
Mesa System Documentation

Version 4.0
May 1978

This document describes configurations of the. Alto/Mesa system software ,l~d the
individual components which comprise them. : .These components include r-unt¥ne support
for the language, routines for manipulating ,the Alto display, keyboar4 aQPfile system,: ':'"
facilities for loading client programs and building new systems, and a number of useful
common software packages.

XEROX
SYSTEM DEVELOPMENT DIVISION
3408 Hillview Avenue I Palo Alto / California 94304

This document' h~. for internaf Xerox" use only:.'

Preface

May 1978

This document describes configurations of the Alto/Mesa system software and the individual
components which comprise them. These components include runtime support for the language,
routines for manipulating the Alto display. keyboard, and file system, facilities for loading client
programs and building new systems, and a number of useful common software packages.

Suggestions as to the form, correctness, and understandability of this material should be funneled
through your support group. All of us involved in the development of Mesa welcome feedback
and suggestions on both the language and the system and debugging environment.

,'\

:i:

. . ~ ,

l\1esa System Documentation 2

1. Overview

The Mesa environment contains all of the facilities described in this document. Section 2
contains an enumeration of the definitions modules available in the Alto/Mesa system; it
includes a brief description of the facilities provided by each interface. Complete documentation
can be found in Section 5. .

Section 3 describes the various configurations and optional packages that comprise the Alto/Mesa
system. Two configurations of the system are available: the standard one, which includes most of
the facilities described here, and a more basic one, containing only required runtime and file
system support (it contains no display or keyboard software, for example). A number of optional
packages are available for use with the basic system, so that the Mesa system can be tailored to
each application.

The Mesa Executive (Section 4) is a simple (and small) user interface supporting only a few
commands. It allows only program loading, state saving, and debugger communication; more
complicated operations must be provided by the user or by one of the standard packages that is
available separately. The Mesa Executive also supports command line input in both the standard
and the basic system; this allows the user interface to be completely controlled by the application.

Finally. the bulk of this manual (Section 5) contains detailed descriptions of each of the packages
summarized in Section 2.

Further details are available elsewhere on the language (Mesa Language Manual) and the
debugger (Mesa Debugger Documentation). Information on obtaining and running the system is
contained in the Mesa User's Handbook.

i'

I, , ,

I ~ • ~ ••

i
q

, "
- I
"I

"J
-;;1, ,

" , ,'.

. ~' .:

,Mesa System Documentation ..

2. Definitions and Interfaces

3

The following list enumerates the public system modules of interest to Alto/Mesa programmers.
The interface name is followed by the title of the section of this document (or other reference
material) which describes the facilities the interface provides. The parenthesized names
following the DEFINITIONS module identify the programs which implement that interface -- the
ultimate docuJllentation after all.

ALLOCDEFS (SWAPPER) Segment Package . .
Low level memory allocation functions are defined here. Complete control of segment allocation
and swapping can be obtained using this interface.

ALTODEFS (Hardware) Mesa Language Manual

Contains a number of machine dependent constants describing physical characteristics of the
Alto and its basic data types (bits per character, characters per word, etc.).

AL TOFILEDEFS (BCPL) Alto Operating System Reference Manual

Defines the data structures (but not the operations) used in manipulating the Alto file system.
Note that these structures are shared by several software systems running on the Alto.

BITBLTDEFS (Hardware) Alto: A Personal Computer System; Hardware Manual

Provides a Mesa definition of the hardware BitBlt (bit boundary block transfer) operation.

DIRECTORYDEFS (DIRECTORY) Directory Package

Common operations on the Alto's file directory are defined here; they are all based on a single
primitive which enumerates entries in the directory.

DISPLAYDEFS (SYSTEMDISPLAY, DISPLAYCONTROL) Display Package

Provides device-dependent operations for the display. Simple operations are implemented using
the standard stream interface (see STREAMDEFS).

DOUBLEDEFS (DOUBLE) Miscellaneous

Contains a complete set of procedures for operating on long (double precision) CARDINALS (see
also INLINEDEFS).

FONTDEFS (ALFONT) Display Package

Defines a uniform interface for all font formats. It includes facilities for dynamically swapping
font files.

FRAMEDEFS (NONRESIDENT, SWAPPER) Modules

Provides low level operations on modules and their runtime representation (global frames). It
includes facilities for controlling residency of a module's code segment.

»
, >

'.

'!J, 't!,> .j
'. -~

,,1<

"

_ ,Mesa System Documentation 4

FSPDEFS (FSP) Storage Management

This memory allocation package provides temporary storage for small, transient data structures
whose size is not known at compile time.

IMAGEDEFS (MAKEIMAGE) Image Files

Image files are used to save the state of a computation so that it can be restarted later (perhaps in
a different environment). Different types of image files can be created using the procedures
defined in this interface; each type makes different assumptions about the state of the
environment when it is restarted.

INLINEDEFS (lNLlNEDEFS) Miscellaneous

Defines a set of instructions not accessible at the language level. Logical operations and some
extended precision arithmetic is included (see also DOUBLEDEFS).

IODEFS (STREAMIO) StreamIO Package

A simple Teletype style I/O interface is provided by these procedures. Minimal editing and
input and output conversion routines are included.

KEYDEFS (KEYBOARD, KEYSTREAMS) Keyboard Package

Provides device-dependent operations for the keyboard, keyset, and mouse. Simple operations
are implemented using the standard stream interface (see STREAMDEFS).

LOADERDEFS (LOADER) Modules

Contains a procedure for unloading a configuration from a running Mesa system, in a way that it
can be optionally loaded again later.

MISCDEFS (MISCELLANEOUS) Miscellaneous

A set of miscellaneous but useful procedures that don't obviously belong in any of the other
interfaces.

MOPCODES (Hardware) OIS Processor Principles of Operation

Defines the opcode numbers used by the Mesa instruction set. It is useful when inline procedures
need to be defined to obtain access to machine facilities not available in the language.

OSSTATICDEFS (BCPL) Alto Operating System Reference Manual

Defines information available through the Alto Operating System Swat resident.

PROCESSDEFS (PROCESS) Processes and Monitors

Includes a number of extensions to the language facilities for processes, monitors, and condition
variables. Priorities and timeouts can be adjusted, and processes can be detached and aborted.

REALDEFS (not implemented) Miscellaneous

Defines the procedure calls generated by the compiler for operating on REAL data types. (Mesa
does not provide an implementation of this interface.)

~. -;
" ;

;,'

;;
.. '

'. "

, ':.

"
I'

.., J\1esa System Documentation 5

SEGMENTDEFS (SEGMENTS, FILES, SWAPPER) Segment and File Packages

Operations on data and file segments are contained here; this includes virtual memory
management and swapping. Basic operations on files and their attributes are also included.

STREAMDEFS (DISPLAY, KEYSTREAMS, STREAMS) Disk, Display, Keyboard, and Streams Packages

Defines the operations common to all streams. It also includes some device-dependent
operations unique to the disk, keyboard, and display.

STRINGDEFS (STRINGS) String Package

A utility package for copying, comparing, and converting strings and substrings.

SYSTEMDEFS (FSP, SEGMENTS) Storage Management

Provides a simplified interface to the segment and free storage package for allocating and
releasing temporary storage.

TIMEDEFS (TIMECONVERT) Time Package

Includes a number of procedures for converting between internal (32 bit GMT), intermediate
(unpacked record) and external (string) time formats.

TRAPDEFS (RESIDENT, NONRESIDENT) Traps

Defines the runtime implementation of traps generated by the hardware and software.

• . Mesa System Documentation 6

•• I,

3. System Organization

Mesa systems are available in both standard and basic configurations. The former is intended
for the day to day operation of most program developers, who do not want to provide a large
amount of software in order to perform simple tasks. On the other hand, the basic system is
intended for clients who are building complete applications from the ground up, and wish to
replace many. of the standard facilities their own versions. Several optional packages are
available for augmenting the capabilities of the the standard and basic systems in various
directions, and we hope that many more will be added. . .

Standard System

Except for the optional packages listed below, the standard Mesa system (MESA.lMAGE) includes all
the facilities described in this document. In addition to the interfaces described in the previous
section, it includes a simple user interface called the Mesa Executive; the commands it accepts
are described in Section 4.

Basic System

The basic system (BASICMESA.IMAGE) includes the following facilities: runtime support for the
language: SIGNALLER, RESIDENT, NONRESIDENT; modules used to access files on the disk: SEGMENTS,

FILES, SWAPPER, DISKIO, DISKKD, BFS, STREAMS, DIRECTORY; the process package (PROCESS). the string
package (STRINGS), and the free storage package (FSP); the loader and its associated modules; a
debugger interface; and a nub of the Mesa Executive. The are no facilities for using the display
or keyboard in the basic system, nor are there any of the modules associated with making image
files. These and other packages are available as separate configurations (see below).

Optional Packages

To assist in tailoring applications built using the basic system, some facilities are optional and
packaged separately. The configurations marked as standard are included in the standard Mesa
system; the others may be loaded optionally. None of these packages are part of the basic system;
they must be included in the user's configuration (or otherwise loaded) if they are needed.

CHECKPOINT

Implements check files (Image Files).

DISPLA YPACKAGE (STANDARD)

Implements the display and font procedures. An instance of STREAMIO is also included (Display
Package).

I,"

I,' l .
I,' !.

: ,

"1

l\1esa System Documentation 7

IMAGE MAKER (STANDARD)

Implements image files (Image Files).

IMAGERUNNER

Implements image file loading (Image Files).

UNNEWCONFIG

Implements unloading of configurations (Modules).

WINDOWPACKAGE

Implements rectangles, display streams, fonts, windows, menus, and selections. An instance of
STREAMIO is also included. This package is no longer supported (Window Package).

'" .. ,
,I
I'

:<\ I !

;,
'I

" 'I:

"
,,(',

'It
.,!

: "I:, :;1;: ,

)\1esa System Documentation 8

4. Mesa Executive

The Mesa Executive serves as the user interface for the standard Mesa system. It provides
facilities for loading and starting Mesa programs, and for saving the state of a system in an
image file; it is also the primary interface between your program and the Mesa debugger. The
Mesa Executive has five commands, each identified by their first letter: New, Start, Debug,
Makelmage, and Quit. The commands are discussed in detail below.

New [filename]

Performs a NEW on the configuration (or module) filename, loading it into the system. If
no extension is supplied, " . bed" is assumed. The global frame of the control module of
the configuration is returned, but it is not started. If the configuration contains no
control module, zero is returned.

Start [frame]

Performs a START on frame (specified in octal). Note that module parameters can not be
supplied. Typing ESC in place of frame starts the frame returned by the last New
command.

Debug [confirm]

Invokes the Mesa Debugger. Typing tSWAT at any point during execution of a Mesa
program also invokes the Debugger. In addition, tSHIFT-SWAT attempts to invoke Swat.

Makelmage [filename]

Saves the current state of the system (including any programs that have been loaded) on
the image file filename. If no extension is supplied, ". i mag e" is assumed. The section
on Image Files contains further details on the Makelmage command.

Quit [confirm]

Exits the Mesa environment, cleaning up its state, and returns to the Alto Executive.
Typing SHIFT-SWAT at any point during execution also attempts to abort the computation
and return to the Alto Executive.

The Mesa Executive keeps a typescript of these commands (and all data sent to the standard
output stream) on the file MESA. TYPESCRIPT; it can be used as a log of your Mesa session.

Most of the above commands can be specified on the command line used to invoke Mesa (and
some are valid for BasicMesa, as well). See the Mesa User's Handbook for further details.

,Mesa System Documentation 9

5. System Facilities

The material which follows is divided into several subsections, each of which describes a more or
less logically disjoint subset of the system. The subsections are listed below, and follow this
section in alphabetical order. The relevant DEFINITIONS modules, which clients will want to
reference, are named in parentheses below, as well as in the subsections which follow.

Directory Package (DIRECTORYDEFS)

Disk Streams Package (STREAMDEFS)

Display' Package (DISPLAYDEFS, FONTDEFS, STREAMDEFS)

File Package (AL TODEFS, AL TOFILEDEFS, SEGMENTDEFS)

Image Files (IMAGEDEFS)

Keyboard Package (KEYDEFS, STREAMDEFS)

Miscellaneous (DOUBLEDEFS, INLINEDEFS, MISCDEFS)

Modules (FRAMEDEFS, LOADERDEFS)

Processes and Monitors (PROCESSDEFS)

Segment Package (ALLOCDEFS, SEGMENTDEFS)

Storage Management (FSPDEFS, SYSTEMDEFS)

StreamIO Package (lODEFS)

Streams (STREAMDEFS)

String Package (AL TODEFS, STRINGDEFS)

Time Package (TIMEDEFS)

Traps (TRAPDEFS)

Window Package (MENUDEFS, RECT ANGLEDEFS, WINDOWDEFS)

" ,

Alto/Mesa Directory Package

Alto/Mesa Directory Package

May 1978

10

The Mesa directory package provides a number of procedures to manipulate the Alto directory
(SysDir). (See DIRECTORYDEFS.) Currently, these routines do not support either sub-directories or
file version numbers. This section depends heavily on the section on Files, and that section
should be read before this. (See Alto Operating System Reference Manual for file structure
details.)

The simplest operation provided is to enumerate all of the file entries in the directory:

EnumerateDirectory: PROCEDURE [proc: PROCEDURE [POINTER TO FP, STRING] RETURNS [BOOLEAN]];

Calls proc once for each filename in the directory, passing it pointers to the file's FP and
name. Processing terminates when proc returns TRUE or the end of the directory is
reached.

Fine point: these parameters are local to the enumeration procedure and must be copied if they are to be
retained after the enumeration completes.

The following procedures may be of use to programmers implementing features beyond those
provided by NewFile and DestroyFile.

DirectoryLookup: PROCEDURE [fp: POINTER TO FP, name: STRING, create: BOOLEAN]

RETURNS [old: BOOLEAN];

Looks up name in the directory. If an entry already exists, its file pointer is copied into
fp and TRUE is returned, otherwise FALSE is returned. In addition, if create is TRUE, the file
will be created (with one empty data page), and the new file pointer will be copied into
fp.

DirectoryLookupFP: PROCEDURE [fp: POINTER TO FP, name: STRING] RETURNS [old: BOOLEAN];

Similar to DirectoryLookup, except that the directory is searched for a matching FP. It
returns TRUE if the file pointer was found. In addition it will supply the filename if
name is not NIL.

DirectorYPurge: PROCEDURE [fp: POINTER TO FP, name: STRING] RETURNS [found: BOOLEAN];

Removes the entry corresponding to name from the directory (it does not disturb the file
pages pointed to by the FP, however). If the file is found, its file pointer is copied into
fp and TRUE is returned, otherwise FALSE is returned.

DirectoryPurgeFP: PROCEDURE [fp: POINTER TO FP] RETURNS [found: BOOLEAN];

Sim Har to DirectoryPurge, except that the directory is searched for a matching FP. It
returns TRUE if the file pointer was found, deleting the entry in the process. Perhaps it
should also copy the file's name into a supplied parameter?

: !

Altol Mesa Disk Streams Package

Alto/Mesa Disk Streams Package

May 1978

11

A disk stream (see STREAMDEFS) is an array-like representation of a disk file. Parts of the file
may reside in memory from time to time at the convenience of the stream. Like most arrays, a
stream has a length; unlike array variables, the length of a stream may be changed by appending
to it, and the maximum length is very large. Disk streams are created by the procedures:

NewByteStream, NewWordStream: PROCEDURE [name: STRING, access: AccessOptions]
RETURNS [DiskHandle];

A FileHandle for the file name is created with the given access and DefaultVersion. It is locked
and opened, and a byte or word stream is attached to it. If access is Append only, the stream is
positioned at the end of the file, otherwise at the beginning. If access is DefaultAccess, Read is
assumed. If a valid FileHandle already exists, a stream may be attached to it by calling the
procedures:

CreateByteStream, CreateWordStream: PROCEDURE [file: FileHandle, access: AccessOptions]
RETURNS [DiskHandle];

The stream's FileHandle and access may be read directly from the Stream Object (after
discrimination) using the field names file and read, write, append.

The operations allowed on the stream's length are determined by its access options; these options
are negotiated with the underlying file system (see the section on Files). The options supported
by the stream package are:

Read:
Write:
Append:

the length is a constant
the length may decrease.
the length may increase.

A disk stream has as part of its state a current index into the array representation of the file.
The first data item is at index zero, the last at length-I. An invariant of a disk stream is index
< = length. The current index and length are used in defini ng the semantics of the standard
operations on disk streams, which are as follows:

reset[s]

Effect: sets the index to zero.

get[s]

If: read AND index < length.
Effect: t ~ s[index]j index ~ index+ 1; RETURN[tl

, '

Alto/Mesa Disk Streams Package

putback[s, i]

Effect: Stream Operation error.

put[s, i]

If: (write AND index < length) OR
(append AND index = length).

