s%ny OF LIMITATIONS, AlD
§ ATTRIBUTES OF 1l1CROPROCESSOR
TESTING TECHNIQUES

Macrodata Corporation
© 21135 Erwin Street
Woodland Hills, California 91365

STUDY OF LIMITATIONS AND ATTRIBUTES

OF MICROPROCESSOR TESTING TECHNIQUES

March 17, 1977
Final Report - NASA Contract NAS8-31954
Prepared By: |

Richard McCaskill
Wayne E. Sohl

Prepared For:

George C. Marsha]]ASpace Flight Center
Marshall Space Flight Center, Alabama 35812

TABLE OF CONTENTS

PAGE

I. GENERAL TEST PHILOSOPHY 1
II. BASIC BLOCK DIAGRAM 19
III. MODULAR APPROACH : 26
IV. DESCRIPTIONS OF MODULAR TEST APPROACH 27
V. PROCESSOR TEST DESCRIPTIONS 30
A. 8080 .30

B. 8008 80

C. 2901 87

D. 6800 102

E. 1802 121

VI. DC TEST REQUIREMENTS 139
VII. SURVEY SUMMARY - 140
A. LIST OF COMPANIES 140

B. SURVEY QUESTIONNAIRE 141

C. QUESTIONNAIRE RESPONSES » 145

VIII. DETECTED PROBLEMS . 185
IX. TEST EQUIPMENT _ 189

X. QUALIFICATION TEST VERSUS SCREENING TESTS 197

- ATTACHMENT I 199

\Om\lcﬁmbwl\):ﬂ
- 3 . . . L] L] .

— a—
N et
. .

—t
CQVWONOONEWN -~
.

FIGURES

Basic MPU Block Diagram
2901 Architecture

2901 Test Flow Diagram
8080 Architecture
Comparison Test

Stored Pattern Test

8080 Block Diagram

8008 Block Diagram

2901 Block Diagram

6800 Block Diagram

1802 Block Diagram
Program Counter Test
Register Array Test

Stack Pointer Test
Accumulator Test
Arithmetic Logic Unit Test
GALPAT Read Example
1802--0R Data Pattern
1802--Exclusive OR Data Pattern
1803--AND Data Pattern
Basic Tester Block Diagram

TABLES

Recommended 8080 Instructlon Sequence
Register Array Test

8080 Instruction Mnemonics
Stack Pointer Test Instruction
ALU Source

ALU Function Control

ALU Destination Control

ALU Source Operands

ALU Function Sequence

Stack Pointer Load Routine
Index Register Load Routine
Accumulator Load Routine

ii

GENERAL TEST PHILOSOPHY

The problems of testing microprocessors has been elevated past the
conventional methods of testing integrated circuits. Just the fact that
the microprocessor is not a simple collection of gates in a random format
or a well ordered structure, like that of a large scale memory, does not
lend itself to conventional means of testing. What is meant by the conven-
tional means of testing is the commonly used DC test checking for {nputs
-and output voltages and currents. This DC testing cannot prove that ihe
microprocessor is operational, because there are from four to six or more
levels of logic between the input and outpuf pins. Also the conventional
way to test random logic by applying a string bf input pétterns in a burst
will only check for steady-state faults stuck at logic 1 or stuck at logic

0, and will not check for any instruction or data sensitivity.

There presently are many ways'that both manufacturers and users are
performing testing of microprocessors. These include methods such as self-
testing, comparison testing, stored pattern testing, and algorithmic-aided

pattern testing.

First Step in Testing

The first item to be considered when testing a microprocessor is to
understand the operation and architecture structure of the microprocessor.

The operation of the microprocessor is controlled by the execution of an

instruction set unique to'egch microprocessor. There is a great variety
of microprocessors on the market today;.ranging from 2- and 4-bit slices
to 4-, 8-, and 16-bit complete hicroprocessorvunits._ But of all the pro-
duct types, 4-bit slices, like the 2901, and 8-bit micrﬁprocesﬁors, like
the 8080, have gained the widest-acceptance'and therefore are good exam-

ples to use in describing testing techniques.

~In general, a microprocessor has two internal buses: an 8-bit bidir-
ectional data bus, and a 16-bit unidirectional address bus (Figure 1).

The data bus carries both the instruction code and data. Instructions are
decoded and executed in connection with the appropriate controls in which

- data going to both the arithmetic logic unit and accumulator can be manipu-
lated by special arithmetic or logical operations. The address bus Tinks
the main memory where both instruction codes and data are stored. Stack
‘pointers, program counters, and register files also supply information to '
the addreés. Finally, there is an instruction decoder which interprets |

each instruction and controls all operations of the microprocessor.

Since a microprocessor is a complex séquentia] logic structure and not
simply a few gates or an LSI memory, a true and meaningful test requires
the understanding of the hardware architecture and software functionality

rather than only the simple logic of the elemental structures.

The hardware architecture is the internal organization with consists
. of an ordered set of modules, such as the register stack, accumulator,

“arithmetic logic unit, etc. Software functionality is a set of ordered

DATA BUS

<>

ACCUMULATOR

INSTRUCTION
REGISTER

- REGISTER
FILES

C_EEC

DATA BUS
BUFFER

>

00‘07

DATA BUS

FIGURE 1: Basic MPU Block Diagram

INSTRUCTION
DECODING
CONTROL

STACK
POINTER

PROGRAM
COUNTER

I

\

TIMING
CONTROLS

ADDRESS
BUS
BUFFER

Ao -"As
ADDRESS BUS

microinstructions which can be used to monitor the operation of these

modules.

Upon developing complete knowledge of the microprocessor unit through -
both areas, one can develop an ordered set of test sequences in the micro-
processor's instruction set for testing each module one by one until a

. complete test has been developed.

In general, a microprocessor has two buses: an address bus and a data .
bus. The address bus performs two functions, addressing the external mem-
ory and/or addressing the internél scratch pad memory. The data bus also
performs two functions, supplying input data to the processor and output-
ting procéssed data. The data bus 1inks the interna]Afunctions of the

scratch pad memory, registers, arithmetic logic unit, etc., together.

Modular Breakup

The next step in microprocessor testing is to partition the device into
modules, with some modules possibly over]épping. The selection of each module
should be accessible from the input/output bus-by the execution of micro-
instructions. In other words, data should be able to be applied to the
déVice input. and propagated to the output directly or indirectly by the use
of the microprocessor instruction set. The test then shall be generated
for each module of the MPU so that a worst case test pattern will be run
on that module. For instance, if the module in question'is a RAM, a gal-

“loping 1's and 0's test pattern is used as this type of pattern is

-4-

considered to be worst case.

From the standpoint of software functionality, a set of MPU instruc-
tions should Be executed when testing the first module. Proceeding toward
the second module another set of new microprocessor instructions will be
executed. (Some of these instructions may‘have been éxecuted previously.)
This process will then continue until all of the instructions within the |
instruction set are used while testing each module. Then a final test
should execute all instructions to verify that all modules are working

together.

Two-fold dfagnostic information is provided by this technique. First,
from a hardware point of view if é failure occurs, the faulty module is
pinpointed. Inherent in this type of modular procedure is the fact that
convenient7breakpoints exist in a module-by-module basis. Sécond, in con-
junction with each module, a set of microinstructions are executed; if any

fault occurs, the specific instruction(s) can be isolated and identified.

Architecture and Test Flow

The architecture of the 2901 lends itself to the modular approach be-
cause of its bwn hardware and microinstruction architecture. Figure 2
illustrates the block diagram of the 2901. In examining this diagram, one
will notice that the device can be divided into the following modules: RAM,

Q register, arithmetic logic unit (ALU), ALU source decode multiplexer, RAM

CLOCK

LO/RI J RAM SHIFT
. i i

{IFT et —-8R0 /LI

*(4

OUTPUT

FIGURE 2: 2901 Architecture

. ’_,_ 0 s?
RO/LI wa— ; i o

: | |

A ADDRESS /A]. 16 X 14 RAM. : ;

i READ A & B Q REGISTER
B ADDRESS /4 - VRLTE B > .
A
DIRECT {
INPUT /3 ‘ ; Q
. v
SELECTOR
. y
R
MICRO ['} | |
~ INSTRUCTION : i Y . gn »

DECODE IN T) P

: | :
3
F OVR
/9 ol
OUTPUT _gl
26350 conTroL] MULTIPLEXER

and Q register right/left shift logic.

Once the information has been acquired on the module breakdown, a test
flow can be generated. Since the 2901 has an ALU section, the first areas
to be tested should be those areas which supply data to the ALU. The most
logical of these is in the RAM module and then in the Q.register module.
Once these modules have been tested,‘they can be used as re]iéb]e data

sources for the ALU module test.

A typical test flow for the 2901 would start with the RAM memory, fol-
lowed by the Q register, ALU source decode multiplexer, ALU, and finally,
the RAM and Q register right/left shift logic (Figure 3). During this

test flow, all microinstructions for the 2901 will be used.

Test Technique

Formulating a test plan will differ between the manufacturer and user.
The reason for this being that the manufacturer has access to the logic
diagrams of the device, which the user in most cases cannot'obtain, and
their quantities are in larger amounts than the ﬁser's. Therefore, more
elaborate tests can be developed which optimizes test performance and test _
time. The user has an advantage over the manufacturer because his test;
in its simplest form, can be tailored to his specific needs, but the manu-
facturers' test has to guarantee all operations of the microprocessor. Not
receiving schematics, logic diagrams, or other circuit information the user

must therefore rely on either vendor supplied test programs or perform

TEST FLOW ' TEST
CHART FUNCTIONAL TEST DESCRIPTION PATTERN
RAM Test A galloping "1" and "0" pattern is applied to
the RAM in three combinations.
1. The RAM addressed by the "A" address and
tested through the "Y" output port directly.
2. The RAM addressed by the "A" address and Approx.
tested through the ALU. ALU is held at a 3000
fixed instruction. ,
3. The RAM addressed by the "B" address and
tested through the ALU. ALU is held at a
Aig fixed instruction.
" A number 15 is loaded into the register and then
REGISTER read. Next, a number "0" is loaded and read.
This is followed by a 14, 1, 13, 2, etc. until a Approx.
l “0" then a 15 is loaded. ' 100
ALU Source The ALU Source Decodes are tested to see if all
Decode decodes are possible. The test is performed by
"loading values into the RAM and "Q" register and Approx.
selecting all decodes while testing for any 50
) ‘interaction between bits or selections.
ALU A series of numbers are loaded into the RAM and
"A" register. These numbers are then used as Approx.
inputs to the ALU. At the same time, all outputs 1000
and flags from the ALU are monitored, while
* incrementing operations the ALU can perform.
RAM and "Q" A1l numbers from O to 15 are shifted through the
Register RAM and "Q" register. While the RAM section is
Right/Left being tested, all locations are tested. After Approx.
Shift Mux. each shift, all possible number combinations are 8200

outputted to the output latch without clocking
the latch, to see if there is any latch sensitivity.

FIGURE 3: 2901 Test Flow Diagram

-8-

extensive characterizgtion to generate worst case test patterns. This
characterization is needed to guarantee full operation of the microproc-
essor for a variety of applications in which the device is used.

The Optimum Test

At first glance of the 8080 MPU b]ock diagram (Figure ﬂ),'the complex-
. ity of the device is not readily indicated. This is because theré are

- only eight data input lines. However, in addition to accepting data from
the input bus, the MPU can accept data from internal registers and accumu-
lators. If the MPU cdu]d only perform one.instruction, a test could be
developed without much difficulty, but the MPU is capab]é of executing many
instructions in sequence. Because of-this, the number of combinations of
instructions and data patterns that the MPU can per%orm would be extremely
long.

A commonly used formula for calculating the total test time to exhaus-

tively test an'MPU is C = ZMN. Where C is the number of combinations of
instructions and data patterns, M is the number of data bits in each word,

and N is the number of instructions the MPU is cépab]e of executing.

For example, an 8-bit MPU that only has ten instructions would require
280 test cycles for an exhaustive test of all possible combinations.
Assuming a test cycle of 1 us, the MPU would take approximately 38 years

to check all combinations of instructions and data patterns.

DATA BUS

) J 0

| REGISTER
ACCUMULATOR ‘ INSTRUCTION FILES
REGISTER '
: STACK
POINTER
ALU INSTRUCTION
: - DECODING = PROGRAM
: COUNTER
CONTROL \Q/
— ' | ADDRESS
DATA BUS BUS
BUFFER TIMING BUFFER
CONTROLS
DATA BUS | - ADDRESS
BUS

FIGURE 4: 8080 Architecture

-10-

The 8080 MPU can perform approximately 76 different instructions.

Using the above formula, there would be a total of 2608

possible combin-
ations that could be performed. Obviously, this is an astonishing number

to exhaustively test the 8080.

Test Techniques

Once realizing that the optimum test cannot be created, one looks for
other means to test the MPU. The first approach considered is called self-
test. The self-test is the simplest and cheapest means of determining if
an MPU is working. Self-test, or in-circuit test, is the technique in
which the device is placed in the circuit where it will be used and tested
for correct operation. This is utilized by some users who feel the cost of
incoming inspection cannot be justified. Therefore, they will typically
‘test the device using several different system operations. The advantage
of this tésting is that the actual operation of the device is tested in its
circuit, eliminating the requirement for a separate costly test system.

The disadvantages of this technique is that any of the in-circuit condition
changes, like voltage fluctations, temperéture, timing, and instruction
changes, may not be detected until the unit is in the field. The rework
cost of finding and removing a faulty device must be considered before this
method of testing is selected. Typical costs for finding and replacing a

gate is as follows:

$3.00 to $5.00: Board Level
$30.00 to $50.00: System Level
$300.00 or Move: In Field

-11-

Since an MPU is more complex than a gate, the above cost would be

multiplied by the complexity factor of the MPU.

The second method of testing is called comparison testing. Comparison
testing is the method in which a known -good device is compared to the
device under test. The hardware required for this type.of test is very
simple, requiring only a pseudo numbér generator connected to all jnputs
and all outputs from the known good device and comparing the device under
- test (Figure 5). If exact comparison does not occur, the device under
test is considered bad. The advantages of ﬁhis method is that the test
system is inexpensive to develop and with a little more hardware added,
voltage and timing conditions can be created. Also, if fhe}device is oper-
ated for a few minutes, most paths through the device will be checked.
Like any test method, it has its disadvantages also. The biggest disad-
vantage is that this method requires a known good device, which-is a problem
in itself. Somé MPU's have illegal instructions, tﬁerefore, no guarantees
can be made for the data coming out of the device. Also, critical timing
into the device may not be able to be maintained if pseudo numbers are
applied to the input of the MPU. Last of all, if the device fails, no fail-

ure information can be obtained to determine the cause.

The next method of testing is the stored pattern method which uti]iies
a known good pattern stored in some form of data memory. This pattern is
then applied to the device under test in a burst mode and the device outputs
compared to. the stored response (Figure 6). There are two means of gener-
ating patterns using this method. The first method is to input a test pat-

tern into a known good device and record all input stimuli and output data.

-12-

¢
PSEUDO
NUMBER
GENERATOR

l

INTERFACE LOGIC

~ KNOWN
MPU

]

MPU

UNDER TEST{

V.

ERROR DETECT LOGIC

FIGURE 5:

Comparison Test

-13-

MASS
STORAGE

STORED ‘ _ - CONTROL
PATTERN CIRCUIT

L
Y

INTERFACE CIRCUITRY

MPU
UNDER
TEST

ERROR
DETECT
CIRCUIT

FIGURE 6: Stored Pattern Test

-14-

The input patterns would be created from some known application.

The second method of generating the stored pattern would be to develop
a software or hardware simu]ator for the device to be tested. A known
instruction sequence would then be stored and used to compare with the
device under test. The advantage of this technique is fhat the user's
instruction sequence can be completely tested and that sensitive data paths
can be checked with ease. Since the tester that is required to perform
- this type of test usually incorporates variable voltage and timing circuits,
these parameters can also be checked. The.main disadvantage of using a
known Qood device for generating the test pattern is a "known good device."
What test is available to determine what is a known good.deQice? The dis-
advantage of the stimulator approach is that a softﬂare or hardware simil-
ator is required. Since the schematic and logic diagrams for each MPU are
not readily available from the vendor, it is difficult for a user to develop
the simulator. -Even if these could be obtained, it would take a knowledge-
able programmer three to six months, at least, to develop the software.

Other disadvantages to this method are:

LARGE, EXPENSIVE MEMORY. High-speed random access memories or
shift registers become quite expensive when any great amount

of memory is needed. In testing the program counter for the
8080, for example, 262,000 distinct patterns are required. A
memory test on the register array of an 8080 takes approximately
50,000 patterns. The cost of memory can quickly become a major

part of the total cost of the test system.

