
Inter-Office Memorandum

To Mesa Users Date May 31, 1978

From Ed Satterthwaite Location Palo Alto

Subject Mesa 4.0 Compiler Update Organization SOD/SO

XEROX

Filed on: [IRIS]<MESA>DOC>COMPILER40.BRAVO

This memo describes changes to the Mesa language and compiler that have been made since
the last release (October 17, 1977). As usual, the list of compiler-related change requests
closed by Mesa 4.0 will appear separately as part of the Software Release Description.

The language accepted by the Mesa 4.0 compiler has several significant extensions and a few
minor changes. It features a process mechanism, enhanced arithmetic capabilities, long and
base-relative pointers, and more general block structure.

Because of changes in symbol table and BCD formats, all existing Mesa programs must be
recompiled. There are minor incompatibilities with Mesa 3.0 at the source level in the areas
of signed/unsigned arithmetic and the scope of OPEN in an iterative statement. These
incompatibilities should have negligible impact on existing programs. The syntax and
semantics of declaring (but not calling) machine-coded procedures have changed
substantially.

Page and section numbers in this update not otherwise qualified refer to the Mesa Language
Manual, Version 3.0. The BNF descriptions of new or revised syntax follow the
conventions introduced in that manual. For phrase classes used but not redefined here, see
its Appendix D. Revisions of phrase class definitions are cumulative; except as noted, the
appearance of " ... " as an alternative indicates that an existing definition is being augmented.
A definition without " ... " supersedes any definition of the same phrase class in the manual.

Arithmetic

Mesa 4.0 supports double-precision integer arithmetic (type LONG INTEGER) and provides
some help with floating-point computations (type REAL). In conjunction with these changes,
the rules governing combination of signed and unsigned values have been more carefully
defined (see the Appendix to this memo).

Syntax

PredefinedType ::=

Primary "­.. -

INTEGER I CARDINAL I LONG INTEGER I REAL I
BOOLEAN I CHARACTER I STRING I UNSPECIFIED WORD

identifier [Expression] I LONG [Expression]

Mesa 4.0 Compiler Update 2
~

Signed and Unsigned Arithmetic

The rules governing the use of signed and unsigned representations in single-precision
arithmetic have been reformulated. In previous versions of Mesa, conditions under which
an operation was considered to overflow were not well defined. As a consequence, options
such as overflow detection and reliable range checking were precluded. Mesa 4.0 does not
offer these options, but it does remedy the defects in the language definition.

The precise rules governing signed/unsigned arithmetic are somewhat lengthy. They appear
in an appendix to this memo with some background information explaining the motivation
and philosophy. In their effect on the acceptance or rejection of source text, the new rules
differ little from those in previous versions of Mesa; the main change is that CARDINAL -
CARDINAL is now assumed to produce a result with unsigned (instead of unknown)
representation (see Section 2.5.1, pages 10-12). Thus the immediate practical effect of the
new rules is minor; however, programmers should read the appendix carefully so that their
code will work correctly even when it becomes possible to request overflow and range
checks.

The effects of the new rules with respect to subtraction are worth emphasizing. If
both operands have valid signed representations, the result is an INTEGER. If both
have only unsigned representations, the result is a CARDINAL and is considered to
overflow if the first operand is less than the second.

i: INTEGER; m, n: CARDINAL; s, t: [0 .. 10);

i .. m-n; -- should be used only if it is known that m >= n

i .. IF m >= n THEN m-n ELSE -(n-m); -- should be used otherwise

IF m-n > 0 ... comparison (and subtraction) are unsigned

IF m > n ... a better and safer test

IF s-t < 0 ... comparison (and, subtraction) are signed

Range Assertions

The new rules mentioned above assume that there are implicit conversion functions mapping
CARDINAL to INTEGER and vice-versa. In both directions, the "conversion" amounts to an
assertion that the argument is an element of INTEGER n CARDINAL. The programmer can
make such a range assertion explicit. If S is an identifier of a subrange type and e is an
expression with compatible type T, the form See] has the same value as e and is
additionally an assertion that e IN [FIRST[SnT] .. LAST[SnT]] is TRUE.

Note that this is not equivalent to LOOPHoLE[e, S] but is an assertion about the range
of a value that already has an appropriate type.

In Mesa 4.0, such assertions must be verified by the programmer. There is not an option to
generate code that checks these assertions, whether implicit 0)' explicit. An assertion can be
used to control the assumed representation of a subexpression; otherwise, it is currently
treated as a comment by the compiler.

Examples

INTEGER[n], IndexType[i-j]

Mesa 4.0 Compiler Update 3
I

Long Integers

Mesa 4.0 supports double-precision integers. There is a new predeclared type LONG INTEGER,

values of which occupy two words (32 bits) of storage and range over [-231 .. 231). There is
no special denotation for LONG INTEGER constants. The type of any decimal or octal constant
in [216 .. 231) is LONG INTEGER; smaller constants are converted as required by context. The
arithmetic operators +, -, *, I, MOD, MIN, MAX, (unary) - and ABS have double-precision
extensions that perform the mapping

(LONG INTEGER)n ... LONG INTEGER;

furthermore, LONG INTEGERS are ordered, and the relational operators =, #, <, <=. >, >= and IN
have extensions that perform the mapping

(LONG INTEGER)n ... BOOLEAN.

Some fine points:

All LONG INTEGERS have a signed representation; the Mesa 4.0 language does not
provide LONG CARDINAL.

Addition, subtraction, and comparison of LONG INTEGERS is fast; multiplication and
division are done by software and are relatively slow.

In Mesa 4.0, it is not possible to declare a type that is a subrange of LONG INTEGER.

Mesa provides an automatic coercion from any single-precision numeric type (INTEGER,
CARDINAL, etc.) to LONG INTEGER. This coercion is called widening and is discussed in more
detail below. It is applied when necessary to match inherent and target types (e.g., in
assignments). Also, if any operand of an arithmetic or relational operator is a LONG INTEGER,
the double-precision operation is used. In most cases, widening of any shorter operands is
automatic. Thus single- and double-precision quantities can be mixed freely within
expressions to yield double-precision results.

The form LONG[e] explicitly forces the widening of any expression e with a single-precision
numeric type. There are no automatic conversions from LONG INTEGER to any single­
precision type (but see the Mesa 4.0 System Documentation for some standard procedures).

Widening of a single-precision constant is done at compile-time. Currently, no
other arithmetic or relational operations on LONG INTEGERS are performed at
compile-time, even if all operands are constant.

Widening of a single-precision expression is substantially more efficient if that
expression has an unsigned representation.