Effect: s[index] ... i; index'" index+ 1; length ... MAX [index, length].

endof[s]

Effect: RETURN [index = length].

destroy[s]

12

Effect: IF -read AND index # 0 THEN length .. index (Le. truncate the file if it is not
positioned at the beginning). Release the FileHandle if there are no segments attached to
it

If it is necessary to truncate a file in the cases not covered by destroy (Le. read OR Index = 0),
call

TruncateDiskStream: PROCEDURE [stream: StreamHandle];

Effect: length ... Index; stream.destroy[stream].

Actually, there is a little more to it Disk streams deliver either byte or word items; in either
case, the index is always computed in bytes. So the description above is a simplification of what
really happens. Rather than clutter it up, suffice it to say that when accessing files in word
mode, index values are always rounded up to word boundaries.

In addition to the standard operations. the following disk dependent functions are provided to
efficiently copy large blocks of words to or from the stream:

ReadBlock: PROCEDURE [stream: StreamHandle, address: POINTER, words: CARDINAL]
RETURNS [count: CARDINAL];

If: read.
Effect: count ... MIN[words,length-index]j

FOR index IN [index .. indeX+count) DO
MEMORv[address] ... stream[index]j
address ... address+ 1 j
ENDLOOP.

WriteBlock: PROCEDURE [stream: StreamHandle, address: POINTER, words: CARDINAL]
RETURNS [count: CARDINAL];

If: (write AND index < length) OR
(append AND index = length).

Effect: count ... IF append
THEN words
ELSE MIN[words,length-index] j

FOR index IN [index .. indeX+count) DO

Alto/Mesa Disk Streams Package

stream [index] .. MEMORy[address]j
address .. address+ 1 ;
ENDLOOP.

length +- MAx[index, length].

13

When using ReadBlock and WriteBlock, the initial index must be on a word boundary (otherwise
the Stream Position error results). Note that the returned value may be less than words if the
stream's access does not allow reading or writing of the whole block (the StreamAccess error is
never raised by either of these procedures).

The stream index alluded to above is actually a structure:

Streamlndex: TYPE = RECORD [
page: PageNumber,
byte: CARDINAL];

The first data byte of a stream is at Streamlndex[O, 0]. The current stream position can be
determined by calling

Getlndex: PROCEDURE [stream: StreamHandle] RETURNS [Streamlndex]j

It is quite acceptable to do double precision arithmetic on a Streamlndex (and even single
precision operations on the individual fields, if you are careful about borrows, carries, and
overflows). Note, however that a Streamlndex is not compatible with the double precision
arithmetic of J.ONG INTEGERS. The paged structure of the index can be restored by invoking

Normaiizelndex: PROCEDURE [index: Stream Index] RETURNS [Streamlndex]i

It returns an index whose byte field is in the range [O .. CharsPerPage). An index may be
. modified by calling

Modifylndex: PROCEDURE [index: Streamlndex, change: INTEGER] RETURNS [Streamlndex]i

The current index may be set by calling

Setlndex: PROCEDURE [stream: Stream Handle, index: Streamlndex]i

Note that this may actually extend the file (with unspecified data) if Append access is allowed.
To determine if this will happen, you might first want to call

FileLength: PROCEDURE [stream: StreamHandle] RETURNS [Streamlndex]i

Note that FileLength sets the stream to the end-of-file and returns the length as seen through the
stream; this may differ from the physical length of the disk file (if, for example, items have been
appended to the stream but not yet written to the disk).

You may test for the greater-than relation between two stream indexes by calling the procedures

GrEquallndex: PROCEDURE [i1, i2: Streamlndex] RETURNS [BOOLEAN];

Alto/Mesa Disk Streams Package 14

Grlndex: PROCEDURE [i1, i2: Streamlndex] RETURNS [BOOLEAN];

If a physical disk location is required along with the stream position, a file address (FA) will
'prove useful (see ALTOFILEDEFS); it is similar to a Stream Index with a disk address (DA) tacked on
the front, except that the page field is one origin (in the Alto file system. page zero is the leader
page).

FA: TVPE = MACHINE DEPENDENT RECORD [
da: OA,
page: PageNumber,
byte: CARDINAL];

You may record the current stream position and re-establish it later, in a fashion similar to
Getlndex and Setlndex. by calling the procedures

GetFA: PROCEDURE [stream: StreamHandle, fa: POINTER TO FA];

JumpToFA: PROCEDURE [stream: Stream Handle , fa: POINTER TO FA];

The special thing about JumpToFA is that the disk address in the fa is taken as a hint; if it
doesn't work out (the page number or file serial number doesn't match the stream's version of
them), JumpToFA will attempt to find the requested page via the shortest route and correct the fa
accordingly. This may involve starting over at the beginning of the file. If that fails,

InvalidFP: SIGNAL [fp: POINTER TO FP];

will result, probably indicating that the file has been moved (or worse, deleted!) since the stream
was attached to it. A call on some directory searching procedure may prove useful in this
situation, to determine if retrying the operation (with a new fp) is appropriate •

. ,.
I

Alto/Mesa Display Package

Alto/Mesa Display Package

May 1978

15

The Mesa Display Package provjdes a simple. Teletype style interface to the display. There is
provision for using any available font; however the display is restricted to a single font for any
particular incarnation. The font operations (described at the end of this document) are
independent of the display implementation and may be used by any other display package. The
package will optionally maintain a typescript of displayed output.

Disp lay Stream

Normal access to the display is through a stream interface (see the section on Streams). There is
no provision for multiple display streams. The module SYSTEMDISPLAY implements the following
procedures defined in STREAMDEFS:

GetDefaultDisplayStream: PROCEDURE RETURNS [DisplayHandle]i

The interpretation of the basic stream operations is:

reset clears the display and resets the typescript.
put displays the character at the next sequential location.
get. putback and destroy SIGNAL StreamError[StreamAccess].
endof returns FALSE.

ClearCurrentLine: PROCEDURE [StreamHandle]i

The current line of the display is cleared. The next character will be displayed at the left
margin. The typescript is repositioned to the beginning of the line.

ClearDisplayChar: PROCEDURE [stream: StreamHandle, char: CHARACTER]i

Erases the last character written on the display. The character must be supplied since the
stream retains no knowledge of what characters are displayed (the typescript is optional).

DISPLAYDEFS defines some additional interface procedures:

InitDisplay: PROCEDURE [dummySize, textLines, nPages: CARDINAL, f: FontDefs.FontHandle]i

This procedure initializes the display with dummySize blank scan lines at the top and
room for at most textLines lines of text using nPages pages of memory for data
structures and bitmap. The number of text lines and the display width are reduced if
necessary to make everything fit in nP'ages.

FinePoint: the amount of memory necessary to guarantee that n full width lines of text can be displayed is
n·(4+h·w) words, where h is the height of the font in scan lines (rounded up to an even number) and w is
the width of the display in words.

. ;

Alto/Mesa Display Package 16

SetSystemDisplaySize: PROCEDURE [nTextLines, nPages: CARDINAL];

Clears the display and reinitializes it with the new parameters.

SetSystemDisplayWidth: PROCEDURE [indent, width: CARDINAL];

Clears the display and reinitializes it with the new width parameters. indent is the
number of bits from the left edge of the screen to the first display position and width is
the width of a display line in bits. (The actual width will be the nearest multiple of 32
bits.).

FinePoint: indenting by multiples of 16 bits is very efficient.

SetDummyDisplaySize: PROCEDURE [nScanLines: CARDINAL];

Changes the size of the blank space at the top of the display.

Background: TYPE = {white, black};

DisplayOff: PROCEDURE [color: Background];

DisplayOn: PROCEDURE;

DisplayOff releases all of the space allocated to the display and swaps out the font. All of
the parameters of the display are saved so that DisplayOn can restore the previous state
(but not the contents) of the display.

BlinkCursor: PROCEDURE RETURNS [BOOLEAN];

Blinks a "cursor" at the position where the next character will be displayed. Each call
changes the state of the cursor from "on" to "off" or vice versa. BlinkCursor returns TRUE
if the last call changed the cursor state to on. The cursor is always turned off before a
character is displayed or erased.

SetTypescript: PROCEDURE [StreamDefs.DiskHandle];

This procedure establishes a disk stream as a typescript for the display. Passing NIL will
disable the typescript. Characters sent to the display stream while the display is off will
appear in the typescript. The typescript must be an open byte stream with
Read+Write+Append access.

DisplayControl: PROGRAM;

This is the control module used in Mesa.image. It will initialize the display, font and
typescript (using either MesaFont.al or SysFont.al and Mesa.Typescript) and start a
process to call BlinkCursor at half second intervals. It will also reestablish the display
(including font and typescript) after a Makelmage or MakeCheckPoint.

Alto/Mesa Display Package 17

Fonts

A FontObject provides a simple object style interface to character fonts. Operations are provided
for painting or erasing characters from the font in a bitmap. FONTDEFS defines the following
TYPES and PROCEDURES:

BitmapState: TYPE = RECORD [
origin: POINTER,
wordsPerLine, x, Y: [0 .. 77777a)];

A BitmapState describes where a character will be placed within a bitmap. origin is a
POINTER to the beginning of the bitmap. wordsPerLine is the horizontal width of the
bitmap (it must be even if the bitmap is to be displayed). x and yare measured from the
upper left corner in bits right and scan lines down respectively.

FontHandle: TYPE = POINTER TO FontObjectj

FontObject: TYPE = RECORD [
paintChar: PROCEDURE [FontHandle, CHARACTER, POINTER TO BitmapState],
clearChar: PROCEDURE [FontHandle, CHARACTER, POINTER TO BitmapState],
charWidth: PROCEDURE [FontHandle, CHARACTER] RETURNS [CARDINAL],
charHeight: PROCEDURE [FontHandle, CHARACTER] RETURNS [CARDINAL],
close: PROCEDURE [FontHandle],
destroy: PROCEDURE [FontHandle],
lock: PROCEDURE [FontHandle] RETURNS [POINTER],
unlock: PROCEDURE [FontHancUe]]i

A FontObject implements the following operations:

paintChar: ORs the specified character from the font into the bitmap position specified in
the BitmapState; x is updated to point to the next character position. There is no bounds
checking.

clearChar: erases the bit rectangle which bounds the character. The input state points just
beyond the character and is modified to point to where the character used to be.
paintChar[f, c, s] followed by clearChar[f, c, s] leaves s unchanged.

charWidth, charHeight: return the width and height of a character in bits and scan lines
respectively.

close: swaps the font out of memory if it is not otherwise in use. The font will always be
swapped in when needed. It is not "generally locked.

destroy: calls close and then releases the space allocated for the FontObject. The font
segment is not deleted. "

lock: locks the font segment in memory and returns a POINTER to the first word. This can
be used to implement other operations on the bits in the font. Note that nothing in a
FontObject dictates what font form~t is used.

unlock: unlocks the font after a" call to lock.

r'
"

Alto/Mesa Display Package

CharWidth: PROCEDURE [font: FontHandle, char: CHARACTER] RETURNS [CARDINAL];

Equivalent to font.charWidth[font, char].

CharHeight: PROCEDURE [font: FontHandle, char: CHARACTER] RETURNS [CARDINAL];

Equivalent to font.charHeight[font, char].

CreateFont: PROCEDURE [SegmentDefs. FileSegmentHandle] RETURNS [FontHandle] j

18

Allocates space (from the system heap) for a FontObject and initializes its operations to
use the font in the supplied segment.

The module AI:.FONT implements FontObjects for "AI" format fonts. Modules for other font
formats can be substituted easily. At this time no other modules have been written or planned.

Mesa.image uses SYSTEMDISPLAY, ALFONT, and DISPLAYCONTROL for its default display. They are
also available as a separate package in DISPLAYPACKAGE for users of BasicMesa. DISPLAYPACKAGE
also contains an instance of STREAMIO.

Alto/Mesa File Package

Alto/Mesa File Package

May 1978

19

Logically, the Mesa file package is a sub-module of the segmentation machinery, but it is
described separately because other objects (e.g. disk streams) also use this interface. Internally,
the file machinery maintains a set of items called FileObjects: a file object, among other things.
contains the file's disk address and serial number, as well as its access rights, several reference
counts, and an optional file length hint.

The Mesa system follows most conventions of the Alto file system (although some, including'
multiple versions and sub-directories are not currently supported.) See the Alto Operating
System Reference Manual document for a description of the Alto file system. A description of
the various procedures used to manipulate the Alto's directory appears in the section on
Directories.

Files

A file is an integral number of pages which logically appear to be contiguous, irrespective of
their physical location. The pages of a file are numbered from zero up to some maximum (see
ALTODEFS):

MaxFilePage: CARDINALi -- maximum file page number

PageNumber: TYPE = [O .. MaxFilePage]i

In the Alto file system, page zero of the file (the leader page) is special; it contains file status
information. Thus the data actually begins at page one.

Externally, a file is known by its name, which is just a string. Internally, Mesa retains only a
file's FP, which is an abbreviated form of the Alto file system's file pointer (see ALTOFILEDEFS):

FP: TYPE = RECORD [
serial: SN,
leaderDA: vDA];

-- internal file serial number
-- first virtual disk address

The correspondence between file names and FPs is maintained in the file system's directory
(SysDir). After the file is initially looked up, the name is discarded; the Mesa world deals only
in FPs thereafter. A directory search is required if the name must be recovered.

File Objects

A FileHandle is used to refer to a file in the Mesa environment, and can be obtained by a call on
NewFile (described bedow); it is simply a pointer to a record called a FileObject (see
SEGMENTDEFS).

Alto/Mesa File Package

File Handle: TYPE = POINTER TO FileObjectj

FileObject: TYPE = fiE CORD [
open: BOOLEAN,
read, write, append: BOOLEAN,
lock: [O .. MaxLocks],
segcount: [O .. MaxSegs],
swapcount: [O .. MaxRefs],
...]j

if the file is open
access rights
reference count
attached segments
swapped in segments
plus other private fields

The following options are used when creating new file objects:

AccessOptions: TYPE = [O .. 7]j
Read: AccessOptions = 1 j
Write: AccessOptions = 2j
Append: AccessOptions = 4j

VersionOptions: TYPE = [O .. 3]j
NewFileOnly: VersionOptions = 1 j
OldFileOnly: VersionOptions = 2j

20

Read access allows existing pages of the file to be read; Write means that existing pages can be
written (or deleted; perhaps a separate Delete option should be included). Append allows new
pages to be added to the end of the file (files do not have holes in them).

Fine point: Append does not imply Write access. Append means that new pages may be added to the file but existing
pages may not be modified.

Disallowed combinations are {NewFileOnly, OldFileOnly} and {NewFileOnly, -Append}. If
Append access is not specified, OldFileOnly is assumed. If you like, you may specify
DefaultAccess, which is equivalent to Read. (Note that Append access must be specified in order
to create the file.)

Fine point: if DefaultVerslon is specified. the file is created if it did not previously exist.

Signals

Signals associated with FileObjects are as follows:

FileNameError: SIGNAL [name: STRING]j

The file name is invalid, or the file does not exist (OldFileOnly), or the file does exist
(NewFileOnly).

FileAccessError: SIGNAL [file: FileHandle]i

An attempt to perform some operation not allowed by the current access, or the requested
access and version options are inconsistent (see the disallowed combinations above).

Alto/Mesa File Package 21

InvalidFP: SIGNAL [fp: POINTER TO FP]i

A file positioning operation has determined that the file serial number in the FP of the
file object does not match the disk label. Most likely, the FileHandle references a file
which has been moved or destroyed (or clobbered) since it was last referenced

FileError: SIGNAL [file: FileHandle] i -- all other file errors

File Creation/Deletion

A FileObject' is created using the following procedures:

NewFile: PROCEDURE [name: STRING,' access: AccessOptions, version: Version Options]
RETURNS [FileHandle]i

Given a file name and access rights, this procedure creates a new file object and returns a
pointer to it. A check is made that the file exists in the directory, creating it if necessary,
but the file is not opened as a result of this call. Objects attached to the file (segments
and streams, for example) ensure that the file is open before attempting a transfer. If
there is already a file object for the file specified, its access is updated (by orting; this is
not a protection system), and a pointer to the existing object is returned.

InsertFile: PROCEDURE [fp: POINTER TO FP, access: AccessOptions] RETURNS [FileHandle]i

Creates a file object directly from fp, without searching the directory. If there is already
a file object with a matching fp, its access is updated (by or'ing; this is not a protection
system), and a pointer to the existing object is returned.

Internally, Mesa keeps track of the number of segments attached to each file (segcount) and of
those the number which are currently swapped in (swapcount). When the swapcount goes to
zero, the file may be closed, and when the segcount goes to zero, the file object is released (only
the latter operation happens automatically). Since a file may have other objects attached to it
(streams, for example), it may be necessary to prevent the file object from being released even
when there are no more segments attached to it. The lock field serves this purpose, and is
manipulated by the procedures

LockFile, UnlockFile: PROCEDURE [file: FileHandle]i

A maximum of MaxLocks locks may be performed on each file object. Note that a file object is
not automatically released when its lock count goes to zero.