-15-

LONG TRANSFER TIME. The overhead time required to transfer

a long pattern from disc, core, or other mass memory to
high-speed RAM can maké a large dent in the throughput rate
of the test system. If transferring a 1,024-bit pattern from
disc to RAM takes 50 milliseconds, a typical figure, trans-
ferring the fest pattern from the pfogram counter takes 13.1
seconds of overhead time, in addition, to the test execution

time (262 X 50 X 107>

Seconds).

INFLEXIBLE PROGRAM. The stored program cannot easily be
modified while tests are in progress. This rigidity makes
it difficult to perform special or unusual tests on a single
unit. A substantial amount of off-line software support is

needed if such tests are to be accomplished.

The algorithmic test method utilizes a high—speed programmable pattern
generator in conjunction with a local buffer memory. The contents of the
buffer memory is a test pattern consisting of microprocessor instruction
sequences and either full or partial data input and output response patterns.
The buffer memory pattern is then applied to the microprocessor under pro-
gram control of the pattern generator. A distinct advantage of this test
method offered by the use of a programmable pattern generator is the abiTity
to choose how the test pattern is applied to the device under test. This
will in turn determine whether the stored data pattern and output response

of the microprocessor is full or partial.

-16-

The first option is to abp]y the test pattern in a burst mode as in the
previously defined stored response approach. In this case, the device
data pattern and output response stored in the buffer memory is complete, -
with the pattern generator acting as a counter to advance the test pattern

vectors.

In the second mode, special algorithms are written for the pattern

generator which simulate the microprocessor instructfon execution. These
special algorithms input microprocessor instruction codes and data pat-
terns at the proper point in the instruction cycle, and compare the device
output accordingly. However, the device data pattern and output response
may be partially stored in the buffer memory and partially generated in
real time by the pattern generatok algorithms. The effect is to enhance
‘the MPU test program by allowing a significant increase in the number of
test patterns used, enable additional tests to be performed that would be
difficult, if possible at all by any of the previou; methods, and reduce
the total amount of stored test vectors. A disadvantege here is that in
addition to the buffer test pattern required, a separate program for the
pattern generator may be necessary which increases the complexity of the

total effort.

This technique, which eliminates the delay time in transferring pat-
terns to mass memory, is extremely efficient and flexible in generating
patterns for logic modules such as binary counters, random access and

read only memories, shift registers, as well as microprocessors.

-17-

When used in conjunction with the module approach, algorithm pattern

generation permits faults to be diagnosed so that the particular module

or instruction which caused a failure can be isolated. .The disadvantages
of this method is that a sophisticated tester is required. The programmer
needs to be knowledgeable of both operation of the MPU and the test system

itself to develop the program.

The recommended approach to be described is a combination of stored
pattern and algorithmic techniques. This approach was selected because of
its ease of program development (stored pattern) and its thorough testing

ability (algorithmic).

-18-

I1.

BASIC BLOCK DIAGRAM

As shown in Figure 4, the basic microprocessor unit includes a data
and address bus, accumulator, arithmetic logic unit, register files, stack

pointer, program counter, and timing controls. In the following figures,

A Figures 7 through 11, the 8080, 8008, 2901, 6800, and 1802, block diagrams'

are illustrated.

8080

Using the 8080 (Figure 7) as a reference, all other MPU's are structured

~very similar. Other than their instruction set, they differ as described

‘below.

- 8008

The 8008 (Figure 8) is very similar in architecture to the 8080. The
basic difference is that the 8008 has seven 14-bit stack registers for stor-
age of return addresses as a result of subroutine calls. The 8080 has one

16-bit pointer for controlling an external memory stack allowing more than

"~ seven levels of subroutine testing.

2901

The 2901 (Figure 9) differs the most from the 8080. The 2901 is only

- the process portion of a basic MPU, a 4-bit processor, which lacks any

-19-

8080A CPU FUNCTIONAL
BLOCK DIAGRAM

0,0,
81-DIRECTIONAL
DATA BUS

. OATA BUS
BUFFERNLATCH

sem

(88IT)
INTERNAL DATA BUS INTERNAL OATA BUS
| amany J
< £
1 r [
‘ . J
ACCUMULATOR TEMP. REG INSTRUCTION
l ml | .I [R[GISTER [MULTIPLEXER
w 18 2 %
FLAG g
ELIP £LOPS m H TEMP REG. TEMP REG.
ACCUMULATOR - B) c.
LATCH Q REG. AEG.
INSTRUCTION 2 m o
= i DECODER g ave ate
AND z - 5
. UNIT MACHINE I~ Ho [
(aLu —— CYCLE 4 REG. REG.
R i ENCODING] e
A < STACK POINTER
- 116!
. PROGRAM COUNTER
. INCREMENTER/IDECREMENTER
ADJUST ADDRESS LATCH 1ne)
<)
TIMING
AND
CONTROL
]
POWER | ~— 12V l ADDRESS BUFF ER
SUPPLIES | — o5V DATA BUS INTERRUPT HOLD WAIT
WRITE CONTHOL CONTHOL CONTROL CONTROL SYNC CLOCKS .
— 5V
— o RN -

WR DOIN

INTE INT HOLD HOLDWAIT]

SYNC
READY

o) o2

RESET

A Ay
ADDRESS BUS

REGISTER
ARRAY

FIGURE 7:

8080 Block Diagram

-20-

8008 CPU
Bilock Diagram) Y al&:’lgﬁgsg At

|

ey
(8 8IT) ABBIT)
INTERNAL DATA BUS INTERNAL DATA BUS
€ —_—
Y <> P4y
J <>
TEMP. REG, TEMP. REG. INSTRUCTION STACK ACCUMULATOR
P b, 18 REGISTER (n:f MULTIPLEXER @
FLAG PROGRAM COUNTER B
FLIP-FLOPS §~* - < ne - REG. (8
o
LEVELNO.1 |\, o ace. @
2 .
‘ INSTRUCTION 4
I ARITHHMETIC DECODER LEVELNO.2 |y, & REG.
AND « 1z .
MACHINE ¢ : @ €
CYCLE 2 LEVELNO.D M REG. 0
ENCODING 4 x "
x LEVELNO.4 4y, REG. (8
2 C
5 LEVELNO.S |, REC.
LEVELNO.6 |, SCRATCH
PAD
LEVELNO.7 |,
<
TIMING ADDRESS
AND STACK
CONTROL
POWER [— .9V
SUPPLIES v
. s STATUS INT READY SYNC CLOCKS
$0 S) S2 INT RfADY SYNC o) o2

FIGURE 8: 8008 Block -Diagram

=21-

sfofe s a2l]e

aLu aw
CONTROL | FuncTION SOURCE
MICROINSTRUC 110 DECODE

cLoex i I -—la S,

U asury

¥ 0ATAm
*A” (NEAD) . -
ADORESS) 4° A0ORESS o
Ly [o
| 16 ADORESSABLE REGISTERS
~ QREGISTER
MEADMAITE) B ADOAESS
ADDRESS a » e o
OATA DATA
our_ out I
omect E
OATA W . .
o a .] ry
ALUDATA SOURCE
seLecTon
L3 s
) ‘ - o
CARRY N ~4—eC,, N
9 FUNCTION ALY — Cuue
. fe- ¢, 131050
}—= ovenriow
’ L .00
vt 0y "
f:.:.". [OUTPUT DATA SELLCTOR J
v

U BATA OUT

FIGURE 9: 2901 Block Diagram

-22-

ordered instruction set. Therefore, the 2901 does not have an instruction
" decoder. The 2901 does have a register array (16 words X 4-bits), an ac-
cumulator (4-bits), and an arithmetic logic unit (ALU). The 2901 does not
have a program counter to control from which memory Tocation the next
instruction will be fetched. This is contro]]ed by external circuitry.
Last of all, the 2901 cannot execute a jump or subroutiﬁe call by itself;

thus, it also lacks a stack pointer.
- 6800

The 6800 (Figure 10) is structured similar to the 8080 but does not
contain a register array. External RAM is used for all scrétch pad oper-
ations. Also, the 6800 includes two accumulators as opposed to one provided

by the 8080.

The 1802 (Figure 11) architecture is similar to the 8080 except that
the program counter and stack pointer are included as part of the register
array. Also, instead of having a 16-bit address bus it has an 8-bit bus,

which multiplexes the address in 8-bit bytes.

-23-

Clock, 91

Clock, 02

Reset

Non-Maskable Interrupt
Halt

interrupt Request
Three-State Control
Data Bus Enable

Bus Available

Valid Memory Address

Read/Write

vee - Ping
Vgg + #ins 121

EXPANDED BLOCK DIAGRAM

A2 A1l AD

A5 Al4 A13 Al12 A1 A10 A9 A8 A7 A6 A5 A4 A3
25 24 23 22 20 19 18 V7 16 15 14 13 12 1 10 9
Output : QOutput
Buffers Buffers
3 o]
37 —b»
40 —» Program Program
6 > Counter H Counter L
22—t
instruction
4 j Decode Stack Stack
and Pointer . Pointer L
39 Control
36—t
index Index
7 Register H Aegister L
5 wt——
34 Accurnulator
1l -
instruction Acc I
Register B .
\ .
Condition
Code
Register
I1
Osata
Bufter ALU
26 27 24 2 30 3 a2 33
D? D6 DS 04 D3I D2 [R B 614

FIGURE 10:

6800 Block Diagram

-24-

MEMORY AQDATSS LINES le

T T

1-D1 RECTIONA
IM‘FMOGL
BU3 0)
ous)

ous2

:oou-a. XIO FLAGS uo RIQULSTS

sTarg
(ONS

CONTROL LOGIC

7)o
9]

~
4

K

OLLS
—————e-@n2
@ ConianDs
f—————e®no

M

)

vee—®
ves—Q

-2y

Figure 11: 1802 B]ock‘Diagram

-25-

I1I1.

MODULAR APPROACH

As previously shown, all microprocessor units have a similar architec-

ture from which a basic test philosophy can be adopted. This philosophy

~ is to develop an approach to test each moduJe separately accomplishing the

following goals:

A. Verify the functionality of each module within the device using the

input/output pins of the device and its instruction set.

B. Test for destructive interaction between functional modules.

C. Verify all timing, status information, and interrupt operations of the

device.

-26-

Iv.

DESCRIPTIONS OF THE MODULAR TEST APPROACH

Since each MPU is structured around a similar architecture, a common
test approach'can be adopted and applied to each device. Once this
approach has been established, further requirements are to implement the
approach according to the specific architeéture and instruction set of
each device. The following is a basic description of a generalized test

approach for each module previously described.
A. Program Counter

1. Verify reset state.
2. Verify that the counter can be incremented through its maximum
range.

3. Check any possible register transfer to the program counter.
B. Register Arrays

1. Verify that each register can be loaded individually, if possible,
and jts contents stored to the data bus.

2. Verify register-to-register and regfster—to-output transfers with
all possible number combinations.

3. If the registers can be incremented and/or decremented, verify that

they can accomplish this through their complete range.

-27-

Stack Pointer

1. Verify that the stack pointer (registers) can be loaded.
2. Check to see if stack pointer transfers are valid.

3. Verify increment and decrement bperétions.

Arithmetic Logic Unit

1. Verify ADD operations, with and without carry.

2. Verify a SUBTRACT operation, with and without a borrow.

3. Verify all shift left or shift right operations.

4, Verify rotation of a numerical value, if applicable.

5. Check all logical operations, for example, AND, OR, EOR, etc., when
applicable.

Accumulator

1. Test to see if it can be loaded and read.
2. Check for any transfer operation that can be performed.
3. Verify that the accumulator can be incremented and decremented.

Timing and Control

1. Verify that all control timing occurs at correct reference points,

for example, data bus enable, sync signals, write enables, etc.

-28-

2. Exercise all control operations on the device to verify operation,
for examp]e, WAIT, HOLD, INTERRUPT, etc.

3. Verify any status flags that are produced during an arithmetic
operation, such as carries, negative or positive numbers, over-

flows, etc.
G. Instructibn Decodes
1. Verify full operation by execution of the complete instruction set.
2. Verify execution of branch and jump operations.

3. Test for interaction between all modules, and verification of all

data paths between modules.

-29-

V. PROCESSOR TEST DESCRIPTIONS
A. 8080
The 8080 is an 8-bit microprocessor using an N-channel silicon gate
MOS process. The 8080 can be divided into the following modules based

on its functional block diagram (see Figure 7).

Functional Module Breakup

o—
.

Timing and Control
Instruction Decoder
Program Counter -
Register Array
Stack Pointer |

Accumulator

N OO o B W N

Arithmetic Logic Unit (ALU)
Due to the complexity of some tests on the modules, a flow chart
of the recommended test will be used to ease the burden of understanding

the test.

Timing and Control Test

The first test on.the 8080 is to verify the operation of all timing
and control signals. This test was selected first because the basic

operation of the MPU requires that timing and control be present.

-30-

TEST 1, RESET: Verify that the Hold Acknowledge (HLDA)
appears following the rising edge of clock P1 and that the
Data and Address buses go into a tristate condition fol-
]owihé the rising edge of clock §2. Verify that the Inter-
rupt Enable (INTE) is reset. Last, following the removal of
the reset, the Program Counter is équa] to 0, which will
appear'on the address bus. When performing a reset note
that the reset signal should be present for at least four

clock periods.

TEST 2, TIMING: Execute a NOP instruction following a
reset,'verify that the SYNC signal occurs withjn the first
clock cycle, that the DBIN signal occurs in the second clock
cycle, and finally, that the Program Counter increments

and that it is present on the address bus during thé fourth
clock cycle. Follow this NOP instruction with a Store
Acéumulator (STA) direct instruction and verify that the
Write (WR) goes low during the third clock cycle of that

instruction.

TEST 3, HOLD: Present a Hold signal to the 8080 and verify
that during T2 time cycle Hold Acknowledge (HLDA) appears

and the Address and Data buses go to tristate. Upon re-

moving the Hold signal, verify that HLDA is removed, and the
‘buses are enabled. During the time that the Hold signal is

present, the 8080 should be in a Hold operation for the time

-31-

that the Hold signal is present.

TEST 4, iNT: Execute An Enable Interrupts (INTE) instruction,
followed by a few NOP instructions, and presenf an Inferrupt
Request (INT) to the 8080 during an NOP instruction cycle.
Verify that the Intgrrupt Enable i; present during T1 time of
the next instruction. This INTE signal should not go high
until T1 time. Upon presenting a reset signal to the 8080,

verify that the INTE signal is removed.

Instruction Decoder Test

The next test on the 8080 should check the Instruction Decoder.
This test is used to verify that the complete device is operational
and that it will execute all instructions in the instruction get.

This fecommended test is designed to test all instructions but not all
data patterns. Table 1 is a listing of the recommended instruction

sequence.

Program Counter Test

This test includes a reset, which clears the Program Counter, and

216

NOP instructions or any other instruction(s) to verify that the
counter will increment through all possible addresses. A flow chart
of this test is illustrated in Figure 12. This test will verify that

the Program Counter resets and increments. The only operation

-32-

NOP ' L L e
El *+ LOCATIONS B=15 ARE FOR THF +
DI * HALT«HOLD=INTERUPT ROUTINE +
El W o o0 o o o e - W E - *
LXT SP

(VERIFIES HIGH IMPEDANCE DURING HDLD'& HALT)
SPL=A2 SP=@1n2 '

SPH=@1{
RST (AT 0An38)

PCH(2R) TO (SP=1)

PCL(R27) TO (SF=2) SP-2=M16G'
El
HALT
RST (AT nn2n)

PCH(4R) TN (SP=1)

PthaAi TO (5P=2) SP=2=00FE
Lxy B

C=a2

BR=prt T Y R U Sy
LXI D _ * MAIN INSTRULCTYION SEQUENCE «*
E=28 * STARTS AT LOCATION 16 "
Dzﬂ; t.;-----.-.-.-----.-..------.
LXI H

L=2@

Hzin

LXxI SP

TABLE 1: Recommended Instruction Sequence

-33-

NOP
SPL=3FE

SPH=2?