Examples

i: INTEGER;

ii: LONG INTEGER;
c2: LONG INTEGER = 2;
c4: LONG INTEGER = c2*c2;

-- a compile-time constant
-- not a compile-time constant

ii ... 0; ii'" ii+l; ii'" i; Ii'" (ii+i)/c2; all valid

Ii ... LONG[O]; ii'" (ii+LONG[i])/c2;

i ... ii; ii'" LONG[c4];

also valid (and explicit)

invalid

Mesa 4.0 Compiler Update 4

Reals

A standard representation for floating-point values has not yet been chosen. Mesa 4.0
nevertheless provides some help with floating-point computation. It allows declaration and
assignment of REAL values; furthermore, REAL expressions constructed using the standard
infix operators (except MOD) are converted to sequences of procedure calls by the compiler.

A REAL value is assumed to occupy two words (32 bits) of storage. Beyond this, no
assumptions are made about the representation of REALS. Users of real arithmetic must
provide and install an appropriate set of procedures for performing the arithmetic
operations (see the Mesa 4.0 System Documentation also). The procedures must be
assignable to variables declared as follows:

FADD, FSUB, FMUL, FDIV: PROCEDURE [REAL, REAL] RETURNS [REAL];

FCOM P: PROCEDURE [REAL,· REAL] RETURNS [INTEGER];

-- returns a value that is: ° if equal, negative if the first is less, positive otherwise

FLOAT: PROCEDURE [LONG INTEGER] RETURNS [REAL];

This scheme has the following consequences:

All other arithmetic operations (ABS, MIN, etc.) are fabricated from these primitives.

The source language provides no denotation for real constants, since the compiler
does not know the internal format expected by the user-supplied procedures. As
discussed below, values of type INTEGER or LONG INTEGER are automatically converted
to type REAL at run -time; thus integer constants can appear in real expressions but
will be reconverted each time the expression is evaluated.

Of course, implementers of floating-point packages are free to provide their own procedures
for constructing REAL values from, e.g., octal constants, but a REAL "constant" currently
cannot be a compile-time constant and cannot appear in a DEFINITIONS module (unless it is
defined using a LOOPHOLE).

Examples

Two: REAL = 2;

Half: REAL = lITwo;

Bug: REAL = 112;

Implicit Conversions

means Two: REAL = FLOAT[2];

means Half: REAL = FLOAT[l]/Two;

means Bug: REAL = FLOAT[O]; (integer division)

Conversions from INTEGER or CARDINAL to LONG INTEGER and from LONG INTEGER to REAL are
called widening. Widening is automatic in the following situations:

An expression will be widened from its inherent type to match its target type (see
Section 3.5, pages 37-39). This occurs in assignments and assignment-like contexts
(such as record construction or extraction).

The types of the operands of an arithmetic operator will be balanced by widening
until all match the type of the widest operand (but not further, even if the target
type is wider).

In Mesa 4.0, automatic widening is not completely implemented in the following situations:

Operands of MIN and MAX will be widened to match the target type if one is well
defined and otherwise to match the type of the first operand, but there is no general
balancing.

Mesa 4.0 Compiler Update 5

The endpoints in the right operand of IN will be widened to match the type of the
left operand, but there is no general balancing.

Expressions appearing in the arms of conditionals will be widened as required by the
target type, but there is no general balancing when the target type is ill-defined.

The expressions selecting the arms of a SelectExpr or SelectStmt will be widened to
match the type of the selector, but the selector itself is never widened.

The following examples illustrate widening.

i, j: INTEGER; ii: LONG INTEGER; x: REAL;

ii ... i; x ... i; x ... ii; x ... IF i < j THEN ELSE ii

i + ii, ii+l added as LONG INTEGERS (for any target type)

i + x, x + 1, ii+x added as REALS

x) i*j + ii -- multiplied as INTEGERS, added as LONG INTEGERS, compared as REALS

The following are currently considered errors.

ii IN [i .. x)
(IF i < j THEN i ELSE ii) < x ill-defined target for If Expr
SELECT i FROM x =) ... ;) ii =) ... , ENDCASE

In cases in which automatic widening is not implemented or does not give the desired result,
the operator l,.ONG or user-supplied procedure FLOAT can be used.

m, n: CARDINAL; ii: LONG INTEGER;

ii ... m + n added as CARDINALS (overflow lost)

ii ... LONG[m + n] ditto

ii ... LONG[m] + LONG[n] added as LONG INTEGERS (overflow captured)

A fine point: There are system-provided procedures for performing certain
multiplication and division operations in which the operands and results do not all
have the same precision. These procedures provide less expensive equivalents of, e.g.,
LONG[m]*LONG[n]. See the Mesa 4.0 System Documentation.

Long Pointers and Array Descriptors

Mesa 4.0 implements both long pointers and array descriptors with long pointers as base
components. These pointers provide access to the entire virtual memory of the Dstar. For
compatibility, long pointers are also supported on the Alto, but they do not provide any
additional addressing capability.

Syntax

TypeConstructor ::= ... I LongTC

LongTC ::= LONG TypeSpecification

ArrayDescriptorTC ::= DESCRIPTOR FOR TypeSpecification I
DESCRIPTOR FOR PackingOption ARRAY OF TypeSpecification

Mesa 4.0 Compiler Update 6

The type constructor LONG can be applied to INTEGER (discussed in the preceding section).
any pointer type, or any array descriptor type. An attempt to lengthen any other type is an
error.

The type constructor DESCRIPTOR FOR can be applied to any array type, including one
designated by a type identifier. (This corrects an oversight in previous versions of Mesa).
In addition, specification of an IndexType for the described array type can be omitted if its
constructor follows immediately. In this case, a subrange of CARDINAL with zero origin and
indefinite upper bound is assumed for the index type.

Long Pointers

A long pointer value occupies two words (32 bits) of storage. Long pointers are typically
created by lengthening (short) pointers as described below. In particular, NIL is automatically
lengthened to provide a null long pointer when required by context. The standard
operations on pointers (dereferencing, assignment, testing equality, comparison if ORDERED.

etc.) all extend to long pointers

On the Dstar, NIL is lengthened by prefixing a word of zeros and thus has an MDS~
independent representation. All other pointers are lengthened by adding the MDS
base. Every pointer generated in this way is represented by an 8 bit field of zeros
followed by a 24 bit virtual address. Long pointers with certain other formats can
be created using LOOPHOLE and will be correctly dereferenced by the hardware.
There is no normalization prior to operations on pointers, however. and such
pointers will give anomolous results in, e.g., comparisons.

