SLD™

Source Level Debugger
for the
PowerPack® Emulator

User's Manual

MICROTEK

Microtek International, Inc.
Doc. No. 149-001015
Part No. 14913-000

Trademark Acknowledgments

PowerPack is a registered trademark and SLD is a trademark of Microtek
International.

IBM, PS/2, LAN, and OS/2 are trademarks of IBM.

Microsoft is a registered trademark and MS, MS-DOS, and Windows are
trademarks of Microsoft Corporation.

Intel is a registered trademark and Intel386SX is a trademark of Intel
Corporation.

Motorola is a registered trademark of Motorola, Inc.
UNIX is a trademark of AT&T.
PC-NFS is a registered trademark of Sun Microsystems.

©1992, 1994, 1995 MICROTEK INTERNATIONAL
All Rights Reserved
Printed in the U.S.A

The material in this manual is subject to change without notice. Microtek International assumes no
responsibility for errors that may appear in this manual. Microtek makes no commitment to update,
nor to keep current, the information contained in this manual. The software described in this
manual is furnished under a license or nondisclosure agreement, and may be used or copied only in
accordance with the terms of the agreement. No part of this manual may be reproduced or
transmitted in any form or by any means without the express written permission of Microtek.

MICROTEK INTERNATIONAL INC

6, Industry East Road 3 Development Systems Division
Science-based Industry Park 3300 N.W. 211th Terrace
Hsinchu 30077 Hillsboro, OR 97124-7136
Taiwan, ROC USA

Tel: +886 35 772155 Tel: (503) 645-7333

Fax: +886 35 772598 Fax: (503) 629-8460

Table of Contents

Getting Started 1
Documentation 1
Related Publications 2
How to Contact Microtek 3
Emulator Parts 4
Emulator Power Requirements 5
Emulator Features 5
Host System Requirements and Recommendations 8
Starting an Emulator Session 8
Ending an Emulator Session 10
Getting Online Help 10
Compiling for Intel Processor Emulation 10
Compiling for Motorola Processor Emulation 11

MRI 12
Intermetrics 13
Sierra 13
Introl 14
Whitesmiths 14
HiWare 15

Defining the Debug Environment 17
Selecting Intel386 CX/SX and A-Step or B-Step Operation 17
Leveraging Previous Emulation Sessions 18
Starting a Log File 19
Mapping and Initializing Memory 20
Loading a Loadfile 23
Enabling Memory Access 28
Enabling Intel386 EX Expanded Memory 28
Managing Intel386 EX Signals 29
Turning Off a Motorola Watchdog Timer 30
Enabling Motorola Show Cycles 30
Programming Motorola Chip Selects 31
Using a Script 36
Keyboard Shortcuts 38

Table of Contents v SLD User's Manual

Debugging in Source and Stack

Viewing Source
Managing Breakpoints
Starting and Stopping Emulation
Examining Source After Emulating
Scrolling Trace With Source
Examining and Editing Variables
Viewing and Modifying the Stack
Configuring the Stack Window
Setting the Stack Base Address and Size

Debugging in Registers and Memory

Viewing and Modifying the CPU Registers
Editing the CPU Registers
Resetting the CPU Registers
Enabling the Target Signals

Viewing and Modifying Memory
Changing the Memory Window Display
Changing the Memory Contents

Viewing and Modifying the Internal Peripheral Registers
Changing the Peripheral Window Display
Changing the Peripheral Register Values

Debugging With Triggers and Trace

Address Formats
Symbolic Addresses
Line Numbers
Intel Numeric Addresses
Events
Trace
Controlling Trace Collection
Displaying the Collected Trace
Trace and Event Window Signals
Intel386EX Signals
Intel386CX Signals
Intel386SX Signals
MC68332/333 Signals
MC68331/MC68HC16Z1 Signals
MC68330 Signals
MC68340 Signals
MC68360 Signals

39

39
41
45
48
49
49
51
51
53

55

55
56
56
56
57
58
59
61
62
63

65

65
65
67
68
70

73
73
74
75
75
76
77
78
79
81
81
83

Table of Contents vi

SLD User's Manual

Triggers
Defining a Trigger
Examples of Triggering
Summary of Ways to Trigger

powerpak.ini File Reference

Toolbar Reference

Toolbar Menus
File Menu
Configure Menu
Layout Menu
Toolbar Buttons
Map Dialog Boxes
Map Dialog Box Buttons
Map Dialog Box Field Values
Load Dialog Boxes

Shell Window Reference

Shell Window Menus
File Menu
Edit Menu
View Menu
Options Menu
Entering Commands in the Shell Window
Shell Window Commands
Notational Conventions
Commands and System Variables Grouped by Functionality
Command Dictionary

Source Window Reference

Source Window Menus
File Menu
Edit Menu
View Menu
Run Menu
Breakpoints Menu
Options Menu
Source Window Buttons
Function Popup Menu

84
84
86
92

95

109

109
109
110
113
113
115
116
118
119

123

124
124
125
125
125
127
128
128
129
133

183

183
184
185
188
189
190
193
197
198

Table of Contents vii SLD User's Manual

Variable Popup Menu

Variable Window Reference

Variable Window Contents
Variable Window Menus
Edit Menu
View Menu
Variable Menu

Breakpoint Window Reference

Breakpoint Window Menus
File Menu
Breakpoints Menu

Breakpoint Window Buttons

Stack Window Reference

Stack Window Menus
File Menu
Options Menu

CPU Window Reference
Options Menu

Memory Window Reference

Memory Window Menus

Edit Menu

View Menu

Options Menu
Single-Line Assembler Dialog Box

Peripheral Window Reference

Peripheral Window Menus
Edit Menu
View Menu
Register Edit Dialog Boxes

Event Window Reference

Event Window Contents

199

201

201
202
202
203
204

205

205
205
206
208

209

210
210
210

213
214

217

218
218
220
222
223

225

225
226
227
227

229
230

Table of Contents viii

SLD User's Manual

Event Window Menus 230

File Menu 231

Edit Menu 232

Trigger Window Reference 233
Trigger Condition Fields 234

Trigger Action Fields 235

Trigger Window Menus 236

Edit Menu 236

Options Menu 236

Level Menu 237

Trace Window Reference 239
Trace Window Menus 240

File Menu 240

Edit Menu 241

View Menu 242

Trace Menu 243

Timestamp Menu 244

Goto Menu 245

Glossary 247
Index 259
Table of Contents ix SLD User's Manual

Getting Started

The terms “PowerPack emulator” and “emulator” refer to the PowerPack® in-circuit
emulator for embedded system development. The terms “SLD”, “emulator software”, and
“debugger software” refer to the SLD™ source-level debugger for the PowerPack® emulator
and PowerScope™ hardware-assisted debugger.

SLD runs under Windows 3.1 and Windows for Workgroups 3.11.

This chapter describes the parts, features, and documentation of the emulator and tells you
how to contact Microtek International for information and technical support. This chapter
also briefly describes how to start and end an emulator session and considerations for

various compiler toolchains.

Documentation
Up And Running Chapter
In 30 Minutes

User’s Manual

Getting Started

Software Installation
Hardware Installation

Tutorial

Emulator Architecture

Chapter
Getting Started

Defining the Debug
Environment

Debugging in Source

Debugging in
Registers and Memory

Contents
Parts; features; documentation; support

Configuring your PC or workstation and
installing the SLD software

Installing the hardware and running the
confidence tests

Practicing basic emulator commands and tasks

Schematics; physical dimensions; pinouts

Contents

Parts; features; documentation; contacting
Microtek; starting and ending an emulator
session; compiling a program for emulation

Configuring memory and registers; arranging
your desktop; using an initialization file

Viewing source code, disassembly, and stack;
editing variables; controlling emulation

Accessing CPU and peripheral signals and
numeric or disassembled memory contents

SLD User's Manual

1 Getting Started

Debugging with
Triggers and Trace
powerpak.ini File
Reference

Toolbar Reference

Shell Window
Reference

Source Window
Reference

Variable Window
Reference

Breakpoint Window
Reference

CPU Window
Reference

Stack Window
Reference

Memory Window
Reference

Peripheral Window
Reference

Event Window
Reference

Trigger Window
Reference

Trace Window
Reference

Related Publications

For information on
Windows 3.1; Windows

for Workgroups 3.11

Your target processor

Your toolchain

Controlling emulation and trace collection
with triggers; numeric and symbolic addresses

powerpak.ini file contents

Toolbar menus, buttons, and dialog boxes
Shell window contents, menus, dialog boxes,
and commands

Source window contents, menus, buttons, and
dialog boxes

Variable window contents, menus, and dialog
boxes

Breakpoint window contents, menus, buttons,
and dialog boxes

CPU window contents, menu, and dialog boxes

Stack window contents, menus, and dialog
boxes

Memory window contents, menus, and dialog
boxes ‘

Peripheral window contents, menus, and
dialog boxes

Event window fields, menus, and dialog boxes

Trigger window fields, menus, and dialog
boxes

Trace window contents, menus, and dialog
boxes

See

Documentation from Microsoft

Intel or Motorola chipset documentation

Documentation that came with the compiler,
assembler, and linker you are using

Getting Started

2 SLD User's Manual

IEEE-695 format

S-record format

OMF86 or OMF386

C++ name mangling

How to Contact Microtek

IEEE Standard 695, Trial Use for
Microprocessor Universal Format for
Object Modules, Microtec Research Inc.,
revision 4.1, Dec. 21, 1992

Documentation that came with the compiler,
assembler, and linker you are using

Documentation from Intel

The Annotated C++ Reference Manual,
Margaret Ellis and Bjarne Stroustrup
(Addison-Wesley, 1990)

To register for technical support and to automatically receive product update information,
complete and mail the registration card enclosed with the emulator.

Contact Microtek/DSD (see the number below) to purchase an Extended System Warranty
(ESW). An ESW provides firmware, software, and hardware updates and priority service, in
addition to all repairs.

As a Microtek customer, you can contact Microtek technical support for
help with an emulator problem during your warranty period. The email
and fax contacts are available 24 hours a day, 7 days a week. The voice
phone numbers are available as listed below.

Internet email

Microtek/DSD,
Western USA

Microtek,
Eastern USA

Microtek,
Hsinchu, Taiwan

Adara International,
Taipei, Taiwan

csupport@microtekintl.com

(503) 645-7333 voice; (503) 629-8460 fax
(voice contact available Monday through
Friday, 8:00 am to 5:00 pm USA Pacific Time)

(610) 783-6366 voice; (610) 783-6360 fax
(voice contact available Monday through Friday,
8:00 am to 5:00 pm USA Eastern Time)

+886-35-77-2155 voice; +886-35-77-2598 fax

" (voice contact available Monday through Friday,

8:00 am to 5:00 pm Taiwan Time)

+886-2-501-6699 voice; +886-2-505-0137 fax
(voice contact available Monday through Friday,
8:00 am to 5:00 pm Taiwan Time)

Before you call, please read the PowerPack® Emulator Problem Report
Form that came with the emulator. The form is also in the problem.txt

SLD User's Manual

3 Getting Started

Emulator Parts

file, in your SLD installation directory (e.g. c:\powerpak) with the
emulator software.

When you call, please be at your computer with SLD running and have
the emulator documentation and filled-out problem report form nearby.

‘When you take the emulator out of its shipping package, check to be
sure all the following are present (see the figure following this list):

the main chassis
an EPOD

a processor-specific probe for real-time emulation (yours may look
different from the one in the picture)

cables to connect the probe to the EPOD and the EPOD to the
chassis

a stand-alone self-test (SAST) or null target board (yours may look
different from the one in the picture) for running emulator system
diagnostics and code without your target system

an RS-232C cable for communication between the chassis and your
PC or workstation

two BNC cables for trigger-out and trigger-in signals
a power cord

three SLD software program disks

Getting Started

4 SLD User's Manual

EPOD-Probe-Cable Assembly Program Disks
with SAST or Null Target Board

RS-232 Cable Power Cord

Emulator Power Requirements

CAUTION

Ensure the target is powered off before you connect or disconnect the
PowerPack emulator. Otherwise, both units will be severely damaged.

Turn off the target system before turning off the emulator. Power must
be applied and removed in the correct sequence. Failure to follow this
sequence will severely damage your target system and the emulator.
Turn power on and off in the following sequence:

1. Apply power to the emulator.

2. Apply power to the target system.

3. Remove power from the target system.
4. Remove power from the emulator.

Ensure the line voltage selector is correctly set before applying power
to the emulator.

The emulator chassis arrives from the factory configured to accept 115
VAC. For 220 VAC, be sure the emulator is powered off, then use a
pen to change the line voltage switch to 220 VAC. The switch is

SLD User's Manual

5 Getting Started

located above the power cord input jack on the rear of the main chassis.
The following figure shows the rear of the emulator main chassis.

Voltage Selector

O
ETHERNET
© © RS-232
9 oG
Power Switch Power Connector J2 Ji

Emulator Features

The emulator main chassis, emulation pod, and probe module are
connected by ribbon cables. A variety of adapters are available to
connect the probe module to the target system. Contact Microtek for
the appropriate adapter for your target processor package type.
Connectors are provided for state probe clock and multiprocessor
synchronization.

Communication between the main chassis and the PC host is via RS-
232C (57600 bps) communications. Optionally, you can configure the
emulator for an ethernet TCP/IP network for Sun Microsystems PC-
NEFS or for an IBM OS/2 LAN Server.

The emulator automatically configures itself for SV or 3V operation.

You can substitute emulator-controlled overlay memory for your target
RAM or ROM memory. Overlay memory allows zero wait states.

e For Intel processors, you can map 1M to 4M bytes of overlay RAM
as target system memory, with up to 16 regions aligned on 4K-byte
boundaries. The region sizes are multiples of 4K bytes.

¢ For Motorola processors, you can map 256K to 1M bytes of overlay
RAM as target system memory, in two segments aligned on 64K-
byte boundaries. The segment sizes are multiples of 64K bytes.

Getting Started 6 SLD User's Manual

The PP SLD (PowerPack Source Language Debugger) software runs as
a Microsoft Windows 3.1 or Windows for Workgroups 3.11 application
with context-sensitive online help. Besides using a mouse or Windows-
style keyboard entry with menus and buttons, you can enter commands
via the SLD Shell window command line.

You can open several SLD windows at once. For example, you can
monitor variables and view the trace while debugging at the source
level. You can view two sections of source code simultaneously in the
Source window. You can have up to 20 different Memory windows
open simultaneously with various numeric, ASCII, and disassembly
views of memory.

You can monitor the stack, the CPU registers, the peripheral registers
(as appropriate for your processor), and memory contents during
emulation.

A single-line assembler is available for patching loaded code.

You can debug from the vantage of your C and assembly language
source:

e All symbol types are supported, including static variables, stack-
based local variables, register-based variables, structures, arrays,
and pointers.

e You can selectively load object code and symbolic information into
target or overlay memory and into the symbol table, for load
formats including OMF86 and OMF386 for Intel targets and
IEEE-695 and S-record for Motorola targets.

e Source display formats include C and assembly language from your
source files, disassembly from memory when the source files are
unavailable, and disassembly from memory interleaved with the
corresponding lines from your source files.

e Emulation control includes Go and Step operations of specifiable
granularity relative to lines, statements, and function calls, with
breakpoints settable on a source line, on a statement within a line,
and on the address of a particular instruction.

Real-time, full-speed tracing is available:

* You can configure a single buffer to capture 256K bytes of trace; or
256 buffers to capture 1K bytes each, or various intermediate
combinations of buffer size and number of buffers.

e You can collect trace before, after, or centered around a specified
event or sequence of events.

e You can search the collected trace to find a specific event.

SLD User's Manual

7 Getting Started

You can display trace as instructions, bus cycles, or clock cycles.

Trace information can include signals, addresses, and data, at each
bus or clock cycle, and timestamps for each trace frame relative to
a specific event or relative to the preceding trace frame.

You can link the Trace and Source windows to scroll together.

Trace control and emulation control are independent of each other.
During emulation, you can start and stop trace collection and view trace
without affecting emulation.

Besides manually starting and stopping trace and emulation, you can
define up to four sequential triggers to conditionally control emulation
and trace collection. Each trigger is a logical combination of up to
eight events, with optional counter and timer dependencies:

An event is defined as inclusive, exclusive, and masked address
and data ranges or patterns and various signal values.

With multiple buffers specified, a triggered action can capture one
buffer and start filling the next. You can break emulation when all
the trace buffers are full.

You can control triggering relative to events by programming two
10-bit counters or one 20-bit timer.

You can set breakpoints by clicking on a source line or from the menus:

256 software breakpoints are available.

For Intel emulation, up to four hardware breakpoints and for
Motorola emulation, two hardware breakpoints are available.

The emulator automatically chooses whether a breakpoint is set in
hardware or in software; for Intel emulation, you can access the
debug registers to explicitly specify a hardware data or execution
breakpoint.

Host System Requirements and Recommendations

An Intel486 or Pentium based PC or 100% compatible system

MS-DOS 5.0 or 6.x with Windows 3.1 or Windows for
Workgroups 3.11 running in 386-enhanced mode

At least 6M bytes of RAM

At least 5M bytes of free memory after you have loaded Windows
or Windows for Workgroups and any other applications besides
SLD.

Getting Started

8 SLD User's Manual

e At least 5M bytes of available disk space

e A VGA or Super VGA graphics card and color monitor (a graphics
accelerator card recommended to boost performance; a monitor
capable of at least 640x480 operation recommended)

e A mouse

e A serial port for connection to the emulator (16550 UART
recommended for operation at 57.6K baud)

e At least 4M bytes for a swap file (permanent swap file
recommended, with a disk cache such as smartdrive for improved
Windows performance)

o Config.sys entries of at least Files=30 and Buffers=30

Starting an Emulator Session

| CAUTION I

PowerPack.
SLD

Turn on the emulator before turning on your target system. Power
must be applied and removed in the correct sequence. Failure to
follow this sequence will severely damage your target system and the
emulator. Turn power on and off in the following sequence:

1. Apply power to the emulator.
2. Apply power to the target system.
3. Remove power from the target system.

4. Remove power from the emulator.

Once the software is installed on your host computer, the firmware is
loaded into your emulator, and your target system and the emulator are
powered-on, start an emulation session from the PowerPack SLD icon
(see figure at left).

The Toolbar is the first window open when you invoke SLD and must
remain open throughout your emulation session. Closing the Toolbar
exits SLD. Minimizing the Toolbar hides any other open (including
minimized) SLD windows; restoring the Toolbar redisplays (with the
same screen layout) any SLD windows that were open when you
minimized the Toolbar.

The following figure shows the Toolbar. For some emulators, the
buttons for unavailable operations are grayed-out; for example, the
Periph button is nonfunctional on the Intel386 CX/SX emulator because
no peripheral registers are available.

SLD User's Manual

9 Getting Started

= PowerPack SLD Toolbar [~ |
File Configure Layout Windows Help
Setup Target Emulation Trace Misc

Map | Load| Tigger] Sowrce] Stack| CPU | Mem| Periph] Go | Halt Start | Stop | Show

Shell |

Buttons and menus on the Toolbar provide quick access to the most
frequently used commands and other SLD windows. When you start an
emulator session, use the Toolbar to map overlay memory, load code
and symbols, and open the Source, Memory, and Shell windows for
further work. Also, you can use the Toolbar to conveniently open the
Peripheral, CPU, Trigger, and Trace windows, start and stop emulation,
and start and stop tracing.

Before loading your program, map any overlay memory you need.
Also, you may want to preconfigure your processor chip selects or other
registers as described in the “Defining the Debug Environment”
chapter.

Be sure your loadfile is in OMF86 or OMF386 for an Intel emulator or
in IEEE-695 or S-record format for a Motorola emulator. Intel-
compatible toolchains generally provide options for generating the
appropriate OMF. Many Motorola-compatible toolchains include a
converter for turning the toolchain vendor’s proprietary format into
IEEE-695 format. Contact your software development toolchain vendor
for information on generating the appropriate loadfile format.

To debug at the source level (i.e. with source code and symbolic names
for functions and variables), you must retain symbolic debugging
information in your loadfile. Use compiler, assembler, and linker
switches to suppress optimization and to add symbolic information. See
your toolchain documentation.

You can load files while the emulator is running. Be sure loading is at
CAUTION a location other than where the program is running. Loading at a

location that is in use can halt emulation in an unpredictable state.

Ending an Emulator Session

To end an emulator session, do one of:
e Choose the Exit command from the file menu on the Toolbar.
e Double-click the system box in the upper left corner of the Toolbar.

e With focus on the Toolbar, press <Alt><F4>.

Getting Started 10 SLD User's Manual

| CAUTION I

Turn off your target system before turning off the emulator. Power
must be applied and removed in the correct sequence. Failure to
follow this sequence will severely damage your target system and the
emulator. Turn power on and off in the following sequence:

1. Apply power to the emulator.

2. Apply power to the target system.

3. Remove power from the target system.
4

Remove power from the emulator.

Getting Online Help

g:
u}

PowerPack.
SLD Help

Whether or not SLD is active, you can invoke the SLD online help
directly from Windows Program Manager. From the PowerPack SLD
group, choose the Help icon (see figure at left).

SLD online help conforms to the standard Windows help interface, as
described in your Microsoft Windows documentation. From any SLD
window, open the Help menu and choose a Help category; or, press
<F1> at any time. In most SLD dialog and message boxes, you can
choose a Help button for context-sensitive help.

If this is the first time you are using Help, you may want to choose
"How to Use Help" from the Help menu. (Or, press <F1> twice.)

Compiling for Intel Processor Emulation

Because of standards developed for Intel OMF86 and OMF386 loadfile
formats, there is little difference in the output formats of most Intel
development toolchains.

When using the Metaware HC toolchain, compile with the switch
Optimize_for_Space (-Os) OFF and the switch Align_Routines ON.
This combination aligns the line number information for function entry
points on the actual function execution addresses. This alignment is
necessary for SLD to set source line breakpoints on the start addresses
of the function entries and to successfully display local symbols for
inspection.

When using the Borland C compiler, before loading your OMF386
loadfile, set the emulator’s maximum bitfield size to 16 bits. On the
SLD Shell command line enter:

maxBitFieldSize 16

SLD User's Manual

11 Getting Started

When using PharLap LinkL.oc 7.1, you can include symbolic
information for register variables with LinkLoc’s -regvars switch. The
emulator supports register variable extensions to the Intel symbol table.

Compiling for Motorola Processor Emulation

Because of implementation-dependent variations in IEEE-695 loadfile
formats, the PowerPack emulator supports different Motorola-
development toolchains differently. This section describes
considerations for using the supported toolchains. For a list of currently
supported toolchains, see the readme file installed with SLD.

You must specify the compiler before loading your first file. Once you
have specified a compiler, you need not specify it again unless you
change compilers. The first time you load a file using the Toolbar Load
button or the Source window File menu Load item, the emulator
displays the Compiler Used dialog box. Select one of the listed
compilers.

If you load the file using a Load command on the Shell command line,
the Compiler Used dialog box does not appear. Before loading, enter a
CompilerUsed Shell command to specify the compiler as Hiware,
Intermetrics, Introl, MRI, SDS CrossCode, Sierra, or Whitesmiths. Or,
in the Source window, open the Options menu, choose Compiler Used,
and select the appropriate compiler. (For the most current list of
supported toolchains, immediately after installing SLD look in your
windows/powerpak.ini file [ToolChain] section.) If your toolchain is
unsupported, specify it as Unknown.

If the code and data section names in your loadfile are not the default
section names generated by your compiler, edit the [ToolChain] section
to describe the section names in your loadfile. For example, if you
generate a loadfile using the MRI compiler but with section names
mycode and mydata, change the MRI= line in [ToolChain] as follows:
[ToolChain]

Compilers=Unknown,MRI,...

CompilerUsed=MRI

MRI=mycode,mydata

For more information on compiler support in powerpak.ini, see the
“powerpak.ini File Reference” chapter.

The PowerPack emulator and SLD software are not guaranteed to
work properly with unsupported toolchains.

| CAUTION I

Getting Started

12 SLD User's Manual

MRI

Use the following switches:

-g compiles with debug symbols.

-Gf embeds the source path in the loadfile during
compilation.

-O<x> (where Xis a letter designating an optimization) is

optional. Supported optimizations include
algebraic simplification, constant folding, strength
reduction, redundant code elimination, unreachable
code elimination, local optimizations performed
globally and loop optimization (-Ol), and register
coloring (-OR). Register coloring uses one register
for multiple variables each of which has its own
lifetime information. This includes factorization,
dead code elimination, unused definition
elimination, global constant propagation, global
copy propagation, and branch merging.

Avoid using -Oc, -Og, or -Oi.
-Wa, -f’'NOPCR” prevents the assembler from generating PC-relative
jumps.
The MRI compiler truncates long variable names to 125 characters.
Also, SLD recognizes only the first 125 characters of such names.

For bit fields, only some type information is preserved. The compiler
uses a default unsigned type for all types of declared bit fields.

Before modifying an unused local or parameter variable, verify its
storage location with a DisplaySymbols Shell command. The MRI
compiler optimizes storage allocation by placing such variables into a
scratch register, usually AO for pointers and DO for other types.

Variables in previous stack frames unused after a function call may be
assigned to a scratch register which may, in turn, be used by a
subsequent function. Unused parameters can also remain on the stack
after function entry. If that occurs, the values displayed for such
variables in the Variable window may be incorrect. To discover
whether the compiler added housekeeping code to ensure such variables
are popped off the stack, in the Source window open the View menu
and check Mixed Source And Assembly.

If you use a tool (such as Cfront) to generate C source from C++ source,
then use the MRI C compiler and linker to generate an IEEE-695
loadfile from the C source, the line number records in the loadfile will

SLD User's Manual

13 Getting Started

match the C++ source lines not the C source lines. The C++
preprocessing puts #line directives in the C source corresponding to the
original C++ source line numbers. Use a text editor to delete these
directives before compiling the C source, to ensure the line numbers in
your loadfile match the C source text in the SLD Source window. This
match is necessary for tasks such as setting breakpoints interactively
and selecting symbols in the Source window.

Besides the line number information, the C source contains information
about the original C++ source file. To use the C source, you must
delete the C++ information. For example, from a C++ source file
named file.cc, the name file_cc will appear in the C source. Change
all such occurrences to the name of your C source file (e.g. file_c for a
C source file named file.c).

Intermetrics

Use the following compiler switches:
-d generates debug information.
-do turns off optimization

-nr is optional. This switch optimizes for algebraic simplification,
constant folding, strength reduction, redundant code
elimination, and unreachable code elimination.

-np is optional. This switch optimizes for register coloring, which
uses one register for multiple variables each of which has its
own lifetime information. This includes factorization, dead
code elimination, unused definition elimination, global
constant propagation, global copy propagation, and branch
merging.

Avoid using -nl, -nal, or -n7<y>.
Use the following converter (FORMG695) switches:
-d generates debug information

abs generates absolute code

Sierra

Although the Sierra compiler supports the Motorola fast-float type, the
SLD Variable window does not. The value is displayed incorrectly for
this type. Standard float and double types are displayed correctly.

Use the following compiler switches:
CFLAGS -q compiler flag.

Getting Started

14 SLD User's Manual

CAFLAGS -6 compiler-generated-assembly-code assembler flags
AFLAGS -6 -L -S1 programmer-generated code assembler flag
LFLAGS -P linker flag

Use the -m converter (Conv68) switch to generate IEEE-695 load
format.

You must specify the stack base and size in powerpak.ini or after
starting SLD; the Sierra compiler does not put this stack information in
the loadfile.

Introl

Use the -gg compiler switch to generate symbolic information.

For the 1695.EXE converter, use -s___start (note the double underbar)
to specify __start as the starting label to generate the starting PC
loader record. Avoid deleting __start, which initializes the Source
window display and sets up the program counter. (With no starting PC,
the Source window displays memory starting at 0x0.) The compiler
puts __stext in the startup code.

If you get unexplained errors on loading, turn-off On Demand symbol
loading.

Whitesmiths
Use the following compiler switches:
-dxdebug turns on debug symbols.
-dmod<m> specifies the memory model, where m is one of:
C compact
S small
d data
p program
f far
+0 compiles and assembles, but does not link.

To create a stack segment at </ocation> with <size>, use the following
linker directive last:

+bss -n stack -b <location> +spbss <size>
Use the following converter switches:

-mod<m> specifies the memory model, where m is one of:

SLD User's Manual

15 Getting Started

C compact
s small
d data
p program
f far
-p6816 specifies the HC16 processor.

The stack frame for a function is invalid until the first 2 or 3 assembly
instructions, generated by the compiler, have executed. Step one source
statement into the function to display a valid stack.

Avoid deleting __stext (note the double underline), which initializes
the Source window display and sets up the program counter (PC).
When there is no starting PC, the Source window displays memory
starting at 0x0. The compiler puts __stext in the startup code.

HiWare

To support bitfields properly, add the following to powerpak.ini:

[Variablelnfo]
AutoCalcBitfieldOffsets=1

(For other Motorola compilers, this value must be 0.)

Getting Started

16 SLD User's Manual

Defining the Debug Environment

This chapter describes:

e Configuring SLD for your target processor and for your personal working style

® Running command scripts and specifying a script to run automatically when you start

SLD

Before starting emulation, initialize the emulator for the modules you
are debugging and arrange the desktop for your own convenience. Such
preliminary tasks can include:

e Start a record of your Shell window activities.

e Map memory, put default values in memory, and specify some
aspects of how your loadfile will be loaded.

e Enable display updates to occur during emulation.

e Enable signals and set CPU and peripheral register values specific
to your processor or to your loadfile. (See the Intel and Motorola
processor examples at the end of this section.)

You can do many of these tasks with the SLD menus and buttons or
from the Shell window command line. Or, you can put Shell
commands in a script file, then run the script with an Include
command in the Shell window. For some setup, you may need to edit
your powerpak.ini file (which the PowerPack installation procedure
puts in your Windows directory) with a text editor.

Selecting Intel386 CX/SX and A-Step or B-Step Operation

‘When you are emulating an Intel386 CX or SX processor, a CPU
Configuration dialog box appears the first time you start SLD. (If you
first see a message box asking you to remove a jumper, ensure there is
no jumper on the emulator processor’s SEL3V and SELWYV pins.) To
configure the emulator for CX vs SX and A-step vs B-step operation,
SLD uses information from powerpak.ini instead of the physical
jumper used by earlier versions of the emulator.

The following figure shows the CPU Configuration dialog box.

SLD User's Manual

17 Defining the Debug Environment

CPU Configuration

Emulator CPU: Target CPU:

386CX A-step

In the Target CPU field, select the processor in your target design. In
the Emulator CPU field, select the stepping of the bondout processor in
the emulator probe head. To discover the processor stepping, look on
the processor chip for:

Stepping Distinguishing Mark
A-step The number Q8543 appears on the processor.
B-step The lot number (which starts with L) ends with B.

Leveraging Previous Emulation Sessions

After setting-up, you can shorten your setup time in subsequent
emulation sessions by saving map, chip select, event, and log files.

You can save the map information to a file. In the Shell window enter
a MapSave command, specifying a path and filename; or, in the Map
dialog box, choose the Save button and fill-in the pathname dialog box.
Later, you can restore the saved map with a Shell window MapRestore
command or the Map dialog box Restore button.

You can save chip select information. In the Shell window enter the
SaveCS command, specifying a path and filename; or, in the Toolbar
Configure menu, choose Save Chip Selects and fill-in the pathname

. dialog box. Later, you can restore the saved registers with the Shell
window RestoreCS command or the Toolbar Configure menu Restore
Chip Selects item. See the “Shell Window Reference” chapter for a list
of the registers saved for each processor.

You can save event definitions. In the Shell window enter the
EventSave command, specifying a path and filename; or, in the Event
window open the File menu, choose Save Events As, and fill-in the
pathname dialog box. Later, you can restore the saved events with the

Defining the Debug Environment 18 SLD User's Manual

Shell window EventRestore command or the Event window File menu
Restore Events item.

Instead of retyping command sequences, you can save the sequence to
be made into a script file that you can run with a single Include
command or from the initialization script. During an early emulation
session, even if you usually use the SLD menus, open a log file and
record lengthy or frequently repeated tasks by entering the commands
in the Shell window. Edit the log file with a text editor, creating a
script file of commands to be run in future emulation sessions. By
logging these commands during an emulation session, you can test and
record error-free procedures.

Starting a Log File

A log file records all that appears in the Transcript pane of the Shell
window. The following sample sequence of commands sets up the
Transcript pane and opens a log file to record any commands you enter
in the Shell window and their results.

Echo On; // Commands you enter appear
// in the Transcript pane.
Results On; /I Results of the commands appear
// in the Transcript pane.
DasmSym On; // Disassembly in the Transcript

// pane uses symbol names.

Overwrite; // Specifying an existing filename for the log file will
// overwrite the file’s prior contents. The alternative

// command is Append, which would add the new

//'log to the end of any existing file contents.

Log “emu1.log”; // The log filename is emu1.log.

Logging On; // Start writing to emu1.log. The emulator
/I puts the date and time in the log file
// when you start and stop logging.

Version; // Display and log version information for

// the emulator, DOS, and Windows.
/... // Your emulation session activities....
Logging Off; // Stop writing to emu1.log. A subsequent

// Logging On command will overwrite emu1.log.

You can do some of the above commands in the Shell window menus:

SLD User's Manual

19 Defining the Debug Environment

e To toggle command-echoing in the Transcript pane, open the View
menu and check or uncheck Echo Command.

e To toggle the results display in the Transcript pane, open the View
menu and check or uncheck Show Results.

The following figure shows a View menu with Echo Command and

Show Results enabled.
File Edit 7 QOptions Windows Help
+ Echo Command
v Show Besults

Clear Transcript

e To specify whether to overwrite or append new information to an
existing log file, open the Options menu and check Overwrite Log
File or Append To Log File, respectively.

e To specify the log filename, open the Options menu, choose Log
File Name, and fill-in the dialog box.

e To start and stop logging, open the Options menu and check or
uncheck Log Results.

The following figure shows an Options menu with Overwrite Log File
enabled. The next log file opened will be overwritten with the new log
information, destroying its previous contents.

File Edit View JOIILEE Windows Help
Log Results
" Log File Name...

Append To Log File
+ Overwrite Log File

Set History Size...

Set Transcript Size...

Mapping and Initializing Memory

Before loading your code or symbols, you must map memory. You can
use a memory map saved from a previous emulation session or specify a
new configuration.

Defining the Debug Environment 20 SLD User's Manual

Open the Map dialog box from the Toolbar either with the Map button
or by opening the Configure menu and choosing Map. The following
figure shows a Map dialog box with no memory mapped.

Start Addr End Addr Size (KB] Type Access Space

l Add 1{ Edit || Qeletel l Save ”_F_{estorel I Close ” Help |

The Map dialog box lists any already configured sections of memory.
Use the buttons along the bottom of the Map dialog box to:

Add Configure a new section of memory.

Edit Reconfigure the selected section. Use the mouse or
arrow keys to select from the list in the dialog box.

Delete Revert the selected section to unconfigured memory.

Save Save to a map file the memory configuration listed in
the dialog box.

Restore Configure memory from a previously saved map file.

The Add and Edit buttons pop-up a dialog box. For each section
configured, you can specify:

A hexadecimal starting address, on:
e a4K-byte boundary for Intel processor emulators

e a 64K or 128K -byte boundary for Motorola processor
emulators with 256K bytes of overlay memory

e a64K, 128K, 256K, or 512K -byte boundary for Motorola
processor emulators with 1M byte of overlay memory

The size, either as a hexadecimal number of bytes (with the Length
button selected) or by a hexadecimal ending address (with the End
Addr button selected). For Motorola emulators the size and
starting address must correspond; for example, a 128K-byte region
must start on a 128K-byte boundary.

Overlay or Target memory, as listed in the Type column of the Map
dialog box.

For Intel processors, User or SMM (system management mode)
space, as shown in the Edit dialog box below, as listed in the Space
column of the Map dialog box.

SLD User's Manual

21 Defining the Debug Environment

¢ For Motorola processors, UP (user program), UD (user data), SP
(supervisor program), or SD (supervisor data) space, as shown in
the Add dialog box below and as listed in the Space column of the

Map dialog box.

e How the emulator treats memory accesses (as listed in the Access
column of the Map dialog box):

RAM
ROM break

ROM nobreak

NONE

allows reads and writes without breaking.

allows reads; disallows writes; an attempted write
causes a break. For Intel emulators with memory
mapped to Target, writes are allowed but break
emulation.

allows reads; disallows writes; does not break on
any access. For Intel emulators with memory
mapped to Target, writes are allowed and do not
break emulation.

disallows reads and writes; breaks on any access.
For Intel emulators with memory mapped to
Target, accesses are allowed but break emulation.

The following figure shows an Intel map Edit dialog box followed by a
Motorola map Add dialog box. For Motorola, the emulator
automatically apportions the mapped regions between the two mappable

segments.
Start Addr: z] 1P overlay 1]
Length/End Addr Access: |RAM ¢
@ Length: = Space Mode
- 0x2000
L} End Addr: [ox o [User [JSMM
| ok | | cancer | | Hep |

Defining the Debug Environment

22 SLD User's Manual

l’LengthJ‘End Addr

@ Length: -]
& End Addr: l E l

[ok | | cancet | [hHep |

You can also use the Shell window to map memory. The following
sample sequence of commands prepares the emulator and memory for
loading code or symbols:

Map Clear,; /I Maps all memory to target, removing
// any existing map configuration.

RestoreMap “emui.map”; // Maps memory according to a map
// saved from a previous emulation session. In this case,
// the emu1.map file contains the line: map 0x0 Oxffff ram.

Map 0x10000 RomBrk; // Emu1.map maps only part of memory,
/I not including the 4K-byte block starting at address 0x10000.

// This Map command configures memory from 0x10000 to

/I Ox1ffff as ROM and specifies that any attempt to access

// this space will break emulation.

Loading a Loadfile

Once memory is configured, you can load the file to be debugged.
SLD supports the following loadfile formats:

e OMFS6 (Intel)

e OMF386 (Intel)

e IEEE-695 (Motorola)

e S-record (Motorola)

For Intel loadfiles generated with the Borland C compiler, before
loading enter MaxBitFieldSize 16 on the Shell command line.

For Motorola loadfiles, the first time you load a file you must specify
the compiler you used. On the Shell command line, enter a
CompilerUsed command. Or, in the Source window, open the Options
menu, choose Compiler Used, and choose one of the compilers listed in
the dialog box. The following figure shows a Source window Options

SLD User's Manual

23 Defining the Debug Environment

menu (Compiler Used is at the end of the menu) and a Motorola
emulator Compiler Used dialog box.

Source: [Disassembly]

Breakpoints ESIQIGLEE Windows Help
Source Path... o To

Tab Width...

Source Step Granularity »
Step Count...

Browser History Depth...
Source Line Delimiter »
Set Go Buttons »

Compiler Used...

= Compiler Used

O Unknown O Hiware

O Intermetrics Introl
I (> SDS CrossCode
O Whitesmiths

[ok] [cancer] [Hep |

For Motorola loadfiles with more than 32 sections, you can shorten the
load time by entering a MergeSections On Shell command before
starting the load.

You can load a file during emulation. Be sure the file’s load addresses
do not overlap the memory occupied by the running program. Loading
a file at a location in use stops the emulator in an unpredictable state.

The following sample sequence of commands initializes memory with
0x55aa values, then loads code and symbols:

Fill Ox0 Oxffff Ox55aa Word; // Fills the first 64K bytes of memory
// with repeating 55aa values.

Loadsize Long; // The loadfile will be written to memory in
// double-word accesses, which is the

// fastest way to load code.

Verify On; // Each write will be followed by a
// read to verify the value written.

Defining the Debug Environment 24 SLD User's Manual

Load “myfile.obx” code symbols nodemand nowarn status;
// Load code and symbols from the myfile.obx loadfile.

You can do the above operations using various SLD window menus.
To initialize memory in the Memory window, open the Edit menu,
choose Fill Memory, and fill-in the dialog box. The following figure
shows an Edit menu and an Intel emulator Fill Memory dialog box.

Memory 0: Disassembly View (user]
View Options Windows Help

Go To Address...
Search Memory...
Eill Memory...
Copy Memory...

= Fill Memory I

From I l

To | |

Pattern | l

Space [N
[L0x_] [Cancel | [_Heip]

To verify values written to memory, in the Memory window open the
Options menu and check Write Verify.

Memory 0: Disassembly View (user]
File Edit View JUILER Windows Help
' v Byte Access
Word Access
DWord Access

v Write Verify
Read Ahead
Reread On Write

To load code and symbols, open the Load dialog box from the Toolbar
with the Load button or from the Source window by opening the File
menu and choosing Load File. If you are reloading one of the last four
files that were previously loaded, you can open the Source window File
menu and choose the loadfile pathname from the bottom of the menu.

In the Load dialog box, the name of the previous file that was loaded is
automatically filled-in. Or, you can browse the directory and file lists to
specify a different loadfile.

SLD User's Manual 25 Defining the Debug Environment

Before choosing the OK button to load the file, you can choose the
Options button in the Load dialog box to open the Load Options dialog
box. If you have already loaded a file, the options you specified
previously are preserved.

The following figure shows two sample Load Options dialog boxes.
The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different options are available for different
Processors.

Load Options

Space
[@ {User: > SMM

[Load Code

Load Symbols
[] 0n Demand Symbol Loading
[J Demangle C++ Names

[update Symbol Bases

[Load nitial Register Yalues
Report Status
[Report Warnings

- Load Options l

Load Symbols
Oon Demand Symbol Loading
] Demangle C++ Names
[Load Assembly Modules

Report Status
Report W arnings

[ok] [cCancel | [_Hewp |

For Intel loadfiles, be sure the space option (User or SMM) you select is
compatible with the address space you configured in the Map dialog
box.

You can load code, symbols, or both from any loadfile. For example,
load only code if symbols are already loaded; load only symbols for
debugging ROM code. To load code, check the Load Code box. To
load symbols, check the Load Symbols box and any combination of
boxes under Load Symbols:

Defining the Debug Environment 26 SLD User's Manual

e On-demand symbol loading defers loading local symbol and line-
number information for each module until it is needed; i.e. until
either the module is displayed in the Source window or a
breakpoint is set in the module. Advantages of on-demand symbol
loading include faster initial loading, faster lookup for the symbols
that are demanded, and less memory occupied by the loaded file
because only the fewest required symbols are loaded.

e For overloaded C++ functions, the emulator can demangle the
symbolic name of the first mangled version it encounters of each
function.

e For OMF386 loadfiles, the symbol server base addresses can be
updated after loading, in conjunction with initializing the Intel386
registers.

For OMF386 loadfiles, you can load the processor registers with initial
values.

For Motorola loadfiles, you can load symbolic information for modules
whose source files are assembly language.

You can request or suppress information about the load process and
results. For a dynamic report of the loading process, check Report
Status. A bar graph fills to indicate the percent loading complete;
loading statistics are updated continuously during the load process.

= Load Complete
Loadfile: C:\POWRPAKI\SAMP386\DEM0386.0MF
Module:
Bytes: 1963 Lines: 148
Modules: 4
Symbols: 60 PC: O018:FFFFE3E4
Types: 358 Stack Base: 0020:000005E0
Functions: 5 Stack Size: Unknown
Help |

Suppress warning messages during loading by un-checking Report
Warnings.

If you are loading a Motorola loadfile with the Load dialog box, and
you have not already specified a compiler, SLD displays a Compiler
Used dialog box; choose one of the listed compilers.

For C++ code containing virtual functions, overloaded functions, and
some other symbol types, the emulator can demangle the first instance
of each such symbol. Subsequent instances remain mangled in the

SLD User's Manual

27 Defining the Debug Environment

emulator symbol table rather than duplicated, so you can access all
symbols in your program. However, the names do not appear mangled
in your source. The warning message C++ duplicate name detected
alerts you to the presence of mangled names.

The emulator handles mangled names based on the Microtec Research
Inc. (MRI) C++ version 1.1 name mangling algorithm. For other C++
compiler output, specify mangle with the Load command or uncheck
Demangle C++ Names in the Load Options dialog box. This retains all
mangled symbols.

Enabling Memory Access

You can access memory during emulation, to read or write the current
values in target memory and on-chip peripheral registers (but not CPU
registers). Such reads and writes take a small, additional amount of
processor time.

When you invoke SLD, such memory access is disabled by default. To
enable memory access, either:

e On the Shell command line, enter RunAccess On.
e Open the Toolbar Configure menu and toggle Run Access.

Run Access does not allow CPU register access. The CPU registers
cannot be accessed during emulation; their display is updated only
when emulation halts.

Enabling Intel386 EX Expanded Memory

You can read and write any peripheral register by editing the field
values in the Peripheral window or by entering Dump, Fill, and Write
commands on the Shell window command line.

To access some of the peripheral registers with the Shell commands,
you must first enable expanded I/O space. Once expanded I/O space is
enabled, you can use both the Peripheral window and the Shell
command line to access timers, DMA, interrupt controllers, serial
communications channels, and other internal peripheral registers such
as chip selects, power management, and watchdog timer.

When expanded I/O space is disabled, the affected registers appear in
the Peripheral window with question marks (?) in their address fields.
A question mark indicates you can access the register via the Peripheral
window but not from the Shell command line.

Defining the Debug Environment 28 SLD User's Manual

To enable expanded I/O space, close (not minimize) the Peripheral
window, then set the ESE bit in the REMAPCFG register by three
sequential writes to I/O addresses 0x22 and 0x23. (The sequence must
write twice to each address.) For example, enter the following Size
and Fill commands on the Shell command line:

Size Byte;

Fill 23p 23p 0x00 Byte 10;

Fill 22p 22p 0x80 Byte 10;

Size Word;

Fill 22p 23p 0x0080 Word 10;

The Size command specifies the physical size of the data access. The
Byte and Word specifiers in the Fill commands inform SLD of the
supplied data format.

Managing Intel386 EX Signals

RESET Active high synchronized to CLK2. This signal can
be pulled high or low during use as long as it remains
stable during initialization. The signal can be
disabled in the CPU window to be driven by the
emulator.

RDY# Must be synchronized to CLK2 with the proper setup
time according to Intel specifications for any cycles
for which the 386EX is not programmed. After the
chip select unit is programmed, such signals would
include any unmapped memory or I/O space, any
disabled on-chip expanded I/O space, and halt or
shutdown cycles. (The power-up condition for chip
select and ready generation allows upper-chip-select
memory accesses to the entire 64M byte address
range.) RDY# should be tri-stated when the 386EX
CPU is providing the ready due to LBA# cycles.
RDY# should have a resistor pull-up to VCC or be
pulled low with resistor of 600-820 ohm for full time
Zero wait states.

NA# should be synchronized to CLK2 and driven
according to the need for pipelining. Do not float the
signal. NA# can be disabled in the CPU window.

BS8# should be synchronized to CLK2 and driven
according to the actual bus size. Do not float the
signal.

SLD User's Manual

29 Defining the Debug Environment

NMI should be driven as needed. When NMI is floated it
must be disabled in the CPU window.

SMI# should be driven as needed. When SMI# is floated it
must be disabled in the CPU window.

FLT# must have a resistor pull-up to VCC or be floated
when the emulator is attached.

HLDA if HLDA is configured as an output port, enter Config
IgnoreHLDA On in the Shell window command line,
to inform the SLD software that the CPU has not
granted the bus to another master.

Turning Off a Motorola Watchdog Timer

In Motorola processors, the software watchdog timer is controlled by
the software watchdog enable (SWE) bit in the SYPCR register. When
enabled, the watchdog timer requires that a service sequence be
periodically written to the software service register (SWSR). If these
writes do not occur, the watchdog timer times out and asserts RESET.
This protects the system against, for example, infinitely looping code.

