
Mesa User's Handbook

Version 4.0
June 1978

This handbook contains documentation for using all of the standard Mesa services intended
for Mesa programmers as well as operational procedures for the Alto. In general, the
sections are short and to the point, serving as a how-to guide rather than a reference
document containing all of the details. This handbook assumes prior familiarity with the
Mesa language as well as the Alto.

XEROX
SYSTEMS DEVELOPMENT DEPARTMENT
3408 Hillview Avenue / Palo Alto / California 94104

This document is for internal Xerox use only.

Table of Contents

Preface

1. Getting started

1.1. Setting up the disk

1.2. Il\stalling the debugger

1.3. Preparing the source file

1.4. Compiling your program

1.5. Binding your configuration

1.6. Running your program

1.7. Debugging your program

1.8. Reporting problems

2. Directories

3. Resources

Appendices

A. Compiler

B. Binder

C. System

D. Debugger

E. Utilities

1

2

2

3

3

3

3

4

4

5

6

8

15

20

22

27

Preface

June 1978

This handbook contains documentation for using all of the standard Mesa services intended for
Mesa programmers as well as operational procedures for the Alto. In general, the sections are
short and to the point, serving as a how-to guide rather than a reference document containing all
of the details. This handbook assumes prior familiarity with the Mesa language as well as the
Alto. All suggestions as to the form, correctness, and understandability of this document should
be sent to your support group.

This documentation is divided into 4 parts. Section 1 tells you the basics needed to get started,
section 2 lists the directories that are of interest to Mesa users, section 3 lists various resources
you should be aware of, and appendices A through E give further details on the compiler, binder,
system, debugger, and utilities.

The style of this handbook is similar to that used in the Mesa Language Manual. All fine
points are in this font, any word or phrase which needs to be stressed is italicized, US6r

input/debugger output is in th i s fon t, file names are IN THIS FONT, and references to other
documents are in this font.

2

Section 1: Getting Started

This section tells you all that you need to know for getting started and running a Mesa program.
See the appendices for further details on the various subsystems and a sample debugging session.

1.1. Setting up your Alto disk

If you are setting up an Alto disk from scratch, either copy the standard Mesa disk maintained
by your support group or obtain the command file NEWMESADISK.CM, which transfers the basic
runtime files, as well as Bravo (and a Mesa USER.CM file), to your Alto disk. You also need to install
the Alto Operating System Version 15/5, Executive 8, using erase option, before executing the command file; this
should leave your disk with about 4000 free pages. If you just wish to get a new Mesa system on an
already initialized disk, obtain the command file MESA.CM.

In either case, the basic Mesa runtime files that are transferred are: (1) RUNMESA.RUN, a BCPL

program which loads the ram with the Mesa emulator, loads main memory with the kernel Mesa
system, and starts execution, (2) MESA.IMAGE, the Mesa system, (3) COMPILER.IMAGE, the compiler,
and (4) BINDER.IMAGE, the binder (5) XDEBUG.IMAGE, the debugger, (6) WINDEX.BCD, the window
manager for (optional) use with the debugger, and (7) the system definitions files. Note that you
need approximately 1400 pages for all of the Mesa files plus about 850 pages for Bravo and related files. These
command files also install the debugger (and Bravo).

If the file MESAFONT.AL exists, Mesa will use it for the system display; otherwise SYSFONT.AL is
used.

1.2. Installing the debugger

In order to establish the communication link between the debugger and the Mesa Executive, you
must install the debugger. This installation is similar to installing the Swat debugger, for those familiar with
that operation. Make sure your Alto disk contains the debugger, XDEBUG.IMAGE, and the window
manager for (optional) use with the debugger, WINDEX.BCD.

The I nsta 11 command may be invoked from the Alto Executive by typing XDebug Wi ndex/LI,
which loads the window manager (with code links) and installs the debugger. Alternatively, you may
type XDebug to the Alto Executive, which leaves you talking to the debugger nub whose prompt
character is "/". If you would like to include the window manager in the debugger, execute a
New - Start sequence on the file WINDEX.BCD. If you want to load some of your own programs into the
debugger, see the Mesa Debugger Documentation for more complete details on how this is done. When you are
satisfied with the status of your debugger, issue the Ins ta 11 command; this sav.es the current
core image of the debugger and exits to the Alto Executive.

Getting started 3

1.3. Preparing your source file

Mesa accepts both unformatted ASCII and formatted Bravo source text files. Since the debugger
uses source files to print source-text descriptions of the locus of the pc in frames and for setting
breakpoints, be sure that the source files on your Alto disk are consistent with the object files.

1.4. Compiling your program

Type Comp i 1 e r to the Alto Executive to invoke the compiler. It prompts for the source file
name; when it finishes, it prompts again; a null filename (CR) returns you to the Alto Executive.
Alternately, you may type Compiler sourcel source2 ... directly to the Alto Executive,
making use of its filename completer if you wish. The compiler assumes a ". mes a" filename
extension if it is not supplied. Compiled versions of all DEFINITIONS modules that your program
uses must be on your disk.

If a syntactic error occurs, the compiler attempts to recover by deleting and/or inserting text (not
in the file), displays the change(s), and tries to plow on. Semantic errors result in a symbolic
print-out of the location of the error (in the form: proeedure[eharacter-positionJ) and an
indication of the type of error. The semantic passes try very hard to muddle through with a
complete diagnosis. The compiler puts all error messages in the file sou r c e name. er r log.
When compiled successfully, the resulting object file is found on sourcename. bed.

1.5. Binding your configuration

Typing Binder to the Alto Executive invokes the binder. It prompts for the source file name;
when it finishes, it prompts again; a null filename (CR) returns you to the Alto Executive.
Alternately, you may type Bi nder soureel souree2 ... directly to the Alto Executive, making
use of its filename completer if you wish. The binder assumes a ". confi g" filename extension
if it is not supplied.

Compiled versions of all modules in your configuratfon must be on your disk. The binder goes
through your configuration description, sourcename.config, and attempts to bind the
IMPORTS/EXPORTS. All error messages are put in the MESA, TYPESCRIPT file. When successfully
bound, your soureename. bed file is ready to run.