On the Alto, pointers are lengthened by prefixing a word of zeros. In all
dereferencing operations, that prefix is discarded (without a check for zero) and the
remaining word is interpreted as the actual address.

Both automatic widening and explicit widening (using the operator LONG) are provided for
pointer types as well as for numeric types. Widening an expression of type POINTER TO T
produces a value of type LONG POINTER TO T, i.e., only the length attribute is changed by the
widening. The rules and restrictions governing widening in Mesa 4.0 that are discussed in
the preceding section apply equally to pointers.

The operator @ applied to a variable of type T produces a pointer of type LONG POINTER TO

T if the access path to that variable itself involves a long pointer (other than the implicitly
accessed MDS pointer) and of type POINTER TO T otherwise.

Limited pointer arithmetic continues to be supported in Mesa 4.0, but programmers are
encouraged to use BASE and RELATIVE pointers (described in the next section) if the purpose
of the arithmetic is simple relocation. If either operand in a pointer addition or subtraction
is long, all operands are widened and the result is long.

Examples

R: TYPE = RECORD [J: T, ...];
p, q: POINTER TO R;
pp, qq: LONG POINTER TO R;
pT: POINTER TO T;
ppT: LONG POINTER TO T;

The following are valid.

Mesa 4.0 Compiler Update

pp .. qq; pp" NIL; pp" p

pp = qq, pp = NIL, pp = q

pT .. @p.f; ppT" @pp.f

ppT" @p.f

pp+ii, pp+i, p+ii, pp-qq, pp-q

The following are not valid.

pp = ppT

P .. pp; pT" @pp./

Long Array Descriptors

long comparisons

pointer lengthened

long results

type clash

no automatic shortening

7

In a long array descriptor, the BASE component is a long pointer and the descriptor occupies
three words (48 bits) of storage. All the standard operations on array descriptors (indexing.
assignment, testing equality, LENGTH, etc.) extend to long array descriptors. The type of
BAsE[desc] is long if the type of desc is long.

Array descriptors are widened, either automatically or explicitly, according to the usual rules
and restrictions. Long array descriptors are created by applying DESCRIPTOR[] to an array
that is only accessible through a long pointer (other than the MDS pointer), by applying
DESCRIPTOR[..] to operands the first of which is long, or by widening a (short) array
descriptor.

Examples

d: DESCRIPTOR FOR ARRAY OF T;
dd: LONG DESCRIPTOR FOR ARRAY OF T;
i, n: CARDINAL;
pp: LONG POINTER TO ARRAY [0 .. 0) OF T;
x: T;

dd .. DESCRIPTOR[Pp, 10, T]; dd" d

x .. dd[i]

pp .. BASE[dd]; n" LENGTH[dd]

Base and Relative Pointers

Mesa 4.0 deals more satisfactorily with base-relative pointers, i.e., pointers that must be
relocated by adding some base value before they are dereferenced. Such pointers are useful
for reducing the number of bits stored when objects can be identified by small offsets. and
for dealing with collections of interlinked data items that are subject to relocation as entire
aggregates.

Syntax

PointerTC "­.. -
BaseOption ::=

TypeConstructor

Ordered BaseOption POINTER

empty I BASE

::= ... I RelativeTC

Optionallnterval PointerTaii

Mesa 4.0 Compiler Update

RelativeTC "­.. - Typeldentifier RELATIVE TypeSpecification

8

In a POinterTC, a nonempty Optionallnterval declares a subrange of a pointer type. the values
of which are restricted to the indicated interval (and can potentially be stored in smaller
fields). Normally, such a subrange type should be used only in constructing a relative
pointer type as described below, since its values cannot span an MOS.

The BaseOption BASE indicates that pointer values of that type can be used to relocate
relative pointers. Such values behave as ordinary pointers in all other respects with one
exception: subscript brackets never force implicit dereferencing (see below). The attribute
BASE is ignored in determining the assignability of pointer types.

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must evaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must evaluate to a (possibly long) pointer or array descriptor
type.

Note that the form

LONG Typeldentifier RELATIVE TypeSpecification

is always in error, since LONG cannot be applied to a relative type. The type
designated by the TypeSpecification can be lengthened (to give a relative long
pointer) using the form

Typeldentifier RELATIVE LONG TypeSpecification .

Rei ative Pointers

In the following discussion, assume the declarations

BaseType: TYPE = BASE POINTER TO ... ;

FullType: TYPE = POINTER TO ... ;

RelativeType: TYPE = BaseType RELATIVE FullType;
base: BaseType;
offset: RelativeType;
p: FullType.

If FuliType is some pointer, long pointer, or pointer subrange type, RelativeType is declared
to be a relative pointer type. Values with type RelativeType are pointers that must be
relocated, by adding some value of type BaseType, before they can be dereferenced. Also,
relative pointers are never widened automatically. With respect to other operations
(assignment, testing equality, comparison if FullType is ORDERED, etc.), relative pointers
behave like pointers of type FullType. In particular, the amount of storage required to store
such a pointer is determined by FullType. Note, however, that RelativeType and FullType
are distinct types, incompatible with respect to, e.g., assignment and comparison.

Relocation of a relative pointer is specified by using subscript-like notation in which the
type of the "array" is BaseType and that of the "index" is RelativeType, i.e., the absolute
pointer is denoted by an expression with the form

base[offset]

This expression has the type FullType and the value LOOPHOLE[base]+offset. Note that
base[offset] is not a variable; typical variable designators are base[offset]t or
base[offset].field. (In addition, the usual rules for implicit dereferencing apply in, e.g., an
Openltem). Relocation prior to dereferencing is mandatory; offsett, offset.field. etc. are
errors.

Mesa 4.0 Compiler Update 9

Some fine points:

The type of base[offset] is more precisely defined as follows: if FullType is a
sub range pointer type, the sub range is discarded to obtain some type T; otherwise, T
is FullType. If FullType is not a long pointer type but BaseType is, then the final
type is LONG T; otherwise, it is T. In other words, the resulting type is long if either
the base type or the relative type is.

The declaration of a relative pointer does not associate a particular base value with
that pointer, only a basing type. Thus some care is necessary if multiple base values
are in use. Note that the final type of the relocated pointer is largely independent of
the type of the base pointer; the relative pointer determines the type. Sometimes this
observation can be used to help distinguish different classes of base values without
producing relocated pointers with incompatible types.