A FileObject is released by

ReleaseFile: PROCEDURE [file: FileHandle]i

. The file is first closed if it is open; then its file object is released. A FileError will be
generated if there are segments associated with the file at the time of this call. Note:
except for this error check, releasing a file which is locked is a no-op.

A file is physically destroyed by calling

, >,

Alto/Mesa File Package 22

DestroyFile: PROCEDURE [file: FileHandle]j

In addition to releasing the file object, the file's pages are deleted and its entry is removed
from the directory. The file object must not have any segments currently attached to it,
nor may it be locked; either condition results in a File Error.

To be on the safe side, destroying a file is somewhat complicated if it currently has segments
attached to it. The file must first be locked, then all of its segments deleted and all streams
attached to it destroyed, then the file should be unlocked and finally DestroyFile should be called.
This sequence assumes that no other client has a lock on the file.

File Properties

Characteristics of the disk file associated with a FileObject are obtained and changed using the
following procedures:

FlndFile: PROCEDURE [fp: POINTER TO FP] RETURNS [FileHandle]j

Searches all existing file objects for one whose serial number and disk address match
those contained in fp. Returns NIL if no match can be found.

GetFileFP: PROCEDURE [file: FileHandle, fp: POINTER TO FP]j

Copies. the file pointer from file into fp.

GetFileAccess: PROCEDURE [file: FileHandle] RETURNS [access: AccessOptlons]j

Converts the read, write, and append bits of a file object into a form that can be passed
to NewFile.

SetFileAccess: PROCEDURE [file: FileHandle, access: Acce$sOptions]j

Or's access into the file object (this is not a protection system).

File lengths hints are no longer contained in every FileObject. A separate object contains the
length for a file. This separate length object is not required and is allocated only when
operations on file lengths are invoked (see SEGMENTDEFS). Operations on file lengths are:

GetEndOfFile: PROCEDURE [file: FileHandle] RETURNS [page: PageNumber, byte: CARDINAL];

Returns the page number of the last page in the file that contains data, together with the
number of bytes in that page (the number of the first non-existent byte in the page,
counting from zero). In the Alto file system, page zero is the leader page, the first data
page being page one. Note that if the last data page is full, a null page is appended to the
file, but GetEndOfFile does not tell you about it (so do not count on it being there). For
an empty file, this routine returns [0, BytesPerPage] (reflecting the existence of the
leader page).

GetEndOfFile first opens' the file (if it is closed) to obtain the length hint from the leader page.
It also inserts the current file length into the file length object (creating one if necessary), so that
subsequent requests for the length will not require reading the disk.

Alto/Mesa File Package 23

SetEndOfFile: PROCEDURE [file: FileHandle, page: PageNumber, byte: CARDINAL]i

Extends or truncates the file as necessary to make page the number of its last data page,
with byte bytes in it. The arguments are first adjusted to include a null page if byte =
BytesPerPage. Extending requires Append access, truncating requires Write access.

Miscellaneous

The procedure EnumerateFiles is provided so that one may conveniently scan all file objects that
currently exist.

EnumerateFiles: PROCEDURE [proc: PROCEDURE [FileHandle] RETURNS [BOOLEAN]]
RETURNS [file: FileHandle]i

This procedure calls proc once for each file object that is currently exists. This process
will terminate when the list of file objects is exhausted or when proc returns TRUE. In the
latter case, the FileHandle of the last FileObject processed is returned. Otherwise, NIL is
returned.

If new file objects are created while EnumerateFiles is in control, it is not guaranteed that they
will be included in the sequence of FileHandles passed to proc.

Alto/Mesa Image Files

Alto/Mesa Image Files

May 1978

24

A Mesa image file contains the information necessary to start execution of a Mesa system. In
addition to image files that contain all code and data, there are also image files, called check
files, that contain only data. (Check files know the addresses of other files on the disk and
therefore cann'ot be moved like other image files). This section defines the format of image files
and the facilities provided to make them. See IMAGEDEFS for further details.

The format of an image file is as follows:

ImageHeader: TYPE = MACHINE DEPENDENT RECORD [

prefix: ImagePrefix,
map: ARRAY [0 .. 0) OF Mapltem];

ImagePrefix: TYPE = MACHINE DEPENDENT RECORD [

versionident: CARDINAL, should be ImageDe/s.versionID
version, creator: BcdDefs.Versionstamp,
options: WORD, should be 0
leaderDA: AltoFileDe1s. vDA,
state: stateVector,
type: ImageType,
. . .];

ImageType: TYPE = {bootmesa, makeimage, checkfile, other};

Mapltem: TYPE = MACHINE DEPENDENT RECORD [

page: [0 .. 255],
count: [0 .. 127],
body: SELECT tag:· FROM

normal = > NULL,

change => [
da: DiskDefs.DA,
base: CARDINAL],

ENDCASE];

The first data page of an image file is a record of type Image Header. The size of the array
depends on the number of page groups in the file. The last element of the array is
Mapltem[O,O,normal[]]. The versionident field identifies the version of the format being used
and must match the value of Versionld in ImageDefs. The version field identifies the date and
machine on which the image file was made. The creator field identifies the image file that was
built upon to produce the current image file. The options field specifies other data about the
image file as a bit mask. Currently no options are supported. The leaderDA is valid only for
check files; it is the disk address of the leader page of the image file and is used to make sure the
file is not moved. The stateVector in state is the initial state of the program. This State Vector
will be loaded as the lowest priority process and will be started using the Mesa TRANSFER WITH

construct.

After the first page, the remaining pages of the file contain the pages to be loaded into memory.

Alto/Mesa Image Files 25

The normal entries in the map array identify the core locations and number of pages in each page
group. The change entries in the map array also indicate a change in the file from which the
page group is read. The RUNMESA.RUN program which loads an image file will load page groups
until it encounters a null Mapltem.

Making Image Files

The basic system contains code to make an image file of itself and any user programs which have
been loaded. Clients may make an image file by calling the procedure:

Makelmage: PROCEDURE [name: STRING];

Make an image file on file name. Returns to Alto Executive. When the image file is.
restarted, Makelmage returns to its caller.

Clients may also make an image file by invoking the Mesa Executive's Makelmage command. It
accepts a filename, defaults the extension to ".IMAGE" and calls Makelmage [name]. When the
image file is restarted, the Mesa Executive will be ready to accept a new command.

Makelmage normally merges all the BCDs that have been loaded into one bcd, and cleans up
system data structures. This results in faster loading of additional BCDs into the new image.

Those clients that do not want BCDs merged during a Makelmage because they call UnNewConfig
may use the following procedure:

MakeUnMergedlmage: PROCEDURE [name: STRING];

Signals that may be generated by Makelmage or MakeUnMergedlmage are:

Invalidlmage: SIGNALj

An attempt has been made to make an image file on top of the currently excuting image
file.

NoRoomlnlmageMap: SIGNAL;

The map in the ImageHeader has filled up. This usually means that there are too many
segments in memory at the time the image file is made.

Check Files

Check files differ from normal image files in that they do not contain all the code and data to
start the execution of the image file. Check files only contain the data of the Mesa system, and
all code and other segments remain in their original files. As a result, check files are made and
restarted very quickly. However, care must be taken not to destroy files that are pointed to by
the check file. Check files are useful for making check points in the execution of a Mesa system.
The procedures and .signals that make check files are:

Alto/Mesa Image Files 26

MakeCheckPoint: PROCEDURE [name: STRING];

Makes a check file on file name. Returns to caller when finished as if nothing happened.
Upon restart again returns to caller.

NoRoomlnCheckMap: SIGNAL;

In MakeCheckPoint, the map in the ImageHeader has filled up. This usually means that
there are too many segments in memory at the time the check file is made.

The ability to make check files is not included in the basic system. Clients should include the
CHECKPOINT module in their configuration.

Running Image Files

Mesa programs may run another image file without returning to the Alto Executive. The
procedures and signals that implement this are:

Runlmage: PROCEDURE [file: SegmentDefs.FileSegmentHandle];

Runs the image file specified by file where file is a segment handle for the header of the
image file. The current state of the present image file is lost, and the new image file is
loaded and started.

Fine point: currently the header of an image file is page one (this may change in the future. and may not be
constant). Communication between the two image files must be done via disk files (like Com.cm). See the
Alto Operating System Reference Manual.

Invalidlmage: SIGNAL;

In Runlmage, file specifies an invalid image file.

NoRoomForLoader: SIGNAL;

In Runlmage, there is no room for the bootstrap loader that loads and starts the image
file.

Clients should include the configuration IMAGERUNNER in their configuration.

Miscellaneous

The version stamp of the currently running image file may be obtained by calling the procedure:

ImageVersion: PROCEDURE RETURNS [BcdDefs.VersionStamp];

A client may stop execution of a Mesa system and return to the Alto Executive by calling:

StopMesa: PROCEDURE;

A client may terminate execution of a Mesa system as if shift-swat had been typed and return to
the Alto Executive by calling:

Alto/Mesa Image Files 27

AbortMesa: PROCEDURE;

Makelmage Restrictions

1. The name of the new image file may not be the same as the name of the image file running at
the time Makelmage is called. An image file can be renamed any time it is not running.

2. The user program should not have handles on any files or disk streams. Any file segments
allocated by a user program will be made a part of the new image file.

3. This list of restrictions may not be exhaustive. In general you should avoid doing anything
other than loading modules and initializing data structures before making an image file.

MakeCheckPoint Restrictions

1. The name of the new image file may be the same as the name of the image file running at the
time MakeCheckPoint is called, only if the current image file is a check file. A check file
should not be renamed.

2. The files that are pointed to by the check files should not be moved or altered. Care must be
taken with open disk streams that the pages of the current position of the stream are not moved
or destroyed.

3. This list of restrictions may not be exhaustive and care must be taken with all files that are
open at the time the check file was make.

Alto/Mesa Keyboard Package

Alto/Mesa Keyboard Package

May 1978

28

The Keyboard package consists of the modules KEYSTREAMS and KEYBOARD and provides a
Teletype style interface to the undecoded keyboard through a device independent stream
interface. Multiple, independent keyboard streams are supported. A default keyboard stream is
created at initialization time. (See the section on StreamlO for higher level operations.) The
Keyboard Package also opti'onally causes the hardware cursor to track the mouse. A single
keyboard PROCESS runs at interrupt level approximately 60 times per second to sample the
keyboard hardware. '

The following procedures and types are defined in STREAMDEFS.

KeyboardHandle: TYPE = POINTER TO Keyboard StreamObjectj

The standard operations on a keyboard stream are:

reset[s] clears the buffer associated with s; any characters in the buffer are lost.

get[s] . returns the next character in the buffer; if endof[s] is TRUE, WAITS until it is
FALSE.

putback[s,l] modifies the stream so that the next get[s] will return I, independent of
any type-ahead. If the buffer is full. putback is a no-op (sorry about that).

put[S,i] produces a StreamAccess error.

endof[s] TRUE if there are no characters in the buffer.

destroy[s] destroys s in an orderly way. freeing the space it occupies. Any characters in
the buffer at the time of the destroy are lost. If s is the current keystream. the
StreamOperation error results.

CreateKeyStream: PROCEDURE RETURNS [KeyboardHandle]j

Creates a new keyboard streams. Any number of streams may be created. Each stream
has its own buffer for type ahead. (Space for the StreamObject is allocated from the
system heap.) ,

GetDefaultKey: PROCEDURE RETURNS [KeyboardHandle]j
•

Returns the default stream (created at initialization time).

GetCurrentKey: PROCEDURE RETURNS [KeyboardHandle]j

Returns the current stream. Initially the default keyboard stream is current.

Alto/Mesa Keyboard Package 29

OpenKeyStream: PROCEDURE [stream: StreamHandle];

Makes stream the current keyboard stream.The stream which was current before the call
is undisturbed, except that input characters are no longer directed to it by the keyboard
process, but to stream instead.

CloseKeyStream: PROCEDURE [stream: StreamHandle];

Makes the default keyboard stream current. Characters already typed remain in stream's
buffer. The StreamOperation error results if stream is not the current stream.

CursorTrack: PROCEDURE [BOOLEAN];

Calling this procedure with TRUE enables cursor tracking; FALSE disables it. When tracking
is enabled, the mouse coordinates are copied to the cursor coordinates each time the
keyboard process runs.

Low Level Access

The basic system does not provide access to the keyset or mouse through the stream. Definitions
are provided for clients wishing to access the bits of the keyboard directly or to change the
interpretation of any of the keys. The module KEYDEFS defines types and procedures for lower
level access to the keyboard hardware.

updown: TYPE = {down, up};

KeyBits: TYPE = MACHINE DEPENDENT RECORD [
blank: [0 .. 377a], -- not used
Keyset1, Keyset2, Keyset3, Keyset4, Keyset5: updown,
Red, Blue, Yellow: updown,
Five, Four, Six, E, Seven, 0, U, V,
Zero, K, Dash, P, Slash, BackSlash, LF, BS: updown,
Three, Two, W, Q, S, A, Nine, I,
X, 0, L, Comma, Quote, RightBracket, Spare2, Spare 1 : updown,
One, ESC, TAB, F, etrl, e, J, B,
Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3: updown,
R, T, G, Y, H, Eight, N, M,
Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4, FR5: updown]; .

Keys: POINTER TO KeyBits = -- magic memory location -- ;

MouseButton: TYPE = {RedYellowBlue, RedBlue, RedYellow, Red, BlueYellow, Blue, Yellow,
None};

MouseBits: TYPE = MACHINE DEPENDENT RECORD [
blank: [O .. 377a], Diablo, Versatec, etc.
keyset: [0 .. 37B], -- 0 =) down, i.e. normal state is 378
buttons: MouseButton];

Alto/Mesa Keyboard Package

Mouse: POINTER TO MouseBits = ~~ magic memory location -- ;

KeyName: TVPE = {
... , -- unused values
Keyset1, Keyset2, Keyset3, Keyset4, Keyset5,
Red, Blue, Yellow,
Five, Four, Six, E, Seven, 0, U, V,
Zero, K, Dash, P, Slash, BackSlash, LF, BS,
Three, Two, W, Q, S, A, Nine, I,
X, 0, L, Comma, Quote, RightBracket, Spare2, Spare1,
One, ESC, TAB, F, Ctrl, C, J, B,
Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3,
R, T, G, Y, H, Eight, N, M,
Lock, Space, LeftBracket, Equal; RightShift, Spare3, FL4, FR5};

Alto II names for some keys are different.

FL 1: KeyName = DEL;
FL2: KeyName = LF;
BW: KeyName = Spare1j
FR 1: KeyName = Spare3;
FR2: Key Name = BackSlash;
FR3: KeyName = Arrow;
FR4: KeyName = Spare2;

Keyltem: TYPE = RECORD [
Letter: BOOLEAN,
ShiftCode: [0 .. 177B],
NormalCode: [0 •. 377B]];

30

There is a Keyltem for every key (including mouse and keyset keys). A NormalCode = 0
causes the key to be ignored; a ShiftCode = 0 puts in a zero for the key when the shift
key is down; Letter means that the ShiftCode is selected by the shift lock key. Note that
the ShiftCode is 7 bits and the NormalCode is 8 bits.

ChangeKey: PROCEDURE [key: KeyName, action: Keyltem] RETURNS [oldAction: Keyltem];

This procedure changes the meaning of a key and returns the old value.

Initialization

BasicMesa does not contain a keyboard package. Clients of BasicMesa who do not wish to supply
their own keyboard procedures should include KEYBOARD and KEYSTREAMS in their configurations.
The following additional definitions from KEYDEFS are needed:

Keyboard: PROGRAMj

Alto/Mesa Keyboard Package

KeyStreams: PROGRAMj

In order to initialize the keyboard process, a client must include these statements:

FrameDefs.MakeCodeResident[FrameDefs. GlobalFrame[KeyDefs. Keyboard]] j
START KeyDefs.KeyStreamSj

•

31

Alto/Mesa Miscellaneous

Alto/Mesa Miscellaneous

May 1978

This section describes some miscellaneous facilities in Alto/Mesa.

From MISCDEFS

Zero: PROCEDURE [p: POINTER, I: CARDINAL];

FOR i IN[O .. O DO (p+l)t +- O.

SetBlock: PROCEDURE [p: POINTER, v: UNSPECIFIED, I: CARDINAL];

FOR i IN[O .. O DO (p+l)t +- v.

DAYTIME: PROCEDURE RETURNS [AltoFileDefs. TIME];

32

Returns the current time in the format maintained by the Alto Operating System and
recorded in Alto files. This is not the same format as a TimeDefs.PackedTime.

GetNetworkNumber: PROCEDURE RETURNS [CARDINAL];

Returns the number of the network to which the Alto is connected or 0 if there is no
network or no response from a gateway.

Fine point: this procedure is used by the Compiler and others to generate unique identifiers for output files.