For the 68331/332/F333 processors, turn off the watchdog timer:
Write fffa21 0;

For the HC16 processors, turn off the watchdog timer:
Write ffa21 0;

Enabling Motorola Show Cycles

In Motorola processors, you can enable or disable the show-cycle mode
of the processor. The 683xx and HC16 have internal peripherals.
Normally, when the CPU accesses these peripherals, the bus cycle is
invisible outside the chip. With Show Cycles enabled, the internal
cycles are visible in the trace buffer and can be used for triggering.

" On the Toolbar, open the Configure menu and toggle Show Cycles.

Enabling Show Cycles sets the SHEN[0:1] bits in the SIM module
control register to 1,1. Disabling Show Cycles sets these bits to 0,0
(the default). To see this in the Peripheral window (as shown in the
following figure), expand the SIM peripheral and open the MCR
register. Select the SHEN field. You can use the Field Value spin box
to enable or disable Show Cycles. To write new values, choose Write;
to close the dialog box without changing the MCR, chose Close.

Defining the Debug Environment 30 SLD User's Manual

File Edit View Windows Help

SIM 4|
AOO 60 i odule Co guration Reg
15: 0 EXOFF CLKOUT driven from internal source
14 1 FRZSW SW watchdog and s disabled during FREEZE
13: 1 FRZBM Bus Monitor disabled during FREEZE
11 0 SLVEN Slave mode not used with emulator
9: 0 SHEN Show cycles disabled, arbitration bled
7 1 SUPV Register access restricted to supervisor
6: 1 MM Modules addressed FFF000 - FFFFFF
3: F IARB Interrupt value from F(highest priority) to 1(lowest priority] 4.
+ -
= SIM MCR - SIM Module Configuration Register
Register Value: |0x60CF
Fields:

EXOFF CLKOUT driven from internal source

FRZSW SW watchdog and counters disabled during FREEZE
FRZBM Bus Monitor disabled during FREEZE
SLVEN Slave mode not used with emulator

Show cycles disabled, arbitration enabled
SUPY Register access restricted to supervisor
MM Modules addressed FFF000 - FFFFFF
IARB Interrupt value from Flhighest priority] to 1[lowest priority]

Field Value: 9: Show cycles

m! Show cycles disabled, arbitration enabled
£

| Write ” Close II <<Erevj‘ Next >>]’ Help I

Programming Motorola Chip Selects

The Motorola processors provide several independently programmable
signals that you can configure as chip selects, output pins, or function
codes. The number of signals and their possible configurations are
different for different processors. The 68331, 68332, 68F333, and
68HC16Z1 provide 12 independently programmable chip select signals
with programmable block sizes from 2K to 1M bytes. Of these 12
signals, 11 are shared with other processor signals. The 68330 and
68340 provide four independently programmable chip select signals
with programmable block sizes from 256 to 4G bytes. For the 330, one
is shared with another processor signals; for the 340, all four are
shared.

SLD User's Manual

31 Defining the Debug Environment

You can configure these signals in various ways:
e Design your target hardware to configure the signals at reset.

e Design your target startup code to configure the signals. This code
must be in the CSO (for 330/340) or CSBOOT (for other
processors) area of memory. Execute the initialization code.

¢ In the Peripheral window, use the Register Edit dialog boxes to
write to the peripheral registers.

e In the Shell window, enter Write commands to the peripheral
register addresses.

e Create a chip select configuration file, either from the Shell
window with a SaveCS command; from the Toolbar by opening
the Configure menu, choosing Save Chip Selects, and filling-in the
dialog box; or with a text editor such as Windows Notepad. To
program the chip selects from the file, use a Shell RestoreCS or
ConfigCS command; or open the Toolbar Configure menu, choose
Restore Chip Selects, and fill-in the dialog box.

For the emulator to correctly process memory mapping, execution
breakpoints, triggers, and trace, the emulator’s programmable hardware
must be configured to match the processor’s chip select configuration.
Once you have configured the processor signals, either enter ConfigCS
on the Shell command line or open the Toolbar Configure menu and
choose Configure Chip Selects. With a chip select configuration file,
you can configure the processor and emulator hardware from the Shell
window with a single ConfigCS command. Entering:

RestoreCS configi.cs;
ConfigCS;

is the same as entering:
ConfigCS config1.cs;

Different signals are available in the Event and Trace windows
depending on how the shared signals are configured. The following
example demonstrates how various configurations of the 68332 chip
selects are reflected in the Event window.

If the Event window is open when you reconfigure the registers, you
must close (not minimize) and re-open it to see the changes.

In the SIM (system integration module) peripheral, CSPARO (Chip
Select Pin Assignment Register 0) controls the use of the chip selects 0
through 5.

Defining the Debug Environment 32 SLD User's Manual

CSo
Cs1
Cs2

CS3
Ccs4
CS5

The following chart shows how the value of the bit fields

CSPARO:CS[0:5] specifies the use of these chip selects:

3

8-bit chip select
8-bit chip select
8-bit chip select

8-bit chip select
8-bit chip select
8-bit chip select

2

16-bit chip select
16-bit chip select
16-bit chip select

16-bit chip select
16-bit chip select
16-bit chip select

1

BR# (Bus Request)

BG# (Bus Grant)

BGACK# (Bus Grant

Acknowledge)
Function Code 0
Function Code 1

Function Code 2

0

BR#

BG#
BGACK#

Port CO
Port C1
Port C2

The following figure shows the BR#, BG#, and BGACK# signals in the
Event window, with CS[0:2] configured for bus management and
CS[3:5] configured as chip selects. The signals that appear in the
Event window also appear in the Trace display.

File Edit Windows Help

Active Event: lev1 IEI

not start @ End Add O Length _mask

addr:[:II : ’ eng_l

start end mask
data:l:ll H
01 X 01 X 01 X 01 X 01 X
OO @ as- OO @®berr OO @ pest-O Q@2 OO @® 12
O QO @® ds- QO @®hat QO @®pes2-0O 0 @®13 OO @ 113
CO®gw QOO®@igl- OO @pes3- 00 @ OO ® 114
QO®siz0 QO®irg2- QO @®sck QO®t56 OO @ s
QO®siz1 OC®ig3- CO®mxd OO @®t6 O O @ bgack
QO ®dsack)- O O ®igd- OC @®txd OO @7 OO @ by
QO ®dsackl-O O ®irgs- CO ®mosi OO @18 OO @ br-
OO @avee OO ®@irgh- OO @ miso OO @19
OQO@®me QOO0 ®ig7- OO @ OO @®uo
OO @®reset OO @®pesd-O O @1 OO ®m

SLD User's Manual

33 Defining the Debug Environment

The following figure shows the CSPARO Register Edit dialog box for
the above Event window, with CS[0:2] each set to 0x1 (BR#, BG#, and
BGACKH#, respectively) and CS[3:5] each 0x3 (16-bit chip selects).

== SIM CSPARQO - Chip Select Pin Assignment Register 0
Register Value: |0x3F57

Fields:

Cs5 C55 is a 16 bit chip select
C54 CS4 is a 16 bit chip select
C33 CS3 is a 16 bit chip select
CS2 is BGACK-

csi1 CS1is BG-

Cso0 CS0 is BR-

CSBOOT CSBOOT is a 16 bit chip select

Field Yalue: 7: C52 Pin Assignment
x1 4] CS2is BGACK-
[

| Write ” Close ll << Prev ” Next >> II Help |

The following example configures a 68332 chip select and its memory
block. The following figure shows the registers for this example
(CSPARO0, CSBARO, and CSORO0) expanded in the Peripheral window.

Peripheral

File Edit Yiew Windows Help

FFFAA4 15FF CSPARD

13: 1 Cs5h CS5 is FC2

11: 1 CS4 CS4is FC1

9: 1 Ccs3 CS3is FCO

7 3 Ccs2 CS52 is a 16 bit chip select

5: 3 cs1 CS1 is a 16 bit chip select

3: 3 Cso CS0 is a 16 bit chip select

1: 3 CSBOOT CSBOOT is a 16 bit chip select
(+) FFFA46 03FF CSPAR1 Chip Select Pin Assignment Register 1
[+) FFFA48 o007 CSBARBT Chip Select Boot Base Address Register
(+) FFFA4A iB70 CSORBT Chip Select Option Register, Boot ROM
[FFFAAC 1005 CSBARD Chip Select 0 Base Address Register

15: 200 Address Chip Select base address

2: 5 BLKSZ 256 KB block
(H FFFA4E 7820 CSOR0 Chip Select 0 Option Register

15: 0 MODE Asynchronous

14: 3 BYTE Both bytes

12: 3 RMW ReadfWrite

10: 0 STRB Synchronize CS assertion with AS

9: 0 DSACK no wait states

5: 2 SPACE Supervisor space

3 0 IPL Any level

1 0: 0 AVEC Disabled

Defining the Debug Environment 34 SLD User's Manual

For this example, CSPAR0:CSO0 is set to 0x3. The following figure
shows the CSPARO Register Edit dialog box.

= SIM CSPARD - Chip Select Pin Assignment Register 0

Register Value: |0x3FFF

Fields:
CS5

C85 is a 16 bit chip select

CS4 CS4 is a 16 bit chip select
C33 C33 is a 16 bit chip select
Ccs2 CS2 is a 16 bit chip select

CS1

CS1 is a 16 bit chip select
CS0 is a 16 bit chip

CSBOOT CSBOOT is a 16 bit chip select

Field Value:
0x3

3: CSO0 Pin Assignment
] CS0is a 16 bit chip select
E

I Write H Close II << Prev ” Next >> || Help I

A pair of internal registers controls the memory block for each chip
select. The Chip Select Base Address Register specifies the starting
address and size; the Chip Select Option Register configures the access.
For this example, CSO controls a 256K byte memory block starting at
0x200. The following figure shows the CSBARO Register Edit dialog
box with Address = 0x200 and BLKSZ = 0x5 (the Field Value for a
256K byte block).

= SIM CSBARD - Chip Select 0 Base Address Register l

Register Value: | [IEqRilIL}

Fields:

Address Chip Select base address
BLKSZ 256 KB block

Field Value: 15 Address

0x200 [4 Chip Select base address
[

I Write || Close

I | << Prev ” Next >> I| Help I

SLD User's Manual

35 Defining the Debug Environment

The following figure shows the CSORO Register Edit dialog box for this
example, with:

MODE =0 Memory access (relative to ECLK) is asynchronous.
BYTE =3 Both bytes of a word are accessed.

R/W=3 Both read and write are possible.

STRB =0 The chip select synchronizes with the address strobe.

DSACK =0 There are no wait states.
SPACE =2 This block is supervisor space.

IPL=0 Any interrupt has priority.
AVEC =0 Auto vectoring is disabled.

= SIM CSORO - Chip Select 0 Option Register
Register Value: |0x7820

Asynchronous ' i —
BYTE Both bytes
RIW Read\Write

STRB Synchronize CS assertion with AS
DSACK no wait states

SPACE Supervisor space

IPL Any level
AVEC Disabled
Field Value: 15: Timing Mode

m! Asynchronous
e

| Write 1' Close I ’ << Prev I(Next >> I | Help J

Using a Script

A script is a text file of Shell commands. At any time during an
emulator session, you can use the Include Shell command (or, in the
Shell window, open the File menu, choose Include File, and fill-in the
dialog box) to execute a script.

In the powerpak.ini file [InitScript] section, you can specify a script to
be executed automatically as an initialization script when you start
SLD. A sample initialization script, include.me, is installed with
SLD.

Defining the Debug Environment 36 SLD User's Manual

To create your own script for SLD initialization:

1. Use atext editor, such as Windows Notepad, to create a file of
Shell commands. End each command with a semicolon.

2. Edit the line script = <pathname> in powerpak.ini:

e <pathname> is the pathname of the script. For example:
script = c:\sld\user\myscript

e The only filename restrictions are any imposed by your DOS or
Windows.

o If you specify no pathname (for example, script = myscript),
be sure your script is in the directory with the SLD files.

The following figure shows the Shell window after include.me has
executed. An Include command to execute custom.inc is ready to be
entered on the Shell window command line.

| File Edit View Options
Elnclude *“include.me";
/7

i// Here is an example of a start up script:
177

Windows Help

// version; // get version information abo
// alias "ver" ‘‘version"; // example of aliasing a comma
ff map @ FFFFfp; // set up overlay memory map
144

f/# This file, include.me, is run each time PowerVUiews
// 1is brought up. Edit this file with commands to set
/7 up your environment. The [InitScript] section of
// the file pwrviews.ini (in your Windows directory)
// can be edited to eliminate this feature or to

// change the name of the initial script file.

include '‘custom.inc'';

SLD User's Manual

37 Defining the Debug Environment

Keyboard Shortcuts

You can use these function keys as shortcuts instead of window

commands.

Press this Key To Do This

F1 Open a window for SLD on-line help.
F2 Halt emulation.

F3 Start trace.

F4 Stop trace.

F5 Set focus to the Toolbar window.

F6 Set focus to the next open SLD window.
F7 Step Into.

F8 Step Over.

F9 Start emulation (Go).

F10 Activate the menu bar for keyboard use.

Defining the Debug Environment 38 SLD User's Manual

Debugging in Source and Stack

This chapter describes how to:

e Set, view, and clear breakpoints.

e Control program execution.

e Examine and modify variables and the stack.

Viewing Source

After loading an executable file, you can view modules in the Source
window. The Source window initially displays code starting at the
current program counter (CS:EIP for Intel; PC for Motorola). The
instruction pointed to by the program counter is marked by >>.

When you open the Source window after loading but before executing
code, the program counter may be in the assembly startup code. In
general, embedded programs start in startup code and not in main().
You or the compiler can insert initialization code to set up the processor
environment. The Source window displays either the assembly source
or the disassembly from memory.

To view a different module, open the File menu and choose Browse
Modules. All loaded modules are listed. If a module’s source has been
modified more recently than the loadfile, a warning message appears
and an asterisk marks the source filename in the Source window title.

If the emulator cannot find the source file corresponding to the module
you are browsing, you may need to modify the source search path list.
In the Source window, open the Options menu, choose Source Path, and
modify the list. The following figure shows a Source Path dialog box.

udd... |Edit... |Qelele ” Close II__Q_anceI ”_ﬂelp I

SLD User's Manual

39 Debugging in Source and Stack

To add a path, choose the Add button and choose a source file in the
dialog box. The following figure shows the Open dialog box that
appears in response to the Source Path dialog box Add button.

File Name: Directories:
| c:\powrpakm
DlER pl
= powrpakm
] samp332
£ samp360
£ sampcp32 [] Read Only
— 3 samphc16
hé] teknotes &
List Files of Type: Drives:
[C Files(*.C) [2] c: ms-dos_6 14

To edit a path, select a path in the Source Path dialog box; choose the
Edit button; and edit the path string. To select a path from the list,
move the highlight with the mouse or the <Up Arrow> and <Down
Arrow> keys. The following figure shows the Edit Path dialog box.

= Edit Path

Path:

[c3PowrPaknSAMP3ESY |
| OK I lgancell [Help I

The emulator searches the paths in the order they are listed in the
Source Path dialog box, stopping at the first file that matches the source
filename in the loadfile. If you have duplicate filenames in different
directories, order the source path search list so the emulator finds the
correct one first. For example, in the following figure, the emulator
searches first samp386, then build-a, build-b, and finally build-c.

= Source Path

'C:\POWE RPAKISAMP386Y

c\powerpakisamp386ibuild-a}
c\powerpakisamp386\build-b}
c\powerpakisamp386\build-c\

[Add... |£dlt ”_gelete ”ﬁgse ”__Qancel |uelp l

Debugging in Source and Stack 40 SLD User's Manual

i

When full symbolic information (including the source file pathname) is
available for a module, you can view the module as source code with or
without interleaved disassembly. Use the View menu to toggle between
Source Only and Mixed Source And Assembly. (Modules with no
source information appear as disassembly only, regardless of the view.)
To see symbols in the disassembly, on the Toolbar open the Configure
menu and check Symbolic Disassembly.

You can split the Source window into two panes by clicking and
dragging on the split box at the top of the vertical scroll bar. A split-box
cursor appears at the right of the split bar (see figure at left). To resize
the panes, point the mouse to the split box and drag the split box.

With two Source window panes, you can work in two different modules
or two areas of the same module independently. To move between
panes, click in the inactive pane to make it active.

Managing Breakpoints

At a breakpoint, emulation halts before executing the instruction at the
breakpoint address. A temporary breakpoint is then cleared; a
permanent breakpoint remains.

You can set 256 software breakpoints; in addition, for Motorola
Pprocessors you can set two hardware breakpoints and for Intel
processors you can set up to four hardware breakpoints. The choice of
hardware or software breakpoint is automatic.

For Intel processors, you can configure the debug registers DR[0:3] to
specify a hardware data or execution breakpoint. See the DR command
description in the “Shell Window Reference” chapter.

If you try to set a breakpoint on a non-executable source statement, a
breakpoint is set on the first subsequent executable source statement.

You can set breakpoints from:

e the Source window, using the mouse in the source display or using
the Breakpoints menu

e the Breakpoint window Breakpoints menu
e the Breakpoint window Set button

e the Bkpt command in the Shell window

SLD User's Manual

41 Debugging in Source and Stack

In the Source window, using the mouse:

1. Move the mouse pointer to the left of the source line where you
want to set a breakpoint.

2. 'When the mouse pointer changes shape to a cross-hair cursor (see
figure at left), click on the primary mouse button to set a
permanent breakpoint or on the secondary button to set a
temporary breakpoint. (On a mouse configured for right-handed
use, the primary is the left button and the secondary is the right
button.) The line with the breakpoint is highlighted in red.

In the Source or Breakpoint window, open the Breakpoints menu. In
the Source window, to set a breakpoint on the line where the Source
cursor is positioned, select Set Permanent Breakpoint or Set Temporary
Breakpoint. To set a breakpoint elsewhere, choose Set Breakpoint and
fill-in the Set Breakpoint dialog box.

The following figure shows a Source window Breakpoints menu and a
Breakpoint window Breakpoints menu. In the Source window, the
Show All item opens the Breakpoint window listing all current
breakpoints; in the Breakpoint window, the Go To Source item opens
the Source window showing the line where the selected breakpoint is
set.

Qreakpnints

Set Permanent Breakpoint .

Set Temporary Breakpoint Breakpoints i
Set Breakpoint... Set Breakpoint...
Clear Clear

Enable Enable

Disable Disable

Clear All Clear All

Enable All Enable All
Disable All Disable All
Show All... Go To Source

" In the Breakpoint window, you can also choose the Set button to pop-up
the Set Breakpoint dialog box.

In the Set Breakpoint dialog box, you can enter a numeric or symbolic
address in the Breakpoint At field. For a symbolic address, you can
browse the Modules and Functions drop-down lists. The following
figure shows a sample Set Breakpoint dialog box.

Debugging in Source and Stack 42 SLD User's Manual

Set a breakpoint:
multiple statements
per line

Set Breakpoint

Breakpoint at: |#332qsm#Blank_CmdBuf I

Modules Functions
State] Type]
@ Enable @ Permanent
 Disable O Temporary

For C++ source, mangled names (which do not appear in the Source
window display) are listed in the Set Breakpoint dialog box and can be
listed with a DisplaySymbols Shell command. These include member
functions from all classes defined in a source module and its header
files, compiler-provided default constructors and destructors, and global
(non-class related) functions. For information on the C++ mangling
algorithm, see The Annotated C++ Reference Manual by Margaret
Ellis and Bjarne Stroustrup.

Avoid setting breakpoints on inline functions. The Set Breakpoint
dialog box does not flag inline functions. If you have set a breakpoint
on a function and stepping does not advance the Source window cursor,
it is an inline function. Stepping through instructions contained in your
class definition will advance the program counter but not the Source
window cursor. Remove the breakpoint on the function and restart
emulation.

With the Source window view set to Mixed Source And Assembly, the
assembly instructions for all inline functions appear after the last source
line of the module.

Some toolchains allow more than one source statement per line. You
can set a breakpoint on any statement in a line. For example:

If (errorNumber) errorHandler(errorNumber);

To set a breakpoint on the errorHandler call, when errorNumber is
nonzero:

1. From the Source window Options menu, set the level of step
granularity by toggling Step Execution Granularity to Statement.

2. Click on errorHandler(errorNumber), open the Breakpoint menu,
and choose Set Permanent Breakpoint. Or, double-click on
errorHandler(errorNumber) and choose Permanent Breakpoint.

3. The entire line is highlighted as a breakpoint, with the actual

SLD User's Manual

43 Debugging in Source and Stack

Tab width: effect on
setting breakpoints at
statement level

breakpoint set on the second statement. From the View menu,
choose Mixed Source And Assembly to see the breakpoint on the
second statement.

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example, when the
following line containing three statements is compiled with MRI:

<tab><tab>for (j = 0; j < max_num; j++) {

the MRI default tab width of eight characters produces the following
column ranges for the three statements:

j=0; columns 0 through 26
j < max_num; columns 27 through 39
j++ columns 40 through 45

Setting the Source window tab width to four instead of eight would put
the first j (in j = 0;) at column 13 and the second j (in j < max_num;)
at column 20. It is then difficult to set a breakpoint on the correct
statement.

Symbols must be loaded before you can set breakpoints on line numbers
or functions. If you chose On Demand Symbol Loading when loading
your program, the symbols needed for a breakpoint are loaded either
when you set the breakpoint or when you display the source for the
module containing them.

To list breakpoints in a separate Breakpoint window, in the Source
window open the Breakpoints menu and choose Show All; or in any
SLD window open the Windows menu and choose Breakpoint. (In the
CPU window, where there is no Windows menu, use the Options
menu.) The Breakpoint window shows the state (enabled or disabled),
type (permanent or temporary), and location in source of each currently
defined breakpoint. The following figure shows a sample Breakpoint
window.

File

Breakpoints Windows

Breakpo vl

Help

set__|

Clear

JGo To Sourcd__Enable || Disable | _Enable All | Disable All

State T
Enable
Enable
Enable

Breakpoints

866410 entry,line35,col1-1
000400 entry,line32,col1-1
80649E main,main,line28,co0l1-22

The Breakpoint window button operations are duplicated in the
Breakpoints menus of the Source and Breakpoint windows. In the

Debugging in Source and Stack 44

SLD User's Manual

List breakpoints in
Shell windowl

Disabled and enabled
breakpoints

Breakpoint window, click on a breakpoint or use the arrow keys to
select it. In the Source window, select a breakpoint by moving the
Source cursor to the statement where the breakpoint is set.

To list breakpoints in the Shell window, enter Bkpt. For example:
bkpt;

// SRC bkpt: Ena Perm 470 (@0)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line21

// SRC bkpt: Ena Perm 486 (@1)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line24
// SRC bkpt: Ena Perm 492 (@2)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line26
// SRC bkpt: Ena Perm 49E (@3)
D:\TBIRD\M332\SAMPLES\SAMP332\main.c,main,Line28

You can enable and disable all or individual breakpoints. An enabled
breakpoint is defined and active; emulation breaks when the breakpoint
is reached. A disabled breakpoint is defined but inactive; emulation
does not break when the breakpoint is reached.

For example, an interrupt handler named MyIntr (in a module named
ModB) might be started at any time. To discover whether MyIntr is
starting during execution of another function named Atomic (in a
module named ModA), the designer does the following:

1. Set a breakpoint, enabled, at the beginning of #ModA#Atomic.
2. Set a breakpoint, enabled, at the end of #ModA#Atomic.

3. Set a temporary breakpoint, disabled, at #ModB#MyIntr.
4

Go. The MyIntr interrupt handler can execute without causing a
break.

5. When the emulator halts at the first Atomic breakpoint, enable the
MylIntr breakpoint. If MylIntr is called during Atomic execution, a
break occurs and the Mylntr breakpoint is cleared. Otherwise,
when the emulator halts at the second Atomic breakpoint, re-
disable the MyIntr breakpoint.

You can change the Source window display to view the line containing
any listed breakpoint. Select the breakpoint and choose Go To Source.

You can remove all or individual breakpoints by any of:

e In the Source or Breakpoint window, open the Breakpoints menu
and select Clear All.

e In the Breakpoint window, select a breakpoint and choose Clear
from either the buttons or the Breakpoints menu.

SLD User's Manual

45 Debugging in Source and Stack

e In the Source window, click in the left margin of the red-
highlighted line containing the breakpoint; or, move the cursor to
the breakpoint, open the Breakpoints menu, and choose Clear.

e On the Shell command line, enter BkptClear.

Starting and Stopping Emulation

The following figure shows the Source window Run and Options menus
and button bar. On the Options menu, the items involved in emulation
control are Source Step Granularity, Step Count, and Set Go Buttons.

Go Into Return

Go F9
Halt F2
Step Into F7
Step Over F8
Go Until Call

Go Until Return

Go Into Call

Goto Cursor
Go From Cursor

Step Into Continuously
Step Over Continuously

Reset
Reset And Go

Source Path...

Tab Width...

Source Step Granularity »
Step Count...

Browser History Depth...
Source Line Delimiter »
Set Go Buttons >

Compiler Used...

With the Source window buttons and menus, you can emulate one or
more instructions at a time or as a free-running program:

Step

breaks after executing one to 100 instructions or
statements, according to how you set Step Count and
Source Step Granularity in the Options menu. The
Shell Step and StepSrc commands can do the same.

Into when encountering a function call
instruction, executes the jump and
breaks at the first instruction or
statement inside the function.

Debugging in Source and Stack

46 SLD User's Manual

Go

Reset And Go

Halt

Over when encountering a function call
instruction,executes the function and
breaks at the first instruction or
statement after returning.

Continuously repeatedly Steps until you halt the
emulation.

executes your program to the next enabled breakpoint
or until Halted. The Toolbar Go button and the Shell
Go, Golnto, and GoUntil commands do the same.

From Cursor moves the program counter to the
instruction where the Source cursor is,
then starts emulation.

To Cursor emulates until the program counter
reaches the Source cursor.

Into Call breaks on the first instruction or
statement inside the next called
function.

Into Return breaks on the first instruction or
statement after the next return.

Until Call breaks on the next call instruction.
Until Return breaks on the next return instruction.

To change the Into Call and Into Return buttons to
Until Call/Return buttons, open the Options menu;
choose Set Go Buttons; and select Until Call/Return.

Resets your target system, then operates as Go. The
Shell ResetAndGo command does the same.

Stops emulation during a Step Continuously or a Go
operation. The Toolbar Halt button and the Shell
Halt command do the same.

How fast a Step operation executes depends on the number of SLD
windows open. Each window must be updated after each step. You can
close any open SLD window (except the Toolbar) to improve
performance. Speeding up stepping can be useful when you use long or
frequent Step Continuously operations.

In C++, stepping into a declaration can call a constructor with
initialization parameters, if any, and its base class constructors.

SLD User's Manual

47 Debugging in Source and Stack

To mask interrupts during Step operations, enter a StepMask Shell
command. For Motorola emulation, masking interrupts can have the
following effects:

With mask on, a single step restores the original contents of the SR
(CPU32) or CCR (CPU16) register when complete. If the stepped
instruction modifies this register, the modification can be lost. The

following instructions can cause this problem:

CPU32 CPU16
ANDI <ea>,SR ANDP <ea>
ORI <ea>,SR ORP <ea>
EORI <ea>,SR TPD

MOVE <ea>,SR TDP

MOVE SR,<ea> RTI
LPSTOP STOP RTE LPSTOP

e Most instructions that access memory can generate exceptions or
traps due to bus or address errors or as an expected result of the
instruction. In such cases the following sequence occurs:

1. The value of SR or CCR saved on the stack for the exception is
incorrect.

2. When the exception returns, the incorrect stack value is
restored into SR or CCR.

The following instructions can generate a trap:

CPU32 CPU16
TRAP CHK DIVUL SWI
TRAPcc DIVS LINE A EDIV
TRAPV DIVSL LINE G EDIVS
BKPT DIVU

To discover whether emulating or halted, look in the Status window or
icon or enter EmuStatus on the Shell command line. When emulation
has halted, to discover the cause of the break, look in the Status window
or enter Cause on the Shell command line.

Examining Source After Emulating

The Source window display shows the statement or instruction next to
be executed:

Debugging in Source and Stack 48 SLD User's Manual

e When emulation is halted by a breakpoint, the program counter
stops at the instruction containing the breakpoint.

e When emulation is halted after a Step Into or Go Into Call, the
program counter points to the first instruction in the function.

e When emulation is halted after a Step Over or Go Into Return, the
program counter points to the first instruction after the return.

e When emulation is halted after a Go Until Call or Go Until Return,
the program counter points to the call or return instruction.

In Source Only view, a function with no associated source is not
displayed after a Step Into, although the program counter points to the
first instruction in the function. To display such a function, toggle the
view to Mixed Source And Assembly.

You can also view disassembled instructions in the Memory window, or
by entering a Dasm command on the Shell command line.

To modify instructions, use the Memory or Shell window as described
in the chapter on debugging in registers and memory. Such code
patching is reflected in the disassembly shown in the Source window in
Mixed Source and Assembly view. Note that the disassembly at the
patched addresses no longer matches the source.

For C++, you can select the following symbols in the Source window:
¢ Function symbols
e Global variables (which can be edited in the Variable window)

¢ Global class objects (which can be edited in theVariable window as
structs)

e Local variables and class objects
You cannot select class.memberFunction type objects.

The scope-resolution operator (::) is interpreted as a token separator,
not recognized as part of a symbolic address.

Scrolling Trace With Source

You can link the Source and Trace window displays. When the
windows are linked, you can scroll through the Trace window and view
the corresponding code scrolling synchronously in the Source window.
To link the Source window to the Trace window:

1. In the Trace window, open the View menu and choose Instruction.

2. Re-open the View menu and choose Linked Cursor.

SLD User's Manual

49 Debugging in Source and Stack

Examining and Editing Variables

You can examine and edit global, static, and local variables in the
Variable window by either:

e In the Source window, double-click on the name of the variable you
want to view. In the pop-up menu, choose Inspect Variable. The
following figure shows a Variable pop-up menu.

= Variable: MsgTx
Inspect Variable

Set Perm. Breakpoint
Set Temp. Breakpoint

e Inany SLD window, open the Windows menu and choose
Variable. (In the CPU window, where there is no Windows menu,
use the Options menu.) In the Variable window, open the Variable
menu, choose Add, and enter the name of the variable you want to
view. Specify a fully qualified symbol name, as described in the
section on symbolic addresses in the “Debugging with Triggers and
Trace” chapter.

For local variables outside of the current stack context, the value
unknown is displayed.

To select a variable or its value, click on it. Yellow indicates that you
have selected the variable or its value. Unless currently selected
(yellow), variable symbolic information appears in the following colors:

Red indicates an editable value. Integer variables can be edited
in hexadecimal or decimal, floating point variables in
floating point format, and characters in their hexadecimal
ASCII equivalent. To edit a value, either double-click on
the value; or single-click on the value, open the Edit menu,
and choose Edit. Press <Enter> to end editing.

Blue indicates a pointer variable you can dereference by double
clicking. For example, DS:000E is the address of the
variable pointed to by cellPtr:

CELL_TYPE *printall#cellPtr = DS:000E

To dereference a pointer, either double click on the pointer
name or open the View menu and choose Show. A new
entry is added to the Variable window showing the variable
that was pointed to. For example:

CELL_TYPE printall#*cellPtr{
struct LINKS *next = DS:0014;

Debugging in Source and Stack 50 SLD User's Manual

char *StringPtr = DS:0000;
short int length =2 = 2;}

Magenta indicates a non-pointer variable. For enum type variables,
the enumerated name follows the hexadecimal value. For
example:

enum color ¢ = 0x2 = lavender

To remove a variable from the display, in the Variable window click on
the variable name; then either open the Variable menu and choose
Delete or press the <Delete> key. (This does not delete the variable
from your program, only from the current variable inspection list.) To
retrieve the variable to the display, open the Variable menu and choose
Undelete.

“You can also examine program symbolic information using the Shell

AddressOf, NameOf, ConfigSymbols, DisplaySymbols, GetBase,
SetBase, and RemoveSymbols commands.

Viewing and Modifying the Stack

The Stack window contains a stack list pane, a variables list pane, and a
stack meter. (You can also list the stack information in the Shell
window using Stacklnfo and DisplayStack commands.) The
following figure shows a sample Stack window.

— I TR

TFile Options Windows Help

Stack Return 36.7%
BO0EF2 006874 main{...)

Parameters & Local Uariables

char =main#iMsgTx = BxFFFFFFFF;

SLD User's Manual

51 Debugging in Source and Stack

Configuring the Stack Window

Once a program has executed into one or more functions, the stack list
contains frames representing the nested calls. Frame information can
include the stack and return addresses of the functions, the function
names, and the parameters and local variables associated with the
function calls. The top frame represents the function currently in scope.

When symbolic information is available for a function, you can display
the parameters and local variables in the variables list pane by selecting
the frame in the stack list pane. Variables appear in the same format as
in the Variable window.

Stack usage is described by the stack meter. The percent of stack area
currently in use is shown in blue. Yellow indicates stack underflow.
Purple indicates stack overflow. The following figure shows the Stack
window Options menu.

Stack Area...
Alarm Limit...

+ Include Stack Address
+Include Return Code Address

+ Enable High-Water Mark
+ Enable Alarm Limit

Inspect Source

You can configure the stack list to display stack and return addresses
for each frame. Open the Options menu and toggle Include Stack
Address and Include Return Code Address. The stack address is the
address of the frame on the stack. The code address is the return
address to the calling function in memory. Frames for functions with
no symbolic information show addresses only, without function names.

To view the source of a function on the stack, select the frame; open the
Options menu and choose Inspect Source. The Source window changes
to show the function.

You can configure the stack meter to show the highest level the stack
has reached since initialization (the high-water mark). The high-water
mark is an arrow on the left side of the stack meter. Open the Options
menu and toggle Enable High-Water Mark; or enter
EnableHighWaterMark or DisableHighWaterMark on the Shell
command line.

You can set an alarm on the stack meter to notify you when stack usage
exceeds a percentage of the stack area. If the alarm limit is exceeded

Debugging in Source and Stack 52 SLD User's Manual

Monitor multiple
stacks

when emulation halts, a warning message appears. Open the Options
menu, choose Alarm Limit, and specify a percent value from 1 to 100.
Then, open the Options menu again and toggle Enable Alarm Limit on.
Alternatively, in the Shell window you can set an alarm limit and
enable or disable the alarm message with SetStackAlarm,
EnableAlarmLimit, and DisableAlarmLimit commands. The alarm
limit is marked as a red line across the stack meter.

The alarm message does not appear until emulation halts. During
emulation, the stack can exceed the alarm limit without displaying the
warning message. To monitor the amount of memory used by the stack
while emulation continues, emulate by stepping continuously. In the
Source window, open the Run menu and choose Step Over
Continuously or Step Into Continuously.

When emulation halts, the stack information is updated with:
e the current function and variable information

e the percentage of the stack in use

e the High-Water Mark, if enabled

e the alarm, if enabled

If, after emulation halts, the stack area is discovered to be invalid, some
Stack window features are invalidated and grayed-out in the menus.
For example, the alarm, high-water mark, and stack meter become
unavailable.

For system using multiple stacks, you can track the stack in use at any
given time. Create Shell aliases to define the base and size of each
stack. For example:

alias “s1” “SetStackArea 4000 100”;/
alias “s2” “SetStackArea 3000 1007;

When emulation halts, switch to the current stack area by entering one
of the aliases on the Shell command line.

Setting the Stack Base Address and Size

The stack base address and the stack size are typically put into the
loadfile by your compiler. Otherwise, the emulator looks for a default
stack base address in the powerpak.ini file. If powerpak.ini also
specifies no base address, the current stack pointer value is used. If the
stack size is undefined, the size defaults to 4K bytes.

To discover the current stack base and size, either enter StackInfo on
the Shell command line, or in the Stack windowopen the Options menu
and choose Stack Area. The values in the dialog box describe the

SLD User's Manual

53 Debugging in Source and Stack

current stack allocation. The following figure shows a Stack Area
dialog box.

B Sekae

Base Address:

[oo2u:000005€0] |

Number of Bytes:
[1504 |

I OK | |Qancel| | Help I

If you edit these values, ensure the Base Address matches the CPU
stack pointer initialized by your startup code and the Number of Bytes
matches the stack size allocated for your target. Choose OK to set the
stack base and size to new values, or Cancel to close the Stack Area
dialog box without changing the stack area.

You can also change the stack area by a SetStackArea Shell command
or by SetStackBase and SetStackSize Shell commands.

Determine how large a SI.D can help you determine the minimum amount of memory to

stackareatoallocate a1jocate for the stack. To discover the amount of memory used by the
stack:
1. Open the Options menu and choose Enable High-Water Mark.
2. Execute your program for maximum code coverage.
3. Halt execution.
4. Note the high-water mark (maximum stack usage as a percentage
of the allocated stack area) on the stack meter.
5. Increase or decrease the amount of memory allocated for the stack,

allowing enough memory to accommodate the maximum stack
usage without waste.

Debugging in Source and Stack 54 SLD User's Manual

Debugging in Registers and Memory

This chapter describes how to access the CPU registers, the peripheral registers, and
memory.

Viewing and Modifying the CPU Registers

You can view and change CPU registers and control signals from the
CPU window, the Toolbar, the Source window, and the Shell command
line.

To open the CPU window, on the Toolbar choose the CPU button, or in
any SLD window open the Windows menu and choose CPU. The
following figure shows CPU windows for the Motorola 68332 and

Intel386EX processors:
Em :-_3(3 i
H n Options
Options EFLAGS 00808082 T
SR 2784 s urnBoditszapc
8s7xnZuc EIP FFFFE3EY4
PC 608000470 EAX 68880880
D8 BoO00B28 EBX 00080800
D1 80000620 ECX 00000000
D2 8000080800 EDX 00000000
D3 FFFFFFFF EBP 0OOOBSED
D4 FFFFFFFF ESP 00B0OSE0
D5 FFFFFFFF EDI 00000000
D6 FFFEFFFE ESI 00000000
D7 FFFFFFFF Cs 0018
AB BOFFFDAO DS 0828
A1 BOFFFDOO ES 0628
A2 BOBOOBFE FS 0020
A3 ODBOOBBE GS 0020
A4 FFFFFFFF SS 0828
A5 FFFFFFFF GDTBASE FFFFEGB80
A6 90680089 GDTLIMIT ®03F
preitetitapetitets GDTAR FFFFEOBO
USP hOOF 8302 IDTBASE BO0OBSER
SSP BOOODEEE IDTLIMIT O8FF
SFC & IDTAR FFFFFFFF
DG & LDTR 0080
LDTBASE 00008080
| UBR 80000000 | LDTLIMIT FFFF
‘ i LDTAR _FFFFZFFF .

SLD User's Manual 55 Debugging in Registers and Memory

The CPU window is updated when emulation halts. A highlight
indicates a register value has changed. Selecting a register also
highlights it.

Editing the CPU Registers
To edit a CPU register, you can either:

e Inthe CPU window, double-click on the register, or select the
register and press <Enter>. Enter the new value in the dialog box.

e Enter a Register command on the Shell command line.

Resetting the CPU Registers

When you reset and reinitialize the processor:

e The processor RESET pin is asserted.

e The program counter and stack pointer are read from memory.

e All SLD windows are updated. The Stack window display is
invalid because the stack is reset. The Source window displays the
beginning of your startup code, at the program counter.

You can reset the processor from the Toolbar’s Configure menu, from
the Source window’s Run menu, from the CPU window’s Options
menu, or by entering Reset on the Shell command line.

If the reset fails:

1. Open the Toolbar’s Configure menu or the CPU window’s Options
menu and choose Reset CPU Only; or enter Reset CPUonly on
the Shell command line. This resets the processor without
updating the SLD windows.

Reset your target.

Reset the processor again, without specifying CPU only, to update
the SLD windows.

Enabling the Target Signals

Enabling a signal uses that signal from your target system rather than
from the emulator. To enable or disable the target signals, in the CPU
window open the Options menu, choose Signals, and individually
toggle each signal. The signals valid for your microprocessor are
shown. The following figure shows the signals for an Intel386EX
processor and for a Motorola 68332 processor.

Debugging in Registers and Memory 56 SLD User's Manual

= -]
Options = CPU n
Reset Options
Reset CPU Only a
IETTTN - FEADY Enbic eset
Windows v RESET Enable Reset CPU Only SeEe
— v HOLD Enable Clock Enable
Help !m'iex v NMi Enable Windows v Reset Enable
Help With Help |/ INT0_3 Enable
Help With CPU | /INT4_7 Enable Help Index
Exit v NA# Enable Eﬂp Vletl': H;IL;')
v SMI# Enable elp With C
+ Coprocess Enable Exit

For a list of the signals available for your processor, see the Signal
command description in the “Shell Window Reference” chapter.

Disabling a signal disconnects it from the target and puts it under the
emulator’s control. For example, the emulator drives the Intel signals
as:

READY# asserted
RESET negated
NMI negated
INTO-INT3 (Intel386 EX processor) negated
INT4-INT7 (Intel386 EX processor) negated
NA# negated
SMI# (Intel386 CX and EX processors) negated
HOLD negated
INTR negated
A20M# (Intel386 CX processor) negated

ERROR#, PEREQ, BUSY# (coprocessor) negated

You can also enable and disable signals with the Shell Signal
command.

Viewing and Modifying Memory

You can view and edit memory from the Memory window and by
entering Dump, Write, Fill, Copy, and Search Shell commands.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Such access
includes scrolling and refreshing the Memory and Peripheral windows
and reading and writing memory from the Memory, Peripheral, and

SLD User's Manual

57 Debugging in Registers and Memory

Shell windows. You can enable memory to be accessible during
emulation; however, any such access can degrade your program
execution. Before starting emulation, either:

e On the Toolbar open the Configure menu and check Run Access.

e Enter RunAccess ON on the Shell command line.

Changing the Memory Window Display

You can view memory as disassembly, hexadecimal, or decimal values.
Open the View menu and choose the desired format. Up to 20 Memory
windows with independent displays can be active simultaneously.

The following figure shows a sample Intel386 processor Memory
window. This is the first-opened of the currently active Memory
windows, as indicated by Memory 0 in the title bar. The View menu is
open with disassembly format chosen.

= emory 0: Disassemb : ~|~

r-EiIe Edit e Options Windows Help

0000:00 04+ Disassembly [BX+SI],AL +

006868:62 B [BX+SI],AL

ooo0:oy od HexBytes [BX+SI],AL

oee0:06 od Hex Words [BX+SI],AL

0000:08 3 Hex DWords

0080:09 88 Decimal Bytes [BX+SI],AL

0000:08 80 oo rords [BX+SI],AL

0008:0D 9 . " DX,AX

ooo0:oE od Decimal DWords [BX+SI],AL

8808:18 FF/Auto WORD PTR [BX+SI]

0000:12 Eq ¢ SHORT 086819

80808:14 B — [BP+SI+00688],DL

8006:18 FF Used? FF

00080:19 FH\,US,ar WORD PTR [BX+SI]

8000:1B 04 [BX+SI],AL

0000:1p og MM +
Refresh Display hd

‘When memory is displayed as disassembly, you can specify whether the
disassembly uses your code symbols or the numeric addresses. On the
Toolbar, open the Configure menu and toggle Symbolic Disassembly.

In a numeric view, memory is displayed as hexadecimal or decimal
bytes, words, or double words followed by the ASCII equivalent, with
periods representing non-printable characters. The following figure
shows a sample Intel emulator Memory window displaying
hexadecimal words. The address formats (in the left column) are
different for Motorola emulators.

Debugging in Registers and Memory 58 SLD User's Manual

Memory 0: Hex Words View (user]
File Edit View Options Windows Help
DS :B000 BBB3 CD5B BE2D F288 BB39? 7A3A CA47B 33FC 3»[i—%.l‘32»:z{ 1
DS:0018 F9FB BFEE B790 5FA% SFD5 E9F6 FCC3 8DFD dui M-#_0_ué
DS:0020 71BF FEBB E332 9940 AF77 FFBF 67FF 37BF ,q»p23GNw ,iji
DS:8038 FFFF FFEA FEBS 9AAS CB6E DEEE B8BF FF33 yyéypp¥Enkib;

To view another area of memory, double-click in the address column of
the Memory window; or open the Edit menu and choose Go To
Address. Enter a numeric or symbolic address in the Go To Address
dialog box. Any symbol you enter must have a fixed address, i.e., not a
local variable or a stack-resident parameter.

If you are unsure of a symbol name or an address, you can research it
from the Shell command line:

DisplaySymbols lists module, variable, and function names with line
number and address information.

AddressOf lists the address of a specified symbol.
NameOf lists the symbol closest to a specified address.

You can speed-up scrolling in the Memory window by enabling the
Memory window cache. Open the Options menu and choose Read
Ahead. When the Memory window cache is enabled near a non-
existent memory region, the read ahead can cause a memory access
failure.

Changing the Memory Contents
To change memory, you can:

e Edit the hexadecimal, decimal, or ASCII values in the Memory
window. Position the cursor (a vertical bar) with the mouse, then
overtype the memory display.

e Assemble code and data into memory using the Single-line
Assembler dialog box in the Memory window.

e On the Shell command line, enter AsmAddr and Asm commands
or Write, Fill, or Copy commands.

The following figure shows a sample Single-line Assembler dialog box
for a Motorola emulator. The addresses, assembler syntax, Space, and
Operand/Address Size options have different values for Intel processors.

SLD User's Manual

59 Debugging in Registers and Memory

= Single-Line Assembly

Source Line: 00001A

[pcw___oooD |

Space: Operand/Address Size:

fa o &l
|§ancel I [Asseml l Skip 1 | Help I

To close the dialog box without assembling anything, choose Cancel.
Once you have assembled a line, the Cancel button changes to a Close
button.

To change a line in the Memory window:

1.

7.

In the Memory window, open the View menu and choose
Disassembly, displaying disassembled lines of code.

On the line you want to change, anywhere except in the address
column, double-click. The Source Line field in the Single-line
Assembler dialog box shows the address and initial value of the
line to be changed.

Type a line of assembly code in the dialog box.

Select the space (user or SMM for Intel processors; SP, SD, UP, or
UD for Motorola processors) and the operand/address size.

Choose Assem to write the code to memory and update the Memory
window. The Single-line Assembler checks your assembly syntax;
any error is reported and the erroneous line is not written.

Repeat steps 3 through 5 to assemble subsequent lines. Choose
Skip to leave a line unchanged.

Choose Close to close the dialog box.

‘When the Memory window shows any view other than disassembly, you
can edit the numeric and ASCII values. Position the cursor on the first
value you want to change and type the new value. A value must fall
within the range of the displayed radix. For example, in decimal byte
radix the maximum value in a field is 255; if you try to replace 199
with 299, it is truncated to 200. An illegal entry causes a beep:

Non-numeric values in Decimal display

Non-hexadecimal values in Hexadecimal display

Debugging in Registers and Memory 60 SLD User's Manual

When more than one Memory window display the same area of
memory, changes to that memory are reflected in all such Memory
windows.

The size of values displayed in the Memory window does not affect how
memory is accessed. Memory access is set by the Size command or the
Options menu, not by the View menu. For example, if Size=byte,
memory accesses are byte-sized even when the Memory window display
is Hex Words. The following figure shows the Options menu.

Memory 0: Disassembly View (user]
File Edit View FSOLLEN Windows Help

' v Byte Access
Word Access
DWord Access

v Write Yerify
Read Ahead
Reread On Write

Viewing and Modifying the Internal Peripheral Registers

You can view and modify the internal registers for each peripheral from
the Peripheral window or from the Shell command line with a Register
command. Note that your processor may require setup before some
peripheral registers are accessible. See your Intel or Motorola processor
documentation.