1.6. Running your program

Type Mes a to the Alto Executive and you will find yourself talking to the Mesa Executive. At
system start-up the Mesa Executive is given control in a context from which all the various
system utilities are visible. At this point, you are well advised to browse through the Mesa
System Documentation for complete details on what you can do, Basically, you must: (1) load
your program -- New command, and (2) execute its initialization code and start execution -­
Start command. If this fails, try putting in some breakpoints or enabling some tracing before
executing step (2).

Getting started 4

1.7. Debugging your program

In order to set some breakpoints in your program, trace program execution, display the runtime
state, or interpret simple Mesa statements, you must first invoke the Mesa debugger. There are
several ways of doing this. The straightforward method is to issue the Debug command to the
Mesa Executive; this brings you into the debugger, ready to execute a command. If you wish to
enter the debugger at any time (Le., while your program is running), tSWAT interrupts your
program. Once you are inside the debugger, typing "?" to the command processor gives you a list
of the valid commands. The Mesa Debugger Documentation contains details on other ways of
entering the debugger and complete documentation on all the available commands.

1.8. Reporting problems

Any requests or problems with the Mesa system should be sent to <SDSUPPORT>. Bug reports and
messages that cannot be answered immediately are assigned a number and a state (open, closed.
rejected. or superseded) and filed in <SDSUPPORT>CR.LOG. Whenever a change request is moved
from one state to another. the originator is notified. Information about any request can always
be found in the log.

5

Section 2: Directories

These directories are maintained on [IRIS]. Users without access to [IRIS] should consult their
support group to find another host.

<ALPHAMESA>

<MESA)

Contains the new version of the Mesa system during the alpha test period. When the
system is ready to be released, the contents of the (MESA) directory moves (temporarily)
to (OLDMESA> and the contents of <ALPHAMESA> moves to <MESA>.

Contains the IMAGE files of interest to users of the Mesa system. It contains MESA-IMAGE

(the Alto/Mesa system), COMPILER.lMAGE (compiler), BINDER.IMAGE (binder), XDEBUG.IMAGE

(debugger), WINDEX.BCD (window manager for optional use with the debugger), and
RUNMESA.RUN (Alto/Bcpl program which "boots" the Mesa system on the Alto).

<MESA)SYSTEM)

Contains the source and object files for the system definitions and program modules.
Several packages constructed from standard Mesa system modules are also stored here.

(MESA>COMPILER)
(MESA>BINDER>
<MESA>XDEBUG)
<MESA>LlSTER>
(MESA>UTILITIES>

Contains the source and object files for the the compiler, binder, and debugger, lister, and
utility programs respectively.

(MESA)DOC>

Contains the documentation for the Mesa system. Both .BRAVO and .PRESS versions are
maintained here.

<MESALIB>

An informal directory containing packages and independent subsystems along with
corresponding documentaion. The file SUMMARY.PRESS contains a list of these packages
and a short description of each.

[MAXC] <SDSUPPORT>

Contains CR.LOG, the log of change requests for the Mesa system (as explained in Section
1.8). Any problems with the Mesa system should be reported to <SDSUPPORT>.

6

Section 3: Resources

The following list enumerates resources that may be of interest to Mesa programmers.

Documents

Mesa Language Manual

Complete reference on the language, syntax, and use.

Elements of Mesa Style

Describes some of the novel features of Mesa using a number of examples oriented
towards the systems programmer. It concentrates on compile-time checking, interfaces,
and modularity.

Early Experience with Mesa

Discusses issues involved in using Mesa for systems programming (written by the
designers of Mesa). It is recommended for those interested in the philosophy behind the
language (not for the beginner).

Mesa System Documentation

Describes configurations of the Mesa system software and components which comprise
them.

OIS Mesa Functional Specification

Describes the implementation of the runtime support necessary to execute Mesa programs.
It assumes a Dstar machine, rather than an Alto, and is quite detailed.

OIS Processor Principles of Operation

Describes the interior architecture of the OIS System Element Digital Processor. It
includes a description of the virtual storage system, the instruction set, and the input­
output facilities.

Mesa Debugger Documentation

Describes the current release of the Mesa debugger.

Debugger - Extended Features

Describes some extended features of the Mesa debugger: FTP command, user invoked
procedures, and the window inanager (WINDEX).

Resources

Files

(MESA)MESA.signals
(MESA)BASICMESA.signals
(MESA)BINDER.signals
(MESA)COMPILER.signals
(MESA)XDEBUG.signals

7

Lists the uncaught signal names (and global frame addresses) for various Mesa
components.

(MESA)USER.CM

A USER.CM file set up with the Mesa Bravo macros, GACHA10 for the editing font, and
minimal printing fonts.

(MESA)NEWMESADISK.CM
(MESA)MESA.CM

The command files used for setting up a basic Mesa disk (as described in section 1.1).

[MAXC 1] (SECRETARY)MESAUSERS.dl

Distribution list for messages to the Mesa user community. If you wish to get on this list,
talk to your secretary.

Other materials

There have been a series of videotapes prepared which describe various features of the language
and runtime environment. See a member of your support group for further details on the tapes
that are currently available and where to get them.

8

Appendix A: Compiler

The Mesa compiler translates Mesa source files into corresponding object files. An object file
contains the executable code for the module (if any) plus a binary configuration description (for
use by the binder or loader) and a symbol table (for inclusion by other programs or for use by
the debugger). By convention, an object file has a name with extension ". BCD".

The Mesa Language Manual describes the syntax and semantics of the Mesa source language.
This appendix describes the operation of the compiler, including the compile-time options and
messages.

Preparing Source Files

The compiler accepts ASCII text files. In a source file, any sequence of characters that begins
with a tZ is skipped up to (but excluding) the next carriage return (or end of file). This
convention accomodates Bravo formatting codes. You may use such formatting in your source
files as you see fit. Note, however, that Mesa does not interpret any information about fonts,
position, etc., attached to source text that it displays (in, e.g., identifying the location of an error
or breakpoint).

The recommended extension for naming any Mesa source file is ". Mesa".

Standard Bravo macros useful during the editing and compilation cycle are described later.

Running the Compiler

The compiler takes commands either from the command line or interactively from the keyboard.

To enter interactive mode, type just "comp i 1 er" to the Alto Executive. The compiler
will prompt you for commands. You can correct a command during typein by using the
usual set of editing characters. To exit from the compiler, respond to the prompt with
just a carriage return.

