
Inter-Office Memorandum

To Mesa Users Date May 31, 1978

From Roy Levin Location Palo Alto

Subject Mesa 4.0 Microcode Update Organization CSL

XEROX

Filed on: [IRIS]<MESA)DOC)MICROCODE40.BRAVO

This memo outlines the differences in the (Alto) Mesa microcode for release 4.0. The DIS
Processor Principles of Operation [1] ("PrincOps") is scheduled to be revised soon, and
some of the changes indicated below will be incorporated in that revision. Others are
peculiar to the Alto implementation of Mesa and are indicated as, such. This document is
only a summary of the changes in Mesa 4.0; additional details may be found in the
references cited at the end of this memo.

Definitions of New Notions

Two new instruction properties have been introduced in the Mesa 4.0 instruction set:

Alignment

An aligned I-byte instruction must be the last significant byte in the word. Thus, if an
aligned, I-byte instruction appears in an even byte position, the microcode will ignore
the contents of the odd byte in the same word. An aligned 2-byte instruction must
have both bytes in the same memory word. An aligned 3-byte instruction consists of
an aligned I-byte opcode followed by a word containing the a and f3 bytes. In this
case, the a byte must be in the odd byte of the word following the opcode. In the 2-byte
case, padding is accomplished by use of the new instruction NOOP, which is discussed below.

Minimal stack

A minimal stack instruction expects its operands to be the only quantities on the stack,
and leaves the stack empty, except for any results it explicitly supplies.

These properties are peculiar to the Alto implementation of Mesa and will not be included
in the revision of the PrincOps.

Changes to the Instruction Set

Many of the changes in the Mesa 4.0 microcode bring the instruction set closer to the
PrincOps. In some cases, however, constraints imposed by the Alto architecture have
prevented an exact emulation of the PrincOps semantics. The following sections define the
differences between the Mesa 3.0 and 4.0 instruction sets, and relate those differences to the
PrincOps.

,Mesa 4.0 Microcode Update

Mesa 3.0 bytecodes not present in Mesa 4.0

LGS, SGS, LLS, SLS
LGDS, SGDS, LLDS, SLDS
WSDS

2

Space constraints in the Alto implementation have forced the elimination of these
bytecodes.

ADDL, ADDG
These instructions have been superseded by the PrincOps instructions LADRB and
GADRB (see below).

RXLO-3, WXLO
RIGO-3, WIGO, WILO

These instructions have been superseded by the PrincOps instructions RXLP, WXLP,
RIGP, RILP, and WILP (see below). Note that RILO has been retained, because of its
high static frequency.

RILl-3

Space constraints in the Alto implementation have forced the elimination of these
bytecodes. They will, however, remain in the PrincOps when it is revised. Note that
RILO has been retained in the Alto implementation.

Jumps
Mesa 4.0·has adopted byte distances for specifying jump targets. As a result, the even
and odd byte forms of the Mesa 3.0 jump instructions have been eliminated, and the
entire set of jumps revised to conform almost completely to the PrincOps. JIB and
JIW are the only Mesa 3.0 jumps that have been retained, though their semantics have
been modified to agree with the notion of byte distances. Details appear below.

GFCO-15, GFCB
The GFCn instructions have been uniformly replaced with EFCn instructions, which
have similar semantics but support destination links in either the global frame or the
code segment. This substitution will occur in the revision of the PrincOps as well.

CVT
Space constraints in the Alto implementation have forced the elimination of CVT.

BLK
The Mesa 4.0 process machinery makes BLK obsolete, and it has been eliminated. It
will be eliminated in the revision of the PrincOps as well.

Mesa 4.0 bytecodes not present in Mesa 3.0

NOOP
•

Introduced to accommodate alignment requirements of the Alto implementation.
NOOP will not be incorporated in the PrincOps revision. See the section on
"Interrupts" for additional requirements affecting the execution of NOOP. Note: this
opcode is meaningful only when it appears in the odd byte of a word.

LADRB, GADRB

Mesa 4.0 Microcode Update 3

Behave as described in [1], except:
Both are qligned instructions.

This difference will not be included in the PrincOps revision.

