
XEROX Xerox Development Environment 

XDE Unsupported Software Description 

X ll ~;3.0-900 I 
Version :to 
November 1984 

Office Systt:'m~ Division 
Xerox Corponttion 
3450 Hillview Avenue 
Palo Alto, California 94:J04 



Xerox Development Environment 

Notice 

This manual is the current release of the Xerox Development Environment <XDE> and may be revised by Xerox 

without notice. No representations or warranties of any kind are made relative to this manual and use thereof, 

including implied warranties of merchantability and fitness for a particular purpose or that any utilization 

thereof will be free from the proprietary rights of a third party. Xerox does not assume any responsibility or 

liability for any errors or inaccuracies that may be contained in the manual or have any liabilities or obligations 

for any damages, including but not limited to special, indirect or consequential damages, arising out of or in 

connection with the use of this manual or products or programs developed from its use. No part of this manual, 

either in whole or part, may be reproduced or transmitted mechanically or electronically without the written 

permission of Xerox Corporation. 

Preliminary. 

Copyright ci 1984 by Xerox Corporation. 
All Rights Reserved. 



- - Activity.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Activity is an outgrowth of CpuMonitor and StorageFaultMonitor. Using a very small window, it displays 
two bar graphs that indicate machine activity. One graph shows the percentage of cpu utilization. The 
other graph shows a count of either disk 10 operations or page faults. 

The graphs are updated once per second and give the instantaneous activity (for that second) in black, 
and an average activity over the past 10 seconds in gray. The cpu utilization percentage and 10 
activity for the second are also displayed numerically. 

You can use a menu to select whether to display all disk 10 operations or just page faults. Initially, 
all disk 10 operations are shown. Nearly all page faults result in a disk operation. However, the 
disk will also be touched by explicit calls on such Pilot operations as Space.ForceOut. File.Create, 
File.Delete, File.SetSize, and File.GetAttributes. 

Activity's default window is 30 pixels high by t 84 pixels long and just overlays part of the Herald 
window. Its window box can also be set from User.cm. 

The User.cm entry can also contain a section telling Activity whether to default to showing all Disk IQ 
(default if nothing specified), or faults. 

Sample: 

(Activity] 
WindowBox: (x: 512, y: 0, w: 184, h: 30] 
10: Faults 



- - Adder.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Adder is a simple adding machine that may be useful alone or in conjunction with SimpleCalc. Its main 
feature is that it will extract signed numbers out of text, including monetary amounts like S123.4S or 
-$12,345. 

Adder keeps a single - register running total (a LONG INTEGER), which can be reset to 0 by the "Clear!" 
command. 

The "Add!'" command adds this running total together with whatever numbers are found in an input string, 
and displays the new running total. The input string is "String:" if this is non -empty, else the 
current selection. In parsing the input string, every character except a digit, period, or comma is a 
number separator Whatever the intervening text may be, all of the separate numbers are ADDED 
together. except that an odd number of minus signs" - " makes the succeeding number be subtracted. The 
"Sub!" command is the same as" Add!" except that it flips the sign ofeach number itfinds in the input 
string. 

(If you do degenerate things. then what you see highlighted may not be what you get as the selection 
text, e.g. if you type in text after the selection before using the Adder.) 

The interpretation of the input digits is controlled by the setting of "Interpret Input String As:". 
and not by trailing "B"'s or other indicators. If this setting is "Money". then the running total is 
kept in pennies and shown as dollars -and - cents; otherwise it is displayed as an integer in both 
decimal and octal. 

Simple Multiply and Divide commands are provided, using the integer specified after· ..• by" as the 
second argument. You can get a buffer of partial results by stretching the height of the upper 
sub- window. There are no keyboard commands. 



- -AddHintMenus.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

AddHintMenus allows you to add a menu with a list of "hints" for the contents of Form SW string fields. 
For instance, if you're tired of typing certain host and directory names in the File Tool, you can now 
have a menu of directory names attached to the" Host" and "Directory:" fields of the File Tool. 

The AddHintMenus.- command reads hints from a file. If no file name is specified on the command line, 
it reads them from User.cm. The hints are specified in the (Hints) section of the file, in the 
following format: 

(Hints) 
ToolName: FieldName FirstValue ·value With Spaces" ThirdValue 

where 

"ToolName" is the name of a tool, 
"FieldName" is the name of a string field in some FormSW of that tool, 
and the remainder of the line is a list of items that should make up the menu. 

Note that the second item is quoted since it contains white - space characters. (If the field name 
contains white - space characters, it too must be quoted.) 

When you want to change the hints for a particular field, just edit user .cm (or whatever file you store 
your hints in) and run AddHintMenus. - again. 

AddHintMenus provides expansion of hints. Expansion is done using the Expand interface provided in 
Tajo. If automatic local expansion is not desired tne user can single - quote(') the asterisk(*). 
Because the Expand interface is used one must work around comments ( - - ) by inserting a single - quote in 
front of what would normally be considered a comment delimiter according to the Expand interface. 

Note: It may be desireable to place the hints in the User.cm for two reasons. The first reason is 
that simply typing "AddHintMenus. - " results in the User .cm file being the default. The second reason 
is that AddHintMenus will automatically be called on activation of a tool (only on the particular tool 
being activated); and it will parse the hints from the User.cm file. 

The following is a sample User.cm "Hints" section: 

(Hints) 
FileTool: Host RemoteServerName1 RemoteServerName2 RemoteServerName3 
File Tool: Directory <Subdirectory >tools <Subdirectory> Fonts <Subdirectory> Private File Tool: LocalDir 
<>Filing< >Tools< >Temp< >Symbols 
File Tool: Source'* .mesa'* .bed'* .config 
MailSend: File *.msg *.MailForm 



- - AlarmClock.doc 

- - Copyright (C) 1984 by Xerox Corporation. Alf rights reserved. 

AlarmClock is a tool that locks up the notifier until a designated time has passed. This is useful for 
controlling the time that tests or tools are started. The tool has a form subwindow containing a 
string field named "Time" and a command named "Wait", the use of which should be obvious. Pushing the 
Stop button while the curser is within the tool's window will abort the wait. Tool activity is logged 
in a file subwindow. 

Times may have these formats: 
An empty time string is interpreted as the current time. 
28 - May -82 13:15:11 EST 
28-May-8213:15:11 
28-May-8213:15 
13:15:11 
13:15 
1200 

(same as 28 -May -8213:15:00) 
(the next time it is 13: 15: 11 in the local time zone) 
(the next time it is 13:15:00 in the local time zone) 
(wait for 1200 seconds) 



- - Ascii860ConversionTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Ascii860ConversionTool is used to convert files which are in the 860 format into plain ascii text 
files, and vice versa. The tool has the following fields: 

direction: An enumerated type used to specify what type of a 
conversion you wish to make. When AsciiFrom860 is 
selected. the file specified in the Source File Name 
field will be used as input, converted into ascii 
text, and written out to the file specified in 
the Destination File Name field. When AsciiTo860 is 
selected. the file specified in the Source File Name 
field is used and input and convered to 860 
format, which is written to the file specified as 
in the 860Filename field. 

Source File Name: The local input file. 

Destination File Name: The local output file. 

Overwrite Switch: Allows an existing output 
file to be overwritten with the text from 
the conversion. The default value is 
NNo Overwrite". 

Convert!: Execute the conversion. 

Ascii860ConversionTool requires a file name in both the 860Filename field, and the Asciifilename field. 
It will inform you if you leave out a file name, give a bad file name, or try to overwrite an existing 
output file, when the Overwrite Allowed boolean is not TRUE (i.e. is not selected). 

You can use Ascii860ConversionTool for converting StaT documents into ascii text file. To do this, 
while running Star, first select the document you are converting. Move the pointer into the desktop 
auxiliary menu, which is the small box with three horozontal lines, located in the upper right corner. 

Hold down the left mouse button. Select Convert. Your document will be converted and will be named 
860<filename >,where <filename> was the name of the file which you converted. Now either (1) store 
the 860 document on your filedrawer, SH - SH - STOP to CoPilot, fetch the 860 document from your 
filed rawer with File Tool; or (2) go to CoPilot or Tajo and use StarFileTool to copy your converted 
document from your Star desktop. The first method is preferred because it doesn't require any 
rebooting. Now use Ascii860ConversionTool to convert that file into ascii text. 

NOTE: When using StarFileTool to copy the 860<filename> to 
either CoPilot or Tajo, StarFileTool may not be able 
to find the file. You can avoid this problem if you 
rename the <filename> you converted to <newfilename >, 
and then use StarFileTool to copy over the original 
<filename>. 



- - AutoRepeat.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Description: 
AutoRepeat repeats input character automatically in the text subwindow and form subwindow. If you 
press any printable key and hold it down, the character corresponding the key will be automatically 
inserted into the window. 

Installation: 
TIP file AutoRepeat. TIP into your TIP> directory. 

Run: 
Type from Executive 
AutoRepeat firstNumber secondNumber<CR> 
where the firstNumber is the number of milliseconds before the first repeat. the secondNumber is the 
number of milliseconds between two repeats. The default value of firstNumber is 500 and secondNumber 
is 100 



- - Background.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Background.bed provides the facility formerly provided by the Background line in the (System) section 
of User.cm. That is, it lets you specify one or more Exec commands that are to be performed the first 
time you return to Copilot after booting. Actually, the commands are performed the first time you 
return to Copilot after running Background.bed, but if you run it as part of your lnitialCommand you 
get the desired effect. 

The commands to be performed are found by looking in User.cm for a line called "Command:" within the 
section labelled [Background). Unlike the Trinity/Cascade "Background" feature, which required a list 
of programs to be run, Background.bed takes a full Exec command line, just like the lnitialCommand in 
the (System) section. The command(s) must be on a single line. so use semicolons instead of CRs 
between commands. 

The commands are executed at background priority. Output is sent to the "indirect output" sink, 
initially the Herald (see lndirectOutput.doc). The background process can be aborted by issuing a 
global abort (STOP - STOP). 

WARNING! Background.bed has the same drawback the old [System) Background feature had: You can't 
Proceed from Copilot until the background stuff is finished. (This is because you might crash if you 
were to Proceed while the background process was writing on the disk.) Background.bed therefore vetos 
any world - swaps until it is finished. If you find this frustrating, you should endeavor to do as 
little as possible in the background. 

A typical use of Background would be: 

(Background) 
Command: Run FindSource.bcd Flash.bed 

FindSource can't be run via lnitialCommand because its changes to the File Window menu are overridden 
later during booting. after the lnitialCommand is finished. (At least, that was true in Sierra.) By 
running it with Background, you can make sure its changes take place after everything else has settled 
down. Flash.bed (see Flash.doc) lets you know that the background command has finished. 

If you boot with the ·w switch, Copilot does not boot the client volume at the end of initialisation. 
In this case, the background process is started when the Copilot log window is created, which is 
pretty much the end of the Copilot boot sequence. 



- - Basic.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Basic is a hack that has been adapted from Laurel Basic. It is run in the Executive. There is, 
unfortunately, not much documentation on this dialect of basic. The keyword lists given below are all 
there is. If you do not speak basic already, this may not be enough. 

Known Bugs: 
Renumber Command - does not work 
Print USING - does not work 
IMAGE - does not word (used with Print USING) 
The support for strings is very weak - No concatenation or substring capability 

Variable Names: 
Numeric Variables 
String Variables 

Key Words: 
AUTOn,m 

One letter or one letter and one digit 
One letter and a dollar sign (S) or one letter, 
one digit and a dollar sign. 

Turn on auto line numbers 
n = starting number (default is 10) 
m = increment (default is 10) 

CLEAR Clear the screen? (outputs one blank line) 
CONT 
CODELIST n,m 

DATA 
DEFfunc 
DEG 
DELn,m 

DIMv(n,m} 

Continue a program (only after a pause} 
List the source and the internal op codes 

n = first line to list (default is first line} 
m = last line to list (default is last line} 

Provide data for a READ statement 
Start of a function definition 
Use degrees in trigonometric functions 
Delete program lines starting with line number n and ending 
with line number m 
Dimension variable v to bean by m array 
(m is optional) 

DISP See Print 
END End of a program (stop the program) 
FNEND End of a function definition 
FOR Start of a FOR -NEXT loop (FOR I= 1 TO 10 STEP 1: NEXT I} 
GOSUB n Enter a subroutine starting a linen 
GOTO n Goto line n 
HELP Print the keyword list 
IF If statement (IF condition statement) 

condition - A> = B or AS= BS etc. 
statement - only LET, GOTO (or THEN} and GOSUB are legal 

IMAGE Print format for use with PRINT USING 
INPUT a,b Input from the user (keyboard) date into the variables a and b. 
LET Assignment statement (LET A= 5) ("LET" is optional} 
UST n,m List the source 

n = first line to list (default first line} 
m = last line to list (default last line} 

LOAD file Load the source file into basic 
NEW Clear the work space (erase the existing program} 
NEXT EndoftheFOR-NEXTloop(FOR I= 1TO10STEP1: NEXTI} 
NORMAL Turn off auto line numbering 
ON v GOTO or GOSUB 11, 12, 13 ... 

Computed goto or gosub based on v 
OPTION BASE 0 Index arrays staring with 0 or 1 
PAUSE Temporary stop in the execution of a program 

(CONT will cause it to start again) 
PRINT Print the list of expressions, variables, or quoted strings. A comma (.} 

QUIT 
RAD 
READ 
REM 
RENUMBER 

will cause a tab to separate each item output and a semicolon(;} 
will cause no separation between them. 
Exit basic (program lost if not already saved) 
Use radians in trigonometric functions 
Initialize variables using the data in a DA TA statement 
Remark (comment line} (can also use!} 
Renumber the program lines 

n = new starting number (default is 10) 
m = increment (default is 1 O} 
o = old line number to start with (default is first line) 
p = old line number to end with (default is last line) 



RESTORE ? 
RETURN Return from a subroutine 
RUN n Start a program executing 

SAVE file 
STEPn 
STOP 
TAB 
TOn 
THENn 

USINGn 

functions: 

n = starting line number (default is first line) 
Save the current source into file 
Optionally used in a FOR statement (for i = 0 to 5 STEP 1) 
Stop the program 
? 
Used in a FOR statement (for i = 0 TO 5 step 1) 
Used in an IF statement (if a= b THEN 100) same as 
(if a= b GOTO 100) 
Used in PRINT to supply format information 

ABS(x) Absolute value of x 
ACS(x) ArcCosine of x 
ASN(x) Arcsine of x 
ATN(x) ArcTangent of x 
ATN2(x,y) ArcTangent of y/x 
CEIL(x) Smallest integer > = x 
CHRS(x) Character representation of x 
COS(x) Cosine of x 
COT(x) Cotangent of x 
CSC(x) Cosecant of x 
DTR(x) Degrees to radians for x 
EPS The constant epsilon (0.0099) 
EXP(x) The constant e raised to the x power 
FLOOR(x) Largest integer < = x 
FP(x) Fractional part of x 
IP(x) Integer part of x 
INT(x) Largest integer < = x 
LEN(sS) Length of string sS 
LGT(x) Log (base 1 O) ofx 
LOG(x) Log (base e) of x 
MAX(x,y) The larger value of x or y 
MIN(x,y) The smaller value of x or y 
NUM(sS) String to numeric conversion of sS 
Pl The constant pi (3.14159265359) 
POS(sS,tS) The position of string tS in string sS 
RMD(x,y) The fractional remainder from x/y (FP(x/y)) 
RND(x) A uniform random number > = 0 and < x [O .. x) 
RTD(x) Radians to degrees for x 
SEC(x) Secant of x 
SGN(x) Sign of x 

SIN(x) 
SQR(x) 
TAN(x) 
UPCS(sS) 
VAL(sS) 
VALS(x) 

x<O => -1 
x=0=>0 
x>O = > 1 

Sine of x 
Square root of x 
Tangent of x 
Conversion to upper case of string sS 
String to numeric conversion of sS 
Numeric to string conversion of x 



- - BcdType.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

BcdType allows you to separate a list of beds into six lists: BAD BCDS. DEFINITIONS, MODULES, 
CONFIGURATIONS, PACKAGED, and TABLE COMPILED. 

To use, type into the exec: BcdType file1 file2 ... filen 

A sample script in the Executive: 

>BcdType *.bed 
BAD BCDS: a.bed, bbed 

DEFINITIONS: String.bed, TextSW.bcd 

MODULES: StringlmplA.bcd, TextSWsA.bcd 

CONFIGURATIONS: TextSWs.bcd 

PACKAGED: Compiler.bed 

TABLE COMPILED: Rats.bed 
> 



- - BinCom.doc. 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilot I Tajo 

Description: BinCom compares two files and displays the differences to the exec log or to an optional 
output file. Output is in hex if h switch, decimal if d switch and octal otherwise. 

Sample Commands: 

>BinCom Old.bed New.bed 
>BinCom MuchOutput.txt/o /h Old.boot New.boot 



- - BootVolumeName.doc 

- - Copyright {C) 1984 by Xerox Corporation. All rights reserved. 

Running BootVolumeName.bcd registers the Executive command, BootVolumeName.-: 

This hack enables users to boot from Executive command lines. The volume name need not be complete 
(nor capitalized perfectly) but it should obviously be unambiguous. 

Boot - switches are optional immediately after the volume name. If absent, the current switches are used 
(e.g. see the Herald Window menu's Set Switches command). If an EMPTY switch setting is specified, no 
switches are used (other than the system defaults). 

Normally, BootVolumeName requests confirmation from the user before booting. Auto-confirming can be 
specified by adding a Y or y to the command line. (The letter must be preceded by at least one blank; 
otherwise it may look like a switch setting.) 

Some examples: 

BootVolumeName.- System - - boots System using current switches 
BootVolumeName.- sys/dw{ - - boots System with switches: dw{ 
BootVolumeName.- CoPilot/ - - boots CoPilot using no switches 
BootVolumeName.- CoPilot/ Y - - ditto, with auto - confirmation 



·· BringOver.doc 

•• Cop!fright {C) 1984 by Xerox Corporation. ~\II .. ·'' . !1".,ed. 

Please refer to the document, "OF Software Rei•~renc...: :.lanui.11", ii"! XDE Unsupported Software D~scription. 



- - BrushDMT.doc - edited by: 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This program reads brush files generated by Doodle and displays them as DMT objects floating around the 
screen. There are three User.cm entries processed at every activation: 

(BrushDMT] 
BrushFile: <brush> I< switches> 
Delay: 1000 
SmashPassword: TRUEIFALSE 

- - name of file containing a brush 
- - jump delay in msecs 

You can specify up to ten brushes, in multiple "BrushFile" lines or all on one line, as you prefer. If 
no BrushFiles are specified, or the specified brushes cannot be opened, the program will look for 
DMT.brush. If that cannot be found, then the program degenerates into vanilla DMT. You can also 
specify your brushes in the Exec with the command: 

BrushDMT <brush>/<switches> ... 

If the ExecProc is used but the command line is empty, or the specified brushes cannot be opened, 
BrushDMT will look in User.cm just like for a plain activation. The switches, both in User.cm and in 
the Exec. are as follows: 

lg - - glide around the screen smoothly (well, semi - smoothly) 
/j - · - jump around the screen randomly - this is the default 
/r -· - jump around the screen at regular intervals 
It - - paint a vanilla - DMT - style time box at the "active point" 

You can combine the switches - /gt for gliding with the time box on. /jg for both gliding and jumping. 
etc .. You can also set "glo_bal" switches. Examples: 

BrushDMT YodaDMT 
BrushDMT /g FlyingV/t Sphere Sphere Sphere Sphere 

There's a collection of brushes on diskettes. 



- - ButtonsAndLights.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ButtonsAndlights is a module that throws 10 to 40 small buttons, small lights and 3 inch (200 bit) bar 
charts on the screen, superimposed over the Tajo or Star display. Any of the lights or bar charts may 
be set at any time. If the mouse is moved into a button area, a client proc is called, if it's been 
registered. The client, in turn, may or may not set one of the lights on or off, in addition to 
affecting his program's behavior. The module is intended for modifying and monitoring program 
behavior without going to the debugger, and is handy for watching program speed change as the behavior 
is modified. Timings of the client program may also be AUTOMATICALLY displayed on the bar charts. 

ButtonsAndlights consists of a defs module and a program module, and can be loaded into Tajo or Star 
without change. It writes directly on the screen bitmap, ignoring whatever window package Star or Tajo 
is using. In case the screen is moving "underneath", a call is available to repaint the entire view 
area; repaint also happens when any button is hit. 

The client may implement and register the CatchAllButtons proc of ButtonsAndLightsDefs in one or more 
of his modules. 
For example, if button 3 is moved over (no mouse buttoning is really necessary), CatchAllButtons[3) 
will be called. 

The client can do anything he wants upon catching a button call. Typically. he'll light an appropriate 
light and set a boolean in his own program. He sets a light by calling 
ButtonsAndlightsDefs.SetLight[lightNum: LightNum. color: BOOLEAN). 

Shape of the buttons and lights is such that they can be easily read against a background of black, 
white or gray. The active area is in the upper right corner of the screen, two inches from the top. 

BarCharts. 
Bar charts are initially invisible. Upon the first call to ButtonsAndLightsDefs.SetBar[barNum: BarNum, 
value: LONG CARDINAL), the buttons and lights move down on the screen and the bar charts appear above 
them. Cost of a call to SetBar is 30 to 1000 usec, with more detail in the defs file. 

Automatic Scaling. 
If the value sent to a bar is greater than 100, it is automatically divided by the proper scale of ten, 
and the number of zeros to be added to the reading is shown below the bar graph. Automatic scaling may 
be defeated by FreezeScale[); 

Automatic timing of programs. 
The calls StartTiming:PROC[barNum: BarNum] and EndTiming:PROC[barNum: BarNum)RETURNS[usec: Usec] placed 
around any operation will time (and automatically scale) that operation to within the nearest 28 
microseconds. Max value is 4000 seconds. The return values of EndTiming may be tallied or whatever, 
and later shown on the same or another bar. 

This tool has proven to be very valuable in timing and tuning up a large set of multi - process programs. 

It can be loaded or bound, in Star or Tajo, and a typical YConfig for loading with Star, is included in 
Hacks. 



- - Camera.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Camera.bed is a hack Ive seen running on SmallTalk and Interlisp machines. When you run it, a white 
window will appear. If you move the cursor over the window and hit Point, the cursor will disappear 
and rectangle will track the cursor. This rectangle will become a camera, and the window is the 
viewing screen. As you move the camera around your display, the image inside the rectangle is drawn 
within the screen window. To quit hit either Abort or Adjust on the mouse. 



- - Catalog.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Catalog allows a user to display file attributes in the executive. The following attributes can be 
displayed using the following switches: 

Switch Attribute 

b Bytes 
c Create date 
f File ID 
m Remote file name 
p Pages 
r Read date 
t File Type 
w Write date 

To use Catalog, type into the Exec: 

>Catalog.- /switches file1 file2 ... /switches fileN fileN + 1 .. 

Examples: 
>Catalog.- /bp ET.bed TestParse.bcd 

Bytes Pages File 
15872 32 <Tajo>ET.bcd 
12288 25 <Tajo>TestParse.bcd 

>Catalog.-/rwc <Tajo>*.log 

Create Write Read File 
20-Apr-83 15:40:29 20-Apr -8315:40:29 20-Apr-8315:40:29 <Tajo>FileTool.log 
20 -Apr - 83 15:40:36 20 - Apr - 83 15:40:36 20 -Apr -83 15:40:36 <Tajo>lnitial.Log 
20-Apr-8315:40:25 20-Apr-8315:40:25 20-Apr-8315:40:25 <Tajo>SimpleExec.Log 
19 - Apr - 83 11 :30:27 19 - Apr - 83 11 :30:27 19 - Apr - 83 11 :30:27 <Tajo> TestParse.log 

>Catalog.- /bwc <Tajo> *.cm /rp <Tajo>Junk >*.data 

Bytes Create Write File 
9044 19-Apr-8315:55:0919-Apr-8315:55:11 <Tajo>User.cm 

Pages Read File 
5 19 -Apr - 83 12 :05:22 <Tajo>Junk >adm3a.data 
5 19-Apr-8313:20:04 <Tajo>Junk>bitgraph.data 
5 19-Apr-8312:05:32 <Tajo>Junk>h1500.data 
5 19-Apr-8312:05:24 <Tajo>Junk>hp.data 
5 18-Apr-8316:20:50 <Tajo>Junk>vtOO.data 
5 19-Apr-8313:55:38 <Tajo>Junk>vt100.data 

>Catalog.-/m <Tajo>Temp>* 

File RemoteFileName 
<Tajo>Temp>FontMonster.bcd 
<Tajo>Temp>FontMonster.mesa 
<Tajo>Temp>KeyJump.bcd 
<Tajo>Temp>KeyJump.doc 
<Tajo> Temp> KeyJump.mesa 

(Server)< Directory> FontMonster.bcd! 1 
[Server)< Directory> FontMonster.mesa ! 1 

[Server]< Directory> KeyJump.bcd! 2 
[Server)< Directory> KeyJump.doc! 1 

[Server]< Directory> KeyJump.mesa! 2 



- - Chimes.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Chimes makes your terminal into a chiming clock. The Westminster chimes 
play on the quarter hour. this is a nice addition to the clock intended for 
display on the rhine.press background picture or, if you choose, as a stand 
alone. 

Just run Chimes.bed which creates the command "Chimes.-". To turn it off, unload Chimes. 



· - - ClockTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ClockTool is a window that contains an analog clock. The size of the clock 
scales along with the window. It requires the module Displaylmpl.bcd to be loaded. (If you don't wish 
to explicitly get Displaylmpl, the tool ClockToolWithDisplaylmpl has Displaylmpl 
bound in). ClockTool recognizes the standard stuff in your user.cm. 

The clock will run in any time zone and under most major daylight savings time rules. The zone and 
rules can be changed either by User.cm entries (listed below) or by a property sheet. To invoke the 
property sheet, push "stuff" (or "open") with the cursor over the clock. The fields are: 

ShowName: (true, false} display a name banner, defaults FALSE 
Name: the name of the banner, defaults to •Local Time· 
MinForSecs: minimum radius of dial to display a seconds hand, defaults to 28 
Direction: direction zone is from GMT 
Hours: hours zone differs from UT 
Minutes: minutes zone differs from UT 
FirstDST: largest possible JD for first day of Daylight Savings 
LastDST: largest possible JD for last day of Daylight Savings 

The time zone and DST parameters default to the local time parameters of your machine. 

The property sheet recognizes the standard stuff in your user.cm under the entry ·clock Tool 
Properties·. The property sheet also has two menus containing some time zones and daylight savings 
rules. 

Glossary: 

JD: Julian Day, or the number of the day in the year. For example, February 5 is JD 36. 

UT: Universal Time, a.k.a. Greenwich Mean Time 

For an explanation of local time parameters (e.g., the meaning of FirstDST and LastDST), please consult 
the Pilot Programmer's Manual. 



- - CompareDir.doc -

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

CompareDir compares files on a working directory against those on a snapshot or integration directory. 
When the Working Host is left blank and a Working directory is specified CompareDir compares the 
directories on the local disk to the snapshot directory. If the Working Host is left blank, and an 
asterisk is placed in Working Directory, all of the local directories will be compared to the snapshot 
directory. CompareDir can help you find: 

o files on the working directory that you forgot to snapshot 
o obsolete files on the working directory that can be deleted 
o files that have the wrong version on one of the directories. 

The tool runs in Tajo or CoPilot, and brings up a tool window. It forks a process to do the comparison 
(so the notifier isn't tied up) and runs at background priority. A log is produced in CompareDir.log. 

There are seven boolean items featured in CompareDir: Same. NotlnSnapshot, NewerlnSnapshot, 
NotlnWorking, NewerlnWorking, CanOverWrite, and UseSearchPath. Five of them, Same, NotlnSnapshot, 
NewerlnSnapshot, NotlnWorking, and NewerlnWorking, when true, give information as to which files are 
the "Same" in both directories, which files can be found in the working directory, but ·NotlnSnapshot" 
directory, etc. Also, when true, these five boolean items create separate command files of the same 
names (e.g. Same.cm, NewerlnWorking.cm). These command files contain the names of the corresponding 
files. ·canOverWrite• is a switch which allows you to overwrite the command files when you are making 
a new comparision. It is mainly a reminder that the previous command files will be overwritten each 
time a comparison is made. "UseSearchPath" allows you access to the entire search path and is used 
with a blank working host and working directory. Every time a new directory on the search path is 
being enumerated the directory name is displayed. 



- - CPMConversionTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This tool performs the following file conversions: 

1. WordStar file to Bravo file. 
2. Plain CPM text file to plain Tajo text file. 
3. Plain Tajo text file to plain CPM text file. 
4. (later: BravofiletoWordStarfile). 

In order to be converted, a CPM or WordStar file must first be moved to your Dandelion disk. This is 
done with a tool, 

CPMFloppytool.bcd 
CPMFloppytool.doc 

Why was the Bravo format chosen? Because it was much easier than the Star format and there exists a 
Bravo -to - Star conversion program. 

Following are the details of how characters from one file are copied to the other file. Basically, it 
"does the right thing". That is to say, letters, digits. punctuation and other symbols are carried to 
the new file as they should be. Other characters, generally not visible on the 820 screen but having 
to do with formatting (such as carriage return, tab, line feed) require some special handling. The 
format of the converted file will probably not look exactly like the original one, except in the case 
of CPM to Tajo (assuming that the Tajo window as been made at least as wide as the longest line in the 
original file). 

1. WordStartoBravo: 

Carriage Return makes a Bravo paragraph. 
Bravo paragraph margins are approximately equal to the margins in 

the last line of the WordStar paragraph. 
Paragraph justification is always off. 
12 - pitch font becomes TimesRoman10. 10- pitch font becomes TimesRoman8. 
Bold, underlined, subscripted and superscripted properties 

are carried over. 

2. CPM to Tajo: 

Codes 0 to 11 and 13 to 177 are copied as is. 
New Line (code 12) is not copied. 
Codes 200 to 211 are copied as Oto 11 (high bit dropped). 
New Line (code 12) is not copied. 
Codes 213 to 377 are copied as 13 to 177 (high bit dropped). 

3. TajotoCPM: 

Codes 0 to 7 are dropped. 
Codes 10 to 14 are copied as is. 
Carriage Return (code 15) becomes Carriage Return followed by New Line. 
Codes 16 to 37 are dropped. 
Codes 40 to 177 are copied as is. 
Codes 200 to 377 are replaced by a question mark. 
A long string of ControlZ (code 32) is appended at the end of the file 

to prevent truncation when the file will be moved to floppy disk. 

4. Bravo to WordStar: 

Not available. 
Use Strip to eliminate Bravo code then Tajo to CPM conversion. 
Resulting file still acceptable to WordStar but all formatting is gone. 



- - CPMFloppyTool.Doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

**I. Overview 

The CPMFloppyTool runs under Tajo or CoPilot and allows the user to read or write files to/from a CP/M 
formatted 8" floppy disks from/to the Mesa Development Environment. The floppy disk must be formatted 
as a standard IBM 3740 soft sectored floppy and hence readable by the D* (Dolphin or Dandelion) series 
hardware. 

The tool handles single/double sided or single/double density formatted floppies and correctly 
reads/write Xerox 820 single density, single sided (SDSS) floppies. Due to the lack of access to an 
Xerox 820 -111 have yet to test all the double density combinations. My default doubleDensity 
parameters are 128 bytes/sector and 52 sectors/track. 6 sector interleave and 1024 bytes/allocation 
unit. If these are not adequate then the tool allows different values to be supplied. I envision no 
difficulties but wider user experience may prove otherwise. 

When double density floppies are desired to be read/written caution should be noted. Presently, to my 
knowledge no widely accepted standard exists between the various OEM vendors using CP/M as to the 
sector interleave value to used for anything beyond beyond single - density single - sided (SDSS). The 
sector interleave value(s) used are supplied by the person performing the sysgen of the CP/M BIOS. 
Since these values are used in the mapping of logical to physical sector numbers incorrect values will 
not produce the correct results. In the interest of retaining a standard set of values that covered 
both the SDSS case, I chose to support the interleave values of 1, 3 or 6 sectors. These values can be 
chosen from a choice menu, in the window that appears from selecting the "cpmOther· option of the 
Format parameter. The appearance of the term ·sector Interlace· should be taken as equivalent to the 
more common term of •sector interleave" in this tool and documentation so subsequently they will be 
used interchangeably. 

For the CP/M hacker interested in more details. Section V. Implementation Details should be consulted. 

Problems, bugs or suggested enhancements are welcome via Laurel/Hardy messages to either Bill Fisher.ES 
or Rex Walden.ES. 

**II. Parameter Subwindow paramters 

Sides: A choice menu item that allows either "single" or ·double" sided floppy media to be chosen. 

Density: A choice menu item that allows either "single" or "double" density floppy media to be chosen. 

Format: A choice menu item that allows either "cpm· or ·cpmOpt" or ·cpmOther" to be chosen. 

When "cpm" is chosen the following parameters are used: 

1) If single density = > 128 Bytes/Sector and 26 physical sectors/track 
If double density = > 256 bytes/sector and 26 physical sectors/track 

2) 6 sectors interlace is used. 
3) 77 tracks/side 
4) 1024 bytes/allocation unit. 

These are the standard values used in the single and doulbe density CP/M floppy cases. 

When "cpmOpt" is chosen the parameters are the same as in the "cpm" case except that a 3 sector or 
"optimized" sector interlace value is used: 

When "cpmOther" is chosen a parameter subwindow is created that allows integer values to be supplied 
for the following parameters used in reading the media; a) bytesPerSector 
b) tracksPerSide 
c) physicalSectorsPerTrack 
d) allocationSizelnBytes. 
e) In addition the sector Interlace value can be chosen from a menu to be either 1, 3 or 6 sectors. 

Source: 

The list of source filenames supplied for the next command to act upon. These filenames should be 
separated by blanks and should conform to either legal Mesa or CP/M filenames depending on the next 
particular command to be executed. 
Notes: 
1) For the Floppy - List! command, the only wildcard pattern - matching supported in Version 1.0 is either 
* or leaving the field blank. It is planned in future versions to support a general pattern directed 
Retrieve!, Store!, Floppy- Delete! or Floppy- List! commands. 
2) For the Retrieve!, Store!, Floppy- Delete! and Floppy- Rename! commands, the list of filenames 
supplied in this field should be separated with blanks. 
3) It should be noted that NO wildcard expansion is implemented in Version 1.0 for the filenames 
appearing in either Source: or Dest"n. 



Dest'n: 

The list of filenames for the destination of a transfer. If this field is left blank, then the 
destination file name is the same as the source. 

Notes: 

1) The entry in this field must conform to the file naming conventions of the destination of the 
transfer. Thus, when using the Retrieve! command, this field should contain a list of legal Mesa 
filenames, separated by blanks, and the Source field should contain the list of CP/M filenames desired 
to be retrieve. In the case of the Store! command just the opposite should be the case. 

2) It should be noted in the cases of the Retrieve!, Store!, and Floppy - Rename! commands their should 
be a one - to - one correspondence of filenames in the source and destination lists. If it becomes the 
case where this constraint is not satisfied then the last filename in the list is replicated in the 
case of either the Store! or Floppy - Rename! commands. 

For the Floppy - Rename! command this field should contain the list of NEW filenames corresponding as the 
Source field should contain the list of CP/M filenames to delete from the floppy. 

In the Floppy - Delete! command this field is unused as the Source field should contain the list of CP/M 
filenames to delete from the floppy. 

VerifyCPMFilenames: 

If this boolean is selected, indicating TRUE, then verify that the individual filenames appearing in 
the list of filenames appearing in either the Source or Dest'n fields for the Retrieve!, Store!, 
Floppy - Delete! or Floppy - Rename! commands satisfy the legal CP/M filenaming conventions. 

If this boolean is selected then on reading or writing the floppy the filenames supplied for the CP/M 
directory entries are checked to see whether they conform to what ·cp/M· considers a legal filename. 
In the default case this boolean is FALSE and any filename that does not exceed 11 ascii characters 
in length can be supplied. It should be noted that it will be the case that illegal filenames can be 
written to the floppy by this tool that cannot be retrieved by a CP/M system because the filenames 
appearing in the CP/M directory do not conform to the "standard". The standard allows most legal 7 
bit ascii characters with the exception of the following characters, ( * : ; ? < > & - % S #@ ! + = 
ADD MORE?????). 

**Ill. Commands 

1) Close Floppy! 

Writes the in - memory CP/M directory back to the floppy disk if necessary and closes the floppy volume. 

2) Floppy - Delete! 

Deletes the list of CP/M filename appearing on the source line from the floppy disk. Checks to see if 
each individual filename appearing in the list is a legal CP/M filename if VerifyCPMFilenames is 
selected 

3) Floppy - DeleteAll! 

Deletes all files from the floppy disk. Note: A red mouse click is required for confirmation of this 
command before it is executed. This is a powerful command so caution should be noted. 

4) Floppy - List! 

Lists the CP/M filename and size of the file in bytes of each file that appears in the CP/M directory. 
Note that in Version 1.0 NO pattern directed list is supported. 

5) Floppy- Rename! 

Rename the list of OLD CP/M filename(s) appearing in the Source field on the floppy and give each of 
them the NEW filenames listed on the Destn field. 

6) OpenFloppy! 

Reads the CP/M directory from the floppy disk into memory. Hence any directory modifications are 
performed on the in - memory version and are only reflected back to the floppy disk when the 
Closefloppy! command is invoked. This allows for faster execution of directory related commands by 
avoiding a large number of floppy drive access requests. It should be noted that if directory 
modifying commands were invoked and the directory is not rewritten back to the floppy then the 
previous contents of the directory should still be intact if major changes in the directory were not 
invoked. 



6) Retrieve! 

Retrieve the list of filename(s) appearing in the Source field from the floppy to the currect local 
directory giving them the corresponding Mesa filenames listed on the Destn field. If the Dest'n field 
is blank then the CP/M filename will be used in each case. 

7) Store! 

Store the list of Mesa filename(s) appearing in the Source field to the floppy giving them the 
corresponding CP/M filenames listed on the Destn field. If the Dest'n field is blank then the Mesa 
filename will be used in each case if possible. 

8) Storage! 

Print the number of allocated sectors out of the total number available on the floppy disk. Notice this 
gives the sector count and NOT the byte count of storage used. 

**IV. Implementation Details 

1) It should be mentioned that due to speed limitations of accessing single random sectors on the same 
track of the floppy drive via Pilot's FloppyChannel interface, a track sector cache was implemented to 
avoid the slow accessing times. It appears that the 8085 support of the floppy is unable to transfer 
multiple single sector requests for the same track without losing a revolution between each sector. 
The addition of the cache provided significant performance improvements over the single sector times 
and allowed read/writes from/to the floppy to be performed at track transfer rates. 

2) In the cases of cache invalidations or on closing the floppy volume. the track cache is flushed to 
the floppy to maintain consistency of the floppy disk data. 

3) In the interest of avoiding excessive floppy access times to update the CP/M directory, the 
directory is read into memory on the Open - Floppy! command and modified in memory during subsequent 
operations that modify the directory. The directory is flushed to the floppy disk if it was modified 
when the Close - Floppy! command is invoked. Hence the user should be warned that the Close - Floppy! 
command should be used after operations on the floppy are finished under the CPMFloppyTool. 

4) The "cpmOther" option of the Format parameter allows the user to specify the detailed constants used 
in reading the floppy disk. These include the sectorlnterlace value, bytesPerSector, sectorsPerTrack, 
etc. Hence the implementation is structured so that a wider variety of "home - brew" values can be 
accomodated. The only major limitation I see is noted as point 2 in section VI. on Future 
Enhancements below 

5) It should be noted that for the single - density single - sided (SDSS) CP/M floppy case. the CP/M 
directory is allocated the first two groups of the available groups on the floppy. The SDSS case has 
128 bytes/sector, 8 sectors/group or 1024 bytes/group. Each CP/M directory entry requires 32 bytes so 
the maximum number of entries is 64 is this case. 

The design of the CP/M filesystem is constrainted to have a maximum file size of: 
128 Extents*16 Groups*8 Sectors/Group*128 Bytes/Sector = > -2 MBytes. 

Since each extent requires a directory entry, the maximum usable storage in the SDSS case is: 

64 Extents*16 Groups*8 Sectors/Group*128 Bytes/Sector = > -1 MByte. 

**V. Future Enhancements. 

1) Pattern directed support on the following commands: Retrieve, Store, Delete, List. 
2) Allowing the sector interlace/interleave value fo be either supplied or designating a file 
containing the logical - to - physical sector mapping table constants to be used. 



- - CreateWindow.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

CreateWindow replaces the default MCRs for creating windows (EKecOpsSFileWindow and FileWindowSCreate) 
with a new one similar to Smalltalk's. 

If you hold down point and drag the mouse, it will display a box on the screen the size of the window 
it will create. It creates the window when you let up on point. It cancels the operation if you hit 
Adjust. If you click Point the behavior is the same as the current MCRs. All of this is specified in 
CreateWindow.TIP. If while holding down on point, you "back over· your original starting point, it 
will move the starting point (the same as Star's ·1asso· selection mechanism). 

- - File: CreateWindow. TIP 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

SELECT TRIGGER FROM 
Point Down AND Point Up BEFORE 200 = > COORDS, MakeDefaultWindow; 
Point Down = > COORDS, Startlasso; 
MOUSE WHILE Point Down = > COORDS, MoveLasso; 
Point Up = > COORDS, Finishlasso; 
Adjust Down = > Abort; 
ENDCASE ... 



- - Crypt.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilotlTajo 
Description: Crypt encrypts and/or decrypts files using the DES encryption scheme with cipher - block 
chaining. The encryption is implemented in software and is not particularly speedy: it takes 
approximately 1.6 ms per byte + .75 sec per file. 

How to Use Crypt: 

Tersely: Crypt.- <keystring> <fileName>(/mode) ([<newkey>/k] <fileName>(/mode]} 

where < keystring > is a password string; if it includes any separators (such as 
spaces), it should be enclosed in quotation marks. Case is significant. 

<fileName > is the name of the unencrypted member of the input/output file 
pair(" - er" will be appended for the name of the encrypted member); 

<mode> is either e or d, (for encrypt or decrypt). If unspecified, <mode> 
continues its last value (originally e). 

Brackets (] indicate optional items; braces {} indicate repetition. 

Example: 
>Crypt "Now is the time." clearfile 1 cipherfile 1/d "different strokes for differentfolks" /k 
cipherfile2 clearfile2/e 

Clearfile1 is encrypted with the key ·Now is the time.·. yielding the ciphertextfile clearfile1 -er. 
Cipherfile1 - er is decrypted with the same key, yielding the cleartext file cipherfile1. The key is 
changed to "different strokes for differentfolks" and the same process is repeated for clearfile2 and 
cipherfile2. 

Crypt registers itself as a command with the Executive. When invoked, it takes a password string, 
followed by a series of filenames, each with an optional mode flag appended; new passwords may be 
inserted in the sequence of filenames. The password is translated into an internal 64 - bit DES key (of 
which 8 bits are parity), and used to encrypt or decrypt files named thereafter. 

Crypt assumes that ciphertext files are named the same as their cleartext counterparts, with " - er" 
appended. It uses this scheme to create the output file for encryption and to find the input file for 
decryption: when asked to decrypt "foo," it looks for "foo - er" as a ciphertext source, and writes 
"foo." Its initial mode is to encrypt files; it maintains whatever mode it is in for succeeding 
files until told to change via the mode switch on a file name. 

CAUTION: Several implementations of the DES are floating around. To the extent they are correct, they 
will all produce the same output when presented with the same raw data, mode, and 64- bit key. However, 
the functions for converting from a password string to the 64 - bit key, and for initializing the 
cipher - block - chaining approach to encrypting streams are NOT equivalent. Files encrypted with Crypt 
will likely not be decipherable with other systems built on DES and vice versa, despite use of the 
same password string. 

Details of the Encryption: 

In the following discussion, bytes, words, etc. have their bits numbered from 1 at the high - order end. 
Crypt is a shell which handles communication with the Exec, file i/o, and driving the actual 
encryption routines contained in DESlmpl. 

The password string is converted into a key by stripping the high - order bit (bit 1) of each successive 
character, and then XORing the remaining bits (2 - 8) into successive 1 - bit slots in the key - buffer, 
treated circularly. (Thus, for the 10th character of the string, its bit 2 is deposited in bit 64 of 
the key, and its bits 3 - 8 are XORed with bits 2 - 7 of the first character, stored in bits 1 - 6 of the 
key.) After the password string is exhausted, bits 8, 16, ... , 64 of the key are clobbered so that 
each byte has odd parity; this imposition of parity is the only portion of the procedure which is 
covered by standard. Evidently, long passwords yield much more random keys. 

A file is encrypted by taking successive 64 - bit blocks, XORing them against a 64 - bit "scrambler" block, 
and then encrypting it under the key provided. The initial XOR eliminates regularities in cleartext. 
For all blocks but the first in the source, the "scrambler" block is the ciphertext of the preceding 
block (hence, Cipher - Block Chaining). For the first block, Crypt scrambles against the encryption 
key. (DESlmpl will accept any 64 - bit initial value for the chaining. This simplification is not very 
compromising, since on decryption, the unscrambler is available as the previous block's ciphertext.) 



- - DebugAssist.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

DebugAssist is an improved interface to CoPilot's interpreter. It makes the interpreter easier to use 
by making it easy to edit the strings passed to the interpreter. It also provides a better interface 
to certain commonly - used forms of LOOPHOLE. 

The DebugAssist tool is a form subwindow with seven items: 

Expr (string): This is the expression you want to interpret. This string may be modified before it is 
passed to the interpreter, subject to the values of other fields in the tool. 

Type (string): If this is non - NIL, the expression "LOOPHOLE [Expr, Type]" is constructed and passed to 
CoPilot's interpreter. 

deref (boolean): If this is TRUE, an up - arrow character ( T) is appended to the expression. 

Dolt! (command): Invoking this command invokes the interpreter with a string, constructed as described 
above. The same effect may be achieved by pressing the "DOIT" key (labelled "MARGINS" on the standard 
DLion keyboard) while the cursor is in the tool window. 

SIGNAL! (command): lnterpretthe "Expr" parameter as a SIGNAL (i.e. "LOOPHOLE [Expr, SIGNAL)"). The 
"Type" and "derer parameters are ignored. 

Another! (command): Create a new instance of the DebugAssist tool. The cursor will change to a picture 
of a mouse, asking you to click the red mouse button over the location of the desired new window, or 
the blue mouse button to cancel the command. Any number of instances may be created. 

Destroy! (command): Destroy this instance of the DebugAssist tool. If only one instance exists, it 
cannot be destroyed. 

Examples of use: 

Expr = "someVariableName·, type = (empty string). deref = FALSE 
=>interprets "someVariableName" 

Expr = "someVariableName", type = (empty string), deref = TRUE 
= > interprets "someVariableName T " 

Expr = "condition",type = "PSBSQueue",deref =FALSE 
= > interprets "LOOPHOLE[condition, PSBSQueue]" 

Expr = "212708", type = "SomelmplSHandle", deref = TRUE 
=>interprets "LOOPHOLE[21270B, SomelmplSHandle) T" 

Expr = "10178", "SIGNAL" command invoked 
=>interprets "LOOPHOLE[10178, SIGNAL)" 



- - Deflist.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Deflist.- takes a list of mesa modules containing DIRECTORY clauses and spits out a single list of the 
interfaces referenced by those modules. Interfaces residing on the local disk will not be included in 
the list. 



- - DeleteOldVersions.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The purpose of the DeleteOldVersions tool is to allow the user to easily delete all versions of a 
certain set of files, except for a specified number of the most recent versions. This is very similar 
to the "Delete" command.when chatting with an IFS, but it works for both IFS and NS servers. 

The tool has two subwindows: a Form SW and a LogSW. The LogSW is where the tool communicates to the 
user, and where the user types confirmation information. 

The Form SW has the following items: 

Host: String item name of host server 

Directory: Directory name for files to be deleted (Sorry - no patterns here for NS servers - that"s 
just the way NS servers work) 

Files: Pattern for names of files to be deleted. 

Keep: Number of most recent versions of each file to keep. (Note that this item may be changed during 
the running of the tool, so be careful) 

Confirm: Boolean item. When set, requests confirmation for each delete. See confirmation information 
below. (Note that this item may be changed during the running of the tool, so be careful) 

Connect, Password: Secondary credentials. 

Go!: Starts the deletion process. 

CONFIRMATION 

Commands are confirmed by typing (into the LogSW) one of three letters in response to a prompt - a 
filename followed by a question mark: 

A - abort (stop the tool) 
Y - yes (delete this file) 
N - no (don"t delete this file) 



- - DepressAndSpell.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

DepressAndSpell is a combina'tion of the Depress82 and SpellChecker programs. You can use this hack to 
spell check an interpress master from Star documents. The program will give you for each page in the 
interpress master of list of words it thinks is misspelled. This program needs SpellChecker.BitTable 
to run. 

lnterpress File: is the interpress file to be spell checked. This can be local 
or remote. 

Private Dictionary: is the name of your current private dictionary. The private 
dictionary is used to hold words that are not in the 
SpellChecker standard dictionary. You can have more than one 
private dictionary, to create a new one or to load an old one, 
put the name of the dictionary file (default is 
lnterpress.BitTable) in this field and hit ChangeDictionary! 

Spell! 

Add! 

Delete.! 

will start the spell checker 

allow you to add words in the current selection to the dictionary. 
The added words will be appended to a .dictTxt file. For example, 
if the current dictionary is lnterpress.BitTable, the text form 
of the added words will be in lnterpress.dictTxt. 

will delete the words in the current selection from the 
dictionary. It is advised to use this command with discretion 
since in may delete more entries than you anticipate. 

Change Dictionary! will cause the file in the Private Dictionary field to be 
loaded. 

Sort will cause the output be be sorted and remove any redundant words. 

Strip Plurals is a heuristic to reduce the number of erroneous matches by the 
spell checker. This will try a word that ends in "s" without the 
"s". It also tells the spell checker to ignore words with less 
than two characters. 

Starting page= is the first page of the interpress document, default = 1. 

MicasPerChar = is something from the Depress82 hacks, defaults to 222 



·• DFDelete.doc 

··Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Please refer to the document, "OF Software Reference Manual", in XDE Unsupported Software Oc.;-:•i 11i •• ;r1. 



•· C,>pyri:;:1t (l;i l ::;s4 by Xerox Corporation. All rights reserved. 

Please refer to the document, "OF Software Reference Manual", in XDE Unsupported Software Description. 



· · OF Substitute.doc 

··Copyright (C) 1984 by Xerox Corporatk 1. ,,;1 ri1hls rl:!served. 

Please refer to the document, "OF CcHwa~e fleferencC? Manual", in XDE lJnsupported Software D~scription. 



- - DirectoryMenu.doc 

- - Copyright (C) 1984 by Xerox Corporation. AU rights reserved. 

DirectoryMenu adds a menu to the root window the entries of which are the directories on the current • 
volume. Selecting an item on the menu causes the directory name to be inserted at the current type - in 
point. The program keeps track of directories being created and deleted, and inserts or removes the 
corresponding ·items from the menu as appropriate. 



·· DFTool.doc 

··Copyright (C) 1984 by Xerox Corporatio:i. All rig:1ts reserved. 

Please refer to the document, "OF Software Reference Manual", in XDE U., .;upporit:t ..).;;ft"' 'He Description. 



- - DirectoryMenu.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

DirectoryMenu adds a menu to the root window the entries of which are the directories on the current 
volume. Selecting an item on the menu causes the directory name to be inserted at the current type - in 
point. The program keeps track of directories being created and deleted, and inserts or removes the 
corresponding items from the menu as appropriate. 



XEROX 

DF Software Reference Manual 

Outline 

0. Introduction 
I Files 
2. An overview of DF files and their use 
3. User.cm 
4. BringOver 
5. Smodel 
6. VerifyDF 
7. DFDelete 
8. DFSubstitute 
9. DFDisk 
10. DFTool 
11. IncludeChecker and DF files 
12. Dealing with Problems 

Introduction 

This document is based on Eric Schmidt's DI' Filr>s Reference Manual. It describes how to 
use the Klamath versions of the IW software. A companion document, DF Release Tools 
RP{err~nce Manual, describes the programs that arc used by people who are responsible for 
doing software releases. 

Why should one use the DF software? 

The DI'' software helps the user keep track of files that you work on. These files may be 
program source and object files, or simple text files. Since il has lhe ability to describe the 
version and the location of files, the user needs to worr~· less about knowing were the Ii Jes 
are located and knowing which versions of the files to use. /\single DF file may describe 
all the required files in your program, thus you could simply use the name of the DF file to 
bring over all the file!; needed to work on a program from a remote file server to your local 
disk. After you modify and recompile some files, the DF program will store back only 
the files that were changc!d. This frees the user from remembering which files were 
changed. DF files may explicitly import and export files. in a manner similar to Mesa 



DI<' Software Reference Manual 

programs or C/Mesa configurations. This allows careful sharing of programs between 
implementors. Having a software system described by a DF file allows one to use tools for 
managing files, verifying program consistency, and allowing programs be a part of a major 
software release. The DF software frees the user from bothering with the time consuming, 
yet important details of tracking program versions and locations This manual introduces 
the user to the software and will also serve as a reference manual. 

What are the DF programs? 

The DF (Describe Files) programs comprise a general package for file management with 
explicit version control. These programs manipulate OF files, which are essentially lists of 
file names, fully qualified with remote location and create date. Each DF file typically 
corresponds to one software component. 

lncludeChecker 
helps to rebuild 

the packages 
Smodel 
the files 
that you 
have 
changed 

Personal .... Remote -Work file 
Station server 

""' ..... 

BringOver 
only the 
files that Verify the DF 

Of tool you need. file's 
handles other components. 

tasks 

WhatDF ro ramsdo. p g 

Of the DF programs, thm;c four arc the most heavily used: 

BringOver retrieves the files listed in a DF file from their remote file servers, 
possibly overwriting dif"fprenl versions alread.v on the local disk. It 



1 Files 

DF Software Reference Manual 

SM ode I 

Verify OF 

DFTool 

insures that all files for a component, and the correct versions of those 
files, are on the local disk. 

stores changed versions of files back on remote file servers and 
produces a new DF file containing references to the newest versions. 
Normally, the new OF file is also stored remotely for use by clients of 
the component. 

checks that a DF file is complete and consistent. That is, that all files 
needed to build the top-level object files of a component are listed in 
the DF file and are consistent in the Mesa compiler and binder sense. 

provides a window interface to the other OF programs. 

'I'he Klamath lncludeChecker can also check OF files and generate command files to 
rebuild their packag·es. These capabilities, which are not described in the Mesa User's 
Guide, are discussed in section 11. 

The DF files system was initially used by people running Mesa on shared Dorados, (a high 
performance personal computer) who wanted to guarantee they had the correct version of 
files they needed and as an easy way to save changed versions of file without unnecessary 
copying. It is now being used to partially automate the Klamath and Cedar release 
processes within Xerox 

The OF programs are on the Klamath archive directory: 
<A Pilot> 11.0 > DFFiles >Public> 

and 

The lncludeChecker is on the Klamath system test directory: 
<Alpha Mesa> 11.0 >. 

If you are not in Xerox SDD, please refer to the release directories specific to your 
organization. If you using an earlier Mesa release such as Sierra (Mesa 10.0), please refer 
to an earlier version of this document. 

2 An overview of OF files and their use 

The DF file for a software component usually has three parts: 

• A list of files exported by the component. These are interface or implementation files 
that arc needed by clients; for example, Space. bed and Compiler. bed. DF file 
Exports (and Imports, described below) arc analogous to Mesa module Exports (and 
imports). A DF file normally exports itself: this self-reference causes SModel to store 
the Df<' file on a remote server whenever it changes 

• The component's implementation: the list of files that comprise the component but are 
of interest only to implementors (e.g., implementation modules). 

:~ 



DF Software Reference Manual 

• The imported files needed to build the component (e.g., Environment. bed and 
String. bed for many programs). These are usually public interfaces exported by 
another component. 

2.1 An example D F file 

Probably the .easiest way to understand Di'' files is to consider an example. The following 
is a DF file for the Compare utility. 

-- Compare df Last edited by Joe on 8-Feb-83 13:36:58 

EKports I Igor I< Emerson> DF > ReleaseAs I Idun I <A Pilot> DF > 

Compare.df 22-Feb-83 13:59:40PST 

EKports I Igor]< Emerson >Comp.ue >Public> ReleaseAs Jldunl <APilot>Compare >Public> 

+Comparebcd'18 22-Feb-83 13:53:16PST 

Compare .symbols 17 22-Feb-83 13:53:18PST 

Directory I Igor I< Emerson >Compare> Private> ReleaseAs Jldunl <APilot>Compare >Private> 

Compare.cm!2 

Compare.conf1g 14 

CompareControl bed' 13 

CompareControl .mesa'9 

CompareDefs.bcd 16 

CompareDefs.mesa 14 

Comparelmpl.bcd! 13 

Comparelmpl.mesa' 10 

CompareW1ndow.bcd'3 

CompareWindow.mesa !2 

16-Nov-8210:16:29 PST 

16-Nov-82 10: 21 : 06 PST 

22-Feb-8313:50:09PST 

22-Feb-8313:49:53PST 

1 6-Nov-83 1 1 : 48: 21 PST 

16-Nov-83 10: 16: 4 7 PST 

18-Feb-83 14: 55 :08 PST 

18-Feb-83 14: 55 00 PST 

23-Dec-8313:52:41 PST 

23-Dec-83 13: 51: 53 PST 

Imports 1igor]<Emerson>DF>ComSoftPubl1c.df Of # 

Using JAsci1.bcd, Format bed, Heap bed. String.bed, Time bed I 

Imports llgor]<Emerson>DF>MesaPubl1c.df Of # 

Using !Environment.bed. lnl1ne bedl 

Imports llgorJ<Emerson>DF>FileSystemPubl1c.df Of II 

Using JMSegment.bcd, MStream bed I 

Imports llgorJ<Emerson>DF>PilotPubl1c df Of // 

Using !Process bed, Runtime bed, Stream bed. System bed, UserTerminal.bcdJ 

Imports I Igor!< Emerson> DF > Ta10Publ1cdf Of // 

Using !Exec.bed, FileName bed. File Transfer bed, Form SW bed, Put.bed, 

Tool.bed, ToolWindow bed, Userlnput bed, Version bed. Window bed! 

The files exported by the Compare package (including the DF file itself) are marked with 
the keyword Exports, other files that are part of' Compare arc marked with Directory, and 
imported files have the keyword Imports. The Helease/\s clauses are used to tell a progTam 



DF Software Reference Manual 

Importers of 
Compare.df: 

A.df 

B.df 

I C.df 

AD 

r·- -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·, 

I Compare.df 

Exports 

Compare bed and others 

Directory 

Compare.cm 

Compare conf1g 

and others 

Imports 

various wmponents e><ported by other 

DF's that 
Compare.df 
imports files 
from: 

ComSoftPublic.df 

I MesaPublic.df v FileSystemPublic df 

~1 PilotPublic.df 

DF files 

'----------------' .... ~---!Other OF files. 

·- - - - -·~·- -·- -·-·- - -·- -·-·----~ 

called the ReleaseTool where to store the files during a release. Only the lites that are part 
of the component <i.e. not Imports) have RcleascAs clauses. 

1 mported files, such as Exec. bed and MF ile. bed, are retrieved when the OF files is 
brought over. However, since the DF lite docs not "own" them, they will not be stored by 
SModcl. The Imports clauses in this DF lilc have explicit Using lists. If no Using list is 
given, all exported lilcs in the Import IW file are assumed. Having a Using list is 
generally a good idea, since it documents which film; arc needed and ~pceds up 
BringOver. Note that imported lilcs are gotten indirectly, by pointing· to another DF file 
!the one for the component that exports those files). An importer doesn't need to know 

5 



6 

DF Software Reference Manual 

anything about where the imported files are stored, or even their versions, since all that 
information is in the imported DF file. 

A file is specified by a full path name (remote host and directory), an optional file server 
version number, and an optional creation date. The create date is used to uniquely 
determine the correct version of the file, while the version number is used as a hint to 
reduce the time needed to locate that correct version. If the create date is omitted, the 
highest remote version is assumed. In most cases, however, the create date has been filled 
in by the DF program. 

An Extremely Important note: If you are storing your files on NS servers, please be 
sure to use the fully qualified names . For example, use: 
rTundra:OSBU North:Xeroxl instead of 
!Tundra: I. 
This is particularly important for files that are imported by other DF's, since the users 
may be dispersed across NS domains. 

There are two special "create dates":">" and"#". If the newer remote version of the file 
should al ways be brought over, ">" is used. The "#" specifies any remote version of the 
file that has a different create date than the version on the local disk. These two "create 
dates" support the loose binding of imports. If one imports I<'ileSystemPublic.df of">", 
Compare.df will always retrieve the MSegment.bcd and MStream.bcd described by the 
I<'ileSystemPublic.df most recently Smodel'ed by its implementor. In general, files that are 
part of a component (i.e. Exports and Directory files) have explicit create dates. 