To open the Peripheral window, either open an SLD window Windows
menu and choose Peripheral, or on the Toolbar choose the Periph
button.

To display a specific peripheral group, register, or address in the
Peripheral window, open the Edit menu and choose Go To Peripheral,
Go To Register, or Go To Address, respectively.

The Intel processor registers have addresses in I/O space. In the Shell
window, you can display such a register with a Dump 10 command.

Because reading and writing memory takes a small amount of processor
time, memory access is initially disabled during emulation. Such access
includes scrolling and refreshing the Memory and Peripheral windows
and reading and writing memory from the Memory, Peripheral, and
Shell windows. You can enable memory to be accessible during
emulation; however, any such access can degrade your program
execution. Before starting emulation, either:

SLD User's Manual

61 Debugging in Registers and Memory

e On the Toolbar open the Configure menu and check Run Access.

e On the Shell command line, enter RunAccess ON.

Changing the Peripheral Window Display

Registers are displayed hierarchically. At the top level are the
peripheral mnemonics; then the registers for each peripheral; then the
bit fields for each register. You can expand or compress each level.
When the Peripheral window display is fully compressed, only the
peripherals appear. The columns in the Peripheral window are:

e A (+)symbol
e The peripheral mnemonic

The following figure shows the compressed display of peripherals for an
Inte]386EX processor and for a Motorola 68332 processor.

(+)
[+]
(+]
(+]
(+]
(+]
(+]
(+]
(]
(+]
(+]
(+]
+]

*

File

Edit View Windows Help

D A
MST
TMR
SLY
COM1
COM2
PORT92
csu
SSI0
RFSH
WDT
CLK
CCR
PIO

Periphera hall el

Peripheral
Edit View Windows

File

Help

Expand a peripheral by clicking on the (+). The (+) changes to a (-)
indicating the peripheral is expanded and a list of the peripheral’s
registers appears. Registers marked with (+) can be further expanded;
to show a register’s bit fields, click on the (+).

The register and bit field display columns are:

e A (+)or (-) symbol

e The register address; or, for a bit field, the bit number
e The field value

e The register or field mnemonic

e A description of the register or field

Debugging in Registers and Memory

62 SLD User's Manual

Click on the (-) to recompress the register or peripheral display.

To display all peripherals and registers in expanded format, open the
View menu and choose Expand All. The following figure shows a
View menu.

= Perinhera vl a
File Edit Windows Help
Expand All
Compress All

Refresh Display

The following figure shows part of the expanded display for the
Motorola 68332 peripheral registers.

=

I File

Edit

[} FFFAOO
15:
14:
13:
11:
9:
7
6:
3
(+) FFFAD4
(+) FFFAO7
FFFA11
FFFA15

Peripheral h
View Windows Help

60CF SIM Module Configuration Register

0 EXOFF CLKOUT driven from internal source

1 FRZSW SW watchdog and counters disabled during FREEZE

1 FRZBM Bus Monitor disabled during FREEZE

1] SLVEN Slave mode not used with emulator

0 SHEN Show cycles disabled, arbitration enabled

1 SURPY Register access restricted to supervisor

1 MM Modules addressed FFFO0O0 - FFFFFF

F IARB Interrupt value from Flhighest priority] to 1(lowest priority]
3F08 SYNCR Clock Synthesizer Control Register
80 RSR Reset Status Register
FF Port E Data Register
00 Port E Data Direction Register

To navigate in the Peripheral window, open the Edit menu, choose one
of the Go To... items, and enter the peripheral or register name or
address in the dialog box. The following figure shows an Edit menu.

= Perip
File d View Windows
Register...

Go To Peripheral...

Go To Register...

Go To Address...

era i

Help

Changing the Peripheral Register Values

Double-click anywhere on a register line; or select the register, open the
Edit menu, and choose Register. You can edit the register value or the
individual register fields in the Register Edit dialog box. In the Shell
window, you can use a Register command or Write, Copy, or Fill (for
Intel, Write 10, Copy IO, or Fill 10) command to write to the register.

SLD User's Manual

63 Debugging in Registers and Memory

The following figure shows a sample Register Edit dialog box. This is
the edit box for the Motorola 68332 CCR peripheral SIOCFG register.
The register field values and descriptions are different for each register,
although the layout and operation of the dialog box is consistent across
registers and across processors.

= CCR SIOCFG - Serial {0 Interconnect Register |

Register Value: |[IEg]

Fields:

S1M S101 modem signals are connected to pin muxes
SOM S100 modem signals are connected to pin muxes
reserve reserved bits 5:2

SSBSRC internal PSCLK clock is connected to SSI0 BCLKIN

S1BSRC COMCLK [pin] is connected to SI101 BCLKIN
SO0BSRC COMCLK (pin] is connected to SI00 BCLKIN

Field Value: 7: 8101 Modem Signal Connections

0x0 [S101 modem signals are connected to pin muxes
I

| Write ” Close J [<< Prev ” Next >> I , Help I

Debugging in Registers and Memory 64 SLD User's Manual

Debugging With Triggers and Trace

Use events to define triggers for controlling emulation and collecting trace. Search the trace
buffers for specific events to reconstruct your program activity.

An event is a combination of addresses, data, and signals occurring during emulation.

A trigger uses an event as a catalyst or condition for an action. When an event specified in a
trigger occurs, the associated action is performed.

An action can control trace, emulation, and subsequent triggering.

Address Formats

This section describes the symbolic and numeric address formats you
need to know for defining events and interpreting trace information.

Symbolic Addresses

Symbols, interpreted as a symbolic segment:offset, are virtual
addresses. You can specify a symbolic reference in a command, dialog
box, or expression. You can simplify access to program symbols by
taking advantage of the way symbol names are resolved by the
emulator. For example, when looking up a symbol in the current
module, you need not specify the module and function.

A symbol table contains the names of all modules, functions, variables,
and line numbers that were compiled into the loadfile. The loader reads
information about the program symbols, including the line numbers,
from the loadfile to create the symbol table.

The symbol information is hierarchical, with each symbol represented
as a range of addresses:

At the top of the hierarchy are modules, public labels, and public
variables.
Modules contain functions, static variables, and line and

column numbers.

Functions contain parameters, local variables, static variables,
line numbers, and blocks.

SLD User's Manual

65 Debugging With Triggers and Trace

Blocks are handled as if they were unnamed functions.
Nested blocks can also contain local and static
variables defined in their scope.

Using this symbol hierarchy, you can uniquely specify a symbol. A
fully qualified symbol has one, two, or three names (a name can be a
number) beginning with #. If a symbol is not fully qualified, it defaults
to the current module and function, that is, the scope of the current
program counter.

The rules for symbol look-up are:
1. Attempt to match the symbol at the lowest level of the hierarchy.

2. If a match is not found, attempt to match the symbol at the next
outer level.

3. If no match is found, attempt to match the symbol at the global
level.

4. If no match is found, the symbol name does not exist and a symbol-
not-found error is returned.

To find symbolic variables with one name:

e If the module and function are defined by the context, look up the
name as a variable within the scope of the function.

e If the module is defined by the current context but the function is
not defined by the context (e.g., you have stepped from the module
into a called assembly routine), look up the name within the scope
of the module:

e If no module or function is defined by the current context, look up
the name as a module, or look up the name as public variable or
label.

e If the name is a number, look up the number as a module name or a
line number within the current module.

One-name smbols #module1 Returns the beginning address of module1.

#function1 Is the function in the current module? If so, its address
is returned. If not, the function must be in the global
table (all functions are in the global table unless they
are prefixed by static.)

#variable1 Isthe variable in the current program? The variable
can be inside a nested block, function, module, or it can
be a global or public variable.

#55 Looks up the starting address of line 55 in the current
module.

Debugging With Triggers and Trace 66 SLD User's Manual

Two-name smbols

Three-name smbols

To find symbolic variables with two names:

If a module is defined by the current context, look up the first name
as a function contained within the module. If a module context
does not exist, first look up the first name as a module, then look it
up as a global function.

If the module and function are defined by the context, look up the
second name as a variable within the scope of the function.

If the module is defined by the current context but the function is
not defined by the current context, look up the second name as a
variable within the scope of the module.

If no module or function are defined by the current context, look up
the second name as public variable or label.

If the first name is a number, look up the first name as a module
name or a line number within the current module. If the second
name is a number, look up the second name as a line number if the
first name is a module or function, otherwise as a column number.

#55#15 Look up the address in the current module on line

55, column 15.

#module1#100 Address of line 100 in module1.
#module1#func1l Address of func1 in modulei.
#modulei#var1l Address of static var1 in module1.

#funci1#vari Is func1 in the current module? If not, is funci

global? Then, find var1 in scope of funci.

To find symbolic variables with three names:

The first name is always a module. The second and third can be
line and column numbers. If the second and third are not line and
column numbers, then the second is a function within the module
and the third is a variable or line number within the function scope.

If the third name is a variable it is first looked up within the
module/function context. If not found, it is looked up as a global
variable or label. This symbol's address is returned even if that
symbol is not in the scope of the entered module.

#mod1#254#1 Address of start of code column 1, line 25

of module mod1.

#mod1#func1#100 Address of line 100 in module.
#module1#funci#vari Address of var1 in func1 in module1.

SLD User's Manual

67 Debugging With Triggers and Trace

Line Numbers

To display line numbers in the Source window, open the View menu
and check Line Number. In the Shell window, you can list all line-
number records for the current module with displaySymbols lines.

Some line numbers are comment lines and have no compiled code.

Intel Numeric Addresses

The Intel386 processors operate in different processor modes (pmodes):
real, virtual-86 (V86), protected, and (for the CX and EX) System
Management Mode (SMM). Protected mode is further divided into 16-
bit and 32-bit modes.

These processors have a segmented architecture, i.e. addresses consist
of a segment and an offset. The segment determines the base address of
an addressable region, and the offset is added to that base to arrive at
the final linear address. In some modes, the linear address may be
further processed by the paging unit to construct the physical address
seen on the processor pins.

The segment registers consist of a 16-bit user-visible register (CS, DS,
ES, FS, GS, or SS) and 3 hidden components (the segment base, limit,
and access rights). The pmode affects how the processor loads the
hidden portion of the segment registers.

When the 16-bit visible segment register is loaded by the user program,
the processor automatically loads the hidden portion based on rules
determined by the pmode. In real and V86 mode, the base is the
segment multiplied by 16, the limit is always 64K bytes, and the access
rights allow execution, read, and write. In protected mode, the base,
limit and access rights are extracted from the segment descriptor
indicated by the segment register value. The descriptor is an 8-byte
data structure in one of two arrays called the global descriptor table
(GDT) and local descriptor table (LDT). Bit 2 of the segment register
selects which table is used. In SMM, the base and access rights are as
in real mode, but the limit is always 4 gigabytes (4G bytes).

* Pmode also affects whether the paging unit can be used. In real and
SMM modes, the paging unit is not used, so the physical address is
always the same as the linear address. In V86 and protected modes,
paging is active if the PG bit in the CRO register is set.

Finally, pmode affects the processor instruction set. The Intel386
processor has two sets of addressing modes: 16-bit and 32-bit; and two
default data sizes: 16-bit and 32-bit. The default address and data sizes

Debugging With Triggers and Trace 68 SLD User's Manual

are determined by the pmode and the D bit in the code segment
descriptor.

In real, V86, and SMM modes, 16-bit is the default. In protected mode,
the D bit determines the default address size (the difference between 16-
bit and 32-bit protected modes). An address size override prefix byte
can be added to any instruction to switch to the opposite (non-default)
address size, so even in real mode the 32-bit addressing modes can be
used. Similarly, a data size override can be used to select the opposite
data size. Thus, even in real mode, a program can directly use 32-bit
data quantities.

For example, the instruction 89 00 is:

addr size data size instruction

16 16 mov [bx+si],ax

32 16 mov [eax],ax

16 32 mov [bx+si],eax

32 32 mov [eax],eax

Specify numeric addresses as:

Format Address Type

<offset>L Linear Address

<offset>P Physical Address
[(#module)]#symbol Symbolic segment:offset interpreted

as a virtual address

<ldt>:<segment>:<offset Virtual address with specified LDT
>

<segment>:<offset> Virtual address using current LDT
<offset> Virtual address assuming current LDT
and DS

To find the linear or physical equivalent of an address, use an Xlt Shell
command.

The emulator checks address limits:

Type Pmode Processor Limits

Virtual SMM all 0:0 to FFFF:FFFFFFFF
Real all 0:0 to FFFF:FFFF
Virtual-86 all 0:0 to FFFF:FFFF
Protect16,32 all selector < table limit; offset

within segment limit

SLD User's Manual

69 Debugging With Triggers and Trace

Linear all
Physical all
all
all
all

Events

An event definition is used:

all

386DX
386SX
386CX
386EX

0 to FFFFFFFF
0 to FFFFFFFF
0 to FFFFFF

0 to 3FFFFFF
0 to 3FFFFFF

¢ In atrigger, to control emulation and trace collection. When the
event occurs, the emulator performs the specified actions.

e To find specific activity recorded in trace. In a trace buffer, search
for a named event.

An event is a combination of:

Addresses

Data

Signals

Reading or writing to a specific address, set of
addresses, inside an address range, or “not” the
described addresses. You can specify symbolic or

numeric addresses.

Reading or writing a specific value, set of values,
range of values, or “not” the described values. You
can specify symbolic or numeric data.

High or low logic levels on various processor signals.
You can also specify don’t-care for signals.

Define an event in the Event edit box, also called the Event window.
Editing the Event edit box differs from editing a dialog box. The
<Enter> key has no effect on the field that you are editing. To ensure a
field accepts an entry, move the cursor by clicking on another field or
button. Pressing the <Delete> key to delete a highlighted value has no
effect; press the space-bar instead.

You can open the Event edit box from the Trigger or Trace window, by
opening the Edit menu and choosing Events, or from the Windows

menu of any SLD window.

If no events are defined, the Add Event dialog box appears. Otherwise,
to add a new event, in the Event edit box open the Edit menu, choose

Add Event, and enter the new Event name. The following figure shows
an Add Event dialog box.

Debugging With Triggers and Trace

70

SLD User's Manual

= Add Event

Name:

| evl |

| oK I |gancell I Help |

The following figure shows the Event edit box for a Motorola 68332
processor. The available signals differ for different processors and, for
Motorola processors, can vary according to the chip select register
configurations.

Event: evl

File Edit Windows Help

Active Event: |ev1

not start @ End Addr O Length _mask

addr: [:ll |

start end mask
data: [| I || |
01 X 01 X 01 X 01 X 01 X
OO ® as- OO @ resett OO ®irg?- OO @ miso O O @ 8
OO ® ds- OQC@®berr CO@®pest-CQC®UW QOO @19
O QO @ nw- QO®hatt QO @pes1-0OO0®11 OO @® o
QO@®siz0 OQO®igl- CO@pes2-CC @2 OO ®1t
QQO@sizl OQO®irg2- OO @pes3- OO0 @B OO ®u2
O Q @ dsackd- O O ®ig3- OO @®sck CO@®uW OO @®u3
CO@®dsackl- O C ®igs- CO@®nd CO@®B5 OO @114
OQC@®avee CO®igh- CCO®txd CO@®6 OO @®us
OO ®me OO ®igh- OO ® mosi OO @17

To define the address of an event: (If you don’t care what addresses are
accessed, leave all the Addr fields blank.)

1. Enter a symbolic or hexadecimal numeric address in the Addr Start
field. This is the first address in the region where the event can
occur.

2. Select End Addr or Length. Enter either the last address in the
memory region where the event can occur, or the length in bytes of
the region.

If you are unsure of an address or address range, you can use the
Shell window AddressOf and NameOf commands or the Source
window Function pop-up menu. For example, with the following
information you can define an event relative to addresses occupied
by the Load_CmdBuf function or the MsgRXx variable:

SLD User's Manual

71 Debugging With Triggers and Trace

>nameof 680 // Find what function this address is in
/I #332gsm#432#1 (function Load_CmdBuf+0x30 [48])

>addressof #Load_CmdBuf
// 650..685 // Address range occupied by the function

>nameof e70 // Find the closest symbol to this address
// #main#MsgRx+0x8 [8]

>addressof #MsgRx
// E68..E87 [32] // Address range occupied by the variable

Another way to find the memory region of a function is via the
Function pop-up menu. In the Source window, double-click on the
function name and choose Show Load Address. The following
figure shows a Function pop-up menu and the Load Address
information box.

g Function: UnLoad_RxBuf
Go To Source
Show Load Address
Set Perm. Breakpoint
Set Temp. Breakpoint
Clear Breakpoint

= PowerPack SLD

Function UnLoad_RxBuf: Address
starts at: 000686..0006A5.

Help I

3. Optinally, you can enter a binary-AND mask value. The mask
dictates which bits of the address are don't-care's (0) and which
must match (1).

4. To match only addresses outside of the range or set you specified,
check the Not box.

To define the data of an event: (If you don’t care what data is read or
written, leave all the Data fields blank.)

1. Enter numeric values in the Data Start and Data End fields. The
emulator interprets the numbers as decimal unless you use the 0x
prefix. For example, 10 is translated to 0XO00A, and 0x10 is
accepted as 0x0010.

2. Enter a binary-AND mask, using all 1’s to match the described
data exactly.

Debugging With Triggers and Trace 72 SLD User's Manual

Trace

3. To match only data outside of the range or set you specified, check
the Not box.

Specify signal states for the event by toggling the low (0), high (1) or
don't care (X) buttons next to each signal mnemonic. Active-low
signals are shown with a hash mark (#) for Intel emulators or minus
sign (-) for Motorola emulators. The signals available depend on the
target processor. For some Motorola processors, the signals available
can also depend on your chip select register configurations.

You can define events in one emulator session and save them for reuse
in another session. To save events to a file, in the Event window open
the File menu and choose Save Events As. To retrieve saved events,
choose Restore Events. Or, enter EventSave and EventRestore
commands on the Shell command line.

For Motorola emulation, you can specify the address space for an event
as UD, UP, SD, or SP. To make the space selection available in the
Event edit box, you must program the processor to output the three
function codes FCO, FC1, and FC2.

Trace is a record of the processor bus events occurring each clock cycle
during emulation. With the trace information, you can find specific
events and reconstruct a history of the executed instructions and the
resulting data transfers to and from the processor.

Controlling Trace Collection

You can interactively control trace collection with the Toolbar Start and
Stop buttons or automate trace collection with triggers based on events
in your program execution. The Status window or icon message shows
whether the emulator is tracing. You need not halt emulation to
examine the collected trace.

To configure trace collection, in the Trace window open the Trace
menu (in the Trigger window, open the Options menu); choose Trace
Control. The following figure shows a Trace Control dialog box.

SLD User's Manual

73 Debugging With Triggers and Trace

[Halt When Last Trace Buffer Full

rTrigger Position
@ Pre O Center O Post

rNumber of Trace Buffers [x Size)

@ 1x256K) O8x32K) O 64 [x4K)
O2x128K) O16 [x16K) O 128 [x2K)
O 4 (x64K) O 32 x8K) O 256 [x1K]

I ‘0K I |Qancel| I Help |

In the Trace Control dialog box:

e Specify the number and sizes of trace buffers to be filled. With
multiple buffers, you can collect several sections of code execution.

e Locate where the triggering event occurs in the collected trace in
any buffer. Unless you halt emulation, trace collection in the buffer
continues after the triggering event until the buffer is full.

Pre collects cycles before the trigger. The triggering event
appears near the end of the buffer.

Center collects cycles before and after the trigger. The triggering
event appears in the middle of the buffer.

Post collects cycles after the trigger. The triggering event
appears near the beginning of the buffer.

e When you are filling four or more trace buffers, you can halt
emulation when all the buffers are full. This operation overwrites
the first buffer with several cycles after the end of the last buffer.

Displaying the Collected Trace

To display a trace buffer, open the Trace window. Move between
multiple trace buffers by opening the Goto menu and choosing Previous
Buffer, Next Buffer, or Buffer.

Each time emulation halts or you turn trace off, the Trace window is
updated. The trace information includes:

e The timestamp of the clock cycle
e The values on the address and data pins during the clock cycle

e Various signal values at the time of the clock cycle

Debugging With Triggers and Trace 74 SLD User's Manual

Read the abbreviated signal mnemonics vertically. The following
figure shows a Trace window. The available signals differ for different
processors and, for Motorola processors, can vary according to the chip
select register configurations.

= Trace - Buffer: 0
File Edit View Trace Timestamp Goto Windows Help
ad v ss dd ar rbh iiiiiii pppp s rtmm tttt tttt tttt ty
data ss w zz kk vm sel rrrrrrr cccc © Xxol 8123 4567 8911 11

timestamp address
81 01 cc trt 1234567 0123 k ddss 81 2:
+
[+1]
T [1+
From the View menu, you can display trace as:
Clock mode processor pin states at each clock
Bus mode processor bus cycle activity
Instruction mode disassembly of instructions executed by the

processor and memory accesses associated with
the executed instructions

You can link the Source and Trace window displays. When the
windows are linked, you can scroll through the Trace window and view
the corresponding code scrolling synchronously in the Source. window.
To link the Source window to the Trace window:

1. 1Inthe Trace window, open the View menu and choose Instruction.
2. Re-open the View menu and choose Linked Cursor.

With Linked Cursor, you can view the history of executed source lines
in instruction mode. Linked Cursor is disabled in clock and bus modes.

Trace and Event Window Signals

The Trace and Event windows display signal name mnemonics
corresponding to the Intel or Motorola mnemonics, as listed
(alphabetically) in the tables in this section for each microprocessor.
You can configure some pins as secondary I/O signals. You must keep
track of how your signals are configured, since the Trace and Event
windows identify the signals only by their primary use.

In these tables, # (for example, ADS#) and - (for example, r/w-)
indicate active-low.

SLD User's Manual 75 Debugging With Triggers and Trace

Intel386EX Signals

Trace Event Signal

ads ADS# Address Status

bhe BHE# Byte High Enable

bs8 BS8# Bus Size Control

bsy BUSY# Busy

csb CS6# Chip Select 6; Muxed with REFRESH#

dc D/C# Data/Control Status

err ERROR# Error

in4 INT4 Interrupt Request 4; Muxed with
TMRCLKO

in5 INTS Interrupt Request 5: Muxed with
TMRGATEOQ

in6 INT6 Interrupt Request 6; Muxed with
TMRCLK1

in7 INT7 Interrupt Request 7; Muxed with
TMRGATE!1

mio M/IO# Memory/IO Status

na NA# Next Address

nmi NMI Non-maskable Interrupt Request

pl5 P15 Port 1 Pin 5; Muxed with LOCK#

plé P16 Port 1 Pin 6; Muxed with HOLD

pl7 P1.7 Port 1 Pin 7; Muxed with HLDA

p20-p24 P2.0- Port 2 Pins 0 - 4; Muxed with CSO0# - CS4#

P24

p25 P25 Port 2 Pin 5; Muxed with RXD0

p26 P2.6 Port 2 Pin 6; Muxed with TXDO0

p27 P27 Port 2 Pin 7; Muxed with CTSO0#

p30-p31 P3.0- Port 3 Pins 0 - 1; Muxed with TMROUTO -

P3.1 TMROUT1

p32-p35 P3.2-p3.5 Port 3 Pins 2 - 5; Muxed with INTO - INT3

p36 P3.6 Port 3 Pin 6; Muxed with PWRDOWN

p37 P3.7 Port 3 Pin 7; Muxed with COMCLK

per PEREQ Processor Extension Request

Debugging With Triggers and Trace 76 SLD User's Manual

rdy READY# Ready

rst RESET Reset

sma SMIACT# System Management Interrupt Active
smi SMI# System Management Interrupt
wr W/R# Write/Read

Intel386CX Signals

Trace Event Signal

a20 A20M# Address 20 Mask

ads ADS# Address Status

bhe BHE# Byte High Enable

bsy BUSY# Busy

dc D/C# Data/Control Status

err ERROR# Error

hla HLDA Hold Acknowledge

hld HOLD Hold Request

int INTR Interrupt Request

Ick LOCK# Bus Lock

mio M/IO# Memory/IO Status

na NA# Next Address

nmi NMI Non-maskable Interrupt Request
per PEREQ Processor Extension Request
rdy READY# Ready

st RESET Reset

sma SMIACT# System Management Interrupt Active
smi SMI# System Management Interrupt
wr W/R# - Write/Read

Intel386SX Signals

Trace Event Signal

ads ADS# Address Status

bhe BHE# Byte High Enable

bsy BUSY# Busy

SLD User's Manual 77 Debugging With Triggers and Trace

de D/C# Data/Control Status

err ERROR# Error

hla HLDA Hold Acknowledge

hld HOLD Hold Request

int INTR Interrupt Request

Ick LOCK# Bus Lock

mio M/IO# Memory/IO Status

na NA# Next Address

nmi NMI Non-maskable Interrupt Request
per PEREQ Processor Extension Request
rdy READY# Ready

1St RESET Reset

wr W/R# Write/Read

MC68332/333 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

™w r/w- R/W# Read/Write

sz0 siz0 SIZ0 Transfer Size

szl sizl SIZ1 Transfer Size

dk0 dsack0- DSACKO# Data and Size Acknowledge
dk1 dsack1- DSACKI1# Data and Size Acknowledge
ave avec- AVEC# Autovector

rmc rme- RMC# Read-Modify-Write Cycle
Tst reset- RESET# Reset

ber berr- BERR# Bus Error

hlt halt- HALT# Halt

irl irql- IRQ1# Interrupt Request Level 1
ir2 irq2- IRQ2# Interrupt Request Level 2
ir3 irq3- IRQ3# Interrupt Request Level 3
ir4 irq4- IRQ4# Interrupt Request Level 4

Debugging With Triggers and Trace

78 SLD User's Manual

ir5
ir6
ir7
pcO

pcl
pc2
pc3
sck
rxd
txd
mos
mis
t0 to
t15

irq5-
irq6-
irq7-
pes0-

pesl-
pes2-
pcs3-
sck

rxd

txd
mosi
miso

t0 to t15

IRQ5# Interrupt Request Level 5
IRQ6# Interrupt Request Level 6
IRQ7# Interrupt Request Level 7

PCSO0#/SS QSPI Peripheral Chip Selects/Slave
Select

PCS1# QSPI Peripheral Chip Selects
PCS2# QSPI Peripheral Chip Selects
PCS3# QSPI Peripheral Chip Selects
SCK QSPI Serial Clock

RXD SCI Receive Data

TXD SCI Transmit Data

MOSI Master-Out Slave-In

MISO Master-In Slave-Out
TP[0:15] TPU Channel Input/Output

You can program the SIM (system integration module) peripheral
CSPARO (chip select pin assignment register 0) to make the following
signals also available. For an example, see the section on programming
the Motorola chip selects in the “Defining the Debug Environment”

chapter.
bgack
bg

br
portc.2
portc.1
portc.0

bgack-
bg-
br-
portc2
portcl
portcO

Bus Grant Acknowledge
Bus Grant

Bus Request
User-configurable 1/O Port 2
User-configurable I/O Port 1
User-configurable I/O Port 0

MC68331/MC68HC16Z1 Signals

Trace
as

ds

™w

sz0

szl

Event
as-

ds-
r/w-
siz0

sizl

Signal

AS# Address Strobe
DS# Data Strobe
R/W# Read/Write
SIZ0 Transfer Size
SIZ1 Transfer Size

SLD User's Manual

79 Debugging With Triggers and Trace

dk0 dsackO- DSACKO# Data and Size Acknowledge
dk1 dsack1- DSACKI1# Data and Size Acknowledge
ave avec- AVEC# Autovector
rme rme- RMCH# Read-Modify-Write Cycle (MC68331
only)
st reset- RESET# Reset
ber berr- BERR# Bus Error
hlt halt- HALT# Halt
irl irql- IRQ1# Interrupt Request Level 1
ir2 irq2- IRQ2# Interrupt Request Level 2
ir3 irq3- IRQ3# Interrupt Request Level 3
ir4 irq4- IRQ4# Interrupt Request Level 4
ir5 irq5- IRQS5# Interrupt Request Level 5
ir6 irq6- IRQ6# Interrupt Request Level 6
ir7 irq7- IRQ7# Interrupt Request Level 7
pcO pcs0- PCSO0#/SS QSPI Peripheral Chip Selects/Slave
Select

pel pesl- PCS1# QSPI Peripheral Chip Selects
pc2 pcs2- PCS2# QSPI Peripheral Chip Selects
pc3 pcs3- PCS3# QSPI Peripheral Chip Selects
sck sck SCK QSPI Serial Clock
rxd rxd RXD SCI Receive Data
txd txd TXD SCI Transmit Data
mos mosi MOSI Master-Out Slave-In
mis miso MISO Master-In Slave-Out
icl icl IC1 GPT Input Capture 1

. ic2 ic2 IC2 GPT Input Capture 2
ic3 ic3 IC3 GPT Input Capture 3
ic4 ic4 IC4/0C5 GPT Input Capture 4 / Output Cmpr 5
ocl ocl OC1 GPT Output Compare 1
oc2 oc2 OC2 GPT Output Compare 2
oc3 oc3 0OC3 GPT Output Compare 3
oc4 oc4 OC4 GPT Output Compare 4

Debugging With Triggers and Trace 80 SLD User's Manual

pai pai PAI Pulse Accumulator Intpu
pwa pwma PWMA GPT Pulse Width Modulation A
pwb pwmb PWMB GPT Pulse Width Modulation B

You can program the SIM (system integration module) peripheral
CSPARO (chip select pin assignment register 0) to make the following
signals also available. For an example, see the section on programming
Motorola chip selects in the “Defining the Debug Environment”
chapter.

bgack bgack- Bus Grant Acknowledge

bg bg- Bus Grant

br br- Bus Request

portc.2 portc2 User-configurable I/O Port 2
portc.1 portcl User-configurable 1/0 Port 1
portc.0 portc0 User-configurable I/0 Port 0

MC68330 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

™w r/w- R/W# Read/Write

uwe uwe- UWE# Upper Write Enable
Iwe Iwe- LWE# Lower Write Enable
sz0 siz0 SIZ0 Transfer Size

szl sizl SIZ1 Transfer Size

dk0 dsack0- DSACKO# Data and Size Acknowledge
dk1 dsackl- DSACKI1# Data and Size Acknowledge

avc avec- AVEC# Autovector

rmc rme- RMCH# Read-Modify-Write Cycle
st reset- RESET# Reset

ber berr- BERR# Bus Error

hlt halt- HALT# Halt

irl irql- IRQ1# Interrupt Request Level 1
ir2 irq2- IRQ2# Interrupt Request Level 2

SLD User's Manual

81 Debugging With Triggers and Trace

ir3 irq3- IRQ3# Interrupt Request Level 3

ir4 irq4- IRQ4# Interrupt Request Level 4
ir5 irq5- IRQ5# Interrupt Request Level 5
ir6 irq6- TIRQ6# Interrupt Request Level 6
ir7 irq7- IRQ7# Interrupt Request Level 7
MC68340 Signals

Trace Event Signal

as as- AS# Address Strobe

ds ds- DS# Data Strobe

™w r/w- R/W# Read/Write

sz0 siz0 SIZ0 Transfer Size

szl sizl SIZ1 Transfer Size

dkO dsackO- DSACKO# Data and Size Acknowledge
dkl dsackl- DSACKI1# Data and Size Acknowledge

ave avec- AVEC# Autovector

rme rme- RMC# Read-Modify-Write Cycle
st reset- RESET# Reset

ber berr- BERR# Bus Error

hlt halt- HALT# Halt

fc3 fc3 Function Code 3

irl irq1- IRQ1# Interrupt Request Level 1
ir2 irq2- IRQ2# Interrupt Request Level 2
ir3 irq3- IRQ3# Interrupt Request Level 3
ir4 irq4- IRQ4# Interrupt Request Level 4
ir5 irq5- IRQ5# Interrupt Request Level 5
ir6 irq6- IRQ6# Interrupt Request Level 6
ir7 irq7- IRQ7# Interrupt Request Level 7
rxa rxda RxDA Receive Data Channel A
txa txda TxDA Transmit Data Channel A
rda rxrdya- RxRDYA Receiver Ready

tda txrdya- TxRDYA Transmitter Ready

Debugging With Triggers and Trace 82 SLD User's Manual

rxb rxdb- RXDB Receive Data Channel B

txb txdb- TXDB Transmit Data Channel B
til tinl TIN1 Timer Input 1

tol toutl TOUT1 Timer Out 1

tgl tgatel- TGATEI1# Timer Gate 1

ti2 tin2 TIN2 Timer Input 2

to2 tout2 TOUT2 Timer Out 2

tg2 tgate2- TGATE2# Timer Gate 2

drl dreql- DREQ1# DMA Request 1

dal dack1- DACK1# Data Acknowledge 1
dol donel- DONEI1# Data Done 1

dr2 dreq2- DREQ2# DMA Request 2

da2 dack2- DACK2# Data Acknowledge 2
do2 done2- DONE2# Data Done 2

br br- BR# Bus Request

bg bg- BG# Bus Grant

bga bgack- BGACK# Bus Grant Acknowledge

MC68360 Signals

Trace Event Signal

as as- AS# Address Strobe
ds ds- DS# Data Strobe

™ r/w- R/W# Read/Write
sz0 siz0 SIZ0 Transfer Size
szl sizl SIZ1 Transfer Size

dk0 dsackO0- DSACKO# Data and Size Acknowledge
dk1 dsackl- DSACKI1# Data and Size Acknowledge

rmc rme- RMC# Read-Modify-Write Cycle
rsh reseth- ~ RESETH# Hard Reset

1SS resets- RESETS# Soft Reset

ber berr- BERR# Bus Error

hlt halt- HALT# Halt

SLD User's Manual 83 Debugging With Triggers and Trace

fc3 fc3 FC3 Function Code 3

irl irql- IRQ1# Interrupt Request Level 1
ir2 irq2- IRQ2# Interrupt Request Level 2
ir3 irq3- IRQ3# Interrupt Request Level 3
ir4 irq4- IRQ4# Interrupt Request Level 4
ir5 irq5- IRQ5# Interrupt Request Level 5
ir6 irq6- IRQ6# Interrupt Request Level 6
ir7 irq7- IRQ7# Interrupt Request Level 7
br br- BR# Bus Request

bg bg- BG# Bus Grant

bga bgack- BGACK# Bus Grant Acknowledge

Debugging With Triggers and Trace 84 SLD User's Manual

Triggers

A trigger performs one or more actions when a condition occurs. The
condition can be a combination of events, timer or counter values, and
an active-low external signal. The action can be starting or stopping
trace, stopping emulation, starting or stopping a counter or timer, or
arming another trigger.

Defining a Trigger

To define a trigger, on the Toolbar select the Trigger button (in any
SLD Windows menu select Trigger). The Condition pane of the
Trigger window specifies the events, timer or counter values, or active-
low external signal on which to trigger; the Actions pane describes the
emulation actions to be taken when the conditions are met.

To specify whether the trigger occurs on a bus or clock cycle, open the
Options menu and choose:

Bus automatically samples processor pins at the proper time in a
bus cycle. The trigger is based on aligned samples.

Clock triggers on any cycle coming from the processor, regardless of
whether it is a valid bus cycle. Use clock triggering to trigger
on an I/O signal or on an interrupt input that can occur on any
clock cycle.

The Trigger window provides up to four levels of triggers: Level 0, 1, 2,
or 3 appears in the Trigger window title bar. Levels are processed
sequentially. A sequencing (Seq) action disables the set of conditions
defined in the current level and enables the set of conditions in the next
level.

All conditions on a level are processed in parallel. That is, if two or
more conditions are true simultaneously, all associated actions occur.

The following figure shows a Trigger window at Level 0.

SLD User's Manual

85 Debugging With Triggers and Trace

= Trigger - Level 0 ﬂ
File Edit Options Level Windows Help
Condition Actions
eventname enable ext | seq vst| brk|toff nest|incl vstd incl vstl [extlo exthi
evl JR OO0 OO0 oo oo|o o
+| O]
+| O]
+|
+ O
| O
+| O]
+|O
cnitll | 1 O
ontl | 1 O
ext O

In the Condition pane, specify a previously defined event name. Click
on an event name list box. In the drop-down list box, click on the event
that you want to use as a trigger condition. Check the Enable box to the
right of the event name. Click in the row of boxes to specify the actions
to be taken if the trigger condition is met. The conditions and actions
are described in detail in the “Trigger Window Reference” chapter.

The timer increments at the clock rate of the emulation processor and
wraps to 0 after reaching its maximum value. To calculate the
milliseconds (ms) for a complete timer cycle:

wrap time = (2%°) / (clock period)
For example, at 25 MHz, the timer wraps in about 42 ms; at 16 MHz,
the timer wraps in about 65.5 ms.

For counter conditions and actions, open the Options menu and check
Counter. For the timer, check Timer. The following figure shows an
Options menu.

Trigger - Level 0
[UNLLEE Level Windows He
Trace Control...

+ Counter
Timer

v Bus
Clock

Debugging With Triggers and Trace 86 SLD User's Manual

Examples of Triggering

This section demonstrates various trigger window configurations and
describes their effects on emulation control.

Break Emulation

If Evntl occurs, emulation breaks.

Trigger - Level 0

File Edit Options Level Windows Help
Condifion Actions

eventname enable ext § seq vst| brk|toff next|incd vstd incl vstl |estlo exthi

et (o OO0 OO OODOOCO]O 0O

A
Enable Evntl and choose the brk action.

1

2. Start emulation.
3. Tracing starts.
4

Emulation stops when the trigger occurs.

Stop Trace Without
Breaking Emulation

If Evnt1 occurs, trace collection stops.

Trigger - Level 0
ile Edit Options Level Windows Help
Condition Actions
eventname enable ext | seq vst|brk|toff next|inc0 vstd incl vstl |extlo exthi

et (¢ OO0 OOXK OOOO0O]0O0 O

M

1. Enable Evntl and choose the toff action.

2. Start emulation.

When the trigger occurs, the trace buffer fills according to Trace
Control; tracing stops; emulation continues.

SLD User's Manual

87 Debugging With Triggers and Trace

Act On Multiple Events Enable up to eight global events. Enabled events are logically ANDed.
For this example, multiple trace buffers must be defined in the Options
menu Trace Control dialog box and Counters must be selected in the
Options menu.

= Trigger - Level 0 H
File Edit Options Level Windows Help

Condition Actions
event name enable ext | seq vst| brk|toff nestiincd vstd ncl vstl |estlo exthi
et [OO0 OO OO XK OO|X® O
ez (& OO0 OROOIIOEREOO|RE O
ez (¢ OO0 OROOOOOXR| ® O
rtd |+ OO0 OO OOOOXR|X® O
s (B OO OO0O0XRROOO| O K
s (¢ OO0 OOK OROOO| O ®E
ey (¢ OO0 OO0 XROOXEO| O K
s (o ® OO0 OOK OOO0XO] O K
cntll | 50 N OO0 OO0 oo oo ® O
cntl [100 X OO0 OO Oo0ooo® O
ext O

Enable the Event names in the eight drop-down list boxes.

Specify the actions to be taken when each event occurs:

When each event occurs, the associated actions are taken. If
multiple events occur simultaneously, all associated actions are
taken.

Evntl, Evnt2, Evnt3, and Evnt4 break emulation, reset one of
the counters, and write 0 to the external trigger-out signal.

Evnt5 and Evnt7 fill the current trace buffer according to
Trace Control and start collecting trace into the next trace
buffer; increment one of the counters; and write 1 to the
external trigger-out signal.

Evnt6 and Evnt8 stop tracing, increment one of the counters,
and write 1 to the external trigger-out signal.

If Evnt5 and Evnt6 together occur 50 times without Evnt1 or
Evnt2 occurring, cnt0 reaches 50, breaks emulation, and
writes O to the external trigger-out signal.

If Evnt7 and Evnt8 together occur 100 times without Evnt3 or
Evnt4 occurring, cntl reaches 100, breaks emulation, and
writes O to the external trigger-out signal.

Debugging With Triggers and Trace 88 SLD User's Manual

Break On Interrupt
Latency

Using the number of elapsed clock cycles, you can discover whether an
interrupt is serviced in a timely manner.

= Trigger - Level 0 n
File Edit Options Level Windows Help
Condition Acfions

eventname enable ext | seq vst|brk |toff nest|start stop reset |estlo exthi
Int! JE O10 OO0 Oo/x o oo o
Evtl JH OO0 O00 00 X8 B0 O

+| O

+|

+| O

+ 0

+

+| O]
me (1000 |9 OO0 OO OO O OO O
ext O

1. Define an interrupt event, Intl. Enable Intl and choose start
(starting the timer).

2. Define an event based on the code address of the entrance or exit
from the interrupt handler, Evtl. Enable Evtl and choose rst and
stop (resetting and stopping the tmr).

3. Enable tmr and specify 1000 in the tmr edit field. Choose brk.

Reduce the timer value until the specified action occurs, to get the
actual number of clock cycles between the two events.

AND an Event With an

Logically AND the condition with an external trigger input low signal

External Input by checking the ext box (ext is to the right of enable).
Trigger - Level 0
File Edit Options Level Windows Help
Condition Actions
eventname enable ext § seq vst| brk|toff nesxt|start stop reset |extlo esthi
et (| RO OO OOO OO 0O
A

SLD User's Manual 89 Debugging With Triggers and Trace

Trigger on External
Input Alone

Enable ext on the last line of the Condition pane to set a trigger on an
external signal alone (ext is located at the bottom of the left column).
= Trigger - Level 0 n
File Edit Options Level Windows Help

Condition Actions
eventname enable ext | seq vst|brk [toff nest|start stop veset |extlo exthi

Oo0OoOoooooo

g
I |14 | |4 |14 | |4 | [4= |14] 4=

=

ext O Oxoooono ojg O

Define Sequential
Triggers For Capturing
Trace

Capture trace following each of three events in three separate trace
buffers. This example uses an Intel386 CX emulator running the
demo386.omf sample program installed with SLD.

Define buffers 8K bytes long. Position the trigger so the event appears
near the beginning of the buffer (Post). The following figure shows the
Trace Control dialog box for this buffer configuration.

= Trace Control

[0 Halt When Last Trace Buffer Full

rTrigger Position
O Pre O Center @® Post

Number of Trace Buffers [x Size]
O1x256K) O 8(x32K] O 64 [x4K)
O2xi28K) T 16x16K) O 128 [x2K)

O 4 x64K) @32 (x8K) O 256 [x1K)

| 0K | gancell Help I

Define an event at the first code location inside each of three function
calls: insert, printall, and remove. To find the addresses, use Xlt:

Xlt #insert;
// 0018:FFFFE41C = FFFFE41CL = S3FFE41CP

Debugging With Triggers and Trace 90 SLD User's Manual

The following figure shows the three event definitions.

= Event. in_insert ﬂ
File Edit Windows Help
Active Event: lin_insen Iil
not start @ End Addr O Length _mask
addr: [[3ffe41cP | |3tied1cp |0x3FFFFFF |
start end mask
data: [| Il I |
01 X 01 X 01 X 01 X 01 X
O C @ BHE O O @ Lockt O O @ HOLD O O @ INTR O O @ ERRORY
Q@ OMIoOR® OO ADSE OO @®HDA OO @®sSMit O O @ PEREQ
@® O O pick O O @ READYE O O @ RESET O O @ SMIACTE O O @ A20M#
® O O WRE OO @® NAt OO @®NME OO @ BUSY#
Event: in_printall n

File Edit Windows Help

Active Event |in_printall

lil
not start @ End Addr O Length _mask

addr: O [3ffeacoP | |3tfedcor| | 0x3FFFFFF |

start end mask .
data: [[I l
01 X 01 X 01 X 01 X 01 X
OO @ BHE# O O @ LOCK# O O @ HOLD O O @ INTR O O @ ERROR#
C@®OMIOE® OO ASE OO @®HDA OO @®svir OO @ PEREQ
@ O O pict O O @ READY# O O @ RESET O O @ SMIACTE O O @ A20M#
@ OO wRt OO @ Na# OO @NM OO @® BUSY#
= Event. in_remove u
File Edit Windows Help

Active Event: Iin_remnve L!_I

not start @ End Addr O Length _mask

addr: [J | 3tfe470P | |3tfea70P [0x3FFFFFF |

start end mask
data: [| || I |
01 X 01 X 01 X 01 % 01X
QO @BHEE QO @ LoCKt O O @ HOLD O O @ INTR O O @ ERROR#
Q@O MIOE® OO ADSE OO @HDA OO @®sMit OO @ PEREQ
@ O O bpice O O @ READYZ O O @ RESET O O @ SMIACTE O O @ A20M#t
® O O wRt OO @® Nt OO @®NMI OO @® BUSY#

Enable the trigger timer and set it to count by clock cycles. The timer
lets 8200 clock cycles elapse between triggers. This demo program is
so small that the events defined for the triggers occur multiple times in
the trace captured to post-fill an 8K-byte trace buffer. Since only one

SLD User's Manual

91 Debugging With Triggers and Trace

trace-control action (toff, next) can occur in each buffer, the timer
ensures that tracing moves to the next buffer before sequencing to the
next trigger.

The following figure shows the Options menu with Timer and Clock.

=) Trigger
ile Edit BOUGLER Level !-_"l'
Trace Control...
Counter
v Timer
Bus
v Clock

Each of the first two triggers captures trace following its event and
starts a timer to run while the buffer fills. When the buffer is full,
tracing begins in the next buffer. When the timer finishes, it stops,
resets itself, and arms (sequences to) the next trigger.

The final trigger turns trace off, filling the current buffer. Emulation
continues but trace does not.

The following figure shows the three levels of triggers.

= Trigger - Level 0 H
File Edit Options Level Windows Help
Condition Actions

eventname enable ext | seq vst|brk |toff next|start stop teset |extlo exthi
in_inserttEDDDDDDD O |
in_printall | +] LJ
in_remove(+ U

+

+

+| O

+ 0

+|

el K OIROOO0OOO0ORXR ®|O O

ext]

Debugging With Triggers and Trace 92 SLD User's Manual

= Trigger - Level 1 n
File Edit Options Level Windows Help

Condition Actions

eventname enable ext | seq vst| brkjtoff nest|start stop veset |extlo exthi
n_insert (¥ Ul
in_printall!DDDDD@DD O O
r_temove| ¥ O

+ O

+| O]

+| O

+| O

+| O]
rr (g200 | OJE OO0 OO0 XK ® |[O 0O
ext O
= Trigger - Level 2 n
File Edit Options Level Windows Help

Condition Actions

eventname enable ext §seq vst|brk|toff nest|start stop veset [extlo exthi
n_insert +|O
in_printall | +] I
in_remgvgg <] D D D D E D I:I D D D D

+| O

O

O

+|O

s
foo 8200 |OJ
ext O

Summary of Ways to Trigger
The following steps summarize defining a trace buffer using a trigger:

1. In the Trace window, open the Trace menu (or in the Trigger
window open the Options menu) and choose Trace Control to
configure trace. Set the number of trace buffers in the resulting a
dialog box. Set the triggers as pre, post or center and toggle
whether to break from emulation when all trace buffers are full.

SLD User's Manual

93 Debugging With Triggers and Trace

2. Define the events on which to trigger using the Event window.
The Event window contains different choices for different versions
of the microprocessor. You can define a bus event based on an
address, a data value, or a processor signal. You can include the
address space. Defined events can be saved and reloaded.

3. In the Trigger window, open the Options menu and choose the Bus
toggle to select bus cycle triggers. The hardware automatically
samples processor pins at the proper time in a bus cycle, and
triggers based on aligned samples. Or, choose the Clock toggle to
enable a trigger when the trigger source is not associated with a bus
cycle.