LDA (B3B2)TN A

B2
B3

(AGFFY TO A

TABLE 1 Continued

SP=QQAFE

Az4Q

STA A TD (B3B2)

B2

B3

4% YO FFFF
POP PSW

(SP) TO F

(SP+1) TO A
PUSH PSW

A TO (SP=1)

F 10 (SP=2)
PUSH B

B TOD (SP~1)

C 10 (SP=2)
PUSH D

D TN (SP=1)

E T0 (SP=2)
PUSH H

H T0 (SP=-1)

L.TO (SP=2)

F=n6

A=8p SP+2=0109
SPe?22GNFE
SP=2z00FC
SPe2=ANFA

SP-2;M@F8

-34-

NOP
PP B

(sP) 10 C

(sp+1) TO
PBP D

(SP) TO E

(sP+1) 7O
PUP H

(SP) TO L

(SP+1) TO
MY M, A

A TO (HL)
MUYV M,B

B 70O (HL)
Mev M, C

C 10 (HL)
MGV M,D

D T0 (HL)
MEV M,E

E 1D (HL)
MBV M, H

H TO (HL)
MV M,L

L TH (ML)
XCHG
MaV M,D'

TABLE 1 Continued

H

Csad4

Bsa2

E=10

L=40

H=2n

N=20,H=48,E=40,L=10

-35-

SP+2=ADFA

SP+2:ANFC

SP+2=QQFE

TABLE 1 Continued

NOP

D TO (HL)
MEV M, E

E ¥0O. (HL)
MEV M, H

H 70 (HL)
MRV M, L

L T0 (HL)
X THL

(SP) TO L L=FE

(SP+1) TO H Hzpo

OLD H TO (SP+1)

oLD L TO (SP)
MOV M,H

H TO (HL)
MOV M, L

L TO-tHI,) _ -
PCHL PC=(HL) PC=ARGFE
SPHL SP=(HL) L $P=QARWFE
NAN SP HL=HL+SP HL=0{0a
PUSH H |
R T0 (SP=1)

L TD (SP=2) - §P=2z2M2FC
MY M, H

H TO (HL)

MAV M, L

-36-

NOP

LT (HL)

TABLE 1 tont*i nued'

NAD B HL=3HL+BC HL=D\FC+0204=0400)

MRV M,H
H T (HL)
MGV M,L

L T (HL)

PAD D HL=HL+DE HL=2400+2040=24407

MOV M, H
H T (HL)

MRV M,L

L T (HL) -

DAL H HLsHL+HL HL=244042440:=4880

MAV M, H
H T (HL)
MY M, L
L TO (HL)
STAX B
A TO (BC)
STAY D
A T® (DF)

LDaAX B

ze Te A FROM (BC)

MOV M, A
A TA (HL)

LDAX D

-37-

TABLE 1 Continued

NOP
FF T@ A FROM (DE)
MEV M, A

A TO (HL)

INX B BC+1:=0205
INX D DE+1=2G41
INX H HL+1=4881
INX SP SP+1=FD
PUSH H

(H) T@ (SP=1)
(L) TO (SP-2) SP=2:zF8
MEV M,B

B 1A (HL)
MUV M, C

C T& (HL)
MEV M, D

D TR (KL)
MGV M,E

E 10 (HL)
MOV M, H

H TR (HL)
MBV M, L

L T8 (HL)
DCX B BC-1=0204
DCX N DE-1s2040

DCX H HL=1:z48R0

-38-

TABLE 1 Continued
NOP
DCX SP SP~1zFA
PUSH H

H TR (SP=1)

L 7O (SP-2) sP-2:Fa
MOV M,B

B T (HL)

MRV M,C

C TA (HL)
MOV M, D

D TO (HL)
Mev M,E

E T2 (HL)
MAV M, H

H T® (HL)
MBV M, L

L TR (HL)

CMA COMPLEMENT A (=@R)
STC SET CARRY =
PUSH PSW

AT (SP-1)

F T@ (SPw=2) SP=2:F6 .
CMC CaMP, CARRY (=0)
IN
B2 DEV=OF

90 T@ A FROM OFOF

-39-

TABLE 1 Continued

NOP
PUSH PSW
A TR (SP=1)

F TR (SP-?) SP=2:F4
DAA A TD RCD A=@3,SET FA,F4
PUSH PSH

A TR (SP=1)

F 10 (SP=2) SP~2=F2
DAA A TR BCD A369 CLEAR F4
PUSH PS4

A TR (SP-1)

F TW (SP=1) SP=2:F
SHLD

B2

B3

L Te (B3B2)

H TR (B3B2+1)

LHLD

B2

B3

20 T¥ L FREM B3R2

FF Ta H FRAM B3B2+1
MEV M, H

H YD (HL)

MAV M, L

L T (HL)

-40-

NOQP
INR
FF
20
DCR
a0
FF
NGP
euT
B2
69
MRV
01
mMav
28
Y,
na
MRV
w8
M@V
i@

MOV

Mav
a0

MoV

TABLE 1 Continued

M
FRAM (HL) +1=00
Ta (HL)

M

FROM (HL) =4{=FF

T (HL)
DEV=AA
TP DEV AAAA FROM A
T2 A FROM (HF)
TP B FREM (HL)
Te C FROM (HL))
Ta D FROM (HL)Y

T E FRoM (HL)

» T H FRaM (HL)

T2 L FRAM (ML)

-41-

NOP

A TR (HL)
MaYV M,B

B T (HL)
MEV M, C

C ¥ (HL)
MBY M,D

D 1@ (HL)
MBvV M,E

E TO (HL)
MeV M, H

H T8 (HL)
MBV M, L

L T8 (ML)
MV A

B2 92 10
MVI B

R2 ®4 Y@
MV C

B2 08 Ta@

R2 1@ Yo

<
<
]
m

B2 24 710
MVI H

R2 400 T9

TABLE 1 Continued -

-42-

NOP
MVI L

B2 80 Yo L
MAV M, A

A TR (HL)
MAV M,B

B T (HL)
MAV M,C

C T3 (HL)
MEV M,D

0 T4 (HL)
MV M, E

E T? (HL)
MAV M, H

H TR (HL)
MAV M, L

L T® (HL)
MVT M

B2

FF Y@ (HL)

CINR A A+1=03

MEZV M, A

A TO (HL)

{NR R B+1=035 -

MgV M,B

B 74 (HL)

TABLE 1 Continued

NOP
{NR € C+1=9
MBV M,C

C T? (HL)

INR D D+i=1}

MAV M,D

D Ta (HL)
1NR E Fei=2t
MBV M,E

E Ta (HL)

INR MW H+i=41
MOV M, H

WoT® (HL)

INR L L+1=81
MEV M, L

LT (HL)

CCR A A=1=012
MOV M, A

A T (HL)

DCR B B=1z04
MV M,B

B 14 (HL)

dCR c C-1=R8
MEV M,C

C T (HL)

OCR-D P=y131® -

-43-

NOP

MEV M,D

D TR (HL)

DCR F §-1=2@
MRV M,E

E 7@ (HL)

DCR H H={z4p
MEV M, H

H TO (HL)
DECR L L~1=8p
MEV M, L

L T CHL)
MeV 4,8 ‘Aznd
MgV B,C B=p8
MgV C,D C=10
MAV D,E D=20
MOV E,H E=z40
MRV H,l. H=BQA

MRV LL,A (=04

Mev M, A

A TAA (HL)
MYV M,B

B T (HL)
MOV M,C

C T® (HL)

MEV M,D

NOP

D TO (HL)

MOV M,E

E 7O (HL) .
MOV M, H

H 70 (HL)

MOV M, L

L 10 (HL)

MOV A,C Astd
MQv B,D B=2@
MOV C,E C=40
MOV D,H D=8
vov E,L E=n4
MOV M, A

A TO (HL)
MOV MB

B TO (WL).
MOV M,C

C TN (HL)
MOV M, D

D YO (HL)Y'
MOV M,E

E 10 (ML)
MOV H,& H=1¥
MOV L,B L=20

MOV M, H

TABLE 1 Continued

-44-

NQP

H 7O (ML)
MOV M, L

L TO (HL)
MOV A,D
MOV B,E
MOV C,H

MQv 0O,L

MDYV M, A

A TO (ML)
MOV M,B

B 10 (HL)
MOV M, C

€ TO (HL)
MOV M,D

D TO (HL)
MOV E,A
MOV H,B
MOV L,C
MOV M,E

E YO (HL)
MOV M, H

K TO (HL)
MOV M, 4

L TO (HL)

MoV E,M

NOP
(HL) YO E
MOV H,M
(HL) TO H
MOV LM

(H..Y TO0 L

m

MOV A,
MoV E,8
'Bov
MOV
MOV
MOV
MOV D, A
Qov M, A

A TO (HL)
MOV M,8B

B Y0 (HL)
MOV M, C

C 10 (HL)
MOV M,D

D TN (HL)
MOV M,E

€ T0 (HL)
MOV M,H

H TO (HL)

MOV-M,L

Es

He

L=

TABLE 1 Continued

40
n8

a2

-45-

NOP
L TO (HL)
MOV A,H Asi@

MOV H,D H=4p
MOV
MOV
MOV L=n4
Mov E=n2
MOV
MOV
A TO (HL)
MOV M,B

B T0 (HL)
MOV M, C

C T (HL)
MOV M,D

D 70 (HL)
MOV M,E

E TO (HL)
MOV M, H

H YO (HL)
MOV M,L

L T0 (HL)
MOV A,L. A=zR4
MOV L ,H L=40

MOV H'E HEQQ

TABLE 1 Continued

NOP

MoV E,0 E=n8
MOov D,C D=10
MOV'C,B C=z20

MOV B, A B=n4q

. MOV M, A

A TO (HL)
MOV M,B

B Y0 (HL)
MOV M,C

C TN (HL)
MOV M,D

D TH (HL)
MOV M, E

E TO (HL)
MOV M, H

H TO (HL) ;
MOV M, L

. TO (HL)

POP PSW SP=@AaF@ (SEE LINFE 186)

(SP) TO F F=02

(SP+1) TO A A=80 SP+2=0F2
PULUSH PSW

A TD (SPe=1)

F TO (SP=2) SP=2=04F A

ADD B A§A+B=8a+m4=84 F=R6 AzB84

-46-

NOP
PUSH PSw

A TO (SP=1)
FlTO.(SP-Z)
ADD € AsA4C
PUSH PSW

A TO (SP~-1)
F TO (SP=2)
ADD D A=A+D
PIJSH PSW

A TO (S5P=~1)
F TN (SP=2)
ADD FE AsAsE
PUSH PSW

A TN (SP=1)
F TO (SP=2)
ADD H AzA+H
PUSH PSw

A TO (SP=1)
F 7O (SP«2)
ADD L A=A+L
PUSH PSW

A TO (SP~1)
F T0 (SP+~2)
ADD M A+ (HL)

{HL) IN=py

- TABLE 1 Continued

SP-2=HQEE

Az Ad F=82

SP=2=03EC

A=B4 F=86

SP=2z=00EA

AsRC F=82

SP=2spnFR

AsBE F=86

SP-2=00RE6

A=FE FaR2

SP-2=@GE4

AsFF F=86

-47-

NOP
PUSH PSW
A TO (SP=1)

F TO (SP=-2)
ADb A AzA+A
PUSH PSW

A TO (SP=1)

F TO (SP=2)
ApcC 8
PLUSH PSw

A TO (SP=13)

F T0 (SP=2)

ADC C AzA+C+1
PUSKH PSW
A TO (SP=1)

F TO (SP=2)
ADC D A=A+D
PUSH PSW

A TO (SP-1)
F TO (SP=2)
ADp E AsA+E
PUSH PSu

A 10 (SP-1)
F 70 (5P=2)
ADC H AsA+H

PUUSH PSw

AzA+B+1

TABLE 1 Continued

SP-2=ﬂﬁE2

AsFE F=93

SP2z=2RF R

A=nd . Fs17

SP=2=20DE

SPe2=20NC

A=34 F=m2

SPe2z0yDA

A=3C Fz06

SP=2=02D8

A=3E F=n2

-48-

TABLE-l Continued

NOP

A TO (SP=1)

F TO (SP=2) SP=2=02N6
ADC M AzA+(HL) A=Q0 ?:57

(HL) IN=C2
PUUSH PSW

A TD (SP-1)

F 70 (SP=2) §P=-2:=00D4
ADC L AsA¢Le+} A=z=4ay F:Qﬁ
PUSH PSW

A TO (SP=1)

F T0 (SP=2) SP=2:=0002
ADC A AzA+A A=82 F=B6
PLISH PSW

A TD (SP=1)

F 1o (59#2) SP=2:=00N0
SUR B AszA=8 -A=7E- F=n6
PUSH PSW

A TO (SP=1)

F TO (SP=2) SP=2:2QCE
SUR €L AsA=C A=5E F=z12
PLISH PSW

A TN (SP-1)

F TO (SP=2) SP=2=0anCC
SUR D AsA=D AsS4E F=16

PUSH PSW

-49-

Ae3E

D=yn

H=py2

L=40

NOP

A TD (SP=1)
F T0 (SP=2)
SUB.E AsAeE
~ PUSH PSW

A TO (SP=1)
F 10 (5P=2)
SUR H A=zA=H
PUSH PSW

A TO (SP=1)
F TO (SP=2)
SURB L A=A-L
PUSH PSwW

A TO (SP=1)
F TO (SP=2)
SUR A A=zA=A
PUSH PSW

A TO (SP=1)

F T0 (SP=~2)

SUR M AzA=(HL)

(HL) IN=FF
PUSH PSW
A TO (SP=1)

F T0 (SP=2)

SBR B AzA=Be] A=FC

PLISH PSW

Azd46

TABLE 1 Continued

SP=2=ARGCA

Fe12

SP=2=00C8

Az=44 Fe16

SP=2320C4

F=56

A=QQ

SPL2=20C2

A=y F=0n3

SPw2:=000C0A

Fc87

-50-

NOP

A TO (SP-y)
F TO (SP=2)
SBR C
PUSH PSW

A TO (SP=1)
F TD (SP=2)
SBR D AzA=D
PUSH PSW

A TN (SP=1)
F T0 (SP=2)
SBR E A=zA-E
FUSH PSW
A TO (SP=1)
F TO (SP=2)
SRR H AzA=H
PUSH PSW

A TO (SP=-1)

AzA=C=1 A=DB

TABLE 1 Continued -

SP-?SQMBE

FaQ6

SP«2=0PBC

AsCB F=92

SP«2:zQURBA

A=C3 F=z96

SP=-2=007R8

A=C1 F=92

.-

F T ($P=2)
SBR | AszA=l A=81 F=96
PUSH PSW

A TO (SPet)

F T0 (SP-2) SP-2=00R4
SER M AzA=(HL)

(HL) In=82 AsFF F=87

'PUSH PSW

-51-

TABLE 1 Continued

NOP

A TO (SP=1)

F TO (SP+2) SP=2:0082
SBR A AszA=A=] ASFF F=87
PUSH PSW

A T0 (SP=1)

F 70 (SP=2) SP=2=0080
ADI A=A+ (B2)

B2=01 AsQ0 F=57
PUSH PSW

& 7O (sP=1)

F TO (SP=2) SP=2=7¢AE
ACI AzA+(B2)+1

R2=FF A=nn F=57
PLUSH PSW

A T0 (SP-1)

F 70 (SP=2) SP—2=@@A6
SUI AzA=(B2)

" B2=ny AaFF F=87
PUSH PSuW

A TO (SP=-1)

F 10 (SP=2) SP=2=00AA
SBI AzA=(B2)-1

B2=4¢e A=BE F=86
PUSH PSW

A JO (SPe1)

-52-

TABLE 1 Continued

NOP
F 10 (SP=2)
OKRA B
PUSH PSW

A YO (SP=1)
F TD (SP=2)
XRA B
PUSH PSW

A TD (SP=1)
F YO (5Pe2)
ORA C A IOR
PUSH PSW

A TD (SP=1)
F TO (5P=2)
XRA C A XOR
PUSH PSW

A TO (SP=1)
F 10 (SP=2)
fRA D A IOR
PUSH PSW

A TO (SP«1)
F TD (5P=~2)
YRA D A XOR
PUSH PSW

A TD (SP=1)

F T0 (S5P«2)

A IOR |

A XOR

SP=2z02A8

A=BE

SP=2=0046

A=BA

SP=2z00A4

A=BaA

SP=220PA2

A=GA

SP=2=npaAR

A=sQA

SP=23R00E

A=RA

SP-Q:%HQC

-53-

F=88

FsR2

F=86

Fz82

A=BE

Bep4

.D=1ﬂ

E=08
H=@2

L=48@

NOP
ORA E A 10R
PUSH PSW

A TD (SP=1)
F TO (SP=2)
| XRA E A XOR
| PUSH PSW

A TO (SP=1)

F 10 (S5P=2)
CRA H A IOR
PUSH PSY

A TO (SP=1)

F 10 (SP=2)
YRA H A XDR
PUSH PSH

A TO (SP=1)

F TD (SP«2)
ORA L A lOR
PUSH PSW

A TO (SPe-t)

F TO (SP=2)
XRA L A XDR
PLiSH PSW

A TO (SP-1)

F 10 (SP=2)

" QORA A A IOR A

TABLE 1 Continued

AsB8A

T SPe?sRAQA

A=z8?

