perform the read. **/
bp->b_flags |= B_READ;
(*bdevsw[major(dev)].d_strategy)(bp);

/** boost the priority of the process making the request by the
value of the boost associated with block io. don't let
the priority exceed the process’ priority-max. **/

newprior = p->p_prior + bioboost;

if (newprior > p->p_max)
p->p-prior = p->p_max;

else

p->p-prior = newprior;
biowait(bp); /** wait for the read to complete. **/
return(bp);

Preemption in the new scheduler occurs when quantums expire in hardclock() and
when processes exit a blocked state. If a process is removed from a blocked state by an
interrupt handler’s call to wakeup(), and has priority higher than that of the running
process, an AST is forced to occur. The difference between the old wakeup() procedure and
the new one is that the new one does not contain the call to updatepri(). A process exits a

blocked state with the priority it had when it entered the blocked state; p_pri is used only

-138-

to specify the signal reception level.

6. Conclusion

In this paper, we have shown that a large system places heavy demands on the
scheduler, and that the scheduler plays a key role in system performance. We have
described in detail the standard UNIX schedulers and have shown that they have not
evolved as systems have. Because of the design and implementation shortcomings of the
UNIX 42BSD and UNIX 4.3BSD schedulers, a thorough design review and
reimplementation of the scheduler is an essential step in the advancement of large system
UNIX operating systems. The concise design and the corresponding implementation of the
new scheduler described should make the current goals of a large system UNIX scheduler

attainable.

The University of‘ Maryland’s new scheduler is still being refined. Discovering
characteristics about interactive processes that receive little or late cpu service gives way to
the consideration of new events for which boosting might occur. The standard set of boost
amounts and quantum sizes is still being developed. Further research and an extensive
analysis should yield the best parameters as well as valid performance data. We are
looking forward to testing the effectiveness of this scheduler on very large systems and in

varieties of user environments.

-139-

References

(1] E. G. Coffman and P. J. Denning, Operating Systems Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

(2] S. Leffler, M. Karels and M. K. McKusick, "Measuring and Improving the Performance
of 4.2BSD," in Proc. Salt Lake City Usenix Conf., pp. 228-236, June 1984.

(3] M. K. McKusick, M. Karels and S. Leffler, "Performance Improvements and Functional
Enhancements in 4.3BSD," Comp. Syst. Research Group, Dep. Comput. Sci. and Elec.
Eng., Univ. of California at Berkeley, Berkeley, CA, 1985.

(4] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," CACM, vol. 17, no.
7, pp. 365-375, July 1974.

(5] K. Thompson, "UNIX Implementation," Bell Syst. Tech. J., vol. 57, no. 6, part 2, pp.
1931-1946, July/Aug. 1978.

A Straightforward Implementation of 4.2BSD
on a High-performance Multiprocessor

Dave Probert, Jeff Berkowitz, Mark Lucovsky

Culler Scientific Systems Corporation

ABSTRACT

The CULLER 7 scientific computer system is a high-performance mul-
tiprocessor consisting of a single kernel processor and one to four appli-
cation processors. 4.2BSD was implemented on this machine by execut-
ing the majority of the operating system on the kernel processor, and
executing user code on the application processors. This paper describes
the implementation of the operating system kernel, with emphasis on
the effects of asynchronous multiprocessing, process pipelining, the vir-
tual memory implementation, and the utilization of special hardware for
forks, context switches, and I/O.

UNIX is a trademark of AT&T

Multibus is a trademark of Intel

4.2BSD is a trademark of the UC Regents

Culler 7 is a trademark of Culler Scientific Systems

VAX and UNIBUS are trademarks of Digital Equipment Corporation

-141-

1. Introduction

The Culler 7 is a high performance computer system targeted at scientific and engineering appli-
cations, particularly those addressing the modeling and simulation area where a balance of scalar
and vector capabilities are required. The Culler 7 architecture does not depend on pipelines for
performance but incorporates the capability of executing multiple operations simultaneously
within one clock cycle. This parallel execution of non-repetitive code as well as repetitive func-
tions provides a high level of delivered performance for both scalar and vector code.

In the sixteen years preceding the announcement of the Culler 7, Culler Scientific developed a
series of special purpose scientific computers for university research groups, the National Science
Foundation, and the U.S. Department of Defense. These processors addressed a wide range of
applications including signal and image processing, plasma physics simulation and linear algebra.
The design for one of these products, the AP-120, was licensed to Floating Point Systems in 1975
and became an integral part of their commercial product line.

The design goal of the Culler 7 was to implement an extendible multiprocessor architecture that
could support general purpose scientific programming by taking advantage of the array processor
architectures Culler had pioneered. The design team focused on three primary areas: improving
the fundamental array processor design to eliminate performance bottlenecks, efficient execution
of programs compiled from standard FORTRAN and C, and designing hardware capabilities to
allow the effective implementation of modern operating systems.

2. The CULLER 7 System Architecture

The system architecture consists of one to four User Processors connected to two high speed bus
systems and coordinated by a separate Kernel Processor. 1/O is provided by a Multibus I/O sub-
system and through high-speed attachments directly to the system data bus.

Figure 1 contains a system level block diagram of a Culler 7 with two user processors. The kernel
processor controls the user processors and I/O activities via the System Control Interface (SCI).
The kernel processor offered with the Culler 7 is a 68010 attached to a Multibus. By replacing
the SCI it is possible to attach alternative kernel processors and busses.

The SCI provides hardware support for I/O, virtual memory, and context switching. This enables
the kernel processor, which is much slower than the user processors, to adequately service the I/O
and virtual memory requirements for CPU intensive application programs. Interactive response
under heavy CPU load is comparable to that of a VAX 11/750.

The existence of the separate kernel and user processors leads to the identification of three process
types in the system. Kernel processes are processes that have no user state and execute solely
within the kernel, such as the pageout and swapper daemons. User processes are ordinary
processes that execute on a user processor when in user mode. We refer to the processes that exe-
cute in user mode on the kernel processor as system processes.

2.1. The User Processor

Figure 2 is a block diagram representation of a single user processor. Each user processor consists
of two parts, the XY-machine and the A-machine. The A-machine is designed to perform
addressing and program sequencing activities. The XY-machine contains the XY register
memory, an IEEE floating point adder and multiplier, and a datapath architecture that has
evolved from Culler’s earlier array processor designs. The division of the user processor into two
machines has some similarities to the PIPE architecture |[Goodman85|, but was developed

CULLER 7

HS 170

C SYSTEM ADDRESS BUS (32) >
| ||] 1] [1
< SYSTEM DATA BUS (64)
Local Local
address address
(32) (32)
Local data Local data
(64) (64) I

BVIERVIVIVIV IV LW ."\/"&[‘: P \/J
i : L by :
KERNEL| | S CI . ! b b :
| Py Lo -
muLTisus| PRCSR | ! ! . 5 o ?-ngROL !
= R 2 | 2 'S ,
| = | iQleLoBaL || & |
5 ! i 1|MEMORY |, | HIGH SPEED .
| l ' + | |INTERFACE| .
' ! [| [} :
3 . i b :
: i Lo P :
) . S . b L. I A Y

(STAGING DATA BUS (64)
|] 1 | | %

STAGING ADDRESS BUS (32)

Figure 1: System block diagram of a Culler 7 with two user processors.

A b

XY MACHINE A MACHINE
MICROCODE RAM MICRO PROGRAM ADDRESS
SEQUENCER SEQUENCER MAPPING PROGRAM MEMORY
|
|
XY INSTRUCTION
: DECODE RAM INSTRUCTION BUFFER
I
)
INSTRUCTION EXTRACTION
Y CONTRO
A INSTRUCTION
I A DECODE
X Y - 1A CONTROL
ADDRESS ADDRESS
UNIT UNIT -
X Y
X SPECIAL REGISTER
XA | xc MEMORY MEMORY va | e REGISTERS FULE
4K-32b 4K-32b b .
LEFT
xb yb MULT SHIFT
T . 16x16
I
[I —] L l J I
[7 AX I [7 AY [ﬁ MX l MY I \\\—_::g-_///
I |
—
{EEE/INTEGER
IEEE/INTEGER MULTIPLIER T
ALY swiTCH ELEMENTARY y | oxi : ovi
D AD
x CONVERSION Vv, ¢+, ein, cos, | MA:: st
OPERATIONS l aten exp, log. !
T I °hﬁ'° oX0 ovo
1
[mu — N - :
[j t] l u fﬁ v ;] [w 41 DA or DSA
1 1 1 ¥
oL DR

Figure 2: Block diagram of the architecture

of a user processor.

A

-144-

independently.

The user processor has two sets of XY-memories and two D and P hardware page tables (D-map
and P-map). One set is associated with a half of the user processor. Only one half of the user
processor can be active at a time. The active half of the user processor is said to be the fore-
ground half. The XY-memories and page tables associated with the background (inactive) half
are staged using the block transfer hardware in the SCI, which transfers between D-memory and
the staging bus. P-memory is shared by both halves of the user processor, and is written via the
staging bus by stealing cycles from the user processor.

2.1.1. XY-memory

The XY-memory is 4K 64bit words of fast access memory allocated as a stack. It is used for the
allocation of procedure call stack frames, which include subroutine linkages, procedure call argu-
ments, and storage of register variables, automatic arrays, and vector registers. XY-memory is
liberally allocated for these purposes by the compiler, so 32KBytes may not be adequate for some
programs. Privileged bounds registers are used to trigger roll-outs of the bottom of the XY-
memory stack into data memory. The top of the stack is always kept inside the user processor.
XY-memory must be staged (or destaged) every time a process is put on (or taken off) a user pro-
cessor. Staging normally overlaps with the execution of another process on the foreground half of
the user processor.

2.1.2. Instruction Sequencing

The A and XY-machines have separate instruction sets which are fetched from the common pro-
gram (P) memory by the A-machine. Each A-instruction is executed in a single clock, as are most
of the X-instructions. However, an XY-machine instruction may invoke microcode that will cause
the XY-machine to sequence independently from the A-machine. A combination of microcode
and special hardware is used to implement the elementary functions and vector instructions. Pro-
grams can also include microcode segments, generated by the compiler, which extend the XY-
machine instruction set for the execution of that program. The microcode segments are loaded
into the user portion of microcode memory when the process is run on a user processor. The
operating system manages the microcode segments as an extension of program text.

P-memory is operated as a cache for the text pages that are the working set of currently execut-
ing processes. Copies of all pages cached in P-memory are always maintained in D-memory.
Since P-memory is read only, this implies that it never requires destaging. Programs access P-
memory through the P-map. This allows P-memory to contain pages from multiple processes
concurrently.

2.1.3. D-memory

All user processors share a large data (D) memory accessed over the D-bus. There are several
facets to the architecture that eliminate contention for D-memory: program text is fetched from
the separate P-memory, the compilers make heavy use of the XY-memories, and the D-bus is split
into multiple busses, allowing for up to five separate D-transfers in the same cycle.

Data requested from D-memory is received by the user processor in a three-deep FIFO. Address-
ing is performed by the A-machine, but the data can be transferred from the FIFO into either the
A-machine (up to 32 bits) or the XY-machine (up to 64 bits). The hardware supports references
of 8, 16, 32, and 64 bits, and the user processor will recover from unaligned references (with some

-145-

performance impact).

2.1.4. Virtual Addressing and Process Structure

Program text and data live in separate virtual address spaces. Since text is always transferred
into P-memory from D-memory, it is possible to make text writable by mapping it into the data
virtual address space of a process.

Virtual addresses for text and data are mapped into physical addresses for P and D-memory by
the P and D hardware page tables (P-map and D-map). The tables are organized as two-way set-
associative maps. The P-map translates program page addresses into P-memory physical
addresses, while the D-map translates data addresses into 32 bit D-addresses. Both the fore-
ground and background halves of each user processor have a set of maps, so the maps can be
staged by the SCI along with XY-memory. The SCI copies addressing information into the
hardware maps from map images maintained in D-memory by the kernel processor. Since the
maps are always copies of the D-memory image, they never need to be destaged.

Figure 3 shows the structure of a loaded Culler 7 process. Kernel memory contains the same
structures as found in VAX 4.2BSD, but with extensions to associate the user microcode segment
and a separate page table with the text structure. D-memory contains the backing images for the
D-map, P-map, user microcode, and the text segment. The data/stack segment is also in D-
memory. The process control block (PCB) is the first page of the data segment, and the XY-
memory rollout area exists above the stack segment in process virtual space. The user processor
is loaded from the appropriate areas of D-memory whenever a process is staged.