4. In the Trigger window, open the Options menu and choose the
Counter toggle to select two 10-bit counters; or choose the Timer
toggle to select one 20-bit timer. The counters or the timer can be
used to define a trigger. For example, if you are using two
counters, you can enter a value for the terminal count (cnt0, cntl).
When the counter reaches the terminal count, the actions you
specified for that trigger will be executed.

5. In the Trigger window, set up the triggering hardware to capture
the sequence you are interested in by doing the following steps for
each event:

a) On the left side of the Trigger window, enter the name of an
event you defined in step 2. If you click on an Event selection,
a drop-down list of defined events is displayed. Click on the
event you want to trigger on.

b) Select Enable to display the toggle boxes for the actions to be
taken when the Event occurs.

¢) The counters or the timer can be used to define a trigger. For
example, if you are using two counters, you can enter a value
for the terminal count (cnt0, cntl). When the counter reaches
the terminal count, the actions you specified for that trigger
will be executed.

d) You can specify on the bottom row that the action is taken
based on the external signal alone (ext).

e) You can define up to four sets of actions, each set on its own trigger
level. You can specify the action of sequencing to the next trigger
level. You can specify the action of resetting to trigger level 0.

Debugging With Triggers and Trace 94 SLD User's Manual

powerpak.ini File Reference

This chapter describes the contents of the powerpak.ini file.

SLD installation creates the powerpak.ini file in your Windows
directory. This file contains information used when you invoke SLD
and when you open each SLD window.

Always back up powerpak.ini. Once you have modified powerpak.ini,
the only way to restore the default contents is to reinstall SLD.

| CAUTION I

The following sections can appear in powerpak.ini:

Section
[Comm]
[CPUlInfo]
[DefaultLayout]
[InitScript]
[LoadOptions]
[Network]
[Serial]
[SourceInfo]
[StackInfo]
[StatusInfo]
[SystemlInfo]
[ToolBarInfo]
[ToolChain]
[TraceInfo]
[TrigInfo]
[Variablelnfo]

Purpose

Host-to-emulator communication

Intel debug register allocation

Window screen locations

Script file to run on invocation

Load options

Network information

Host PC COM port number

Source window Go, Step, and View options
Stack window options

Status window options

Intel386 CX/SX A-step/B-step support
Save settings from the Toolbar

Compiler information for Motorola loadfiles
Trace Control and Trigger window options
Trigger window options

HiWare compiler support

The following pages describe the powerpak.ini entries and how to
change them. Whenever possible, change entries using menus or Shell
commands rather than modifying powerpak.ini in a text editor. Avoid
modifying any entry not documented in this chapter.

SLD User's Manual

95 powerpak.ini File Reference

Many entries are toggle settings with possible values of 1 or 0. For
such entries, 1 is enable and O is disable.

powerpak.ini File Reference 96 SLD User's Manual

[Comm]

Describes
host/emulator
communication

type=[serial | pcnfs | lanserver] describes how the emulator
communicates with your host PC. This entry is set to serial by the
SLD installation and changed by the network installation. If your
network configuration changes in a way that affects communication
between the host PC running SLD and the emulator, you must edit
powerpak.ini to switch networks or return to serial communication.

serial specifies serial communication.

penfs defines the emulator as a node on a PC-NFS network.
lanserver defines the emulator as a node on an OS/2 LAN server.
For example:

[Comm]
type=serial

[CPUInfo]

Allocates debug
register use

dr [<num>]=[user | system] specifies whether the <num> debug
register is reserved for use by your program or by the emulator for
breakpoints.

<num> specifies the debug register as 0, 1, 2, or 3.
user enables access to the debug register for your program.

system reserves the debug register for use by the emulator, blocking
your program’s access to the register.

For example:

[CPUInfo]
dr O=system
dr 1=user
dr 2=system
dr 3=system

[DefaultLayout]

Specifies Window
screen locations

The<PVWindow>Presenter=[<Dimensions>] defines whether
each SLD window is displayed when you invoke SLD and the screen
locations and sizes for the initially displayed windows.

Move and resize the SLD windows using the Windows mouse or cursor.

SLD User's Manual

97 powerpak.ini File Reference

Then, to save the layout without exiting SLD, on the Toolbar open the
Layout menu and choose Save Layout Now. If you are likely to change
the layout again before exiting SLD but want the same initial layout the
next time you invoke SLD, be sure Save Layout On Exit (also in the
Layout menu) is unchecked.

[InitScript]

Defines which Shell script=[<scriptFile>] sets <scriptFile> as the filename or pathname
fv‘;"e’ﬁ quei:,;ewc)z;(tees of the initialization script (the file of Shell commands run each time you
SLD start SLD. Unless you specify a full pathname, SLD looks only in the

SLD directory (e.g., c:/powerpak). When no <scriptFile> is specified,

none is read.

To change this entry, edit powerpak.ini.

For example, when you install SLD, the initialization script file is
include.me:

[InitScript]

script=include.me

[LoadOptions]

Specifies load options [LoadOptions] entries can be changed in the Load Options dialog box.
To open the Load Options dialog box, from the Toolbar choose Load; or
in the Source window, open the File menu and choose Load Code. In
the Load dialog box, after browsing the filename to be loaded, choose
the Options button. Shell Load command arguments override the
[LoadOptions] entries.

AddressSpace=[user | smm)] specifies Intel SMM or User address
space when the file is loaded. In the Load Options dialog box, choose
the User or SMM button.

LoadCode=[1 | 0] specifies whether to load code. For example, when
debugging in ROM, turn off code loading and load only symbols. In the
Load Options dialog box, toggle Load Code.

LoadSymbol=[1 | 0] specifies whether symbols are loaded. For
example, when symbols are already loaded, turn off symbol loading and
load only code. In the Load Options dialog box, toggle Load Symbols.

LoadOnDemand=[1 | 0] specifies whether symbolic information is
loaded for all modules immediately or not until needed. Symbolic
information includes local symbol and line-number information for a

powerpak.ini File Reference 98 SLD User's Manual

module. Such information is needed when either the module is
displayed in the Source window or a breakpoint is set in the module.
Advantages of on-demand symbol loading include faster initial loading,
faster lookup for the symbols that are demanded, and less memory
occupied by the loaded file since only the required symbols are loaded.
In the Load Options dialog box, toggle On Demand Symbol Loading.

LoadDemangle=[1 | 0] specifies whether symbols are demangled for
the first instance of each overloaded function in a C++ program. In the
Load Options dialog box, toggle Demangle C++ Names.

LoadUpdateBase=[1 | 0] specifies whether Inte]386 symbol base
addresses are updated. For example, if your descriptor table bases are
nonzero, you can save time by having the load process update your
symbol base addresses from the descriptor table information. In the
Load Options dialog box, toggle Update Symbol Bases. This option
must be used in conjunction with LoadRegister (in the Load Options
dialog box, the Load Initial Registers option).

LoadRegister=[1 | 0] specifies whether Intel386 initial register values
are loaded. For example, if your initialization code does nothing but
initialize the registers, you can save time by having the load process
extract the register information from your initialization code. Then, you
need not execute the initialization code. In the Load Options dialog box,
toggle Load Initial Register Values.

LoadReportStatus=[1 | 0] specifies whether the load progress
indicator appears during loading. In the Load Options dialog box,
toggle Report Status.

LoadReportWarnings=[1 | 0] specifies whether warning messages
can appear during loading. In the Load Options dialog box, toggle
Report Warnings.

For example:

[LoadOptions]

// 1=enable, 0 = disable
LoadSymbol=1
LoadCode=1
LoadReportStatus=1
LoadReportWarning=0
LoadOnDemand=0
LoadDemangle=0
LoadAsmModules=0
LoadUpdateBase=0
LoadRegister=0

SLD User's Manual

99 powerpak.ini File Reference

[Network]

Lists available emulators=<name>[,<name>...] specifies one or more emulators
emulators that SLD can communicate with on the network. When more than one
<name> appears in the list, SLD displays a dialog box for you to choose
one. Change this entry by editing powerpak.ini directly.
[Serial]
Defines the COM comport=com([1 | 2 | 3 | 4] sets the COM port. The first time you
gz&:fpaggfz‘;‘; J:Zre start SLD, you must set the COM port number. To use a different COM
port, you must edit powerpak.ini. The following figure shows the
Select COM Port dialog box that appears when you first start SLD.
Com Ports
O com1
® com2
O com3
< com4
For example:
[Serial]
comport=com2
[Sourcelnfo]

Controls the Source
window display and
options

DisplayLineNum=[0 | 1] specifies whether source line numbers are
displayed in the Source window. In the Source window, open the View
menu; toggle Line Number.

StepCount=<num> specifies how many steps (1 to 0X7FFFFFFF)
are executed per Step command. In the Source window, open the
Options menu; choose Step Count; fill-in the dialog box. Or, enter a
Step or StepSrc Shell command.

ViewSource=[1 | 0] specifies the Source window display either as
source from the source file (1) or as a combination of source and
disassembly (0). In the Source window, open the View menu and
choose Source Only or Mixed Source And Assembly.

powerpak.ini File Reference

100 SLD User's Manual

UseGolnto=[1 | 0] specifies whether the Call and Return buttons in
the Source window perform Go Into (1) or Go Until (0) emulation. In
the Source window, open the Options menu, choose Set Go Buttons, and
choose Until Call/Return or Into Call/Return.

UseLineExecGranularity=[1 | 0] specifies whether a step executes
an entire source line (1) or a single source statement (0). In the Source
window, open the Options menu; choose Set Step Granularity; choose
Source Line or Source Statement. Or, enter a StepSrc Line or StepSrc
Statement Shell command.

HistoryDepth=<num> specifies how many source browsing locations
(5 to 100) are saved. In the Source window, open the Options menu,
choose Browser History Depth, and fill-in the dialog box.

TabWidth=<num> specifies the number of spaces (1 to 32) that
replace a tab character in the Source display. When SLD is installed,
powerpak.ini contains TabWidth=8. In the Source window, open the
Options menu; choose Tab Width; fill-in the dialog box.

SourceDelimiterUseCRLF=[1 | 0] specifies the source delimiter (the
ASCII character string used by the debugger to delimit a source line) as
carriage return/linefeed (1), the DOS newline string or as linefeed only
(0), the UNIX newline string. When SLD is installed, the delimiter is
carriage return/linefeed. In the Source window, open the Options menu;
choose Source Line Delimiter; choose Carriage Return/Linefeed or
Linefeed Only.

OperandAddressSize=[0 | 1 | 2] specifies the Intel address mode for
viewing disassembly in the Source window as:

0 derives the address mode based on the pmode.
1 uses 16-bit address mode.
2 uses 32-bit address mode.

In the Source window, open the View menu; choose Operand/Address
Size; choose Auto, Usel6, or Use32.

DefaultModuleExtensions=[C, ASM, CPP, CXX, S] specifies the
default source file extensions. To change this entry, edit powerpak.ini.
‘When the source filename is stripped of its extension, the emulator
searches for the filename with the default module extension.

LoadFile0-3=<pathname> specifies the pathnames of the last four
source files you have loaded. This entry is updated automatically when
you load a module with associated source.

NumAliasPath=<number> specifies how many directories are listed
as source paths. This entry is updated automatically when you add or

SLD User's Manual

101 powerpak.ini File Reference

delete a source path.

SourcePathAlias<num>=<path> specifies a source path. There are
as many of these entries as are counted in NumAliasPath. A
SourcePathAlias<num>=<path> entry is added, changed, or deleted
each time you add, change, or delete a source path. In the Source
window, open the Options menu; choose Source Path. In the Source
Path dialog box, to add a new path, choose Add and fill-in the dialog
box; to change a path, select the path, choose Edit, and fill-in the dialog
box; to delete an existing path, select the path and choose Delete.

For example:

[Sourcelnfo]

DisplayLineNum=1

StepCount=1

ViewSource=1

UseGolnto=0

UseLineExecGranularity=1

HistoryDepth=50

TabWidth=8

SourceDelimiterUseCRLF=1

// O=auto, 1 = use16, 2 = use32

OperandAddressSize=0

// default source module extensions
DefaultModuleExtensions=C,ASM,CPP,CXX,S
LoadFile0O=C:\POWERPAK\SAMP386\DEMO.OMF,9,13
LoadFile1=C:\POWERPAK\SAMP386\DEM0386.0MF,9,13
LoadFile2=

LoadFile3=

NumAliasPath=1
SourcePathAlias0=C:\PV241\SAMP386\

[Stackinfo]

Controls the display StackSize=<num> specifies the stack size and must match the target's

and oMor oplionsn allocated stack size. Unless specified in the load file, the stack size
defaults to 4K bytes. In the Stack window open the Options menu,
choose Stack Area, and fill-in the dialog box; or in the Shell window
enter a SetStackArea or SetStackSize command.

StackBaseAddr=<hex_addr> specifies the stack base address, as
defined in the load file. In the Stack window open the Options menu,
choose Stack Area, and fill-in the dialog box; or in the Shell window
enter a SetStackArea or SetStackBase command.

powerpak.ini File Reference 102 SLD User's Manual

PercentAlarmLimit=<num> specifies the alarm limit as a percentage
of the stack size, from 1 to 100. In the Stack window open the Options
menu, choose Alarm Limit, and fill-in the dialog box; or in the Shell
window enter a SetStackAlarm command.

EnableAlarmLimit=[1 | 0] specifies whether the emulator displays a
warning message when stack usage reaches the percentage of the stack
area specified by PercentAlarmLimit. In the Stack window open the
Options menu and toggle Enable Alarm Limit; or in the Shell window
enter EnableAlarmLimit or DisableAlarmLimit.

EnableHWM=[1 | 0] enables or disables the high water mark. In the
Stack window open the Options menu and toggle Enable High-Water
Mark; or in the Shell window enter EnableHighWaterMark or
DisableHighWaterMark.

ViewStackAddr=[1 | 0] enables or disables displaying the Stack
window stack address (the location of the frame on the stack). In the
Stack window, open the Options menu; toggle Include Stack Address.

ViewCodeAddr=[1 | 0] enables or disables displaying the Stack
window code address (the called function’s return destination). In the
Stack window, open the Options menu; toggle Include Code Address.

For example:

[Stackinfo]

StackSize=100
StackBaseAddr=0x000D82
PercentAlarmLimit=95
EnableAlarmLimit=1
EnableHWM=1
ViewStackAddr=1
ViewCodeAddr=1

[Statusinfo]

Specifies whether the
Status window
appears on top of
other windows

Topmost=[1 | 0] specifies whether the Status window (or icon, when
minimized) appears on top of other SLD windows. With Topmost = 1,
the Status window or icon cannot be hidden behind any other
overlapping SLD window, regardless of which window is in focus. In
the Status window, open the Control menu and toggle Always on Top.

For example:

[Statusinfo]
Topmost=0

SLD User's Manual

103 powerpak.ini File Reference

[Systeminfo]

Supports Intel386
CX/SX and A-step/B-
step emulation

386EmulatorCPU=[386CX A-step | 386CX B-step | none]
describes the Intel386 CX/SX bondout processor in the emulator probe
head.

386TargetCPU=[386SX | 386CXSA | 386CXSB] describes the
Intel386 CX/SX processor in your target design.

The first time you start SLD for Intel386 CX/SX emulation, a dialog box
appears wherein you can set 386EmulatorCPU and 386TargetCPU.

If you ever need to change these settings, you must either edit
powerpak.ini directly or reinstall SLD to see the dialog box again.

386EmulatorCPUs=386CX A-step,386CX B-step lists the Intel386
CX/SX bondout processors recognized by SLD as emulator processors.

386TargetCPUs=386SX,386CXSA,386CXSB lists the Intel386
CX/SX processors recognized by SLD as target processors.

[ToolBarinfo]

Saves the window

SaveLayoutOnEXxit=[1 | 0] specifies whether the SLD window layout

ﬁg’r %:g%’:::;s (the SLD windows 'as you have opened, positioned, and sized them) is

single stepping. saved when you exit SLD. If the layout is not saved, the next SLD
invocation reverts to the previously saved or default layout. On the
Toolbar, open the Layout menu and toggle Save Layout On Exit.
stepMask=[1 | 0] masks interrupts during single stepping. To toggle
interrupt masking, in the Shell window enter a StepMask command.
For example:
[ToolBarinfo]
SavelayoutOnExit=1
stepMask=0

[ToolChain]-

Specifies which Compilers=Unknown,Hiware,Intermetrics,Introl,MRI,SDS

software tools were
used to generate the
loadfile. (Motorolla
processors only)

CrossCode,Sierra,Whitesmiths[,<others>] lists the compilers
recognized by SLD. This list can change when you install a new version
of SLD. Or, if you are using an unsupported toolchain, you can, instead
of specifying an Unknown compiler, edit powerpak.ini to add your
compiler and its section names. However, the recommended procedure

powerpak.ini File Reference 104 SLD User's Manual

for unsupported toolchains is to specify Unknown. (SLD is not
guaranteed to work correctly with unsupported toolchains. Adding your
compiler name to powerpak.ini does not add support for that compiler.)

<compiler>=<code_section>,<data_section> specifies the default
names of the code and data sections in your loadfile. If your loadfile
contains section names other than the default sections generated by your
compiler, edit powerpak.ini to change this entry. If you add an
unsupported compiler to the Compilers entry, add a corresponding
section name entry. (SLD is not guaranteed to work correctly with
unsupported toolchains. Adding an unsupported compiler’s section
names to powerpak.ini does not add support for that compiler.)

OMFBaseTypeNames=CODE,DATA specifies the names of the
code and data sections in your OMF86 loadfile. If your loadfile contains
section names other than the default sections generated by your
compiler, edit powerpak.ini to change this entry.

CompilerUsed=[Unknown | Hiware | Intermetrics | Introl | MRI
| SDS CrossCode | Sierra | Whitesmiths | <others>] describes
the compiler used to generate the loadfile. In the Source window, open
the Options menu, choose Compiler Used, and select the appropriate
compiler; or enter a CompilerUsed command on the Shell command
line. The compiler you specify must be named in the Compilers entry.
If you are using an unsupported toolchain, specify Unknown. (SLD is
not guaranteed to work correctly with unsupported toolchains.)

If you have not specified the compiler you are using, a dialog box
appears the first time you load a file using a button or a menu item.
Choose a supported complier in this dialog box. '

MergeSections=[1 | 0] specifies whether to merge all your loadfile’s
code and data sections into two default sections. This can save memory
for loadfiles with more than 32 sections. On the Shell command line,
enter a MergeSections command.

varindexCpu16Reg=[none | xk:ix | yk:iy | zk:iz] specifies which
Motorola CPU16 register to use for loadfiles with 20-bit addressing.

maxBitFieldSize=[16 | 32] specifies the bitfield size in your OMF386
loadfile. Set this entry to 16 for loadfiles generated with the Borland C
compiler and to 32 for other toolchains.

For example:

[ToolChain]

MergeSections=0
Compilers=Unknown,Hiware,Intermetrics,Introl, MRI
CompilerUsed=MRI

SLD User's Manual

105 powerpak.ini File Reference

[Traceinfo]

Sets the Trace linkedCursor=[on | off] turns on or off the code address link between

window options the Trace and Source windows. The link is valid only when the Trace
window displays instructions (see viewType in this section) and the
Source window displays mixed source and disassembly (see viewSource
in the [Sourcelnfo] section).

‘When cursors are linked, the Source window scrolls automatically to
match the Trace display.

To turn linkedCursor on:

1. In the Source window open the View menu; check Mixed Source
And Assembly.

2. Inthe Trace window open the View menu; check Instruction
Cycles.

3. Inthe Trace window re-open the View menu; check Linked Cursor.

To turn linkedCursor off, in the Trace window open the View menu;
uncheck Linked Cursor.

viewType=[bus | clock | instruction] sets the trace view as:
clock displays the processor signals at each clock cycle.
bus displays the processor signals at each bus cycle.

instruction displays the instructions executed by the processor (and
some prefetched instructions) and the resulting data cycles.

In the Trace window open the View menu; choose Clock, Bus, or
Instruction Cycles.

timestamp=[on | off] turns on or off the trace timestamp display. In
the Trace window open the View menu; toggle Timestamp.

systemFrequency=<frequency> specifies the target system clock
frequency; 0.01 Hz < <frequency> < 40 MHz. In the Trace window
open the Timestamp menu; choose Setup, and fill-in the dialog box.

tsmodex=[relative | delta] specifies the timestamp mode as:
relative calculates timestamps relative to a specified base frame.
delta calculates each timestamp relative to the previous frame.

In the Trace window, open the Timestamp menu; choose Relative To
Frame or Delta.

btmCycles=[enabled | disabled] specifies whether BTM (branch-
taken message) cycles are collected and shown. A BTM cycle indicates

powerpak.ini File Reference 106 SLD User's Manual

a change in execution flow, such as a jump. The emulator must collect
BTM cycles to display trace as instructions. In the Trace window, open
the View menu; toggle BTM Cycles.

For example:

[Tracelnfo]
linkedCursor=on
viewType=instruction
timestamp=on
systemFrequency=25MHz
tsmode=relative
btmCycles=enabled

[Triginfo]

Sets the Trace
Control and Trigger
window options

numTraceBuffers=[11214116 132164 | 128 | 256] specifies the
number of trace buffers. Specifying the number of trace buffers also
specifies the size of each trace buffer, from one 256K-byte buffer to 256
1K-byte buffers.

In the Trace window open the Trace menu, or in the Trigger window
open the Options menu; choose Trace Control; fill-in the Number Of
Trace Buffers (X Size) frame of the dialog box.

traceAlignment=[center | pre | post] specifies where relative to the
trigger the trace buffers fill: event

center Trace buffers fill before and after the trigger. The trigger
appears in the center of the trace display.

pre Trace buffers fill up to the trigger. The trigger appears near
the end of the display.
post Trace buffers fill up after the trigger. The trigger appears

near the beginning of the display.

In the Trace window open the Trace menu, or in the Trigger window
open the Options menu; choose Trace Control; fill-in the Trigger
Position frame of the dialog box.

breakOnFull=[on | off] specifies whether the emulator breaks when
all trace buffers become full. In the Trace window open the Trace menu,
or in the Trigger window open the Options menu; choose Trace Control;
in the dialog box toggle the Halt When Last Trace Buffer Full check
box..

counterTimer=[counter | timer] specifies whether the two 10-bit
counters or the 20-bit timer can be used to specify triggers. In the

SLD User's Manual

107 powerpak.ini File Reference

Trigger window open the Options menu; choose Counter or Timer.
trigMode=[bus | clock] specifies the type of cycle used for triggering:

bus automatically samples processor pins at the proper time in a
bus cycle. The trigger is based on aligned samples.

clock triggers on any cycle coming from the processor, regardless
of whether it is a valid bus cycle. Use clock triggering to
trigger on an I/O signal or on an interrupt input that can
occur on any clock cycle.

In the Trigger window, open the Options menu; choose Bus or Clock.
For example:

[Triginfo]
numTraceBuffers=1
traceAlignment=pre
breakOnFull=off
counterTimer=counter
trigMode=bus

[Variablelnfo]
Supports HiWare AutoCalcBitfieldOffsets=[1 | 0] specifies whether to calculate
bitfield types

bitfield offsets as generated by the HiWare compiler. Set this entry to 1
for loadfiles compiled with HiWare and to O for other toolchains.

powerpak.ini File Reference 108 SLD User's Manual

Toolbar Reference

The following figure shows the Toolbar.

= PowerPack SLD Toolbar K
File Configure Layout Windows Help
Setup Target Emulation Trace Misc
ap Loadl Trigger] Source| Stack| CPU | Mem Periph| Go | Hak Start | Stop | Show| Shell

This chapter describes the toolbar menus, buttons, and dialog boxes.

The Toolbar is the first window opened when you start SLD and is always available during
your debugging session. Closing the Toolbar exits SLD, ending your emulator session.
Minimizing the Toolbar hides all other SLD windows and icons.

Toolbar Menus

Menu Use To:

File Exit SLD.

Configure Configure and initialize the debugging environment.
Layout Save your screen layout of SLD windows.

Windows Select a closed or iconized SLD window to open.
Help Open a window for help with SLD.

File Menu

You can exit SLD as you would exit any Windows application; or you
can open the File menu and choose Exit. The emulator asks you to
confirm exiting. The following figure shows an Exit dialog box.

= PowerPack SLD

9 Exit PowerPack SLD?
I No l | Help '

SLD User's Manual 109 Toolbar Reference

In any SLD window other than the Toolbar, choosing Exit closes only
that window. Exit is on every SLD window File menu except in the

CPU window, where Exit is on the Options menu.

Configure Menu

The following figure shows two sample Configure menus. The first is
for the Intel386 EX processor; the second is for the Motorola 68332
processor. Different menu items are available for different processors.

Configure

Layout

PowerPack SLD Toolbar
Windows

Map...
Run Access

+ Symbolic Disassembly

Emula

Periph

File

Map

Save Chip Selects...
Restore Chip Selects...

Configure Symbols

ICECFGD Register...

Reset
Reset CPU Only

PowerPack SLD Toolbar

(MONLTIGCE Layout Windows

Map...
Run Access
Show Cycles

v Symbolic Disassembly
v Mask Interrupts For Step

Emula

Meml Periph' Go |

Save Chip Selects...
Restore Chip Selects...
Configure Chip Selects

Reset
Reset CPU Only

Map... opens the Map dialog box for examining and modifying your
memory map. Choosing this menu item has the same effect as choosing
the Map button. The Map dialog box is described in the “Map Dialog
Boxes” section later in this chapter. You can also configure memory

with Map and RestoreMap Shell commands.

Run Access, when checked, enables memory access during emulation.
Memory access is used to scroll and refresh the Peripheral and Memory
windows and to read or write peripheral registers and memory.
Because such memory accesses take a small amount of processor time,
doing these operations during emulation can degrade your program

performance.

Toolbar Reference

110

SLD User's Manual

When you start SLD, run access is disabled (unchecked) and memory
access is available only when emulation is halted.

Run access does not affect the access of CPU registers. The CPU
registers are inaccessible during emulation.

You can also enable and disable run access with the RunAccess Shell
command.

Show Cycles, when checked, makes the Motorola processor internal
cycles visible for tracing.

Symbolic Disassembly, when checked, uses symbolic addresses in the
disassembly displayed in the Source and Memory windows.

Mask Interrupts For Step, when checked, prevents interrupts from
pre-empting a Step operation in a Motorola emulator. You can also
enable and disable interrupt masking with the StepMask Shell
command.

Save Chip Selects... records the chip-select registers in an ASCII file.
The registers can be restored from the file using the Restore Chip
Selects command.

You can also save the chip select registers with the SaveCS Shell
command. For a list of which registers are saved for each processor,
see the SaveCS description in the “Shell Window Reference” chapter.

The following figure shows a sample Save As dialog box for saving
chip select information to a chip select (*.cs) file.

B S

File Name: Directories:
@ j c:\powrpakm

= en @
= powrpakm
£ samp332
£ samp360
£ sampep32 (] Read Only
i £ samphc16
7 teknotes &1

Save File as Type: Drives:
[CS Files(*.CS) 2] [=c:msdos b [+]

Cancel

Restore Chip Selects... restores the chip-select registers to the values
specified in an ASCII file. You can create this file with the Save Chip
Selects item, with a SaveCS Shell command, or with a text editor such
as Windows Notepad.

SLD User's Manual

111 Toolbar Reference

You can also restore the chip select registers with the RestoreCS Shell
command (or, for Motorola targets, restore the target chip selects and
configure the emulator chip selects at the same time with a single
ConfigCS command). For a list of which registers are saved for each
processor, see the SaveCS description in the “Shell Window
Reference” chapter.

The following figure shows a sample Open dialog box for restoring chip
select values from a saved chip select (*.cs) file.

File Name: Directories:

E] c:\powrpakm

& = e\ &
= powrpakm
£ samp332
£ samp360
£ sampcp32 [] Read Only
— £ samphc16
7 teknotes =

List Files of Type: ’ Drives:
[CS Files(=.C5) 3] [=cmsdoss 1+

Cancel

Configure Chip Selects configures the emulator hardware to match the
chip select values in the Motorola target processor.

You can also configure the emulator chip selects with the ConfigCS
Shell command.

Configure Symbols updates the loaded symbols with the base address
from the Intel processor descriptor table (GDT or LDT). Your
program must provide the GDTR and LDTR values and GDT and LDT
contents.

ICECFGO Register... opens the ICE Peripheral Disable Register dialog
box for setting bits in the Intel386 EX processor ICECFGO register. To
enable or disable specific peripherals on ICE break, check or uncheck
each option. The following figure shows the ICE Peripheral Disable
Register dialog box with all peripherals disabled on ICE break.

Toolbar Reference 112 SLD User's Manual

= ICE Peripheral Disable Register I

[JiS10 0 disabled upon ICE break:

[J s10 1 disabled upon ICE break

[8810 disabled upon ICE break

] DMA disabled upon ICE break

[8254 Timer disabled upon ICE break
[J WDT disabled upon ICE break

0OK Cancel Help

Reset resets and reinitializes the target processor:
e The processor reset pin is asserted.

e The program counter is read from memory; the Source window is
scrolled to the beginning of code.

e The stack pointer is read from memory, resetting the stack; the
Stack window display becomes invalid.

e All SLD windows are updated.

You can also reset the processor with the Source window Run menu
Reset item, the CPU window Options menu Reset item, or the Reset
Shell command.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

You can also reset only the the processor with the CPU window Options
menu Reset CPU Only item or the Reset Shell command.

Layout Menu

Save Settings Now saves the current coordinates of the SLD windows
and icons.

Save Settings On Exit saves the coordinates of the SLD windows and
icons when you exit from SLD.

SLD User's Manual 113 Toolbar Reference

Toolbar Buttons

Button
Map

Load

Trigger

Source

Stack

CPU

Use To:

Open the Map dialog box (described later in this chapter) to
examine or change the memory configuration. This button
has the same effect as the Configure menu Map item.

You can also configure memory with the Map and
RestoreMap Shell commands.

Open the Load dialog box (described later in this chapter)
to load code and/or symbols.

You can also load code and symbols with the Load Shell
command or the Source window File menu Load Code item.

Open the Trigger window to define triggers and events for
controlling emulation and trace collection. This button has
the same effect as the Windows menu Trigger item.

Open the Source window to examine source and
disassembly, control emulation with breakpoints and
stepping, and find source corresponding to trace displayed
in the Trace window. This button has the same effect as the
Windows menu Source item.

Open the Stack window to view the current nested calls,
associated parameters and variables, and stack usage
statistics. This button has the same effect as the Windows
menu Stack item.

You can also examine the stack with the Stackinfo and
StackArea Shell commands, or modify the stack with the
StackArea, StackBase, and StackSize Shell commands.

Open the CPU window to view and change processor
registers. This button has the same effect as the Windows
menu CPU item.

You can also display and edit the CPU registers with the
Register Shell command.

Toolbar Reference

114 SLD User's Manual

Mem

Periph

Halt

Start

Stop

Open or change focus to one of up to 20 Memory windows
to view and change memory. This button has the same
effect as the Windows menu Memory item. If more than
one Memory window (including minimized windows) is
open, a dialog box appears in which you can choose an
existing Memory window or open a new one. The
following figure shows a sample Memory dialog box.

B ey

Select Memory Window

0): Hex Words 0x0
(1): Disassembly 0x0

Cancel
Help I

You can also view and change memory with the Dump,
Write, Fill, Search, and Copy Shell commands.

Open the Peripheral window to view and change peripheral
register values. This button has the same effect as the
Windows menu Peripheral item.

Start emulation from the current program counter, subject
to control by previously defined breakpoints and triggers.
This button has the same effect as pressing the <F9> key.
You can also start emulation with the Source window
buttons and Run menu items and with various Shell
commands.

Stop emulation. This button has the same effect as pressing
the <F2> key. You can also stop emulation with the Source
window buttons and Run menu Halt item and with various
Shell commands.

Begin collecting trace. Tracing starts automatically when
emulation starts. You can start and stop trace collection
during emulation without affecting emulation. You can
also start trace with the Trace window Trace menu Start
item.

Stop collecting trace. You can also stop trace with the
Trace window Trace menu Stop item.

SLD User's Manual

115 Toolbar Reference

Show

Shell

Map Dialog Boxes

Open the Trace window to display collected trace. You can
examine trace during emulation. This button has the same
effect as the Windows menu Trace item.

Open the Shell window for command-line entry. This
button has the same effect as the Windows menu Shell item.

The following figure shows a Map dialog box with no memory mapped.
When memory has been mapped, the configuration of each mapped

region is listed in the central panel. To select a listed region, click on it
or use the <Up Arrow> and <Down Arrow> keys to move the highlight.

:—_l
Start Addr End Addr Size [KB] Type Access Space
| Add Il Edit lrQeIete I I Save II Bcstore1 I Close]| ﬂeIpJ

Map Dialog Box Buttons

Button
Add

Use To:
Open a dialog box to configure unmapped memory.

The following figure shows two sample Map Add/Edit
dialog boxes. The first is an Edit box for the Intel386 EX
processor; the second is an Add box for the Motorola 68332
processor. The Space choices depend on whether you have
an Intel or a Motorola processor. Valid Start Addr and
Length/End Addr values also depend on which processor
and on how much memory you have configured.

Start Addr: |2 g Drloveday 4]
Length/End Addr—————— A4¢cess:
Sl | [o]

[ok | | camcet | | new |

Toolbar Reference

116 SLD User's Manual

Start Addr: l H Type: lOverIay E
Length/End Addr
® Length: .
ST e —
‘ oK I | Cancel I [Help I

For more information on the Start Addr, Length/End Addr,

and Access field values, see the list of Map dialog box field
contents below.

Edit Open a dialog box (see the Add button description above) to
reconfigure a mapped region. This button is available when
a listed region is selected.
Delete Revert a mapped region to unmapped memory. This button
is available when a listed region is selected.
Save Open a dialog box to save the listed configuration to a map
(*.map) file. The following figure shows a sample 'Save
Map File dialog box.
File Name: Directories:
c:\powrpokm o]
% = e\ @
= powrpakm
1 samp332
£ samp360
£ sampcp32
s] samphcl6
1 teknotes g
Save File as Type: Drives:
IMap files (*.map) IEI I = c: ms-dos_6 IEI
You can also use the SaveMap Shell command to save the
map configuration.
Restore

Open a dialog box (see the Save button description above)
to configure regions from a previously saved map (*.map)

file. The following figure shows a sample Restore Map File
dialog box.

SLD User's Manual 117 Toolbar Reference

= Restore Map File
File Name: Directories:
—
2 e\ ®
= powrpaki
£3 sampa06
£ scicaps
s -
&
List Files of Type: Drives:
lMap files (*.map} L;I c: ms-dos_bB Jil

You can also use the RestoreMap Shell command to
restore a previously saved map configuration.

Close Close the Map dialog box.
Help Open a window for help on mapping.

You can also use the Map Shell command to examine your memory
map and for the same effect as the Add, Edit, and Delete buttons.

Map Dialog Box Field Values
Field Contents
Start Addr Where the region begins:

For Intel emulators, the region must start on a 4K
boundary.

For Motorola, the starting address must match the
region size. The emulator automatically configures
memory into two regions, depending on whether you
have 256K or 1M bytes of overlay memory. For
256K bytes:

e 64K-byte region must start on 64K boundary.

e 128K-byte region must start on 128K boundary.
For Motorola with 1M bytes of overlay memory:

e 64K-byte region must start on 64K boundary.

e 128K-byte region must start on 128K boundary.
e 256K-byte region must start on 256K boundary.

e 512K-byte region must start on 512K boundary.
End Addr Where the region ends.

Toolbar Reference 118 SLD User's Manual

Size

Type
Access Rights

Space

For Intel, 4K, 8K, 12K, 16K, etc. bytes.

For Motorola with 256K bytes of overlay memory,
64K or 128K bytes.

For Motorola with 1M bytes of overlay memory,
64K, 128K, 256K, or 512K bytes of memory.

Specify a region size instead of an end address by
choosing the Length rather than the End Addr button
in the Map Add/Edit dialog box, then filling-in an
appropriate value in the Length/End Addr field.

Overlay or Target.
RAM allows read and write access.

ROM BREAK allows read access; prevents write
access; breaks on attempted write access. (For Intel
emulators, with Target memory, write access is
allowed but causes emulation to break.)

ROM NOBREAK allows read access; prevents write
access; does not break on attempted write access.
(For Intel emulators, with Target memory, write
access is allowed.)

NONE prevents any access; breaks on attempted
access. (For Intel emulators, with Target memory,
read and write accesses are allowed but cause
emulation to break.)

For Intel, User or SMM (system management mode)

For Motorola, UP (user program), UD (user data), SP
(supervisor program), or SD (supervisor data)

SLD User's Manual

119 Toolbar Reference

Load Dialog Boxes

To open a dialog box for loading code and symbols, choose the Toolbar
Load button. The following figure shows a sample Load dialog box.

Load
File Name: Directories:
ldemo.omf | c:\powrpaki\samp386
‘demo.omt Y = et %
demo386.omf (= powrpaki
= samp386
[&1
List Files of Type: Dnves:
|OMFx86 Files(*.OMF) _[#] & c: ms-dos_6 [+]

When you select a loadfile, the Options button in the Load dialog box
becomes available. Choosing this button opens the Load Options dialog
box for specifying how to load code and/or symbols from the loadfile.

‘When you are ready to load, choose the OK button. To exit the Load
dialog box without loading, choose the Cancel button. To open a
window with help on loading, choose the Help button.

The following figure shows two sample Load Options dialog boxes.
The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different options are available for different
processors.

Load Options

X Load Code

Load Symbols
[] on Demand Symbol Loading
O Demangle C++ Names

[J update Symbol Bases

D Load Initial Register Values

Beport Status
O Report Warnings

Toolbar Reference 120 SLD User's Manual

= Load Options

EE

Report Status
Report Warnings

Load Symbols

[on Demand Symbol Loading
[pemangle C++ Names

[J Load Assembly Modules

DKJ LEancel‘ [Help J

For Intel loadfiles, be sure the space option (User or SMM) you select is
compatible with the address space configured in the Map dialog box.

To enable an option, check the box beside the option. To disable an
option, uncheck the corresponding box. The options are:

Option
Load Code
Load Symbols

On Demand
Symbol Loading

Demangle C++
Names

Update Symbol
Bases

Load Assembly
Modules

Load Initial
Register Values

Report Status

Report Warnings

Effect
loads executable code sections from your loadfile.

loads data sections and relevant symbolic
information from your loadfile. When this option
is enabled, several sub-options are available.

waits to load symbolic information for each
module until it is needed, for example when you
display the module in the Source window.

uses an MRI algorithm to demangle some C++
symbols, for example overloaded function names.

reads base addresses for symbol tables, once the
Intel386 registers are initialized.

loads symbolic information for modules whose
source files are assembly language.

initializes Inte1386 EX processor registers from
loadfile information.

displays an information box showing the load
operation progress.

displays information boxes with non-fatal
anomolies encountered during loading.

You can load a file during emulation. Be sure the file’s load addresses
do not overlap the memory occupied by the running program. Loading
afile at a location in use stops the emulator in an unpredictable state.

You can specify equivalent load options with the Load Shell command.

SLD User's Manual

121 Toolbar Reference

Toolbar Reference 122 SLD User's Manual

Shell Window Reference

The following figure shows a sample Shell window.

7
/7 wversion;

// map 8 Fffffp;
/4t

/7 1is brought up.

P

ﬂfile Edit View Options Windows Help
include "include.me"; +
124

// Here is an example of a start up script:

// alias "wver"™ ‘version™; // example of aliasing a comman

// This file, include.me, is run each time PowerPack SLD

// up your environment. The [InitScript] section of
// the file powerpak.ini (in your Windows directory)
// can be edited to eliminate this feature or to

// change the name of the initial script file.

/7 get version infermation abou

// set up overlay memory map

Edit this file with commands to set

>

-

+
>

This chapter describes the the Shell window contents, menus, dialog boxes, and commands;
and how to execute commands in the Shell window.

i

The Shell window contains two panes:

Transcript in the top part of the window, echoes commands and
command output.

Command Entry in the bottom part of the window, is where you enter
commands.

You can change the relative sizes of the Shell window panes. A split
box between the vertical scroll bars defines the edge between the
Transcript and Command Entry panes. When the mouse is pointing to
the split box, SLD displays a split-box cursor (see figure at left). Then
you can drag the split box to resize the panes as you wish.

To change focus from one pane to the other, click in the inactive pane
or press the <Tab> key.

SLD User's Manual

123 Shell Window Reference

Shell Window Menus

Menu Use To:
File Run a script; close the Shell window.
Edit Cut and paste text in the Command Entry pane and copy

text from the Transcript pane, using Windows Clipboard.
View Display commands and/or output in the Transcript pane.

Options Manage a log file and the command history buffer.

File Menu

The following figure shows a File menu.

Edit View Options
Include File...

Exit

Windows

Include File... opens a dialog box wherein you can select a script (a text
file containing Shell commands) to be run immediately. The following
figure shows the Include dialog box with the include.me sample script
(provided with SLD) selected.

File Name: Directories:

1include. me | c:\powrpakm

= A S
= powrpakm
£ samp332
£ samp360
£ sampep32 [Read Dnly
£3 samphc16
£1 teknotes (2]

List Files of Type: Drives:

lmiles[‘.'] Iﬁl l c: ms-dos_b [__‘._I

Cancel

Exit closes the Shell window without exiting SLD.

Shell Window Reference 124 SLD User's Manual

Edit Menu

The following figure shows an Edit menu.

File

Cut moves highlighted strings from the Command Entry pane to the
Windows Clipboard, deleting the strings from the Command Entry
pane.

Copy copies highlighted strings from the Command Entry or
Transcript pane to the Windows Clipboard, leaving the original strings
unaffected.

Paste copies strings from the Clipboard to the Command Entry pane.

View Menu

The following figure shows a View menu.

File Edit Ri[3"8 Options Windows

+vEcho Command
v Show Results

Clear Transcript

Echo Command, when checked, displays in the Transcript pane all text
you enter in the Command Entry pane.

Show Results, when checked, displays in the Transcript pane the
results of any text you enter in the Command Entry pane.

Clear Transcript blanks the Transcript pane.

SLD User's Manual 125 Shell Window Reference

Options Menu

The following figure shows an Options menu.

File Edit Yiew JSLLEE Windows
' Log Results
Log File Name...

Help

Append To Log File
+ Overwrite Log File

Set History Size...

Set Transcript Size...

Log Results starts recording into a text file all that appears in the
Transcript pane. If you have not previously specified a log filename,
the emulator uses shell.log in your SLD directory (e.g. c:\powerpak).

Log File Name... opens a dialog box for specifying the log file path and
name. The following figure shows a sample Log Filename dialog box,
creating a file named emu003.log.

= Save As
File Name: Directories:
l emul003.log | c:\powrpakm
shell.log K = ey &
#= powrpakm
£ samp332
£3 samp360
£ sampcp32 [] Bead Only
% £ samphc16 ||
£ teknotes &
Save File as Type: Drives:
[Log Files(*.LOG) 2] | B3 cmsdos_6 1#]

Append To Log File, when checked, ensures that text recorded into an
existing file is added to the end of the file and does not destroy any
prior contents of the file.

Overwrite Log File, when checked, ensures that text recorded into an
existing file is written starting at the beginning of the file, destroying
any prior contents of the file.

Set History Size... opens a dialog box to specify the maximum number
of commands to be retained in the history buffer. Use the <Up Arrow>
and <Down Arrow> keys to recall previously entered text from the

Shell Window Reference 126 SLD User's Manual

history buffer into the Command Entry pane. The following figure
shows a sample History Size dialog box.

Saved Commands [0-50]:
[20 |

I 0K I Igancel I | Help I

Set Transcript Size... opens a dialog box to specify the maximum
number of lines to be retained in the scrollable Transcript pane. The
following figure shows a sample Transcript Size dialog box.

= Transcript Size

Transcript Size [0-1000]:
[275 |

[ox] [cance | Help_|

Entering Commands in the Shell Window

Enter commands in the Shell window by one of:
e Type one command. Press <Enter> to execute it.

e Type a sequence of commands. Follow each command with a
semicolon (;). Press <Ctrl><Enter> to start a new line without
executing the already typed commands. Press <Enter> to execute
the sequence of commands.

e Execute a script, that is, a file containing multiple commands
separated by semicolons. For example, you can create a script by
logging a series of commands and editing the log file with a text
editor. To execute a script at any time during an emulator session,
use the Include command (described later in this chapter). In the
powerpak.ini file, you can specify a script to be executed
automatically when you invoke SLD. The default script specified
in powerpak.ini is include.me.

e Recall a previously entered command from the history buffer by
entering <Ctrl><Up Arrow> or <Ctrl><Down Arrow> to scroll

SLD User's Manual

127 Shell Window Reference

through saved commands, edit the command as needed, then press
<Enter> to execute the command. To specify the number of
commands to be saved, open the Options menu, choose Set History
Size, and fill-in the dialog box.

To cancel a command line without executing it, press <Esc> instead of
<Enter>. To interrupt command execution, press <Esc>.

Enter addresses as hexadecimal values. Enter data values in either
decimal or hexadecimal radix, with the OX prefix to indicate any
hexadecimal value. For example:

Reg PC 55; /I Set register PC to 55 decimal.
Dump 400; // Dump memory at address 400 hexadecimal.
Write 10:50 0x33; // Write 33 hexadecimal to segment 10

// hexadecimal, offset 50 hexadecimal.

Shell Window Reference 128 SLD User's Manual

Shell Window Commands

Notational Conventions

The following notational conventions are used in the following pages:

Notation

COMMANDNAME
commandname
CommandName
<placeholder>

[option]

{<many_values>}

<series>...

option_1 | option_2

(option_1 | option_2)

"<string_constant>"

/* comment */

//command output

<address>

Meaning

Case is not significant in command names and
aliases.

Indicates an argument. Substitute a value or a
symbol for the place holder.

Brackets delimit an item that can be repeated
no more than once. The brackets are not to be
entered as part of the command, unless
otherwise noted.

Braces delimit an item that can be repeated
zero or more times. The braces are not to be
entered as part of the command, unless
otherwise noted.

Ellipsis indicate a series of repeating items.

A vertical line separates options, one of which
can be selected.

Parentheses around an options list indicates
that one of the options must be selected. Do
not enter the parentheses.

String constants must be surrounded by double
quotation marks.

Comments are delimited C-style.

Command output is preceded by forward
slashes.

A linear, physical, virtual, or symbolic
address, as described in the Address Formats
chapter.