The base type must have the attribute BASE. Conversely, the attribute BASE always
takes precedence in the interpretation of brackets following a pointer expression.
Consider the following declarations:

p: POINTER TO ARRAY IndexType OF ... ;
q: BASE POINTER TO ARRAY IndexType OF

The expression p[e] will cause implicit dereferencing of p and is equivalent to
pt[e]. On the other hand, q[e] is taken to specify relocation of a pointer, even if
the type of e is I ndexType and not an appropriate relative pointer type. In such
cases, the array must (and always can) be accessed by adding sufficient qualification,
e.g., qt[e]; nevertheless, users should exercise caution in using pointers to arrays as
base pointers.

Mesa 4.0 supplies no mechanisms for constructing relative pointers. It is expected that such
values will be created by user-supplied allocators that pass their results through a LOOPHOLE
or from pointer arithmetic involving LOOPHOLES.

Examples

pt .. base[offset]t

p .. base[offset] -- valid pointer assignment (but often unwise)

The following are invalid.

p .. offset; pt.. offsett

p[offset] -- p has incorrect type

Relative Array Descriptors

Relative array descriptor types are entirely analogous to relative pointer types; indeed, values
of such types can be viewed as array descriptors in which the base components are relative
pointers. Note' the following:

In the constructor of a relative array descriptor type, the TypeSpecification must
evaluate to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an element of the described array
has the form

base[offsel][i]

Mesa 4.0 Compiler Update 10

where i is the index of the element.

Relative array descriptors are constructed using the DESCRIPTOR operator. If p is B RELATIVE

pointer, the form DESCRIPTOR[P, n, T] produces a value with type B RELATIVE DESCRIPTOR FOR

ARRAY OF T. Also, the operators BASE and LENGTH can be applied to a B RELATIVE array
descriptor; the former produces a B RELATIVE pointer.

Block Structure

The previous concepts of procedure body and compound statement have been merged. A
block can appear anywhere a statement is acceptable and can introduce new identifiers with
scope smaller than an entire procedure (or module) body. In addition, catch phrases and
exit labels ca~ now appear at the. outermost level of a procedure body.

The syntax for declaring procedures with bodies expressed in machine code has also been
revised (in anticipation of more general inline procedures). The corresponding semantics
are machine dependent and are not specified here.

Syntax

ModuleBody "­,,- Block

ProcedureBody ::= Block

Statement ::= I Block I ". -- replaces CompoundStmt

Block ::= BEGIN

OpenClause
EnableClause
DeclarationSeries
StatementSeries
ExitsClause
END

EnableClause ::= empty I

MachineCode

InstructionSeries ::=

ENABLE Catchltem ; I
ENABLE BEGIN CatchSeries END ; I
ENABLE BEGIN CatchSeries ; END ;

MACHINE CODE BEGIN InstructionSeries END

empty I ByteList I
ByteList ; InstructionSeries

ByteList Expression I ByteList , Expression

In addition, the phrase classes Body, CompoundStmt and MachineCodeTC are deleted.

During the execution of a Mesa program, frames are allocated at the procedure and module
level only. Any storage required by variables declared in an internal Block (one used as a
Statement) is allocated in the frame of the smallest enclosing procedure or module. When
such internal blocks are disjoint, the areas of the frame used for their variables overlay one
another.

The scopes of identifiers introduced in the various components of a block are summarized
by the following diagram, where indentation is used to show the scope of each phrase:

Mesa 4.0 Compiler Update

BEGIN

Open Clause
EnableClause

DeclarationSeries
StatementSeries

ExitsClause
END

11

Note that any newly declared identifiers are visible only in the DeclarationSeries and
StatementSeries of the block. Any exit labels are visible within the EnableClause (as well
as the more deeply indented constructs); on the other hand, any catch phrase in the
EnableClause is not enabled within the ExitsClause. If the Block is used as a module or
procedure body, the parameters and results are visible throughout the Block. Thus it is
possible to open records designated by parameters or to assign return values within an
ExitsClause (but the assigned values cannot involve internally declared variables).

A CONTINUE statement appearing in the EnableClause of a Block causes exit from that block.
A similarly placed RETRY statement causes reexecution of the block. In the latter case, any
initializing values in the DeclarationSeries are recomputed.

Note that an optional semicolon can now terminate a Catch Series in an EnableClause.

Nested Block Structure

With the introduction of blocks, procedure bodies can appear where they were syntactically
prohibited in previous versions of Mesa. Special rules apply to the inheritance of scope
when a procedure body is declared within the DeclarationSeries or (with nesting) within the
StatementSeries of a Block. Within the inner procedure body:

Identifiers made visible by the Open Clause remain visible (unless redeclared).

Catch phrases in the EnableClause are not inherited and not enabled.

Identifiers declared in the DeclarationSeries remain visible (unless redeclared).

Jumps to labels in the ExitsClause are prohibited.

Assume the following skeletal declaration:

Outer: PROCEDURE [...] =
BEGIN

ENABLE s => Handler[];

Inner: PROCEDURE [...] = BEGIN ... END;

EXITS
Label => ...

END
•

If the signal s is raised in an instance of Inner, Handler is not invoked there. Handler will,
of course, be invoked eventually if s propagates to the enclosing instance of Outer. (This
noninheritance rule prevents double execution of handlers in such situations.) In Mesa 4.0,
the statement GO TO Label is considered an error within the body of Inner.

~esa 4.0 Compiler Update 12

Iterative Statements

For consistency with blocks, the scope rutes for iterative statements have been revised
slightly. In addition, a new statement form that terminates one iteration of the loop body
and initiates the next has been added.

Syntax

Statement "­.. - ... I LoopClosestmt

Loopstmt ::= LoopControl
DO

OpenClause
EnableClause
Statement Series
LoopExitsClause
ENDLOOP

LoopCloseStmt ::= LOOP

The scopes of identifiers introduced in the various components of a loop are summarized by
the following diagram (cf. Blocks):

LoopControl
DO

OpenClause
EnableClause

StatementSeries
LoopExitsClause

ENDLOOP

In previous versions of Mesa, the scope of the Open Clause excluded the LoopExitsClause.
As in the case of blocks, any exit labels are visible within the EnableClause, and any catch
phrase in the EnableClause is not enabled within the ExitsClause.

The statement LOOP can appear only within the body of an iterative statement. Executing it
terminates the current iteration of the smallest enclosing Loopstmt, after which the
LoopControl is updated/reevaluated and, if appropriate, the next iteration is started. Thus
the construct

DO ... LOOP ... ENDLOOP

is an abbreviation for

DO

BEGIN

... GO TO Skip ...
EXITS Skip => NULL;

END

ENDLOOP

Included Identifier Lists

In Mesa 4.0, an item in the DIRECTORY clause can explicitly list the identifiers eligible for
inclusion from a designated module. Such included identifier lists serve as compiler­
checked (but programmer-maintained) lists of intermodular connections and dependencies.