To invoke the compiler specifying command line input, follow "camp i 1 e rIO with a list of
commands, separated by spaces. In this mode, you can use the Executive's file completion
facilities to build the command list, and all input is taken from the command line.

The simplest form of command is just the name of a source file to be compiled. If you supply
the command sourcef i1 e with no period and no extension, the compiler assumes you mean
sourcefi 1 e .Mesa.

During compilation, the display is turned off and a die is displayed in the cursor. The number
on the die identifies the pass of the compiler that is running. This allows you to check the
progress of the compilation and also provides useful feedback to the maintainers of the compiler
when something goes drastically wrong.

Compiler 9

Fine point:

Don't confuse the compiler's display with DMT's.

The compiler reports the result of each command with a message having one of the following
forms (each * is replaced by an appropriate number; bracketed items appear only when relevant):

file. mesa -- source chars: *, time: *
[code bytes: *, links: *, frame size: *]
[* warnings on file.errlog]

Compi~ation was successful. The object file is file.BCD. For a DEFINITIONS module, the
middle line is not meaningful and is omitted. Otherwise, "1 inks" is the number of items
imported by the module, and "frame size" is the size of the global frame (in words),

·exclusive of the links. The third line appears only if warning messages were logged. The
compiler issues warnings for certain constructs that are technically correct but nonsensical
or likely to be unintended. Warnings do not prevent writing a valid object file, but you
should usually investigate them.

file.mesa -- aborted, * errors [and * warnings] on file.errlog

Compilation was unsuccessful. You will find the error messages (and warning messages,
if any) in the indicated file. If the errors were detected during the early phases of
compilation, no object file was written (and any existing object file with the same name
remains valid). Otherwise, the object file was invalidated and will be rejected by the
binder and loader.

File error

The compiler could not find the specified file.

If you are providing commands interactively, these messages appear on the Alto screen after each
command is completed. Otherwise, they are written into the file MESA. TYPESCRIPT. In the latter
case, the compiler will process the entire command line; then, if any error or warning messages
were issued, it brings this to your attention with a message of the following form:

Errors [and Warnings] logged; type any character to finish.

The compiler will not return to the executive or run another subsystem until you acknowledge
the message. (You can change this behavior by using switches, which are described next)

Compiler Switches

Switches allow you to modify command input A command has the general form

fil eEls]

where [] indicates an optional part and S is a sequence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a '-' or '-' to reverse the
sense of that switch. The valid switches are

a
p
r
s

compile code for an Alto (default)
pause after compiling f i 1 e if there are errors
terminate compilation and run the program contained in fi 19
sort global variables and entry indices (default)

Compiler 10

w
x

log warning messages (default)
prepare a cross-reference file

Each switch has a default setting, The command sourcefile is equivalent to
sourcefi 1 e/a-psw-x if you use the standard defaults, i.e., the compiler generates code for an
Alto (not a Dstar), does not pause after compiling f i 1 e, sorts variables, logs warning messages,
and does not produce a cross-reference file. Note that the "r" switch changes the interpretation
of f i 1 e, which should name a subsystem when used with this switch.

You can also change the default setting of any switch by using the "c" switch. The text preceding
a "Ie" is interpreted as a switch specification (designating a single switch only) and it establishes
the default setting for that switch. Unless overridden or reset, that default applies to all
subsequent commands.

Here is some more information about the options:

a[lto]

Generate code for Alto (a) or DStar (-a) hardware. This switch primarily affects the
treatment of long pointers in the object code.

s[ort]

Normally, the compiler sorts certain items by frequency of use before assigning addresses.
This helps to keep the object code compact. If sorting is suppressed (-s), the assignments
of global frame offsets and entry indices depend only upon order of declaration in the
source text. (This switch was added in anticipation of tools allowing inexpensive
correction and replacement of modules in a configuration. These tools are not yet
available.)

w[arnings]

Log (w) or ignore (-w) certain legal but suspicious us~ge that can be detected by the
compiler.

x[ref]

Generate (x) a file soureename. XRJ containing cross-reference information for the file
being compiled (soureename.Mesa). The file requires post-processing by separate utility
programs before it is useful.

Examples:

foo

Compile foo using all the default switch settings (standard or established .by preceding
" Ie" switches).

foo/-wx

As above, but suppress warning messages and generate foo. XRJ.

The p [au s e] switch requires special comment. You can use it to control progress through a
sequence of files specified on the command line. As a global switch (set using" / e"), it specifies
pausing (p) or not pausing (-p) just before exiting from the compiler. The global default is to

Compiler 11

pause. As a local switch, it specifies pausing just after compiling the specified file if that file or
any preceding contained errors; moreover, any remaining commands are ignored. The local
default is not to pause but to continue with the next command.

Examples:

compile -pic file1 file2 file3

Use this form if you want the compiler to press on no matter what. If it is part of a
command file, the next (Executive) command will be executed whether or not there were
errors.

compile file1 file2/p file3

Use this form if you want the compiler to pause before compiling file3 if either filel
or fil e2 does not compile successfully. If f il e3 depends upon the others (by including
them), this can save a lot of wasted time and effort.

Context Switching and Bravo Macros

If you are a Bravo user, you might find the following macros useful for switching between Bravo
and the Mesa compiler. They are included in <MESA>USER.CM.

bravo/m filename

This invokes Bravo with two windows, gets filename.mesa in the top window and gets
filename.errlog in a smaller, bottom window. (Be sure not to use filename.mesa on
the command line.)

bravo/j filename octalNumber

This invokes Bravo and gets file name. me sa. It also selects the character position
corresponding to the octal number and normalizes the selection. This is useful when the
source text printed with an error message does not supply enough context to locate the,
error; each error message also includes the octal number needed by this macro.

q[uit]/m

This Bravo command writes out the file in the selected window (say f il en ame. mes a)
and terminates Bravo. It then specifies the following sequence of (Executive) commands:

delete filename.errlog
compile filename
bravo/m fil ename

The command line switch "/r" (run) causes the compiler to terminate by running some other
program instead of returning to the Alto Executive. You may specify either a ". image" or a
". run" file. If you omit the extension, ". image" is assumed. Any switches after the "r" and any
other text remaining in the command line after the command specifying this switch are copied to
the file COM.CM for inspection by the new program. The facility is primarily intended for use in
(program generated) command files.