Each process has a single D-map image that is used for all user processors that it may be staged
onto. A separate P-map image is maintained for every processor that a process is staged on. This
is required because each user processor has a separate P-memory.

2.1.5. Synchronization and Interrupts

Synchronization between the A and XY-machines occurs through the interleaving of X and A-
instructions in program memory. Additional synchronization is provided by the D-FIFO and syn-
chronization bits on the inter-machine busses.

The user processor has a single level interrupt/trap structure that will put the user processor in
privileged mode and begin execution of a local interrupt handler (KUPO). Interrupts can occur
due to exceptions, arithmetic traps, system service requests within the user processor, or a
preemption interrupt from the kernel processor. KUPO is responsible for saving miscellaneous
register and hardware state into the PCB of the process.

2.2. System Control Interface

The System Control Interface (SCI) is the hardware that provides the connection between the
Multibus and kernel processor and the user processors and D-memory. It contains a collection of
functional units that operate in parallel. These functional units make a significant contribution to
operating system performance by offloading time critical functions from kernel processor software.

2.2.1. Staging

The local memories and page maps in the user processor are loaded from D-memory through the
SCI. When a process is selected to run on a user processor, the kernel queues a series of staging
transfers to the SCI. For each transfer, the SCI copies from a specified block of D-memory onto

USER

PROCESSOR
PCB - Misc.
Harda\:varo User
Data Rg?lat;ter —] M:ﬂcrocodo P-Memory . Text
Segment ate emory KUPO egment
. XY & Backing
honAcA AN A
M
Stack omeny Text Pages Pages
Segment D map Pmap
A A I
XY
Rollout
Area - ey
MTA.Ao Dmap Mi User d : : H
crocode
Iimage Image :L j ;<_
]
Data/Stack Text
Page |« Proc. |y Text »| Page
Tables Entry Entry Table
User
KERNEL Structure
MEMORY

Figure 3: Structure of a loaded Culler 7 process.

-9%1-

-147-

the staging bus. The memories in the background half of each user processor are addressable over
the staging bus. When a process is removed from a user processor, its XY-memory is destaged
back into D-memory. Because P-memory and the page maps are not directly modified by the
user processor, they do not need to be destaged.

2.2.2. D-memory Access

The Multibus provides 20 bits of address and 16 bits of data. The D-bus has 32 bits of address
and 64 bits of data, but also allows aligned 8-, 16- and 32-bit transfers. The SCI provides two
mechanisms for mapping the Multibus to the D-bus. These mechanisms are similar to the func-
tions of the UNIBUS adapter on a VAX. The first facility is a set of registers that allow the
specification of a full 32 bit address and transfer size (byte, shortword, longword, or double). This
facility is currently used by the kernel, and is convenient for transferring small amounts of data
with minimal overhead.

The second facility consists of windows onto the Multibus, each of which contain a set of address
mapping registers and a data assembly register. This facility is analogous to the buffered data
path mechanism on the VAX UNIBUS adapter. The kernel allocates the windows using a
mechanism similar to the ubasefup() mechanism in 4.2BSD. The windows are used primarily by
the Multibus disk and tape controllers, but are occasionally used by the kernel to transfer data
blocks into the D-memory portion of the buffer cache. The mapping table supports scatter/gather
I/O and allows the disk controller to execute chains of I/O requests without kernel intervention.

The SCI contains a hardware transfer unit for copying blocks of D-memory. This facility is used
to transfer data from the D-memory buffer cache into process data space. Hardware D-to-D
transfers are also used for zero-filling pages and copying memory during forks.

2.2.3. Miscellaneous Functions

Several control and diagnostic functions are accessed through SCI registers in Multibus I/O space.
Each user processor has a control/status register. Control functions to reset, halt, run, interrupt,
and set readyezchange are provided via these registers. Serial state chains are threaded through
each user processor and accessed via other registers in the SCI. They provide access to internal
processor state for diagnostics, and are also used to determine processor and memory
configurations at system boot time.

The SCI is responsible for arbitration of the system D-bus. In this role it sees every global D-bus
transfer and records usage/dirty bits for physical addresses assigned to D-memory. Usage/dirty
bits for D-memory transfers accomplished wholly within a user processor (i.e., across the local D-
bus) are recorded locally in a table that is accessible on the staging bus for each user processor.

3. Kernel Implementation

The kernel implementation began with an existing port of 4.2BSD running on the 68010-based
kernel processor. The CSD (Culler Software Distribution) kernel consists of a straightforward set
of additions to this base. The capability of executing user programs on the kernel processor was
retained throughout the kernel development. This eliminated many of the problems usually asso-
ciated with bootstrapping a new UNIX port. During normal system operation, the only program
to run on the kernel processor is [etc/init, but a full single user environment is supported on the
kernel processor for system initialization and diagnostics.

-148-

The implementation of the kernel was accomplished in the following phases:
0: Started with a fully functional 4.2BSD kernel on the kernel processor

1: Wrote a program on the kernel processor, the Single Process Executive (SPE), which
enabled us to run one process at a time on a user processor. SPE acted as the surro-
gate for system calls. This allowed much of the KUPO code to be debugged and com-
piler testing to start at a very early stage.

2: The rudiments of asynchronous multiprocessing were implemented in the kernel and
the the SPE code was migrated inside to form a version of the kernel that was capable
of running a single job at a time on a user processor.

3: Multiprocessing of user processor jobs was enabled by adding the staging code.
4: Finally, paging and swapping were added.

The additions made to the original 4.2BSD kernel can be divided into two categories: those
required for asynchronous multiprocessing and hardware support, and those designed to support
system performance. Examples of the first class are the KUPO (local trap handler) code, the user
processor system call mechanism, and the changes to the virtual memory code. The second class
includes the XY-memory rollout mechanism, support of user microcode, and the distribution of
the kernel buffer cache across both kernel and D-memory.

Code was added to the kernel in the following areas:
(1) KUPO (user processor resident trap handler)

This code is responsible for first level response to all user processor interrupts, traps,
and exceptions. It categorizes the interrupt cause and communicates with the kernel
processor by leaving a message in the PCB and causing a kernel interrupt for cases
that require kernel processor intervention.

(2) User Processor Interface
(a) System Call Support

A new mechanism was implemented to accept system call interrupts at arbitrary times
and synchronize the resulting system call execution through a normal kernel context
switch. This mechanism is used to support all operations that may cause the request-
ing process to block. Some non-blocking system calls are handled at interrupt time,
avoiding the kernel context switch.

(b) Stager

The user processor is supported by an interrupt driven staging driver that implements
pipelining at the process level. This pipelining is made possible by the user processor’s
foreground/background memory implementation.

(¢) Configuration

Code was added to support the autoconfiguration, initialization, and dynamic
deconfiguration or offlining of user processors and D-memory. The ability to dynami-
cally remove a processor from the available set is important for diagnostics in a multi-
ple processor environment.

(3) Hardware support

Special purpose hardware is provided by the SCI to support critical operations such as
process staging, block 1/O, and process forks. Routines were added to the kernel for

-149-

allocating, managing, and accessing these resources.
(4) Virtual memory support

The base kernel contained a virtual memory implementation for kernel memory. A
separate pageout daemon, and parallel virtual memory code were added to support the
Culler 7 D-memory. Additional code was added to manage the P-memory cache
within each user processor and to support the separate text and data address spaces.

(5) Additional program segments

In addition to the text, data, and stack segments of standard UNIX, CSD supports two
additional program segments. A user microcode segment is implemented as a part of
the shared text mechanism. Each process also owns a second stack segment, called the
XY rollout segment, the top of which is kept in the local XY-memory of the user pro-
cessor. As the XY stack grows, more of the bottom rolls out to D-memory. When the
stack contracts, some of the bottom rolls back in. The CSD compilers use the XY
stack for local procedure frames and vector registers. A separate D-stack is main-
tained for dynamic allocation of dereferenced data.

(6) Buffer cache

The system bufler cache is split between D-memory and kernel memory. Superblocks,
inodes, bitmaps, directory blocks, and indirect blocks are transferred into kernel
memory, while data blocks from ordinary files usually go directly into D-memory. The
operational division of labor between the buffer caches is a consequence of the UNIX
filesystem design, and any block could end up in either cache. Code was added to the
kernel to detect blocks that end up in both caches; and one of the copies is always
invalidated before the other can be written.

(7) Miscellaneous kernel additions

The 4.2BSD implementation of signals was extensively modified to move functionality
into the user processors. Code relating to timing and timeslicing also required
modification in the multiple processor environment. The ezec system call was
modified to allow the coexistence of kernel processor and user processor code files.
Programs are ezec’'d on the machine appropriate to their type, as indicated by the
magic number. User physical I/O and swap I/O were modified to support D-memory
access. Changes were also made to the kernel to take advantage of some of the perfor-
mance enhancements suggested in [Leffler84].

Many of the areas traditionally modified during UNIX kernel ports are absent from our list. This
is due to our decision to start with an existing 4.2BSD port and add the functions required to sup-
port the Culler 7 multiprocessor. On the other hand, the implementation of the XY-memory and
user microcode segments required us to make substantial modifications to parts of the kernel that
are normally machine independent.

3.1. Job Stream Pipelining

XY-memory, P-map, and D-map contain a significant amount of state. Context switches would
be very expensive if the user processor had to remain idle while the new process state was loaded.
Providing two sets of these memories within each user processor, and allowing a process to exe-
cute using the foreground set while the background set is being staged, retains the bandwidth and
performance advantages of local memories without incurring the additional context switch

set ready

interrupt a-ikps exchange
Process B KUPO Process B Process D
executes user code saves state
in B’'s PCB destaged by SCI staged by SCI
FOREGROUND EXECUTION BACKGROUND STAGING
I
BACKGROUND STAGING FOREGROUND EXECUTION g
Process A Process C KUPO restores Process C
destaged by SCI staged by SCI state from C’s PCB executes user code
set ready a~-ikps return from interrupt
exchange interrupt
TIME

Figure 4: Job stream pipelining. Time from interrupt of process B until
return from interrupt in process C is a few dozen microseconds.

-151-

overhead.

The result of this design is that the user processor effectively becomes a two-stage pipeline for
processes. Figure 4 shows the operation of the two stages of the pipeline.

In the worst case, staging of a user processor can take a couple of milliseconds. Frequently, only
small fractions of the memories and maps are used and the rest are not staged.

The pipelining of processes exacerbates the problems of asynchronous multiprocessing. Once a
process is staged and the readyezchange bit is set the process might start running at any time. By
the time the kernel processor responds to the a_tkps from the first process on the processor, the
second process may have already trapped and also be requesting kernel intervention. Careful cod-
ing was required to avoid the handful of race conditions that pipelining created.

3.1.1. Context Switching

A user context switch may occur whenever a running user process requires service from the kernel
processor or the kernel processor preempts a user processor. In either case, the user processor
begins executing KUPO, which saves miscellaneous hardware and register state in the PCB, and
then executes an a_ikps instruction. The a_ikps instruction accomplishes the exchanging of the
foreground and background halves of the user processor. a_ikps sends an interrupt to the kernel
processor and then the processor hangs until the kernel processor sets the readyezchange bit in the
user processor control register. The background halves of the memories and maps are then
exchanged with the foreground halves and the processor continues execution, but in the context of
the process that had been staged onto the background half. In general, processes take longer to
execute than to stage, either because they are CPU intensive, or have relatively little active con-
text to stage. Thus the readyezchange is usually set long before the a_tkps instruction is exe-
cuted, and the exchange of processor halves takes place immediately.

When the exchange occurs, execution resumes after the e_tkps instruction. KUPO restores the
state of the hardware registers and any parts of the user microcode memory that are in use, and
then executes a refurn-from-inferrupt? instruction which, re-enables interrupts and turns off
privilege until the next time an interrupt occurs.

When a process is ready to run, the kernel selects a user processor, and then queues a series of
staging transfers to the SCI driver. The last staging transfer causes the readyezchange bit to be
set for the user processor. At the next system call, page fault, or kernel preemption interrupt, the
halves are exchanged, and execution of the new process begins.