CommandLineCFA: PROCEDURE RETURNS [POINTER TO AltoFileDefs.CFA]i

Returns a pointer to the CFA for the point at which the Mesa executive stopped reading
the command line (COM,CM). This is valid only when a configuration is started from the
command line using Mesa.image or BasicMesa.image. The caller can use the CFA to
quickly open a stream on the command line and read any additional commands. The CFA
should be updated before returning to the Mesa executive. See the sections on Files and
Streams for more information.

CaliDebugger: PROCEDURE [STRING];

This will invoke the Debugger without the overhead of raising an uncaught signal. The
Debugger may someday display the parameter if it is not NIL.

From INLINEDEFS (these are all MACHINE CODE procedures)

COPY: PROCEDURE [from: POINTER, nwords: CARDINAL, to: POINTER];

FOR i IN[O .. nwords) DO (to+j)t +- (from+i}t.

Alto/Mesa Miscellaneous 33

DIVMOD: PROCEDURE [num, den: CARDINAL] RETURNS [quotient, remainder: CARDINAL];

Returns both the quotient and remainder of the unsigned division of num by den.

LDIVMOD: PROCEDURE [numlow: WORD, numhigh: CARDINAL, den: CARDINAL] RETURNS [quotient,
remainder: CARDINAL];

Like DIVMOD except that the numerator is the double length unsigned number
numhigh"'216 + numlow. Results are undefined if the quotient is greater than 216_1.

LongCARDINAL: TYPE = MACHINE DEPENDENT RECORD [
lowbits, highbits: CARDINAL];

A Long-CARDINAL is an unsigned double precision number which is a valid argument to
several Mesa byte codes. A LONG INTEGER which is known to be positive may be LOOPHOLEd
to a LongCARDINAL; a LongCARDINAL which is less than 231 may be LOOPHOLEd to a LONG
INTEGER.

LongMult: PROCEDURE [CARDINAL, CARDINAL] RETURNS [product: LongCARDINAL]i

Returns the double precision result of the unsigned multiplication the two single
precision arguments.

LongDiv: PROCEDURE [num: LongCARDINAL, den: CARDINAL] RETURNS [CARDINAL];

Returns the result of the unsigned division of num by den. Result is undefined if the
quotient is greater than 216_1.

LongDivMod: PROCEDURE [num: LongCARDINAL, den: CARDINAL] RETURNS [quotient, remainder:
CARDINAL];

Like LongDiv except both quotient and remainder are returned.

BITAND, BITOR, BITXOR: PROCEDURE [WORD, WORD] RETURNS [WORD];

These functions compute the bitwise AND, OR, or XOR of their arguments.

BITNOT: PROCEDURE [WORD] RETURNS [WORD];

Returns the ones complement of the input.

BITSHIFT: PROCEDURE [value: WORD, count: WORD] RETURNS [WORD];

Returns value shifted by ABs[count] bits. Shift is left if count> 0 and right if count <
O.

From DOUBLEDEFS. (DAdd, DSub, and DCompare are MACHINE CODE procedures and are available to
any Mesa program. The others are available only to clients which include DOUBLE in their
configuration.)

~<\lto/Mesa Miscellaneous 34

DAdd: PROCEDURE [a,b: LongCARDINAL] RETURNS [LongCARDINAL];

Returns the double precision unsigned sum of a and b ..

DSub: PROCEDURE [a,b: LongCARDINAL] RETURNS [LongCARDINAL];

Returns the double precision unsigned difference of a and b.

Comparison: TYPE = {less, equal, greater};

DCompare: PROCEDURE [a,b: LongCARDINAL] RETURNS [Comparison];

Returns less if a<b, equal if a=b, greater if a)b. Comparison is actually done by subtracting and
comparing the result to O.

DMultiply: PROCEDURE [a,b: LongCARDINAL] RETURNS [product: LongCARDINAL];

Returns the product of the unsigned multiplication of a by b.

DDivide: PROCEDURE [nurn, den: LongCARDINAL] RETURNS [quotient, remainder:
LongCARDINAL]i

Returns the quotient and remainder of the unsigned division of nurn by den.

DNeg: PROCEDU,RE [a: LongCARDINAL] RETURNS [LongCARDINAL];

While somewhat a contradiction in terms, this procedure negates a LongCARDINAL by
performing DSub[[O,O], a].

Dine: PROCEDURE [a: LongCARDINAL] RETURNS [LongCAROINAL];

OAdd[[1,0], a].

AppendOouble: PROCEDURE [s: STRING, a: LongCARDINAL]i

The value of a is converted to text in decimal and appended to s.

Floating Point

While the Mesa system does not provide any support for floating point operations, the Compiler
does recognize type REAL and generates calls to client supplied procedures via the system data
vector (SO). The definitions of SO and all indices into SD are in SDDEFS. In the following
description the notation

SO[index]: PROCEDURE • • .-- •

means that the client should declare a procedure P of the correct type and assign its descriptor to
the appropriate element of SO (SO [index] ... P). The Compiler makes no assumptions about the
representation of REALS except that they occupy two words.

Alto/Mesa Miscellaneous

SD[sFADD]: PROCEDURE [a, b: REAL] RETURNS [REAL];

Called to perform addition.

SD[sFSUB]: PROCEDURE [a, b: REAL] RETURNS [REAL];

Called to perform subtraction.

SD[SFMUL]: PROCEDURE [a, b: REAL] RETURNS [REAL];

Called to perform multiplication.

SD[sFDIV]: PROCEDURE [a, b: REAL] RETURNS [REAL];

Called to perform division (a/b).

SD[sFCOMP]: PROCEDURE [a, b: REAL] RETURNS [INTEGER];

Called to compare REALS. Return -1 if a(b, 0 if a=b, 1 if a>b.

SD[sFLOAT]: PROCEDURE [LONG INTEGER] RETURNS [REAL];

Called to convert fixed point to floating point.

SD[sFIX]: PROCEDURE [REAL] RETURNS [LONG INTEGER];

35

The Compiler does not generate calls to this procedure. It is included for completeness.

·Alto/Mesa Modules

Alto/Mesa Modules

May 1978

36

This section documents the operations required to manipulate modules at a more detailed level
than provided by the language. It is intended for experienced programmers who have a genuine
need to ma~ipulate low level system structures. See FRAMEDEFS for further details.

Global Frames

A GlobalFrame is the implementation of the PROGRAM language construct. All manipulation of
GlobalFrames is done using GlobalFrameHandles.

GlobalFrameHandle: TYPE = POINTER TO GlobalFramej

GlobalFrame: TYPE = RECORD [. • .]j

The procedures which manipulate global frames are:

GlobalFrame: PROCEDURE [link: UNSPECIFIED] RETURNS [GlobaIFrameHandle]j

Returns the GlobalFrameHandle corresponding to link. which is interpreted as a control
link; it should be either a PROCEDURE. POINTER TO FRAME or PROGRAM. If link is not a valid
control link. then either the signal InvalidGlobalFrame or Unbound Procedure will be raised
(see- the section on Traps for a description of UnboundProcedure).

ValidateGlobalFrame: PROCEDURE [GlobaIFrameHandle]j

Checks to see that the parameter is a valid global frame; InvalidGlobalFrame is raised if
not. Used to check the validity of GlobalFrameHandle parameters by system procedures
such as GlobalFrame.

InvalidGlobalFrame: SIGNAL [frame: GlobaIFrameHandle];

Indicates that frame does not point to a valid global frame.

EnumerateGlobalFrames: PROCEDURE [
proc: PROCEDURE [GlobaIFrameHandle] RETURNS [BOOLEAN]]
RETURNS [GlobaIFrameHandle]j

Calls proc once for each global frame currently defined. If proc returns TRUE,
- EnumerateGlobalFrames returns the GlobalFrameHandle of the last frame processed. If all

global frames have been processed. NullGlobalFrame is returned.

Warning: If new modules are created while EnumerateGlobalFrames is in control. it is not
guaranteed that they will be included in the sequence of GlobalFrameHandles passed to
proc.

.Alto/Mesa Modules 37

Module Creation / Deletion

The following procedures allow the programmer explicit control over the creation and deletion of
modules. New and Copy provide a more detailed interface for loading modules than provided by
the NEW language construct (which is implemented by these operations). UnNew and
UnNewConfig allow the deletion of previously loaded modules and configurations. New, Copy
and UnNew are defined as MACHINE CODE PROCEDURES in FRAMEDEFS and cannot not be imported.

New: PROCEDURE [name: STRING] RETURNS [frame: GlobalFrameHandle]j

Loads the BCD contained in the file name. Returns the GlobalFrameHandle for the control
module of the configuration (or the module itself if the BCD is a single module). Returns
NuliGlobalFrame if the configuration has no control module.

Fine point: until the language supports NEW on an arbitrary configuration, this is the only way of loading a
configuration containing more than one module.

Copy: PROCEDURE [old: GlobalFrameHandle] RETURNS [new: GlobalFrameHandle]j

Makes a new global frame that is a copy of old. The new frame shares code with the old
frame and is bound the same way.

Warning: if the old global frame is not completely bound and its external links are stored
in the global frame, the copy may not be completely bound, even if the unbound
externals of the old frame are later resolved.

UnNew: PROCEDURE [frame: GlobalFrameHandle]j

Deletes the global frame pointed to by frame. Returns the global frame to the frame
heap (if the frame was allocated from that heap). Deletes the code segment of the frame
if no other global frames share it.

Warning: there is no check for references that are bound to the module being deleted.

UnNewConfig: PROCEDURE [frame: GlobalFrameHandle] j

Deletes all global frames that are a part of the configuration containing frame, as well as
all copies of those frames. Frees the storage for the global frames (to the segmentation
machinery if it was obtained from there, or the the frame heap).

Fine point: UnNewConflg is defined in LOADERDEFS.

NoGlobalFrameSlots: SIGNAL;
•

Indicates that there is no room in the Global Frame Table when either New or Copy have
been called.

•
Fine point: global frames for single modules (and copies) are allocated from the frame heap. Other configurations
aHocate their global frames as a single (data) segment, and are subject to some wasted space due to breakage.

Other signals may be raised when Newing modules; these signals indicate that the BCD being
loaded is invalid, versions of interfaces don't match, or code files cannot be found. In addition,
when a module is started, the signal StartFault may be raised (see the section on Traps for more
information).

·Alto/Mesa Modules 38

Code Manipulation

. The following procedures enable the user to control code swapping.

MakeCodeResident: PROCEDURE [f: GlobaIFrameHandle];

Swaps in the code for f as low as possible in memory by pushing unlocked read-only
segments out of the way. It will first swap out the code if it is swapped in.

LockCode: PROCEDURE [link: UNSPECIFIED]j

Swaps in and locks the code segment associated with link (which may be either a
PROCEDURE, POINTER TO FRAME or PROGRAM). The procedure GlobalFrame is used to find the
global frame of link (and may raise the signals InvalidGlobalFrame and
Unbound Procedure).

Warning: calling LockCode on a global frame that has not been started will disable start
traps on that module.

UnlockCode: PROCEDURE [link: UNSPECIFIED];

Unlocks the code segment associated with link (which may be either a PROCEDURE, POINTER
TO FRAME or PROGRAM). The procedure GiobalFrame is used to find the global frame of
link (and may raise the signals InvaiidGIobaiFrame and UnboundProcedure).

SwapOutCode: PROCEDURE [f: GlobaIFrameHandle];

Swaps out the code for f.

Fine point: when a frame has its code swapped out, all the global frames that have the same code segment
will be updated to reflect the fact that the code is swapped out. These other frames either have their code
segments packed with that frame or they are copies of that frame. Code may be swapped out by clients
calling SwapOutCode or by the system.

SwaplnCode: PROCEDURE [1: GlobaiFrameHandle];

Swaps in and locks the code for f.

Warning: calling SwaplnCode on a global frame that has not been started will disable
start traps on that module.

'!, ":

Alto/Mesa Processes and Monitors

Alto/Mesa Processes and Monitors

May 1978

39

This section has been taken from the Pilot Functional Specification and slightly modified to
reflect the Alto/Mesa implementation.

Warning: The Alto/Mesa operating system software has not been revised and redesigned to
fully exploit the capabilities of the new process mechanism. In particular, arbitrary preemptive
processes are qot supported, and the restrictions of Mesa 3.0 on processes running at interrupt
level still apply.

Most aspects of processes and monitors are made available via constructs built into the Mesa
language and described in Chapter 10 of the Mesa Language Manual (version 4.0. to be published).
Some facilities whose frequency of use does not justify such treatment are cast as procedures, and
form part of the Mesa system. The types and procedures described below are defined in
PROCESSDEFS.

PSB: PRIVATE TYPE = MACHINE DEPENDENT RECORD [...]j

ProcessHandle: PRIVATE TYPE = POINTER TO PSBj

A PSB defines the data structure underlying the Mesa process implementation. In general
no client programs should be concerned with these types (except possibly for debugging).

Any of the operations which take a PROCESS as an argument (i. e., JOIN, Abort, and Detach) may
generate the following signal.

InvalidProcess: SIGNAL [process: ProcessHandle]i

This signal indicates that the process argument does not correspond to any process known
to the Mesa system. The check on the validity of the argument is not infallible. In particular. Mesa is
unable to distinguish between a process which has been deleted and a new, recently created one which
coincidentally has the same value.

A call to FORK may generate the following signal.

TooManyProcesses: ERRORj

The Mesa system contains a fixed number of PSBs. This signal will result when there are
no PSBs available to create a new process.

Initialization

Every instance of a monitor and every condition variable must be initialized before it can be
used. There are two cases:

If the lock and the condition variables reside in the global frame (or possibly the local
frame, in the case of the condition variables) Mesa will automatically initialize them
along with the other global/local variables when the module is sTARTed or the procedure

-,;:; .. , "
'. ,
i i ..

.' .

.Alto/Mesa Processes and Monitors 40

is entered.

If the lock and/or condition variables reside in client-allocated recQrds, initialization is
the responsibility of the client.

Using uninitialized monitor locks or condition variables or reinitializing monitor locks or condition variables
after they have have begun to be used will lead to totally unpredictable behavior.

The following operations are provided for initializing monitor locks and condition variables in
client-created data structures.

InitializeMonitor: PROCEDURE [monitor: POINTER TO MONITORLOCK]i

InitializeMonitor leaves the monitor unlocked and sets the queue of waiting processes to
empty. It may be called before or after the monitor data is initialized, but must be called
before any entry procedure is invoked. Once use of the monitor has begun,
InitializeMonitor must never be called again.

Ticks: TYPE = CARDINALi

In!tializeCondition: PROCEDURE [condition: POINTER TO CONDITION, ticks: Ticks]i

Initialize Condition sets the queue of waiting processes to empty and sets the timeout
interval of the condition variable to ticks (measured in units of "ticks" of an internal
clock). It may be called before or after the other monitor data is initialized, but must be
called before any WAIT or NOTIFY operations are performed on the condition variable. Once
use of the condition variable has begun, Initialize Condition must never be called again.

Clients may convert clock ticks to or from milliseconds using the following operations.

MsecToTicks: PROCEDURE [CARDINAL] RETURNS [Ticks]i

TicksToMsec: PROCEDURE [Ticks] RETURNS [CARDINAL];

Tirneouts

Condition variables which are initialized automatically are assigned a default timeout of a few
seconds. The timeout of any condition variable may be changed by the following operation.

SetTimeout: PROCEDURE [condition: POINTER TO CONDITION, ticks: Ticks];

DisableTimeout: PROCEDURE [POINTER TO CONDITION];

: :

SetTimeout adjusts the timeout interval for all subsequent WAIT operations applied to that
condition variable. DisableTimeout disables timeouts for all subsequent WAIT operations
applied to that condition variable. However, neither operation has any effect on
processes which are already wAITing.

Set Timeout and DisableTimeout are the only available operations to adjust a condition
variable once it has been used. In particular, InitializeCondition must not be used for this
purpose, especially for condition variables which are automatically initialized.

," !
'. d.

'il,

, .'
'f:
.'- , ;,'.

tl,
I • !
; I;

Alto/Mesa Processes and Monitors

Detaching Processes

A process which will never be joined is detached using the following operation.

Detach: PROCEDURE [PROCESS];

41

This operation sets the state of the process so that when it returns from its root
procedure, it wilt be deleted immediately and its results, if any, will be discarded. If the
process is invalid (e. g., if the process has already been deleted), the signal InvalidProcess
may be generated.

The argument to Detach is actually of type UNSPECIFIED, and is validated as a PROCESS at run~time. This is
necessary since there is no generic type which includes all PROCESS types, regardless of result types.

Priorities of Processes

When a process is created with FORK, it inherits the priority of the FORKing process. If this proves
unsatisfactory, the FORKed process may change its own priority with the following operation.

SetPriority: PROCEDURE [Priority];

Priority: TYPE = [0 .. 7];

A process may determine its own priority by calling:

GetPriority: PROCEDURE RETURNS [Priority];

There is no way for a process to alter the priority of another process.

CAUTION: Use of mUltiple priorities in the Alto/Mesa implementation is severely restricted.
Any process running at other than the default priority (currently, 1) is forbidden to use many of
the standard runtime support features of the Mesa environment. In practice, this means that
non-standard priorities should be used only for interrupt handling, while all "normal" processing
takes place concurrently at the default priority level. In addition, all interrupt level code must be
locked in memory and should perform only a minimal amount of processing.