Mesa 4.0 Compiler Update 13

Syntax

IncludeUst "­,,-

Includeltem ::=

Include Item I IncludeUst , Includeltem

identifier
identifier

FROM FileName
FROM FileName USING [IdUst]

If the USING clause is absent, the item's identifier has all the properties and uses described in
Sections 7.2.1 and 7.2.2. The only effect of a USING clause is to enumerate (and potentially
restrict) the set of identifiers made accessible to the including module. Use of the identifier,
either within an OPEN clause or for explicit qualification, makes visible only those
identifiers in, the IdUst.

Some fine pojnts.

Only identifiers declared in the DeclarationSeries that is part of the ModuleBody of
the included module are mentioned in the IdUst; in particular, neither the included
module's own identifier nor identifiers of record fields, enumeration constants, etc.
appear in this list.

Each identifier appearing in the IdUst must be defined in the module designated by
the Includeltem.

A warning is generated for each identifier appearing in the IdUst but not used
explicitly in the including module. Identifiers used only implicitly (to describe
attributes of explicitly included identifiers) should not be listed.

The IdUst restricts the set of identifiers available for inclusion from a module. It
does not restrict export into an included interface. The identifier of an exported
item should not appear in the list unless the intention is to reference a different
item with the same name through an imported instance of the interface.

The following example assumes the declaration of SimpleDefs appearing on page 92.

DIRECTORY

SimpleDejs: FROM "simpledefs" USING [Range, PairPtr]:
Example: PROGRAM =

BEGIN

First: PROCEDURE [p: SimpleDefs.PairPtr] RETURNS [SimpleDejs.Range] =
BEGIN

RETURN [IF P = NIL THEN 0 ELSE p.first]
END;

END.

Note that Pair does not appear in the included identifier list (because it is only
referenced implicitly, through the definition of PairPtr), nor does first (because it is
declared in a record, not in the body of SimpleDejs itself). Any reference to
SimpieDejs.limit would be an error in this example.

Processes

Mesa 4.0 supports a process mechanism in which processes are created by forking to
procedures and are synchronized by entry to monitors. Most of the information about the
semantics and intended usage of Mesa processes appears in the Mesa 4.0 Process Update
(henceforth cited as Process). The Mesa 4.0 Change Summary contains a complete example,
and additional examples appear in the Process document. This section summarizes the
syntax and deals with a few linguistic details.

Mesa 4.0 Compiler Update 14

Syntax

PredefinedType "­.. - ... I MONITORLOCK I CONDITION

ProgramTC ::= ... I
MONITOR ParameterList ReturnsClause LocksClause

LocksClause ::= empty
LOCKS Expression
LOCKS Expression USING identifier TypeSpecification

TypeConstructor ::= ... I ProcessTC

ProcessTC "­,,-

Declaration ::=

EntryOption

RecordTC

"­.. -
"­.. -

MonitoredOptlon

Statement

Expression

WaitStmt

NotifyS~mt

"­.. -
"­,,-

". ,,-

" . .. -

PROCESS ReturnsClause

IdUst : Access EntryOption TypeSpecification Initialization ; I
IdList : Access TYPE = Access TypeSpecification

empty I ENTRY I INTERNAL

MonitoredOption MachineDependent RECORD [VariantFieldUst]

::= empty I MONITORED

... I WaitStmt I NotifyStmt I JOinCa11

... I ForkCall I JoinCall

WAIT Variable OptCatchPhrase

NOTIFY Variable I BROADCAST Variable

ForkCall

JoinCall

"­,,-

"­,,-

FORK Call

JOIN Call

Forking and Joining

Processes are created and destroyed by FORK and JOIN operations. If procedure P has type
PROCEDURE T RETURNS T'. then the expression FORK P[.,,] produces a process handle h with
type PROCESS RETURNS T'. JOIN requires a process handle as its operand. The form JOIN h
produces an argument record of type T' (or stands as a statement if the ReturnsClause is
empty). As type mappings.

FORK: PROCEDURE T RETURNS T' X T ... PROCESS RETURNS T'

JOIN: PROCESS RETURNS T' T.

Some fine points:

A catch phrase can be attached to a FORK or JOIN (by specifying it in the Call).

Unlike an ordinary procedure call. a FORK returns a value with some process type
(not a record type). and that value cannot be discarded by writing an empty
extractor.

Monitored Modules

A ProgramTC containing MONITOR can be used only in a ModuleHead to specify the type of a
program module. The LocksClause provides additional information about the program body
and is not part of the module's type. If a monitor is to be exported, the correct type for the
interface item in the DEFINITIONS module is obtained by replacing MONITOR by PROGRAM and
deleting the LocksClause.

Mesa 4.0 Compiler Update 15

Synchronization of processes is based upon variables with the system -defined types
MONITORLOCK and CONDITION. A distinguished MONITORLOCK with the identifier LOCK is
implicitly declared in the global frame of any MONITOR with an empty LocksClause. If the
MonitoredOption MONITORED appears in the definition of a record type, each record of that
type similarly contains an implicitly declared and distinguished MONITORLOCK with identifier
LOCK. Lock and condition variables can also be declared explicitly, but any MONITORLOCK

so declared is not distinguished, even if its identifier is LOCK (see below).

When a variable with type MONITORLOCK or CONDITION is a component of a (local or global)
frame, it is initialized automatically when the frame is created. In all other cases, a system
procedure must be called to establish appropriate initial values (see Process, Section A.6).

Entry Procedures

The EntryOption ENTRY can appear only in a declaration within a monitor; when it does, the
TypeSpecification must evaluate to a procedure type and the initialization must specify a
procedure body (Block). Note that ENTRY does not imply PUBLIC, but PUBLIC ENTRY is a
permissible (and common) combination.

Entry into a monitor through an ENTRY procedure is protected by a monitor lock. The
identity of that lock is determined by the declaration of the monitor. If the LocksClause is
empty, entry is controlled by the distinguished variable LOCK. Otherwise, the LocksClause
must designate a variable with type MONITORLOCK, a record containing a distinguished lock
field, or a pointer that can be dereferenced (perhaps several times) to yield one of the
preceding. There are two cases (see Process, Section A.4.2):

If the USING clause is absent, the monitor is a multi-module one. The lock is located
by evaluating the LOCKS expression in the context of the monitor's main body; i.e.,
the monitor's parameters, imports, and global variables are visible, as are any
identifiers made accessible by a global OPEN. Evaluation occurs upon entry to, and
again upon exit from, the ENTRY procedure (and for any internal WAITS). The
location of the designated lock can thus be affected by assignments within the
procedure to variables in ,the LOCKS expression. To avoid disaster, it is essential that
each reevaluation yield a designator of the same MONITOR LOCK.