A few special cases complicate this straightforward model of process pipelining. For example,
there may be only a single runnable process in the system. There is then no process to stage onto
the background half of the processor, and when the process exits the kernel, it is desirable to
resume the process without first destaging its XY-memory and then restaging the process onto the
other half of the processor. The kernel makes this optimization by artificially running a dummy
process on the other half of the processor which, immediately switches back to the real process.

3.1.2. Initialization

When the system first boots, /etc/init is executed on the kernel processor. The /etc/rc script
runs a configuration program that initializes the user processors and enables the execution of user
processor programs. Until the user processor is configured, processes can be run on the kernel pro-
cessor only. Initialization consists of loading KUPO into the P-memory of each user processor,
setting the P-map and D-map appropriately, and then sending an interrupt from the kernel

~152-

processor. KKUPO will begin execution and end up hanging at the a_ikps instruction, waiting for
the kernel to stage a process onto the background half of the user processor.

3.2. Kernel-mode User Page 0 (KUPO)

The local trap handler (KUPO) is the part of the operating system that runs on the user processor.
KUPO is privileged code that responds to all traps and interrupts within the user processor.
Interactions with the kernel processor are accomplished through a message buffer in the process
control block (PCB) of the currently running process. The PCB for each loaded process is locked
in D-memory.

The following example of how a system call is performed illustrates the activities of KUPO:

The user code pushes the system call arguments on the stack and executes an a_trap
instruction.

KUPO begins executing in privileged mode on the user processor.
KUPO saves the non-staged hardware context into the PCB.
KUPO copies the system call arguments into the PCB.

KUPO executes an a_tkps instruction, which interrupts the kernel processor and may cause
an immediate context switch to the process staged in the background.

The kernel picks up the system call from the PCB and performs the system call. If the pro-
cess blocks inside the kernel, its processor half may be destaged and used for another pro-
cess. In this case the process will have to be staged back onto a user processor at the end of
the system call.

The process is ready to be resumed. The other half of the processor will ultimately execute
an a_tkps instruction, which will cause a context switch back to this process. KUPO will
continue execution after the a_tkps instruction.

KUPO handles any messages it finds inside the PCB.
KUPO restores the non-staged hardware context from the PCB.

KUPO returns from the interrupt and begins executing the user code after the a_trap
instruction.

Page faults are handled similarly to system calls, except that the arguments are conjured by
KUPO from the hardware state, and the faulting reference is restarted.

Signal handlers are built and dismantled by KUPO based on the signal vector information which is
cached in the PCB. Signals can originate due to kernel processor messages (e.g., the kill{) system
call) or within the user processor (e.g., floating point exceptions).

KUPO also contains code for fixing up unusual cases of IEEE arithmetic, repairing unaligned D-
memory references, rolling in/out the XY-memory stack, managing user microcode memory, and
single-stepping through user instructions or microcode for the debugger.

3.3. Asynchronous Multiprocessing

In standard UNIX, the system call interface is implemented through the execution of some sort of
trap instruction. The processor begins execution of the kernel trap handler in privileged state,
but still in the context of the user process, i.e. the processes MMU/VM state and u structure.
The Culler 7 can have multiple user processes active at any one time. For each user processor in
the system there can be active processes on the both the foreground and background halves, and

-153-

the kernel processor itself may have a process active either in user mode, or running inside the
kernel. To simplify discussion, we coined the term asynchronous multiprocessing to describe this
characteristic of the Culler 7 system.

3.3.1. Asynchronous System Calls

Asynchronous multiprocessing requires a means for creating arbitrary kernel mode contexts at
interrupt level. This is implemented by an interrupt handler that associates an interrupt from the
SCI with the kernel state of the user process that executed e_tkps, and a routine that builds a
kernel-stack for the process and places it at a high priority on the kernel run queue. When the
kernel processor is about to return to user mode, e.g., when returning from the SCI interrupt, a
kernel context switch will occur. This mechanism is similar to the use of aston() in 4.2BSD. User
processes don’t have any 68010 user MMU state to be faulted in, which reduces the cost of 68010
context switches.

The kernel-stack is constructed so that when the kernel mode context switch occurs, the process
will return from swtch() into the equivalent of trap(). This mechanism assumes that the kernel-
stack for a user process is valid only while the process is executing within the kernel. As
described below, this assumption is not always correct; there is a race condition which must be
protected against. To build the kernel stack required that every loaded user process have its user
structure mapped into the virtual address space of the kernel. This was not difficult to imple-
ment, but does consume slots in the kernel page table.

A user process can exit the kernel only by terminating or being staged onto a user processor and
calling swtch(). The calls to the staging driver to stage the process can complete before swtch() is
called. Thus for processes that have only small amounts of state to stage, there is a race between
the process on the user processor and the kernel. If the process tries to reenter the kernel before
the kernel has switched away from the process’ kernel-stack, the SCI interrupt routine may try to
build a new kernel context over the top of the stack during the call to swech(). This hazard is
avoided by deferring alterations to the kernel stack in cases where the process reenters the kernel
immediately.

3.3.2. Stager

The stager is responsible for processor allocation, staging and destaging of process state from the
user processors, and the manipulation of the hardware context switching support on the SCL

When a user process becomes ready to exit the kernel, an attempt is made to allocate to it the
background half of an available processor. If all processors are busy, the process is placed on the
user processor run queue until a processor becomes available. Once a processor is allocated to the
process, the staging transfers are queued up for the SCI.

One of the optimizations within the stager is that a process may reclaim the processor that it was
last on without having to be staged. This circumstance occurs when a process enters and exits
the kernel without blocking.

A user process explicitly releases its processor inside sleep() and ezit(). The routine called to
release the processor triggers the allocation of the processor to an awaiting process for staging.
The kernel does not have to be executing in the context of a user process in order to stage it.
Staging is implemented using interrupt driven queues, similar to the buf queues used by the
strategy /start/interrupt routines in block I/O drivers.

-154-

When a process becomes runnable, it may be placed on the user processor run queue because
there is no available processor. The user processor run queue is maintained separate from the
normal kernel run queue, which is used to schedule the 68010. Both run queues are implemented
with 32 linked lists of processes. Processes are moved from one linked list to another as their
priority changes. When a processor becomes free, the highest priority process on the user proces-
sor run queue is allocated to the free processor and staged.

3.4. Clock Considerations

The CSD kernel required changes in the areas of priority adjustment, interval timer support, time
accounting, profiling, and time slicing.

3.4.1. Priority Adjustment

For the purposes of priority adjustments, the 4.2BSD clock interrupt code looks at the currently
mapped u area to determine what process was active at the time of the interrupt, and looks at the
stacked psw to see if the process was executing in kernel mode or user mode. On the Culler 7
there may be up to nine processes (foreground and background of each of four user processors,
and a system process) that appear to be executing simultaneously. The kernel is careful to not
tick processes that have been staged, but are still on the background half of the processor.

3.4.2. Process Timing

The user processors are too fast for the resolution of the system clock interrupt to be useful for
measuring a process’ user time. The CSD kernel takes advantage of a 3-microsecond resolution
clock on the kernel processor to provide more accurate user time accounting for user processes.
System time accounting is still done using the statistical sampling in the clock interrupt routine.
The 4.2BSD interval timers run off of the data collected from the high resolution clock.

3.4.3. Time Slicing

4.2BSD periodically switches between processes of the same priority by calling roundrobin() from
a softclock interrupt. Roundrobin() preempts the currently running process, whic.h will call
swich() when it enters the kernel and start another process running. The same mechanism is used
for user processes on the Culler 7, but care is taken to stagger the preemptions so that the user
processes don’t all try to enter the kernel at once. The staging driver always keeps the user pro-
cessors full of available processes, so sending a kernel interrupt to a user processor is sufficient to
effect a context switch.

3.5. Virtual Memory Implementation

4.2BSD was originally implemented on the VAX architecture. At the conceptual level the VAX
looks up every page table entry in main memory, while at the practical level most address trans-
lations are cached in the instruction lookaside buffer. The Culler 7 has two-way set-associative
page tables implemented in the hardware. For the CPU intensive programs found in scientific
and engineering applications, there is minimal cost associated with loading the page maps because
the transfers are overlapped with process execution, using the alternate set of maps.

It is inconvenient to manipulate the images of the map directly, and so VAX style page tables are
maintained in kernel memory. PTEs from the kernel page tables are written to the D-memory
images of D-map and P-map by a routine that handles the set-associative details of the map

-155-

entries.

3.5.1. Separate I and D Considerations

A significant change made to the virtual memory code was the creation of a separate page table
for text. The VAX architecture uses a single page table (P0O) to map both text and data. The
4.2BSD implementation of shared text required that there always be at least one process loaded
for each in-core text so that the front of the process’ PO page table could be used to maintain the
page table for the text. Every operation made to a page table entry for text had to be distributed
to the PO page tables for all other loaded processes that were attached to the text.

The 4.2BSD page table mechanism for text would have been difficult to implement on the Culler
7 because text and data reside in overlapping virtual address spaces. Instead we allocate a
separate page table for text and associate it with the text structure. This simplified the imple-
mentation of shared text at the cost of increased usage of kernel memory.

3.5.2. Program Text

The instructions executed by a program reside in P-memory. There is a separate P-memory for
each user processor, but any P-memory may contain pages for more than one process con-
currently. Support for P-memory was provided by adding a layer on top of the virtual memory
code. The text segment is maintained in 8KB D-memory pages. When a P-page fault is encoun-
tered, the kernel transfers a 2KB subpage from D into P using the SCI staging facility. If the
page was not resident in D, the page must first be paged in from disk, using the same mechanism
that handles data faults in D-memory.

Reclaiming pages of P does not require a separate pageout daemon. P-memory is relatively small,
its pages never get dirty and the penalty for having to transfer a page back in from D-memory is
fairly small. The P-memory allocator simply takes what it needs by reclaiming the least-recently
used P-page that it can find. The allocator never needs to block, and can even be invoked at
interrupt level.

3.5.3. Pageout Daemon

Supporting asynchronous multiprocessing posed some interesting problems for the D-memory
pageout daemon. In a uniprocessor, pages may be taken at will by simply unmapping them.
Because there is only one processor, there cannot be a user mode process racing to modify the
reference/dirty bits while the kernel is examining them.

On the Culler 7, the pageout daemon may be running in parallel with several executing user
processes. The pageout daemon is biased against stealing pages from running processes, but when
it becomes necessary, special care is taken to check the hardware reference/dirty usage bits again
after the page has been unmapped. Unmapping the page is itself complicated because the process
must be temporarily put on the background of the processor in order to modify its maps via the
staging bus.

4. Conclusions

The architecture of the Culler 7 multiprocessor has enabled us to make a straightforward imple-
mentation of 4.2BSD. By running the operating system on a separate kernel processor, and start-
ing with an existing kernel port, many aspects of the implementation were simplified. We were
able to spend more of our time implementing visible functionality, such as multiprocessoring and

-156-

staging, and much less time making invisible changes to boilerplate code like locore.s and the dev-
ice drivers.

Because the kernel didn't have to be bootstrapped, it supported a fully functional development
environment from the beginning. We were able to use the capability of running processes on the
kernel processor to incrementally integrate the user processors into the system. In the early
stages when the hardware and compilers were still shaky, occasional compiler bugs and hardware
failures in the user processor or SCI resulted in fewer mysterious kernel crashes than would other-
wise be expected.

The most significant advantage of our approach is that while for the short-term we have avoided
the hard problems of distributing the operating system onto multiple processors, we have created
a platform from which functionality can be migrated onto the user processors based on analysis of
performance bottlenecks for real applications. The first code to be migrated was the signal han-
dling mechanism. Future operating system releases are expected to transfer more of the virtual
memory and interprocess communication functionality onto the user processor.

The involvement of the operating system implementors early in the design of the Culler 7 archi-
tecture allowed design trade-offs to be made jointly from the viewpoints of both the operating sys-
tem and the hardware implementation. The result was a system that fits naturally into the
framework of 4.2BSD UNIX. It was designed with 4.2BSD in mind from the beginning.

Contributors

The initial design work was done by Dave Probert. Jefl Berkowitz and Mark Lucovsky completed
the design and did some of the trickier parts of the implementation. Steve Byrne modified the
code for the pageout and swapper daemons, the buffer cache, and the disk and tape drivers. Dave
McMillen wrote KUPO. John Gerngross uncovered numerous bugs in our system and 4.2BSD in
general by applying systematic testing to the kernel.

