The Linux Network Administrators’ Guide

Copyright © 1992-1994 Olaf Kirch

For Britta

Legal Notice
UNIX 1s a trademark of Univel.

Linux is not a trademark, and has no connection to UNIX™ or Univel.

Copyright © 1994 Olaf Kirch
Kattreinstr. 38, 64295 Darmstadt, Germany
okir@monad.swb.de

“The Linux Network Administrators’ Guide” may be reproduced and distributed in whole

or in part, subject to the following conditions:

0. The copyright notice above and this permission notice must be preserved complete

on all complete or partial copies.

1. Any translation or derivative work of “The Linux Network Administrators’ Guide”

must be approved by the author in writing before distribution.

2. If you distribute “The Linux Network Administrators’ Guide” in part, instructions
for obtaining the complete version of “The Linux Network Administrators” Guide”
must be included, and a means for obtaining a complete version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in other

works without this permission notice if proper citation is given.

4. If you print and distribute “The Linux Network Administrators’ Guide”, you may
not refer to 1t as the “Official Printed Version”.

5. The GNU General Public License referenced below may be reproduced under the

conditions given within it.

6. Several sections of this document are held under separate copyright. When these
sections are covered by a different copyright, the seperate copyright is noted. If
you distribute “The Linux Network Administrators’ Guide” in part, and
that part is, in whole, covered under a seperate, noted copyright, the

conditions of that copyright apply.

Exceptions to these rules may be granted for academic purposes: Write to Olaf Kirch at
the above address, or email okir@monad.swb.de, and ask. These restrictions are here to
protect us as authors, not to restrict you as educators and learners.

All source code in “The Linux Network Administrators’ Guide” is placed under the GNU
General Public License. See appendix C for a copy of the GNU “GPL.”

The author is not liable for any damages, direct or indirect, resulting from the use of
information provided in this document.

Contents

Preface

Documentation on Linux

About This Book

The Official Printed Version« o v i e e e

More

Information L e e

On the Authors« . . e e

Thanks o e e e

Typographical Conventions o

The Linux Documentation Project

Filesystem Standards L L L

1 Introduction to Networking

1.1
1.2

1.3

History o o e e
UUCP Networks 0 o e
1.2.1 HowtoUse UUCP o o oo
TCP/IP Networks o
1.3.1 Introduction to TCP/IP-Networks
1.3.2 FEthernets
1.3.3 Other Types of Hardware
1.3.4 The Internet Protocol oL,
1.3.5 1P over Serial Lines o o
1.3.6 The Transmission Control Protocol
1.3.7 The User Datagram Protocol
1.3.8 Moreon Ports
1.3.9 The Socket Library oo

© 00 N =1 oy O;

10
11
12
13

CONTENTS 4
1.4 Linux Networking 26
1.4.1 Different Streaks of Development 26

1.4.2 Where to Get the Code L oL, 27

1.5 Maintaining Your System Lo 27
1.5.1 System Security oL e 28

1.6 Outlook on the Following Chapters 30
2 Issues of TCP/IP Networking 32
2.1 Networking Interfaces L o oL 32
2.2 IP Addresses e 33
2.3 Address Resolution L L L 34
2.4 IP Routing e 35
2.4.1 IP Networks. 0 o o e 35
2.4.2 Subnetworkso 36
2.4.3 Gatewayso e e e e 37
2.4.4 The Routing Table L. 39
2.4.5 Metric Valueso L 40

2.5 The Internet Control Message Protocol 40
2.6 The Domain Name System 41
2.6.1 Hostname Resolution oL 41
2.6.2 Enter DNS 0 42
2.6.3 Name Lookups with DNS, 45
2.6.4 Domain Name Servers oo 46
2.6.5 The DNS Database. 46
2.6.6 Reverse Lookups o 48

3 Configuring the Networking Hardware 51
3.1 Devices, Drivers, and all that, 51
3.2 Kernel Configuration oo 53
3.2.1 Kernel Options in Linux 1.0 and Higher 54
3.2.2 Kernel Options in Linux 1.1.14 and Higher 55

3.3 A Tour of Linux Network Devices, 58
3.4 FEthernet Installation 0 o oo 59

CONTENTS 5
3.4.1 Ethernet Cablingo oL 59
3.4.2 Supported Boards L o oo 59
3.4.3 IEthernet Autoprobing oL 60

3.0 The PLIP Driver o e 62
3.6 The SLIP and PPP Drivers o 63
Setting up the Serial Hardware 64
4.1 Communication Software for Modem Links 64
4.2 Introduction to Serial Devices oo oL 65
4.3 Accessing Serial Devices oo 66
4.4 Serial Hardware oL e 67
Configuring TCP /IP Networking 70
5.1 Setting up the proc Filesystem 71
5.2 Installing the Binaries o oL 71
5.3 Another Example oo 72
5.4 Setting the Hostname o oL 72
5.5 Assigning [P Addresses L o o L 73
5.6 Writing hosts and networks Fileso oo 74
5.7 Interface Configuration for IPo 0oL 76
5.7.1 The Loopback Interface 77
5.7.2 Ethernet Interfaces o o oL 79
5.7.3 Routing through a Gateway 81
5.7.4 Configuring a Gateway oL 82
5.7.5 The PLIP Interface 82
5.7.6 The SLIP and PPP Interface 83
5.7.7 The Dummy Interface 84
5.8 All About ifeonfig e 84
5.9 Checking with netstat o 87
5.9.1 Displaying the Routing Table 87
5.9.2 Displaying Interface Statistics L. 88
5.9.3 Displaying Connections oo 89
5.10 Checking the ARP Tables 90

CONTENTS 6

5.11 The Future e e 91
6 Name Service and Resolver Configuraton 93
6.1 The Resolver Library 94
6.1.1 The host.conf File o 94
6.1.2 Resolver Environment Variables 95
6.1.3 Configuring Name Server Lookups — resolv.conf 96
6.1.4 Resolver Robustness oL 97

6.2 Running named oL e 97
6.2.1 The named.boot File o Lo 98
6.2.2 The DNS Database Files. 100
6.2.3 Writing the Master Files 103
6.2.4 Verifying the Name Server Setup 104
6.2.5 Other Useful Tools 109

7 Serial Line IP 110
7.1 General Requirements 0o 110
7.2 SLIP Operation0 0 e e e 111
7.3 Using dip o oo e e 113
7.3.1 A Sample Scripto 113
7.3.2 A dip Reference L 115

7.4 Running in Server Mode Lo o 119
8 The Point-to-Point Protocol 121
8.1 Untangling the P’s 121
8.2 PPPon Linux e e 122
8.3 Running pppd e 123
8.4 Using Options Files L 124
8.5 Dialing out with chat oL 125
8.6 Debugging Your PPP Setup oL 127
8.7 1P Configuration Options oL 127
8.7.1 Choosing IP Addresses L. 128
8.7.2 Routing Through a PPP Link 129

8.8 Link Control Options 130

CONTENTS 7

8.9 General Security Considerations Lo 131
8.10 Authentication with PPP oo oo 132
8.10.1 CHAP versus PAP 132

8.10.2 The CHAP Secrets File 133

8.10.3 The PAP Secrets File L. 135

8.11 Configuring a PPP Server oo 136

9 Various Network Applications 138
9.1 The inetd Super-Server L e 138
9.2 The tepd access control facility o Lo 141
9.3 The services and protocols Files 00 142
9.4 Remote Procedure Call 0oL 144
9.5 Configuring the » Commands 146
10 The Network Information System 148
10.1 Getting Acquainted with NISo 0oL 149
10.2 NIS versus NISH o o oo 0 oo 152
10.3 The Client Side of NISo o o oo o 152
10.4 Running a NIS Server L 153
10.5 Setting up a NIS Client with NYS 154
10.6 Choosing the Right Maps 155
10.7 Using the passwd and group Maps 157
10.8 Using NIS with Shadow Support 159
10.9 Using the Traditional NIS Code oo o .. 160

11 The Network File System 161
11.1 Preparing NFS 0 oo 0o 163
11.2 Mounting an NFS Volume oL 163
11.3 The NFS Daemons 0 0ot 165
11.4 The exports Fileo o 0 166
11.5 The Linux Automounter e 168

12 Managing Taylor UUCP 169

12,1 History . . . o o o o e e e e e e e 169

CONTENTS N

12.2

12.3

12.4

12.5

12.6

12.7
12.8

12.1.1 More Information on UUCP 170
Introductiono 171
12.2.1 Layout of UUCP Transfers and Remote Execution 171
12.2.2 The Inner Workings of wucico 172
12.2.3 wucico Command Line Options 173
UUCP Configuration Files o .. 174
12.3.1 A Gentle Introduction to Taylor UUCP 174
12.3.2 What UUCP Needs to Know 177
12.3.3 Site Naming o0 o e 178
12.3.4 Taylor Configuration Files 178
12.3.5 General Configuration Options — the config File 179
12.3.6 How to Tell UUCP about other Systems — the sys File 180
12.3.7 What Devices there are — the port File 184
12.3.8 How to Dial a Number — the dial File 186
12.3.9 UUCP Over TCP o s 187
12.3.10Using a Direct Connection 188
The Do’s and Dont’s of UUCP — Tuning Permissions 188
12.4.1 Command Execution oo oL 188
12.4.2 File Transferso L 189
12.4.3 Forwarding e 190
Setting up your System for Dialingin 191
12.5.1 Setting up getty o o 191
12.5.2 Providing UUCP Accounts 191
12.5.3 Protecting Yourself Against Swindlers 193
12.5.4 Be Paranoid — Call Sequence Checks 193
12.5.5 Anonymous UUCP 194
UUCP Low-Level Protocols, 195
12.6.1 Protocol Overview L 195
12.6.2 Tuning the Transmission Protocol 197
12.6.3 Selecting Specific Protocols oo L. 197
Troubleshooting 198

Log Files o o e 200

CONTENTS 9
13 Electronic Mail 202
13.1 What is a Mail Message? L o 203
13.2 How is Mail Delivered? oo 206
13.3 Email Addresses oL L 207
13.4 How does Mail Routing Work? 208
13.4.1 Mail Routing on the Internet 208
13.4.2 Mail Routing in the UUCP World 209
13.4.3 Mixing UUCP and RFC 822 211

13.5 Pathalias and Map File Format 212
13.6 Configuring elm e 214
13.6.1 Global elm Options 215
13.6.2 National Character Sets 215

14 Getting smatl Up and Running 217
14.1 UUCP Setup« o oo o e s 218
14.2 Setup fora LAN o0 219
14.2.1 Writing the Configuration Files 220
14.2.2 Running smail oo e 221

14.3 If You Don’t Get Through... 222
14.3.1 Compiling smail 224

14.4 Mail Delivery Modes 224
14.5 Miscellaneous config Options o L. 225
14.6 Message Routing and Delivery 226
14.7 Routing Messages 227
14.7.1 The paths database o o 229

14.8 Delivering Messages to Local Addresses 229
14.8.1 Local Users o e 230
14.8.2 Forwarding e 230
14.8.3 Alias Files oo o 231
14.8.4 Mailing Lists o . o o e 232

14.9 UUCP-based Transports oo i it vt e 232
14.10SMTP-based Transports oo v it 233
14.11Hostname Qualification oo oo 234

CONTENTS 10

15 Sendmail+IDA 235
15.1 Introduction to Sendmail4+IDA L o 0oL 235
15.2 Configuration Files — Overview 236
15.3 The sendmail.cf File 0o 236

15.3.1 An Example sendmail.m4 File00 0oL 237
15.3.2 Typically Used sendmail.mj Parameters 237
15.4 A Tour of Sendmail+IDA Tables 243
15.4.1 mailertableo 243
15.4.2 wucpztable oo 245
15.4.3 pathtable 245
15.4.4 domaintable 246
15.4.5 aliases oL e 247
15.4.6 Rarely Used Tables 248
15.5 Installing sendmazl o 248
15.5.1 Extracting the binary distribution 249
15.5.2 Building sendmail.cf L o 249
15.5.3 Testing the sendmail.cf file 250
15.5.4 Putting it all together - Integration Testing sendmail.cf and the tables253
15.6 Administrivia and Stupid Mail Tricks o 0 0. 255
15.6.1 Forwarding Mail to a Relay Host 255
15.6.2 Forcing Mail into Misconfigured Remote Sites 255
15.6.3 Forcing Mail to be Transferred via UUCP 256
15.6.4 Preventing Mail from Being Delivered via UUCP 257
15.6.5 Running the Sendmail Queue on Demand 257
15.6.6 Reporting Mail Statistics 257
15.7 Mixing and Matching Binary Distributions 258
15.8 Where to Get More Information 259

16 Netnews 260
16.1 Usenet History o o o v i it e 260
16.2 What is Usenet, Anyway? o e 261

16.3

How Does Usenet Handle News? 263

CONTENTS

11

17 C News

18

19

A

B

C

17.1 Delivering News
17.2 Installation o oL o oL
173 Thesysfile oo o
17.4 The active file o oL
17.5 Article Batching,
17.6 Expiring News
17.7 Miscellaneous Files
17.8 Control Messages

17.8.1 The cancel Message

17.8.2 newgroup and rmgroup

17.8.3 The checkgroups Message

17.8.4 sendsys, version, and senduuname

17.9 C News in an NF'S Environment

17.10Maintenance Tools and Tasks

A Description of NNTP

18.1 Introductiono oo oo
18.2 Installing the NNTP server
18.3 Restricting NNTP Access
18.4 NNTP Authorization
18.5 nnipd Interaction with C News

Newsreader Configuration

19.1 tin Configuration
19.2 ¢rn Configuration L.
19.3 nn Configuration,

A Null Printer Cable for PLIP
Sample smail Configuration Files

The GNU General Public License

C.1 Preamble s

C.2 Terms and Conditions

265
265
267
269
272
274
276
279
280
281
281
281
283
283
284

286
286
288
288
290
290

292
293
294
295

297

298

CONTENTS 12

C.3 How to Apply These Terms o 311
Glossary 313
Annotated Bibliography 319

Bookso e 319

General Books on the Interneto oo 319
Administration Issues oL oL oL 319
The Background 321
HOWTOs o e e 322
What are Linux HOWTOs? o o o o oo . 322
Where to get Linux HOWTOso ... 322
HOWTO Index o L 0 e 323
Miscellaneous and Legalese L. 324

RECs o o e 324

List of Figures

1.1 The three steps of sending a datagram from erdos to quark. 22
2.1 Subnetting a class B network oL oo oo L 36
2.2 A part of the net topology at Groucho Marx Univ. 38
2.3 A part of the domain name space Lo oo 43
2.4 An excerpt from the named.hosts file for the Physics Department. 47
2.5 An excerpt from the named.hosts file for GMU. 48
2.6 An excerpt from the named.rev file for subnet 12. 49
2.7 An excerpt from the named.rev file for network 149.76. 50
3.1 The relationship between drivers, interfaces, and the hardware. 52
5.1 Virtual Brewery and Virtual Winery — the two subnets. 74
6.1 The named.boot file for vlager. L0 98
6.2 The named.ca file. 104
6.3 The named.hosts file.o o 105
6.4 The named.local file. oo 106
6.5 The named.rev file.o 106
7.1 A sample dip script Lo 114
9.1 A sample Jetc/inetd.conf file. oL oL 140
9.2 A sample Jetc/rpcfile. 145
10.1 Sample nsswitch.conf file.o Lo 157
12.1 Interaction of Taylor UUCP Configuration Files. 175

13

LIST OF FIGURES 14

15.1 sendmail Support Files. o o oo 236
15.2 A sample sendmail.m/j file for vstout. 0. 238
16.1 Usenet news flow through Groucho Marx University. 262

17.1 News flow through relaynews. 267

Preface

With the Internet much of a buzzword recently, and otherwise serious people joyriding
along the “Informational Superhighway,” computer networking seems to be moving toward
the status of TV sets and microwave ovens. The Internet is recently getting an unusually
high media coverage, and social science majors are descending on Usenet newsgroups to
conduct researches on the “Internet Culture.” Carrier companies are working to introduce
new transmission techniques like ATM that offer many times the bandwidth the average

network link of today has.

Of course, networking has been around for a long time. Connecting computers to form
local area networks has been common practice even at small installations, and so have been
long-haul links using public telephone lines. A rapidly growing conglomerate of world-wide
networks has, however, made joining the global village a viable option even for small non-
profit organizations of private computer users. Setting up an Internet host with mail and
news capabilities offering dial-up access has become affordable, and the advent of ISDN will

doubtlessly accelerate this trend.

Talking of computer networks quite frequently means talking about UNIX. Of course,
UNIX is neither the only operating system with network capabilities, nor will it remain a
front-runner forever, but it has been in the networking business for a long time, and will

surely continue to do so for some time to come.

What makes it particularly interesting to private users is that there has been much
activity to bring free UNIXoid operating systems to the PC, being 386 BSD, FreeBSD — and
Linux. However, Linux is not UNIX. That is a registered trademark of whoever currently
holds the rights to it (Univel, while I'm typing this), while Linux is an operating system
that strives to offer all functionality the POSIX standards require for UNIX-like operating

15

Documentation on Linux 16

systems, but is a complete reimplementation.

The Linux kernel was written largely by Linus Torvalds, who started it as a project to
get to know the Intel 1386, and to “make MINIX better.” MINIX was then another popular
PC operating system offering vital ingredients of UNxX functionality, and was written by

Prof. Andrew S. Tanenbaum.

Linux is covered by the GNU General Public License (GPL), which allows free distribu-
tion of the code (please read the GPL in appendix C for a definition of what “free software”
means). Outgrowing its child’s diseases, and drawing from a large and ever-growing base
of free application programs, it is quickly becoming the oprating system of choice for many
PC owners. The kernel and C library have become that good that most standard software
may be compiled with no more effort than is required on any other mainstream UNxXish
system, and a broad assortment of packaged Linux distributions allows you to almost drop

it onto your hard disk and start playing.

Documentation on Linux

One of the complaints that are frequently levelled at Linux (and free software in general)
is the sorry state or complete lack of documentation. In the early days it was not unusual
for a package to come with a handful of READMLEs and installation notes. They gave the
moderately experienced UNxX wizard enough information to successfully install and run it,

but left the average newbie out in the cold.