SP=2:=096

SPap=7094

A=C@

AzR)

SP=232490

AzRQ

-54-

FeR2

F=R2

FeRb

F=82

TABLE 1 Continued

NOP
PUUSH PSwW
A TO (SP=1)

F TO (SP=2) SP-2=M08E
XRA A A XOR A A=z0p
PUSH PSW

A TO (SP=1)

F 10 (SP=2) SP=-2=P08C
NRA M A IOR (HL)

(HL) IN=BE A=BE
PUSH PSW

A TO (SP=1)

F 10 (SP-2) SP=2:0p8A
XRA M A XOR (HL)

(KL)IN=78 A=C6
PUSH PSW

A TD (SP-1)

F T0 (SP-2) SP=2:0088
ANA M A=A AND (HLi

(HL) IN=FC
PUSH PSW

A TO(SP=1)

F TO(SP=2) SP=2=0086
ANA A AsA AND A
PUSH PSw

A TD (SP=1)

F=46

Fe86

AzC4

-55-

TABLE 1 Continued

NOP
F T0 (SP=2) SPe2eARB4

ANA B AzA AND B Azad Fea2
PUSH PSwW

A TD (SP=1)

F 10 (SP=2) SP=2z0282
oR1 A=A JOR (B2)

B2=7C A=7C Fep2
PUSH PRY '

A TD (SP=1)

F TO (8P=2) SP=2:708Q

ANA.C A=A AND C Az2R F=12
FUSH PSW

A TO (SP=~1)

F YO (SP=2) SP=2=0ta7E

ANTY A=A AND (B2)

PUSH PSw
A TO (SP=-1)

F 10 (SP=2) SP=2z0p70

xR AsA XQR (82)

B225C ' As7C Fzap
PUSH PSW

A 10 (SP-3)

F T0 (SP«2) SP-2:0274A

ANA D A=A AND O Azi0 F=12

-56-

NOP

PUSH PSH

A TO (SP=t)

F 70 (SP=2)
C¥P €L A-C

PUSH PSw

TABLE 1 Continued

SPwR=AR78

F=97

A TN (SP-1) "

F TO (SP=2)
RAR
PLSH PSW
A TO (SP=1)
F I0 (SP=2)
ANA E
PLSH PSwW
A TO tSP-l)
F TO (SP=2)
RAR
PUSH PSW
A TO (SP-1)
F TO (SP=2)
RRC
PUSH PSW
A TO (SP=1)
F TO (SP=2)
ANA H

PiUSH PSu

SP=2:=0276

A=88

SP=2:=00274

A=A AND E

SP=2=2072

SPe2z0070

SP=«22)6E

A=A AND H

-57-

F=QG6

Az=@8

A2

Az(r2

Azt

Bz 4

- C=2n

D=t

L=d4n

Fea?2

TABLE 1 Continued

NOP

A TO (SP=1)

F T0 (SP=2) §P=2:z0u6C
RLC Azmra
PUSH PSH

A TO (SP=1)

F 10 (SP=2) ~ SP-2:=0n6A
CMP A A=A
PUSH PSW

A TO (SP=1)

F TO (SP=2) SP=2:7p68
CMP B AR
PUSH PSW

A TO (SP-~1)

F T0 (SP=2) SPe2:20166
CMP I A=D
PUSH PSW

A TO (SP=1)

F 10 (SP=2) SP-2:0Pn64
EMP E A~E
PUSH PSw

A TO(SP=1)

F T0(5P=2) SP=220462
CMP H A=H
PUSH PSW

A*TO (SP-1)

-58-

Fen2

Fz56

F=93

NOP

F TO (SP=2)

CMP M A= (HL)

(HL) IN=20
PUSH PSY
A TO (5P-1)
F TO (SP=2)
CMP L AnL
PUSK PSW
A TO (SP=1)

F TO (SP=2)

RAL
PUSH PSW
A TH (SP=1)

F T0 (SP=2)

0RA L A=A IOR

PUSH PSW
A TO (SPe=}i)

F 10 (SP=2)

ANA L A=A AND

PUSH PSHy
A TD (SP=1)

F TO (SP=2)

CPY A=(B?2)

B2=FF

. PUSH PSwW

TABLE 1 Continued

SP=2z006Q

SP=2=0Q5E

SP=2=035C

SP=2=2054A

L. A=49

sp-é:m@SB

L " AmAe

SP=227056

-59-

Fe12

F=683

Feq?

Fz12

Fzn7

NOP
A TD (SP={)
F TO (SP-2)

RLC

PUSH PSW
A TO (SP=1)

F 10 (SP=-2)

RLC
PUSH PSY

A TO (SP=1)
" F TN (SP=2)
RRC
PUSH PSW

A TO (SP=1)

F TO (SP=2)
| RAL
PUSHAPSN

A TO (SP=})

F TO (SP=2)

TABLE 1 Continued

SP=2=z00(54

SP=2=0R52

SP=2200G50

SP=2=z004¢f

SP=2=004C

JMP (B3B2) TO PC

‘B2

B3

JC (B3B2) TO PC

B2

B3

JNC NO JUMP,CARRY=

-60-

AsBO

A= 1

A=80

(CARRY=1)

F=07

TABLE 1 Continued

NOP
B2 AzQt
B3 | Fen?
J2 NO JUMP,ZERO=@ CARRY,PARITY SET
82
B3

JNZ (B3B2) TO PC
B2
B3

JM NO JUMP,SIGN=@
B2

B3

JP (B3B2) TO PC

B2
JPE (B3B2) TQ PC PARITY={

B3
JPD NO JUMP
B2
B3
CALL (B3B2) YO PC
B2
B3 PC+1
PCH TO (SP=1)

PCL YO (SP=2) SP=2:=md4A

-61-

TABLE 1 Continued

NOP
RET

(SP) TO PCL

(SP+1) TO PCH SP+2=0n4C
CC CALL,CARRY=t (B3B?2)TQ PC
B2 '
B3 PC+1

PCH TO (SP=1)

PCL TO (SP=2) SP-2:Pp4A
RC RET,CARRY=1

(5P) TO PCL

(SP+1) TO PCH SP+2=mn4C
CNC NO CALL,CARRY=1

B2

B3
RNC NO RET,CARRY={
CZ NO CALL,ZERO=0

B2

B3
RZ NDO RET,2ER0=0
CNZ CALL,ZERD=0 (B3B2) TO PC
B2

B3 PC+1

PCH TO (SP=1)

PCL. TO (SP=2) SP-2=0044

RNZ RET, ZERO=0

-62-

TABLE 1 Continued

NOP

(SP) TO PCL

(SP+1) TO PCH SP+2=20p4C
CM NO CALL,SIGN=@

B2

B3
RM N0 RET, SIGNz0
CP CALL,SIGNzA (B3R2)TN PC
B2

BRI PC+1y

PCH TO (SP=1)
CPCL TN (SP=2) SP-2:=0044
RP

(SPY TO PCL

(SP+1) TO PCH SP+2=m04C
CPE CALL,PARITY=z) (R3B2)TO PC
B2
R3 PC+1

PCH TO (S5P-1)

PCL TO (SP=2) SP=2:0044
RPE RET,PARITY=z1

(sP) TO PCL |
"(SP+1) TO PCH SP+2zm04C
CPO NO CALL,PARITY=1

B2

B3

-63-

TABLE 1 Continued

NOP
RPO NN RET,PARITY={
POP PSW
(SP) TO F Az
(SP+1)TD A SP+2zAN4E : FzC2
PUSH PS¥ ' (SIGN,ZERU:i)
A TO (SP=1)

F TO (SP=2) SP=2=0@4C
JM? (B3B2) TO PC

-82
B3
Jc - NO JUMP,CARRY=2
B2

B3

JNC (B3B2) TQ PC

B2

Jz (B3B2) Ta PC
B2
83

JNZ N0 JUMP,ZERO=1

B3
Jn (B3B2) T0O PC SIGN=\
B2

B3

-64-

TABLE 1 Continued.

NQP

JP NO JUMP

JPE NO JUMP, PARITY=Q
lBQ

B3
JPO (83B2) 70 PC

B2

B3
CALL (B3B2) TO PC

B2

B3 PC+1

PCH T0 (SP=1)

PCL TO (SP-2) SP=2=0R4A
RET

(Sb) TO PCL | -

(SP+1) YO PCH SP+2=024C

cc NO CALL,CARRY=D
B2

B3 '

RC NO RET

CNC (B3B2) 70 PC , CARRY=0
B2
B3 : PC+1

PCH TN. (SP=1)

-65-

TABLE I.Continued :

NOP

PCL TO (SP=2) SP=2=0N4dA
RNC RET, CARRYz®

.kSP) T0 PCL

(SP+1) TO PCH SP+22m24C
cz CALL.ZER0=1

B2 (B3B2)T0 PC

B3 PCet

PCH TO (SP=-1) |

PCL TO (SP=2) SP=2z0(4A
RZ RET

(spy ToO PCL

(SP+1) T0O PCH SP+2=0@4C

CNZ NO CALL,ZERD=}
B2 .
B3
RNZ N0 RETURN .
CM CALL,SIGN=1 (B3R2) TA PC
B2
B3 PC+1

PCH TO (SP~1)

PCL TO (SP=2) SP=2=n4A
RM RETURN

(SP) YO0 PCL

(SP+1) TO PCH SP+2=04C

cP NO CALL,SIGN=1

-66-

TABLE 1 Continued

NOP
82
B3
RP NO RET

CPE N0 CALL,PARITY=R

RPE NO RET
CPO CALL, PARITY=® (B3B2) TO PC
82

B3 PC+1

PCH Y0 (SP=1)

PCL TO (SP=?2) SP«2z=(C4A
RFO RETURN

(SP) T0 PCL

(SP+1) TO PCH SP+2:=024C
ksv AY unza PCed

PCH TN (SP=1)

PCL TO (SP=2) SP~2:=0(4A
RET

(SP) TO PCL

(SP+1) Tn PCH SP+2=92p4C
RST AT Avn8 PC+i

PCH TN (SP-1)

PCL TN (SP=2) SP=2:zMRdA -

RET

-67-

TABLE 1 Continued

NOP
(SP) TO PCL

(SP+1) TO PCH SP+2=004C
RST AT apnim PCe+y |
PCH TO (SP=1)

PCL TO (SP=2) SPe2z00dA
REY

(SPY TO PCL

(SP+1) TO PCH SP+2=mn4C
RST AT 2018 PC+}

PCH TO (SP=1)

PCL TO (SP=2) SP=2znndA
RET

(SP) TO PCL

(SP+1) TO PCH SP+2=004C
RST AT AA2A PCe+t

PCH TO (SP=1)

PCL TO (SP=2) SP=2:0044A
RET

(SPY TO PCL

(SP+1) TO PCH SP+2:m@dC
RST AT QW28 PCey

PCH TN (SP=~1)

PCL TO (SP=2) SP-2:z0n4A
RET

(sP) T0 PCL

-68-

TABLE 1 Continued

NOP

(SP+1) TO PCH SP+2=2q4C
RST AT @A30 PC+

PCH TO (SP-I)'

PCL TO (SP=2) SP-2z7344
REY

(sp) TO PCL

(SP+{) TO PCH SP+2=0@4C
RST AT 7038 PC+1

PCH TD (SP=}i)

PCL TOQ (SP=2) SP=2=RR4A
RET

(spP) TO PCL

(SP+1) TD PCH SP+2=004C

NOP

-69-

RESE? MPU .

TEST PROGRAN
COUNTER .

PASS

EXECUTE
INSTRUCTION

TEST TO SEE
IF PROGRAM COUNTER
INCREMENTED

FAIL

NO

FIGURE 12: Program Counter Test

-70-

not checked is the Registér Transfer to the Program Counter. This

operation is verified during the Register Array Test.

Register Array Test

The test on the Register Array is 5ccomplished by two tests. One
verifies that each register is independent of any other register, and-
two, that any register can be moved from one register to another with
any data combination. The test to determine uniqueness of each register
is to first load each register (B, C, D, E, H, and L) with unfque data
and read to verify the load operation. The test is performed using
the instruétion shown in Table 2. An explanation of the instruction

mnemonics appears in Table 3.

The- next test on the Register Array will verify that-the registers
can move from one register to another and move any data combination.
This test‘wil1 also check register-to-Program Counter transfers. This
recommended test loads the H and L registers directly with a pattern
of 0's, transfers the H register contents to all-other registers, and
outputs from the H and L registers through the Program Counter. The
pattern is incremented until all 256 numerical combinations have been
checked. ‘A flow chart of this test is illustrated in Figure 13. The

instructions that should be used for this test are LXIH, PCHL, and

Movr],rZ'

Stack Pointer Test

‘The Stack Pointer test is just like the Program Counter test, both

-71-

Instruction Register - Value

1. Ml A (000)g\ |

2. MvI B (001)4 °

3. MVI c (002) d

4. WI D (004)8> §

5. MVI E (010)g ‘;

6. MVI H (020)g | 1}

7. W1 L (040)g /' ©

8. LXI SP - (125)g(252)g .
9. MOV M,A e
10. MOV M,B i
1. MOV M,C. R
12. MOV M,D ¥
13, MOV M,E ;c
14. MOV M,H e
15. MOV M,L

TABLE 2: Register Array Test

-72-

Imtroction Code!!) Cloch 12! Instruction Code ') Cloehi?!

Maemenic Description 0; O D5 O¢ D3 D; Oy Oy Cyches © Magmonic Dewcription Dy Og 05 O, D3 D; 0y Bg Cycles
MOV,,.,3 Move regiter 10 regitter 01 0 o O $ S S 1 R2- Return on gero " ¥ 0 & + 0 O O M
MOV M.t Move regiiter 10 memory 6 1.+ 1 0 S S S] RNZ Return on no 7er0 t 1 0 G 0 0 ¢ O s
MOV e M Move memory (o register 0 v DD D1 V0 ? AP Retura on pontive 11 f¥ + 0 0 0 O s
HLT Haft ¢ t ¢, 1 0 t 1 0 14 RM Return on minuy t 1 1t e 00 s/t
MV« Move immedeate register o0 0 0D D 1V 1+ O 7 RPE Reruen on panity even Tt ¢+ 1 0 1 0 0O 51y
MVI M Move immediate memory 6 0 v 1+ 0 Vv Vo0 10 RPO Return on panity odd 11 1 ¢ 0 0 0 O M
INRy Incrament register o090 0 D 0)Y 0 O S RSY Annn 1) A A A Y YD 13
OCR ¢ Decrement regater 00 0O 0O 0O 1V 0) IN tnput t 1 0 v 1 0 v 10
INA M Increment memory o0 ' t 0V 0O 10 ouv Output 1Y 0 Y 00 Vo 10
OCAM Decrement memory 00 1t 1 0 1 0 10 ixe Load immediate register o 0 ¢ 0 0 0 0 1 10
ADD ¢ Add regisier to A 1 0 0 0 6 S S S 4 PanB8C
AOC s Add regrster 10 A with carry t 0 0 0 VvV S S S 4 o Load immediate register 06 0 ¥ 0o 0 0 10
susr Subtract reguster lrom A t 0 0 1 0 S S S 4 Pas DS E
SBB ¢ Subtract register trom A 16 0 1 1S5S S S] LXIH Load immediate register 9 0 1 0 0 0 0 10

with borrow ParH8 L
ANA ¢ And register with A 1 9 1+ 0 0 S S$°S° 4 LXI SP Load immediatestackponter @ O 1 1 0 O 0 10
XRA ¢ Exclusive Or registes with A r ¢ t ¢ 1t S S S 4 PUSH B Puth cegister Par 8 & C on tft 0 0 0 vt 0 1 "
ORATY Or cegster with A 1 ¢ 1t 1 0 S S S 4 stack
[t Compare registes with A t o 1 1t $ s S 4 PUSHD Pushregister Paw 0 3 € on 11 0 1 ¢ 1 0 W n
ADDM Add memory 10 A t o0 0 0 0 ¥V Y O ? stack
ADC M Add memorytaAwithearry 1 0 0 0 1V 1 0 Y PUSK H Push register Pav K& L on 1t v 0 0 1 0 n
SUB M Subtract memory trom A 10 0 1 0 1V 1 0 1 stack
$88 M Sudbtract memory trom A t o 0 1 t 1V Vv O 7 PUSH PSW Push A and Flags LI S R R I | n

with borrow - on stack
ANA M And memory with A 1 0 1 0 0 1 1 0 ? POPS Pop register pasr B & C off T ¥ 0 0 0 0 0 1 10
XRA M Exctusive Or memory with A T ¢ 1 0 v YV o1 O ? stack . .
ORA M Or memory with A T o 1 v 6 1V 1 0 ? POP O Pop regiter pair D & € oft 1t 17 0 v 0 0 0t 10
CMP M Compare memory with A 10 1 1 ¥ v o1 o0 7 stack
ADt Add immedite to A 11 0 0 0 1V 3y O ? POPH Pop register parr H & L oft 1 v 1+ ¢ 0 0 C 1 10
ACt Add immediate 1o A with T+ 0 ¢ 1 1 1 0 7 stack .