We recommend the use of the "#"type of create dates for imports because it allows one to 
bringover old DF's for maintainance updates. If the ">" create date are used, you may 
accidentally use newer versions Of imports which happen to be on your local disk. 
I<'urthermore, the"#" create will also bringover the correct version of files under normal 
development. One typically imports files from a release directory which has an 
unambigious reference to a file, thus you would want the released version of the imported 
files, regardless of whether or not it is newer than the one on the local disk. The user 
should still consider the development practices in use and use the "right" mode. For 
example, you may not have an official release directory to import from, or perhaps you 
have some reason to avoid the use of older files. 

The + in front of Compare.bed indicates to the program Verify OF that it is a top-level 
object file. A top level file may be of two types. First, it may be a .bed or a .boot file. If so, 
VerifyDF will insure that all files needed to build Compare.bed are listed in the OF file 
and are of the correct version. Otherwise it may be a file that is not a part of a component, 
such as documentation files. This prevents the program from doing unnecessary analysis . 

Fine point: 

stHllP DF liles also have Ii lt?s markt'd with .. * ... Thi• * is ignored by all OF programs except for the 

l{t•lcaseTool; it indicates files that. must Ill' copied onto (somchost(<archiveDirectory> or 

(anothnhost(<systemTPstDirel'torv > atiera relt>ase. 

Blank lines in a DF file are ignored, and lines are treated as comments if they begin with 
"--"or tt/I". 



DF Software Reference Manual 

2.2 A typical development scenario using DF files 

DF files have little inherent structure or semantics. There is no requirement, for example, 
that the files they describe be consistent in the Mesa compiler sense (this allows DF files 
to be used to back up arbitrary files on personal workstations). However, DF files can 
provide considerable assistance for development if they are used in a stylized manner. 

To illustrate the use of DJ<' programs in program development, assume that you had to fix a 
problem with Compare. The steps you would take normally include the following: 

1. BringOver Compare.df. This insures that all files needed to build Compare, including 
imported files, are on the local disk in the correct version. BringOver will check to 
insure that you are using the most recent version ofCompare.df. 

2. Modify and test Compare. Since a DF file is just a text file with a fairly simple format, 
it can be edited whenever it is necessary, for example, to add new a module. Also, to 
assist in rebuilding its component, Compare.df, like many OF files, points to a 
command file (Compare.cm) that can he used to build the component from scratch; text 
can be selected from this command file and stuffed into the executive. It is also 
possible to run the lncludeChecker on a DF file to generate a command file for its 
reconstruction. 

3. SModcl Compare.df. This stores hack changed files and updates Compare.df to reflect 
the new versions. In general, you do not have to think about what files have changed, 
you can just SModel the component. 

4. VerifyDF Compare.df. This verifies that Compare is complete and consistent. At this 
point, you can let users know about the new version of Compare. 

2.3 Releases and the use of file server directories 

In using the DF software, three directories arc of special importance. These are the 
working,integration, and archive directories. 

Each group of software developers has a separate working directory that holds the latest 
versions of their software. For example, this directory is [Rasp:OSBU 
North: Xerox I< Emerson> for the Mesa group. The Directory and Exports clauses in the 
group's DF files point to the working directory, and that directory is the source and target 
of most BringOver and SModel runs. I·:xperience has shown that it is useful to set aside a 
subdirectory of the working directory, e.g. I Rasp:OSBU North: Xerox I< f<~merson >DJ<'>, 
as the location for the group's "working" DF files. This simplifies finding DF files and 
allows BringOver (when the Def aul tDFLoc: entry of the User. cm is set) to insure that 
only the most recent versions of' DF filC's arc used. 

The integration directory is ..;harf'd h.v development groups. /\. component is stored onto 
the integration directory wlw11 it has hecn tested and verified (using VerifyDFl, and its 
developers believe that it is ready for use by other groups. Components are stored onto the 
integration directory by using SMoclel's prerelcase mode. The integration directory is used 
to communicate software bet ween groups. /\. development group should only obtain 
!Import) software from another ~roup that has been stored onto the integration directory; 

7 



8 

DF Software Reference Manual 

~---------------------------~ I 

• components • 
I I 

optional 1
----+ Checkout ! 

'--~~~--' I I 

~-------------~------------~ 

Bring Over 
component 

Edit 

Compile 

Test 

SModel 
component 

Verify OF 
component 

Typical development cycle. 

it should never use sofl\vare or DF files from the private working directory of another 
group. The integration directory for the Mesa group and all of System Software, for 
example, is [ldunl<lnt> The integration directory also serves as a staging area for a 
release. 

/\. :elease is a set of compatible software components that have been saved in a safe 
location. The ReleascTool verilics that a set of DFfilcs is glohally consistent and complete, 
copies the files to the release directory, and generates new DF files that describe the 
release. The new DF lilcs art' fully bound: all Imports (and Includes, which are discussed 
in section 2.7) are spPcified with explicit create dates (there arc no > or #'s). Only the 



DF Softwar·e Reference Manual 

ReleaseTool stores files onto the release directory. The release directory is named by 
ReleaseAs clauses in each DF file. For example, the release directory for Klamath is 
[Idun I< A Pilot>. Other directories may follow as required by the user organization as 
shown in the diagram below. 

Fine points: 

It is possiblP to overridP thP rdease location with the ReleaseTool. 

The new DF filt>s gprwra\P(I hy thP ReleaseTool also havt> Camef.'mm clat1Rt>s in plal'e of thP original 

Release As clauses. A Ca111PFrn111 clause for a file documents the location on the prerelease directory from 

which the file was rnpil'd. For pxample, the ReleaseTool will change 

Exports I Idun I< Int >Com p1ler >Public> ReleaseAs I Idun! <AP1lot >Compiler> Public> 

Compiler bed 12 7 29-Feb-83 11: 16: 37 PST 

to lw 

Exports I Idun I< AP1lot>Compiler > PubllC> CameFrom [Idun] <lnt>Compiler >Public> 

Compiler.bed' 1 29-Feb-8311: 16:37PST 

2.4 Creating a new DF tile from scratch 

The easiest way to generate a OF file for a component is to do the following: 

1. Get all of the component's files onto the local disk. Make sure that the local versions 
are the same as those on the remote file server (to keep from confusing yourself or the 
DF software). 

2. Compose a skeleton OF file for the package that lists its files under the appropriate 
Directory and Exports lines. It is not necessary to fill in create dates since this will be 
done by SModel in step 3. Make sure that the remote locations and ReleaseAs 
locations are correct. Add any Imports that you can think of. 

3. Run SModel on the skeleton DF file with the /n (don't store files remotely) switch. This 
will rewrite the DF file with the create dates filled in (and will not store any files). 

4. Use VerifyDF to check the DF file. It will report any missing files, or files that have 
the wrong versions. Correct the DF file as necessary and repeat this step. The Find 
utility is often useful for locating the DF file that describes a needed import. The Find 
utility may be used to search over a number of OF files for the one that contains the 
files that you need. For example: 
>find System.bcdlllosti<Directory>DF>*.df 
will search over l he DF files in the specified directory for the one that contains 
System.bed. Ignore the IW files that Imports System.bed, and look for the one that 
Exports it. The Exporting DF file would contain the create date, while the Importers 
would include System. lied in the Using list. 

fine point: Ir you arP 11npo1·ting a lih• that is a part ofa software re leas!' managed b.v DF software, you may 

bP ah IP to USP a uti I ity ca ll<>d DFPtch. Th is program is sti II not part of' the gpneral release. This program will 

query a datahas1· usi 11g a Ii IP mtrnl' as a key and wi 11 return thP nanw of' the DF file that con ta ins it. 

9 



10 

DF Software Reference Manual 

via 

Smodel !·················· 

Smodel in 
prerelease 

mode 

Local disk 

Working directory 

Integration directory 

j ReleaseTool j .................................... . 

Archive directory 

Brownie '·······································• 

System Test directory 

Brownie j ....... ······························• 

~~ 

Release directory 

via 

.............. 1 BringOver 

BringOver in 
prerelease 

mode 

ile server irectories. 

5. When VerifyDF no longer complains, run SModel to store the OF file itself and the 
files it describes remotely Since you are running Smodel for the first time, use the /v 
switch to make the program verify that your files exist in the destination and store it 
there as necessary. 

2.5 DI<' files and libjects 

If more than one person is responsible for a software component, it is important to prevent 
simultaneous modification of both the individual files of the component and its OF file. 
This is because the DF file points to specific versions of the component's files. To deal with 



DF Software Reference Manual 

this problem, each OF file should have a program librarian libject. There are libjects for 
each Klamath OF file maintained by the Mesa group. 

When a component is to be worked on, its 01'' file is first checked out, typically using the 
"Access" program. After the component has been changed and tested, it is SModel'ed, 
which will check in the libject for each changed file, including the OF file itself. If another 
person attempts to work on the package at the same time, he will be unable to since the 
libjcct is already checked out. Typically, one checks out a libject for only the OF file. 

If this methodology appears to be too restrictive for some large component, there are two 
possibilities: 1) break up the component into smaller pieces, each with its own OF file and 
libject, or 2) adopt a more complicated checkout and checkin scheme. The Mesa group's 
experience has shown that it is much simpler and less error prone to break up the DF file. 
If the component shouldn't be broken up, and it is necessary for morP than one person lo be 
modifying (different portions of) it at the same time, the following methodology can be 
followed by each maintainer: 

1. BringOver the component's DF file. Do not check out the OF file at this time. Do check 
out lihjects for component files that you will be changing. 

2. After modifying and testing the component, but just before SModeling it, check out the 
DF file. Successfully checking out the OF file means that you currently have the right 
to change the description of the "truth" on the shared remote directory (i.e. the OF 
file). 

3. Now BringOver the OF file and its components again. This will use the most recent 
DF file, which might be newer than the one you originally brought over (if other 
people were modifying the component simultaneously) RringOver might retrieve 
newer versions of files that othPrs changed. lfso, rebuild and retest your version of the 
component. You do not have to run HringOver again since you "hold the lock" on 
storing new versions of the component's files 

4. SModcl the DF file to store your changed files and the new DF file, and to release your 
"lock" on SModeling the OF file. 

2.6 Use of IFSs and NS file servers 

The DI<' software is able to retrieve and store files on both NS file servers and the PUP­
based lFSs. To use a product file server, simply give its fully qualified clearinghouse 
name. For example, 

Imports IRdsp:OSBU North:Xeroxl<WComm >DF>RS232CPublrc.df Of > 

Using I RS2 32CIO bed I 

2.7 Included DF files 

Although a component is usually described by a single Df<' file, there are a few particularly 
large or complicated components that are rpore easily described by a set of OF files. An 
example is the Pilot kernel, which has so many files that it is convenient to have separate 
OF files for each major subconfiguration and for the public-, friends-, and private-level 
interfaces. Such a collection of DF' files must have a "root" DF file that (directly or 
indircctlvl irwludr•s lfw olhl'r:-. This is done with the Includes construct, which resembles 

11 



DI<' Software Reference Manual 

the Imports clause described above. For example, a fragment of the root OF file for the 
Pilot kernel, Pilot.df, is: 

--Pilot.df Last edited by Jim my on 3-Jan-83 21: 25: 59 

Exports !Igor]< Emerson> OF> 

Pilot.df 

ReleaseAs [ldunJ<APtlot>DF > 

3-Jan-8321: 27: 32 PST 

-- Pilot kernel defs 

Includes Jldunl < P > DF >PilotFriends.df Of > 

Includes !Idun!< P >OF >P1lotPrivate.df Of > 

lncludesJldunl<P>DF>PtlotPubl1c.df Of > 

-- Pilot kernel subconf1gurat1ons 

Includes Jidunl<P>DF >Cont1ul df Of > 

lncludesJldunJ<P>DF>F1leMgr.df Of> 

Includes Jldunl<P>DF>F1ler df Of > 

Includes Jtdunl<P>DF>Swapper df Of > 

ReleaseAs JldunJ<AP1lot>DF> 

ReleaseAs [Idun I< A Pilot> DF > 

ReleaseAs J Idun 1 < AP1lot > DF > 

ReleaseAs [ldun]<APtlot>DF > 

ReleaseAs lidun]<APtlot >DF > 

ReleaseAs [Idun] <APtlot > DF > 

ReleaseAs [ldun]<AP1lot>DF > 

Includes is treated as macro substitution: the effect is to replace the Includes clause with 
the entire contents of the included OF file. Whenever one of the OF programs such as 
BringOver is run on the root DF file, it is applied recursively to the included OF files 

Note: There is a significant difference between Includes and Imports. The Imports clause 
is used when files are needed, but they are "owned" by another DF file. Although imported 
files are retrieved by BringOver, the DF programs do not otherwise recur on imported OF 
files. SModel, for example, will recursively store included OF files but not imported OF 
files. 

2.8 Read Only files 

If your component depends upon some files in a remote directory, but those files are not 
"owned" (described by) a OF file, you can't just Import them. However, you can document 
your component's dependence on those files, and have BringOver retrieve them when your 
DF file is brought over, by listing the files in your DF file and marking their directory 
ReadOnly. One needs this when you are importing components from implementors who 
are not using OF files. This practice should he discontinued once the implementors use 
OF files. 

Here is an example, 

ReadOnly Directory Jlnsl<Sm1th>BTree> 

BTree.bcd 

BTree.mesa 

BTreelmpl .bed 

BTreelmpl mesa 

12-Jan-8310:17:22 PST 

9-Jan-83 21 :27:32 PST 

17-Jan-8315:56:19PST 

10-Jan-8311:25:49PST 

(The keyword Directory after ReadOnly is optional). Readonly files are never stored by 
SModel. Since they arc not owned by your OF Lile, they do not have a RelcaseAs clause to 
indicate where they arc to be stored on a release. 

3 User.cm 

12 



DF Software Reference Manual 

The DF software User.cm section is called [DFTool]. The following is a list of the 
User. cm fields used by the DF programs: 

WorkingDFLoc: 

IntegrationLoc: 

CheckLibrarian: 

LocalDFDir: 

the remote working directory, e.g. 
[Rasp:OSBU North:Xeroxl<Emerson> DF>, 
that holds your group's "working" DF files. It is used by 
BringOver when you retrieve a component. If the 
component's DF file is not local, BringOver will retrieve it 
from the WorkingDFLoc: Ifthe DF file is on the local disk, 
BringOver will check that it is at least as new as the version 
on the Work ingDFLoc:. By default, the Work ingDFLoc: 1s 
empty, and BringOver does no checking 

your group's prerelease location, e.g. lldunl<lnt>. By 
default, this entry is empty, and BringOver and SModel 
prerelease mode cannot be used 

if TRUE, SModel will check, before storing each file, if it has 
a libject. If it doesn't, SModel simply stores the file. If it does 
have a libject, there are three possibilities: 1) If the file 
wasn't checked out, SModel won't store it. 2) If it was 
checked out, but not by you, SModel won't store it. 3) If it 
was checked out by you, SModel checks it back in and stores 
the file. Also, if CheckLibrarian: is TRUE, SModel's 
prerelease mode will warn you if any of the files that you are 
submitting to a release (storing onto the prerelease 
directory) have libjects checked out. The default value for 
CheckLibrarian: is FALSE. 

the directory on your local disk, e.g. < > DF >, to which 
BringOver and Verify OF will retrieve new DF files. Setting 
this entry helps to prevent DF files from being scattered all 
over your disk. The local DF directory should always be on 
your search path, since the DF software always looks files 
up (anywhere) on the search path. The default for 
LocalDFDir: is empty, and DF files are retrieved to the 
directory on the front of the search path. 

fi1w point: Thi• DF programs dwek that the LtwalDFDir and Loca!Dir !set' DFTooll are on the search path and a 

warning is given iftht>y are not. For example, if they are not given in the search path, the wrong DF file may be 

used for a Bring(ht'r. 

4 BringOver 

BringOver runs in the Executive and takes commands from the command line. ln the 
simplest case, to retrieve a DF file and its components, just type 

> Br1ngOver I Host I< Directory> DF > DFf1le 



14 

UI<' Software Reference Manual 

BringOver works as follows: It reads the OF file one line at a time. It takes the remote file 
name listed in that line, strips off the directory information and looks to see if it is on the 
local disk. One of three things can happen: 

• If the file is not on the local disk, BringOver will offer to retrieve it. 

• Ir the file is on the local disk, BringOver looks at the version on the local disk. If the 
create date listed in the OF file differs from the create date of the local file, BringOver 
will try to retrieve the remote version. If this would retrieve an older version of the file 
over a newer version, BringOver will first ask for confirmation. This helps to support a 
"newer is usually better" file management methodology. 

• If the create date is omitted from the OF file, BringOver will always try to retrieve the 
file. Again, if this would retrieve an older version of the file over a newer version, 
BringOver first asks for confirmation. 

If you omit the file server version number (e.g. "!3"), BringOver will enumerate all the 
versions of that particular file looking for one with the correct create time. If there are no 
versions of the file you list in the DF file on the remote host in the directory you specify, 
BringOver will give you a warning message. If there are files with the same name and 
none of the create dates available match that listed in the DF file, BringOver will give you 
a warning and offer to retrieve the latest version. 

After running BringOver you can be sure the files listed in the DF file are on your local 
disk, and that their create dates agree with the create dates listed in the DI<' file, or 
BringOver will have printed out error messages. 

Normally BringOver will list each file to be retrieved and will ask for confirmation. (You 
may reply "y" or CR to confirm, "n" to skip retrieval of this file, "q" to stop Bring·Over 
altogether, and "a" to retrieve this file and subsequent files as if"y" were typed each time.) 
The /a switch can be given on BringOver's command line to suppress (most) requests for 
confirmation: 

>BringOver /a !Host!< Directory> DF > DFf1le 

If you use the /a switch or reply "a", and an older version of a file would be retrieved over a 
newer one, BringOver will always stop and ask for explicit confirmation. 

RringOver can read a local DF file as easily as a remote one: 

>BringOver Compare.df 

You will use a local copy of the DF file when you have done previous BringOver's and 
Smodel's lfso, you will have a local copy of the DI<' file that is identical to the remote one. 
That is because Smodel will modify the DF file and store it remotely, leaving a copy on 
your local disk 

As files arc brought over, a property (called the RemoteNamP property) is added to their 
leader page recording of the retrieved file so that the Mesa Development Environment 
knows where the file came from. (FTP and the FileTool also set this property.) These 
remote locations can be printed out by the OF Disk program (described below in Section 9). 



DF Software Reference Manual 

If the create date entry is a > rather than a normal date, BringOver will retrieve the file 
only if the version on the remote server is newer than the version on the local disk. If the 
file is not on the local disk, it will be retrieved. As an example, 

BTree.mesa > 

will retrieve BTree.mesa from the remote server only if there is a newer version on the 
server or no local copies exist. 

Similarly, if the create date entry is a #, BringOver will retrieve the file only if the 
highest version on the remote server is different than the version on the local disk. If the 
file is not on the local disk, it will be retrieved. For example, 

BTree mesa II 

An Includes clause, e.g. 

Include !host]< path >Component.df Of <date> 

will cause BringOver to invoke itself on Component.df at the point it encounters the 
Include statement. If the included file itself has an Include statement, BringOver will 
again invoke itself on the inner OF file, and so on, in a recursive fashion. Furthermore, the 
OF file itself is retrieved using the usual BringOver rules before the recursive call. 

An Imports statement 

Imports !host!< path> Package.df Of <date> 

will cause BringOver to 1) retrieve Package.df to the local disk if necessary and 2) 

examine all exported files in Package.df and retrieve them if necessary. Of course 
Package.df may have Include or Imports statements, so this is a recursive algorithm. 

Appending a Using clause to the Imports statement, analogous to the Mesa language 
construct, gives the user explicit control over the files to be retrieved. The Using list may 
be used to obtain files that are under both gxports and Directory headings; That is, files 
can be obtained with the Using clause whether they are exported or not. Although use of 
the Using clause is not required, it is strongly recommended. 

Imports !host]< path> Package df Of <date> 

Using !list of files, separated by commas! 

Examples of Imports: 

lmportsilgorl<Emerson>DF>TaJoFriendsdf Of> 

lmpnrtsildunl<APilot>DF>CoPilotdf Of 24-Feb-8311 14:26PDT 

Using ICPSwapDefs.Bcd, CPSwap2.BcdJ 

The files referred to by an Imports statement may themselves be exported by preceding 
the keyword Imports by Exports. This is useful when users of your package need to have 
files from some other package in order to, for example, compile their system. 



DI<~ Software Reference Manual 

4.1 BringOver modes 

There are three special modes in which you can run BringOver. 

4.1. l BringOver only specified files mode 

The switch /o will instruct HringOver to retrieve only the files listed on the command line 
after the /o. The DF file to be used is given last. This mode is often used when you are not 
working on a package, but you simply need some files that are described by its OF file. For 
example, 

>BringOver lo MFile.bcd MStream .bed MSegment.bcd FileSystemPubl1cdf 

will examine and potentially retrieve only MF i le. bed, MS t ream. bed and 
MSegmen t. bed in FileSystemPublic.df. 

4.1.2 BringOver "verify files exist" mode 

The switch /v will cause BringOver to run in uerify files exist mode, where il will check 
that the files listed in the DF file actually exist on the remote servers or the local disk. No 
files are retrieved in this mode. BringOver will inform the user if newer versions were 
found, and if so will write a new DF file listing the newer versions. Also, if any files were 
listed in the DF file without their file server version numbers (e.g. !5), BringOver will 
write a new DF file with those version numbers filled in. This mode is often used to "flesh 
out" a skeleton DF file with the correct create dates and file server version numbers. If the 
file is listed correctly and a local copy exists, BringOver will add the RcmoteName 
property to its leader page. Note for large DF files the verify option takes a few minutes. 

4.1.:J BringOver prerelease mode 

BringOver's prerelease mode is useful for fixing an old version of a package that was 
submitted to a release. This mode is entered with the lz switch. It brings over the DF file 
for the package that is on the remote integration directory (named by the 
IntegrationLoe: entry in User.cm). Since this might overwrite newer versions on the 
local disk, BringOver asks for confirmation before doing any retrievals. 

4.2 BringOver's command line 

In general, the command line for BringOver has the form 

>BringOver li<global switches> I DFfiledi<local switches> I DFfilenll<local switches> I 

The optional global switches control the retrieval of the following DF files. You can also 
set global switches by giving an empty DF file name. 

BringOver's "only file" mode (/o) has a slightly different format· the files to be retrieved 
are listed after the g-lobal switch /o, and the DF file to be used is named last. 

BringOver also recognizes commands, localDir/c, localDFDir/c, WorkingDFLoc/c, and 
lntegrationloc/c that specif~· subdirectories for file retrieval and storage. 



DF Software Reference Manual 

The command localDir/c gives the directory for looking up and retrieving files. For 
example, the command line 

> BringOver localD1r/c < > MyPackage > MyPackage.df 

will retrieve My Package's files to the directory <>My Package> on the system volume. 

The command localDFDir/c names the directory to which OF files themselves (not their 
contained files) should be retrieved. It overrides any LocalDFDir: entry in User.cm. If 
both localDFDir/c and localDir/c are specified, the local DF directory is used for DF files: all 
other files use the localDir/c directory. For those rare occasions when you don't want a 
package's DF files to go to the User.cm-specified local DF directory !e g. if you're fixing an 
old version of a package, perhaps one submitted to a release), you can use the localDFDir/c 
command to force the DF files lo go to another directory. For example: 

>BnngOver localD1ric <>Old> localDFD1rlc <>Old> lldunJ<lnt>Stuffdf 

The command WorkingDFLoc /c and lntegrationloc/c overrides any WorkingDFLoc: and 
IntegrationLoc: entry int.: ser.cm. For example: 

>BringOver WorkingDFLoc!c JldunJ<P> lntegrat1onloc/c lldunl<lnt> MyStuff.dflz 

It helps developers that have more than one working directory; e.g. those doing both 
microcode and Pilot development. 

4.2.1 BringOver switches 

A switch specification is a letter identifying the switch, optionally preceded by a'-' or'-' to 
reverse the sense of that switch. 

fine roint: If you are using TTYTajo. rlease use the'.' rather than the·-·. 

The valid switches are: 

a glways retrieve without confirmation (unless an existing local file is newer) 
b getjust "Q.cd" (derived) files: .bed, .symbols, .boot, .signals, .press files 
f force retrieval of all files, disregarding any newer local files. 
o get Qnly specified files: e.g. BringOver lo Exec.bed Put.bed Tajo.df 
p get just .12ublic (exported) files 
r get just readonly files: Imported (and ReadOnlyl files 
s get just "§ource" files (inverse of lb) 
u only !!Pdate existing local files (never get new files) 
v yerify files exist in the right place and version, and fill in DF dates 
w get just "~ritable" <Exports or Directory) files <inverse of /r) 
x rename ".bed" to ".archiveBcd" if an archive Bed already exists 
z prerelease mode 
< suppress confirmation request if an older remote version is retrieved 

The default setting for all switches is off. You can also change the default setting of any 
switch by using a global switch. t\ny switch given with no file name !i.e., just a slash and 

17 



DI<' Software Reference Manual 

switches) establishes the default setting for that switch. Unless overridden or reset, that 
default applies to all subsequent commands. 

4.3 BringOver limitations 

Each DF file read by BringOver must contain no more then 450 files. This applies to each 
Imported and Included DF file as well. 

5 SModel 

18 

SModel (the name stands for "Simple Modeller") is used to store back new versions of files 
you've changed since the last time you ran BringOver on a DF file. For example, if you are 
working on the Compare program and you've already run BringOver on Compare.df, then 

> SModel Compare.df 

does the following: The files listed in Compare.df are checked on the local disk. If any have 
different create dates SModel will offer to store them on the remote servers specified in 
Compare.df. SModel then produces a new Compare.df file with the new create dates and 
remote file system version numbers (e.g. !4). The old DF file is saved by copying it to a"$" 
file, e.g. Compare.df$. Files listed under an "Imports" or a "Readonly" clause will be 
ignored. 

If a file on the local disk is listed without any ~reate date in the DF file, SModel will fill in 
the create date from the version on the local disk and then offer to store the file remotely. 
If the file listed in the IW file is followed by a > or #, it is ignored and will not be 
transferred. 

If the DF file contains a reference to itself(e.g. Compare.df lists Compare.dO, SModel will 
also store a new version of the DF file on the remote server. Since SModel has to write out 
a new DF file before it can store the DF file, SModel cannot put the file server version 
number (e.g. !5) on the DF file self-reference. However, BringOver will always get the 
correct version of the DF file since it will use the create date of the DF file instead. 

Before storing a file, SModel first checks to see if that file is already on the remote 
directory (as the highest version); if so, it won't actually store the file. Also, if storing· a file 
would write a version with a create date that is older than that of the current highest 
version, SModel will always ask for confirmation. This helps to support the "newer is 
usually better" methodology. 

If the CheckLibrar ian: entry in the User.cm is TRUE, then before storing a file, SModel 
will check if the file has a program librarian libject. If so, SModel won't store the file if it 
wasn't checked out, or if it wasn't checked out by you. (The old create date is left in the OF 
file, so that in most cases, you can simply check out the file I without retrieving the source I 
and rerun SModel.) One must be careful when doing this since someone else may have 
checked out the OF file and Smodel'ed already. 

SModel invokes itself recursively on Included DF files. It does not invoke ibmlf on 
Imported or ReadOnly DF files. If the Includes or Imports statement is not followed by an 
"Of <date>" clause, SModel will insert such a clause in the new DF file with <date> 
replaced by the create date oft.he file on the local disk. 

5.1 SModel modes 



DI<' Software Reference Manual 

There are three special modes in which you can run SModel. 

5.1.1 SModel "verify files are remote" mode 

New DF software users are often confused about the relationship of the entries in a DF file 
to the local and remote directories, and what SModel will do in certain cases. The easiest 
way to understand it is that SModel assumes 1) that the DF file was an accurate 
description of the remote directory at some point in the past, and 2) files with different 
create dates that it finds on the local disk are the "truth" and should be transferred. This 
is one of the most important things to know. If you are having trouble with your 
DF files, always remember that the DF file describes the state of a remote 
directory. However, assumption 1) allows SModel to assume that files with the same 
create date in the DF file and on the local disk also exist on the remote server. For this 
reason, and because remote enumerations are relatively slow, SModcl docs not check the 
remote server to see if in fact the files described by a OF file arc actually there (unless it 
has already decided to store a file). So, SModel may not detect that certain files listed in a 
DF file are not present on a remote server, unless you use a special switch described below. 

A common mistake is to assume that if you run SModel on a OF file successfully, and then 
simply change a Directory in the DF file, then all the files will be copied !again) to the new 
directory. This is wrong! After SModel has been run the first time, the create dates in the 
DF file are the same as those on the local disk. Since SModel just checks the create dates in 
the DF file against the local files, the second SModel invocation will not detect that any 
files need be transferred even though the Directory was changed. 

To resolve these problems, SModel has a verify files are remote mode which is entered with 
the /v switch. In this mode, SModel not only applies the algorithm described above to store 
files, but if it decides a file doesn't need to be stored, it will look on the remote file server 
and check that in fact the file does not need to be stored. If the file is not on the remote 
directory, or the version listed in the OF file is not on the remote directory, then SModel 
will offer to store the file. In this way SModel /v will try to force the remote directory to 
agree with the OF file. 

For example, the following will insure that all files listed in Compare.df are actually on 
the remote servers: 

>SModel Compare.df/v 

5.1.2 SModel "don't store files" mode 

The /n switch has Sl\!lodel do everything it normally does, except for storing Ii les. The DF 
file is rewritten if there are diffc:rent versions of fileH on the local disk, but those files, and 
the OF file itself, arc not stored. This mode is ui-;eful for "fleshing out" a DF file with the 
versions of files that are on the local disk. This is a dangerous thing to do. The DF file 
itself simply describes the version and locations of the files listed. If you use the 
"don't store files" mode, the Uf file will he changed to include the create dates of 
the files on your local disk. Subsequent uses of the DF file will look for those files 
on the remote server, hut they will not exist . Make sure you Smodel again using 
the "verify files are remote" mode to actually store the files remotely. 

5.1.:l SModel prerelease mode 

I ~ J 



DF Software Reference Manual 

In this mode, SModel stores a component on your prerelease directory (which is named by 
the IntegrationLoc: entry in User.cm). The actual remote directory for each file is 
gotten by concatenating the In teg rat ionLoc: directory with the ReleaseAs subdirectory 
for the file (Although this sounds strange, that is the correct location. The Exports or 
Directory subdirectory, for example, might point off to a temporary or personal directory.) 

For example: the Integration directory of: [Idun)< Int> and the Release As directory of 
[ldunl<APilot>MyProg>Public will yield: (ldunl<lnt>MyProg>Public. 

SModel recurs on Included DF files and stores them out as well. Imports clauses arc 
changed to point to the prcrelcase directory and SModcl checks that the imported DF files 
already exist there. If the U scr.cm entry CheckLibrar ian: is TRUE, SModel also checks to 
see if each file has a lib.iect that is checked out: if so, it gives a warning. 

5.2 SModel's command line 

The SModcl command line has the form 

>SModel (!<global switches> I 0Ffile 11t<local switches> I .. DFfilenll<local switches> I 

Global switches are optional and control the store of subsequent OF files. You can also set 
global switches by giving an empty OF file name. 

The subcommands WorkingDFLoc/c and lntegrationloc/c work identically to the same 
commands in BringOver. 

Secondary connect credentials can be given on the command line; e.g. 

>SModel Connie Dir Passwd MyComponent.dflz 

5.2.1 SModel switches 

· A switch specification is a letter, optionally preceded by a '-'or'-' to reverse the sense of 
that switch. The switches recognized by SModel are: 

a store glways: without confirmation 
f flip Came From clause to be ReleaseAs (default) 
1 check with program librarian (default) It overrides User.cm 
n do not store files remotely 
r ignore J.!eadOnly or Imports designation and store files if different versions 
t process only top (outermost) DF file, not Included DF files 
v yerify that files are really on the remote server and store if necessary 
z prercleasc mode 

The default setting for the /f and II switches is on; all other switches are off. You can 
change the default setting of any switch by using a global switch. Any switch given with 
no file name <i.e., just a slash and switches) establishes the default setting for that switch. 
Unless overridden, that default applies to following commands. 

Fine point: When the /f (Oip Came~'rom) switch is on, SModcl will convert a Came From 
clause back to a ReleascAs clause. This makes it easier to use a DF file that was generat~d 



DF Software Reference Manual 

by the ReleaseTool as a starting point for a new "working" DF file after a release. This 
switch generally has only a minor effect on the use of DF files. 

5.2 SModel limitations 

Each DF file processed by SModel must contain no more then 450 files. This applies to 
each Included Df<' file as well. This number may change. Contact the implementors if there 
is a question. 

6 Verify OF 

Verify OF attempts to answer the question: Does this DF file havl' c:ntries for all the files I 
need to rebuild my program, and are these files consistent? VerifyDF scans a DF file 
looking for "end result" bed and boot files. These are the files marked with a "+" before 
their names (a DF file can have more than one "end result"). VerifyDF will analyze each 
of these files to determine what files were needed to build it and will compare the needed 
files against entries in the DI'' file. If a needed file is not in the DF file, Verify OF will give 
an error message. Also, Verify DF will give an error message if a needed file is listed in a 
different version. 

After checking the "end result" files, VerifyDF recursively analyzes the files they need. 
This process continues until all files in the closure of dependencies, except for imported 
(and missing) files, have been analyzed. 

For example, to verify Compare.df, type 

> VerifyDF Compare.df 

Any files that are missing from the DF file are listed with the create dates and remote 
location (gotten from the RemoteName leader page property) of files on the local disk. This 
can help, for example, to identify DF files from which some of those files should be 
imported. VerifyDF also prints out files listed in the DF file that appear to be unnecessary. 
These might include such files as command files and signals listings, but they might also 
include imports that are no longer necessary. If those files are actually necessary, such as 
the command files, you can suppress these warnings by marking these files with a'+'. for 
example: 

Directory (MyHostJ < MyD1r >Private ReleaseAs JRelesaseHostJ <Rel Dir> Private> 

+ Source.MyStuff11 14-Dec-60 16:23 :27 PDT 

+ ReBuildMyStuff.cm ! 1 14-Dec-60 16:25: 53 PDT 

VerifyDF also checks for certain common mistakes, such as files on a directory that are 
released onto a directory with a different >Public, >Friends, or >Private suffix. For 
example, 

Directory Jlgorl<Emerson >Compare>Publ1c ReleaseAs JldunJ<Apilot>Compare >~ 

is proliably a mistake, since Public is not the same as Private. 

:? I 



DF Software Reference Manual 

VerifyDF will look on remote file servers for the correct versions of files if they are not 
local. So, the files described by a DF file do not have to be on the local disk for VerifyDF to 
do its job. However, since this remote checking must currently be done with a pseudo page­
level access protocol, it can be relatively slow. The OF file itself also does not have to be on 
the local disk. For example, the following can be used to check a remote version of 
Compare.df: 

> VerifyDF !Igor)< Emerson> OF >Compare.df 

When processing a OF file, VerifyOF may have to retrieve imported or included OF files 
from a remote server. Unless the It (fetch to temporary files) switch is off, these OF files 
will be retrieved to temporary files. This. avoids cluttering your disk with OF files you may 
not want. 

6.1 VerifyDF'scommand line 

The Verify OF command line has the form 

>VerifyDF lt<global switches> I DFfile1(/<local switches> I ... DFf1le.,I '<local switches> I 

Global switches are optional and control the verification of subsequent DF files. You can 
also set global switches by giving an empty OF file name. 

6.1.1 VerifyDF switches 

A switch specification is a letter, optionally preceded by a '-'or '-'to reverse the sense of 
that switch. The valid switches are: 

f 

n 

when 
t 

print "flattened" OF file (all Imports and Includes structure removed) 
check that all files seem necessary (default) You would probably want this 

using the /f switch 
retrieve DF files to _temporary files (defaulll 

The default setting for the /n and /t switches is on, while the /f switch is off You can 
change the default setting of any switch by using a global switch. Any switch given with 
no file name (i.e., just a slash and switches) establishes the default setting for that switch. 
Unless overridden, that default applies to following commands. 

6.2 VerifyDF limitations 

The total number of files that VerifyDF can check, including those from imported and 
included DF files, is 1000. 

7 Df4~Delete 

22 

When you have finished working on a DF file and have SModel'ecl its film; out to their 
remote locations, you can free up space on your local disk by running DFDclete on the DF 
file. This program scans a DF file (and the ones it Includes), and generates a command in 
Linc.cm that can be used to delete the files described by the DF file. Deleting these files is 
safe because you can he certain, after running VerifyDF and SMoclel on a DF lile, that all 
needed files have been stored remotely. 



DF Software Reference Manual 

OFOelete will not add to the delete command any file on the local disk that has a create 
date different than that listed for it in the OF file. 

7.1 DFDelete's command line 

The DFOelete command line has the form 

> DFDelete If <global switches> I DFfile ,(i< local switches> I ... DFf1le 0 li< local switches> I 

As usual, global switches are optional and control the deletion of following OF files. You 
can also set global switches by giving an empty OF file name. 

7.1.1 DFDelete switches 

OFOelete has only one switch which can be preceded by a'-' or'-' to reverse its sense: 

r also delete Imported and fteadOnly files 

7.2 DFDelete limitations 

Each DF file processed by OFOelete must contain no more then 450 files. This applies to 
each Included OF file as well. 

8 DFSubstitute 

Although a DF file is just a text file that can be edited by the user, it is still awkward to 
make simple repetitive changes to large numbers of OF files. The program DFSubstitute 
can be used to simplify this task. It can: 

• change hosts or directories, 

• move an Imported file (e.g. Heap.bed) from one OF file (PilotPublic.dfl to another 
(ComSoftPublic.df), and 

• insert or delete Imported files. 

DFSubstitute makes changes to a set of DF files according to commands in a substitution 
script file. The commands are executed in order from first to last for each line in a DF file. 
This means that later commands can take advantage of the substitutions made, by 
previous commands. Included DF files are processed in the usual bottom-up recursive 
fm;hion. The rewritten DF files arc not stored remotely by DFSubstitute; you must use 
S:vtodel to do that. 

The four DFSubstitute commands are: 

• Rename IRHSI <loci> To <loci> 

Rename changes the remote location on the left hand side (Directory, 1 mports, Includes, or 
ReadOnly) of matching DF file lines If RIIS is specified, matching right hand sides 
m.eleasei\s or CameFrom) are changed. Each < loc> can be a host (e.g.1 lgorll, a directory 

23 



24 

DF Software Reference Manual 

(e.g. <Emerson >Tajo > ), a file name (e.g. MFi le. bed), or a combination of all three. For 
example, to rename [Igor] to [Idun] in all left hand sides, use the following: 

Rename [Igor] To [Idun] 

To change all r.h.s. references to [Igor I <Ramona> to be fldunl <Int>, use 

Rename RHS [lgor]<Ramona> To [ldunJ<lnt> 

It is also possible to change just a subdirectory, e.g. 

Rename C°WF>Pubhc To Other>Public 

To change the location of just one file, use a command I ike the following: 

Rename J Igor]< Emerson> Tajo >Private> NSFileTransfersA.bcd 

To JlgorJ <Emerson> NSFileTransfer >Friends> NSFlieTransfersA.bcd 

• Move Import <name> From < DF file1 > To < DF file2 > 

This moves an import from the Using list of one DF file to another. If no Using list files 
remain the first Imports line is entirely deleted. For example, 

Move Import Heap.bed From Pilot.df To ComSoftPublic.df 

• Delete Import <name> From < DF file> 

This just removes the specified import from the Csing list of an imported DF file. If no 
Using list files remain the entire Imports line is deleted. For example, to remove all 
importations ofSpace.bcd from PilotPublic.df, use 

Delete Import Space.bed From PilotPubl1c df 

• Insert Import <name> From < DF file> 

This simply adds an import to the DF file's Using list, e.g. 

Insert Import Environment.bed From MesaPubl1c df 

8.1 DFSubstitute's command line 

The DFSubstitute command line has the form 

> DFSubst1tute SmptFile DFflie 1 ..• DFfilen 

The first file is a substitution script (default extension ".script") that specifics the changes 
to be made to the following DF files. DFSubstitute has no switches. 



DF Software Reference Manual 

8.2 DFSuhstitute limitations 

Each DF file processed by DFSubstitute must contain no more then 600 files. This applies 
to each Included DF file as well. 

Important! 
If there are spaces embedded in a token, please qU<ite them. For example: 

Rename "IWalter:Very Nice:Mus1cl<Carlos>" To "!Wendy Very N1ce:Mus1cJ<Carlos>" 

9 DFDisk 

DFDisk produces a file "Disk.dr' that describes the current search path. With the 
exception of"$" files and a few kinds of log files, it I is ts all files on the search path with the 
create date and remote location found on the local disk. The remote location is taken from 
the RemoteName property in each file's leader page. DFDisk is most useful when you are 
trying to find the remote location for files, or when you are trying to save all your files 
before reformatting the volume. It can also tell you about new files that should be recorded 
in a DF file, since the RemoteName property for these files will not have been set and they 
will be listed under the remote "location" [Unknown)< Unknown>. 

9.1 DFDisk's command line 

DFDisk has no switches, and its command line is simply 

>DFD1sk 

9.2 DFDisk limitations 

The maximum number of files that DFDisk can process is 1000. 

10 DFTool 

The DFTool provides a window interface to the other DF programs. It supports BringOver, 
SModel, VerifyDF, DFDelete, DFDisk, DFSubstitute, as well as program librarian 
CheckOut and Query. Since the different commands share several DF implementation 
modules, fewer resources are used by this tool than by the separate DF programs. The 
price you pay for this is that only one command can be run at a time as opposed to having 
multiple Executive windows the run the DF programs from. There is currently no 
command line interface to the different commands. 

The DFTool communicates through four subwindows: a message, form, command, and 
TTY subwindow. The TTY subwindow is used to log the progress of each command, and for 
interaction with the user (e.g. for passwords and for file transfer confirmations). There is 
also an Options window which is used to set infrequently modified parameters. 

line point: A picture of the tool wi II be supplied here eventually. 

2!) 



26 

DF Software Reference M~nual 

10.1 Form subwindow 

The fields that can be used as arguments to a command are listed in the form subwindow. 
The first row has a five Booleans that correspond to the most widely used DF program 
command line switches. The next four rows are string items that provide parameters for 
the DF commands. 

Booleans: 

Confirm 

GetOnlyExports 

VerifyFilesExist 

DontStoreRemotely 

means ask for confirmation before retrieving or storing a file. It 
has the same effect as /-a on the BringOver and SModel 
command lines. The default is TRUE. 

means retrieve only files marked as exports when bringing over 
a DF file. This is the same as the BringOver /p switch. The 
default is FALSE. 

means check that files exist in the right place and version. It is 
the same as the BringOver Iv switch. The default is FALSE. 

means never store files remotely. This is equivalent to SModel's 
In switch. The default is FALSE. 

VerifyRemoteOnStore when doing an Sllodel!, means verify that files arc really on 
the remote server and store if necessary. This is the same as the 
SModel Iv switch.The default is FALSE. 

Fill-ins: 

DF Files: 

Files: 

LocalDir: 

Checkout Reason: 

are the names of the DF files to be used for any commands. If a 
DF file's name contains spaces (e.g. a fully qualified DF file 
name on an NS server), the name must be enclosed in double­
quotes ("). 

is a list of files (separated by spaces) for the next command to act 
upon. These might he, for example, the specific files that 
BringOver ! should retrieve from a DF file (BringOver only 
files mode). 

means that BringOver ! should do all retrievals to this 
directory. This is equivalent to BringOver's localDirlc 
command. If the directory is not a complete path name, i.e. it 
does not begin with <, it is assumed to ha vc a < > prepended. 

is given to the program librarian when files arc checked out. 

10.2 DFTool command subwindow 

The fields in the command subwindow are the following: 



DF Software Reference Manual 

Checkout! 

Query! 

BringOver! 

Sllodel! 

VerifyDF! 

DPDelete! 

DFDisk! 

DFSubstitute! 

Options! 

10.3 DFTool Options window 

checks out the libjects for the OF files listed in the DP Piles: 
line and the files listed in the Piles: line. The Checkout 
Reason: is passed to the program librarian. 

displays information regarding the libjects for the DF' files listed 
in the DP Piles: line and the files listed in the Piles: 1 inc. 

invokes the BringOver algorithm on the OF files listed in the DF 
Piles: entry. If any files are also listed in the Files: line, 
BringOver will enter only files mode and retrieve just those 
files. 

stores back the DF files and its components within of the DF 
files listed in the DF Files: entry. 

verifies the completeness and consistency of each DF file named 
intheDF Files: entry. 

invokes the DFDelete algorithm on each DF file listed in the DP 
Piles: line. 

generates a file "Disk.dr' that describes all the files on the 
current search path. 

modifies DF files listed in the DF Piles: entry according to the 
substitution script file named in the Files: entry .. 

creates an options window for the DFTool if one does not already 
exist. 

The Options window is created by the Options! command. It contains a string item and 
Booleans that govern the DFTool's operation, but which are typically changed only 
infrequently. The string item, LocalDFDir:, is initialized from the User.cm 
LocalDFDi r: entry. The Booleans correspond directly to the command line switches for 
each DF program. After changing the options, invoke Apply! to invoke those chang·cs. 
The Abort command will restore the options to what they were before the Options! 
command was invoked. Both Apply! and Abort! perform the appropriate actions and 
then destroy the Options window. 

10.4 DFTool User.cm fields 

The DFTool m;es the same I DFTool 1 section in the lJ ser .cm as the other DF programs. 
Besides the fields described above in Section 3, the standard InitialState:, 
TinyPlace:, and Wi ndowBox: entries can be set. 

11 The lncludeChecker and D~.., files 

If you are a DF software user (i.e. if you have a I DFTool 1 section in your User.cm), the 
released Klamath lncludeChecker can procpss a IW file as well as a lists of files. The 

27 



DF Software Reference Manual 

IncludeChecker has a df/c command that is used to specify the OF file to check. For 
example, 

>lncludeChecker MyPackage.list/c10 df/c MyPackage.df 

will analyze the files described by MyPackage.df and generate an includes and includedBy 
listing in My Package.list and a rebuild command in Line.cm. 

Each file listed in the DF file is looked up on the local disk. If there, that version is 
analyzed regardless of its create date. If the file is not local, the remote version is checked 
(the remote path is gotten from the DF file). Because the lncludeChecker believes that the 
local versions of files are the "truth" (the assumption is that the DF file was brought over 
and some changes were made to its files), it can be used to verify a component that has not 
yet been SModel'ed. 

Note: VerifyDF operates differentl_v: Verify OF checks the particular snapshot of a package 
described by a OF file. Local versions of files with different create dates are ignored and 
the remote versions are used instead. This means, in general, that a OF file has to be 
SModel'ed before Verify OF can be run on it. 

The lncludeChecker also has a Ir (examine DF imports) command line switch that may be 
specified when DI'' files are processed. When set, the· lncludeChecker will also analyze 
imported files. If you believe that no imported file has changed since you brought over the 
OF file, you can use /-r to reduce the lncludeChecker's running time. The initial default for 
the /r switch is on. In general, you should not use /-r. 

If you have a [DFTool) section in your User.cm, some additional parameters and an 
additional command appear in the lncludeChecker window. The DP Pile: entry names 
the DF file to be processed when the Check DP! command is invoked. The Boolean 
Examine DP Imports appears in the IncludeChecker Options window and has the same 
effect as the /r command line switch; it is initially TRUE. 

12 Dealing with Problems 

28 



DF Software Reference Manual 

As much as we try to avoid them, problems still crop up. Here are some common problems 
and ways you could deal with them. 

Network problems 

Problem: You did a BringOver, modified files, and do a Smodel. Unfortunately, you lost 
a connection in the middle of a Smodel, so only some of the files were stored. 

Solution: When the network is up, do a Smodel with the "verify files exists" mode to make 
sure all the files are stored back. 

You forgot to to check out the Libject. 

Problem: Shame on you. Smodel probably gave you a warning. Using the "don't check 
librarian" switch is probably dangerous since someone else may have checked out the OF. 
and has worked on the program. 

Solution: You should try to check out the libject. There are two cases: 

If you are denied access, go talk to the person who checked out the libject and try to 
coordinate the modifications. If you changes do not overlap, you are lucky. 

If are you given access to the libject, you may still be in trouble since someone else may 
have done a checkout and a checkin during the period you were working on the 
component. Find out the check in date of the libject and see if that occured during your 
after you did a BringOver. 

The Librarian is down. 

Problem: Smodel fails since the libject cannot be checked in. 

Solution: You are safe since no one else can modify the files you have checked out. 
Frequently, you will only do a checkout of the OF file itself. In that case, the files listed in 
the DF file may have been stored back already, leaving only the DF file "un-stored". 
However, the DI<' file is already modified with the new create dates, including that of the 
DF file itself. Thus a subsequent Smodcl (done when the librarian is up) will use the local 
IJI<' file and will believe that all the required files arc remotely stored. When the librarian 
is up, do a Smodel with the "verify files exists" mode to store the DF file back. 

The programs tell me that it can't parse dates in my llf4., 

Problem: Your time zone requires you to specify time relative to GMT. Some parts of the 
world require you to specify the time in the format of hh:mm:ss + N GMT. The released 
parser is not able to parse that correctly. This is a limitation in the Klamath version. 

Solution: Please wait for the announcement of the newer, better, and more worldly DF 
software. The new parser should be able to handle various time formats. 

I want to move the files pointed to by a OF from one location to 
another. 

29 



30 

DF Software Reference Manual 

Problem: You want to change the "Directory" statements and move the files to their new 
destinations .. 

Solution: do a BringOver, run a DFSubstitute, and do a Smodel. 

How do I stop the DF Tool? 

Problem: You made lilied in the wrong parameters, or perhaps the made some other 
mistakes, and you want to stop the operations. 

Solution: Press the STOP key, and keep on trying until it stops. 



Ethernet monitors 

Filed as [McKinley:OSBl r North I< PilotProae > U.O >Communication Tools::> Ethernet monitors 
last edited by AOF,OctoberlS.1984 3:46PM 

The tools described in this document are part of a collection of local ethemet monitoring 
facilities implemented by the same people that implemented the low level system 
software local area network code. Being such they have certain characteristics that are 
important for the casual user to understand. 

First, they are non-released tools. That implies that they are unsupported, at least in 
the formal sense. They are, in fact, not only supported in an informal manner, but may 
be the subject of ARs. Users are encouraged to submit suggestions as to the 
applicability and correctness of the current tools and suggest enhancements and the 
like. The primary reson for the tools not being released is because of what you, the 
reader, are being subjected to at this very moment; the documentation. It will be found 
to be lacking. 

Second, these tools are local network monitoring tools. They monitor traffic, usually in 
conjunction with the ethemet medium only, and they act as third party observers. Due 
to the architecture of the ethernet, the reliability of the information gathered is always 
in doubt. The user must be willing to accept the output as a hint, never believe he has 
observed the truth. They are monitors, i.e., they never insert traffic into the network. 

1 Structure 

All of the tools described in this document are instantiations of spies. They use a Friends 
level communication interface CSpecialCommunication) to get low level access to the 
packets observed by the host machine and to set that host' ethernet controller mode to 
promiscuous. 

By running in promiscuous mode, the host machine is capable of observing all the 
traffic on the local ethemet. In doing so, it loses its capability to do address 
descrimination in microcode. Doing address descrimination in Mesa causes severe 
performan~e degradation. Users of these tools should be aware that the host machine's 
own communication performance may be decreased. All of the described tools will 
return the state of the host machine to normal when the tools are deactivated. 



Communication tools 

2 

Multiple spy tools may be run at a time. Each tool will be afforded the opertunity to look 
at the packets and perform its own pre-defined function with regard to the packet. 
When a tool is deactivated (or stopped via a tool interface command), all spy tools that 
where running will be disabled. 

Fine point: Care must be used when using tools that accept packets with bad ethernet recieve status. Since 

most spy tools are prepared to handle only well formed packets. tools that permit them lo be inserted into the 
system must be run last. That tool will. it is assumed. not permit a bad packet to be inserted into the system ur 
be observed by another spy proc. 

1.1 Ethergraph 

Ethergraph was -designed to answer the question, "How much traffic is there on the 
local network?" It attempts to do this by displaying a real time plot of the traffic, the plot 
being one pixel wide and having a height proportional to the average percent of medium 
bandwidth utilized during a user specified interval. All traffic is measured with no 
effort to characterize its type, source, destination or intent. 

Reset! Resetting the display cases all previous information 
to be cleared and the Time a left edge to be set to the 
current system time. 

Full deflection is: { 100% I 10% I 1 % } 
The height of displayed rectangles is adjustable by 
factors of ten. If full deflection is set to lK for 
instance, a display rectangle ten units high would 
represent 10% of the total ethernet badwidth. 

Period: {seconds I minutes I hours} 
The tool will observe traffic and display one rectangle 
per interval which is the average rate of traffic for 
that interval. 

Source: { 10 Mbit I 9.6 Kbit I 4.8 Kbit I 2.4 Kbit I 1.2 Kbit I 300 bps} 
It was intended that this tool be capable of displaying 
traffic observed from a medium and plot the 
utilization of that medium proportional to its full 
capability. This has only been implemented for the 10 
MBit ethemet. 

Time at left edge: <dd-mmm-yy hh:mm:ss> 

1.2 HostGraph 

Whenever the display plots at the left edge of the 
screen, whether it be when the tool is first started, 
restarted, Reset! or wraps around from the right hand 
edge, the tool records the system time. This can be 
used to estimate the time of day that an interesting 
event took place in the display. 

Once the amount of traffic present on the network is determined, it them becomes 
interesting to find out what machines are generating that traffic. HostGraph was 
written to do just that. It observes local traffic and displays the 48-bit host number of 
the machines transmitting on the ethernet. It has a limit of20 addresses it will 'display. 
It normally selects the first 19 of them by being first observed. When the first 19 slots 
are filled and packets from some other machine is encountered, that is lumped into the 
20th slot and noted with a broadcast host number. Once in the display table, the host 
number and the amount of traffic it transmists will be depicted, updating once per 



Ethernet monitoring 

second. The display is in the form of a horizontal bar chart. The amount or traffic 
observed in the last second is appended to the right side of the bar in black, while the 
previous observations are shown in grey-shade. This gives the illusion of moving from 
left to right and conveys some sort of feeling of the amount of traffic being inserted into 
the network by a particular machine. The amount of left to right growth is proportial to 
the bandwidth of the medium it consumed. When the bar reaches the right-hand side of 
the display, it is reset to the left side. 

Once a machine is registered in the table of 20, it will remain there until the entire 
dispiuy is Reset!, the machine number is Removed!'d·or the tool is deactivated . 

. \ ;;ar-:.i..::.i.l..Lr machine may be entered into the list, proviciing there is an empty slot, by 
u~e of the Include! command. Since the tool is always trying to keep the table full and 
will insert the number of the first machine not in the list when traffic is first incounted 
from that machine, the tool may have to be stopped 

StopjGo! Bugging the StopjGo! command will toggle the active 
state of the tool's spy proc. Since the tools always fills 
empty slots in its 20 element array with machines 
observed generating traffic on the ethernet, it is 
sometimes necessary to stop the spy process in order 
to Remove! then Include! a machine number of 
particular interest. 

Reset! 

Remove! 

Include! 

Host: 

Resetting the display cases all previous information 
to be cleared. 

Any machine number in the list may be removed 
from that list by entering the number in the Host: 
field, then bugging Remove!. Machine numbers may 
be Removed!'d when to tool's spy proc is ·active (see 
StopjGa!). The slot in the table occupied then 
becomes empty, and if the spy proc's state is active, 
will be filled by the first machine not in the list 
generating traffic. If the host number has an 
improper format, cannot be found in the 
clearinghouse or is not in the current host number 
array, the tool will blink the display. 

If the user wishes to observe a particular machine, 
that machine's host number may he entered into the · 
display table manually by typing the machine's host. 
number or clearinghouse name into the Host: field,· 
then bugging Include!. If the Host: specification is 
incorrect, the name cannot be found in the 
clearinghouse or there is no empty slot in the display 
table, the tool will blink the display. 

ln order to use the Remove! or Include! commands, 
the user must first specifiy a host number. The 
specificaion is made in AddressTranslation format, 
which carries with it the implication that either 
numeric values as well as clearinghouse names are 
accepted. If numeric values are used, only the 
machine number need be present, i.e., 
".25200001130.". 



Communication tools 

4 

1.3 EtherIOGraph 

This tool further characterizes the ethernet traffic by permitting the use to specifiy a 
particular machine to observe. The traffic being· directed to that machine is then 
depicted as a realtime graph much like EtherGraph's, but eminating down from a center 
axis. Traffic inserted into the network by the machine in question eminates upward 
from the center axis. 

Reset! Resetting the display causes all previous information 
to be cleared and the Time a left edge to be set to the 
current system time. 

Full deflection is:{50% I 5% I 0.5% I 0.05%} 
The height of displayed rectangles is adjustable by 
factors of ten. If full deflection is set to 10% for 
instance, a display rectangle ten units high would 
represent 500 KB its per second (average) of ethernet 
traffic. 

Period:{seconds I minutes I hours} 

Interpret Address! 

The tool will observe traffic and display one rectangle 
per interval which is the average rate of medium 
badwidth utilized during that interval. 

After the user has entered an appropriate value in 
the Observer only field, this command must be 
bugged to prompt the tool the interpret that field. If 
the interpretation fails, the tool will blink the 
display. 

Observer only: <address translation> 

watching: {input I output I both} 

This is the field interpreted by Interpret Address!. It 
must be in acceptable AddressTranslation format. 

It is possible (though there is little advantagein it) to 
observe on the traffic destined to or the traffic 
originating from the machine in question by selecting 
the desired value for this enumerated type. 

Time at left edge: <dd-mmm-yy hh:mm:ss> 

1.3 EtherMonitor 

Whenever the display plots at the left edge of the 
screen, whether it be when the tool is first started, 
restarted, Reset! or wraps around from the right hand 
edge, the tool records the liystem time. This can be 
used to estimate the time of day that an interesting 
event took place in the display. 

EtherMonitor is a very simple tool that collects statistics about the type of traffic 
observed on the local ethernel. The satistics are in the form of simple counters, with one 
excpetion, the average number of packets per seconds. 

Caution: This tool modifies the logic of the ethernet driver such that it is willing to accept 
packets received with bad receive status. If this tool is run in conjunction with other peek 
tools, it should be the last one run so it has the opportunity lo filter the had packets from 



Ethernet monitoring 

the input queue. Other peek tools and the system in general are not prepared to handle 
packets of this nature. 

Garbage! 

Broadcasts! 

Packet types! 

Sockets! 

l.4 GatewayLoad 

Bugging the Garbage command causes the tool to 
print out a recap of the running totals, including the 
duration of the statistics gathering session, the 
number of packets with error status and the average 
number of packets observed per second. 

Bugging this command will cause the tool to display 
the number of broadcast packets observed for each 
well-known packet type. It counts both XNS and Pup 
packets. Since broadcasts are received by all 
machines on the network, it is sometimes interesting 
to characterize the type of client that uses broadcasts. 

Packet types displays the number of packts observed 
of each level-2 packet type, whether broadcasted or 
directed. This is sometimes useful in determining the 
nature of the traffic on the network. 

Bugging the Socket command displays the number 
of XNS packets that have been broadcasted to well­
known sockets. Like Broadcasts it is used to 
characterize the type of network client that uses 
broadcasts in an effort to minimize their use. 

Gateway Load is a tool used to monitor the load on a gateway, based on the source and 
destination networks of the packets the gateway is processing. The tool monitors both pup 
and ns packets. 

The tool, when active, displays a window with two subwindows, one for displaying the load 
histogram and one containing the commands and parameters available to the user. 

1.4.l Graph subwindow 

The tool's top subwindow is the graph window that displays a rcaltime histogram of the 
observed load. 

After the Start command is selected the tool begins to collect packets whose immediate 
source or destination is the specified gateway. An entry is made in the table of networks 
(and displayed on the left side of the graph suhwindow) based on the networks in the 
packet. The realtime histogram for that entry is then started. When the limited table fills 
up, any new network pairs observed are added to the histogram bar labeled in the window 
as all ones. 

The grey section of each bar indicates the amount of traffic observed sim;e the tool was last 
cleared - the black section indicates the amount of traffic observed in the last second. As 
each histogram bar reachs the right side of the window, it will wrap. 

5 



Communication tools 

1.4.2 Command and parameter subwindow 

Start 

Stop 

Clear 

Reset 

Remove 

Include 

Histogram mode 

Net entry 

Target host 

6 

The Start command starts the monitoring process and 
the graphing of the histogram. The old histogram (if 
any) and the table of networks is not modified. 