Back in late 1992, Lars Wirzenius and Michael K. Johnson suggested to form the Linux
Documentation Project, or LDP, which aims at providing a coherent set of manuals. Stop-
ping short of answering questions like “How?”, or “Why?”, or “What’s the meaning of life,
universe, and all the rest?”, these manuals attempt to cover most aspects of running and

using a Linux system users without requiring a prior degree in UN%X.

Among the achievements of the LDP are the Installation and Getting Started Guide,
written by Matt Welsh, the Kernel Hacker’s Guide by Michael K. Johnson, and the manpage
project coordinated by Rik Faith, which so far supplied a set of roughly 450 manual pages
for most system and C library calls. The System Administrators’ Guide, written by Lars

Wirzenius, is still at the Alpha stage. A User’s Guide is being prepared.

This book, the Linuxz Network Administrators’ Guide, is part of the LDP series, too.
As such, it may be copied and distributed freely under the LDP copying license which is

reproduced on the second page.

However, the LDP books are not the only source of information on Linux. At the mo-
ment, there are more than a dozen HOWTOs that are posted to comp.os.linux.announce
regularly and archived at various F'TP sites. HOWTOs are short documents of a few pages

that give you a brief introduction into topics such as Ethernet support under Linux, or

About This Book 17

the configuration of Usenet news software, and answer frequently asked questions. They
usually provide the most accurate and up-to-date information avaliable on the topic. A list
of available HOWTOs is produced in the “Annotated Bibliography” toward the end of this
book.

About This Book

When I joined the Linux Documentation Project in 1992, I wrote two small chapters on
UUCP and smail, which I meant to contribute to the System Administrator’s Guide. Devel-
opment of TCP/IP networking was just beginning, and when those “small chapters” started
to grow, [wondered aloud if it wouldn’t be nice to have a Networking Guide. “Great”, ev-
eryone said, “I'd say, go for it!” So I went for it, and wrote a first version of the Networking
Guide, which I released in September 1993.

The new Networking Guide you are reading right now is a complete rewrite that features

several new applications that have become available to Linux users since the first release.

The book is organized roughly in the sequence of steps you have to take to configure your
system for networking. It starts by discussing basic concepts of networks, and TCP/IP-
based networks in particular. We then slowly work our way up from configuring TCP /IP at
the device level to the setup of common applications such as rlogin and friends, the Network
File System, and the Network Information System. This is followed by a chapter on how
to set up your machine as a UUCP node. The remainder of the book is dedicated to two

major applications that run on top of both TCP/IP and UUCP: electronic mail and news.

The email part features an introduction of the more intimate parts of mail transport and
routing, and the myriads of addressing schemes you may be confronted with. It describes
the configuration and management of smail, a mail transport agent commonly used on
smaller mail hubs, and sendmail, which is for people who have to do more complicated
routing, or have to handle a large volume of mail. The sendmail chapter has been written

and contributed by Vince Skahan.

The news part attempts to give you an overview of how Usenet news works, covers
C news, the most widely used news transport software at the moment, and the use of
NNTP to provide newsreading access to a local network. The book closes with a short

chapter on the care and feeding of the most popular newsreaders on Linux.

The Official Printed Version

In autumn 1993, Andy Oram, who has been around the LDP mailing list from almost
the very beginning, asked me about publishing my book at O’Reilly and Associates. 1

was excited about this; I had never imagined my book being that successful. We finally

More Information 18

agreed that O’Reilly would produce an enhanced Official Printed Version of the Networking
Guide with me, while I retained the original copyright so that the source of the book
could be freely distributed.! This means that you can choose freely: you can get the
ITEXsource distributed on the network (or the preformatted DVI or PostScript versions,
for that matter), and print it out. Or you can purchase the official printed version from

O’Reilly, which will be available some time later this year.

Then, why would you want to pay money for something you can get for free? Is Tim
O’Reilly out of his mind for publishing something everyone can print and even sell herself??
Or is there any difference between these versions?

bYANAA

The answers are “it depends,” “no, definitely not,” and “yes and no.” O’Reilly and
Associates do take a risk in publishing the Networking Guide, but I hope it will finally
pay off for them. If it does, I believe this project can serve as an example how the free
software world and companies can cooperate to produce something both benefit from. In
my view, the great service O’Reilly is doing to the Linux community (apart from the book
being readily available in your local bookstore) is that it may help Linux being recognized
as something to be taken seriously: a viable and useful alternative to commercial PC UNIX

operating systems.

So what about the differences between the printed version and the online one? Andy
Oram has made great efforts at transforming my early ramblings into something actually
worth printing. (He has also been reviewing the other books put out by the Linux Doc-
umentation Project, trying to contribute whatever professional skills he can to the Linux

community.)

Since Andy started reviewing the Networking Guide and editing the copies I sent him,
the book has improved vastly over what it was half a year ago. It would be nowhere close
to where it is now without his contributions. All his edits have been fed back into online
version, as will any changes that will be made to the Networking Guide during the copy-
editing phase at O’Reilly. So there will be no difference in content. Still, the O’Reilly version
will be different: On one hand, people at O’Reilly are putting a lot of work into the look
and feel, producing a much more pleasant layout than you could ever get out of standard
ETEX. On the other hand, it will feature a couple of enhancements like an improved index,

and better and more figures.

More Information

If you follow the instructions in this book, and something does not work nevertheless, please

be patient. Some of your problems may be due to stupid mistakes on my part, but may

!The copyright notice is reproduced on the page immediately following the title page.
2Note that while you are allowed to print out the online version, you may not run the O’Reilly book

through a photocopier, and much less sell any of those (hypothetical) copies.

On the Authors 19

also be caused by changes in the networking software. Therefore, you should probably ask
on comp.os.linux.help first. There’s a good chance that you are not alone with your
problems, so that a fix or at least a proposed workaround is likely to be known. If you have
the opportunity, you should also try to get the latest kernel and network release from one
of the Linux FTP sites, or a BBS near you. Many problems are caused by software from
different stages of development, which fail to work together properly. After all, Linux is

“work in progress”.

Another good place to inform yourself about current development is the Networking
HOWTO. It is maintained by Terry Dawson®. It is posted to comp.os.linux.announce
once a month, and contains the most up-to-date information. The current version can also
be obtained (among others) from tsx-11.mit.edu, in /pub/linuz/doc. For problems you
can’t solve in any other way, you may also contact the author of this book at the address
given in the preface. However, please, refrain from asking developers for help. They are
already devoting a major part of their spare time to Linux anyway, and occasionally even

have a life beyond the net:-)

On the Authors

Olaf has been a UNIX user and part-time administrator for a couple of years while he was
studying mathematics. At the moment, he’s working as a UNIX programmer and is writing
a book. One of his favorite sports is doing things with sed that other people would reach
for their perl interpreter for. He has about as much fun with this as with mountain hiking
with a backpack and a tent.

Vince Skahan has been administering large numbers of UNIX systems since 1987 and
currently runs sendmail4+IDA on approximately 300 UNIX workstations for over 2000 users.
He admits to losing considerable sleep from editing quite a few sendmail.cf files ‘the hard
way’ before discovering sendmail+IDA in 1990. He also admits to anxiously awaiting the

delivery of the first perl-based version of sendmail for even more obscure fun®. ..

Olaf can be reached at the following address:

Olaf Kirch
Kattreinstr. 38
64295 Darmstadt

Germany

okir@monad.swh.de

Vince can be reached at:

*Terry Dawson can be reached at terryd@extro.ucc.su.oz.au.
“Don’t you think we could do it with sed, Vince?

Thanks 20

Vince Skahan

vince@victrola.wa.com

We are open to your questions, comments, postcards, etc. However, we ask you not to

telephone us unless it’s really important.

Thanks

Olaf says: This book owes very much to the numerous people who took the time to proofread
it and helped iron out many mistakes, both technical and grammatical (never knew that
there’s such a thing as a dangling participle). The most vigorous among them was Andy

Oram at O’Reilly and Associates.
I am greatly indebted to Andres Sepilveda, Wolfgang Michaelis, Michael K. Johnson,

and all developers who spared the time to check the information provided in the Networking
Guide. I also wish to thank all those who read the first version of the Networking Guide
and sent me corrections and suggestions. You can find hopefully complete list of contrib-
utors in the file Thanks in the online distribution. Finally, this book would not have been
possible without the support of Holger Grothe, who provided me with the critical Internet

connectivity.

I would also like to thank the following groups and companies who printed the first
edition of the Networking Guide and have donated money either to me, or to the Linux

Documentation Project as a whole.

e Linux Support Team, Erlangen, Germany
e S.u.S.E. GmbH, Fuerth, Germany

e Linux System Labs, Inc., United States

Vince says: Thanks go to Neil Rickert and Paul Pomes for lots of help over the years
regarding the care and feeding of sendmail+IDA and to Rich Braun for doing the initial
port of sendmail+IDA to Linux. The biggest thanks by far go to my wife Susan for all the

support on this and other projects.

Typographical Conventions 21

Typographical Conventions

In writing this book, a number of typographical conventions were employed to mark shell

commands, variable arguments, etc. They are explained below.

Bold Font Used to mark hostnames and mail addresses, as well as new concepts and

warnings.
Italics Font Used to mark file names, UNIX commands, and keywords in configuration
files. Also used for emphasis in text.

Typewriter Font
Used to represent screen interaction, such as user interaction when running

a program.

Also used for code examples, whether it is a configuration file, a shell script,

or something else.

Typewriter Slanted Font
Used to mark meta-variables in the text, especially in representations of the

command line. For example,
$ 1s -1 foo
where foo would “stand for” a filename, such as /tmp.
Key Represents a key to press. You will often see it in this form:
Press to continue.

<& A diamond in the margin, like a black diamond on a ski hill, marks “danger”

or “caution.” Read paragraphs marked this way carefully.

$ and # When preceding a shell command to be typed, these denote the shell prompt.
The ‘$’ symbol is used when the command may be executed as a normal user;

‘4’ means that the command requires super user privilieges.

The Linux Documentation Project 22

The Linux Documentation Project

The Linux Documentation Project, or LDP, is a loose team of writers, proofreaders, and
editors who are working together to provide complete documentation for the Linux operating
system. The overall coordinator of the project is Matt Welsh, who is heavily aided by Lars

Wirzenius and Michael K. Johnson.

This manual is one in a set of several being distributed by the LDP, including
a Linux Users’ Guide, System Administrators’ Guide, Network Administrators’ Guide,
and Kernel Hackers’ Guide. These manuals are all available in KIEX source format,
.dvi format, and postscript output by anonymous FTP from nic.funet.fi, in the di-
rectory /pub/0S/Linux/doc/doc-project, and from tsx-11.mit.edu, in the directory
/pub/linux/docs/guides.

We encourage anyone with a penchant for writing or editing to join us in improving
Linux documentation. If you have Internet e-mail access, you can join the DOC channel of

the Linux-Activists mailing list by sending mail to
linux-activists-request@Oniksula.hut.fi

with the line
X-Mn-Admin: join DOC

in the header or as the first line of the message body. An empty mail without the additional
header line will make the mail-server return a help message. To leave the channel, send a

message to the same address, including the line

X-Mn-Admin: leave DOC

Filesystem Standards 23

Filesystem Standards

Throughout the past, one of the problems that afflicted Linux distributions as well as
separate packages was that there was no single accepted file system layout. This resulted in
incompatibilities between different packages, and confronted users and administrators alike

with the task to locate various files and programs.

To improve this situation, in August 1993, several people formed the Linux File Sys-
tem Standard Group, or FSSTND Group for short, coordinated by Daniel Quinlan. After
six months of discussion, the group presented a draft that presents a coherent file sytem

structure and defines the location of most essential programs and configuration files.

This standard is supposed to be implemented by most major Linux distributions and
packages. Throughout this book, we will therefore assume that any files discussed reside
in the location specified by the standard; only where there is a long tradition that conflicts

with this specification will alternative locations be mentioned.

The Linux File System Standard can be obtained from all major Linux FTP sites and
their mirrors; for instance, you can find it on sunsite.unc.edu below /pub/linuz/docs.
Daniel Quinlan, the coordinator of the FSSTND group can be reached at quin-
lan@bucknell.edu.

Chapter 1

Introduction to Networking

1.1 History

The idea of networking is probably as old as telecommunications itself. Consider people
living in the stone age, where drums may have been used to transmit messages between
individuals. Suppose caveman A wants to invite caveman B for a game of hurling rocks at
each other, but they live too far apart for B to hear A banging his drum. So what are A’s
options? He could 1) walk over to B’s place, 2) get a bigger drum, or 3) ask C, who lives

halfway between them, to forward the message. The last is called networking.

Of course, we have come a long way from the primitive pursuits and devices of our
forebears. Nowadays, we have computers talk to each other over vast assemblages of wires,
fiber optics, microwaves, and the like, to make an appointment for saturday’s soccer match.!
In the following, we will deal with the means and ways by which this is accomplished, but

leave out the wires, as well as the soccer part.

We will describe two types of networks in this guide: those based on UUCP, and those
based on TCP/IP. These are protocol suites and software packages that supply means to
transport data between two computers. In this chapter, we will look at both types of

networks, and discuss their underlying principles.

We define a network as a collection of hosts that are able to communicate with each
other, often by relying on the services of a number of dedicated hosts that relay data
between the participants. Hosts are very often computers, but need not be; one can also
think of X-terminals or intelligent printers as hosts. Small agglomerations of hosts are also

called sites.

!The original spirit of which (see above) still shows on some occasions in Europe.

24

1.2. UUCP Networks 25

Communication is impossible without some sort of language or code. In computer net-
works, these languages are collectively referred to as protocols. However, you shouldn’t
think of written protocols here, but rather of the highly formalized code of behavior ob-
served when heads of state meet, for instance. In a very similar fashion, the protocols used
in computer networks are nothing but very strict rules for the exchange of messages between

two or more hosts.

1.2 UUCP Networks

UUCP is an abbreviation for Unix-to-Unix Copy. It started out as a package of programs
to transfer files over serial lines, schedule those transfers, and initiate execution of programs
on remote sites. It has undergone major changes since its first implementation in the late
seventies, but is still rather spartan in the services it offers. Its main application is still in

wide-area networks based on dial-up telephone links.

UUCP was first developed by Bell Laboratories in 1977 for communication between their
Unix-development sites. In mid-1978, this network already connected over 80 sites. It was
running email as an application, as well as remote printing. However, the system’s central
use was in distributing new software and bugfixes.? Today, UUCP is not confined to the
UN*X environment anymore. There are both free and commercial ports available for a
variety of platforms, including AmigaOS, DOS, Atari’s TOS, etc.

One of the main disadvantages of UUCP networks is their low bandwidth. On one hand,
telephone equipment places a tight limit on the maximum transfer rate. On the other hand,
UUCP links are rarely permanent connections; instead, hosts rather dial up each other at
regular intervals. Hence, most of the time it takes a mail message to travel a UUCP network

it sits idly on some host’s disk, awaiting the next time a connection is established.

Despite these limitations, there are still many UUCP networks operating all over the
world, run mainly by hobbyists, which offer private users network access at reasonable
prices. The main reason for the popularity of UUCP is that it is dirt cheap compared
to having your computer connected to The Big Internet Cable. To make your computer
a UUCP node, all you need is a modem, a working UUCP implementation, and another

UUCP node that is willing to feed you mail and news.

1.2.1 How to Use UUCP

The idea behind UUCP is rather simple: as its name indicates, it basically copies files from

one host to another, but it also allows certain actions to be performed on the remote host.

2Not that the times had changed that much. ..

1.2. UUCP Networks 26

Suppose your machine is allowed to access a hypothetical host named swim, and have
it execute the [pr print command for you. Then you could type the following on your

command line to have this book printed on swim:?

$ uux -r swim!lpr !metguide.dvi

This makes uuz, a command from the UUCP suite, schedule a job for swim. This job
consists of the input file, netguide.dvi, and the request to feed this file to Ipr. The -r flag
tells wuz not to call the remote system immediately, but to rather store the job away until

a connection is established at a later occasion. This is called spooling.

Another property of UUCP is that it allows to forward jobs and files through several
hosts, provided they cooperate. Assume that swim from the above examples has a UUCP
link with groucho, which maintains a large archive of UNxX applications. To download the

file tripwire-1.0.tar.gz to your site, you might issue

$ uucp -mr swim!groucho!”/security/tripwire-1.0.tar.gz trip.tgz

The job created will request swim to fetch the file from groucho, and send it to your
site, where UUCP will store it in ¢rip.tgz and notify you via mail of the file’s arrival. This
will be done in three steps. First, your site sends the job to swim. When swim establishes
contact with groucho the next time, it downloads the file. The final step is the actual

transfer from swim to your host.

The most important services provided by UUCP networks these days are electronic mail

and news. We will come back to these later, so we will give only a brief introduction here.

Electronic mail — email for short — allows you to exchange messages with users on remote
hosts without actually having to know how to access these hosts. The task of directing a
message from your site to the destination site is performed entirely by the mail handling
system. In a UUCP environment, mail is usually transported by executing the rmail com-
mand on a neighboring host, passing it the recipient address and the mail message. rmail
will then forward the message to another host, and so on, until it reaches the destination
host. We will look at this in detail in chapter 13.

News may best be described as sort of a distributed bulletin board system. Most often,
this term refers to Usenet News, which is by far the most widely known news exchange
network with an estimated number of 120,000 participating sites. The origins of Usenet
date back to 1979, when, after the release of UUCP with the new Unix V7, three graduate

students had the idea of a general information exchange within the Unix community. They

When using bash, the GNU Bourne Again Shell, you might have to escape the exclamation mark, because

it uses it as its history character.

1.3. TCP/IP Networks 27

put together some scripts, which became the first netnews system. In 1980, this network
connected duke, une, and phs, at two Universities in North Carolina. Out of this, Usenet
eventually grew. Although it originated as a UUCP-based network, it is no longer confined

to one single type of network.

The basic unit of information is the article, which may be posted to a hierarchy of
newsgroups dedicated to specific topics. Most sites receive only a selection of all newsgroups,

which carry an average of 60MB worth of articles a day.

In the UUCP world, news is generally sent across a UUCP link by collecting all articles
from the groups requested, and packing them up in a number of batches. These are sent
to the receiving site, where they are fed to the rnews command for unpacking and further

processing.