carry POPPSW Pop A and Flags 1 1 1 0 0 0 1 10
sul Subtract immediate from A 11 0 v 0 v Vo0 1 oft stack
$8! Subtract immediate from A © 1 9 1 v 1 1y 0 7 STA Store A direct o b 1 v 0 0 Vv O 12}

with borrow LoAa Load A direct 00 v 1 1 0 10 n
AN! And immediate with A Tt 1 1 0 0 't Vv O 7 XCHG Exchange DS E HAL Tt t 61 0 v 4
XRI Exclusive Or immediate with I U N N B B B} 7 Registers

A XTHL Exchangetopofstack HE L 11 1 0 0 0 1 1 138
ORI Or immediate with A 11 [N T : S B] ? SPHL H & L 1o stack ponter 11 f 1t 1 0 0 1 $
CP1 . Compare immediate with A LI R S R B B R 7 PCHL H & L toprogram counter 1ty Yy 0 v 0 0 S
RLC Rotate A left 0o 0 0 0 OV 1 4 0ADB AddB&CHAEL 00 0 0 1 0 0 10
fARC Rotate A right 0¢ 0 0 v 1 1 4 papo AddO&ETOHS L 00 0 1t ¥+ 0 0 10
RAL Rotate A feft through carry g 6 0 1 0 1V 1 4 CADH AddH&LIOHEL 0 0 ' 0 1 0 0 1 0
RAR Rotate A right through ¢ 0 0 t 1t v 11 4 0AD SP Add stack ponter to H & L 6 ¢ t t 1 0 0 1 10

carry STAX 8 Store A indirect ¢ 0 0 0 0 0 1 O !
plid Jump unconditional 1t 1 0 0 0 0 t 1 10 STAX D Store Andirect 00 6 v 0 0 ' O r
% Jump on carry 1+ 01 v 0 1 o0 10 TLDAX B Load A indirect 60 0 0 1 0 1V O 1
INC Jump on no carry 1 1.0 1 0 0 1 O 10 LOAXD toad Andrect 6 0 0 1V v 0 1 O 1
n Jump on zero 1t 0 o v O Vv O 10 INX B Increment B & C registers ¢ 0 ¢ 0 ¢ ¢ 1V 1 $
N2 Jump on no zerg 11 0 0 0 0 1 0O 10 INXD Increment 0 & € registers 006 0 1.0 0 1 1 H
» Jump on positive 1 1 1 1+ 0 0 Vv O 10 INX K Increment H & L registers ¢ 6 1 0 0 0 V1)
m Jump on minus t 1 v 1 1 0 v O 10 . INX SP tncrement stack pointer 6 6 1 1 0 0 Vv S
IPE Jump on panty even 11 1 0 t 0 1 Q0 10 ocxs Decrement B & C 0 0 ¢ 0 ¥ 0 1V 1t $
PO Jump on panity odd T+ ¥ 9 0 0 ' O 10 74 §1] Oecrement 0 8 € ¢ ¢ ¢ t 1 0 t 1t 5
CALL Catl uncondstiong! 11y 0 0 1 Vv 01 1 OCXH Decrement H8 L ¢ o v 0 t 0 OV 1t $
<4 Calt on carry Tt 1 0 ¥ 1 00 wa 1% £14 Decrement stack pointer 0 0 1 1+ 0 V% H
CRC Call on ao carry 1 ¢+ 0 1 ¢ 1V 0 O 1mir CMA Complement A 00 Y 0 ¥ 1 o1 4
4 Call 0n zer0 11 0 0 1V 1 0 O ww sTC Set carry 6 0 t 1 ¢ 1 t [}
({4 Call on no zero0 Tt 1+ 0 0 0 V'V 0 O nmn (414 Complement carry 09 0 t 1 1 1 % 1)
[<4 Catt on positive t 1 1 06 1 0 0 nm DAA Oemal sdjust A ¢ 0 1 0 0 1 v 4
™ Call on munus 1t 1 1t 1t 1 0 0 wn SHLD Store K B L direct 6 o t 0 0 0 YV O 1%
CPE Cah on panty even 1 v v 0 Vv 1 0 0 uny LHLO Losd H & L direct 6 0o 1 6 ¥+ 0 1V O 16
[424] Call on panity odd 1 1 3 0 0 YV D O " 11} Enabdle Intsrrupts | I S TR N N B B | ‘
RET Return 1 1 0 0 Vv 0 0 10 1} Drsable interrupt T 1t Y 0 0 1 4
rc Return on carry t ¢+ 0 v 1 0 0 O s NOP No-opsration 0 0 0 0 0 0 0 O q
RANC Return on ao tarry 1 ¢+ 06 .1 0 0 0 0 s .
NOTES: 1. DODor SSS - 0008 ~001 C - 0100 ~ 011 € - 100 H - 10t L ~ 110 Memory — 111 A,

2. Two posiible cycle times, {5/11) indicate insteuction cycles dependent on condition flags.

TABLE 3: 8080 Instruction Mnemonics

-73-

l-

{ START)

LOAD MPU H AND L
MEMORIES WITH PATTERN
(START WITH @)

TRANSFER
MPU H REGISTER TO
MPU B REGISTER

MPU B REGISTER TO
MPU H REGISTER

|

MPU H, L REGISTERS TO
PROGRAM COUNTER (PC)

FAIL"iaaa'>
—
_ PASS

"H—C

!

C—H

H,L—PC

FAIL
L
PASS
H—sD
D—-H
H,L— PC
FAIL
}
] PASS
H—F
E—H
H,L—PC
FAIL
PASS
H—L
L

FIGURE 13: Register Array

FAIL

H,L—PC

Test

H,L—=PC

INCREMENT
PATTERN

GO TO
START

are 16-bit registers with the additional feature of incrementing and
decrementing. Therefore, the test on the Stack Pointer should check
for incrementing and decrementing, and the ability to load and trans-
fer to ahdther register. Figure 14 is a flow chart of a recommended

test and Table 4 lists the instructions used during the test.

Accumulator Test

The accumulator in the 8080 is 8-bits wide. A recommended test on
the accumulator is to verify, load, readback, rotate, and transfer
operation through its entire range. The recommended instructions (see

Table 1) to be used during this test are MOV, ., MOV, ,, CMA, RCL, RRC,

M,A’
RAL, and RAR. A flow chart of the recommended test is shown in Figure

15.

Arithmetic Logic Unit Test

The Arithmetic Logic Unit (ALU) is 8-bits wide and used to perform
all arithmetic and logical data operations in the 8080. The ALU has
been left until 1ast.because error analysis is simplified once 511 other
modules have been verified. A recommended test for the ALU is to test
all ALU déta paths and related instructions through its range. A1l
instructions are used during this test which operation on the ALU, such
as ADD, ADC, SUB, SBB, etc. A flow chart of this recommended test is

shown in Figure 16.

-75-

<

SPHL: (H) (L) —(SP)

1

RESET MPU DCXSP: (SP) - 1——(SP)
LXIH: LOAD MPU (L) AND . PUSHPSW: (SP) - 1——(PC)

(H) REGISTERS WITH
STARTING ADDR VALUE

-

SPHL: TRANSFER (H) AND
(L) TO STACK POINTER (SP)

'

INXSP: INCREMENT (SP) BY 1 PUSHPSW (CONTINUED):
é ' (SP) - 2—=(sP), (PC)

DADSP: LOAD (H) AND
(L) WITH (H) (L) PLUS (SP)

) e

PCHL: LOAD (H) (L) INTO (PC)

M-1 TIMES

MIN ADDR -
VALUE

FAIL

N-2 TIMES

MAX ADDR
VALUE ~

Mo N> 2
N oo, M1

Notes: SP MAX
SP MIN

FIGURE 14: Stack Pointer Test '

-76-

CODE (DATA WORD)

MNEMONICS CYCLES CLOCKS 7654321 OPERATION

LXIH 3 10 00100001

<32> <Bz>-——~(L)

<B3> <83>——-(H)

SPHL 1 5 11111001 (H) (L)—(SP)

INXSP 1 5 00110011 (SP) 1 (sP)

DADSP 3 10 00111001 (H) (L)+ (SP)— (H) (L)
PCHL 1 5 11101001 (H) (L)—{PC)

DCXSP 1 5 001110171 (SP) - 1— (SP)

PUSHPSH 3 N 11110101 (A)—[SP-11,(F) —[SP-2]

TABLE 4: Stack Pointer Test Instructions

-77-

C S?M‘ D)

RESET MPU

MOV, i (MEM) — (A)

-

c: (R)— (A)
'
MOV, pi (A)— (MEM)

TEST
DATA LINES

PASS

MOVA,M:

(MEM) — (A)

1
MOV, i (MEM) — (A)

Notes: ACC MIN <7F

16
ACC MAX >8ﬂ] 6

. | i uwen
RCL: AM_.AMH ,A7..__. AO’ c
)
RRC: AM+]-—~AM,A0_. A7, C
.) i
RCL: i
MOVy p: (A)— (MEM)
FAIL
)
PASS
RAR: AM+]_——’AMfA0'—_’"C"’"C"'_—’A7
J .
RAL: AM_’AM+'I’A7_" c","C ——»AO
)
1RAR: :

MOVM,A:, (,A)—_. (MEM)

TEST

FAIL

DATA LINES

NO

FIGURE 15:

Accumulator Test

-78-

;1.
(:i STfRT —‘:) SUBg: (A)-(B)— (A)

RESET MPU SBB: (A)-(B)-"C" — (A)
POPSH: [SPT (F) [SP+1] (A) | PUSHPSW: (A)— [SP+1]
CLEAR "C" F/F AND LOAD (A) (F) — [SP+2]
WITH STARTING VALUE "ﬂﬂlﬁ"
q (F) = 92,
MOVg (A)— (8B) FAIL

b-;

ADDg : (B)+(A)—(A) ~

]

(B)+(A)+"C" —(A)

'

PUSHPSW: (A)— [SP+1]

(F)— [sP+2]

ADCB:

POPPSW: [SP]— (F)
[SP+]]_—’_ (A)

PASS

SET “C" F/F

L J _ :
Note: ACC MAX = FE, (F) = 4315

FIGURE 16: Arithmetic Logic Unit Test

-79-

B. 8008

The test program for the 8008 is divided into the major sections

listed below. \

1. Accumulator

2. Register Array

3. Arithmetic Logic Unit (ALU)
4. Address Stack

5. Input/Output Instruction

6. Halt and Interrupt
Accumulator

The accumulator of the 8008 is part of the scratch pad régister
array with an address of ¢ﬂ®7. This register is a working register for
the arithmetic and logical instructions. Intially, a verification test
would be implemented in a series of MOV instructions to load énd store
data to verify the basic functionality. Data patterns should consist

of all 1's, all 0's, CHECKERBOARD, inverted CHECKERBOARD, 17, 27, 47,

10,, 20 408, and 100

77 78 8’

Register Array

The scratch pad register array test is designed to verify that each

register can increment and decrement throughout its entire range, that each

-80-

register can be transferred to all other registers of the array, and
that the H and Z registers can properly provide a correct address for

the MOVR,M and MOV R instructions.

M
Initially the device is reset and all registers of the array

loaded to a different value with the MOVR,M instrucfion, except regis-

ter R which is set to 0. Registér R1 is now incremented from O to

255 to 0, to verify the wrap-around characteristic. After each incre-

ment, the contents of the register is examined using the MOVM,R

instruction.

At the completion of this process, the contents 6f all remaining
registers are stored and verifigd. Register R1 is. now decreménted
from 0 to 255 to 0, verifying the underflow characteristic. After each
decrement; the register contents are stored and verified using the
MOVM,R instfuction. At the completion-of this process, the contents

of all othér registers are read and verified.

The increment/decrement test is now performed on all remaining

registers of the array.
Transfer Operations
In order to accomplish transfer operations and preserve the unique

identification of all other registers, the previously verified instruc-

tions of MOVR M VMIr, MOVM R’ INRr, and DECr will be used. Initially

-81-

all registers are cleared. Register Rl will be tested first.

Register R1 is incremented and transferred to R2. Rl is again incre-
mented and tfansferred to Ré. This process is repeated until all
registers have received data from R1. The accumu]afor is the last
register to receive data. A1l register contents are now stored and
verified starting the the accumulator. After repéating this process
42 times, the sequence i;vrepeated, only this time register R2 is used
as the.origin of all data to be transferred. All remaining registers,

except the accumulator, are verified in the same manner.

Since the accumulator cannot increment, the test for verificétion
of transfer is accomplished in a slightly different manner. Again,
all registers are set to 0. Register B is then incremented and trans-
ferred to the accumulator, which is in-turn transferred to register C.
Register B is again incremented and transferred to the accumulator,
which is now transferred to register D. This process is repeated until
all registers have received déta from the accumulator. A1l register
contents are now stored and verified. This process is repeated 51
times. During this test procedure the transfer of the accumulator con-
tents to register B is not possible, since register B is being used to
generate the test pattern internal to the device. Therefore, it is
necessary to repeat this test using register C to generate the internal
test pattern, transferring its contents to the accumulator and then
transferring the accumulator to register B, incrementing register B,
and then storing all registers. The purpose of incrementing register

B is to preserve the unique addressing of that register for transfer

verification.

-82-

Arithmetic Logic Unit (ALU)

The previously verified instructions are now.utilized to test the
add, subtract, logical, and shift instructions. Reﬁu]ts df the add
and subtract instructions effect all condition flip-flops, while the
rotate and shift instrucﬁjons effect onJy the carfy bit. The Tlogical

instructions do not effect the condition flip-flops.

The condition flip-flops cannot be gated to the data or address
bus for purposes of verification. Therefore, it will be necessary to
use the conditional jump instructions, JC, JZ, JM, JPE, JNC, JNZ, JP,
and JPO.

After each arithmetic operation it is necessary to execute all six
conditional jump instructions to test for proper operation of the .con-

dition flip-flops.

The data.chosen should generate the criteria to set and reset all
condition'flip-flops resulting in patterns that will verify that the
ALU can recognize a 0, negative number, even parity, and a carry, or

borrow.
The data patterns required for proper verification of the ALU

should be designed such that execution of the arithmetic or logical

" instruction being tested generates the following results:

-83-

Arithmetic Instruction

1. Positive Number
Négative Number
Even Parity
Non-Even Parity
Carry (Borrow)

.- No Carry (Borrow)

Zero Value

o N OO &AW N

Non-zero Value

Logical Instructions

1. Positive Number
2. - Negative Number
Zero Value
Non—zero Value

Even Parity

(o) (3, +~ w
. . . .

Non-Even Parity

Rotate Instructions

1. Carry

2. No Carry

3. Shift a 1 Through Carry

4. Shift a 0 Through Carry -

5. Shift a 1 Through a Field of 0's

6. Shift a 0 Through a Field of 0's
-84-

Address Stack

Testing‘of the address stack is designed to verify that all levels
of the stack are operative in response to the CALL and RETURN instruc-
tions. The device test program simulates repeated subroutine CALL's
and RETURN's nesting up to the seven a]]oﬁab]e levels. The program
should be structured so that the carry feature from the lower order 8-
bits of the address to the higher-order 6-bits is verified. Ih addi-
tion, all conditional CALL and conditional RETURN instructions are
verified. The jump instruction should also be included in this test
as an easy means of manipulating the coﬁtents of the Program Counter

in generating the return addresses to be stored in the address stack.

Input/Output Instructions

Verification of the input/output iqstructiohs consist of executing
a series of eight input instructions each followed by an output instruc-
tion. During this sequénce, the code for the selected input and output
port is different so that all combinations are tested. The a;tua] data

used to write into the accumulator is not of critical importance.

Halt and Interrupt

The Halt instruction and Interrupt feature of the 8008 can be tested
together. The Interrupt is verfied first. The critical parameter of

the Interrupt is that the interrupt signal to the 8008 cannot be allowed

-85-

to occur within 200 ns of the falling edge of 1.

The test progfam should verify that the 8008 will properly respond
to an external interrupt which occurs within the allowable timeframe
as indicated below. In addition, the Interrupt signal to the 8008

should be applied during all time states of instruction execution.

After this test, the Halt instruction is executed and the ability
of the 8008 to respond to an external interrupt is verified over the

same time span by executing a series of Halt instructions followed by

Interrupts.

S i N/ i Ve WA
A\

p2 4 .
4 [\ /2R /—\ AR /
) . "
| o
L atlowed| S
va -
S
N
T:_INT Not

Allowed

-86-

2901

The 2901 4-bit bipolar microprocessor slice is not like other
microprocgséors being only the process portion of the typical micro-
processor. Like the typical microprocessor, the 2901 has a data bus,
but is not bidirectional. It also provides a register file (16 Word

X 4-bits), an Accumulator (4-bits), and an Arithmetic Logic Unit (ALU).