If the USING clause is present, the monitor is an object monitor. The lock is located
as above with one exception: any occurrence of the identifier declared in the USING

clause is bound to that argument of the ENTRY procedure having the same identifier
and a compatible type. If there is no such parameter, the ENTRY is in error. The
same care is necessary with respect to reevaluation; to emphasize this, the
distinguished argument is treated as a read-only value within the body of the ENTRY

procedure.

The following examples illustrate the' selection of locks.

R: TYPE = MONITORED RECORD [...];

RR: TYPE = RECORD [... , specialLock: MONITORLOCK, ...];

M 1 : MONITOR =
BEGIN

-- LOCK: MONITORLOCK implicitly declared here
PI: PUBLIC ENTRY PROCEDURE [... J =

BEGIN -. locks LOCK -- ... END;

END.

t\'1esa 4.0 Compiler Update

M2a: MONITOR [p: POINTER TO POINTER TO R] LOCKS P =
BEGIN

P2: PUBLIC ENTRY PROCEDURE [...] =
BEGIN -- locks ptt.LOCK -- ... END;

END.

M2b: MONITOR [p: POINTER TO POINTER TO RR] LOCKS ptt.specialLock =
-- specification of the lock is mandatory here
BEGIN

P2: PUBLIC ENTRY PROCEDURE [...] =
BEGIN -- locks ptt.specialLock -- ... END;

END.

M3: MONITOR LOCKS P USING p: POINTER TO R =
BEGIN

P3: 'PUBLIC ENTRY PROCEDURE [p: POINTER TO R, ...] =
BEGIN -- locks p.LOCK -- ... END;

END.

16

Signals require special attention within the body of an ENTRY procedure. A signal raised
with the monitor lock held will propagate without releasing the lock and possibly invoke
arbitrary computations. For errors, this can be avoided by using the RETURN WITH ERROR

construct described in the next section.

When an instance of an ENTRY procedure is to be destroyed because of a remote exit from a
catch phrase (unwinding), the lock should also be released. In Mesa 4.0, it is the
programmer's responsibility to determine if unwinding is possible and, if so, to provide a
catch phrase for UNWIND that restores the monitor invariant. Code to actually release the
monitor lock is automatically appended to the outermost enabled catch phrase for UNWIND in
an ENTRY procedure. That catch phrase can have a NULL body if no other cleanup actions are
required.

Internal Procedures

The EntryOption INTERNAL can appear only in a declaration within a monitor; when it does,
the TypeSpecification must evaluate to a procedure type and the initialization must specify a
procedure body (Block). Note that INTERNAL does not imply PRIVATE (if the default is PUBLIC),
but PUBLIC INTERNAL is considered an improper combination of attributes (warning only).

A call of an INTERNAL procedure is permitted only within an ENTRY procedure or another
INTERNAL procedure. Forking to an INTERNAL procedure is never allowed. An INTERNAL

procedure can safely access monitored data and can perform WAIT, NOTIFY and BROADCAST

operations. A WAIT operation implicitly references the monitor lock; thus an INTERNAL

procedure of an object monitor that contains a WAIT must have a parameter designating the
locked object as described above.

Some fine points:

In Mesa 4.0, the attribute INTERNAL is associated with a procedure's body, not its type.
Thus INTERNAL cannot be specified in a DEFINITIONS module, and checks on
intermodular calls of internal procedures are not performed (except for the PUBLIC

INTERNAL warning). Also, the attribute INTERNAL is lost when a procedure value is
assigned to a variable or passed as an argument of a procedure. Such assignments
should be done with caution.

].\1esa 4.0 Compiler Update 17

Signals raised by INTERNAL procedures require special consideration. When the
construct RETURN WITH ERROR is executed within an INTERNAL procedure, the monitor
lock is not released prior to signal propagation.

Wait and Notify

Only ENTRY and INTERNAL procedures within a monitor can contain WAIT, NOTIFY and
BROADCAST statements.

Error Returns

It is possible to delete a procedure instance before ralSlng an error detected by that
procedure. Within an ENTRY procedure of a monitor, the monitor lock is released before the
error is raised. (Such procedures are expected to be the primary users of this facility.)

Syntax

ReturnStmt "­.. - ". I RETURN WITH ERROR Call

Consider the following skeletal code:

Failure: ERROR [...] = CODE;

Proc: ENTRY PROCEDURE [...] RETURNS [...] =
BEGIN

ENABLE UNWIND = > ... ;

IF condl THEN ERROR Failure[...];
IF cond2 THEN RETURN WITH ERROR Fai/ure[...];

END;

Execution of the construct ERROR Failure[...] raises a signal that propagates until some
catch phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND

in Proc is executed and then Proc's frame is destroyed. Within an entry procedure such as
Proc, the lock is held until the unwind (and thus through unpredictable computation
performed by catch phrases).

Execution of the construct RETURN WITH ERROR Failure[...] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is determined by the declaration of Failure (not by Proc's RETURNS

clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is
actually raised by the system, after which Failure propagates as an ordinary error (beginning
with Proc's caller).

Multiword Constants

Record and array constructors in which all components are themselves constant define so­
called multiword constants. Such constants are now constructed during compilation and can
be encoded within Mesa symbol tables. This has the following consequences:

A declaration equating an identifier to a multi word constant (but not to a string
literal) can appear in a DEFINITIONS module, and the constant value thereby becomes
available to users of that module.

~esa 4.0 Compiler Update 18

Constant selection from such values (by field selection or by indexing with a
constant subscript) is also done during compilation.

Furthermore, if an identifier is equated to a multiword constant in a program module,
exactly one copy of that constant appears in the code, and its components can be read
(using, e.g., a computed index) directly from the code segment. This allows table driven
programming in which the tables are automatically swapped.

A fine point: A packed array or an array of 'multiword elements is currently copied
into a data area each time one of its elements is accessed.

The following declarations define multi word constants and can appear in a DEFINITIONS

module.

Ident: RECORD [version: CARDINAL, id: CHARACTER, released: BOOLEAN] =
[1, '#, FALSE];

Powers: ARRAY [1..4] OF CARDINAL = [2, 4, 8, 16];

Nonsense: CARDINAL = IF Ident.released THEN Ident.version ELSE Powers[2];

The following are not compile-time constants in Mesa 4.0.

"abc", (nabc")[l].