Finally, UUCP is also the medium of choice for many dial-up archive sites which offer
public access. You can usually access them by dialing them up with UUCP, logging in as a
guest user, and download files from a publicly accessible archive area. These guest accounts

often have a login name and password of uuep/nuucp or something similar.

1.3 TCP/IP Networks

Although UUCP may be a reasonable choice for low-cost dial-up network links, there are
many situations in which its store-and-forward technique proves too inflexible, for example
in Local Area Networks (LANs). These are usually made up of a small number of machines
located in the same building, or even on the same floor, that are interconnected to provide a
homogeneous working environment. Typically, you would want to share files between these

hosts, or run distributed applications on different machines.

These tasks require a completely different approach to networking. Instead of forwarding
entire files along with a job description, all data is broken up in smaller chunks (packets),
which are forwarded immediately to the destination host, where they are reassembled. This
type of network is called a packet-switched network. Among other things, this allows to run
interactive applications over the network. The cost of this is, of course, a greatly increased

complexity in software.

The solution that UN*X system — and many non-UN*X sites — have adopted is known
as TCP/IP. In this section, we will have a look at its underlying concepts.

1.3. TCP/IP Networks 28

1.3.1 Introduction to TCP/IP-Networks

TCP/IP traces its origins to a research project funded by the United States DARPA (De-
fense Advanced Research Projects Agency) in 1969. This was an experimental network, the
ARPANET, which was converted into an operational one in 1975, after it had proven to be

a Success.

In 1983, the new protocol suite TCP/IP was adopted as a standard, and all hosts on
the network were required to use it. When ARPANET finally grew into the Internet (with
ARPANET itself passing out of existence in 1990), the use of TCP/IP had spread to net-
works beyond the Internet itself. Most notable are UN%X local area networks, but in the
advent of fast digital telephone equipment, such as ISDN, it also has a promising future as

a transport for dial-up networks.

For something concrete to look at as we discuss TCP /IP throughout the following sec-
tions, we will consider Groucho Marx University (GMU), situated somewhere in Fredland,
as an example. Most departments run their own local area networks, while some share one,
and others run several of them. They are all interconnected, and are hooked to the Internet

through a single high-speed link.

Suppose your Linux box is connected to a LAN of UNxX hosts at the Mathematics
Department, and its name is erdos. To access a host at the Physics Department, say

quark, you enter the following command:

$ rlogin quark.physics
Welcome to the Physics Department at GMU
(ttyq2) login:

At the prompt, you enter your login name, say andres, and your password. You are
then given a shell on quark, to which you can type as if you were sitting at the system’s
console. After you exit the shell, you are returned to your own machine’s prompt. You have
just used one of the instantaneous, interactive applications that TCP /IP provides: remote

login.

While being logged into quark, you might also want to run an X11-based application,
like a function plotting program, or a PostScript previewer. To tell this application that
you want to have its windows displayed on your host’s screen, you have to set the DISPLAY

environment variable:
$ export DISPLAY=erdos.maths:0.0

If you now start your application, it will contact your X server instead of quark’s, and

display all its windows on your screen. Of course, this requires that you have X11 runnning

1.3. TCP/IP Networks 29

on erdos. The point here is that TCP/IP allows quark and erdos to send X11 packets
back and forth to give you the illusion that you’re on a single system. The network is almost

transparent here.

Another very important application in TCP /TP networks is NFS, which stands for Net-
work File System. It is another form of making the network transparent, because it basically
allows you to mount directory hierarchies from other hosts, so that they appear like local
file systems. For example, all users’ home directories can be on a central server machine,
from which all other hosts on the LAN mount the directory. The effect of this is that users
can log into any machine, and find themselves in the same home directory. Similarly, it is
possible to install applications that require large amounts of disk space (such as TpX) on
only one machine, and export these directories to other machines. We will come back to
NFS in chapter 11.

Of course, these are only examples of what you can do over TCP/IP networks. The

possibilities are almost limitless.

We will now have a closer look at the way TCP/IP works. You will need this to under-
stand how and why you have to configure your machine. We will start by examining the

hardware, and slowly work our way up.

1.3.2 Ethernets

The type of hardware most widely used throughout LANs is what is commonly known as
Ethernet. Tt consists of a single cable with hosts being attached to it through connectors,
taps or transceivers. Simple Ethernets are quite inexpensive to install, which, together with

a net transfer rate of 10 Megabits per second accounts for much of its popularity.

Ethernets come in three flavors, called thick and thin, respectively, and twisted pair.
Thin and thick Ethernet each use a coaxial cable, differing in width and the way you may
attach a host to this cable. Thin Ethernet uses a T-shaped “BNC” connector, which you
insert into the cable, and twist onto a plug on the back of your computer. Thick Ethernet
requires that you drill a small hole into the cable, and attach a transceiver using a “vampire
tap”. One or more hosts can then be connected to the transceiver. Thin and thick FEthernet
cable may run for a maximum of 200 and 500 meters, respectively, and are therefore also
called 10base-2 and 10base-5. Twisted pair uses a cable made of two copper wires which is
also found in ordinary telephone installations, but usually requires additional hardware. It

is also known as 10base-T.

Although adding a host to a thick Ethernet is a little hairy, it does not bring down the
network. To add a host to a thinnet installation, you have to disrupt network service for at

least a few minutes because you have to cut the cable to insert the connector.

1.3. TCP/IP Networks 30

Most people prefer thin Ethernet, because it is very cheap: PC cards come for as little
as US$ 50, and cable is in the range of a few cent per meter. However, for large-scale
installations, thick Ethernet is more appropriate. For example, the Ethernet at GMU’s
Mathematics Department uses thick Ethernet, so traffic will not be disrupted each time a
host is added to the network.

One of the drawbacks of Ethernet technology is its limited cable length, which precludes
any use of it other than for LANs. However, several Ethernet segments may be linked to
each other using repeaters, bridges or routers. Repeaters simply copy the signals between
two or more segments, so that all segments together will act as if it was one Ethernet. timing
requirements, there may not be more than four repeaters any two hosts on the network.
Bridges and Routers are more sophisticated. They analyze incoming data and forward it

only when the recipient host is not on the local Ethernet.

Ethernet works like a bus system, where a host may send packets (or frames) of up to
1500 bytes to another host on the same Fthernet. A host is addressed by a six-byte address
hardcoded into the firmware of its Ethernet board. These addresses are usually written as

a sequence of two-digit hex numbers separated by colons, as in aa:bb:cc:dd:ee:ff.

A frame sent by one station is seen by all attached stations, but only the destination
host actually picks it up and processes it. If two stations try to send at the same time, a
collision occurs, which is resolved by the two stations aborting the send, and reattempting

it a few moments later.

1.3.3 Other Types of Hardware

In larger installations, such as Groucho Marx University, Ethernet is usually not the only
type of equipment used. At Groucho Marx University, each department’s LAN is linked to
the campus backbone, which is a fiber optics cable running FDDI (Fiber Distributed Data
Interface). FDDI uses an entirely different approach to transmitting data, which basically
involves sending around a number of tokens, with a station only being allowed to send a
frame if it captures a token. The main advantage of FDDI is a speed of up to 100 Mbps,

and a maximum cable length of up to 200 km.

For long-distance network links, a different type of equipment is frequently used, which
is based on a standard named X.25. Many so-called Public Data Networks, like Tymnet in
the U.S., or Datex-P in Germany, offer this service. X.25 requires special hardware, namely
a Packet Assembler/Disassembler or PAD. X.25 defines a set of networking protocols of its
own right, but is nevertheless frequently used to connect networks running TCP/IP and
other protocols. Since IP packets cannot simply be mapped onto X.25 (and vice versa),

they are simply encapsulated in X.25 packets and sent over the network.

1.3. TCP/IP Networks 31

Frequently, radio amateurs use their equipment to network their computers; this is called
packet radio or ham radio. The protocol used by ham radios is called AX.25, which was
derived from X.25.

Other techniques involve using slow but cheap serial lines for dial-up access. These
require yet another protocol for transmission of packets, such as SLIP or PPP, which will

be described below.

1.3.4 The Internet Protocol

Of course, you wouldn’t want your networking to be limited to one Ethernet. Ideally, you
would want to be able to use a network regardless of what hardware it runs on and how
many subunits it is made up of. For example, in larger installations such as Groucho Marx
University, you usually have a number of separate Ethernets that have to be connected
in some way. At GMU, the maths department runs two Ethernets: one network of fast

machines for professors and graduates, and another one with slow machines for students.
Both are linked to the FDDI campus backbone.

This connection is handled by a dedicated host, a so-called gateway, which handles
incoming and outgoing packets by copying them between the two Ethernets and the fiber
optics cable. For example, if you are at the Maths Department, and want to access quark
on the Physics Deparment’s LAN from your Linux box, the networking software cannot
send packets to quark directly, because it is not on the same Fthernet. Therefore, it has
to rely on the gateway to act as a forwarder. The gateway (name it sophus) then forwards
these packets to its peer gateway niels at the Physics Department, using the backbone,
with niels delivering it to the destination machine. Data flow between erdos and quark

is shown in figure 1.1 (With apologies to Guy L. Steele).

1.3. TCP/IP Networks 32

FDDI Campus Backbone

@

niels sophus

Physics Ethernet Mathematics Ethernet

®)

quar k

Figure 1.1: The three steps of sending a datagram from erdos to quark.

This scheme of directing data to a remote host is called routing, and packets are often
referred to as datagrams in this context. To facilitate things, datagram exchange is governed
by a single protocol that is independent of the hardware used: IP, or Internet Protocol. In

chapter 2, we will cover IP and the issues of routing in greater detail.

The main benefit of IP is that it turns physically dissimilar networks into one apparently
homogeneous network. This is called internetworking, and the resulting “meta-network” is
called an internet. Note the subtle difference between an internet and the Internet here.

The latter is the official name of one particular global internet.

Of course, IP also requires a hardware-independent addressing scheme. This is achieved
by assigning each host a unique 32-bit number, called the IP address. An IP address is
usually written as four decimal numbers, one for each 8-bit portion, separated by dots. For
example, quark might have an IP address of 0x954C0C04, which would be written as
149.76.12.4. This format is also called dotted quad notation.

You will notice that we now have three different types of addresses: first there is the host’s
name, like quark, then there are IP addresses, and finally, there are hardware addresses,

like the 6-byte FEthernet address. All these somehow have to match, so that when you

1.3. TCP/IP Networks 33

type rlogin quark, the networking software can be given quark’s IP address; and when IP
delivers any data to the Physics Department’s Ethernet, it somehow has to find out what

Ethernet address corresponds to the IP address. Which is rather confusing.

We will not go into this here, and deal with it in chapter 2 instead. For now, it’s
enough to remember that these steps of finding addresses are called hostname resolution,
for mapping host names onto IP addresses, and address resolution, for mapping the latter

to hardware addresses.

1.3.5 1IP over Serial Lines

On serial lines, a “de facto” standard known as SLIP or Serial Line IP is frequently used.
A modification of SLIP is known as CSLIP, or compressed SLIP, and performs compression
of IP headers to make better use of the relatively low bandwidth provided by serial links.*
A different serial protocol is PPP, or Point-to-Point Protocol. PPP has many more features
than SLIP, including a link negotiation phase. Its main advantage over SLIP is, however,
that it isn’t limited to transporting IP datagrams, but that it was designed to allow for any

type of datagrams to be transmitted.

1.3.6 The Transmission Control Protocol

Now, of course, sending datagrams from one host to another is not the whole story. If
you log into quark, you want to have a reliable connection between your rlogin process on
erdos and the shell process on quark. Thus, the information sent to and fro must be split
up into packets by the sender, and reassembled into a character stream by the receiver.

Trivial as it seems, this involves a number of hairy tasks.

A very important thing to know about IP is that, by intent, it is not reliable. Assume
that ten people on your Ethernet started downloading the latest release of XFree86 from
GMU’s FTP server. The amount of traffic generated by this might be too much for the
gateway to handle, because it’s too slow, and it’s tight on memory. Now if you happen
to send a packet to quark, sophus might just be out of buffer space for a moment and
therefore unable to forward it. IP solves this problem by simply discarding it. The packet
is irrevocably lost. It is therefore the responsibility of the communicating hosts to check

the integrity and completeness of the data, and retransmit it in case of an error.

This is performed by yet another protocol, TCP, or Transmission Control Protocol, which
builds a reliable service on top of IP. The essential property of TCP is that it uses IP to

give you the illusion of a simple connection between the two processes on your host and

*SLIP is described in RFC 1055. The header compression CSLIP is based in is described in RFC 1144.

1.3. TCP/IP Networks 34

the remote machine, so that you don’t have to care about how and along which route your
data actually travels. A TCP connection works essentially like a two-way pipe that both

processes may write to and read from. Think of it as a telephone conversation.

TCP identifies the end points of such a connection by the IP addresses of the two
hosts involved, and the number of a so-called port on each host. Ports may be viewed as
attachment points for network connections. If we are to strain the telephone example a
little more, one might compare IP addresses to area codes (numbers map to cities), and

port numbers to local codes (numbers map to individual people’s telephones).

In the rlogin example, the client application (rlogin) opens a port on erdos, and connects
to port 513 on quark, which the rlogind server is known to listen to. This establishes a
TCP connection. Using this connection, rlogind performs the authorization procedure, and
then spawns the shell. The shell’s standard input and output are redirected to the TCP
connection, so that anything you type to rlogin on your machine will be passed through the

TCP stream and be given to the shell as standard input.

1.3.7 The User Datagram Protocol

Of course, TCP isn’t the only user protocol in TCP/IP networking. Although suitable
for applications like rlogin, the overhead involved is prohibitve for applications like NF'S.
Instead, it uses a sibling protocol of TCP called UDP, or User Datagram Protocol. Just like
TCP, UDP also allows an application to contact a service on a certain port on the remote
machine, but it doesn’t establish a connection for this. Instead, you may use it to send

single packets to the destination service — hence its name.

Assume you have mounted the TEX directory hierarchy from the department’s central
NF'S server, galois, and you want to view a document describing how to use W TEX. You start
your editor, who first reads in the entire file. However, it would take too long to establish a
TCP connection with galois, send the file, and release it again. Instead, a request is made
to galois, who sends the file in a couple of UDP packets, which is much faster. However,
UDP was not made to deal with packet loss or corruption. It is up to the application —
NFS in this case — to take care of this.

1.3.8 More on Ports

Ports may be viewed as attachment points for network connections. If an application wants
to offer a certain service, it attaches itself to a port and waits for clients (this is also called
listening on the port). A client that wants to use this service allocates a port on its local

host, and connects to the server’s port on the remote host.

1.3. TCP/IP Networks 35

An important property of ports is that once a connection has been established between
the client and the server, another copy of the server may attach to the server port and
listen for more clients. This permits, for instance, several concurrent remote logins to the
same host, all using the same port 513. TCP is able to tell these connections from each
other, because they all come from different ports or hosts. For example, if you twice log
into quark from erdos, then the first rlogin client will use the local port 1023, and the

second one will use port 1022. Both however, will connect to the same port 513 on quark.

This example shows the use of ports as rendezvous points, where a client contacts a
specific port to obtain a specific service. In order for a client to know the proper port num-
ber, an agreement has to be reached between the administrators of both systems on the
assignment of these numbers. For services that are widely used, such as rlogin, these num-
bers have to be administered centrally. This is done by the IETF (or Internet Engineering
Task Force), which regularly releases an RFC titled Assigned Numbers. It describes, among
other things, the port numbers assigned to well-known services. Linux uses a file mapping
service names to numbers, called /etc/services. It is described in section The services and

protocols Files.

It is worth noting that although both TCP and UDP connections rely on ports, these
numbers do not conflict. This means that TCP port 513, for example, is different from

UDP port 513. In fact, these ports serve as access points for two different services, namely

rlogin (TCP) and rwho (UDP).

1.3.9 The Socket Library

In UNxX operating systems, the software performing all the tasks and protocols described
above is usually part of the kernel, and so it is in Linux. The programming interface most
common in the UNxX world is the Berkeley Socket Library. Its name derives from a popular
analogy that views ports as sockets, and connecting to a port as plugging in. It provides
the (bind(2)) call to specifiy a remote host, a transport protocol, and a service which a
program can connect or listen to (using connect(2), listen(2), and accept(2)). The socket
library is however somewhat more general, in that it provides not only a class of TCP /IP-
based sockets (the AF_INET sockets), but also a class that handles connections local to
the machine (the AF_UNIX class). Some implementations can also handle other classes as
well, like the XNS (Xerox Networking System) protocol, or X.25.

In Linux, the socket library is part of the standard libc C library. Currently, it only
supports AF_INET and AF_UNIX sockets, but efforts are made to incorporate support for
Novell’s networking protocols, so that eventually one or more socket classes for these would

be added.

1.4. Linux Networking 36

1.4 Linux Networking

Being the result of a concerted effort of programmers around the world, Linux wouldn’t have
been possible without the global network. So it’s not surprising that already in early stages
of development, several people started to work on providing it with network capabilities. A
UUCP implementation was running on Linux almost from the very beginning, and work on
TCP /IP-based networking started around autumn 1992, when Ross Biro and others created

what now has become known as Net-1.

After Ross quit active development in May 1993, Fred van Kempen began to work on
a new implementation, rewriting major parts of the code. This ongoing effort is known as
Net-2. A first public release, Net-2d, was made in Summer 1992 (as part of the 0.99.10
kernel), and has since been maintained and expanded by several people, most notably Alan
Cox, as Net-2Debugged. After heavy debugging and numerous improvements to the code,
he changed its name to Net-3 after Linux 1.0 was released. This is the version of the

networking code currently included in the official kernel releases.

Net-3 offers device drivers for a wide variety of Ethernet boards, as well as SLIP (for
sending network traffic over serial lines), and PLIP (for parallel lines). With Net-3, Linux
has a TCP/IP implementation that behaves very well in a local area network environment,
showing uptimes that beat some of the commercial PC Unices. Development currently

moves toward the necessary stability to reliably run it on Internet hosts.

Beside these facilities, there are several projects going on that will enhance the versatility
of Linux. A driver for PPP (the point-to-point protocol, another way to send network traffic
over serial lines), is at Beta stage currently, and an AX.25 driver for ham radio is at Alpha
stage. Alan Cox has also implemented a driver for Novell’s IPX protocol, but the effort for
a complete networking suite compatible with Novell’s has been put on hold for the moment,
because of Novell’s unwillingness to provide the necessary documentation. Another very

promising undertaking is samba, a free NetBIOS server for Unices, written by Andrew

Tridgell.?