References

[Leffler84] Leffler, S., Karels, M., and McKusick, M. K., Measuring
and Improving the Performance of 4.2BSD. Proceedings of the 1984
Summer USENIX Conference at Salt Lake City

[Goodman85] Goodman, J., et al, PIPE: A VLSI Decoupled Architecture,
Proceedings of the 12th Annual International Symposium on Computer
Architecture

Porting UNIX to the System/370 Extended Architecture
Joseph R. Eykholt

Amdahl Corporation
Sunnyvale, California

ABSTRACT

The UNIX! operating system has been ported by various groups to the System/370
mainframe architecture. The new System/370 Extended Architecture offers
capabilities that improve the power and flexibility of UNIX systems. These
capabilities include a significantly larger address space, an enhanced /O subsystem,
and advanced multiprocessor features.

This paper describes an implementation of Amdahl Corporation's UTS?, a
System/370 UNIX product that takes advantage of the Extended Architecture.
Emphasis is placed on the design considerations required for the new features of
XA that are unique to very large mainframe UNIX implementations.

1. A comparison of System/370 and System/370 Extended Architecture

To understand the motivations and effort involved in porting UNIX from System/370!'l to the
System/370 Extended Architecturel’l (XA), it is necessary to understand the differences between
these two architectures. Readers who are more familiar with minicomputer and microcomputer
architectures may find the differences interesting, especially the difference in scale. This
description is a bit simplified, leaving out details not essential to the discussion.

The Extended Architecture has provided new features and removed some of the restrictions
imposed by the earlier System/370 architecture. This extension has been provided in such a way
that user programs written for System/370 should require no change to execute correctly. However,
the changes to the operating system were significant. Therefore, this discussion will concentrate on
the areas which are different between the two architectures.

1.1 System Architecture

Figure 1 shows the primary connections between the major components of a System/370 mainframe.
Several central processors may be present, sharing main memory. Currently, the largest non-XA
System/370 implementations can support two CPUs, 64MB of main memory, and 32 /O channels.
With XA, the Amdahl 5890-600 will support four CPUs with 512MB of main memory and 128
channels.

1.2 /O Architecture

The /O processors operate somewhat autonomously, transferring data between main memory and
devices via the channels. Each channel is in many ways similar to an intelligent direct memory
access (DMA) controller, especially with respect to the way it is viewed by the CPU. Internally the
channel has a processor that can be as powerful as some minicomputers. Channels multiplex their
activity to permit several transfers to be active simultaneously on the same channel. Each channel
can have a transfer rate of up to 3 megabytes per second. The operating system performs I/O
operations by building a channel program, and signaling the channel to start executing it. The
channel program is simply a sequence of one or more channel command words (CCWs), which each

l. UNIXis a trademark of AT&T Bell Laboratories.
2. UTS is a trademark of Amdahl Corporation.

-158-

 channels |
|/{6] i
CPU
processor je————s
p—————
main
memo
Y channels
e ——
CPU vo
processor jg—————s
il ———

Figure 1. System/370 mainframe organization

describe an operation (read, write, seek, etc.), and a data buffer to be used. The channel
communicates status back to the CPU with an O interrupt, during which a channel status word
(CSW) is stored.

tape
control
unit

disk
channel
control
unit

Figure 2. Example channel, control unit, and device connections

channel

mainframe

1.2.1 Channels, Control Units, and Devices Each /O device has a control unit that is connected to
the mainframe channel. See figure 2. The control unit is sometimes integrated into the device or
the channel, but there is always the logical concept of a control unit, whether it exists as a separate
physical entity or not.

Most control units serve several devices. For example, a disk control unit will typically control as
many as 32 disk drives.

1.2.2 Alternate Paths and Sharing Devices can be attached to one or two control units, and
control units can also be attached between up to four channels, as shown in figure 3. Attaching a
device to two control units is useful because it can provide an alternate path to a device when a
control unit is busy. Attaching control units to different channels is useful for providing alternate
paths when a channel is busy and for sharing devices among several mainframes.

Another reason for alternate paths is to enhance reliability. When a path fails because of a
hardware problem, the error can usually be detected and the path disabled. If there is an alternate
path that remains operational, access to the device is not lost.

1.2.3 Busy Conditions All this sharing makes it inevitable that busy conditions occur. Since the
device, control units, and channels cannot queue all requests, the /O supervisor in the operating
system has to be aware of the configuration and manage the appropriate queues. With alternate
paths to devices, the /O supervisor can re-route requests to another channel.

-159-

channel 1

control
channel 2 | unit 120

device

mainframe 120

channel 8

control
channel 9 | unit 820

Figure 3. Example alternate paths connections

1.2.4 The XA /O Subsystem One major area of difference between System/370 and the Extended
Architecture is the VO subsystem, which consists of the IO processors, channels, and the associated
microcode and tables. In XA. most of the queuing and path selection functions of the /O supervisor
were moved into the /O subsystem, freeing the operating system's VO supervisor from the overhead
of those tasks.

To provide these functions, the XA VO subsystem requires that it be told about the configuration of
the peripheral farm. This is done with an /O configuration file that is used to build tables in the VO
subsystem's memory during system initialization. [/O requests and interrupts no longer refer to the
channel and unit address, but use an arbitrarily assigned subchannel number that corresponds to the
device involved. For operator convenience. there is a user-assigned device number that is used in
all console messages and administrative commands. This device number is mapped into the
subchannel number by the operating system.

1.2.5 Multiprocessor Considerations In a System/370 multiprocessor configuration, the channels
are divided into one or more channel sets. Each CPU may connect dynamically to at most one
channel set, and at most one CPU can be connected to each channel set. For more than one CPU to
be capable of /O, there can be alternate paths to the device, one from each channel set, and each
CPU can use the channel set connected to it. This reduces the options open to each CPU in
initiating the /O when its path is busy. VO interrupts providing status on a request always occur on
the channel that issued the request, meaning that the same CPU that initiated the request must take
the interrupt.

In the System/370 Extended Architecture, there is only one channel subsystem, regardless of the
number of processors, and any CPU can start VO requests to any device. /O interrupts can be
presented to any CPU that is enabled for them. Therefore, XA is a much more suitable
environment for multiprocessor operating systems. Because the CPUs no longer have all of the
burden of managing VO, higher levels of multiprocessing can be supported by XA.

Although the current dual processor implementation of UTS does /O from only one CPU, XA allows
us to begin development toward a completely symmetrical multiprocessing implementation.

1.3 Addressing

In System/370, all effective addresses are 24 bits wide, limiting the address space to just 16
megabytes. When a 32-bit register is used to generate an address, the high order byte (ordinarily
the most significant) is ignored. Unfortunately, this feature has been exploited by assembler
programmers in many ingenious ways. It has also been exploited by the architecture, by using the
high order byte of words containing addresses for other purposes. For example, the channel

-160-

command word (CCW) contains the buffer address in bytes 1, 2 and 3, but uses byte O for the
command code.

Pre—-XA Channel Command Word

command data address flags unused data length

0 78 31 32 39 40 47 48 63
New XA Channel Command Word

command| flags data length data address
0 78 15 16 31 32 63

Figure 4. Old and new channel command word formats

XA provides compatibility with 24-bit mode, but also provides a 31-bit addressing mode. This
allows an address space of up to two gigabytes. To provide larger address fields, most hardware-
associated structures, including the PSW, CSW, CCW, and page table entries have changed. Figure 4
shows the CCW formats, both of which are available in XA.

1.4 Virtual Memory

Non-XA systems can have 64K or 1M segments, and 2K or 4K pages, although only 64K segments
and 4K pages are standard features of the architecture. Although programs can directly access only
16 megabytes, the non-XA page table entry, shown in figure 5, allows support of up to 64
megabytes of real memory, by squeezing two extra bits of real address into bits 13 and 14.

System/370 Page Table Entry

real page address ilsl7 N
bits 8-19 A
0 11 12 15
System/370 XA Page Table Entry
0 real gﬁfel?ldgdrcss ol1lelo sofé\ixt':re
01 19 20 23 24 31

Figure 5. Old and new page table entries

XA systems only provide 1M segments and 4K pages. To support larger virtual and real address
spaces, XA uses a new segment table and page table format. To accommodate the larger page
frame address, the XA page table entries are 4 bytes wide. The maximum size of the hardware
page tables has grown from 32 bytes to 1K bytes, and the segment table from 1K to 8K bytes.

2. Motivations for Porting UTS to XA

The prime motivation for using XA mode machines has been from applications that require address
spaces greater than 16M. So far, these applications have been mostly digital logic simulations. and
other LSI and VLSI chip design applications. One user, doing LSI design work under IBM's non—XA
VM operating system, must run all applications larger than 16M bytes on minicomputers. Some
estimate that even the two gigabyte address space provided by XA will soon be insufficient for
certain applications.

Since processor speeds are constantly improving, the 64M byte limit of mainstore was becoming a
system bottleneck for some operating systems. Larger real memory sizes allow more users to be
supported, and allow better swapping policies. Already XA systems have been announced which
will provide 512 megabytes of real memory. If the trend in memory size growth continues. 31 bits

-161-

will not be enough for real memory addressing.

Currently all machines that support the XA mode can also be used in non—-XA mode, by selecting
the mode during system initialization. However, it is clear that XA is the preferred mode of
operation on these machines.

3. UTS Changes Required for XA
3.1 VO Supervisor Changes

Since many of the functions of the 370 mode /O supervisor have been taken over by the hardware,
the XA version software is much simpler than its 370 mode counterpart. All queuing for channels

and control units was removed, since the operating system no longer requires any knowledge of
them.

3.1.1 Error recovery The XA /O subsystem reports channel-detected errors in a new way. All VO
interrupts must come from a subchannel. If the O subsystem detects an error on a channel
interface that cannot be associated with a subchannel, it presents a new class of machine check,
called ''channel report pending.'" When this machine check occurs, channel report words are
obtained with a new instruction, and the contents are used to guide the recovery.

The method by which errors that can be attributed to a device are reported hasn't changed
significantly between the two modes.

3.1.2 Path Selection Control Path selection in XA is performed by the /O subsystem, so that
function was easily removed from the UTS I/O supervisor. It is sometimes necessary for the system
administrator to have control over which paths to a device are enabled (varied on). If, for example,
a control unit failure caused the recovery system to disable paths using that control unit, those paths
would need to be manually enabled after repairs are completed. Control over which paths can be
selected is still available to the system administrator through the vary command. This command and
its associated system call were modified so that they would function in both XA and non-XA modes.

3.2 Device Driver Changes

To perform /O operations, the device driver calls the start I/O routine with the device address, a
CCW pointer, a pointer to a function to handle the interrupt, and an argument to be passed to that
function. When an interrupt is accepted for that request, the interrupt handler function is called
with the given argument and the channel status word.

It was possible to maintain the same interface between the device drivers and the O supervisor for
both architectural modes. The device drivers call the VO supervisor routines with device numbers,
and the /O supervisor translates these to subchannel numbers before performing the requested
operation. The channel command and channel status words are described in C language structures
that use bit fields to declare the status and flag bits. To reflect the new CCW and CSW formats, it
was necessary to redefine these structures. This only required changing the sequence of the existing
fields and adding new fields. Some drivers, which did not use the defined structures to access CCW
and CSW fields had to be modified so that they now do, and so now all drivers have the same source
code for both architectural modes. with ifde fs only in the header files.

3.3 Memory Management Modifications

The page table and segment table format change was handled by simply changing the structure
definitions in the header file. Most of the memory manager source is common to both modes.

3.3.1 Copy on access bit The UTS memory manager has a feature that delays copying pages after a
fork until the pages are referenced. During a fork the page tables for the data and stack segments
are copied with all pages marked invalid and a ''copy-on-reference'’ bit set in each page table. If
the pages are referenced, a page fault occurs and each process is given its own valid copy of the
page.” In non—-XA mode. there were no free bits in the page table entry, so a word was used to hold

-162-

the copy-on-reference bits for each of the 16 entries. In XA mode there can be up to 256 entries in
a page table, so a bit map could be used, but since there are eight bits in each XA page table entry
that are reserved for use by the operating system, one was used as the copy-on-reference bit. Code
which inspects or alters these bits was changed to use a preprocessor macro, which is redefined for
XA mode.

