
Inter-Office Memorandum 

To Mesa Users Date May 31, 1978 

From Dave Redell. John Wick Location Palo Alto 

Subject Mesa 4.0 Change Summary Organization SOD/SO 

XEROX 

Filed on: [IRIS]<MESA>OOC>SUMMARY40.BRAVO 

This memo outlines changes made in Mesa since the last release (October 17, 1977). 

References 

The following documents can be found on [IRIS]<MESA)DOC>; all files are in Bravo format. 
Hardcopy is available through your support group; in addition. the PRESS files MESA40A, 

MESA40B, and MESA40C are a compilation of this material (about 75 pages). 

Mesa 4,0 Change Summary. SUMMARY40.BRAVO 

Mesa 4.0 Compiler Update. COMPILER40.BRAVO, ARITHMETIC40.BRAVO 

Mesa 4.0 Process Update. PROCESS40.BRAVO 

Mesa 4.0 Binder Update. BINOER40.BRAVO 

Mesa 4.0 System Update. SYSTEM40.BRAVO 

Mesa 4.0 Microcode Update. MICROCODE40.BRAVO 

Mesa 4.0 Debugger Update. DEBUGGER40.BRAVO 

The section on processes is a preliminary draft of a new chapter of the Mesa Language 
Manual (which will be sent to the printer shortly); thanks are due to Dave Redell and the 
Pilot Functional Specification for contributing much of this material. 

The MESA)DOC directory also includes new versions of the Mesa System Documentation and 
the Mesa Debugger Documentation (the relevant PRESS files are SYSTEM 1 , SYSTEM2, and 
DEBUGGER). 

Highlights 

The primary emphasis in this release has been on three areas: implementation of features 
required by Pilot and Dstar applications for effective use of the new machine architecture 
(processes. monitors, long pointers, etc.), reduction of overhead in the basic system structures 
and improved performance of the Mesa runtime environment (faster microcode, smaller 
global frames, more efficient memory management). and extension of the debugger's 
capabilities (primarily an interpreter for a subset of the Mesa language). 



Mesa 4.0 Change Summary 2 

The primary impact of Mesa 4.0 on existing systems is in the area of concurrent 
programming. A brief intoduction to the new process mechanism appears below. It is 
intended to present enough information to enable programmers to experiment with the new 
features of the language and the runtime system. However, before attempting to revise or 
redesign existing systems to use these facilities, programmers are urged to carefully examine 
the material in the Mesa 4.0 Process Update and the Mesa System Documentation. 

Warning: Because Pilot will be available soon, the Alto/Mesa operating system software 
has not been revised and redesigned to fully exploit the capabilities of the new process 
mechanism. In particular, arbitrary preemptive processes are not supported, and the 
restrictions of Mesa 3.0 on processes running at interrupt level still apply. 

A Brief Introduction to Processes in Mesa 

Mesa 4.0 introduces three new facilities for concurrent programming: 

Processes, which provide the basic framework for concurrent programming. 

Monitors, which provide the fundamental interprocess synchronization facility. 

Condition variables, which build upon monitors to provide more flexible forms of 
interprocess synchronization. 

As compared with the mechanisms provided in earlier releases of Mesa, the new concurrency 
facilities are more extensive, and are much more thoroughly integrated into the language. 
The purpose of the new facilities is to allow easy use of concurrency as a basic control 
structure in Mesa programs. Concurrency can be an important consideration in progam 
design, especially when input/output or user interactions may cause unpredictable delays. 

Processes 

For example, consider an application with a front-end routine providing interactive 
composition and editing of input lines: 

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] = 
BEGIN 
c: CHARACTER; 
s.length +- 0; 
DO 

C +- ReadChar[]; 
IF ControICharacter[c] THEN DoAction[c] 
ELSE AppendChar[s, c]; 
IF c = CR THEN RETURN[s.length]; 
ENDLOOP; 

END; 

Thus, the call: 

n +- ReadUne[s]; 

would collect a line of user typing up to a CR and return it to the caller. Of course, the 
caller cannot get anythi ng else accomplished during the type-in of the line. If there was 
anything else that needed doing, it could be done concurrently with the type-in by forking 
to ReadUne instead of calling it: 



Mesa 4.0 Change Summary 3 

P +- FORK ReadLine[s]; 

<concurrent computation> 

n +- JOIN P; 

This would allow the statements labeled <concurrent computation} to proceed in parallel with 
user typing. The FORK statement spawns a new process whose result type matches that of 
ReadLine. (ReadLine is referred to as the "root procedure" of the new process.) 

p: PROCESS RETURNS [CARDINAL]; 

Later, the results are retrieved by the JOIN statement, which also deletes the spawned process. 
Obviously, this. must not occur until .both processes are ready (i.e. have reached the JOIN and 
the RETURN, respectively); this rendevous is synchronized automatically by the process 
facility. 