Aborting a process

A process can be aborted by calling the following operation.

Abort: PROCEDURE [PROCESS];

The effect of this operation is to generate the signal Aborted the next time the process
executes a WAIT statement on any condition variable. If the process is already WAITing, an
implicit NOTIFY is issued at the time this procedure is called.

The argument to Abort is actually of type UNSPECIFIED, and is validated as a PROCESS at run-time. This is
necessary since there is no generic type which includes all PROCESS types, regardless of result types.

-<, .

1·

t<\lto/Mesa Processes and Monitors 42

Aborted: ERROR;

The catch phrase for this signal may be attached to the WAIT statement, or it may be
enabled in some scope according to the scope rules of Mesa. The catch phrase is executed
with the corresponding monitor locked.

The intended use of Abort is to provide a means whereby one process may hint to another that the latter
should go away, after first cleaning up. An Abort signal may occur on any condition variable, and thus every
monitor should be protected by some catch phrase for it.

Control of scheduling

The Mesa proc.ess mechanism does not attempt to allocate processor time fairly among processes
of equal priority. Because of this, it may be desirable for a process which does not does not
execute WAIT statements very frequently in the normal course of its computation to occasionally
yield control of the processor by calling the following operation.

Yield: PROCEDURE;

This is a hint to the scheduler to run other processes of the same priority. However, there
is no guarantee that any other process will execute before the calling process resumes
execution, even if there are processes able to execute.

In no case must the logical correctness of client programs depend on the presence or absence of calls to Yield;
priorities and yielding are not intended as a process-synchronization mechanism. They are only hints to
assist clients in meeting performance requirements.

Interrupt Level Processes

This section refers only to the Alto/Mesa implementation. It should be of interest only to
programmers of interrupt level code.

The Mesa monitor mechanism includes an extension to cover the case of communication between
software processes and Input/Output controllers (hardware and/or firmware). This is done using
the artifact of naked condition variables; that is, condition variables which are not effectively
protected by a monitor lock. The need for this arises from the fact that communication with
110 controllers, while similar to normal interprocess communication, suffers from the problem
that the controllers are intrinsically unable to enter monitors. This means that two important
atomicity properties provided by monitor locks are lost:

Atomicity of wakeups: Monitor locks eliminate the need for a traditional "wakeup
waiting" (or "interrupt pending") flag. Lack of the monitor lock requires the provision of
such a flag if lost interrupts are not to result.

Atomicity of data manipulations: The mon itor lock avoids the problems of critical races
on shared data; traditionally, 110 architectures take an ad hoc approach to this problem,
rather than providing any general mechanism.

The approach taken is to solve the first problem in a general way, and leave the second problem
for case-by-case resolution by the designers of specific controller/software interfaces. (This
closely mirrors the approach normally taken in more traditional 1I0-interrupt architectures.)

~i\.lto/Mesa Processes and Monitors 43

A software process that deals with an I/O controller does so from within what appears to be a
normal monitor. The monitor data includes the status and control blocks of the device and a
condition variable which the device notifies to raise an "interrupt". Since the controller can
access the shared data at any time, however, special care must be taken by the software to avoid
conflicts. Similarly, if the controller tried to notify the software between the time it decided to
wait on the condition variable, and the time that it actually performed the WAIT operation, the
NOTIFY would be lost. To prevent this, the controller does a special form of NOTIFY (a naked
notify), which sets a wakeup-waiting flag in the condition variable. This difference is invisible
to the software, which does a normal WAIT operation on the condition variable.

The traditional operations Enablelnterrupts and Disablelnterrupts are provided for those rare
circumstances in which seizing the entire machine is the only form of mutual exclusion which
proves sufficient. Doing a WAIT while interrupts are disabled is not recommended.

InterruptLevel: TYPE = [0 .. 15];

InterruptLevels correspond to the interrupt channels described in the Alto Hardware
Manual (except that the numbering is different). Interrupt level 0 corresponds to Alto
interrupt channel 15, the memory parity interrupt channel. Several levels are used by the
Mesa system. Programmers of interrupt level code should see the definitions in
PROCESSDEFS.

ConditionVector: TYPE = ARRAY InterruptLevel OF POINTER TO CONDITIONj

CV: POINTER TO Condition Vector = -- magic constant --;

CV points to an array of pointers to the naked condition variables described above. To
associate a CONDITION with an interrupt level, assign a pointer to the CONDITION to the
corresponding element of CV (CV[level] +- @cVar). To disable the naked NOTIFYS, assign
NIL.

Disablelnterrupts, Enablelnterrupts: PROCEDURE;

These are MACHINE CODE procedures which disable and enable the handling of interrupts at
the lowest level. They should be used only in matching pairs and only when no other
exclusion mechanism will suffice. A counter is maintained of the number of unmatched
Disablelnterrupts so that nested pairs will ~ork correctly.

Alto/Mesa Segment Package

Alto/Mesa Segment Package

May 1978

44

The Mesa virtual memory (VM) is organized as a vector of pages of size PageSize words; the last
page is MaxVMPage. VM is occupied by segments: a segment is an integral number of pages in
length and the words in a segment are all linearly addressable; segments have no empty holes in
them. There are two variants of segments: data and file. Data segments are associated directly
with memory and are not swappable or movable; file segments correspond to contiguous groups
of pages in a file and may be swapped in and out of virtual memory.

Client programs access segments using SegmentHandles, which are pointers to SegmentObjects.
A SegmentObject contains the information necessary to describe the segment. Although there
are some routines that deal with SegmentHandles, segments are not particulatity interesting
unless they are discriminated as to data or file variant.

Client programs access file segments using FileSegmentHandles, which are pointers to file
SegmentObjects. A file segment contains sufficient information to compute its address if the
segment is swapped in. Internally, the segmentation package maintains a set of objects called
FileObjects: a file object, among other things, contains the file's disk address and serial number,
as well as its access rights. The association between a segment and a file is made when the
segment is created. The Mesa file package is documented separately.

Segments may also be pages in VM rather than attached to a file. Such data segments are not
swappable or movable in any way (relative to the Mesa virtual memory). Thus, absolute pointers
into a data segment are valid for 'the lifetime of the segment. DataSegmentHandles and data
SegmentObjects are used to record information about these segments. See SEGMENTDEFS for
further details.

Segments

As mentioned above, segment objects come in two varieties: data segments and file segments The
following structure contains the necessary information:

SegmentHandle: TYPE = POINTER TO SegmentObjectj

SegmentType: TYPE = {data, file};

SegmentObject: TYPE = RECORD [
... ,
SELECT type: SegmentType FROM

data => [
VMpage: [O .. MaxVMPage],
pages: [1 .. MaxVMPage+ 1]
. . .],

file =) [

swappedin: BOOLEAN,
read, write: BOOLEAN,

V M page number
number of pages

TRUE iff segment is in
access options

Alto/Mesa Segment Package

class: FileSegmentCiass,
lock: [O .. MaxLocks],
file: FileHandle,
base: PageNumber,
pages: [1 .. MaxVMPage+ 1],
VMpage: [O .. MaxVMPage],
...],

ENDCASE];

{code, other}
locking reference count
see the file package
first page of the file to include
number of pages, beginning with base
if swapped in, VM page number

The procedures which manipulate undiscriminated segments are:

VMtoSegment: PROCEDURE [a: POINTER] RETURNS [SegmentHandle]j

45

The handle for the segment" containing the specified address (as currently laid out in
memory) is returned; NIl is returned if no segment contains it. This does not imply that
the page containing the address is free, however; it may be reserved for some operation
currently in progress.

SegmentAddress: PROCEDURE [seg: SegmentHandle] RETURNS [POINTER];

The address of the beginning of the segment is returned; NIL is returned if the segment is a
file segment and not currently swapped in. To guarantee the validity of the address the
segment should be locked when this procedure is called (see below), since the system may
swap out file segments which are not locked. Beware of dangling referencesl

Data Segments

Data segments are associated only with virtual memory (there is no swapping file), and are never
moved or swapped out.

DataSegmentHandle: TYPE = POINTER TO DataSegmentObjectj

DataSegmentObject: TVPE = data SegmentObject;

The procedures which manipulate data segments are:

NewDataSegment: PROCEDURE [base: PageNumber, pages: PageCount]
RETURNS [DataSegmentHandle];

Creates a new data segment and returns a handle for it. If base is DefaultBase then the
segment is allowed to begin on any free page in memory. If base is an actual page
number (in [O .. MaxVMPage]), an attempt is made to place the segment at that location.
Note that pages should not be defaulted.

DataSegmentAddress: PROCEDURE [seg: DataSegmentHandle] RETURNS [POINTER]j

Returns a pointer to the base of the segment in virtual memory. In the current
implementation, segments always begin on a page boundary; this may not be true in the
(distant) future.

"

Alto/Mesa Segment Package 46

VMtoDataSegment: PROCEDURE [a: POINTER] RETURNS [DataSegmentHandle];

The handle for the segment containing the specified address (as currently laid out in
memory) is returned. NIL is returned if no data segment contains it. This does not imply
that the page containing the address is free, however; it may be assigned to a file segment,
or reserved for some operation currently in progress.

DeleteDataSegment: PROCEDURE [seg: DataSegmentHandle];

The specified data segment is deleted and its segment object freed. When a segment is
successfully deleted, any VM which it occupied becomes free.

EnumerateDataSegments: PROCEDURE [
proc: PROCEDURE [DataSegmentHandle] RETURNS [BOOLEAN]]
RETURNS [DataSegmentHandle] j

Calls proc once for each data segment currently defined. If proc returns TRUE,
EnumerateDataSegments returns the handle of the last segment processed. If the end of
the set of data segments is reached, NIL is returned.

If data segments are created while EnumerateDataSegments is in control, it is not guaranteed that
they will be included in the sequence of DataSegmentHandles passed to proc.

File Segments

Unlike data segments, file segments are associated with a contiguous group of pages in a file and
are therefore swappable. Pointers into a file segment are valid only while it is swapped in (and
locked so that it will not be swapped out). A file segment which is swapped out occupies no
space in virtual memory, other than the segment object which describes it.

FileSegmentHandle: TVPE = POINTER TO FileSegmentObjectj

FileSegmentObject: TYPE = file SegmentObjectj

To create new file segments, use

NewFileSegment: PROCEDURE [
file: FileHandle, base: PageNumber, pages: PageCount, access: AccessOptions]
RETURNS [FileSegmentHandle] j

Creates a new segment and returns a handle for it. The segment is associated with the
corresponding file pages, but the file is not opened and the segment is not swapped in. If
base is DefaultBase, the segment will begin with the first data page of the file, and if
pages is DefaultPages, it will include the last page of the file. Although it is generally
not done, a segment can begin with the leader page (page zero) of a file. Finally, if
access is DefaultAccess, read access is assumed.

If the access specifies that changing the data is permitted, then whenever it is necessary to swap
this segment out and remove its pages from memory, pages will be written to the file (the Alto
has no hardware to detect if the pages have actually been changed). Note that it is possible to
change the segment's access (by setting the write bit. for example). provided the file to which it is
attached has the appropriate access rights.

': /'

Alto/Mesa Segment Package 47

FileSegmentAddress: PROCEDURE [seg: FileSegmentHandle] RETURNS [POINTER];

The address of the beginning of the segment is returned. The signal SwapError is raised
if the segment is not currently swapped in. To guarantee the validity of the address, the
segment should be locked when this procedure is called (see below), since the system may
swap out file segments which are not locked. Beware of dangling references!

VMtoFileSegment: PROCEDURE [a: POINTER] RETURNS [FileSegmentHandle];

The handle of the file segment containing the specified address (as currently laid out in
memory) is returned; NIL is returned if no file segment contains it. This does not imply
that the page containing the address is free, however; it may be assigned to a data
segment, or reserved for a segment currently being swapped in.

DeleteFileSegment: PROCEDURE [seg: FileSegmentHandle];

The specified file segment is deleted and its segment object is released. If the segment is
swapped in, it is first swapped out (it should not be locked). If there are no other
segments associated with this segment's file (the file's segcount is zero), then ReleaseFile
is called to release the FileObject. When a segment is successfully deleted, any VM which
it may have occupied becomes free.

EnumerateFileSegments: PROCEDURE [

proc: PROCEDURE [FileSegmentHandle] RETURNS [BOOLEAN]]

RETURNS [FileSegmentHandle] j

Calls proc once for each data segment currently defined. If proc returns TRUE,

EnumerateFileSegments returns the handle of the last segment processed. If the end of
the set of data segments is reached, NIL is returned.

If file segments are created while EnumerateFileSegments is in control, it is not guaranteed that
they will be included in the sequence of FileSegmentHandles passed to proc.

Window Segments

A window segment is similar to a file segment, except that the base and pages fields of the
segment may be altered (using the procedures described below) after it is created, in order to slide
the window around in a file or to vary the window's size. In reality, all file segments are in fact
window segments, and may be moved with the following procedure:

MoveFileSegment: PROCEDURE [seg: FileSegmentHandle, base: PageNumber, pages: PageCount];

If the segment is swapped in, it is first swapped out (it should not be locked). The
segment is then moved to the new location in the segment's file, but it is not swapped in.
The base and pages are defaulted as in NewFileSegment.

Fine point: in the current impkmentation. the disk address of the original segment is retained as a hint
about the new location, thus improving performance considerably when a one page segment is slid forward or
backward in a file.

If the original and final position of the segment overlap, there is no guarantee that the
overlapping pages are actually written, nor is it guaranteed that a minimum number of pages are
transferred. The segment package reserves the option to implement (or not to implement) such

Alto/Mesa Segment Package 48

optimizations in the future.

Swapping Segments

A segment can be swapped into and out of VM. The procedures and signals which implement
this are described in this section:

Swapln: PROCEDURE [seg: FileSegmentHandle]j

Swaps in the specified segment (if it is swapped out), opening the associated file if
necessary; locks it so it won't be moved or swapped out. A SwapError will result if the
segment already has MaxLocks locks on it, or if the segment's file has MaxRefs segments
current~y attached to it and swapped in.

To unlock a segment (allow it to be swapped), use the procedure

Unlock: PROCEDURE [seg: FileSegmentHandle]i

Unlocks the specifed segment so that it can be swapped out. Note that locking behaves
like reference counting, so that locks (performed by Swapln) must be properly paired
with Unlocks.

A segment is swapped out using

SwapOut: PROCEDURE [seg: FileSegmentHandle]j

Swaps out the specified segment, writing the pages back to the file if the segment's access
makes this necessary, and free the segment's VM pages. If the segment is locked, a
Swap Error will be generated.

A program may explicitly request that the file pages corresponding to a segment be updated by
calling:

SwapUp: PROCEDURE [seg: FileSegmentHandle]j

Write the pages of the segment back to the file if the access requires it. This operation
does not unlock the segment or free the segment's VM pages.

Note that neither Swapln, SwapOut, or SwapUp are capable of extending a file (physically adding
pages or bytes to it) based on the size of a segment. Segments may be attached only to pages of a
file that are already allocated on the disk (and chained together). Extending (or contracting) a
file must be done using other mechanisms (for example, see SetEndOfFile in the file package).

Signals

The following signals may be generated by the segment package:

i,

·Alto/Mesa Segment Package 49

InvalidSegmentSize: SIGNAL [pages: PageCount]i

In New Data Segment or NewFileSegment a zero length segment has been requested, or the
length exceeds the size of virtual memory.

InsufficientVM: SIGNAL [needed: PageCount];

In NewDataSegment or Swap In there is not enough contiguous memory to accomodate a
segment; needed is the number of pages that are actually required. If resumed, the
allocation will be retryed; this gives the catcher of this signal a chance to free up some
VM. Users can free VM pages by deleting data segments and by allowing locked segments
to become swappable (see also the section below on swapping strategies).

VMnotFree: SIGNAL [base: PageNumber, pages: PageCount];

In NewDataSegment the base was not DefaultBase and the specified memory pages
were not free.

SwapError: SIGNAL [seg: FileSegmentHandle]i

An invalid swapping operation was attempted with seg.

SegmentFault: SIGNAL [seg: FileSegmentHandle, pages: PageCount]j

End of .file was encountered while attempting to swap the segment in or out; pages is the
actual number of pages in the segment. If pag~s is greater than zero then the signal may
be resumed; the segment will be truncated accordingly (of course, this will not alter the
file length).

Low Level Memory Allocation

Operations are provided for users that have a need to control memory allocation at a lower level
than provided above. Allocation is controlled by the information in an Alloclnfo (which is
passed along with each operation).

Alloclnfo: TYPE = RECORD [

effort: {hard, easy},
direction: {topdown, bottomup},
.. .];

If the effort field is hard, unlocked read-only file segments will be pushed out of the way. The
direction field specifies the direction of the search for a hole. In the above procedures, data
segments are allocated topdown, and file segments are allocated bottomup. See ALLOCDEFS for
further information.