ADDOI
Identical to ADD as described in [1], except:

ADDOl is a minimal stack instruction, assuming precisely 2 elements on the stack.
It is possible that ADD01 will be included in the PrincOps revision.

DADD, DSUB, DCOMP
DADD and DSUB behave as described in [1], except:

Both require minimal stack.
No carry bit is left on stack above stack pointer.

DCOMP expects two double precision values on the stack. Call them A and B.
DCOMP performs: Sign[DSUB[A,B]]. Sign(x) = {-I if x(O, 0 if x=O, +1 if x)O}. The
(single precision) result of the Sign is left on the stack. DCOMP has a minimal stack
requirement. DCOMP will probably be included in the PrincOps revision.

RXLP, WXLP
RILP, RIGP, WILP

Behave exactly as described in [1].

RFS, WFS
RFC

RFS and WFS are aligned, 1-byte instructions that expect the top word of the stack to
be an <a, p> pair, with a in the left byte. RFS and WFS pop this word from the
stack, then behave exactly like RF and WF, respectively, using the a and p values
obtained from the stack word.
RFC is an aligned, 3-byte instruction that is identical to RF in all respects except that
the code base register, C, is added to the computed address before the field is accessed.
All of these instructions use a new field descriptor format, which is described in the
following section under RF, WF, and WFS. All of these instructions will be included
in the PrincOps revision.

J2-J9, JB, JW
Behave as described in [1], except:

JB and JW are aligned instructions.
All jump distances are signed values, measured from the last byte of the jump

instruction instead of the first (as in the PrincOps).
These differences will not be included in the PrincOps revision.

JEQ2-9, JEQB
JNE2-9, JNEB

Behave as described in [1], except:
JEQB and JNEB are aligned instructions.
All jump targets are signed, PC-relative distances in bytes, measured from the

last byte of the jump instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

.Mesa 4.0 Microcode Update

JLB, JGEB, JGB, JLEB
JULB, JUGEB, JUGB, JULEB
JZEQB, JZNEB

Behave as described in [1], except:
All are aligned instructions.

4

All jump targets are signed, PC-relative distances in bytes, measured from the
last byte of the jump instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

DESCB, DESCBS
Behave ,as described in [1], except:

Both are aligned instructions.
The result left on the stack is (gfiword " 177B)+2*a+1, where gfiword is word 0
of the global frame used by the instruction (see the section on "Global Frame
Formdt", below).

The difference in the result produced by these instructions will be included in the
PrincOps revision.

EFCO-15, EFCB
LLKB

EFCO-15 and EFCB replace the GFCO-15 and GFCB instructions of Mesa 3.0. EFCn
behaves identically to GFCn except in the way the destination link is determined. To
locate the destination link, the microcode examines the low-order bit of the gfi word
(word 0) of the global frame. If this bit is 0, the destination link is taken from
location G-n-!, where G is the address of the current global frame. If the bit is 1, the
destination link is taken from location C-n-1, where C is the address of the current
code segment. EFCO-15 and EFCB will preplace GFCO-15 and GFCB in the PrincOps
revision.
LLKB is an aligned, 2-byte instruction that computes a destination link in the same
way that EFCB does. Instead of using it as the destination of an Xfer, however, LLKB
simply pushes the destination link on the stack, and performs no additional actions
upon it. LLKB, with the alignment requirement dropped, will be included in the
PrincOps revision.

ME, MRE, MXW, MXD, NOTIFY, BCAST, REQUEUE
These are process-related opcodes, and are described separately below. All will be
included in the PrincOps revision.

Bytecodes whose semantics have changed from Mesa 3.0 to Mesa 4.0

LGOB, SGDB, LLOB, SLOB
LIW

Identical to Mesa 3.0, except:
All are aligned instructions.

This difference will not be included in the PrincOps revision.

JIB,- JIW
Identical to Mesa 3.0, except:

Both are aligned instructions.
The jump target for JIB is an unsigned distance in bytes, measured from the last

byte of the Jl B instructil?11 instead of the first (as in the PrincOps).

,Mesa 4.0 Microcode Update 5

The jump target for JIW is a signed distance in bytes, measured from the last
byte of the JIW instruction instead of the first (as in the PrincOps).

These differences will not be included in the PrincOps revision.