The Stop command stops the monitoring process and 
the histogram. 

The Clear command clears the graph window and the 
table of networks. Since Start does not clear any of 
the old tool state (i.e., the monitoring process is 
stopped but the table and the histogram are left 
intact), Start may be used in conjunction with Clear to 
begin a new monitoring session. 

The Reset command resets the histogram only. 
Because it does not clear the table of networks, it is 
useful for restarting the histogram after the user has 
modified the table with Include and/or Remov~. 

The Remove command takes the network pair 
specified in Net entry and deletes it from the table of 
networks. If this command is selected while the tool 
is Start'd, the entry will probably be quickly filled by 
the next packet arriving with a new network pair. 
Should the user desire to Remove an entry and 
replace it with a specific network pair, he should first 
Stop the tool, then Remove the unwanted pair and 
use the Include command to enter the network pair 
of his choice. A blink of the display indicates that hte 
specified network pair was not found in the table of 
networks. 

The Include command puts the network pair 
specified in Net entry into the first available slot in 
the networks table. Should there be no empty slots in 
the table or if the specified network pair is not in the 
proper format, the display will bl in!... 

The Histogram mode is an enumerated item that 
determines whether the load in bytes or the load in 
packets will be plotted. 

Net entry is the network pair that is to be removed or 
included. The format is net-net and the order of the 
nets does not matter. 

Target host is the machine the user wishes to 
monitor. This parameter may either be either an 
actual host number or a clearinghouse name. A blink 
of the display indicates an invalid number or name. If 
this parameter is left blank, the tool will watch all 
hosts on the net (not very useful). 



Ethernet monitoring 

Flush old 

seconds 

Log 

The Flush old command clears the table of networks 
and the histogram of all network pairs that have not 
seen traffic for the number of seconds specified in the 
seconds parameter. 

seconds is the number of seconds to be used when 
deleting old network pairs from the tool with the 
Flush old command. 

Log is a boolean item that is used to display a log file 
containing statistics gathered during the collection of 
the histogram information. The log reports the time 
started and the time of le currently displayed 
information. f''or each network pair, the log displays 
the number of bytes observed, the number of packets 
observed and how long it has been since traffic was 
last observed. 

7 



- - ExecCommands.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ExecCommands registers an arbitrary number of Exec commands that expand to text given in User.cm. The 
commands can take arguments that get substituted into the expansion. The expansion can also specify 
that some or all of the text is to be repeated, with different arguments being substituted within each 
repetition. 

When ExecCommands is run, it registers an Exec command called ExecCommands.-. Invoking this command 
causes it to read User.cm and register any commands found there, as well as unregistering any commands 
previously registered. NOTE: Due to a bug in the Exec, RemoveCommand crashes if the command being 
removed has had its name changed. Therefore, don't use ChangeCommandName to muck with commands 
registered by ExecCommands; instead, change the command's name in User.cm and use ExecCommands.- to 
unregister the old name and register the new one. 

The commands to be registered are taken from the [ExecCommands) section of User.cm; as usual, this 
section may be volume - specific (via [CoPilot:ExecCommands), [CoCoPilot:ExecCommands). etc.). Each 
User.cm entry has the format: 

command: [options) "expansion" (options) 

That is, the entry consists of the Exec command name, a colon, and then some quoted text representing 
the expansion, optionally preceded or followed by other stuff. The "other stuff" specifies how many 
arguments the command requires. If you don't specify anything, then the command will accept any 
number of arguments. The options are: 

<nn The command will not accept more than nn -1 arguments. 
>nn The command will require at least nn + 1 arguments. 
= nn The command will require exactly nn arguments. 

If you specify an inconsistent set of options, ExecCommands will decide something reasonable. In 
general, if you provide bogus User.cm entries, ExecCommands will not complain but will try to do 
something reasonable without crashing. 

Within the expansion, certain sequences of characters have special interpretations. All such special 
sequences begin with either I or @: 

In, Ir, \t, \b, If, and II, and their uppercase forms, are treated as in Mesa 10.0. \followed by any 
other character yields that character. Thus\\ yields a single\, and so on. Note, however, that the 
Token interface doesn't know about\, so it will not let you use it to get a quote - mark into your 
string(" .... \" .... "). You can use apostrophes around the expansion instead of quotes if you want 
quotes inside the string. If you want both inside the string, you're out of luck. 

@N yields the Nth argument, where the first argument is N = O. N is a string of digits. If you want 
to have a digit immediately following an argument in the expansion, use @N@; the second @is ignored 
other than to mark the end of the number N. 

@M[xxxxx@N) , where Mand N are strings of digits, causes the text xxxxx to be repeated N - M + 1 times, 
once for each argument from M through N. The iteration is performed all N - M + 1 times even if there 
aren't that many arguments given to the command. Within the text being repeated, the string @* 
represents the current argument of the iteration. For consistency, @*@can also be used; the second@ 
is ignored as above. It is not permitted to have an iteration within an iteration. 

@M[xxxxx@) is the same as @M(xxxxx@N], except N is assumed to be the number of the last argument, i.e., 
one less than the number of arguments given to the command when it was invoked. 

@followed by any other character yields that character, just like\. Thus@@ provides a single@ 
character, as does\@. 

Within the expansion, tabs and spaces are ignored if they immediately follow a CR (explicit or via \n). 
If you really want white space you must use\ or @to "quote" the first such character after the CR. 

As an example, here are the ExecCommands from an User .cm: 

[CoPilot: ExecCommands) 
BigPrint: >0 "@O(Formatter @*/h-t- i\nPrint@* .press/s1\n0elete @* .press\n@)" 
FinePrint: >0 "@O(Formatter@* /k -t - i\nPrint @* .press/s2\nDelete @* .press\n@)" 
NotePrint: >0 •Print Laurel10/f@O[ < >Notes>@*/p1tf2s2-z@J" 
NewProg: >0 ·open Library/W\n@O(Zap <Library>Progs>@* .bed 

Copy <Library>Progs>@*.bcd- < >Temp>@*.bcd 
Copy <Library> Source>@* .mesa - < >Temp>@* .mesa In@) Open Library" 

OldProg: = 1 "Copy< >Temp>@O.mesa - <Library>Source>@O.mesa 
Copy< >Temp>@O.bcd- <Library>Progs>@O.bcd" 

Put Hack: = 1 "Ftp ServerName connect/c DirectoryName dir/c < DirectoryName >Tools> stoic @O.bcd f 



- - ExpandType.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ExpandType combines the debugger's ShowType with the editor's abbreviation expansion. The idea was 
stolen from Cedar. 

What it does 

ExpandType works just like the normal abbreviation expansion. except if it can't find the abbreviation 
in the dictionary, it does a ShowType! It uses the word right before the insertion point, the·." 
before it and the word before that. (e.g. if I type "Display.Black". then EXPAND, it looks up 
Display.Black, just like Show Type). 

It does two kinds of expansion, ExpandTypeWithFields and ExpandType. 

·ExpandTypeWithFields" is fancier. If the type being expanded is a PROCEDURE, it constructs a complete 
call to that procedure and inserts· r and ·1· around all the parameter TYPEs, like so: 

I type "Display.Black", then EXPAND. 
I get "Display.Black [window: •Display.Handle•, box: •Window.Box•]" 

The editor automatically selects the first field for you. Now you just NEXT through the parameters. 
filling in values. or deleting defaulted ones. If the procedure has RETURN parameters, the expansion 
looks like this: 

I type "Window.GetBox•, then EXPAND. 
I get ·•window.Box• ~window.GetBox [•Window.Handle•)" 

This may not always be what you want, but what the heck ... 

·ExpandType" simply spits out the results of the ShowType: 

I type ·Display.Black". then EXPAND. 
I get •Display.Black: PROCEDURE [window: Display.Handle, box: Window.Box);" 

This is really just sortof an accelerator for ShowType; you can do a Show Type without going to the 
debugger. 

One more little feature: if you ExpandTypeWithFields on a •TYPE = PROCEDURE ... ", it will spit out the 
definition with "< < > > • around it: 

I type "TIP.NotifyProc·, then EXPAND. 
I get•<< = PROCEDURE [window: Window.Handle, results: TIP.Results);>>" 

How to run it 

ExpandType registers two new ATOMs with the editor. "ExpandType· and "ExpandTypeWithFields". To use it, 
just edit your favorite TIP table expand productions, substituting "ExpandType" or 
·ExpandTypeWithFields" for "ExpandAbbreviation", then run ExpandType.bcd (you might have to reboot 
depending on what TIP table you edit). For example, if you use the EXPAND key to do expansions, then 
edit Tajo.TIP as follows: 

EXPAND Down = > [lfShift,DefineAbbreviation,ExpandTypeWithFields); 

or 

EXPAND Down = > [lfShift,DefineAbbreviation,ExpandType]; 

If you like to use Shift- Space as your expansion keys, then edit Expand.TIP in a similar fashion. (If 
you're not familiar with Expand.TIP, see MesaDict.doc.) An example: 

SELECT TRIGGER FROM 

Space Down = > 
SELECT ENABLE FROM 

LeftShift Down = > ExpandTypeWithFields; 
RightShift Down = > ExpandType; 
ENDCASE = > CHAR; 

ENDCASE ... 



- - ExcludeHeapOwners.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Are you tired of using DebugHeap and finding nodes owned by modules like: NSStringlmpl, NSNamelmpl and 
SvPack (not the real node owners but, services)? Well, now there is a hack that can be given a list of 
module names to exclude as node owner and the clients that call them will be saved in their place. 

To use this hack, bind your client boot file using HeapCheckPack.bcd. The instructions for using 
HeapCheckPack can be found in HeapCheckPack.doc 

Boot your boot file with the '6 switch. When it has booted swat to CoPilot and, in the Executive, run 
ExcludeHeapOwners. The syntax is: 

ExcludeHeapOwners module1 module2 module3 ... moduleN 

Then, in the Debugger, Proceed. From that point on, each module excluded will have it's client saved as 
the node owner, instead of itself. If that client is also in the excluded list, then up the call stack 
we-go looking for a non -excluded client to save as the node owner. 

When trying to use Debug Heap on a heap that HeapCheckPack has created, it is necessary to extract the 
UNCOUNTED ZONE from the HeapCheckPack handle. To do this, use the following LOOPHOLE: 

LOOPHOLE[< HeapCheckPack handle>, HeapCheckPack.UncountedZoneRep) f .undt!rlying 

Restrictions: 
ExclueHeapOwners REPLACES any previous list of modules with the new list. 
Maximum number of modules to exclude must be < = 256. 
Only works on heaps that HeapCheckPack intercepts. 



- - FastMouse.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FastMouse is a hack to change the delta - mouse/ delta - cursor relationship. Thus, you can use it to let 
a small mouse movement sweep the cursor all the way across your display. It registers five ExecProcs. 

·Threshold" refers to the delta mouse which must occur over 1 /60 second before the standard mouse 
behavior changes. RaiseThreshold.- sets threshold ..-threshold + MAX[threshold/10, 1). 
LowerThreshold.- sets IF threshold > 0 THEN threshold ..-threshold - MAX[threshold/10, 1) 
Lower Amplification. -

·Amplification" = 10 times the change factor. Thus, standard behavior = 10. RaiseAmplification.- sets 
IF ampxTen < LAST[NATURAL) THEN ampxTen ..-ampxTen + MAX[ampxTen/10, 1). LowerAmplification.- sets If 
ampxTen > 0 THEN ampxTen ..-ampxTen - MAX(ampxTen/10, 1 ). 

·showMouseParms.-· lists the current Threshold and Amplification in the Herald window. I find 
Amplification = 1.8, Threshold = 14 to be optimal. Amplification and Threshold may be specified in 
User.cm as follows: 

[FastMouse) 
AmpxTen: 18 
Threshold: 14 



dir/c <DirectoryName>Source> sto/c@O.mesa f 
dir/c <DirectoryName>Doc> sto/c@O.doc" 

ReplaceHack: = 1 "Ftp ServerName dir/c <DirectoryName >Tools> stoic @O.bcd del/c @a.bed f 
dir/c <DirectoryName>Source> sto/c@O.mesa dellc@O.mesa f 
dir/c < DirectoryName >Doc> stoic @O.doc del/c @a.doc" 

Use: "SetSearchPath <>Temp@O[@*@@) <>Mail <Library>Defs <Library>Progs <>" 
Star: = 1 ·use.- Star@O>Defs Star@o>Misc· 
Bye: =0 "Delete< >Notes>"'$< >Notes>"' -TOC 

FtpServerNamestol>a <>Mail>*.mail <>Notes>"' f 
localdir/c <>Mail>Phictionary> dir/c <DirectoryName>Phictionary> f 
stol> a Archive.mail Scores Words.used f 
localdir/c <> dir/c <DirectoryName>CMs> f 
stol>a Makelib.cm User.cm Default.diet f 
localdir/c <Library>Progs> dir/c <DirectoryName>Pilot>Tools f 
stol>a TinyWindow.icons f 
localdir/c <>TIP> dir/c <DirectoryName>TIP> f 
stol> a ExtendEdit.tip Form SW.tip KeyHacks.tip Key Jump.tip TinyPictures.tip 

Chat ServerName/h < >Mail>ChatCommands/f 
Poly" 

[CoCopilot:ExecCommands) 
TempSnarf: >0 "Snarf SourceDir/c Temp DestDir/c < >@o( @*@@)" 
TipSnarf: >0 "Snarf SourceDir/c TIP DestDir/c TIP@o[ @*.tip@)" 



= = = STATE VECTOR POOL DISPLAY = = = 

The state vector pool table (ho ho) describes the number of available state vectors for each process 
priority level. No processes at a particular priority level may run until a state vector becomes 
available for its level (by some faulted process having its fault satisfied and being restarted, thus 
freeing its state vector). A typical table displayed by this command is: 

priority nStateVectors 
0 1 
1 5 
2 8 
3 5 
4 3 
5 5 
6 1 
1 1 

===RUN TABLE DISPLAY=== 

The run table describes the properties of ·runs·. A run is a portion of a mapped space whose backing 
storage is contiguous (e.g. is a single run on the disk). There is at least one run for each mapped 
space, and typically. there is only one - - since the backing file for a mapped space is typically 
contiguous. · 

The run table contains Among other things. a run table entry contains data about the starting page and 
count of the run, a pointer.to the swap unit data, flags indicating whether this run begins and/or ends 
a map unit, its Space.Usage and Space.Class. and the transferProc ID (backing storage implementation) 
that the memory is mapped to. A typical table displayed by this command (in nonverbose mode) is: 

66 runs in run table. 
run run swapU @swapU begin end usage xProc 
page count type data mUnit mUnit class ID. 

540 3 irr 0 begin end 0 2 3 
543 33 irr 2 begin end 0 2 3 
578 20 irr 14 begin end 0 2 3 
648 1 unit self begin end 30 6 3 
768 85 unit self begin end 0 2 3 
853 10 unit self begin end 0 2 3 
909 11 irr 22 begin end 0 2 3 
920 3 unit self begin end O 2 3 

EndofVM. 

In verbose mode, the data for the backing storage implementation is also displayed (7 words). 

A Start Key and Count may be specified for the run table. The run containing the specified page will 
be displayed, and the Count - 1 runs following it. Next! and Prev! may be used to continue this 
incremental display. 

===SWAP UNIT TABLE DISPLAY=== 

The swap unit table describes the properties of swap units. Swap units are subdivisions of Pilot mapped 
spaces. The swap unit information displayed is: the swap unit's starting page and page length, 
availability for operations (avail/busy), access (write/read), swappability (swaps/pin'd), and life 
(alive/dead). The run table information is also displayed to show the run boundaries. A typical table 
displayed by this command is: 

swapU swapU 
page count ... swap unit state ... 

540 3 irr 0 begin end 0 2 3 
540 2 avail write swaps dead 
542 1 avail write pin'd dead 

3369 4 unit self begin end 30 6 3 
3369 4 avail read swaps dead 

3373 8 unif 348 begin end 30 6 3 
3373 2 avail write swaps alive 
3375 2 busy write swaps alive 
3377 2 avail write swaps alive 
3379 2 avail write swaps alive 

EndofVM. 



This way, the user get both functions, one is LeftShift - Space (my normal expand key), the other is 
RightShift - Space {used less frequently). 

One small drawback to this: EKpandType will not work in FormSWs. (Although if you use Shift - Space for 
ExpandType expanding, you can leave the EXPAND key for old - fashioned expanding and that will still 
work in FormSWs). 

Errata 

There's an annoying bug that's in the current expand code. If you backspace, then type some more, then 
EXPAND, it often doesn't work or it does the wrong thirig. I fiit.ed.that in ExpandType. 



- - Fetch.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The Fetch Tool and DFetch Service 

The Fetch tool locates or retrieves a released file. The user need not know the file's fully qualified 
name or which OF it is in. The Fetch tool lists the fully qualified path names for the file itself and 
its containing OF. If asked about alloc.bcd for Mesa 11.0b, for example, the Fetch tool would list: 

Retrieving information for alloc.bcd ... done. 1 match found. 
(Host) <Directory> 11.1 >MesaBasics>Alloc.bcd!2 18-Jul-83 12:07:18 PDT 
(Host)< Directory> 11.1 >OF> MesaBasics.df 

For most queries and retrievals, the Fetch tool is as fast or faster than the file tool. 

The Fetch tool, which is Courier - based, works in conjunction with a DFetch Service. The DFetch Service 
looks up the requested file in a release cross - reference (.xref) file created by the release statistics 
program RStats. 

Using Fetch 

The Fetch window looks like: 

+-------------------------------------------------------------------! Server: Release: I 
I File: LocalDir: 

+-------------------------------------------------------------------! Info! Fetch! Fetch .mesa Fetch .bed I 
+-------------------------------------------------------------------

The server field identifies a machine running a DFetch service. The release field identifies the 
release of interest. The file field can contain either a short file name, a short name without 
extension, or a fully qualified file name. The LocalDir field identifies the local directory to which 
the file is fetched. 

The Server and Release fields can be initialized in your user.cm, such as: 

(Fetch) 
Server: Gilroy 
Release: Mesa11.0 
LocalDir: <>Temp 

The Info command lists the fully qualified names of all files in a given release with a given short 
name (and their containing DF's). If the file extension is omitted from the short name, all file 
names with that prefix are listed. 

One or both of the "Fetch .mesa· and ·Fetch .bed· Booleans must be set if no extension is given in a 
fetch command. 

In addition to running in a tool window, the Fetch tools commands are available in a menu on the root 
window and on the debugger window. If the Fetch tool is tiny, menu comands-output their results to 
the default output sink (usually the Herald window). 

Running a DFetch Service 

A DFetch service can be run on either an integration machine or a workstation. 
After a release, RStats /d can be used to create the cross - reference listing (i.e., the .xref file) 
used by DFetch services. The releases available to a DFetch service must be specified in the server's 
user.cm before the DFetch service is run: 

(DFetchService) 
Releases: Mesa 11.0 ServicesS.O 

Because the cross - reference file is not compressed, it is quite large. For Mesa 11.1, for example, it 
is -1800 pages. A future implementation will use a compressed data file. 



- - Fault8rowser.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Fault8rowser is a CoPilot UserProc which displays processor data and Pilot tables relating to the 
processing of page, frame, and write faults. It is useful in analyzing fault- related problems, and 
also gives information about recently used spaces and their properties. It also displays information 
about the current contents of real memory and its referenced and dirty status. 

Fault8rowser displays five kinds of information: 

* processor fault queues 
* the processor ready queue 
* the state vector heap 
* Pilot's run table (mapped spaces) 
* Pilot's swap unit table 
* data about individual mapped pages 

Some of this data is included in the information that CoPilot prints, but FaultBrowser typically prints 
more complete information, and in a tabular form. 

= = = FORM SU8WINDOW = = = 

The fields in the form subwindow operate as follows: 

Table: {} This enumerated item is used to specify what kind of data Fault8rowser will display next, 
chosen from the following possibilities: the processor fault queues, the processor ready queue, the 
state vector heap, Pilot's run table (mapped spaces), Pilot·s swap unit table, and data about 
individual mapped pages. More information on the significance of these tables are given in the next 
section. 

Display Table! This command displays the entire table specified by the Table enumerated item. 

For some types of information, Fault8rowser allows the user to display table item(s) related to a 
particular key. For example, one can ask for the mapped spaces which include a specified page. For 
tables which have a notion of sequence. a key may be accompanied by a count of items to be displayed, 
and the next and previous entry may be displayed. Some commands do not apply to some tables, and will 
respond with "not implemented". 

Start Key = This numeric field specifies the key of the (first) item to be displayed. 

Count = This numeric field specifies the number of table items to be displayed. 

Display Table Items! This command displays those table items specified by Start Key and Count. 

Next! This command displays the table item following the most - recently- displayed one. 

Prev! This command displays the table item preceeding the most - recently - displayed one. 

verbose This boolean field specifies that additional data, typically of low interest, should be 
included in displayed data. 

= = = FAULT QUEUES DISPLAY = = = 

The fault queues table describes the processes which are have taken a page, frame, or write fault and 
are waiting for the fault to be serviced. A typical line displayed by this command is: 

PS8: 2108, priority: 1, L: 544108, waiting page fault (being processed), 
pointer: 17170008 f • page: 36368 

For page faults. the line shows Pilot's progress in the several stages of processing the fault (e.g. 
"being processed"). 

= = = READY QUEUE DISPLAY = = = 

The ready queue table describes the processes which are "ready to run". However, these processes may 
still be blocked by the unavailability of a state vector for their priority level (see display of 
state vector pool). A typical table displayed by this command is: 

PSB: 1138, priority: 3, L: 114708, ready. 
PS8: 1048, priority: 2, L: 32308, ready. 



- - FileSizes.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

File Sizes runs in the executive. You give it command line arguments which are filenames, wildcards 
allowed of course. It produces a list of those files, along with their sizes, sorted by the sizes. 
File Sizes is intended to be useful in cleaning up the trash files that seem to accumulate on disks. 

The normal usage of FileSizes is simply •FileSizes filename ... •. There are, however, a number of 
switches available. Firstly, there is the • 1A • switch, which makes the files come out in ascending 
order instead of descending order. Then there's the ·nnn/I" switch, which tells FileSizes to ignore 
any files smaller than or equal to nnn pages. Then there are the/Land /R switches, which tell 
FileSizes to look at locally- created files only, or remotely - created files only, respectively. 
Lastly, there is the "volumeN" switch. This tells File Sizes to list all the files on the specified 
volume. A N with no volume specified uses the current volume. 

Here is a summary of the switches (also available via "help FileSizes"): 

/A - - - - - - - - sort in ascending order instead of descending 
IL - - - - - - - - locally - created files only 
/R - - - - - - - - remotely - created files only 
nnn/I - - - - - ignore files smaller than or equal to nnn pages 
volumeN - - list all the files on the specified volume 

Examples: 

FileSizes /r ... mesa 
FileSizes /L TajoN 
FileSizes 50/i N 

- - list all Mesa files created remotely 
- - list all locally - created files on the Tajo volume 
- - list all files on the current volume which 
- - are larger than 50 pages 



A Start Key may be specified for the swap unit table. The run containing the specified page will be 
displayed, and the Count - 1 swap units following it. Next! is implemented. Prev! is ignored. 

===PAGE DISPLAY=== 

The page displays shows the properties of individual pages of mapped spaces. The page information 
displayed is either ·vacant•, indicating that the page is swapped out, or its cleanliness 
(clean/dirty) and referenced status (ref'd/unrefd). The run table and swap unit table information is 
also displayed to show the run and swap unit boundaries boundaries. Runs of adjacent pages with 
identical properties are displayed in a single line; each line shows the starting page and number of 
pages of the run of like pages. A typical table displayed by this command is: 

swapUswapU 
page count ... swap unit state ... 

549 1 avail write swaps alive 
549 1 dirty ref'd 

550 5 avail write pin"d alive 
550 1 dirty ref'd 
552 3 clean unrefd 
554 1 dirty ref"d 

555 1 avail write swaps alive 
555 1 dirty ref'd 

556 1 avail write swaps alive 
556 1 vacant 

EndofVM. 

A Start Key may be specified for the page display. The specified page will be displayed, and the 
Count - 1 pages following it. Next and Prev! are ignored. 



- - Flash.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

"Flash" flashes the screen and breedles the tone generator every two seconds until you hit STOP. 

"Flash once" flashes and breedles only once and then quits. (The "once" can be any string, actually.) 

If you load Flash in background priority, it does a "Flash once", so you can run it as the last thing 
in your Background.bed command line to notify you when background loading has finished. (See 
Background.doc.) Another use for Flash is as a simple alarm; in the Exec, type "Wait 17:00;Flash". 
(You'll have to create another Exec window to do anything else in the Exec before Spm.) 



- - FileMover .doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FileMover is a tool to transfer files between directories in the Mesa Development Environment. There 
are three string items to fill in: "From Directory", "To Directory", and "File List". When the 
"Move!" command is invoked, the files in the File List are moved from the From Directory to the To 
Directory. 

The File List may contain wildcards and command files (*'sand @'s). Any command files in the File 
List must be findable on the current search path. 

Neither the From Directory nor the To Directory need to be on the current search path. But they both 
must be on the currently running volume; i.e., no inter - volume moves are allowed. Thus, both 
directories must begin with either "< >" or "< volumeName > •. 

FileMover will refuse to move a file into the To Directory if a file of the same name already exists 
there, unless the "Overwrite" Boolean item is turned on (it is initially off). 

Normally, FileMover runs in the Notifier process. Turning on the "ForkProcess" Boolean item causes 
FileMover to fork a separate process to do the file moving. The user may set the priority of the new 
process from the "Priority" enumerated item, which only appears when Fork Process is on. 

As each file is moved, a message is displayed in the bottom subwindow of the tool. If anything goes 
wrong during a move, an error message is displayed, and FileMover continues with the n~xt file in the 
list (unless the error is global, e.g., directory full, in which case FileMover aborts). 

FileMover will abort cleanly between files in the File List if the user hits ABORT with the cursor 
anywhere inside its window. 



Floppy - Delete! 
Deletes files specified in the Source from the floppy disk. If for any reason a file cannot be deleted, 
that file is skipped and processing continues with the rest of the files in the list. NOTE: the more 
files on a floppy, the longer ittakes to do a delete. BE PATIENT! 

Options! 
This command opens the OptionSW. 

OptionSW - - -

Boolean options: 

Type 
Display file type. 

Length 
Display file length in BYTES. 

Create 
Display time of file creation. 

Write 
Display latest write access time. 

Sorted 
When doing Floppy - List!, sort the files first. This option makes Floppy - List! take longer, but the 
listing is more IFS - like. 

Count 
Interpret To/Count = number item in Form SW as a count of pages rather than an upper bOundary. 

Number options: 

File Type= 
CARDINAL specifying File.Type Default is LAST(CARDINAL]. 

Format: Files = 
CARDINAL specifying maximum number of files allowed on a floppy. See Format! 

Command options: 

Apply! 
Apply changes to options. 

Abort! 
Don't apply changes to options. 

Tool - - -

The tool can be safely loaded, deactivated, and unloaded, doing all the right things. It even 
registers a NoteSW for ToolDriver. 

Notes & Cautions - - -

Pseudo - Directories 

These are fun! They imitate the IFS directory structure. Actually, the Source string is just 
concatanated onto the end of the Directory string just before wildcard expansion is performed, so 
entering: 

Directory: foo>bar>*>bletch 
Source: dufus 

... is the same as ... 

Directory: 
Source: foo >bar>* > bletch >dufus 

Page ranges 

This is kinda tricky. Lets use the example given in the XDE User's Guide for page ranges. To do the 
equivalent of 

>Floppy Write HugeFile(0!2000] 



- - FindSource.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilotlTajo 
Description: FindSource searches for and displays the implementation or defintion of interface 
items such as procedures, signals, and exported variables etc. 

If you're examining a program and you want to look at the implementation or definition of 
FooDefs.Action, you can use FindSource to load the file in a window scrolled to the correct line 
position. 

How to Use FindSource 

FindSource creates a FindSource menu containing six commands that is present in all loaded FileWindows. 
All six commands cause filewindows to display the source when found, as explained below. FindSource 
takes its arguments from the current selection. These arguments are strings of the form 
"Interface.Item". This asks FindSource to look up" Item:" in the files "Interface* .mesa". Case is 
significant. All of the commands either find a match and load a window or blink the display and print 
out a message to the default typeout (usually the Herald.) The commands are as follows: 

Loadlmpl, LoadDef: Loads the file into the window through which the menu command was invoked. 
Openlmpl, OpenDef: Creates a new filewindow loads the file into that new filewindow. 
Showlmpl, ShowDef: Loads the fi.le into the window chosen according to the same heuristics used by 
the Debugger's "s" command during "Display Stack" mode. 

The commands that end in "lmpl" find the implementation of the selected item; the commands ending in 
"Def" look up the definition of the item. 

How does it work? 

FindSource enumerates likely mesa source files on the current search path and does string searches for 
the interface item desired. The common suffixes for DEFINITIONS files are stripped before the"* .mesa· 
is appended for enumerating files. The suffixes skipped are "Ops", "Defs", "Internal", "Extra", 
"Forgot•, "Priv", and "Private". The suffixes are stripped in that order so that caretForgotDefs.XXX 
will result in an enumeration of Caret" .mesa to search for" XXX: ".In order for a search for an 
implementation to succeed, the implementing source file must EXPORT the Interface. 

How to Install Find Source 

FindSource is can be run in CoPilot or Tajo. It can be started in the Initialize section of the 
User.cm, thus making it available immediately. 

For convienience, augment the [Symbiote) section(s) of your User.cm to contain a new command in the 
Symbiote Menu. For example: 
[CoPilot: Symbiote) 
Menu:Break Create Edit Find Load Position Reset Save Showlmpl Split Store Time Wrap 

Limitations 

FindSource can't find the implementation or a definition unless the source file containing is on the 
current search path, and begins with the same prefix as that for the interface in the argument to 
FindSource. 



- - FloppyRecoveryTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This tool is designed to allow users of floppies to recover as much information as possible from any 
damaged floppy disk. In achieving this aim it presents the user with a file list of the files it 
thinks are on the disk and then allows the user to attempt to retrieve any he/she wishes to a file 
created on hard disk. 

The tool presents the user with a tool window and allows the user 3 commands: -

Check Floppy -
This prints out the file list of all files on the disk either by name or by their 
order in the file list. Additional information is given such as location of the 
file(only printed with the number option), the files ID, the files type 
numerically and the size of the file. 

Choice of which type of list to be printed is made via bugging either 
•Names· or ·Numbers• and then bugging the ·check Floppy• command. The ·verbose• option tries to tell 
the user as much information as possible about what is wrong the floppy being processed. 
The tool works in such a way that firstly it tries to conventionally find the File list via reading 
Sector nine of the disk and finding its address. If this fails the tool will search the data sectors 
for the file list. On failing to find the File list the tool will check each data sector and recreate 
the file list in virtual memory. This will be saved until.such time as the floppy drive is 
opened. 
file list from scratch. the Verbose switch must be set. This will overide any file lists already 
created at the expense of time. 

* "* It should be noted floppies with no file list or those checked with the verbose switch may take 
some time approx 15 mins before any response is seen. 

Retrieve by Name -

Retrieve by Name -

"*"*PLEASE NOTE"***" 

This facility copies as much. as possible, of the file specified by ·source· 
to a hard disk file named by ·destination·. 

This facility copies as much, as possible, of the file specified by "number· 
to a hard disk file named by •destination•. The number is that of the 
position of the file in the file list, on a check floppy by number the 
number of the file follows the "#" character. 

Firstly the tool is not comprehensively tested as a good supply of incorrect floppies with a variety of 
bugs was difficult to come by. as such anybody using the tool is really a beta test. 

***********Known Bugs, features, and stuff that will change (maybe)*********** 

The drive number should always be ZERO or the tool will crash . 

Any destination file should not exist or it will overwrite the current version. 

The tool may according to the type of errors on the floppy disk take some considerable time to either 
reconstruct the file list or tell the user that the disk cannot be recovered. In these circumstances 
some time may be saved by setting the Verbose switch though even under this condition the tool may 
take up to twenty minutes. 

Should the u! 



- - FloppyFileTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ABSTRACT: 
The FloppyFileTool is meant to replace the Executive Floppy.- command. It is a full fledged tool with 
an interface that is very similar to the File Tool. The FloppyFileTool contains all of the 
functionality of Floppy.-, plus two local file commands. In addition, the FloppyFileTool allows the 
user to set up pseudo - directories (like IFS directories) on the floppy which are parsed and understood 
in the same way as the File Tool. Full wildcard (*and#) patterns are supported for both directory 
names and file names. Only the Format! command runs in the Notifier, all others are FORKed. 

FormSW - - -

Directory: 
Name of the pseudo - directory. Wildcards are allowed. This string item Al WAYS refers to the floppy, 
NEVER to the local filesystem. Used by Retrieve!, Store!, Floppy- List! and Floppy-Delete! 

Source: 
A list of files (separated by spaces) for the next command to act upon. File names may include 
"expansion characters" (wildcards). This list applies both to the floppy and the local filesystem. 
EXCEPTION: For the Format! command, this string item is used as the name of the floppy volume. Used 
by Retrieve!, Store!, Local- List!, Floppy- List!, Format!, Local- Delete!, and Floppy- Delete! 

Dest'n: 
The file name for the destination ot a transfer. This single string item applies to both the local and 
floppy filesystems. Used by Retrieve! and Store! 

LocalDir: 
All references to the local disk will only occur within this directory. This string MUST begin with 
the volume name <volume> or the abbreviation<>. Wildcardsare allowed. Used by Retrieve!, Store!, 
Local - List!. and Local - Delete! 

Pages: From = 
This number item is used for specifying the lower bound of a subrange (IN PAGES) of a file (see 
TofCount = ). It defaults to 0. Used by Retrieve! and Store! 

TofCount = 
This number item is used tor specifying the upper bound of a subrange (IN PAGES) of a file (see Pages: 
From = ). It defaults to 0. When defaulted, the range is understood to mean " ... to the end of the 
file." When the boolean option Count is selected (TRUE), this number is interpreted as a COUNT of 
pages, rather than a boundary (see OptionSW, Count). Used by Retrieve! and Store! 

CommandSW - - -

NOTE: All commands EXCEPT Info-Disk! and Format! can be aborted with the STOP key. 

Retrieve! 
Transfers the file name specified in Source from the floppy to the local disk. If Dest'n is blank, the 
file name of the copy made on the local disk is the source file names stripped of FLOPPY directory 
qualifiers. 

Store! 
Transfers the file name specified in Source from the local disk to the floppy. 

Local - List! 
Lists all files on the local disk corresponding to the file list in Source. The information listed is 
controlled by the OptionSW selections. 

Floppy - list! 
Lists all files on the floppy corresponding to the name file list in Source. The information listed is 
controlled by the OptionSW selections. 

Info-Disk! 
Gives information about the floppy. lndentical to the Floppy.- Info command. 

Format! 
Prepares a floppy for storage. The name of the floppy volume is specified in the Source field. The 
maximum number of files allowed on the floppy is specified in the OptionSW (see OptionSW, Format: 
Files = ). The default number is 64. Format! will ask for confirmation if there appears to be valid 
data on the floppy. 

Local - Delete! 
Deletes files specified in Source from the local disk. If for any reason a file cannot be deleted, 
that file is skipped and processing continues with the rest of the files in the list. 



There can be any number of loaded files specified. 

After setting up your User.cm and retrieving all the Font file, just type into the Exec: ·Run 
FontMonster .bed· and after the User .cm is parsed by FontMonster. fonts should start appearing in 
tools and a new menu will be on the root windows menu. 



... you do the following ... 

Step 1: 

Form SW 
Source: HugeFile 
Dest'n: HugeFile[0!2000) - - or HugeFile1. or HugeFileA. etc. if you don't care about being compatible 
with Floppy.-
Pages: From = 0 To/Count= 2000 

Step2: 

Bug Options!. set Count option to TRUE. 

Step3: 

Bug Store! 

Voila! To finish up (ie. do Floppy Write HugeFile[2000)) do 

Step4: 

Form SW 
Source: HugeFile 
Dest'n: HugeFile[2000) - - or HugeFile2, or HugeFileB, ett. if you don't care about being compatible 
with Floppy.-
Pages: from = 2000 To/Count= 
- - notice that To/Count is "nil" which will cause the default to be used 

Steps: 

Bug Options!, set Count option to FALSE. 

Step6: 

Bug Store! 

To retrieve the file, set up the Form SW like ... 

Source: HugeFile[0!2000) - - or HugeFile1, or HugeFileA, etc. 
Dest'n: HugeFile 
Pages: From = O To/Count = 0 

... and bug Retrieve!, then do ... 

Source: HugeFile[2000] - - or Hugefile2. or HugeFileB, etc. 
Dest'n: HugeFile 
Pages: From = O To/Count= O 

Indicator - - -

The indicator does not represent any interesting information. It is just there for show. 

User.cm - -

- - A sample user.cm entry follows: 

[FloppyFileTool) 
WindowBox: [x:512, y: 404, w: 512, h: 252) 
SetOptions: Length Create 

- - SetOptions: may be any of Type, Length, Create, Write, Sorted, Count. 

NOTES & CAUTIONS 

Certain floppy operations will appear to take a long time. This is because it is often necessary to 
scan the whole floppy "directory." 

DO NOT DEACTIVATE THE TOOL WHILE IT IS RUNNING (IE. WHILE YIN/YANG IS SHOWING). THE TOOL WILL CRASH IF 
YOU DO. 



- - FormSWLayoutTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The FormSWLayoutTool allows a Tajo user to graphically layout a Tajo Form SW. After laying out the form, 
the user can generate the Mesa source file using the FormSWLayoutTool. This source can then be 
compiled and executed and the resulting Tool window will have the user's Form subwindow. 

Description of the FormSWLayoutTool: 

The layout tool has three subwindows: a message subwindow, a form subwindow, and 
a blank subwindow used for drawing a form subwindow. The layout tool has 
the following items on its form subwindow: 

FormType: {bool, command, enum, longNum, source, string, tag} 
This enumerated item is used the select the type of form item that you want to 
put on your form. 

Tag: 
In the Tag: field is the tag for the next item that you want to put on your 
form. 

Zone: 
The Zone: field is provided so that the user can specify a name for the zone 
from which storage will be allocated. 

AlignX . 
This boolean allows forces that items that are layed out to be on columns 
defined by the width of the character ·o. 

Use box 
If this boolean is selected, the generated tool will have the same window 
box as the current size of the layout tool. 

Anyfont 
If this boolean is selected, the layout tool will generate source for a tool 
which will have proportion spacing on its form subwindow given any 
system font. 

Root: 
This is the root name of the program, file, and tool that will be generated. 

Dolt! 
This will cause the layout tool to generate Mesa source for the form 
subwi.ndow. 

Clear! 
This will cause the bottom subwindow to clear itself 

Set Defaults! 
This will bring up an option sheet which will allow you to set the defaults 
for the property sheets of the different form items. 

Save! 
This will save the contents of the bottom subwindow in an intermediate format. 
The file generated will have the root name in the Root: field with the 
extension ·.by• 

Load! 
This will load a .by file into the layout tool. The .by extension is 
automatically 

Plagiarize! 
This will allow the user to select a form subwindow from a existing tool. 
Just bug Plagiarize! and the cursor will change form. Move the cursor over 
the form subwindow you want to copy and hit Point. If you want to abort, 
hit the Adjust button. 

Method of Operation: 

The layout tool has modes of operation: Initial layout and editing. You are in 'initial layout' mode 
ifthere is text inthe Tag: field of the tool's form subwindow, and in 'editing' mode if there is 
no text. 
When in the layout mode, you can place items in the bottom subwindow by moving the cursor into the 
bottom subwindow and hitting Point where you want the tag to be located. Upon entering the bottom 
subwindow, the cursor will become a brush which can be placed anywhere in the subwindow. All you can 
do in layout mode is to place form items in their initial places. As you edit the Tag: field and the 
Form Type:(} field the brush takes on new looks to match the information in these two fields. 
To get into editing mode, just delete the text in the Tag: field. When the cursor is moved into the 
bottom subwindow, it will remain an arrow. You can now select items to be manipulated by hitting 
Point over that item. Selected items are displayed by inverting the bits on the item. There can 
only be one item at a time which is selected. Once an item is selected, the following function are 
on the following keys: 
DELETE: will cause the current selection to be deleted. 
UNDO: will bring back the last deleted item 
MOVE: will allow you to move the selected item 
STOP: will abort a move when in the middle of a move 



- - FontMonster.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FontMonster allows you to tailor your environment by allowing you to use different fonts in different 
text windows. FontMonster provides a menu on the root window that has a list of fonts. If an item on 
the menu is selected, the cursor is changed into a little face. Moving the cursor over a text 
subwindow and hitting Point will cause that subwindow to have the selected font. If Adjust is hit, 
FontMonster will abort the users choice. The first item on the menu is "System·, which is the 
system's default font. You specify the rest of the entries in the menu through the User .cm 
(Explained below). 

FontMonster also allows you to assign fonts to specific text subwindow in specific tools. You can 
have a different font in a tools Message, File, TTY, or Text subwindows. Fonts for loaded files and 
empty windows can also be specified. Fonts are specified through the User.cm file. 

To use this program: 

1. Retrieve FontMonster .bed. 
2. Retrieve the desired font files. (Explained below) 
3. Set up User.cm (Also explained below) 
4. Run FontMonster .bed 

Getting the desired font files: 
Suppose you wantto use 4 fonts: CREAM10.STRIKE, HELVETICA 10.STRIKE, HELVETICA 12B.STRIKE, and 
TIMESROMAN81.STRIKE. First, retrieve the font files from the diskette. (See a list of font files 
that are on the diskette). 

Setting up the User .cm: 
****A sample User.cm**** 

[Chat] 
WindowBox: [x: 512, y: 100, w: 512, h: 400) 
TTYFont: CREAM10 

[CommandCentral) 
WindowBox: [x: 0, y: 404, w: 512, h: 374) 
MessageFont: TIMESROMAN81 
FileFont: HELVETICA10 

[FileWindow) 
EmptyFont: TIMESROMAN81 

[Executive) 
WindowBox: [x: 512, y: 448, w: 512, h: 330) 
lnitialState: active 
TTYFont: TIMESROMAN12B 
DefaultFont: CREAM10 - - if a symbiote is on the exec, it will get this font. 

[FontMonster) 
FontList: CREAM10.STRIKE HELVETICA10.STRIKE HELVETICA12B.STRIKE TIMESROMAN81.STRIKE 
MenuOnly: FALSE 
Loaded: User.cm CREAM10 
Loaded: ThingsToDo HELVETICA10 
Loaded: Calendar TIMESROMAN81 

***end of User.cm*** 

Setting up your User.cm to use this program: 

1. All fonts must be specified in the "FontList" part of "[FontMonster]". 
Each font file must include the proper filename extension, ie CREAM10.STRIKE 
vs. only CREAM10. These fonts will appear in FontMonster's menu. 

2. MenuOnly is TRUE if you only want the FontMonster menu, FALSE if you want 
the below functions. 

3. In each tool, you can specify font for the following types of subwindows, 
"TTY Font•. "MessageFont•. ·Filefont". and "DefaultFont". If a tool has 
a text subwindow that is not a message, file, or tty subwindow, use the 
"DefaoltFont• section. All fonts specified need only the root name of the 
file. that is, use CREAM10 instead of CREAM10.STRIKE. 

4. In the "[FileWindow)" section, the" EmptyFont" specifies the font for 
empty windows. 

5. In the "[FontMonster)" section, one can specify fonts for loaded file 
windows. Thesectionslookasfollows: "Loaded: <Filename> <Font>". 



- - FSWindowTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FSWindowTool is a Star - like file tool which runs in Copilot or Tajo. 
It lets you examine and operate on Filing volumes which are either 
on your own machine (e.g., your OS 5.0 Star ·user" volume) or on a 
public or private OS 5.0 - compatible File Service. Access 
to Filing volumes on remote machines is limited by enforced access 
controls, while no access controls are enforced for local Filing volumes. 
This implies that you can only screw up your own files or files to which 
others have given you permissions. 

You normally operate FSWindowTool in the pointing and opening mode as 
you do in Star, but you also have the option of entering the string 
name (or pathname) for the desired object when scrolling is less convenient 
or inappropriate. Thus, FSWindowTool combines the advantages of Star 
and the Mesa File Tool for accessing Filing volumes. 

It you have used Star, you can probably figure out how to use most of 
this tool just by running it, so the following can be skimmed and referred to 
as needed, though you should probably read at least the current list of 
restrictions (at the end of this document). 

Specifics: 

For 11.1 -

Required software: 
RunFSWindowTool.bcd 
FSWindowTool.bcd 
Filing.bed (optional - for local ops only) 

In the executive of either Tajo or Copilot type: 
RunFSWindowTool 

This will cause Filing.bed to be loaded first (a necessity), then FSWindowTool. 
If Filing.bed is not around, FSWindowTool will still work, in a remote - only 
mode, i.e. it will not present you with the ·1oca1·· option. 

If you operate on your star User volume, be sure it is done at key stop 2 
(if you have separate star/user volumes) or else reboot star in lieu of 
proceeding from the debugger. (I.e., the same restriction as with the 
StarFileTool). 

Logon Window: 

Initially you are in the logon window, and you have a choice of three options: 
o LOCAL is used to operate on LOCAL Filing volumes. 
o REMOTE is used to operate on REMOTE Filing volumes. 
o MESA is used to operate on the MESA development environment 

file system (MFile) on the current volume (in a very limited way 
- - i.e., naming directories as the destination of a copy or 
naming files as the source of a copy). 

The user name and password will be retrieved from the Profile Tool on 
startup of the tool and will be updated each time you update your name 
and password in the Profile Tool. Changing you name and/or password 
has the effect of changing your identify for all the windows 
that make up this tool. 

LOCAL mode: 
When the LOCAL option is taken, you will be presented with 
a list of local logical volumes which are of equal or lower 
type than the current logical volume. If you really feel 
the need to open a volume of higher type (e.g .• a debugger 
volume from a normal volume), you can enter the name of that 
volume after the prompt "Specified Volume:··. You can then 
select one of the volumes provided to you or select the 
volume whose name you typed in and bug the command "Open&list! ". 
This will create a new (directory) window which lists the 
first few files at the root of selected volume. The directory 
window is described in more detail below. 

MESA mode: 



- - ForkLogin.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ForkLogin.bcd creates a Form window which asks you for your login name and password. The login name is 
initialized to the value from the Profile, which is initially taken from User .cm. If you NEXT out of 
the password field, the Apply! command is invoked automatically. After either Apply! or Abort! is 
invoked, the window disappears. 

The ForkLogin window is created only if either the User or the Password currently registered is empty. 
The ForkLogin window will appear later any time these credentials are changed so that one or both is 
empty. Thus the window will be brought up the first time you enter CoPilot after booting another 
volume, or if another program (such as the hack DMT) smashes your password, etc. You can specify 
where the window is to appear by putting a WindowBox parameter in.the Forklogin section of your 
User.cm. The default is to fill the screen. 

If you include this in CoPilot's "Initialize" line, the login window magically appears on top whenever 
you reboot CoPilot. The effect is roughly equivalent to including • 11eventBooted: Login.-• in the old 
Alto User.cm. (You cannot include "Login.-" in the Initialize line; it causes deadlock.) 

This is a much more secure way to log in than having a Login.bed or Login.mesa file hanging around your 
CoPilot volume (or, worse, your IFS directory). 



with descendent directories still open. Each directory window is 
completely independent. 

o "Close All!": Destroys all active windows which originated, directly or 
indirectly. form the same "Open&List!" command on the Logon window. 
Tiny and inactive windows are not affected. "Close All!" has the 
same effect on all active windows in the same 'family' of windows. 
Therefore, any windows that you want to save around, as icons on 
your Xerox Development Environment 'desktop' should be made tiny or 
inactive before issuing the "Close All!" command. The analogy with 
Star icons is accurate. Tiny (or inactive) directory windows 
have the same functionality and efficiency as closed reference 
icons in Star. Making a directory window tiny is a good way 
to redisplay a window (necessary when other users are changing 
a remote window you are looking at) or for going back to the 
start of the directory. 

o ·Attributes!·: This is similar to Star's property sheets except 
you get to see and change more of Filing attributes (see current 
restrictions below) with FSWindowTool's attribute window. Any 
attribute the tool lets you change will be reflected back into 
the file when you bug "Apply!" or be discarded if you say ·Abort!". 
The "Pages" attribute is really Filing "subtreeSize" attribute 
so; for a directory that gives the size of the directory and 
all of its descendents. You can have attributes windows open 
for several files concurrently, unlike Star. A more complete 
description of· Attributes" windows is given later. 

o "Free Space!": This command is only available for local directories 
and gives the amount of free space (in disk pages) on the local 
Filing volume. This may not be the same as the available space 
when star is running since temporary files have been deleted by 
opening the volume. Also this number will differ from that shown 
by the Mesa file system, since Filing reserves about 50 pages 
for its own use. 

o "Next Page!": Scrolls to the next screen full of the directory 
(16 entries per screen full). If there is selection, the command 
instead positions the selected file at the top of the page. 
The selected file may be entered on the ·Specified File:• line in 
order to scroll to a distant entry in a large directory. 

o "Previous Page!": Scrolls to the previous screen full of the 
directory, or to the start of the file, which ever comes first. 
If there is selection, the command instead positions the selected file 
at the bottom of the page. The selected file may be entered on the 
"Specified File:" line in order to scroll to a distant entry in a large 
directory. 

o "Copy!": Begins a copy operation, taking the selected file as the 
source. It is completed by the "Confirm!" (or ·cancel!") command, neither 
of which is available until an operation is in progress. Copy can be 
used to copy between file services, copy between a file service and 
your Star desktop, copy between the local Mesa file system and the 
Filing volume on your desktop or on a File Service. The destination 
must be a directory rather than a file. It is not currently possible 
to rename a file as it is being copied. You must bug "Confirm!" 
in the window where you select the destination directory. If you 
bug "Confirm!" without selecting a destination you are selecting 
the open directory as the destination (akin to selecting after 
all of the items in a Star directory). In this case, a second 
confirmation will be required. (If you specify the open window 
using the"." name described above, no second confirmation is 
required.) Copying between two Filing volumes (on the same or 
different machines) can be done for directories as well as for 
individual files, exactly as can be done with Star. Copying to the 
Mesa file system is not necessarily reversable since attribute 
information (e.g., File type) may not be preserved. 
When copied to the Mesa file system, Multi - segment Filing fifes 
(e.g .• Star Documents) are stored in compressed (segment- encoded) 
form as a single file. You cannot copy a directory into the Mesa 
file system. You must either copy each individual file separately 
or else use the "Serialize!" command to produce a serialized 
representation for the directory. Copying a text file out of the 
Mesa file system will create a file of type NSAssignedTypes.tText 



ITALICS: will the equivalent of a Jfirst on a textsubwindow. 
PROPS: will bring up a property sheet on the selected item. The properties of 

each item are the parameters needed in the FormSW.ClientltemsProcType for 
making the item. For most items it will not be necessary to edit the property 
sheets unless you want special identifiers for the variables. The exception 
are the enumerated items, which must be edited because the the choices in 
the enumerated items window. The syntax for the choices is as follows: 

Choices : = TOKENLIST 
TOKENLIST: = TOKENLIST CHOICEITEM I CHOICE ITEM 
CHOICEITEM: = TOKEN I [TOKEN, VALUE) 
VALUE : = valid Mesa variable I a numeric constant 
TOKEN : = WORD I "WORDLIST" 
WORDLIST : = WORDLIST WORD I WORD 
WORD : = a list of any characters except space and double quote. 
(Note: if VALUE is a Mesa variable, the generated source won't compile 
without the user editing the source) 

Example: 
IF in an enumerated item prop sheet: 

Choices: Waitaminnit [buddy, 43) ''fix the enums" 

results in the Mesa code: 
ARRAY[0 .. 3) OF Enumerated 4-[ 

["Waitaminnit". OJ,[" buddy". 43) 
["fix the enums". 2)); 

which results in a form item: 
Item: {Waitaminnit, buddy, fix the enums} 

After working on the forin, you can either hit Dolt! to generate the Mesa source, or hit Save! to save 
the form in a loadable intermediate format. The files will have the name in the Root: field followed 
by .mesa for a Mesa source or .by for the intermediate format. 

The default option sheet allows the user to set the defaults for new items which are created. It also 
allows the user to modify the name of the data handle, the name of the scalar type, and to put some 
arbitrary text in the FormSW.ClientltemsProc. These look as follows: 

[Global Things) 
EnumType: 
HandleName: 
ProcName: 
StuffString 

Notes: 

Default = "form Items". is the name of the generated scalar 
Default = "data", the name of the data handle. 
Default = "Makeform". name of the FormSW.ClientltemsProc. 
No default. This is an arbritrary string which is stuffed into 
the FormSW.ClientltemsProc after all the local declarations. 
One use of it may be for comments or for getting a data 
context from a window, ie. 

StuffString = " data: MyContext 4-Context.Find[c, sw)" 

After working on a form for awhile, its good to use the Save! command so that if you crash, you won't 
have lost all your work. 

Use the property sheets to make the form as close as you can to the final code. ie put in the real 
variable names you're going to use, rather than the defaults the tool provides. 

Also, save the .by file that is generated by the Save! command after you finish the form. This way, 
the next person to work on the program will be able to load this file and easily modify your tool's 
looks. Once you start doing massive edits to the generated source, the ability to easily to 
modifications become very difficult. 

Known bugs: 
The FormSWLayoutTool will not check for valid Mesa identifier names. If you pass a bogus one the 
tool, odds are it will not compile. 

The format of the intermediate .by file is very similar to the Mesa source, if you feel so inclined 
as to edit these, you deserve what you get. 

Before deactivating the tool, it is wise to destroy all the property sheets by using the Close! 
command on the property sheet. Likewise, you should make sure the Defaults options sheet is also 
close. Not doing this will likely result in an address fault somewhere. 



The following attributes require an explanation for how they are manipulated, 
the other attributes which can be changed can simply be changed 
like you would do on a Star property sheet: 

o Type. A menu can be brought up over the Type attribute. This gives 
the types FSWindowTool knows about. You can enter one of these or 
select any other long cardinal value. To allow a symbolic name 
to be displayed, FSWindowTool ignores anything entered in this 
field after an open parenthesis or a blank space. 

o Checksum. If the checksum attribute is ever wrong on a file, the 
filesystem won"t let you look at the contents of your ·damaged" file. 
You can set the checksum attribute to the unknown value (1777778) 
if you want to take your chances with the file. 

o Directory Orderings. The two fields "Ordering" and "Direction" 
make up the ordering attribute of a directory. ·You can sort 
a directory by any of the attributes available in the ordering menu. 

o Access Lists (Access List and Default Access List). The Access List 
and Default Access List attributes are changed using the ·change 
Access List!" and "Change Default Access List!" commands, respectively, 
as well as the "Same As Parent" and "Same As Access List" booleans, 
respectively. When the booleans are not set the corresponding access 
list is explicitly set on the file. When the booleans are set, 
the access lists displayed are the effective access lists which 
are computed from the default access list of the parent, or the 
access list of the file, respectively. The "Unify Descendent 
Access Lists• boolean makes all files which are descendents of 
the current directory have access lists which are computed from 
this window's default access list. Like everything else in the 
Attributes window, this does not take affect until the" Apply!" 
command is invoked. To change an access list, enter the name 
of a group or individual inthe "Name· field on the "Access Entry" 
line. Specify the desired access and invoke the "Change Access List!" 
or "Change Default Access List!" commands. You can use this method 
to change existing entries. add new entries or to eliminate entries. 
The special string "(World)" can be used to indicate the group 
containing everyone. System administrators may request that you 
use a valid clearinghouse group (such as AllOSBU :OSBU South: Xerox) 
to restrict access; however the special "(World)" group is 
more easily evaluated by the file service. 

o Extended Attributes. The line labeled "Currently Set Extended 
Attributes" lists the extended attributes which are currently 
set at any given point in time. To see a particular extended 
attribute, find its name in the "Attribute" menu or else enter 
the attribute number in the "number" field. For attributes that 
are understood by FSWindowTool, the "Interpretation" field will 
be set to the appropriate value, otherwise you will have to 
choose the interpretation given to your extended attribute. 
Once you have chosen the attribute (by name or number) and 
the interpretation, use the "Show Extended Attribute!" command 
to display it on the line after "Currently Set Extended Attributes". 
Although you can only see one extended attribute at a time, 
all changes to extended attributes will be remembered until 
the" Apply!" command is invoked. 

A non -obvious use of FSWindowTool: 

o If you create an interpress file using the Mesa "Print" command, 
you can store it out and change it"s type to "interpress". This 
will let Star users print your file. 

Outstanding (known) problems (Current Restrictions): 

1. Deactivating and reactivating an Attributes window will crash 
(why would anyone want to do this anyway?). 

2. The tool uses the systemZone and hasn't been checked for storage leaks. 

3. Cannot connect to non - english file services. 



When the MESA option is taken, you will be presented with just 
the current logical volume and the "Specified Volume:" prompt. 
You may select that volume or else enter the name of an 
already opened {in the Pilot/Mesa sense) logical volume and 
once again bug "Open&List! ". A directory window. similar 
to the one created in LOCAL mode is created. Only those functions 
necessary for interacting with Filing volumes are provided. 
Others such as directory enumeration and file deletion which 
can be accomplished using the Mesa executive or File Tool are 
not attempted by the FSWindowTool. 

REMOTE mode: 
When the REMOTE option is taken, you will be presented with a 
list of public File Services which are in the domain 
and organization indicated by the "Domain:" and "Organization:" 
options. The choices of domain and organization are initialized 
using the domain and organization of the profile tool, if set. You 
can select the name of a Domain or Organization from a pop up · 
menu or type the names into the respective fields directly. Selecting 
from the pop up menu will reset the state of the tool automatically. 
Typing the name of a Domain or Organization requires setting the 
tool state manually using the "Set Domain/Organization" command. 
If both the Domain and Organization names are changed, bugging the 
·set .. " command will cause the organization to change first. 
You ca"n also enter the name or network address of a private 
File service after the "Specified File: 0 prompt if you so desire. 
You may choose one of the supplied services or else select the 
one you typed in and then bug "Open&List!" to get a directory 
window to a remote file service. 
Note: - - Mail Services are no longer linked with the File Service. 

Directory Window: 

When you open a File Service or local volume, you will enter a directory 
window. Here you are given a list of files and directories which are 
at the root {or top- level) of the file system. You will also be given 
the prompt "Specified File: 0 which can be used to enter the name of a 
file or a file ID {identified as S octal numbers separated by spaces) 
which is in this directory but which is not currently displayed 
on the screen. This prompt can also be used to enter a path name relative 
to the currently displayed directory. For the purpose of this tool, 
path names are strings using "/" as a separator between file names, and 
'! separating file names from version numbers. It is also possible 
to escape" /"s which are included in file or directory names. The 
single character"." is given special interpretation by FSWindowTool 
when it is entered as the "Specified File". It is used to indicate 
the directory whose listing is displayed in the window. Thus, you 
can copy an open directory, get attributes of an open window (including 
the root of a volume) or copy into an open window all by typing and 
then selecting the single character".". You may also enter the file ID 
{only) of a file NOT in this directory. but on the same volume. 

Although you might be tempted to use the scrollbar to scroll to other files 
in the directory, this will not work. FSWindowTool always shows 
16 items at a time. The commands "Next Page!" and "Previous Page!" 
described below are used for scrolling. The scrollbar is only useful 
should you resize a directory window so that all sixteen items cannot 
be displayed at once. Here are the various commands, most of these 
operate on the currently selected file or path name: 

o "Open&List!": Opens the selected directory. Only directories can 
be opened. Directories are indicated by a " - " in the first column 
of the window. Opening a directory results in another directory 
window being created. Unlike star. each opened directory creates 
a distinct, overlapping window. This allows you to see more than 
one directory at a time and move files, for instance, from one 
directory to another. Opening a directory using a pathname 
suppresses the intervening windows. The effect of "Open&List!" 
is undone by the "Close!" or "Close All!" command. It is 
pefectly acceptable to open the same directory multiple times. 
In such a case, a change to one window will be immeidately 
made visible in the others. 

o "Close!": Destroys the current directory window. This has no effect 
on any other window. In particular, it is legal to close a directory 



.... G:itewa·. ;_ .- ~. :. ~: 1; 

··Copyright (C) ~ c"i8'1 IJy Xerox Corporation. All rights reserved. 

Please rele r to th.:.i document, "Ethernet Monitors", in XDE Unsupported Softwci re Description. 