The operations which form the low-level memory allocation are:

, i

'.:'

'I'

Alto/Mesa Segment Package

MakeDataSegment: PROCEDURE [base: PageNumber, pages: PageCount, info: Alloclnfo]
RETURNS [DataSegmentHandle] i

50

Acts like NewDataSegment, except info is passed as an additional parameter; the same
restrictions apply and the same signals may be generated.

MakeSwappedln: PROCEDURE [seg: FileSegmentHandle, base: PageNumber, info: Alloclnfo]i

Acts like Swapln, except info and base are passed as additional parameters; the same
restrictions apply and the same signals may be generated. If base is DefaultBase then the
segment is allowed to begin on any free page in memory. If base is an actual page
number (in [O .. MaxVMPage]), an attempt is made to place the segment at that location
(VMnotFree will be raised if the specified pages are not available).

Swapping Strategies

A mechanism is provided for informing the segmentation package of emergency measures which
can be taken when the signal InsufficientVM is (about to be) generated. These measures take the
form of SwappingProcedures which, when called by the swapping manager, attempt to make
more room in virtual memory and return a BOOLEAN indicating their success or failure to do so.
The swapping manager invokes each procedure in turn, retrying the allocation after each
procedure which has indicated success, until sufficient memory is obtained. If all such
procedures indicate failure, the signal InsufficientVM is raised (the swapping manager is not
crying wolf!).

The swapping strategies are maintained as a linked list of SwapStrategy nodes whose procedures
are invoked from head to tail.

SwappingProcedure: TYPE = PROCEDURE [
needed: PageCount, info: Alloclnfo, seg: SegmentHandle]
RETURNS [BOOLEAN]i

The following parameters are supplied to swapping procedures to allow them the make intelligent
decisions about making room: needed is the number of pages requested, info the Alloclnfo
supplied to the allocator, and seg the file segment that will use the allocated memory (NIL if the
segment is not known).

Swap Strategy: TYPE = RECORD [
link: POINTER TO SwapStrategy,
proc: SwappingProcedure]i

The swapping manager initializes the list with a single node which invokes code swapping as a
last resort.

StrategyList: POINTER TO SwapStrategy +- @LastResortj

LastResort: SwapStrategy = SwapStrategy[NIL, TryCodeSwapping].

Swapping procedures are added to and removed from the Jist by the procedures:

Alto/Mesa Segment Package 51

AddSwapStrategy: PROCEDURE [strategy: POINTER TO SwapStrategy]i

The specified strategy node strategy is added to the head of the list of swapping
procedures. If strategy is already on the list, its position and content are not disturbed.

RemoveSwapStrategy: PROCEDURE [strategy: POINTER TO SwapStrategy]i

The specified strategy node s is removed from the list of swapping procedures.

Currently, TryCodeSwapping uses an (approximately) LRU (least-recently-used) algorithm to
choose a code segment to swap out. Only code segments which are not locked are considered.
Unlocked read-only file segments are also swapped out by TryCodeSwapping.

Since it is unattractive to require that swapping strategies (other than TryCodeSwapping) be
locked, swapping procedures should observe the following conventions. If such a procedure
obtains a state in which it has nothing to swap, it should either remove the node containing it
from the strategy list or change the procedure in the node to be

CantSwap: SwappingProcedurei

Because Cant Swap is part of the swapping manager (and therefore locked), this will avoid
swapping in a strategy procedure which knows it has nothing to do.

Miscellaneous Procedures

The following procedures implement conversion between memory addresses and virtual memory
page numbers.

PageFromAddress: PROCEDURE [a: POINTER] RETURNS [PageNumber]i

AddressFromPage: PROCEDURE [p: PageNumber] RETURNS [POINTER];

PagePointer: PROCEDURE [a: POINTER] RETURNS [POINTER];

PagePointer returns the address of the beginning of the page which contains its argument.

The following procedures implement conversion between FileSegments and DataSegments. Note
that both segments must exist at the time of the call, and neither is destroyed. They must be of
the same length (a SwapError will result otherwise).

CopyDataToFileSegment: PROCEDURE [dataseg: DataSegmentHandle, fileseg: FiI~SegmentHandle]i

initializes a file segment to be the contents of a data segment.

CopyFileToDataSegment: PROCEDURE [fileseg: FileSegmentHandle, dataseg: DataSegmentHandle];

initializes a data segment to be the contents of a file segment.

';'

l'

-Alto/Mesa Storage Managemeut Facilities

Alto/Mesa Storage Management Facilities

May 1978

52

Two collections of Mesa procedures are available for acquiring and managing storage areas. The
segmentation machinery, which is described in detail elsewhere, provides contiguous groups of
pages (256 word blocks) in the virtual memory. A simplified interface with that machinery is
described below. There is also a Mesa free storage package for managing arbitrarily sized nodes
within free storage zones. Since all state information is recorded within the zones themselves,
the system-provided instantiation of the latter package can manage an arbitrary number of zones.
There is one system-defined zone, called the free storage heap, available for general use; special
procedures exist for creating and destroying nodes within it. The salient characteristics of these
packages are summarized below.

The segmentation' machinery is most suitable for obtaining large blocks of storage. All
bookkeeping information associated with such blocks is recorded in auxiliary tables that are
managed by the segmentation system, not in the blocks themselves. Allocating or releasing a
segment involves searching and updating a number of those tables. On the other hand, any freed
page becomes available for general use by the system (loading, buffering, etc.) and any two
adjacent free pages can be coalesced to become part of a new segment.

The free storage package is a transliteration of a BCPL program by Ed McCreight that was itself
based upon a suggestion by Don Knuth (Volume 1, p. 453, #19). Within a zone, free nodes are
kept as a linked list. One hidden word containing bookkeeping information is stored with each
allocated node, and additional bookkeeping information is kept in the header of each zone.
Allocation and release of nodes are usually very fast. Adjacent free nodes are always able to be
coalesced. It is also possible to add new areas of storage to enlarge a zone. These new areas are
linked together so that they may be deleted if all the nodes in an area are free; in addition, an
entire zone may be deleted.

The free storage package performs best when the sizes of nodes are small compared to the sizes
of the block(s) making up the lone. In particular, the system's heap is intended to be used for
small, transient data structures, such as the nodes of a temporary list structure or the bodies of
(short) strings when the maximum length must be computed dynamically or the structure must
outlive the frame that creates it. Use of the heap for large (Le., multipage) nodes decreases
flexibility in ~torage management, since the additional pages may become a permanent part of the
zone.

Note: Each zone is protected by a MONITOR. This allows several processes to share the same zone
safely.

The allocators in both packages return absolute pointers; allocated nodes are not reiocatable and
there is no garbage collection or automatic deallocation of any sort. Also, the values returned by
the allocators are free pointers (type POINTER TO UNSPECIFIED) which must be cast appropriately
(usually by assignment) before they can be used.

-Alto/Mesa Storage Management Facilities 53

Segmentation Interface

.The following definitions are contained in SYSTEMDEFS.

AliocateSegment: PROCEDURE [nwords: CARDINAL] RETURNS [base: POINTER];

Allocates a segment of virtual memory containing at least nwords words and returns the
address of the first word in that segment. AliocateSegment provides a simple interface to
NewDataSegment for allocating VM segments only; see the description of that procedure
for further explanation.

AliocateResidentSegment: PROCEDURE [nwords: CARDINAL] RETURNS [base: POINTER];

Behaves like AliocateSegment, except that unlocked read -only file segments are pushed
out of the way when the segment is allocated.

SegmentSize: PROCEDURE [base: POINTER] RETURNS [nwords: CARDINAL];

Returns the number of words actually obtained in the segment.

These procedures allow complete utilization of segments obtained without knowledge of page
structure and guaranteed only to have some minimum size. Such segments are returned to the
system by

FreeSegment: PROCEDURE [base: POINTER];

For uses in which the page structure is already known, the following procedures are also
provided.

AllocatePages: PROCEDURE [npages: CARDINAL] RETURNS [base: POINTER];

AllocateResidentPages: PROCEDURE [npages: CARDINAL] RETURNS [base: POINTER];

PagesForWords: PROCEDURE [nwords: CARDINAL] RETURNS [npages: CARDINAL];

FreePages: PROCEDURE [base: POINTER];

Any storage obtained using AllocatePages or AllocateResidentPages is guaranteed to begin on a
page boundary.

Fr~e Storage Package

The following definitions are available in FSPDEFS. A zone is a block of storage containing
embedded nodes. The length of either a zone or a node is

BlockSize: TYPE = INTEGER [O .. VMLimit/2]; -- 15 bits.

Each zone is headed by a ZoneHeader. which is a monitored record with the following public
fields:

. . .
threshold: BlockSize, -- minimum node size in zone

-Alto/Mesa Storage Management Facilities 54

checking: BOOLEAN, -- zone checking (see below)

Zones are identified by pointers of type

ZonePointer: TYPE = POINTER TO ZoneHeader;

Associated with each zone is a procedure of type

Deallocator: TYPE = PROCEDURE [POINTER];

which is used' to deallocate the storage used by the zone. The following Deallocator may be
supplied when nothing is to be done to the storage being freed:

DoNothingDeall'ocate: Deallocator;

Zone Operations

An arbitrary block of (uninterpreted) storage is converted to a zone by the procedure

MakeNewZone: PROCEDURE [base: POINTER, length: BlockSize, deallocate: Deallocator]
RETURNS [z: ZonePointer];

Such a block can alternatively be made an extension of an existing zone by calling

AddToNewZone: PROCEDURE [
z: ZonePointer, base: POINTER, length: BlockSize, deallocate: Deallocator];

The following procedures default DoNothingDealiocate as the Deallocator:

MakeZone: PROCEDURE [base: POINTER, length: BlockSize] RETURNS [z: ZonePointer];

AddToZone: PROCEDURE [z: ZonePointer, base: POINTER, length: BlockSize];

Unused areas of the zone are released by calling

PruneZone: PROCEDURE [z: ZonePointer] RETURNS [BOOLEAN];

which returns TRUE if any areas were freed and FALSE otherwise.

A zone may be destroyed and all its storage freed by calling

DestroyZone: PROCEDURE [z: ZonePointer];

No check is made for any nodes that are in use.

Warning: This operation cannot be protected by the monitor, and can therefore result in
severe errors if another process is inside the zone.

Node Operations

The largest node that can be allocated in a virgin block of size length is length-ZoneOverhead.

~c\.Ito/Mesa Storage Management Facilities 55

A node is allocated by

MakeNode: PROCEDURE [z: ZonePointer, n: BlockSize] RETURNS [POINTER]i

The value returned points to a block of n words; there is an additional hidden word of
overhead (at offset-I) which must be preserved by users of the node. Nodes are
sometimes split to satisfy allocation requests. Splitting within a zone z never generates
fragments with size less than z.threshold, which is initialized to the minimum size of a
free node. A request for a node of size n will produce a node with size in the range [n ..
n+z. threshold).

The actual size of an allocated node is returned by

NodeSize: PROCEDURE [p: POINTER] RETURNS [BlockSize]i

If after coalescing all free nodes, a node of the requested size cannot be found,

NoRoomlnZone: SIGNAL [z: ZonePointer];

is raised. This signal can be resumed (after, e.g., adding to the zone), and another attempt to
allocate and return a suitable node will be made. An allocated node is returned to the zone by

FreeNode: PROCEDURE [z: ZonePointer, p: POINTER];

Alternatively, ~n existing node can be split by calling

SplitNode: PROCEDURE [z: ZonePointer, p: POINTER, n: BlockSize]:

the first n words of the node p remain allocated, and the remainder of the node is freed.

When a zone z is created, the variable z.checking is initialized to FALSE. If that variable is set to
TRUE, the zone is checked for consistency prior to each transaction involving that zone. A failure
raises one of the following signals:

InvalidZone, InvaJidNode: ERROR [POINTER];

Allocation From The Heap

Users which make extensive use of heap storage are encouraged to create their own heap from the
above operations. The following procedures provide a simple interface to the free storage
package.

myHeap: FspDefs.ZonePointer +- NIL;

GetSpace: PROCEDURE [nwords: CARDINAL] RETURNS [p: POINTER] =
BEGIN OPEN SystemDefs, FspDefs;
np: CARDINAL;
p +- MakeNode[myHeap, nwords

NoRoomlnZone =>
BEGIN
np +- PagesForWords[nwords + ZoneOverhead + NodeOverhead];
AddToNewZone[

Alto/Mesa Storage Management Facilities

RETURN
ENDj

myHeap, AliocateResidentPages[np], np" AltoDefs.PageSize, FreePages] j
RESUME
END]j

FreeSpace: PROCEDURE [p: POINTER] =
BEGIN
FspDefs.FreeNode[myHeap, p]j
RETURN
ENDj

GetString: PROCEDURE [nchars: CARDINAL] RETURNS [s: STRING] =
BEGIN
s ~ GetSpace[StringDefs.WordsForString[nchars]]j
st ~ [length: 0, maxlength: nchars, text:]j
RETURN
ENDj

FreeString: PROCEDURE [s: STRING] = LOOPHOLE[FreeSpace]j

InitHeap: PROCEDURE [npages: CARDINAL] =
BEGIN OPEN SystemDefs, FspDefsj
IF myHeap # NIL THEN EraseHeap[]j
myHeap ~ MakeNewZone[

AliocateResidentPages[npages], npages" AltoDefs.PageSize, FreePages];
RETURN
END;

EraseHeap: PROCEDURE =
BEGIN
FspDefs.DestroyZone[myHeap];
myHeap ~ NIL;
RETURN
END;

56

Users which use the heap infrequently may use the system storage heap. The following
definitions are available in SYSTEMDEFS. The heap is managed by the free storage package; the
appropriate zone pointer for use with the procedures described in the previous section is returned
by

HeapZone: PROCEDURE RETURNS [ZonePointer]j

The following procedures provide a specialized interface.

AliocateHeapNode: PROCEDURE [nwords: CARDINAL] RETURNS [p: POINTER];

FreeHeapNode: PROCEDURE [p: POINTER];

In addition,

-Alto/Mesa Storage Management Facilities 57

AliocateHeapString: PROCEDURE [nchars: CARDINAL] RETURNS [s: STRING];

allocates space for the body of a string in the heap. The field s.length is set to zero;
s.maxlength is set to nchars.

Such strings are freed by

FreeHeapString: PROCEDURE [s: STRING];

If an allocation request cannot be satisfied from existing heap storage, an attempt is made to
extend the heap with a block of appropriate size obtained from the segmentation machinery.
The extensiori becomes a permanent part of the heap.

The heap may be pruned by calling

PruneHeap: PROCEDURE RETURNS [BOOLEAN];

which returns TRUE if any storage was returned to the segmentation machinery, and FALSE

otherwise.

,Alto/Mesa StreamIO Package

Alto/Mesa StreamlO Package

May 1978

58

STREAMIO contains a set of procedures for convenient use of the character and string stream
facilities in Mesa. The procedures of the STREAMIO package are described below. The declarations
necessary to use the procedures are in IODEFS.

STREAMIO uses two streams, one for input and one for output. These may be gotten by calling:

GetlnputStream, GetOutputStream: PROCEDURE RETURNS [StreamHandle]i

Returns the stream used for input or output, respectively.

The streams may be changed by calling:

SetlnputStream, SetOutputStream: PROCEDURE [StreamHandle]i

Replaces the input or output stream, respectively.

Character 10

ReadChar: PROCEDURE RETURNS [CHARACTER];

Returns the next character from the InputStream.

Write Char: PROCEDURE [c: CHARACTER]i

The character C is written on the OutputStream.

Definitions for control characters such as NUL, BS, TAB, LF, FF, CR, ESC, SP, DEL. and
ControlA - ControlZ can be found in IODEFS.

String Input

The procedures below read input from the InputStream. The following exceptional conrlitions
may occur.

LineOverflow: SIGNAL [s: STRING] RETURNS Ens: STRING];

The input has filled the string s, the current contents of the string is passed as a
parameter to the SIGNAL. The catch phrase should return a string ns with more room.

1~lto/Mesa StreamIO Package

Rubout: SIGNALj

The DEL key was typed during ReadEditedString.

The procedures are:

ReadEditedString: PROCEDURE [

s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN], newstring: BOOLEAN]

RETURNS [CHARACTER]j

59

s contains (on return) the string read from the InputStream. The procedure t should
return TRUE if the CHARACTER passed to it should terminate the string. If (newstrlng is
TRUE and the first input character is ESC) or (newstring is FALSE), then s is treated as if it
had been read from Input Stream (input characters are appended to it). Otherwise s is
initialized to be empty before reading is begun.

A string is read from the Input Stream with the following editing characters recognized:

tA, tH (BS) delete the last character
tW, to delete the last word
tX delete the line and start over
tR retype the line
tV quote the next character

All characters except the terminating character are echoed on the OutputStream. The user
supplied procedure t determines which character(s) terminate the string .. The character returned
is the 'character which terminated the string and is not echoed or included in the string.