1.4.1 Different Streaks of Development

In the meanwhile, Fred continued development, going on to Net-2e, which features a much
revised design of the networking layer. At the time of writing, Net-2e is still Beta software.
Most notable about Net-2e is the incorporation of DDI, the Device Driver Interface. DDI

offers a uniform access and configuration method to all networking devices and protocols.

®NetBIOS is the protocol on which applications like lanmanager and Windows for Workgroups are based.

1.5. Maintaining Your System 37

Yet another implemtation of TCP/IP networking comes from Matthias Urlichs, who
wrote an ISDN driver for Linux and FreeBSD. For this, he integrated some of the BSD

networking code in the Linux kernel.

For the foreseeable future, however, Net-3 seems to be here to stay. Alan currently works
on an implementation of the AX.25 protocol used by ham radio amateurs. Doubtlessly, the
yvet to be developed “module” code for the kernel will also bring new impulses to the

networking code. Modules allow you to add drivers to the kernel at run time.

Although these different network implementations all strive to provide the same service,
there are major differences between them at the kernel and device level. Therefore, you
will not be able to configure a system running a Net-2e kernel with utilities from Net-2d
or Net-3, and vice versa. This only applies to commands that deal with kernel internals
rather closely; applications and common networking commands such as rlogin or telnet run

on either of them.

Nevertheless, all these different network version should not worry you. Unless you are
participating in active development, you will not have to worry about which version of the
TCP/IP code you run. The official kernel releases will always be accompanied by a set of

networking tools that are compatible with the networking code present in the kernel.

1.4.2 Where to Get the Code

The latest version of the Linux network code can be obtained by anonymous FTP from
various sites. The official FTP site for Net-3 is sunacm.swan.ac.uk, mirrored by sun-
site.unc.edu below system/Network/sunacm. The latest Net-2e patch kit and binaries are
available from ftp.aris.com. Matthias Urlichs’ BSD-derived networking code can be gotten

from ftp.ira.uka.de in /pub/system/linux/netbsd.

The latest kernels can be found on nic.funet.fi in /pub/OS/Linuz/PEOPLE/Linus;

sunsite and tsx-11.mit.edu mirror this directory.

1.5 Maintaining Your System

Throughout this book, we will mainly deal with installation and configuration issues. Ad-
ministration is, however, much more than that — after setting up a service, you have to
keep it running, too. For most of them, only little attendance will be necessary, while some,
like mail and news, require that you perform routine tasks to keep your system up-to-date.

We will discuss these tasks in later chapters.

The absolute minimum in maintenance is to check system and per-application log files

1.5. Maintaining Your System 38

regularly for error conditions and unusual events. Commonly, you will want to do this by
writing a couple of administrative shell scripts and run them from cron periodically. The
source distribution of some major applications, like smail or C News, contain such scripts.

You only have to tailor them to suit your needs and preferences.

The output from any of your cron jobs should be mailed to an administrative account.
By default, many applications will send error reports, usage statistics, or logfile summaries
to the root account. This only makes sense if you log in as root frequently; a much better
idea is to forward root’s mail to your personal account setting up a mail alias as described

in chapter 14.

However carefully you have configured your site, Murphy’s law guarantees that some
problem will surface eventually. Therefore, maintaining a system also means being available
for complaints. Usually, people expect that the system administrator can at least be reached
via email as root, but there are also other addresses that are commonly used to reach the
person responsible for a specific aspect of maintenence. For instance, complaints about
a malfunctioning mail configuration will usually be addressed postmaster; and problems
with the news system may be reported to newsmaster or usenet. Mail to hostmaster
should be redirected to the person in charge of the host’s basic network services, and the

DNS name service if you run a name server.

1.5.1 System Security

Another very important aspect of system administration in a network environment is pro-
tecting your system and users from intruders. Carelessly managed systems offer malicious
people many targets: attacks range from password guessing to Ethernet snooping, and the
damage caused may range from faked mail messages to data loss or violation of your users’
privacy. We will mention some particular problems when discussing the context they may

occur in, and some common defenses against them.

This section will discuss a few examples and basic techniques in dealing with system
security. Of course, the topics covered can not treat all security issues you may be faced
with exhaustively; they merely serve to illustrate the problems that may arise. Therefore,
reading a good book on security is an absolute must, especially in a networked system.
Simon Garfinkel’s “Practical UNIX Security” (see [Spaf93]) is highly recommendable.

System security starts with good system administration. This includes checking the
ownership and permissions of all vital files and directories, monitoring use of privileged
accounts, etc. The COPS program, for instance, will check your file system and common
configuration files for unusual permissions or other anomalies. It is also wise to use a
password suite that enforces certain rules on the users’ passwords that make them hard to

guess. The shadow password suite, for instance, requires a password to have at least five

1.5. Maintaining Your System 39

letters, and contain both upper and lower case numbers and digits.

When making a service accessible to the network, make sure to give it “least privilege,”
meaning that you don’t permit it to do things that aren’t required for it to work as designed.
For example, you should make programs setuid to root or some other privileged account
only when they really need this. Also, if you want to use a service for only a very limited
application, don’t hesitate to configure it as restrictively as your special application allows.
For instance, if you want to allow diskless hosts to boot from your machine, you must provide
the TFTP (trivial file transfer service) so that they can download basic configuration files
from the /boot directory. However, when used unrestricted, TFTP allows any user anywhere
in the world to download any world-readable file from your system. If this is not what you

want, why not restrict TFTP service to the /boot directory?®

Along the same line of thought, you might want to restrict certain services to users from
certain hosts, say from your local network. In chapter 9, we introduce tcpd which does this

for a variety of network applications.

Another important point is to avoid “dangerous” software. Of course, any software you
use can be dangerous, because software may have bugs that clever people might exploit to
gain access to your system. Things like these happen, and there’s no complete protection
against this. This problem affects free software and commercial products alike.” However,
programs that require special privilege are inherently more dangerous than others, because
any loophole can have drastic consequences.® If you install a setuid program for network
purposes be doubly careful that you don’t miss anything from the documentation, so that

you don’t create a security breach by accident.

You can never rule out that your precautions might fail, regardless how careful you have
been. You should therefore make sure you detect intruders early. Checking the system
log files is a good starting point, but the intruder is probably as clever, and will delete
any obvious traces he or she left. However, there are tools like tripwire? that allow you to
check vital system files to see if their contents or permissions have been changed. tripwire
computes various strong checksums over these files and stores them in a database. During
subsequent runs, the checksums are re-computed and compared to the stored ones to detect

any modifications.

5We will come back to this in chapter 9.

"There have been commercial Unices you have to pay lots of money for that came with a setuid-root
shell script which allowed users to gain root privilege using a simple standard trick.

#n 1988, the RT'M worm brought much of the Internet to a grinding halt, partly by exploiting a gaping
hole in some sendmail programs. This hole has long been fixed since.

*Written by Gene Kim and Gene Spafford.

1.6. Outlook on the Following Chapters 40

1.6 Outlook on the Following Chapters

The next few chapters will deal with configuring Linux for TCP/IP networking, and with
running some major applications. Before getting our hands dirty with file editing and the
like, we will examine IP a little closer in chapter 2. If you already know about the way
IP routing works, and how address resolution is performed, you might want to skip this

chapter.

Chapter 3 deals with the very basic configuration issues, such as building a kernel and
setting up your Ethernet board. The configuration of your serial ports is covered in a
separate chapter, because the discussion does not apply to TCP/IP networking only, but is
also relevant for UUCP.

Chapter 5 helps you to set up your machine for TCP/IP networking. It contains instal-
lation hints for standalone hosts with only loopback enabled, and hosts connected to an
Ethernet. It will also introduce you to a few useful tools you can use to test and debug
your setup. The next chapter discusses how to configure hostname resolution, and explains

how to set up a name server.

This is followed by two chapters featuring the configuration and use of SLIP and PPP,
respectively. Chapter 7 explains how to establish SLIP connections, and gives a detailed
reference of dip, a tool that allows you to automate most of the necessary steps. Chapter 8

covers PPP and pppd, the PPP daemon you need for this.

Chapter 9 gives a short introduction to setting up some of the most important network
applications, such as rlogin, rep, ete, in chapter 9. This also covers how services are managed
by the inetd super, and how you may restrict certain security-relevant services to a set of
trusted hosts.

The next two chapters discuss NIS, the Network Information System, and NFS, the
Network File System. NIS is a useful tool to distribute administative information such as
user passwords in a local area network. NF'S allows you to share file systems between several

hosts in your network.

Chapter 12 gives you an extensive introduction to the administration of Taylor UUCP,

a free implementation of the UUCP suite.

The remainder of the book is taken up by a detailed tour of electronic mail and Usenet
News. Chapter 13 introduces you to the central concepts of electronic mail, like what a
mail address looks like, and how the mail handling system manages to get your message to

the recipient.

Chapters 14 and 15 each cover the setup of smail and sendmail, two mail transport

agents you can use for Linux. This book explains both of them, because smail is easier to

1.6. Outlook on the Following Chapters 41

install for the beginner, while sendmail is more flexible.

Chapters 16 and 17 explain the way news are managed in Usenet, and how you install
and use C news, a popular software package for managing Usenet news. Chapter 18 briefly
covers how to set up an NNTP daemon to provide news reading access for your local

network. Chapter 19 finally shows you how to configure and maintain various newsreaders.

Chapter 2

Issues of TCP /IP Networking

We will now turn to the details you’ll come in touch with when connecting your Linux ma-
chine to a TCP /TP network including dealing with IP addresses, host names, and sometimes
routing issues. This chapter gives you the background you need in order to understand what

your setup requires, while the next chapters will cover the tools to deal with these.

2.1 Networking Interfaces

To hide the diversity of equipment that may be used in a networking environment, TCP /TP
defines an abstract interface through which the hardware is accessed. This interface offers
a set of operations which is the same for all types of hardware and basically deals with

sending and receiving packets.

For each periphereal device you want to use for networking, a corresponding interface
has to be present in the kernel. For example, Ethernet interfaces in Linux are called eth0
and ethl, and SLIP interfaces come as sl0, sli, etc. These interface names are used for
configuration purposes when you want to name a particular physical device to the kernel.

They have no meaning beyond that.

To be useable for TCP /TP networking, an interface must be assigned an IP address which
serves as its identifcation when communicating with the rest of the world. This address
is different from the interface name mentioned above; if you compare an interface to door,

then the address is like the name-plate pinned on it.

Of course, there are other device parameters that may be set; one of these is the maximum
size of datagrams that can be processed by that particular piece of hardware, also called
Mazimum Transfer Unit, or MTU. Other attributes will be introduced later.

42

2.2. IP Addresses 43

2.2 IP Addresses

As mentioned in the previous chapter, the addresses understood by the IP networking
protocol are 32-bit numbers. Every machine must be assigned a number unique to the net-
working environment. If you are running a local network that does not have TCP /IP traffic
with other networks, you may assign these numbers according to your personal preferences.
However, for sites on the Internet, numbers are assigned by a central authority, the Network

Information Center, or NIC.!

For easier reading, IP addresses are split up into four 8 bit numbers called octets. For ex-
ample, quark.physics.groucho.edu has an IP address of 0x954C0C04, which is written
as 149.76.12.4. This format is often referred to as the dotted quad notation.

Another reason for this notation is that IP addresses are split into a network number,
which is contained in the leading octets, and a host number, which is the remainder. When
applying to the NIC for IP addresses, you are not assigned an address for each single host
you plan to use. Instead, you are given a network number, and are allowed to assign all

valid IP addresses within this range to hosts on your network according to your preferences.

Depending on the size of the network, the host part may need to be smaller or larger.
To accomodate different needs, there are several classes of networks, defining different splits
of IP addresses.

Class A Class A comprises networks 1.0.0.0 through 127.0.0.0. The network num-
ber is contained in the first octet. This provides for a 24 bit host part,
allowing roughly 1.6 million hosts.

Class B Class B contains networks 128.0.0.0 through 191.255.0.0; the network
number is in the first two octets. This allows for 16320 nets with 65024
hosts each.

Class C Class C networks range from 192.0.0.0 through 223.255.255.0, with the

network number being contained in the first three octets. This allows for

nearly 2 million networks with up to 254 hosts.

Classes D, E, and F
Addresses falling into the range of 224.0.0.0 through 254.0.0.0 are either

experimental, or are reserved for future use and don’t specify any network.

If we go back to the example in the previous chapter, we find that 149.76.12.4, the

!Frequently, 1P addresses will be assigned to you by the provider you buy your IP connectivity from.
However, you may also apply to NIC directly for an IP address for your network by sending a mail to
hostmaster@internic.net.

2.3. Address Resolution 44

address of quark, refers to host 12.4 on the class B network 149.76.0.0.

You may have noticed that in the above list not all possible values were allowed for each
octet in the host part. This is because host numbers with octets all 0 or all 255 are reserved
for special purposes. An address where all host part bits are zero refers to the network, and
one where all bits of the host part are 1 is called a broadcast address. This refers to all
hosts on the specified network simultaneously. Thus, 149.76.255.255 is not a valid host
address, but refers to all hosts on network 149.76.0.0.

There are also two network addresses that are reserved, 0.0.0.0 and 127.0.0.0. The first
is called the default route, the latter the loopback address. The default route has something
to do with the way IP routes datagrams, which will be dealt with below.

Network 127.0.0.0 is reserved for IP traffic local to your host. Usually, address
127.0.0.1 will be assigned to a special interface on your host, the so-called loopback in-
terface, which acts like a closed circuit. Any IP packet handed to it from TCP or UDP
will be returned to them as if it had just arrived from some network. This allows you to
develop and test networking software without ever using a “real” network. Another useful
application is when you want to use networking software on a standalone host. This may
not be as uncommon as it sounds; for instance, many UUCP sites don’t have IP connectivity
at all, but still want to run the INN news system nevertheless. For proper operation on

Linux, INN requires the loopback interface.

2.3 Address Resolution

Now that you’ve seen how IP addresses are made up, you may be wondering how they are
used on an Ethernet to address different hosts. After all, the Ethernet protocol identifies
hosts by a six-octet number that has absolutely nothing in common with an IP address,

doesn’t it?

Right. That’s why a mechanism is needed to map IP addresses onto Ethernet addresses.
This is the so-called Address Resolution Protocol, or ARP. In fact, ARP is not confined to
Ethernets at all, but is used on other types networks such as ham radio as well. The idea
underlying ARP is exactly what most people do when they have to find Mr. X. Ample in
a throng of 150 people: they go round, calling out his name, confident that he will respond
if he’s there.

When ARP wants to find out the Ethernet address corresponding to a given 1P address,
it uses a feature of Ethernet known as “broadcasting,” where a datagram is addressed to all
stations on the network simultaneously. The broadcast datagram sent by ARP contains a

query for the IP address. Each receiving host compares this to its own I[P address, and if it

2.4. IP Routing 45

matches, returns an ARP reply to the inquiring host. The inquiring host can now extract

the sender’s Ethernet address from the reply.

Of course you might wonder how a host may know on which of the zillions of Ethernets
throughout the world it is to find the desired host, and why this should even be an Ethernet.
These questions all involve what is called routing, namely finding out the physical location

of a host in a network. This will be the topic of the following section.

For a moment, let’s talk about ARP a little longer. Once a host has discovered an
Ethernet address, it stores it in its ARP cache, so that it doesn’t have to query for it the
next time it wants to send a datagram to the host in question. However, it is unwise to
keep this information forever; for instance, the remote host’s Ethernet card may be replaced
because of technical problems, so the ARP entry becomes invalid. To force another query

for the IP address, entries in the ARP cache are therefore discarded after some time.

Sometimes, it is also necessary to find out the IP address associated with a given Ethernet
address. This happens when a diskless machine wants to boot from a server on the network,
which is quite a common situation on local area networks. A diskless client, however, has
virtually no information about itself — except for its Ethernet address! So what it basically
does is broadcast a message containing a plea for boot servers to tell it its [P address.
There’s another protocol for this, named Reverse Address Resolution Protocol, or RARP.
Along with the BOOTP protocol, it serves to define a procedure for bootstrapping diskless

clients over the network.

2.4 1IP Routing

2.4.1 IP Networks

When you write a letter to someone, you usually put a complete address on the envelope,
specifying the country, state, zip code, etc. After you put it into the letter box, the postal
service will deliver it to its destination: it will be sent to the country indicated, whose
national service will dispatch it to the proper state and region, etc. The advantage of this
hierarchical scheme is rather obvious: Wherever you post the letter, the local postmaster
will know roughly the direction to forward the letter to, but doesn’t have to care which way

the letter will travel by within the destination country.

IP networks are structured in a similar way. The whole Internet consists of a number
of proper networks, called autonomous systems. Fach such system performs any routing
between its member hosts internally, so that the task of delivering a datagram is reduced
to finding a path to the destination host’s network. This means, as soon as the datagram is

handed to any host that is on that particular network, further processing is done exclusively

2.4. IP Routing 46

by the network itself.

2.4.2 Subnetworks

This structure is reflected by splitting 1P addresses into a host and network part, as ex-
plained above. By default, the destination network is derived from the network part of the
IP address. Thus, hosts with identical IP network numbers should be found within the

same network, and vice versa.?

It makes sense to offer a similar scheme inside the network, too, since it may consist of
a collection of hundreds of smaller networks itself, with the smallest units being physical
networks like Ethernets. Therefore, IP allows you to subdivide an IP network into several

subnets.

A subnet takes over responsibility for delivering datagrams to a certain range of 1P ad-
dresses from the IP network it is part of. As with classes A, B, or C, it is identified by the
network part of the IP addresses. However, the network part is now extended to include
some bits from the host part. The number of bits that are interpreted as the subnet num-
ber is given by the so-called subnet mask, or netmask. This is a 32 bit number, too, which

specifies the bit mask for the network part of the IP address.

Network Part Host Part

149 76 12 4

149 76 12 4

Network Part Host Part

Figure 2.1: Subnetting a class B network

The campus network of Groucho Marx University is an example of such a network. It
has a class B network number of 149.76.0.0, and its netmask is therefore 255.255.0.0.