As previously mentioned, the maximum size of page tables increased from 32 to 1K bytes, and the
segment tables from 1K to 8K bytes. Since UTS currently manages free space in 4K pages, it was
decided to use only 4K byte segment tables temporarily. This still provides users with 1 gigabyte
address spaces, which should be enough until the memory allocation routines are rewritten.

Since most text and data segments are nowhere near 256 pages long, the large page tables are
wasteful users of real memory. Consider that most UTS utilities use around 20K bytes of memory in
three segments (text, data, and stack). This requires three page tables and a segment table, for a
total of 7K in translation tables. Eventually, the memory manager will be modified so that it adjusts
the page and segment table sizes for the process.

3.4 Changes to the exec System Call

24-bit addressing is usually sufficient, and a few applications require it, so it was decided to make
that the default mode for user processes. The architecture provides the ability to use shorter
segment tables for 24-bit address spaces, so UTS may eventually take advantage of this and handle
small address spaces more efficiently. It seems desirable to allow the kernel to change the default in
the future, so two flags were added to the Common Object Format File (COFF) header to identify
programs with special requirements. One flag is for programs that need their address space to be as
large as possible. The other is to specify that the executable must be run in the 24-bit addressing
mode.

3.4.1 Requirements for shared text segments UTS requires that the text and data sections of
shared text programs not share the same page table. This provides for a more efficient method of
mapping the text sections into multiple address spaces. Since XA increases the amount of memory
represented by each page table from 64K to 1M bytes, shared text programs for XA machines must
have their data segments in a different 1M section than their text. The changes to the kernel allow
shared text programs that do not obey this constraint to be treated as non-shared programs. The
loader was changed to start data sections on a 1M boundary by default, even for non—-XA machines.
Although some of the address space is wasted by this restriction, it does not change the number of
real memory pages used.

3.4.2 The Gigabyte core file When a program aborts, its address space may be larger than the
available disk space for a ''core'' file. If this occurs, it should be still possible to write the stack
segment or at least the user page to the file.

3.5 Utility Changes

Several standard utilities required changes. Where possible, changes were made in such a way that
the program would work in both modes. User applications should require no change at all.
However, re-linking of user programs may be desirable to take advantage of shared text.

3.5.1 CCS Changes The C compiler was changed to allow the new 31-bit addressing subroutine
linkage instructions to be used. This is necessary only on those programs that have code sections
larger than 16M bytes.

3. 1t would have been better to do the copy only on references that modify the page. but the architecture doesn’t provide
enough support to do that cleanly, and it scems unlikely that performance would be improved greatly.

-163-

The assembler was changed to add several new instructions, including new instruction formats,
primarily for use by the few small assembler routines in the kernel. The linker was modified to
allow the large address space flag to be set, to handle larger sections, and to change the default
alignment of data sections, as discussed earlier.

3.5.2 ps The portion of the ps command that prints the command line arguments of processes
currently operates by reading through the translation tables to find the stack page of the process,
either in memory or on a paging device. Since the header files containing page table access macros
were modified for the kernel so that they work correctly if the preprocessor symbol XA is defined,
ps worked correctly in XA mode after it was recompiled. However, it was irritating for us to have
to recompile ps every time we switched our test system between XA mode and non—XA mode. In
order to save ourselves that bother, the code that prints the command line arguments was placed in
a separate module which was compiled twice, once with the preprocessor symbol XA defined, and
once without it. The routine name was also changed for the XA case. It was modified so that it
could determine at execution time whether it is being used on an XA machine or not, and use the
appropriate routine.

Eventually, it may be possible to eliminate this code in ps entirely. Some systems store the
command line arguments in the process's user structure, freeing ps from having to know the layout
of the page tables. This has the disadvantage that programs cannot hide their arguments, as the
crypt command does. When the /proc file system is available, providing a file for each process's
memory image, ps could use these files to read the arguments. ’l

3.5.3 sysdump The dump analyzer program, sysdump, which is similar in function to crash,
formats several system structures, and some of these have changed format for XA mode. The
technique used for ps couldn't cleanly be used for sysdump, because of the number of special cases.
Instead the make file for sysdump was modified to make both a non-XA version and an XA version.
These both come from the same source, except that the latter one has XA defined. A shell script
decides which version to use based on the kernel type in the memory image.

3.5.4 booting The ip! (initial program load) program has been changed to adapt to the
architecture of the machine, and to check the kernel type after it is loaded to be sure the correct
kernel has been specified.

4. Summary

UTS has been adapted from the System/370 environment to the System/370 Extended Architecture.
This has been done with little or no impact on applications programs. The resulting system provides
a much larger address space, to support larger applications, as well as larger real memory
configurations.

The changes to the system allow kernels for the two modes to share most of the source code. A
UTS system with these modifications that is running in 370 mode can be converted to XA mode or
vice-versa without changing any programs or files, except for those that require the special features
provided by XA. ‘

After reading this paper, one might conclude that the UTS kernel is very different from other UNIX
ports. While there are significant differences, that perception may be exaggerated because we have
been describing only those low-level portions that are different. The rest of UTS is very
recognizable as the UNIX we all know and love.

5. Acknowledgements

A special thanks to George Cameron who shared in the conversion effort. Thanks also to John
Marshall, who quickly modified the loader and assembler, and fixed several problems with the exec
system call. Thanks also for the generous support by the entire UTS group at Amdahl.

-164-

REFERENCES

1. IBM System/370 Principles of Operation, Publication number GA22-7000-9.

2. IBM System/370 Extended Architecture Principles of Operation, Publication number SA22-
7085-0.

3. Processes as Files, T. J. Killian, USENIX 1984 Summer Conference Proceedings.

Full Duplex Support on Mainframes
Don Sterk

Amdahl Corporation
Sunnyvale, California

ABSTRACT

The usual method of providing character by character /O with echoing by the host
requires two interrupts per character. Minicomputers frequently become bogged
down with terminal /O with tens of users. This paper examines how to provide
full duplex ASCII support on a mainframe for hundreds of users without noticeable
delay. A case study is made of UTS' full duplex using an Amdahl 4705 as a front
end and a packetizing scheme preventing the necessity of an interrupt for each
character read.

INTRODUCTION

Although large mainframes provide the power for rapid computation and processing large blocks of /O,
they may incur high overhead per I/O transaction. The character-by-character nature of full duplex /O
leaves them prey to the same problem minicomputers have: becoming sluggish as the number of full duplex
users increases. If an interrupt is received every time a character is read and another when the echo
completes, a mainframe may not be able to support as many users per MIP as a minicomputer. The greater
expense of a mainframe justifies the cost of a front-end processor to relieve it of some of its VO overhead
and thus use its greater computational power more effectively. This paper will discuss the implementation
of full duplex support in UTS, which uses an Amdahl 4705 as a packetizing front end processor for an
Amdahl 470 or 580 mainframe.

1. UTS FULL DUPLEX ENVIRONMENT

Before the architecture of UTS full duplex can be explained, an introduction to /O on System/370
compatible computers will be presented.

1.1 System/370 I/O Overview

I/O on a System/370 computer is performed by a channel. an auxiliary processor that shares main memory.
A channel executes channel programs to transmit and receive data through main memory. It is connected
via cables to a channel adaptor in a peripheral controller. A channel program consists of one or more
channel command words, or CCW's. A CCW is 64 bits long and has fields designating a command, operand
address, operand length, and numerous options. Execution normally proceeds through a sequence of CCW's
until one is found with the command chain bit set to 0. A special command, Transfer In Channel, or TIC
specifies that the next CCW to be executed is to be found at the address contained in the operand field of
that CCW. A typical CCW would be to read n bytes of data into a buffer.

The device address on which the /O is to be performed is designated by an argument to the Start 1/0 or sio
instruction, by which the mainframe submits a channel program for execution by a channel. The device
address consists of a channel address. designating a particular channel, and a subchannel address, designating
a particular device attached to that channel.

The completion status of a channel program is presented as an interrupt in a channel status word, or CSW.
Besides the completion status, the CSW contains the address of the CCW that generated it. One of the
options available in a CCW, Program Controlled Interrupt, or PCI. specifies that an interrupt is to be
received when that CCW starts to execute. In this way the progress of a long channel program can be

L. UTSis a trademark of Amdahl Corporation.

-166-

monitored.

1.1.1 UTS I/O Scheduler UTS has an I/O scheduler that permits each driver to submit a channel program
and designate an interrupt routine to handle the interrupt. The scheduler queues such /O requests to
minimize busy conditions on channels, controllers, and devices, and handle them when they do occur. If the
interrupt indicates an unusual termination, it requests sense data from the device and provides it to the
interrupt handler.

1.2 The 4705 Communications Controller

A 4705 is Amdahl's version of the standard communications controller for System/370. It can have up to
350 data lines attached to it, which are accessed by the host through up to 255 subchannel addresses. The
mapping from external lines to internal subchannel addresses is provided by the software in the 4705. A
4705 can support both asynchronous and synchronous data communications. It can be used for
communicating with remote job entry systems, line printers, and both ASCII asynchronous and EBCDIC
BSC terminals. It is often used to provide virtual terminal support from one computer to another. Since
these other communications media are often needed by UTS customers, the 4705 was chosen as the front end
processor for UTS full duplex communications. Figure 1 shows the physical configuration of the UTS full
duplex system.

rs232-c
—— (o)

channel cable

Front End

Processor 1377 [acu

Mainframe
——~Trodem
Computer

Figure 1. UTS Full Duplex Physical Configuration

1.2.1 4705 Software Various control programs with different capabilities can be be run in the 4705. The
one selected for UTS full duplex is the Emulator Program, EP, which emulates an older controller. EP is
available in public domain versions and can support half duplex ASCII terminals. Other vendors have
modified EP to provide X.25 support, so UTS customers with a 4705 can run full duplex, half duplex, X.25
and remote 3270 terminals through it. The modification made to provide UTS full duplex support in EP is
called UTS/F.

-167-

2. UTS Full Duplex Counsiderations

The two main constraints in designing UTS full duplex support was to provide a full duplex interface as
described in the System V termio manual page while reducing the amount of overhead normally incurred.

2.1 Full duplex Requirements

The term full duplex means many different things to different people depending on their background. The
literal definition is that data can flow in two directions at the same time. Since the hardware in the 4705
that interfaces to asynchronous lines can only provide /O in one direction at a time, we were required to
use two asynchronous lines for one full duplex line: one for reading, the other for writing.

Most UNIX? users do not think of full duplex as simply handling /O in both directions at once. Instead, they
associate it more closely with the following features.

2.1.1 Character by Character I/O Some data links, such as X.25, permit data to flow in both directions at
once, but packetize blocks of characters together for transmission. Data is only sent to the host when a line
end character is seen or a minimum number of characters is read. Although UNIX canonical input only
presents data to user programs when a line of data has been read, UNIX raw I/O presents individual
characters as they are typed by the user. Therefore, although a substantial overhead reduction can be
achieved by packeting the characters typed a line at a time, we could not rely on this for UTS full duplex
support.

2.1.2 Echoing The termio manual page specifies that a user program can enable and disable echoing via an
ioctl. The echoing can be performed by the front end processor if the ioctl to turn echoing on and off is
transmitted to it. But since most users like knowing that what appears on their screen has been received by
the host computer, we decided to have the host echo.

2.1.3 uucp A major incentive for providing full duplex support is to run uucp to communicate between
systems. This requires dial out capability to initiate communications. Therefore, UTS full duplex support
was designed to permit the use of the standard library routine dial.

2.1.4 vi Editor The other popular program requiring full duplex support is the vi editor. As a measure of
compatibility, it was decided that UTS full duplex had to support the vi editor without modification. To do
this, the standard line discipline is used with the same termio structure, so that the TCSETA and TCGETA
ioctl calls have the standard UNIX behavior.

2.2 Overhead Reduction For Large Number of Users

Despite the above requirements, UTS full duplex must support many users without degrading performance.
To provide character by character VO without receiving an interrupt for every character typed, UTS
multiplexes the data read from all the terminals on a 4705 onto a single packet subchannel.