The following procedures all call ReadEditedString passing TRUE for newstring.

ReadString: PROCEDURE [s: STRING, t: PROCEDURE [CHARACTER] RETURNS [BOOLEAN]]j

Like ReadEditedString except that the terminating character is echoed. No value is
returned.

ReadLine: PROCEDURE [s: STRING]j

Reads from the InputStream up to the next carriage return character using
ReadEditedString. The terminating character is not part of s.

ReadlD: PROCEDURE [s: STRING]j

Uses ReadEditedString to read a .string terminated with a space or carriage return into s.
The terminating character is not echoed.

String Output

WriteString: PROCEDURE [s: STRING]j

The string s is written on the OutputStream.

.Alto/Mesa StreamIO Package 60

WriteLine: PROCEDURE [s: STRING];

The string s is written on the OutputStream followed by a carriage return.

Number Input

These procedures use the StringToNumber conversion procedures from the STRINGS package.

ReadNumber: PROCEDURE [default: UNSPECIFIED, radix: CARDINAL] RETURNS [UNSPECIFIED];

ReadlO followed by StringToNumber. The value default will be displayed if ESC is typed.
radix is a default value, use the "B" or "0" notation to force octal or decimal. radix values
other t~an 8 or 10 cause unpredictable results.

ReadOecimal: PROCEDURE RETURNS [INTEGER];

ReadlO followed by StringToOecimal.

ReadOctal: PROCEDURE RETURNS [UNSPECIFIED];

ReadlO followed by StrlngToOctal.

Number Output

NumberFormat: TYPE = RECORD [

base: [2 .. 36], zerofiJI, unsigned: BOOLEAN, columns: [0 .. 255]];

refers to a number whose base is f.base; tlie field is f.columns wide; if f.zerofill, the
extra columns are filled with zeros, otherwise spaces are used; if f.unsigned, the number
is treated as unsigned.

WriteNumber: PROCEDURE [val: UNSPECIFIED, f: NumberFormat]j

Equivalent to OutNumber[OutputStream, val, fl.

WriteOecimal: PROCEDURE en: INTEGER];

The value of n is converted to a character string of digits in base ten and output to the
OutputStream. Negative numbers are written with a preceeding minus sign ('-).

WriteOctal: PROCEDURE en: UNSPECIFIED];

The value of n is converted to a character string of digits in base eight and output to the
OutputStream. The numbers are unsigned, i.e., -2 is written as 177776B. The "B" is

. appended to any number more than one digit long.

.Alto/Mesa StreamlO Package 61

Initialization

The Mesa system provides an instance of StreamlO which will obtain input from the keyboard
and write output to the display. Client programs may create new instances of StreamlO to deal
with other streams by writing:

StreamlO: FROM "streamio";

IMPORTS ••• systemio: StreamlO

f: POINTER TO FRAME [StreamIO];

f +- NEW systemio;
START f;

The the streams used for input and output can then be set by calling SetlnputStream or
SetOutputStream. The desired stream procedures may be accessed by oPENing f or writing
f .procedurename.

,Alto/Mesa Streams

Alto/Mesa Streams

May 1978

62

Streams provide a standard interface between programs and their sources of sequential input and
their sinks for sequential output. A set of standard operations defined for all types of streams is
sufficient for all ordinary input-output requirements. In addition, most streams have special
(device dependent) operations defined for them; programs which use such operations thereby
forfeit complete compatibility.

Streams transmit information in atomic units called items. Usually an item is a CHARACTER or a
WORD, and this is the case for most of the streams supplied with Mesa. Of course, a stream
supplied to a program must have the same ideas about the kind of item it handles as the program
does; otherwise confusion will result. Normally. streams which transmit text use CHARACTER

items. and those which transmit binary information use WORDS.

Streams are passed about using StreamHandles, variants of which are produced by the (device
dependent) procedures that create streams. A StreamHandle is a pointer to a variant record of
type StreamObject, which is defined (in STREAMDEFS) as follows:

StreamHandle: TYPE = POINTER TO StreamObjectj

KeyboardHandle: TYPE = POINTER TO Keyboard StreamObjectj
DisplayHandle: TYPE = POINTER TO Display StreamObjectj
DiskHandle: TYPE = POINTER TO Disk StreamObjectj

StreamObject: TYPE = RECORD [

reset: PROCEDURE [StreamHandle],
get: PROCEDURE [StreamHandle] RETURNS [UNSPECIFIED],

putback: PROCEDURE [StreamHandle, UNSPECIFIED],

put: PROCEDURE [StreamHandle, UNSPECIFIED],

endof: PROCEDURE [StreamHandle] RETURNS [BOOLEAN],

destroy: PROCEDURE [StreamHandle],
body: SELECT type: * FROM

Keyboard =) • • •

Display => ...
Disk =) .••

Other => [data: POINTER];

The procedures which create streams return descriminated pointers (a DiskHandle, for example).
which can be assigned to variables of type StreamHandle without any loopholes. Most stream
procedures (and all of the standard operations) expect Stream Handles (which can be matched by
any descriminated pointer); they check at runtime for the appropriate stream type.

Error conditions are reported in a fashion independent of the particular stream type, using the
following definitions (not all error codes are applicable to all stream types):

-Alto/Mesa Streams

StreamError: SIGNAL [stream: StreamHandle, error: StreamErrorCode];

StreamErrorCode: TYPE = {
StreamType, StreamAccess, StreamOperation,
StreamPosition, StreamEnd, StreamBug};

63

As the definition implies, each stream object contains procedures that implement the standard
stream operations, as described below (s is a StreamHandle, i is an item of the appropriate type,
and "code error" means that SIGNAL StreamError[s, code] is raised):

reset[s] restores the stream to some initial state, generally as close as possible to the state
it is fn just after it is created.

get[s] :returns the next item; StreamAccess error if s cannot be read or if endof[s] is
true before the call.

putback[s, i] modifies the stream so that the next get[s] will return i and leave s in the
state it was in before the putback.

put[s, i] writes i into the stream as the next item; StreamAccess error if the stream
cannot be written; StreamEnd error if there is no more space in the stream.

endof[s] TRUE if there are no more items to be gotten from s. For output streams. endof
is device-dependent.

destroy[s] destroys s in an orderly way, freeing the space it occupies. Note that this has
nothing to do with deleting any underlying data structures or processes associated with the
stream (like a disk file, for example, or the keyboard process).

Each of these operations is defined more precisely in the descriptions of the individual stream
types which appear separately. All of the stream routines produce the StreamType error when
the variant of the StreamObject they are passed is not what they are expecting. See the Disk
Streams, Display, and Keyboard sections for details of specific stream types.

The Other variant of a StreamObject is provided so that clients can easily provide other types of
streams using the same standard set of operations. The data field of an Other StreamObject
should point to any additional data required by the particular stream. Clients with more than
one type of Other stream should include a type code in this data (probably as a variant record),

.Alto/Mesa String Package

Alto/Mesa String Package

May 1978

64

This module contains procedures that implement various string operations. The necessary TYPE
and PROCEDURE declarations appear in STRINGDEFS and are described below. (Constants defining
word size, character size, etc. are in ALTODEFS.)

SubStringDescriptor: TYPE = RECORD [
base: STRING,
offset, length: CARDINAL];

SubString: POINTER TO SubStringDescrlptor;

A SubStringDescriptor describes a region within a string. The first character is
baser offset] and the last character is base [offset+length-1].

WordsForString: PROCEDURE [nchars: CARDINAL] RETURNS [CARDINAL]i

Calculates the number of words of storage needed to hold a string of length nchars. The
value r.eturned includes any system overhead for string storage.

String Construction

AppendChar: PROCEDURE [s: STRING, c: CHARACTER];

Appends the character c to the end of the string s; s.length is updated; s.maxlength is
unchanged.

AppendString: PROCEDURE [to, from: STRING];

Appends the string from to the end of the string to; to.length is updated; to.maxlength is
unchanged.

AppendSubString: PROCEDURE [to: STRING, from: SubString]i

Appends the substring in from to the end of the string in to; to.length is updated;
to.maxlength is unchanged.

StringBoundsFault: SIGNAL [s: STRING] RETURNS [ns: STRING];

An attempt was made to increase the length of s to be larger than s.maxlength. The catch
phrase should return a string ns with more room.

.Alto/Mesa String Package 65

OeleteSubString: PROCEDURE [s: SubString];

Deletes the substring described by s from the string s.base; s.base.length is updated;
s.base.maxlength is unchanged.

String Comparison

EqualString, EqualStrings: PROCEDURE [s1, s2: STRING] RETURNS [BOOLEAN];

Returns TRUE if s 1 and s2 contain exactly the same characters.

EquivalentString, EquivalentStrings: PROCEDURE [s1, s2: STRING] RETURNS [BOOLEAN];

Returns TRUE if s1 and s2 contain the same characters except for case shifts. Note:
strings containing control characters may not be compared correctly.

EqualSubString, EqualSubStrings: PROCEDURE [s1, s2: SubString] RETURNS [BOOLEAN];

Analogous to EqualString and EqualStrings.

EquivalentSubString, EquivalentSubStrings: PROCEDURE [s1, s2: SubString] RETURNS [BOOLEAN];

Analogous to EquivalentString and EquivalentStrings.

String to Binary Conversion

StringToNumber: PROCEDURE [s: STRING, radix: CARDINAL] RETURNS [UNSPECIFIED];

The characters of s are interpreted as a number whose value is returned. radix is used in
the conversion unless the "B" or "0" notation is used to force octal or decimal. Supplying
radix values of other than 8 or 10 is not supported.

StringToOecimal: PROCEDURE [s: STRING] RETURNS [INTEGER];

Calls StringToNumber[s, 10].

StringToOctal: PROCEDURE [s: STRING] RETURNS [UNSPECIFIED];

Calls StringToNumber[s, 8].

StringToLongNumber: PROCEDURE [s: STRING, radix: CARDINAL] RETURNS [LONG INTEGER];

The characters of s are interpreted as a LONG INTEGER whose value is returned. radix is
used in the conversion unless the "B" or "0" notation is used to force octal or decimal.
Supplying radix values of other than 8 or 10 is not supported.

InvalidNumber: SIGNAL;

A string is not a valid number if it is empty or contains characters other than digits (a
leading '- and trailing'S or '0 with scale factor are allowed).

.Altol Mesa String Package 66

Binary to String Conversion

AppendNumber: PROCEDURE [s: STRING, n, radix: CARDINAL];

The value of n is converted to text using radix and appended to s; radix should be in the
interval [2 .. 36].

AppendDecimal: PROCEDURE [s: STRING, n: INTEGER];

IF n < 0 THEN AppendChar[s, '-]; AppendNumber[s, ABs[n], 10].

AppendOctal: 'PROCEDURE [s: STRING];

Append~umber[s, n, 8]; AppendChar[s, 'B].

AppendLongNumber: PROCEDURE [s: STRING, n: LONG INTEGER, radix: CARDINAL];

The value of n is converted to text using radix and appended to s; radix should be in the
interval [2 .. 36].

.Alto/Mesa Time Package

Alto/Mesa Time Package

May 1978

67

TIMECONVERT contains procedures that implement various operations on dates and times. The
necessary TYPE and PROCEDURE declarations appear in TIMEDEFS and are described below.

PackedTime: TYPE = InlineDefs.LongCARDINAL;

A PackedTime is the number of seconds since midnight January 1, 1901 GMT. ,

Fine point: a PackedTime is not a LONG INTEGER because the number of seconds has already exceeded 231).

DefaultTime: PackedTime;

UnpackedTime: TYPE = RECORD [
year: [0 .. 2050], -- years less than 1901 are not possible
month: [0 .. 12), -- January = 0
day: [0 .. 31], -- first day of month = 1
hour: [0 .. 24),
minute: [0 .. 60),
second: [0 .. 60),
weekday: [0 .. 6], -- Monday = 0
zone: [-12 .. 12], -- PacHic = 8
dst: BOOLEAN];

CurrentDayTime: PROCEDURE RETURNS [PackedTlme];

Returns the current date and time in packed format.

UnpackDT: PROCEDURE [PackedTime] RETURNS [UnpackedTime];

Converts a packed format time to a more convenient unpacked format. If the argument
is DefaultTime, the current time is used.

PackDT: PROCEDURE [unp: UnpackedTime, computeDST: BOOLEAN] RETURNS [PackedTime]j

Converts unp into packed format. If computeDST is TRUE, the time zone and daylight
savings time are computed according to local conventions rather than taken from unp. If
any of the fields of unp contain illegal values, PackDT will signal InvalidTime.

InvalidTime: ERROR;

PackDT has discovered illegal values in the unpacked time.

AppendDayTime: PROCEDURE [s: STRING, u: UnpackedTlme]j

Converts u to a text string of the form 12-Jan-78 14:56 and appends it to s.

.Alto/Mesa Time Package 68

AppendFullDayTime: PROCEDURE [s: STRING, u: UnpackedTime];

Like AppendDayTime except that the time zone is included, e.g. 1-May-78 14:56 PDT.

,Alto/Mesa Traps

Alto/Mesa Traps

May 1978

69

All traps generated by Mesa are converted into signals or errors of the same name. Except for
the parity error and stack error traps, all of the signals described below are related to specific
language features and are described in more detail in the Mesa Language Manual (see the index). ,

StartFault: SIGNAL [dest: GlobaIFrameHandle];

An atte'mpt was made to start or restart the frame dest, but it is not a valid global frame.
Usually this means that a module or program was not bound, a program being restarted
does not STOP, or a module that has parameters is being started as a result of a start trap.

Control Fault: SIGNAL [source: FrameHandle] RETURNS [ControILink];

An attempt was made to transfer to a null control link while executing in the frame
source. Usually this means some external links have been clobbered. This signal can be
resumed with a control link that will be used to retry the transfer.

Unbound Procedure: SIGNAL [dest: Control Link] RETURNS [ControILink];

An attempt was made to transfer to dest but it had an unbound tag. Usually this means
some external links have not been bound or the GFT entry of dest is null (probably a
deleted module). This signal can be resumed with a control link that will be used to retry
the transfer.

• LinkageFault: ERROR;

A transfer has been attempted through a port that has not been connected to some other
port or procedure (the link field of the port was nUll).

PortFault: ERROR;

A transfer has been attempted to a port which is not pending (the frame field of the
destination port is null). This error is used to handle the startup transients common in a
configuration of coroutines.

ParityError: SIGNAL [address: POINTER];

A parity error has occured in the word pointed to by address.

PhantomParityError: SIGNAL;

The parity error process was started, but a sweep through memory found no errors.

·Alto/Mesa Traps 70

StackError: SIGNAL [FrameHandle]i

The stack has either overflowed or underflowed while executing in the designated frame.
Usually this means that either some code has been smashed or some external link is
incorrect.

Fine point: external links may be incorrect because the user forgot to rebind after a recompilation. or
procedure variables were incorrectly LOOPHOLED.

•

.Alto/Mesa Window Package

Alto/Mesa Window Package

May 1978

71

Note: This document describes facilities used in Mesa systems released before Mesa 4.0. This
package is being phased out and is no longer supported. The package WINDOWPACKAGE is
available to those who wish to use it during a transition to other display facilities.

The purpose of the window package is to provide the basic facilities for a wide range of user
requirements in dealing with the bitmap display. Since the subject of display illusions has been
one of the most active and innovative, these facilities have been built in such a way as to support
the currently known popular ways of dealing with the display and hopefully will provide the
primitives for yet more powerful facilities. This documentation is divided into the following
sections:

Bitmaps
Rectangles
Display Streams
Windows
Menus
Selections
Fonts

The window package modules are divided into two major sections: those that deal with the
hardware or physical characteristics of the display and those that use them. Bitmaps and
Rectangles are intended to provide all of the lower level facilities required to support the display,
'while Display Streams, Windows and Menus are built using these primitives. Facilities are
provided for creating and manipulating bitmaps and rectangles within them, for associating
streams and/or windows with rectangles, and for displaying and marking menus.

Bitmaps

The most primitive objects in the window package are bitmaps. A BitmapObject contains all the
data about the physical characteristics of an actual display bitmap (suitable for displaying), which
is defined (in RECTANGLEDEFS) as follows:

BMHandle: TYPE = POINTER TO BitmapObjectj

BitmapObject: TYPE = RECORD [
link: BMHandle, -- # NIL iff being displayed
rectangles: Rptr, -- list of rectangles for this map
deb: DCBptr, -- address of block to be used for DCB
addr: BMptr, -- its address
words: CARDINAL, -:- size of map (in words)
wordsperline: [0 .. maxwordsperline],
xo: xCoord, -- x,y of upper left corner
yO: yCoord,
width: xCoord, in bits (but even words)

-Alto/Mesa Window Package

height: yCoord, -- in real scan lines
indenting: [0 .. 77B], -- in units of 16 bits
resolution: restype,
background: backgtype];

where the above TYPES are defined as follows:

restype: TYPE = {high, lOw};
backgtype: TYPE = {white, black};
xCoord: TYPE = [0 .. 606];
yCoord: ~YPE = [0 .. 808];

Initially, the window package establishes a default bitmap, which is obtained by calling:

GetDefaultBitmap: PROCEDURE RETURNS [BMHandle];

New bitmaps may be created by calling:

CreateBitmap: PROCEDURE [pagesformap, wordsperline: CARDINAL] RETURNS [BMHandle];

72

This procedure creates a BitmapObject, initializes it, allocates the requested space for the bitmap
and initializes the map to all zeros. It also allocates a DCB for this map and initializes it in
anticipation of being displayed.