Compiler 12

Examples:

Compiler sourcefile Mesa/r sourcefile

Compile sourcefile; then invoke mesa.image to load and start sourcefile.bcd.
Note that "Compiler sourcefile; Mesa sourcefile" has the same effect but is
slower, because it returns to the Alto Executive before invoking Mesa. (There are
overheads of several seconds associated with both restarting the Executive and
reestablishing the Mesa environment.)

Compiler, sourcefile Ftp.run/r Iris store sourcefile.bcd

Compile sourcefile, then store the object file on Iris. Note that you must supply the
". run'! and ".bcd" to invoke Ftp in this way.

Fine point:

You can run Bravo using the "/r" switch, but the current version (7.1) will not correctly find switches or
arguments on the command line.

Error Messages

The compiler writes error and warning messages for sourcefile.mesa on
sou r c e file. err log. Each pass detects certain classes of errors. Error messages are logged in
(approximate) source order by each pass. Within a single pass, the compiler does its best to
complete its analysis in spite of any errors. With the exception of "correctable" syntactic errors.
detection of an error by one pass causes all following passes to be skipped. Thus you will
sometimes get a new set of error messages after correcting all those reported by a previous run of
the compiler. The compiler never writes a bindable or loadable object file if it detects any
errors .

. The compiler also logs warning messages. These are advisory only and are intended to draw your
attention to suspicious usage. They do not abort compilation or invalidate the object file.

Here is a trivial and nonsensical program that illustrates the form of the compiler's error
messages.

Sample: PROGRAM =
BEGIN
i: INTEGER.
i fo j+TRUE;
END.

i: INTEGER,
~ Syntax Error [46]

Text deleted is:
Text inserted is:

j is undeclared, at Sample[52]:
i fo j+TRUE:

TRUE has incorrect type, at Sample[52]:
i fo j+TRUE:

Compiler 13

?+TRUE has incorrect type, at Sample[52.]:
i +- j+TRUEj

The first message is generated by the first pass and shows how syntactic and lexical errors are
reported. The arrow points to the first symbol that is necessarily invalid (or one symbol before
it), and the octal number is a character index in the source file. Of course, the compiler cannot
know what you intended, and the "real" error might have occurred quite a bit earlier. The
compiler tries to fix these errors as best it can by local deletion and insertion of symbols. These
symbols are not written into the source file but are reported to help you interpret subsequent
messages. If the compiler cannot find a way to continue parsing, or if too many of these errors
accumulate, it gives up.

The other error messages report "semantic" errors. Errors are located by displaying a line of
source text (the second line in each message) as well as by character index (the octal number) and
enclosing procedure or program name (the identifier preceding the number). The text of the
error message is intended to be reasonably self-explanatory. Sometimes it refers to an identifier
or expression. The compiler reconstructs these expressions from the parse tree; in later passes,
the reconstruction often reflects rearrangement or constant folding. As subexpressions, "?"
indicates an undeclared identifier and" ... " indicates either a cutoff because of depth of nesting
o£ an expression form the compiler cannot reconstruct from the parse tree.

Compiler Failures

The message reporting a compiler failure has the following form:

FATAL COMPILER ERROR, at id[index]:
(source text)

Pass = n, signal = s, message = m

Such a message indicates that the compiler has noticed some internal inconsistency. If you get
such a message (or encounter other compiler problems), you should submit a change request (CR)
as described in Section 1.8. Be sure to preserve the relevant files and to mention the octal codes
identifying the pass (n). signal (s) and message (m) in your CR.

Current Limitations

The following limits are built into the current implementation of Mesa and are enforced by the
compiler:

The number of interface items declared in a single DEFINITIONS module cannot exceed 128.

Neither the number of procedure bodies nor the number of signal codes defined in a
single PROGRAM module can exceed 128.

The size of the frame required by a procedure or program cannot exceed 4096 words.

The compiler allocates its internal tables dynamically and tries to adjust their relative sizes to
accomodate the program being compiled. When it is unsuccessful, it reports failure with a
message of the form:

Compiler 14

Storage Overflow in Pass n

You must split your program into two or more smaller modules.

15

Appendix B: Binder

The Mesa binder combines modules and previously bound configurations to produce a new
configuration. The Mesa Language Manual documents the syntax of a configuration description
which describes the desired configuration to the binder. The output of the binder is a binary
configuration description (BCD) which may be loaded into a running system or processed by a
later invocation of the binder. This section will discuss the operation of the binder including the
binding time options and switches.

File Organization

In order to understand the options described below, it is necessary to understand something about
how configurations exist in files. The BCD file produced by the binder normally contains only
the compiled description of the configuration. It does not contain any code or symbols. For
each module instance in the configuration, the BCD specifies the location of the code and symbols
by file name (and time stamp), starting page, and number of pages. Thus the code and symbols
for a configuration may be scattered over a large number of files. It is possible to put the BCD,
the code, and the symbols in the same file (this is the way BCDS are generated by the Mesa
compiler).

While debugging, the "normal" mode of operation is not to copy code or symbol segments to
another file (the default; no switches), but to leave them in the files generated by the compiler.
This saves disk space and requires the least binding time.

For distribution, code and/or symbols can be copied into the output file by using the
corresponding switch on the source file name (not on the output file name). Alternately, they
can be copied into different code or symbols files by giving the file name and switch following
the source file name.

It is a good idea to package the symbols of a released subsystem into a separate file, so that they
will not take up disk space when they are not in use. This also makes it easier to keep track of a
consistent set of symbols for all of the modules. Because the binder and loader deal only with
interfaces, symbol tables are not required for binding or loading. Of course, they are required
for meaningful debugging. (The FETCH program and the debugger's A Ttac h Symbo 15 command
can be used to get symbols for individual modules during debugging.)

There is also an option for compressing the symbol tables as they are copied. Tn this mode, only
public symbols declared in the global frame (plus all procedures and signals and their parameters
and results) are included. Private symbols and variables local to procedures are not copied. This
option allows limited but usually adequate debugging, and will substantially reduce the size of the
symbols file (typically by 50%).

Fine point:

Copying code into a file other than the BCD file is supported, but probably not useful.