The 2901 does not include an fnstruction decoder, rather all
instructions directly control an operation from an code input. In a
typical MPU the instruction code applied on the data bus
into the decoder for the complete cyc]é. The 2901 complete cycle
lasts only one c]oék cycle and if the instruction lines change during
the cycle a new operation will occur. Also, the 2901 is not-capab]e.
of addressing external memory d{rectly, because it does not include
an address or program counter. A typical MPU can execute jumps,
subroutines, and return from subroutines due to the existance of a

stack pointer which the 2901 does not contain.

The architecture of the 2901 can easily be broken up into testable
modules that can be controlled and tested by the device'pins and its
microinstructions (see Figure 2).

The 2901 can be broken up into the following modules:

1. RAM (16 addressable registers) controlled by the "A" address field.
2. RAM (16 addressable registers) controlled by the "B" address field.

-87-

3. "Q" Register or Accqmu]ator
4. ALU Source Selector

5. Eight Function ALU

6. Output Data Selector

7. RAM Shift

8. "Q" Shift

Examination of the microinstruction control shows that the 2901
has a 9-bit microiﬁstruction. This microinstruction is divided into
three groups: ALU source control, ALU function control, and destin-‘
ation control. The ALU source control controls from what data path
the data will be app1ied into the ALU (Table 5). The ALU function
controls what function the ALU will perform. For example, R field +
S field, R field or S field, etc., (Table 6). The destination control
routes the output of the ALU (qr RAM) to different destinations within
the 290]. These destinations include the RAM register stack, the "Q"
register accumulator, both the RAM and "Q" register or the RAM directly
out of the device (Table 7). The microinstruction controls thus route

and/or manipulate data through the device.

RAM Addressable Register Test

The RAM Address Register should be divided up into four unique
portions structured to test (1) the RAM using the npn address stored
through the output by passing the ALU, (2) the RAM using the "A"
_address outputted through the ALU, (3) the RAM using the "B" address

-88-

-89~

MICRO CODE ALU SOURCE
OPERANDS
: Octal ')
: I] IO Code R S
L H H 3 0 5
H L L, 4 0 A
H L H 5 D A
H H H 7 D 0
TABLE 5: _ALU Source

MICRO CODE ALU .
Symbo1
I Octal Function
1 cta
4 3 Code
L L 0 R Plus S R+ S
L H 1 S Minus R S-R
H L 2 R Minus S R -S
H H 3 RORS RVS
L L 4 R AND S RAS
L H 5 R AND S RAS
H L 6 REX-OR S R¥S
H H 6 R EX-NOR S R&S
TABLE 6: ALU Function Control

-90-

MICRO CODE

connected to a three-state output which is in the high-impedance

state.

B=Register Address by B inputs.

Up is toward MSB.

Down is toward LSB.

TABLE 7:

ALU Destination Control

-9]-

RAM Q-REGISTER Y : RAM Q
- FUNCTION FUNCTION OUTPUT | SHIFTER SHIFTER
I, [OCTAL Psyter LOAD | SHIFT LOAD 'RAM_ RAM Q
7 1s | cooe ~ . o RM31 G Q5
L L | o X None None F—Q F X X [X X
L H 1 X None X None F X - X X X
HOL 2 |None F—B X None A X X | X X
H H 3 None F—B X None F . X X X X
L L 4 Down F/2—B | Down Q/2——(Q F F0 IN3 Q0 IN3
L H 5 Down F/2—8B X None F F0 IN3 QO X
HoL 6 Up 2F—8B Up 20—Q F INg © Fg [INg Q
H H 7 Up 2F—B X None F .IN0 ' F3 X Q3
X=Don't care. Electrically, the shift pin is a TTL input internally

outputted through the ALU, and (4) the right/left shift operation of
the RAM. |

To test the RAM using the "A" addréss outputted bypassing the ALU,
the following is recommended. The object of the test is to run a
GALPAT pattern on the RAM using all combingtions from 0 to 15 for the -
test pattern and the coﬁpiiment of this as the background pattern.
Since the RAM can only be written into a location addressed by the "B"
address, care has to be taken to address only the test location when
writing into the RAM. When a location is being-tested or read, the
“B" address should be different then the "A" address. The easiest
solution to this would be to compliment the "B" address relative to
the "A" address when reading a test cell. The setup to run this test
would be to set the ALU source operand to octal code 7 (D,P) when
writing into the RAN and octal code 4 (P,A) when reading out a loc-
ation. The ALU function is used during this test to route the data
on the data input pin to the RAM. This should be programmed for a
recommended function, octal code 3 (RORS), as this will be used in a
later test. The destination control should be programmed for octal
code 2 which selects the RAM "A" data port to the output, bypassing
the ALU. The clock pins should be held in a high state. Throughout
this test the only pins that will be sampled will be the "Y" ouput
pins. Once this test setup has been executed a GALPAT pattern should
be performed using all test patterns of 0 to 15 and backgrouﬁd patterns
of 15 to 0. What the GALPAT does is to write a background pattern then

‘write a test pattern. The test pattern is then read, a background

-92-

pattern location read, then the test location again, then another back-
ground location, test 1dcation, etc., until all background locations
have been read. Then the tést pattern_is.moved and the process repeated
until all locations have been used as a test patterh. The test pat-
tern is then incrémented and. the background pattern decremented. This
process is then continued until all pattern combinations have been

tested (see Figure 17 for illustration).

Performing this test will verify that all data combinations can be

written into and read out of with every data combination.

The second test on the RAM is to check the RAM addressed’by the "A"
address field but checking the data output path through the ALU. The
same test should be run as previously described with only one change
in the microinstruction. This change would be té modify the destination
control to an octal bode 3. This modifies the output path from the
RAM "A" address'output to the-ALU output. This would then check if the

RAM "A" address path through the ALU is functional with all data sequences.

The next test on the RAM would be similar to the second test, but
the "B" address and output path is checked. The ﬁhanges to the second
test would be to have addressing to the RAM entirely controlled by the
"B" address field. During this test it is recommended that the "A"
address field be the comﬁ]iment of the "B" address. This would cause
the worst interaction between the RAM addressing. The remaining dif-

ference would be to modify the ALU source operand to select octal code

-93-

FIGURE 19: GALPAT Read Example

-94-

3 when performing a read of the RAM. This will select a source of

§,B, thus enabling the "B" output of the RAM to pass through the RAM.

The final test to be run on the RAM is verification of the right/
left shift operation. The fecommended test will only describe a shift
operation from the left as to test the right shift é]l that would be
required is to input data from the right input and test the left out-
put. The object of this test is to verify that all data combinations
- from 0 to 15 can be shifted through the RAM. Also, since Tatches are
noted to be sensitive to noise, and the 4-bit output-of the RAM uses
a latch, the test will also recommend how to check for this. The

. . i
recommended test sequence is as follows:

The test should start out by loading a 0 info location 0, and a 15
into location 15 of the RAM. The purpose of this is that one location
will be used to shift data input and the other.location will be used
as a background test pattern. The microinstruction for the ALU source
operation when writing the initial patterns should be an octal 7 which
selects the data bus. A11 other times during the test an octal code 4
should be selected which selects "A" output 1atch for iﬁput to the ALU.
(Note: An octal code of 3 should be selected when checking the "B"
output latch.) The ALU function should be selected for an octal code 3
(R OR S) so that the output latch can be tested throughout the test. The
advantage of using the R OR S function is that the ouput of the ALU
will be the same as the output latch. The microinstruction for the

destination control should be selected to octal code 4 which will execute

-95-

a.left shift. .(Octal codes 5, 6, and47 should also bé tested using
this same test. When selecting codes 6 and 7, the input and output
shift pins should be complimented when codes 4 and 5 are selected.)
The "A" and "B" address fields should be exactly.the same ‘throughout
this test. This allows an eqéy modification to the ALU sourcé
operand to check the "B" output latch as described egr]ier. Last of
all, the final setup should be to produce é clock pulse each time
there is a requirement to write to the RAM, but not during a test

cycle when the background location is being addressed.

The test on the right/left shift will verify that (1) the shift
operation Qi]] occur, (2) this shift operation can shift all combin-
ations of 1's and 0's, (3) the output latches will hold data, and (4)
the shift operation can be accomplished using any RAM address. Fol-
lowing the initial loading of the test and background patterns one
bit of the shift pattern (101000111100101) is shifted into the RAM
and the shift and Y outputs checked. Then the background address is
addressed but no clock is.produced and'the outputs again checked.

This will verify that the output latch will hold data. The next bit

is now shifted in and verified and the background location addressed
and data verified. This process continues until all bits have been
shifted into the RAM. Then the testword and background address are
incremented and decremented, respéctivg]y, and the above test repeated.
This will continue until all RAM Ibcationé have been used for the test
location and background location. Upon completion of the first pass,

“the background pattern is decremented until the initial pattern has

-96-

gone from 15 to 0. This will check for a sensitivity in the RAM out-
put latches. This test is then repeated for both right and left

shift operations on the RAM.

The next test performed is on the "Q" register. There should be
two tests on fhe "Q" register. First, a test that will load the
register with all combinations from 0 to 15 and follow each load with
the compliment of the previous load. Second, a test to check the

right/left shift operation on the register.

The first test should start by loading a "0" into the register and
testing. Next a "15" should be loaded and tested,'then.l, 14, 2, 13,

.., until a 0 and 15 are again reloaded. This test verifies that any
number can be loaded into registerland that all data tranactions are

checked.

The sécond test checks the right/left shift of the "Q" register
(ALU Destination Control, octal codes 4 and 6). To check these oper-
ations an initial value should be loaded into the register and checked.
Destination control octal code 4 is selected and a pattern
(1010000111100101) is shifted into the register. After each bit shi ft
the regisfer data is checked. Then an octal code is selected on the’

destination control and the other shift operation checked as previously

described.

The next test will test the ALU source operands. This test verifies

that all ALU sources can be selected and that all data combinations
can pass through the selector. The test should start by first loading
RAM locations 0, 5, 10, and 15 with data equal to the address. The
"Q" register is intially loaded with a 0. Using the ALU function "R
OR S" (octal code 3), and a destinatioq control which loads neither
the RAM nor the "Q" register. (octal code 1), the sequence of ALU
source operands shown in Table 8 should be tested. During this test
the "A" and "B" address will equal the data being selected by the

source operand.

The ALU functions and flags should be tested next, since all other
sections of the devicés have now been verified as operational. First,
all locations in the RAM are loaded with a data pattern equal to its
address. Then data values of 0, 5, 10, and 15 and RAM values of O,

5, 10, and 15 and CN values of 0 and 1 in all combinatioﬁs are used to
test each of the eight possible ALU functions. -In all cases, R is the
data bus and S is the "A" output from the RAM (ALU source operand, octal
code 5). First, the R & S function (octal code 0) is tested. The basic

sequence is as shown in Table 9.

This sequence is then repeated for each of the other ALU functions.

Function Octal Code
S-R ' 1
R-S ' 2
RORS : o _ 3

-98-

A = 1010 - Q =.0000
A = 0101 Q = 0000
A = 1010 | Q = 0000
(Load Q with 1010)
A = 0000 Q = 1010
(Load Q with 0101)
A = 0000 Q = 0101
(Load Q with 1010)
A = 0000 ' - Q=1010
A = 1010 B = 0000
A = 0101 B = 0000
A = 1010 B = 0000
A = 0000 B = 1010
A = 0000 B = 0101
A = 0000 B = 1010
(Load Q with 1111)
P Q=1
) B = 0000
) B =111
) A-= 0000
) A=11M
D = 1010 A = 0000
D = 0101 A = 0000
.D = 0101 A = 0000
D = 0000 A = 1010
D = 0000 A = 0101
D = 0000 A = 1010
(Load Q with 0000) ,
D=11M Q= 0000
D = 0000 Q = 0000
(Load Q with 1111)

D = 0000 Q=111

TABLE 8: ALU Source Operands

-99-

CN = A S =
0 0000 0000
1 0000 0000
0 ni 0000
1 1111 0000
0 0101 0000
1 0101 0000
0 1010 0000
1 1010 0000
0 0000 11
1 0000 111
0 111 1111
1 1111 1111
0 0101 1M
1 0101 111
0 - 1010 1111
1 1010 1M1
0 0000 0101
1 0000 1010
0 1 0101
1 1111 0101
0 0101 0101

1 0101 0101
0 1010 0101
1 1010 0101
0 0000 1010
1 0000 1010
0 111 1010
1 1 1010
0 0101 1010
1 0101 1010
0 1010 1010
1 1010 1010

TABLE 9:

ALU Function Sequence

-100-

Function ' . Octal Code

R AND S 4
R AND S 5
R XOR S 6

7

R SNOR S

The last test on the device is to check to see if the output enable/
disable will cause the output to go to tristate.. This is accomplished
by inputting a 0, 5, 10, and 15 into the Data bus and outputting it
through the ALU (R OR S function) to thé Y output. After each data pat-
tern is on the Data bus the "Y" output is checked wtih the output enable.

Then the outputs are disabled and the outputs checked for tristate.

-101-

6800

The 6800 microprocessor unit is divided into the basic modules as

listed below:

1. Program Counter

Stack Pointer

Index Registers
Accumulators A and B
Arithmetic Logic Unit

Timing and Control Logic

~N O O AW N

Interrupt Capability

For thorough testing of the 6800, the functiéna] test sequence
should thoroughly exercise each module independent of all other modules
with the specific instructions applicable to thét module. In addition,
sufficient data patterns are used to verify proper operation qf each
module. An interactive type test is also performed to ensure that
execution of an instruction on one module will not cause destruction

of data in a different module or an otherwise malfunction of the device.

In determination of the instruction sequence, the possible discovery

of instruction and/or data pattern sensitivities was not considered.

Program Counter

The Program Counter (PC) test consists of resetting the PC to 0

-102-

and then incrementing the PC through its entire range. Results of
this test may be verified after each increment or after the PC has
reached full value. Benefits of this test are proof that the device
is basically operationa1; there are no stuck-at-one stuék—at-zero
defecfs in the PC and the address bus drivers are capable of driving

a logic 0 or logic 1 in any combination of bits present on the

address bus.
Operation of the device during this test is as follows:

1. Reset the device.

Verify the reset address vectors of FFFE]‘6 and FFFF]6.

Input an instruction that will cause the PC to increment by 1.

‘Continue operation of this instruction until the PC equals FFFF]6.

Execute the instruction 6ne more time to verify the overflow char-

o B~ W N

acteristic of the program counter.”

Stack Pointer

Operational'Modes:

1. Load

2. Store

3. Increment
4. Decrement
5.

Transfer +1 to Index Register

-103-

6. Receiver -1 from’IndexrRegister

7. Output Data on Addréss Bus for:
a. Push, Pull Data- | |
b. Store Device Status in Stack

¢. Pull Device Status from Stack

Stack pointer conte&té are availabfe on the data bﬁs and also the
address bus during instruction execution. Accordingly the test approach
is defined to verify both conditions of output. The method of defining
the test approach follows that of all modules, i.e., start with instruc-
tion sequences designed to verify basic module operation, increaéing
the complexity of instructions for total testing of the particular
module. The transfer of SP contents to the index register and transfer
of index register contents to the stack pointer require verification
of the index register's functionality, and will therefore be defined in

the index register section of this description.
Load/Store, Data Bus

To initiate testing of the stack pointer, a load instruction is
executed followed by a store instruction to output the SP contents on
the data bus.

Stack Pointer Instructions

LDS - Immediate, Direct, Index, Extended .

-104-

STS Direct, Index, Extended

INS Implied
DES Implied
TXS Implied

TSX - Implied

Several data patterns should be chosen such that all bits of the
stack pointer have been loaded to both a logic 1 and 0. In addition,
all different operational codes of the load stack pointer/store stack
pointer instruction are executed at this time. This instruction se-

quence is defined as illustrated in Table 10.

Benefits of this test are.that the stack pointer is identified as
an addressable register, is capable of being loaded to several values,
each bit of the stack pointer is capable of being a]ogié 1 or logic O
and that each bit of the data bus is capable of driving a logic 1 or

logic O.

Increment/Decrement

Execution of this test requires initial loading of the SP to 000016’

the increhenting the SP from 000016 to FFFF]6 using the increment stack

pointer instruction.

For detailed error analysis, the contents of thg SP should be out-

putted to the data bus after each increment. This method may‘prove

-105-

INSTRUCTION

ADDRESS MODE

DATA PATTERN

Load Stack Pointer
Store Stack Pointer
Load Stack Pointer
Store Stack Pointer
Load Stack Pointer
Store Stack Pointer
Load Stack Pointer

‘Store Stack Pointer

Imﬁediéte
Direct
Direct
Index
Index
Extgnded
EXtended

Extended

p009 |

FFFF 16

'.AAAA16

'5555]6

TABLE 10: Stack Pointer Load Routine

-106-

not feasible due to fest system capability and in‘fhat case the
increment stack pointer in§tructidn would be repeated 16,384 times,
and the SP contents then read. The increment stack pointer instruc-
tion is then executed one more time and the SP contents outputted to

verify the overflow characteristic.