A bitmap is destroyed by calling:

DestroyBitmap: PROCEDURE [mapdata: BMHandle] RETURNS [POINTER];

Before destroying a bitmap, all rectangles contained within it must be destroyed; otherwise,
you will get the signal

BitmapError: SIGNAL [bitmap: BMHandle, error: BitmapErrorCode];

BitmapErrorCode: TYPE = {BitmapOperation}j

Bitmap Manipulation

The following routines are provided for altering and manipulating bitmap objects in a uniform
way. You may alter the size and/or shape of a display bitmap by calling:

ReallocateBitmap: PROCEDURE [mapdata: BMHandle, pagesformap, wordsperline: CARDINAL];

This procedure may also be used to deallocate the memory used for a bitmap and subsequently
reallocate it.

If you. decide to alter any of the fields of a bitmap object and wish to have the effect of that
alteration reflected in the hardware (e.g. change background from white to black) call:

UpdateBitmap: PROCEDURE [mapdata: BMHandle] RETURNS [DCBptr];

The above call returns the real DCB address for the specified BitmapObject because DCB's
(as required by the hardware) must be even word aligned and the field in the
BitmapObject mayor may not be aligned.

-Alto/Mesa Window Package

The following two procedures are supplied to actually display (undisplay) a bitmap:

DisplayBitmap: PROCEDURE [mapdata: BMHandle]j

UnDisplayBitmap: PROCEDURE [mapdata: BMHandle]i

The following two procedures turn the whole display off and on:

DisplayOff: PROCEDURE [backgtype]j

DisplayOn: PROCEDURE;

73

When the display is off the memory occupied by the default bitmap and font is released and the
screen is left white or black according th the parameter. DisplayOn will reallocate the bitmap but
will not redisplay the old data (see RepaintDisplayWindows below). '

Rectangles

Rectangles describe arbitrary rectangular regions within a bitmap. Together with bitmaps.
rectangles and the procedures for manipulating them implement the most primitive functions of
the window package. (Definitions are in RECTANGLEDEFS)

Rptr: TYPE = POINTER TO Rectanglej

Rectangle: TYPE = RECORD [
link: Rptr,
visible: BOOLEAN,
options: ROptiont,
bitmap: BMHandle,
xO, width, cw: xCoord,
yO, height, ch: yCoord];

ROptions: TYPE = RECORD [

-- relative to bitmap origin
-- cw/ch are clipped width/height

Notelnvisible: BOOLEAN, -- SIGNAL if rectangle off bitmap
NoteOverflow: BOOLEAN]; -- SIGNAL if storing outside

New rectangles are created by calling the procedure:

CreateRectangle: PROCEDURE [bitmap: BMHandle, xO, width: xCoord, yO, height: yCoord]
RETURNS [Rptr]i

Writing of text at arbitrary locations within a rectangle is accomplished by:

WriteRectangleChar: PROCEDURE [
rectangle: Rptr, x: xCoord, y: yCoord, char: CHARACTER, pfont: FAptr]
RETURNS [xCoord, yCoord];

WriteRectangleString: PROCEDURE [
rectangle: Rptr, x: xCoord, y: yCoord, str: STRING, pfont: FAptr]
RETURNS [xCoord, yCoord]j

•

where x and yare relative to the rectangle origin. If the rectangle is not visible (e.g. outside the

-Alto/Mesa Window Package 74

bounds of the bitmap) or x or y is outside the rectangle then one of the SIGNALS NotVisible,
RightOverflow or BottomOverflow is generated.

The following procedures will handle clipping situations for rectangle overflow either to the right
or off the bottom. In the current implementation they will not allow a rectangle to either go off
the top or to the left of a bitmap.

Rectangles may be moved or their size altered by invoking:

MoveRectangle: PROCEDURE [rectangle: Rptr, x: xCoord, y: yCoord]j

GrowRectangle: PROCEDURE [rectangle: Rptr, width: xCoord, height: yCoord]j

where x, y, width and height are relative to the bitmap origin.

Rectangle Utilities

The following procedures implement commonly used operations on rectangles. They are by no
means a complete set but are simply the ones used in providing the basic window package
facilities.

Coordinates are relative to the rectangle origin.

DrawBoxlnRectangle: PROCEDURE [rectangle: Rptr, xO, width: xCoord, yO, height: yCoord]j

draws a rectangular box with lines of width one inside the supplied rectangle.

ScrollBoxlnRectangle: PROCEDURE [
rectangle: Rptr, xO, width: xCoord, yO, height: yCoord, incr: INTEGER]j

will scroll the rectangular region within the supplied rectangle defined by xO, yO, width,
and height either up or down as specified by incr (+ = up).

InvertBoxlnRectangle: PROCEDURE [rectangle: Rptr, xO, width: xCoord, yO, height: yCoord]i

will video reverse the rectangular region within the supplied rectangle defined by xO, yO,
width, and height.

ClearBoxlnRectangle: PROCEDURE [
rectangle: Rptr, xO, width: xCoord, yO, height: yCoord, gray: GrayPtr]j

will clear the rectangular region within the supplied rectangle defined by xO, yO, width,
and height to the supplied gray pattern (e.g. 0 = clear -1 = black etc.).

The display facilities allow you to alter both the bitmap and the position of a rectangle within a
bitmap such that it is possible for a rectangle to be not visible (entirely outside the bounds of the
bitmap). You may determine if a rectan~te is visible by calling

IsRectangleVlsible: PROCEDURE [rectangle: Rptr] RETURNS [BOOLE~]j

.. Alto/Mesa Window Package 75

Exceptional Conditions

The following exception conditions are optionally reported to the user based upon the setting of
the rectangle option flags Notelnvisible and NoteOverflow.

RectangleError: SIGNAL [rectangle: Rptr, error: RectangleErrorCode]i

RectangleErrorCode: TYPE = {RightOverflow, BottomOverflow, Notvisible}i

Coordinate Conversion Routines

The following procedures allow you to convert between cursor, rectangle and bitmap coordinates.
They worry apout indenting and other displayed bitmaps.

CursorToMapCoords: PROCEDURE [mapdata: BMHandle, x: xCoord, y: yCoord]
RETURNS [xCoord, yCoord];

Converts the cursor coordinates (display origin relative) to bitmap coordinates (bitmap
origin relative).

RectangleToMapCoords: PROCEDURE [rectangle: Rptr, x: xCoord, y: yCoord]
RETURNS [xCoord, yCoord];

Converts rectangle coordinates (rectangle origin relative) to bitmap coordinates (bitmap
origin relative).

CursorToRecCoords: PROCEDURE [rectangle: Rptr, x: xCoord, y: yCoord]
RETURNS [xCoord, yCoord];

Converts cursor coordinates (display origin relative) to rectangle coordinates (rectangle
origin relative).

Display Streams

Display streams are provided in the window package to perform teletype simulation operations
that are commonly associated with display based systems. Display streams are associated with a
previously created rectangle at stream creation time. For a more complete desciption of streams
see the Streams documentation. The window package comes equipped with a
DefaultDisplayStream. Interpretation of the standard stream operations is as follows:

reset[s] is a no-op.

get[s] produces a StreamAccess error .

. putback[s,i] produces a StreamAccess error.

put[s,l] writes the CHARACTER i in the next character position. Options are provided for
line wrapping/truncation and scrolling/discarding.

endof[s] produces a StreamAccess error.

destroy[s] destroys s in an orderly way, freeing the space it occupies. If s is the default

·.Alto/Mesa Window Package 76

display stream, the StreamOperation error results.

Initially, the default display stream is defined by a rectangle which occupies the entire default
bitmap. The DisplayHandle is returned by the procedure

GetDefaultDisplayStream: PROCEDURE RETURNS [DisplayHandle];

Any number of display streams may be created, using the procedure

CreateDisplayStream: PROCEDURE [rectangle: Rptr] RETURNS [DisplayHandle];

where rectangle is a pointer to a rectangle object associated with a bitmap. It should be noted
that display streams by themselves provide no facilities for dealing with rectangles that overlap
(e.g. the characters are simply OR'ed together). However, facilities are provided by windows for
dealing with this situation in an orderly manner. '

The following procedures implement backspace character and line functions:

ClearDisplayChar: PROCEDURE [stream: StreamHandle, char: CHARACTER];

ClearCurrentLine: PROCEDURE [stream: StreamHandle];

ClearDisplayLine: PROCEDURE [stream: streamHandle, line: CARDINAL];

The requiremevt to pass the character to be erased in ClearDisplayChar is necessary because the
stream retains no memory of what characters were displayed.

Windows

Windows provide a uniform mechanism for managing the data (text or bit arrays) contained in
rectangles. Windows and the supplied procedures are designed to allow the user to recreate or
reposition a view in a rectangle in a standard manner. (Definitions are in WINDOWDEFS)

WindowType: TYPE = {clear, random, scratch, file, scriptflle};

WindowHandle: TYPE = POINTER TO DisplayWindowj

DisplayWindow: TYPE = RECORD [
link: WindowHandle,
type: WindowType,
name: STRING,
menu: MenuHandle,
displayproc: PROCEDURE (WindowHandle],
rectangle: Rptr,
ds: DisplayHandle,
ks: Stream Handle,
file: DiskHandle,
fileindex: Streamlndex,
tempindex: Streamlndex,
eofindex: streamlndex,
selection: Selection];

•

.. Alto/Mesa Window Package

Selection: TYPE = RECORD [
leftx, rightx: xCoord,
leftline, rightline: CARDINAL,
leftindex, rightindex: Streamlndex];

New display windows may be created by calling

CreateDisplayWindow: PROCEDURE [
type: Window Type , r: Rptr, ds: DisplayHandle, ks: StreamHandle, name: STRING]
RETURNS [WindowHandle];

77

Conversely, display windows may be destroyed and all data associated with them released by
invoking

DestroyDisplayWindow: PROCEDURE [w: WindowHandle];

It is often desirable to be able to transform one type of window into another (e.g. load a file into
a scratch window). The following procedure undoes the old attributes and sets up new ones:

AlterWindowType: PROCEDURE [w: WindowHandle, type: WindowType, name: STRING];

Refreshing both the border and content of a window is accomplished via the following
procedure. Actual content refreshing is accomplished by dispatching to a user supplied (or
defaulted) procedure.

PaintDisplayWindow: PROCEDURE [w: WindowHandle]j

The concept of a window being current (e.g. on top) is central to this implementation of display
windows. Windows are maintained in a ring in the order they were last current. To make a
window current (which also refreshes its contents) call:

SetCurrentDisplayWindow: PROCEDURE [w: WindowHandle];

At any point you may determine which window is current by calling:

GetCurrentDisplayWindow: PROCEDURE RETURNS [WindowHandle];

If the current window is type scratch or scriptfile, calling:

BlinkCursor: PROCEDURE RETURNS [BOOLEAN];

will blink a software "cursor" at the position where the next character will be displayed. (This
software cursor is a property of windo,""s and should not be confused with the hardware cursor
which is a part of the display hardware.) Each call changes the state of the cursor from "on" to
"off" or vice versa. BlinkCursor returns TRUE if the last call changed the cursor state to on. The
cursor is always turned off before a character is displayed or erased and before the window is
moved or repainted.

To determine which window (if any) the hardware cursor may be in call:

.. Alto/Mesa Window Package

FindDisplayWindow: PROCEDURE [x: xCoord, y: yCoord]
RETURNS [WindowHandle, xCoord, yCoord]i

78

Coordinates are cursor coordinates (display origin relative). If WindowHandle is NIL then the
supplied x, yare not in any window. If a non-NIL Window Handle is returned then the x, yare
converted into rectangle coordinates (rectangle origin relative) and returned also.

For file type windows you may alter the file being displayed by invoking:

SetFileForWindow: PROCEDURE [w: WindowHandle, name: STRING]i

SetFileHandleForWindow: PROCEDURE [w: WindowHandle, f: File Handle, name: STRING]i

Scratch, scriptfile and file type windows use a stream to manage their data contents. You may
reposition the displayed contents of these windows by calling:

SetlndexForWindow: PROCEDURE [w: WindowHandle, index: Streamlndex]i -

SetPositionForWindow: PROCEDURE [w: WindowHandle, position: CARDINAL]i

Exceptional Conditions

In general the procedures implementing windows do not generate SIGNALS or ERRORS but rather
attempt to muddle through whatever nonsense you supplied or tried to do. This results in
coercing coordinates and turning funny calls into NOPs in most cases.

Menus

Menus supply a uniform command specification facility. The current implementation is very
simple and just provides for a correspondence between a keyword and a procedure to be invoked
if that key word is selected. The display algorithm and selection technique are built-in.
(Definitions are in MENUDEFS)

MenuHandle: TYPE = POINTER TO MenuObjectj

MenuOb ject: TYPE = RECORD [
link: MenuHandle,
index: INTEGER,
width: xCoord,
rectangle: Rptr,
menuseg: FileSegmentHandle,
dataseg: FileSegmentHandle,
array: MenuArray];

MenuArray: TYPE = DESCRIPTOR FOR ARRAY OF Menultemj

Menultem: TYPE = RECORD [
keyword: STRING,
proc: PROCEDURE [UNSPECIFIED, xCoord, yCoord]];

New MenuObjects are created and destroyed by calling:

,. .. Alto/Mesa Window Package 79

CreateMenu: PROCEDURE [array: MenuArray] RETURNS [MenuHandle]j

DestroyMenu: PROCEDURE [menu: MenuHandle]j

A menu is actually displayed on the display screen by calling:

DisplayMenu: PROCEDURE [menu: MenuHandle, mapdata: BMHandle, x: xCoord, y: yCoord]j

Coordinates are bitmap origin relative. This procedure saves the contents of the bitmap to be
overlayed if the size is not too big, so it may be restored later.

To take a menu down and restore the previous contents of the bitmap call:

ClearMenu: PROCEDURE [menu: MenuHandle]j

Items in a displayed menu are marked as selected by invoking:

MarkMenultem: PROCEDURE [menu: MenuHandle, index: INTEGER];

The current implementation assumes that only one menu item will be marked at a time.
Therefore simply marking a new item will unmark the currently marked item (if any). Marking
is currently done by video reversal.

Exceptional Conditions.

There is currently no checking to ensure that you do not attempt to clear non-displayed menus or
other such nonsense. If you do you are on your own.

Selections

A selection is associated with each window. Whenever the window is refreshed, the current
selection gets updated. (Definitions are in WINDOWDEFS)

To find out the line number, horizontal position, width and stream index of the character that is
located at a hardware cursor (display relative) position, call:

ResolveBugToPosition: PROCEDURE [w: WindowHandle, x: xCoord, y: yCoord]
RETURNS [CARDINAL, xCoord, CARDINAL, Streamlndex]j

You can get the current selection of a' window by calling:

GetSelection: PROCEDURE [w: WindowHandle] RETURNS [STRING];
•

which returns the text of a selection in a string allocated from the Mesa system heap (see the
Storage documentation). .•

The old selection is unmarked and the new selection is marked by calling:

~,Alto/Mesa Window Package 80

MakeSelection: PROCEDURE [w: WindowHandle, sel: POINTER TO Selection]i

A selection is video reversed by calling:

MarkSelection: PROCEDURE [w: WindowHandle]i

The current selection of a window that is being refreshed is updated (ie. checked for visibility)
by calling:

UpdateSelection: PROCEDURE [w: WindowHandle]i

Fonts

Font procedures assume the standard font format (".AI" files). Only the most simple font
procedures are supplied as follows. See RECTANGLEDEFS for more details.

ComputeCharWidth: PROCEDURE [char: CHARACTER, font: POINTER] RETURNS [CARDINAL];

GetDefaultFont: PROCEDURE RETURNS [FAptr: CARDINAL];

returns the default font.

LoadFont: PROCEDURE [segment: FileSegmentHandle] RETURNS [p: Fptr]i

swaps in and locks the font segment.

GetFont: PROCEDURE [filename: STRING] RETURNS [FileSegmentHandle];

allocates space and creates a segment for a font.

Starting the Window Package

The window package requires startup parameters. The following modules must be explicitly
sTARTed:

RectangleDefs.RectanglesB: PROGRAM [pagesformap, mapwordsperline: CARDINAL];

pagesformap- and mapwordsperline define the initial size and shape of the default bitmap. Mesa
3.0 used pagesformap: 40, mapwordsperline: 30.

WindowDefs.WindowsB: PROGRAM [STRING];

specifying the name of the default window (which is a scriptfile window).