Internally, GMU’s campus network consists of several smaller networks, such as the
LANSs of various departments. So the range of IP addresses is broken up into 254 subnets,
149.76.1.0 through 149.76.254.0. For example, the Department of Theoretical Physics
has been assigned 149.76.12.0. The campus backbone is a network by its own right, and is

2 Autonomous systems are slightly more general, however. They may comprise more than one IP network.

2.4. IP Routing 47

given 149.76.1.0. These subnets share the same I[P network number, while the third octet
is used to distinguish between them. Thus they will use a subnet mask of 255.255.255.0.

Figure 2.1 shows how 149.76.12.4, the address of quark, is interpreted differently when

the address is taken as an ordinary class B network, and when used with subnetting.

It is worth noting that subnetting (as the technique of generating subnets is called) is
only an internal division of the network. Subnets are generated by the network owner (or
the administrators). Frequently, subnets are created to reflect existing boundaries, be they
physical (between two Ethernets), administrative (between two departments), or geograph-
ical, and authority over these subnets is delegated to some contact person. However, this
structure affects only the network’s internal behavior, and is completely invisible to the

outside world.

2.4.3 Gateways

Subnetting is not only an organizational benefit, it is frequently a natural consequence of
hardware boundaries. The viewpoint of a host on a given physical network, such as an
Ethernet, is a very limited one: the only hosts it is able to talk to directly are those of
the network it is on. All other hosts can be accessed only through so-called gateways. A
gateway is a host that is connected to two or more physical networks simultaneously and is

configured to switch packets between them.

For IP to be able to easily recognize if a host is on a local physical network, different
physical networks have to belong to different IP networks. For example the network number
149.76.4.0 is reserved for hosts on the mathematics LAN. When sending a datagram to
quark, the network software on erdos immediately sees from the IP address, 149.76.12.4,
that the destination host is on a different physical network, and therefore can be reached

only through a gateway (sophus by default).

sophus itself is connected to two distinct subnets: the Mathematics Department, and the
campus backbone. It accesses each through a different interface, eth and fddi0, respectively.
Now, what IP address do we assign it? Should we give it one on subnet 149.76.1.0, or on
149.76.4.07

The answer is: both. When talking to a host on the Maths LAN, sophus should use
an IP address of 149.76.4.1, and when talking to a host on the backbone, it should use
149.76.1.4.

Thus, a gateway is assigned one IP address per network it is on. These addresses —
along with the corresponding netmask — are tied to the interface the subnet is accessed

through. Thus, the mapping of interfaces and addresses for sophus would look like this:

2.4. IP Routing 48

‘ iface ‘ address netmask
eth0 149.76.4.1 | 255.255.255.0
fddi0 | 149.76.1.4 | 255.255.255.0
lo 127.0.0.1 255.0.0.0

The last entry describes the loopback interface lo, which was introduced above.

Figure 2.2 shows a part of the network topology at Groucho Marx University (GMU).

Hosts that are on two subnets at the same time are shown with both addresses.

Mathematics Department Theoretical Physics Department
= =
VAN VAN
423 417 12.4
= =2 O =
N N N N
gauss erdos quark
[sophus [niels
14T 127
Campus Backbone 11 @ gocl
N
= =
LN LN

Groucho Computing Centre []

Figure 2.2: A part of the net topology at Groucho Marx Univ.

Generally, you can ignore the subtle difference between attaching an address to a host or
its interface. For hosts that are on one network only, like erdos, you would generally refer
of the host as having this-and-that I[P address although strictly speaking, it’s the FEthernet
interface that has this IP address. However, this distinction is only really important when

you refer to a gateway.

2.4. IP Routing 49

2.4.4 The Routing Table

We are now focusing our attention on how IP chooses a gateway to use when delivering a

datagram to a remote network.

We have seen before that erdos, when given a datagram for quark, checks the desti-
nation address and finds it is not on the local network. It therefore sends it to the default
gateway, sophus, which is now basically faced with the same task. sophus recognizes that
quark is not on any of the networks it is connected to directly, so it has to find yet an-
other gateway to forward it through. The correct choice would be niels, the gateway to the
Physics Department. sophus therefore needs some information to associate a destination

network with a suitable gateway.

The routing information IP uses for this is basically a table linking networks to gateways
that reach them. A catch-all entry (the default route) must generally be supplied, too; this
is the gateway associated with network 0.0.0.0. All packets to an unknown network are
sent through the default route. On sophus, this table might look like this:

Network Gateway Interface
149.76.1.0 | - fddio
149.76.2.0 | 149.76.1.2 | fddi0
149.76.3.0 | 149.76.1.3 | fddi0
149.76.4.0 | - etho
149.76.5.0 | 149.76.1.5 | fddi0
0.0.0.0 149.76.1.2 | fddio

Routes to a network that sophus is directly connected to don’t require a gateway;

therefore they show a gateway entry of “-7.

Routing tables may be built by various means. For small LANs, it is usually most
efficient to construct them by hand and feed them to IP using the route command at boot
time (see chapter 5). For larger networks, they are built and adjusted at run-time by routing
daemons; these run on central hosts of the network and exchange routing information to

compute “optimal” routes between the member networks.

Depending on the size of the network, different routing protocols will be used. For
routing inside autonomous systems (such as Groucho Marx campus), the internal routing
protocols are used. The most prominent one is RIP, the Routing Information Protocol, which
is implemented by the BSD routed daemon. For routing between autonomous systems,
external routing protocols like EGP (External Gateway Protocol), or BGP (Border Gateway

Protocol) have to be used; these (as well as RIP) have been implemented in the University

2.5. The Internet Control Message Protocol 50

of Cornell’s gated daemon.?

2.4.5 Metric Values

Dynamic routing based on RIP chooses the best route to some destination host or network
based on the number of “hops”, that is, the gateways a datagram has to pass before reaching
it. The shorter a route is, the better RIP rates it. Very long routes with 16 or more hops

are regarded as unusable, and are discarded.

To use RIP to manage routing information internal to your local network, you have to
run gated on all hosts. At boot time, gated checks for all active network interfaces. If there
is more than one active interface (not counting the loopback interface), it assumes the host
is switching packets between several networks, and will actively exchange and broadcast
routing information. Otherwise, it will only passively receive any RIP updates and update

the local routing table.

When broadcasting the information from the local routing table, gated computes the
length of the route from the so-called metric value associated with the routing table entry.
This metric value is set by the system administrator when configuring the route and should
reflect the actual cost of using this route. Therefore, the metric of a route to a subnet
the host is directly connected to should always be zero, while a route going through two
gateways should have a metric of two. However, note that you don’t have to bother about

metrics when you don’t use RIP or gated.

2.5 The Internet Control Message Protocol

IP has a companion protocol that we haven’t talked about yet. This is the Internet Control
Message Protocol (ICMP) and is used by the kernel networking code to communicate error
messages and the like to other hosts. For instance, assume that you are on erdos again and
want to telnet to port 12345 on quark, but there’s no process listening on that port. When
the first TCP packet for this port arrives on quark, the networking layer will recognize this

and immediately return an ICMP message to erdos stating “Port Unreachable”.

There are quite a number of messages ICMP understands, many of which deal with error
conditions. However, there is one very interesting message called the Redirect message. It
is generated by the routing module when it detects that another host is using it as a
gateway, although there is a much shorter route. For example, after booting the routing

table of sophus may be incomplete, containing the routes to the Mathematics network, to

®routed is considered broken by many people. Since gated supports RIP as well, it is better to use that

instead.

2.6. The Domain Name System 51

the FDDI backbone, and the default route pointing at the Groucho Computing Center’s
gateway (gecl). Therefore, any packets for quark would be sent to geel rather than to
niels, the gateway to the Physics Department. When receiving such a datagram, geel will
notice that this is a poor choice of route, and will forward the packet to niels, at the same

time returning an ICMP Redirect message to sophus telling it of the superior route.

Now, this seems a very clever way to avoid having to set up any but the most basic routes
manually. However be warned that relying on dynamic routing schemes, be it RIP or ICMP
Redirect messages, is not always a good idea. ICMP Redirect and RIP offer you little or no
choice in verifying that some routing information is indeed authentic. This allows malicious
good-for-nothings to disrupt your entire network traffic, or do even worse things. For this
reason, there are some versions of the Linux networking code that treat Redirect messages

that affect network routes, as if they were only Redirects for host routes.

2.6 The Domain Name System

2.6.1 Hostname Resolution

As described above, addressing in TCP/IP networking revolves around 32 bit numbers.
However, you will have a hard time remembering more than a few of these. Therefore,
hosts are generally known by “ordinary” names such as gauss or strange. It is then the
application’s duty to find the IP address corresponding to this name. This process is called

host name resolution.

An application that wants to find the IP address of a given host name does not have
to provide its own routines for looking up a hosts and IP adresses. Instead, it relies on
number of library functions that do this transparently, called gethostbyname(3) and geth-
ostbyaddr(3). Traditionally, these and a number of related procedures were grouped in a
separate library called the resolver library; on Linux, these are part of the standard libc.

Colloquially, this collection of functions are therefore referred to as “the resolver”.

Now, on a small network like an Ethernet, or even a cluster of them, it is not very difficult
to maintain tables mapping host names to addresses. This information is usually kept in
a file named /etc/hosts. When adding or removing hosts, or reassigning addresses, all you
have to do is update the hosts on all hosts. Quite obviously, this will become burdensome

with networks than comprise more than a handful of machines.

One solution to this problem is NIS, the Network Information System developed by Sun
Microsystems, colloquially called YP, or Yellow Pages. NIS stores the hosts file (and other
information) in a database on a master host, from which clients may retrieve it as needed.

Still, this approach is only suitable for medium-sized networks such as LLANs, because it

2.6. The Domain Name System 52

involves maintaining the entire hosts database centrally, and distributing it to all servers.

On the Internet, address information was initially stored in a single HOSTS.TXT
database, too. This file was maintained at the Network Information Center, or NIC, and
had to be downloaded and installed by all participating sites. When the network grew,
several problems with this scheme arose. Beside the administrative overhead involved in
installing HOSTS.TXT regularly, the load on the servers that distributed it became too
high. Even more severe was the problem that all names had to be registered with the NIC,

which had to make sure that no name was issued twice.

This is why, in 1984, a new name resolution scheme has been adopted, the Domain Name
System. DNS was designed by Paul Mockapetris, and addresses both problems simultane-

ously.

2.6.2 Enter DNS

DNS organizes host names in a hierarchy of domains. A domain is a collection of sites that
are related in some sense — be it because they form a proper network (e.g. all machines
on a campus, or all hosts on BITNET), because they all belong to a certain organization
(like the U.S. government), or because they’re simply geographically close. For instance,
universities are grouped in the edu domain, with each University or College using a separate
subdomain below which their hosts are subsumed. Groucho Marx University might be given
the groucho.edu domain, with the LAN of the Mathematics Department being assigned
maths.groucho.edu. Hosts on the departmental network would have this domain name
tacked onto their host name; so erdos would be known as erdos.maths.groucho.edu.
This is called the fully qualified domain name, or FQDN, which uniquely identifies this host

world-wide.

2.6. The Domain Name System 53

gauss

quark otto niels up down strange

Figure 2.3: A part of the domain name space

Figure 2.3 shows a section of the name space. The entry at the root of this tree, which is

denoted by a single dot, is quite appropriately called the root domain, and encompasses all

other domains. To indicate that a host name is a fully qualified domain name, rather than

a name relative to some (implicit) local domain, it is sometimes written with a trailing dot.

This signifies that the name’s last component is the root domain.

Depending on its location in the name hierarchy, a domain may be called top-level,

second-level, or third-level. More levels of subdivision occur, but are rare. These are a

couple of top-level domains you may see frequently:

edu

com

org

net

mil

gov

uucp

(Mostly US) educational institutions like universities, etc.
Commercial organizations, companies.

Non-commercial organizations. Often private UUCP networks are in this

domain.

Gateways and other administrative host on a network.
US military institutions.

US government institutions.

Officially, all site names formerly used as UUCP names without domain,

have been moved to this domain.

2.6. The Domain Name System 54

Technically, the first four of these belong to the US part of the Internet, but you may
also see non-US sites in these domains. This is especially true of the net domain. However,

mil and gov are used exclusively in the US.

Outside the US, each country generally uses a top-level domain of its own named after
the two-letter country code defined in ISO-3166. Finland, for instance, uses the fi domain,
fr is used by France, de by Germany, or au by Australia etc. Below this top-level domain,
each country’s NIC is free to organize host names in whatever way they want. Australia,
for example, has second-level domain similar to the international top-level domains, named
com.au, edu.au, and so on. Others, like Germany, don’t use this extra level, but rather
have slightly longish names that refer directly to the organizations running a particular
domain. For example, it’s not uncommon to see host names like ftp.informatik.uni-

erlangen.de. Chalk that up to German efficiency.

Of course, these national domains do not imply that a host below that domain is actually
located in that country; it only signals that the host has been registered with that country’s
NIC. A Swedish manufacturer might have a branch in Australia, and still have all its hosts

registered with the se top-level domain.

Now, organizing the name space in a hierarchy of domain names nicely solves the problem
of name uniqueness; with DNS, a host name has to be unique only within its domain to
give it a name different from all other hosts world-wide. Furthermore, fully qualified names
are quite easy to remember. Taken by themselves, these are already very good resaons to

split up a large domain into several subdomains.

But DNS does even more for you than than this: it allows you to delegate authority over
a subdomain to its administrators. For example, the maintainers at the Groucho Computing
Center might create a subdomain for each department; we already encountered the maths
and physics subdomains above. When they find the network at the Physics Department
too large and chaotic to manage from outside (after all, physicists are known to be an unruly
bunch of people), they may simply pass control over the physics.groucho.edu domain to
the administrators of this network. These are then free to use whatever host names they
like, and assign them IP addresses from their network in whatever fashion the like, without

outside interference.

To this end, the name space is split up into zones, each rooted at a domain. Note the
subtle difference between a zone and a domain: the domain groucho.edu encompasses all
hosts at the Groucho Marx University, while the zone groucho.edu includes only the hosts
that are managed by the Computing Center directly, for example those at the Mathematics
Department. The hosts at the Physics Department belong to a different zone, namely
physics.groucho.edu. In figure 2.3, the start of a zone is marked by a small circle to the

right of the domain name.

2.6. The Domain Name System 55

2.6.3 Name Lookups with DNS

At first glance, all this domain and zone fuss seems to make name resolution an awfully
complicated business. After all, if no central authority controls what names are assigned to

which hosts, then how is a humble application supposed to know?!

Now comes the really ingenuous part about DNS. If you want to find out the IP address
of erdos, then, DNS says, go ask the people that manage it, and they will tell you.

In fact, DNS is a giant distributed database. It is implemented by means of so-called
name servers that supply information on a given domain or set of domains. For each zone,
there are at least two, at most a few, name servers that hold all authoritative information
on hosts in that zone. To obtain the IP address of erdos, all you have to do is contact the

name server for the groucho.edu zone, which will then return the desired data.

Easier said than done, you might think. So how do I know how to reach the name
server at Groucho Marx University? In case your computer isn’t equipped with an address-
resolving oracle, DNS provides for this, too. When your application wants to look up
information on erdos, it contacts a local name server, which conducts a so-called iterative
query for it. It starts off by sending a query to a name server for the root domain, asking
for the address of erdos.maths.groucho.edu. The root name server recognizes that this
name does not belong to its zone of authority, but rather to one below the edu domain.
Thus, it tells you to contact an edu zone name server for more information, and encloses
a list of all edu name servers along with their addresses. Your local name server will then
go on and query one of those, for instance a.isi.edu. In a manner similar to the root name
server, a.isi.edu knows that the groucho.edu people run a zone of their own, and point
you to their servers. The local name server will then present its query for erdos to one
of these, which will finally recognize the name as belonging to its zone, and return the

corresponding IP address.

Now, this looks like a lot of traffic being generated for looking up a measly IP address, but
it’s really only miniscule compared to the amount of data that would have to be transferred
if we were still stuck with HOSTS.TXT. But there’s still room for improvement with this

scheme.

To improve response time during future queries, the name server will store the informa-
tion obtained in its local cache. So the next time anyone on your local network wants to
look up the address of a host in the groucho.edu domain, your name server will not have
to go through the whole process again, but will rather go to the groucho.edu name server

directly.*

*1f it didn’t, then DNS would be about as bad as any other method, because each query would involve

the root name servers.

2.6. The Domain Name System 56

Of course, the name server will not keep this information forever, but rather discard it
after some period. This expiry interval is called the time to live, or TTL. Each datum in

the DNS database is assigned such a TTL by administrators of the responsible zone.

2.6.4 Domain Name Servers

Name servers that hold all information on hosts within a zone are called authoritative for
this zone, and are sometimes referred to as master name servers. Any query for a host

within this zone will finally wind down at one of these master name servers.

To provide a coherent picture of a zone, its master servers must be fairly well synchro-
nized. This is achieved by making one of them the primary server, which loads its zone
information from data files, and making the others secondary servers who transfer the zone

data from the primary server at regular intervals.

One reason to have several name servers is to distribute work load, another is redundance.
When one name server machine fails in a benign way, like crashing or losing its network
connection, all queries will fall back to the other servers. Of course, this scheme doesn’t
protect you from server malfunctions that produce wrong replies to all DNS requests, e.g.

from software bugs in the server program itself.

Of course, you can also think of running a name server that is not authoritative for any
domain.® This type of server is useful nevertheless, as it is still able to conduct DNS queries
for the applications running on the local network, and cache the information. It is therefore

called a caching-only server.

2.6.5 The DINS Database

We have seen above that DNS does not only deal with IP addresses of hosts, but also
exchanges information on name servers. There are in fact a whole bunch of different types

of entries the DNS database may have.

A single piece of information from the DNS database is called a resource record, or RR
for short. Fach record has a type associated with it, describing the sort of data it represents,
and a class specifying the type of network it applies to. The latter accomodates the needs
of different addressing schemes, like IP addresses (the IN class), or addresses of Hesiod
networks (used at MIT), and a few more. The prototypical resource record type is the A

record which associates a fully qualified domain name with an IP address.

®Well, almost. A name server at least has to provide name service for localhost and reverse lookups of
127.0.0.1.