Note that the types of the arguments and results of ReadLine are always checked at compile 
time, whether it is called or forked. 

Monitors 

Further investigation of ReadLine reveals another example of interprocess interaction; the 
ReadChar routine it uses inspects an input character buffer, which is filled by an 
independent dedicated keyboard process. (Such dedicated processes replace the "hard 
processes" of earlier releases of Mesa.) To avoid conflict over the buffer, appropriate 
synchronization is needed. A monitor can be used to insure that neither process will ever 
access the buffer while the other has it in a "bad state" (e.g. inconsistent pointers, etc.). The 
keyboard monitor might look like: 

Keyboard: MONITOR = 
BEGIN 
buffer: STRING; 

ReadChar: PUBUC ENTRY PROCEDURE RETURNS [0: CHARACTER] = 
BEGIN 
o +- <get character from buffer> 
ENDi 

PutChar: PUBUC ENTRY PROCEDURE [0: CHARACTER] = 
BEGIN 
<put C in buffer> 
ENDi 

END. 

The keyword MONITOR confers upon the Keyboard module some special properties. The 
most fundamental is the presence of entry procedures, identified by the keyword ENTRY. 

These procedures have the property that calls on them are mutually exclusive; that is, a new 
call cannot commence while any previous call is in progress. In effect, the monitor module 
is made temporarily private to a single process, and any other processes wishing to use it are 
delayed until the first process is finished. rn this example, the client's call to ReadChar and 
the keyboard process' call to PutChar are guaranteed mutually exclusive access to the buffer. 

Condition variables 

As long as it finds some characters in the buffer, ReadChar as shown above will work 
correctly without conflict over the buffer. If it finds the buffer empty. however. it cannot 



Mesa 4.0 Change Summary 4 

simply loop in the monitor waiting for a character to arrive; not only would this be 
inefficient, but it would lock out the keyboard process from ever delivering the desired next 
character! What is needed is some way for ReadChar to pause and release the mutual 
exclusion temporarily until PutChar has delivered the next character. This facility is 
provided by condition variables. Condition variables serve as the basic building blocks out 
of which the programmer can fashion whatever generalized synchronization machinery 
proves necessary in a given situation. For example, the Keyboard monitor can be modified 
to use the WAIT and NOTIFY operations on condition variables as follows: 

Keyboard: MONITOR = 
BEGIN 
buffer: STRING; 
bufferNonEmpty: CONDITION; 
ReadChar: PUBLIC ENTRY PROCEDURE RETURNS [c: CHARACTER] = 

BEGIN 
WHILE (buffer empty> DO 

WAIT bufferNonEmpty 
ENDLOOP; 

C ... <get character from buffer> 
END; 

PutChar: PUBLIC ENTRY PROCEDURE [c: CHARACTER] = 
BEGIN 
<put C in buffer> 
NOTIFY bufferNonEmpty; 
END; 

END. 

Note that the WAIT statement is embedded in a WHILE-loop which repeatedly tests for the 
desired condition. This is the only recommended usage pattern for the WAIT statement. In 
particular, it would have been incorrect to replace the loop above by: 

IF <buffer empty> THEN WAIT bufferNonEmpty; 
C ... <get character from buffer> 

This rule exemplifies a fundamental property of condition variables in Mesa: a condition 
variable always corresponds to some Boolean expression describing a desired state of the 
monitor data, and suggests that any interested process(es) might do well to reevaluate it. It 
does not guarantee that the Boolean expression has become true, hence programmers should 
never write programs (such as the fragment above) that implicitly assume the truth of the 
desired condition upon awakening from a WAIT. 

Priorities 

The set of existing processes grows and shrinks dynamically as FORKS and JOINS occur. At 
any given time, some of the processes are ready and compete for use of the processor. The 
choice of which one to run is done on the basis of priority. A process starts life with the 
priority of its parent (who executed the FORK), and may change its own priority by calling 
SetPriority. 

CAUTION: Use of mUltiple priorities in the Alto/Mesa implementation is severely 
restricted. Any process running at other than the default priority (currently, 1) is forbidden 
to use many of the standard runtime support features of the Mesa environment. In practice, 
this means that non-standard priorities should be used only for interrupt handling, while all 



Mesa 4.0 Change Summary 5 

"normal" processing takes place concurrently at the default priority level. 

More general features 

More complex situations will sometimes require more flexible use of the concurrency 
facilities. Such use involves more complicated rules and syntactic constructs, which are 
described in the Mesa 4.0 Process Update. 

Distribution: 
Mesa Users 
Mesa Group 