(the same as the Mesa File Tool) which is understood by Star 
and therefore can be converted using the OS 5 Star Converter Icon. 

o "Move!·: Begins a move operation, taking the selected file as the 
source. It is completed by the "Confirm!" (or ·cancel!·) command. 
When the source and destination are on different Filing volumes, it 
is equivalent to ·copy!" followed by "Delete!". "Move!" cannot be 
done to or from the Mesa file system. 

o "Serialize!": Similar to copy, except the result is the serialized 
representation of a file and, if a directory, all of its descendents. 
This command should be used to transfer arbitrary files or directories 
into the Mesa file system when done for archival purposes. The 
serialized representation records all of the attribute information 
of the original file(s) so that they can later be restored completely. 

o "Deserializer·: Similar to copy, except the source must be in the 
serialized representation of a file or directory. This undoes 
the effects of "Serialize!". Desktops stored on file services 
are stored in this format, so they can be deserialized using 
this command. 

0 ·Delete! n: Deletes the selected file, unless it is a directory which 
is not empty in which case the deletion doesn't occur until 
the "Confirm!" command is executed. 

o "Confirm!": Only is made available when a "Copy!", "Move!·, 
"Serialize!", ·Deserialize!" or "Delete!" operation is in progress. 
For "Copy!", "Move!", ·serialize!" and "Deserialize!·, the selected 
file is the destination directory. Even if the selected file is 
a typed - in file name, it must still be the name of a directory and 
not the actual file name - - renaming during copy is not supported. 

o Cancel: Aborts a ·copy!", "Mover·, ·serialize!", "Deserialize!" 
or "Delete!" operation in progress. 

Attributes Window: 

An Attributes window is created by the" Attributes!" command in a 
directory window. It corresponds very much to the property sheet 
in Star except that all Filing attributes are or can be made visible. 
No change to the file is effected until the "Apply!" command is invoked. 
The" Abort!" command averts all changes. Attributes windows can be 
made tiny but will crash if deactivated and later reactivated. Unlike 
directory windows, making an attributes window tiny will not cause 
any of the fields to be reevaluated. Also, attributes windows are 
dependent on directory windows, so they are destroyed when the 
directory window to which it applies is closed. Almost all attributes 
can be examined. A few cannot but they can be deduced (isDirectory - -
deduced by seeing directory attributes and sizelnPages - - deduced from 
the sizelnBytes attribute (the "Pages" value is really the subtreesize 
attribute. When set it indicates the sum of the sizelnBytes attributes 
or a file and all its descendents). A few attributes can not be seen 
completely. Position attributes and uninterpreted extended attributes 
are only displayed for 6 words. If necessary that value can be changed 
in the debugger by changing a global variable in FSWindowToolClmpl. Lastly, 
there are those attributes like Type and Extended Attribute Type which 
are only known by the filesystem as a number. Only the common values of these 
attributes are known by FSWindowTool. Consult the Filing Programmer's Manual 
in the Services 8.0 Programmer's Guide if you are not familiar with Filing attributes. 

The following attributes can be seen and changed (subject to access control): 
Name, Version, Type, Page Limit, Checksum, Access List, 
Default Access List, Directory Ordering, Uniquely Named Children 
and extended attributes whose interpretation is one of 
{boolean, string, cardinal, long cardinal, integer, long integer). 

The following attributes can be seen but not changed: 
SizelnBytes, SubtreeSize, FilelD, ParentlD, CreatedOn/By, 
FiledOn/By, ReadOn/By, BackedUpOn, extended attributes whose 
interpreta~ion is one of {none, name list} (interpretation {time) 
is not supported). 

Of these attributes which cannot be changed, the following are not allowed 
to be changed by Filing: SizelnBytes, SubtreeSize, FilelD, FiledOn/By, 
and ReadOn/By. 



- - HeapChecklmpl.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

HeapChecklmpl implements a layer on top of the Pilot Heap mechanism. This version is modified from the 
version of HeapCheckPack.mesa. which was in turn stolen from Star. This version is named HeapChecklmpl 
instead of HeapCheckPack to distinguish it from those modules, and was modified to corred a few bugs 
and make it work with the HeapCheckTool. HeapChecklmpl has several built in facilities for heap 
debugging that have not been tested in this version; see the sedion entitled 'Untested facilities' 
for more details. 

General info 

HeapChecklmpl implements a layer on top of the Pilot Heap mechanism that supports owner checking on all 
heaps and gathers statistics on heap usage for all heaps. HeapChecklmpl also keeps a linked list of 
all heaps. The HeapCheckTool provides a tool interface to this information. 

Normally, variables of type UNCOUNTED ZONE are really of type Heaplnternal.UncountedZoneRep. This 
record contains a pointer to the Heaplmpl procedures that implement NEW and FREE, and a pointer to 
some data that describes the parameters of the heap. With HeapChecklmpl installed above Heaplmpl, 
variables of type UNCOUNTED ZONE are adually of type HeapChecklmpl.UncountedZoneRep. The existing 
NEW and FREE procedures are replaced with calls to HeapChecklmpl.MakeNode and FreeNode, and Heap 
Create and Delete calls call HeapChecklmpl instead of Heaplnternal. The 
HeapChecklmpl.UncountedZoneRep also contains a pointer to the real heap, which adually does the 
request Heap operation after HeapChecklmpl has gathered a few statistics. 

Other tools that operate on heaps, such as DebugHeap. will not accept the 
HeapChecklmpl.UncountedZoneRep handle that a variable of UNCOUNTED ZONE points to. These tools want a 
Heaplnternal.UncountedZoneRep, which can be obtained by using the HeapCheckTool or using the debugger 
to execute ( <heapcheck handle> %(HeapChecklmpl.UncountedZoneRep)).underlying . 

The global variable head in HeapChecklmpl is a linked list of all the normal and uniform zones. 
mdsHead points at the list of MOS zones. zoneCt is a count of the number of all heaps currently in 
existance. 

Note: currently, HeapChecklmpl allocates a 26 word node from the system heap for each Heap that gets 
created. HeapChecklmpl should probably be changed to allocate these nodes from it's own zone. 

Building HeapChecklmpl into a boot file 

Augmenting the existing Heaplmpl with HeapChecklmpl requires building HeapChecklmpl into the bootfile, 
and using the bootfile main config to export the Heap procedures that HeapChecklmpl replaces. As an 
example of how to do this, BWSPerf.config is included at the end of this file. This example is from 
the Basic Workstation, and also binds SpaceCheckPack, which provides debugging information about the 
Space mechanism. 

Untested facilities 

HeapChecklmpl provides facilities for 'proteding' nodes and breaking to the debugger if a node is 
freed by a module other than the one that allocated it. These facilities have not been tested in this 
version of HeapChecklmpl. By default, HeapChecklmpl does not do this checking. HeapChecklmpl exports 
HeapCheckDefs.mesa. which provides access to some of these facilities. 

HeapChecklmpl does owner checking on all modules by default. HeapChecklmpl also has a variable called 
'releaseMode', according to the notes at the top of the module, if releaseMode is true: 

- - Client sees zone handles that are Pilot objeds created by Heaplmpl 
- - Client calls to NEW/FREE go diredly to Heaplmpl; to Heap.Make/Free, thru HeapCheckPack 
- - NodeHeader records are not used; nodes have client - specified length. 

If releaseMode is false (the default), everything goes through HeapChecklmpl. 

Example bootfile main config with HeapChecklmpl and SpaceCheckPack: 

- - BWSPerf.config 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

BWSPerf: CONFIGURATION 
IMPORTS 

STBOps, 



- - FTPs.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

FTPs is a version of FTP that runs in the exec with an additional switch for the list command, /s, that 
causes ONLY the subdirectories to be listed, e.g. 

FTPs ServerName dir/c Mesa li/s ... 

FTPs is registered with the exec when FTPs is started. 

This is FTP which has all the normal FTP functions. So you should be able to delete FTP.bed and 
replace it with FTPs.bcd. You may invoke it by typing FTP or FTPS as long as you do not. have FTP.bed 
on your disk. · 



END .. 



- - HackedTajoFont.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

HackedTajoFont.strike is a somewhat - modified version of TajoFont.strike, the standard font that comes 
with Tajo. HackedTajoFont differs in the following ways: 

- The control characters are visible. Mostly they are a little up - arrow followed by a little letter. 
Exceptions: escape isa little "Esc·; f G is a cute little bell shape; f A and f Bare unchanged, except 
that •.. 

- f A is moved one bit to the right. 

- Percent(%) is slightly prettier. 

- The single - quote I apostrophe character(') is asymmetrical. Perhaps this looks nicer - perhaps it 
doesn't. It was necessary because ... 

- The back - quote character (·)was made visible. It's a reflection of '. For those of you who have 
not fully explored your keyboards, you can type · with a shift- minus. 

- lower- case mis prettier. The standard mis incredibly ugly if you look at it closely. 

- Delete shows up as a gray rectangle. A number of different terminals use this convention, so I 
figured why not. 

Besides its purely aesthetic improvement, HackedTajoFont is useful for reading mail from outside of 
Xerox. Unix types in particular seem to derive sadistic pleasure from quoting things with · · ". 

To use HackedTajoFont, retrieve the file and put the following line in the (System] section of your 
User.cm: 

Font: HackedTajoFont.strike 

I want a new font 
One that looks like it should 

One that shows my back - quotes right 
And makes my mmmmm's look good. 

One that won't make me nervous 
Wondering what I typed 

One that let's me see what's 
In each and every byte ... 
Sending you those bytes. 



SpecialTIP, SpecialWindow, Window, 
XFormat, XString, 
BeepFace, DisplayFace, CommunicationPrograms. 
HeadStartChain, KeyboardFace, MouseFace, PilotDiskFace, ProcessorFace, 
RealMemory, Runtimelnternal, 
RuntimePrograms, SABOOFace, TemporarySetGMT 

EXPORTS ALL = 
BEGIN 

PilotAndCheck: CONFIG 
IMPORTS 

BeepFace, DisplayFace, Environment, HeadStartChain, 
Heap, lnline, KeyboardFace, KernelPrograms, 
MouseFace. PilotDiskFace, ProcessorFace, RealMemory, 
Runtimelnternal, SA800Face, TemporarySetGMT, 
RuntimePrograms, CommunicationPrograms, 
PilotClient 

EXPORTS 
ByteBlt, File, FileExtras, FloppyChannel, ObjAlloc, PhysicalVolume, 
Process, Runtime, Scavenger, Space, Stream, System, TemporaryBooting, 
UserTerminal, UserTerminalExtras, Volume, VolumeConversion, Zone, 
DebuggerSwap, DeviceCleanup, Device Error, DiskChannel, 
Disk Scheduler, 
ResidentHeap, Snapshot. SpecialBooting, 
Specialfile, SpecialRuntime, 
SpecialSpace, SpecialSystem, SpecialVolume, 
VM, Zonelnternal, DiskDriversPerf, FileBasicsPerf, FileMgrPerf, 
ResMemPerf, SpacePerf, VMPerf, KernelFile, LoadState, 
Heap, 
Runtimelnternal, SpaceCheckDefs = 

BEGIN 
[ByteBlt, File, FileExtras, FloppyChannel, ObjAlloc, PhysicalVolume, 

Process, Runtime, Scavenger, Space1, Stream, System, TemporaryBooting, 
User Terminal, UserTerminalExtras, Volume, VolumeConversion. Zone, 
DebuggerSwap, DeviceCleanup, DeviceError. DiskChannel, DiskScheduler, 
ResidentHeap. Snapshot, SpecialBooting, · 
Specialfile, SpecialRuntime, 
SpecialSpace, SpecialSystem, SpecialVolume, 
VM, Zonelnternal, DiskDriversPerf, 
FileBasicsPerf, FileMgrPerf, ResMemPerf, 
SpacePerf, VMPerf, KernelFile, LoadState, 
Runtimelnternal] _ PilotKernel[); 

[Heap1, KernelPrograms, SpecialHeap] _ Heaplmpl[Heap1, lnline, Runtime, Space, System, VM, Zone, 
Environment]; 
[Space2, SpaceCheckDefs) _ SpaceCheckPack[Runtime, Space1, System]; 
Space_ Space2 THEN Space1; 
[HeapCheckDefs, Heap2] _ HeapCheckPack[Heap1, lnline, Runtime]; 
Heap_ Heap2 THEN Heap1 
END; 

STBStuff: CONFIGURATION 
IMPORTS 

Auth, File, Heap, NSFile, NSFileControl, NSFileExtra, NSVolumeControl, 
Process. Processorface, Runtime, Xformat, XString, SpecialWindow, 
SpecialTIP, STBOps, System, UserTerminal, Volume, Window 

EXPORTS ALL 
CONTROL MinimalStarControllmpl = { 
STBControl; 
MinimalStarControllmpl}; 

- - kernel stuff 
PilotAndCheck; 
Supervisorlmpl; 
VMMapLoglmpl; 

Loader; 

FileStreamlmpl LINKS: FRAME; 

MemoryStreamlmpl; 

STBStuff; 

END .. 



Auth, NSFile, NSFileExtra, NSFileControl, NSVolumeControl, 
SpecialTIP, SpecialWindow, Window, 
XFormat, XString, 
Beepface, Displayface, CommunicationPrograms, 
HeadStartChain, KeyboardFace. Mouseface, PilotDiskface, Processorface, 
RealMemory, Runtimelnternal, 
RuntimePrograms, SA800Face, TemporarySetGMT 

EXPORTS ALL = 
BEGIN 

PilotAndCheck: CONFIG 
IMPORTS 

Beepface, DisplayFace, Environment, HeadStartChain, 
Heap, lnline, Keyboardface, KernelPrograms, 
Mouseface, PilotDiskFace, Proc:essorface, RealMemory, 
Runtimelnternal, SA800Face, TemporarySetGMT, 
RuntimePrograms, CommunicationPrograms. 
PilotClient 

EXPORTS 
ByteBlt, File, FileExtras, FloppyChannel, ObjAlloc. PhysicalVolume, 
Process, Runtime, Scavenger, Space, Stream, System, TemporaryBooting, 
UserTerminal, UserTerminalExtras, Volume, VolumeConversion, Zone, 
DebuggerSwap, DeviceCleanup, DeviceError, DiskChannel, 
Disk Scheduler. 
ResidentHeap, Snapshot, SpecialBooting, 
SpecialFile, SpecialRuntime. 
SpecialSpace, SpecialSystem, SpecialVolume, 
VM, Zonelnternal, DiskDriversPerf, FileBasicsPerf, FileMgrPerf, 
ResMemPerf, SpacePerf, VMPerf, Kernelfile, LoadState, 
Heap, 
Runtimelnternal, SpaceCheckDefs = 

BEGIN 
[ByteBlt, File, FileExtras, FloppyChannel, ObjAlloc, PhysicalVolume, 

Process, Runtime, Scavenger, Space1, Stream, System, TemporaryBooting, 
UserTerminal, UserTerminalExtras, Volume, VolumeConversion, Zone, 
DebuggerSwap, DeviceCleanup, DeviceError, DiskChannel, DiskScheduler, 
ResidentHeap, Snapshot, SpecialBooting, 
SpecialFile, SpecialRuntime, 
SpecialSpace, SpecialSystem, SpecialVolume, 
VM, Zonelnternal, DiskDriversPerf, 
FileBasicsPerf, FileMgrPerf, ResMemPerf, 
SpacePerf. VMPerf, KernelFile, LoadState, 
Runtimelnternal) +-PilotKernelU; 

(Heap1, Kernel Programs, SpecialHeap) +- Heaplmpl(Heap1. lnline. Runtime, Space, System, VM, Zone, 
Environment); 
(Space2, SpaceCheckDefs) +-SpaceCheckPack(Runtime, Space1, System); 
Space+- Space2 THEN Space1; 
(HeapCheckDefs, Heap2) +- HeapChecklmpl(Heap1, lnline, Runtime); 
Heap+- Heap2 THEN Heap1 
END; 

STBStuff: CONFIGURATION 
IMPORTS 

Auth, File, Heap, NSFile, NSFileControl, NSFileExtra, NSVolumeControl, 
Process, ProcessorFace, Runtime, XFormat, XString, SpecialWindow, 
SpecialTIP, STBOps, System, UserTerminal, Volume. Window 

EXPORTS ALL 
CONTROL MinimalStarControllmpl = ( 
STBControl; 
MinimalStarControllmpl}; 

- - kernel stuff 
PilotAndCheck; 
Supervisorlmpl; 
VMMapLoglmpl; 

Loader; 

FileStreamlmpl LINKS: FRAME; 

MemoryStreamlmpl; 

STBStuff; 



The * in the first column indicates that this heap was created since the state was saved. For heaps 
that have changed, the number of words and nodes are displayed in the form <value from saved 
state >I <current value>. In this example, when the state was saved, Contextlmpl had 18 words allocated 
in 2 nodes; it now has 63 words in 7 zones. The last line indicates that Heap #34 was deleted since 
the state was saved. To list all the heaps at this point, turn 'Use Saved State' off. 

Suggested use 

HeapCheckTool can be used for performance analysis or space leak checking. To analyze the amount of 
space used by a particular operation, 

f) Boot client with HeapChecklmpl as part of the bootfile. Get to state where you want to check 
operation. 
2) Go to the debugger; start HeapCheckTool 
3) Dump All Heaps for future reference 
4) Save State! 
5) Proceed back to client and perform operation 
6) Interrupt to debugger and turn on 'Use Saved State' 
7) Invoke 'Dump All Heaps' to see what has changed. 

If you are checking for space leaks, you can use HeapCheckTool in conjunction with DebugHeap. Once 
HeapCheckTool has told which heaps are losing space, use DebugHeap on one of those heaps to see 
exactly what is being allocated. (Don't forget that DebugHeap wants the 'underlying' handle given by 
'Dump All Heaps!' or 'Dump One Heap!' command.) 

Note: currently, HeapChecklmpl allocates a 26 word node from the system heap for each Heap that gets 
created. HeapChecklmpl should probably be changed to allocate these nodes from it's own zone. 



- - HeapCheckPack.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

HeapCheckPack implements a layer on top of the Pilot Heap mechanism. 

General info 

HeapCheckPack implements a layer on top of the Pilot Heap mechanism that supports owner checking on all 
heaps and gathers statistics on heap usage for all heaps. HeapCheckPack also keeps a linked list of 
all heaps. The HeapCheckTool provides a tool interface to this information. 

Normally, viJ1"iables of type UNCOUNTED ZONE are really of type Heaplnternal.UncountedZoneRep. This 
record contains a pointer to the Heaplmpl procedures that implement NEW and FREE, and a pointer to 
some data that describes the parameters of the heap. With HeapCheckPack installed above Heaplmpl, 
variables of type UNCOUNTED ZONE are actually of type HeapCheckPack.UncountedZoneRep. The existing 
NEW and FREE procedures are replaced with calls to HeapCheckPack.MakeNode and FreeNode, and Heap 
Create and Delete calls call HeapCheckPack instead of Heaplnternal. The 
HeapCheckPack.UncountedZoneRep also contains a pointer to the real heap, which actually does the 
request Heap operation after HeapCheckPack has gathered a few statistics. 

Other tools that operate on heaps. such as Debug Heap, will not accept the 
HeapCheckPack.UncountedZoneRep handle that a variable of UNCOUNTED ZONE points to. These tools want a 
Heaplnternal.UncountedZoneRep, which can be obtained by using the HeapCheckTool or using the debugger 
to execute ( < heapcheck handle> o/o(HeapCheckPack.UncountedZoneRep)).underlying . 

The global variable head in HeapCheckPack is a linked list of aJI the normal and uniform zones. 
mdsHead points at the list of MOS zones. zoneCt is a count of the number of all heaps currently in 
existance. 

In addition, there is a global pointer to an array of global frame handles to exclude as node owner. 
This is to support ExcludeHeapOwners (another hack). 

Note: currently, HeapCheckPack allocates a 26 word node from the system heap for each Heap that gets 
created. HeapCheckPack should probably be changed fo allocate these nodes from it's own zone. 

Building HeapCheckPack into a boot file 

Augmenting the existing Heaplmpl with HeapCheckPack requires building HeapCheckPack into the bootfile, 
and using the bootfile main config to export the Heap procedures that HeapCheckPack replaces. As an 
example of how to do this, BWSPerf.config is included at the end of this file. This example provides 
debugging information about the Space mechanism. 

Untested facilities 

HeapCheckPack provides facilities for 'protecting' nodes and breaking to the debugger if a node is 
freed by a module other than the one that allocated it. These facilities have not been tested in this 
version of HeapCheckPack; see HeapCheckPack.mesa for information on how to use these features. By 
default, HeapCheckPack does not do this checking. HeapCheckPack exports HeapCheckDefs.mesa. which 
provides access to some of these facilities. 

HeapCheckPack does owner checking on all modules by default. HeapCheckPack also has a variable called 
'releaseMode', according to the notes at the top of the module, if releaseMode is true: 

- - Client sees zone handles that are Pilot objects created by Heaplmpl 
- - Client calls to NEW/FREE go directly to Heaplmpl; to Heap.Make/Free, thru HeapCheckPack 
- - Node Header records are not used; nodes have client - specified length. 

If releaseMode is false (the default), everything goes through HeapCheckPack. 

Example bootfile main config with HeapCheckPack and SpaceCheckPack: 

- - BWSPerf.config 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

BWSPerf: CONFIGURATION 
IMPORTS 

STBOps, 
Auth, NSFile, NSFileExtra, NSFileControl, NSVolumeControl, 



- - LVSnap.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

LVSnap registers an exec command that facilitates backup and recovery of your logical volumes. The 
command takes as an argument the name of the logical volume that you want to save. If you omit this 
name, it defaults to·<>•. The logical volume must be open and readable. The program creates two 
command files: LVSnapStore.cm and LVSnapRetrieve.cm. LVSnapStore.cm is a command file containing an 
FTP command to store all of the files on your system volume to a file server. LVSnapRetrieve.cm 
contains exec commands to recreate your directory structure, and an FTP command to retrieve the files. 
You need to fill in the file server name in both files before using them. 

Before running LVSnap, you should clean up your disk as much as possible by deleting files that don't 
need to be backed up. The following command line is an example. 

Delete.- *S *.log* .errlog *.doc* .TIPC *.Mail -TOC *.press* .interpress * .ip temp.* *.temp foo. * * .foo 

After running LVSnap. you should fill in the file server name in the two command files, and delete 
unnecessary lines from them. You should delete references to Debugee.outload and Debugger.outload, 
and you might be able to delete the entire section saving and restoring TIP files. 

Now say "@LVSnapStore.cm" to store yourfiles. You will need FTP.bed on your disk to do this. 

!!! Make sure that LVSnapRetrieve.cm is stored on a file server.!!! 

To restore your disk, assuming a completely erased volume, you do the following: 
1) install your bootfile 
2) boot that volume 
3) retrieve FTP.bed from the release directory 
4) retrieve LVSnapRetrieve.cm from wherever it is stored 
S)type •@LVSnapRetrieve.cm· 

The retrieve command file will retrieve only those snapped files which are newer or don't already 
exist. If you prefer to overwrite any files of the same names that exist on your disk, you should 
change ·Retlua· to ·Retie" in LVSnapRetrieve.cm. 

After you have restored your disk. you should clean up the file server by deleting the stored copies. 
This is easily accomplished by deleting 
[YourFileServer) <YourName > BackupXXX> * 
(for the logical volume named XXX). 

!!! WARNING!!! 
I've noticed that occaisionally the enumeration fails in strange and mysterious ways. resulting in 
bogus .cm files. Re - executing the command doesn't help, but re - booting and re - trying or executing the 
command from another volume seems to solve the problem. IN ANY CASE, CHECK YOUR COMMAND FILES 
CAREFULLY FOR CORRECTNESS. 



- - LReal.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

LReal is a package that maintains numbers as 13 decimal digits of signed manitissa with 10 bits of a 
power of 10 exponent (- 512 to 511). Number are stored as opaque objects occupying 4 words (64 bits). 

All of the routines maintain the numbers normalized, i.e. the first digit is non - zero. The assumed 
decimal point is after that first digit. 

One can create "Special" numbers which will raise an ERROR if used in any arithmetic operation. 

For the four arithmetic operations, typical timings (in-microseconds) compared with the-eurrentCommon 
Software 32 - bit IEEE floating point package: 

+or -
* 

LReal 
500 
800 
1500 

REAL 
BOO 
1000 
1900 

The special funtions compute in comparable times to those of Realfns. The accuracy of the transendental 
functions is about 1in10·11, which is about as good as we know howtodowithoutgreater precision 
arithmetic for intermediate results. 



- - Logout.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

LogOut sets your password to the empty string. It registers the command •togOut.-" with the Exec and is 
handy for including in the command file you run at night before you go home. 



The total size and size distribution of the initial set of local frames is specified in the parameter 
file passed to MakeBoot. There are two important considerations. 

(1) For small frames, the initial quantity and distribution should be such that there are no 
frames which are never used (but see . The Totals command will show such frames. · 

(2) For large frames, sufficient quantities should be alllocated to cover·those sizes which are 
used very frequently by the system. For infrequently - used sizes, there probably should be none 
allocated initially. 

- - - - - Studing Normally Hidden Local Frames - - - - -

Some initially - existing frames are difficult for LocalFrameTool to find - - it only knows about them if 
it can find someone using them or find them on the free list. To allow it the best chance of finding 
these frames before they are allocated for some use which hides them, use Othello's Set Debugger 
Pointers command and then boot with the ·o· (zero) key switch (in additon to your normal boot 
switches). When you arrive in the debugger with •Key Stop o·, do a Totals command. LocalFrameTool will 
find all (well, maybe all but one or two) of the local frames and cache this information for the rest 
of the bot session. Note that Deactivating the tool will flush its database and lose this information. 

= = = = = = = = = = = = = = = = = = = = ANOMALIES = = = = = = =·= = = = = = = = = = = = = 

This sec.tion describes various anomalies that may be observed in the LocalFrameTool's output. 

Frame occurs multiple times!!!!! 

This message will occur if a child process has been FORKed but has not run yet. In that case, a 
debugger List Processes will show a process in module Processes, PC: 375271, in procedure 
Forklnternal. The message may occur multiple times from this cause. If this occurs in a 
circumstance other than this, please contact Dale Knutsen immediately. 

Frames of Unknown Usage 

There is one frame which appears to the tool to be valid but which Make Boot failed to put on the 
free list and hence appears to be in use by an unknown party. This frame has size index 0 and 
local variables all zero. 

Frames which are Never Used 

When Pilot finds insufficient space for a requested frame in the page from which it is constructing 
small frames, it creates frames of smaller sizes in the remaining space if any will fit. Typically 
these are size index 0. Thus there may be a small excess of the first few frame sizes; if so, they 
will appear in the "never used" category. 

- - - - - End of document - - - - -



The third and fourth lines specify the current usage of frames to be dumped. If you do not mark any 
usages to be dumped, the tool will respond with "No such frames". 

Example output with parameters =, >, 68, words, existed initially, on process stack: 

Initially existing frames: 
size global 
index size address caller frame pc .. local variables .. 

11 80 71408 1 10048 403248 26218 403258 28 331378 1 B 
18 224 110048 211448 406748 54468 403258 28 331378 OB 
12 96 126108 71408 403248 16658 404008 334058 1778 403678 

In the output," address" is the address of the local frame. It may be used with Copilot's Display Frame 
command. Only the first four words of the local variables are displayed, regardless of the actual size 
of the frame. More can be printed using Copilot's Display Frame or Octal Read commands. Note that 
·caller·, "global frame· and "pc• are valid in procedure and coroutine activation records but are NOT 
valid if the frame is being used for a large argument or return record, a signal argument record, a 
swap message, a file message, or any other use in which the frame was obtained by an explicit ALLOC 
instruction. 

In some future version of LocalFrameTool, the "verbose· switch may cause more of the local variables to 
be printed. 

- - - - - Change! command - - - - -

This command changes the free list for a particular frame size to allow or block local frame promotion. 
It is used for experimenting with various combinations of promotion and non - promotion for different 
frame sizes. Since this command will seldom be used, it is initially out of sight when LocalFrameTool 
is instantiated. Scroll the command window upward to get to this command. The parameter items for this 
command appear in the tool window as follows: 

Change! size index = 12 (to promote, to not promote} 

For this command, you specify the frame size index for which you want to change the promotion state and 
the desired state. You can find the size index that corresponds to a particular size from the output of 
the Totals command. 

= = = = = = = = = = = = = = = = = = = = USING THE TOOL = = = = = = = = = = = = = = = = = = = = 

This section describes techniques for using LocalFrameTool to solve particular problems. 

- - - - - Crash due to "Out of VM for Resident Memory· - - - - -

The typical cause of this crash is that the system is attempting to allocate local frames endlessly. 
Possible causes are (1) an unterminating recursive call; (2) in unusual circumstances, Pilot may get 
into a state where it attempts to send an infinite number of intra - process messages from its Filer and 
Swapper subsystems. Proceed as follows: 

Doa Totals. 

Examine the total quantity of Filer and Swapper messages. If there are less than 20 (say) Filer 
messages and less than 50 (say) Swapper messages, these are probably not the cause. 

Examine the total pages of dynamically created large and small frames. In the current version of Pilot, 
there are a total of 50 pages available to hold these frames. If very many large frames get requested 
simultaneously, this limit can be exceeded. Dynamically loading single modules with large global 
frames could also cause this problem. These frames will appear in the tot!' IS under "unknown use". 

If one frame size has a large total number of frames, do a Process Stacks command. You may find one 
process in an unterminating recursion. 

- - - - - Studying Frame Faults on Large Frames - - - - -

The Process Stacks command will quickly show those procedures on the call stack which have "large" 
frames. Using CheckFrames.bcd is probably a more systematic way to attack general performance problems 
related to large frame faults. 

- - - - - Determining the lntial Frame Allocation - - - - -



circumstances, Pilot may get into a state where it attempts to send an infinite number of these 
messages. In that case, the system will land in the debugger with the message "Out of VM for Resident 
Memory". The summary totals will typically show scores of these messages. 

"unknown use" The number of frames whose current use is unknown. That is, they are known not to fall 
in any other of the usage categories. The most common actual use of these frames are as activation 
records of coroutines which are not currently on the stack of any process. Local frames which are 
allocated to contain large procedure argument and return records and signal small argument records 
will also appear here. In the current version of Pilot, frames of unknown use may contain the global 
frame of a dynamically - loaded configuration if it consists of a single module and has not been 
packaged. due to system overhead, the global frame address will be 4 larger than the address of the 
local frame containing it. 

"free" The number of frames which are available for use. 

The next column is a special subclass of the •tree• category described above. 

"never used" The number of frames which are available for use and have never been used at all. This 
indicates a too - generous allotment of frames of this size in the parameter file which was used to 
build the debugee boot file. 

The next two columns indicate the creator of the frame. 

"existed initially" The number of frames which were created by Make8oot and were present in the 
system at boot time. · 

"dynamically allocated" The number of frames which were dynamically created by Pilot in response to a 
frame fault. For smaller frames, Pilot allocates them permanently. For larger frames. Pilot allocates 
them for transient use and reclaims their storage when they are free. An asterisk following a count 
indicates such a transiently created "large" frame. 

"are of unknown origin" The number of frames which were created neither by Make8oot nor by Pilot. 
There are normally no frames in this category, and in that case the category heading and the category 
totals do not appear in the summary output. 

- - - - - Process Stacks! command - - - - -

This command prints the size (and optionally the identity) of the local frames on all process stacks. 
It may be used to look for procedures which have large local frames. Example output: 

PSB innermost frame size .. root frame size 
20: 28, 28, 20. 8 
65: 16 
66: 16, 8 

101: 12, 12, 8, 8, 96, 80, 224(L: 110048), 8 
102: 12 

The PS8 column gives the process index as displayed by Copilot and as accepted by its Set Process 
Context command. Following the PS8, the size of each local frame of that process is given, beginning 
with the innermost activation record and ending with the root frame of the process. For "large 
frames". the frame address is also printed. If LocalFrameTool's "verbose" switch is turned on, the 
address of all frames is printed. The frame addresses given may be used with Copilot's Display Frame 
command. 

- - - - - Dump Frames! command - - - - -

This command dumps local frames satisfying user - specified criteria on size, origin, and current use. 
The parameter items for this command appear in the tool window as follows: 

Dump Frames! of size < = > 123 {words, size index} 
which existed initially were created dynamically are of unknown origin 
and which are on process stack unknown usage free but were used free and never used 
and which are free but were used free and never used 

on process stack swapper messages filer messages used by unknown 

The first line contains the command and parameters which specify the sizes of frames that will be 
dumped. You may specify dumping frames which are smaller. the same, or larger than a chosen size or 
size index, or any combination of these relations. 

The second line specifies the origin of frames to be dumped. If you do not care about the frames' 
origin, turn all three items on. If you do not mark any origins to be dumped, the tool will respond 
with ''No such frames". 



When a local frame is requested but there are no free frames of that size (or any higher size for 
which promotion is allowed), the processor generates a frame fault. In response to the fault, 
Pilot supplies a new frame of the requested size. These dynamically - generated frames are 
classified by Pilot into "small" frames and "large" frames (see below). In the current version of 
Pilot, small frames are those of size less than about 100 words. This may change in future 
versions of Pilot. 

Small Frame 
When Pilot supplies a frame in response to a frame fault and that frame is relatively small, the 
frame is allocated permanently and exists and occupies resident storage for the duration of the 
boot session. Thus the quantity of small frames grows in response to system demand and should 
stabilize atthe maximum required. 

Large Frame 
When Pilot supplies a frame in response to a frame fault and that frame is relatively large, the 
frame is allocated transiently. When the frame is freed, the storage is reclaimed. Thus requests 
for large frames may incur more computing costs if the number normally needed is less than those 
provided when the boot file was built. [Note: Future versions of Pilot are expected to have 
improved large frame management strategies.) 

= = = = = = = = = = = = = = = = = = = = COMMANDS = = = = = = = = = = = = = = = = = = = = 

This section describes LocalFrameTool's commands and their parameters 

- - - - - Totals! command - - - - -

This command prints a summary of local frame origins and usage. Example output: 

size prom total !process swap file unknown !never! existed dynamically 
index size otes frames! stack msg msg use free! usedlinitially allocated 

0 8 prom 38 I 26 0 0 7 5 I 0 I 38 0 
1 12 prom 34 I 18 0 0 0 16 I 0 I 34 0 
2 16 prom 15 I 4 0 0 2 9 I 0 I 14 1 

11 80 41 1 0 0 0 3 I o I 2 2 
12 96prom 2 I 1 0 0 0 11 o I 2 0 

17 192 prom 1 I 0 0 0 1 01 01 1 0 
18 224 1 I 1 0 0 0 o I 01 1 0 
21 764 1 I 0 0 0 0 11 o I 0 1* 
Totals: 

179 I 66 0 0 1 B 95 I 0 I 155 24 
Total pages of dynamically created large frames = 3 
Total pages of dynamically created small frames = 4 
Total pages of initially existing frames = 15 
* indicates transiently created H large frame H 

The items in the summary are explained individually below. 

"size index" The PrincOps code for the size of a local frame. 

"size" The size in words of a local frame of the given size index. This size includes system overhead 
of four words per frame. 

"promotes" In the summary, "prom" means that frame allocation requests for that size will be 
promoted; Blanks mean that promotion will not occur for that frame size. 

"total frames" The total number of frames of that size. 

The next five columns summarize current frame usage. 

"process stack" The number of frames currently being used as activation records over all processes. 
This is the normal use of a local frame. 

"swap msg" The number of frames currently being used as intra -process messages from the Pilot Swapper 
subsystem. In a correctly operating system, this number should be less than 50 (say). In unusual 
circumstances, Pilot may get into a state where it attempts to send an infinite number of these 
messages. In that case, the system will land in the debugger with the message "Out of VM for Resident 
Memory". The summary totals will typically show hundreds of these messages. 

"file msg" The number of frames currently being used as intra - process messages from the Pilot Filer 
subsystem. In a correctly operating system, this number should be less than 20 (say). In unusual 



- - LocalframeTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

= = = = = = = = = = = = = = = = = = = = SUMMARY = = = = = = = = = = = = = = = = = = = = 

LocalframeTool is a new performance and debugging tool for examining the origins and usage of local 
frames. This tool may be of interest if you 

o need to debug a crash due to "Out of VM for Resident Memory". 
o are interested in poor performance due to frame faults on "large" local frames. 
o build boot files, 
o are concerned with real memory usage. 
o are interested in studying the performance consequences of 

different schemes for frame promotion during local frame allocation, 
o wish to study normally hidden local frames e.g. frames of coroutines. 

LocalframeTool runs in Copilot and prints information about the debugee. The program has commands to 

o print a summary of local frame origins and usage 
o dump local frames satisfying user - specified criteria on size. 

origin, and current use, 
o print the size and identity of the local frames on all process stacks, 
o allow or block local frame promotion. 

The tool and documentation are 

LocalframeTool.bcd 
LocalframeTool.doc 

= = = = = = = = = = = = = =======ORGANIZATION==================== 

The sequel is organized as follows: The next section gives a glossary of terms and explains their 
significance. Subsequent sections describe the available commands and their parameters, techniques for 
using the tool for particular jobs, and finally a section describing some anomalies and fine points 
which may be encountered in using the tool. 

= = = = = = = = = = = = = = = = = = = = GLOSSARY = = = = = = = = = = = = = = = = = = = = 

Local Frame 
A local frame is a block of storage whose allocation and deallocation is supported by the 
processor. The most common use for local frames is as procedure activation records. In executing a 
procedure call. the processor allocates a local frame to contain the local variables of the 
procedure. The frame is freed automatically when the procedure returns. Local frames are also used 
to contain large procedure argument and return records and signal small argument records In the 
current version of Pilot, local frames are also used to hold intra - process messages from the Pilot 
Filer and Swapper subsystems. and the global frame of a dynamically - loaded configuration if it 
consists of a single module and has not been packaged. In the current version of Pilot, all local 
frames are constructed from resident storage - - they do not swap. 

Frame Size, Frame Size Index 
As specified in the Principles of Operation, local frames only come in a particular set of sizes, 
ranging from 8 to 4092 words. A frame size index is an index into the array of sizes 
PrincOps.frameSizeMap. and is the way that the size of a frame is specified to the processor. 

Allocation Vector 
This is a processor data structure which keeps track of free local frames. It is organized as an 
array of lists of free frames. one list for each frame size. 

Promotion 
When the program generates a request to allocate a local frame, the processor goes to the 
Allocation Vector's list of free frames of the required size. This list may be marked so that if 
it is empty, the processor will continue looking for a free frame in the list of free frames of 
the next higher frame size; if..a free frame is found there, it will be allocated and the extra 
space "wasted" until the frame is freed. This is referred to as "frame promotion". Alternatively, 
if the list is not marked for promotion. the processor will immediately generate a frame fault. 
and Pilot will supply another local frame. 

Frame Fault 



- - LoadStateTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This tool is a Tajo window used to look at the load state, i.e. modules currently loaded. It runs in 
the client rather than debugger environment. 

The tool window consists of a message subwindow, a form subwindow, and a log window. The form subwindow 
contains two string items: "GF#" and '"Name", and four command items: '"GF# - >Name", "Name- >GF#", 
·Name - >Exporter• and "Name - >Importer". 

The command "GF#- >Name" will take the octal global frame number/handle and translate it into a Module 
· Name and display it in the log window. If this global frame is a dynamically- made copy of another 

frame then the name will be followed by a •• *" char. If this global frame has not been started, then 
the name will be followed by a·-· char. 

The command "Name - >GF#" is the reverse of "GF#- >Name". That is, it will look tor all occurances of the 
module name specified in the field "Name". 

The command "Name - >Exporter" will take the field "Name" and look for all modules that export that 
interface. This means all runtime loaded modules, not those in the boot file. 

The command "Name - >Importer" will take the field "Name" and look for all modules that import that 
interface. All modules means all runtime loaded, and all boot tile modules that the interfaces were 
exported. 

Names may be wild carded using the same rules as the EXEC (i.e.,* and#) 

How is this useful? If you want to know what modules are loaded, you can specify""" tor the module 
name and hit "Name - >GF#'". Or maybe, you want to know how an interface is implimented, but don't know 
where the code is. Find out who exports that interface using "Name - >Exporter·. If you want to know who 
imports a particular interface use "Name - >Importer". 

Note: The number displayed when loading a program thru the Executive is not the Global Frame Handle. 

Shortcommings -
- Duplicate info will sometimes be displayed. 
- This hack currently does not have an EXEC interface, and it does not recognize the ABORT key. 
- If you try to convert a nonexistant Global Frame Number into a module name, 
RunTime.ValidateGlobalFrame will address fault. 

Future enhancements -
- It would be nice to have it enumerate the EXPORTS and IMPORTS of a named module. 



- - ListWindows.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ListWindows displays window information for each window that is not inactive in your current 
environment. It writes a table into the file Window.boxes containing the name of the window, the 
bitmap relative window box and the bitmap relative position of the tiny form of the window. It also 
indicates the state (Active or Tiny) of that window. 

If the window is a FileWindow, then the name shown in the table is prefixed with an asterisk('*). 

Sample contents Of Windows.boxes: 

(Executive) 
WindowBox: (x: 0, y: 542, w: 512, h: 206) 
TinyPlace: (x: 196, y: 778) 
lnitialState: Active 

[CommandCentral) 
WindowBox: (x: 0, y: 542, w: 512, h: 206) 
TinyPlace: (x: 196, y: 778) 
lnitialState: Tiny 

[Hardy) 
WindowBox: [x: 0, y: 30, w: 512, h: 512] 
TinyPlace: (x: 196, y: 748] 
lnitialState: Tiny 

(Debugger) 
WindowBox: (x: 512, y: 30, w: 512, h: 512] 
TinyPlace: (x: 708, y: 748] 
lnitialState: Tiny 

(HeraldWindow) 
WindowBox: (x: O,y: O,w:1024,h: 30] 
TinyPlace: (x: 482, y: 778) 
lnitialState: Active 

(Activity] 
WindowBox:(x:420,y: O,w:184,h: 30] 
TinyPlace: (x: 482, y: 778) 
lnitialState: Active 



- - ListHacks.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ListHacks produces a listing of all hacks on a directory. For each hack, it lists its: 

name 
location and create date 
Hauthor" (actually, the last writer) 
documentation location and create date (if there is any) 
up to 1000 characters of the documentation. 

It brings up a Tool window with string items for the hack and hack documentation locations. For each 
Bed found on the hack directory, a search is made for a corresponding H .doc" file on the documentation 
directory. It produces the listing on the file Hacks.list. ListHacks runs at background priority in a 
process separate from the notifier. 



- - ListFiles.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Listfiles is a program to permit you to quickly locate the space hogs on your disk. It always deals 
with sizes in pages, so you don't have to try to parse huge byte sizes the way you do with File Tool, 
or search through gobs of useless UID's, read dates, etc., the way you do with FileStat. Command 
syntax is 

Listfiles.- template minSizelnPages 

"template" is applied against the current search path, and all files whose size in pages is > = 
minSizelnPages are listed in the Exec window, followed by their size in pages. 
If "template" is followed by any switch, then only the totals will be given - - usefull if you think a 
large number of small files are eating up space. 

Examples: 

(1) list all mail files of 100 pages or more: 

Listfiles '*.mail 100 

(2) List all files on the current search path, with their size in pages: 

Listfiles '* 0 

(3) Give only the total number of files and total pagecount in the< >mail>olcl> subdirectory: 

Listfiles <>mail>old>'*ltO 

NOTE that you must quote asterisks and pound signs to keep them from being expanded by the Executive. 



- - ListDrawers.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

OBJECTIVE: 
Given a file service and a group name, list all the drawers accessible by that group. 

INVOKING THE PROGRAM: 
After having retreived the files 

ListDrawers.bcd 
ServicesStubsConfig.bcd 

invoke the program by 
Run/v ServicesStubsConfig ListDrawers 

{ignore the version mismatch messages} 

METHOD OF OPERATION: 
In the form subwindow of the tool, there are two entries. 

FILE SERVICE: Fill in the name of the file service you wish to deal with. Default domain and 
orgainations will be provided by the tool. This name should be unique and non - ambiguous. 
GROUP NAME: Fill inthe name of the group you wish to search for. As an added feature, this 
entry will also accept individual names. Default domain and orgainations will be provided by 
the tool. This name should be unique and non - ambiguous. 
DOIT: When all the data is entered, invoking this command will perform the objective specified 
above. 



- - EraseVolume.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

EraseVolume allows a user to invoke the erase volume command from Othello from Copilot (or any other 
volume). This hack has a window interfaces and an Executive interface. 

If you type "EraseVolume Star" into the Exec, Star will be erased. 
If you type "EraseVolume" into the Exec, a window interface of the tool willappear. There are two 
elements in this window, Volume:. the name of the volume to be erased, and Erase!, which starts 
the erasure. 

Hints: 
Do not erase a volume that is on anybody's search path. This is surely to cause problems. Below is 
a suggested way to get extra disk space. 

- - CleanStar.cm 
SetSearchPath <CoPilot> 
CloseVolume Star 
EraseVolume Star 
OpenVolume Star/w 
CreateDir <Star> Temp 
SetSearchPath <CoPilot> <Star> Temp 



ENDLOOP; 

Error is raised if any of the obvious termination conditions arise. Some day I may add a signal Stable 
that gets raised if the position in oldBoard is "uninteresting". 

The NoteChangeProc is called with your client data, the Row and Col of the cell that chenged state. and 
whether or not it is NOW living. 

Implementation details: 
Lifelmpl is basically a 64 state finite state machine. Consider the current 9x9 of interest: 

abc 
1 xxx 
2 xxx 
3 xxx 

the current state is defined by the cells in columns a and b. the input to the state machine is column 
c. The output is the tuple (newState, changed, living). New state is just columns band c, changed 
and living are defined by the rules of Life. I keep a row cursor which is the row number of "row 3" 
in the diagram, and a column cursor which is the column number of "column c" in the diagram. 
Calculating the input is the bulk of the algorithm. The algorithm is linear in the number of living 
cells plus the number of rows with living cells in them. The constant of proportionality is roughly 
three (since I have to look at each living cell three times, once for the row before it, once for the 
row it's in, and once for the row following it), the fixed overhead per generation is quite low. 



Note that life is completely symmetric so the choice of which are rows and which are columns, and which 
direction is •increasing" is completely arbitrary. 

IV - The rules of "Life" 

Life is played on a rectilinear grid. Each position has eight neighbors. 

A cell dies if it has O or 1 neighbor (underpopulation) 
A cell lives if it has 2 or 3 neighbors 
A cell dies if it has 4 or more neighbors (overpopulation) 

A new cell is born in any empty space with exactly three neighbors. 

So for example the position "blinker": 

abcde 
100000 
2 01110 
3 00000 (where O is a dead position and 1 is a live cell) 

becomes 
bed 

0000 
1 010 
2 010 
3010 
4000 

a2 dies (underpopulation) 
b2 lives (2 neighbors) 
c2 dies (underpopulation) 

c1. c3 are born. 

etc. 

V - Programming Notes 

For those of you who might be interested in implementing Life with another user interface, here are 
some notes. 

A Board (position) is a sequence of Rows in ascending order, ending with an empty Row. A row is a Row 
Entry followed by a sequence of Col Entry's in ascending order. 

Generate takes a Board that is the current position (oldBoard) and a Board to put the new position into 
(newBoard), a procedure to call for each cell that changes state (noteChange). and client data to pass 
to noteChange. oldBoard(O) is the Row Entry of the first row, oldBoard(oldBoard.LENGTH - 1 I is the Row 
Entry of the empty row at the end. newBoard(O) is where to put the Row Entry of the first Row of the 
new position and newBoard.LENGTH is the maximum number of entries that you can put into newBoard. 
newBoard(newMaxlndex] is the Row Entry of the empty Row at the end of the new position. cells is the 
number of living cells in newBoard. 

the following loop can be used to generate new positions until a termination condition arises: 
DO 

temp: BoardHandle; 
(maxlndex. cells)..-. 

Life.Generate( 
oldBoard: DESCRIPTOR[board, maxlndex + 1), 
newBoard: DESCRIPTPR(nextBoard, boardSize). 
noteChange: NoteChange, 
cd: graphSW 
! Life.Error = > { 

SELECT code FROM 
dead = > Put.Text[msgSW, "\NDead ... "L); 
boardTooSmall = > Put.Text(msgSW, "\NToo many cells for board ... "L); 
atEdge = > Put.Text(msgSW, "\NAt edge ... "L); 
ENDCASE; 

GOTO exit}]; 
temp..-. board; board..-. nextBoard; nextBoard ..-. temp; 
REPEAT 

e><it = > {}; 



2) The position exceeds the storage allocated to it (free disk space). 
3) The position exceed the boundaries of the board (currently 32767 x 32767) 
4) The position dies completely. 
5) The Life Window is deactivated. 

The position CAN be edited dynamically. 

Ill - Input Format for the "Load" command 

These are the "official" Life Commands from Gasper's Life program at Stanford. Thanks to Don Woods for 
snarfing them for me. I suspect small glitches in it and have interpolated what I thought were missing 
characters. Local modifications follow the complete list. 

p 
D,E 

1,0 
w 
c 
nR 

s 
x.v 
nX,nY 
n T X(l),n f Y(I) 

<cr>,<lf> .<ff> 

Q 
nP 
nG 

Local modifications: 

Life (Virtual machine) Commands 
Advance one generation 
Enter input mode, D also clear screen. 

Insert point at center and move center right. 
n. Do. n times. 
n < sp > Move center right n places. 
x,y < delim > Insert pt. at x,y (relative to center). 
x,yD Delete pt. at x,y. 
x,yC Move center to x,y. 
nD Delete n pt. right (or left). 
n<cr> Set x too and add n toy. 
n+- Go left n places. 
n T ,n<lf> Figure it outfor yourself. 
nX,nY Move X (Y) n positions. 
n# Set generation no. ton. 
E Leave input mode. 

Select file for input.output 
Write current screen pattern onto output file. 
CLOSE disk output 
Read n'th pattern from input file. 
Print generation no. and no. of points. 
Print scale and (if nonzero) shift factor. 
n >O sets scale ton. *n•O set shift factor ton. 
Prints X(Y) - coordinate of focal pt. 
Adds n to focal pt. 
Set focal pt. ton. 
XORG+- - XOFF, YORG+- - YOFF, Print XORG and YORG 
No-ops 
Comment, ignores text to <er> 
QUIT Exit, return screen to normal 
if n>O. proceed n steps. otherwise lnl- k steps 
set current generation ton 

There is no" edit" mode, what I have implemented is the following subset: 

Note: lower case letters are used as non -terminals, anywhere an uppercase letter is used, its lowercase 
equivalent is allowed. 

x •. 
0,<sp> 

Insert point at center and move center right 
Move center right 
Comment, ignores text to <er> 

D Clear the screen, reset center to middle of board 
E.<eof> Terminates inputting a pattern 
R,<cr>.<lf>.<ff> No-ops 
n. Do "." n times 
n<sp> Do"<sp>" ntimes 
nD delete point n to the right (or left) 
n <er> center +-(row: center.row + n, col: O); 
n+- center.col +-center.col- n (**BUG** currently adds n instead) 
n f center.row +-center.row - n (**BUG** currently adds n instead) 
n<lf> center.row +-center.row+ n (**BUG** currently subtracts) 
nX center .col +-center .col + n 
nY 
nG,n# 
nS 

x,yD 
x,yC 
x,y. 

center.row +-center.row+ n 
generation+- n 
scale +-n (currently only 1, 2, 4, 8, and 16 implemented, others 

go to next higher value, or 16) 
Delete point at (col. row) x,y 
set center to ><,y 
Add point at ><,y 



- - Life.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

I - Overview 

This document is divided into five parts 
I - Overview 
II - The tool 
Ill - Input Format for the "Load" command 
IV - The rules of ·Life" 
V - Programming Notes 

LifeWindow.bcd is an implementation of John Horton Conway's cellular automata simulation ·ufe·. See 
Martin Gardner's ·Mathematical Games· of sometime in the late 60's for a full explanation. 

II - The tool 

LifeWindow will bring up a scrollable graphic window for the cell display. You add cells with Point 
and delete them with Adjust. The "Life" menu attached to this window has six commands: Go, Next, 
Shrink, Magnify, Clear, and Load. 

Go: 
Run the simulation, updating the display. as you go. 

Next: 
Display the next generation. 

Shrink: 
Reduce the cell size by a factor of two. 

Magnify: 
Increase the cell size by a factor of two. 

Clear: 
Erase the board and re - center it. 

Load: 
Load the board from the current selection. There are some interesting positions in 
>Source>Life>*.life. Select in the file starting at any "D" and ending just before the next one, 
then use this command. 

You can bring up a property sheet (FormSW) by hitting [Control) otherwise known as [Prop's]. The 
property sheet is destroyed when the Life window is deactivated, or you hit [Prop's) again. This 
FormSW has the following items in it: Close. Dump, File Name, Generation, Cells, and Scale. 

Close: 
Closes the output file. 

Dump: 
If the output file is open, it appends the current pattern to it. If there is no output file open, 
and no name for one, it dumps the pattern to the msgSW, otherwise it opens the log file named in 
File Name, and outputs the current pattern to it. 

File Name: 
String item to specify the file name for Dump. if an output file is open, it will be the name used to 
open the file. 

Generation: 
Generation number, incremented for each new generation. Can be set manually. 

Cells: 
Number of living cells in the current generation. 

Scale: 
Set the size of the individual cells. 

Generating will stop under the following conditions: 

1) The [STOP) key is pressed while the cursor is in the Life Window. 



- - Kineticfractal.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Kineticfractal is yet another DMT variant. This one's pretty strange. It has a couple of pop - up menus 
to play with. lt"s got sound effects! 



- - KeyJump.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

KeyJump.bcd implements nine new editor commands: (these work in the window 
the cursor is currently in) 

ACTION COMMAND 
1.JumpLast Jump to last page of text 
2. JumpForwardHalf 
3. JumpForwardFull 
4. JumpBackHalf 
5. JumpBackFull 
6. ScrollForward 
7. FastForward 
8. ScrollBackward 
9. FastBackward 

Jump forward 1/2 page of text 
Jump backward full page of text 
Jump backward 1/2 page of text 
Jump backward full page of text 
Continuous Forward Scroll 
Continuous Fast Forward Scroll 
Continuous Backward Scroll 
Continuous Fast Forward Scroll 

These new commands can be programmed into any key action using TIP tables. To install this hack, do the 
following: 

1. Retrieve KeyJump.bcd 
2. Execute command: KeyJump 
3. If the below commands seem to work on the wrong window, type into 

the Exec: KeyJump.-

The following key action do the commands: 
Keys Command 

1. ShiftJFIRST JumpLast 
2. MENU JumpForwardHalf 
4. Shift MENU JumpForwardFull 
3. SCROLLBAR JumpBackHalf 
5. Shift SCROLLBAR JumpBackFull 
6. RESERVED ScrollForward 
7. Shift RESERVED FastForward 
8. CLIENT1 ScrollBackward 
9. Shift CLIENT1 FastBackward 

KeyJump registers two Exec commands: KeyJump.- and TogglePriority.-. 

KeyJump.- initializes the keys JFIRST, MENU, SCROLLBAR, RESERVED, and CLIENT1 to be real estate events 
rather than input focus events. Should the above keys act like input focus events. KeyJump. - will 
re - initialize those keys. 

TogglePriority.- toggles the priority of the process that is doing the scrolling. Initial! the 
scrolling process is a Process.priorityBackground, and toggling will result in a 
Process.priorityNormal priority. 

The Exec's Unload.- command will cause the keys JFIRST, MENU, SCROLLBAR, RESERVED, and CLIENT1 to do 
nothing. This is not recommended because there is a space leak from the KeyJump's TIP table not being 
cleanly destroyed. 

If Keyjump seems to be doing its actions to the wrong window (ie. actions go to the insertion point 
rather than where the window the cursor is in) type KeyJump.- into the Exec and the key action should 
go to the correct place . 

To program these commands to other key actions (For TIP wizards only): 

The righthand sides of the SELECT arms should be: (in< >TIP>KeyJump.TIP) 
1. {COORDS JumpLast} 
2. (COORDS JumpForwardHalf} 
3. (COORDS JumpForwardFull} 
4. {COORDS JumpBackHalf} 
5. {COORDSJumpBackFull} 
6. (COORDS ScrollForward} 

*7. ( n COORDS ScrollForward} 
8. (COORDS ScrollBackward} 

*9. ( n COORDS ScrollBackward} 

* n is a NATURAL number greater or equal to 1. It corresponds to the number of lines that are 
scrolled at a time to give the illusion of faster scrolling. The TIP table provided by Key Jump has n 
= 2. Thus in KeyJump.TIP, the right hand side for FastForward is ( 2 COORDS ScrollForward}. 

The left hand sides can be whatever your heart desires. 



Real estate events: 

KeyHacks.bcd, when run converts the following keys to real - estate, rather than insertion - point events. 
(In other words, the window containing the cursor gets notified about transitions of these keys rather 
than the window with the insertion point.) Keys: SCROLLBAR, RESERVED, CLIENT1, ATTENTION, HELP. This 
is in addition to the system default real - estate events. 

User.cm: 

KeyHacks looks in the (KeyHacks) section of User.cm for two items. 
ReformatTime: TRUE I FALSE I YES I No· 

If this item is TRUE or YES, then the Time atom will use a different format: •93 -Jun - 02 6:23 pm" in 
place of· 2-Jun -83 18:23:02·. 

Extensions: mesa form/n cm config log ... 
Each of these extensions will be tried when looking for a file for Loadfile, lnsertfile, or NewWindow. 
The LoadFile and lnsertfile items will do an automatic NEXT (or SKIP) if the extension that is used is 
followed by a /n (or /s). 

Re-Parse: 

KeyHacks provides the ability to dynamically alter KeyHacks.TIP. This is done via private interfaces 
and involves a space leak the size of a tip table. This command is usually used only when debugging a 
new KeyHacks.TIP and is not recommended. The command is "ReparseKeyHacks.-" and requires confirmation. 

The command also re - parses User.cm; this does not leak any space and is done prior to asking for · 
confirmation about the TIP re - parse. 

Sample TIP table to attach to textsw (run User Tip.bed and have •textsw: TextSWKeyHacks. TIP• in the 
[TIP) section of User.cm): 

- - TextSWKeyHacks.TIP 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

- - LineDelete on Shift- ESC, LineSelect on Cmd - Shift - ESC, WordSelect on Cmd - ESC 

COMPLETE Down WHILE LeftShift Down I RightShift Down I COMMAND Down = > 
SELECT ENABLE FROM 

COMMAND Up = > Line, GrowPrimary, Replace; 
LeftShift Down I RightShift Down =>Line, GrowPrimary; 
ENDCASE = > Word, GrowPrimary; 

- - Becomelnputfocus on CTRL - Adjust 

Adjust Down WHILE CONTROL Down = > Becomelnputfocus; 

ENDCASE ... 



tied up waiting for it. 

Escape Completion: 
Escape Complete : : = ExpandESC 

ExpandESC is useful for Editing Mesa source files. The basic idea is to expand many of the Identifiers 
that would be typed in a Mesa program, by looking on the disk for filenames or looking up identifiers 
found in symbol tables much the way ShowType does.· ExpandESC operates on the token to the left of the 
insertion point and it wants to expand either the "Interface" part or the "Item" part of 
"Interface.Item". Which strategy ExpandESC uses depends on whether there is a dot in front of the 
token you are expanding. If ExpandESC thinks you are expanding the "Interface" part, it looks on the 
searchpath for a file starting with the token preceeding the insertion.point. If it thinks you are 
expanding the "Item• part, it looks for a file called "Interface.bed" and then peruses it for an 
expansion for the token. ExpandESC expands file names as in the Simple Exec except that no extension 
is included. For example, if SpecialMFile.bcd, SpecialSpace.bcd, and SpecialVolume.bcd are on the 
disk, "Spec• + <complete> will expand to "Special", and "SpecialM" + <complete> will expand to 
"SpecialMFile", but not "SpecialMFile.bcd". 

Note: First, ExpandESC only works in TextSWs. Second, since the SimpleExec uses the complete key for 
epanding, ExpandESC has no effed in the Simple Exec, unless it is assigned to a key other than the 
complete key. Third, ExpandESC will not expand interface items in Tajo unless you run 
SymbolPack.bcd/- s SymbolCache.bcd. It will, however, ask you to load it, if it thinks you haven't. 

Changing window positions 
Change Window Position : : = Topper; 

Topper brings a window that is obscured by another to the top, and sends windows that are on top to the 
bottom {Equivalent to clicking Point in the left or right sedion of the name frame). 

Sending type - in to an Exec 
Exec Gets Focus : : = Clearfocus; 

ClearFocus clears the current input focus. If there is no "backstop" focus {the default situation), 
then KeyHacks looks at all active and tiny tools trying to find an Executive; if it finds one, it is 
made the backstop focus. Thus the usual effed is that invoking this TIP atom sends subsequent 
type - in to your Exec, until you make a new seledion. 