Binder 16

Running the Binder

The binder takes commands either from the command line or interactively from the keyboard.
Commands are of the form

souree[ls file/s file/s]

where [] indicates optional parts. The valid switches are

Id - enter debugging mode
Ie - copy code segments to this file
10 - give this name to the output BCD file
Is -' copy symbol segments to this file
Ix - copy compressed symbols to this file
Ip - pause before proceeding if there are errors
Ir - 'run the specified program
Ig - (go) begin processing the preceeding files

A switch specified with a null file name is a global switch. A switch letter may be preceeded by
"-" to negate its effect. The only switch with either of these properties is the Ip switch. The
binder will pause after completing all commands if any errors were reported. Applying the Ip
switch to an individual source may cause a pause earlier as well.

Normally a command to the binder is terminated with an end-of-line. In order to specify more
than one command using command line input, the I 9 switch (for "go") may be used to replace
the end-of-line. Simply add the Ig switch to the last file name of each command. (This option
is not available when input is from the keyboard.)

The first file name is always the source configuration description. The last occurance of a I c, 10
or Is file will prevail, and extra filenames are ignored. Default extensions are "config" for
source, "bed" for output, "code" for code and "symbol sIt for symbols. Default output is to
source. bed. Examples:

foo

foo/e

fooles

Read foo.eonfig and write the resulting BCD on foo.bed. This is the "normal" debugging
mode since it is the fastest and requires the least disk space.

Read foo.eonfig, write foo.bed. Copy all code segments into foo.bed. Leave all symbol
segments as they were in the input files. This is a possible "distribution" mode.

Read foo.eonfig, write foo.bed. Copy all code and symbol segments into foo.bed. This
is also a possible distribution mode, if debugging will be required.

fool e . foo/x

Read foo.eonfig, write foo.bed. Copy all code segments into foo.bed; compress all
symbol segments into foo.symbols. By packaging all of the symbols in a single file, you
minimize the risk of getting an incorrect version of some symbol table.

Binder 17

foo.ed/e foo.sym/s foo.bound/o

Read foo.ed, write foo.bound. Copy all code segments into foo.bound and all symbol
segments into foo.sym.

foo.ed/e foo.sym/sg bar/e

Read foo.ed, write foo.bed. Copy all code segments into foo.bed and all symbol
segments into foo.sym. Then read bar.eonfig and write bar.bed. Copy all its code into
bar.bed.

/-p foo/g bar/cg dum

Bind foo, bar, and dum and will not pause even if there are errors.

foo/g bar/cpg dum

Bind foo, bar. and dum as usual and, in addition, stop after bar if it contains errors.

Because of the large number of options available, it is doubly important to maintain file
consistency. Appropriate version checks are included in the binder, the loader, and the debugger.

Context Switching

The command line switch /r (run) is used to specify that the Binder should run some other
program rather than returning to the Alto Executive. Both". image" and". run" files may be
specified. If there is no explicit extension, ". image" is assumed. Any switches after the rand
any ot.her text remaining in the command line after the file with the I r switch will be copied to
the file eOM.eM for inspection by the new program.

Examples:

Binder SomeConfig/g Mesa/r SomeConfig

will bind SomeConfig and then run Mesa. image as if you had typed Mesa SomeConfig.

Binder SomeConfig/g Mesa/rd OtherConfig/-s SomeConfig

will bind SomeConfig and then run Mesa. image as if you had typed Mesa/d
OtherConfig/-s SomeConfig.

Binder SomeConfig/cg Ftp.run/r Store SomeConfig.bcd

will bind SomeConfi 9 copying the code and then run Ftp. run as if you had typed
Ftp.run Store SomeConfig.bcd.

Fine points:

The last specification before the file with the Ir switch must have the Ig switch to indicate the end of the
previous command. •

You can run Bravo using the Ir switch, but the current version (7.1) will not find switches (or arguments) on
the command line.

Binder 18

Error Messages

The binder reports error and warning messages on the display and in the file MESA. TYPESCRIPT. If
. possible, the binder will indicate the offending source line and configuration name with each
error. Some of the common error messages are:

faa is undeclared (in baz)

The module baz is trying to import the interface (or program) faa but faa is neither
imported from a higher lever configuration nor exported by any module or configuration
at the same level.

faa does not name a module or configuration

The identifier used to name a module or configuration in a configuration description
must exactly match (including capitalization) the name used inside that module or
configuration.

item nnn in interface faa is unbindable

(Warning) Item number nnn in the interface faa has no implementation. You can count
(from 0) the interface items in faa or use the lister's Interface command to get more
information.

faa referenced in different versions

(Warning) Two different versions of the named file are referenced by the modules being
bound. This will produce another error message if you attempt to match the two versions
as import and export

faa cannot be imported as baz

faa is the interface (file name and version) which is available for import (or being
passed as a parameter), but the importer is asking for baz. The source line shows the
importer.

faa cannot be exported as baz

The source line shows an exporter of faa who trying to assign the interface (implicitly or
explicitly) to baz. This may be a version problem (if the names are the same) or an error
in an assignment.

faa is not imported by any modules
faa is not exported by any modules

A configuration must tell the truth about what it IMPORTS and EXPORTS, i.e. everything
imported or exported by a configuration must actually be imported or exported by a
contained module or configuration.

Errors detected, BCD not written

The binder has produced no output.

Errors detected, BCD is invalid

Binder 19

Errors were discovered after the binder had started writing the output file. The file has
been made invalid so that neither the binder nor the loader will accept it as input.

Type any character to exit

The binder will normally pause before returning to the Alto Executive (or running
another program) if there were any errors detected. To turn this global pause flag off,
use the switch /-p with a null file name.

Fatal Binder Error

Fatal errors are reported in a fashion similar to the compiler; the signal and message are
given' in octal, and should be included in any change request reporting a fatal binder
error.

Current Limitations

The DIRECTORY clause in a configuration description should be used only when the name of a
module or configuration differs from the name of its file. Do not make DIRECTORY entries for
interface (DEFINITIONS) files.

The output BCD file can be renamed; the code and symbols files cannot (since the BCD contains
the names of these files in its internal tables).

Copying code and symbols into the same file (other than the BCD file) is not implemented.

Multiple instantiations of nested configurations are not implemented. You can get around this
by binding the nested configuration in a separate step.

Estimated running time: five seconds for initialization plus one-half second per included file
(module or configuration). Add one second per module to copy code and one second per module
to copy symbols.