ROB, WOB
WSB, WSDB

Identical to Mesa 3.0, except:
All are aligned instructions.

This difference will not be included in the PrincOps revision.

RSTR, WSTR

Identical to Mesa 3.0, except:
All are aligned instructions.

This difference will not be included in the PrincOps revision.

RF, WF, WSF
Identical to Mesa 3.0, except:

All are aligned instructions.
Field descriptor in f3 byte is <p,s>, where p = bits to the left of desired field and

s = bits in field minus 1.
The difference in field descriptor format will be included in the PrincOps revision.

BITBLT

Identical. to Mesa 3.0, except:
BITBLT is an aligned instruction.
BITBLT is a minimal stack, 2-argument instruction.
The first argument to BIT BLT is unchanged from Mesa 3.0; the second is a word

containing the value zero.
BITBLT may be interrupted and subsequently restarted.

These differences are not relevant to the PrincOps revision.

OST, LST, LSTF
Identical to Mesa 3.0, except:

All are aligned instructions.
Only the active portion of the stack is saved or loaded (including 2 words above

the top of the stack).
Except for the alignment requirement, these differences will be included in the
PrincOps revision.

RR, WR

All a byte interpretations have changed - see the section on Trap Handlers and
Parameters, below.

These differences will not be included in the PrincOps revision.

Process Instructions and the Mesa/Nova Interface [4]

Entry points to the Mesa emulator

Three entry points are defined. Control is transferred to these entry points by means of the
Nova JMPRAM instruction. The addresses of these entry points are unchanged from Mesa
3.0, but some of the necessary conditions at entry are different.

Mesa 4.0 Microcode Update

a) Entry point 'Mgo' (location 420B): Nova ACO must contain the address of a
process state vector. The emulator will load the process state from this
address, then perform a control transfer using the destination link at
<ACO>+l1B and source link at <ACO>+12B.

b) Entry point 'Minterpret' (location 400B): Mesa emulation continues using the
current state in the emulator's internal registers. It is the responsibility of the
invoker to ensure that the proper process state has been loaded.

c) Entry point 'SWRET' (location 777B): Used only when the Mesa emulator
resides in ROML See Alto Hardware Manual, section 9.2.4.

Exits to 'Nova code

6

The Mesa emulator may cease execution and transfer control to the Nova emulator for one
of two reasons:

1) A pending interrupt must be serviced.

2) A bytecode whose actions are implemented by Nova code has been interpreted.

In both cases the Nova program counter is set to a fixed value (in page 0) before control is
passed to the Nova emulator. (In the second case, the PC value is different for each distinct
bytecode.) In addition, the following conditions hold:

a) Any parameters expected by the Nova code appear in consecutive ACs
beginning with ACO. Any Nova accumulator whose content is not explicitly
supplied by the microcode will have undefined contents. In particular, no
parameters are passed for a case 1 exit (pending interrupts). The microcode
does not interpret the values transferred to the Nova ACs.

b) The state of the current process has been dumped to a process state vector
whose starting address is stored in main memory at location 'CurrentState'
(location 23B).

c) Unless a pending interrupt is being serviced (case 1), Nova interrupts have
been disabled.

d) Any results generated by the Nova code must be transferred to the saved
process state vector before the Mesa emulator is restarted. The emulator
supplies no explicit mechanism to the Nova code for returning results.

Nova dispatch vector

When the Nova emulator receives control, the PC reflects the intended action to be
performed. The Mesa emulator uses a ,dispatch vector beginning at 'NovaDVloc' (location
25B), and indexes it by the particular action required. The entries in the dispatch vector
may be any Nova instructions, but in most cases will be a JMP to a Nova program that
implements the desired semantics. The particular indices and relevant parameters passed are
given by the following table:

Mesa 4.0 Microcode Update 7

Index Action Parameters

0 interrupt none
1 STOP none

2-3 unused
4 ME ACO
5 MRE ACO, ACl
6 MXW ACO, AC1, AC2
7 MXD ACO

lOB NOTIFY ACO
11B BCAST ACO
12B REQUEUE ACO, AC1, AC2

Global Frame Format

The global frame overhead has been reduced to 3 words, which have the following contents:

<0>+0 bits 0-8 contain the OFI,
bits 9-14 are used by software,
bit 15 is the frame links/code links indicator.