Converting charaders to/from odal codes 
Convert character::= ConvertChar; 

ConvertChar takes the current selection and converts it to and from a three digit octal code. If the 
current selection is a single character, it is replaced with the octal code for that character. If the 
current selection is three octal digits it is replaced with the character for that code. If the 
selection is longer than three characters, or contains a non octal digit, it is first shortened to the 
first character of the selection. If there is no selection, the character just before the insertion 
point is converted. If there is no character in front of the insertion point, or there is no insertion 
point, or the window is not a text sub -window, it is an error. 

Changingtheinputfocus 
Window Gets Focus : : = Becomelnputfocus; 

The window receiving the input is made the focus for later input. Thus. if this atom is generated by a 
real - estate event, the window containing the cursor will be notified of subsequent insertion - point 
events. This is very similar to clicking Adjust in a window, except that it avoids the side effect of 
extending the highlighted seledion if the window happens to contain it. Note: This atom is parsed by 
the TextSW tip manager, so it should not appear in Key Hacks. TIP. Either put it in TextSW. TIP or use 
UserTip.bcd to push an extra tip table onto textsw. (See sample below.) 

Expanding a text selection 
Expand Selection::= <Level>,GrowPrimary; 
Level : : = Word I Line I Document; 

The selection is grown to both the left and right until it reaches a boundary of the indicated type. 
For example: "Line, GrowPrimary, Replace" would delete the lines that contain the current selection. 
If there is no selection, a seledion is begun at the insertion point. Note: This atom is parsed by 
the TextSW tip manager, so it should not appear in KeyHacks.TIP. Either put it in TextSW.TIP or use 
UserTip.bcd to push an extra tip table onto textsw. (See sample below.) 

Reducing the level of multidicking in a text selection 
Reduce Selection level : : = PrevSelEntity; 

If there was a text selection atthe wOt"d level, it is changed to be at the character level; i.e., 
subsequent Adjust actions will seled charaders instead of words. If the selection was in lines, it 
is changed to words; if it was the whole window, it is changed to lines. Note: This atom is parsed 
by the TextSW tip manager. so it should not appear in Key Hacks. TIP. Either put it in TextSW. TIP or 
use UserTip.bcd to push an extra tip table onto textsw. 



- - KeyHacks.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

KeyHacks is a program that implements a number of commonly desired "hacks" that you can put under keys. 
It uses KeyHacks.bcd as a TIP interpreter and Key Hacks. TIP as a tip table to specify the desired 
features. The features that you can put on keys are: 

Menu commands, Screen/Display state, Load/Insert files, Time, 
Creating fileWindows, Exec commands, Escape completion, 
Changing window positions (top/bottom), Sending type - in to an Exec, 
Converting characters to/from octal codes. Changing the input focus, 
Expanding a text selection, and Reducing the level of multiclicking in 
a text selection. 

The last three features are available only in text subwindows, and are invoked not through KeyHacks. TIP 
but rather through TextSW.TIP. (If you don't want to edit TextSW.TIP, you can use the UserTip hack to 
push an extra tip table onto text subwindows.) 

Menu commands: 
Menu Command::= Menu, <Menu Name>. <Item Name> 
Menu Name and Item Name can be either strings or atoms. 

Will invoke item <Item> in menu <Menu> on the window for this event (the window with the insertion 
point for most events, or the window the cursor is in for "real - estate" events (see below)). If the 
menu isn't on that window, KeyHacks will try to find a menu with that name on the rootWindow. 

Screen state: 
Screen State : : = <Optional state>, Screen 
OptionalState :: =White I Black I Toggle I <empty> 

Sets the background color of your screen. <empty> is the same as Toggle. 

Display state: 
Display State : : = < Optionalstate >. Display 
OptionalState : : = On I Off I Toggle I <empty> 

Sets the state of your display. <empty> is the same as Toggle. 

Loading and Inserting files: 
Load File : : = LoadFile 
Insert File : : = lnsertFile 

LoadFile will attempt to load a file into a TextSW. It first tries to use the current selection as a 
file name, then the contents of the sub- window, then the start of line to the insertion point. It 
replaces the contents of the sub - window with the contents of the file. Note: It does not convert a 
scratch "empty" window into a file window, itjustloadsthe text into the window. This can be useful 
for loading Mail forms into a mail send tool. lnsertFile is similar except that it replaces the file 
name (rather than the whole window) with the contents of the file. 

Creating new windows: 
New File : : = <Tiny Place>, <Window Box>, NewWindow 
Tiny Place::= <xCoord>, X, <yCoord>. Y, Tiny, 
Window Box::= <xCoord>, X, <yCoord>, Y, <width>, W, <height>, H, 
xCoord, yCoord, height, and width are all cardinals 

NewWindow creates a new file window at <Window box>. with a (optional) Tiny Place. It will attempt to 
use the current selection as the name of a file to be loaded into that window. Note: The window box 
is not optional. If the tiny place is not specified, the system default will be used. If there is no 
selection. or the selection is not a legal filename, an empty file window will be created. 

Time: 
Time : : = Time 

Time replaces the current selection with the current time. If there is no selection the time will be 
inserted. This function works in both Text and Form subwindows. If the [KeyHacks) section of User.cm 
includes "ReformatTime: TRUE" (or· ... YES") then the time will be formatted as "83 -Jun -02 6:23 pm" in 
place of" 2 -Jun -83 18:23:02". 

Exec Commands: 
Exec Command::= ExecCommand, <command> 
command is a string or atom 

ExecCommand executes <command> as if had been typed to an Exec. Any output goes to the indirect output 
sink (default is the Herald, but see lndirectOutput.doc). It is not possible to provide input to the 
command except in the command string. The command is run in a separate fork so the notifier is not 



- - Keeplogin.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Keeplogin maintains the password in a location that doesn't get destroyed across world swaps. If it is 
running in your Tajo, CoPilot and CoCoPilot worlds, it will allow you to login only once as long as the 
boot button is not pushed. If you log in with no password it will as be cleared in the other worlds as 
well. 



- - KalWindow.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

KalWindow runs in a 256x256 window, at zero priority. Unlike the original Kai, this program does not 
allow the user to change its internal state counters. If you want to add any of that, happy hacking. 



- - Kaleidoscope.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Kaleidoscope is a DMT or Poly alternative which paints a series of kaleidoscopes on your screen. To 
start, type into the exec: Kaleidoscope 

To quit, hit abort or use the window menu. 



- - JAccuse.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

JAccuse lists all files for which XDE file system handles exist. It notes for each handle, the type of 
handle (Mfile, MStream, or MSegment), the access (e.g. readOnly or readWrite), and the name of the 
program module that acquired the handle. For example, 

JAccuse.archivebcd 
readOnly MLoaderlmpl 

Binder.Log 
readOnly CommandCentral (stream) 

DFTool.log 
log TextSourcesA (stream) 

Debuggee.outload 
readWrite CPTeledebug 

It is also possible to restrict JAccuse's attention to a specific set of files by naming them on the 
command line. In general, a file name pattern containing the usual'* and'# wildcards can be 
specified on the command line; e.g. 

>JAccuse '*.log 
Binder.Log 

readOnly CommandCentral (stream) 
Debug.log 

log CPOutPack (stream) 



are beats between the source and destination (printer) res -
olutions. 

Clipping - The bitmap is not clipped to page boundaries at creation. 
The printer's clipping of a bitmap which spills over a page edge 
may be unexpectedly ragged. This is because it works by rejecting 
whole characters and rectangles (the user might otherwise be un -
aware of their presence). 

Specifying Margin or Scale - because the program tries to recalculate 
other parameters after any change, you will have a wrestling 
match if you try to specify margins while the tool is holding 
scale and visa versa. 



- - IPCamera.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The Bitmap To Printer Tool. 

Purpose: To capture in an lnterpress file a rectangular portion of a bitmap. Sources include the 
display in the same volume or debugged volume. 

Window: The tool has 3 subwindows. The first (top) is a msgSW where the tool says some things. The 
second has to do with the Capture Phase. the third with the Layout Phase and the fourth with the 
Send Phase of the tool's operation. 

Capture Phase - specify a bitmap rectangle: 
(1 I Choose the bitmap source. 

(Only ·1ocal" and ·c1ienr are now implemented) 
(2) Bug "Capture!"; 

If source is debugee, the entire client bitmap will 
first be painted over the debugger bitmap 
else the tool window will simply disappear. 
Full screen crosshairs will appear as a cursor. 

(3) Position the crosshairs wherever desired 
for any of the four corners of the rectangle, 
depressing the left mouse button at any time. 

(4) Release the left mouse button to freeze one corner 
and create a second pair of crosshairs, again tracking 
the mouse. 

[SI Depress and release the left button again to freeze 
the second crosshair pair. The four lines now define 
a rectangle without regard to which corners were clicked 
or in which order. (Bits under the crosshairs are included 
in the rectangle). 

(6) Click the left button again to confirm the rectangle. 

Clicking the right mouse button at any time in steps 2 - 6 
will ·punt" the capture of a new rectangle, leaving the 
old one in effect. The current bitmap dimensions are shown. 
If source is debugee, the tool gives no help in repainting 
the debugger bitmap. 

Layout Phase - creating an lnterpress file from the current bitmap: 
In any order specify choices for the options described below 
before bugging "Layout!" command: 

- name for the lnterpress file, to be created in MFile space. 
- unit of measurement for margins and scaling (larger units are 

more precise for setting scale, smaller ones for margins, 
see below). 

- orientation (normal viewing direction of page) 
- paper size (from which margins are relative) 
- printer type (this lets the tool reorder the bits for 

the printer's 'easy' scan direction. This is necessary for 
larger bitmaps on pre - Services 8.0 printers and helpful 
for all printers) 

- Margins versus Scale: 
The user chooses either scale or margins to be the 
independent (specified) variable. If a fixed scaling 
is not requested the picture will be scaled as large as 
possible within the limits of the paper size and margins. 
If a fixed scale is chosen, the image will be scaled about 
the requested area's center and trimmed at paper edge if 
necessary. In either case the tool shows the value it 
computed for the other variable. One always has the option 
of constraining horizontal and vertical scales to be equal 
by turning on the "Matched H&V Scales" boolean. Scales which 
are integral divisors of the printer resolution may work 
better, e.g. 100, 75, 60, 50, etc. dots per inch for a 300 
dot per inch printer (like the 8044/Raven). See remarks. 

Remarks: 
Sending to the Printer - Use the Print command in the Exec. 
Band Overruns - (those dreaded white gaps through the entire 

image, parallel to the long edge of the paper) are more likely 
to occur when scalings of more bits/unit are used. They are 
also increased dramatically by using non - integer scales on 
Services 7 .0 or earlier printers. 

Scaling artifacts - will be evident in non - interger scales. These 



- - Install.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Description: 
Install is a utility that install boot files, much as Othello does. It will take 
given file, either local or remote, and install it as the logical volume boot file 
of the given volume. Install also lets you specify default boot switches to be put 
into the bootfile that is being installed. Install cannot be used to install a 
boot file on the volume on which it is running. 

Syntax of command: 
Install. - VolumeName - FileName/defaultSwitches 

Example: 

Install.- Star -[ServerName) <DiredoryName > VersionNumber> StarDLion.boot/%dwW{ 

is equivalent to the Othello sequence 

Open connedion to: Ibis 
Fetch 

logical volume: Star 
file: < DiredoryName > VersionNumber > StarDLion.boot 

Set boot file default switches 
logical volume: Star 
switches: %dwW{ 



•· HostGraph.doc 

··Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Please refer to the document, "Ethernet Monitors", in XDE Unsupported Software D~scription. 



- - lndirectOutput.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

lndirectOutput.bctl creates a small window and directs "indirect output" to it. Such output includes 
"Boot from" messages from the Herald's menu, lists displayed by Adobe Query, etc. Normally these 
messages are displayed in the Herald window, but if you keep the Herald "tiny" then lndirectOutput can 
be used to create a more visible sink. 

The window defaults to (x: 512, y: 0, w: 452, h: 30], which is the right half of the herald region, 
minus 60 bits to leave room for a tiny Herald window in the upper right corner. This default can be 
overridden using the (lndirectOutput) section of User.cm. 



- - MakeBoot.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Please refer to the documentation in XDE Users Guide. 



1 

NS Spy tool 

This document describes the use of the NS Spy Tool, a tool used for watching traffic on 
ethernets. Since the tool was designed to watch ns packets, the user can filter and format 
up through level 2 ns packets. In addition, pup packets may be filtered and formatted up 
through level 1. Other types of packets may be observed only as raw (level 0) packets, with 
a minimum of formatting available. 

Last edited on February 27, 1984. 

1.1 References 

!llMesaUser'sGuide, Version 10.0,January, 1983. 

121/nternet Transport Protocols, XSIS 028112, December 1981. 

1.2 Definition of terms 

The way a packet is interpreted is dependent on the level of filtering the user has defined. 
<See the Internet Transport Protocolsl2l) 

level 0 packet 

level I packet 

level 2 packet 

A level 0 packet refers to a well formed raw packet from the net. Only 
the encapsulation has any meaning; the rest of the packets is treated 
as level 0 data, regardless of what it may contain. 

A level I packet refers to a well formed ns or pup packet. Meaningful 
information is the encapsulation and the level I header information -
for ns packets this is the IDP header. The remaining part of the packet 
is treated as level I data. 

A level 2 packet is a ns packet with a well known level 2 packet type. 
This includes spp, packet exchange, routing, echo, error, etc. 
Meaningful information is the encapsulation, the IDP header 
information and the level 2 header information corresponding to the 
packet type. The data portion is the remaining part of the packet. 



} NS Spy tool 

1.3 Hardware 

The tool runs on a Dandelion processor with 512 kB memory and a LF display. 

1.4 Files 

[ldun]<APilotl 10> 11.0>NSTools>Friends>NSSpyTool.bcd. 

1.5 User interface 

The NS Spy tool has a main window that is divided into four subwindows, plus an 
auxillary window whose contents depend on the requested level of filtering. See Figure 1. 

1.5. l Main window 

When the program is started, the main window is created, which contains t.he general tool 
information. This window can be deactivated, and will abort any spying in progress. 

Note: If the auxiliary window is active when the main window is deactivated, it. also will 
be deactivated. 

1.5.l.l Herald suhwindow 

The herald subwindow contains the window's name, the time stamp of the tool and the 
net.work address of the host machine. 

1.5.l.2 Message suhwindow 

The top subwindow is the message subwindow and is used for posting error messages. 

1.5. l .3 Flipper su hwindow 

The flipper subwindow contains seven /Uppers, small alternating boxes with associated 
labels and counters. The intent. of the flipper subwindow is to provide some low-level real­
time feedback pertaining t.o the state of the spying process. 

l .5. l.3.1 Flipper items 

The Level 0, Levell, and Level 2 flippers indicate the packets observed before any user 
defined filtering is done. 

level 0 

level 1 

This flipper shows the number of well-formed level 0 packets the tool has 
observed since the tool was last started. Since t.he tool is spying in 
promiscuous mode, this is any level 0 packets on the entire net (i.e. pup, 
ns, translation, etc.). 

The level 1 flipper shows the shows the number of well-formed level l pup 
and ns packets that were observed since the tool was last started. 



NS Spy tool 1 

StartSpyi StopSpyi Collection Mode: {realt1me} Display Connection/Channel 1 

Replay range: {low: O. high: O} Connection/Channel: 

DISPLAY OPTIONS 

Flippers Line Length: 250 Timing: {relative} Format: {octal2} 

FILTERING 

Source/Destination address: * * 

I Broadcasts 11 Level 0 l~I Level 2 I 
Log created on: 

level 2 

queued 

Figure 1 

Apply' Closet 

Packet Type(s): 

private routing echo error pex 

spp pupAddr ubBoot ublPC etherBoot 

mail ubDiag pee any 

Display Options: 

Conn/Channel headers 

NS headers 

Data 

Encapsulation 

Level 2 Headers 

This flippper shows the number of well-formed level 2 ns packets the tool 
has observed since the tool was last started. The flipper reflects only well 
known packet types (such as the ones listed in the level 2 auxiliary window 
in the Filtering section of the tool) .. 

queued is the number of buffers which have been copied onto on the input 
queue (after being run though the filters the user has chosen) since the tool 
was last started. This flipper will only be active when the collection mode 
is buffered. 

3 



1 NS Spy tool 

displayed This item is the number of buffers that have been displayed since the tool 
was last started. It will only be active in realtime or replay mode. Note: 
The tool runs this flipper every time a packet is run through the display 
code, regardless of the actual display options that have been chosen. If the 
user has turned off all of the display options, this flipper will still be active 
in replay or realtime mode. 

1.5.l.4 Control and filtering subwindow 

This subwindow contains the operations and options used to run the spy tool. 

1.5.l.4.l Control items 

The control section of this subwindow contains items used for controlling the spy tool. 

StartSpy ! StartSpy is a command item that starts the tool spying. It is used 
to start any of the three collection modes. 

StopSpy ! StopSpy is a command item that stops the spying activity and 
puts the tool into an idle state. When the collection mode is 
realtime or buffered, this command must be explicitly selected to 
stop the spying; if the collection mode is replay, the display will 
end when the tool has displayed all of the buffers that were 
collected. Should the user decide he does not wish to display all the 
collected buffers after starting replay, he may stop the display by 
selecting StopSpy. The tool may also be stopped by hitting the 
stop key. Note: Collecting packets in realtime mode is usually 
easier to stop by using the stop key rather than selecting the 
StopSpy command, as displaying these packets is a very high 
priority process. 

Collection Mode This item enables the user to select the collection mode he wishes. 
realtime will collect packets directly from the net and display 
them immediately. Packets are not copied and saved; once 
displayed they cannot be displayed again. buffered will collect 
packets from the net and copy them to the disk for later display. 
The packets are stored in a large (half of the available volume 
space or 1000 disk pages, whichever is least) ring buffer. When the 
ring buffer fills up, the tool will continue to collect, overwriting the 
oldest packets in the ring with the new packets. replay, used after 
spying in buffered mode, will take the packets copied to the disk 
and display them. Once packets have been collected in buffered 
mode, they may then be replayed any number of times, using 
different filters. The tool will "clean out" the disk space used for 
saving the packets whenever the tool is restarted in realtime 
mode or buffered mode. 

ReplayRanqe The user may specify the range of the buffered packets he wishes to 
replay by using Replay Range. low is the inckx of the first packet 



NS Spy tool 

Line length 

Timings 

Format 

1 

he wishes to see; high is the index of the last packet he wishes to 
see. 

The length of the display line is specified by Line length. This is 
applicable only to the display of the data, as the header lines are 
shorter than the minimum line length, 250. 

Timings is an enumerated item that is used to specify the type of 
timings displayed in the connection or channel headers. absolute 
timings are absolute (normalized to 0). relative timings are 
relative to when the last packet was observed on the particular 
connection or channel. 

The format ( octall, octal2, hex, decimal, ascii, ebcdic) in which 
the packets may be display is specified by the enumerated item 
Format. Selecting octal2, hex or decimal will display all fields, 
including data, in that format. Because the header fields are 
useful only in a numeric form, if ascii, ebcdic, to octall is 
selected, only the data will be displayed in that format - the header 
fields will default to octal2. 

Display Connection/Channel! 
This command item will display state information about the 
connection or channel specified in the item below. It is important 
to note that this command is only applicable after the tool has 
collected packets in buffered mode, as this state information is 
not saved after displaying packets in realtime mode. The user will 
also not be able to display a channel or connection different than 
the filter type(s) specified when the packets were collected. For 
example, ifthe user specifed the levelO filter, collected a number of 
packets in buffered mode and then attempted to display the state 
information about a routing channel, an error message would be 
displayed, since the state information is built from the filters 
specified when collecting. 

Connection/Channel 

1.5.1.4.2 l<"'iltering 

This string item allows the user to specify the connection or 
channel for which he wishes to see state information .. This item is 
specified by either entering the number of an SPP connection or by 
entering the name of a channel (e.g. routing, levelO). If the 
channel does not exist, an error message will be displayed. 

The second half of the main subwindow contains the filtering items used to specify the 
packets the user wishes to collect. 

source/destination address 
The item that enables the user to specify the machine he wishes to 
watch is source/destination address. The user may specify an 
actual machine address in standard network address format, or a 
Clearinghouse name. The default address is the "all hosts" special 

5 



1 

6 

NS Spy tool 

string. If the address cannot be translated, an error message will 
be displayed in the message subwindow and the tool will watch all 
hosts on the network. 

The next four items are the protocol level filters. Only one may be selected at a time; 
should the user attempt to select a second item, the tool will turn off the previously 
selected one. When one of these filters is selected, an auxiliary options window will be 
opened, showing the user the different filter and display options available for the protocol 
level chosen. For the details of these options windows, see§ 1.5.2. 

Broadcasts This is a boolean item for specifying collection of broadcast packets only. 

Level 0 This boolean item specifys that the user wishes to collect all level 0 
packets. The portion of the packet beyond the encapsulation is treated as 
data. 

Level I Level I is a boolean item for specifying collection of level I ns or pup 
packets. One or both of these may be chose in the auxiliary options 
window that is opened when this boolean item is selected. Any packet 
with a level I type that is not equal to that selected by the user will be 
ignored. 

Level2 This is a boolean item for specifying collection of certain level 2 ns packets. 
The packet type(s) to be collected are selected in the auxiliary options 
window that is opened when this boolean item is chosen. 

1.5.1.5 Log su bwindow 

The log subwindow contains the display of the formatted packets and other test 
information. 

1.5.1.5.1 Sample log output 

The following is a sample log of displayed packets, collected with the protocol level filter 
Level 2 and a packet type filter of any. All of the display options booleans were turned on, 
enabling the user to view the entire packet. 

NS Spy Tool 11.0a of 26-Jul-83 9: 58:39 running on (Dandelion) 74.25200000031. 
Log created on 28-Jul-83 8:49:41 
267 pages available for buffering 

Channel[pex, delta =OB] 
Encapsulation[ethernet[ #460214000225638# ~ #25200007561 B#), type: ns] 
NS[checksum: 744238, control: 38, length: 648, type: Pex, 

1568#77777777777777778#248 ~ 30678#25200012671B#157168] 
PEX[id: 113254442008, type: clearinghouseService(28)] 
(208)0000038 0000038 0000008 0000008 0000008 0000028 0000028 0000008 

The first line of the displayed packet is the state information created by the tool. The 
timing used was-relative, and since the was the first packet observed since the tool was 
last started, the delta (time since last packet was observed) is 0 milliseconds. The actual 
packet information starts on the second line, the display of the encapsulation, which 



'." NSSpyl ool.doc 

-·Copyright (C) 1984 by Xerox Corporation. All rights H'.>erved. 

Please refer to the document, "NS Spy tool", in XDE Unsupported Software Description. 



- - NSSnarf.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

NSSnarf copies NS files from the source volume onto the current volume. The default source volume is 
User and the default directory is the System Files Catalog. The user can specify the following local 
swithces: 

c uses the current name as the unique abbreviation of a command name. The permissible 
commands are SourceDir and DestDir, which set the default values of the source directory and 
the destination directory, respectively. The name of the directory is the next name on the 
line. 
s rename this file when copying it: the target name is the next name on the line. 
u copy the file only if the source file is newer than the target file, or if the target 
file does not exist. 

Example: to copy Myfile.mesa and MyOtherFile.mesa from logical volume Tajo, renaming MyOtherfile.mesa 
to Temp.mesa: 

NSSnarf SourceDir/c <System> MyFile.mesa MyOtherFile.mesa/s Temp.mesa 

IMPORTANT NOTES: 

1. ServicesStubsConfig.bcd MUST BE LOADED BEFORE NSSnarf or you will end up in the debugger! 

2. ServicesStubsConfig.bcd and NSSnarf.bcd must both be loaded with the "v• (ignore version mismatches) 
switch. 



- - NSMailChecker.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

NSMailChecker is a program which checks Network Services (i.e., Star) mailboxes. It can be run either 
to check for mail immediately or in the background to poll every five minutes for new mail. 

NSMailChecker has four blanks to fill in: Name, Password, Domain, and Organization. These are pre - set 
to their currently set values in the environment but may be changed at any time; the changes will take 
effect the next time any command is invoked. · 

There are two commands which may be invoked, Start and Check Now. Start starts a background polling 
process which checks for new mail approximately.every 5 minutes. When Start is invoked, the command 
Start is replaced by Stop, which causes the background process to be stopped. CheckNow may be invoked 
either while the background process is running or when it's not, and causes an immediate check. 

If the tool window is made tiny while the background process is running, the current status of the 
poller can be seen in the tiny window. The top line of the tiny window caption always says "NS Mail". 
andthe bottom line says one of "Empty", "EXISTS". or "ERROR", depending on the state of the poll. If 
"EXISTS" appears, opening the window will reveal the number of messages currently in the mailbox. If 
"ERROR" appears, opening the window will reveal a more complete error message. If the window is made 
tiny when the poller is off, the bottom line says "Checker". 

If NSMailChecker is STARTED in the tiny state (which may be accomplished either by saying 
"NSMailChecker/t" to the Exec or by including an "lnitialState: Tiny" line in User.cm) it attempts to 
start the background poller immediately. Note that for this to work, you must have already logged in, 
so it probably won't work as part of your lnitialCommand unless you use the WatchCredentials option 
described below. 

NSMailChecker examines the (NS Mail Checker] section of User.cm. In addition to the usual fields 
(WindowBox, TinyPlace, and lnitialState), you may also specify a NewMailTune to be played if the . 
background poller finds new mail. In order to use the NewMailTune feature, you must have loaded and 
started Play.bed. 

If you specify "WatchCredentials: YES" (or ·TRUE") in User.cm, then the form fields will be updated any 
time your profile data changes (e.g., via the Profile Tool or the exec's Login command). In 
particular, you can use this feature to make sure NSMailChecker doesn't hold onto a copy of your 
password after DMT or Poly smashes it. 

If you like tiny window pictures better than textual tiny window captions, supply "YES" or "TRUE" as 
the value of the UseTinyPictures line. NSMailChecker comes with four built- in bitmaps (one for each 
of the three possible states of the poll, plus one for the "off" state) which attempt to look 
something like a Star inbasket. Just setting UseTinyPictures to TRUE gets you these default bitmaps. 

If you prefer to supply your own tiny pictures, add them as the values of the EmptyBitmap. 
NotEmpty8itmap. ErrorBitmap. and/or Off8itmap lines. These should be in the same format that 
TinyWindowPictures uses, i.e., a list of 112 octal or decimal numbers separated by spaces. (Note that 
in order for this feature to work properly, NSMailChecker must NOT have an entry in your 
TinyWindow.icons file!) 

NewMailTune, WatchCredentials, UseTinyPictures, and the bitmaps are read when the tool is activated, so 
to change them, just edit User.cm and deactivate/reactivate the tool. 

Example User.cm section: 

(NS Mail Checker] 
Window8ox: (x: 563, y: 30, w: 463, h: 105] 
TinyPlace: (x: 964, y: O) 
NewMailTune: @200 > ccggaaGGffeeddCC; 
UseTinyPictures: YES 
WatchCredentials: YES 
NotEmpty8itmap: 0 O 0 O 0 1777778 1777008 ... 

- - this is the default 
- - no default 
- - default no tune 
- - default No 
- - default No 
- - default built in 

NSMailChecker is intended to be a light - weight, low - overhead tool for simply checking for the existance 
of mail. Suggestions that it should perform information retrieval functions, such as display of 
message envelope information, will be cheerfully rejected. 



8) A boolean named "Expand Pvt Dls" has been added to the NSMailSendTool and is intended to cause the 
members of any private Distribution Lists to be enumerated in the message header, so that the message 
may be answered more easily. Since private Distribution Lists are not currently supported, this 
boolean is only a placeholder. 

9) The message ·checking recipients ... • is no longer printed, as this is now part of the "sending ... 
• operation. 



- - NSHardy.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FILES: 

NSHardyPublic.df, 
DistSvcSupport.df 
NSHardy.doc 
DistSvcSupport.bcd, 
NS Hardy.bed, 
NSHardyConfig.bcd, 
NSMailSendTool.bcd 

OVERVIEW: 

NSHardy is a variant of Hardy which uses the Services 8.0 mail system instead of the Grapevine mail 
system. NSHardy.bcd may be run directly on top of the Mesa environment, as it has the necessary stubs 
and Services Common Software configuations already bound in. If other Services 8.0 Mail Tools are 
being used, NSHardyConfig.bcd is available to be run on top of DistSvcSupport.bcd (which exports the 
Services 8.0 Authentication, Clearinghouse, and Mail stubs) in order to save disk space. 

The sharing of mail files with Grapevine Hardy is not supported; however, the tools may be run in 
parallel since the mail file extension used by NSHardy is" .nsMail" instead of" .mail". The 
differences between NSHardy and Hardy 11.0 are listed below. 

DIFFERENCES: 

1) NSHardy uses the User.cm section "(NSHardyJ ... which has the same formatas the "(Hardy]" section. 

2) The above .bed files may have to be run with the "v" switch so that they are started despite version 
mismatches. 

3) Only a single Mail Service is checked for a user's mail, since secondary mailboxes are not supported 
by the Services 8.0 Mail System. 

4) Private Distribution Lists (files containing a list of mail recipients) are not currently 
implemented and are therefore not recognized as such in parsing the "To:" and "cc:" message header 
fields. 

5) An" Append!" command has been added which inserts the current selection at the end of the mail file 
and creates a TOC entry for it, the result looking as if the new message were retrieved using "New 
Mail!". This can be used, for example, to extract a forwarded message so that it may be answered with 
the" Answer!" command, or to insert a comment into the mail file at an arbitrary location by setting 
the "Date:" field of the comment appropriately and then following the "Append!" with the "Sort!" 
command. 

6) Messages which are not entirely readable by NSHardy, such as Star Documents, are left on the Mail 
Service so that the user may read them using, say, Star Mail. The parts of such a message that are 
readable, namely the header information and MailNote, are copied to the local mail file; a hint as to 
the type of the message is also added to the header of the local message. If the "Flush Remote" 
option is set to TRUE, then the message is marked on the server so that it will no longer show up as 
being new mail. In this case, the message is also marked with an "a" in NSHardy's TOC subwindow to 
indicate that there is an unreadable "attachment" to this message still on the server. Bugging 
"Delete!" has no immediate effect on the attachment of a message: the local part in the mail file is 
marked for deletion, but the attachment remains on the server intact. A subsequent "EKpunge!" of that 
message will first attempt to delete the attachment from the user's mailbox; if this is successful, the 
message will then be expunged from the mail file (deactivating NS Hardy or changing mail files has no 
effect on messages with attachments; they remain in the mail file, marked as deleted). Moving a 
message that has an attachment to another mail file will copy only the local part of the message - -
the attachment remains with the original· copy of the message (Note that at this point, the original 
copy of the message would be marked as deleted, and unless it were unmarked using "Undelete!", a 
subsequent expunge would destroy both the local copy and attachment of that message). 

7) The NSMailSendTool provides for three ways of sending a message: as a MailNote, as a Text message. 
or as a MailNote with an attachment. A MailNote is the simplest way to exchange mail between the Star 
and Mesa environments. A Text message requires the Star user to convert the message before reading it, 
and its delivery incurs a slight amount more overhead than the MailNote, but it does allow for longer 
messages (a MailNote is limited toBOOO characters). Sending a message as a "MailNote with 
attachment" is intended as a way for the user to specify the type of a message; presently, there are 
no facilities provided by NSHardy either to the convert Mesa files to other formats or to forward 
attachments received by NS Hardy. 



- - NSChat.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

NSChat allows you to chat to NS Remote System Administration, ITS and to NS Remote Executive. Type to 
the Executive: 

NSChat <host>!< switch> 

where the switches are as follows: 

s NS Remote System Administration 
i ITS 
e NS Remote Executive 

A NSChat window will appear. If you have the Login boolean selected, you will be logged in 
automatically. 

Options: 
In the Options sheet you can select which type of service you want to talk to. Open the options sheet 
and select the desired host type (sa, exec, or its). Then hit Apply! on the option sheet. 

Connecting: 
Type the name of the host into the textsw of NSChat and hit the DOIT key (the one labeled MARGINS on 
the Dandelion keyboard). You should then be connected to the remote host. 

NSChat has almost the exact user interface as that of the released Chat program. All the commands on 
the tools form subwindow behave analogous as those of Chat. 

User.cm: 
NSChat will read the following User.cm entries: 

(NSChat) 
Login: TRUE FALSE 
HostType: sa any exec its 



1. Retrieve MenuSymbiote. TIP and replace the one that's currently on your TIP> subdirectory. (i.e. 
Delete TIP>MenuSymbiote. TIP, then retrieve the new one with a Dest: TIP>MenuSymbiote. TIP). 

2. Retrieve NewSymbiote.bcd. 

3. Change the [FileWindow] Setup: entry as follows: replace the word "Menu" with "NewMenu". If you 
are using the standard system editor, replace the word "Edit" with "OldEdit". If you are using the. 
Editor hack, you don't need to change "NewEdit". 

You might want to change the Menu: entry to change your default FileWindow menu. 

If you want to use the GlobalSymbiote tool, you should add a [GlobalSymbiote] section to your 
user.cm. See the section on the GlobalSymbiote tool for a sample user.cm entry. 

~- Re - Boot. You must do this before the new MenuSymbiote. TIP table will take effect. 

4. Run NewSymbiote. 

I recommend running NewSymbiotefrom your User.cm lnitialCommand line. If you use the Editor hack, 
you should run NewSymbiote first to make the Menu symbiote come out on top of the Editor symbiote. 

NITTY GRITTY NOTES/RESTRICTIONS 

- - Menu commands are executed on button up. You can abort a command by moving out of the symbiote 
before you button up. 

- - NewSymbiote does not implement menu name qualification. This was not documented in the XDE User's 
Guide, but the system symbiote implementation allows you to qualify the name of a menu item 
('FileWindowSCreate') to cover the case where you have a command with the same name in more than one 
menu. 

- - NewSymbiote matches symbiote items against menus by matching the item against all menu items and 
menu names and using the 'closest match'. The 'closest match' is defined as: 

- all the characters of the symbiote item must be used up in the match (so we don't match 'Fine' 
with 'Find' if there is no exact match for 'Fine'). 
- if we match more than one menu item/name in this manner, take the one with the fewest unmatched 
characters. Thus: 'Fi' matches 'Find' rather than 'File Ops' because we have two unmatched 
characters with 'Find' verses five unmatched with 'FileOps'. 

- - Note to those who use bounding characters to highlight symbiote items such as ' - Split - jEditl': 
These examples still work, but' - J.First - 'doesn't work. The rule: don't put bounding characters 
around something with embedded non - alphabetic characters. Read on if you care about why this is so. 

The menu symbiote window is actually a TextSW. NewSymbiote relies on TextSW to resolve to the 
particular item you are pointing to. TextSW does so by simply doing a word select. This does not 
always get all of the item: if you have the item 'J.Last". pointing at 'Last' will only select that 
word, which wouldn't match according to the matching algorithm described above. So before 
NewSymbiote tries to match, it normalizes (or extends) the selection to include everything bounded 
by spaces (or the end or beginning of the symbiote line). In this example, the selection would 
extended left to include the 'J.'. However, this algorithm fails if you use other characters to 
visually set off menu items: ' - Split - 'or '!Edit!'. To support these kinds of items, if the search 
for a menu item fails with the normalized item, it will try again with the original selection. This 
will succeed for the' - Split - 'example; if you pointed at 'Split', the search would first fail with 
' - Split - ', but would suceed with ;ust 'Split'. However, something like ' - J.First - ·would fail 
regardless; if you pointed at 'first". the search would fail with' -J.First- ".and then would fail 
with 'First'. Thus the rule: don't put bounding characters around something with embedded 
non - alphabetic characters. 



- - NewSymbiote.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

NewSymbiote replaces the standard system menu symbiote facility. NewSymbiote adds the following 
capabilities to menu symbiotes: 

* Menu item names can be abbreviated (i.e., 'Pos' instead of 'Position' or 'J.f' instead of 
• J.First'). 

* Macintosh/Lisa - style popup menus are supported. If you put the name of a menu in a symbiote 
(such as "FileOps") and point down over that name, that menu pops up under the cursor. This 
saves you from having to search through the stack of menus. 

* A "global symbiote" tool allows you to access commands on your root menus (such as the 
Inactive and ExecOps menus). 

NewSymbiote works like the standard menu symbiote implementation as described in XDE User's Guide 
with the following changes: 

Menu commands or menu names that have embedded spaces can be included in the symbiote by removing the 
space: "Show Type" becomes "ShowType"'. The standard symbiote implementation allows items with 
embedded spaces if they are surrounded with quotes. This is no longer supported. 

NewSymbiote puts the NewSymbiote menu on the root menu. This menu should be used instead of the 
system Symbiote menu to attach or detach menu symbiotes to other tools. (Note that you can have a 
Menu: entry for any tool, such as CoPilot or even Life. You can only getthese attached to a tool 
by using the "Attach New Menu· command in the NewSymbiote menu.) 

Popup menus work slightly differently: point down (not chording) over the name of a menu bring up 
that menu. Select the command you want and point up; that command will be executed. 

You can change the default FileWindow menu items by editing the (FileWindow] Menu: User.cm entry. 
Here's an example: 

(FileWindow) 
SetUp: Always NewMenu NewEdit 
Menu: Cre load Edit Store Reset Split J.F J.l J.S FileW Text EditO Dest TSave 

GLOBAL SYMBIOTE TOOL 

The GlobalSymbiote is a tool with no name stripe that looks like an standard symbiote, except that it 
isn't attached to a window. Items in this symbiote refer to the root menus (Inactive, ExecOps, 
etc.). The GlobalSymbiote behaves like an ordinary symbiote in all other respects, with the 
addition of the StuffToExec feature (see below). 

NewSymbiote automatically starts up the GlobalSymbiote tool. To use it, you need to have a 
(GlobalSymbiote) user.cm entry. Here's an example entry: 

(GlobalSymbiote) 
WindowBox: [x: 512, y: 29, w: 512, h: 16) 
Menu: Inactive ExecOps Profile Info Fetch.bed Fetch.mesa Fetch.both 
StuffToExec: TRUE 
lnitialState: Active 

As with the [FileWindow) section, Menu: specifies the default menu items to put in the symbiote. In 
this example, 'Inactive' and 'ExecOps' popup those menus, 'Profile' brings up the Profile tool from 
the Inactive menu (if it's there), and the 'fetch' items access the Fetch hack menu which also lives 
on the root window. 

StuffToExec: If the entry StuffToExec: TRUE is present in the (GlobalSymbiote) section of User.cm, 
then if no menu or menu item match is found, then Exec.ProcessCommandline is called with the 
symbiote item you selected. Typeout is to the default window, and to abort you must signal a global 
abort (hit STOP twice quickly). This feature is extremely useful for invoking arbitrary command 
files with the click of your mouse. 

INSTALLATION 

A NEW TIP> MenuSymbiote. TIP IS REQUIRED FOR THIS HACK. 



- - MungeFileType.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MungeFileType is an Exec hack which changes the MFile. Type of a file to "binary". The only purpose of 
this hack is to work around a bug in the Command Central's "Run" command, which claims it is unable to 
find files whose MFile.Type is "text" (such as .TIP and .TIPC files). 

Syntax: MungeFileType.- <list of files> 



- - MPClock.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The MPClock hack turns your maintenance panel into a digital clock. Repeating the command toggles the 
clock on and off. 



- - MoveToDir.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MoveToDir moves or copies files from one directory to another. It is more convenient than issuing a 
sequence of "Rename" or "Copy" commands to acheive the same purpose. 

To move files, the command syntax is: 

MoveToDir.- directoryName file1 file2 .•. fileN 

meaning: move the files "file1 ", "file2", etc. to directory "directoryName", equivalent to the command 
sequence: 

Rename file1 directoryName >file1; 
Rename file2 directoryName>file2; 

Rename fileN directoryName>fileN; 

Both the directory name and the file names are looked up on the current search path, so they may be 
either absolute (fully qualified) or relative pathnames. 

To copy files, the command syntax is: 

CopyToDir.- directoryName file1 file2 ... fileN 

meaning: copy the files "file1 ", "file2". etc. to directory "directoryName". equivalent to the command 
sequence: 

Copy.- directoryName>file1 .-file1; 
Copy.- directoryName>file2 .-tile2; 

Copy.- directoryName>fileN .-fileN; 

WARNINGS: 
a) It doesn't work properly for files with absolute pathnames greater than 200 characters. 
b) Because of bugs in the Exec's command lookup algorithm, if you want to use the Exec's "Copy.-" 
command after running MoveToDir, you must type the command name fully INCLUDING the·.-" at the end. 



There is no way to send procedure signs. One possibility is to have"[" turn off character spacing, and 
·r· turn it back on. Thus, "[ski" would send "s· and "k" run together. But this means I have to do a 
little parsing of the Send Random! selection. 

There are some bugs in the cursor code that may cause old, dead insertion point cursors to be left 
around in the subwindows. 



<number> I NITEMS I <itemVar> I 
<itemExpr> + <itemExpr> I <itemExpr> - <itemExpr> I 
(<itemExpr>) 

<itemNum> :: =%<number>% 

<itemVar> :: =%<identifier>% 

<metaCommand> :: = 
<interpretedConstruct> <optionalBreakChars> I 
< uninterpretedConstruct > < optionalBreakChars > I 
<metaCommand> <optionalBreakChars> <metaCommand> 

<number> 
- - digit - sequence representing a CARDINAL value; see also < itemNum > 

<optionalBreakChars> :: = 
<Empty> I <ignoredWhiteSpace> I <whitespace> I <breakChar> I 
< optionalBreakChars > < optionalBreakChars > 

<optionallgnoredWhiteSpace> :: = <Empty> I <ignoredWhiteSpace> 

<optionalParam> :: = <Empty> I <optionallgnoredWhiteSpace> <metaCommand> 

<paramlist> :: = <optionalParam> I <paramlist>,<optionalParam> 

<relationOp> :: = >I>= I< I<= I# I = 

< uninterpretedConstruct > 
- - a < DigitSequence >; or an <identifier> NOT followed by •[• (i.e. vs. a <functioncall >) 

<whiteSpace> :: = <SP> I <TAB> I <whitespace> <whiteSpace> - - see also <ignoredWhiteSpace> 



- - MorseCode.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MorseCdde is a Tajo tool that sends Morse code through the Dandelion speaker. MorseCode can send 
selected text, and can also send random code groups of characters chosen from the current selection. 
Character speed and spacing, weighting, and pitch are all variable. 

MorseCode has four subwindows. Top to bottom, they are: 
(labels are for documentation convenience only) 

Message: A message subwindow. 
Command: A form subwindow for commands and parameters. 
Output: an editable scratch subwindow used mostly for output 
Input: an editable scratch subwindow for user type - in to copy code. 

Commands and parameters: 

Send! 
Send the current selection, which need not be in Output or Input subwindows. The selection may 
be of any length. MorseCode knows the code for the following characters: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890.,/? (and space) 

Alphabetic characters may be in upper or lower case. The input focus is set to be at the end of the 
Input subwindow. Vou can type the received characters there, instead of using paper and pencil, if you 
wish. To interrupt sending, press the ABORT button. 

Send Random! 
Send random code groups, with characters chosen from the current selection (which must be < 200 
characters long). Code groups are separated by word spaces, and are echoed in the Output 
subwindow after each group is sent. If you want to make some characters more likely than 
others, just repeat them in the selection: e.g. AAB will send A's twice as often as B's. 

The input focus is set to the Input subwindow, as with Send!. MorseCode will keep sending until 
you press the ABORT button. Send Random! reseeds its random number generator each time, so you 
will not get the same code groups. 

Insert All Chars! 
Insert all the characters MorseCode knows how to send into the Output subwindow. This is 
convenient when using Send Random!. 

Char WPM= 
The speed at which individual characters are sent, in words per minute. 

Spacing WPM = 

Pitch= 

The WPM rate used for spacing between characters (so you can send, say, 13 WPM characters at 5 
WPM spacing). 

Pitch of tone, in Hz. 

Weighting= 
Dah length to dit length ratio. 3 (the default) is standard. 

Code Group Size = 
Number of characters in a code group (1 to 1 O). 

Send in background 
Do the sending in a process running at background priority. This allows you to see your type - in 
immediately echoed in the Input subwindow. (If the process doing the sending is running at 
normal priority, echoing happens rather infrequently.) Turn this toggle off if other processes 
are interfering with the code sending. 

Suggestions for recording code practice tapes: 

I prop up my Dandelion keyboard on a few books, turn the speaker volume down fairly low, and slide a 
portable tape recorder underneath so its microphone is right next to the speaker. It's still necessary 
to be fairly quiet while recording. 

Deficiencies: 

All parameters are integers. This probably isn't a very important restriction except for the weighting. 



RemoveSwitches[tokenlist] 
String -function - removes any switch settings (e.g. 0 /bnpu") from the listed tokens. 

ReplaceSubstrings[string, old, new] 
String - function - replaces each occurrence of old in string by new. 

Same(string1, string2, caseMatters) . 
Boolean -function - yields TRUE iff string1 matches string2. 
If "caseMatters" is present, capitalization must match. 

Show( message] 
String - function - displays message and yields empty string. 

ShowCopy[string] 
String - function - displays string and yields string as its result. 
Debugging hint: Inserting ShowCopy calls may help explain why a meta - command performs as it does. 

Sort(filenameList, option1, option2, option3, option4] 
String. -function - uniquely sorts the list of filenames, ignoring capitalization. 
Option - order dictates major -to - minor sort order, and the valid options are: 

host 
dir - - (directory, including any sub - directories) 
name 
ext - - (extension, e.g. last occurrence of" .bed" in filename) 

The default sort order is: host> dir >name >ext> version - number. 

Substringfound[substring, string, caseMatters) 
Boolean - function - yields TRUE iff substring occurs at least once in string. 
If "caseMatters" is present, capitalization must match. 

Suffixfound[suffix, string, caseMatters] 
Boolean -function - yields TRUE iff string ends with suffix. 
If· caseMatters· is present, capitalization must match. 

Union[tokenListA, tokenListB) 
String - function - yields sorted list of the tokens found in tokenlistA and/or tokenlistB. 

BNF Definitions (Informal) 

<booleanExpr> :: = 
<functionCall> <paramlist> I I - - the function must be Boolean - valued 
<itemExpr> <relationOp> <itemExpr> I 
NOT <booleanExpr> I <booleanExpr> AND <booleanExpr> I <booleanExpr> OR <booleanExpr> I 
( <booleanExpr>) 

<breakChar> 
- - any character OTHER THAN a: 
<Letter>, <Digit>, <SP>, <TAB>, <CR>,%,{.},(.),[,], or <Comma> 

<functionCall> : : = <identifier>[ - - no white space between the <identifier> and [ 

<identifier> : : = <Letter> l <letter>< SequenceOfLettersAndOrDigits > 
- - where the identifier is not a MetaCommands keyword, namely: 
AFTER, AND, DO, EACH, ELSE, ENOLOOP, FOR, IF, NITEMS, NOT, NULL, OR, THEN, UNTIL, WHILE 

<ignoredWhiteSpace> :: = <CR> I <CR> <whitespace> 

<interpretedConstruct> :: = 
<functionCall > <paramlist> I I - - the function must be string - valued 
( <optionallgnoredWhiteSpace > <HostName >) I - - i.e. so user can specify remote file names 
IF <booleanExpr> THEN <metaCommand> ELSE NULL I 
IF <booleanExpr> THEN <metaCommand> ELSE (<metaCommand>)I - - note the parentheses 
<itemNum> I . 
FOR EACH <item Var> DO <metaCommand > ENDLOOP I 
FOR EACH <itemVar> AFTER <number> DO <metaCommand> ENDLOOP I 
FOR <itemVar> +- <itemExpr>.<itemExpr> UNTIL <booleanExpr> DO <metaCommand> ENDLOOP I 
FOR <itemVar> +- <itemExpr>,<itemExpr> WHILE <booleanExpr> DO <metaCommand> ENDLOOP I 
<itemVar> I 
{ <FairlyArbitraryStringOfCharacters>} I 
(<metaCommand>) 

<itemExpr> :: = 



List of Built - In Functions 

AppendToTokens(suffix, tokenlist] 
String - function - appends suffix to each token in tokenlist. 

BlankOutExecControls(string] 
String - function - replaces certain Executive - controlling characters by blanks, namely: 

* # @ f ' ? <TAB> <Semicolon> <CR> andalso\\or - -

CallExec(commandLine) 
String -function - immediately feeds commandline to the Executive, via Exec.ProcessCommandLine. 
CallExec normally yields an empty string, i.e. when the Exec returns outcome = normal (or 
when commandline is empty); otherwise, it yields the string, ABNORMAL- OUTCOME. 

Empty(string) 
Boolean -function - yields TRUE iff string has length = O. 

Error(message) 
String - function - displays message and aborts execution. 

Ex pa nd(com mandline I 
String - function - performs wildcard expansion of tokens in commandline. 
Tokens beginning with"(" are expanded as remote - file names, if the host server permits. 
Other tokens receive Executive - style expansion (for*,#,@. and f characters). 

FileExists(file) 
Boolean -function - yields TRUE iff file exists. 

FileGets(localfile, string, append) 
String - function - writes string in the given local file and yields empty string. 
If "append" is absent, the file is reset before string is written. 

FileGetsCopy(localFile, string, append] 
String - function - writes copy of string in the given local file and yields string as its result. 
If "append" is absent, the file is reset before string is written. 

FullDiff[tokenListA, tokenListB) 
String - function - yields sorted list of tokens found in tokenListA or tokenListB but not both. 

GetSwitches[string) 
String - function - yields string's (rightmost) switch setting, e.g. /bnpu. 
An empty string results if no "/" is present. 
Otherwise, the result's first (and possibly its only) character is a"/". 

lntersect[tokenlistA, tokenlistB) 
String - function - yields sorted list of the tokens shared by tokenlistA and tokenListB. 

Newerfile[file 1, file2) 
Boolean - function - yields TRUE iff file1 has a newer create -date than file2. 

Non Empty( string) 
Boolean - function - yields TRUE iff string has length> 0. 

Olderfile[file1, file2) 
Boolean - function - yields TRUE iff file1 has an older create -date than file2. 

PartialDiff[tokenlistA, tokenListB) 
String - function - yields sorted list of tokens in tokenListA which are not also in tokenListB. 

Prefixfound[prefix, string, caseMatters) 
Boolean - function - yields TRUE iff string begins with prefix. 
If "caseMatters" is present, capitalization must match. 

PrependToTokens(prefix, tokenlist) 
String - function - prepends prefix to each token in tokenlist. 

Prunefilenames[filenamelist, option1, option2, option3) 
String - function - prunes each token in filenamelist according to given options. 
Option order is unimportant; the options are: 

noHost - removes hosts (e.g. "[Igor]"). 
noDir - removesdirectories(e.g. "<Hacks>11.0>Tools>"). 
noName - removes names (e.g. "MetaCommands"). 
no Ext - removes extensions (e.g." .bed"). 

Version - numbers (e.g. "! 1 ")are automatically removed. 



ELSE(Ftp Igor connect/c Hacks directory/c <Hacks> 11.0 >Source store/a> 
FOR EACH %fn% DO %fn%ENDLOOP; thinOutfiles.-) 

vs. one whose closing parenthesis is placed differently (so files are always thinned out): 

IF NITEMS < 1 THEN - - This command expects at least one arg; 
ELSE(Ftp Igor connect/c Hacks directory/c <Hacks> 11.0 >Source store/a> 

FOR EACH %fn% DO %fn%ENDLOOP;)thin0utfiles.-

BUil T - IN FUNCTIONS 

The hack offers quite a few built - in functions and is designed to readily accomodate more in the 
future. For that reason. it takes a hard - nosed attitude about constructs of the form: 

<identifier>[ 

(Note the absence of white space between "<identifier>" and "[" .) The hack's attitude is that 
<identifier> represents the name of a built - in function. If no function currently exists with that 
name, the hack assumes the user made a mistake. 

The general form for calling a function is: 

<identifier>[<metaComand>, <metaComand>, ... , <metaComand>) 

This generality permits arbitrarily complex arguments involving loops, IF - tests, or more function 
calls, but ultimately the arguments resolve to string values. Different functions may, of course, 
place different restrictions on string - content. By the way, any leading white space (i.e. before an 
argument's < metaComand >) is ignored. Trailing white space, as usual, results in appending a single 
blank to the argument's string value (unless the white space starts on a carriage - return). 

As in Mesa, arguments may be omitted or elided. A default string value is automatically supplied for 
each such argument, namely an empty (0 - length) string. 

An alphabetic list of the current built- in functions is shown later, but a brief preview may be 
helpful. Many of the functions yield Boolean - valued results. Thus, there are functions which test: 

- a string for a given prefix or suffix 
- for empty or non - empty strings 
- for a given substring anywhere within a string 
- two strings for equivalent values or - if case matters - equal values 
- whether a given file exists or not 
- whether one file is older or newer than another 

All other functions yield string - valued results, possibly empty ones. Among these are functions which: 

- extract any switches occurring at the end of a string 
- remove any switches occurring in a string's tokens 
- prepend or append a given substring to all of a string's tokens 
- replace occurrences of one substring by another, throughout a string 
- perform wildcard expansion within a string 
- blank out wildcards and other Executive - control characters in a string 
- write a string in a given local file* 
- prune out selected parts of filenames, e.g. for local - directory removal 
- sort a list of filenames 
- obtain the union or intersection of two filename lists 
- obtain the full or partial difference between two filename lists 
- display a string (without causing its execution) 
- inform the Executive that an Error has occurred 
- call the Executive to immediately execute a command string 

* Hint: A function call of the form "Expand(@<filename> )"allows a meta -command to READ such a file. 
I 

One aspect of built - in functions can be a little tricky. Consider the following meta - command fragment: 

Delete. - * .errlog; 

IF FileExists[foo.errlog) THEN ... 

If there is a file named foo.errlog, then the called function (FileExists) will detect that fact as 
soon as the meta - command is executed, i.e. BEFORE string "Delete.- * .errlog;" is transmitted to the 
Executive (thus before foo.errlog is deleted). 

In cases like that, where execution order is a problem, two remedies are available. First, an 
immediate call on the Executive can be arranged: 



CallExec(Delete.- * .errlog] 

IF FileExists[foo.errlog) THEN ... 

Second, execution can be staged through the Executive's window by invoking an extra meta -command: 

Delete.- *.errlog; 

extraMetaCommand.-

where that meta - command is defined to complete the intended task: 

extraMetaCommand: "IF FileExists[foo.errlog] THEN ... " 

EVOKE 

From time to time, the user may want to exercise a built - in function WITHOUT having to write a 
meta -command first. The hack registers the Evoke.- command for that purpose. For example 

>evoke Sort[SSS, ext] 

would list filenames occurring in the current selection; where the list is sorted first by extension, 
then by host, directory, name, and version - number. 

There are no restricted functions; all of MetaCommands' built - in functions are evokable. As with 
normal calls, arguments may be omitted or elided. Amusingly, perhaps, even the "]" can be omitted in 
an evoked call. Normal and evoked calls differ mainly, however, in the nature of their argument 
specifications. For a normal call, an argument can be an arbitrary < metaCommand >. For an evoked 
call, each argument is simply a <string> and cannot itself call a function, test for a given 
condition, or perform looping. 

Hint: If you've forgotten the name of a function of interest. you can jog your memory by typing "Help 
Evoke" or "Help MetaCommands" to the Executive. 

GRUBBY DETAILS 

This section mentions some of the more obscure matters concerning MetaCommands. and it is followed by a 
list of all current built - in functions. The section concludes on the last page of this doc with an 
informal, but fairly definitive, BNF syntax description which is arranged alphabetically. (To track 
the syntax in top-down fashion, start at the" <metaCommand>" entry.) Some of the material below 
refers to BNF constructs on the last page. 

The hack assumes no one will change any of its registered meta - command names (c.f. Executive command, 
ChangeCommandName). Users can always re - name their meta -commands by editing the command file. 

When a < metaCommand > is evaluated, it yields a string containing a client - determined concatenation of 
uninterpreted constructs, break characters, and sub - strings resulting from interpreted constructs. 
Evaluation of an < uninterpretedConstruct> yields a string consisting of that construct; evaluation of 
a <breakChar> simply yields that character. Evaluating an <interpretedConstruct> yields a string 
result and also causes each <booleanExpr>. <paramlist>, and <itemExpr> (along with sub- constructs) to 
be interpreted when encountered. 

When evaluating an IF - THEN - ELSE construct, only one arm is interpreted; the other arm is ignored 
(skipped). As in Mesa, "x AND y" is treated equivalent to "IF x THEN y ELSE FALSE"; i.e. when xis 
FALSE, y is not evaluated. Similarly, "x OR y" is treated equivalent to "IF x THEN TRUE ELSE y"; i.e. 
when xis TRUE, y is not evaluated. Evaluation is basically left-to - right, and all binary operators 
have equal precedence (notably AND & OR). 

A loop's <item Var> can be assigned an arbitrary CARDINAL value in a FOR construct; however loop - exit 
occurs if that value falls outside the range [1 .. NITEMS]. Scope rule: An <item Var> is considered 
defined only after being assigned its initial value in a FOR construct. The <item Var> remains defined 
up to the corresponding ENDLOOP. 



junklmpl.mesaS ... deleted 
junklmpl.mesa$S ... deleted 
junklmpl.errlog ... deleted 

> SomeOtherCommand foo.drivel - - remainder of input line is now executed 

In effect, then, the executed meta - command replaced its name by its expansion. (Note: An expansion 
can be any string acceptable to the Executive. Therefore, it is perfectly okay for a meta - command's 
expansion to include the name of another meta - command.) 

The user will often want to defer designating an item of interest until the very last moment. Consider 
the following, rather limited, meta - command: 

pressPrint: "OldPrint Auk/h % 1 % " 

Suppose the command is executed via: 

>pressPrint Bingolmpl.mesa/L2 

The result is Executive command line: 

>Old Print Aukfh Bingolmpl.mesa/L2 

In other words, the meta -command's peculiar"% 1 % "is replaced by the item "Bingolmpl.mesa/L2" when 
-expansion occurs. More generally, the hack interprets any construct of the form, % <number>%, as a 
-reference to the <number >th item input to the meta - command. We call such constructs item - numbers. 

Regarding input items: A. The items MAY include switches, as in ·singolmpl.mesa/L2• above, but that is 
not a requirement. B. The special item, SSS, is recognized and represents the current selection. For 
example, suppose the user selects a string such as "Test.mesa TestlmplA.mesa TestlmplB.mesa· and 
executes (while the string remains selected) the following Executive command: 

>pressPrint SSS 

The resultant expansion would be: 

>OldPrint Aukfh Test.mesa TestlmplA.mesa TestlmplB.mesa 

In short, the "SSS" item means "use the entire current selection in my place." 

Let's consider another meta - command using item - numbers: 

myPrettyPrint: "Formatter %2%;01dPrint %1%/H %2%fl2" 

If executed as: 

>myPrettyPrint Bud Bingolmpl.mesa 

the result is: 

>Formatter Bingolmpl.mesa 

>OldPrint Bud/H Bingolmpl.mesa/L2 

The myPrettyPrint meta - command could be written in a variety of formats. For example, it might be 
written: 

or: 

myPrettyPrint: "formatter %2%; 
OldPrint % 1 %/H %2 %/L2'" 

myPrettyPrint: " 
Formatter %2%;01dPrint %1 %/H %2%fl2" 

In either case, the result would be the same as shown above, which points out something about white 
space (tabs. blanks, carriage - returns). White space beginning with a carriage - return is NOT passed 
through to the Executive. White space prior to, or not including. a carriage - return is converted to a 
single blank before transmittal to the Executive. (A partial reason: It wouldn't be nice to hand the 
Executive one or more tab characters every time the meta - command was executed.) 

LOOPING 

MetaCommands offers a general looping facility enabling access to an ARBITRARY number of items (such as 
the large number of items which may be represented by Executive command - string,"* .bed"). There are 
four forms of loops, all having the same basic format: 



FOR <loop control> DO <metaCommand> ENDLOOP 

The simplest, most common form would be used to write a more - capable pressPrint command: 

pressPrint: "OldPrint Auk/h FOR EACH %name% D0%name% ENDLOOP" 

Suppose the user edits MetaCommands.cm in this fashion and then immediately executes: 

> pressPrint * .config 

The resultant output might read as: 

Parsing (MetaCommands) section of MetaCommands.Cm ... 
25 meta - commands are now registered with the Executive 

>OldPrint Auk/h That.config This.config Tother.config 

The first two lines result because the hack detects that its command file has changed. Therefore, it 
de - registers all current meta - commands, parses the command file, and registers a fresh set of 
meta - commands. Incidentally, the same two lines are saved in a log file, MetaCommands.Log. (Hint: 
The log's main purpose is to preserve a copy of any error report in case the parse fails.) 

After parsing the command file, the hack resumes execution. In the example above, we assume the 
Executive expands "* .config" into three items - "That.config This.config Tother.config" - each of 
which is assigned to %name% when loop- body "D0%name% ENDLOOP" is executed. (Constructs of the form 
"%<identifier>%" are called item - variables.) 