Miscellaneous Language Changes

Local Strings

The body of a string literal is ordinarily placed in the global frame of the module in which
the literal appears. Pointers to that body (the actual STRING values) can then be used freely
with little danger that the body will move or be destroyed. Unfortunately, this scheme can
consume substantial amounts of space in the (permanent and unmovable) global frame area.

If a string literal is followed by 'L (e.g., "abc"L), a copy of the string body is moved from
the code to the local frame of the smallest enclosing procedure whenever an instance of that
procedure is created. As a corollary, the space is freed and the string body disappears when
the procedure returns. Thus it is important to insure that pointers to local string literals are
not assigned to STRING variables with lifetimes longer than that of the procedure.
Programmers should avoid using local string literals until performance tuning is necessary
(except perhaps in calls of straightforward output procedures).

Character Arithmetic

The following arithmetic operations are now defined for values of type CHARACTER:

CHARACTER + INTEGER -+ CHARACTER

INTEGER + CHARACTER -+ CHARACTER

CHARACTER - INTEGER -+ CHARACTER

CHARACTER - CHARACTER -+ INTEGER.

Other arithmetic operations do not allow characters as operands, and values of type INTEGER

and CHARACTER cannot be cross-assigned.

Examples

c: CHARACTER;

d: INTEGER" C - '0; -- consider a translation table instead

Mesa 4.0 Compiler Update 19

IF C IN ['a .. 'z] THEN C +- 'A + (c-'a)

Selections

More general expressions are allowed to label arms of selections when there is no initial
relational operator.

Test ::= Expression I RelationTaii

Example

SELECT TRUE FROM

i > 0, j > 0 => s1;
P AND.q => s2;
k > O:OR q => s3;

END CASE => sN

-- formerly Sum I RelationTaii

previously required (i > 0), U > 0)
previously required (p AND q)

This is equivalent to (and perhaps more readable than)

IF i > 0 OR j > 0 THEN s1
ELSE IF P AND q THEN s2
ELSE IF k > 0 OR q THEN s3

ELSE sN

Discriminations

Previous versions of Mesa have required that all adjectives labeling an arm of a
discrimination name identically structured variants; in Mesa 4.0, this restriction is lifted. If,
however, the labels identify more than one variant structure, the record is not considered to
be discriminated within that arm and only the common fields are visible (ef. ENDCASE).

Example

R: TYPE = RECORD [

v: T,
variant: SELECT tag:'" FROM

red, pink => [vRP: T],
green => [yO: T],
yellow => [vY: T].
ENDCASE];

r: R;

WITH x: r SELECT FROM

red, pink => ... ;
green, yellow => ... ;
ENDCASE = > ... ;

x.v and x.vRP accessible
only x.v accessible
only x.v accessible

Mesa 4.0 also allows computed or overlaid variant records to be compared without
discrimination if all variants have the same length. As usual, caution is advised; two records
interpreted as different variants can be represented by the same bit pattern when computed
tags are used.

,Mesa 4.0 Compiler Update 20

Compilation Options

The following compiler options have been added; they are controlled by switches in the
usual way:

Switch Option Controlled

~1to Generating code for an Alto or Dstar

run Terminating compilation by running another program

~ort Sorting global variables and entry indices

The Alto/Dstar switch primarily affects the treatment of long pointers in the object code.

The run switch specifies running another program without returning to the executive. This
switch is primarily intended for use in command files. The file name preceding the switch
specifies the program to be run. The file is assumed to contain a program requiring
standard (Bcpl) microcode if the file name's extension is ".RUN" and requiring Mesa
microcode otherwise. The default extension is ".IMAGE". Prior to execution of the
specified program, a new command file (COM.CM) is constructed containing the full file
name plus any switches following the 'r. In the case of command-line input, the remainder
of the command line is also appended.

The sorting switch has been added in anticipation of tools that will expedite updating a
module in a configuration or subsystem when the new and old versions of the object code
are sufficiently similar. When sorting is suppressed, the assignment of global frame offsets
and entry indices depends only upon order of declaration in the source text; on the other
hand, the generated code is likely to be somewhat less compact.

Sorting of local variables is not suppressed. Unless a module uses global variables
extensively, the object code expansion is unlikely to exceed 7%.

The defaults are to generate code for an Alto, to terminate by returning to the executive. and
to sort global variables and entry points.

Internal Cbanges

The following internal changes are mentioned for completeness; see the Mesa 4.0 System
Update for more information.

Main Body Procedure

The main body of a module is now executed in a separate local frame. Note however. that
any storage required by blocks or local strings in the main body is still allocated in the
global frame.

External Links

External links (for imported procedures, signals or frames) are now stored and indexed
backwards from the global frame base or code base (as selected by a binding/loading
option).

Mesa 4.0 Compiler Update

Alto/ Mesa Microcode

Both the instruction set and the opcode numbers have changed substantially.

Frame Allocation

21

Instructions for allocating and freeing frames are now implemented in microcode; this
greatly inceases the speed of any transfer involving a large argument record.

Distribution:
Mesa Users
Mesa Group

Mesa 4.0 Compiler Update 22

Appendix: Signed and Unsigned Arithmetic

Background and Overview

In any implementation of Mesa, the number of bits available for representing a value of a
given type is fixed. Each numeric type of the language thus is restricted to some sub range
of ~, the set of integers as understood in mathematics. The following types, corresponding
to the indicated subranges, are built into the language:

INTEGER [-2N- l .. 2N- l) "signed integers"

CARDINAL [0 .. 2N) "unsigned integers"

LONG IN.TEGER "double-precision integers"

Here N is the word length of the machine (N:16 for the Alto and Dstar). The programmer
can also declare types that are themselves subranges of CARDINAL or INTEGER (but not LONG
INTEGER), e.g., T: TYPE = [0 .. 10).

Let v, x, and y be variables with numeric subrange types. In principle, execution of the
assignment v +- x e y proceeds as follows:

The values of x and yare taken as elements of Z.

Those values are combined using some function f that defines the operator e over Z
and produces a result j(x,y), also in Z.

If the result is in the sub range of ~ spanned by the type of v, f(x,y) is assigned to v;
otherwise a range failure occurs.

Unfortunately, the underlying hardware does not provide the function f but only a partial
function f' over some subrange of ~ with the property that f' agrees with f wherever both
are defined; f' is said to over flow (or under flow) elsewhere. In fact, the hardware generally
provides a family of partial functions related to f, one each for INTEGER, CARDINAL, and LONG
INTEGER. The operator e thus is generic at the hardware level, and the compiler must choose
the appropriate partial function for preserving the abstraction being used by the
programmer (or for detecting its breakdown). The choice is made by considering an
attribute of each operand called its representation.