SLD User's Manual

129

Shell Window Reference

Commands and System Variables Grouped by

Functionality

The following table groups the commands and system variables by

functionality: ‘
To Do For Processor Use (
Address translation Intel X1t
Assembly/disassembly ~ Any Asm
Any AsmAddr
Any Dasm
Any DasmSym
Breakpoints Any Bkpt
Any BkptClear
Any DR
Bus Any BusRetry
Compiler setup Motorola CompilerUsed
Intel386 MaxBitFieldSize
Motorola CPU16 VarlndexCPU16Reg {
Chip Select setup Motorola ConfigCS
Intel386 EX; RestoreCS
Motorola
Intel386 EX; SaveCS
Motorola
Emulation Any Go
Any Golnto
Any GoUntil
Any Halt
Any ResetAndGo
Any Step
Motorola StepMask
Any StepSrc
Events Any EventRestore
Any EventSave
Shell Window Reference 130 SLD User's Manual

Help Any Help
Load Code Motorola BDMspeed
Any Load
Any LoadSize
Motorola MergeSections
Any ResetLoaders
Map memory Any Map
Motorola 68360 MapRanges
Any RestoreMap
Any SaveMap
Memory Any Copy
Any Dump
Any Fill
Any RunAccess
Any Search
Any Size
Any Verify
Any Write
Register Intel386 EX Config
Any Register
Reset Any Reset
Any ResetAndGo
Shell Any Alias
Any Append
Any Clear
Any Delete
Any Echo
Any Exit
Any History
Any If
Any Include
Any Integer
SLD User's Manual 131 Shell Window Reference

Any List
Any Log
Any Logging
Any Overwrite
Any Print
Any String
Any Results
Any Transcript
Any While

Stack Any Disable AlarmLimit
Any DisableHighWaterMark
Any DisplayStack
Any EnableAlarmLimit
Any EnableHighWaterMark
Any FillStackPattern
Any SetStackAlarm
Any SetStackArea
Any SetStackBase
Any SetStackSize
Any StackInfo

Status Any $BREAKCAUSE
Any SEMULATING
Any $SHELL,_STATUS
Any Cause
Any EmusStatus
Any IsEmuHalted
Any Signal
Any Time
Any Version

Symbols Any AddressOf
Any ConfigSymbols
Any DisplaySymbols

Shell Window Reference 132 SLD User's Manual

Intel DT

Intel GDT
Any GetBase
Intel IDT
Intel LDT
Any NameOf
Intel PMode
Any RemoveSymbols
Any SetBase
Any SymbolCloseFile
Any SymbolOpenFile
Intel TSS
Test Hardware Any RAMitst
Any Test
Timing Any LapTimer
Any StartTimer
Any StopTimer
Trace Motorola 68360 AuxTrace

SLD User's Manual 133 Shell Window Reference

Command Dictionary

System Variable: $BREAKCAUSE
Discovers what L . . .
caused emulation to Case is significant. Enter this variable in upper case.
break. . .
2 Knowing what caused emulation to break can be useful, for example, to
Related topics: abort script execution because of a certain reason for the break.
EMULATING, . .
2ause Go, Golnto, $BREAKCAUSE is updated when emulation breaks. Its value
GoUntil, Halt, indicates the cause of the break:
ResetAndGo, Step, .
Stes;JeSr: P 0 No cause (for example, emulation not yet started)
1 Target processor was reset
2 Emulator was halted
4 Processor single step
5 Execution breakpoint reached
7 Processor received a double bus fault
8 External break request
9 Unknown cause

/* Following is part of an include file that aborts execution only
when an execution breakpoint occurs. $Z is an undeclared Shell
variable that will halt the script. */

go;

while ((EMULATING) {;}; /* loop until emulator halts */

if (SBREAKCAUSE==5) {$Z;}; /* test for execution breakpoint */

System Variable: $EMULATING
Discovers whether the
emulator is running. Case is significant. Enter this variable in upper case.
Related topics: Knowing whether the emulator is running can be useful, for example,
$BREAKCAUSE, to control script execution flow based on emulation status.
Cause, Go, Golnto, $EMULATING has the value:
GoUntil, Halt, . ‘
ResetAndGo, Step, 1 The emulator is running.
StepSrc .
P 0 The emulator is halted.

Shell Window Reference 134 SLD User's Manual

bkpt #main;
ResetAndGo;
while (SEMULATING) {;};

/* stop after registers initialized */
/* start from the power-on level */
/* loop until emulator halts */

$SHELL_STATUS

System Variable:
Discovers whether the
last shell command
completed
successfully.

$SHELL_STATUS
Case is significant. Enter this variable in upper case.

Knowing whether a Shell command completed successfully can be
useful, for example, if you want to control the execution flow of a script
based on whether earlier commands executed as expected.
$SHELL_STATUS has the value:

0 The command completed normally.

nonzero An error occurred.

bkpt #main; /* stop after registers initialized */
Reset; /* try to reset processor and update SLD windows */
If ($SSHELL_STATUS) {

Print “Didn’t Reset”;

Reset CPUonly}; /* Reset without updating SLD windows */

AddressOf

Returns the numeric
address of a module,
function, line, or
variable.

Related topics:
DisplaySymbols,
GetBase, NameOf,
RemoveSymbols,
SetBase

AddressOf <address>
<address> is a partly or fully qualified symbol name.
The associated numeric address is returned.

You cannot use AddressOf to obtain the address of a local variable,
because the local variable has no fixed location. Instead, use
DisplaySymbols to find the stack offset of a local variable.

addressof #Blank_TxBuf;
// 6A6..6BF

addressof #MsgRXx;
// E68..E87 [32]

// address range of a function

// address range of an array variable

For function names, you can obtain the same information in the Source
window by double-clicking on the function name to display the
Function pop-up menu, then choosing Show Load Address.

SLD User's Manual

135 Shell Window Reference

Alias

Define or list an alias.

Alias ["<name>" ["<value>"]]
<name> is the alias. The quotation marks are required.

<value> assigns a value to the specified name. The quotation marks

are required. Inside <value>, replace double quotation
marks with single quotation marks.

Entering alias with no parameters lists all currently defined aliases.
Entering alias “<name>“ displays the value of <name>.

Use alias to shorten or change commonly used command strings.

alias "s1" "include 's1.inc";

Alias "increment" "$a = $a + 1; $a;"
$a =0;

increment;

/1 0x1 1

increment;

/1 0x2 2

Append

Appends to log file.

Related topics:
Log, Logging,
Overwrite, Echo,
Results

Append

When Append has been specified, opening a log file adds text to the
end of the file, preserving the file’s prior contents.

You can also configure logging to append to a file by opening the Shell
window Options menu and choosing Append To Log File.

Asm

Write assembly to
memory.

Related topics:
AsmAddr, Dasm,
DasmSym

Asm <string>
<string> is an assembly language statement.

Check the syntax of <string> and write the instruction bytes to memory
at the current assembly address. (Determine the current assembly
address with AsmAddr.)

Symbolic assembly is not supported.

Asm nop;
// 000000 4E71 nop

Shell Window Reference 136

SLD User's Manual

// Number of bytes: 2

You can also assemble new instructions and data into memory with the
single-line assembler. In the Memory window, display memory as
instructions. Double-click on a line to open the single-line assembler
dialog box.

AsmAddr

Set the address where
the Asm command will
write.

Related topics:

AsmAddr [<mode>] [<address>] [<space>]
<mode> Specifies the Intel addressing mode:
Auto derives the addressing mode based on

Asm, Dasm, the pmode.
DasmSym Use16 uses 16-bit operands and addresses.
Use32 uses 32-bit operands and addresses.
<address> is a numeric or symbolic address of the location
where the next Asm command will write.
<space> Specifies the Intel address space as user, émm, or
io.
With no <address>, AsmAddr displays the current assembly address.
AsmAddr 2000;
// Asm address offset: 2000
AuxTrace
Control Motorola AuxTrace [portA | portC]
68360 port A and C
multiplexing. portA Puts the Port A signals onto the most significant word of the

auxiliary trace connector (ATC).

portC Puts the Port C signals onto the most significant word of the
ATC.

With no parameters, AuxTrace displays the current port.
AuxTrace is saved and restored when SLD is exited and restarted.
The least significant word of the ATC always provides Port B [0:15].

SLD User's Manual

137 Shell Window Reference

BDMspeed

Examine or set the
BDM speed.

BDMspeed [slow | fast]

slow specifies a system clock slower than 1 MHz.

fast (default) specifies a clock equal to or faster than 1 MHz.
With no parameters, BDMspeed displays its current setting.

Use this command for processors with system clocks slower than 1
MHz. The downloading speed with BDMspeed fast is about five
times the downloading speed with BDMspeed slow.

Bkpt

Display, set, or modify
breakpoints.

Related topics:
BkptClear, DR

Bkpt [enable | disable] [temporary | permanent] [<address>]
[@<ID>] [<space>]

enable with @<ID> specified, enables the breakpoint;
otherwise enables all breakpoints.

disable with @<ID> specified, disables the breakpoint;
otherwise disables all breakpoints.

temporary removes the breakpoint when it halts emulation.

permanent retains the breakpoint when it halts emulation. To

remove the breakpoint, explicitly delete it.

<address> a numeric or symbolic address. When this
address is accessed, the breakpoint (if enabled)
halts execution.

<ID> an integer from 0 to 65534. When you do not
specify an ID for a breakpoint entry, the system
assigns one. When the specified ID matches an
existing breakpoint, the existing breakpoint is
modified. The at (@) is required.

<space> For an Intel emulator, Smm or user. smm sets a

breakpoint in SMM address space. user sets a
breakpoint in user address space (the default).

For a Motorola emulator, sp, sd, up, or ud.

With no parameters, Bkpt displays all permanent and temporary
breakpoints. Source information is also displayed whenever a match
exists with the symbol table.

Shell Window Reference 138 SLD User's Manual

bkpt disable temporary @12
/* disable the temporary breakpoint with ID 12 */

You can also set breakpoints using the Source window mouse or
Breakpoints menu, or the Breakpoint window Set button or Breakpoints
menu.

BkptClear

Remove breakpoints.

Related topics:
Bkpt

BkptClear [@<ID> | <address> [<space>] | all]

<ID> removes the breakpoint with the specified ID number.
The at (@) is required.

<address> removes the breakpoint at the specified code address.

<space> used with <address>, optionally specifies the Intel
address space (user or smm) of the breakpoint.

all removes all temporary and permanent breakpoints.

Use BkptClear to remove a specified breakpoint or all temporary and
permanent breakpoints.

BkptClear @1; /* remove breakpoint with id 1 */
BkptClear all; /* remove all breakpoints */

You can also clear breakpoints using the Source window mouse or
Breakpoints menu, or the Breakpoint window Clear button or
Breakpoints menu.

BusRetry

Asserts bus error
after timeout.

BusRetry [on | off]

on turn retry on.

off turn retry off.

With no parameters, BusRetry displays its current setting.

Disable retry when contention exists with another driver or when a slow
device takes longer than the time out.

SLD User's Manual

139 Shell Window Reference

Cause

Display the cause of Caguse

the last break in

emulation. Use this command when emulation is halted to discover the reason for the
most recent halt. Possible Cause responses are:

Related topics:
$BREAKCAUSE .

No cause is recorded.

The target processor was reset.

You entered a Halt command.

The emulator completed a Step.

Emulation encountered an execution breakpoint.
The emulator detected a double bus fault.

The emulator received an external break request.

The cause is unknown.

The break cause also appears in the Status window.

Clear

Clear the Shell Clear

window Transcript

pane. Use Clear to remove all text from the Shell window Transcript pane.
The Shell window View menu Clear Transcript item does the same.

CompilerUsed

Specify the toolchain CompilerUsed [<compiler>]

used for a Motorola
loadfile.

Related topics:
MergeSections

<compiler> is a supported compiler for Motorola processors.
Look in the powerpak.ini file, in your windows
directory, for a list of the supported compilers.

This command specifies your toolchain (compiler, linker, translator,
and loader). Specify the toolchain before the first time you load code or
symbols; and thereafter only when you change compilers.

CompilerUsed MRI; // Using the MRI toolchain.

You can also specify a compiler with the Source window Options menu
Compiler Used item.

Shell Window Reference 140 SLD User's Manual

Config

Defines Intel386 EX Config ignoreHLDA [on | off]
HLDA pin function.

on causes the emulator to ignore the HLDA pin state. Set config
ignoreHlda on when HLDA is programmed as an I/O bit.

off (initial default) causes the emulator to examine the HLDA pin
state before generating overlay RAM or trace/trigger strobe.

With no parameters, Config displays its current setting.

On the 386EX, you can program the HLDA pin to function either as
HLDA function or as an I/O bit. The emulator hardware must know
when the bus has been granted to an external master so that overlay RAM
cycles are disabled to prevent corruption. If the HLDA pin is visible, the
emulator disables overlay RAM cycles. Otherwise, the emulator assumes
that no external masters exist.

When using the Intel Evaluation Board, which programs the HLDA pin
to be an I/O bit, set config ignoreHlda on.

ConfigCS

Sets up the ConfigCS [“<filename>*]

emulator hardware !

to match the target <filename> is a file containing chip select register value
Motorola processor specifications. The quotation marks are required.
chip selects.

This command uses the CS registers in the system integration module

Relared topics: (SIM) to program the emulator trace, trigger, and overlay hardware. The

g::;cggcs, emulator reads the chip select signal mapping and matches the hardware
to these programmed pins and operation modes of the target.

Entering ConfigCS with a filename is the same as entering RestoreCS
with the filename followed by ConfigCS with no filename.

You can also configure chip selects, after programming the processor
SIM peripheral, with the Toolbar Configure menu Configure Chip Selects
item.

ConfigSymbols

Updates symbol ConfigSymbols [<basename>]
base address from

the Intel descriptor ~ <basename> is the base name for a specific group of symbols.
lable.

Updates the symbols with the base address obtained from the descriptor

SLD User's Manual 141 Shell Window Reference

table (either GDT or LDT). To get the correct symbol base, the target
program must set up the correct values of GDTR and LDTR and the
contents of those tables.

With no parameters, all symbols are reconfigured. To update a specific
group of symbols, specify the base name for the symbols.

Copy

Copiesoneregion Copy <start> [<end> | Length <len>] [<space>] [Target] to [<dest>]
of target or overlay [<space>] [Target]

memory to another.

Related topics:
Dump, Fill,
RunAccess,
Search, Size,
Verify, Write

<start> specifies the starting address of the region to be
copied.

<end> specifies the ending address of the region to be
copied.

length <len> specifies the number of bytes to be copied.

<space> for Intel emulators specifies sSmm or user (the

default) address space.

for Motorola CPU16 emulators specifies data (the
default) or program address space.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, cpu, s0, s3, or s4 address space.

Target Use this parameter to override the mapping of the
region. If specified, target memory is used as the
source or destination.

to [<dest>] Specifies the starting address that will be copied
into.

Because reading and writing memory takes a small amount of processor
time, memory access (such as copying) is initially disabled during
emulation. Use RunAccess to enable memory copying during
emulation; however, such copying can degrade your program execution.

-/* Copy 64 KB from address 0x0 to overlay at the same address: */

map 0 10000;
copy 0 length 1000 target to O;

/* To copy from overlay to target, the commands are */
copy 0 length 1000 to O target;

/* To copy from overlay to overlay*/
copy 1000 length 1000 to 4000;

/* Using symbolic addresses™/

Shell Window Reference 142 SLD User's Manual

copy #func1 #func2 to #ram_area target;

You can also copy memory with the Memory window Edit menu Copy
Memory item.

Dasm

Disassemble
memory.

Dasm [<mode>] [<start> [<end>] [<space.]]

<mode> Specifies the Intel addressing mode:
Auto derives the addressing mode based on the pmode.
Use16 uses 16-bit operands and addresses.
Use32 uses 32-bit operands and addresses.

<start> is the first address of the region to disassemble.

<end> is the last address of the region to disassemble.

<space> for Intel emulators specifies Smm or user (the default)
address space.

When no addresses are specified, 10 instructions are disassembled
beginning at the previous last address. When only <start> is specified,
10 instructions starting at that address are disassembled.

You can also view disassembled memory with the Memory window View
menu Disassembly item., or interleaved in your source text with the
Source window View menu Mixed Source And Asm item.

DasmSym

Control symbolic
disassembly in the
Shell window.

Related topics:
Asm, AsmAddr,
Dasm

DasmSym [on | off]
on (default) turns on symbolic disassembly.
off turns off symbolic disassembly.

With no parameters, DasmSym displays the current status of symbolic
disassembly.

Symbolic disassembly displays symbols in the disassembly shown in the
Memory window in Disassembly view, the Source window Mixed Source
And Asm view, and the Trace window Instruction view.

You can also toggle symbolic disassembly with the Toolbar Configure
menu Symbolic Disassembly item.

SLD User's Manual 143 Shell Window Reference

Delete

Delete a Shell
variable or alias

Delete (Alias “<name>*“ | <variable>)

<name> is the alias to be deleted. The Alias keyword and the
quotation marks are required.

<variable>is the Shell variable to be deleted.

$a=$%b=0;
list;
//$a=0
//$b=0

Delete $a

list

//$b=0

Alias Ilall Il$a;ll ;

Alias;
// a: "$a;"

Delete Alias "a";
Alias;

DisableAlarmLimit

Disable the wamning DisableAlarmLimit

message for
excessive stack
usage.

Related topics:
DisableHighWater-
Mark,
DisplayStack,
EnableAlarmLimit,
EnableHighWater-
Mark,
FillStackPattern,
SetStackAlarm,
SetStackBase,
SetStackSize,
Stackinfo,
SetStackArea

You can set an alarm (using EnableAlarmLimit) to notify you when
stack usage exceeds a specified percentage of the stack.
DisableAlarmLimit turns off this alarm.

You can also disable the alarm by un-checking the Stack window
Options menu Enable Alarm Limit item.

Shell Window Reference 144 SLD User's Manual

DisableHighWaterMark

Disable keeping DisableHighWaterMark
track of the stack o . .
maximum usage. You can set an indicator in the Stack window to keep track of the stack
Related tomi high-water mark, that is, the maximum stack usage.
elated topics. . . P .
DisableAlarmLimit, DisableHighWaterMark turns off this indicator.

DisplayStack, You can also disable the high-water mark by un-checking the Stack

EnableAlarmLimit,
EnableHighWater- window Options menu Enable High-Water Mark item.

Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
StacklInfo

DisplayStack

Display the stack DisplayStack [locals | hex]
frames.

locals includes symbols for automatic variables.

Related topics.
DisableAlarmLimit, hex displays the stack in the hexadecimal radix of 16 bytes per line.
DisableHighWater-

Mark,
EnableAlarmLimit, e Addresses only if no symbolic information is available
EnableHighWater-

Mark, e Addresses and function names if symbolic information is available
gﬂtsstg;:?:ﬁ:’ You can also view the stack frames, with stack and return addresses,
SetStackBase, parameters, and local variables, in the Stack window.

SetStackSize,
Stackinfo,
SetStackArea

When you specify no parameters, the display defaults to:

DisplaySymbols

Display all symbols DisplaySymbols [modules | functions | publics | lines | sorted |

or display one of the #<module name>]
following: modules,
functions, public modules displays modules only.
symbols, or lines.

functions displays modules, global variables, functions, and
Related topics: blocks.
AddressOf, . i
GetBase, NameOf, publics displays all printable symbols including publics
RemoveSymbols, (those code labels and variables defined publicly for

SLD User's Manual 145 Shell Window Reference

SetBase

the purpose of linking modules together). For
example, libraries normally do not contain local
symbols but any accessible global variables are
displayed as public symbols.

lines displays each module followed by the line numbers

loaded for that module. The information for each
line includes the line number, its ending column,
and its start address.

sorted displays the modules sorted alphanumerically.

#<module name> displays all symbols for the specified module.

With no parameters, DisplaySymbols displays modules, global
variables, functions, and local variables, but not publics nor individual
line numbers.

If you have previously issued a SymbolOpenFile command, the
DisplaySymbols output is directed to the symbol file.

The output is displayed in four columns:

The first column contains the symbol type (MODULE, VARIABLE,
FUNCTION, BLOCK, PUBLIC VAR, PUBLIC LABEL). Each
line is indented to show the level or scope of the symbol in the
symbol hierarchy. Modules and publics are at the root level.
Functions defined in a module are indented one level. Variables
local to a function are indented under that function. Blocks are
treated as unnamed functions and indented for each nesting level.

The second column contains the symbol name.

The third column contains the symbol type for a variable, the return
type for a function, and the range of source line numbers for a
module. For local variables and parameters allocated as registers,
the register name and type are displayed in the third column.

The fourth column shows the symbol's address information. For
static (fixed) address symbols, the fourth column shows the address
range followed by the size of the range in decimal in square
brackets ([<size>]). The end address points to the last byte of the
range. For local variables allocated on the stack, the address is a
signed offset from the stack frame pointer.

DR

Control Intel386 DR <num> [bkpt | user | [data <mode> <address> <size> [exact]]]

debug register use.

Shell Window Reference 146 SLD User's Manual

<num> identifies the debug register as 0, 1, 2, or 3.
bkpt makes the register available for execution breakpoints.

user reserves the register for use by your program. The emulator
avoids using this register for execution breakpoints and
modifies DR7, allowing user access to any debug register.

data configures the register as a data read/write breakpoint.
<mode> is one of:

X sets the register to instruction execution mode.
Emulation breaks on execution of the instruction
whose first byte is at <address>.

W sets the register to data write mode. Emulation breaks
on a write to <address> in user, SMM, or I/O space.

rw sets the register to data read/write mode. Emulation
breaks on a read or write to <address> in user, SMM,
or I/O space.

<address> specifies the virtual or linear base address of the breakpoint.

<size> specifies the 1, 2, or 4 bytes starting with <address> as the
address range of the data breakpoint. Emulation breaks on
any data access completely or partly overlapping this range.

exact ensures the processor waits after each instruction for all data
cycles to complete. Any data breakpoint thus occurs
immediately after the instruction that caused the breakpoint
data cycle. (Execution breakpoints always occur exactly.)
With exact not specified, several instructions can execute
beyond the one that caused the breakpoint data cycle. Using
exact can degrade your program’s performance.

With no parameters, DR lists all four debug register allocations.

Use DR to allocate the four Intel386 debug registers for use by the
emulator as execution or data breakpoints or for use by your target
system. When you install SLD, all four debug registers are configured
for execution (hardware) breakpoints. Changing this configuration
reduces the number of execution breakpoints available.

Reserving a debug register for use by your program also allows
undetected program access to system registers and to DR7. Your
program can thus make changes to DR7 that can cause the emulator to
behave unpredictably.

dr O user; /* Reserve drO for the target system. */
dr 1bkpt; /* Allow dr1 to be used as an execution breakpoint. */

SLD User's Manual 147 Shell Window Reference

dr 2; /* Show the current configuration of dr2. */
dr; /* Show the current configuration of dr1, dr2, dr3, and dr4. */

dr 3 w 1000p dword; /* Define a dword sized, data write */
/* breakpoint at physical address 1000. */

DT

Displays the DT (<selector_range> | <register> | base <address> [limit

descriptor table. <bytes>]) [a"]

Related topics: <selector_range> specifies either a single value (e.g., O or 0x08) or

gat, idt, Idt, tss two values to specify a range (e.g., 4 14 or 0x10
0x400).

<register> specifies a register.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

Use DT to display the descriptor table entries for a single selector or

range of selectors. The selector displayed is determined by <selector

range>, <register>, or base <address>, one of which must be
specified. Specifying <register> uses the register value for the selector.

You need not specify which descriptor table. The table is determined by

bit 2 (TI) of the selector.

dt 0x08 0x48 all; /* displays all descriptor entries */

/* from selector 0x08 to 0x48 */

dt ds; /*displays just the current ds descriptor entry */
Dump
Dumps memory Dump [loop] <address1> [<address2>] [byte | word | long |
contents to the dword] [<space>]
screen, formatted.

<addressi> specifies the frist address to be displayed.
Related topics: . .
Copy, Fill, <address2> specifies the last address to be displayed. If
RunAccess, <address2> is not specified, 16 bytes (one line) is
3:%;“@;:’ displayed. An address can be symbolic or numeric.

Shell Window Reference 148 SLD User's Manual

byte displays the values as bytes.

word displays the values as words.
long, dword displays the values as double words.
<space> for Intel emulators specifies smm, user (the

default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

loop repeatedly preforms the operation but prints no
output to the screen, even if errors occur.

The physical read of memory uses the Size command settings rather
than the format size set by Dump. For example, if size=byte, Dump
reads byte-sized memory accesses regardless of how the data is to be
displayed.

Because reading and writing memory takes a small amount of processor
time, memory access (such as dumping to the screen) is initially disabled
during emulation. Use RunAccess to enable Dump during emulation;
however, such access can degrade your program execution.

You can also view memory contents in up to 20 simultaneously active
Memory windows as hexadecimal or decimal bytes, words, or dwords
with equivalent ASCII characters; or as disassembled instructions.

Echo

Display or toggle
command echo.

Related topics:
Append, Echo, Log,
Logging, Overwrite,
Results

Echo [on | off]

on enable command echo.

off disable command echo.

When no options are entered, Echo displays the current setting.

With command echo enabled, commands entered in the Command Entry
pane are echoed to the Transcript pane before command execution. This
Echo command is the same as the Echo in the Options menu of the
Shell window.

You can also toggle the Shell command echo with the View menu Echo
item.

SLD User's Manual

149 Shell Window Reference

EmuStatus

Report the current EmuStatus

emulation status.
Use EmuStatus to discover whether the processor is halted after
Related topics: IsEmuHalted returns no result.
IsEmuHalted,
$EMULATING isemuhalted;
emustatus;
// Processor is running.
halt;
// 961C60 0000 0000 ORI.B #00,D0
isemuhalted;
// The emulator is halted.
The emulation status (halted or running) also appears in the Status
window or icon title. You can also use SEMULATING to discover the
emulation status.
EnableAlarmLimit
Enable a stack EnableAlarmLimit
alarm limit.
If, when emulation halts, the stack usage is exceeding the alarm limit set
Related topics: by SetStackAlarm, you are notified.
DisableAlarmLimit,
DisableHighWater- You can also enable the alarm limit by checking the Stack window
Mark, Options menu Enable Alarm Limit item.
DisplayStack,
EnableHighWater-
Mark,
FillStackPattern,
SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo
EnableHighWaterMark
Track maximum EnableHighWaterMark
stack usage.

This command turns on a graphical indicator (an arrow on the stack
Related topics: meter) in the Stack window that keeps track of the maximum amount of

DisableAlarmLimit, s . .
DisableHighWater- TETROTY used by the stack. The indicator is the stack high-water mark.

Mark,

Shell Window Reference 150 SLD User's Manual

DisplayStack,

You can also enable the high-water mark by checking the Stack window

EnableAlarmLimit, . . .

FillStackPattern, Options menu Enable High-Water Mark item.

SetStackAlarm,

SetStackArea,

SetStackBase,

SetStackSize,

Stackinfo

EventRestore

Restore saved EventRestore "<filename>"

Events. . o
"<filename>" specifies the file where the event definitions are to

be stored. The quotation marks are required.

You can also restore events from a file with the Event window File menu
Restore Events item.

EventSave

Save Events to a
file.

EventSave "<filename>"

"<filename>" specifies the file in which to store the event

definitions. The quotation marks are required.

You can also save events to a file with the Event window File menu
Save Events item.

Exit

Exit the Shell
window.

exit
This command closes the Shell window. To exit from SLD, on the
Toolbar open the File menu and choose Exit.

You can also close the Shell window with the Shell window File menu
Exit item.

Fill

Fill memory with
data.

Related topics:
Copy, Dump,

Fill <address1> <address2> <data> [byte | word | long | dword]
[<space>]

<address1> is the first address in the region to be filled.

Addresses can be symbolic or numeric.

SLD User's Manual

151 Shell Window Reference

RunAccess,
Search, Size,

Verify, Write data is the data top be written.

<address2> is the last address in the region to be filled.

byte specifies the data is a byte value.
word specifies the data is a word value.
long, dword specifies the data is a double word value.

<space> for Intel emulators specifies Smm or user (the
default) address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

Fill fills memory from <address1> to <address2> with one or more
repetitions of <data>. When the number of data bytes is less than the
address range, the data is repeated enough times to fill the address
range. Up to 256 bytes of data can be specified.

The physical write to memory uses the Size command settings rather
than the format size set by the fill command. For example, if
size=byte, any fill command fills memory by byte-sized memory
accesses.

Because reading and writing memory takes a small amount of processor
time, memory access (such as filling memory) is initially disabled during
emulation. Use RunAccess to enable Fill during emulation; however,
such access can degrade your program execution.

Fill 0 1234 0x0 dword; /* Fills memory from 0 to 64K with 0x0 */
// Fill successful.

You can also fill memory with the Memory window Edit menu Fill
Memory item.

FillStackPattern

Initialize the stack. FillStackPattern

Related topics: With FillStackPattern, you can initialize the stack with a special
DisableAlarmLimit, pattern to enable the tracking of the stack usage.
DisableHighWater-
Mark, Other commands can also initialize the stack:
DisplayStack,
EnableAlarmLimit, e If you specify the stack base and size with FillStackArea, you can
EnableHighWater- also initialize the stack in the single FillStackArea command.
Mark,

Shell Window Reference 152 SLD User's Manual

SetStackAlarm,
SetStackArea,
SetStackBase,
SetStackSize,
Stackinfo

e Enabling the high-water mark automatically fills the stack with a
pattern.

GDT

Displays the global
descriptor table.

Related topics:

GDT [<selector_range> | <register> | base <address> [limit
<bytes>]] [all]

Use GDT to display the global descriptor table entries for a single

o, idt, ldt, tss selector or a range of selectors. Which selectors are displayed is
determined by <selector range>, <register>, base <address>, or the
current gdt_base and gdt_limit.

With no parameters, GDT shows all valid entries in the range gdt_base

to gdt_base+gdt_limit.

<selector_range> specifies a single value (O or 0x08) or a range
between two values (4 14 or 0x10 0x400).

<register> specifies a register to be used for the selector.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

gdt 0x00 0x18 base 501010L; /* Displays global descriptor */

/* table entries. The table base is 501010L. */
/* This command displays global descriptor */
/* table entries from 501018L (selector 0x08) */
/* to 501028L (selector 0x18). */
GetBase

Get one or all base
names and their
address offsets.

Related topics:

GetBase [<basename>]
<basename> displays only the specified base.

With no parameters, all bases loaded into the symbol table are displayed

AddressOf, along with their offset values.

E,f,‘,’,':é‘?’ymm's' Compilers and linkers place symbols into groups called bases, assigning
RemoveSymbols, names to the groups. GetBase displays these symbol bases.

SetBase

SLD User's Manual 153 Shell Window Reference

Go

Start emulation.

Related topics.
$BREAKCAUSE
System Variable,
$SEMULATING
System Variable,
Cause, Golnto,
GoUntil, Halt,
ResetAndGo, Step,
StepSrc

Go

Emulation does not start unless a function can be found in the symbol
table that includes the current program counter address.

Other ways to start emulation include:

e On the Toolbar, choose the Go button.

e In the Source window, choose the Go button.

e In the Source window, open the Run menu and choose Go.
e Press the <F9> key.

Golnto

Emulate to a Golnto [call | return] [line | statement]

stepped-into or .)]

returned-into Golnto emulates until a call or return is executed, steps into the call or
function.

Related topics:
$BREAKCAUSE
System Variable,
S$EMULATING
System Variable,
Cause, Go, GoUntil,
Halt, ResetAndGo,
Step, StepSrc

return, and stops at a line or statement of the entered function.

With no parameters specified, the first Golnto you use defaults to
Golnto call statement. If you have previously used Golnto with
parameters, any Golnto without parameters defaults to the parameters
you used before.

call If a call is executed within the current function, emulation
continues through the call and into the called function.
Emulation halts on the beginning of a line or statement of
that function. This line or statement may be the first
instruction of the function or later, depending on how the

compiler generates code and line-number start addresses.

If a return instruction is executed within the current
function, emulation continues through the return and stops
on the beginning of the next line or statement of the
function that was returned into.

return

line The break is on a source line.

statement The break is on a C statement.

call and return are mutually exclusive; statement and line are mutually
exclusive.

You can also do these variations of “Go Into” with the Source window
buttons (as configured by the Source window Options menu Set Go
Buttons item) and the Source window Run menu.

Shell Window Reference

154 SLD User's Manual

GoUntil

Emulate untila call GoUntil [call | return][line | statement]

or return. o)))
call within the current function, emulates until a call or return is

Related tOpiCS: executed‘

$BREAKCAUSE . .

System Variable, return within the current function, emulates until a return

$EMULATING instruction is executed.

System Variable, .

Cause, Go, Gointo, line breaks on a source line.

Halt, ResetAndGo,

Step, StepSrc statement breaks on a C statement.
call and return are mutually exclusive; statement and line are mutually
exclusive.
With no parameters specified, the first GoUntil you use defaults to
GoUntil call statement. If you have previously used GoUntil with
parameters, any GoUntil without parameters defaults to the parameters
you used before.
GoUntil emulates until a call or return is executed, then stops.
Because of how call and return work, some assembly instructions prior
to the call or return are not necessarily executed.
You can also do these variations of “Go Until” with the Source window
buttons (as configured by the Source window Options menu Set Go
Buttons item) and the Source window Run menu.

Halt

Halt emulation. Halt

Use Halt to stop emulation with no dependence on breakpoints or
triggers.

Other ways to manually stop emulation include:

e On the Toolbar, choose the Halt button.

e In the Source window, choose the Halt button.

e In the Source window, open the Run menu and choose Halt.
e Press the <F2> key.

SLD User's Manual 155 Shell Window Reference

Help

Invoke on-line help. Help [<command>]

Use Help to display the command syntax for one or more Shell window
. commands. When you specify no <command>, Help displays an
alphabetical list of all commands.

You can also get on-line help from any SLD window Help menu (or the
CPU window Options menu) or by pressing the <F1> key.

History

Control numberof History [<size>]
saved commands.

<size> specifies the number of commands to save in the Shell
command history buffer.

With no parameters, History reports the number of previously entered
commands that are saved in the history buffer. To change the size of the
list, specify a <size>.

Press <Ctrl><Up Arrow> or <Ctrl><Down Arrow> to recall commands
from the history buffer to the Command Entry pane.

You can also set the history size with the Shell window Options menu
History Size item.

IDT

Dispiay the interrupt |DT [<index_range> | <register> | base <address> [limit <bytes>]]
descriptor table. [all]

Related topics: <index_range> specifies either a single value (e.g., O or 0x08) or
dt, gat, ldt, tss two values to specify a range (e.g., 4 14 or 0x10
0x400).

<register> specifies a register; the selector for the specified

register is used.
base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

With no parameters, IDT shows all valid entries in the range idi_base

Shell Window Reference 156 SLD User's Manual

to idt_base-+idt_limit.

Use IDT to display the interrupt descriptor table entries for a single
index or a range of indices. Which selectors are displayed is determined
by <index range>, <register>, base <address>, or the current
idt_base and idt_limit.

idt 0x00 Ox18 base 501010L /* Displays interrupt descriptor */
/* tables. The table base is 501010L. */

/* This command displays interrupt descriptor */

/* tables from 501018L (selector 0x08) */

/* to 501028L (selector 0x18). */

If..Else

Conditionally If (<condition>) { <block> } [else { <block> }]

execute Shell .

window commands. <condition> evaluates to nonzero (true) or zero (false). The

parentheses are required.

<block> is a list of Shell commands delimited with
semicolons. The braces are required.

If <condition> is true, the first block of statements executes. Otherwise,
if the else block is present, the second block of statements executes.

$a=0;

If ($a) {
“true";

}

else {
"false";

|3

// false

$a=1;

If ($a) {
"true";

}

else {
"false";

b

/] true

SLD User's Manual

157 Shell Window Reference

Include

Read commands include "<filename>"
from a file.

<filename> is the name of a file containing Shell commands (a
script). The quotation marks are required.

The commands are executed as if entered in the Command Entry pane.

include "d:\shell.cmd"; /* executes d:\shell.cmd */

You can also run a script with the Shell window File menu Include item.

Integer

Identifies an integer. Integer (<variable>)

Related topics: <variable> is the name of a Shell variable.
String

Use Integer to discover whether a variable value is an integer. Integer
returns true (1) if <variable> is an integer and false (0) otherwise.

$a=0;

Integer($a);

11

If (integer($a)) { "it is an integer"; }
// itis an integer

IsEmuHalted

Discover whether |IsEmuHalted
emulator is halted.

Use IsEmuHalted to discover whether the emulator is halted. No

Relared topics: response indicates the emulator is not halted. If you get no response,
Ry also use EmuStatus or SEMULATING.

isemuhalted;

halt;

// 961C60 0000 0000 ORI.B #00,D0

isemuhalted;

// The emulator is halted.

The emulation status (halted or running) also appears in the Status
window or icon title. You can also use $EMULATING to discover the
emulation status.

Shell Window Reference 158 SLD User's Manual

LapTimer

Takes a snapshotof |apTimer

the timer.

Related topics.

Returns the number of milliseconds elapsed since the timer was started,
but does not stop the timer.

StartTimer,
StopTimer LapTimer;
while (laptimer < 5000) {};
LDT
Displays the local LDT [<selector_range> | <register> | base <address> [limit
descriptor table.

Related topics:
dt, gdt, idt, tss

<bytes>]] [all]

<selector_range> specifies either a single value (e.g., 0 or 0x08) or
two values to specify a range (e.g., 4 14 or Ox10
0x400). when a single value is specified, it is used
as the selector from the GDT to specify the LDT
base and limit.

<register> specifies a register; the selector for the specified
register is used.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also specify
either <selector_range> or limit <bytes> to
define the range to be displayed.

all displays all entries, including invalid or reserved.

With no parameters, LDT shows all valid entries in the range Idt_base
to |dt_base+Idt_limit.

Use LDT to display the interrupt descriptor table entries for a single
index or a range of indices. Which selectors are displayed is determined
by <selector_range>, <register>, base <address>, or the current
Idt_base and Idt_limit.

Idt 0x00 0x18 base 501010L; /* Displays local descriptor tables. */
/* The table base is 501010L. This command displays */

/* local descriptor tables from 501018L (selector 0x08) */

/* to 501028L (selector 0x18). */

SLD User's Manual

159 Shell Window Reference

List

List Shell variables. List [<variable>]

With no parameters, List displays all the Shell variables and their
values. To list the value of a single variable, specify the variable name.
List;

// (system) $SHELL_STATUS = 262158

Load

Load code and Load "<filename>" [user | smm] [[no]code] [[no]symbols] [[no]asm]
symbols to mapped [1no]demand] [[no]Jdemangle] [[nojupdatebase] [module

t . -
of target memory <name>] [reload] [[no]loadregister] [[no]warn] [[no]status]
fg;”ég‘iizg’pi“: "<filename>" is the pathname of the file to be loaded. The quotes
are required.
user For Intel emulators, loads code into user memory
(default).
smm For Intel emulators, loads code into system
management mode memory.
[no]code loads (default) or does not load code.
[no}symbols loads (default) or does not load symbols.
[Nojasm loads or does not load (default) Motorola assembly

module names.

[noldemand loads symbolic information only on demand
(default) or loads all symbols (globals, locals, line
numbers) for all modules in the program initially.
On-demand loading initially loads just global
symbols (variables, module names, global function
names, type definitions). Local variables and line
numbers are not loaded until needed.

[noldemangle demangles or does not demangle (default) C++
names.

[noJupdatebase updates symbol bases or does not update symbol
bases, for Intel emulators. This parameter is valid
for OMF386 loadfiles only. Use updatebase in
conjunction with loadregister.

module <name> After an initial on-demand load, load symbols for

Shell Window Reference 160 SLD User's Manual

the specified module Use in a script if you know
you will be debugging a specified module or
modules. If you load symbols with this option,
there is no delay when you view one of these
modules.

reload To purge old symbols and load new ones with one
command, use the reload option.

[nolloadregister loads or does not load (default) initial register
values from OMF386 loadfiles.

[noJwarn displays or does not display (default) warnings
from the loader.

[no]status displays (default) or does not display load statistics.

You can load code and symbols during emulation. Avoid loading into
an area of memory occupied by the executing code. Loading into
memory that is being executed can stop the emulator in an unpredictable
state.

This command is the same as the Load button on the Toolbar.

/* on-demand symbol loading*/
Load demo.abs;

// 1986 bytes code loaded.

/l 2 module(s) loaded.

// Load complete.

/* load module */
Load demo.abs module dm_main;

/* load symbols only, on demand (no code) */
load demo.abs nocode;

/* load code only (don't load symbols) */
Load demo.abs nosym;

/* code and all symbols are loaded */
load demo.abs nodemand;

/* load a new file, do not display warnings*/
load sample.abs reload nowarn;

You can also load files with the Toolbar Load button or from the Source
window File menu.

SLD User's Manual

161 Shell Window Reference

LoadSize

Set the memory LoadSize [byte | word | long | dword]
write-access size .
for the load byte writes memory by bytes.
d. .
comman word writes memory by words.
f;g’ée‘éi':gi”: long (default) writes memory by longs. Writing in long is the fastest
’ way to load code.
dword is the same as long.
Log
Display or setthe | og ["<filename>"]
name of the log file. . . .
<filename> is the name of the log file to be opened or created.
Related topics: The quotation marks are required.

Logging, Append,
Overwrite, Echo,
Results

With no parameters, Log displays the name of the current log file.
To start recording into the logfile, use Logging.

Lodfile "c:\shell.log";
Log;
// log file name: c:\shell.log

You can also open a log file with the Options menu Log File Name item.

Logging

Display or toggle the
logging setting.

Related topics:
Log, Append,
Overwrite, Echo,
Results

Logging [on | off]

With no parameters, Logging reports whether logging is on.
on
off

When logging is on, the lines that are written to the transcript window
are also written to the log file.

turns logging on.
turns logging off.

When you turn logging on, if overwrite mode is in effect, previously
logged information is destroyed. To preserve information recorded
earlier to the same file, enter Append before Logging on.

You can also toggle logging with the Options menu Log Results item.

Shell Window Reference

162

SLD User's Manual

Map

Replaces all or part
of the target system
memory with
emulator memory.

Related topics:
SaveMap,
RestoreMap,
MapRanges

map [clear | <base> [<end>j [target] [<access>]] [<space>]

clear
<base>

<end>

target
<access>

<space>

clears all map blocks.

is the address to start an overlay memory range. The
address is rounded down to the nearest boundary block
equal to the amount of memory mapped. In an Intel
emulator, you can start a region on any 4K boundary. In a
Motorola emulator, you must start a region on a boundary
corresponding to the size of the region. (For example, 64K-
byte regions must start on a 64K boundary; 128K-byte
regions must start on a 128K boundary.)

is the last address of the range. If no <end> is specified:

Intel emulators map a 4K-byte region. The end address is
rounded up to the top of the 4K-byte region containing the
end address. With options for 1M bytes or 4M bytes of
overlay, you can map up to 16 regions.

Motorola emulators map a 64K-byte region. The end
address is rounded up to the top of the 64K-byte region
containing the end address. With 256M bytes of overlay,
you can map 64K-byte and 128K-byte regions. With 1M
bytes of overlay, you can also map 256K-byte and 512K-byte
regions.

map memory range to the target.
specifies access permissions:
ram allows read and write access (the default).

rom allows read access; prevents write access; does
not break on attempted write access. (For
Intel386 emulation in overlay memory, writes
are allowed.)

rombrk allows read access; prevents write access; breaks
on attempted write access. (For Intel386
emulation in overlay memory, writes are
allowed but break emulation.)

none prevents any access; breaks on attempted access.
(For Intel386 emulation in overlay memory,
access is allowed but breaks emulation.)

for Intel emulators specifies smm, user (the default), or i0
address space.

SLD User's Manual

163 Shell Window Reference

for Motorola CPU16 emulators specifies data (the default)
or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

With no parameters, map displays the current map settings.

map 0 ram;
// Mapped block starting at address 00000000 to 0000FFFF RAM

You can also map memory with the Toolbar Map button.

MapRanges
Configure overlay MapRanges [01214]
memory for a . .
Motorola 68360 0 No map ranges; four hardware breakpoints are available.
emulator. 2 Two map ranges; two hardware breakpoints are availble.
Related topics: . : .
SaveMap, Map, 4 Four map ranges; no hardware breakpoints are available.
RestoreMap With MapRanges you can configure zero, two, or four blocks of overlay
memory and a corresponding (four, two, or zero) number of hardware
breakpoints.
When you use MapRanges, the map is reset to target RAM. Use the
Toolbar Map button or the Map command to reconfigure memory.
MaxBitFieldSize
Set the maximum bit MaxBitFieldSize [16 1 32]
field size for
OMF386 loadfiles. 16 Sets the maximum bit field size to 16 bits.
32 Sets the maximum bit field size to 32 bits (default).
If you use the Borland C compiler in generating your OMF386 loadfile,
set the maximum bit field size to 16 bits.
MergeSections
Merge setions from MergeSections [on | off]
a Motorola loadfile. . .
on merges the loadfile into two default sections.
Rel ics:
ngf;ﬁetfﬁts:d off loads the sections as they appear in the loadfile (default).

Shell Window Reference 164 SLD User's Manual

For Motorola loadfiles containing more than 32 sections, merging
sections can save memory.

NameOf

Find the symbol NameOf <address>

representing an . .

address. <address> is a numeric address.

Related topics:

Use NameOf to look up a specified address and display the symbol that

AddressOf, most closely matches the address.
DisplaySymbols,

GetBase, NameOf 0x0900;
RemoveSymbols, // #main#14#1 (function main)
SetBase

Overwrite

Overwrites the log
file.

Related topics:

Overwrite

When Overwrite has been specified, opening a log file (Log) or starting
to log (Logging On) destroys the file’s prior contents.

Append, Log,

Logging, Echo, You can also configure logging to overwrite a file by opening the Shell
Results window Options menu and choosing Overwrite Log File.

Pmode

Returns the
processor mode.

Pmode

The 386 processors operate in various pmodes. These are real, virtual-
86 (V86), protected, and System Management Mode (SMM).

Protected mode is further divided into 16-bit protected mode and 32-bit
protected mode. The Inte]l386 DX and Inte1386 SX processors do not
have System Management Mode. The Intel386 CX and Intel386 EX
have SMM.

pmode;
// Processor mode = Prot32

The pmode also appears at the bottom of the Status window icon.

SLD User's Manual

165 Shell Window Reference

Print

Print a value.

Print (<variable> | "<string>")

<variable> is the name of a Shell variable.
<string> is a string constant. The quotation marks are
required.

Use Print to display the value of variables and strings.

Print("abc");
// abc
$a=75
Print($a);
//0x5 5

RamTst

Run the memory
hardware
confidence tests.

Related topics:
Test

RamTst [loop] <address1> <address2> [<space>]

loop repeats the low-level operations in the specified test
so the operation can be observed on an
oscilloscope. Press <Esc> to stop looping. An
error does not halt the test loop.

<address1> starting address to test.
<address2> last address to test.
<space> for Intel emulators specifies smm, user (the

default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd (the
default), up, ud, or cpu address space.

ramtst 0x0000 OxFFFF; /* Test memory from 0x0 to Oxffff. */

Register

Display or set
register values.

Register [<name> [value]] [...]
<name> is an Intel or Motorola register mnemonic.
<value> is the value to be put into the register.

Shell Window Reference 166 SLD User's Manual

With no parameters, Register displays all the registers. A <name>
without a <value> displays the value of the specified register; with a
<value> sets the register to <value>.

You can also view and edit the registers in the CPU window.

RemoveSymbols

Remove symbols RemoveSymbols

and clear symbol

tables. Use this command to remove all loaded symbols and clear all allocated

Related topics:
AddressOf,
DisplaySymbols,
GetBase, Load,
NameOf, SetBase

symbol tables.

Reset

Reset the
processor.

Related topics:
ResetAndGo

Reset [cpuonly]

Reset sends a RESET signal to the processor. All CPU register
contents are lost on reset:

e The processor RESET pin is asserted.
e The program counter and stack pointer are read from memory.

e All SLD windows are updated. The Stack window display is
invalid because the stack is reset. The Source window displays the
beginning of your startup code, at the program counter.

With cpuonly specified, Reset resets only the processor and does not
update the SLD windows. Use this parameter only if Reset without
cpuonly fails to reset the processor:

1. Enter Reset CPUonly, resetting the processor without updating the
SLD windows.

2. Reset your target.
3. Enter Reset again, without CPUonly, to update the SLD windows.

You can also reset the processor and optionally update the SLD windows
from the Toolbar Configure menu, the Source window Run menu, or the
CPU window Options menu.

SLD User's Manual 167 Shell Window Reference

ResetAndGo

Assert and release
the target reset line.