Another form of loop would allow the user to write a more - capable myPrettyPrint command: 

myPrettyPrint: " 
Formatter FOR EACH %i% AFTER 1 D0%i% ENDLOOP; 
OldPrint % 1 %/H FOR EACH %i% AFTER 1 DO%i%/L2 ENDLOOP" 

The loop control, "EACH %i% AFTER 1" means %i% is to start with the 2nd input item, if available. More 
generally, "EACH <item -variable> AFTER <number>" means the item -variable starts with the <number+ 1 >th 
item, if available. Executing the myPrettyPrint command by means of 

>myPrettyPrint Bud High.mesa Low.mesa lnBetween.mesa 

would yield the following (notice the replication of switch - setting "/L2"): 

>Formatter High.mesa Low.mesa lnBetween.mesa 

>OldPrint Bud/H High.mesa/L2 Low.mesa/L2 lnBetween.mesa/L2 

The two remaining forms of loops provide increased flexibility at the cost of increased complexity. 
The interested reader may consult the "GRUBBY DETAILS" section for a BNF description, but here is a 
weird example illustrating both forms: 

weird:" 
FOR %i% +-NITEMS, %i% - 1 UNTIL %i% < 3 DO - - major: %i%\N 

FOR %k% +- %i%, %k% - 2 WHILE %k% < (NITEMS - 2) OR %i% # 3 DO 
( - - minor: %k%\N)ENDLOOP 

ENDLOOP - - done" 

Note that item - variables within loop - controls (FOR ... DO) merely designate items - by numeric position -
whereas item - variables within loop- bodies (DO ... ENDLOOP) represent actual item content. 

The weird example exposes several other points of interest: 1. The keyword, NITEMS, represents the 
number of items supplied by the Executive. 2. Loops within loops are permitted. 3. Parentheses may 
be used to achieve any desired grouping. 4. A limited arithmetic capability ( + or - ) is available. 
5. Logical operators (AND, OR, NOT) may be used. 6. Relational operators(<.<=,>,>=, =,#)may be 
used. 7. The hack has no comment facility, e.g." - - done" will be passed through to the Executive. 

IF - THEN - ELSE 

Two forms of IF -THEN - ELSE are provided: 

IF <Boolean expression> THEN <metaCommand> ELSE NULL 
IF <Boolean expression> THEN < metaCommand > ELSE ( < metaCommand>) 

Note that ELSE is required, and in the second form notice the parentheses; they are mandatory. These 
requirements simplify analysis and clearly distinguish between a <metaCommand> such as: 

IF NITEMS < 1 THEN - - This command expects at least one arg; 



specialCheck - - For use by the mCompile & mBind meta - commands. 



- - MetaCommands.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

INTRODUCTION 

The MetaCommands hack is intended to simplify the programmer's job. It does so by amplifying the power 
of the Mesa Environment's Executive tool. The magnification is particularly beneficial for repetitive, 
routine tasks, but it can also be exploited for exceptional. specialized tasks. 

This hack is similar to ExecCommands. In large measure, ExecCommands provided the inspiration for 
MetaCommands. The MetaCommands hack departs from ExecCommands in three major respects: 1. Its syntax 
is reminiscent of Mesa. 2. It provides decision - making capability, IF -THEN - ELSE. 3. It offers a 
variety of built- in functions. 

GETTING STARTED 

The recommended approach to using the hack is: A. Read this doc. at least up to the •GRUBBY DETAILS. 
section. B. Obtain the hack itself and an initial command file: 

MetaCommands.bcd f 
MetaCommands.Cm (sample) 

C. Examine MetaCommands.Cm, reading and heeding its comments. D. Start the hack and try out a few 
commands. E. Edit MetaCommands.Cm, customizing it to suit yourself. 

FUNDAMENTALS 

Running MetaCommands.bcd registers two Executive commands, MetaCommands.- & Evoke.- (discussed later). 
Starting the hack registers further commands, determined by the user. More specifically, these other 
commands, which we call meta - commands, are determined by the content of the (MetaCommands) section of 
file MetaCommands.cm. (If there is no such file, the "'ack looks in User.Cm.) 

The [MetaCommands) section contains a list of entries, one per meta - command, each entry consisting of: 

a name for the meta - command, terminated by a colon 
an arbitrary amount of spacing (blanks or tabs), followed by an opening quote - mark(") 
a declaration for the meta - command 
a closing quote - mark, followed by a carriage - return 

As usual, the entire section terminates if and when a double carriage - return occurs. The declaration. 
which we denote as <metaCommand >,may itself contain carriage - returns. It may also contain quote - mark 
pairs("") representing a single quote - mark. 

Regarding characters in a < metaCommand >: The ExecCommands' back - slash convention is obeyed. This, for 
example, allows use of \b or \B when a BACKSPACE must be conveyed to the Executive. Similarly, \nor 
\N can be used to convey a carriage - return. (Note that "\n\n" can be employed when the user wants to 
convey a double carriage - return.) The convention can also be used to "escape" characters (other than 
the quote - mark), i.e. characters which the hack would normally try to interpret for its own use. The 
following escapes are noteworthy: 

\% \{ \} \[ \) \( \) \<Comma> \<SP> 

A "super -escape" is also available. I.e. a sequence of fairly arbitrary characters (quote - marks, 
double carriage - returns. and closing - braces being the exceptions) may be escaped by enclosing them in 
braces. For instance, given the super - escape 

{ XrefByCaller[myFiles.list] XrefByCallee[myFiles.listl} 

the hack would convey" XrefByCaller[myFiles.list) XrefByCallee[myFiles.list)" on to the Executive 
without trying to interpret that string. 

In relation to the Executive, MetaCommands can be viewed as a highly sophisticated abbreviation 
expander. Take a trivial example. Suppose the following meta - command has been registered: 

thinOutFiles: "Delete.- *S * .errlog'" 

When executed, the given meta - command prepends its result to the Executive's remaining command data. 
The Executive window's content might look as follows in a particular case (comments added): 

>thinOutFiles; SomeOtherCommand too.drivel - - user inputs this line 

>Delete.- *$ * .errlog - - this line results from executing meta - command "thinOutFiles" 



- - MetaCommands.Cm - sample 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

- - WARNING: These meta - commands assume you have obtained certain other hacks: 
SingOut.bcd BootVolumeName.bcd Play.bed 

and have loaded the Play and SingOut hacks. You might want to edit the 
lnitialCommand entry in your User.Cm (System] section(s) along these lines: 

"Run.- Play SingOut; MetaCommands;" 

(Meta Commands) 
new: ft 

FOR EACH %item% DO%item% ENDLOOP" 
extract:• 

IF NITEMS # 2 THEN sos.- The expected syntax is: 
\\extract.- substringOflnterest SSS {(i.e. current selection)} 

ELSE (CallExec(specialExtract.- %1% ReplaceSubstrings( 
Sort(BlankOutExecControls(%2%J], SSS]])" 

specialExtract: • 
Show(FOR EACH %t% AFTER 1 DO 

IF SubstringFound(% 1 %, %t%]THEN(%t% )ELSE NULL 
ENDLOOP]" 

sos: 

error: 
!ChantOut.-(5, 2) '@160> >(aaa)% -(AaAaAa)% -(aaa)};error" 

Error()" 
bootStar: • 

BootVolumeName System/IF NITEMS > 0THEN%1 % ELSE(Ldw\{) y• 
bootTajo: • 

inStar: • 

re Star: 

BootVolumeName User/IF NITEMS > 0THEN%1 %ELSE NULL V" 

IF NITEMS = 0 OR NOT Suffixfound(.boot, % 1 %] THEN 
sos.- need 1st arg: (host) <directory>filename.boot 

{ (with optional 2nd arg giving boot switches)} 
ELSE (FileGets(reStar.my, %1%] 

reStar.- IF NITEMS > 1 THEN %2% ELSE NULL)" 

Install System_ Expand(@reStar.my); 
bootStar.- IF NITEMS > 0 THEN % 1 % ELSE NULL" 

shipToTajo: " 
IF NITEMS = 0 THEN sos.- No files specified; 
ELSE(FileGets(toTajo.my, FOR EACH %f% DO%f% ENDLOOP, append) 

{Sing Out '@1 OSCCcAA(AaGgFF)(FGGgFFfDDd)(CCc < AA)AAA} )" 
transferToTajo: " 

specialTransfer.- Sort(FOR EACH %f% DO%f% ENDLOOP 
IF FileExists(toTajo.my] THEN 

Expand(@toTajo.my]CallExec(Delete.- toTajo.my) 
ELSE NULL]" 

specialTransfer: " 
OpenVolume.- User/w; 
FOR EACH %f% DO Copy.- <User>%f% _ %f%;ENDLOOP 
{SingOut <Bb>dDDDD(Cc<BbAa)BBb>CCcC'#C'#c'#DDD}; bootTajo.-" 

mCompile: • 

mBind:" 

IF Empty(CallExec(ShowCopy( 
Delete.-* .errlog * .mesaSS; specialCheck.- * .mesaSS)]] THEN 

IF NITEMS > 0 THEN 
IF NonEmpty(CallExec( 

Compile/-b-ej-n-ps-uw-y FOR EACH %m% DO%m% ENDLOOP]) THEN 
sos.- Compilation error logs exist: Expand(* .errlog]; 

ELSE NULL 
ELSE NULL 
{SingOut DdddAAAAA} 

ELSE NULL" 

IF Empty(CallExec(ShowCopy( 
Delete.- * .errlog * .configSS; specialCheck.- * .configSSlll THEN 

IF NITEMS > 0 THEN 
IF NonEmpty(CaHExec( 

Bind/ - c -e - p- sw FOR EACH %m% DO%m% ENDLOOPJ] THEN 
sos.- Binding error logs exist: Expand(* .errlog); 

ELSE NULL 
ELSE NULL 
{SingOut OdddAAAAA} 

ELSE NULL" 
specialCheck:" 



IF NITEMS > O THEN ShowCopy[sos.- Please cease editing: 
\ ReplaceSubstrings[FOR EACH %m% DO%m% ENDLOOP, SS)J 

ELSE NULLN 

- - Information about the meta - commands: 

new - - For use after you have composed a fresh meta - command and want to try it. 
E.g. if the fresh command needs two args. you can type something like this: 

·newfreshCommandName arg1 arg2· 

extract - - For listing all filenames (or strings composed of filename characters) 
in the current selection which contain a specific string of interest. 
Steps: 1. Make the desired selection. 2. Place the cursor in the 
Executive window and tap the right - hand button. 3. Then to list all 
selected filenames containing the string "lmpl" type: 

·extract impl sss· 
special Extract - - For use solely by the meta - command, extract. 

sos - - For alerting oneself to an error. E.g. try invoking the extract 
meta - command without any arguments. 

error - - For informing the Executive that an error has been detected. 

bootStar - - For booting the System volume using either specified switches or 
your favorite defaults - namely the "Ldwl{" portion of the meta - command. 
(You may. of course, edit that portion as desired. NOTE: The "\" prevents 
the hack from trying to interpret the ·r itself.) E.g. to boot with the 
defaults, you might be able to simply type (i.e. if "boots" is 
sufficiently unambiguous to the Executive): 

•boots• 
in the Executive window; if you want non - default switches you might type: 

·bootsdw(z• 

bootTajo - - For booting the User volume using either specified switches or no 
switches. E.g. you might be able to simply type: 

"boott7{" 

inStar - - For installing a new boot -file in the System volume ... then booting it. 
The meta - command takes a mandatory first argument specifying the local or 
remote boot- file and an optional second argument specifying non - default 
boot switches (see the bootStar meta - command). 

re Star - - For installing Star without having to re - type the local or remote 
boot - file you specified in the previously executed inStar meta - command. 
An optional argument may be given if you want to override your favorite 
default boot switches. Example: 

"restardwC-

shipToTajo - - For designating one or more files to be copied over to the User 
volume the next time you execute transferToTajo. E.g. you might be able 
to simply type: 

·ship user .cm * .funnyData" 

transferToTajo - - For copying files into the User volume and then booting that 
volume (with no switches). Any files previously recorded by one or more 
shipToTajo commands will be shipped to the User volume, and additional 
files may also be designated by the transferToTajo command. E.g. you 
might be able to simply type: 

"trans MyFunnyHack.bcd" 

specialTransfer - - For use solely by the meta - command. transferToTajo. 

mCompile - - For compiling one or more modules. The module names may carry 
switch settings which override the defaults. (You will want to edit the 
meta - command's" - b- ej- n - ps - uw - y" portion if you prefer other defaults.) 
The command aborts if you are editing any* .mesa modules. Example: 

• mcompile Foolp FooPrivate/p Foolmpl" 

mBind - - For binding one or more configurations. The config names may carry 
switch settings which override the defaults. (You will want to edit the 
meta - command's" - c -e - p- sw" portion if you prefer other defaults.) The 
command aborts if you are editing any * .config modules. Example: 

"mbind TextBackingConfig TextDocConfig TextKernelConfig/p TextConfig" 



- - MenuTidy.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MenuTidy is a program that reorganizes the inactive menu on a Tajo or CoPilot volume, allowing the user 
to create separate menus for tools whose inactive names match one or more patterns. For instance, all 
the Adobe tools might be put in a menu labeled "Adobe· whenever they are deactivated. 

When MenuTidy is run, it registers the command "MenuTidy.-" with the Executive. Whenever the command is 
invoked, MenuTidyfirst looks for a list of menus and patterns in the user.cm (see below for format), 
then examines all tools (active, tiny, or inactive) looking for name matches. Any tool which matches a 
pattern will subsequently appear in the corresponding menu whenever it becomes inactive. 

The user.cm entry for Menu Tidy must be labeled [MenuTidy], and consists of one or more menu 
descriptions. Each menu description contains.a menu name, followed by a colon, followed by one or more 
patterns separated by space(s), tab(s), and/or comma(s). A pattern may contain alphanumeric and/or 
special characters (except double quotes). The "wild - card" characters • * • and "#" may be used to match 
any number of characters or exactly one character, respectively. Also, a pattern may be surrounded by 
double quotes in order to include spaces or other delimiters. 
Here is a sample user.cm entry: 

[MenuTidy) 
Adobe: Adobe* 
Tools: *Tool "Command Central• 



- - MesaUserTIP.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

<Function> 
* When you hit a SPACE bar twice within 200 msec, the character(s) just typed is expanded just like 
you hit a EXPANSION key. For JStar Level IV keybord users: "HIRAGANA bar twice within 200 msec" or 
"HIRAGANA bar and SPACE bar simalutanously = within 300msec". 

<Possible application> 
* Use this together with DictionaryTool; so that you can type MESA reserved words more easily. 

<How to install> 
*Run MesaUserTIP.bcd. It uses the above default setting if MESA.TIP is notthere on <>TIP>. If you 
want to modify the timing 200msec. 



- - MemoryMap.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MemoryMap is a tool which can be used to display information about the state of a client's virtual 
memory. The tool has three commands: 

Pages! 

Totals! 

Modules! 

Enumerates pages in virtual memory, beginning at 
the number specified in the tool's FirstPage field, 
and ending at the number specified in the tool's 
LastPage field. For each of these pages, MemoryMap 
tells whether the page is in, out, or unmapped, and 
the module, if any, the page is associated with. If 
the Show Flags boolean is turned on, the flags associated 
with each page will also be displayed under a column 
marked State. The State codes are: 

D dirty 
W write protected (readonly) 
R referenced 

If the Reverse boolean is turned on, the pages will be displayed 
beginning with LastPage, and counting down to FirstPage. 

Totals all the pages between FirstPage and LastPage and 
gives the total number of pages swapped in, out, and 
unmapped. It will also display a summary of the the dirty, 
write protected, and referenced flags for the pages 
totalled. 

Displays the state of all the modules, frames, and packs 
in virtual memory. The modules are grouped by configs 
and within that config, by segment. Modules which are 
swapped in have an asterisk placed before their name. The 
number of pages the modules occupy, and their beginning and 
ending addresses in VM; are also shown. For each config 
displayed, totals are given for: 

packaged code pages, in and out 
packaged frames pages, in and out 
unpackaged code pages, in and out 
unpackaged frames pages, in and out 

All of these commands can be aborted by pressing the stop key. MemoryMap will work correctly for both 
local and remote clients. For a remote client, simply start a CoPilot remote debugging session with 
that client, and then use MemoryMap. 



- - MemSize.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

MemSize registers the Executive command MemSize.-, which reports the real memory size of your machine 
in K bytes, based on the value of SpecialSpace.realMemorySize. 



- - MakeDlionBootFloppyTool.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

Please refer to the documentation in XDE User's Guide. 



- - MazeWar.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

How To Start 

After running MazeWar.bcd. a tool window will appear with a single Form subwindow. To play a game, type 
is a name into the "Your Name:" field and hit "Start Game!". You will then either join another 
existing game or if there is no one else playing. you will start a game. The person to first start a 
game like this is known as the duke. 

If more than one games is going on and you know the duke of a particular game. and if you know the 
duke's network address, type that address into the "Duke Name:" field before starting the game. The 
Duke Name: field uses AddressTranslation to parse its input. (see below for joining games on other 
networks) 

Game Description 

There are three subwindows in the MazeWar game, one with a rats' eye view. one with a birds' eye view, 
and a scoreboard. You can see your opponents only through the rats' eye view, and you can see yourself 
with the birds' eye view. The score is automatically updated in the bottom window. 

Move the cursor into the MazeWar window to make your moves. The keys are mapped as follows: 

Key 

A 
s 
D 
F 
Space 
x 
Point 
Adjust 
COMPLETE 

Action 

AboutFace 
LeftTurn 
Forward 
RightTurn 
Backward 
Shoot 
Peek Left 
Peek Right 
Toggle Score 

turn completely around (180 degrees) 
turn left 
move forward 
turn right 
move backward 
shoot forward 
peek left around a corner 
peek right around a corner 
toggle between net addresss and player names 

You change this by modifying MazeWar.TIP 

Object of the Game 

This is a basic seek and destroy game. As you see you opponents. it is best to start shooting at them. 
After taking a few hits. the opponent will disappear and reappear at some other random spot in the 
maze. 

Joining other games 

Up to eight people can play on one game. although many games can be going at the same time on the same 
network. To join a game on another network. type into the Duke Name: field: 

Duke Name: <netnumberinoctal>.*. 

ie, to join a game on net 748 

Duke Name: 74. •. 



NS Spy tool 1 

consists of the immediate destination address, the immediate source address, and the 
packet type (for this level). The next line is the level 1 (ns) header information, which 
includes the internetwork destination and source addresses. The next line is the level 2 
header, which the tool recognized as a packet exchange header. The last line is the data. 
The number in parenthesis is the length of the data. 

Establishing[l B, delta =OB] 
Encapsulation[ethernet[#2S200016262B# E- #2S200002663B#], type: ns] 
NS[checksum: 12706B, control: OB, length: S2B, type: Spp, 74B#2S200016262B#S367B 

E- 74B#2S200002663B#2001B] 
SPP[sys, ackReq, sst[OB], conn1Ds[4000B E- 7768], seq#s[3B, 3B, 4B]] 

Connection[1B, delta =68] 
Encapsulation[ethernet[#25200002663B# E- #252000162628#], type: ns] 
NS[ checksum: 64S22B, control: OB, length: 52B, type: Spp, 74B#25200002663B#2001 B 

E- 74B#25200016262B#S367B] 
SPP[sys, sst[OB}, conn1Ds[776B E- 40008], seq#s[3B, 3B, 4B]] 

The preceding two packets are from the establishment of an SPP connection (connection 
number 1). note that both packets are system packets, hence no data displayed. 

Channel [routing, delta =OB] 
Encapsulation[ethernet(#7777777777777777B# E- #2S200000017B#], type: ns] 

NS[checksum: 62220B, control: OB, length: 10S2B, type: Routing, 
OB#7777777777777777B#1B E- 74B#2S200000017B#1B] 

Routing[type: {response}] 
[net: 214B, delay: 3B] [net: 1318, delay: 3B] [net: 74B, delay: lB] [net: 101B, delay: 3B] 

[net: 146B, delay: 6B] [net: 302B, delay: 3B] [net: 2026B, delay: 7B] [net: 30SB, delay: 2B] 
[net: GOB, delay: 2B] [net: 2S74B, delay: 1 SB] ... 

This packet is a gratuitous routing response being broadcast to all hosts on the net. Since 
the data in a routing packet has a standard format, the tool displays it in a more readable 
form than the raw dump format seen for other packet types. 

Channel[????(173B), delta =OB] 
Encapsulation[ethernet[#7777777777777777B# E- #2S200000763B#], type: ns] 

NS[checksum: 177777B, control: OB, length: SOB, type: ????(173B), 
OB#7777777777777777B#10B E- OB#2S200000763B#111213B] 

(20B)OO 1234B 05671 OB 000001 B 000002B 000001 B OOOOOOB OOOOOOB OOOOOOB 

This packet has an unrecognizable packet type. The tool only formats the known parts, 
dumping the rest of the packet in data format. 

1.5.2 Auxillary options windows 

The options windows normally do not exist, but are automatically created via the main 
tool window filter booleans. Only one options window is can be active at a time, and offers 
different options depending on the protocol level filter. In general, each window offers 
packet type filter options and options for displaying the packets. Some or all of the 
following items are shown in the options windows (See § 1.5.1.4.2 for details of which 
windows these display options are available.) 

7 



1 

8 

NS Spy tool 

Apply! 

Close! 

Apply is a command item that that sets the options the user has just 
chosen in the options window. The window will not be closed. 

Close is a command item that first registers the options the user has 
chosen and then closes the options window. Note that changes to the 
options will have no effect unless they are set using the Apply or Close 
command. 

Channel headers This boolean item used to request display of the state 
information about the packet's channel. This includes the 
channel name, and a timing number, either relative or 
absolute. 

Connection headers The Connection headers boolean item is used to request 
display of the state information about the packet's connection. 
Connections are applicable to spp traffic only. The state 
information includes the connection number (as created by the 
tool), and a timing number, either relative or absolute. 

Encapsulation The boolean item used to request display of the level 0 
encapsulation portion of the packet is Encapsulation. The 
format will depend on the device type of the net. If the 
encapsulation is unrecognizable, it will be displayed in raw data 
format. 

Level I headers This boolean item is used to request display of the level I (IDP) 
header portion of the packet. If the packet type is ns or pup, 
each field of the header will be displayed and labeled. If the 
packet type is unrecognizable, the header portion will simply be 
dumped as raw data. 

NS headers The boolean item NS headers is used to request display of the 
level I ns header portion of the packet. It is used only with the 
protocol level filter Level 2. 

Level 2 Headers The level 2 header portion of packet may be displayed by 
selecting this boolean. The packet must be a ns packet and the 
level 2 type must be a well known type such as 
sequencedPacket, pex, routing, echo, error, etc. Any 
packet that is not an ns packet or has a unrecognizable type will 
be displayed as raw data. 

Spp system packets The boolean item Spp system packets used to request display 
of spp system packets. This item is only used if the tool has 
recognized the level 2 packet type as being sequencedPacket. 
If this boolean is not on, only spp packets carrying data will be 
displayed. 

data Display of the packet's data may be specified by selecting this 
boolean item. The starting point for the data depends on the 



NS Spy tool 

1.5.2.1 Herald subwindows 

1 

level of packet being displayed. Note: Users displaying level 0 
packet data from packet which s not ns or pup must be aware 
that the length of the data is obtained from the length of the raw 
ethernet packet. This length will always be a at least 46 bytes, 
the minimum ethernet packet data length. 

The herald subwindow for each auxillary options window contains the window's name, 
Broadcast options, Level 0 options, Level 1 options or Level 2 options. 

1.5.2.2 Broadcast options window 

The options available to the user for display of broadcast packets are 
ConnectionHeaders, Encapsulation and Data. For simplicity's sake, broadcasts are 
treated as raw level 0 packets. Users who wish to see the level 1 and/or level 2 headers 
may collect broadcasts in buffered made and then replay them using the level 1 or level 2 
filters. 

1.5.2.3 Level 0 options window 

As with broadcasts, the options available to collectors of level 0 packets are 
ConnectionHeaders, Encapsulation and Data. 

1.5.2.4 Level 1 options window 

When filtering level 1 items, the user may choose to look at ns packets, and/or pup 
packets. The display options available at this level are ConnectionHeaders, 
Encapsulation, Level 1 Headers and Data. 

1.5.2.5 Level 2 options window 

Level 2 filtering is applicable to Level 2 ns packets only. The options window offers the 
user a choice of all the well - known level 2 packet types to filter. If the user wishes to 
collect any level 2 packet, he may choose the special option any, and the tool will then 
collect both well known and unrecognizable level 2 ns packets. At this level, the display 
options are ConnectionHeaders, Encapsulation, NS Headers, Level 2 Headers, Spp 
system packets and Data. 

1.5.3 Number conversion menu 

The tool provides a facility to convert numbers to their corresponding values in various 
bases. To convert any number to hexidecimal, octal or decimal, the user simply selects the 
desired nmber to convert and chords the mouse in the main form subwindow to bring up a 
menu entitled Convert. Doing a menu select of teh desired destination base will convert 
the selected number to that base and dispaly the base and the number in the message 
subwindow. If the base of the selected number is not indicated by an appended B (octal) or 
11 {hex), the base will be determined by the tool. 

9 



} NS Spy tool 

1.6 Operating procedures 

10 

On an ethernet, the tool is typically used as a third party peek. If spying on a phonenet, 
X.25 connection or any other type of point-to-point connection, it must reside on one end of 
that connection. When running on one end, the performance of the connection may be 
slightly impaired. 



XEROX Communication Services Test Programs 

Remote Line Monitor Tool 

Version 2.0 
September 1984 

NOTICE: FOR INTERNAL XEROX USE ONLY 

This manual and the software materials described herein are 
the property of Xerox Corporation and have been prepared for 
employee use. The contents are not to be disclosed, shown, 
distributed or otherwise disseminated, in whole or in part, by 
any employee to any person outside of Xerox. 

Xerox Corporation 
Office Systems Division 
Systems Development Department 
3333 Coyote Hill Road 
Palo Alto, California 94304 



1 

Introduction 

The Remote Line Monitor (RLM) Tool provides a mechanism· for controlling the 
recording of data as it is transmitted and received by a Communication Server. The 
data can be written to a file and subsequently replayed in one of a number of display 
formats such as ASCII, EBCDIC, or HEX. 

lln several places references are made to current limitations or to possible future developments and 

extensions to the features discussed. Such references appear in this font.) 

I.I Operational Considerations 

The RLM Tool consists of 2 parts. One part runs on the Communication Server to record 
the data as it flows through the RS-232-C port. The second part contains the User 
Interface and display functions and runs in the Mesa Developement Environment on a 
work station. The tool taps into the data flow through the GateStream Interface on 
the server. This forces the restriction that only those communication services which use 
the GateStream interface can be monitored. Currently, this excludes only IRS related 
services. If the module (RemoteLineMonitorService.bcd) which taps the data flow is 
not already executing on the server, then it can be loaded using the Remote Loading 
Tool [With Services 8.0, this module is bound with the External Communication 
Service(ECS)). 

The user is given control over the amount of buffer space available for logging data by 
specifying the number of 512 byte pages which will be allocated for buffering. If the 
buffer is completely filled during normal operation, the recording of the data may stop 
or continue by overwriting the oldest data in the buffer, depending on the choice of 
the user. 

1.2 Hardware 

No special hardware is required. 

1.3 File Retrieval 

RLMTool.bcd is the file required to run the RLMTool. Consult the Services 8.0 Release 
documentation to find out where Communication Services files are stored. 



2 

User Interface 

The tool is run by typing the command "RLMTool" in the Executive window. After the 
tool has been loaded and started, the RLM Tool window will appear. 

ECSName: 

Line No= 0 
Mode: {buffered} 

File Name: 

Display Range: {Start= 0 

File Boundaries: {Begin Time = 0 

Start! 

Retreive! 

Stop! 

PlayBack! 

Buffer Size • 20 

• Stop= 0 

, End Time = 0 

Options! 

Begin/End Time! 

RLM Tool Window 

} 

} 

The RLM Tool interacts through a Status Subwindow, a Parameter Subwindow, a 
Command Subwindow, a File (or TTY) Subwindow, and an Options window, which are 
described in the following paragraphs. 

3 



2 User Interface 

2.1 Parameter SubWindow 

The Parameter Subwindow is used to identify the server and the RS-232-C port. Other 
pertinent information controls the collection process. The following describes each 
parameter in more detail with a list of menu items where applicable. 

ECSName: 

Line No• 

Mode Menu 

Buffer Size • 

StoplfFull 

File Name 

Display Range 

File Boundaries 

2.2 Command SubWindow 

Start Monitor! 

Stop Monitor! 

Options! 

Retreive! 

4 

The name or network address of the server which controls 
the Rs:232-c port. 

The line number which identifies the particular RS-232-C 
port. This number must be obtained from the Clearinghouse 
or ECS RS-232-C Port description. The port can not be 
assigned to an IRS. 

Mode defines the collection process. The choices are 
{buffered, realtime}. The default is buffered. [realtime 

currently 1s not 1mplementedl 

The number of 512 byte pages to allocate for buffering the 
logged data at the server. The default is 20. 

A boolean which when TRUE designates the logging of data 
to stop when the buffer is full; when FALSE logging occurs 
using a circular buffer. The default is FALSE. 

The file name the data will be stored under when Retrieved. 
The file to be used during Playback. 

The time interval chosen by the user to display part of a file. 
If no interval is chosen, the Start and Stop values default to 
the begin and end times of the file. 

When Begin/End Time is selected , the begin and end times 
of the file are written to the parameters Begin Time and 
End Time, respectively. 

Once the desired parameters have been specified, this 
command is used to notify the ECS to begin monitoring the 
specified port. 

This will stop the remote monitoring of the specified port. 

Displays the Options window. 

The collected data is brought to the workstation and stored 
in the file specifed in the Parameter subwindow. 



Communic.ation Services Test Programs 

PfayBack! 

Begin/End Time! 

2.3 Options Window 

Displays the data from the specified file using the format(s) 
and display options specified in the Options Window. 
(PlayBack can be aborted using the Stop Key) 

Displays the begin and end times of the file. This 
information is useful to display parts of a file without 
exceeding the boundaries of the file. 

The Options windo'!V contains the parameters which are used for displaying the 
collected data. The window appears when the Options command is selected. 

Apply! 

Source:{all} 

Format: 

ascii 

¥m:;rmn 
decimal 

oct1 

Abort! 

Protocol: {asyc} 

ebcdic 

oct2 

Display Options: 

::!Hiiiiittm::t:r 

Apply! 

Abort! 

Source Menu 

Protocol Menu 

Format Choices 

Display Options 

Sets the parameters and destroys the window. 

Resets the parameters to the values assigned when the 
window was opened and then destroys the window. 

The source of data to be collected or displayed. The menu is: 
{none.send, receive. send&receive. status, send&status, 
receive&status, all}. The default is all. 

The protocol of the data which is to be parsed. The choices 
are: {asyc, bsc, pbsc, sna, xns, x25, none}. The default is 
asyc. [Only asyc and none are implemented.I 

The format of the data when displayed. Choices are : {ascii. 
decimal, ebcdic, hex, oct1, oct2}. Up to six of these formats 
can be displayed during one PlayBack session. The default is 
hex. 

When Header is FALSE the time offset and tranfer status of 
the data are not displayed. When Data is FALSE no data is 
displayed. The default is TRUE for both Header and Data. 

2 

5 



2 User Interface 

2.4 Typescript SubWindow 

6 

The steps involved in running the RLM Tool are 

1) Fill in the Parameter Subwindow. The parameters ECSName, Line No, and File 
Name must be specified, they cannot be defaulted. The other parameters can be 
defaulted. 

2) Select Start Monitor to begin monitoring the specified port. 

3) Select Stop Monitor to end monitoring the port. 

4) Select Rerieve to store the data in the specified file. 

5) Select Options to set the display parameters to be used during PlayBack. 

6) Select PlayBack to display the data from the specified file. To display only part of 
the data, set the Start and Stop time parameters in the Parameter Subwindow. 
Select Begin/End Time toget the time boundaries of the file. 

The following is output for acsii and hex formats. 

Start Time: 22-Aug-84 10:29:46 PDT 
Stop Time: 22-Aug-84 10:30:39 PDT 
Total Sent: 8 
Total Received: 6 
Total Status: 0 
Total: 14 
[start + 46499 ms]. success, received 

[3] NUL@l 
[3H] BOCOH ECOOH 

[start + 48995 ms]. success. sent 
[OJ 
[OH] 

[start + 49000 ms], success. sent 
[1] r 
[1H] 7200H 

[start + 49343 ms]. success. sent 
[ 1] u 
[1H) 7500H 

[start + 49435 ms], success. received 
[1] 
[1H] EOOOH 

[start + 49745 ms]. success, received 
[ 1] DEL 
[ 1H J FF OOH 

[start + 49873 ms]. success. sent 
[1] s 
[lH] 7300H 

[start + 49989 ms]. success. sent 
[ 1] s 
[ lH] 7300H 

[start + 50227 ms]. success. sent 



Communication Services Test Programs 2 

[1] e 
[lH] 6500H 

[start + 50468 ms]. success, received 
[2] o-
[2H] CFFEH 

[start + 50629 ms), success, sent 
[1) 1 

[lH) 6COOH 
[start + 50673 ms], success, received 

[1] 0 

[lH] EFOOH 
[start + 50803 ms), success, sent 

[1] 1 

[!HJ 6COOH 
[start + 51186 ms], success, received 

[2] DEL. 
[2H] FF60H 

7 



- - RemoteBrowser.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 
The Remote Browser displays user - specified files on remote servers in its text subwindow, allowing you 
to inspect these files without having to retrieve them via the File Tool. The files are in fact 
retrieved to temporary local files, so the main advantage is that you needn't remember to delete them 
afterward. Also. you can do wildcard searches and look at the files one at a time, whereas you might 
not have enough disk space to retrieve them all at once. 

Running RemoteBrowser.bcd registers an exec command, RemoteBrowser.-. which creates a new browser 
window. (If there's an inactive or tiny browser window already available, it is used instead.) The 
exec command accepts a switch, It, that causes the new window to come up tinied. You can also choose 
to give the exec command a file name, in which case the browser window comes up with that file 
displayed. (It the file name includes * 's, you must precede them with apostrophes to get them past 
the executive.) You need to include the host and directory. as in 

RemoteBrowse. - [Host) <Directory> Doc> RemoteBrowser .doc 

To use the tool, first fill in the Host, Directory, and Source string fields in the form subwindow. 
The Directory and Source fields may contain wild cards, which will generate a list of files to browse. 

As in the File Tool, you can also specify the entire qualified name (host, directory, and file name) 
in the Source field, thereby overriding the Host and Directory items. 

Bugging Browse! will display the first file in the list. Bugging Next! will display the next file it 
there is one. (Bugging Browse! again re - displays the first file in the list.) In addition, you may 
select to browse All Versions (default FALSE) of a given file. A read - only string in the form 
subwindow displays the fully - qualified name of the file currently displayed. Finally, if you find a 
file you like, you may bug Copy!, which will retrieve a copy of the currently-displayed file to the 
directory currently on top of your search path. 

The tool also contains commands Another! and Destroy!, which work as in the Chat Tool to create 
additional browser windows and to destroy the current one. Other commands let you Clear! the window 
and delete the temporary file, thereby treeing up the local disk space, and Close! the current 
connection, the same as in the File Tool (tinying the window also does this). 

The tool windows look at the [RemoteBrowser) section of User .cm to override the default window box, 
tiny place, etc. 

There is a Verify! command that works similarly to the Verify! command on the File Tool. 



- - RemoteUsageTool.doc 
-· - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Description: 

This tool displays a histogram of the current activity of a remote server in a format similar to that 
of the Activity hack. Three bars are displayed: % CPU utilization, number of page faults, and number 
of Courier connections. The graph is updated whenever a utilization sample packet is received, 
nominally once per second. The scale of the display does not change when the window is adjusted. 

Form Subwindow: 

<Start!> Starts the RemoteUsageTool and sends a request to the remote server to begin sending 
utilization sample packets. 

<Stop!> Stops the RemoteUsageTool and sends a request to the remote server to stop sending utilization 
sample packets. 

<Host:> The name of the remote server may be in the form of a either a clearinghouse name or the 
actual network address. Any format acceptable to AddressTranslation will work. 

I 

Error information is posted to the Herald window. Extra copies of the tool may be created by running 
the tool again in the Executive. 



- - Reclaim.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Reclaim is a hack that recovers • 1ost" disk space resulting from files whose page count is larger than 
required by the byte count. Such a file may be on your disk because it was shortened but not closed 
the last time you crashed or rebooted. 

Reclaim registers a command ·Reclaim.-" with the SimpleExec. This command can be used in two ways: 

Reclaim.-

Enumerates all files on the system volume and shortens each one to the actual number of pages 
required. (Only permanent files in the Mesa development environment file system are affected.) 

Reclaim.- file1 file2 ... fileN 

Reclaims unused pages from the specified files only. 

Whenever it shrinks a file, it will display a message such as 

< >Mail>Active.mail: shrunk from 85to 83 pages 

Since this operation requires write access to each file, you may also see a message like 

<>Debug.log: conflictingAccess 

as it encounters a file that is in use. Such a file is not touched. 



- - RemoteActivityGraph.doc 
- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Description: 

This tool displays a running histogram of the CPU utilization, number of Courier connections, Pilot 
Operating System (OS) Page Faults, and Disk 10 for a remote server as four individual graphs. 

A special packet level protocol is used to remotely acquire the information with as little impact on 
the target server as possible. 

The top graph displays CPU usage. The height of each vertical line is proportional to the number of CPU 
cycles (where 100% is the top of the graph) used during the previous second. 

The second graph shows the number of Courier Connections. The maximum for the graph is set by the <Max 
Courier> item intheFormSW. 

The third graph is Pilot Page Faults, and the bottom graph is Disk 10. The <Mag Pg Fault> and <Max Disk 
10 > items in the Form SW are used. 

The entire display holds about 16 minutes of data, a data point is added at one second intervals, and 
the tick marks indicate 60 seconds of data. 

When the display gets to the righthand edge, it wraps around and starts over. On the second pass and 
succeeding passes, there is a 10 - sample - wide swath of blank'" space to help you find where the new data 
is being displayed. The scale of the display does not change when the window is adjusted. 

If more than one copy of the tool is desired, the tool should be run again in the Executive to create 
each new instance. The tool posts error information to the Herald window. The tool will be stopped if 
made tiny or inactive. 

Form Subwindow: 

<Start!> Starts the RemoteActivityGraph and sends a request to the remote server to begin sending CPU 
utilization sample packets. 

<Stop!> Stops the RemoteActivityGraph and sends a request to the remote server to stop sending CPU 
utilization sample packets. 

<Reset!> Clears the display. 

<Host:> The name of the remote server may be in the form of a either a clearinghouse name or the 
actual network address. Any format acceptable to AddressTranslation will work. 

<Smooth> This switch, when on, causes the average over the last 10 CPU utilization samples to be 
graphed rather than the value for the previous sample. 

<Used:> Displays current activity: o/o CPU, o/o CPU smoothed over last 10 samples, o/o CPU smoothed over 
last 100 samples, Courier connections, page faults, and disk 10. 

<Status:> This item will be in one of four states: 
WAITING FOR CALIBRATION indicates that the server side process is self calibrating itself. This 
condition is transitive and will complete after the number of Courier connections at the server 
reaches 0. That may be awhile, depending on the server's requests. 
INACTIVE indicates that the tool is not watching a server 
TIME OUTS indicates that tool did not receive an information packet from the server as 
expected. This condition may be transitive, caused by internet or server congestion, or may be 
permanent if the server or a phoneline has failed. 
ERROR CONDITION indicates that a protocol error was detected. 
NORMAL indicates that the tool is receiving information from the server and is graphing it in 
the normal fashion. 

<Time at left edge> This item shows the time at which the sample on the left edge of the screen was 
displayed. This time will be updated each time the graph wraps around. 



- - Random.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Random.mesa is the interface to a uniform random number generator. It is pretty good at being random 
and it is very fast. 

The two main procedures that it exports are 

Random.Word: PROCEDURE RETURNS [ret: WORD); 
Word returns a random 16 - bit pattern. 

Random.lnRange: PROCEDURE [low, high: CARDINAL) RETURNS (uniform: CARDINAL); 
lnRange returns a uniform number in (low .. high) (Note that closed interval). 

To initialize the package, a call can be made on 
Random.Initialize: PROCEDURE (in it: WORD.-.. OJ; 

This number is added to the seed. If 'in it' is defaulted to 0, then the low order word returned by 
System.GetClockPulses is used to initialize the seed. So, if you want to be able to reproduce your 
"random" patterns during testing, call Initialize with something other than 0. 

!~~or~ or lnRange is called before Initialize is called, Initialize is automatically invoked with 
1mt:O. 



- - Random2.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Random2 is a package of pseudo - random number generators. Although not particularly fast (about 5 msec 
per), they are VERY random. There is no way to estimate the actual period of the base sequence, but 
it is at least 2**46, and probably a lot more. That means running flat out, it would repeat after 
10000 years. Also, the density is good, since it uses all 32 bits of LONG CARDINALs. 

A bunch of different distributions are implemented. As well as the usual uniform distributions 
(INTEGER, LONG INTEGER, and REAL), there are normal, exponential, chi square, geometric, Poisson, and 
some others. 



- - alterations to Proclist 

2) extend the 800 procedure limit. 
3) allow the user to specify the number of tracable procs (or number of pages for the backing file) 
up to some limit (say 4000) on the call to StartTracing[). 



- - PSpecAnalyzer.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

PSpecAnalyzer.- takes as input, a .map file and any number of .set files generated by Proclist. 

Assuming that a .set file represents those routines invoked for some operation, PSpecAnalyzer.­
generates: 

1) the total number of swap units needed to execute the operation. 
2) the total number of real memory pages that are occupied by those swap units 
3) the amount of fragmentation existing within those swap units 
4) the total number of pages that the procedures in the .set file would occupy if they were packaged 
into a single code pack. 

If the /v switch is mentioned: 

5) a list of the code packs which must be in memory during this operation 
6) a list of the frame packs which must be in memory during this operation 

The invisioned use for PSpecAnalyzer.- is: 

1) in generating new packaging specs (i.e. this allow one to ascertain whether a particular edit to 
reduce fragmentation had more benefitrs than costs) · 
2) validating old ones (i.e. by generating a few choice .set files and determining whether the existing 
packaging spec is reasonable). 

=================== 
Sample run: 

>PSpecAnalyzer.- TextKernelConfig.map BCBackspace.set 

.•. Reading sets ... 

Set name: [total swap units (code, frame), number of pages (code, frame), fragmentation (code, frame), 
ideal code size] 

Data for ... BCBackspace.set: [11(10,1). 57 (48. 9), 2 (2, 0), 30] 

> PSpecAnalyzer/v TextKernelConfig.map BCBackspace.set 
... Reading sets ... 

Set name: [total swap units (code, frame). number of pages (code, frame). fragmentation (code, frame), 
ideal code size, {code packs}, {frame packs}] 

Data for ... BCBackspace.set: [11 (1o.1 ), 57 (48, 9), 2 (2, O), 30, 
{BCSysPaintBCSysEditBCSysOpenBCSysCloseCmn, BCSysEditBCSysOpenBCSysCloseCmn, BCSysEditBCSysOpenCmn, 
BCSysEditBCSysCloseCmn, BCSyslnsertCharBCSysDeleteBCSysBackspaceCmn, BCSyslnsertChar, 
BCSysDeleteBC~ysBackspaceCmn, BCSysBackspace, BCDocScrollBCDocEditBCDocOpenBCDocCloseCmn, 
BCSimpleEditBCComplexEditCmn}, {BlockAndChainConfigframes}] 



- - Print2.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Print2 is just like print, except that it will post status messages in a Status window if one is 
loaded. See the documentation on status windows. 

If you rename Print2.bcd to Print.bed, NSHardy will use it. 



- - Proclist.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Proclist is a tool that produces an alphabetically sorted list of procedures executed for specified 
configurations during a user - specified period. It consists of three files: ProclistNub.bcd, which 
runs in the client to be traced; Proclist.bcd and ProclistNub.symbols, which run in the debugger. The 
symbols for the configs you are tracing must also be on the debugger volume. 

Tracing can be turned on and off in two ways. It can be controlled manually by interpreting 
ProclistlmplSStartTracing and ProclistlmplSStopTracing from the debugger, or it can be controlled 
automatically by using conditional breakpoints as described below. 

Typically, you will run ProclistNub in the client you wish to trace, then interrupt to the debugger. 
Once there, run Proclist. (Have ProclistNub.symbols on the debugger volume). Interpret 
ProclistlmplSStartTracing, set configurations to be traced by using the Trace! command in the tool, 
and proceed to your client. (It is recommended that you run this in the order written). Do whatever 
it is that you want traced. then go back to the debugger. Now you can use the Print Procs! command 
together with the output filter to produce lists of procedures that were called in that trace. 
Interpret ProclistlmplSStopTracing when finished. Voila! 

When using conditional breakpoints to control the tracing, note that invoking the Trace! command resets 
the Break Handler to off, so it's a good idea to set the Break Handler last (or keep your eye on it). 
Otherwise, turning tracing on and off with conditional breaks and the Break Handler works fil1e. 

Form layout: 

Break Handler: {off, on} Auto Zero Tables! 
Watch: {priority}: 
Trace! Configs: 
Output Filter: 
Nested EV Counts Print Procs! in: {window}: File name ... 

Break Handler: turns on special breakpoint handler. If this is on, conditional breakpoints are treated 
specially by ProclistNub. A condition of O turns tracing on, a condition of 1 toggles tracing, and a 
condition of 2 turns tracing off. Any other breakpoints will be passed on to Pilot's normal break 
handler. 

Zero Tables! zeroes out Proclist's data. If the Auto boolean is on, this will be done automatically 
when you proceed from the debugger. 

Watch: controls which processes are traced. The options are all processes, processes of a particular 
priority, or a specific process. In the last two cases, the priority or process handle is taken from 
the text field following this item. 

Trace! Configs controls which configurations have tracing enabled. The argument to this command is a 
list of config names separated by white space. This command must be invoked with a non - empty argument 
for data collection to occur. 

Output Filter determines which configurations will be included in the output. If it is left empty, 
all data collected will be included in the output. 

Nested, if on, instructs Proclist to include nested procedures in its output. This parameter is 
normally off. 

EV instructs Proclist to include in the output an item of the form "Module.ENTRY VECTOR" for each 
module that it encounters. 

Counts tells Proclist to _include the number of times each procedure was called in its output. 

Print Procs! causes Proclist to list the procedures called since the last trace. Output can go to one 
of two places: Proclist's log window, or a file. The default file is "'Trace.set". If no extension 
is specified in the file name, an extension of" .set" will be provided. 

RESTRICTIONS: 
Catch code execution is not detected by the tool. 

The nub allocates a fixed space of 8 pages for its procedure maps. There are two words per 
procedure, plus another word of overhead per module. This allows space for approximately 800 
procedures. If you try to enable tracing for more procedures than will fit, the tool will 
complain. An example is NSFilingConfig. Some workarounds suggested by Bruce Lee are: 

1) do multiple traces, one for each portion of the config. 



- - Play.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Input to Play is a string, either given in the tool window or taken from the current selection, 
interpreted as follows: 

A letter from "A" through "G" specifies a note. If the letter is followed by"#" then the 
corresponding sharp- note is played (meaningful only for C. D, F, G. and A). All notes are 
eighth - notes, but upper -case letters cause tones that are "held" the full time while lower - case notes 
last for 3/64 seconds less and followed by a 3/64 rest. 

C is the bottom of the octave; Bis above C. When ">" is encountered, all subsequent notes are an 
octave higher; a "<" lowers all subsequent notes by an octave. Going up more than 3 octaves is not 
permitted (additional"> "s are ignored), and notes near the top of the highest octave may not be 
struck accurately. 

A"/" inthe string halves the note durations, down to a minimum of 64th-notes; a"*" doubles the 
durations up to a maximum offull-notes. A lower -case 1/16th-note would actually be a 64th-note 
followed by a 3/64 rest, which may or may not be what you want; a lower - case 32nd -note vanishes 
completely! To halve and double the amount of implicit rest "stolen" from lower - case notes, use .. ..._ .. 
and "T ".respectively. 

Use"%" to get an explicit rest (as distinct from the implicit ones after lower - case notes). The rest 
is the same length as a note, i.e., initially an eighth - rest, and changed via "/"and "* ". 

A"+" causes the preceding note to be held for an extra 50%. Thus a quarter - note followed by a"+" 
becomes a 3/8 - note, etc. A " - ·causes the preceding note's duration to be halved. This is 
effectively a shorthand for bracketing the note with "/" and "* ". 

A left parenthesis causes subsequent notes and explicit rests to be at 2/3 normal duration, until a 
right parenthesis is reached. Three notes enclosed in parentheses yield a "triplet". 

If you think you know exactly what tempo you want, use "@<n>" to give the note duration and/or ",<d>" 
forthe lower-case implicit rest, where <n> and <d> are strings of digits representing milliseconds. 
The values will be constrained to the usual limits (e.g .• <n >will be forced between 8 and 1024 ms). 
Subsequent .. ,.., "t--", etc., have their usual effects. 

Two or more notes and/or rests enclosed in braces, as·· {C% % %G#}", yield a "slide" from the first note 
to the last. The duration of the slide equals the total duration of the notes and rests; observe that 
upper - and lower - case notes have the same effect. The slide consists of 64th - notes at equally - spaced 
(logarithmic) frequencies. Warning: This can eat up a lot of array space! 

A period(".") in the string causes the buffer to be shipped out. as for a semi - colon. and resets the 
octave, note duration, and implicit lower - case rest to their initial values. This is for when you're 
playing an entire file that contains several separate pieces. 

======== 
The other tool commands in Play should be fairly straightforward. The format for a music file is one 
or more pieces, each ending with a period and containing somewhere (usually at the front) a 
[bracketed] name for the piece at the beginning of a line. Bracketed items elsewhere in the line are 
ignored (i.e .• are treated as comments). Unnamed pieces are assigned the name of the file. 



- - PowerMouse.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

PowerMouse is a tool which modifies the behavior of the mouse icon, or cursor, with respect to the 
motion of the mouse itself. There are two parameters which describe this modification: 'Threshold' 
and 'Acceleration'. Threshold is a speed (in pixels per screen refresh), which is the minimum speed 
of mouse movement for which cursor movement will be modified. Acceleration is a percentage. 
describing the maximum amount of movement modification. Acceleration= 100 is normal mouse action. 
Acceleration= 200 is a maximum of doubling cursor response. 

The tool communicates to the user through a form window. Amplification and Threshold are readonly 
number items, which may be modified by using the associated • + • and • - • command items. Below is an 
approximation of the appearance of the tool (for a fixed point screen font). 

!Power Mouse 10.0 of 16 -Jun - 83 13 :34:07 I 

II Amplification = 200 + ! 
II Threshold = 20 + ! 

-r I 
_,I 

The tool is activated by loading and running PowerMouse.bcd. When the tool is not inactive, it is 
modifying the behavior of the mouse. It can be turned off by deactivating the tool (or unloading 
• PowerMouse • ). 

PowerMouse.bcd registers a single command with the executive, ·PowerMouse.-·. It is described below, 
in its help message. 

>help PowerMouse 

PowerMouse.- activates the PowerMouse tool. 
When tiny or active. this tool modifies the behavior of the mouse. There are two parameters: 
Threshold and Acceleration 

> 

Threshold is the minimum speed (pixels per screen refresh) for 
modified behavior. Try 15. 

Acceleration is the amount of behavior modification. 100 =normal. Try 200. 

PowerMouse.bcd reads the user.cm for the initial values of Amplification and Threshold. Below is the 
[PowerMouse) section of my own user.cm. 

[PowerMouse) 
WindowBox: [x: 557, y: O. w: 237, h: 49) 
TinyPlace: [x: 964, y: O) 
lnitialState: Tiny 
Amplification: 200 
Threshold: 20 

p.s. - Those of you that have used previous versions of this program are in for a pleasant surprise: 
the response is very smooth and more intuitive than before. 



I don't implement local file variables (that is, a file variable that is local to a procedure 
invocation); all files must be global. 

8. Subranges. 
In most Pascals, it is permissible to send an integer declared to be in the range [2 .. 3) to a VAR 
parameter of type INTEGER. This is illegal in Mesa for two reasons. The first is that it permits 
unconscious breaching of the Mesa type system, and bounds checking is nearly impossible. Worse yet, 
Mesa represents its subranges in biased form, so you would get the wrong answer. This Pascal feature 
is used fairly often, so I compile a Mesa LOOPHOLE if the biases are compatible. This disables tight 
type checking. and you may want to fix the Pascal program so that it only sends variables of type X 
to VAR parameters of type X. 

9. Program Headers. 
I ignore the files specification part of the program header. In particular, I don't do an automatic 
RESET or REWRITE on any files mentioned in the header. 

10. Character set. 
The character set is full Ascii. That means that string constants in your program will appear in the 
case in which you typed them (except for the CAPITALIZE option; see above), and that when reading an 
input file you will see every non - control character exactly as it appears in full Ascii. Control 
characters are turned into blanks except for CR, which turns into a blank coupled with the EOLN 
condition (1/0 is modified by the control field of the record representing a text file; see above). 

11. TextllO. 
PasMesa only supports text 110 of integers, reals, characters, strings, and booleans. It doesn't 
support other enumerated types, or sets, or arrays, or records. There are fairly simple ways of 
getting around this in either Pascal or Mesa. 

12. Depth of Procedure Nesting. 
There were three bits free in a word in the symbol table, so Mesa limits this depth to 8, minus a 
few. I have encountered programs that exceed this limit by two. and I suppose worse is possible. I 
know this is a silliness in Mesa, but I suggest that you fix the Pascal source code. 

13. Global Variables. 
Pascal programs frequently include many global variables, and the current Mesa compilers place fairly 
tight limits on the number of variable interface items that are allowed in a DEFINITIONS -type .bed. 
PasMesa's modularization mechanisms discussed above are enough to handle this problem, since you may 
declare more than one DEFINITIONS module in the .mod file, and parcel out the global variable among 
them by name. But this is sometimes tedious. If you are willing to be courageous, there is an 
easier way: importing a PROGRAM module. (This is nefarious process associated with the name POINTER 
TO FRAME.) It is legal in Mesa, although unusual, to have one PROGRAM module import another PROGRAM 
module instead of a DEFINITIONS modules. At the price of introducing a compilation dependency 
between the two PROGRAM modules involved, this allows the latter module to get at all of the 
variables, types, and procedures of the former one. Furthermore, PROGRAM - type .bed's are allowed to 
have more variable items than DEFINITIONS - type .bed's. To avail yourself of this technique, simply 
declare a PROGRAM module in the .mod file to which all of the variables are sent (with SotherE-varsS, 
presumably), and then list this PROGRAM module as an import when you declare the rest of the PROGRAM 
modules. 

If you decide to go this route, be warned that some Mesa debuggers get confused about this kind of 
importation; if you ask about an unqualified global variable name, you may get an incorrect answer. 
In conversations with such debuggers, you will have to qualify all global variable names with the name 
of the module that defines them. 

14. External procedures. 
For performance reasons, or simply for convenience, it is sometimes helpful to implement some of the 
basic operations of a Pascal system directly in Mesa, rather than in Pascal. For example, you might 
want to invoke graphics primitives from a Pascal program. or you might want to do input and output 
more efficiently than the standard Pascal runtime support allows. To do so, PasMesa allows you to 
declare procedures in the outermost block of the Pascal source simply as · ·external". PasMesa will 
generate a correct Mesa header for each external procedure, and put that header into the DEFINITIONS 
module that you specify. It will also put a copy of the header without the required body into the 
PROGRAM module that you specify. You are expected to take this PROGRAM module and edit it as 
necessary to supply a body for each external procedure. 

It would be quite tedious if PasMesa turned around and smashed your carefully hand - written procedure 
bodies with another copy of the header hints the next time that it was run. To avoid this, I suggest 
that you specify a funny extension, such as · · .hintS", for the PROGRAM modules onto which PasMesa is 
to write these header hints. 



- - PhoneBook.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The program PhoneBook maintains a personal phone list (or any other use you have for a <name, value> 
pair list). PhoneBook registers four commands with the executive: 

AddPhoneNumber.- name number 
RemovePhoneNumber.- name 
FindPhoneNumber.- name 
ListPhoneBook.-

AddPhoneNumber.- adds the pair <name, number> to the phone directory, if it already doesn't exist. 
Name may be any 100 character string.and number any 62 character string. If either name or number 
includes spaces, quote the string. 

RemovePhoneNumber.- removes the entry name from the phone directory, if there is one. 

FindPhoneNumber.- finds the entries matching "nameN in the phone directory and prints their numbers. 
"name" may contain the wild cards .. and#, but they must be quoted to appease the executive. The 
wildcard \is equivalent to .. , but it need mot be quoted. 

ListPhoneBook.- creates a formatted list of the phone book in the file PhoneBook.txt. 

These four commands will also accept as an optional first parameter of the form book/b. This will cause 
the command to use the phone book with the name "bookN or Nbook.btreeN if book contains no periods. 

Help procedures are also created by this hack. The phone directory is stored in the file 
PhoneBook.btree. If AddPhoneNumber.- can't find PhoneBook.btree. it will create one for you. 



compilation, and it goes like this if f is an input text file, and you want it to be called •too": 

PascalAttachFile(file: @f .baseFile, name: •too•, dir: input, itemSize: byte); 

The other value of the dir parameter is output. The item Size parameter is byte for file of character 
and word for anything else. The name parameter defaults to NIL, and item Size defaults to byte. If you 
omit the name parameter, it will prompt you. There is no built - in editing: if you make a mistake, you 
.start over. 

The text file T is a record with a 6 - bit control field, T .control. whose definition can be found in 
PascalNoviceFiles. Its purpose is to control how Twill handle upper/lower case and control 
characters. The default is that a file will read upper and lower case but will read all control 
characters except CR as blank. and that the file will write upper and lower case, and all control 
characters exactly as specified. The default is applied only at module START time. After that you can 
change these control fields in Mesa to your heart's delight. 

Refs versus Long Pointers 

Suppose that PasMesa is compiling some Pascal program into Mesa code intended to run within Cedar. At 
first blush, you might suspect that the right thing to do would be to have PasMesa use RE F's and Cedar 
safe storage as the implementation of Pascal pointer data types. It even seems at first blush that 
there might be a reasonable chance of making PasMesa's output · ·safe" in the Cedar sense. 
Unfortunately, these hopes are torpedoed by the presence of VAR parameters· in Pascal. After all, if 
VAR parameters were easy to implement within the current Cedar, they would have been implemented. 
There is a plan to implement them someday, even though they are hard, and perhaps PasMesa's output can 
be made SAFE at that time. 

Why are VAR parameters hard? First of all, note that one can't implement VAR parameters simply by 
using RE F's, since the actual supplied for a VAR parameter may be a component of a record or array. 
while RE F's can only point at top level objects. This problem could be solved by passing both a REF 
and an offset as the way of referring to a supplied actual by VAR. But there is a more subtle 
problem. Under normal conditions, RE F's only point at objects in the heap. that is, in counted zones. 

Butthe value being passed by VAR might be in a counted zone. or in an uncounted zone, or in a frame. 
Even if we were willing to stretch the rules somewhat, and use LOOPHOLE's to acquire REF's to 
uncounted storage, we wouldn't know in general when to increment and decrement reference counts and 
when to leave them alone. 

Hence, even in Cedar, PasMesa uses LONG POINTER's rather than RE F's. This means that Pascal programs 
are unsafe, in the technical Cedar sense. 

There is one place, however. where Pascal files are allowed to play with REF's, and that is in the 
various implementations of Files. The Pascal runtime, given the Pascal record that represents a 
Pascal file, has to be able to get its hands on an IQ.STREAM, the Cedar object that implements the 
file. And an IQ.STREAM is REF - containing•we don't have any choice about that. The safest way to do 
this association would be to let the Pascal program (which is unsafe code, after all) deal only with 
integer indices, called JFN's in TENEX. The runtime would have a data structure to map these JFN's 
quickly into the appropriate IQ.STREAM. But I was too lazy to do write the necessary code, so I 
played a little faster and looser. The Pascal record that represents a file actually contains a LONG 
POINTER to a record in counted storage, one field of which is a REF to the IQ.STREAM. Because this 
record is referred to by LONG POINTER's, it's reference count is not reliable. The Pascal runtime 
deals with this by linking all of these records onto a single linked list with RE F's, so that they 
will have reference count 1 in perpetuity; they are never freed. This isn't a big problem, since the 
records are not large. 

Restrictions and Limitations 

Mesa has several restrictions and limitations that are not present in most Pascal implementations. For 
some of these I have provided a detour; for others you will need either to editthe Pascal program or 
to edit the resulting Mesa. 