2.6. The Domain Name System 57

Of course, a host may have more than one name. However, one of these names must
be identified as the official, or canonical host name, while the others are simply aliases
referring to the former. The difference is that the canocical host name is the one with an
A record associated, while the others only have a record of type CNAME which points to

the canonical host name.

We will not go through all record types here, but save them for a later chapter, but
rather give you a brief example here. Figure 2.4 shows a part of the domain database that

is loaded into the name servers for the physics.groucho.edu zone.

; Authoritative Information on physics.groucho.edu
¢ IN S0A {
niels.physics.groucho.edu.

hostmaster.niels.physics.groucho.edu.

1034 ; serial no
360000 ; refresh
3600 ; retry
3600000 ; expire
3600 ; default ttl
b
; Name servers
IN NS niels
In NS gauss.maths.groucho.edu.
gauss.maths.groucho.edu. IN A 149.76.4.23

)

; Theoretical Physics (subnet 12)

niels IN A 149.76.12.1
IN A 149.76.1.12

nameserver IN CNAME niels

otto IN A 149.76.12.2

quark IN A 149.76.12.4

down IN A 149.76.12.5

strange IN A 149.76.12.6

; Collider Lab. (subnet 14)

boson IN A 149.76.14.1
muon IN A 149.76.14.7
bogon IN A 149.76.14.12

Figure 2.4: An excerpt from the named.hosts file for the Physics Department.

Apart from A and CNAME records, you can see a special record at the top of the file,

2.6. The Domain Name System 58

stretching several lines. This is the SOA resource record, signalling the Start of Authority,
which holds general information on the zone the server is authoritative for. This comprises,

for instance, the default time-to-live for all records.

Note that all names in the sample file that do not end with a dot should be interpreted
relative to the groucho.edu domain. The special name “@” used in the SOA record refers

to the domain name by itself.

We have seen above that the name servers for the groucho.edu domain somehow have
to know about the physics zone so that they can point queries to their name servers.
This is usually achieved by a pair of records: the NS record that gives the server’s FQDN,
and an A record associating an address with that name. Since these records are what
holds the name space together, they are frequently called the glue records. They are the
only instances of records where a parent zone actually holds information on hosts in the
subordinate zone. The glue records pointing to the name servers for physics.groucho.edu

are shown in figure 2.5.

; Zone data for the groucho.edu zone.
e IN SOA {
vax12.gcc.groucho.edu.

hostmaster.vaxl12.gcc.groucho.edu.

233 ; serial no
360000 ; refresh
3600 ; retry
3600000 ; expire

3600 ; default ttl

)

; Glue records for the physics.groucho.edu zone

physics IN NS niels.physics.groucho.edu.
In NS gauss.maths.groucho.edu.

niels.physics IN A 149.76.12.1

gauss.maths IN A 149.76.4.23

Figure 2.5: An excerpt from the named.hosts file for GMU.

2.6.6 Reverse Lookups

Beside looking up the IP address belonging to a host, it is sometimes desirable to find out

the canonical host name corresponding to an address. This is called reverse mapping and

2.6. The Domain Name System 59

is used by several network services to verify a client’s identity. When using a single hosts
file, reverse lookups simply involve searching the file for a host that owns the IP address
in question. With DNS, an exhaustive search of the name space is out of the question,
of course. Instead, a special domain, in-addr.arpa, has been created which contains the
IP addresses of all hosts in a reverted dotted-quad notation. For instance, an IP address
of 149.76.12.4 corresponds to the name 4.12.76.149.in-addr.arpa. The resource record

type linking these names to their canonical host names is PTR.

Creating a zone of authority usually means that its administrators are given full control
over how they assign addresses to names. Since they usually have one or more IP networks or
subnets at their hands, there’s a one-to-many mapping between DNS zones and IP networks.
The Physics Department, for instance, comprises the subnets 149.76.8.0, 149.76.12.0, and
149.76.14.0.

As a consequence, new zones in the in-addr.arpa domain have to be created along
with the physics zone and delegated to the network administrators at the department:
8.76.149.in-addr.arpa, 12.76.149.in-addr.arpa, and 14.76.149.in-addr.arpa. Other-
wise, installing a new host at the Collider Lab would require them to contact their parent

domain to have the new address entered into their in-addr.arpa zone file.

The zone database for subnet 12 is shown in figure 2.6. The corresponding glue records

in the database of their parent zone is shown in figure 2.7.

; the 12.76.149.in-addr.arpa domain.

o IN soa |
niels.physics.groucho.edu.
hostmaster.niels.physics.groucho.edu.
233 360000 3600 3600000 3600

b
2 In PTR otto.physics.groucho.edu.
4 In PTR quark.physics.groucho.edu.
5 In PTR down.physics.groucho.edu.
6 In PTR strange.physics.groucho.edu.

Figure 2.6: An excerpt from the named.rev file for subnet 12.

One important consequence of this is that zones can only be created as supersets of
IP networks, and, even more severe, that these network’s netmasks have to be on byte
boundaries. All subnets at Groucho Marx University have a netmask of 255.255.255.0,
whence an in-addr.arpa zone could be created for each subnet. However, if the netmask
was 255.255.255.128 instead, creating zones for the subnet 149.76.12.128 would be im-
possible, because there’s no way to tell DNS that the 12.76.149.in-addr.arpa domain has

2.6. The Domain Name System 60

; the 76.149.in-addr.arpa domain.

d IN SOA {
vax12.gcc.groucho.edu.
hostmaster.vaxl12.gcc.groucho.edu.
233 360000 3600 3600000 3600

; subnet 4: Mathematics Dept.

1.4 In PTR sophus.maths.groucho.edu.
17.4 In PTR erdos.maths.groucho.edu.
23.4 In PTR gauss.maths.groucho.edu.

; subnet 12: Physics Dept, separate zone

12 IN NS niels.physics.groucho.edu.
In NS gauss.maths.groucho.edu.

niels.physics.groucho.edu. IN A 149.76.12.1

gauss.maths.groucho.edu. IN A 149.76.4.23

Figure 2.7: An excerpt from the named.rev file for network 149.76.

been split in two zones of authority, with host names ranging from 1 through 127, and 128

through 255, respectively.

Chapter 3

Configuring the Networking

Hardware

3.1 Devices, Drivers, and all that

Up to now, we've been talking quite a bit about network interfaces and general TCP /TP
issues, but didn’t really cover exactly what happens when “the networking code” in the
kernel accesses a piece of hardware. For this, we have to talk a little about the concept of

interfaces and drivers.

First, of course, there’s the hardware itself, for example an Ethernet board: this is a
slice of Epoxy, cluttered with lots of tiny chips with silly numbers on them, sitting in a slot

of your PC. This is what we generally call a device.

For you to be able to use the Ethernet board, special functions have to be present in
your Linux kernel that understand the particular way this device is accessed. These are
the so-called device drivers. For example, Linux has device drivers for several brands of
Ethernet boards that are very similar in function. They are known as the “Becker Series
Drivers”, named after their author, Donald Becker. A different example is the D-Link driver

that handles a D-Link pocket adaptor attached to a parallel port.

But, what do we mean when we say a driver “handles” a device? Let’s go back to that
Ethernet board we examined above. The driver has to be able to communicate with the
peripheral’s on-board logic somehow: it has to send commands and data to the board, while

the board should deliver any data received to the driver.

In PCs, this communication takes place through an area of I/O memory that is mapped
to on-board registers and the like. All commands and data the kernel sends to the board

have to go through these registers. 1/0 memory is generally described by giving its starting

61

3.1. Devices, Drivers, and all that 62

Kernel Networking Code

Network
=W @ ® @

~— B 8 B B®

Figure 3.1: The relationship between drivers, interfaces, and the hardware.

or base address. Typical base addresses for Ethernet boards are 0x300, or 0x360.

Usually, you don’t have to worry about any hardware issues such as the base address,
because the kernel makes an attempt at boot time to detect a board’s location. This
is called autoprobing, which means that the kernel reads several memory locations and
compares the data read with what it should see if a certain Ethernet board was installed.
However, there may be Ethernet boards it cannot detect automatically; this is sometimes
the case with cheap Ethernet cards that are not-quite clones of standard boards from other
manufacturers. Also, the kernel will attempt to detect only one Ethernet device when
booting. If you’re using more than one board, you have to tell the kernel about this board

explicitly.

Another such parameter that you might have to tell the kernel about is the interrupt
request channel. Hardware components usually interrupt the kernel when they need care
taken of them, e.g. when data has arrived, or a special condition occurs. In a PC, interrupts
may occur on one of 15 interrupt channels numbered 0, 1, and 3 through 15. The interrupt

number assigned to a hardware component is called its interrupt request number, or IRQ."

As described in chapter 2, the kernel accesses a device through a so-called interface.

Interfaces offer an abstract set of functions that is the same across all types of hardware,

'TRQs 2 and 9 are the same because the PC has two cascaded interrupt processors with eight IRQs each;

the secondary processor is connected to IRQ 2 of the primary one.

3.2. Kernel Configuration 63

such as sending or receiving a datagram.

Interfaces are identified by means of names. These are names defined internally in the
kernel, and are not device files in the /dev directory. Typical names are eth0, ethi, etc, for
Ethernet interfaces. The assignment of interfaces to devices usually depends on the order
in which devices are configured; for instance the first Ethernet board installed will become
eth0, the next will be ethi, and so on. One exception from this rule are SLIP interfaces,
which are assigned dynamically; that is, whenever a SLIP connection is established, an

interface is assigned to the serial port.

The picture given in figure 3.1 tries to show the relationship between the hardware,

device drivers and interfaces.

When booting, the kernel displays what devices it detects, and what interfaces it installs.

The following is an excerpt of a typical boot screen:

This processor honours the WP bit even when in supervisor mode. Good.
Floppy drive(s): £d0 is 1.44N

Swansea University Computer Society NET3.010

IP Protocols: ICMP, UDP, TCP

PPP: version 0.2.1 (4 channels) OPTIMIZE_FLAGS

TCP compression code copyright 1989 Regents of the University of Califormia
PPP line discipline registered.

SLIP: version 0.7.5 (4 channels)

CSLIP: code copyright 1989 Regents of the University of Califormnia

d10: D-Link DE-600 pocket adapter, Ethernet Address: 00:80:C8:71:76:95
Checking 386/387 coupling... Ok, fpu using exception 16 error reporting.
Linux version 1.1.11 (okir@monad) #3 Sat May 7 14:57:18 MET DST 1994

This shows that the kernel has been compiled with TCP /IP enabled, and drivers for SLIP,
CSLIP, and PPP included. The third line from below says that a D-Link pocket adaptor
was detected, and installed as interface dl0. If you have a different type of Ethernet card,
the kernel will usually print a line starting with eth0, followed by the type of card detected.
If you have an Ethernet card installed but don’t see any such message, this means that the

kernel is unable to detect your board properly. This is dealt with in a later section.

3.2 Kernel Configuration

Most Linux distributions come along with boot disks that work for all common types of

PC hardware. This means that the kernel on those disks has all sorts of drivers configured

3.2. Kernel Configuration 64

in that you will never need, but which waste precious system memory because parts of the
kernel cannot be swapped out. Therefore, you will generally roll your own kernel, including

only those drivers you actually need or want.

When running a Linux system, you should be familiar with building a kernel. The basics
of this are explained in Matt Welsh’s “Installation and Getting Started” Guide, which is
also part of the Linux Documentation Project’s series. In this section, we will therefore

discuss only those configuration options that affect networking.

When running make config, you will first be asked general configurations, for instance
whether you want kernel math emulation or not, etc. One of these asks you whether you
want TCP/IP networking support. You must answer this with y to get a kernel capable of

networking.

3.2.1 Kernel Options in Linux 1.0 and Higher

After the general option part is complete, the configuration will go on to ask you for various
features such as SCSI drivers, etc. The subsequent list questions deal with networking
support. The exact set of configuration options is in constant flux because of the ongoing
development. A typical list of options offered by most kernel versions around 1.0 and 1.1

looks like this (comments are given in italics):

*

* Network device support
*

Network device support? (CONFIG_ETHERCARDS) [y]

Despite the macro name displayed in brackets, you must answer this question with y if
you want to use any type of networking devices, regardless of whether this is Ethernet, SLIP,
or PPP. When answering this question with y, support for Ethernet-type devices is enabled

automatically. Support for other types of network drivers must be enabled separately:

SLIP (serial line) support? (CONFIG_SLIP) [y]
SLIP compressed headers (SL_COMPRESSED) [y]
PPP (point-to-point) support (CONFIG_PPP) [yl
PLIP (parallel port) support (CONFIG_PLIP) [n]

These questions concern the various link layer protocols supported by Linux. SLIP allows
you to transport IP datagrams across serial lines. The compressed header option provides
support for CSLIP, a technique that compresses TCP /IP headers to as little as three bytes.
Note that this kernel option does not turn on CSLIP automatically, it merely provides the

necessary kernel functions for it.

3.2. Kernel Configuration 65

PPP is another protocol to send network traffic across serial lines. It is much more flexible
than SLIP, and is not limited to IP, but will also support IPX once it is implemented. As
PPP support has been completed only lately, this option may not be present in your kernel.

PLIP provides for a way to send IP datagrams across a parallel port connection. It is

mostly used to communicate with PCs running DOS.

The following questions deal with Ethernet boards from various vendors. As more drivers
are being developed, you are likely to see questions added to this section. If you want to
build a kernel you can use on a number of different machines, you can enable more than

one driver.

NE2000/NE1000 support (CONFIG_NE2000) [y]

WD80#3 support (CONFIG_WD80x3) [n]

SMC Ultra support (CONFIG_ULTRA) [n]

3¢c501 support (CONFIG_EL1) [n]

3¢c503 support (CONFIG_EL2) [n]

3cb09/3c579 support (CONFIG_EL3) [n]

HP PCLAN support (CONFIG_HPLAN) [n]

AT1500 and NE2100 (LANCE and PCnet-ISA) support (CONFIG_LANCE) [n]
AT1700 support (CONFIG_AT1700) [n]

DEPCA support (CONFIG_DEPCA) [n]

D-Link DE600 pocket adaptor support (CONFIG_DE600) [y]
AT-LAN-TEC/RealTek pocket adaptor support (CONFIG_ATP) [n]
*

* CD-ROM drivers

*

Finally, in the filesystem section, the configuration script will ask you whether you want
support for NFS, the networking filesystem. NFS lets you export filesystems to several
hosts, which makes the files appear as if they were on an ordinary hard disk attached to
the host.

NFS filesystem support (CONFIG_NFS_FS) [yl

3.2.2 Kernel Options in Linux 1.1.14 and Higher

Starting with Linux 1.1.14, which added alpha support for IPX, the configuration proce-
dure changed slightly. The general options section now asks whether you want networking
support in general. It is immediately followed by a couple of question on miscellaneous

networking options.

3.2. Kernel Configuration 66

*

* Networking options
*

TCP/IP networking (CONFIG_INET) [yl

To use TCP/IP networking, you must answer this question with y. If you answer with

n, however, you will still be able to compile the kernel with IPX support.

IP forwarding/gatewaying (CONFIG_IP_FORWARD) [n]

You have to enable this option if your system acts as a gateway between two Ethernets,
or between and FEthernet and a SLIP link, etc. Although it doesn’t hurt to enable this by
default, you may want to disable this to configure a host as a so-called firewall. Firewalls
are hosts that are connected to two or more networks, but don’t route traffic between them.
They are commonly used to provide users from a company network with Internet access at
a minimal risk to the internal network. Users will be allowed to log into the firewall and
use Internet services, but the company’s machines will be protected from outside attacks

because any incoming connections can’t cross the firewall.

*

* (it is safe to leave these untouched)
*

PC/TCP compatibility mode (CONFIG_INET_PCTCP) [n]

This option works around an incompatibility with some versions of PC/TCP, a commer-
cial TCP/IP implementation for DOS-based PCs. If you enable this option, you will still
be able to communicate with normal UN%X machines, but performance may be hurt over

slow links.

Reverse ARP (CONFIG_INET_RARP) [n]

This function enables RARP, the Reverse Address Resolution Protocol. RARP is used
by diskless clients and X terminals to inquire their IP address when booting. You should
enable RARP only when you plan to serve this sort of clients. The latest package of network

utilities (net-0.32d) contains a small utility named rarp that allows you to add systems to

the RARP cache.

Assume subnets are local (CONFIG_INET_SNARL) [yl

When sending data over TCP, the kernel has to break up the stream into several packets

before giving it to IP. For hosts that can be reached over a local network such as an Ethernet,

3.2. Kernel Configuration 67

larger packets will be used than for hosts where data has to go through long-distance links.?
If you don’t enable SNARL, the kernel will assume only those networks are local that it
actually has an interface to. However, if you look at the class B network at Groucho Marx
University, the whole class B network is local, but most hosts interface to only one or two
subnets. If you enable SNARL, the kernel will assume all subnets are local and use large

packets when talking to all hosts on campus.

If you do want to use smaller packet sizes for data sent to specific hosts (because, for
instance, the data goes through a SLIP link), you can do so using the mtu option of route,

which is briefly discussed at the end of this chapter.

Disable NAGLE algorithm (normally enabled) (CONFIG_TCP_NAGLE_OFF) [n]

Nagle’s rule is a heuristic to avoid sending particularly small IP packets, also called
tinygrams. Tinygrams are usually created by interactive networking tools that transmit
single keystrokes, such as telnet or rsh. Tinygrams can become particularly wasteful on
low-bandwidth links like SLIP. The Nagle algorithm attempts to avoid them by holding
back transmission of TCP data briefly under some circumstances. You might only want to

disable Nalge’s algorithm if you have severe problems with packets getting dropped.

The IPX protocol (CONFIG_IPX) [n]

This enables support for IPX, the transport protocol used by Novell Networking. It is
still under development, and isn’t really useful yet. One benefit of this will be that you
can exchange data with IPX-based DOS utilities one day, and route traffic between your
Novell-based networks through a PPP link. Support for the high-level protocols of Novell
networking is however not in sight, as the specifications for these are available only at

horrendous cost and under a non-disclosure agreement.

Starting in the 1.1.16 kernel, Linux supports another driver type, the dummy driver.

The following question appears toward the start of the device driver section.