The Decrement Test is similar to the previous test with the
'exception of initially loading the stack pointer'to,FFFF]6, using the
- decrement stack pointer instruction and executing the decrement instruc-
tion on additional time after the SP is equal to 0 to verify the under-

flow characteristic.

In either of the above tests, the choice of which stack pointer
store instruction to use is arbitrary and left to the discretion of

the test engineer.
Address Bus Output (Push/Pull)

The Push and Pull instructions of the 6800 will cause the contents
of the stack pointer to appear on the address bus and also increment

or decrement the contents of this register.

Verification of this mode is performed by resetting the 6800 (get-

ting a starting address of 0000,,. to the PC) and execution of repeated

16 ‘
PUL instructions. During instruction execution, the address is read

-107-

~during all four to verify that the following information is present:

Cycle 1: Program Counter
Cycle 2: Program Counter +1
Cycle 3: - Stack Pointer

Cycle 4: Stack Pointer +1

The PUL instruction is repeatedly executed until both PC and SP
are equal to FFFF]6.
The PSH instruction is now executed in a similar manner, again

verifying the address bus during all four clock cycles as follows:

Cycle 1: ‘ Program Counter
Cycle 2: “ Program Counter +1
Cycle 3: Staék Pointer
Cycle 4: Stack Pointer +1

This sequence is repeated until the SP is equal to O.

Index Register (X)

Operational modes:

1. Local Load Immediate, Direct, Index, Extended
2. Store ‘ Store Direct, Index, Extended
3. Increment : Increment |
4. Decrement , "Decrement

-—~108~-

INSTRUCTION

ADDRESS MODE

DATA PATTERN

Load Index Register
Store Index Register

Load Index Register

Store Index Register -

Load Index Register
Store Index Register
Load Index Register

Store Index Register

Immediate
Direct
Direct
Index
~ Index
Extended
Exfended

Extended

. FFFF

0080, o

16

6

5555, ¢

TABLE 11: Index Register Load Routine

-109-

5. Transfer to Stack Pointer TXS

6. Receive from Stack Pointer TSX

The Index Register is identical in size (16-bits X 1) and similar
in operation to the Stack Pointer. Therefore, the test plan defined

.for this module closely parallels that of the Stack Pointer.
Load/Store

The Index Register is loaded wifh several data patterns, storing
the register contents after each load to verify prbper load operation.
A1l different OP codes of the load and store instruction should be
‘used to verify proper operation. The instruction sequence is defined

as illustrated in Table 11.
Incrgment

Execution of this test requires initial loading of the Index
Register to 000016’ repeating executipn of the increment Index Register

(INX) instruction to increment the X register from 0000,4 to FFFF,c.

As in the Stack Pointer test, the contents of the X register should -
be stored in the data bus after every fncrement. if not feasible, the
increment instruction should bé repeated continuously and the X register
contents outputted when equal to FFFFTG. The increment instruction
~should then be executed one more time and the contents of the Index

Regiéter stored to verify the overflow characteristic.

-110-

Decrement

The Decrement test is similar to the previous test wi;h the excep-
tion of initia]]y loading the Index Register to FFFF]G, using the
decrement Index Register instructioﬁ. When the X register is equal to
0000]6’ the decrement instruction should be executed one more time and.
the register contents stored to verify the underflow characteristic.

Stack Pointer and Index Register Trénsfers

Transfers of the Stack Pointer and Index Register are limited to
transferring the Stack Pointer contents +1 to the Index Register or
the Index Register contents -1 to the Stack Pointer. The two instruc-

tions which define those operations are TSX and TXS respectively.

The test sequence to verify this éequence takes advantage of the

functionality of these registers proven by previous tests.

Both registers are initially loaded to 0. An instruction sequence

which increments the SP executes a TSX instruction and stores the
Index Register contents is repeatedly executed until the Index Register
is equal to FFFF]G.
This procedure is now repeated in a reverse fashion by executing a
decrement Index Register, TXS, instruction followed by a read of the

. Stack Pointer. This instruction sequence is repeated until the Stack

-11-

Pointer is equal to O.

Accumulators A and B

!

Accumulators A and B are two general purpose 8-bit registers used
to store operands and results for ALU operations. The instruction set
for each accumulator is similar thh one or two exceptions. At this
point, the definition of the different modules of the 6800 are open to
different philosophies as to where one module ends and another module
begins. For example, controversy may arise as to whether a logical OR
instruction is an accumulator instruct{on or an ALU instruction.

This situation illustrates thé problem of two different modules
being involved in the execution of an instructi&n. The operation of
the Togical QR instruction of the contents of the Accumulator A (ACCA)
with a byte'of memory involves the input of a byte of memory, input of
ACCA and the byte of memory to the ALU, execution of the Togical QR
between the two and transferring this resuits back to ACCA. Here two
different modules are involved in the instruction execution and the
question is to which module group the instruétion be]onés. For the
purposes of clarity, this type of instruction will be attributed to
the ALU module. In a more general'sense, where more than one module
is involved in the execution of an instruction, the instruction will
be classified as belonging to the module which performs the basic

operation intended by the instruction.

-112-

Accumuliator A and B, Load/Store

As in thevStack Pointer‘and Index Register test, the initial phase
of the accumulator test cqnsists of executing a]oad and sfore accumu-
lator routine, using all applicable operation codes in conjunction with
numerous data patterns. The specific instruction sequence is defined
as illustrated in Table {2; Note that the contents of the accumulator
not involved in a series of instructions is stored on data bus to ver-

ify no interaction of the two accumulators.
Increment/Decrement

Accumulator A is loaded to all 0's and the increment Accumulator A
instruction is executed followed by a store Accumulator A instruction.

This process is continued until ACCA 'is equal to FF The decrement

16°
Accumulator A instruction is now executed followed by a store ACCA
instruction. This instruction sequence.is repeated until ACCA is equal

to 0.

The above process is repeated on Accumulator B substituting the

appropriate Accumulator B instructions.
Transfer ACCA to ACCB, ACCB to ACCA

This test is designed to verify the internal transfer of accumulator

fo accumulator by using previously verified instructions.

-113-

INSTRUCTION DATA PATTERN INSTRUCTION DATA PATTERN
Load A - FF]G Load A 4¢]6
Store A -- Store A --
Load B FF]G Load B 4¢]6
Store B -- Store B --
Load A 5516 Load A 8”16
Store A -- Store A --
Load B 55.6 Load B 806
Store B -- Store B --
Load A AA]6 Load A FE]5
Store A -- Store A -~
Load B AA16 Load B FE]G
Store B -- Store B --
Load A ¢¢]6 Load A FD]6
Store A -- Store A --
Load B ¢¢]6 Load B FDyg
Store B -- Store B --
Load A . QI]G , Load A FB]6
Store A -- Store A --
Load B ¢]16 Load B FB]6
Store B -~ Store B --
Load A ¢2]6 Load A F716
Store A -- Store A --
Load B ¢216 Load B F7]6
Store B -- Store B --
ggad A ?flﬁ Load A Ef‘ﬁ

ore A Store A
Load B ¢416 Load B EF]G
Store B --. Store B --
Load A ¢8]6 Load A DF16
Store A -- Store A -
ézad B ¢8]6 Load B Pf]6

ore B -- Store B
ggad A lﬂ]s Load A BF]6

ore A -- Store A --
Load B 1¢]6 Load B BF16
Store B -- Store B --
Load A 2”16 Load A 7F]6
Store A - Store A --
Store B -- Store B --

TABLE 12: Accumulator Load Routine

-114-

Both accumulators are initially loaded to all 0's. An increment
ACCA is executed fo]]owéd by a trangfer ACCA to ACCB, clear ACCA and
then store both accumu]atoré. Now, an increment ACCB is executed,
followed by a transfer ACCB to ACCA, clear ACCB and‘store'both accumu-

lators. This sequence is repeated until ACCA is equal to X'FF.
Shift/Rotate Capability

The Accumulator registers of the 6800 are equipped with five modes
of shift and/or rotate instructions. To properly verify the operation
of these instructions, each is executed with several data patterns
designed to represent worst case. Also, included in the execution of
the shift and rotate instructions is verification of the Condition Code

register, in particular the Carry Bit (C).

The test routine for the shift and rotate instructions initializes
the MPU to a 0 state and then executes all five instructions on each

accumulator. The recommended data patterns for each instruction is:

FF16
AAy6
5516
Phe
PMe

Each instruction is executed a total of eight times in order to

-115-

shift or rotate the data pattern through the entire accumulator.

The contents of the accumulator being tested should be stored after
each execution of the shift or rotate instruction. Also- the contents
of the Condition Code register should be stored after eéch eight exe-

cutions of the instruction being used.

Arithmetic Logic Unit (ALU)

The function of the ALU is to perform addition, subtraction, and
logical operations (OR, AND, Exclusive OR, 1's complement and 2's
complement). Arithmetic comparisons can also be performed to set or
reset bits of the Condition Codes register (CCR) which afe testable

for use in condition branch instructions.

Proper verification of the ALU includes exe;ution and verification
of all assoéfated instructions in conjunction with worst case data pat-
terns to verify that the ALU can add, subtract, recognize a carry, half
carry, positive number, negative number and 2's complement overflow.
As the CCR is an intergral portiqn of the ALU, its contents should be

verified after execution of each instruction.

As in previous situations, the actual order of the instructiog and

data sequence should be structured such that, when possible, only instruc-

tions that have been previously verified are used for verification of
unused instructions. The actual data patterns must be chosen such that

the desired results will be generated.

-116-

Timing and Control Logic

Timing and control 1ogit verifiéation inc]udgs testing proper
generation of the Valid Memory AddressA(VMA), Bus A available (BA), and
Read/Write control signals (R/W). The control signals BA, VMA, and
R/W are generated according to the decode Qf each instruction with 30
different possible combihétions. Theréfore, each instruction must be

verified as producing the proper response of these signals.

| Interrupt Capability

The 6800 microprocessor unit has been designed to offer two priority
levels of hardware interrupt capability, the TRQ (maskable) and NMI

(non-maskable) interrupts, NMI having priority of IRQ.

Upon detection of an interrupt, the 6800 will enter the interrupt
state at the end of the instrhction being executed or after the com-
pletion of next instruction, depending upon what clock cycle of the

present instruction execution the interrupt has occurred.

The "I" bit of the Condition Codes register has been designated as
the mask bit for the IRQ interrupt. If an IRQ occurs and the "I" bit

is set, the interrupt is ignored. If not, the interrupt state is

entered.

The objectives of this tesf can now be stated as verification of

-117-

the following conditions.

1. Proper 6800 response to an IRQ interrupt by testing the data bus
for sforage of internal register contents, address bus for Stack
Pointer address generation during the above storage and the address
bus for generation of the TRQ addréss interrupt vector.

2. The "I" bit is set as a results of an TRQ interrupt.

3. That the 6800 will not respond to an IRQ interrupt when the "I"
bit of the CCR is set.

4. Proper response to an NMI interrupt when the "I" bif is set and
resef.

5. Priority of the Nﬁf'interrubt over IRQ by causing both signals to

indicate interrupts simultaneously.

A third mode of interrupt is under software control by means of the
SWI (Software Interrupt Instruction). Execution of this instruction
is not hardware related and will therefore be executed whenever it
occurs in the user program. ~This instruction is verified by testing
the data and address bus for proper storage of internal 6800 register

contents and the generation of the SWI address interrupt vector.

Execution of the WAI (Wait for Interrupt Instruction) stores all
internal register in the stack and then places the 6800 in an inactive
wait state. The device will remain in this state until either an IRQ
or NMI interrupt occurs. This instruction is verifjed by first obse?v—

ing the data and address bus during internal register content storage

-118-

and second that an TRQ and NMI interrupt will be allowed to respond as

previously described for these signals.

The Tﬁa and NMI signals are asynchronous and as such-should be
tested for interrupt geﬁerating capébi]ity by causing the interrupts
to occur within several timeframes. First each interrupt should occur
such that the recognition routine starts after completion of the pre-
sent instruction being executed at the time of interrupt and second,

after completion of the next instruction at the time of interrupt.

Instruction Decode Test

1

The Instruction Decode test verifies proper execution of :all jump,

branch, and subroutine instructions.

The major aspect of the jump instruction is to test for proper ad-
dress generation in response to the two addressing modes of this in-

struction.

Testing of the branch instructions requires execution of each
instruction and testing that (1) the branch address is generated, if
the branch condition is true, and (2) that the branch does not occur,

if the associated_condition is false.

Subroutine instructions tests are required to verify that (1) the

Stack'Pbinter address occurs on the address bus simultaneously with the

-119-

return address on the data bus, (2) the correct subroutine address is
generated, and (3) that the return from subroutine generates the Stack
Pointer address on the address bus for the purpose of pulling the

return address from stack. '

-120-

1802

The 1802 microprocéssor unit is a static 8-bit device employing
CMOS technology. The device provides the following internal aréhit-

ecture (see Figure 11).

1. 16-bit by 16-bit Register Array

2. 8-bit Arithmetic Logié Unit (ALU)

3. 8-bit Accumulator (D)

4. Two 4-bit Instruction Registers (I and N)

5. A 4-bit Register P used to specify which of the 16-bit Registers
in (1) is the present program counter.

6. A 4-bit Auxiliary Register (X)

7. An 8-bit Temporary Register (T)

8. A 1-bit Register (Q)

Examination of the instructién set of the 1802 reveals that the
major data path to and from the internal register array is through the
D register. Therefore, this module of the 1802 is of extreme impor-
tance and the test program will exercise this module fully as an initial
starting point. Next, the uniqueness and functionality of the 16-bit by
16-bit fegister array will be proven. Arithmetic and Logical instruc-

tions will be tested next followed by the Branch and Skip instructions.
A unique feature of the 1802 is a built-in DMA feature which uses

an internal register as a counter for the number of bytes transferred

‘to or from memory. This feature is evaluated for both the DMA in and

-121-

DMA out modes of operation. The Interrupt feature is verified for

proper operation and also tested fbr its masking capability.

D Register:

The importance of the D register is its function.of being the path
by'which to load or store.contents of the scratch pad register array
via the data bus and as a working register of the arithmetic logic unit.
The initial phase of the test on this register is to ensure the ability
to load worst case data patterns in the D register and also store the

same.

Execution of this test consists of a series of load instructions
to walk a 1 through a field of 0's and-a 0 through a field of 1's,
each load instruction being followed by a store to verify the load

operation.

Register Array

The purpose of the register.array is to provide a program counter,
16-bit vectored interrupt address storage, DMA address counter, and
general purpose scratch pad registers. ~ The initial test on this module
consists of a series of instructions to verify that each register can
be loaded to worst case data patterns and that each register can be
accessed for the retrival of this information. A1l input and storage

of data patterns to the register array will take place through the D

-122-

register. An important point is that at all times one of the 16
registers is‘being utilized as a program counter, as determined by

the value in the 4-bit P register. Upon initial*start-up'and reset of
the 1802, the P register is reset to 0, making R(0) the current pro-
gram coﬁnter. Therefore registers R(])-through R(15) are tested first
and then the SET P instruction must be executed to.change the register-
being used as the program counter. Register R(0) is then tested in
the same manner as the otheré. Due to the use of-R(O) as a program
counter during this exercise, R(0) éhou]d be stored through the D
register at the completion of this test to check that it has been in-
crementing during the execution of the test. Then a test sequence
which loads and stores worst case data patterns can be executed.

The actual test sequence of loading and storing data patterns in the
register array should use different data such that the uniqueness of

each register is proven.

The next portion of the Register Array test will verify operation

of the increment and decrement instructions, INC and DEC.

The procedure is to verify that each of the 16 registers of the
register array can increment and decrement throughout the entire range
of 0 to 2!° -1. Also to be verified is the over and underflow charac-
teristics of each register. Registers R(1) through R(15) are to be
tested first with R(0) acting as the program counter. Then R(0) is

tested with R(1) as the program counter. The test procedure is as

-123-

follows:

1. Reset device.

2. Load registers R(2) through R(15), each with a distinct data pat-
tern.

3. Load register R(1) with 0 and using the increhent N instruction,
cause this register to increment from 0 to 215 1. Then execute
the increment instruction an additional ;ime'to cause R(1) to
overflow to 0. Each increment instruction should be followed by
PUT Tow register N and PUT high register N instructions to verify
the increment.

4. At ;he-comp]etfon of step 3, all other registers should be stored
on the dataAbus to verify that no destructive interéction has
occurred. |

5. The_decrement register N instruction is now executed to cause
register R(1) to decrement from 0 to 2]5 -1, and then to O. Again,'
each decrement instruction is followed by a'PUT low register N and
PUT high register N instruction to verify eacH decrement.