20

Appendix C: System

Mesa systems are available in both standard and basic configurations. The basic configuration's
only interface is the command line. BeDs may be loaded and started by specifying them on the
command line. The standard configuration contains the Mesa Executive which serves as the user
interface. See the Mesa System Documentation for details. The standard configuration also
allows command line loading.

Command line: loading

Both the standard configuration and the basic configurations allow clients to load their BeDs by
specifying them on the command line. The general form of the command line is:

>Mesa[/d] filel[/sw] file2[/sw] .

The valid switches are listed below. A '- preceeding the switch inverts the meaning.

Id -- go to the debugger after loading this BCD but before starting it. This is the only
switch applicable to the image file.

Is -- start the BCD (default if non-null control module).

11 -- load the BCD with code links. The II switch is also applicable to the New command of the
Mesa Executive. The modules will only have code links if there is room for the links in the code and the
modules specify that they want code links.

The default extension is " . bed". There are no global switches. All switches only apply to the
file to which they are attached. If BasicMesa runs out of things to load from the command line,
it returns to the Alto Executive. If Mesa runs out, the Mesa Executive is given control.

Examples:

>BasieMesa WindowPaekage/l-s SomeConfig/d

Start Bas i eMesa and load the Wi ndowPackage with code links but don't start it. Then
load SomeConfig and go to the debugger before starting it.

>Mesa AConfig/-s StrangeConfig.foo/-s

Start Mesa and load AConf i g. bed and StrangeConf i g. foo without starting either and
then enter the Mesa Executive.

System 21

Error Messages

Errors generated during loading or interaction with the Mesa Executive are reported by displayed
messages and by uncaught signals in BasicMesa. The following error messages are given by the
Mesa Executive:

IFile: fiTe

When attempting to load a BCD, file cannot be found or is an invalid BCD. If file is
not the BCD being loaded, then it is a code file for the BCD. A BCD may be invalid because it
is was invalidated by either the Compiler or Binder due to errors in its construction, or because it was
produce~ by a previous version of the system.

INumber

An invalid number was typed.

IString too long

A string was typed that was too long.

IFile name referenced in different versions

When loading a BCD, the interface or program name was referenced in different versions.
Loadifl:g is continued but there may be unbound external references.

External Debugger not installed, type DEL to abort

An attempt was made to invoke the debugger but it has not been installed.

The signals that may be generated by BasicMesa are listed below. See BASICMESA.SIGNALS for the
corresponding signal values.

BadFile[name]

When attempting to load the BCD name, either it cannot be found, it is an invalid BCD,
or a code file in the BCD is not available.

VersionMismatch[name]

When loading a BCD, the interface or program name was referenced in different versions.

22

Appendix D: Debugger

The common facilities available in the Mesa debugger include setting breakpoints, tracing
program execution, displaying the runtime state, and interpreting Mesa statements. It will be
easiest to understand how to access these facilities by going through a simple example using many
of the common commands.

Command line installing

To install the debugger from the command line of the Alto Executive, use the "I" switch; use the
"L" switch to load programs with code links (to save space).

For example, typing XDebug Wi ndEx/i installs the debugger with the window manager
(WINDEX.BCD); typing X Deb u g Win dE x / 11 installs WINDEX with code links.

Files

The debugger itself is contained in the file XDEBUG.lMAGE; the window manager is WINDEX.BCD.
There are several other files that are used by the debugger and should not be deleted from your
disk. These are the swapping files used by the debugger: SWATEE (to hold the user's core image)
and MESADEBUGGER (to hold the debugger's core image), and the DEBUG.TYPESCRIPT file, used as a log
of your debugging session.

Signals and errors

See the Mesa Debugger Documentation for details on the common signal and error messages you
might receive and suggestions for recovery.

Sample program

The configuration we are going to use as an example is taken from the Mesa Language Manual
(chapter 7). These files may be found on [IRIS]MESA)DOC.

The simple configuration Config2 consists of two modules, Lexicon and LexiconClient. After the
modules have been compiled and the cOhfiguration has been successfully bound, you are ready to
load and debug the program.

Entering the debugger

Let us assume that the configuration has been loaded (but not started) and you have entered the
debugger for the first time (via the Debug command or the "0" switch). You get a herald that
indicates when your version of the debugger was built foHowed by the current date and time and
a prompt for the first command:

Debugger

Alto/Mesa Debugger 4.0 of 25-May-78 16:31
6-June-78 17:27

>

Setting the context

23

In order to get to a context from which you can set breakpoints in one of the modules in
Config2, let's look to see which configurations have been loaded by saying:

>List' Configurations [confirm]

which responds with:

Config2
Mesa.

If we check the current context at this point, you can see that the current configuration is Mesa,

>CUrrent context --
Module: NubControl, G: 172234B, L: 1672308, PSB: 2770B
Configuration: Mesa.

We need to set the current configuration to be Config2,

>Set Root configuration: Config2

and find out which modules are in this configuration,

>Display Configuration Config2
Lexicon, G: 150404B
LexiconCl ient, G: 1504208.

Now we can set the context to be Lexicon, so that we can set some breakpoints,

>Set Module context: Lexicon.

Using windows

Let us assume that you have loaded the window manager (WINDEX) with your debugger; this allows
you to position and change the size of the windows as well as to set breakpoints and to select text
to be used as type-in. The left margin of a window is used for scrolling; use the red mouse
button to scroll up; the yellow button to thumb; and the blue button to scroll down. The rest of
the window is a text area; you can make character selections by clicki ng the red mouse button,
word selections with the yellow button, and display the menu with the blue button. See the
Extended Features Memo for complete details on WINDEX.

Debugger 24

Setting breakpoints by selections

Let's load the source text for Lexicon into a window so we can set breakpoints using selections.
This may be done in one of two ways: either display the stack and ask to see the source (this
loads the source file for the current module into the sourcefile window of the debugger),

>Oisplay Stack
Lexicon G: 1504048 >8

Source: O--Lexicon.mesa June 6, 1978 5:20 PM
>q.

or you can create a new scratch window and type-in the name of the file followed by escape
(ESC) (this loads the source file into the window you have just created).