Dummy net driver support (CONFIG_DUMMY) [yl

The dummy driver doesn’t really do much, but is quite useful on standalone or SLIP
hosts. It is basically a masqueraded loopback interface. The reason to have this sort of
interface is that on hosts that do SLIP but have no Ethernet, you want to have an interface
that bears your IP address all the time. This is discussed in a little more detail in section The

Dummy Interface in chapter 5.

2This is to avoid fragmentation by links that have a very small maximum packet size.

3.3. A Tour of Linux Network Devices 68

3.3 A Tour of Linux Network Devices

The Linux kernel supports a number of hardware drivers for various types of equipment.
This section gives a short overview of the driver families available, and the interface names

used for them.

There are a number of standard names for interfaces in Linux, which are listed below.
Most drivers support more than one interface, in which case the interfaces are numbered,
as in ethd, ethl, etc.

lo The local loopback interface. It is used for testing purposes, as well as
a couple of network applications. It works like a closed circuit in that any
datagram written to it will be immediately returned to the host’s networking
layer. There’s always one loopback device present in the kernel, and there’s

little sense in having fewer or more.

ethn The n-th Ethernet card. This is the generic interface name for most Ethernet
boards.

din These interfaces access a D-Link DE-600 pocket adapter, another Ethernet
device. It is a little special in that the DE-600 is driven through a parallel
port.

sln The n-th SLIP interface. SLIP interfaces are associated with serial lines in

the order in which they are allocated for SLIP; i.e., the first serial line being
configured for SLIP becomes sl0, etc. The kernel supports up to four SLIP

interfaces.

pppn The n-th PPP interface. Just like SLIP interfaces, a PPP interface is asso-
ciated with a serial line once it is converted to PPP mode. At the moment,

up to four interfaces are supported.

plipn The n-th PLIP interface. PLIP transports IP datagrams over parallel lines.
Up to three PLIP interfaces are supported. They are allocated by the PLIP

driver at system boot time, and are mapped onto parallel ports.

For other interface drivers that may be added in the future, like ISDN, or AX.25, other
names will be introduced. Drivers for IPX (Novell’s networking protocol), and AX.25 (used

by ham radio amateurs) are under development, but are at alpha stage still.

During the following sections, we will discuss the details of using the drivers described

above.

3.4. Ethernet Installation 69

3.4 Ethernet Installation

The current Linux network code supports various brands of Ethernet cards. Most drivers
were written by Donald Becker (becker@cesdis.gsfc.nasa.gov), who authored a family of
drivers for cards based on the National Semiconductor 8390 chip; these have become known
as the Becker Series Drivers. There are also drivers for a couple of products from D-Link,
among them the D-Link pocket adaptor that allows you to access an Ethernet through a
parallel port. The driver for this was written by Bjern Ekwall (bjOrn@blox.se). The
DEPCA driver was written by David C. Davies (davies@wanton.lkg.dec.com).

3.4.1 Ethernet Cabling

If you're installing an Ethernet for the first time in your life, a few words about the cabling
may be in order here. Ethernet is very picky about proper cabling. The cable must be
terminated on both ends with a 50 Ohm resistor, and you must not have any branches (i.e.
three cables connected in a star-shape). If you are using a thin coax cable with T-shaped
BNC junctions, these junctions must be twisted on the board’s connector directly; you

should not insert a cable segment.

If you connect to a thicknet installation, you have to attach your host through a
transceiver (sometimes called Ethernet Attachment Unit). You can plug the transceiver

into the 15-pin AUI port on your board directly, but may also use a shielded cable.

3.4.2 Supported Boards

A complete list of supported boards is available in the Fthernet HOWTOs posted monthly

to comp.os.linux.announce by Paul Gortmaker.?

Here’s a list of the more widely-known boards supported by Linux. The actual list in
the HOWTO is about three times longer. However, even if you find your board in this
list, check the HOWTO first; there are sometimes important details about operating these
cards. A case in point is the case of some DMA-based Ethernet boards that use the same
DMA channel as the Adaptec 1542 SCSI controller by default. Unless you move either of
them to a different DMA channel, you will wind up with the Ethernet board writing packet

data to arbitrary locations on your hard disk.

3Com EtherLink
Both 3¢503 and 3¢503/16 are supported, as are 3¢507 and 3¢509. The 3¢501

is supported, too, but is too slow to be worth buying.

?Paul can be reached at gpgl09@rsphysse.anu.edu.au.

3.4. Ethernet Installation 70

Novell Eagle NE1000 and NE2000, and a variety of clones. NE1500 and NE2100 are

supported, too.

Western Digital /SMC
WD8003 and WD8013 (same as SMC Elite and SMC Elite Plus) are sup-
ported, and also the newer SMC Elite 16 Ultra.

Hewlett Packard
HP 27252, HP 27247B, and HP J2405A.

D-Link DE-600 pocket adaptor, DE-100, DE-200, and DE-220-T. There’s also a
patch kit for the DE-650-T, which is a PCMCIA card.?

DEC DE200 (32K /64K), DE202, DE100, and DEPCA rev E.

Allied Teliesis
AT1500 and AT1700.

To use one of these cards with Linux, you may use a precompiled kernel from one of
the major Linux distributions. These generally have drivers for all of them built in. In the
long term, however, it’s better to roll your own kernel and compile in only those drivers you

actually need.

3.4.3 Ethernet Autoprobing

At boot time, the Ethernet code will try to locate your board and determine its type. Cards

are probed for at the following addresses and in the following order:

Board Addresses probed for

WD/SMC 0x300, 0x280, 0x380, 0x240

SMC 16 Ultra | 0x300, 0x280

3ch01 0x280

3¢503 0x300, 0x310, 0x330, 0x350, 0x250,
0x280, 0x2a0, 0x2e0

NEx000 0x300, 0x280, 0x320, 0x340, 0x360

HP 0x300, 0x320, 0x340, 0x280, 0x2C0,
0x200, 0x240

DEPCA 0x300, 0%x320, 0x340, 0x360

There are two limitations to the autoprobing code. For one, it may not recognize all

boards properly. This is especially true for some of the cheaper clones of common boards,

It can be gotten — along with other Laptop-related stuff — from tsx-11.mit.edu in packages/laptops.

3.4. Ethernet Installation 71

but also for some WD80x3 boards. The second problem is that the kernel will not auto-
probe for more than one board at the moment. This is a feature, because it is assumed you

want to have control about which board is assigned which interface.

If you are using more than one board, or if the autoprobe should fail to detect your

board, you have to tell the kernel explicitly about the card’s base address and name.

In Net-3, you have can use two different schemes to accomplish this. One way is to
change or add information in the drivers/net/Space.c file in the kernel source code that
contains all information about drivers. This is recommended only if you are familiar with
the networking code. A much better way is to provide the kernel with this information
at boot time. If you use lilo to boot your system, you can pass parameters to the kernel
by specifying them through the append option in lilo.conf. To inform the kernel about an

Ethernet device, you can pass the following parameter:
ether=irqg, base_addr ,paraml ,param2,name

The first four parameters are numerical, while the last is the device name. All numerical
values are optional; if they are omitted or set to zero, the kernel will try to detect the value

by probing for it, or use a default value.

The first parameter sets the IRQ assigned to the device. By default, the kernel will try
to auto-detect the device’s IRQ channel. The 3¢503 driver has a special feature that selects
a free IRQ from the list 5, 9, 3, 4, and configures the board to use this line.

The base_addr parameter gives the I/O base address of the board; a value of zero tells

the kernel to probe the addresses listed above.

The remaining two parameters may be used differently by different drivers. For shared-
memory boards such as the WD80x3, they specify start and end addresses of the shared
memory area. Other cards commonly use parami to set the level of debugging information
that is being displayed. Values of 1 through 7 denote increasing levels of verbosity, while
8 turns them off altogether; 0 denotes the default. The 3¢503 driver uses param2 to select
the internal transceiver (default) or an external transceiver (a value of 1). The former uses
the board’s BNC connector; the latter uses its AUI port.

If you have two Ethernet boards, you can have Linux autodetect one board, and pass
the second board’s parameters with lilo. However, you must make sure the driver doesn’t
accidentally find the second board first, else the other one won’t be registered at all. You
do this by passing lilo a reserve option, which explicitly tells the kernel to avoid probing

the 1/O space taken up by the second board.

For instance, to make Linux install a second Ethernet board at 0x300 as eth, you would

pass the following parameters to the kernel:

3.5. The PLIP Driver 72

reserve=0x300,32 ether=0,0x300,ethl

The reserve option makes sure no driver accesses the board’s I/O space when probing

for some device. You may also use the kernel parameters to override autoprobing for etho:
reserve=0x340,32 ether=0,0x340,ethO
To turn off autoprobing altogether, you can specify a base_addr argument of -1:

ether=0,-1,eth0

3.5 The PLIP Driver

PLIP stands for Parallel Line IP and is a cheap way to network when you want to connect
only two machines. It uses a parallel port and a special cable, achieving speeds of 10kBps
to 20kBps.

PLIP was originally developed by Crynwr, Inc. Its design is rather ingenuous (or, if you
prefer, hackish): for a long time, the parallel ports on PCs used to be only uni-directional
printer ports; that is, the eight data lines could only be used to send from the PC to the
peripheral device, but not the other way round. PLIP works around this by using the port’s
five status line for input, which limits it to transferring all data as nibbles (half bytes) only.
This mode of operation is called mode zero PLIP. Today, these uni-directional ports don’t
seem to be used much anymore. Therefore, there is also a PLIP extension called mode 1
that uses the full 8 bit interface.

Currently, Linux only supports mode 0. Unlike earlier versions of the PLIP code, it
now attempts to be compatible with the PLIP implementations from Crynwr, as well as
the PLIP driver in NCSA telnet.® To connect two machines using PLIP, you need a special
cable sold at some shops as “Null Printer” or “Turbo Laplink” cable. You can, however,

make one yourself fairly easily. Appendix A shows you how.

The PLIP driver for Linux is the work of almost countless persons. It is currently
maintained by Niibe Yutaka. If compiled into the kernel, it sets up a network interface
for each of the possible printer ports, with plip0 corresponding to parallel port Ip0, plip?

corresponding to Ip!, etc. The mapping of interface to ports is currently this:

°NCSA telnet is a popular program for DOS that runs TCP/IP over Ethernet or PLIP, and supports
telnet and FTP.

3.6. The SLIP and PPP Drivers 73

Interface | I/O Port | IRQ
plip0 0x3BC 7
plip1 0x378

plip2 0x278

If you have configured your printer port in a different way, you have to change these

values in drivers/net/Space.c in the Linux kernel source, and build a new kernel.

This mapping does not mean, however, that you cannot use these parallel ports as usual.

They are accessed by the PLIP driver only when the corresponding interface is configured

up.

3.6 The SLIP and PPP Drivers

SLIP (Serial Line IP), and PPP (Point-to-Point Protocol) are a widely used protocol for
sending IP packets over a serial link. A number of institutions offer dialup SLIP and
PPP access to machines that are on the Internet, thus providing IP connectivity to private

persons (something that’s otherwise hardly affordable).

To run SLIP or PPP, no hardware modifications are necessary; you can use any serial
port. Since serial port configuration is not specific to TCP/IP networking, a separate

chapter has been devoted to this. Please refer to chapter 4 for more information.

Chapter 4

Setting up the Serial Hardware

There are rumors that there are some people out there in netland who only own one PC
and don’t have the money to spend on a T1 Internet link. To get their daily dose of news
and mail nevertheless, they are said to rely on SLIP links, UUCP networks, and bulletin
board systems (BBS’s) that utilize public telephone networks.

This chapter is intended to help all those people who rely on modems to maintain their
link. However, there are many details that this chapter cannot go into, for instance how to
configure your modem for dialin. All these topics will be covered in the upcoming Serial

HOWTO by Greg Hankins,! to be posted to comp.os.linux.announce on a regular basis.

4.1 Communication Software for Modem Links

There are a number of communication packages available for Linux. Many of them are ter-
minal programs which allow a user to dial into another computer as if she was sitting in front
of a simple terminal. The traditional terminal program for Unices is kermit. It is, however,
somewhat Spartan. There are more comfortable programs available that support a dictio-
nary of telephone numers, script languages for calling and logging into remote computer
systems, etc. One of them is minicom, which is close to some terminal programs former
DOS users might be accustomed to. There are also X-based communications packages, e.g.

seyon.

Also, a number of Linux-based BBS packages are available for people that want to run
a bulletin board system. Some of these packages can be found at sunsite.unc.edu in
/pub/Linuz/system/Network.

'To be reached at gregh@cec.gatech.edu.

74

4.2. Introduction to Serial Devices 75

Apart from terminal programs, there is also software that uses a serial link non-
interactively to transport data to or from your computer. The advantage of this technique
is that it takes much less time to download a few dozen kilobytes automatically, than it
might take you to read your mail on-line in some mailbox and browse a bulletin board for
interesting articles. On the other hand, this requires more disk storage because of the loads

of useless information you usually get.

The epitome of this sort of communications software is UUCP. It is a program suite
that copies files from one host to another, executes programs on a remote host, etc. It
is frequently used to transport mail or news in private networks. Ian Taylor’s UUCP
package, which also runs under Linux, is described in the following chapter. Other non-
interactive communication software is, for example, used throughout Fidonet. Ports of

Fidonet applications like ifmail are also available.

SLIP, the serial line Internet protocol, is somewhat inbetween, allowing both interactive
and non-interactive use. Many people use SLIP to dial up their campus network or some
other sort of public SLIP server to run FTP sessions, etc. SLIP may however also be used
over permanent or semi-permanent connections for LAN-to-LAN coupling, although this is

really only interesting with ISDN.

4.2 Introduction to Serial Devices

The devices a UNxX kernel provides for accessing serial devices are typically called ttys.
This is an abbreviation for Teletype™, which used to be one of the major manufacturers
of terminals in the early days of Unix. The term is used nowadays for any character-based
data terminal. Throughout this chapter, we will use the term exclusively to refer to kernel

devices.

Linux distinguishes three classes of ttys: (virtual) consoles, pseudo-terminals (similar to
a two-way pipe, used by application such as X11), and serial devices. The latter are also
counted as ttys, because they permit interactive sessions over a serial connection; be it from

a hard-wired terminal or a remote computer over a telephone line.

Ttys have a number of configurable parameters which can be set using the ioctl(2) system
call. Many of them apply only to serial devices, since they need a great deal more flexibility

to handle varying types of connections.

Among the most prominent line parameters are the line speed and parity. But there are
also flags for the conversion between upper and lower case characters, of carriage return
into line feed, etc. The tty driver may also support various line disciplines which make

the device driver behave completely different. For example, the SLIP driver for Linux is

4.3. Accessing Serial Devices 76

implemented by means of a special line discipline.

There is a bit of ambiguity about how to measure a line’s speed. The correct the term is
Bit rate, which is related to the line’s transfer speed measured in bits per second (or bps for
short). Sometimes, you hear people refer to it as the Baud rate, which is not quite correct.
These two terms are, however, not interchangeable. The Baud rate refers to a physical
characteristic of some serial device, namely the clock rate at which pulses are transmitted.
The bit rate rather denotes a current state of an existing serial connection between two
points, namely the average number of bits transferred per second. It is important to know
that these two values are usually different, as most devices encode more than one bit per

electrical pulse.

4.3 Accessing Serial Devices

Like all devices in a UN%X system, serial ports are accessed through device special files,
located in the /dev directory. There are two varieties of device files related to serial drivers,
and for each port, there is one device file from each of them. Depending on the file it is

accessed by, the device will behave differently.

The first variety is used whenever the port is used for dialing in; it has a major number
of 4, and the files are named ttyS0, ttyS1, etc. The second variety is used when dialing out

through a port; the files are called cua0, etc, and have a major number of 5.

Minor numbers are identical for both types. If you have your modem on one of the
ports COM1 through COMJ, its minor number will be the COM port number plus 63. If
your setup is different from that, for example when using a board supporting multiple serial

lines, please refer to the Serial Howto.

Assume your modem is on COM2. Thus its minor number will be 65, and its major
number will be 5 for dialing out. There should be a device cual which has these numbers.
List the serial ttys in the /dev directory. Columns 5 and 6 should show major and minor

numbers, respectively:

$ 1s -1 /dev/cua*

cru-rw-ru- 1 root root 5, 64 Nov 30 19:31 /dev/cua0
cru-rw-ru- 1 root root 5, 65 Nov 30 22:08 /dev/cual
cru-rw-ru- 1 root root 5, 66 Oct 28 11:56 /dev/cua2
cru-rw-ru- 1 root root 5, 67 Mar 19 1992 /dev/cua3

If there is no such device, you will have to create one: become super-user and type

4.4. Serial Hardware 77

mknod -m 666 /dev/cual ¢ 5 65

chown root.root /dev/cual

Some people suggest making /dev/modem a symbolic link to your modem device, so
that casual users don’t have to remember the somewhat unintuitive cual. However, you
cannot use modem in one program, and the real device file name in another. This is because
these programs use so-called lock files to signal that the device is used. By convention, the
lock file name for cual, for instance, is LCK..cual. Using different device files for the same
port means that programs will fail to recognize each other’s lock files, and will both use the

device at the same time. As a result, both applications will not work at all.

4.4 Serial Hardware

Linux currently supports a wide variety of serial boards which use the R5-232 standard. RS-
232 is currently the most common standard for serial communcications in the PC world.
It uses a number of circuits for transmitting single bits as well as for synchronization.
Additional lines may be used for signaling the presence of a carrier (used by modems), and

handshake.

Although hardware handshake is optional, it is very useful. It allows either of the two
stations to signal whether it is ready to receive more data, or if the other station should
pause until the receiver is done processing the incoming data. The lines used for this are
called “Clear to Send” (CTS) and “Ready to Send” (RTS), respectively, which accounts for
the colloquial name of hardware handshake, namely “RTS/CTS”.

In PCs, the R5-232 interface is usually driven by a UART chip derived from the National
Semiconductor 16450 chip, or a newer version thereof, the NSC 16550A2. Some brands (most
notably internal modems equipped with the Rockwell chipset) also use completely different
chips that have been programmed to behave as if they were 16550’s.

The main difference between 16450’s and 16550’s that the latter have a FIFO buffer of
16 Bytes, while the former only have a 1-Byte buffer. This makes 16450’s suitable for speeds

up to 9600 Baud, while higher speeds require a 16550-compatible chip. Besides these chips,
Linux also supports the 8250 chip, which was the original UART for the PC-AT.