Related topics:

ResetAndGo

This operation is required to start some target systems. For example,
targets that use an external watchdog timer or power-saver hardware

Reset may require that you use ResetAndGo..
You can also reset the processor and start emulation with the Source
window Run menu Reset And Go item.
ResetLoaders
Reinitialize the ResetLoaders "<pathname>"
loaders.
<pathname> is the path to the directory containing the
loaders.ini file. The quotation marks are
required.
If you do not specify the pathname, the emulator looks for loaders.ini
in the current SLD directory (e.g. c:\powerpak).
Resetloaders causes SLD to reinitialize loaders. Use this command
when you get an error message telling you to do so.
RestoreCS
Restores the chip- RestoreCS "<filename>"
select register . . . X
values. <filename> is an ASCII file containing chip select values.

Related topics:
SaveCS, ConfigCS

The quotation marks are required.

This command restores the chip-select registers to the values specified
in the ASCII file saved with SaveCS. This file contains a line for
each of up to 30 chip select registers. Each line can be up to 80
characters long, containing the following sequential fields:

<CHIP SELECT REGISTER NAME>
<space(s) (20)>

<hex value>

<new line or optional white space>
<anything other than OA and 0>
<new line>

The register name must be in upper case and must match a valid chip
register name. Only values different from the default values need be
entered. The <anything other than...> field is for a short comment.

Shell Window Reference 168 SLD User's Manual

For Motorola emulators, use RestoreCS "<filename>" to restore chip
selects if you don't want to configure the emulator hardware to match;
otherwise, use ConfigCS "<filename>" to restore chip selects and
configure the emulator hardware.

You can also restore the chip selects from a file with the Toolbar
Configure menu Restore Chip Selects item.

RestoreMap

Restores asaved RestoreMap "<filename>"

map configuration.
<filename> contains the map configuration to restore. The

Related topics: quotation marks are required.

SaveMap, Map, . . .

MapRanges You can also restore the map from a file with Map dialog box Restore
button, accessible via the Toolbar Map button.

Results

Set the Transcript Results [on | off]

window results

display. on enable command results echo.

Related topics: off disable command results echo.

Log, Logging, . : .

Append, Overwiite, Without parameters, Results displays the current setting.

Echo, Results Use this command to toggle whether the transcript window displays the

Shell command results.

You can also toggle the echo with the View menu Show Results item.

RunAccess

Set the target RunAccess [on | off]

processor access

mode during off (default) disables reading and writing memory during
emulation. emulation.

Related topics: on enables reading and writing memory during emulation.
Copy, Dump, Fill, . .

Search, Size, Without parameters, RunAccess shows whether run access is on or
Verify, Write off.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Such access includes scrolling and refreshing the Memory and

SLD User's Manual 169 Shell Window Reference

Peripheral windows and reading and writing memory from the
Memory, Peripheral, and Shell windows. Use RunAccess to make
memory accessible during emulation; however, such access can degrade
your program execution.

You can also toggle run access with the Toolbar Configure menu Run
Access item.

SaveCS
Saves the chip- SaveCS "<filename>"
select registers.
<filename> creates or overwrites a file with an ASCII
gelatted fgléics: description of the chip select register values. The
estoreCS, . .
ConfigCS quotation marks are required.

Use SaveCS to record the chip select values. The values can be
restored from the file using RestoreCS.

Different chip select registers are saved for different processors. The
following lists the registers saved for each processor.

Motorola 68330 and 68340:

MBAR CS2MASK MCR
CSOMASK CS2BASE PPARB
CSOBASE CS3MASK PPARALI
CS1IMASK CS3BASE PPARA2
CS1BASE

Motorola 68331, 68332, 68333, and 68HC16:

CSPARO CSOR2 CSBAR7
CSPAR1 CSBAR3 CSOR7
CSBARBT CSOR3 CSBARS
CSORBT CSBAR4 CSORS
CSBARO CSOR4 CSBAR9
CSORO CSBARS CSOR9
CSBARI1 CSORS5 CSBAR10
CSOR1 CSBAR6 CSOR10
CSBAR2 CSOR6

Motorola 68360:

MBAR BR2 BR5
GMR OR2 OR5
MSTAT BR3 BR6

BRO OR3 OR6

ORO BR4 BR7

Shell Window Reference 170 SLD User's Manual

BR1 OR4 OR7

OR1

Intel386 EX:

PICFG DMACFG PILTC
P2CFG INTCFG PIDIR
P3CFG TMRCFG P2LTC
PINCFG SIOCFG P2DIR
CSOADL CS3ADL P3LTC
CSOADH CS3ADH P3DIR
CSOMSKL CS3MSKL CS6ADL
CSOMSKH CS3MSKH CS6ADH
CS1ADL CS4ADL CS6MSKL
CS1ADH CS4ADH CS6MSKH
CSIMSKL CS4MSKL UCSADL
CSIMSKH CS4MSKH UCSADH
CS2ADL CS5ADL UCSMSKL
CS2ADH CS5ADH UCSMSKH
CS2MSKL CS5MSKL

CS2MSKH CSSMSKH

Since no peripheral registers are available in the Intel386 CX/SX, none
are saved.

You can also save the chip selects with the Toolbar Configure menu
Save Chip Selects item.

SaveMap
Saves a map SaveMap "<filename>"
configuration.
<filename> specifies the drive, directory, and name of the file
Related topics: where the map configuration is saved. The
RestoreMap quotation marks are required.
You can later restore the map configuration with RestoreMap.
You can also save the map from the Map dialog box, accessible from
the Toolbar Map button.
Search
Find the address of Search <start> <end> [not] <data> [byte | word | iong | dword]
a pattern. [<space>]
Related topics:

SLD User's Manual 171 Shell Window Reference

Copy, Dump, Fill,

RunAccess, Size, <start> is the first address in the range of addresses to
Verify, Write search. Addresses can be symbolic or numeric.
<end> is the last address in the range to search.
not searches for the first pattern mismatch rather than
the first pattern match.
<data> specifies a pattern for which to search, up to 256
bytes long.
byte specifies the data is a byte value.
word specifies the data is a word value.
long, dword specifies the data is a double word value.
<space> for Intel emulators specifies smm, user (the

default), or io address space.

for Motorola CPU16 emulators specifies data (the
default) or program.

for Motorola CPU32 emulators specifies sp, sd
(the default), up, ud, or cpu address space..

Search searches the specified address range for the described data
pattern and returns the address of the match.

The physical read of memory uses the Size command settings rather
than the format size set by the Search command. For example, if
size=byte, Search reads memory in byte-sized memory accesses.

Because reading and writing memory takes a. small amount of

processor time, memory access (such as searching memory) is initially
disabled during emulation. Use RunAccess to enable Search during
emulation; however, such access can degrade your program execution.

Fill O ffff Ox0 user;
Write 400 0x1234 user;

Search O ffff 0x1234 user;
// pattern found at 400

You can also search for a pattern in memory with the Memory window
Edit menu Search Memory item.

SetBase

Relocate symbols. SetBase <base name> <address>

Related topics: <base name> is the base name for the symbols to be relocated.

Shell Window Reference 172 SLD User's Manual

AddressOf,
DisplaySymbols,
GetBase, NameOf,
RemoveSymbols

Case is significant in specifying this parameter.

<address> numeric or symbolic address. This is an offset
that is added to the address of each symbol

contained in the base.

SetBase relocates the symbols in the specified <base name> to their
offset address plus the specified <address>.

Each base has a base address; each symbol in a base is assigned an
offset from the base address. Adding an amount to the base address
increases the symbol addresses by that amount. Use SetBase to
change the base address. The default base address is 0.

You can use SetBase to quickly relocate all symbols in a base. For
example, if code is loaded by the target program into memory other
than where it was linked, you can set the base address to the new load
address using SetBase, thus matching the code symbol addresses to
the memory where the code is loaded.

To discover the base names and their address offsets, use GetBase.

SetStackAlarm

Set the stack alarm
limit.

Related topics:

SetStackAlarm <percent>
<percent> is a percentage of the stack area, from 1 to 99.
Use SetStackAlarm to set the stack alarm limit as a percentage of the

DisableAlarmLimit, 3 8
DisableHighWater- stack. The alarm appears as a red line on the stack meter in the Stack
Mark, window.
DisplayStack, . . .
EnableAlarmLimit, With the stack alarm enabled, SLD notifies you when the stack usage is
EnablekHighWater- exceeding the stack alarm limit at the time the emulator halts.
ark,
FillStackPattern, You can also set the stack alarm with the Stack window Options menu
SetStackArea, Alarm Limit item.
SetStackBase,
SetStackSize,
Stackinfo
SetStackArea
Redefine the stack SetStackArea <address> <stack size> [fillArea]
location and size. . . .
<address> is the numeric or symbolic address for the base of
Related topics: the stack.
DisableAlarmLimit, . .
DisableHighWater- ~ <stack size> is the stack size.
Mark,

SLD User's Manual

173

Shell Window Reference

DisplayStack,

EnableAlarmLimit, fillArea Initializes the stack area.
En;lbal:aknghWater- There are separate Shell commands to set the stack base and size.
FiIIStacI’(Pattern, Since there is a delay between command executions., invoking the first
SetStackAlarm, command to change the value of the stack base or size can
SetStackBase, inadvertently define an invalid stack area. To avoid this problem, use
e rea to set both the stack base and the stack size with one
SotSHadkSize, SetStackArea to set both the stack b d the stack th
command.
To show the current stack settings, use Stackinfo. To fill the stack
area with a pattern without changing the stack base and size, use
FillStackPattern.
setstackarea 0x1000 0x500 fillarea;
You can also set the stack base and size with the Stack window Options
menu Stack Area item.
SetStackBase
Set the stack base SetStackBase <address>
address. . . .
<address> is the numeric or symbolic address for the base of
Related topics. the stack.
DisableAlarmLimit, .
DisableHighWater- ~ You can set the stack base address separately from setting the stack size
Mark, with SetStackBase.
DisplayStack, .
EnableAlarmLimit, There are separate Shell commands to set the stack base and size.
En:ﬂblekHighWater- Since there is a delay between command executions, invoking the first
ark, .
FillStackPattern, _command to char?ge thetvaluf: of the stack base or §1ze f:an
SetStackAlarm, inadvertently define an invalid stack area. To avoid this problem, use
SetStackArea, SetStackArea to set both the stack base and the stack size with one
SetStackSize, command
Stackinfo :
To show the current stack settings, use Stackinfo.
SetStackBase F000;
You can also set the stack base with the Stack window Options menu
Stack Area item.
SetStackSize
Set the stack size. SetStackSize <stack size>
Related topics: <stack size> is the stack size.
DisableAlarmLimit,

Shell Window Reference 174

SLD User's Manual

DisableHighWater-
Mark,

You can set the amount of memory used by the stack separately from

DisplayStack, setting the stack base address with SetStackSize.
EnableAlarmLimit, .
EnabIeHighWIater- There are separate Shell commands to set the stack base and size.
Mark, Since there is a delay between command executions, invoking the first

FillStackPattern, command to change the value of the stack base or size can
gg{g}gg&ﬁ?’ inadvertently define an invalid stack area. To avoid this problem, use
SetStackBase, SetStackArea to set both the stack base and the stack size with one
Stackinfo command.

To show the current stack settings, use Stacklnfo.

SetStackSize 200;

You can also set the stack size with the Stack window Options menu

Stack Area item.
Signal
Display or set the Signal [[<signal name> [enable | disable]] | [all enable | all
signal-enabled ;

disable]]

status.

Enabling or disabling a signal connects or disconnects, respectively, the
signal between the CPU and the rest of the system. With no parameters
are specified, Signal displays the status of all signals. To display the
status of a particular signal, specify only <signal name>.

enable connects the specified signal.

disable disconnects the specified signal.

all enable connects all signals.

all disable disconnects all signals.

signal name The signal name from the following list:

386DX, SX RESET, READY#, NMI, INTR,
HOLD, NA#, coprocessor signals

386CX RESET, READY#, NMI, INTR,
HOLD, NA#, SMI#, A20M#,
coprocessor signals

386EX RESET, READY#, NMI, INTO_3,
INT4_7, HOLD, NA#, SMI#,
coprocessor signals

Motorola 68360 RESET

Other Motorola

RESET, CLK

SLD User's Manual

175 Shell Window Reference

signal;
// CLK DISABLE
// RESET DISABLE

signal reset enable;
// RESET ENABLE

You can also toggle the signal connections with the CPU window
Options menu Signals item.

Size

Selects memory
access size.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Verify,
Write

Size [byte | word | long | dword]

Byte, word, long, and dword specify the size of subsequent memory
accesses. The memory access size is independent of the display size.

You can also specify the memory access size from the Memory window
Options menu.

Stackinfo

Display the stack
information.

Related topics:

Stackinfo

This command displays the current calling stack information. The
number of frames shows the call nesting level.

DisableAlarmLimit,
DisableHighwater- Stacklinfo;

Mark, // stack base = 12345678
DisplayStack, /] size = 0
EnableAlarmLimit, - .
EnableHighWater- /I current stack pointer = 87654321

Mark, // frames =0

gil';sst?:ﬁ?nern’ // alarm limit = 0%, DISABLED

€ CKAlarm, H -
SetStackArea, // high water ma.rk = 00000000
SetStackBase, // stack type = high to low
SetStackSize The same information appears in the Stack window.
StartTimer
Start the timer. StartTimer
Related topics: This command resets the elapsed time to zero and starts the timer.
LapTimer,
StopTimer

Shell Window Reference

176 SLD User's Manual

Step

Step emulation.

Related topics:

Step [into | over] [<count>]
Step emulates one or more instructions in the target.

$BREAKCAUSE
System Variable, into if a function call is encountered, steps into the function.
SEMULATING over if a function call is encountered, the step executes the
System Variable,

Cause, Go, Golnto, entire function (and any functions it calls) and stops on the

GouUntil, Halt, instruction after the call.

ResetAndGo, L . .

StepSrc <count> specifies how many instructions to step. A large <count>
can cause stepping to go for a long time. Press <ESC> to
break out of stepping before the step count is finished.

The Source window Options menu Source Step Granularity item affects
the Step operation. The <count> overrides the Source window Options
menu Step Count specification.

You can also do these variations of “Step” with the Toolbar Step
button, the Source window buttons, and the Source window Run menu.

StepMask

Mask interrupts StepMask [on | off]

during single .

stepping in a on masks interrupts.

Motorola lator. .

DoAY off allows interrupts.

Use StepMask in a Motorola emulator to prevent interrupts from
interfering when you single-step through your code.

You can also mask interrupts with the Toolbar Configure menu Mask
Interrupts For Step item.

StepSrc

Step emulationby StepSrc [into | over] [line | statement] [<count>]

source lines or . . . R . .
statements. into if a function call is encountered, steps into the function.
Related topics: over if a function call is encountered, executes the entire
$BREAKCAUSE function (and any functions it calls) and stops on the
System Variable, instruction after the call.

$EMULATING)

System Variable, line the step granularity is one source line. There can be more
Cause, Go, Golnto, than one statement per source line. Lines can be out-of-
GoUntil, Halt,

SLD User's Manual

177

Shell Window Reference

ResetAndGo, Step

order relative to the sequence of instructions the compiler
generates. For example, an execution sequence can be
lines 33, 34, 31, 35.

statement the step granularity is one statement.

<count> specifies how many steps to go. A large <count> can
cause stepping to go for a long time. Press <Esc> to stop

stepping before the step count is finished.

Line or statement overrides the Source window Options menu Source
Step Granularity specification.. The <count> overrides the Source
window Options menu Step Count specification.

You can also do these variations of “Step” with the Toolbar Step
button, the Source window buttons, and the Source window Run menu.

StopTimer

Stop and report on
the timer.

Related topics:
LapTimer,
StartTimer

StopTimer

Stop the timer and return the number of milliseconds elapsed since the
timer was started.

String

Discover whether a
variable is a string.

String (<variable>)

<variable> is the name of a Shell variable. The parentheses
Related topics: are required.
Integer .
String returns true (1) if the variable is a string and false (0) otherwise.
$a - nqrsn;
String($a);
/1 0x1 1
if (string($a)) { "it is a string"; }
/it is a string
SymbolCloseFile
Close the symbol SymbolCloseFile
text file.

Closes the previously opened text file created by SymbolOpenFile.

Shell Window Reference

178

SLD User's Manual

SymbolOpenFile

Open a text file. SymbolOpenFile <filename>
<filename> is the name of a file.

Opens a text file with the specified filename. Subsequent output from
DisplaySymbols is directed to the specified file. The file can be
viewed with an editor or file browser.

Test

Run the hardware test [loop] [repeat | continue] [brief | verbose] [<test name> |
confidence tests. <test number>]

Related topics: loop repeats the low-level operations in the specified
Ramist test so the operation can be observed on an
oscilloscope. Press <Esc> to stop looping.

repeat repeats the specified test until you press <Esc>.
continue continues through all tests, even if one fails.
brief displays only the final test result.

verbose displays every test result and progress report.
<test name> runs the test specified by name.

<test number> runs the test specified by number.
With no parameters, Test runs all tests and displays the results.

The confidence tests are designed to run with the Stand-Alone Self-
Test (SAST) board as the target.

Time
Display the date and time
time. . . .
This command displays the date and time.
Transcript
Set the number of Transcript [<size>]
lines saved in the) . L
transcript pane. <size> is the number of transcript lines to be saved, from 0 to 1000.

Related topics: You can scroll the transcript pane of the Shell window.

SLD User's Manual 179 Shell Window Reference

History

You can also set the transcript size with the Options menu Set

Transcript Size item.

TSS

Displays task state TSS [<selector> | <register> | base <address> [limit <bytes>]

segments. [tss286 | tss386]] [all]

Related topics: TSS displays the task state segments for any selector or base address.

dt, gat, idt, lat If you specify <register>, the selector for that register is used.

<selector> specifies a single value (e.g., 0 or 0x08) used as

the selector, referenced from the GDT. When no
selector is specified, the tss_base and tss_limit are
used.

<register> specifies a register; the selector for the specified
register is used.

base <address> specifies the descriptor table base address.

[limit <bytes>] If a base address is specified, you must also
specify either <selector_range> or limit <bytes>
to define the range to be displayed.

all displays all task state segments plus the I/O bit
map. Displays all entries, including invalid or
reserved entries.

tss286 specifies Intel286 processor segmentation.

tss386 specifies Inte1386 processor segmentation.

VarindexCPU16Reg

Specify the registers \/arindexCPU16Reg [none | xk:ix | yk:iy | zk:iz].
used for index

variables in none uses no register.

Motorola CPU16 . . .

loadfiles. Xk:ix uses the xk:ix register.

Related topics: ykiiy uses the yk:iy register.

CompilerUsed

zkiiz uses the zk:iz register.

The maximum address size for CPU16 is 16 bits. Some toolchains
support 20-bit addressing for large memory model programs. For such
programs, the additional four bits are assigned to a special register.

Use VarindexCPU16Reg before loading to inform the emulator which

Shell Window Reference

180 SLD User's Manual

register is used for 20-bit addressing in your loadfile.

Verify
Togglesonandoffa erify [on | off]
read-after-write. .

on turns verify on (default).
Related topics: .
Copy, Dump, Fil, off turns verify off.
RunAccess,

Search, Size, Write

With Verify on, write integrity is checked. If the byte read back does
not match the byte written, an error is returned. Verification can
happen after a Write, Fill, or Load. Verification does not affect the
target processor during emulation.

You can also toggle write verification with the Memory window
Options menu Write Verify item.

Version

Report the version version

of the emulator.
Use version when logging an emulator session to record which version
of the emulator hardware, software, and firmware is in use. The
information from this command is also needed when you contact -
Microtek for technical support.
You can also view some version information from any SLD window
Help menu About item.

While

Repeatedly execute While (<condition>) { <statements> }

statements while the
condition is true.

<condition> evaluates to true (non-zero) or false (zero). The
parentheses are required.
<statements> is one or more Shell commands. The braces are

required. Delimit commands with semicolons.
While <condition> is true, the <statement list> executes.

$a = 0; While ($a < 500) {$a = $a + 1;}

SLD User's Manual

181

Shell Window Reference

Write

Write to an address.

Related topics:
Copy, Dump, Fill,
RunAccess,
Search, Size, Verify

Write [loop] <address> <data> [byte | word | long | dword]
[<space>]

loop repeatedly preforms the operation but prints no
output to the screen, even if errors occur.

<address> specifies a numeric or symbolic address.

<data> specifies up to 256 data values to write to
memory starting at <address>.

byte specifies the data is a byte value.

word specifies the data is a word value.

long, dword specifies the data is a double word value.

<space> for Intel emulators specifies smm, user (the

default), or io address space.

for Motorola CPU16 emulators specifies data
(the default) or program.

for Motorola CPU32 emulators specifies sp, sd
(the default), up, ud, or cpu address space.

The physical write to memory uses the Size command settings rather
than the format size specified in the Write command. For example, if
size=byte, Write commands write by byte-sized memory accesses.

Because reading and writing memory takes a small amount of
processor time, memory access is initially disabled during emulation.
Use RunAccess to enable Write during emulation; however, such
access can degrade your program execution.

You can also edit memory in the Memory windows.

XIt
Translates an Intel Xlt <address>
numeric address.

<address> is a numeric or symbolic address.
Related topics:
AddressOf, XIt translates any numeric or symbolic address to its equivalent linear
NameOf or physical form, according to Intel numeric addressing rules. For a

virtual <address>, Xt displays the linear and physical equivalents.
For a linear or physical <address>, Xlt displays the physical
equivalent.

Shell Window Reference

182

SLD User's Manual

Source Window Reference

The following figure shows a sample Source window.

= 0 e po pa a D (] e B

) File Edit Yiew Run Breakpoints Options Windows Help
Go | Halt Step Over || _Into Call

[660461] int i;

[888482] char =*TxBuffer = (char =)B8xFFFD28;

[B0B4682] 008632 227C OBFF FD28 HOVEA.L #86FFFD28,A1
86804083

Into Return

This chapter describes the Source window contents, menus, buttons, and dialog boxes.

The Source window displays:
e When enabled, the source line numbers

e When available, the source (e.g. C or Assembly) from the source
file

e When enabled, the disassembly corresponding to each source line,
including the load address, hexadecimal code, and instruction

You can display two independently scrolling Source window panes.
To reveal the second pane, drag the split box above the top arrow of
the vertical scroll bar. When the mouse points to the split box, a split-
box cursor (see figure at left) appears.

a4

To change focus to a pane, click in the inactive pane or press <Tab>.

Source Window Menus

Menu Use To:

File Load; view loadfile information; display another
module; close the Source window.

Edit Navigate through source.

View Configure the source and disassembly display.

Run Start or stop emulation; step; reset.

Breakpoint Define and manage breakpoints.

Options Manage source display options and emulation
controls.

SLD User's Manual 183 Source Window Reference

Windows Open another SLD window.

Help Open a window for help on SLD commands.

File Menu

The following figure shows a sample Source window File menu.

Source: [....\powrpakmisamp332imain.cj
[i|l°8 Edit View Run Breakpoints Options Windows Help

Load Code... Step Over || Into Call
Load Information...

Browse Modules...
Previous Browsed Module
Next Browsed Module
Exit

1..WRPAKM\SAMP332\332Q5M.ABS
2 ...RPAKASAMP386\DEMO0386.0MF

Load Code... opens the Load dialog box to load code or symbols from a
loadfile. This has the same effect as choosing the Toolbar Load button,
as described in the “Toolbar Reference” chapter. To reload a file,
choose from the (up to four) files listed at the bottom of the Source
window File menu.loading:Source window

Load Information... opens an information box describing the loadfile
and what has been loaded into the emulator. The following figure
shows a sample Load Information box for the Motorola 68332

emulator.
= Load Information I

Loadfile: C:APOWRPAKM\SAMP332\332QSM_ABS

Bytes: 2094 Lines: 185
Modules: 3
Symbols: 114 PC: 0x400
Types: 301 Stack Base: OxF12
Functions: 20 Stack Size: 0x80

] Help l

Browse Modules... opens a dialog box to change the module (source,
disassembly, and symbols) displayed in the Source window. The
following figure shows a sample Browse Modules dialog box.

Source Window Reference 184 SLD User's Manual

= Browse Modules
B Lood File: S POVRPAKITSAIP 332 3320SH-ABS
Language:|C
main Time: 11716871994 - 83:58:04
Address: |B8884AA..0BB6F3
Path: D:\TBIRD\M332\SAMPLES\SAMP332\
|
o] 5] [ok | [cancet | [Hep |

To select a module, click on the module name or use the <Up Arrow>
and <Down Arrow> keys to scroll the cursor. For the selected module,
the dialog box displays:

Load File: The loadfile path and filename

Language: The language (e.g. C or Assembly) of the source file
Time: The date and time the loadfile was created

Address: Where in memory the module is loaded

Path: The source file path and filename

Choose OK to browse to the selected module or Cancel to exit the
dialog box without changing the Source window display.

Previous Browsed Module changes the Source window display back to
the module you last viewed. SLD maintains a history list of which
modules you have browsed and in what order you browsed them.

Next Browsed Module changes the Source window display to the next
module in the browse history list.

Exit closes the Source window. To exit SLD, use Exit from the Toolbar
File menu.

1, 2, 3, 4 lists the last four files you loaded. Reload a file by choosing it
from this list. This method of reloading a file bypasses the Load and
Load Options dialog boxes.

SLD User's Manual

185 Source Window Reference

Edit Menu

The following figure shows two sample Edit menus. The first is for the
Intel386 EX processor; the second is for the Motorola 68332 processor.
Different menu items are available for different processors.

= D e 0 pa amp386
File d Yiew Run Breakpoints Options Windo

(Search... l Step Into | Step Overl

Search Next

Go To Line...
Go To Address...
Go To CS:EIP

== 0 € 1 pa 3 1

File d V¥iew Run Breakpoints Options Windo
¢ Search... Step Into || Step Over || In
Search Next

Go To Line...
Go To Address...
Go To PC

Search opens a dialog box for searching the Source window text for a
specific string. Case is significant in the search string. The search
starts from the Source cursor and stops at the first instance of the string
found. If the string is not found, the search stops at the end of the
module. To search the entire module, position the Source cursor at the
beginning of the module before starting the search.

The following figure shows a Search dialog box.

Search for:

| |
|_g_|< l Lgancell Help I

Search Next searches again for the last string you entered in the Search
dialog box. The search starts from the cursor and stops at the first
match or the end of the module.

Go To Line... opens a dialog box to move the Source cursor to a
specific line. If you specify a line number beyond the last line in the
current module, the Source cursor moves to the end of the module. The
following figure shows a Go To Line dialog box.

Source Window Reference 186 SLD User's Manual

Line Number:

|
ok]| [cancel | [_Hep |

Go To Address... opens a dialog box to move the Source cursor to a
specific address. If no source is available for the address you specify,
the Source window shows disassembled code beginning at that address.

The following figure shows two sample Go To Address dialog boxes.
The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different fields are available for different
processors.

= Go To Address l

Address:
| CS:FFFFE3E4]
Space: Operand{Address Size:

| [g
l OK II Cancel | r Help J

Address:
[E3 |

| ok | |gance|| I Help |

For Intel processors, you can specify:

Space: as User or SMM (system management mode)

Operand/Address Size: as Usel6 (16-bit addressing mode), Use32
(32-bit addressing mode), or Auto
(addressing mode derived from the pmode).

Go To CS:EIP (for Intel processors) or Go To PC (for Motorola
processors) moves the Source cursor to the current program counter.

SLD User's Manual 187 Source Window Reference

View Menu

The following figure shows two sample View menus. The first is for
the Intel386 EX processor; the second is for the Motorola 68332
processor. Different menu items are available for different processors.

= 0 5 0 pa amp3 86
File Edit ; Bun Breakpoints Options Windo
Go v Source Only |_Step Over ||_
Mixed Source and Asm
v Line Numbers
Operand{Addre ; v Auto
Uselb
Use3?
—1 0 e DO pa a 1
File Edit ; Bun Breakpoints Options Windo
Go Source Only Step Over In

v Mixed Source and Asm

v Line Numbers

Source Only, when checked, displays only your source code.

Mixed Source and Asm, when checked, displays lines of disassembly
from memory interleaved with the corresponding source code lines.

Line Numbers, when checked, displays your source file line numbers

Operand/Address Size, for Intel processors, opens a sub-menu with
the following choices to display disassembly text:

Auto Operand/address size is 16-bit or 32-bit, depending on the
pmode.

Usel6 Operand/address size is 16-bit.
Use32 Operand/address size is 32-bit.

Source Window Reference 188 SLD User's Manual

Run Menu

The following figure shows a sample Run menu.

= 0 e 0 pa amp386
File Edit View Ji Breakpoints QOptions Windo

Go | | Go F9 LIL

Halt F2
Step Into F7
Step Over F8
Go Until Call

Go Until Return

Go Into Call

Go Into Beturn

Goto Cursor
Go From Cursor

Step Into Continuously
Step Over Continuously

Reset
Reset And Go

Go or pressing <F9> starts emulation.
Halt or pressing <F2> stops emulation.

Step Into or pressing <F7>, when the program counter is on a function
call, executes the call to the function and stops before the first
instruction in the function. The Source window displays the beginning
of the function.

To step into a function with no associated source, before stepping open
the View menu and check Mixed Source and Asm. Otherwise, Step
Into operates the same as Step Over for that function.

Step Into and Step Over are indistinguishable from each other when the
program counter is not on a function call.

Step Over or pressing <F8>, when the program counter is on a
function call, executes the call as a single step. This step executes the
function, returns, and stops before the first instruction following the
return. (However, encountering a breakpoint in the stepped-over
function stops emulation at the breakpoint.) The Source window
continues to display the calling function.

Go Until Call executes from the program counter to the beginning of a
statement or line (depending on the granularity) containing a function
call.

SLD User's Manual

189 Source Window Reference

Go Until Return executes from the program counter to the beginning
of a statement or line (depending on the granularity) containing a
return.

Go Into Call executes from the program counter and stops before the
first instruction in the next called function.

Go Into Return execute from the program counter through the first
return instruction, and stops before the first instruction after the return.

Go To Cursor executes from the program counter and stops before the
selected (highlighted) line or statement in the Source window.

Go From Cursor moves the program counter to the selected
(highlighted) line or statement in the Source window, then starts
emulation.

Step Into Continuously does Step Into operations until you halt it.
Step Over Continuously does Step Over operations until you halt it.

Reset asserts the RESET pin of the target processor, causing the CPU
to reset its internal registers and to load the program counter and stack
pointer from the reset vector locations. The RESET pin is then
released. All SLD windows are updated; the Source window displays
the beginning of code (where the program counter points) and the Stack
window display is invalid.

Reset And Go does a Reset, as above, and starts emulation from the
power-up reset vectors. To use Reset And Go, you must have the reset
vectors set.

Breakpoints Menu

The following figure shows a sample Breakpoints menu. Set
Permanent Breakpoint, Set Temporary Breakpoint, Set Breakpoint...,
and Show AlL.. are always available; Clear, Enable, and Disable are
available when you have selected a breakpoint from those listed in the
Breakpoint window; Clear All, Enable All, and Disable All are
available when one or more breakpoints are listed. To select a
breakpoint, click on it or use the <Up Arrow> and <Down Arrow> keys
to move the highlight.

Source Window Reference 190 SLD User's Manual

Breakpoints
Set Permanent Breakpoint
Set Temporary Breakpoint
Set Breakpoint...

Clear
Enable
Disable

Clear All
Enable All
Disable All

Show All...

Set Permanent Breakpoint sets a permanent breakpoint at the Source
cursor.

Set Temporary Breakpoint sets a temporary breakpoint at the Source
cursor.

Set Breakpoint... opens a dialog box to set a breakpoint at a specific
address. The following figure shows two sample Set Breakpoint dialog
boxes. The first is for the Intel386 EX processor; the second is for the
Motorola 68332 processor. Different fields are available for different
Pprocessors.

= Set Breakpoint

Breakpoint at. fl]x?fl J
Modules Functions
Idm_main |_*__| Imain |E|
State— Type] Space:
@' Enable @ Permanent

[user 9]

O Disable O Temporary

Set | | Close | Help I

SLD User's Manual

191 Source Window Reference

= Set Breakpoint

Breakpoint at: |#332qsm#UnLoad_RxBuf |

Modules Functions

]332qsm L!_l LUnLoad_F{xBuf IEI
State] Type
@ Enable @ Permanent
O Disable O Temporary

[_ﬁet I l Close I Help l

Fill-in the dialog box as follows:

Breakpoint at: can be a numeric or symbolic address. For symbolic
addresses, choose a module and a function from the
drop-down list boxes.

State can be toggled to Enable or Disable. The emulator
ignores a disabled breakpoint.

Type can be permanent or temporary. A temporary
breakpoint is removed after it causes the break.

Space: for Intel processors, can be User or SMM.

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes a breakpoint at the Source cursor.

Disable marks the breakpoint at the Source cursor to be ignored when
emulation executes through the code where the breakpoint is located. A
disabled breakpoint highlight in the Source window is grey.

Enable marks the breakpoint at the Source cursor to cause a break
when emulation executes through the code where the breakpoint is
located. An enabled breakpoint highlight in the Source window is red.

Disable All disables all currently defined breakpoints. The breakpoints
remain defined.

" Enable All enables all currently defined breakpoints.
Clear All removes all breakpoints. No breakpoints remain defined.

Show AlL.. opens the Breakpoint window, described in the Breakpoint
Window Reference chapter.

Source Window Reference 192 SLD User's Manual

Options Menu

The following figure shows a sample Options menu for the Motorola
68332 processor. Different menu items are available for different
Processors.

Source: [Disassembly]
Breakpoints UULLER Windows Help

Source Path... Return IE\O To

Tab Width...
Source Step Granularity »

Step Count...

Browser History Depth...
Source Line Delimiter »
Set Go Buttons »

Compiler Used...

Source Path opens a dialog box to add, delete, or change the paths to
the source files used in generating your loadfile. You can define up to
50 source paths. The paths are saved in powerpak.ini for the next time
you run SLD.

When you browse a module in the Source window, the emulator
searches the source paths for the corresponding source file in the order
they appear in the dialog box, from top to bottom.

The following figure shows a sample Source Path dialog box.

= Source Path

| Add...]L_ﬁ'dit... ”_gelete I Close I Cancel I Help I

To select a source path for editing or deleting, click on it or use the <Up
Arrow> and <Down Arrow> keys to move the highlight.

The Source Path dialog box buttons are:

Add... opens a dialog box for adding a new source path to the
emulator’s list of source paths. The following figure shows a
sample Open dialog box. Select a source file; choose OK to

SLD User's Manual

193 Source Window Reference

add the directory to the source path list or Cancel to close the
dialog box without adding the path.

B e]
File Name: Directories:
@ | c:\powrpakm

2 = o - Cancel
= powrpakm
£ samp332
£ samp360
3 sampcp32 [J Read Only
— 3 samphc16
£ teknotes =
List Files of Type: Drives:

|[2 Files[=.C) IEI | c: ms-dos_b IEI

Edit... opens a dialog box for editing the selected source path. The
following figure shows a sample Edit Path dialog box.

== Edit Path

Path:

[C:iPOW/RPAKIS AMP386Y |
uK l Lgancell | Help I

Delete removes the selected path from the emulator’s list of source
paths.

Close closes the Source Path dialog box, automatically keeping all
Add, Edit, and Delete changes you have made.

Cancel closes the Source Path dialog box, first asking you to confirm
whether to keep or abandon the Add, Edit, and Delete changes
you have made.

Tab Width... opens a dialog box to specify the number of spaces the
Source window uses to replace a tab character in your source file. The
default tab width is eight spaces. The following figure shows a sample
Tab Width dialog box.

Source Window Reference 194 SLD User's Manual

Tab Width And
Statement-Level
Breakpoints

Tab Width (1-32):

[ok | lgancell | Help I

To set a breakpoint at the statement level, you must know how many
spaces your compiler uses for a tab character. For example:

<tab><tab>for(i = 0; i < MAX_NUM; I++){ /*source line*/

The compiler generates column range information for the three
statements in this line, using a tab width of 8:

i=0 columns 0 to 26
i < MAX_NUM columns 27 to 39
i++ columns 40 to 45

If you set the Source window Tab Width to 4, then use the Source
cursor to set a breakpoint on the first i (column 13) or the second i
(column 20), the breakpoint is within the first statement's column
range. The third i is within the second statement's range.

Source Step Granularity opens a sub-menu to specify whether a Step
command steps by source lines (the default) or by source statements.
Some C compilers allow more than one statement per line, separated by
semicolons. You can step through such a source line by statements.
The following figure shows a sample Source Step Granularity sub-
menu, with stepping by line specified.

Source Step Granularity v Source Line
Step Count... Source Statement
Step Count opens a dialog box to set how many steps (1 to 100) are

executed per Step command. The following figure shows a sample Step
Count dialog box.

= Step Count

Step Count:

[|
|_QK | Igancell Help I

SLD User's Manual

195 Source Window Reference

Browser History Depth opens a dialog box to set the maximum
number of modules that can be recalled. SLD remembers the sequence
of modules and functions you have browsed. The following figure
shows a sample Browser History Depth dialog box.

Browser History Depth

Max Depth (5-100):

& |
'_QK | uancell Help I

Previous Browsed Module displays the next earlier module in your
browse history.

Next Browsed Module displays the next later module in your browse
history.

Source Line Delimiter opens a sub-menu to set the ASCII string used
by the compiler to delimit a source line. The following figure shows a
sample Source Line Delimiter sub-menu toggled for displaying a DOS
source file.

Source Line Delimiter v Carriage Return/Linefeed

l Set Go Buttons | : Linefeed Only

Carriage Return/Linefeed (the default) recognizes a carriage return
followed by a linefeed as the string
indicating the end of a line. This is the DOS
standard line delimiter. If you display a
UNIX file with Carriage Return/Linefeed,
the entire source file appears as a single line
in the Source window.

Linefeed Only recognizes a linefeed as the end-of-line
indicator. This is the UNIX standard line
delimiter. If you display a DOS source file
with Linefeed Only, a black dot appears at
the end of each line.

Set Go Buttons opens a sub-menu to toggle the operation of the Call
and Return buttons (described later in this chapter) between Go Until
and Go Into. The following figure shows a sample Set Go Buttons sub-
menu, followed by the two possible button combinations. The check on
Into Call/Return in the sub-menu corresponds to the Into Call and Into
Return buttons shown in the first button bar configuration.

Source Window Reference 196 SLD User's Manual

Set Go Buttons Until Call{Return
+ Into Call{Return

| Into Call [| Into Return | Until Call l]UntiI Return[

Compiler Used... opens a dialog box to identify the toolchain you used
in generating your loadfile. The following figure shows a Compiler

Used dialog box.
== Compiler Used
O Unknown > Hiware

O Intermetrics 3 Introl

, S8DS CrossCode
) Sierra Whitesmiths

l_Q_K | Igancell | Help I

If your compiler is not listed in the dialog box, choose Unknown. The
emulator is not guaranteed to work with unsupported toolchains.

Source Window Buttons

These buttons provide quick access to commonly used Run menu items,
described earlier in this chapter.

The Source window button bar has two possible configurations. To
toggle between them, open the Options menu, choose Set Go Buttons,
and choose Until Call/Return or Into Call/Return. The following figure
shows the two possible button bar configurations.

| JGu || Halt ﬂ Step Into || Step Over || Into Call |f Into Beturn IED To Curso!

| Go]| Halt 1] Step Into || Step 0verJ| Until Call ||Until RetumﬁSo To Cursd

Button Use To:

Go Start emulation from the program counter, the same as
the Run menu Go.

Halt Stop emulation, the same as the Run menu Halt.

Step Into Step into a function call at the program counter, the

SLD User's Manual 197 Source Window Reference

Step Over
Until Call

Into Call
Until

Return

Into Return

Function Popup Menu

same as the Run menu Step Into.

Step over a function at the program counter, the same
as the Run menu Step Over.

Go from the program counter and break before the next
function call, the same as the Run menu Go Until Call.

Go from the program counter and break after the next
function call, before executing the function, the same as
the Run menu Go Into Call.

Go from the program counter and break before the next
return instruction, the same as the Run menu Go Until
Return.

Go from the program counter and break after the next
return instruction, the same as the Run menu Go Into
Return.

To pop-up the Function menu, select (double-click on) a function name
in the source. The selected function name is highlighted. The
following figure shows a sample Function menu.

b Function: UnLoad_RxBuf

Go To Source

Show Load Address
Set Perm. Breakpoint
Set Temp. Breakpoint
Clear Breakpoint

Go To Source puts the Source cursor at the beginning of the function
source code. If no source is available, the Source window can display
the function in disassembly. To enable the disassembly display, open
the View menu and choose Mixed Source and Asm.

Show Load Address opens an information box listing the memory
address range occupied by the function. The following figure shows a
sample load address information box.

Source Window Reference

198 SLD User's Manual

= PowerPack SLD

Function UnLoad_RxBuf: Address
starts at: 000686..0006A5.

Set Perm. Breakpoint sets a permanent breakpoint at the highlight.
Set Temp. Breakpoint sets a temporary breakpoint at the highlight.
Clear Breakpoint clears the breakpoint at the highlight.

Variable Popup Menu

To pop-up the Variable menu, select (double-click on) a variable name
in the source. The selected variable name is highlighted. The
following figure shows a sample Variable menu.

= Variable: MsgTx
Inspect Variable
Set Perm. Breakpoint

Set Temp. Breakpoint |

Inspect Variable adds the variable to the Variable window, described
in the Variable Window Reference chapter. If the Variable window is
not already open, this opens it.

Set Perm. Breakpoint sets a permanent breakpoint on the highlight.
Set Temp. Breakpoint sets a temporary breakpoint on the highlight.

SLD User's Manual

199 Source Window Reference

Source Window Reference 200 SLD User's Manual

Variable Window Reference

The following figure shows a sample Variable window.

File Edit View Variable Windows Help

{char =Blank_TxBuf#TxBuf_Ptr = BxFFFFFFFF;
{int Blank_TxBuf#i = OxEER = 3818;

FH10K2B
[110%65
[210x28

This chapter describes the Variable window contents, menus, and dialog boxes.

Variable Window Contents

The Variable window displays the types, symbolic names, and values of
global and local variables. Variable symbolic information appears in
the following colors:

Red indicates an editable value. Integer variables can be edited
in hexadecimal or decimal, floating point variables in
floating point format, and characters in their hexadecimal
ASCII equivalent. To edit a value, either double-click on
the value; or single-click on the value, open the Edit menu,
and choose Edit. Press <Enter> to end editing.

Blue indicates a pointer variable you can dereference by double
clicking. To dereference a pointer, either double click on the
pointer name or open the View menu and choose Show. A
new entry is added to the Variable window, showing the
variable that was pointed to.

Magenta indicates a non-pointer variable. For enum type variables,
the enumerated name follows the hexadecimal value.

SLD User's Manual 201 Variable Window Reference

Variable Window Menus

Menu Use To:

File Close the Variable window.

Edit Find and edit a listed variable.
View Reorganize or refresh the display.

Variable Add or remove variables from the display.

Windows Open another SLD window.

Help Open a window for help with SLD.
Edit Menu
The following shows the Edit menu.
File d View Variable Windows Help
' Search...
Search Next
Edit

Search... opens a dialog box to find any variable listed in the Variable
window. The search is case sensitive and stops at the first occurrence
or at the end of the Variable window. The following figure shows a

sample Search dialog box.
Search for:

[omcr_Reg] |
I_QK I tgancell | Help |

Search Next finds the next occurrence of the last variable searched for.

Edit positions an edit field on the selected value. This item is available
when you put the Variable cursor on an editable (red) value. Type the
new value in the edit field and press <Enter>. Floating-point numbers
use floating-point format. Characters use hexadecimal or ASCII
format. Integers use decimal or hexadecimal. The following shows an
edit field.

Variable Window Reference 202 SLD User's Manual

= ariable hll
I File Edit View Variable Windows Help
char =Blank_TxBuf#TxBuf_Ptr = BHIFFFFFFFFk :

+ +

View Menu

The following shows the View menu.

— ariable wvifa
File Edit ; Variable Windows Help
Show
+ Compress
Refresh Display

+ By History
By Name

Show adds a line to the Variable window dereferencing the selected
variable. This item is available when you have put the Variable cursor
on a dereferenceable (blue) symbol, such as a pointer. The following
figure shows a pointer and its dereferenced equivalent.

File Edit View Variable Windows Help

char =mainfisgTx 0xBFE ;
char mainf=Hugix = Ox48 = 'H';

Compress collapses multi-line variables, such as an array or structure,
to show only the first line of the variable. The following shows an
array, first in expanded (only the first four of the 32 array elements
appear in this picture) then in compressed display.

Yariable
File Edit View Variable Windows Help

SLD User's Manual

203 Variable Window Reference

File Edit View Variable Windows Help
har MsgRx[32] = {

Refresh Display updates the displayed symbols and values.
Sort opens a sub-menu to arrange the variables:

By History in the order they were added to the display.
By Variable Name alphabetically.

Variable Menu

The following shows a Variable menu:

= ariable = N
File Edit Yiew UEUIE Windows Help
Add...
Delete
Undelete

Add... opens a dialog box to add a variable to the window. You can
specify a partly or fully qualified variable name.

Delete removes the selected variable from the display.

Undelete restores to the display the last variable removed.

Variable Window Reference 204 SLD User's Manual

Breakpoint Window Reference

The following figure shows a sample Breakpoint window for a Motorola emulator. The
address format is different for Intel emulators; however, the window layout is consistent.

-~
) Breakpo vy a

File Breakpoints Windows Help

Set] Clear |5o To Sourcd_ Enable |_ Disable][Enable All || Disable All |

State Type Breakpoints
Enable Pern. #oe@esnn 332qsm,SPCRO_Config,line256,colB-22
Enable Perm. 90000486 main,main,line24,c0lB-23
80800492 main,main,line26,co0l8-22

This chapter describes the Breakpoint window contents, menus, buttons, and dialog boxes.

The Breakpoint window displays the following information about each

breakpoint:

State Whether the breakpoint will cause a break (Enable) or
not (Disable) when emulation executes through the
code where the breakpoint is located.

Type Whether the breakpoint will remain defined (Perm.)
or be removed (Temp.) after causing a break.

Breakpoints The load address, module name, function name,

source line number, and source column number where
the breakpoint is located. (The column number can
be affected by the number of spaces your compiler
uses to replace a tab character.)tab width

Breakpoint Window Menus

Menu Use To:

File Exit the Breakpoint window.

Breakpoints Define, remove, enable, and disable breakpoints.
Windows Open another SLD window.

Help Open a window for help with SLD.

SLD User's Manual 205 Breakpoint Window Reference

File Menu

Exit closes the Breakpoint window.

Breakpoints Menu

The items available in the Breakpoints menu depend on whether
breakpoints are defined and selected. Set Breakpoint... and Go To
Source are always available; Clear, Enable, and Disable are available
when you have selected a breakpoint from those listed in the Breakpoint
window; Clear All, Enable All, and Disable All are available when one
or more breakpoints are listed. To select a breakpoint, click on it or use
the <Up Arrow> and <Down Arrow> keys to move the highlight.

The following shows a breakpoint menu.

[Breakpo Windows Help

5| SetBreakpoint... o To Suurcd Enable

Clear
Enable
Disable

Clear All
Enable All
Disable All

Go To Source

Set Breakpoint opens a dialog box to define a new breakpoint. The
following figure shows two sample Set Breakpoint dialog boxes. The
first is for an Intel emulator; the second is for a Motorola emulator.
Different fields are available for different processors.