Now move into the window containing the sourcefile, and click a mouse button to make it the
current window. Suppose we want to set a breakpoint on the exit of the procedure NewNode.
Scroll the window until this procedure is visible, then select the word RETURN inside this
procedure (by using the yellow button for word select mode). Hold down the menu button and
choose the SetBr command. This sets a breakpoint on the exit of the procedure (similarly
selecting the word PROCEDURE sets a breakpoint on the entry to the procedure).

Suppose you want to set a breakpoint in the end of one of the conditional IF-THEN-ELSE statements
in the procedure InsertString. Select any character in the statement ELSE n.llink +- NewNode[];.
Confirmation that the breakpoint has been set is given by the moving the selection to ELSE

On.llink +- N~wNode[]; (Note that in all cases, the closest enclosing statement is the place at
which the breakpoint is actually set).

Setting breakpoints by type-in

You may also set breakpoints in the program by means of typing-in the command. This gives
you the added capability of specifying a condition that must be satisfied for the breakpoint to be
taken. If, for instance, you want to set a breakpoint on the entry to the procedure FindString, and
invoke the debugger only if root is not NIL, you can do this by saying:

>Break Entry Procedure: FindString, condition: root # NIL.

Inserting comments

Saving some comments along with the commands is a good idea so that it is easier to remember
what happened when looking back at the typescript file. For instance you might n~w say,

>--This breakpoint was set to skip checking for a lexicon if we
)--know the tree is empty.

Proceeding

It is now time to proceed and start the program. This is done by executing the following
command:

)Proceed [confirm]

Debugger 25

and Starting the program.

If we try to add. the lexicon "xxxxx" to the tree, we will then reach our breakpoints.

Examine and change the state

You next enter the debugger at one of the breakpoints with the herald:

>Break at exit from NewNode, L: 165034B (in Lexicon, G:150404B)

to indicate where you are. At this point you might display the stack and look at some variables,

>Di sp 1 ay Stack
NewNode, L: 165034B (in Lexiocn, G:150404B) >v

n=164333b1'
>q

or look at the several levels of the stack,

>Display Stack
NewNode, L: 1650348 (in Lexicon, G:1504048) >n
InsertString, L: 1650448 (in Lexicon, G:150404B) >n
AddStr i ng, L: 1650548 (i n Lexicon, G: 150404B) >n
LexiconClient, L: 171664B (in LexiconClient, G:150420B) >n
No symbols for NubControl, G: 172234B, L:172060B, PC: 314B, E

>q

or ask to see what the node n (in NewNode) looks like (by using the interpreter),

> n1'
Node[llink:NIL, rlink:NIL, string:(5,5)"xxxxxlt].

Let's say we wanted to set both the left link and right link of n to point to itself and then check
the values. This may be done by saying,

> n.llink ~ n ; n.rlink ~ n ; n ; n1'

which responds with,

164333B1'
Node[11ink:164333Bt, rlink:164333Bt, string:(5,5)ltxxxxxlt].

If at this point we want to see the value of the variable ch in the module LexiconClient (a
variable in the current configuration but not in the current context), this may be done by saying,

>Find variable: ch

which responds with the first character of the last lexicon that was typed,

IX (in LexiconClient)

Debugger 26

More breakpoint commands

The following command lists all of the breakpoints that have been set:

List Breaks [confirm]

If you decide that you are no longer interested in any of these breakpoints you can

Clear All Breaks [confirm]

which removes all breakpoints and restores the instructions.

Look at the user world

If you are interested in seeing the state of the user display. you can look at the user world by
saying

Userscreen [confirm]

When you are done. hitting the SWAT key returns you to the debugger. ready to execute more
commands.

Setting tracepoints

Suppose next you want to set a trace on the entry to the procedure LexicalCompare so that you
can simply see the two strings being compared and go on. You may do so by saying.

>Trace Entry Procedure: LexicalCompare.

Now we should proceed and try to add a new lexicon. say "yyy".

When the tracepoint is reached, you get a dump of the input parameters of LexicalCompare along
with the herald:

Trace at entry to LexicalCompare, L: 171674B (in Lexicon, G:150404B)
sl=(3,80)"yyy"
s2=(5.5)"xxxxx" >

at which point you may continue executing your program (respond with Q) or enter the debugger
command processor (respond with B).

This represents a brief introduction to the use of most of the debugger's commands that you will
commonly need. See the Mesa Debugger Documentation for further details; the best teachers are
experienced Mesa programmers and lots of practice!!!

27

Appendix E: Utilities

Described below are several utility packages that have proved useful in building Mesa systems.
The Lister produces human readable listings of various Mesa file formats. The IncludeChecker
checks for object file consistency. The Statistics package generates source and object statistics.
Version lists creation dates for source and object files. The SignalLister produces a mapping of
signals and signal values.

Lister

The Lister produces listings of code, symbols, bcds, etc. from object and source files. To use it,
retrieve (MESA)LlSTER.IMAGE. It operates in either command line or keyboard mode. Commands
look like procedure calls with constant (string, numeric, character, boolean) arguments.
Arguments are type checked by the command interpreter. In command line mode type to the
Alto Executive:

)L i ster command1[arg1, arg2, ...] command2[arg1, ...]

You actually type the square brackets, as in a Mesa procedure call.

In keyboard mode you just type the command with arguments. Typing the ESC key will extend
the command name if a unique command exists. The Lister will prompt for arguments if the
command name is terminated with CR. Typing? in keyboard mode will produce a list of
available commands and their arguments. The current commands are:

Code[lfFilename"]

Given a bcd file produced by the compiler, this command will produce a listing (on
F i 1 en ame . C 1) of the object code. If the source file is available on your disk, the source
for each statement will be listed just before the object code.

Warning: This command produces a large amount of output.

OctalCode["Filename"]

Same as the Code command, except that opcodes are given in octal as well as by name.

Warning: This command produces a large amount of output.

OpcodeList["Filename"]

Generates on Filename.l ist a one page (Gacha8) listing of the Mesa opcodes.

Bcd["Filename"]

This command produces (on Filename.bl) a listing of the internal tables of the binary
configuration description. Output of either the compiler or binder is acceptable.

BcdLinks["Filenarne"]

Same as the Bcd command, expect that the control links of imported and exported items
are included.

Utilities 28

BcdSegment[II F i1 ename" ,Base, Pages, Links]

The most general form of the Bcd command allowing you to specify the location of the
bed by filename. starting page number. and number of pages. Specify TRUE or FALSE for
Links.