3. UTS Full Duplex Solution

Figure 2 shows the logical configuration of UTS full duplex. Each terminal is accessed by UTS through its
own read and write subchanneis. All data is written to the write subchannel. The read subchannel is only
used to open the terminal and to receive line conditions, such as break and hangup. A single packet
subchannel per 4705 is used to receive the read data from all the terminals.

3.1 Full Duplex Packets

A packet of data is sent from the 4705 to the host every 100 milliseconds when there is data present. or
whenever its buffer fills up. This is sufficiently frequent to appear no slower that direct full duplex to most
users. Each packet contains a header and data sections. (See figure 3). The header contains status
information and the size of the data section. The header status, sense, and address are used to indicate

2. UNIX is a trademark of AT&T Bell Laboratonies.

-168~

write
_ read
modem
write
modem
e —— (e
packet
write | Front End
. <Lcad Pr r
Mainframe i 0cesso —~—— acu
modem
Computer

subchannels lines

Figure 2. UTS Full Duplex Logical Configuration

Packet
unused | address
status sense
count
Packet Body
address data
address data

Figure 3. UTS Full Duplex Packet Format

overrun conditions on the packet subchannel or individual lines. The data section contains address/data
pairs. Each pair contains a byte of data and the subchannel address of the terminal that presented it.

3.2 4705 Software

The EP control program was modified to collect the data from full duplex lines in a common buffer instead
individually. The timer was used to generate an interrupt every 100 milliseconds (its finest granularity) and
the interrupt handler changed to check for presence of data to send to the host. Additional code was
written to handle the interface to the host on the packet subchannel. Autocall service was already provided
by half duplex code in EP. The autocall data is written via a separate line to the autocall unit attached to
the modem.

-169-

3.3 UTS Software

Two drivers are used for full duplex, the autocall (ACU) driver for out-dialing and the full duplex driver for
ordinary I/O.

3.3.1 ACU Driver The acu driver is only used to write the number that is to be dialed. This is done by
issuing a CCW with a special DIAL command on the write subchannel of a full duplex line. This is mapped
by the 4705 software to the autocall line.

3.3.2 Full Duplex Driver The full duplex driver must handle the read and write subchannels as well as
demultiplex the data from the packet subchannel to the respective tty structure within the kernel. Accessing
the driver only occurs through the line discipline, which handles buffering and copying data between the
user and the tty structure.

3.3.2.1 Opening a terminal If a terminal is being opened for the first time, an enable command is issued to
the read and write subchannels. These commands are processed by the full duplex software in the 4705.
The write subchannel will enable immediately and return an interrupt. The read subchannel will not enable
until the modem presents DSR, indicating a connection is made. This happens immediately for dedicated
lines and when a carrier is detected on dial up lines. Once the read subchannel is enabled, the count of
open terminals on this 4705 is incremented. If this is the first terminal open on this 4705, the packet line is
also enabled. When it enables, a channel program to read the packet subchannel is issued. After the
packet subchannel is initialized a read command is issued on the read subchannel and the open system call
returns. The read on the read subchannel is not issued to receive ASCII data, only to arrange for notification
when the line condition hangup or break occurs.

3.3.2.2 Writing to a terminal Writing to a terminal occurs through the line discipline. The driver itself
simply transfers data from the tty outq to the transmit buffer and uses a write CCW on the write subchannel
to write it.

3.3.2.3 Depacketing packets The channel program on the packet subchannel consists of a number of read
CCW's with the PCI flag turned on, followed by a TIC back to the first read CCW. Each CCW will read in
one packet. After the packet is read in the PCI in the next CCW causes an interrupt to be generated. The
CSW presented by the interrupt points back to the CCW that generated it; the previous CCW is the one that
just completed. Since the CCW contains the address of the buffer read in, the packet interrupt handler can
find the buffer just read. Its header specifies the number of data/address pairs to process. Using the address
of the packet subchannel and the subchannel addresses in the packet, the data is put in the rbuf of the
respective tty structure. The standard line discipline transfers it to the rawq and performs canonical
processing.

The tic eliminates the need to reissue the command when it completes.

The purpose of chaining several reads together is that under certain conditions PCI interrupts can be missed.
By comparing the buffer address in the current CCW with the last one received, missing interrupts can be
detected and their packets processed. ’

3.3.2.4 Reading from a terminal Since data is received on the packet subchannel and put into the rawq
and canq, reading a terminal amounts to copying available data out to user space, and if none is present,
sleeping until it is available. This is handled by the line discipline.

3.3.2.4.1 Closing a terminal When the last file descriptor to a terminal is closed, the driver terminates the
read CCW on the read subchannel with a halt device command and issues disable CCWs on the read and
write subchannels. It decrements the count of open terminals on this 4705 and if this was the last one,
terminates the channel program on it.

3.3.2.4.2 Hangups A hangup is normally detected by the sense data returned on the read subchannel.
However, if the hangup occurs while data is being written to the terminal, the write channel command will
terminate with sense data indicating a hangup. In either case, the tty structure is updated to reflect its status
and a signal is sent to the process group sharing the terminal. Any process reading the terminal will be
returned a character count of zero. indicating the loss of carrier. The channel commands, if any, on the
read and write subchannels are terminated. It is expected that the processes with the tty open will soon

-170-

close it, either explicitly or by exiting.

4. Features
The UTS full duplex solution provides the following features.
4.1 Reduction of I/O Overhead

By eliminating the interrupt for every character received, nearly half the overhead in full duplex support is
eliminated. The largest single source of remaining overhead is in the single character writes incurred by
host echoing.

4.1.1 Performance Our largest customer installation has 355 full duplex lines on 5 4705's, plus other
synchronous lines including computer-to-computer links. Line speeds vary from 1200 to 9600 baud. There
is no noticeable delay when typing.

4.2 IXONMTXOFF

IXON and IXOFF support is provided in the driver and line discipline. When a cnerl s is received for a
terminal, the ustop bit is turned on in its tty structure. While this bit is on the line discipline will not
present any data for writing and the driver will not transmit any data. When a cnatrl ¢ (or any character if
IXANY is set) is received, the tstop bit is cleared and any pending data written.

A problem exists because there is no way for the driver to terminate a write in progress and determine the
amount of data actually written. To avoid losing or repeating write data, the current write must complete.
A special wmax ioctl and stty option are provided to permit the user to specify how many characters to
write at a time, which controls how many characters may be transmitted after a cnerl s is received. Values
between 1 and 255 can be specified; larger values provide greater throughput, smaller values quicken
response to cntrl s.

4.3 Auto Call Support

As mentioned above, the standard dial library routine is provided. Thus. full cu and uucp service is
available.

4.4 Use of Standard Hardware and Software

This solution required no additional hardware. Since the UTS group is mainly a group of programmers, this
was a great advantage.

The 4705 software relies on the asynchronous service present in EP software. Although it is always
preferable to not duplicate existing code, since there are no compilers for the 4705 and its instruction set is
obscure, it was desirable to minimize the amount of 4705 code written.

Similarly, the full duplex driver relies on the standard line discipline for buffering, canonical processing, and
post processing. This assures a uniform userinterface and again avoids duplicating exiting code.

4.4.1 Additional Services of 4705 Since the 4705 is the standard front end processor for Amdahl main
frames, using it for full duplex also makes it available for half duplex and synchronous communications,
often used for communicating with other mainframes and remote devices.

5. Complications

This section describes some of the restrictions and problems encountered.

5.1 Number of lines per 4705

Since there are only 255 subchannel addresses per channel, and each full duplex line requires two
subchannel addresses. at most 127 full duplex lines can be attached through one 4705. The 4705 is not able
to support even that many lines at high baud rates.

Each full duplex line interacting with three different subchannels introduces many complications handling
error conditions.

-171-

Most of the problems installing UTS full duplex arise from the fact that there are several separate
components that must be configured consistently. The packet, read and write subchannels are configured
into UTS but must also be reflected in the 4705 EP generation and hardware. If UTS is running as a guest
operating system under VM, the VM configuration must also agree with the UTS and 4705 configurations.

6. Other Possibilities

Several enhancements could be made to full duplex support that would reduce overhead or provide better
support.

Most of the interrupts serviced are due 1o echoing single characters. If a multiplexed channel for writing
was used, UTS could read the packets from the 4705, modify them to reflect the data not being echoed, and
write the packet back to the 4705 for echoing.

IXON/IXOFF support could be handled more effectively in the 4705, but this would requires its knowing
some of the stty settings. No mechanism currently exists to convey this information to it.

7. Conclusions

A front end processor for UNIX full duplex can effectively reduce /O overhead in a mainframe while
remaining transparent to users. Providing a mechanism to convey stty information to the front end would
permit offloading more full duplex features, such as IXON/IXOFF, from the host.

8. Acknowledgments

I would like to thank the entire UTS group for their patience, insight, and support in developing the fuil
duplex driver. Special thanks to Y.C. Wang and Ludo Vennekens, who developed and support the full
duplex software in the 4705. I also thank my manager, Hal Jespersen, for encouraging me to write this
paper and his editorial suggestions.

Multi-Processor Management
In The Concentrix Operating System

Jack A. Test

Alliant Computer Systems Corporation
42 Nagog Park
Acton, MA 01720

Abstract

Alliant Concentrix™ is the native operating system of the Alliant multi-processor
machine family and is an enhanced and extended version of 4.2BSD UNIX™. Principal
features include: symmetric implementation of UNIX on a multi-processor architec-
ture, a two-Gigabyte demand-paged copy-on-write virtual memory system, shared-
library image support for user programs, and management of multiple processors
working concurrently on a single UNIX process. This paper describes the Alliant
machine architecture and discusses the multi-processor management aspects of the
Concentrix operating system.

Concentrix Trademark of Alliant Computer Systems Corp.
UNIX Trademark of Bell Laboratories

-173-

Multi-Processor Management
In The Concentrix Operating System

Jack A. Test

Alliant Computer Systems Corporation
42 Nagog Park
Acton, MA 01720

Abstract

Alliant Concentrix™ is the native operating system of the Alliant multi-processor
machine family and is an enhanced and extended version of 4.2BSD UNIX ™. Principal
features include: symmetric implementation of UNIX on a multi-processor architec-
ture, a two-Gigabyte demand-paged copy-on-write virtual memory system, shared-
library image support for user programs, and management of multiple processors
working concurrently on a single UNIX process. This paper describes the Alliant
machine architecture and discusses the multi-processor management aspects of the
Concentrix operating system.

1.0 Introduction

Alliant Computer Systems Corporation designs and manufactures high-performance,
multi-processor computer systems designed primarily for use in scientific and engineer-
ing applications. The Alliant machine architecture provides a tightly-coupled environ-
ment consisting of interactive processors (IPs) and computational-elements (CEs) with
a coherent global memory system. While every IP and CE is a fully functional,
independent processor, CEs support integrated vector and floating point operations and
can, through integrated concurrency operations, participate together as a “computa-
tional-complex” in the execution of a single application.

Alliant Concentrix, the native operating system for the Alliant multi-processor machine
family, is an enhanced and extended version of 4.2BSD UNIX. A specialized uni-
processor version of Concentrix called Diagnostix™ diagnoses hardware problems and
configures the system for Concentrix operation. Tasks such as microcode loading and
system sizing, for example, are handled by Diagnostix prior to Concentrix activation.

Concentrix Trademark of Alliant Computer Systems Corp.
UNIX Trademark of Bell Laboratories
Diagnostix Trademark of Alliant Computer Systems Corp.

-174-

This paper is concerned with the multi-processor aspects of the Concentrix operating
system and is divided into three sections. Section 2.0 decribes the Alliant system
architecture, Section 3.0 discusses the major attributes of IP and CE multi-processor
support, and Section 4.0 discusses the management of CEs operating together on a
single UNIX process.

2.0 Alliant System Architecture

The Alliant computer architecture supports up to twenty processors working in parallel
to a coherent global physical memory. The processors fall into two classes: interactive
processors (IPs) and computational elements (CEs). A diagram of the full Alliant
architecture is shown below:

T Lk ol Distrlbuted Memory Bus . :]
| | | | | |
cIpci|| Ipc IPC IPC “-CPC CPC
—32kb 32K 32k 32 64kb 64kb
i ——
1P IP I P P — CE —| 8mb|
CE ™ —l 8mb |
P I P IP P — CE
CE
cE 8mb
| P P IP IP 1
| | — |17 ce
multibus multibus multibus multibus
—1 CE 8mb
shaded area is minimum configuration CE =3 +—concurrency
contro! bus

Figure 1: Alliant FX/8 System Architecture

As Figure 1 illustrates, the Alliant architecture is structured along interactive and
computational lines. The interactive processors provide device support and non-
compute-intensive user application support while the computational elements provide
high performance computational power[1].