Breakpoint at: |#dm_func¥#printall J
Modules Functions
ldm_func]printall
[State—— Type :

@® Enable @ Permanent

O Disable O Temporary

Breakpoint Window Reference 206 SLD User's Manual

= Set Breakpoint

Breakpoint at: |#332qsm&Blank_TxEluf |

Modules Functions

|332qsm |#] [Blank_TxBut 2]
State—— Type
@ Enable @ Permanent
O Disable O Temporary

| Set I L&se I l Help I

Fill-in the dialog box as follows:

Breakpoint at: can be a numeric or symbolic address. For symbolic
addresses, you can choose a module and a function
from the drop-down list boxes.

State can be toggled to Enable or Disable. The emulator
ignores a disabled breakpoint.

Type can be permanent or temporary. A temporary
breakpoint is removed after it causes the break.

Space: for Intel processors, can be User or SMM.

Choose the Set button to define the breakpoint or the Close button to
close the dialog box without defining a new breakpoint.

Clear removes the selected breakpoint.

Disable marks the selected breakpoint to be ignored when emulation
executes through the code where the breakpoint is located.

Enable marks the selected breakpoint to cause a break when emulation
executes through the code where the breakpoint is located.

Disable All disables all currently defined breakpoints. The breakpoints
remain defined.

Enable All enables all currently defined breakpoints.
Clear All removes all breakpoints. No breakpoints remain defined.

Go to Source opens the Source window, described in the “Source
Window Reference” chapter, and positions the source cursor at the
specified breakpoint.

SLD User's Manual 207 Breakpoint Window Reference

Breakpoint Window Buttons

These buttons provide quick access to commonly used Breakpoints
menu items, described earlier in this chapter.

| set I clear |5oToSourcd] Enable || Disable || Enable All || Disable all ||

Button
Set

Clear

Go To Source

Enable

Disable

Enable All

Disable All

Use To:

Open a dialog box to set a breakpoint, the same as the
Breakpoints menu Set Breakpoint...

Remove a selected breakpoint, the same as the
Breakpoints menu Clear.

Open the Source window to show the specified
breakpoint in source or disassembly, the same as the
Breakpoints menu Go To Source.

Define that the specified breakpoint will cause a
break next time it is encountered in emulation, the
same as the Breakpoints menu Enable.

Define that the specified breakpoint will cause no
break next time it is encountered in emulation, the
same as the Breakpoints menu Disable.

Enable all breakpoints, the same as the Breakpoints
menu Enable All.

Disable all breakpoints, the same as the Breakpoints
menu Disable All.

Breakpoint Window Reference

208 SLD User's Manual

Stack Window Reference

The following figure shows a sample Stack window for a Motorola emulator. The address
formats are different for Intel emulators; however, the window layout is consistent..

File Options Windows Help
Stack Return

GO0EEA 0004A4 Blank RxBuf(...})
@8BEF2 006874 main(...)

Parameters & Local Variables
int Blank_RxBufi#ti = OxEER = 3818;
char *Blank_RxBuf#RxBuf Ptr = BRFFFFFFFF;

This chapter describes the Stack window contents, menus, and dialog boxes.

The Stack window has three panes:

The top pane lists the stack address, the return address, and the
(Frame List) name of each function on the current call stack.
Each such item is a stack frame.

Parameters and lists the type, name, and value of each parameter

Local Variables and local variable in the selected stack frame. The
format and colors are the same as in the Variable
window.

Stack Meter shows the stack usage statistics, including the
percent of the stack area currently in use, an alarm
marker at a specified usage level, and a mark at the
highest percent usage for the current emulation

SLD User's Manual 209 Stack Window Reference

session. Yellow indicates stack underflow. Purple
indicates stack overflow.

Stack Window Menus

Menu Use To:

File Close the Stack window; refresh the stack display.

Options Configure the stack area; toggle the Frame List address
display; manage stack usage statistics; inspect the
source.

Windows Open another SLD window.
Help Open a window for help on SLD.

File Menu
Refresh Display reads memory and updates the displayed information.

Exit closes the Stack window.

Options Menu

The following shows a sample Options menu.

Stack Area...

Alarm Limit...

v Include Stack Address
v Include Return Code Address

v Enable High-¥Water Mark
+ Enable Alarm Limit

Inspect Source

Stack Area... opens a dialog box to set the stack base address and size.
The following shows a sample Stack Area dialog box.

Stack Window Reference 210 SLD User's Manual

Base Address:
[0020:000005E0]

Number of Bytes:
11504 |

| 0K l [Qancell | Help I

Alarm Limit... opens a dialog box to define the alarm limit as a
percentage (1 to 100) of the Stack Meter. The following shows a
sample Alarm Limit dialog box.

Percent of Size [1 - 100%):

5]

| 0K I |§ance|| l Help I

Include Stack Address, when checked, displays stack addresses in the
Frame List, in a column labeled Stack. The stack address is the address
of the frame in the stack area.

Include Return Code Address, when checked, displays code addresses
in the Frame List, in a column labeled Return. The code address is the
return address to the calling function.

Enable High Water Mark, when checked, displays the high-water
mark on the Stack Meter. The high-water mark indicates the highest
percentage that has been used of the stack area.

Enable Alarm Limit displays a warning message each time emulation
stops while the alarm limit is exceeded.

Inspect Source opens the Source window, described in the “Source
Window Reference” chapter, and positions the Source cursor to show
the selected function’s source. To select a function, in the Frame List
click on the frame or use the <Up Arrow> and <Down Arrow> keys to
move the highlight.

SLD User's Manual

211 Stack Window Reference

Stack Window Reference 212 SLD User's Manual

CPU Window Reference

The following figure shows two sample CPU windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different registers are shown for

different processors.
':-_EH i m
Uptions H n
EFLACS 00000082 + Options
vrnBoditszapc SR 2704 hd
EIP FFFFE3EA4 8S7xn2vc
EAX 60000000 PC 08000470
EBX 088800880 DO BBBAOB20
ECX 088060860 D1 980006820
EDX 0008800800 D2 0000000
EBP GOOOBSEQ D3 FFFFFFFF
ESP 0O0OOSED D4 FFFFEFFE
EDI 60880888 D5 FFFFFFFF
ESI 6600608600 D6 FFFFFFFF
CS o018 D7 FFFFFFFF
DS 8626 A0 DOFFFDOO
ES 08020 A1 BOFFFDOB
FS 8028 A2 BO0OOBFE
gs o020 A3 0000OBBE
§3 @628 A4 FFFFFFFF
GDTBASE FFFFEOB88 A5 FFFFFFFF
GDTLIMIT 863F a6 88000068
GDTAR FFFFE0OO 07 BOBOOEEE
IDTBASE BOBBOSED USP HO9FB3C2
IDTLIMIT BOFF
SSP 0BOOOEEE
IDTAR FFFFFFFF SPC ©
LDTR 8888 ore o
| cotiimT rRE | vBr @8000000
LDTAR FFFF7FFF , .

This chapter describes the CPU window contents, menu, and Register Edit dialog box.

The CPU window lists the processor registers. The register mnemonics
conform to the Intel or Motorola mnemonics. The register values are
updated and the changed values highlighted each time emulation halts.

To edit the register values, double-click on a register value; or use the
<Up Arrow> and <Down Arrow> to move the highlight then press
<Enter>. The following is a sample Register Edit dialog box.

= Register: PC

Hex: 000006A2, Decimal: 1698
[ox00000642 |

| ok | Igancell Help I

SLD User's Manual

213 CPU Window Reference

Options Menu

The following is a sample Options menu.

Reset resets and reinitializes the target processor:

= M
Options _
Reset
Reset CPU Only
Signals »

Windows »

Help Index
Help With Help
Help With CPU

Exit

e The processor RESET pin is asserted.

e The program counter is read from memory; the Source window is
scrolled to the beginning of code.

e The stack pointer is read from memory, resetting the stack; the
Stack window display becomes invalid.

e All SLD windows are updated.

Reset CPU Only resets only the processor and does not update the
windows. Use Reset CPU Only if Reset fails to reset the processor.

Signals opens a sub-menu to specify whether certain signals are
controlled by the target (unchecked) or by the emulator (checked). The
following figure shows two Signals sub-menus. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different signals can be enabled for different processors.

e
Optio
Reset

-

Reset CPU Only

v READY# Enable

Windows

+HOLD Enable
Help Index v NMI Enable
Help With Help |/ INT0_3 Enable
Help With CPU | /|NT4_7 Enable
Exit v NA¥ Enable

v SMI# Enable

+ Coprocess Enable

v RESET Enable

CPU Window Reference 214

SLD User's Manual

CPU [~]
Options

Reset

Reset CPU Only

E Clock Enable
Windows L\/Beset Enable
Help Index
Help With Help
Help With CPU
Exit

Windows opens a sub-menu to open another SLD window. This item
is equivalent to the Windows menu in other SLD windows.

Help Index opens a window with the table of contents for SLD help.
Help With Help opens a window on using a Windows help facility.
Help With CPU opens a window with SLD CPU window help.

Exit closes the CPU window.

SLD User's Manual 215 CPU Window Reference

CPU Window Reference 216 SLD User's Manual

Memory Window Reference

The following figure shows two sample Memory windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different addresses and

disassembly mnemonics are shown for different processors.

= emory 0. He ord ; e M =

File Edit Yiew Options Windows Help

DS:0088 BBB3 CDSB BE2D F208 BB39 7A3A CA7B 33FC »[i-%.d9»:z{t
DS:0010 F9FB BFEE B790 SFA4 SFD5 E9F6 FCC3 8DFD GUi M-=_0_oé
DS:80620 71BF FEBB E332 9940 AF77 FFBF 67FF 37BF ;gwp23GRw iji
DS:8030 FFFF FFEA FEBS 9AAS CB6E DEEE BSBF FF33 yijdiinp¥AnEib;

= emo J: Disa emb e v]
File Edit View Options Windows Help

8007066 5251 ADDO . W t#,(A1)

08e708 207C 0008 ODCOA HMOUEA.L #oe806DCO,AD

80870E 21AF BOAL 480 HMOUE.L {0804,A7),(00,A0,D0. Wxy)
08e714 70060 MOUVEQ.L #oo,De

This chapter describes the Memory window contents, menus, and dialog boxes.

The Memory window shows the contents of memory:

e The window title lists which of up to 20 Memory windows you are
viewing; the format of the display; and (for Intel processors)
whether the display is of User or SMM space. Different Memory
windows can display different areas or formats of memory.

o The leftmost column is the address. Address formats differ for
different processors. To view another area of memory, double-click
in the address column of the Memory window. Enter a numeric or
symbolic address in the Go To Address dialog box. Any symbol
you enter must have a fixed address, i.e., not a local variable or a

stack-resident parameter.

e The memory contents can be in disassembly or numeric format.
Numeric format shows the hexadecimal or decimal values and, in
the rightmost column, the equivalent ASCII values. You can edit
memory contents directly in the numeric and ASCII formats by
positioning the cursor (a vertical bar) with the mouse, then
overtyping the memory display. Disassembly format can include

Memory Window Reference 217 SLD User's Manual

symbols; on the Toolbar open the Configure menu and check or
uncheck Symbolic Disassembly.

Memory Window Menus

Menu Use To:

File Exit the Memory window.

Edit Edit memory; navigate the memory display.
View Choose numeric or disassembly display formats.
Options Manage memory access options.

Windows Open another SLD window.
Help Open a window for help with SLD.

Edit Menu

The following is a sample Edit menu.

Memory 0: Hex Words View
File gaili@ View Options Windows Help

Go To Address...
Search Memory...
Fill Memory...
Copy Memory...

Go To Address... opens a dialog box to change the Memory window
display to a specified numeric or symbolic address. The following
figure shows two sample Go To Address dialog boxes. The first is for
an Intel386 EX processor; the second is for a Motorola 68332
processor. Different fields are available for different processors.

= Go To Address

Address:

o:0 |

Space: Operand/Address Size:

luser IEI I Jil
l 0K || Cancel J [ﬂelp4|

Memory Window Reference 218 SLD User's Manual

= Go To Address

Address:
@ |

| OK | |_(;ancel| I Help l

You can fill-in a numeric or symbolic address. For Intel processors,
you can also specify User or SMM space and what addressing mode to
use.

Search Memory... opens a dialog to search a specified address range
for a specified pattern. The search stops at the first occurrence of the
pattern in the range. If the pattern is not found, the Memory cursor
does not move. The following figure shows a sample Search Memory
dialog box.

= Search Memory

From ’ l

Io |]

Ealleml I
I 11,8 I Qancell Help l

Fill Memory... opens a dialog box to fill an address range with a
specified pattern. The following figure shows two sample Fill Memory
dialog boxes. The first is for an Intel386 EX processor; the second for a
Motorola 68332 processor. The Space field values vary.

= Fill Memory

Fron | |
o |
Pattern (j
Space [EEHNNLS]
I 0K l Qancell | Help '

Memory Window Reference 219 SLD User's Manual

= Fill Memory

From [|

To []

Pattern [|

Space
| 0K l _Qancell Help '

Copy Memory... opens a dialog box to copy one address range to
another or to copy target memory to overlay memory. The following
figure shows two sample Copy Memory dialog boxes. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different space field values are available for different processors.

= Copy Memory

[From:

Start: l |

@ End |
) Length

@ Map
O Target Space [ok | I_Qancel| | Hep |

= Copy Memory
[From: To:
Start: [| || stat: | l
® End SMer space
N l O Target
) Length
® Map
O Target Space I OK I Cancel I Help I

View Menu

The following figure shows two sample View menus. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different items are available for different processors.

Memory Window Reference 220 SLD User's Manual

Memory 0: Disassembly View [user]
File Edit R'I3"8 Options Windows Help

v Disassembly

Hex Bytes

Hex Words

Hex DWords
Decimal Bytes
Decimal Words
Decimal DWords

Vv Auto
Uselb
Use3?

v User
SMM

Refresh Display

Memory 0: Hex Words View

File Edit RY{3"8 Options Windows Help
Disassembly
Hex Bytes
v Hex Words
Hex DWords
Decimal Bytes
Decimal Words
Decimal DWords

Refresh Display

Disassembly displays memory disassembled. In Disassembly view, you
can double-click on a disassembled line to open the Single Line
Assembler dialog box (described later in this chapter).

Hex Bytes displays memory as hexadecimal 8-bit integers with values
from O to FF.

Hex Words displays memory as hexadecimal 16-bit integers with
values from 0 to FFFF.

Hex Dwords displays memory as hexadecimal 32-bit integers with
values from 0 to FFFFFFFF.

Decimal Bytes displays memory as decimal 8-bit integers with values
from 0 to 255.

Memory Window Reference 221 SLD User's Manual

Decimal Words displays memory as decimal 16-bit integers with
values from 0 to 65,535.

Decimal DWords displays memory as decimal 32-bit integers with
values from 0 to 4,294,967,295.

Auto uses the Intel386 processor pmode to determine whether operands
and addresses are interpreted as 16-bit or 32-bit values. For a
description of the pmodes, see the section on Intel numeric addresses in
the “Debugging with Triggers and Trace” chapter.

Use16 interprets Intel386 operands and addresses as 16-bit values.
Use32 interprets Intel386 operands and addresses as 32-bit values.
User displays Intel processor user memory.

SMM displays Intel processor system management mode memory.

Refresh Display re-reads memory and refreshes the screen. This
happens automatically when emulation halts.

To update or scroll the Memory window during emulation, you must
enable Run Access before starting emulation. On the Toolbar, open the
configure menu and check Enable Run Access; or enter a RunAccess
Shell command.

Any memory access, such as that used to update the Memory window,
takes a small amount of time from the processor and thus can degrade
your program performance.

Options Menu

The following shows a sample Options menu.

Memory 0: Disassembly View [user]
File Edit View Qoo Windows Help

' + Byte Access
Word Access
DWord Access

v Write Verify
Bead Ahead
Reread On Write

Byte Access specifies 8-bit cycles for memory access.

Word Access specifies 16-bit cycles for memory access. For writing a
byte, the word containing the byte is read, the appropriate byte replaced,
and the word re-written. Words at even addresses are read and written

Memory Window Reference 222 SLD User's Manual

as words. Words at odd addresses are read and written as two words.
For example, for writing a word of data at an odd address:

1. The word containing the first byte (odd address minus 1) is read.
2. The lower byte of the data is put into the upper byte of the word.
3. The word is re-written at odd address minus 1.

4. The word containing the second byte (odd address plus 1) is read.
5. The upper byte of the data is put into the lower byte of the word.
6. The word is re-written at odd address plus 1.

DWord Access specifies two 16-bit cycles for memory access. Long-
word memory writes act as follows:

1. Long-word writes on long-word boundaries use long accesses.

2. Word writes and byte writes read long words, replace the byte or
word, and write back as long words.

For Motorola, memory reads and writes always use supervisor data
(SD) space. To access any other space, use Shell commands.

Set the memory access size to long (dword) for faster loading.

Write Verify, when checked, compares any value written with write or
fill with the expected value and reports discrepancies.

Toggling write verify does not affect load verification. Use the verify
Shell command to toggle load verification. With verify=on, a byte read
back that does not match the byte written returns an error.

Read Ahead, when checked, reads ahead and caches more data than is
displayed in the Memory window screen, for faster scrolling.

With read-ahead enabled, scrolling through peripheral registers or near
invalid memory regions can cause Unterminated Memory Access
erTors.

Reread On Write, when checked, refreshes the memory display when
you edit the numeric or ASCII fields in the display. Toggling Reread
On Write does not affect Memory window refreshing for memory
changes done outside of the memory display. For example, load, fill,
and copy operations always refresh the memory display.

Single-Line Assembler Dialog Box

You can patch code into memory an assembly-line at a time with the
single-line assembler. With the Memory window in Disassembly view,
double-click on the line you want to replace.

Memory Window Reference 223 SLD User's Manual

The following figure shows two sample Single-Line Assembler dialog
boxes. The first is for an Intel386 EX processor; the second is for a
Motorola 68332 processor. Different space field values are available for
different processors.

= Single-Line Assembly I

Source Line: CS:FFF3

[DEC___ WORD PTR [BX-0031]
Space: OperandfAddress Size:

s o g
uancel I Igsseml l Skip I Lﬂelp I

= Single-Line Assembly I

Source Line: 000000

[ORLEB__ #00,00 |

Space: Operand{Address Size:

3 ol &l
I__Q.ancel I Igssem I Skip I Help I

Type a line of assembly language in the text box.

Source Line: shows the address where the line will be assembled.

Space: for Intel, can be User or SMM; for Motorola, can be
SP, SD, UP, or UD.

Operand/ is unavailable.

Address Size:

Cancel closes the single-line assembler dialog box without

assembling. Once you have assembled a line, this
button changes to Done. Choosing Done closes the
dialog box; your assembled changes remain in

memory.

Assem assembles the line into memory; advances the address.
Skip advances the address without assembling the line.
Help opens a window for help on the single-line assembler.

Memory Window Reference 224 SLD User's Manual

Peripheral Window Reference

The following figure shows two sample Peripheral windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different peripherals are available
for different registers. The Peripheral window is unavailable in Intel386 CX/SX emulators.

= Peripheral
File Edit View Windows Help

+) MST
+] TMR
(+] SLV
(+] COM1
(+] COM2
(+] PORT92
(+] CSU
(+) SSIo
(+] RFSH
(+] WDT
+] CLK
[+] CCR
+) PIO

[+] DMA

em B

wja

= Peripheral

I File Edit View Windows Help

(+] SIM
(+) QSM
{+] RAM
] TPU
] FFFEOO 0080 TMCR TPU Module Co
15: 0 STOP Internal clocks r
14: 0 TCR1P Clock divisor is
12: 0 TCR2P Clock divisor is
10: 0 EMU TPU/RAM not in
9: 0 T2CG TCR2 pin clocks
8: 0 STF TPU running
7: 1 SUPY restricted acces
6: 0 PSCK System clock/32
3: 0 I1ARB arbitration disab
1| (+) FFFEDA4 0000 DSCR Development St

«

This chapter describes the Peripheral window contents, menus, and dialog boxes.

The Peripheral window shows the peripheral register information
heirarchically. Click on the (+) or (-) at the left of a line to expand or
collapse the hierarchy. At the top level (the only level visible when the
heirarchy is fully collapsed) are the peripherals. Expanding a
peripheral shows its registers. Expanding a register shows its bit fields.
Full expansion lists, the register address, bit field bit position, value,
name, and description. The peripheral, register, and bit field names
conform to the Intel and Motorola mnemonics.

Peripheral Window Menus

Menu
File

Edit
View
Windows
Help

Use To:

Exit from the Peripheral window.

Edit a register; navigate the Peripheral display.

Refresh, expand, or compress the display.

Open another SLD window.

Open a window for help with SLD.

Peripheral Window Reference

225

SLD User's Manual

Edit Menu

The following shows an Edit menu.

— Pe) £ra A d -
File d Yiew Windows Help

Register...

Go To Peripheral...

Go To Register...

Go To Address...

Register... opens a Register Edit dialog box (described later in this
chapter) to edit the selected register. To select a register or bit field, use
the mouse or <Up Arrow> and <Down Arrow> keys to move the
highlight. Selecting a peripheral selects its the first register.

Go To Peripheral... opens a dialog box to scroll to the peripheral
specified by name. The following is a Go To Peripheral dialog box.

= Go To Peripheral
Peripheral Name:

| OK | IQancel” Help I

Go To Register... opens a dialog box to scroll to the register specified
by name. The following is a Go To Register dialog box.

= Go To Register

Register Name:
[|

I OK I |Qancel” Help I

Go To Address... opens a dialog box to scroll to the register specifed by
address. The following is a Go To Address dialog box.

Go To Address

Address:

| l

| 0K I |_Qance|| | Help I

Peripheral Window Reference 226 SLD User's Manual

View Menu

Following is a sample View menu.

= Periphera h B
File Edit : Windows Help
Expand All
Compress All

Refresh Display

Expand All expands the hierarchy completely, showing all peripheral,
register, and bit field mnemonics, with the addresses or bit positions,
values, and descriptions of the registers and bit fields.

Compress All collapses the hierarchy completely, showing only the
peripheral mnemonics.

Refresh Display re-reads the register contents (except write-only
registers) and refreshes the screen. This occurs automatically when
emulation halts.

To update or scroll the Peripheral window during emulation, you must
enable Run Access before starting emulation. On the Toolbar, open the
configure menu and check Enable Run Access; or enter a RunAccess
Shell command.

Any memory access, such as that used to update the Peripheral window,
takes a small amount of time from the processor and thus can degrade
your program performance.

For write-only registers, SLD reports the most recent value you entered
using the Peripheral or Shell window interface. Values written by the
execution of your program are not captured in SLD.

Register Edit Dialog Boxes

The following shows a sample Register Edit dialog box. This example
is for a register in the Motorola 68332 processor. Different registers
have different fields and values; however, the layout of the Register Edit
dialog box is consistent.

Peripheral Window Reference 227 SLD User's Manual

Register Value:

T2CG TCR2

Internal clocks running
TCR1P Clock divisoris 1
TCR2P Clock divisoris 1
EMU TPU{RAM not in emulation mode

STF TPU running
SURY restricted access [supv mode only]
PSCK System clock{32 is input to TCR1 prescaler

TPU TMCR - TPU Module Configuration Register

0x80

pin clocks TCR2 prescaler

Field Value:

15: Stop Mode enable
Internal clocks running

Close | ‘ << Prev ” Next >> | r Help I

| Write | |
Register Value
Fields
Field Value

shows the register contents in hexadecimal. You can
edit this field.

lists each bit field mnemonic in the register and its
effect on the processor. To select a bit field, click or
use the <Up Arrow> and <Down Arrow> keys to
move the highlight.

is a spin box showing the value of the bit field
selected in the Fields box. You can edit this field. To
ensure you enter an acceptable value for the bit field,
click on the spin arrows or use the <Up Arrow> and
<Down Arrow> keys to change the value. Editing the
Field Value changes the Register Value.

The selected bit field position and a description of the bit field
according to its current value are listed under the Fields box, to the
right of the Field Value spin box. This description changes when you
change the bit field value.

Write
Close
<<Prev

Next>>

Help

writes the value shown in Register Value:.
closes the Register Edit dialog box.

displays the Register Edit dialog box for the previous
register in the Peripheral window list.

displays the Register Edit dialog box for the next
register in the Peripheral window list.

opens a help window on the Register Edit dialog box.

Peripheral Window Reference

228 SLD User's Manual

Event Window Reference

The following figure shows two sample Event windows (also called Event edit boxes). The
first is for an Intel386 EX processor; the second is for a Motorola 68332 processor.
Different signals and address formats are available for different processors. For some

Motorola processors, the

signals available also depend on the chip selects.

File Edit Windows Help
Active Event: |ev1 *
not start @ End Addr O Length _mask
addr: [[gxo| | |oxFF |0x3FFFFFF |
start end mask
data: [|gx0055 | [ox008a | |oxFFFF |
01 X 01 X 01 X 01 X 01 X
OQO@®BHE® QO Q@®RESET QO Q@ BUsyd OO @ P21 OO @ P3
GO @ Mot O O @ NMI OO @ ERRORY O O @ P22 O O @ P32
QO @bt QO @® INT4 O O@®PEREQ OO @ P23 0O O @ P33
OQQOQ@®wmrE O O @® INTS OQO®cset OO @®P2A0O O ® P34
OO ® DSt O O @ INTE OO ®PS OO @® P25 QO @® P35
O O @ READY®R O O @ INT7 OO ®PLE OO ® P26 O Q@ P36
OO @ Nap QO®sMet OO ®PLT QO @®P27 00 ® P33T
OO @®Bssr OO @ sSMACTE O O @ P20 GO @® P30
= Event: evl [+]
File Edit Windows Help
Active Event: revl E
not start @ End Add O Length _mask
addr: [| . - = I
start end mask
doe: O 1C 1
01 X 01 ¥ 01 X 01 X 01 X
OO ® as- QO @ resett OO @ irg- OO ® miso OO ® 18
OO ® ds- OO ®berr DO @pes0-CCOC®w OO @19
OO0 ® rw OO @®hbar OQC@pes1-O @0 OO @0
OO®siz0 OO®igl- OO @ pes2-C O @®t2 OO @M
OO @®sizt QO ®ig2- QO @®pes3-C O @®B3B OO @2
OO @ dsackd- O O ®ing3- QO ®sck CO®U OO @u3
OO @®dsackl- O O @ igd- OO0 @mxd CO®tH5 OO @® 14
OO ®avee QO ®igy- OCC@®td CO®B OO @5
OO0@me QOO @®igh- OO @ mosi OO @ 17
This chapter describes the Event window fields, menus, and dialog boxes.
Event Window Reference 229 SLD User's Manual

Event Window Contents

The Event window defines an event to be used as a condition for
triggering. The fields are:

Active Event

addr:

data:

mask

not

is the name of the event described in the Event
window. (This name also identifies the event in the
Trigger and Trace windows.)

describes a single address or range of addresses.
Select End Addr to specify the last location in a range
or Length to specify the number of bytes in the range.

describes a data value or range of data values.

is a hexadecimal value to be bitwise-ANDed with the
described addresses or data. Use all F’s to include all
contiguous values in the described range. Vary the
mask to describe a discontinuous pattern of values.

when checked, defines the event as any memory
access that does not match the described range or
pattern.

specifies each signal value as low (0), high (1), or
don’t-care (X). Active-low signals are shown with a
hash mark (#) for Intel emulators or minus sign (-) for
Motorola emulators. The signals available depend on
the target processor. For some Motorola processors,
the signals available can also depend on your chip
select register configurations.

For Motorola emulation, you can specify the address space for an event
as UD, UP, SD, or SP. To make the space selection available in the
Event edit box, you must program the processor to output the three
function codes FCO, FC1, and FC2.

Event Window Menus

Menu Use To:

File Save and restore events in files; close the Event window.
Edit Add, delete, and redefine events.

Windows Open another SLD window.

Help Open a window for help with SLD.

Event Window Reference

230 SLD User's Manual

File Menu

The following is a sample File menu.

Event: evl

Edit Windows
Save Events As...
Restore Events...
Exit

Help

Save Events As... opens a dialog box to save the events to a file. The
following figure shows an event Save As dialog box. Select a path and
filename, then choose OK to save.

B seens
File Name: Directories:
= evi | c:\powrpaki

K3 = e\ 4
= powrpaki
£ samp386 [ew |
7 scrcaps
[Read Only
= L
&
Save File as Type: Drives:
|Evenl Files[*.EVT] Lél L c: ms-dos_B t!]

Restore Events... opens a dialog box to add events from a previously
saved file. Currently defined events are not deleted; but events with
duplicate names are overwritten from the file. The following figure
shows an event Open dialog box.

File Mame: Directories:
[‘.evll l c:\powrpaki
S | Do |
= powrpaki
£ samp386
3 scrcaps
[] Read Only
B e
List Files of Type: Drives:
[EventFilesEVT) [#] [c: ms-dos_6 [+]

Event Window Reference 231 SLD User's Manual

Exit closes the Event window.

Edit Menu

The following is a sample Edit menu.

Ewvent: evl

Windows Help
Add Event...
Delete Event
Clear Event
Delete All Events

Add Event... opens a dialog box to create a new event. Enter the name
of a new event in the box and choose OK. The new event then appears
as the Active Event, with all fields cleared, in the Event window. The
following figure shows an Add Event dialog box.

= Add Event

Name:

lev1| I
LQ_K | L_gancell Help l

Delete Event deletes the currently displayed event.

Clear clears the event definition fields without deleting the event name.

Delete All Events deletes all currently defined events.

Event Window Reference 232 SLD User's Manual

Trigger Window Reference

The following shows a sample Trigger window.

= Trigger - Level 0
File Edit Options Level Windows Help
Condition Actions
event name enable ext | seq vst| brkjtoff nestt|incd vstd incl vstl |estlo exthi
evl JHE OO0 OO0 o0 oo O
+| 01
+| O
+| 0
+| O]
+| 01
+| O]
+| O
catl | 1 O
cntl |1 O
ext [l

This chapter describes the Trigger window fields, menus, and dialog boxes.

The Trigger window has two panes:

Condition

Actions

describes one or more conditions, including events, an
external trigger-low signal, and either two counter
values or a timer value.

specifies one or more actions to be taken for each
condition met during emulation. When multiple
conditions are met simultaneously, all associated

actions are taken.

The title bar displays a level number from 0 to 3. The level O trigger is
enabled when you start emulation. Each trigger can, as one of its
actions, disable itself and enable the next level trigger. Thus you can
define up to four sequential triggers.

Trigger Window Reference

233

SLD User's Manual

Trigger Condition Fields

At the bottom of the Condition pane is either a pair of counters (cnt0
and cntl) or a timer (tmr). To choose the counters or the timer, open
the Options menu (described later in this chapter) and check Counter or
Timer. This toggle also configures the Actions pane for resetting and
incrementing the counter or for starting, stopping, and resetting the
timer. The following figure shows sample counter and timer
configurations.

cntl | 1023

cntl | 1

X O PD D‘

K O

Field

event name

enable

ext

cnt0/1

tmr

Use To

Select an event by the name defined in the Event
window. You can use up to 8 events per trigger. If no
event is defined when you click on an event name
condition, the Event Name dialog box appears for
defining a new event.

Activate a condition. You can define several conditions
and actions, then vary your triggering scheme by
enabling them in different combinations.

(This is the ext that appears when a condition is
enabled.) Specify that the condition must occur at the
same time as an active-low external trigger signal.

Count from 1 to 1023. Type a target value in a counter
field and enable the counter. Trigger actions can reset
(to 1) or increment (by 1) the counter. When the count
caused by the trigger actions matches the target count
you specified, the counter condition is met and the
associated actions occur.

Time from 1 to 1048575 clock cycles. Type a target
value in the timer field and enable the timer. Trigger
actions can start counting clock cycles from the current
number; stop counting without resetting the timer; or
reset the timer to 1. You can pair resetting with either
starting or stopping the timer. When the timer count
caused by the trigger actions matches the target time you
specified, the counter condition is met and the associated
actions occur.

The timer increments at the clock rate of the emulation

Trigger Window Reference

234 SLD User's Manual

processor and wraps to 0 after reaching its maximum
value. To calculate how much time is represented by a
complete cycle of the timer, use:

wrap time = (2%) / (clock period)

For example, at 25 MHz, the timer wraps in about 42
ms; at 16 MHz, in about 65.5 ms.

ext (This is the ext in the lower left corner of the Trigger
window.) Detect an active-low external trigger signal.

Trigger Action Fields

The fourth column of the Actions pane contains actions to reset or
increment the counters (inc0, rst0, inc1, rstl) or to start, stop, or reset
the timer (start, stop, reset). To choose the counter or timer actions,
open the Options menu and check Counter or Timer. This toggle also
configures the Condition pane with a pair of counters or a timer. The
following figure shows sample counter and timer configurations.

incl rstd incl rstl start stop reset
ooogd KO 0O
O X O oo o

Field Use To

seq Disable the current trigger and enable the next level

trigger.

rst Disable the current trigger and enable the level O trigger.

brk Halt emulation.

toff Turn trace off.

next Fills the current buffer according to the Trace Control

dialog box settings, then starts collecting trace in the next
buffer. Available when multiple trace buffers are defined.

inc0/1 Increment the specified counter (ctr0 or ctrl) by 1.
1st0/1 Reset ctr0 or ctrl to 1.

start Start the timer (tmr) from its current value.

stop Stop tmr at its current value.

reset Reset tmr to 1.

extlo/hi Put a low or high value on the external trigger signal.

Trigger Window Reference 235 SLD User's Manual

Trigger Window Menus

Menu Use To:

File Exit the Trigger window.

Edit Specify an event using the Event window.

Options Configure the trace buffers; toggle counter/timer
conditions and actions; toggle bus/clock cycle triggering.

Level View a specified trigger level.

Windows Open another SLD window.

Help Open a window for help with SLD.

Edit Menu

Events... opens the Event window

Options Menu

Following is a sample Options menu.

Trigger - Level O

[l GLEN Level Windows He
Trace Control...

v Counter
Timer

v Bus
Clock

Trace Control... opens the Trace Control dialog box, described in the
“Trace Window Reference” chapter.

Counter configures two 10-bit counters for use in trigger conditions
and actions.

Timer configures a 20-bit timer for use in trigger conditions and
actions.

Bus lets the trigger recognizes conditions on valid bus cycles only.
Choose Bus mode except when:

e tracking hardware bus problems possibly caused by processor
cycles between valid address, data, or status cycles

e triggering on the initial transition of a hardware signal

Trigger Window Reference 236 SLD User's Manual

Clock uses clock cycles as trigger conditions. Address, data, and status
events occur at different clocks. Chose Clock mode for a single event
that tests conditions including address, data, and status.

Level Menu

Choosing a level displays the conditions and actions for that trigger.
Following is a sample Level menu.

Trigger - Level 0
Windows H
Show Level 0 [
Show Level 1
Show Level 2
Show Level 3

Trigger Window Reference 237 SLD User's Manual

Trigger Window Reference 238 SLD User's Manual

Trace Window Reference

The following figure shows two sample Trace windows. The first is for an Intel386 EX
processor; the second is for a Motorola 68332 processor. Different signals, address formats,
and instruction formats are available for different processors. For some Motorola
processors, the available signals also depend on your chip select configurations

= Trace - Buffer: 0 A
File Edit Yiew Trace Timestamp Goto Windows Help

bmdw arnb rniiii ss bep

timestamp address data hicr ddas smnnnn mm sre

eo sy 8 tiu567 ia yrr

-622 -24.880 us 3FFE4FA BFOF 8108 6111 086660 11 118
-6085 -24.200 us 3FFE4FC 0849 81068 0111 600688 11 110
-588 -23.520 us 088865C8 B17E 6116 6111 6006668 11 110

PPP PPPPPPPP PPPPPPPP
111 22222222 33333333
567 01234567 01234567
1008 11111661 06008880
188 11111061 660008008
180 11111061 00608080

I - N]

= Trace - Buffer: 0 M
File Edit View Trace Timestamp Goto Windows Help

ad v ss dd ar rbh iiiiiii pppp s rtmm tttt tttt tttt tttt
timestamp address data ss w 2z Kk vm sel rrrrrry cccc © xxoi 8123 4567 8911 1111
81 81 cc trt 1234567 0123 k ddss 81 2345
-187 -4.280 us 0006BA BOS1 68 1 81 18 11 111 1111111 1111 1 8111 1168 0006 0000 0000[+]
-184 -4.160 us 8086BC 6EF2 88 1 81 18 11 111 1111111 1111 1 6111 1006 0660 0068
-101 -4.840 us OO86BE 4E75 68 1 81 18 11 111 1111111 1111 1

6111 1160 8660 86668 BBBB

This chapter describes the Trace window contents, menus, and dialog boxes.

The Trace window has three view modes:
Bus displays every cycle of bus activity.

Clock displays address, data, and processor status signals
aligned on clock cycles.

Instruction displays disassembled instructions. To find the
beginning of the first instruction to display, SLD
looks for a discontinuity caused by a change in
execution flow (a branch trace message). No
instructions can be disassembled before such a
discontinuity is found.

Each trace frame (one line in the Trace window) contains the following
information, in columns from left to right:

Cycle number The clock cycle number of the trace frame relative to
the cycle of the triggering event. In instruction and
bus view modes, the frame numbers are discontinuous
because multiple clock frames make up a single bus or
instruction frame.

Trace Window Reference 239 SLD User's Manual

Timestamp The time the trace frame occurred, relative either to
the beginning of trace or to the previous frame.

Address The value on the address bus.
In bus or clock view mode:
Data The value on the data bus

Signals The values of processor-specific signals. The signal
mnemonic labels are formatted vertically.

In instruction view mode, disassembly is shown instead of data and
signals. Also, the number of clock cycles between instruction frames
describes how many cycles have elapsed between signals appearing on
the target processor external pins (for example, the number of cycles
between successive prefetches); this number does not, for example,
report how many clocks the processor used to execute an instruction.

Trace Window Menus

Menu Use To:

File Save trace to a buffer; close the Trace window.

Edit Open the Event window; search for an event; clear trace.

View Configure the trace display; link the Source window
display to scroll with the Trace window cursor.

Trace Start and stop trace; configure Trace Control.

Timestam Configure the timestamp and the system clock

P frequency.

Goto Navigate through the Trace buffer.

Windows Open another SLD window.

Help Open a window for help on SLD.

File Menu

The following is a sample File menu.

Edit
Save As...
Exit

View

Trace Window Reference 240 SLD User's Manual

Save As... opens a dialog box to save the trace buffer to a file. Enter
the filename. If a file with the specified name already exists, it will be
overwritten. A Trace Save As dialog box appears:

File Name: is the drive, directory, and filename you specified in
the first dialog box. You can edit this string.

Save Format saves the trace in bus, clock, or instruction format.

Buffer saves a specified range of buffers.

Frame saves a specified range of frames.

File Name: RpaAKMiSAMP33211.TRC |
I'Save Format

® Bus O Clock C Instruction
Buffer Frame

Star: g | |-105

N |

ul(]Lgancel Il_l_-l_elp I

Exit closes the Trace window.

Edit Menu
The following shows a sample Edit menu.
=]
File gXii@ View Trace
Ewvents...
Search...
Clear Trace

Events... opens the Event window.

Search... opens a dialog box to find an event in the currently displayed
trace buffer. The following figure shows a Search Buffer dialog box.

Trace Window Reference 241 SLD User's Manual

= Search Buffer: 0
Search Event: E

[ok |} [Qancell udp |

Search Event select an event from the list of defined events.
Start Frame select the frame to start searching.

Clear Trace clears all trace buffers and resets the buffer pointer to
zero. (The current trace buffer is automatically cleared and reset when
you start emulating or tracing.)

View Menu

The following figure shows two sample View menus. The first is for an
Intel386 EX processor; the second is for a Motorola 68332 processor.
Different processors have different signals and address formats.

File Edit RYETE Trace Timestamp
Clock

Bus
v Instruction

Linked Cursor
v BTM Cycles
v Timestamp

v Auto
Uselb
Use3?

}‘Eile Edit Trace Timestamp
Clock
Bus
+ Instruction

Linked Cursor

v Timestamp

Clock displays trace as clock cycles.

Trace Window Reference 242 SLD User's Manual

Bus displays trace as bus cycles.

Instruction displays trace as disassembly (instruction cycles). In
instruction mode, a branch trace message (BTM) must be collected
before disassembly can be constructed. Instructions in the trace before
any such execution flow change cannot be displayed.

Linked Cursor to link the cursors in the Source and Trace windows, so
when you scroll through the Trace window the Source window scrolls
synchronously. This item is available only in instruction view mode.

BTM Cycles, when checked, generates BTM cycles and collects them
in trace. A BTM cycle is a special bus cycle executed by the bondout
processor when execution is discontinuous (e.g., at a jump, call,
interrupt, return, etc.). Their occurrence degrades real-time execution
slightly. For trace to be displayed as instructions, BTM cycles must be
collected. Toggling BTM Cycles clears the trace buffer.

Timestamp displays the timestamps.

Auto uses the Intel386 processor pmode to determine whether operands
and addresses are interpreted as 16-bit or 32-bit values.

Usel6 interprets Intel386 operands and addresses as 16-bit values.
Use32 interprets Intel386 operands and addresses as 32-bit values.

Trace Menu

The following shows a sample Trace menu.

Trace - Buffer: 0
Jic[=-l Timestamp Goto
Start F3
Stop F4

Trace Control...

Start (or pressing the F3 key) starts trace collection. This occurs
automatically when emulation begins.

Stop (or pressing the F4 key) stops trace collection.

Trace Control... opens a dialog box to configure the number of buffers,
the trigger location, or a breakpoint on a full buffer.

Trace Window Reference 243 SLD User's Manual

[Halt When Last Trace Buffer Full

Trace Control

 Trigger Position
@ Pre O Center O Post
"Number of Trace Buffers [x Size]
@ 1x256K) CO8x32K) 64 [x4K)
C2i2sk) O 16 [x16K] 128 [x2K)
O 4 [x64K) O 32 x8K) O 256 [x1K)

Lgancel l Help I

Halt When Last
Trace Buffer Full

Trigger Position

Number of Trace
Buffers (x Size)

stops emulation after the last trace buffer has been
filled. This overwrites the first trace buffer.

specifies whether the triggering event will be
recorded in the trace buffer:

Pre collects cycles before the trigger. The

event appears near the end of the buffer.

Center collects cycles before and after the trigger.
The event appears in the middle of the
buffer.

collects cycles after the trigger. The event
appears near the beginning of the buffer.

Post

configures a single trace buffer 256K bytes long,
or 256 trace buffers each of which is 1K byte long,
or any of various combinations in between.

Timestamp Menu

The following shows a sample timestamp menu.

Trace - Buffer: 0
lHuldaclulil Goto Windows

+ Relative To Frame
Delta

Zero At Frame...

Setup...

Relative To Frame computes each frame’s timestamp relative to the

beginning of trace.

Trace Window Reference

244 SLD User's Manual

Delta computes each frame’s timestamp relative to the previous frame's
timestamp.

Zero At Frame sets the base frame for calculating the Relative To
Frame timestamp. The zero frame is marked with dashes (--).

Setup... opens a Setup dialog box to set the system clock frequency.
Enter a floating-point value from 0.01 Hz to 40 MHz.

System Clock Frequency:

B5.009 |

I OK J |§ancel| rﬂelp l

Goto Menu

The following shows a sample Goto menu.

Trace - Buffer: 0
Timestamp QeUGM Windows Help
Start Frame
Trigger Frame
End Frame
Frame...

Next Buffer
Previous Buffer
Buffer...

Start Frame scrolls to the first trace frame in the displayed trace
buffer.

Trigger Frame scrolls to the trigger frame in the displayed trace
buffer.

End Frame scrolls to the last frame in the displayed trace buffer.

Frame... opens a dialog box to scroll to a specified frame in the
displayed trace buffer. The following shows a Frame dialog box.

Trace Window Reference 245 SLD User's Manual

Frame Number:
[-2 to 26315)

Cancel

a J

did

With multiple buffers, the following Goto menu items are also
available:

Previous Buffer displays the next lower numbered buffer.
Next Buffer displays the next higher numbered buffer.

Buffer... opens a dialog box to display the specified buffer. The
following shows a Buffer dialog box.

Trace Buffer:

(0 to 3)

[0 |

Cancel

i

Trace Window Reference 246 SLD User's Manual

Glossary

address

Unsigned value identifying a location in memory. An address can be a hexadecimal number
or a symbol (if symbols have been loaded). See the Address Formats section in the
“Debugging with Triggers and Trace” chapter.

alarm limit

User-specified percentage of the stack area. If the stack usage exceeds the alarm limit when
emulation halts, a message appears.

alias

Symbol defined in the Shell window to represent a character string. For example, used to
shorten long commands.

alignment

See trace alignment.

BDM
Background Debug Mode available in Motorola CPU32 processors.

branch trace message (BTM)

Trace information recording a change in execution flow.

break cause
Why emulation is halted.

breakpoint

Location where emulation halts. Also see: software breakpoint, hardware breakpoint,
permanent breakpoint, temporary breakpoint.

browse

Select a module to view in the Source window.

SLD User's Manual 247 Glossary

browser history

In the Source window, you can view up to two modules simultaneously. When you browse
more than two modules, the emulator keeps a chronological list in a browser history buffer of
the modules you have browsed. You can specify a buffer depth of the number of entries to
save. To review a sequence of modules, use the File menu Previous Browsed Module and
Next Browsed Module entries.

buffer

See browser history, command history, loadfile history, trace buffer.

bus event

One or more data, address, or status signals occurring during a single target bus cycle.

bus mode

Displays trace aligned in frames by the bus-cycle termination signals; or, collects trace for
each target bus cycle. The display mode and the collection mode are set separately using the
Trace window View and Options menus. Also see clock mode, instruction mode.

call stack

Current nesting of calls in the executing program, including information about each
function’s name, stack address, return address, local variables, and parameters.
case sensitive

Distinguishes lower-case letters from upper-case letters.

cause

See break cause.

clock mode

Displays trace aligned in frames by clock cycle; or, collects trace for each target clock cycle.
Clock cycles are based on the external speed of the processor. The display mode and the
collection mode are set separately using the Trace window View and Options menus. Also
see bus mode.

Glossary 248 SLD User's Manual

command entry pane

Bottom part of the Shell window. Type Shell commands on the command entry pane
command lines; press <Enter> to execute the commands. Separate multiple commands with
semicolons. Also see transcript pane.

command history

As you enter Shell commands, the emulator keeps a chronological list in a command history
buffer of all your entries. You can specify a buffer depth of the number of entries to save. To
recall commands from the buffer to the command entry pane, use the <Ctrl><Up Arrow> and
<Ctrl><Down Arrow> key combinations.

command script

See script.

compress display

Display only the first line of a variable, peripheral register, or peripheral group.

control processor
Located in the main chassis; controls emulation processing. Also see emulation processor,

target processor.

current module and function

Code location where the emulator has most recently halted.

cursor

Highlight, vertical or horizontal bar, or other symbol showing the current focus point in a
window display. Move the cursor with the <Up Arrow> and <Down Arrow> keys or by
pointing and clicking with the mouse.

data breakpoint

Hardware breakpoint causing a break when a specified address is read or written.

debug environment

The debug environment includes the control options (such as overlay memory), user-defined
aliases or debug variables, and the SLD desktop.

SLD User's Manual 249 Glossary

demangle

To demangle is to strip C++ mangling from symbol names during load.

disabled breakpoint

Encountering a disabled breakpoint does not halt emulation. The disabled breakpoint is
ignored. Also see enabled breakpoint, temporary breakpoint, permanent breakpoint.

disassembly
Memory contents or trace information interpreted by the emulator as assembly language
instructions.

double word
32 bits (four bytes).

emulation breakpoint

See hardware breakpoint.

emulation pod (EPOD)

Contains emulation and overlay circuits; attached by cables to the emulator chassis and probe
head.

emulation processor

Located in the Probe, the emulation processor replaces the processor in the target system,
providing the emulator with information about the program execution. Also see control
processor, target processor.

emulation status
Whether the emulator is running or halted. This information appears in the Status window or
icon. Also see break cause.

emulator

Uses a special version of the processor to monitor and control your target’s software and
hardware activity involving the processor. In the PowerPack™ emulator documentation,
emulator refers to the PowerPack emulator and SLD software.