Interface["Filename~]

Given the bed file for an interface (DEFINITIONS file). this command will produce (on
Fil ename. 11) a list of the interface items and numbers. These numbers are the ones
reported by the Binder for unbindable items.

Symbols["Fi1ename"]

Given ,a compiler output bed. this command will list the internal symbol table.

SymbolSegment["Filename",Base,Pages]

A more general form allowing complete specification of the location of the symbols (e.g.
in a .symbols file).

Load["Filename"]

An escape hatch allowing other programs to run in the Lister environment. NEWS and
STARTS the module F 11 ename.

Debug[]

Invokes the Debugger.

Quit[]

Returns to the Alto Executive.

Include Checker

The IncludeChecker is a program that checks the include relationships in bcds for consistency.
Its output is in three sections. The first is a compilation order for those files checked that is
alphabetic as much as possible while satisfying the include relationships. The second is a list of
include relationships, listing those files each module includes and the time stamps of the files.
Any inconsistancies are flagged with an asterisk. The final list is the included relationships,
listing those files which include a particular file. To use it retrieve
<MESA>UTILITIES>INCLUDECHECKER.BCD. It gets all of its parameters from the command line and is
started by typing to the Alto Executive:

where

)Mesa IncludeChecker outputfile [filename1 filename2 ...]

outputfile is the name of the file the output is written on. If no extension is given,
It. 1 is tit is assumed.

the list of filenames specifies those bcds that are to be checked. If no files are specified,
all beds on the disk are examined.

For example, the following command line will produce the output shown below on file

Utilities 29

Foo.l ist.

)Mesa IncludeChecker Foo Allocator AltoDefs FspDefs InlineDefs MopCodes
SystemDefs TableDefs

Compilation Order:
MopCodes InlineDefs AltoDefs FspDefs SystemDefs TableDefs Allocator

Allocator (12-May-78 17:19:32 #5 #20) includes
InlineDefs (ll-Apr-78 18:21:55 #5 #143)
SystemDefs (ll-Apr-78 18:30:25 #5 #143)
TableDefs (11-Apr-78 18:22:24 #5 #143)

AltoDefs (11-Apr-78 18:20:32 #5 #143) includes nothing

FspDefs (11-Apr-78 18:26:53 #5 #143) includes
AltoDefs (11-Apr-78 18:20:32 #5 #143)

InlineDefs (11-Apr-78 18:21:55 #5 #143) includes
MopCodes (11-Apr-78 18:21:02 #5 #143)

MopCodes (11-Apr-78 18:21:02 #5 #143) includes nothing

SystemDefs (11-Apr-78 18:30:25 #5 #143) includes
FspDefs (11-Apr-78 18:26:53 #5 #143) .

TableDefs (11-Apr-78 18:22:24 #5 #143) includes
AltoDefs (11-Apr-78 18:20:32 #5 #143)

Allocator is included by nothing

AltoDefs is included by
FspDefs
TableDefs

FspDefs is included by
SystemDefs

InlineDefs is included by
Allocator

MopCodes is included by
InlineDefs

SystemDefs is included by
Allocator

TableDefs is included by
Allocator

Utilities 30

Statistics Package

This package gathers statistics about Mesa source and object files and writes them on
MESA.TVPESCRIPT. It may be invoked either interactively of from the command line. It may be
invoked from the command line by typing the following to the Alto Executive:

>Mesa Statistics filename[/switches] ...

Output is to the display and to MESA.TVPESCRIPT. If no filenames are specified on the command
line, Statistics enters the interactive mode. Type? to get full documentation. The follow
switches are used:

/b bcd statistics (default).

I c command: use filename as switch.

Id invoke debugger.

I h print heading.

/m source statistics (default).

/ s print subtotal.

It print total.

/x "Management" statistics.

The following command line will generate the output shown below:

>Mesa Statistics A1Font DisplayControl StreamIO SystemDisplay tic

Alto/Mesa 4.0 of 26-May-78 12:31
8-Jun-78 8:58

>Statistics -- 170330B

Alto/Mesa Statistics Package

Statistics as of 8-Jun-78 8:69:01

chars lines codebytes framesize ngfi nlinks codepages sympages

AlFont 6136 212 662 4 1 ·6 2 11
DisplayControl 6764 197 684 60 1 26 2 14
StreamIO 6404 263 876 6 1 '7 2 10
SystemDisplay 15834 526 1778 63 1 8 4 20

------- ------ ------- ------ ------

TOTAL: 35128 1198 3890 123 4 47 10 65

Utilities 31

Version

Version is a program which displays time stamp information for files with any of the following
extensions: mesa, config, bcd, image, symbols and code. For source files (mesa and config
extensions) it reads the first page of the file and trys to find a valid date. For binary files (bcd,
image, symbols and code) it knows where to find the time stamp that Mesa uses for version
checking. When given a file name root, Version searches the disk for files with that root and the
above extensions, displaying the time stamp for each file found.

Version may be run either from the command line or interactively. To run Version from the
command line type the following to the Alto Executive

)Mesa Vers ion [fi 1 enamel fil ename2 . . .]

To run Version interactively omit the list of filenames in the above line. Version will then
prompt for input.

Sample output is shown below.

Alto/Mesa 4.0 of 26-May-78 12:31
8-Jun-78 8: 35

>Version -- 1703248

Mesa
config: 30-Mar-78 16:47:00
symbols: 26-May-78 12:29:56 5#208#
image: 26-May-78 12:31:24 5#208#

A ltoOefs
mesa: 25-Jan-78 17:49:00
bed: ll-Apr-78 18: 20: 32 5#1438#

SignalLister

SignalLister is a program which will produce a signal listing for an image file, like MESA. SIGNALS.
To produce a signal listing for FOO.lMAGE, type to the Alto Executive:

)Mesa SignalLister Foo

The signal listing will be produced on file FOO.SIGNALS. If the symbols for a module are not
available, no signals for that module are listed. For example, if FOO.lMAGE was made by loading
FOO.BCD on top of MESA.IMAGE, a complete signal listing for FOO.IMAGE will require that
MESA. SYMBOLS and all the symbols for FOO.BCD be on the disk. If MESA. SYMBOLS is not present,
only those modules from FOO.BCD will have their signals listed.