2.1 Global Memory

At the center of the Alliant architecture is the global physical memory system. The
Alliant distributed memory bus (DMB) is a high speed, synchronous access bus that
consists of two 72-bit-wide data paths (64 bits of data plus eight bits for single-bit error
detection and correction and double-bit error detection), a 28-bit address bus, and a
control bus. The data buses are bidirectional and driven by the memory and cache
modules.

-175-

Memory modules are built with 256K dynamic RAMs and are field expandable in 8-Mb
increments up to 64-Mb. Each memory module is four-way interleaved and can supply
the full DMB bandwidth of 188-Mb per second for sequential read accesses and 80 per
cent of the bandwidth, or 150-Mb per second, for sequential write accesses. In order to

bypass hard component failures, memory modules are reconfigureable to 6-Mb or
4-Mb.

2.2 Coherent Cache System

The Alliant memory cache system is responsible for maintaining a coherent view of
global physical memory to both IPs and CEs. There are two cache module types: the
computational processor cache (CPC) and the interactive processor cache (IPC).

Each CPC is a two-way interleaved 64-Kb module that can interface up to four CEs to
the DMB. When combined to support a full eight-CE complex, two CPCs provide a
four-way interleaved 128-Kb cache with a maximum bandwidth of 376-Mb per second.

Each IPC is a 32-Kb module that can interface up to three IPs to the DMB. When
combined to support a full 12-IP configuration, four IPCs provide a 128-Kb cache with
a maximum bandwidth of 188-Mb per second. In the smaller Alliant FX/1 architecture,
the IPC can be used to interface one CE and two IPs to the DMB.

2.3 Interactive Processors

The Alliant interactive processor (IP) module is a Multibus card containing a Motorola
68012 microprocessor operating at 11.76 MHz. The IP module contains 512-Kb of local
memory, a virtual memory address translation unit, an /O map, power-up EPROMs,
and two serial ports.

The IP interfaces to the global memory system via the IPC and to peripheral devices via
the Multibus (IEEE 796 compatible). Direct memory access anywhere within the physi-
cal address space, including cross page transfers, is available to peripheral devices via
the IP’s /O map.

2.4 Computational Elements

The Alliant computational element (CE) is a Motorola 68020 instruction set com-
patible, microprogrammed, pipelined processor with integrated floating point, vector,
and concurrency instruction sets. The Alliant concurrency instruction set allows CEs to
work together as a computational-complex (CE-Complex) on a single application.

Individually, each CE can deliver 4450 KWhetstones single precision (32-bit) and 3630
KWhetstones double precision (64-bit). In vector mode, each CE can execute at a peak
rate of 11.8 million floating point operations per second (MFLOPs) single precision

-176-

and 5.9 MFLOPs double precision. When configured as a complex, the speedup
delivered to a single application approaches the number of CEs installed.

3.0 Multi-Processor Symmetric Implementation

One of the major attributes of Concentrix is that it runs symmetrically on all
processors in the system. Both IPs and CEs execute a common image of the operating
system and coordinate over critical code regions and data structures via a global
locking scheme. The principal difference between IPs and CEs insofar as kernel-mode
execution is concerned, is that only IPs execute device interrupt code (see Section 3.4).

3.1 Computing Resources

There are two classes of computing resource in the Alliant system: individual IPs and
the CE-Complex as a whole. Scheduling in Concentrix is centered around the
computing resource classification, each IP is scheduled independently while the CEs in
the complex are scheduled as a unit. As each process is created, the image executed
determines the type of computing resource on which the process can be scheduled. In
particular, images that use vectorization and concurrency are schedulable only on the
CE-Complex, other images are schedulable on IPs or the CE-Complex. At any given
moment, every computing resource in the Alliant system is executing a different
process. When a processor has no real work to do, it runs an “idle” system process.

3.2 Global Locking

In a single-instruction-stream/single-data-stream (SISD) uni-processor architecture (the
traditional UNIX host) there is, as the name implies, only one active stream of execu-
tion at a time. The active stream can be either a system-stream or an interrupt-stream. A
system-stream is a code sequence that can switch between user-mode activity and
kernel-mode activity via change-of-mode traps such as system calls or memory
management exceptions. An interrupt-stream is a code sequence that executes entirely
in kernel-mode and is initiated by an external hardware event at a specific priority
level.

In standard uni-processor UNIX, there are both implicit and explicit forms of
synchronization. UNIX enforces implicit synchronization between system-streams by
not allowing one system-stream to be preempted by another (i.e., a system-stream in
UNIX must explicitly give up the processor before another system-stream can be
scheduled to run). System-streams in UNIX explicity protect themselves from conflicts
with interrupt-streams over critical code sections by raising processor priority level.

In the Alliant multi-processor architecture the synchronization problem is more compli-
cated. In particular, the following types of stream interaction can occur:

-177-

° A system-stream conflicting with an interrupt-stream on the same processor
(this is the traditional uni-processor interaction mentioned above).

° A system-stream on one processor conflicting with a system-stream on
another processor (implicit synchronization no longer holds).

° A system-stream on one processor conflicting with an interrupt-stream on
another processor (raising priority level is not sufficient here).

° An interrupt-stream on one processor conflicting with an interrupt-stream
on another processor (raising priority level is not sufficent here).

In order to resolve stream interaction conflicts, Concentrix utilizes both priority level
locking and a hierarchy of global test-and-set based locks for synchronization purposes.
Priority level locking is used to handle system/interrupt-stream interactions within a
single processor. Global test-and-set locking is used to handle multi-processor inter-
actions. Functionally, each global lock consists of a access-location, a processor-tag, a
priority-identifier, and a recursion-counter.

° The access-location is used for atomic test-and-set operations by processors
contending for the lock.

° The processor-tag records the indentification number of the processor that
currently has access to (owns) the lock.

° The priority-identifier is used to administrate a locking hierarchy for dead-
lock avoidance.

° The recursion-count records how many times the lock has been reacquired
on top of itself.

Locks in Concentrix are “spin-wait.” In other words, a processor contending for access
to a lock “spins” (tries continuously) until access to the lock is gained. In practice, the
spin-wait scheme works well because care has been taken to minimize lock holding
time in critical code sections.

Concentrix tracks the lock states of processes by maintaining a lock-stack for each
process. As locks are acquired by a process, they are pushed onto its lock-stack; as they
are released they are popped from its lock-stack. The lock-stack is recorded and main-
tained for each process in its kernel user-area and is preserved across process sleeps.
All of the locks held by a process are released in reverse lock-stack order upon going to
sleep and are reacquired in lock-stack order when the process wakes up.

The UNiX teletype system provides a good example of how the Concentrix locking
scheme is used. In 4.2BSD UNIX, access to the teletype subsystem is synchronized
using specific priority level locking. In Concentrix, each individual teletype has a global
lock used to synchronize access to it. In addition, each teletype specifies the set-

-178-

priority-level routine to be invoked when acquiring the teletype lock. Thus, pseudo-
teletypes can run at zero-priority instead of raised priority as in 4.2BSD UNIX. When
teletypes run out of character storage the UNIX cfreelist code is activated. In Concen-
trix, access to the common cfreelist code is synchronized with a cfreelist-lock. The
cfreelist-lock has a higher priority-identifier than the teletype-lock, enforcing a locking
hierarchy that prevents acquisition of the teletype-lock by a process already holding the
cfreelist-lock. The teletype-lock recursion-count tracks multiple accesses to the teletype
within the system and provides for correct unwinding out of the code. To summarize,
the Concentrix teletype system, by locking at the individual teletype level, achieves a
high degree of concurrency. Multiple teletypes can be serviced simultaneously and
interaction between teletypes (an infrequent occurrence) is confined to the cfreelist
code.

3.3 Processor Communication

The underlying mechanism provided by the Alliant architecture for inter-processor
communication is a cross-processor-interrupt (CPI) facility. The CPI facility allows any
processor in the system to interrupt any other processor in the system. CPIs can be
directed to a specific processor or to a set of processors via a selective broadcast.
Concentrix uses the CPI mechanism primarily for activating remote procedure calls
(RPCs) on other processors, initiating remote asynchronous system traps (RASTSs) on
other processors, and for synchronizing the CE-Complex. CPIs occur at a level suf-
ficient to preempt all device interrupts except the system clock and a non-maskable
condition.

The RPC mechanism is used primarily to activate routines that modify remote proces-
sor or device state. For example, code that changes kernel virtual memory mapping
can use a broadcast RPC to initiate translation-buffer flushes on all processors in the
system. Asynchronous and synchronous RPCs are implemented using a global mailbox
facility for passing arguments; target processors use a software-inititiated interrupt-
stream facility to actually perform the RPC. Asynchronous RPCs suspend the calling
processor until all target processors have posted a software interrupt to perform the
RPC. Synchronous RCPs suspend the calling processor until all target processors have
actually performed the RPC.

The RAST mechanism is used primarily to reschedule remote computing resources,
deliver signals, and perform user profiling. ASTs are implemented in the Alliant
architecture through careful use of the Motorola 68020 trace-trap mechanism[2].

3.4 Distributed Input/Output

The Alliant architecture supports up to 12 interactive processors each with a private
Multibus. Each Multibus device in the system is dependent upon a particular IP for

-179-

configuration and interrupt servicing. At system boot time, each IP configures its own
Multibus by probing for attached devices and initializing the devices that it finds.

Multibus device addresses are administered on a global level so that conceptually there
is one combined Multibus that contains all devices in the system. Thus, no two devices
can have the same Multibus address since a board’s address identifies it in a system-
wide manner. The advantage of this approach is that if a controller board, for example,
is moved from one Multibus to another, there is no visible effect functionally to the
system as a whole (i.e., logical device names still map the same physical devices). As a
consequence, interrupt load balancing can be performed by rearranging controllers on
Multibuses without changing the system interface to the devices supported. A special
case of interrupt load balancing, for example, could be used for real-time data process-
ing. Attaching a real-time data gathering device exclusively to an IP guarantees im-
mediate interrupt response because the IP has no other devices to service.

Device drivers in Concentrix manage the distributed device environment by careful use
of global locks and remote procedure calls. In particular, drivers handle the general
case where a I/O system call is made to a device that is “remote” to the processor (CE
or IP) performing the call. In general, drivers are constructed so that an I/O call is
allowed to proceed up to the point where actual device contact is required (i.e., where
device control registers need to be “touched”). At that point an asynchronous RPC is
initiated by the driver to activate a device control procedure on the IP that services the
device.

4.0 CE-Complex Support

The most powerful feature of the Alliant architecture is the ability to apply multiple
CEs concurrently to the execution of a single user application in a transparent way.
Concentrix is responsible for coordinating the CE-Complex during the execution of
concurrent processes.

Alliant concurrency uses the program loop construct as the source of parallel instruc-
tion streams. For example, when the Alliant FX/Fortran compiler detects loops that
can be executed in parallel, it automatically generates code containing concurrency
control instructions. Loops with conditional code, data dependencies, subroutine calls,
potential feedback, and loop exits, can be optimized for parallel processing; such loops
run serially on conventional vector computers|[3].

Control of the CE-Complex executing a program such as that shown in Figure 2
represents a second level of multi-processor management within Concentrix. In
particular, Concentrix manages both synchronization between multiple active processes
(as discussed in Section 3.0 above) and synchronization among multiple active code
streams within a single process (discussed below).

-180-

[CEO | | CE1 | CE2 |

TIME SERIAIT CODE

: IDLE IDLE
DO241=1,6 . .