<0>+1 is the code base (odd => swapped out, even => address of code segment).

<0>+2 not used by Mesa emulator microcode.

Xfer Traps

A mechanism to implement trapping of control transfers has been implemented in Mesa 4.0.
It is described in detail in a separate document [8].

Interrupts

After any Xfer, regardless of the cause, the Mesa emulator guarantees that at least one
"useful" instruction will be executed. "Useful" means an instruction which is not a NOOP.
In Mesa 3.0, no padding instructions were necessary and thus every instruction was
considered "useful". In Mesa 4.0 this. is no longer true, and this guarantee is needed to
preserve certain properties within trap handlers (see below).

Trap Handlers and Parameters [7]

Mesa 4.0 trap handlers obtain their arguments by means of the RR and WR instructions.
Four internal registers have been assigned for trap parameters:

XTSreg:
XTPreg:
ATPreg:
OTPreg:

holds Xfer trap state (see [8]).
holds Xfer trap parameters (see [8]).
holds allocation trap parameter.
holds parameters for all other traps.

Thus, Xfer traps use XTSreg and XTPreg, allocation traps use ATPreg, and code-swapped­
out and unbound procedure traps use OTPreg.

An additional constraint on trap handlers is that they cannot assume that interrupts have
been disabled by the microcode (this was true for some trap handlers in Mesa 3.0).
However, the microcode continues to guarantee that one instruction following a trap will be

,Mesa 4.0 Microcode Update 8

executed before any interrupts are taken. Therefore, if an IWDC instruction is the first
instruction of a trap handler, no interrupts will occur before the trap handler has had the
opportunity to obtain its parameter(s).

As a result of these changes, the a byte interpretations of RR and WR have been redefined.
The new meanings are:

a

1
2
3
4
5
6
7

RR

woe
XTSreg
XTPreg
ATPreg
OTPreg
clock
code-base

WR

woe
XTSreg

(see below)

The clock value returned by RR6 is the low-order 16 bits of the Alto clock, regardless of the
model. Thus the format of this value will be different on the Alto I and Alto II.

Stack overflow and underflow are reported by the same trap mechanism used in Mesa 3.0,
but may not occur immediately after the instruction that caused the stack error. However,
the trap will occur before or during the next instruction that either manipulates the stack or
terminates a straight-line execution sequence.

AV, SD, and GFT

The addresses of these tables were stored in internal registers by the Mesa 3.0 emulator and
could be accessed and modified by RR and WR. In Mesa 4.0, fixed locations have been
established for each of these tables, as follows:

References

AV 1000B
so 1060B
GFT 14008

[1] Thacker, Chuck. OIS Processor Principles of Operation. Version 2.0, April 9, 1977.

[2] Levin, Roy. Comparison of Old and New Alto/Mesa Microcode. November 4, 1977.
Filed on [Maxc]<Levin)UCodeComparison.bravo.

[3] Levin, Roy. Extensions to Alto/Mes;} Microcode. November 7, 1977. Filed on
[Maxc] <Levin) UCodeExtensions.bravo.

[4] Levin, Roy. Mesa/Nova Interface.
[Maxc]<Levin>MesaNovalnterface.bravo.

November 15, 1977. Filed on

[5] Levin, Roy. Incompatibilities in Alto/Mesa microcode, version 24. November 23,
1977. Filed on [Maxc]<Levin)Incompatibilities24.bravo.

[6] Levin, Roy. Extensions to Alto/Mesa Microcode for version 26. December 5, 1977.
Filed on [Maxc]<Levin>UCodeExtensions26.bravo. .

Mesa 4.0 Microcode Update 9

[7] Wick, John. Mesa 4.0 microcode (loose ends). March 14, 1978. Filed on
[Maxc J <Wick) MICR040.bravo.

[8J Levin, Roy. A Mechanism for Monitoring Transfers of Control in (Alto) Mesa.
March 29, 1978. Filed on [Ivy]<Levin)Mesa40)XferTrap.bravo.

Distribution
Mesa Users
Mesa Group

c: Belleville
Charnley
Lampson
Thacker