6. Registers R(2) through R(15) are now read onto the data bus to
verify no destructive interaction.

7. This brbcess is repeated until registers R(1) through R(15) have
been tested.

8. ASETP instfuction is egecuted to change the current program counter
from R(0) to R(1).

9. Register R(0) is stored on the data bus and its present contents

verified.

-124-

10. R(0) is loaded to.0 and the same procedure is followed for veri-

fication as described above.

X Register

The purpose of the X register is to hold a four'bit code used to
designate one of the 16 registers of the register array for use in
certain load and store instructions. Upon initial reset of the MPU,
‘this register is reset to 0 and then may be loaded to another value
by the SET X instruction. Proper verification of the operation of
this register is to reset the MPU, and execute a load via X or store
via X instruction. " The value which will appear on the aadress bus
will be the contents of register R(0) which is é]so the current con-
tents of the program counter as a reset will clear the P register to
0.

At this point the SET X instruction is executed to designate R(1)
and the load via X of store via X instruction executed. This process
is repeated until all registers have been designated by the X register.
It is important to note that all registers sHouId be loaded to dif-
ferent values in order to prove that the R(X) register is actually

present on the address bus.

P Register

The P register is used to hold a four bit code used to designate

-125-

which of the 16 registers of the register array is the current program
counter. The verification of the ?egister operation is performed in a

similar manner to that of the X register.

The device is reset, which should clear the P register and register

R(0) to 0.

The initial portion of this program after reset should load the
register array such that each register contains a different value. By
doing this, each register can be uniquely identified as it is gated to
the address bus. After verification of R(0) as the program counter
the SET P instruction shou]d be executed to change the current program
counter from R(0) to R(1) and the address bus monitored. A1l remaiﬁing

values of the P register are verified in the same manner.

Q Register

The @ register is a 1-bit register which can be set or reset under
program control. The Q register bit is also cleared after an initial
clear is performed. Also, the status of this bit can be tested by
several of the branch instructions. However, this portion of the Q
register test will not utilize the branch instruction as a part of the

test.

The 1802 is initially cleared and the Q bit tested for the logic O

- state. The SET Q instruction is executed and then reset, the state of

-126-

the Q bit being tested after each operation. This procedure can be

repeated several times to ensure proper operation. -

Arithmetfc ngit Unit

The test of the arithmetic logic unit is divided into two sections,
the logical operations and the arithmetic operations. Also all ad-
dressing modes included in this portion of the instruction test are

verified together with the operation of the DF flag.

Logical Instruction Test

The purpose of this test is to verify that all logical instructions
are operational and that worst case data patterns have no effect on

functionality of the device.

For the instructions of OR, Exclusive OR, and AND, worst case data
patterns are defined as those patterns that cause each bit in the result
to be either set or reset according to the instruction being tested.

Examples -are illustrated in Figures 18, 19, and 20.

Initially the OR instruction is executed with the data patterns
specified. The D register is loaded, the OR instruction executed and
the D register stored on the data bus to verify the results. Th{s test
is executed twice. The first time the OR instruction is used and the

- second time the OR IMMEDIATE instruction is used.

-127-

Pattern 1 ' Byte 1
Byte 2
Result

Pattern 2 . Byte'1
Byte 2

Result

Pattern 3 Byte 1
Byte 2
Result

Pattern 4 Byte 1
Byte 2 -

Result
Pattern 5 Byte 1

Byte 2

Result

FIGURE 18: 1802--0R Data Pattern

-128-

Pattern
Pattern
Pattern
Pa;tern
Pattern
Pattern
Pattern
Péttern
Pattern

Pattern

10

— —t O

Byte 1 1010101
Byte 2 0101010
Resu]t 1111111
Byte 1 01010101
Byte 2 10101010
Result 11111111
Byte' 1 11111111
Byte 2 11111111
Result 000000O00O0
Byte 1 1171111 11
Byte 2 00000000
Result 11111111
Byte 1 00000000
Byte 2 117111111
Result 11111111
Byte 1 00000000
Byte 2 00000000
Result 00000000
Byte 1 10101010
Byte 2 00000000
Result - 10101010
Byte 1 01010101
Byte 2 00000000
Result " 01010101
Byte 1 000000O0O
Byte 2 10101010
. Result 10101010
Byte 1 00000000
Byte 2 01010101
Result 01010101

FIGURE 19: 1802--Exclusive OR Data Pattern

-129-

Pattern 1 ' Byte 1
Byte 2
Result

Pattern 2 ' Byte 1
| Byte 2
Result

Pattern 3 Byte 1
Byte 2
Result

Pattern 4 Byte 1
| Byte 2
Result

Pattern 5 - . Byte 1
" Byte 2
Result

Pattern 6 . Byte 1
| Byte 2
Result

FIGURE: 20: 1802--AND Data Pattern

-130-

The Exclusive OR; EXCLUSIVE or IMMEDIATE, AND -and AND IMMEDIATE

instructions are executed in the same manner.

The four shift instructions are verified using the saﬁe philosophy
for worst case data patterns. as for the OR and AND instructions. One
of the functions of the DF bit will be used and therefore requires

verification.

The procedure for verification consists of loading the D register
with a test pattern, executing the particular shift instruction eight
times, storing the contents of the D register after each instruction

execution.

Verification of the proper operation of the DF bit can only be made
by designfng a test program sﬁch that the DF bit is left to an expected
known>state. This state is then used as a starting point for the next
data pattern. For example, if the completion of a shift instruction
has put the DF bit to a logic 1, the next shift instruction to be exe-
cuted would be one that shifted the DF bit to either the least or most

significant bit of the D register.

For the shift instructions, the following data patterns can be used

as initial values:

Shift Right: 516> Mg FFigs 80160 90)¢
Shift Right with Carry: 55]6’ AA]6’ FF]6’ 816> P116° ¢¢]6

-131-

Shift Left: 5516’

Shift Left with Carry:

Arithmetic Operations

Migs FFigs 8Pygs 8106

5506 Ahygs FFigs 8014, P16, P g

"~ The object of this portion of the test progrqm on the ALU is to

verify that the ALU can add, subtract, with and without a carry or

borrow, respectively, detect an overflow or underflow condition via

the DF bit, and that the register and immediate addressing modes are

functional.

Suggested data patterns for the arithmetic instructions are as

follows:
Add, Add Immediate:
Add with Carry,
Add with Carry Immediate

Subtract,

Subtract Immediate

Subtract with Borrow,

Subtract with Borrow Immediate

-132-

FFig t0 FFigs 5546

ARigs 9B to 00,4, FD to OF,

to 55 , AA._ to
16

16

0016

aal;

to CC]G, FF._. to FF]G? F¢]6 to

16

FF]G

from 5516

from FF, _, 55

16 from AA. ., AA

16 16 16

FFi6 from ¢]16’ ¢F16 from @F
60

16> P16
from 99

from 7¢]6

16> 716

M s s
Subtract Memory FF g from FF . 55,¢ from AR o> AR, from
Subtract Memory Immediate 55]6
Subtract Memory thh Borrow, FF]G from ¢]]6’ PF g from ¢F]6,
Subtract Memory with Borrow Immediate
Y W orr 1te 8”16 from 9916’ Gﬂ]ﬁ from 7¢]6

Two methods exist for verifying proper operation of the DF bit
during execution of these instructions. The first is to follow each
- add or subtract instruction by an add with carry or subtract with
borrow. This second add or subtract instruction will verify the proper
DF bit operation if the results are whét is expected as a result of the

instruction execution.

~ The second is to execute a shift right withlcarny or shift left
with carry to put the value of DF into the MSB or LSB of the D register
respective1y. The contents of the D register afe now read and the MSB
or LSB verified to reflect the expected state of the DF bit. This
is the preferred method for several reasons. First, if a failure
occurs using the first method, the cause of the failure could be that
the ALU did not detect the'original overf]ow'or could nét execute the
add or subtract with carry. As the shift instructions have previously

been verified, this mode of verification pinpoints the cause of failure.

Branch and Skip Instructions (Long & Short)

The branch and skip instructions are verified by causing the con-

dition tested by the particu]ér instruction to occur and then executing

-133-

the associated branch or skip instructioni The address bus is tested
for generation of the expected branch address. Alternately, the oppo-
site condition is verified by executing the necéssary branch or skip
instruction'when the branch condition does not exist and:verifying
that the branch or skip does not exécute. The conditions tested for

in the branch and skip are the fo]]owing{

'Short Branch if: D=9

" D#9D
DF =1
DF = 9
Q=1
Q=290
EFL = 1
EF1 = 0
EF2 = 1
EF2 = ¢
EF3 =1
EF3 =90
EF4 =1
EF4 = 9

Always, Never

The short branch and long branch are similar with the exception
that the long branch provides an absolute branch address, while the
short branch provides an address which is 0 to +255 locations from the

address containing the short branch instruction. The conditions tested

-134-

for the long branch instruction is limited to the states of the D

register, DF bit, and Q bit.

Long Branch if:

Specifically these are:

D=9 '
D#P
DF = 1
DF # 1
Q=1
- Q71

Always, Never

The skip instructions are similar to the branch instructions

except no branch address is required. The conditions tested are as

follows:
Short Skip:
Long Skip:

Long Skip if:

Never .
Always
D=9
D# 9
DF = 1
DF = 9
Q=1
Q=190
IE =1

-135-

Interrupt

The respdnse of the-1802 to an asychronous Interrupt is tested by

causing the Interrupt input to become active and vérifying that the

following states occur:

1. The inﬁtruction in ﬂrbcess at the fime of interrupt is completed.

2. The next machine cycle is a normal fetch except the address gated
to the address bus is from register R(1).

3. The X register ha§ been set to 2]0.

4. The state codes indicate Interrupt recognition.

5. The IE enable bit has been reset by causing the Interrupt input to
indicate additional Interrupts and verifying that they are ignored.

6. The values of registers X and P have been saved in the T register.
(This can be accomplished by execution of a MARK isntruction).

7. The Interrupt mode of operation is asynchronous by repeating the
test in every clock cyc]e-of instruction execution.

DMA-In-Out

The DMA-In-Out features are tested in a manner similar to that of

the Interrupt with all expected activities verified.

1.

DMA In

DMA-IN is caused to become active.

-136-

2. At the completion of the present instruction, verify the state
codes indicate DMA-In, register R(0) is gated to the address bus
and MWR is active.

3. Item 2 is repeated for as long as DMA-In remains active, with
register R(0) being incremented after each transfer.

4. Normal program execution is resumed when DMA-In becomes in-active.
DMA-Out

1. DMA-Out is caused to become active.

N

At the completion of the present instruction execution, the state

codes indicate DMA-Out, MRD is active, and register. R(0) is gated
to the address bus.
3. Item 2 is repeated for as long as DMA-Out is active.

4. Normal program execution is resumed when DMA-Qut becomes in-active.

At this point, the priority of the previous tests should be verified
such that a DMA and Interrupt request occur simultaneously. The order

of priority is DMA-In first, DMA-Out second, and-Interrupt last.

Input/Outbut Transfers

The test to Verify the input and output instruction capability of
the 1802 is performed ﬁeparately for proper operation. Each instruction
should be executed with all possible combinations of 1/0 device selec-
tions, testing for proper access of the least three significant bits on

output pins NO, N],'and N2, and the contents of register R(X) being

-137-

VI.

DC TEST REQUIREMENTS

Although the major portion 5f this report has been devoted to testing
of the functional characteristics of microprocessor units, thé importance
of DC testing should not be de-emphasizéed. As with other semiconductor
devices, microprocessor units malfunction as a.results of DC characteristics

being out of specification. Therefore, it is recommended that any complete

~test on a microprocessor unit include verification of the manufacturers

specified DC characteristics.

The commonly specified DC parameters are input and output voltage
levels, input and output currénts and leakages, tristate leakage currents,
power supb]y voltages and power supply currents. Proper verification and/or

measurement of each parameter should be performed, simulating the necessary

‘condition for accurate test execution. Refer to Attachment 1 for DC speci-

fications of each device.

-139-

VII. SURVEY SUMMARY

A. List of Companies Interviewed

Advanced Micro Devices, Sunnyvale, California
American Micro Systems, Incorporated, Cupertino, California
Boeiné Aerospace, Seattle, Washington

Burroughs Corporation, Pasadena, California
Chrysler Corporation, Hunstville, Alabama

Fairchild Systems & Technology, San Jose, California
General Electric Company, Pittsfield, Massachusetts
Hewlett Packard, Palo Alto, California

Hughes Aircraft Corporation, Culver City, Ca]ifornia
Intel Corporation, Santa Clara, California

Motoro]a, Austin, Texas

Motorola, Phoenix, Arizona

National Semiconductor, Santa Clara, California

RCA, Sommerville, New Jersey

Rockwell International, Anaheim, California
Tektronics, Beaverton, Oregon

Texas Instruments, Houston, Texas

-140-

B. REVIEW OF PRESENT MICROPROCESSOR TEST TECHNIQUES QUESTIONNAIRE

I. TEST EQUIPMENT
A. Tester (Which Device on Which Tester)
B. Clock Speed of Tester
C. Burn-in Equipment
1. Type Used
2. Static
3. Dynamic
4. What Type
II. DC TEST (PRODUCTION)
A. Parameters Tested -
]; What DC Parameters Are Tested
2. Are Voltage Measurements Done DC Static or Functional
3. IF DC, How Long Is Sample .
4. 1IF AC, Is VOH and VOL Measured-One Pass or Two Pass
Execution Time (Delete Overhead)

Overhead Time

o o

Percentagé of Total Test Program
E. Differences Between Wafer and Final Package DC Tests

F. Type of Failures Observed

IIT. FUNCTIONAL TESTS (PRODUCTION)
A. Test Pattern

1. - Method of Generation

-141-

2. Instruction Sequence (What Do.They Test For)
a. Modular |
b. Other
3. Gold Device
a. As A Comparison Test
b. As A Learn Method
c. Self Diagnogt{c (Board Tesf)
4. Pattern Length
5. Pattern Sensitivity
6. Frequency of Testing Device Output(s)
a. Each Cycle
b. End of Operation
c. Other
Functional Test Conditions
1. Device Timing
2. AC Parameters
a. Rise/Fall Times
b. Minimum Pulses
c. Access Times
3. Execution Time (Delete Overhead)
4. Overhead Time
5. Error Analysis
a. Why Device Failed
b. What Instruction
c. What Data Pattern

d. What Pin(s)

-142-

C. Percentage of Total Test Program "
D. Types of Failures Discovered
E. Differences Between Wafer and Final Package Functional Test Programs
CHARACTERfZATION EFFORTS
A. Parameters Characterized
1. Functional and AC
2. DC
B. Temperature Conditions
C. Burn-in Conditions
D. Form of Characterization Data Log
1. Histogram
2. Shmoo Plot
3. Other
E. Number of Devices Characterized
F. Department Responsible for Characterization
PRODUCTION TESTING
A. Température Conditions
1. Hold, Cold, Ambient
2. If Not Done, Why
B. Burn-in Conditions
1. What Temperature
2. AC or Static
3. What Loads
4. If Not Done, Why
C. Data Logging

1. Bin Classification

-143-

VI
VII.

2. Hardcopy

a. What Is Obtained
Location Performed
Percentage of Devices Screened

Department Responsible for Production Testing:

O M m O

38510 Specification--Yes/No (If Yes, Who Wrote It)
Types of Failures

WHAT TYPE OF PROBLEMS ARE YOU FINDING

RECOMMENDATIONS FOR USER TESTING OF MICROPROCESSORS

-144-

C. QUESTIONNAIRE RESPONSES

I. TEST EQUIPMENT

A. Tester
DEVICE
RESPONSE 8080 | 6800 | 8008 | 2901 | 1802
1. Fairchild Sentry II 2 1 1
2. Fairchild Sentry 600 2 2
3. Macrodata MD-154 1
4. Tektronics S-3260 1 1

5. Teradyne J277

6. Teradyne J283

7. Teradyne J293

8. In-House System

-145-

B. Burn-In Equipment

3. Commercially Available

4. Not Being Performed

DEVICE
RESPONSE 8080 | 6800 | 8008 { 2901 | 1802
1. Blue M 1 1 1
2. In-house Design 5 1 3

-146-

I1.

DC TESTS (PRODUCTION)

A. Parameters Tested

RESPONSE

DEVICE

8080

6800

8008

2901

1802

1. A1l Data Sheet
Parameters

2. A1l Data Sheet
Parameters Plus
Several Unspecified
Parameters

-147-

B. Voltage Measurements, Static or Dynamfc

DEVICE
RESPONSE 8080 | 6800 | 8008 | 2901 | 1802
1. Dynamic 4 2
2. Static : | 4 1
3. Clocked Very Slow 1 1

(Considered Static)

4. Static Where Possible 1 1
Dynamic Otherwise

-148-

C. Llength of Sample Time, If Voltage Measurements are Static

| DEVICE
RESPONSE - 8080 6800 8008 | 2901 1802
1. 5ms ‘1 |
2. 10