If the type of any operand is LONG INTEGER, the rule is simple: all other operands are
converted to LONG INTEGER and the result is computed in that domain. For INTEGERS (with
signed representation), CARDINALS (with unsigned representation) and subrange types such as
T (with both representations), the issues are more subtle. Some Gperators, such as the
relationals, are clearly generic and were recognized as such in previous versions of Mesa.
Many other operators produce the correct result modulo 2N (Le., the "right" bit pattern) no
matter what representation is assumed; the representation affects only the definition of
overflow .

. Examples (N=16)

The bit patterns representing -1 and 177777B are identical, but (177777B > 1) is
TRUE while (-1 > 1) is FALSE. Also, (-1 + 1) : 0 and there is no overflow. but
(177777B + 1) cannot be represented as an unsigned number.

In a critique of Mesa [Wirth], Niklaus Wirth has argued strongly that the language should
be defined so that the overflow condition can always be specified. Note that this is a
necessary condition for implementing reliable range checking (also advocated by Wirth) but

Mesa 4.0 Compiler Update 23

not a sufficient one. Mesa 4.0 does not provide options for overflow detection or range
checking but does revise the language definition so that future versions can offer such
options.

While we have found no rules for mixing signed and unsigned values that are entirely
satisfactory, we believe that those presented in the following section are reasonably
unobtrusive, compatible with existing code and relatively free of surprises.

Signed and Unsigned Numbers

This section discusses the rules now used by Mesa for choosing between signed and unsigned
versions of operations on single-precision numbers. The new rules assume that there are
conversion functions performing the following mappings:

CARDINAL -+ INTEGER

INTEGER -+ CARDINAL •

In both cases, the "conversion" amounts to an assertion that the argument is an element of
INTEGER n CARDINAL. The programmer can also make such a range assertion explicit as
described in the main body of this memo. In Mesa 4.0, such assertions must be verified by
the programmer. There is not an option to generate code that checks these assertions.
whether implicit or explicit. or code that detects overflow in arithmetic operations.

For each of the operators +. -•• , I, MOD, MIN, and MAX, there are two single-precision
operations, m~pping as follows:

INTEGERn -+ INTEGER (signed arithmetic)

CARDINAL n -+ CARDINAL (unsigned arithmetic).

Similarly, there are two operations for each of the operators -, #, <. <=, >. >= and IN:

INTEGERn -+ BOOLEAN (signed comparisons)

CARDINAL n -+ BOOLEAN (unsigned comparisons).

There are no operations upon mixed representations in any case; thus all operands must be
forced to have some common representation. The arithmetic operators also propagate that
same representation to the result

A possible surprise is that CARDINAL is taken to be closed under subtraction; i.e., m-n
is considered to overflow if m and n are CARDINALS and m < n •

.
For any arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned operations
(cf. the discussion of inherent and target types, Section 3.1, pages 37-39).

The target type determines the target representation. The target type is derived from
the type of the variable to which an expression is to be assigned, from a range
assertion applied to a subexpression, etc. If all valid values of the target' type are
nonnegative, the target representation is unsigned: otherwise, it is signed. The
arithmetic operators listed above propagate target representations unchanged to their
operands, but the target representation of an operand of a relational operator is
undefined. Thus each (sub)expression has at most one target representation.

The inherent representation of a primary is determined by its type (if a variable,
function call, etc.), by its value (if a compile-time constant), or explicitly (if a range
assertion). Possible inherent representations are signed and unsigned; in addition.

Mesa 4.0 Compiler Update 24

compile-time constants in [0 .. 2N- l) and primaries with types that are subranges of
INTEGER n CARDINAL are considered to have both inherent representations. Inherent
representations of operands are propagated to results as described below.

The basic idea is that generic operations are disambiguated first by the inherent
representations of their operands, next by the target representation, and finally by a default
convention. If the operation cannot be disambiguated in any of these ways, the expression is
considered to be in error. The exact rules follow:

If the operands have exactly one common inherent representation, the operation
defined for that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target
representation is well-defined, the operation yielding that representation is chosen,
and each operand is "converted" to that representation (in the weak sense discussed
above).

If the operands have both inherent representations in common, then
if the target representation is well-defined it selects the operation;
otherwise the signed operation is chosen.

If the operands have no representation in common and the target representation is
ill-defined, the expression is in error. --

In all cases, the inherent representation of the result is determined by the mapping
performed by the selected operation. -

The unary operators require special treatment. Unary minus converts its argument to a
signed representation if necessary and produces a signed result. ABS is a null operation (with
warning message) on an operand with an unsigned representation. and it yields an unsigned
representation in any case. The target representation for the operand of LONG (or of an
implied widening operation) is unsigned.

Examples

Assume the following declarations:

i. j: INTEGER; m. n: CARDINAL; s, t: [0 .. 77777B]; b: BOOLEAN

The statements on each of the following lines are equivalent.

i ... m+n; i'" INTEGER[m+n] unsigned addition

i ... j+n; i'" n+j; i'" j+INTEGER[n] signed addition

i ... s+t; i'" INTEGER[S]+INTEGER[t] signed (overflow possible)

n ... S+t; n'" CARDINAL[S]+CARDINAL[t] unsigned (overflow impossible)

S ... s-t; s ... CARDINAL[S]-CARDINAL[t] unsigned (overflow possible)

b ... s-t > 0; b'" INTEGER[S]-INTEGER[t] > 0 signed (overflow impossible)

i ... -m; i'" -INTEGER[m]

... m+n*(j+n); i'" INTEGER[m] + (INTEGER[n]*(j+INTEGER[n]»

n ... m+n*(j+n): n'" m + (n*(CARDINAL[j]+n»

Mesa 4.0 Compiler Update 25

i ... m+n*(s+n); i'" INTEGER[m+(n*(CARDINAL[S]+n»]

b ... s IN [t-l .. t+ 1]; b'" INTEGER[S] IN [lNTEGER[t-l] .. INTEGER[t+ 1]]

FOR S IN [t-l .. t+l] ... ; FOR S IN [CARDINAL[t-l] .. CARDINAL[t+l]] ...

The following statements are incorrect because of representational ambiguities.

b ... i > n; b'" i+n IN [s .. j]

SELECT i FROM m = > ... ; t = > ... ; ENDCASE

Both the following are legal and assign the same bit pattern to i, but the first overflows if
m<n. .

i ... m-n; t... IF m >= n THEN m-n ELSE -(n-m) •

Reference

Wirth, N. On the peaceful coexistence of integers and cardinals, Xerox PARC, 29 June
1977.