1. Identifiers. 
For comparison purposes, Pascal identifiers are capitalized and all characters are compared. This 
can (and has) cause some identifiers that were treated as the same by some other Pascal compilers to 
be treated as different by this one (e.g .• if their first difference is in the 15th character). This 
happens so often that I put in a special feature that tries to figure out what was probably meant. 
It looks for any exact match in the context stack, or failing that, the longest match among all 
identifiers in the context stack with the correct first eight letters. There may still be 
mismatches in the translated Mesa, but at least PasMesa itself doesn't blow up. 

In the Mesa translation. the first letter is capitalized and all others are in lower - case. This avoids 
stepping on Mesa's reserved words. The character 137B (underscore, or+- in Xerox' version of Ascii) is 
not translated, but rather causes the next translated letter to be capitalized. 



You may find yourself frustrated after a while by the necessity of dealing with two different syntaxes 
for identifiers. In Pascal, case is not significant and · · .,_ .. is used to mark word boundaries; while 
in Mesa, case is significant, and is itself used to mark work boundaries. This can be quite annoying 
when, for example, you are debugging the running Mesa from the Pascal source, and you want to find the 
value of some variable. To ameliorate this situation, a special hack program called CapsArrows is 
available through PasMesa.df. Running CapsArrows adds a button to the system window at the top of the 
screen. When this button is left- clicked, the currently selected text is translated from caps (Mesa) 
format to arrows (P.ascal) format; right - clicking does the reverse. CapsArrows is a useful hack, 
offered for whatever it is worth, but don't expect perfection. For example, it will blow up if the 
selected text spans node boundaries. 

2. Record length. 
Mesa puts a limit of 4096 words on the length of a record, and construes local and global frames to 
be re~ords. Most Pascal systems have no such limitation. 

For an array variable declared in the global frame or a local frame, a situation that seems to arise 
all the time, the solution is to declare that array to be allocated from the heap instead .. 

A general solution for records would be really complicated, because it involves introducing new 
pointers within the record, and one is confronted with allocating, freeing, and copying 
indirectly - referenced sub - records. This situation seems to arise mostly when the programmer wants to 
read/write a heterogeneous binary file from/to an earlier/later Pascal program execution. He does this 
by declaring a huge record type, and a file whose records are of that type, and reading/writing one 
record. At this point your only hope is that he localized this activity in one place, so you can 
change it easily. · 

3. Integer size. 
In PasMesa, the type Pascallnteger is defined to be INT by the PascalBasic portion of the runtime 
package, where INT is a 32 bit integer. Be warned that INT's are not yet fully supported by the 
Mesa compiler. For example, you can't have a subrange type of INT whose representation would exceed 
16 bits. 

4. Precision of integer arithmetic. 
Be also warned that the current Mesa compiler behaves somewhat unpleasantly as regards arithmetic. 
If you add two 16 - bit quantities. the Mesa compiler will compile a 16 - bit add, blithely assuming 
that the sum will fit into 16 - bits as well. Furthermore, there is no ove ... _ • .- _.__-'-'-~at runtime. 
This caused difficulties during the port of TeX, so I implemented the following dodge. PasMesa now 
keeps track of the compile - time upper and lower bound of all scalar quantities. When PasMesa is 
compiling an arithmetic expression, it does interval arithmetic on these bounds. If the result can 
be guaranteed by this interval arithmetic to fit into 16 bits, PasMesa compiles code that will 
compile a 16 - bit operation; else, PasMesa coerces one of the arguments to INT to force the 
arithmetic to be done long. 

5. Sets. 
I have implemented Pascal sets as Mesa packed arrays of BOOLEAN. There are three basic sizes: 16 
elements, 64 elements, and 256 elements. PasMesa chooses the next larger size. Most of the 16 - bit 
operations are inline single - word BOOLEAN operations, and should be quite fast. 

6.GoTo's. 
The GOTO statement in Pascal is of the traditional variety; but the GOTO statement in Mesa is quite 
restricted, since it always forces an exit from some enclosing block. Let us first consider local 
GOTO's, that is, GOTO's that do not jump out of a procedure body. PasMesa will insert additional 
blocks and loops into the translated Mesa program as necessary, in order to handle most combinations 
of forward and backward local GOTO statements in the Pascal input. There is one thing that PasMesa 
won't handle, however. Call a pair of GOTO statements head -to- head if one of them jumps backward 
while the other jumps forward into the loop formed by the backward jump; that is, the two GOTO 
statements of a head -to - head pair jump into each other's interiors. As long as the Pascal input 
does not include any head- to - head pairs of GOTO's, PasMesa will output correct and equivalent Mesa 
code. Any head -to - head pairs that do occur in the Pascal source will engender translation failures 
in PasMesa that will reveal themselves as error messages from the Mesa compiler. 

Some Pascal implementations also allow non - local GOTO's, that is, GOTO statements that jump all of the 
way out of a procedure body to a label defined in some enclosing block. Consider a non - local GOTO 
from the point of view of the target label Land the block B in which it is defined. The GOTO 
statement itself doesn't appear as a statement of the block B (that would be a local GOTO). Instead, 
some statement in B calls a procedure P, and the GOTO is either a statement in the body of P or in the 
body of a procedure that P calls. We will define a non - local GOTO to be either forward or backward 
depending upon whether control goes forward or backward in the block B after it manages to work its 
way out of the invocation of P. PasMesa handles forward non - local GOTO's by using the Mesa 
signal/error machinery. But backward non - local GOTO's are a problem. They will be translated into 
Mesa code that will compile without error, but any attempt to execute the backward non - local goto will 
result in an uncaught signal. I suspect that handling horrible errors is the only good excuse for 
non - local GOTO's in any case, and error - handling GOTO's in general jump forward. Thus, I hope that 
PasMesa's current problems with backward non - local GOTO's will not prove to be a major difficulty. 

7. Local Files. 



translate a Pascal array is as a Cedar · ·computed sequence". If you want to use this technique, you 
give the keyword · · ComputedSeqArray" here, followed by a list of names of the arrays that you want 
translated this way. The names of the arrays can be fully qualified: · · mem+-array" means the 
variable · · mem+-array" in the outmost block, while · ·output.names" means the variable · ·names" that 
is local to the top- level procedure named · ·output". Qualification can go on as deep as necessary: 
· · a.b.c.name" will work as well. 

The next option has the keyword · 'INLINE". followed by a list of procedure names or function names (or 
array names, if you have also chosen to implement these arrays with the ProcArray feature discussed 
below, in which case they are really procedures also). If you specify that a proc should be INLINE, 
Mesa will translate the body of the proc into the definitions module instead of the implementations 
module, and will mark it as INLINE. An adroit use of inlines can speed up your program substantially; 
for example, TeX"s main memory array is implemented as an inline ProcArray. But be very cautious 
about this, since using inlines will make your module size problems worse. 

The optional NAMED PARAMETERS clause tells PasMesa that the syntax for parameter procedures is like 
this: 

PROCEDURE foo(x: INTEGER; PROCEDURE baz(y,z: INTEGER)). 
Otherwise it assumes that it is like this: 

PROCEDURE foo(x: INTEGER; PROCEDURE baz(INTEGER;INTEGER)). 
The former form is clearly the more rational, and the one that Mesa uses, but the latter has some 
currency in the Pascal community. The original syntax in the Pascal User Manual and Report is: 

PROCEDURE foo(x: INTEGER; PROCEDURE baz), 
which is clearly inferior, since it gives you no clue to baz's parameters. PasMesa will also handle 
this form, but both it and the Mesa compiler thereby assume that baz takes no parameters. If you 
call foo giving as a parameter a procedure that takes parameters, the Mesa compiler will complain 
bitterly (and rightly so). In this paragraph the concept PROCEDURE is intended to include FUNCTIONS. 
Of course, many Pascal implementations don't allow procedures or functions as parameters at all. 

The next option is PROCARRA Y. followed by a list of the fully - qualified names of the variables that you 
would like to implement this way. PasMesa will replace the declaration of the array · · Array(lndexType] 
of ElementType" by a declaration of a function that takes Index Type as its argument and returns a LONG 
POINTER TO ElementType. You get to supply the body of the procedure. 

Still one more option about arrays. This switch is called · ·SPECIAL ARRAY", and is followed by a 
list of fully - qualified names of arrays. The issue here is whether to store the array on the stack or 
in the heap. If you specify that the target language is Cedar, the default is to allocate arrays in 
the heap, that is, to replace an array variable by a variable of type LONG POINTER TO an array, with 
appropriate dereferencing on array accesses. If the target language is Mesa or Long Mesa. then the 
default is to allocate arrays on the stack. In either case. you can change from the default behavior 
to the opposite behavior by calling the array SPECIAL Arrays that are allocated in the heap are 
allocated from the system UNCOUNTED ZONE. The ones that are local to a procedure are deallocated when 
that procedure returns, while the global ones are never deallocated. 

The Pascal runtime 

If you wrote your · ·.mod" file just right, you should be able to shove your program through the Mesa 
compiler after it has gone through PasMesa by just typing the name that you specified for the 
Makefile. This Makefile will compile the definitions modules first, in the order that you declared 
them; then, the implementations modules. Finally. it will call the binder on the top- level config. 

In order that the resulting bound file should be runnable in Cedar, you will have to arrange that it 
can get at the services of the Pascal Runtime package. 
The runtime services needed by a Pascal program have been divided up into various classes, with 
different interfaces for each class. Given that there is no way in Mesa to bind up several interfaces 
into a bigger interface, I couldn't figure out any better way to proceed. The issue is that different 
Pascal programs want to have different file systems under them, and some Pascal programs don't use 
Sets at all, while the rest of the runtime stuff is common to all Pascal programs. Hence, there is a 
PascalBasic with the basic stuff, three different file interfaces, and a Sets interface, along with 
implementations for each. The PascalNovicefiles package tries to be really nice to the novice 
programmer. There is code to make text files avoiding reading one character ahead (as most Pascal 
files do), so that terminal interaction can work correctly. PascalWizardfiles is a much thinner layer 
on top of IQ.STREAM; this is more to the liking of big applications programs like TeX, which generally 
open files and the like by calling Cedar procedures that are declared as external to the Pascal program 
in any case. Pascallnlinefiles is an inline version of PascalWizardfiles. Be warned that using the 
inline version will make the modules into which you have broken your Pascal program somewhat less 
likely to make it past the size limits of the Mesa compiler. 

If you choose to use the PascalNovicefiles version of the runtime file support, you should set the 
lnventfileNames switch in your ··.mod" file to TRUE. You will then be working in a world with the 
following properties : Except for the standard files, all other files by default carry the name of 
the file variable. To alter the default, you call a procedure PascalAttachfile in PascalNovicefiles 
with several arguments including a string containing the name of the file, and after that you RESET or 
REWRITE the file and everything proceeds normally. I usually insert this call on the Mesa side of the 



the ERROR's. Thus, there are six kinds of items all told. In case you haven't guessed already, each 
statement in the block in the · · .mod" file tells PasMesa that the definitions code and 
implementations code generated by the listed top level items is to be placed in the specified 
definitions module and implementations module. 

In addition to giving the names of items explicitly, PasMesa allows you to give defaults in various 
ways. These defaults look like funny item names that begin and end with a dollar sign, to avoid name 
conflicts with genuine items. The four names Sother+-procsS, Sother.-typesS, Sother-constsS, and 
Sother.-varsS tell PasMesa where to put those items of each of the four classes that aren't explicitly 
sent somewhere else. The pseudo - item SmainS means the executable code of the outer - most block, and 
the pseudo - item Sglobal+-labelsS tells PasMesa where to declare necessary ERROR's to implement 
non - local gotos. In addition, there is a super - default called SrestS, which tells PasMesa where to 
put everything that isn't classified by the rules above. The Maze program is quite lazy about 
breaking things up: it puts all defintions into MazePrivate, the external DrawMaze into 
MazeGraphicslmpl, and everything else into Mazelmpl. Only small programs can get away with this 
easy - go - lucky attitude. 

One more comment about the body of the block in the · ·.mod" file, concerned with EXPORTing. PasMesa 
has to figure out which of the implementations modules in a large system EXPORT which definitions 
modules. Instead of asking you for this information explicitly, PasMesa figures it out in the 
following devious manner: if there is a line of the · ·.mod" file of the form 

ADefs, Blmpl : = stuff 
in which some stuff is stuck in ADefs and Blmpl, then Blmpl is assumed to export ADefs. You can 
prevent PasMesa from drawing this conclusion, if necessary, by putting an asterisk after ADefs, as in 
the line · 

ADefs". Blmpl: = stuff 
Also, as mentioned above, ADefs won't be exported by anybody if it was declared to be trash. 

After the · ·end" in the mod file comes a right paren and an assignment operator followed by the name 
of the source file where the Pascal program can be found. 

The mod file finishes up with list of switch names and switch settings by which the behavior of PasMesa 
can be appropriately modified for different situations. The switches must come in the correct order, 
and that order is alphabetical according to the name of the switch. The Maze example has only a few 
switches. The lnventfileNames switch (remember, case is not significant in Pascal text) tells PasMesa 
to assume that the PascalNovicefiles version of the file 10 portion of the Pascal runtime package will 
be used. This version of file support tries (or tried, back when Ed wrote it) to be very nice to 
you. In particular, it tries to allow you to think of files in Pascal's unusual manner, as a sort of 
extensible record. The files are actually stored on disk, and the name of the file on the disk is 
derived from the name of the file variable in your Pascal program. To make this work, PasMesa has to 
generate some calls to a routine from the PascalNovicefiles runtime package; the lnventFileNames 
switch requests this service. 

The Makefile clause gives the name of the file on which you would like the compile - and - bind command 
file to be written; the default extension is · ·.cm". In the example, the command file will be 
called CompileMaze.cm. 

The PREDEFINE clause is a place where you can put the declarations of procedures that will be available 
to the Pascal program even though they are not defined there. The block that you give here is treated 
as if it enclosed the outer block of your program. If editing your Pascal source program isn't a big 
problem, another alternative is to include such external function definitions in the outermost block 
there. In either case, the implementations of the external functions are done directly in Cedar. 

Maze is a simple program, and doesn't stretch PasMesa to it's limits; in fact, there are several 
switches that Maze doesn't need. Our next subject is a discussion of the rest of the possible 
switches and what they do. 

There is an optional CAPITALIZE clause because of the unfortunate history of Pascal: in the original 
implementation, the character set was a 64 - character set not even vaguely related to Ascii. PasMesa 
implements CHAR as full Ascii, including upper - and lower - case characters, but you may come across a 
program that is not prepared to deal with lower - case characters, even though they appear in the Pascal 
source file, because the programmer expects the Pascal compiler to capitalize everything. If you say 
CAPITALIZE CHARS, string constants that PasMesa represents as single characters or as packed arrays of 
characters be capitalized. If you say CAPITALIZE EVERYTHING, PasMesa will even capitalize things that 
it will represent as Mesa strings. Mostly what this means is that the string constants that you write 
with WRITE or WRITELN will be capitalized. If you omit this clause, PasMesa will compile exactly the 
case you use in string or character constants. 

The optional CompilerSwitches clause is followed by a Pascal string (written with single quotes; 
remember, you are talking to a Pascal compiler!); this string will be put into the compile - and - bind 
command file at the place where Mesa compiler switches belong. For example, we chose to compile the 
Mesa TeX with bounds checking and nil checking turned off, since this helped us out a little with our 
storage overflows in the Mesa compiler. Thus, the file TeX.mod includes the clause · · COMPILERSWITCHES 
'/-b-n';". 

Large arrays in Pascal programs cause PasMesa no end of hassle. One of the ways that you might want to 



module. Any module that is imported by the config counts as declared, of course. Usually, you will 
want to declare all of the definitions modules first and then the implementations modules, so that any 
of the latter can take any of the former as arguments. The order in which you declare modules is also 
the order in which they will be compiled, by the way. 

What does it mean for one module to take another as an argument? It usually means to DIRECTORY, 
IMPORT, and OPEN it. Pascal has no sense of name scopes local to a module, and PasMesa only outputs 
unqualified Mesa names. Thus, a module has to OPEN anything that it DIRE<;:TORY's in order to get any 
good out of it. Note that there can't be any name conflicts in the Mesa version of the program 
because there weren't any name conflicts in the Pascal version. IMPORT'ing is a bit of an issue, 
though. The compiler will issue a warning message if a module IMPORT's something that it doesn't 
really need. Furthermore, you can't turn off this warning message without turning off all warning 
messages, which would be rather dangerous. Thus, PasMesa offers the following feature: if you put an 
asterisk after the name of an argument in the declaration of a module, the declared module will 
DIRECTORY and OPEN but not IMPORT that argument. I recommend that you leave the asterisks off until 
you get warnings from the compiler, and then add them as needed. 

A word for wizards: When one module takes another as an argument, the argument module is almost always 
a definitions module rather than a program module. But not always. It is possible for a module to 
DIRECTORY and IMPORT a program module; the former is said to be taking the latter as a POINTER TO 
FRAME. Doing so has definite disadvantages: it introduces a compile - order dependency between 
implementations modules and it confuses the debugger in many cases. But it also has an advantage that 
is relevant to PasMesa users: the importer gets access to all of the global variables of the importee, 
and the importee can have lots and lots of variables. You see, implementations modules have more slots 
in their global frames for variables than do definitions modules. To make a long story short, PasMesa 
does allow you to declare a program module that takes another program module as an argument; do so 
only at your peril. 

Each declaration of a module ends with one of three words: either · ·forward", ··external", or 
· ·trash". The keyword · ·forward" corresponds to the normal case; PasMesa will produce source text 
for a forward module, will request that it be compiled at the appropriate time, and will request that 
it be bound into the resulting configuration. The keyword · · external" is used for modules that are 
to be bound into the configuration, but should neither be written by PasMesa nor compiled anew. The 
prime examples of · ·external" modules are the modules that implement the Pascal runtime environment. 
The program Maze imports the pascal runtime from the outside world, but many Pascal programs choose to 
bind the pascal runtime routines into their configs. Such programs declare the various modules of the 
runtime and specify them to be ··external". The third possibility is·· trash": PasMesa won't 
write, compile, or bind a module that is declared to be · ·trash"; this gives a way of naming a place 
to put things that you don't want. In summary, the three options can be thought of as follows: 

forward: write this module, compile it, and bind it 
external: don't write or compile this module, but do bind it 
trash: don't write, compile, or bind this module. 

The list above tells you what the various options mean for implementations modules, but the situation 
is a little different for definitions modules. In the definitions case, the notion of binding doesn't 
make sense. Instead. the important question is whether or not various implementations modules should 
be marked as exporting this interface or not. The basic rules by which PasMesa figures out who 
exports what are explained below. But they are modified for the case of a definitions module that is 
declared to be trash: PasMesa will guarantee that no implementations module exports a trash 
interface. 

Everything in Maze.mod should make sense now up through the keyword · ·begin" except for the funny 
extension specified for MazeGraphicslmpl. What is going on here is the following. The procedure that 
draws the maze is easier to write in Cedar directly, since it wants to call procedures from Graphics, 
GraphicsToPress, and the like. If you give an explicit extension on any file name, PasMesa will use 
the filename that you have specified; if not, it will use the appropriate default extension for the 
file: either · ·.cm" or · ·.mesa" or · · .config". In this case, PasMesa will write a header for the 
DrawMaze procedure into MazeGraphiclmpl.hintS with a body of · · ??". pointing out that you must write 
this procedure yourself. When you replace ··??"by the correct body, you should store the result out 
on the file MazeGraphiclmpl.mesa, where the compiler will be able to find it. Future runs through 
PasMesa will now avoid smashing your hand - written file because the PasMesa output will once again be 
written on the file MazeGraphiclmpl.hintS. 

Between the · ·begin" and the · ·end" are a sequence of lines that look sort of like funny assignment 
statements. Each left hand side must have precisely two predeclared module names; the first must be 
a definitions module and the second an implementations module. On the right - hand side of the 
statement is a sequence of names of top - level Pascal items. PasMesa is prepared to help you split up 
the outermost block of your Pascal program. Splitting up inner blocks is much harder, and PasMesa 
offers you no help in that regard; so, if your Pascal program has a single procedure that is too long 
to fit, even all by itself, into a Mesa module, then you are in trouble. But PasMesa does allow you to 
split up the outermost block however you see fit. Call each thing in the outermost block that could 
generate corresponding Mesa code an item. There are four major types of items: types, constants, 
variables, and procs (procedures and functions). The executable code on the outermost block is also 
an item by itself. And it turns out that labels in that executable portion can also generate Mesa 
code, since non - local gotos to those labels are implemented using ERROR's, and someone has to declare 



and short Ropes, and hence tends to pollute your virtual memory quite severely. I recommend that you 
Rollback after running PasMesa extensively. and perhaps before as well. 

Running the Compiler 

The compiler is called PasMesa. You can invoke PasMesa itself on a particular program by typing 
PasMesa maze 

where ··maze.mod" is the name of a text file that you must have already made up that gives PasMesa its 
instructions. I shall use the · ·maze.pas" program as an example. 

The · ·.mod" file gives PasMesa basically two kinds of information. First, most significant Pascal 
programs are too large to fit into one Mesa module that the current Mesa compiler can digest. To 
address this problem, PasMesa has facilities for taking the various components of the outermost block 
of the Pascal input program and parceling them out to a collection of Mesa modules. The · ·.mod" file 
declares these Mesa modules and tells PasMesa what outer block items to put where. After this 
modularization information, the · · .mod" file also allows the user to specify the settings of various 
switches and parameters. 

The format and features of · · .mod" files are rather complex, rather like those of OF files. Let's 
look at· ·maze.mod": 

(configuration maze(graphics, graphics+-to+-press. random. pascal+-basic, 

definitions maze+-private(pascal+-basic*); forward; 
program maze+-impl(pascal+-basic, pascal+-novice+-files. maze+-private, random); 

forward; 
program maze+-graphics+-impl.hintS(graphics, graphics+-to+-press, maze+-private, 

pascal+-basic); forward; 
begin 

maze+-private. maze+-graphics+-impl : = draw+-maze; 
maze+-private, maze+-impl: = SrestS; 

end) : = maze.pas; 
INVENTFILENAMES TRUE; 
MAKEFILE compile+-maze; 
PREDEFINE 
function choose(i,j: integer): integer; external; 
function init(i,j: integer): integer; external; 
begin 
end 
TARGET cedar; 

You're probably wondering right off why there are back - arrows in the middle of the identifier names. 
Those characters have code '\137. In the Xerox character set, that is a back - arrow all right. But in 
ASCII, it is an underline; as such. it is the character generally used when writing Pascal code to 
separate the words in multi - word identifiers. PasMesa, like all Pascals, ignores the case of 
characters in its input. When translating an identifier to Mesa, it capitalizes the first letter and 
makes the rest lower case. If the identifier contains any underscores, they are removed, and the 
letter immediately following the underscore is made upper case as well. Thus. the Pascal identifier 
· · graphics+-to+-press" will be translated by PasMesa into the Mesa identifier · · GraphicsToPress". 
It's a little funny at first, but you'll get used to it. Remember that assignment in a Pascal program 
uses the operator · · : ="rather than a left - arrow. For more details and a pointer to a nifty hack 
program named CapsArrows that will help you translate back and forth between these two identifier 
syntaxes. see Restriction 1 below. 

The first half of the mod file looks like a bastard form of Pascal block. You should think about it as 
a declaration of the configuration that the Pascal program is going to be translated into. PasMesa 
assumes that every Pascal program will be broken up into a number of modules that will be bound up in 
one binding step into the final configuration. The identifier after the word · ·configuration" is the 
name of that config; in our example, that name is · ·maze" in Pascal form, which translates into 
· ·Maze" in Mesa form. PasMesa will write the config itself onto the file named · · maze.config". 

The identifiers in the parentheses after the word · ·maze" are the arguments to the config, that is, 
they are the definitions modules that this config will import. Therefore, the config that PasMesa 
writes will have a header of the form: 
- - file: Maze.config 
- - Pascal - to - Mesa Configuration 

- - Pascal -to - Mesa translator output, translated at January 22, 19844:22 pm 

Maze: CONFIGURATION IMPORTS Graphics, GraphicsToPress, Random, PascalBasic. PascalNoviceFiles 
The next three lines declare the modules that are involved. Definitions modules are declared with the 
keyword · ·definitions" and implementations modules are declared with the keyword ··program". Each 
module that you declare takes, as arguments. the names of the modules that it depends upon. PasMesa 
is a one - pass operation: you must declare a module before you use it as an argument to another 

pascal~ovice+-files); 



- - PasMesa.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The PasMesa translator has been converted to Mesa to run in XDE. Following are some insights and 
restrictions for the current state of PasMesa. 

" PasMesa is a memory hog. It cannot in good conscience be called a Mesa program since it has no 
concept of storage deallocation. In particular, the global frames for all the modules require at least 
4K, most of which is string literals. Also, PasMesa will trash up your system heap with a lot of 
garbage it doesn't collect. The moral is, if you run PasMesa, do it in your Tajo volume where it can't 
do much harm. Either that or reboot soon after using PasMesa. 

" Only the PascalNoviceFiles version of th runtime i/o support has been implemented. The other 
versions (PascalWizardFiles and PascallnlineFiles) haven't been touched. 

* The standard files Input and Output initially are set to the executive. 

"The TARGET language must be LONG MESA. 

*The resulting Mesa code will be FULL of warnings. mostly about long integers being truncated, and 
usually around for loops. 

You should retrieve PascalBasic.bcd, PascalBasiclmpl.bcd, PascalNoviceFiles.bcd, 
PascalNoviceFileslmpl.bcd, all from the subdirectory of the directory. 

Included in the source directory are the pascal source, .mod file, and resulting mesa files for a 
benchmark program, Bench2*. It will give you a start. Following is the original documentation from the 
people over at PARC. 

Abstract 

PasMesa is a Pascal - to - Mesa source translation tool. It can help import Pascal programs into the Mesa 
environment. 

An Overview of PasMesa 

The most straightforward way of importing a relatively small amount of Pascal software into a 
relatively large Mesa environment is to translate the Pascal as directly as possible into Mesa source 
code. The translation is straightforward precisely because of the simplicity of Pascal and the 
similarity of the two languages. I have implemented in Mesa a Pascal - to - Mesa translator called 
PasMesa. A fair thing to say about this translator is that it has compiled some Pascal programs to 
Mesa, and, usually after some modifications, the programs have worked. It is a bit early to claim 
that PasMesa will translate any Pascal program to runable Mesa. In any case, PasMesa's translations 
are not perfect. I assume that the person doing the translation is both a Pascal and a Mesa 
programmer, and that he is prepared to do an average of 15 to 30 minutes' work per (paper) page of 
source code to repair the translation where it failed. All known translation failures result in 
errors that are caught by the Mesa compiler (except for backward non - local GOTO statements, which 
result instead in uncaught signals; see Restriction 6 below). 

Error recovery in PasMesa is non -existent, and the error reporting is only rudimentary. PasMesa is not 
at all intended as a means by which one could reasonably develop a Pascal program from scratch. I make 
no guarantees about what will happen if the Pascal program will not pass through somebody's standard 
production Pascal compiler without complaint. 

The Pascal program is assumed all to fit on one (perhaps gigantic) Pascal source file. To coalesce a 
multi - module program into a single module looks like a straightforward editing task; however, I might 
be receptive to a chorus of complaints in this area. 

One final generality: PasMesa runs rather slowly. Just be patient. Remember, it's faster than doing it 
with a text editor. 

Further generalities 

Most of these new features are connected with making it possible to do the translation of a large 
system completely' automatically. That is, I considered it cheating to have to modify the resulting 
Mesa code by hand; instead, I would add some other funny feature to PasMesa itself. 

The code that PasMesa outputs is intended to run in XDE. No effort has been made to produce a version 
of the Pascal runtime routines in Alto Mesa 6 that is compatible with the new PasMesa. 

Not only does the PasMesa run slowly, it also runs impolitely! It does many, many allocates of long 



- - ResetMapLog.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

FUNCTION 

ResetMapLog runs in Copilot ONLY and allows you to have multiple remote debugging sessions of the same 
debugee. 

BACKGROUND 

When you open a remote debugging session. CoPilot processes map logging information about the debuggee. 
This allows CoPilot to meaningfully interpret the state of the debugee. After CoPilot has processed 
the map log, it resets the debugee map log pointer. thereby allowing the debugee to reuse entries in 
the map log. If you try debugging from a CoPilot that had not originally processed all of the 
debugee maplog, CoPilot will detect an •••invalid Load State••• and you will not be able to debug. 
ResetMapLog allows you to side step this problem by resetting the map log pointer to the value it had 
when you first started debugging. Therefore each debugger will always see the the entire map log. 

UTILIZATION 

To use ResetMapLog you must first open a remote debugging session to a debugee, via the CoPilot Remote 
Debugee command. Next, run ResetMapLog in the Executive and that's it. You may then examine the 
state of the debuggee. If you don't find anything of interest to you, you can pass the buck and allow 
anyone else to continue teledebugging by starting a remote debugging session from their CoPilot. 
ResetMapLog was specifically designed to allow you to discover why a machine had crashed without being 
stuck with having to completely debug it. You can start a teledebugging session, poke around and then 
let someone else debug it, if necessary. 

PRECAUTIONS AND DISCLAIMERS 

The ~haviour of CoPilot is unknown if ResetMapLog is run and then the debugee is debugged from the 
same CoPilot which processed all of the original map log info. This means that CoPilot is processing 
the same map log info twice, and that may lead to unknown and unsavory side effects. 

ResetMapLog must be run after the teledebugging session is completely opened and before you want to 
disassocate yourself from the debuggee. either by Proceeding, or by just allowing another person to 
debug from their own CoPilot. It will not work if you open a session, set a breakpoint, proceed the 
debugee, return when the breakpoint is taken, and THEN run ResetMapLog. After that, any attempts to 
debug the debugee from a different CoPilot to result in an *•*Invalid Load State•*•. 



Appendix A 

Status and Error Messages 

Courier Error = > caller aborted 

Courier Error = > duplicate program export 

Courier Error = > invalid arguments 

Courier Error = > invalid handle 

Courier Error = > invalid message 

Courier Error = > no answer or busy 

Courier Error = > no courier at remote site 

Courier Error = > no such procedure number 

Courier Error = > no such program export 

Courier Error = > no such program number 

Courier Error = > no route to system element 

Courier Error = > parameter inconsistency 

Courier Error = > protocol mismatch 

Courier Error = > remote system element not responding 

Courier Error = > return timed out 

Courier Error =>stream not yours 

Courier Error = > too many connections 

Courier Error = > Transmission medium hardware problem 

Courier Error =>transmission medium not ready 

Courier Error = > transmission medium unavailable 

/\-1 



Appendix A Status and Error Messages 

A-2 

Courier Error =>transport timeout 

Courier Error = > unknown error in remote procedure 

Courier Error = > ****unknown error reason 

Remote error: insufficientSpace 

Remote error: invalidaddress 

Remote error: invalidlineNumber 

Remote error: not Implemented 

Remote error: notStarted 

Remote error: procedureNotFound 

Remote error: transmissionMediumDown 

Remote error: invalidFileName 

Remote error: No Data 

Remote error: notStopped 

Remote error: ??? 

Bad remote address specification 

Clearinghouse lookup problem 

Circuit has terminated 

Buffer Full at Server 

Specified Port is Active 

Waiting ... 

GateSpy. Reason = other 

... ABORTED 

Data collection stopped 

Data retreived and stored 

End of File reached 

Interval out of Bounds 

File is of incorrect type 

Parser not bound/implemented 

Start 

Start 

Start 

Start 

Start 

Start 

Start 

Retreive/Playback 

Retreive 

Retreive 

unknown Error 

Start 

Start 

Start 

Start 

Start 

Start 

Stop (or Stop Key) 

Stop 

Retreive 

PlayBack 

PlayBack 

PlayBack 

Play Back 



- - TIPTest.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

TIP Test provides a way of testing TIP tables before you commit them to a system that you're going to 
try to run on. It lets you parse tables to check for syntax errors, then lets you try out the 
productions to see if the correct results are being generated. 

The tool consists of the usual message subwindow and form subwindow, with an additional large window at 
the bottom for testing the new tables. 

The commands available are: 

Create - Calls TIP.Create Table with the filename in the Name: field of the subwindow. If the 
parse is successful, the new TIP.Table is associated with the bottom subwindow of the tool. 
At this point, only real -estate events are sent to the window. This command calls the Destroy 
command before attempting any of this. 

Destroy - removes the TIP.Table, if any, from the bottom window and releases the storage 
associated with it. Note that since there is no direct way to destroy a TIP table, this is 
done by creating a private heap for the table and deleting it for this command. 

Take Input - if the tool has a TIP.Table in its hands from a previous Create, this command 
causes the bottom subwindow of the tool to become the current input focus. This allow all 
events, not just real estate events to be passed to the tool. 

The bottom subwindow of the tool has TIP.NotifyProc which simply prints the TIP.Results passed to it, 
one line per call. Results elements are separated by commas. Individual results are printed in the 
following formats: 

char=> 
coords = > 
keys=> 
atom=> 
int=> 
string=> 
time=> 

quoted character 
[x: O,y: OJ 
<KEYS> 
pname of the atom 
a long integer 
quoted string 
(145143523458) 



(e.g., NSMailChecker). 

To generate picture bitmaps use TinyPictureTool.bcd. For the less artistic there is a collection of 
•standard" icons, TinyWindow.icons. As noted above, this file contains several versions of some 
icons; initialization will go more quickly if you delete the ones you don't want. Likewise, 
removing leading zeroes from the bitmap numbers will reduce the file size and thereby dramatically 
improve startup time, at the cost of readability. 

A sample TinyWindow.icons file would look as follows: 

(TinyWindow.lcons) 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

(Icons) - - you might also have separate (CoPilot:lcons) and (CoCoPilot:lcons) 
Tool: ChatOO 0 0 0 0 0 0 0 00000001777780177781000008 1000180777781600008137758 0 
1777781700008120058 0 177778 1700008 120058 0 16000870000812005817777781763068 740008 120058 0 
163068720008137758 0 777840008 10001807778200081777780177781040008 377480 17278 1020008 
37777810000083653814400082000081000008372781500008 252528 1000008 76538 1640008 225248 1000008 
7727817000082525281000008 77778 16000082000081000008 77778 1600008 377778 1000008 0 0 0 0 0 0 0 0 
000000000000000000 
Tool: CommandCentral 0 O O 0 307108 1360208 3628 242008 450558 1210608 2128 262008 410528 1211778 
1762128 252008 410508 1363778 1763628 252008 410508 1201778 1762228 252008 450508 1200608 2128 246008 
3071081200208 2118 1442008 0 0 0 0000016000800400008160008001600008160008 0 11700008 
1600080 31740008160008001600008160008001600008160008 0 0 1600008160008001600008160008 
001600008160008.0 0 1600008160048171218 740008 1600008 170068 105318420018 1600008 77778 105258 
423778140000837778117125842377810000081777810525842377806105238420008 04171218 740008 0 
0000 
Empty: 0 0 0001777780001777781000008001400781400008001400681600008 0 0 140068 700008 0 
0140068 340008 0 0 140068 160008001400781760008 0 0 140078 1760008 0 0 140008 60008 0 0 140008 
60008 0 0 140008 60008 0 0 140008 60008 0 0 140008 60008 0 0 140008 60008 0 0 140008 60008 0 0 140008 
60008 0 0 140008 60008 0 0 1400086000800140008 60008 0 0 140008 60008 0 0 1400086000800140008 
60008 0 0 140008 60008 0 0 177778 1760008 0 0 177778 1760008 0 0 0 0 0 
Loaded: Calendar 17777781777778177777817770081001008401008401008 401008 1061218 575218 575368 
461008 1111338 421218 421208 511008 1041258 421218 421208 441008 1021218 421258 421348 421008 1111218 
421338 421208 511008 1061218 421218421208 461008 1001008 401008 401008 401008 1777778 1777778 1777778 
17770081001008 401008 401008 401008 1001008 401008 401048 461008 1001008401008 401148 511008 1001008 
401008 401048 411008 1001008 401008 401048 461008 1001008 401008 401048 501008 1001008 401008 401168 
5710081001008401008 40100840100817777781777778177777817770081001008401008401008401008 
1061228 571148 475148 461008 1111228 501208 405228 511008 1021228 561348 411148 511008 1011368 411228 
421228 471008 1111028 511228 421228411008 1061028 461148 421148 461008 1001008 401008 401008 401008 
1777778177777817777781777008 
Gray: TRUE 
Verbose: FALSE 



- - TinyWindowPictures.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

TinyWindowPictures allows Tajo users to customize their environments by allowing the user to specify 
icons for tiny windows. TinyWindowPictures will read bitmaps from the TinyWindow .icons file and place 
the pictures in a tool's tiny window. Hence users can create icons for individual tools to represent 
their functions. 

To run this program: 
1. Retrieve TinyWindowPictures.bcd 
2. Create a TinyWindow.icons as specifed below. 

(Or Retrieve TinyWindow .icons from the diskette - note: this file has 
several versions of some icons. For better quicker initialization, it is best to 
decide which version you like best and delete the others from the file, 
rather than simply commenting them out.) 

3. Type into the Executive: 
TinyWindowPictures 

The program reads the icon file only once, when started, and converts the bitmaps to a binary form, 
ready to spray onto the screen. It then enumerates existing windows to see if any have icons, 
replacing the DisplayProcs of those that do. Subsequently. whenever a tool or file window is 
created, it searches for the name in its collection of bitmaps, and replaces the normal tiny name 
display with the stored bitmap. If a tool is inactive, it will be converted when it is activated. 

In addition to the Tiny Window .icons file, TinyWindowPictures puts a menu on the root window, with two 
items, Setlcon and Verbose/Quiet. Selecting Setlcon changes the cursor to a bullseye, then clicking 
Point over a tool window takes the current selection as a bitmap and makes that the bitmap for the 
selected window. This is useful for "debugging• icons, and for setting icons on tools that have 
already been started without icons. 

Verbose/Quiet changes the value of the "verbose· flag to the value shown in the menu. If Verbose is 
true, TinyWindowPictures will put a message in the herald window every time it fails to find an icon 
for a window, noting the name that it used for the search. This is useful for tools for which the 
exact name is not known, or which have no User.cm section and also have an awkward name - - the 
StarfileTool, for instance, used to need an entry named "StarfileToolof". (It now has a User.cm 
section.) Verbose mode defaults to false. and can be set either by TinyWindow.icons or by the menu. 

Note: the program waits two seconds after posting, to avoid having messages scroll off the screen 
before you can read them, so loading goes much more slowly in this mode if there are several tools 
without icons. Recommended usage is to turn on Verbose before starting a new tool with an unknown 
name, then turn it off after noting the name in the herald window. 

There are 7 kinds of bitmap entries in TinyWindow.icons, and two booleans. The type and format of the 
bitmap entries is: 

NSHardy: <bitmap> - - bitmap for NS Hardy when there is no new mail, or no new mail icon. 

NewNSMail: <bitmap> - - bitmap for NSHardy, when there is new mail. 

Tool: <toolName> <bitmap> - - bitmap for tool toolName, where toolName is either the tool's User.cm 
section title, or its tiny name. 

Empty: <bitmap> - - bitmap for empty file windows. 

Loaded: <fileName > <bitmap> - :.:. bitmap to use when a file window is loaded with file fileName. fileName 
is NOT qualified with a directory. 

The two boolean options in TinyWindow.icons are: 

Verbose: <boolean value> - - sets the initial value of the "verbose" flag, as described above. Default 
is FALSE. 

Gray: <boolean value> - - If TRUE, file windows that are being edited will have a "dirty" gray 
background on their tiny windows. Default is TRUE. 

To see the name of a tiny window that has an icon, place the mouse cursor over the tiny window and 
hit HELP. If the HELP key is depressed when the cursor is removed from the tiny window, the original 
text will remain displayed. To get the icon back, move the cursor over the tiny window and hit HELP 
and let goof the key. Also, any of the seven forms of <bitmap> entries in TinyWindow.icons ca·n 
have a boolean tacked on the end. If this boolean is TRUE (default is false), then the standard 
tiny text will be displayed whenever the cursor is moved into the tiny window. This is useful for 
the CoPilotHerald, and also for other tools that present information by changing their tiny names 



- - TinyTidy.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilot!Tajo 
Documentation: Tiny Tidy .doc. 
Description: TinyTidy is a program that reorganizes tiny windows. It reclaims tinywindow screen 
space lost by destroyed tools. TinyTidy reassigns tiny window slots so that each tool window has a 
distinct tiny window slot from other tool windows. The order of the tiny window slots is preserved 
from left to right and bottom to top for all but inactive windows. Overlapping tiny windows will 
be assigned sequential slots in an arbitrary order. Inactive windows are not affected. Also, a 
User.cm entry can specify a list of tools to ignore. TinyTidy registers TinyTidy.- with the Exec. 
The User.cm entry is as follows: 
[TinyTidy) 
Ignore: CoPllotHerald Activity 

It is intended for tools that are rarely made tiny, and thus would otherwise take up slots that 
would never be used. 



- - TinyPictureTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This is an outgrowth of the old CursorTool that can be used to produce the 
58 x 28 bitmaps used for pictures in tiny windows. (See TinyWindowPictures.doc.) 

Mouse actions 

Point: 
Adjust: 
Menu: 

Turn the square black. 
Turn the square white. 
Pick up the picture (left corner) in the cursor. If Menu comes up 
below or to the right of the grid, deposit the picture on the screen. 

Commands 

clear! 
read! 

comp! 
write! 

Turn all squares off. 
Take the current selection as an array of numbers, OR this picture 
into the grid. Non - numeric characters ahead of a number are ignored; 
thus it usually works if you line - select in TinyWindow.icons. 
Complement the value of each square. 
Write the current picture in the log as 112 numbers (4*28). The low 
order 6 bits of every fourth word are zero. · 

left! Shift entire picture one column left. 
right!, up!, down! Likewise. 

The write! command writes to the log subwindow and into the file PictureT9ol.log. 
The tool uses Tool.UnusedLogName so more than one can be run at once. 

The text written by write! has any of four formats. selected by an enumerated item in the form 
subwindow. 

verbose: 

compact: 

decimal: 

signed: 

six -digit octal numbers separated by commas, with a pair of brackets 
surrounding the whole set; this is suitable for initialising an array 
in a Mesa source 
octal with no leading zeroes, no commas, and no brackets; one - digit 
numbers have no "B" appended; suitable for TinyWindow.icons 
same as compact but in decimal; less readable (perhaps) than 
compact, but takes fewer characters in an icons file 
decimal, but uses negative numbers for the range - 999 to - 1, thereby 
using still fewer characters; using signed format in place of compact 
typically saves about 20% of a TinyWindow.icons file and hence 
can save several seconds when starting TinyWindowPictures.bcd 

Any of the four formats can be read by the read! command. The default format is compact, but this can 
be set by including a Format item in the [TinyPictureTool) section of User.cm, e.g.: 

[TinyPictureTool) 
Format: signed 



Time.Append. 

Pack[T1)! 
Semantics: treats T1 as a date, packs it with Time.Pack and displays that value. 



- - TimeWarp.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

TimeWarp is a tool for manipulating dates and quantities of time. It may be used to determine the 
difference between two dates or times or the sum of two quantities of time, or to convert seconds to 
hh:mm:ss format, or to pack and unpack time values. The tool has a form and a file subwindow. The form 
subwindow contains the string fields T1 and T2, (arguments for functions), and the Functions T1 + T2, 
T1 -T2,Now, Epoch, Pack[T1] and Unpack[T1]. 

Arguments: 

T1 and T2 are arguments for functions, and may be in Date, Time, or packed time format. The type of 
each argument is indicated by the format of the contents of that field. 

A value of date may have the formats exemplified here: 
27-May-1982 16:41 :22 EST 
27-May-8216:41:22 EST 
27-May-8216:41:22 
27-May-82 16:41 

(27 -May-1982 16:41 :00 EST) 
(27 -May-1982 16:41 :00 in the local time zone) 
(27-May-198216:41 :00 in the local time zone) 

A quantity of time is some number of hours. minutes and seconds. and is not relative to a particular 
date. Time may be entered in these formats: 

16:41 :22 (hh:mm:ss) 
16:41 (hh:mm) 
60060 (ss) 

Packed time is a value of the type Time.Packed 
2568843682 (same as 27-May-1982 16:41 :22 PDT) 

Results of operations are written in the file subwindow. Results will have the type Date or Time, 
depending on the types of the arguments and the operation invoked. Results of the type Date are given 
in unpacked date format and packed time format. For example, 

27-May-82 16:41 :22 PDT = 2568843682 

Results of the type Time are given in number of seconds, "days hh:mm:ss", and "hh:mm:ss". For example, 

12345678 = 142 21 :21 :18 = 3429:21 :18 

Operations: 

If one of the arguments of an operation has a disallowed type or was not entered in an exceptable 
format, the display will blink and the operation will not be performed. 

T1 + T2! 
Add the quantity T1 to T2. The type of the result depends on the types of the arguments. 

(Date + Time) yields a Date 
(Time + Time) yields a Time 
other combinations are not supported 

T1 -T2! 
Subtract the quantity T2 from the quantity T1. The type of the result depends on the types of the 
arguments. 

Now! 

(Date - Date) yields a Time 
(Date - Time) yields a Date 
(Time - Time) yields a Time 
other combinations are not supported 

Display the wrrent date and time. 

Epoch! 
Display the value of System.gmtEpoch. Note that Time.Unpack interprets the argument of System.gmtEpoch 
as a request for the current date and time, and so the current date and time is displayed along with 
the digital representation of the epoch. 

Unpack[T1)! 
Treats T1 as having the type Time.Packed, and converts it to a formatted date and time string with 



- - TimeTracker.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Time Tracker is a program which keeps your local clock synchronized with the time service. Every two 
hours (roughly) it wakes up and polls the time service in order to calculate an accurate time (this 
operation is hereby called a resync). Time Tracker also does a resync when it is running in CoPilot and 
CoPilot is reentered. 

In doing the resync, Time Tracker assumes that a certain percentage of the time servers might have the 
incorrect time. The larger the percentage assumed incorrect, the less accurate your clock might be. If 
Time Tracker can determine that the percentage has been set too small, it will log this fact and 
temporarily assume a higher percentage. · 

Time Tracker registers the command Time Tracker.- with the executive. This command can be one of the 
following forms: 

TimeTracker.- start 
TimeTracker.- stop 
TimeTracker.- resync 
TimeTracker.- information 
TimeTracker.- log 
TimeTracker.- params pct/P reset/R 

Time Tracker.-

Start the tracker 
Stop the tracker 
If tracker started, causes a resync 
Display the current state of the tracker 
Display the last thirty events 
Sets the max percent of faulty servers 
to pct (default 5%, must be in range 
(O .. 100)) annd sets the period between 
resets to reset minutes (default 
approximately 120 minutes). 
Display the date and time 

The tracker initializes to started with pct = 5 and reset = approximately 120. 

In addition to the tracker, this program creates a background process which checks for an invalid clock 
(currently, one which appears to be fast by more than four hours of the real time). If it finds an 
invalid clock, it will blink the display and post a message in the Herald window every fifteen 
seconds. If this happens, check your clock. If it looks ok, the time service is probably messed up. If 
your clock looks incorrect, you should reboot. 

You can stop the blinking mentioned above by unloading TimeTracker.-. 



- - TicTacToe.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

TicTacToe.bcd is a 3 - dimensional game of TicTacToe consisting of a 4 planes of 4 by 4 grids. This game 
is played with two people both running TicTacToe.bcd. To play. you and a friend must retrieve 
TicTacToe.bcd. Running TicTacToe will cause a window to be displayed. 

To start a game between two people: 
0. Both players must run TicTacToe.bcd 
1. Enter opponent's machine's name in the Opponent: field. The opponent's machine's name is the name 
of the opponent machine found in a clearinghouse. T One could also use a fully qualified name, ie 
UserName:Domain Name :Organization.(Actually, one could use any input that AddressTranslation would 
understand.) 
2. At this point, there must be a minimal amount of coordination between the two players. That is, 
the players must decide on who is going to hit the StartGame! command in the games form SW. After one 
player hits StartGame!, the playing board will be cleared, a new formSW will appear, and the game is 
started. Whoever hits StartGame! has the option of being first, by selecting the lmfirst boolean on 
theformSW. 
3. It is your turn to move when YourTurn(a read only boolean item) is highlighted on the new form SW. 
To move, move the cursor over the desired cell and select it (using the left mouse button). This 
will cause an icon to be placed in your cell. The YourTurn will be de - highlighted and you will 
notice that you cant select another cell. This is because it is now you opponent's turn. After you 
opponent moves, it will be your turn again. If you are running Play.bed. some a little tune will be 
played when it is you turn. One can specify this tune in the User.cm (explained below). 
4. In the new form SW, there is a Message: field, where a player can type in a message and hit 
SendMessage! and that message will appear in the opponent's message subwindow. 
5. If you want to quit a game, it is best to wait until it is your turn, then hit QuitGames!, and 
then make a final move. This should cause the game to terminate with both players. The old board 
wiH remain displayed until a new game is started. Also the original formSW will appear. Note: the 
game will not allow a user to deactivate it until a game is terminated. 
6. When one player eventually wins, the winner will hear a winner's song and the loser will hear a 
loser's song and both will be notified of the result(provided the players are both running Play). 
The win and lose tunes can be specified in the User.cm (explained below). 

Customizing you TicTacToe game: 
The user can specify his game piece, the opponent's game piece, a move tune, a win tune, and a lose 
tune, as well as the standard WindowBox, TinyPlace, and lnitialState in the User.cm. In my User.cm I 
have: 

[TicTacToe) 
WinTune:g- % - %%g- g-g- % - %%g-g- gecegeg>c< gecegeg>c<g 
LoseTune:@360,135>CccFFFFFF%%%CdAAAAAA%%% 
MoveTune:* >ccdeced 
MyPiece:17008,77608,77608,171708,171708,177708,1477638,1477638, 1406038,1417038,1577738, 
1757378,1417038,1417038,1406038,1406038 
YourPiece:0177708,010010B,013750B,012050B,0120508,032054B,0637428,112525B,105251B,177777B, 
OOOOOOB,077776B,100001B,100001B,100001B,077776B 

I would recommend having a very short Move Tune since it is played often. Use Play to generate these 
tunes. In Play.music are a bunch of tunes you can borrow. 

Known Bugs: 

1. If both players hit StartGame!, the one player will find that he will not be able to do any more 
StartGame!'s. This is a synchronization problem that will be fixed in the nei:ct release of TicTacToe. 
2. If two people are playing TicTacToe, and a third person tries to play with one of the two currently 
playing people, funny things will happen. 

Helpful Hints: 
1. If you cant get a game started with another player, any of following may be true: 
a. The other player is not running TicTacToe. 
b. The other player's machine is not registered with you default clearinghouse. 
c. The other player login name is not the same as the machines name registered with the 
clearinghouse. 



- - TextSWLineHack.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

TextSWLineHack adds a new command, "Line", to the Text Ops menu in any text subwindow (including 
variants such as file and exec sws). This command is similar to the "Position" command, except that it 
repositions by line number rather than by character position. For example, if you select "10" and 
invoke "Line" in a file subwindow. the tenth line of the file will become the top line in the 
subwindow. If the selection is not a number, is 0, or is greater than the number of lines in the text, 
the screen will flash and the text subwindow will remain unchanged. 



====== 

Mq 

n< cmd > 
n; 

EXECUTE 

E>cecute string or buffer contents of Q - reg q as a TECO command. 

ITERATION 

Command is executed n times, or indefinitely if n is null. 
Does nothing if n<O, otherwise passes control to char after next">", 
i.e., terminates iteration. Null n = > use value of last search. 

TEST AND BRANCH 

arg·x then-cmd •• # else-cmd' 
Conditional which checks arg according to condition x; discards arg; 
executes then - cmd if condition was true, else - cmd if false. 

arg·x then-cmd' 
Conditional without else - cmd. 

argf·x Same as arg" x, but passes first arg to then - cmd or else - cmd. 
Note: The conditions x are: 
A Arg is IN ['a . .'z) or ['A . .'Z]. 
C Arg is printable ASCII code. 
D Arg is IN ['0 . .'9). 
E Arg = 0. 
G Arg >0. 
L Arg < 0. 
N Arg #0. 
V Arg is IN ['a . .'z). 
W Arg is IN ['A . .'Z). 

TAG 

!label! Defines label, or brackets comments. 



mJ 

mR 
me 

ml 

m,nK 

nD 
-no 

nK 

DELETING 

TYPE-OUT 
======== 
kT 
n= 

SEARCH 
====== 
nSstringS 
-nSstringS 

Position ptrto after m -th char in buffer. 

RELATIVE CHARACTER POSITION 

Move ptrleftm char; R = > 1R, -mR = > mC. 
Move ptr right m char; C = > 1 C. 

LINE POSITION 

Move ptr to beginning of m - th line after current position; 
OL = > beginning of current line. 

ABSOLUTE POSITION 

Kill chars in the range m,n. Move ptr there. 

CHARACTER 

Delete n chars to right of ptr. 
Delete n chars to left of ptr. 

LINE 

Kill chars from . to position nL would have moved to. 
K = > 1K,killtobeginningofnextline. 

Type out text in range k (n lines or m,n chars). 
Typesoutn. 

Find n -th occurrence of string searching forward and position ptr after it. 
Same as nSstringS, but search backward. 

SEARCH AND REPLACE 
================== 
nfstringSstring2S Replace n occurrences of string and replace with string1. 
- nSstringS Same as nSstringS, but search backward. 
m,nfstringSstring2S Do Search and Replace over range m,n in buffer 

YfileS 

PS 
m,nPfileS 
PfileS 

E 

INPUT 

OUTPUT 

CLOSE 

Q - REGISTERS 

Reads contexts of file into buffer at right of ptr. 

Output file to input file. 
Output specified range of buffer to file. 
Output to file. 

Return to Executive 

=========== 
nUq 
kXq 
Gq 
%q 
Qq 
VfileS 

MACROS 

Inserts number n in Q - reg q; returns no value. 
Inserts text range k into Q - reg q, replacing prior contents. 
Inserts text (or decimal representation of number) from Q -reg q into buffer. 
Increments numeric contents of Q - reg q and returns result. 
Value = numeric value in Q - reg. 
Saves contents of all Q - regs in file. To load this file 
from the Exec: Teco.- inputfile qRegFile/initialCommand 



- - Teco.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

AN ANNOTATED OUTLINE OF TECO COMMANDS 
************************************* 

From the Executive: 

Teco.- (inputfile) (macroFile]l(cmd] 

where 
inputfile is the name of the file to be edited, 
macrofile is the file which contains the contents of the Q - Regs 

(using the V command) 
cmd is a initial command string that will be executed 

Examples: 
Teco.- User.cm Teco.macros/mj load User.cm and e><ecute macro in Q-Reg J 
Teco.- /c macroFile/(cmd) No inputfile, Q Regs 4--macroFile 
Teco.- No inputfile, no macrofile. 

META- NOTATION 
============= 
Ix 
I 
mjnjarg 
string 
cmd 
s 
k 

file 

Denotes the single character, control-><. 
Used alone to denote alternation. 
Integer arguments. 
String argument. 
A command string. 
Denotes the character ESCAPE unless mentioned otherwise. 
Denotes either Hm,nH. or "nH; a text range of characters m through 
n, or n lines. 
Denotes a file name. 

SPECIAL CHARACTERS 
================== 
ESCAPE Terminates text argument; two successive altmodes terminate 

command string. 
BACKSPACE Deletes last character typed in. 

0-9 
+ 

< I l 

ARITHMETIC 

Digits: xxx>e is interpreted in base (1 O) 
Addition, an arithmetic operator. 
Subtraction, an arithmetic operator. 
Multiplication, an arithmetic operator(with no operator precedence). 
Division, an arithmetic operator( with no operator precedence). 
MOD operator. 
Parentheses, grouping in arithmetic expressions. 

ARGUMENT SEPARATOR 

Separates numerical arguments. 

THE BUFFER 

========== 
z 
H 
B 

lstringS 
nl 
m,nl 

Value is number of char to left of pointer. 
Value is number of char in buffer•. 
Equivalent to "B,Z". i.e., specifies whole buffer*. 
Value is 0, i.e., beginning of buffer•. 
*Meaning is modified by use of virtual boundaries. 

INSERTING 

Insert string in buffer to left of pointer. 
Insert the char with ASCII code n. 
Insert m copies of the char with code n. 

UPPER - CASE/LOWER - MOVING AROUND 

ABSOLUTE POSITION 



- - SwapReasonTune.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

SwapReasonTune is similar to NewMailTune, except that instead of playing a tune when you get new mail, 
it plays a tune when you world - swap. Not only that, it plays a DIFFERENT tune depending on the reason 
for the world- swap. To use SwapReasonTune you must also load Play. You specify the tunes in the 
"SwapReasonTune" section of your User.cm. 

Sample User.cm entries: 

[System] 
lnitialCommand: Run.- Play SwapReasonTune 

[SwapReasonTuneJ 
breakpoint: >>>>bbb%%%bbb%%%bbb%%%bbb 
interrupt: @SO{A> >>A}<< <{A>> >A}<< <{A>> >A} 
storageFault: @360,135>CccFFFFFF%%%CdAAAAAA 
uncaughtSignal: **ABG<G>DD 
callDebugger: *CCCc ff f e fa AAAa 

Full list of possible swap reasons (taken from CPSwapDefs): 

- - Generated by debuggee, handled by debugger: 
interrupt - - Runtime.Interrupt called. 
breakpoint 
storageFault 
uncaughtSignal 
callDebugger 
bug 
cleanMapLog 

- - Better known as address fault. 
• - - Good ol' Uncle Sig. 

- - Runtime.CallDebugger or WorryCallDebugger called. 
- - Runtimelnternal.Bug called. 

noOp - - Do nothing; just return to debuggee. 
return - - Return from SwapReason[callDebuggee, resizeBreakBlockTable, 
resizePatchTable. showScreen, or start!. 
returnAborted - - Return from SwapReason[callDebuggee, etc) due to ABORTED signal. 
debuggeeSpareA 
debuggeeSpareB 

- - Generated by debugger, handled by debuggee: 
callDebuggee - - Call a procedure. 
kill - - Terminate debuggee boot session. 
proceed - - Continue execution. Resume a SIGNAL. 
quit - - Raise ABORTED. 
resizeBreakBlockTable - - Grow or shrink break block table. 
resizePatchTable - - Grow or shrink patch table. 
showScreen - - Show display screen for a while and return. 
start - - Start or restart a module. 
resume - - Resume a signal (with return values). 
debuggerSpareA 
debuggerSpareB 



The two cards slithered towards him across the green sea. Like an octopus under a rock, Le Chiffre 
watched from the other side of the table.Bond reached out a steady right hand and drew the cards 
towards him.Would it be the lift of the heart which a nine brings, or an eight brings? He fanned the 
two cards under the curtain of his hand. The muscles of his jaw rippled as he clenched his teeth.His 
whole body stiffened in a reflex of self - defense. He had two queens, two red queens. They looked 
rougishly back at him from the shadows. They were the worst. They were nothing.Zero.Baccarat. 

The remote directory: 

< remoteDirectoryName > 
dotedit!1 202 20-Aug - 82 10:53:06 PDT 
dotfile.txt!1 586 20-Aug - 82 10:13:20 PDT 
foo.bar!1 532 29-Jul-8215:31:11 PDT 
fooedit!1 76 9-Aug-8215:25:45PDT 

< remoteDirectoryName > subdir 
foo.mesa!1 53229-Jul-8215:3f:11 PDT 

Total of 5 files 

The command line: 

substitute2 /b open/c remoteServerName dir/c remoteDirectoryName fooedit/t foo.bar/i too.bar/ - y 
bogus.file too.bar/ - b dir/c remoteDirectoryName >subdir foo dir/c remoteDirectoryName doteditlt 
dotfile.txt/d close/c junkeditlt junk.file junk.bogus/ - b 

The result: 

Loading table fooedit ..• done 
- - unknown switch: i 
too.bar skipped 
- -unknownswitch: -y 
too.bar skipped 
(rain)thorup>bogus.file was not found 
Editing too.bar ..• done 
Editing too.mesa ... done 
Loading table dotedit ... done 
Editing dotfile.txt ... done 
Loading table junk edit ... done 
Editing junk.file ... done 
junk.bogus was not found 

After execution: 

File: dot.file 

The two cards SLITHERED towards him across the green sea. Like an octopus under a rock, Le Chiffre 
watched from the other side of the TABLE. BOND reached out a steady right hand and drew the cards 
towards HIM. WOULD it be the lift of the heart which a nine brings, or an eight brings? He fanned the 
two cards under the curtain of his hand. The muscles of his jaw rippled as he clenched his TEETH. HIS 
whole body stiffened in a reflex of self - defense. He had two queens, two red queens. They looked 
ROUGISHL Y back at him from the SHADOWS. THEY were the WORST. THEY were NOTHING ZERO BACCARAT! 