Glossary 250 SLD User's Manual

enabled breakpoint

Encountering an enabled breakpoint halts emulation. Also see disabled breakpoint,
temporary breakpoint, permanent breakpoint.

event

Condition arising in program execution that can be used to trigger an emulator action during
emulation or to find specified activity in the trace buffer.

execution breakpoint

Hardware breakpoint causing a break when an instruction at a particular address is executed.

frame

See trace frame, stack frame.

go

Emulate until halted by a predefined condition or by a halt request.

granularity

In the Source and Shell windows, the step granularity can be set to source line or source
statement. With the granularity set to line, stepping emulates one or more source lines. With
the granularity set to statement, stepping emulates one or more source statements.

hardware breakpoint

Breakpoint using a processor register rather than a software interrupt. Also see software
breakpoint.

high-water mark

The greatest percentage of the stack area used during program execution.

history buffer

See command history, browser history, loadfile history.

host

Your workstation or PC, where you run SLD.

SLD User's Manual 251 Glossary

include file

See script.

initialization code
See startup code.

initialization script

The script run automatically when you start SLD, to configure the emulator. Also see script.
initialization file

File named powerpak.ini, which is placed in your Windows directory by the SLD installation.

instruction mode

Displays trace as disassembly instructions. Also see clock mode, bus mode. A branch trace
message must be collected for the emulator to disassemble the instructions.

line numbers

Sequential source line numbers in each independently compiled high-level language module.

linked cursor

You can link the Source and Trace displays so that, when you scroll or browse in the Trace
window in instruction mode, the Source window scrolls automatically to display the
corresponding source.

load

Write executable code and/or symbolic information from your host system to target or
emulator memory.

load status

Optional dynamic display of loading progress. The final status can be redisplayed with the
Source window File menu Load Information item. Load information includes: the loadfile
pathname; the module source file pathname; the number of bytes, modules, symbols, types,
functions, and lines loaded; the program counter; and the stack base and size. The load status
information box also displays a bar graph that fills to indicate the percent of loading
complete.

Glossary 252 SLD User's Manual

loadfile
File containing executable code and/or symbolic information in OMF86, OMF386, IEEE-695,
or S-record format.

loadfile history

When you load a file, the emulator keeps a chronological list in a loadfile history buffer of the
most recent four loadfiles. To load one of these files, in the Source window File menu choose
one of the last entries numbered from 1 to 4.

log file

You can record Shell commands and their results to a file called a logfile.

long

See double word.

main chassis
Houses the PowerPack emulator motherboard, trace and communications modules, and power
supply.

mangle

A compiler mangles C++ overloaded names by adding a prefix or suffix to uniquely identify
the names for type-safe linkage.

map

Configure overlay and target memory to control access and emulation response to memory
accesses.

map file

File containing a saved map configuration.

memory access size

Number of memory locations read or written in a single access: byte, word, or double word.

module

Independently compiled source file.

SLD User's Manual 253 Glossary

motherboard

Circuit board, in the PowerPack emulator main chassis, containing the system processor,
memory, communications, and analysis circuits.

null target

Board supplied with your Motorola PowerPack emulator for use as a target board when you
run the emulator startup tests. If you have code ready to test but no hardware (and no special
hardware needed to run the code), you can run the code with the emulator attached to the null
target instead of to your target hardware. For Intel emulators, see SAST board.

on-demand loading

Defers loading symbolic information for an individual module until either the module is
displayed in the Source window or a breakpoint is set in the module. On-demand loading
saves time when the file is loaded and saves space if some symbols are never needed.

overlay memory

RAM used and controlled by the emulator in place of your target system memory. Also see
target memory.

permanent breakpoint

A breakpoint which remains defined after causing emulation to halt. Also see temporary
breakpoint, enabled breakpoint, disabled breakpoint.

probe

Plugs into the target system, replacing the target processor, and provides the hardware
interface between the EPOD and the target.

program counter

Register used by the processor to find the next instruction to be executed. On Intel, this
register is CS:EIP (code segment extended instruction pointer); on Motorola, PC (program
counter).

SAST board

Board supplied with your Intel emulator for use as a target board when you run the emulator
stand-alone self-tests. If you have code ready to test but no hardware (and no special
hardware needed to run the code), you can run the code with the emulator attached to the
SAST board instead of to your target hardware. For Motorola emulators, see null target.

Glossary 254 SLD User's Manual

script

Text file of Shell commands separated by semicolons. Execute a script with the Include Shell
command.

shell variable

Symbol starting with $, defined in the Shell window or in a script for use with Shell
commands.

SLD

Source Level Debugger, the PowerPack and PowerScope user interface.

software breakpoint

Breakpoint using a software interrupt inserted as the instruction at the address where you set
the breakpoint. Also see hardware breakpoint.

source line

Single line of executable code in a source file.

source statement

Single statement of executable code in a source file. Some C compilers allow multiple
statements per line, separated by semicolons.

split box

Windows object that you can drag to split a window into two panes. In SLD, such a box is
located above the top arrow of the Shell and Source window vertical scroll bars.

stack frame

When a function is called, information about the call (return address, parameters, local
variables) is stored in a record on the stack. One such record is a stack frame. The frames on
the stack change as calls and returns execute.

startup code

Executable code that runs before main() to set up the processor registers for your target
system. The startup code is usually written in assembly language. Some compilers
automatically add startup code; for some target designs, you may need to write the startup
code.

SLD User's Manual 255 Glossary

status
See load status, emulation status, tracing status.

step

Execute a line, statement, or instruction; then break.

system clock (CLKOUT)

Internal system clock signal used as the bus timing reference by external devices.

system processor

See control processor.

tab

Single character interpreted as a specified number of spaces.

tab width

Number of spaces replacing a tab character. Ensure your emulator tab width matches your
compiler tab width.

target memory
RAM or ROM available on your target system.

target processor

The processor in your target system. When the emulator is attached to your target system, the
emulation processor in the emulator probe head replaces the target processor. Physically, this
replacement is done either by removing your target processor and plugging the probe head
into the socket on your target board, or by using a clip-over adapter to attach the probe head
on top of your target processor, tri-stating your target processor.

target system

Hardware of your design to which you connect the emulator. Also see SAST board, null
target.

temporary breakpoint

A breakpoint which is removed after it causes emulation to halt. Also see permanent
breakpoint, enabled breakpoint, disabled breakpoint.

Glossary 256 SLD User's Manual

timestamp

Number associated with each trace frame indicating how many clock cycles have elapsed
since a specified frame or since the previous frame. Clock cycles are based on the external
speed of the processor.

toggle

Specify or choose one of a set of two or more mutually exclusive values or items.

toolchain

The compiler, assembler, linker/locator, and translator you use to generate a loadfile from
your source code. A supported toolchain is one Microtek International has tested and
approved for generating emulator-loadable files. The emulator is not guaranteed to work with
unsupported toolchains.

trace

Record of the emulation processor activity and signals collected at the emulation processor
clock rate. These signals can be displayed in frames based on clock cycles, bus cycles, or as
disassembled instructions.

trace buffer

Buffer containing a snapshot of the collected trace. The snapshot can be taken relative to a
specified event occurring during emulation. You can partition trace into one or more buffers;
the size of each buffer depends on the number of buffers.

trace frame

A trace frame is one line of information in the trace buffer. Each frame starts at a consistent
point relative to a bus cycle, clock cycle, or instruction fetch.

tracing status

Whether tracing is on or off; if on, which trace buffer is active. This information appears in
the Status window and icon.

transcript pane

Top pane of the Shell window. Optionally, you can configure the transcript pane to display
commands entered in the command entry pane and the associated emulator responses. Also
see command entry pane.

SLD User's Manual 257 Glossary

trigger

Defines the action taken by the emulator in response to the occurrence of one or more events.

trigger frame

First frame collected after a trigger is reached.

word
16 bits (two bytes).

Glossary 258 SLD User's Manual

Index

$BREAKCAUSE system variable, 133
$EMULATING system variable, 133
$SHELL_STATUS, 159
$SHELL_STATUS system variable, 134
*cs, 111

* map, 116

; (semicolon) 127

<<Prev, 228

>>, 39

@, 137

115VAC,5

16-bit address mode, 68, 99, 100

220 VAC, 5

32-bit address mode, 68, 99, 100

5V or 3V operation, 6

Active Event, 230, 232
adapters, 5
Add, 204
Add Event dialog box, 70, 232
address
code patching, 136, 224
find closest symbol, 59
in trace, 240
Intel addressing modes, 68
module load address, 185
number base, 127
numeric, 58, 134, 218
of function, 134
of symbol, 134
return, 51, 211
stack, 51, 211
symbol at address, 164
view in Memory window, 59, 217,
218
view in Source window, 187
Xlt command, 182
address bus, 240
AddressOf command, 134
alarm limit, 52, 101, 102, 209, 211
Alarm Limit dialog box, 211

alias

deleting, 143
Alias command, 135
Always On Top, 102
Append command, 135
Asm command, 135
AsmAddr command, 136
Assem, 224
assembly address, 136

see address: code patching
Auto, 222, 243
automatic variables, 144
auxiliary trace connector, 136
AuxTrace command, 136

BDMspeed command, 137
bit field
MaxBitFieldSize command, 163
peripheral register, 228
Bkpt command, 137
BkptClear command, 138
BNC cables, 4
break
$BREAKCAUSE system variable,
133
Cause command, 139
during script execution, 133, 139
memory access, 22, 118, 162, 163
Breakpoint window
list breakpoints, 44, 205
remove breakpoints, 45
set breakpoints, 41, 207
breakpoints
address, 192, 205, 207
address space, 137, 192
Bkpt command, 137
BkptClear command, 138
break cause, 133, 139
C++ symbols, 42
cursor in Source window, 41
data, 146

SLD User's Manual 259

Index

debug registers, 7, 96, 146

disabled, 44, 137, 192, 205, 207, 208

DR command, 146

enabled, 44, 137, 192, 205, 207, 208

execution, 146

features, 7

find in Source window, 45, 207, 208

granularity, 7

hardware, 7, 41, 146, 163

ID, 137

inline functions, 43

Intel, 7, 41, 146, 207

list in Breakpoint window, 44, 192,
205

list in Shell window, 44, 137

modifying, 137

Motorola, 7, 41

non-executable source statement, 41

numeric address, 192

permanent, 41, 137, 192, 199, 205,
207

powerpak.ini, 96

removing, 41, 45, 138, 192, 199,
207, 208

setting, 41, 137, 146, 191, 199, 207,
208

software, 7, 41

source line, 43

source statement, 43

symbolic address, 192

symbolic information, 137, 205, 207

tab width, 43

temporary, 41, 137, 192, 199, 205,
207

Browse Modules, 39, 99, 100

Browse Modules dialog box, 184
Browser History Depth dialog box, 196
BTM cycles, 105, 242

Buffer dialog box, 245

bus, 236, 242

address, 240

break cause, 133, 139

BusRetry command, 138

Config ignoreHLDA command, 140
external master, 140

Trace window, 75, 239, 242
Trigger window, 84, 236

bus contention, 138

bus cycle triggering, 106, 107
BusRetry command, 138
buttons

grayed-out, 9
Byte Access, 222

C++
demangling symbols, 26, 27, 97, 98,
120, 159, 160
loading, 26, 27, 97, 98, 120, 159,
160
powerpak.ini, 97, 98
preprocessing, 13
setting breakpoints, 42
stepping into a declaration, 47
symbols in Source window, 49
cables, 4
call instruction
emulation control, 46, 47, 153, 154,
176, 177, 189, 190, 197, 198
source display, 48
Cancel, 224
carriage return/linefeed, 99, 100, 196
Cause command, 139
center, 74, 106, 243, 244
chip selects
ConfigCS command, 140
configuring the emulator, 32, 112,
140, 167, 169
configuring the processor, 31, 112
Event edit box, 71, 229, 230
file, 31, 167, 169
Intel processors, 169, 170
Motorola processors, 31, 71, 74, 79,
80, 112, 140, 169, 229, 230, 239
RestoreCS command, 167
SaveCS command, 169
saving and restoring, 18, 111, 167,
169
trace and event signals, 32, 79, 80
Trace window, 74, 239
Clear, 192, 207, 208, 232
Clear All, 192, 207
Clear Breakpoint, 199
Clear command, 139
Clear Trace, 242

Index

260

SLD User's Manual

Clipboard, 124
clock, 236, 242
BDMspeed command, 137
frequency, 105, 244
Trace window, 74, 239, 242
Trigger window, 84, 236
clock cycle triggering, 106, 107
Close, 228
cnt0/1, 234
code address, 51, 211
code patching, 7
address, 136, 224
Asm command, 135
AsmAddr command, 136
displayed in Source window, 49
processor space, 224
single-line assembler, 59, 223
colors
Source window, 41
Stack window, 51, 209
Variable window, 201
COM port, 99
Command Entry pane
including a script, 157
use, 123
command line
see Command Entry pane
see Shell commands
communications, 4, 6, 96, 99
Compiler Used dialog box, 197
compilers
Borland, 11, 23, 103, 104, 163
CompilerUsed command, 139
HiWare, 15, 103, 104, 107, 180
Intermetrics, 13
Introl, 14
MaxBitFieldSize command, 163
Metaware, 10
MR, 12
powerpak.ini, 103, 107
see toolchains, 11
Sierra, 13
specifying, 11, 23, 27, 103, 139
supported, 11, 103
Whitesmiths, 14
CompilerUsed command, 139

Motorola, 11
Compress, 203
Compress All, 227
confidence tests, 165, 178
Config command, 140
ConfigCS command, 140
ConfigSymbols command, 140
contention, 138
Copy command, 141
Copy Memory dialog box, 220
Counter, 236
CPU Configuration dialog box, 17
CPU registers
editing, 56, 213
reset, 166, 190
CPU window
configure signals, 56
edit register, 56, 213
opening, 114
reset the processor, 56, 113, 214
CPU16
20-bit addressing, 103, 104, 180
cursor
cross-hair in Source window, 41
linked Source and Trace windows,
49,75, 105, 242
linked Trace and Source windows, 7
Memory window, 59, 217
position in Source window, 186, 187
Source window emulation control,
47, 190
split-box in Shell window, 123
split-box in Source window, 41, 183

Dasm command, 142

DasmSym command, 142

data bus, 240

data number base, 127

date, 179

debug registers
breakpoints, 7, 96, 146
DR command, 146
powerpak.ini, 96
program access, 146

compiling Decimal Bytes, 221
Intel, 10, 23 Decimal DWords, 222
SLD User's Manual 261 Index

Decimal Words, 222

Delete, 204

Delete All Events, 232

Delete command, 143

Delete Event, 232

Delta, 244

descriptor table, 147
ConfigSymbols command, 140
display in Shell window, 147
DT command, 147
GDT command, 152
IDT command, 156
LDT command, 158, 159
update symbol base addresses, 97,

98, 112, 140

device, 138

diagnostics, 4

Disable, 192, 207, 208

Disable All, 192, 207, 208

DisableAlarmLimit command, 143

DisableHighWaterMark command, 144

disassembly, 221
after code patching, 49
Dasm command, 142
DasmSym command, 142
inline functions, 43
Intel address mode, 99, 100, 188
Memory window, 58, 218, 221
powerpak.ini, 99
Shell window, 142
Source window, 40, 48, 99, 188
symbols, 40, 58, 111, 142, 218
Trace window, 75, 105, 239, 242

DisplayStack command, 144

DisplaySymbols command, 144

Done, 224

DOS newline, 99, 100, 196

double bus fault, 133, 139

DR command, 146

driver, 138

DT command, 147

Dump command, 148

DWord Access, 223

Echo command, 148
edit field, 202

Edit Path dialog box, 40
email, 3
emulating, 38
emulation control
$EMULATING system variable, 133
break cause, 133
call instruction, 46, 47, 153, 154,
176, 177, 189, 190, 197, 198
defining a trigger, 84
emulation status, 48
example of breakpoint, 44
examples of triggering, 86
function call, 46, 47, 153, 154, 176,
177, 189, 190, 197, 198
Go, 46
Go command, 153
Go From Cursor, 47, 190
Go Into Call, 47, 190, 198
Go Into Return, 47, 198
Source window Run
menu, 190
Go options, 196, 197
Go To Cursor, 47, 190
Go Until Call, 47, 189, 198
Go Until Return, 47, 190, 198
Golnto command, 153
GoUntil command, 154
Halt, 47, 189
Halt command, 155
masking interrupts, 47, 103, 111, 176
overview, 7
Reset And Go, 47, 190
ResetAndGo command, 167
return instruction, 46, 47, 153, 154,
176, 177, 189, 190, 198
setting breakpoints, 41, 207
Shell window, 153, 154
source line, 153, 154, 177
source statement, 153, 154, 177
Source window cursor, 47, 190
Source window options, 45, 99, 100,
176, 177, 196, 197
status, 133
Step, 46, 176, 177
Step Into, 46, 176, 177, 189, 197,
198
Step options, 45, 99, 100, 176, 177
Step Over, 46, 189, 198

Index

262

SLD User's Manual

StepMask command, 176
stepping speed, 47
Toolbar buttons, 115
trigger actions, 84, 233, 234, 235
trigger conditions, 84, 233, 234
emulator, 1
EmuStatus command, 149
Enable, 192, 207, 208, 234
Enable Alarm Limit, 211
Enable All, 192, 207, 208
Enable High Water Mark, 211
EnableAlarmLimit command, 149
EnableHighWaterMark command, 150
EPOD, 4
event, 7
address, 70, 71, 230
data, 70, 72, 230
defining, 70, 230, 232
EventRestore command, 150
EventSave command, 150
find in trace, 241
Motorola address space, 73, 230
removing, 232
restore from file, 18, 73, 150, 231
save to file, 18, 73, 150, 231
search in trace, 7
Shell window, 150
signals, 70, 72, 230
trace buffer position, 7
trigger condition, 85, 234
trigger position, 74, 106, 243, 244
uses, 70
Event edit box
also see Event window
enabling Motorola address space
selection, 73, 230
save/restore events, 73, 231
signal display formats, 72, 230
signals, 71, 229, 230
specify address, 71, 230
specify data, 72, 230
specify signal states, 72, 230
event name, 234
Event window
also see Event edit box
clearing, 232
open from Trigger window, 236
signal mnemonics, 75

signals, 32
EventRestore command, 150
Events, 236
EventSave command, 150
Exit command, 150
Exit dialog box, 109
exiting SLD, 10, 109, 150
Expand All, 227
ext, 234, 235
external break, 133, 139
external trigger, 235

fax, 3
Field Value, 228
Fields, 228
Fill command, 151
Fill Memory dialog box, 219
FillStackPattern command, 152
Frame dialog box, 245
function
display in Shell window, 144, 145
display source from Stack window,
52,211
load address, 72, 134, 198
return address, 51, 101, 102, 144,
211
source display, 48, 198
stack address, 51, 101, 102, 144, 211
function calls
emulation control, 46, 47, 153, 154,
176, 177, 189, 190, 197, 198
on the stack, 51, 101, 102
source display, 48
function keys, 38
Function pop-up menu, 72, 198

GDT
ConfigSymbols command, 140
display in Shell window, 152
Intel numeric addresses, 68
update symbol base addresses, 112,
140
GDT command, 152
Get symbol address, 134

SLD User's Manual 263

Index

GetBase command, 153
global descriptor table
see GDT
global variables, 49, 144, 145
go
Source window buttons, 46, 197
Source window configuration, 45, 99,
100
Source window Run menu, 189
Go command, 153
Go From Cursor, 47, 190
Go Into Call
program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 190
Go Into Return, 190
program counter, 48
Source window button, 47
Source window buttons, 198
Go key, 38
Go To Address dialog box, 187, 218, 226
Go To Cursor, 47, 190
Go To Line dialog box, 186
Go To Peripheral dialog box, 226
Go To Register dialog box, 226
Go To Source, 198, 207, 208
Go Until Call
program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 189
Go Until Return
program counter, 48
Source window button, 47
Source window buttons, 198
Source window Run menu, 190
Go Until/Into, 196, 197
Golnto command, 153
GoUntil command, 154
Granularity, 195

halt break cause, 133, 139
Halt command, 155

halt emulation, 47, 189
Halt key, 38

Halt When Last Trace Buffer Full, 74,
106, 243
halting emulation, 38, 155
hardware breakpoints, 7
hardware confidence tests, 165, 178
Help command, 155
Hex Bytes, 221
Hex Dwords, 221
Hex Words, 221
highlight
CPU window, 55, 213
Map dialog box, 115
Peripheral window, 226
red in Source window, 41, 45
high-water mark, 52, 101, 102, 209, 211
History command, 155
History Size dialog box, 126

ICE Peripheral Disable Register dialog
box, 112
IDT command, 156
IDT displayed in Shell window, 156
If..Else command, 156
Include command, 157
Include dialog box, 124
Include Return Code Address, 211
Include Stack Address, 211
include.me, 36, 97, 127
initialization script, 36, 97, 127
inline functions
breakpoints, 43
disassembly in Source window, 43
stepping, 43
Inspect Source, 211
Inspect Variable, 199
Instruction, 242
Integer command, 157
Intel address space, 21, 119, 162, 163
Intel addressing mode, 243
pmode, 68
Pmode command, 164
powerpak.ini, 99, 100
Intel Evaluation Board, 140
Intel numeric addressing, 182
Intel386 CX/SX A/B-Step, 17, 103
Intel386 debug registers, 146

Index 264

SLD User's Manual

Intel386 EX HLDA pin, 140
Intel386 loadfile bitfield size, 103, 104
Intel386 register initialization, 27, 97, 98,
121, 159, 160
Intel386 symbol base addresses, 27, 97,
98,112, 120, 121, 159, 160
Intel386EX ICECFGO register, 112
Intel86 code and data sections, 103, 104
Internet, 3
interrupt descriptor table
see IDT command
interrupts
masked for stepping, 47, 103, 111,
176
Motorola, 47, 103, 111, 176
StepMask command, 176
Into Call/Return, 196, 197
IsEmuHalted command, 158

jumper, 17

LapTimer command, 158
layout, 9, 96, 97, 102, 103, 109, 113
LDT
ConfigSymbols command, 140
display in Shell window, 158, 159
Intel numeric addresses, 68
update symbol base addresses, 112,
140
LDT command, 158
line numbers
breakpoint, 205
comment lines, 68
list in Shell window, 67, 144, 145
powerpak.ini, 99
view in Source window, 67, 99, 186
line voltage, 5
linear address, 68, 182
linefeed, 99, 100, 196
linked cursor, 7, 49, 75, 105, 242
List command, 159
Load Address information box, 72
Load command, 159
Load dialog box, 119

opening, 113
Load Information box, 184
Load Options dialog box, 25, 119
loaders.ini, 167
loadfile
creation date/time, 185
default sections, 103, 104
formats, 6, 9, 23
Intel formats, 10, 97, 98
Motorola compilers, 11, 139
Motorola formats, 27
older than source file, 39
path/filename, 185
preparing, 9
specifying a compiler, 23, 27
stack area, 53
loading
C++, 26, 27, 97, 98, 120, 159, 160
code, 26, 97, 120, 159
during emulation, 24, 121, 159, 160
Intel address space, 26, 97, 120, 159
Intel register initialization, 121, 159,
160
Load command, 159
LoadSize command, 161
memory access size, 161, 223
MergeSections command, 164
merging sections, 24, 103, 104
options, 25, 97, 119, 159
powerpak.ini, 97
reinitialize loaders error message,
167
reloading, 25, 159, 160, 185
ResetLoaders command, 167
Source window, 184
Source window:, 25
specify loadfile, 25, 119, 159
specifying a compiler, 11
status, 27, 97, 98, 121, 159, 160
symbols, 26, 27, 97, 120, 159
symbols in Motorola assembly, 121,
159
Toolbar, 25, 119
update Intel symbol bases, 120, 121,
159, 160
warnings, 27, 97, 98, 121, 159, 160
LoadSize command, 161
local descriptor table

SLD User's Manual 265

Index

see LDT
local variables, 49, 51, 134, 144, 145, 209
Log command, 161
log file, 126
Append command, 135
configuring, 20
filename, 161
Log command, 161
Logging command, 161
opening, 19
Overwrite command, 164
preserving contents, 19, 135, 161
start/stop logging, 161
Logging command, 161

main chassis, 4

map
file, 21, 168, 170
saving and restoring, 18, 21, 117,

168, 170

Map Add/Edit dialog boxes, 116

Map command, 162

Map dialog box, 115
opening, 113

mapping memory
access rights, 22, 118, 162
address space, 21, 116, 162, 163
Intel Target memory, 22, 118, 162
Map command, 162
Map dialog box, 21, 115
MapRanges command, 163
Overlay/Target, 21, 118, 162, 163
remapping a region, 116
removing a region, 21, 116, 162, 163
saving and restoring, 116
Shell window, 22
Toolbar, 20, 110, 115

MapRanges command, 163

mask, 230

MaxBitFieldSize command, 163

memory
access during emulation, 28, 58, 61,

110, 168, 169, 222, 227

access from Shell window, 57
access rights, 22, 118, 162

access size, 61, 148, 151, 161, 171,
175,181, 222
code patching, 59, 223
Copy command, 141
copying, 141, 220
display in Shell window, 148
Dump command, 148
editing, 59, 219, 220
Fill command, 151
Map command, 162
mapping, 21, 115, 162, 168, 170
Memory window display formats, 58,
217
RestoreMap command, 168
RunAccess command, 168, 169
SaveMap command, 170
Search command, 171
searching, 171, 219
section boundaries, 21, 118, 162
section sizes, 21, 118, 162
Size command, 175
Verify command, 180
Write command, 181
write verification, 180, 223
writing, 151, 181, 219
Memory window
cache to speed scrolling, 59, 223
disassembly, 58, 111, 218, 221
display formats, 58, 111, 217
edit numeric values, 59, 60
memory access failure, 59, 223
multiple windows, 58, 61, 217
opening, 114
patch code, 223
scroll and refresh, 58, 61, 222, 223
single-line assembler, 59, 223
symbols, 58, 111, 218
view a symbol, 59, 217, 218
view an address, 59, 217, 218
Menu Bar key, 38
MergeSections, 164
Microtek, 3
module
breakpoint, 205
display in Shell window, 144, 145
load address, 185
Motorola 68360 port A and C
multiplexing, 136

Index 266

SLD User's Manual

Motorola address space, 21, 119, 162,
163
multiple trace buffers, 235

NameOf command, 164

network, 6, 96, 99

newline, 99, 100

Next Browsed Module, 185, 196
Next Window key, 38

Next>>, 228

not, 230

notational conventions, 128

null target board, 4

Number of Trace Buffers (x Size), 244

on-demand symbol loading, 26, 43, 97,
120, 159, 160
online help, 6, 10
Online Help key, 38
Open dialog box, 40, 112, 231
operand/address size, 68, 99, 100
optimization, 9
0OS/2 LAN server, 96
oscilloscope, 165, 178
overlay
features, 6
overlay memory
MapRanges command, 163
RAM cycles disabled, 140
Overwrite command, 164

package, 6
paging, 68
parameters, 51, 144, 209
patching
see code patching
PC-NFS network, 96
Periph button, 9
peripheral registers
bit fields, 228
contents, 228
edit, 63

editing, 227
Intel386 EX expanded memory, 28
Motorola internal cycles, 30, 111
Peripheral window, 61, 225
Peripheral window display formats,
62, 225
Shell window access for Intel I/O
space, 61
Variable window display formats,
203
Peripheral window
compressed display, 62, 225, 227
configure chip selects, 31
display formats, 62, 225
edit register, 63
expanded display, 62, 225, 227
opening, 114
scroll and refresh, 58, 61, 227
view a register, 61, 63, 225, 226
phone, 3
physical address, 68, 182
pmode, 99, 100, 164
Intel addressing mode, 68
Pmode command, 164
post, 74, 106, 243, 244
power
line voltage, 5
power-on sequence, 5
power cord, 4
powerpak.ini
alarm limit, 101, 102
BTM cycles, 105
bus or clock cycle triggering, 106
clock frequency, 105
compilers, 11, 103, 107
debug register breakpoints, 96
high-water mark, 101, 102
host-emulator communications, 96,
99
initialization script, 36, 97, 127
Intel386 CX/SX A/B-Step, 17, 103
line numbers, 99
loadfile sections, 103, 104
loading
options, 97
masking interrupts, 103
operand/address size, 99, 100
overview of sections, 95

SLD User's Manual 267

Index

screen layout, 96, 102, 103
source filename extension, 99, 100
source path, 99, 101
Source window, 99
stack area, 53, 101
Stack window options, 101
Status window position, 102
tab width, 99, 100
trace buffers, 106
trace display formats, 105
trace timestamp, 105
trigger counter/timer, 106
trigger position, 106
Windows interface, 96, 102, 103
pre, 74, 106, 243, 244
Previous Browsed Module, 185, 196
Print command, 165
printable symbols, 144, 145
probe, 4
problem.txt, 3
program counter
after reset, 56, 214
after Step Into/Over or Go Into/Until,
48
mnemonic, 39
Source window, 39, 187
program variables
address, 134
colors in Variable window, 50, 201
dereferencing pointers, 50, 201, 203
display in Variable window, 204
editing values, 50, 201, 202
global, static, and local, 49
on the stack, 51, 209
parameters and local, 51, 209
set breakpoint, 199
Variable pop-up menu, 199
viewing, 49, 51, 199, 209
protected mode, 68
public symbols, 144, 145

RamTst command, 165

Read Ahead, 223

Read-after-write, 180

real mode, 68

Refresh Display, 204, 210, 222, 227

Register command, 166
Register Edit dialog box, 63, 226, 227
Register Value, 228
registers
also see CPU registers
also see peripheral registers
initializing, 27, 97, 98, 121, 159, 160
listing in Shell window, 166
local variables/parameters, 144, 145
Register command, 166
setting, 166, 227
reinitialize loaders error message, 167
Relative To Frame, 244
relocating symbols, 172
RemoveSymbols command, 166
Reread On Write, 223
Reset, 214
Reset And Go, 47, 190
Reset command, 166
Reset CPU Only, 214
ResetAndGo command, 167
ResetLoaders command, 167
resetting the processor
CPU window, 56, 113, 214
effect on SLD windows, 56, 113,
166, 190, 214
emulation control, 47, 167, 190
if reset fails, 56, 113, 166, 214
program counter, 56, 113, 166, 190,
214
Reset command, 166
ResetAndGo command, 167
Shell window, 47, 56, 113, 166, 167,
190
Source window, 47, 56, 113, 190
stack pointer, 56, 113, 166, 190, 214
Toolbar window, 56, 113
Restore Events, 231
Restore Map File dialog box, 117
RestoreCS command, 167
RestoreMap command, 168
Results command, 168
return address, 51, 211
return instruction
emulation control, 47, 153, 154, 190,
198
source display, 48
Return symbol address, 134

Index 268

SLD User's Manual

RS-232C cable, 4

run access, 28, 58, 61, 110, 168, 169,
222,227

RunAccess command, 168

SAST board, 4, 178

Save As, 240

Save As dialog box, 111, 231

Save Events As, 231

Save Map File dialog box, 116

SaveCS command, 169

SaveMap command, 170

scope, 65, 144, 145

screen layout, 9, 96, 102, 103, 109, 113

script, 36
command completion status, 134
conditional statements, 156, 181
creating, 19
emulation status, 133
If..Else command, 156
Include command, 157
initialization, 36, 97, 127
reacting to break, 133
running/including, 124, 127, 157
‘While command, 181

Search, 186
Source window, 186

Search Buffer dialog box, 241

Search command, 171

Search dialog box, 186, 202

Search Event, 241

Search Memory dialog box, 219

Search Next, 202

sections in Motorola loadfiles, 24, 103,
104, 164

segmented architecture, 68

self-test, 4

serial communication, 96

serial communications, 99

Set, 208

Set Breakpoint dialog box, 42, 191, 206

Set Go Buttons, 196, 197

Set Perm. Breakpoint, 199

Set Permanent Breakpoint, 191

Set Temp. Breakpoint, 199

Set Temporary Breakpoint, 191

SetBase command, 172
SetStackAlarm command, 172
SetStackArea command, 173
SetStackBase command, 173
SetStackSize command, 174
Setup dialog box, 244

Shell commands

$SHELL_STATUS system variable,

134
aborting, 127
AddressOf, 134
Alias, 135
Append, 135
Asm, 135
AsmAddr, 136
AuxTrace, 136
BDMspeed, 137
Bkpt, 137
BkptClear, 138
BusRetry, 138
Cause, 139
Clear, 139
command history, 127
CompilerUsed, 139
completion status, 134
Config, 140
ConfigCS, 140
ConfigSymbols, 140
Copy, 141
Dasm, 142
DasmSym, 142
Delete, 143
DisableAlarmLimit, 143

DisableHighWaterMark, 144

display results, 125, 168
DisplayStack, 144
DisplaySymbols, 144
DR, 146

DT, 147

Dump, 148

echo, 125, 148
EmuStatus, 149
EnableAlarmLimit, 149

EnableHighWaterMark, 150

entering, 127
EventRestore, 150
EventSave, 150
Exit, 150

SLD User's Manual 269

Index

Fill, 151
FillStackPattern, 152
functionality, 129
GDT, 152

GetBase, 153

Go, 153

Golnto, 153
GoUntil, 154

Halt, 155

Help, 155

History, 155

history of commands, 126
IDT, 156

If..Else, 156
Include, 157
Integer, 157
IsEmuHalted, 158
LapTimer, 158
LDT, 158

List, 159

Load, 159
LoadSize, 161

Log, 161

Logging, 161

Map, 162
MapRanges, 163
MaxBitFieldSize, 163
MergeSections, 164
NameOf, 164
Overwrite, 164
Pmode, 164

Print, 165

RamTst, 165
Register, 166
RemoveSymbols, 166
Reset, 166
ResetAndGo, 167
ResetLoaders, 167
RestoreCS, 167
RestoreMap, 168
Results, 168
RunAccess, 168
SaveCS, 169
SaveMap, 170
Search, 171
SetBase, 172
SetStackAlarm, 172
SetStackArea, 173

SetStackBase, 173
SetStackSize, 174
Signal, 174
Size, 175
StackInfo, 175
StartTimer, 176
Step, 176
StepMask, 176
StepSrc, 177
StopTimer, 177
String, 177
SymbolCloseFile, 178
SymbolOpenFile, 178
syntax, 128
Test, 178
Time, 179
Transcript, 179
TSS, 179
VarlndexCPU16Reg, 180
Verify, 180
Version, 180
While, 181
Write, 181
Xlt, 69, 182

Shell variables
deleting, 143
Integer command, 157
listing, 159, 165
Print command, 165
String command, 177

Shell window
address of symbol, 134
allocate stack area, 54, 173
break cause, 48, 133, 139
closing, 124, 150
command completion status, 134
command history, 127, 155
configure auxiliary trace connector,

136
configure chip selects, 31, 140, 167,
169

configure debug registers, 146
configure signals, 174
configuring, 19, 125
copy memory, 141
disassemble memory, 142
display descriptor table, 147
display global descriptor table, 152

Index

270

SLD User's Manual

display interrupt descriptor table,
156

display local descriptor table, 158,
159

display memory, 148

edit CPU register, 56

edit memory contents, 59

edit peripheral register, 63

emulation control, 153, 154

emulation status, 48, 133, 149, 158

entering commands, 127

find address of function, 71

find address of symbol, 71

find symbol near address, 71

20, 46

Go command, 153

halt emulation, 47, 155

initialize stack, 152

Intel addressing mode, 164

Intel peripheral registers, 61

list breakpoints, 44, 137

list line numbers, 67

list registers, 166

list symbolic information, 59, 144,
145

load, 159, 164

log file, 19, 126, 135, 161, 164

map memory, 162, 168, 170

mapping memory, 22

opening, 115

patch code, 59, 135

remove breakpoints, 45, 138

Reset And Go, 47, 167

reset the processor, 56, 113, 166

restore events from file, 150

save events to file, 150

save/restore events, 73

script, 36, 156, 157, 181

search memory, 171

set breakpoints, 41, 137

set registers, 166

set stack base, 173

set stack size, 174

specify compiler, 139

stack information, 51, 144, 175

stack usage, 143, 144, 149, 150, 172

step, 46, 176, 177

symbol at address, 164

timer, 158, 176, 177
write memory, 151, 181
Shell window panes
clear Transcript pane, 139
configure, 19, 148, 149, 168, 179
Show, 203
Show All, 192
Show Level 0..4, 237
Show Load Address, 198
Signal command, 174
signals, 214
configured in chip selects, 32, 79, 80,
230
configuring in CPU window, 56
configuring in Shell window, 174
emulator trigger-out, trigger-in, 4
Event window, 32, 75, 230
from target or emulator, 56
Intel386CX, 76
Intel386EX, 75
Intel386SX, 77
MC68330, 81
MC68332/333,78
MC68340, 81
MC68360, 83
RESET, 56, 166, 190, 214
Trace window, 32, 74, 75, 239, 240
single-line assembler, 135, 136
Single-line Assembler dialog box, 59,
221,223
Size command, 175
Skip, 224
SLD
features, 6
program disks, 4
runs under, 1
slow clock, 137
slow device, 138
SMM, 68, 222
software breakpoints, 7
Sort, 204
source column number
breakpoints, 205
source delimiter, 99, 100, 196
source file
language, 185
path/filename, 185
unable to open, 39

SLD User's Manual 271

Index

source filename extension, 99, 100
source level debugging
preparing loadfile, 9
source line
breakpoints, 43
code patching, 224
stepping, 99, 100, 195
Source Line Delimiter, 196
source module
newer than loadfile, 39
search for string, 186
source path, 39, 99, 101
Source Path dialog box, 39, 193
source statement
breakpoints, 41, 43
multiple per line, 43
stepping, 99, 100, 195
Source Step Granularity, 195
Source window
address of function, 134
after code patching, 49
after reset, 56, 214
C++ symbols, 49
configuring step and go options, 45,
99, 100
cross-hair cursor, 41
disassembly, 39, 40, 48, 99, 100,
111, 188
display formats, 6, 40, 99, 111, 188
displaying functions, 48, 52, 211
Function menu, 71
g0, 46
Go To/From Cursor, 47, 190
linked cursor, 7
list breakpoints, 44
loading, 25
newline, 99, 100
opening, 114
powerpak.ini, 99
program counter, 39
program variables, 49
red highlight, 41, 45
remove breakpoints, 45
Reset And Go, 47, 190
reset the processor, 56, 113
scroll with Trace window, 49, 75,
105, 242
set breakpoints, 41

startup code, 39
step, 46
tab width, 43, 99, 100
Variable menu, 49
view breakpoint, 45, 207, 208
view line numbers, 67, 99
source-level debugging, 6
Space, 224
stack
FillStackPattern command, 152
Information, 175
initializing, 152
monitoring, 52
SetStackArea command, 173
SetStackBase command, 173
SetStackSize command, 174
stack address, 51, 211
stack area
specifying, 53, 101, 210
specifying base and size, 173
specifying size, 174
Stack Area dialog box, 53, 210
stack base
specifying, 173
stack frame, 51
stack information
DisplayStack command, 144
Shell window, 51, 144
Stack window, 51, 209
StackInfo command, 175
stack meter, 51, 209
stack pointer after reset, 56, 214
stack usage
alarm limit, 52, 101, 102, 143, 149,
172, 209, 211
DisableAlarmLimit command, 143
DisableHighWaterMark command,
144
EnableAlarmLimit command, 149
EnableHighWaterMark command,
150
high-water mark, 52, 101, 102, 144,
150, 209, 211
SetStackAlarm command, 172
stack meter, 51, 209
Stack window
after reset, 56, 214
allocate stack area, 53, 210

Index 272

SLD User's Manual

colors, 51, 52, 209
features availability, 53
monitor stack usage, 52
opening, 114
view function source, 52, 211
Stack window panes
configuring, 211
contents, 51, 209
StackInfo command, 175
Start, 243
Start Frame, 241
Start Trace key, 38
StartTimer command, 176
startup code
configure chip selects, 31
Source window, 39
static variables, 49
status
$BREAKCAUSE system variable,
133
$EMULATING system variable, 133
$SHELL_STATUS system variable,
134
break cause, 48, 133, 139
Cause command, 139
emulating, 48, 133, 149, 158
EmuStatus command, 149
IsEmuHalted command, 158
load progress, 27, 97, 98, 121, 159,
160
Shell command completion, 134
show in Shell window, 48
tracing, 73
Step, 46
masking interrupts, 47, 103, 111, 176
Step command, 176
Step Continuously, 46, 47, 190
monitoring stack, 52
Step Count dialog box, 195
Step Into, 46, 189, 197, 198
program counter, 48
source display, 48
Step Into key, 38
Step Over, 46, 189, 198
program counter, 48
Step Over key, 38
StepMask command, 176

stepping

break cause, 133, 139
inline functions, 43
Source window configuration, 45, 99,
100, 176, 177, 195
Step command, 176
StepSrc command, 177
StepSrc command, 177
Stop, 243
Stop Trace key, 38
StopTimer command, 177
String command, 177
string constant, 165
Support, 3
supported compilers, 139
symbol table, 65, 153, 166
SymbolCloseFile command, 178
symbolic assembly, 135
symbolic debugging, 6
preparing loadfile, 9
symbolic disassembly, 142
symbolic information
functions, 51, 209
list in Shell window, 59, 144, 145
stack information in Shell window,
144
Stack window, 51, 209
Variable window, 50, 201
SymbolOpenFile command, 178
symbols
address, 144, 145
AddressOf command, 134
assembly modules, 27
at address, 164
base address, 140
C++, 26, 97, 98, 120, 159, 160
ConfigSymbols command, 140
DasmSym command, 142
disassembly, 40, 58, 111, 218
DisplaySymbols command, 144, 145
file, 144, 145, 178
find address, 59, 134
GetBase command, 153
loading, 26, 97, 120, 159
Memory window, 58, 111, 218
Motorola assembly modules, 121,
159
name resolution, 65
NameOf command, 164

SLD User's Manual 273

Index

on-demand loading, 26, 43, 97, 120,
159, 160
powerpak.ini, 97, 98
qualifying, 66
.relocating, 172
RemoveSymbols command, 166
scope, 65, 144, 145
SetBase command, 172
setting breakpoints, 43
Shell window, 144, 145
SymbolCloseFile command, 178
SymbolOpenFile command, 178
type, 144, 145
unloading, 166
view in Memory window, 59, 217,
218

virtual addresses, 65

system clock, 137

system variables
$BREAKCAUSE, 133
$EMULATING, 133
$SHELL_STATUS, 134
functionality, 129

tab width
powerpak.ini, 99, 100
setting breakpoints, 43, 205
specifying, 99, 100

Tab Width dialog box, 194

Taiwan, 3

task state segments, 179

Technical support, 3

telephone, 3

test, 165, 178

Test command, 178

time, 179

Time command, 179

time out, 138

timer
LapTimer command, 158
Shell window, 158, 176, 177
StartTimer command, 176
StopTimer command, 177
Trigger window, 85, 234, 236
Trigger window Options menu, 236

Timestamp, 240, 243

timestamp menu, 244
tmr, 234
Toolbar
buttons grayed-out, 9
closing, 109
configure chip selects, 31
g0, 46
halt emulation, 47
loading, 25, 119
mapping memory, 20, 110, 115
minimizing, 109
" overview, 8
reset the processor, 56, 113
step, 46
Toolbar key, 38
toolchains
also see compilers
Cfront, 13
FORMG695, 13
PharLap LinkLoc, 11
trace
BTM cycles, 105, 242
bus cycles, 75, 239, 242
clock cycles, 74, 239, 242
configuring buffers, 7, 74, 106
controlling, 7
display a buffer, 245
display a frame, 245
features, 7
halt when buffers full, 74, 106, 243
Intel addressing mode, 243
multiple buffers, 7, 244
save to file, 240
search for event, 7, 241
timestamp, 105, 243, 244
Trace window display formats, 7, 74,
105, 239, 242
trigger position in buffer, 74, 106
viewing, 73, 74, 239, 242
trace collection
automate with triggers, 73, 235
Toolbar, 73, 115
Trace window, 243
Trace Control dialog box, 73, 235, 236,
243
trace frame, 239
trace information, 7
address, 240

Index 274

SLD User's Manual

format, 239
signals, 240
timestamp, 240

Trace Save As dialog box, 240
Trace window

bus, 239

clock, 239

configure trace collection, 73, 243

configure view, 242

define event, 70

disassembly, 105, 239

display formats, 74, 105, 239, 242

find a buffer, 245

find a frame, 245

linked cursor, 7

opening, 115

signal mnemonics, 75

signals, 32, 74, 239

synchronize Source window, 49, 75,
105, 242

view trace, 74, 239, 242

timer condition, 85, 106, 234, 236
trigger examples
act on multiple events, 87
AND an event with an external input,
88
break on interrupt latency, 88
define sequential triggers for
capturing trace, 89
on external input alone, 89
stop trace without breaking
emulation, 86
Trigger Position, 243
Trigger window
bus trigger, 236
clock trigger, 236
configure trace collection, 73, 235
define event, 70, 236
define trigger, 84, 235
opening, 113
sequencing triggers, 84, 233, 235,
237

trademarks, iii
Transcript command, 179
Transcript pane

show sequence, 84, 233, 237
Trigger window panes, 233
trigger-in, 4, 235

capacity, 126, 179

clear, 125, 139

display commands, 19, 125, 148, 149
display emulator responses, 20
display results, 125, 168

Echo command, 148, 149

Results command, 168

Transcript command, 179

use, 123

Transcript Size dialog box, 126
trigger, 86

bus or clock cycle, 84, 106, 236
counter actions, 85, 106, 235, 236
counter condition, 85, 106, 234, 236
event condition, 85, 234

external action, 235

external condition, 234

features, 7

find in trace buffer, 245

multiple conditions, 84, 234
position in trace, 74, 106, 243, 244
sequencing, 84, 233, 235, 237
summary of defining triggers, 92
timer actions, 85, 106, 235, 236

trigger-out, 4, 235
TSS command, 179

Undelete, 204

UNIX newline, 99, 100, 196
Unterminated Memory Access error, 223
USA, 3

Usel6, 222, 243

Use32, 222,243

User, 222

Variable pop-up menu, 49, 199
Variable window
colors, 50, 201
compressed display, 203
display formats, 203
displaying program variables, 204
expanded display, 203
variables
see Shell variables

SLD User's Manual 275

Index

see program variables
VarlndexCPU16Reg command, 180
Verify command, 180
Version command, 180
virtual address, 69
virtual-86 mode, 68

While command, 181

Windows, 1

Windows interface, 6, 9, 10, 47, 96, 102,
103, 109, 113, 124

Word Access, 222

Write, 228

Write command, 181

write verification, 180, 223

Write Verify, 223

X, 230
Xlt command, 182

Zero At Frame, 244

Index 276 SLD User's Manual

MICROTEK INTERNATION AL
Development Systems Division
3300 N.W. 211th Terrace
Hillsboro, OR 97124-7136
Phone: (503) 645-7333
Fax: (503) 629-8460

6, Industry East Road 3
Science-based Industry Park
Hsinchu 30077

~ Taiwan, ROC
Tel: +886 35 772155

i
3

. “f .
SLD User's Manual For ;he PcowerPackTM Development Tool

Part Number 14913 000