X = FT(1)" FLOAT(N) X = FT(2)= FLOAT(N) X = FT(3) *FLOAT(N)

X2=2+~X X2 =2"X X2 =2.v X
xX21=X2 -1, X21 = X2 - 1. X21=XxX2 - 1.
DF = X21/X2 DF = X21/X2 DF = X21/X2
DF1 = DF*R DF1 = DF*R DF1 = DF"R

DF2 = DF1~DF1

DF2 = DF1=DF1
FE = F(1) + DF2
FE
AF = ABS(DF2/F(I+1))
IF (AF.LE.EPS)GOTO 25
24 CONTINUE

DF2 = DF1~DF1

=(F(2)+ DF2

AF = ABS(DF2/F(l+1))
IF(AF.LE.EPS)GOTO 25
24 CONTINUE

—rP=F @D+ DF2

€= e

AF = ABS(DF2/F(I+1))

X = FT(4)~ FLOAT(N)

X2 =2.-X IF(AF.LE.EPS)GOTO 25
X21 = X2 - 1. /%sz«ﬂ FLOAT{N) 24 CONTINUE
DF = X21/X2 =2+ X

DF1 = DF*R X21 = X2 - 1, X = FT(6) *FLOAT (N)
p DF = X21/X2 X2 =2~X
DF1 = DF*R X21 = X2 ~ 1,
DF2 = DF1*DF1 DF = X21/X2
AF = ABS(DF2/F(1+1)) E—%Q+ DF2 DF1 = DF*R
IF(AF.LE.EPS)GOTO 25 (| +56))= FF DF2 = DF1~ DF1
24 CONTINUE AF = ABS (DF2/F(i+1)) FF @ + DF2
IF(AF.LE.EPS)GOTO 25 F(l +6) = FF

24 CONTINUE AF = ABS(DF2/F(I+1))
IF(AF.LE.EPS)GOTO 25

24 CONTINUE

IDLE

IDLE SERIAL CODE
. CONTINUES

V

4.1 Concurrency Management

Figure 2: Concurrent Processing With Data Dependencies

In order to manage a process with multiple code streams, Concentrix replicates a
number of kernel data structures. For example, up to eight kernel stacks and eight
processor-control-blocks (PCBs) may be required per concurrent process, allowing each
CE in the CE-Complex to have a separate kernel stack for kernel-mode execution, and
a separate kernel-mode register-save-area for context switching. Concentrix allocates
replicated resources on a per process basis. For example, non-concurrent processes
need only one kernel stack, while concurrent processes on a three-CE complex need
three kernel stacks.

As mentioned earlier, the CE-Complex is managed at a macro level as a single
computing resource by Concentrix, allowing all CEs in the CE-Complex to be

-181-

scheduled as a unit to a single UNIX process. At a micro level within Concentrix, the
CE-Complex alternates between collapsed and expanded states when executing a
process. In the expanded state, all CEs in the complex function independently and
coordination, if any, between CEs is limited to the hardware concurrency level. In the
collapsed state, one CE, known as the lead-CE functions independently while all other
CEs await process-switch or expand-complex directives from the lead-CE.

In general, collapsing of the CE-Complex is required when access to the machine state
of all the CEs in the complex is needed. For example, process context switches, fork()
and exec() system calls, and signal delivery collapse the CE-Complex. Most system
calls do not require collapsing the complex so it is possible to have one CE in the
kernel performing a system function while the other CEs are executing in user-mode.
The CE-Complex is managed with minimal operating system overhead because the
collapse/process-switch/expand functions are highly optimized and invoked only when
absolutely necessary.

Internal management of the CE-Complex is governed by a complex-control-block
(CCB). Conceptually the CCB consists of a global complex-lock, a sync-counter-lock,
and various other control fields. Leadership of the CE-Complex and the right to issue
collapse/process-switch/expand directives belongs to the CE that has access to the
complex-lock. The sync-counter-lock is used to internally synchronize the CEs when
performing collapse, process-switch, and expand functions.

4.2 Context Switching

Context switching the CE-Complex is complicated by the fact that the lead-CE going
into the switch may not be the lead-CE coming out of the switch. This complication
occurs because the lead-CE generally is not the same between processes. The CE
process switch code, therefore, must often arrange a leadership role-swap between
CEs.

4.3 Signal Delivery

Because signals are asynchronous, a process can be in concurrent execution on the
complex when a signal is delivered. The policy in Concentrix is to collapse the
complex and to deliver the signal on one CE while the other CEs are held in the kernel.
The CE that delivers the signal is temporarily “detached” from the complex so that if a
signal routine should issue concurrency directives they would have no effect on the
complex as a whole.

The complete register state of the CE that delivers the signal is available to the signal
handler, including all general, floating-point, vector, and concurrency registers. Signals
are nestable; the CE servicing the original signal services the nested signal. The other
CEs in the complex remain held in the kernel. Only when the original signal handler

-182-

returns, is the complex expanded and all concurrent CEs returned to what they were
doing prior to the original signal delivery. In effect, while servicing a signal(s), the
process is run on a one-CE-Complex. In order to restore the process to running on the
full CE-Complex, signal processing must unwind, or the setjmp/longimp mechanism
invoked.

The Concentrix approach to signal delivery for concurrent programs is transparent and
provides full signaling capabilites. The only limitation is that signal handlers cannot
benefit from parallel execution (i.e., concurrency directives within signal handlers do
not activate other CEs).

5.0 Summary

The Concentrix operating system manages two levels of multi-processor interaction
within the UNIX kernel framework. Multiple active processes running on both the CE-
Complex and on independent IPs share a common version of the operating system and
coordinate over critical resources via a global locking scheme. Within the CE-Complex,
multiple active code streams coordinate over kernel access and upon the execution of a
single UNIX process.

The Alliant system is able to provide good interactive and computional performance at
the same time by concentrating interactive applications in IPs and computationally
intensive applications in the CE-Complex. Support for distributed I/O allows devices to
be administered in a global manner among as many as 12 Multibuses.

Acknowlegments

Concentrix was developed by Larry Bakst, Herb Jacobs, Tom Jaskiewicz, Charles
Monia, Roger Roles, and Jack Test. The author wants to thank Bob Perron for his help
in obtaining the diagrams used in Figures 1 and 2. Special thanks go to Barry Rogoff
for his expert help in editing and typesetting this paper.

References

[1] FX/Series Architecture Manual, Alliant Computer Systems Corporation, Acton,
Mass., May 1985.

[2] MC68020 32-Bit Microprocessor User’s Manual, Motorola Inc., Prentice-Hall,
Englewood Cliffs, N.J., 1984.

[3] FX/Series Product Summary, Alliant Computer Systems Corporation, Acton,
Mass., June 1985.

A User-tunable Multiple Processor Scheduler
Herb Jacobs

Alliant Computer Systems
Acton, Massachusetts
Usenet Address: decvax!linus!alliant!jacobs

Abstract

The conventional Unix scheduler deals with the question of which process to schedule. In a multiple
processor configuration, the question of where to schedule a process is an essential element in all
scheduler decisions. Concentrix™ (the Alliant version of 4.2 BSD UNIX™) supports multiple processor
configurations with variable numbers of processors of differing speeds. This paper discusses the

implementation of the Concentrix scheduler and some of the unique ways in which it allows UNIX to be
used.

The solution used in Concentrix is an intelligent, distributed class scheduler that is table driven and
user-tunable: the super user can dynamically modify the tables. The overhead is proportional to the
number of processors being scheduled and is quite small. Thus, it is low enough to be practical in single
processor configurations.

When used with multiple processors, this style of scheduler allows UNIX to satisfy a large set of real-time
applications better than many conventional real-time systems. The overheads associated with context
switching and system calls for interprocess communication are totally eliminated, resulting in better
response. More importantly, real-time applications can be programmed in a UNIX environment with
modest effort by configuring the scheduler, rather than trying to change UNIX itself into a real-time
operating system.

™ Concentrix Trademark of Alliant Computer Systems
™ UNIX Trademark of Bell Laboratories

-184-

Introduction

Faster computing systems remain a challenge. Supercomputers are evolving toward multiple processor
configurations to achieve higher computational power. In solving a single problem, single processor
systems are limited in speed by current technology and ultimately by the laws of physics. Multiple
processor solutions offer a multiplicative speed improvement for problems that can be solved in parallel.

Multiple processors need not be identical. Depending on the type of problem being addressed, hardware
built to deal with specific aspects of a problem can yield a better overall system solution in terms of cost
and performance. It makes little sense to use a high-performance vector processor to service
input/output requests.

The computer industry is just beginning to explore the use of multiple processor systems to speed up
single problem solutions. Compared to more costly technologies such as submersion cooling and gallium
arsenide, multiple processor configurations currently present the most promising solution to faster
computational systems.

As computer systems evolve, more sophisticated scheduling techniques are needed to attain the
expected performance levels. The scheduler presented in this paper solves the problem of assigning work
to non-identical processors in a multiple processor hardware configuration. In the course of developing
the scheduler, an interesting result presented itself: a large set of real-time problems can be addressed
with absolute predictability, even within the confines of UNIX.

Overview

In an operating system, scheduling is overhead that attempts to provide some kind of deterministic
behavior on behalf of consumers of the hardware resources. As currently implemented, most versions of
UNIX actually have two schedulers. The job or process scheduler manages muitiple tasks, owned by
independent users, by allocating cpu time to processes. Multiple program execution serves two primary
purposes; it attempts to use the hardware resources (peripherals, processors, and memory) as efficiently
as possible, while allowing several different users access to the system at what appears to be the same
time. The swap or memory scheduler deals with sharing available physical memory among active
processes. Although a more optimal scheduling algorithm could be built by combining both schedulers,
the problems are different enough so that two independent schedulers are a practical solution.

The first schedulers appeared with and played an integral part in the transition from standalone, single
job operating systems to multiple task operating systems. Once systems began to deal with more than one
job at a time, schedulers were needed to implement policy. Multiple program and multiple processor
environments further complicate scheduling. The environment addressed by the Concentrix scheduler
involves multiple processors of different types. Some applications can run on any processor, while others
may have to run on a single unique processor or even a set of specific processors. This is analogous to
using a team solution to a problem. Some members of the team can contribute to almost any part of the
problem while others are experts in specific aspects. There is typically an optimal set of assignments for
the team members.

Assigning work in a non-identical hardware environment is a much more complex problem than
assigning work to identical processors in a multiple processor configuration. There are hardware
solutions in use in industry today that deal with identical multiple processor environments. However, the
problem of dealing with non-identical processors was difficult enough so that a software, rather than
hardware, solution was used to implement the algorithm. The overhead in the software algorithm is small

-185~

enough to make it practical in a wide variety of hardware configurations. Actual performance by this
scheduler has been measured with different combinations of hardware from a single processor system up
to 14 processors with three different functional capabilities. Although it varies with workload and
number of processors, the scheduler overhead in a 14-processor system in use today averages about five
percent of one of the low-speed processors in the system as measured by a kernel profile. The
configuration on which the measurements were taken contains six low-speed and eight high-speed
Processors.

The Conventional UNIX Scheduler

A brief discussion of the conventional UNIX scheduler is given here to help present the differences
between it and the Concentrix scheduler. The primary characteristic of the UNIX scheduler is to give
priority to the smallest CPU consumers. At a regular interval (normally one second), the scheduler
reassigns priorities to all processes based on CPU usage in the last interval. UNIX priority values
represent CPU consumption; the smallest CPU consumers get the highest priority (the smallest value).
The more CPU time used, the higher the i-priority (inverted-priority) of the process. At a smaller
interval (typically 1/10th second) the process with the lowest i-priority that is ready to run is started. At a
yet smaller interval (typically the real-time clock interrupt rate) the i-priority is incremented for the
active process.

As a process becomes compute-bound, its i-priority increases making it less likely to be selected. As a
process remains idle, its i-priority decreases making it a likely to be selected when it becomes ready to
run. As processes are running, their i-priorities creep upward, causing somewhat of a round robin effect
between similar competing processes. In a purely interactive environment, with all users considered

equal, this works reasonably well. However, many sites require users or applications to have higher or
lower priority than normal.

Simply extending the notion of the UNIX scheduler to multiple processors leads to a ripple effect for
individual processes. In other words, when a new high-priority process becomes runnable, assigning it to
a specific processor displaces another process, which displaces another process, and so forth. Although
the process shuffling problem can be addressed in several different ways, the object should be overall
satisfactory system performance. The severity of the problem on a specific hardware configuration can
be measured in terms of the context switch time between two processes. An approximation for the case
of identical processors:

ALST = CST X APA X NP /2

where:
ALST Average Lost System Time
CST Context Switch Time
APA Average Process Activations
NP Number of Processors

From measurements on an early five processor system, system overhead became significant enough to
warrant this project.

-186-

Design Goals

This is an excerpt from the original proposal