The remote directory: 

< remoteDirectoryName > 
dotedit!1 202 20-Aug-8210:53:06 PDT 
dotfile.txt!1 59125-Aug-8210:50:17PDT 
dotfile.txtS! 1 586 20- Aug - 82 10: 13:20 PDT 
foo.bar!1 532 29-Jul-82 15:31 :11 PDT 
foo.bar!2 552 25-Aug -82 10:50:00 PDT 
fooedit!1 76 9 -Aug-82 15:25:45 PDT 

< remoteDirectoryName > subdir 
foo.mesa!1 552 25-Aug-82 10:50:07 PDT 
foo.mesaS!1 532 29 -Jul - 82 15:31: 11 PDT 

Total of 8 files 



Switches with Substitute2 may either be global or local, depending on the switch and the desired 
result. Global switches appear alone in the command line and are preceded with a "/". Local switches 
are also preceded by a •/".but this• r immediately follows either a Substitute2 command or a 
filename. The Substitute2 switches are: 

c Causes the token preceding it to be interpreted as a 
command. Only legal as a local switch. 

t Causes the token preceding it to be interpreted as the 
name of a table file to be loaded into the 
substitution hash table. Only legal as a local 

b Changes the backup file option to TRUE. When this 
option is on, the applicable file(s) will be copied to 
filenames. and the file containing the substitutions 
will be written to filename. When given as a global 
switch, filenames following it will have backup files 
created before substitution. When used as a local 
switch, only that file will have a backup created. 
This switch may be used in conjunction with the d or 
- d switch. This option's default value is FALSE. 

- b Changes the backup file option to FALSE. The 
substitutions will be written out to the specified 
file, and no backup will be created. 

d Changes the dot - in -token option to TRUE. When 
this option is on, a dot(.), may be part of a the 
oldstring for which a substitution is being made. 
For example, when this option is on, Append.String can be 
a valid oldstring in the substitution table file. This 
switch may be either local or global, and maybe used 
in conjunction with the b or - b switch. This option's 
default value is FALSE. 

- d Changes the dot - in - token option to default value of 
FALSE. With this option off, a dot(.) is not 

EXAMPLE 

considered a legal part of the old string for which a 
substitution is being made, and any oldstring table 
file entry containing a dot, will be ignored. 

switch. 

The following is an example of how to use Substitute2, showing its effects on one of the files being 
edited and on the remote directory where some of the substitution files are located. 

Before execution: 

File: dotedit 

table.Bond TABLE. BOND 
slithered SLITHERED 
rougishly ROUGISHL Y 
him.Would HIM. WOULD 
teeth.His TEETH. HIS 
shadows.They SHADOWS. THEY 
worst.They WORST. THEY 
nothing.Zero.Baccarat. NOTHING ZERO BACCARAT! 

File: dotfile.txt 



- - Substitute2.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

OVERVIEW 

Substitute2 is an updated version of the previously released Substitute hack. This hack registers the 
command, Substitute2.- with the Executive and is used to replace strings within a file. Commands are 
obtained from the command line, and have the following basic syntax, with optional commands appearing 
in<>: 

Substitute2 <open/c hostname directory/c dirname> table1/t File1 File2 File3 <close/c> table2/t File4 
Files. 

Result: 
Substitutions are made in remote File1, 2, and 3 according to the directions in remote table file, 
table1. Local File4 & 5 are altered according to local table file, table2. If a filename does not 
contain an extension, and it is not specifying a table file, the extension "mesa" will be added to 
the filename. 

FUNCTIONAL DESCRIPTION 

To use Substitute2, you must first make a file which contains a table of identifiers and their desired 
replacements. The lines in this table file must be in the following format: 

oldstring <TAB> newstring <CR> 

Due to the parsing of the input, oldstring must be a single identifier token, i.e. it cannot contain 
any white space. newstring, however, may be any text which does not contain a CR. Please note that 
the last line in your table file must end in a CR, or that line will be left out of the replacement 
table, and none of the substitutions pertaining to that line, will be made. 

Substitute2 works by reading in the file containing the identifiers and their replacements, and placing 
them into a hash table. It then takes each file specified in the command line and looks up each of its 
tokens( chars separated by white space), in the hash table. If the token is found there, then its 
replacement is written out to the output tile. All white space, and tokens which are not found, are 
written directly to the output tile. File lines which are preceded by" - - "(comment lines), or text 
strings which are enclosed by double quotes("), are not checked for substitutions, but are simply 
copied to the output file. Substitute2 will find any files which are on the current searchpath, but 
when it has finished with the substitutions, it will leave the output tile at the top level of the 
search path. Similarly, when you are working with files across volumes, Substitute2 will find files 
on the specified volumes( volumes must be open for read/write), but will write the output file to the 
volume on which Substitute2 is running. 

COMMANDS AND SWITCHES 

Substitute2 has three commands which are used for specifying remote files for substitution. For proper 
interpretation, all of these commands must be followed by a "/c". 

open Interprets the next token in the command line as the 
name of a remote host. Filenames following an open 
command will be looked for on the host specified. If 
a connection to another host is open when the open 
command is given, that connection is closed, and 
another is opened to the new host. 

close Closes a connection, which was opened to a host via 
the open command. Filenames which follow a close 
command, will be looked for on the local file system. 

directory Causes the next token on the command line to 
be interpreted as the name of a directory. 
Filenames following a directory command will 
be looked for in the specified directory. The 
directory command may be abbreviated to "dir". 



- - Strings.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This command searches binary files for any printable strings. The default threshbld for distinguishing 
a bona - fide string from accidentally - printable junk is 5 - i.e. if there are 5 printable characters in 
a row, it's a string. You can specify a different threshold with a switch. Examples: 

Strings Xyz.bcd 
Strings Xyz.bcd/10 



- - SpellChecker.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

To use, retrieve SpellChecker.bcd and SpellChecker.BitTable. When you run SpellChecker, a toolwindow 
will appear. In the tools form you have: 

File Name: file to be spell checked. If this field is empty, the current 
selection will be spell checked. 

Private Dictionary: is the name of your current private dictionary. The private 
dictionary is used to hold words that are not in the 
SpellChecker standard dictionary. You can have more than one 
private dictionary, to create a new one or to load an old one, 
put the name of the dictionary file (default is Active.BitTable) 
in this field and hit ChangeDictionary! 

Spell! 

Add! 

Delete! 

will start the spell checker. 

allow you to add words in the current selection to the dictionary. 
The added words will be appended to a .dictTxt file. For example, 
if the current dictionary is Active.BitTable, the text form 
of the added words will be in Active.dictTxt. 

will delete the words in the current selection from the 
dictionary. It is advised to use this command with discretion 
since in may delete more entries than you anticipate. 

ChangeDictionary! will cause the file in the Private Dictionary field to be 
loaded. 

Sort will cause the output be be sorted and remove any redundant words. 

Strip Plurals is a heuristic to reduce the number of erroneous matches by the 
spell checker. This will try a word that ends in • s" without the 
"s". It also tells the spell checker to ignore words with less 
than two characters. 



- - SourceTime.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Source Time is a hack which adds a menu to all loaded FileWindows. Once Source Time has been loaded, 
Whenever the '"TSave" menu item on the "Source Time" menu is invoked, Source Time makes sure there is a 
"standard header" at the top of the file (If there is none, it puts it there. If there is one, it 
edits it to update it), causes the file to be "Save" d, and then forces the create date of the file to 
match the date put in the header. 

I have found it useful to put the string "TSave" in my sticky menu symbiote, instead of "Save" 

The standard header is of the following form: (not including the line of dashes before and after) 

- - File: Blither.mesa - last edit: 
- - userA 20-Aug -8116:48:S7 
- - userB 9-Jul-8118:52:41 
- - userC 28-May-8119:51:28 

The dates appear in chronological order, most recent first. The username is the user"s 
Profile.GetUser, with qualification= registry. Note that any one username never appears on more than 
one line of this header; Source Time deletes old lines. 



- - SmoothScroll.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

SmoothScroll adds continuous scrolling to Tajo windows. Simply hold down point or adjust in a 
scrollbar and the window will begin scrolling continuously, forward or backward. (Actually you have to 
hold it down for more than 0.4 seconds before it starts.) 

Normal scrolling still works as it always has. You have to button - up within 0.4 seconds in order to 
get normal scrolling, but most people button - up that quick anyway. Thumbing still works too (without 
the 0.4 second requirement). 

If you press down the other mouse button while you are scrolling, you get double speed scrolling. As 
long as you hold down the other button, you get double speed scrolling. When you let up on the other 
button, it goes back to single speed. You may speed up and slow down as often as you want. 

Installation: 

A NEW TIP>Scrollbar.TIP IS REQUIRED FOR THIS HACK. 

1. Retrieve Scrollbar.TIP from the diskette and replace the one that's currently on your TIP> 
subdirectory. (i.e. Delete TIP> Scrollbar.TIP, then retrieve the new one with a 
Dest: TIP> Scrollbar. TIP). 

1 a. If you were using a previous version of Smooth Scroll, you should also delete TIP> Smooth Scroll. TIP. 
If you don't, you will find yourself unable to stop a scroll once it has started! 

2. Retrieve SmoothScroll.bcd. 

3. Re -Boot! You must do this before the new Scrollbar.TIP table will take effect. 

4. Run SmoothScroll. 

I recommend running Smooth Scroll from your User .cm lnitialCommand line. 



·· $Model.doc 

-- Copyright (C) 1984 by Xerox Corporation. Ail rights reserved. 

Please refer to the document, "OF Software Reference Manual", in XDE Unsupported .::iOit\· ..•. ~ ~~o::;c ription. 



- - SmashExportedTypeBit.doc 

- - Copyright {C) 1984 by Xerox Corporation. All rights reserved. 

If you can't load a BCD because it has an exported type clash with something in the boot file or 
something that was previously loaded, SmashExportedTypeBit can fix the problem. 

SmashExportedTypeBit rewrites the header of a BCD so that its "type Exported" flag is FALSE. This 
allows you to load a BCD for which the loader would otherwise complain of an "exported type clash". 
The file's create date is NOT changed by SmashExportedTypeBit. 

To run it. just type 

SmashExportedTypeBit. - This.bed That.bed TheOther .bed ... 

to the Executive. You can stop it with the STOP key. You can omit the" .bed· extension if you want. 
If it has trouble acquirin1i any of the files. it will complain "problem acquiring file" and return an 
error to the Executive without completing the remainder of its command line. 



- - SimpleCalc.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

SimpleCalc is a calculator tool derived from the Pitts Jarvis's calculator. 

The calculator provides facilities for performing arithmetic operations and radix conversion on long 
(32 bit) cardinals and integers. The calculator uses reverse Polish notation, RPN, with a four 
element stack. The names of the four stack registers are X, Y, Z, and T with X the top of the stack. 

The calculator window consists of three subwindows. The top window displays the contents of X. The 
middle window provides some calculator functions. The bottom window is a scratch pad where text can be 
stored and edited. The scratch pad is helpful for retaining and labeling intermediate results. 

Calculator Type In 

When the cursor lies in the top two subwindows all type in goes to the top of the stack. As the user 
types digits, the calculator accumulates the result in X. Depending upon the radix a digit can be any 
of the decimal digits or letters a through f (case is not important). If the radix is decimal, 
numbers can be entered in scientific notation using E ahead of the exponent, e.g., 4e4 yields 40000 
and 4.Se - 3 yields 0.0045. 

Functions that can be type from the key board are as follows: 

BS back space rubs out the last character 
CR.SP enter T-z;z-v;v-x; 
DEL delete x-o; 
+.= addition X+Y 

subtraction X-Y 
* multiplication X*Y 
I division XIV 
\ remainder XmodY 
f exponentation Y**X 
f A and XandY 
f C cardinal display X as unsigned number 
f D decimal set radix to decimal 
f E exchange exhange X and Y 
f I integer display X as two's complement number 
f L list display stack registers 
f N negate X -two's complement of X 
f O octal set radix to octal 
f R or XorY 
f S hex set radix to hex 
f T not notX 
f X xor XxorY 

Any illegal character typed echoes as a flash on the display. 

Functions 

The middle subwindow provides an alternate method to invoke some of the functions above. These are: 

Radix 
Type 
Exhange 
Negate 
NOT 
XOR 
ANO 
OR 
List 

Octal, decimal, or hex 
integer or cardinal 
exchange X and Y 
change sign of X 
bit wise complement of X 
bit wise exclusive or of X and Y 
bit wise and of X and Y 
bit wise or inclusive or X and Y 
displays all four stack registers in the scratch pad 

Various scientific functions are also available via commands in this subwindow. 



- - ShowSearchPath.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ShowSearchPath.bcd creates a small window that contains the current search path. Unlike previous 
versions of this hack, it no longer shows the free page count; the herald provides this function. The 
default window box is (x: 0, y: 0, w: 512, h: 30), butthis can be overridden by the [ShowSearchPath] 
section in User.cm. 

The hack predates the built in command ShowSearchPath. - , but the presence of this command makes it a 
little harder to start up this program (you must explicitly say Run). 



- - ShowDirectories.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ShowDirectories makes Mfile.EnumerateDirectory( ... directoriesOnly] available at the User level. It 
registers an Exec command which takes an optional root directory and an optional •T" switch (for 
"Top- level only" - actually any switch will work in the current implementation). The current search 
path is ignored. No argument implies the entire current volume. Other volumes may be specified, but 
will produce the message • * * Mfile.Error * *" if they do not exist or are not open. The directories 
listed are not sorted. Examples: 

> ShowDirectories 

< >4..2 < >5.0 <>star <>tools < >star>temp < >star>temp>inner 

> ShowDirectories/t 

< >directoryName1 < >directoryName2 < >directoryName3 

> ShowDirectories directoryName 

< >directoryName>temp < >directoryName >temp >other 

> ShowDirectories directoryName/t 

< >directoryName>temp 



- - SetTool.doc. 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilotlTajo. 
Documentation: SetT ool.doc. 
Description: A set manipulation Tool. Takes as input sorted files of elements that are separated 
by carriage returns. Operates (Union, Intersection, Copy, Difference and XOR) on Operand1 and 
Operand2 (string parameters that usually contain file names) and places the output in Result (a 
string parameter that usually contains a file name). If one of the input parameters is the same 
as the result parameter then the result is buffered and then copied to the result. If any of the 
strings "1 ", "2" or ·R· are used then the corresponding string parameters in the bottom subwindow 
are operated upon. The Tool may be driven from the Tool Driver (window = "SetTool", subwindows 
are from top to bottom: "MsgSW", "CmdSW" and ·DataSW") and is not run in the background. 



- - SetsToPackSpec.doc. 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Environments: CoPilotJTajo SimpleExec. 
Documentation: SetsToPackSpec.doc. 
Description: SetsToPackSpec takes an ordered list of input files. each of which is a set of 
procedures created by tools like TopoGiggio, SetTool,or Reduction Tool. It creates a packaging 
description for the modules described by the input files. It formats each set into one CODE PACK, 
listing all of the procedures in that set except for any that were named in previous sets. It also 
generates merged or separate "Orphan" CODE PACKs (see the "m" switch, below). This program 
produces one SEGMENT and one FRAME PACK. The program has an-entry vector option (see the "e"' 
switch) and an option to create output sets (see the "s" switch). 

SetsToPackSpec runs in the simple exec. The command line has the format 
SetsToPackSpec Output.pack/switches [prefix/pl Set1 .raw Set2.raw Set3.raw ... 

If there is no input on the command line, the tool will prompt the user. 

The segment name in the packaging description will be the output filename sans extension. The code 
pack names will be the input filenames sans extension. with an optional prefix (see the "p"' switch, 
below). 

Options are controlled by the following switches: 
le = > Global switch: Add·· ENTRY VECTOR"' automatically to the first code pack that 

each module appears in. Defaults to TRUE. 
This switch can only be specified on the output filename or the first input filename. 
NOTE: "Automatic"' ENTRY VECTORs will interfere with any that are specified in the 
input files. I recommend that you turn this feature off and put the entry vectors 
in the input sets with TopoGiggio"s "EV" option. 
"Automatic" ENTRY VECTORs are never written to output set files (see "/s", below). 
Example: 

SetsToPackSpec Output.pack/-e Set1 .raw Set2.raw Set3.raw ... 

/m =>Global switch: Merge the orphan code packs into one named "Orphan". This 
switch defaults to FALSE, meaning to create a separate "*Orphan" code pack for 
each module. 
The last specification of /m or 1- m is what counts. 
BEWARE of merging ALL the orphan code into one pack. According to the semiautomatic 
packaging philosophy, orphan packs are supposed to contain infrequently referenced stuff 
as well as never referenced stuff. If you make these packs too big, when an infrequently 
referenced procedure is touched, you pay a (potentially) large swapping penalty. 

prefix/p = > Pre pend "prefix" to the input file names to create the code pack names. 
The prefix specification will hold until a new prefix is specified. 
"/p" will turn off any prefix that has been set. 
NOTE: A "prefix/p" specification must come AFTER the output filename. 
Example: 

SetsToPackSpec Output.pack/ - e XConfig/p Set1 .raw Set2.raw Set3.raw ... 

Is = > Generate "finalized" output sets corresponding to the "raw" input sets. 
For each input file (e.g. "Repaint.raw"), this switch will create a finalized output 
file set with the extension ".set" (in this case "Repaint.set"). 
For any input file with the extension" .set", this won't create an output set. 
Example: 

SetsToPackSpec Output.pack/s Set1.set Set2.raw 
will create only one output set "Set2.set". 
The "/s" option can be turned on and off. 
Example: 

SetsToPackSpec Output.pack Set1 .raw Set2.raw/s Set3.raw Set4.raw/ - s Sets.raw 
will create two output sets "Set2.set" and "Set3.set". 
"Automatic" ENTRY VECTORs are never written to output set files (see "le", above). 



- - Sendlnterpress.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Sendlnterpress will send interpress masters to a product print service. The files may either be remote 
or local. Remote files are transferred to a temporary local file before they are transferred to the 
printer. 

Command format: 
Sendlnterpress. - ... [host/h][dir/d][printer/p)[lc <number> I filenames 

The following switches apply (case of switches is ignored): 
host/h host is the default host for fetching files 
dir/d dir is the default directory for fetching files 
printer/p printer is where the interpress masters are sent 
le< number> print <number> copies of the file. file 

Examples: 

Sendlnterpress Foo.ip/c2 

Sendlnterpress ""ServerName:Domain""/h PrinterName/p ""DirectoryName""/d Foo.ip 



- - SearchPath.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

SearchPath.bcd creates a menu that has two lists of directories, separated by a pair of commands: 

<first search path directory> 

<last search path directory> 
f (rotate) 
..-(directory) 
<root directory> 

<last subdirectory> 

Pointing at any name in the search path list deletes that directory from the search path. 

Pointing at any name in the directory list adds that directory to the search path (at the top). 

Pointing at " f " causes the search path to rotate once (the top becomes the bottom, all others shift up 
one). 

Pointing at .. ._ .. causes a small window to appear that allows you to create and delete directories. 



- - Scroller.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

Scroller.bcd makes use of the Dandelion smooth scroll microcode to smooth scroll portions of the 
screen. After running Scroller, a tool window will appear. If you move the cursor over the Scroller's 
window and hit Point, this cause the Scroller window to disappear. If you hit Point again, the bits 
that the Scroller window used to cover will smooth scroll. Initially the bits scroll a rate of 2 scan 
lines per screen refresh. To increase the rate, hit Point and that will cause the rate to increase by 2 
scan lines per refresh. You can decrease the scroll rate by 2 scan lines per refresh by hitting 
Adjust. To stop scrolling, hit [STOP) once, and the get the screen back to its original state, hit 
[STOP) again. 



- - ScavengeVolume.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ScavengeVolume registers the command ScavengeVolume .. - with the executive. With this command, you can 
invoke the Pilot and XDE scavengers. 

The command is interactive, and should be reasonably self- explanatory. Type "y" ora carriage return to 
answer "yes" toa question, and type •n" to answer "no". Pressing DEL(the delete key) in response to 
a question aborts the command. 



- - ScavengerTool.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

The ScavengerTool allows a user to scavenge a volume that has a Mesa file system on it but does not 
have a Tajo boot file. Type ScavengerTool into the Executive to invoke a window interface. 

In the ScavengerTool's form SW is Volume:, the volume to be scavenged, Repair and Verbose, booleans 
that cause ScavengerTool to repair volumes and give a verbose output. Scavenge! starts the 
scavenger, and FreePages! tell the number of pages free on the scavenged volume. 

Do not try to scavenge a volume of higher order than the current system volume.(ie dont try to 
scavenge CoCoPilot from Tajo or CoPilot) It is also probably wise to run ScavengerTool after Pilot 
has had a chance to scavenge the volume using Othello. 

The scavenger log is placed on the scavenged volume in MScavenger.log. 



- and , and • are - ,. with COMMAND held down 

Programable Keys: 
PF1 - PF4 are MENU, SCROLLBAR, JFIRST, and JSELECT 

If you are a TIP wizard, you can place all these functions wherever you please by modifying 
< >TIP>Emulator.TIP. 



- - RS232XChat.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

RS232XChat allows you to chat through the Dandelions RS232C port. Just set the parameters on the tool 
to match the configuration of the thing that is connected to the port, and hit Connect!. To quit, hit 
Disconnect! 
The following is standard fare for the Emulator subwindow: 

1) The enumerated item Terminal: in the form subwindow has a pop up menu with the various terminals 
that can be emulated. The enumerated items represent the following terminals: 

addrinfo General Terminal 
adm3 Lear Siegler Adm3 
adm3a Lear Siegler Adm3A 
cdc456 Control Data 456 
dm1520 Data Median 1520, 1521 
gt100 General Terminal 100A 
h1000 Hazeltine 1000 
h1420 Hazeltine 1420 
h1500 Hazeltine 1500 
h1510 Hazeltine 1510 
h1520 Hazeltine 1520 
h2000 Hazeltine 2000 
isc8001 Interactive Systems 
soroc Soroc 120 
teletec Teletec Datascreen 
trs80 Radio Shack 
vc303 Volker - Craig 303 
vt100 DEC VT100 
vt50 DEC VTSO 
vt50h DEC VTSOH 
vt52 DECVT52 
x820 Xerox 820 

2) The enumerated item Refresh: in the form subwindow has a pop up menu with the following items: 
always update screen on every character 
never update only if nothing else is happening 
half force an update when the screen is half invalid 
full force an update when the screen is all invalid 

Using the never option, you can get tranfer rates of over 9600 baud, but the display will only be 
updated when data is not coming over the line. This is useful for transferring files from your host 
computer to your dandelion since the entire transcript is stored in Chat2.log. 

3) The command TerminalOptions! will bring up a property sheet where you can set different terminal 
options. Using the mouse, you can set up the tabs on the bottom subwindow of the options sheet. 
There are various enumerated which you may or may not be able to set. 

4) At the bottom of the emulator subwindow are some bells and whistles. The DA TA one is a set of 
flippers that are inverted every time some data is sent to the emulator subwindow. The ONLINE and 
LOCAL buttons tell you if you have a connections. The L 1, L2, L3, and L4 buttons are settable by the 
host in the VT100 mode. 

5) The emulator subwindow is not a standard Tajo TextSW or TTYSW. Selections can be made using Point 
and Select to defin~ the boundaries of the selection. There is no selection tracking as in regular 
text subwindows, and the selection disappears once new text is written to the screen. Selection can 
be stuffed into other windows using the Stuff button, and text from other windows can be stuffed into 
the emulator subwindow. There are no scrollbars on the emulator subwindow, to see the full context of 
the window one must grow the window to be large enough .. Hitting Adjust in the emulator subwindow will 
cause the window to become the input focus if it does not already contain a selection. A log is kept 
in the file Chat2.log. 

6) Special Keys of note (refer to the XDE User's Guide for a description of the key names): 
The CNTL key is CONTROL 
The ESC key is COMPLETE 
The DEL key is DELETE 
Cursor Keys: 

Up, Down, Left, and Rightare HELP, DOIT, NEXT, and UNDO 

If you are in the vt100 mode, there are several KeyPad and Programmable Functions Keys available to 
you. With the built in Emulator. TIP file, you have the following: 

KeyPad Char: 
0 - 9 are 0 - 9 WITH COMMAND held down 
Enter is COMMAND Return 



- - Rotate.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This program registers an exec command "Rotate.-" that rotates the letters in its argument by the 
number specified by the switch (mod 26). The default rotation is 13. It ignores non letters, and it 
preserves case. If the argument is "SSS" it uses the current selection as the text to rotate. It is 
useful for un - rotating usenet "non - spoilers". 

The text of this file rotated 13 is 

" - - Ebgngr.qbp 

Guvf cebtenz ertvfgref na rkrp pbzznaq "Ebgngr .-" gung ebgngrf gur yrggref va vgf nethzrag ol gur ah 
zore fcrpvsvrq ol gur fjvgpu (zbq 26). Gur qrsnhyg ebgngvba vf 13. Vg vtaberf aba yrggref, naq vg 
cerfreirf pnfr. Vs gur nethzrag vf "SSS" vg hfrf gur pheerag fryrpgvba nf gur grkg gb ebgngr. Vg v 
f hfrshy sbe ha - ebgngvat hfrarg "aba - fcbvyref". • 



- - RootPicture.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

This hack runs in Tajo and lets you replace the "officetalk gray" background of the root window with a 
background of your choosing. The background is a "vanilla .. bitmap picture generated by Markup which 
begins with eight words of data - values and is then followed by the bitmap. RootPicture uses this kind 
of press file. 

Invoke the hack by getting the bed and typing "RootPicture filename/switches" to the Executive or via 
user.cm/lnitialCommand: "RootPicture filename/switches" startup. If no filename is mentioned, it is 
defaulted to "RootPicture". If the filename contains no eKtension, ".press" is appended. 

Command line switches let you control where and how the picture is displayed. 

Switch /d [for 'duplex']: RootPicture attempts to place two press files on the screen, one on the left 
half and one on the right. The first file is "filenamel" and the second is "filenameR"; they are 
flushed bottom and toward the center. This is a useful switch to use to get a full - screen picture. 
e.g., You will have to rename "'Tiffanyleft.press" = > "Tiffany.pressl". 

Switch /c [for 'center'): RootPicture attempts to place one press file on the screen. The name is 
"filename·, and it is centered and flush bottom. 

Neither /d nor /c: Like /c but the picture is flush left and bottom. 

Switch /i [for 'invert'): If your terminal background is inverted (black), the press files' bits will 
be automatically complemented so that you do not get a negative image. If your background is white, 
then this switch doesn't do anything. 

Switch /p [for 'paint']: the picture is painted (ORed) into the display after painting in an 
officetalk gray. This has the effect of making white bits in the bitmap transparent and letting the 
normal gray background shine through. If this switch is not specified, the default mode, replace, 
will be used. 

Switch /g [for 'gray'] followed by Oto 16 octal numbers separated by whitespace: the background gray 
will be that specified by the octal numbers instead of officetalk. The octal numbers specify a 
Display.Brick that is to be painted before the picture. If no numbers are specified, the gray is 
reset to officetalk. 

If /d and one of the "filenamel" and "filenameR" files is absent, then only half the screen gets a 
picture. 

If Id and both "filenamel" and "filenameR" files are absent, then the/dis ignored. [and a single 
"filename" file is centered or flushed left] 

If the file "filename"' is absent (or if all of "filenamel", "filenameR" and "filename" are absent if 
/d), then RootPicture puts the officetalk gray back. 

If RootPicture is run from the "lnitialCommand" line in your user.cm, it sets the switches to /de. 

Examples: 
"RootPicture Tiffany/c" centers Tiffany.press at the bottom. 
"RootPicture /d" builds a wide picture from RootPicture.pressL and RootPicture.pressR. 



- - RootDirectoryTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The Root Directory Tool provides user - level access to the Volume. *Rootfile procedures. It is a 
full - fledged tool with one window consisting of three subwindows: a message subwindow for posting 
error messages, a form subwindow, and a log subwindow. 

The form subwindow logically consists of two sections: a volume section and a root directory section. 
It looks something like this: 

Volume: (Tajo} 
Type: (normal} 
Open! Close! 

Status: (openReadWrite} readOnly 

FilelD: [OB, 1250008] 
Type= 9344 
LookUp! Insert! Remove! GetNext! 

·volume• is an enumerated item that consists of all currently on - line logical volumes. Changing it 
will also change the "Type" and "Status" items to the appropriate values. The last two items are 
read-only. 

·open!" and "Close!" will invoke the appropriate operations on the current volume. "readOnly" is a 
boolean that affects how the Open is done: Note that when a volume is opened with -readOnly, all 
temporary files on that volume will be deleted. 

WARNING: Due to a bug in Pilot. DO NOT open a volume for readWrite if it has a higher type than the 
one you are running on (normal < debugger < debuggerDebugger .) This is a bad idea in general, but in 
this particular case, a monitor inside of Pilot will be locked. 

In the root directory section there are 4 commands: Look Up, Insert, Remove, and GetNext, that 
correspond to the appropriate procedures in the Volume interface. They take their arguments from the 
Volume, FilelD, and Type fields, and update them with the results of the operation. I.e .• 

Command Arguments Sets 

LookUp! Type, Volume File ID 

Insert! Type, FilelD, Volume 

Remove! Type, Volume 

GetNext! Type, Volume Type. FilelD 

Warnings will be given if the file does not exist, or the actual file type differs from the value in 
the "Type" field. 



-- P.LMTocl.doc 

-- Copyright (C) ·1984 by Xerox Co rporntion. All rights reserved. 

Please refer to the document, "Remote Line Monitor Tool", in XDE Unsupported Software: D~>;c rip•ion. 



- - Wall.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The Wall Game is a game for 1 to 4 players (the program can provide up to 3 of the players), written 
for the Tajo environment. It's related to the lightcycle race in TRON - - they're both ripoffs of a 
1975 - vintage arcade game called Barricade. 

In The Wall Game, each player controls a linear wall that grows by constantly adding bricks at an 
accelerating pace. If the growing end of a wall crashes into anything, the whole wall vanishes. The 
object of the game is to steer your wall so as to out - survive the other players, usually by walling 
them off into small areas of the screen. 

The game has a variety of parameters and options, which can vary the relative importance of 
intellectual strategy, physical coordination, and luck. The program contains on - line help & training, 
which will be sufficient documentation. The text layout will look best with Gacha 12.strike as system 
font. 



- - WindowBoxTool.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

WindowBoxTool displays the "bitmap box· (position & dimensions) of any or all not- inactive tools 
windows in your development environment. You can use it after you've positioned your windows the way 
you like them, in order to copy the data into your user .cm for those tools that check user .cm for 
initial window size and position. 

SelectedWindow! looks for the window containing the selection, and prints something like: 
Selected window's bitmap box: 
WindowBox: [x:·500, y: 640, w: 480, h: 115) 

AllWindows! shows every window's box; e.g.: 
Bitmap Boxes for all windows: 

WindowBox: [x: 500, y: 640, w: 480, h: 115) 
WindowBox: [x: 40, y: 40, w: 400, h: 250) 
WindowBox: (x: 40, y: 40, w: 400, h: 250) 
WindowBox: (x: 0, y: 32, w: 500, h: 70) 
WindowBox: (x: 25, y: 336, w: 500, h: 300) 
WindowBox: (x: 484, y: 61, w: 480, h: 350) 
WindowBox: (x: 0, y: 0, w: 1024, h: 30) 

7 tool windows found. 

AllWindows! inverts each window for about 1 second as it is printing its log. 



- - VolumeVersion.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

If you are responsible for any program that does a Volume.Erase, you may be interested in 
VolumeVersion. If you are not, read no further. 

Volume Version is useful in implementing a user interface which will prevent the user from accidentally 
erasing a volume when that erasing would change the format of the volume. VolumeVersion is typically 
used in volume initializer programs such as Othello. 

VolumeVersion consists of an interface VolumeVersion.bcd and its implementation VolumeVersionlmpl.bcd. 
The interface contains one operation: 

Examine: PROCEDURE [volume: Volume.ID) RETURNS 0[result: VolumeVersion.Result); 

VolumeVersion.Result: TYPE = { 
currentVersion, badRootPageLabel, ioError, trashedRootPage. 
otherVersion, volumeUnknown}; 

which can be used to tell if a logical volume is compatible with the version of Pilot that is currently 
running. 



- - Wait.doc. 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

The ExecProc Wait.- returns to the Executive after desired time. Will abort within one second if the 
executive is aborted. Time is either 1) number of seconds, 2) hour:min:sec, or 3) dd - mmm -yy hh:mm :ss 
zzz. If time is in format 1, the switch 'm will treat number as minutes, and the switch 'h will treat 
number as hours. 

Examples: 

Wait.- 5; - - waits five seconds 
Wait.- 4/m - - waits 4 minutes 
Wait.- 2/h - - waits 2 hours. 

Wait.-8:20:15 - - waitsuntil8:20:15inthisornextmorning 
Wait.- 13:30 - - waits until 1 :30:00 in this or next afternoon 

Wait.- ·15-Apr - 83 23:59:59" - - waits until too late to file next year's taxes 

Note that if a date is specified, it must be in quotes. 



- - UserTip.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

UserTip is a package that allows you do two thigs: specify keys to be window or input focus events in 
your User.cm, and have private TIP tables created and inserted into the system chains at 
initialization time. 

All of this is done through the [TIP) section of your User.cm. The following entries are recognised: 

ActionToWindow: <Key> 
ActionTofocus: <Key> 

- - forces <Key> to be a window event. 
- - forces <Key> to be an inputfocus event. 

<globalTable>: <FileName> - - triestocreatetheTIPtablecalled <FileName>. lfsuccessful,itthen 
does a TIP .PushGlobal of the resulting table onto < globalTable >. 

<Key> must be a Keys.KeyName (case is significant!) 
Currently recognized golbal tables are {root, form SW, textSW, fileWindow, ttySW, executive, sparet, 
spare2} 

Example: 

[TIP) 
ActionToWindow: SCROLLBAR 
textSW: ExtendEdit.TIP 

This entry causes the SCROLLBAR key to be a window event, and adds ExtendEdit. TIP to the user actions 
that ALL text subwindows understand. 



~11right (C) ·t 984 by Xerox Corporcition. All rights reserved. 

::Icilae refer to the document, "DF Software Reference Manual", in XDE Unsupported Software Description. 



- - Type.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Type.bed replaces the Type.- command that comes built into the Exec. The new Type.- command is just 
like the Exec's, except (1) it allows remote file names, and (2) it lets you specify a range of 
characters within the file(s) to be typed. This is particularly useful for looking at files via a 
RemoteExec, especially in conjunction with the Find.- command for determining starting and ending 
character positions. 

Syntax: •Type <list of files to type>". Follow a file name with /FxxxTyyy to type only character 
positions from xxx through yyy. 



- - Unique.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Unique 
Environments: CoPilot I Tajo 

Description: Unique is a program for parsing tokens from files, the current selection, or the 
Executive's command line. It sorts it's output alphabetically with duplicates removed and outputs 
itto the Executive. It parses filenames, words, numbers, and lines. Unique registers itself with 
the Exec. Command line syntax is: 
(filename)/{AppendToWords .. "suffix .... , Extensions, Filenames, Lines, Numbers, Words} (token list). 

filename is the optional name of the input file. 

A switch to signify the function to perform follows the optional file name and can be one of the 
following: 

a - - Append. /a must be followed by a token which is to be appended to each word in the 
input source. Useful for alphabetizing lists of words with a comma or some other extension 
appended to each one. 
e - - Extentions. Sorts filenames by extension. Useful for cleaning up directories and such. 

Example: Type TAB to the Executive. Select the resultand invoke "Unique.- le". 
f - - Filenames. Extracts tokens of the form name.prefix. 

Example: Select some newly written code and use the If switch to extract all the 
qualified names. This can be very useful for preparing USING clauses, especially in 
combination with the "/a • switch. 

I - - Lines. Sorts lines uniquely. can be used to help combine CODE PACKs in Packaging 
descriptions, or to sort directory statements. 
n - - Numbers. Strips out anything but sequences of digits. Unfortunately, it sorts 
alphabetically, but it can be useful. Can be used to extract interesting groups of AR numbers 
from sorted AR reports. 
w - - Words. Uniquely sorts all tokens encountered. 

The optional token list is present if the user wishes input to come from the Executive's command 
line. In this case, all tokens following the switch will be used as input to Unique. If a filename 
is present however, any tokens following the switch will be ignored. 



- - TurboFile.doc 

- - Copyright(C) 1984 by Xerox Corporation. All rights reserved. 

TurboFile is an extra - cost performance option for the Pilot file system. It speeds up Pilot's file 
allocation operations (File.Create, File.Delete, and File.SetSize) at the cost of making it more 
likely that you will have to scavenge when your system crashes. Your files are not jeopardized by 
TurboFile. 

Background and Motivation 

Pilot maintains performance accelerator data about the contents of logical volumes, and this data is 
stored. If the system crashes and this accelerator data on the volume is not correct, the volume will 
be automatically scavenged the next time is opened In order to reconstruct the accelerator data from 
the files themselves. 

In normal operation, Pilot makes its accelerator data correct and consistent at the end of every file 
allocation operation. This reduces to a minimum the period during which a system crash will require 
the volume to be scavenged. This is appropriate behavior if the probability of crashing is high AND 
the time to scavenge a volume is high. If that is not the case (that is, if the probability of 
crashing is low or the time to scavenge a volume is low) it is IN appropriate, and TurboFile may 
profitably be used. 

·To aid you in deciding whether or not to use TurboFile, here are some examples of current scavenging 
·performance from a workstation: 

volume vol size pages used Pilot Sca!'enge MScavenge 

Tajo 5,000 4,500 30sec 20sec 

CoPilot40,000(!) 30,000 &min Smin 

In a simple test of deleting thirty small files, Turbofile reduced the normal elapsed time from 40 
seconds to 30 seconds. 

Functionality 

TurboFile speeds up file system operations by telling Pilot to delay its expensive consistency actions. 
At user - settable intervals, TurboFile tells Pilot to make its accelerators consistent. This is done so 
that many, perhaps most, crashes will not require the volume to be scavenged. The default interval is 
five minutes. At present, TurboFile only acts on the system volume - - other volumes are managed in their 
normal fashion. 

Operation 

To get TurboFile running, just type its name to the Executive; it then runs in its own tool window. 
When TurboFile is started, it registers a command of the same name with the Exec. Executing the 
command when the tool is inactive will put it in the active state; otherwise the command has no 
effect. 

TurboFile's form subwindow contains three items: 

{running, stopped} Force Consistency! Interval (sec)= 300 

When "running" is chosen, TurboFile performs its speedup functions, and updates Pilot's accelerators at 
the specified interval. When TurboFile is "stopped", TurboFile does nothing and Pilot acts in its 
standard fashion. 

"Force Consistency!" causes Pilot's accelerators to be written to the disk immediately. 

"Interval" is the number of seconds TurboFile waits between accelerator data updates. Normal usage is 
to start the tool and then just leave it alone. 

TurboFile performs its functions in either the normal or tiny window state. TurboFile updates Pilot's 
accelerator data (A) at the requested intervals, (B) when it is stopped, deactivated, or unloaded, and 
(C) before world swaps. 

Miscellaneous 

If the system crashes while the tool is running, one MAY be able to avoid doing a scavenge by interpret 
calling the procedure TurnOffWatchDog in TurboFile: 

>Set Module Context: TurboFile 
> TurnOffWatchDog(] 



TurboFile honors the standard User.cm entries. For example: 

[TurboFile) 
lnitialState: tiny 
WindowBox: [ ... ) 
TinyPlace: [ ..• ) 
lntervalSeconds: 300 



- - Triton.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. ·,,, 

Triton provides a simple facility for enumerating files according to various filtet·s, displciying thent 
sorted according to various keys. then deleting a specified subset of them. It provides some of the 
same features as Neptune or Posiedon. · 

User Interface: 
Triton consists of three windows: The Message SW, used to report progress and problems. The Form 
SW, used to specify filters, sort keys, commands, and provide credentials. The Scratch SW used to 
display the file list, and mark files for deletion. 

The filters are: Name, Type, and Size. Name is a fully qualified path name, and can specify local, 
remote NS, remote IFS, or remote Tenex (Maxc) files. Type can be any type known to File Transfer, 
including text, binary, directory, or null. Size can be in bytes or pages and can be a single 
relation or a range. 

Files can be sorted on name, extension, size, create date, write date, read date, or type, either 
ascending or descending. 

After all filters and the sort key are specified, bugging Show! will cause Triton to enumerate, 
filter, sort, and display the files in the Scratch SW. After the files have been displayed, moving 
the cursor over the line containing a file you want deleted; and bugging Point will mark the file 
for deletion. Dragging the mouse with Point down will mark a series of files for deletion. Bugging 
Adjust over a file un - marks it, and similarly dragging with Adjust down un - marks a series of files. 
Chording, hitting Menu (the middle mouse button), or MENU (the key), while over a file name will 
cause info about that file to be displayed in the Message window. 

After you are satisfied with the files you have marked, bugging Dolt! will delete the marked files 
and then redisplay the remaining files. 

Changing the sort key or direction and bugging Show! will resort the files according to the new 
specification, without refilte.ring, or losing marks. 

Changing any of the filters and bugging Show! will cause Triton to re - enumerate, filter, and sort the 
files, discarding old marks. 

Triton requires approximately 40 free disk pages to start up (for heaps), and requires about 1 disk 
page per 5 files enumerated (so you start with enough room for about 200 files). Enumerating more 
than a few hundred files is PAINFULLY SLOW. 



- - Tracelmpl.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Tracelmpl is a module which impelements data tracing. If you want to take a trip to the debugger when 
all or some of the bits in a specific word are either different from, or equal to a specified value, 
read on. 

To use Tracelmpl, load it into your program, go to the debugger and call StartTrace(loc, val, mask, 
equal]. Tracelmpl will examine the location on each control transfer. If val = lnline.BITAND[loc f, 
mask], then if equal is TRUE, the debugger will be called. Tracelmpl will not pinpoint the statement 
that altered the memory location. It will merely interrupt shortly after some process has altered the 
location. To stop tracing, call StopTrace. If you simply want to watch a location and get called when 
the current value changes, you may call Watch[loc]. This is equivalent to StartTrace[loc, loc f, 
177777B, FALSE]. 

StartTrace: PUBLIC PROC [ 
toe: LONG POINTER. val: UNSPECIFIED, mask: WORD. equal: BOOLEAN); 

- - Does: IF equal = (val = lnline.BITAND(loc f, mask)) THEN call the debugger; 

StopTrace: PUBLIC PROC = {continueTracing-FALSE}; 
- - Does: Stop tracing. 

Watch: PUBLIC PROC (toe: LONG POINTER] = {StartTrace(loc, loc f, 177777B, FALSE)}; 



- -Topper.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

"Topper· eliminates the hassle of fishing around fo~ the WindowMgr me11u in trder to b1 ing "ii>dows to 
the top or bottom of your Tajo desktop. It adds three function?> to key combinations spacified •n ~he 
TIP table ·rapper.TIP": 

Top: Bring the window containing thoe cursor to the te<p. (Thi!l r!l equivalent to the Window Mgr menu's 
·rop" command.) 

Bottom: Put the window containing the cursor on the bottom. (This is equivaolent to the Window Mgr 
menu's "Bottom" command.) 

Switch: If the window containing the cursor is obscured by another, bring it to the top, else put it 
on the bottom. (This is equivalent to clicking RED in the left or right section of the name frame.) 

Repeatedly invoking "Switch" will quickly cycle through all the windows which overlap a particular 
point on the screen. 

If <>TIP> Topper.TIP does not exist when you run Topper, the following key assignments will be made: 

Top: RESERVED (the key marked "SUPER- SCRIPT" on the Star keyboard) 
Switch: Shift - RESERVED 
Bottom: Control - RESERVED 

If you wantto change Topper's key assignments, edit <>TIP> Topper.TIP and reboot. This is not 
especially recommended for frequent use, since the old TIP table remains on the globa.I TIP chain, and 
any key transitions not overridden by tne new TIP table will continue to trigger the old table. 



Further notes on the use of Tom 

One of the major features of Tom is its flexibility. The variables that it displays need not exist as 
such in any" ... Perf" interface. The Timer interface is one such: the updateVariablesProc simply 
updates a variable to be the current time. A different use· of the·updateVariablesProc would be to '· ·, 
apply arbitrary transformations to variables from ... Perf ~nterfaces: For example, one might choose 
to take the logarithm of some variable or to combine some variables from different interfaces. These 
calculations may well be undesirable at the low level that the raw data is generated; putting them in 
the updateVariablesProc means that they are calculated as infrequently as possible, thus minimising the 
overhead. 
Variables could even be provided to provide synchronising pulses for displays. If one counter were 
incremented at the beginning of an operation and another at the end then the endpoints of the 
operation will be immediately obvious on the histogram display. An excellent example would be the 
number of the current pass of the compiler, were one to monitor that. 



To register a new display facility. clients should use routines and definitions available in the TomD 
interface. 

Register: 

PROCEDURE r,: . ···~·;•<jf'it;tt;•-n'""'~i~•, .. , .•. 
(name:LONGSTRING, - -,theriame.ofthedisplayroutine ·; _ -~. •. ·· ,_.:. . ..:. 

setDisplayProc:SetDisplayProcType; - -: a routine to start and st:>i> display.s . . . .. _, .. 
updateDisplayProc:UpdateDisplayProcTypt! - -: a routi~e to update the ~isplay ·.; 

]; . 

Clients should call Register to make a new display facility available to Tom. They must supply the 
name of the interface, a routine to start and stop displays and a routine to update displays. The 
name is not copied and should remain in existence for as long as the display is registered. 

SetDisplayProcType: 
TYPE = PROCEDURE 

(clientHandle:LONG POINTER, - - handle to display to be stopped 
msgSW: Window.Handle, - - the tool's msgSW 
parent, - - the main Tool window 
insertBeforeThis: Window.Handle, - - the last subwindow of the Tool 
items: Items) - - an array of info for new display 
RETURNS [newClientHandle:LONG POINTER]; - - client representation of new display 

setDisplayProc's are responsible for both starting and stopping displays. This is so that if only 
the list of items to be displayed is changing (and not the display facility itself) then a clever 
setDisplayProc need not completely dismantle its display apparatus having stopped one display. prior 
to starting the next. 
The first time a setDisplayProc is called, clientHandle will be NIL and items will be an array of 
Items (which contain the variables' names, addresses etc.). The client should set up the display 
and return a handle to any internal data structures that may have been set up. The client should not 
use global data to hold the data structures because the display may be multiply active from different 
instances of Tom. The handle will be passed to the client each time the display is to be updated and 
when the display is to be stopped. Various window handles are passed to the setDisplayProc. The 
msgSW allows messages to be posted in the standard Tom message subwindow; other subwindows required 
by the client are best made by ToolWindow.CreateSubwindow and Tool.AddThisSW using the ~aren~ and 
insertBeforeThis parameters in the obvious way. 
(Note: The latter is necessary because of internal nasties in the space allocation between subwindows 
of a window. insertBefore This is a handle to the bottom subwindow of the tool, which, without user 
intervention will extend from Tom's text subwindow to the bottom of Tom's window ensuring that any 
subwindows added without quoting insertBeforeThis to Tool.AddThisSW will be out of sight, below the 
windows bottom edge!) . 
Subsequent calls of setDisplayProc will be passed the clientHandle result from the previous call so 
that the client can stop that display and recover the resources used. When. 'he display facility is 
no longer required, the setDisplayProc will be called one last time with the latest clientHandle and 
with items= NIL. This is to give the routine a chance to tidy up and return all resources used. 
Note also that the array of items passed to the setDisplayProc is defined to remain in existence 
until after the next call of setDisplayProc, so there is no need for the client to take a copy of 
it. In fact, there are even client data words inside the elements of the array so that further 
client specific information may be stored there. · 

UpdateDisplayProcType: TYPE = PROCEDURE (clientHandle:LONG POINTER); 

Clients must supply an updateDisplayProc to Register. This routine will be called at the priority 
and frequency specified in the main Tom form subwindow to allow the client to update the display. 
The handle passed to it is the handle returned from the setDisplayProc. 

Items: TYPE = LONG DESCRIPTOR FOR ARRAY OF ltemP; 
ltemP: TYPE = LONG POINTER TO Item; 
Item: TYPE = RECORD 

(interfaceName, - - the interface to which this variable belongs 
varName: LONG STRING. - - the name of the variable! 
varAddr:LONG POINTER TO LONG CARDINAL. - - the address of the variable 
counter:WordBoolean, - - the hint from the interface 
client:LONG POINTER._. NIL); 

WordBoolean: TYPE = MACHINE DEPENDENT RECORD(zeroes:(0 .. 777778), b:BOOLEAN); 

Items are passed to the setDisplayProc to specify the variables to be displayed. As far as possible, 
the information comes directly from the registered interface. The counter is a WordBoolean for sordid 
implementation reasons but is otherwise the value returned from a call of the getVariablesProc passed 
to TomP.Register; i.e. it is an indication that the variable is unbounded monotonic and so it may be 
better to display first differences rather than the absolute value. 



Loading interface and display stubs 

To~.~cd is bound with the _Ti"."er interface routine and the Grap~ an~~Text display ~outine.s .. 1~. 
addition, the user can specify in User.cm that other (us~~~.s11pp~1ed),mterfaces or displays should 
be loaded when Tom is started. Furthermore, if a nam'e· ~ type'cf into the Interface: or Display: ."-, ·· 
fields of the form subwindow and the appropriate routiti~ Is notfound,'th~n Tom will try'to · .. ,. '!., '. :· '" 
dynamically load the routine. It does this by appending either "TomP.bcd" to an interface name or 
•TomD.bcd" to a display name to get a filename to be loaded. An error message will be given if the 
file is not found or cannot be loaded. . · ' ' 

Registering new interfaces 

To register a new interface. clients should use routines and definitions available in the TomP 
interface. 

Register: 
!.':" 

PROCEDURE 
(name: LONG STRING, - - the name of the interface 

nVariables:CARDINAL, - - the number of variables 
getVariableProc:GetVariableProcType, - - a routine to access the variables-
updateVariablesProc:UpdateVariablesProcType) - - a routine to update the variables 

RETURNS [ok:BOOLEAN); 

Oients should call Register to make a new interface available to Tom (or TomStub). They must supply 
the name of the interface, the number of variables being made available and two routines. The first 
routine supplies information about each variable, and the other (possibly NULL) ensures that all the 
variable are up to date. The name will be not be copied by Register and must remain extant for as 
long as the interface is registered. Ownership of the string re!'1ains with the client. The routine 
will return FALSE if an interface of the the same name is already registered. 

. ~ ~r 

De register: 
PROCEDURE [name:LONG STRING] RETURNS [ok:BOOLEAN];''' 

'·")· 

Clients should call Deregister if they wish to make an interfa~e.1.mavail~ble for use. This may be 
because the code is being unloaded or· because the clie'11t lla,s finished' generating the values for the 
interface for some reason. The routine_ will return FALS"E ,if 1r)o'ihtyrface ~.f the given name can be 
found. ·:: , · _· . 

!s-, 

GetVariableProcType: TYPE = PROCEDURE (index:CARDINAL] RETURNS (variable:Variable]; 

The client must supply a routine of this type in the call to Register. It will be called by Tom to 
find information about the individual variables; this information is in "variable". 

UpdateVariablesProcType: TYPE = PROCEDURE[]; 

Clients must either supply NIL or a routine of this type to Register. It will always be called just 
prior to accessing any address made available via the getVariableProc. The client may use this 
routine to ensure that all the variables are up - to - date - this is particularly useful if these. 
values are derived from others. 

Variable: TYPE = 
RECORD (name:LONG STRING, - - the name of the variable 

addr:LONG POINTER TO LONG CARDINAL, - - the address of the variable 
counter:BOOLEAN +-TRUE - - a hint to display routines 

]; 

RECORDS of type Variable are used to return information about individual variables to Tom. Tom only 
understands LONG CARDINALS; if the client wishes to display other types, they must coerced by the 
client to a LONG CARDINAL, probably with the help of the updateVariablesProc. 'counter' is an 
indication (for the benefit of display routines) that the variable is unbounded monotonic and so it 
is probably better to display first differences rather than the absolute value of the variable. All 
LONG STRINGS returned to Tom in Variable records remain the property of the client and must remain in 
existence for as long as the interface is registered. 

Registering new displays 

\~ ~' ! ! .... c; . :-



Display routines 

There are currently two system provi~~d c!i.spl~.Y,ro,~ti'!.!!S~,Te~t.~n,i.~r'Wh.,. :::'ti·-:·•? , , >;.·Ch•';, gr.w 

Text is very simple, displaying numericall.·y. ·'.the1~t···~~'ci ... '!."a· rj.·~.b ... \~~.) ... ·or .. ,:ft{~.~.'i.· :.~a.' l°.J.·a."~1;i. i6;1,t'fi~v~~-;·:·.i; ... ~·. •• .' 
changed since the previous update, it also ,giv~~ , . fir~~iff~r~r~e a$ .. ~lllkH.Q(9j~ a _boolean to ~•'". ·, . "..,., 
allow the user to stop the display tempora~~Y an sA.~c;u.mulattt•s a,boolean.to.aJlow the first , . ..,, 
differences to be accumulated rather than reset ea~h ~fidats . .,TP,i,s !s to sim.p,lify taking cumulative , ,,, , . 
counts over a short interval of time. . ., t=' . ' 

Graph is more sophisticated and displays the recent history of each variable in histogram form. It 
automatically displays the absolute value or first difference value as appropriate to each variable. 
It has a form subwindow to control various parameters: 

Hold . . , :.,. .. . .,. .. <• . •. "'' .. " 
This boolean allows the user to temporar;tly inhibit updating the display. For those va.ria.bles being.· ., ... 
displayed in first difference mode. this w)ll r.esult in ~n accumulate~ .v~lue on t~etnei1t r~!!ding:.· · · ' · · 

Normalize . ..~' 1 "~ ·) .. · ; ,.">';: · : . .., ' ' . :~ ;,;~;0 
This boolean allows the first difference variables to be normalized to a per - second value. This 1s. , . ,~,; 
to smooth out inaccuracies in the scheduling of the update process but users should be careful of 
how they interpret the normalized results. · 

Rescale! 
The scale for each graph is initially set to an arbitrary value for each variable. For thO$e graphs 
which are part of the current selection (see below), Rescale! will change them so that the maximum 
value within the selected region of a particular graph becomes the full scale reading for that 
graph. 

Reset Origin! 
The graphs normally "wrap around" once they are full. Reset Origin rotates the graph so the the 
current update point is just to the right of the graph. This command is particularly useful in 
conjunction with Hold! and either Print or the TajolnterpressCamera tool. 

Clear! 
The graphs are cleared (but the display process is not stopped). 

Print! Filename: .. . .i1c 

Print the values of the selected range of the graphs in the curre11~ selectionr This feature . 
interacts nicely with filewindows: if the specified fi!e is on elf splay in a filewindow, it will be,. 
released by the filewindow during the Print! and will display the selected l(~j!Jes as soon as Pr!nt! 
completes. 

HistorySize: set! reset! 
This allows the user to alter the number of values for each variable which will be shown in the 
histogram. Currently, no attempt is made to save any existing values in the· graphs when.a new , 
historySize is set. · · · 

The current selection: 
Some commands, notably Print and Rescale, use the current selection as an operand. Vertically.any. 
subset of graphs can be selected and those selected need not necessarily be contiguous. 
Horizontally, any subrange of the graphs can be selected, and is the same for all the graphs .. 
selected. Selecting the subrange is very analogous to selecting text - Point and Adjust are used i.n 
the normal way. Multi- clicking Point changes the scale from bar to graph to everything (and then 
back to bar). Selecting a particular graph can be done with Point. Because non - contiguous subsets 
of graphs can be selected, selecting a set of graphs is slightly unconventional: either add 
individual graphs to the selection with Adjust or, with Adjust held down, drag the cursor over a set 
of graphs which are to be added to the selection. To remove a graph from the selection, double - click 
Adjust (and possibly drag it over others to be removed). 

User.cm 

Tom will pick up the standard entries of WindowBox, lnitialState and TinyPlace from the [Tom) section 
of User.cm, if it exists. In addition, it recognises two further entries: Interfaces and Displays 
(with synonyms Interface and Display). These entries provide automatic preloading of user stubs of 
code. Each keyword can be followed by a list of names. For each name after Interface, Tom will 
generate a filename by appending "TomP.bcd" and then will try to load that file. For names after 
Display, the action is similar, except that "TomD.bcd" is appended. The names have no significance 
other than as part of a filename and need not necessarily be the same as the interface being 
registered. This allows one file to register many interfaces. 

. .. 



- - Tom.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

Tom provides facilities for monitoring variables exported from ""t»e..f"' interfaces·..;: client·ititcfrfaces>'vM,, 
containing performance and statistics information. Arbitrary interfaces can be monitore.d: clients 
merely have to provide a simple stub of code td malie'thei~ eti~ate lnterfaC(! available t~ T(im. In ., •It; '·~mi.. r "" 
addition, clients may supply different display routines·;~ tho~tfpro_vided are ?nsuffiCil!nt: ;r"om :fl~~- ·. · .. t'. '~ ~~'1 1~ 
includes facilities for accessing the "pert• - interfaces on a remote machine. '.This is 'done by loading · I' .q, 
a small part of Tom into that machine which is accessed from the user machi'ne by Courier. Ttle · · ,,. 1 ' ti 

overhead of the monitoring is substantially less when monitoring remotely than when monitoring the 
local machine. 

dt .·., 

Using Tom •..:j~qc" . 

After starting, Tom has four sub'- windows. Th.e top is a message subwindow for displaying error 
messages. The second is a form subwindow containing fields and commands for 5electing'a ~etof' .. 
variables to be monitored. The third is a tei<t subwindow used to bwld up the list of interfaces· 
and variables to be monitored. Text is normally entered via an accelerator in the form subwindow, 
but it can be typed in, moved, copied, edited or deleted in the normal way. The final subwindow is 
madeavailabletothedisplayroutine; · · '"'1 r. '·:· 1 ·~ 

J "<?!' 

The form subwindow: 

Another! 
Create another instance of the tool. The new instance will share all registered interfaces and 
display routines but is otherwise independent. This facility will typically be used to monitor 
different variables with different display routines. 

Destroy! 
Delete this instance ot the tool. Tom is registered with the executive so it all instances are 
deleted, another can be created by typing ·rom· in an executive window. 

Reset! 

• • J ., 

Stop the display (it any), clear the list of variables in the text subwindow and reset all values in 
the form subwindow. 

Load! Save! Parameter File: 
The current display parameters in the form subwindow (priority, interval, routine) and the tei<t in 
the text subwindow can be saved in a file for later use by entering a file name and selecting Save!. 

The values can be reloaded with Load!. If no ei<tension is §iven for the filename,· .tom" is used. 
All files ending in" .tom· will be given as'1 menu for P~ranteter File·: • · ' 

Remote Machine: 
If this field is blank, Tom will directly access the registered interfaces on the local machine. 
Otherwise, this field should be the address or hame of a ma·chine known in the ClearingHouse and Tom 
will attempt to access the registered interfaces on that machine via Courier, even if the machine is 
the local one. 

Add! Interface: Variable: 
Interface: has a menu of the currently registered interfaces, and if one is selected then Variable: 
will have a menu of the variables available in that interface. Add! will cause interface.variable 
to be appended to the list in the list subwindow. There is a special 'variable' <ALL> which is 
interpreted by Add! with the obvious meaning. 
The Timer interface is somewhat special in that Timer.milliseconds will always be internally 
prepended to the list when Apply! is selected (see below). There is therefore no need for the user 
to select this variable. 

Apply! Display: Priority: Interval: 
The desired display routine can be selected from the menu for Display. The priority (background, 
normal. foreground) and frequency of display update (default 1000mS) can also be set in the obvious 
fields. Apply! starts or changes a display routine. It parses the list of the selected variables 
and interprets them in the context of the currently selected Remote Machine (if any). The display 
will then start to monitor the specified variables. To stop a display, either use Reset! or select 
a new display. Similarly, to change the priority or frequency of update, simply change the 
appropriate parameters and select Apply!. If the list of variables has not changed the display 
routine will not be reinitialized (although the parameters of the update routine may have changed, 
of course). 
The Interval: parameter is limited by the accuracy of Pilot and its process scheduling. Furthermore, 
it does not allow for time spent in the display routine. For this reason, there is a system provided 
variable Timer.milliseconds which is always included in the list of variables to be monitored. 
Timer.milliseconds always provides an accurate indication of the time since the previous update of 
the variables. 

.. ~. 1. 



- - ToggleDisplay.doc 

- - Copyright (C) 1984 by Xerox Corporation. All rights reserved. 

ToggleDisplay, when run will push a Tip Table/Interpreter onto the root that provides the fo~lowing 
functions: 

1) Toggle the state of the screen background (invoked via COM -1) 
2) Toggle the state of the display (on or off) (invoked via COM - P) 

It also provides two atoms On, and Off, as well as Toggle, that can be used as prefix arguments to the 
two command atoms Screen and Display. 