In the default configuration, the kernel checks the four standard serial ports COMI
through COM}J. These will be assigned device minor numbers 64 through 67, as described

above.

If you want to configure your serial ports properly, you should install Ted Tso’s setserial

2There was also a NSC 16550, but it’s FIFO never really worked.

4.4. Serial Hardware 78

command along with the rc.serial script. This script should be invoked from /etc/rc at
system boot time. It uses setserial to configure the kernel serial devices. A typical rc.serial

script looks like this:

/etc/rc.serial - serial line configuration script.
#
Do wild interrupt detection

/sbin/setserial -W /dev/cua*

Configure serial devices

/sbin/setserial /dev/cual auto_irq skip_test autoconfig
/sbin/setserial /dev/cual auto_irq skip_test autoconfig
/sbin/setserial /dev/cua2 auto_irq skip_test autoconfig

/sbin/setserial /dev/cua3 auto_irq skip_test autoconfig

Display serial device configuration

/sbin/setserial -bg /dev/cua*

Please refer to the documentation that comes along with setserial for an explanation of the

parameters.

If your serial card is not detected, or the setserial -bg command shows an incorrect
setting, you will have to force the configuration by explicitly supplying the correct values.
Users with internal modems equipped with the Rockwell chipset are reported to experience
this problem. If, for example, the UART chip is reported to be a NSC 16450, while in fact it
is NSC 16550-compatible, you have to change the configuration command for the offending
port to

/sbin/setserial /dev/cual auto_irq skip_test autoconfig uart 16550

Similar options exist to force COM port, base address, and IRQ setting. Please refer to

the setserial(8) manual page.

If your modem supports hardware handshake, you should make sure to enable it. Sur-
prising as it is, most communication programs do not attempt to enable this by default;
you have to set it manually instead. This is best performed in the re.serial script, using
the stty command:

$ stty crtscts < /dev/cual

To check if hardware handshake is in effect, use

$ stty -a < /dev/cual

4.4. Serial Hardware 79

This gives you the status of all flags for that device; a flag shown with a preceding minus

as in -crtscts means that the flag has been turned off.

Chapter 5

Configuring TCP /IP Networking

In this chapter, we will go through all the steps necessary to setting up TCP /IP networking
on your machine. Starting with the assignment of IP addresses, we will slowly work our
way through the configuration of TCP/IP network interfaces, and introduce a few tools

that come quite handy when hunting down problems with your network installation.

Most of the tasks covered in this chapter you will generally have to do only once. Af-
terwards, you have to touch most configuration files only when adding a new system to
your network, or when you reconfigure your system entirely. Some of the commands used
to configure TCP /TP, however, have to be executed each time the system is booted. This

is usually done by invoking them from the system /etc/re scripts.

Commonly, the network-specific part of this procedure is contained in a script called
re.net or re.inet. Sometimes, you will also see two scripts named rec.inet! and re.inet?2,
where the former initializes the kernel part of networking, while the latter starts basic
networking services and applications. Throughout the following, I will adhere to the latter

concept.

Below, I will discuss the actions performed by rc.inet1, while applications will be covered
in later chapters. After finishing this chapter, you should have established a sequence of
commands that properly configure TCP/IP networking on your computer. You should
then replace any sample commands in rc.inet! with your commands, make sure rc.inet! is
executed at startup time, and reboot your machine. The networking rc scripts that come

along with your favorite Linux distribution should give you a good example.

80

5.1. Setting up the proc Filesystem 81

5.1 Setting up the proc Filesystem

Some of the configuration tools of the Net-2 release rely on the proc filesystem for com-
municating with the kernel. This is an interface that permits access to kernel run-time
information through a filesystem-like mechanism. When mounted, you can list its files like
any other filesystem, or display their contents. Typical items include the loadavg file that
contains the system load average, or meminfo, which shows current core memory and swap

usage.

To this, the networking code adds the net directory. It contains a number of files that
show things like the kernel ARP tables, the state of TCP connections, and the routing

tables. Most network administration tools get their information from these files.

The proc filesystem (or procfs as it is also known) is usually mounted on /proc at system
boot time. The best method is to add the following line to /etc/fstab:

procfs mont point:

none /proc proc defaults

and execute “mount /proc” from your /etc/rc script.

The procfs is nowadays configured into most kernels by default. If the procfs is not
in your kernel, you will get a message like “mount: fs type procfs not supported by
kernel”. You will then have to recompile the kernel and answer “yes” when asked for procfs

support.

5.2 Installing the Binaries

If you are using one of the pre-packaged Linux distributions, it will most probably contain
the major networking applications and utilities along with a coherent set of sample files.
The only case where you might have to obtain and install new utilities is when you install a
new kernel release. As they occasionally involve changes in the kernel networking layer, you
will need to update the basic configuration tools. This at least involves recompiling, but
sometimes you may also be required to obtain the latest set of binaries. These are usually
distributed along with the kernel, packaged in an archive called net-XXX.tar.gz, where XXX
is the version number. The release matching Linux 1.0 is 0.32b, the latest kernel as of this
writing (1.1.12 and later) require 0.32d.

If you want to compile and install the standard TCP/IP network applications yourself,
you can obtain the sources from most Linux FTP servers. These are more or less heavily

patched versions of programs from Net-BSD or other sources. Other applications, such as

5.3. Another Example 82

Xmosaic, zarchie, or Gopher and IRC clients must be obtained separately. Most of them

compile out of the box if you follow the instructions.

The official FTP site for Net-3 is sunacm.swan.ac.uk, mirrored by sunsite.unc.edu
below system/Network/sunacm. The latest Net-2e patch kit and binaries are available
from ftp.aris.com. Matthias Urlichs’ BSD-derived networking code can be gotten from
ftp.ira.uka.de in /pub/system/linuz/netbsd.

5.3 Another Example

For the remainder of this book, let me introduce a new example that is less complex than
Groucho Marx University, and may be closer to the tasks you will actually encounter.
Consider the Virtual Brewery, a small company that brews, as the name indicates, virtual
beer. To manage their business more efficiently, the virtual brewers want to network their

computers, which all happen to be PCs running a bright and shiny Linux 1.0.

On the same floor, just across the hall, there’s the Virtual Winery, who work closely
with the brewery. They run an Ethernet of their own. Quite naturally, the two companies
want to link their networks once they are operational. As a first step, they want to set up
a gateway host that forwards datagrams between the two subnets. Later, they also want to
have a UUCP link to the outside world, through which they exchange mail and news. In the

long run, the also want to set up a SLIP connection to connect to the Internet occasionally.

5.4 Setting the Hostname

Most, if not all, network applications rely on the local host’s name having been set to some
reasonable value. This is usually done during the boot procedure by executing the hostname

command. To set the hostname to name, it is invoked as
hostname name

It is common practice to use the unqualified hostname without any domain name
for this. For instance, hosts at the Virtual Brewery might be called vale.vbrew.com,
vlager.vbrew.com, etc. These are their official, fully qualified domain names. Their local
hostnames would be only the first component of the name, such as vale. However, as the
local hostname is frequently used to look up the host’s IP address, you have to make sure
that the resolver library is able to look up the host’s IP address. This usually means that

you have to enter the name in /etc/hosts (see below).

5.5. Assigning IP Addresses 83

Some people suggest to use the domainname command to set the kernel’s idea of a
domain name to the remaining part of the FQDN. In this way you could combine the
output from hostname and domainname to get the FQDN again. However, this is at best
only half correct. domainname is generally used to set the host’s NIS domain, which may be

entirely different from the DNS domain your host belongs to. NIS is covered in chapter 10.

5.5 Assigning IP Addresses

If you configure the networking software on your host for standalone operation (for instance,
to be able to run the INN netnews software), you can safely skip this section, because you

will need an IP address just for the loopback interface, which is always 127.0.0.1.

Things are a little more complicated with real networks like Ethernets. If you want to
connect your host to an existing network, you have to ask its administrators to give you
an IP address on this network. When setting up the network all by yourself, you have to

assign [P addresses yourself as described below.

Hosts within a local network should usually share addresses from the same logical 1P net-
work. Hence you have to assign an I[P network address. If you have several physical net-
works, you either have to assign them different network numbers, or use subnetting to split

your IP address range into several subnetworks.

If your network is not connected to the Internet, you are free to choose any (legal)
network address. You only have to make sure to choose one from classes A, B, or C, else
things will most likely not work properly. However, if you intend to get on the Internet in
the near future, you should obtain an official IP address now. The best way to proceed is
to ask your network service provider to help you. If you want to obtain a network number
just in case you might get on the Internet someday, request a Network Address Application

Form from hostmaster@internic.net.

To operate several Ethernets (or other networks, once a driver is available), you have
to split your network into subnets. Note that subnetting is required only if you have more
than one broadcast network; point-to-point links don’t count. For instance, if you have one
Ethernet, and one or more SLIP links to the outside world, you don’t need to subnet your

network. The reason for this will be explained in chapter 7.

As an example, the brewery’s network manager applies to the NIC for a class B network
number, and is given 191.72.0.0. To accomodate the two Ethernets, she decides to use
eight bits of the host part as additional subnet bits. This leaves another eight bits for the
host part, allowing for 254 hosts on each of the subnets. She then assigns subnet number

1 to the brewery, and gives the winery number 2. Their respective network addresses are

5.6. Writing hosts and networks Files 84

191:72 | 0 0

) L /s 0 |

Brewery Subnet Gateway Winery Subnet

Figure 5.1: Virtual Brewery and Virtual Winery — the two subnets.

thus 191.72.1.0 and 191.72.2.0. The subnet mask is 255.255.255.0.

vlager, which is the gateway between the two networks, is assigned a host number of 1
on both of them, which gives it the IP addresses 191.72.1.1 and 191.72.2.1, respectively.

Figure 5.1 shows the two subnets, and the gateway.

Note that in this example I am using a class B network to keep things simple; a class C
network would be more realistic. With the new networking code, subnetting is not limited to
byte boundaries, so even a class C network may be split into several subnets. For instance,
you could use 2 bits of the host part for the netmask, giving you four possible subnets with
64 hosts on each.!

5.6 Writing hosts and networks Files

After you have subnetted your network, you should prepare for some simple sort of hostname
resolution using the /etc/hosts file. If you are not going to use DNS or NIS for address

resolution, you have to put all hosts in the hosts file.

Even if you want to run DNS or NIS during normal operation, you want to have some
subset of all hostnames in /etc/hosts nevertheless. For one, you want to have some sort of
name resolution even when no network interfaces are running, for example during boot time.

This is not only a matter of convenience, but also allows you to use symbolic hostnames in

!The last number on each subnet is reserved as the broadcast address, so it’s in fact 63 hosts per subnet.

5.6. Writing hosts and networks Files 85

your rc.inet scripts. Thus, when changing IP addresses, you only have to copy an updated
hosts file to all machines and reboot, rather than having to edit a large number of rc files
separately. Usually, you will put all local hostnames and addresses in hosts, adding those

of any gateways and NIS servers if used.?

Also, during intial testing, you should make sure your resolver only uses information from
the hosts file. Your DNS or NIS software may come with sample files that may produce
strange results when being used. To make all applications use /etc/hosts exclusively when
looking up the IP address of a host, you have to edit the /etc/host.conf file. Comment out
any lines that begin with the keyword order by preceding them with a hash sign, and insert
the line

order hosts

The configuration of the resolver library will be covered in detail in chapter 6.

The hosts file contains one entry per line, consisting of an IP address, a hostname, and
an optional list of aliases for the hostname. The fields are separated by spaces or tabs, and
the address field must begin in column one. Anything following a hash sign (#) is regarded

as a comment and is ignored.

Hostnames can be either fully qualified, or relative to the local domain. For vale, you
would usually enter the the fully qualified name, vale.vbrew.com, and vale by itself in

the hosts file, so that it is known by both its official name and the shorter local name.

This is an example how a hosts file at the Virtual Brewery might look. Two special
names are included, vlager-ifl and vlager-if2 that give the addresses for both interfaces

used on vlager.

#

Hosts file for Virtual Brewery/Virtual Winery
#

IP local fully qualified domain name
#

127.0.0.1 localhost

#

191.72.1.1 vlager vlager.vbrew.com
191.72.1.1 vlager-ifi

191.72.1.2 vstout vstout.vbrew.com
191.72.1.3 vale vale.vbrew.com

#

2You will need the address of any NIS servers only if you use Peter Eriksson’s NYS. Other NIS imple-

mentations locate their servers at run-time only by using ypbind.

5.7. Interface Configuration for IP 86

191.72.2.1 vlager-if2

191.72.2.2 vbeaujolais vbeaujolais.vbrew.com
191.72.2.3 vbardolino vbardolino.vbrew.com
191.72.2.4 vchianti vchianti.vbrew.com

Just as with a host’s IP address, you sometimes would like to use a symbolic name for
network numbers, too. Therefore, the hosts file has a companion called /etc/networks that
maps network names to network numbers and vice versa. At the Virtual Brewery, we might

install a networks file like this:>

/etc/networks for the Virtual Brewery
brew-net 191.72.1.0
wine-net 191.72.2.0

5.7 Interface Configuration for IP

After setting up your hardware as explained in the previous chapter, you have to make
these devices known to the kernel networking software. A couple of commands are used to
configure the network interfaces, and initialize the routing table. These tasks are usually
performed from the rc.inet! script each time the system is booted. The basic tools for this

are called ifconfig (where “if” stands for interface), and route.

ifconfig is used to make an interface accessible to the kernel networking layer. This
involves the assignment of an [P address and other parameters, and activating the interface,
also known as “taking up.” Being active here means that the kernel will send and receive

IP datagrams through the interface. The simplest way to invoking it is
ifconfig interface ip-address

which assigns ip-address to interface and activates it. All other parameters are set to
default values. For instance, the default subnet mask is derived from the network class of
the IP address, such as 255.255.0.0 for a class B address. ifconfig is described in detail at
the end of this chapter.

route allows you to add or remove routes from the kernel routing table. It can be invoked

as
route [add|del] target

where the add and del arguments determine whether to add or delete the route to target.

?Note that names in networks must not collide with hostnames from the hosts file, else some programs

may produce strange results.

5.7. Interface Configuration for IP 87

5.7.1 The Loopback Interface

The very first interface to be activated is the loopback interface:
ifconfig lo 127.0.0.1

Occasionally, you will also see the dummy hostname localhost being used instead of the
IP address. ifconfig will look up the name in the hosts file where an entry should declare it
as the hostname for 127.0.0.1:

Sample /etc/hosts entry for localhost
localhost 127.0.0.1

To view the configuration of an interface, you invoke ifconfig giving it the interface name

as argument:

$ ifconfig lo
1o Link encap Local Loopback
inet addr 127.0.0.1 Bcast [NONE SET] Mask 255.0.0.0
UP BROADCAST LOOPBACK RUNNING MTU 2000 Metric 1
RX packets 0 errors O dropped O overrun O
TX packets 0 errors O dropped O overrun O

As you can see, the loopback interface has been assigned a netmask of 255.0.0.0, since
127.0.0.1 is a class A address. As you can see, the interface doesn’t have a broadcast
address set, which isn’t normally very useful for the loopback anyway. However, if you
run the rwhod daemon on your host, you may have to set the loopback device’s broadcast
address in order for rwho to function properly. Setting the broadcast is explained in section

“All about ifconfig” below.

Now, you can almost start playing with your mini-“network.” What is still missing is an
entry in the routing table that tells [P that it may use this interface as route to destination
127.0.0.1. This is accomplished by typing

route add 127.0.0.1

Again, you can use localhost instead of the IP address.

Next, you should check that everything works fine, for example by using ping. ping is

the networking equivalent of a sonar device! and is used to verify that a given address is

* Anyone remember Pink Floyd’s “Echoes”?

5.7. Interface Configuration for IP 88

actually reachable, and to measure the delay that occurs when sending a datagram to it

and back again. The time required for this is often referred to as the round-trip time.

ping localhost

PING localhost (127.0.0.1): 56 data bytes

64 bytes from 127.0.0.1: icmp_seq=0 tt1l=32 time=1 ms
64 bytes from 127.0.0.1: icmp_seq=1 tt1=32 time=0 ms
64 bytes from 127.0.0.1: icmp_seq=2 tt1l=32 time=0 ms
~C

--- localhost ping statistics ——-
3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0/0/1 ms

When invoking ping as shown here, it will go on emitting packets forever unless inter-

rupted by the user. The “C above marks the place where we pressed Ctrl-C.

The above example shows that packets for 127.0.0.1 are properly delivered and a reply
is returned to ping almost instantaneously. This shows you have succeeded in setting up

your first network interface.

If the output you get from ping does not resemble that shown above, you are in trouble.
Check any error if they indicate some file hasn’t been installed properly. Check that the
ifconfig and route binaries you use are compatible with the kernel release you run, and,
above all, that the kernel has been compiled with networking enabled (you see this from
the presence of the /proc/net directory). If you get an error message saying “Network
unreachable,” then you probably have got the route command wrong. Make sure you use

the same address as you gave to ifconfig.

The steps described above are enough to use networking applications on a standalone
host. After adding the above lines to rc.inet! and making sure both rc.inet scripts are
executed from /etc/rc, you may reboot your machine and try out various applications. For
instance, “telnet localhost” should establish a telnet connection to your host, giving you a

login prompt.

However, the loopback interface is useful not only as an example in networking books, or
as a testbed during development, but is actually used by some applications during normal
operation.® Therefore, you always have to configure it, regardless of whether your machine

is attached to a network or not.

®For instance, all applications based on RPC use the loopback interface to register themselves with the

portmapper daemon at startup.

5.7. Interface Configuration for IP 89

5.7.2 Ethernet Interfaces

Configuring an Ethernet interface goes pretty much the same as with the loopback interface,

it just requires a few more parameters when you are using subnetting.

At the Virtual Brewery, we have subnetted the IP network, which was originally a
class B network, into class C subnetworks. To make the interface recognize this, the ifconfig

incantation would look like this:
ifconfig ethO vstout netmask 255.255.255.0

This assigns the eth0 interface the IP address of vstout (191.72.1.2). If we had omitted
the netmask, ifconfig would have deduced the the netmask from the IP network class, which
would have resulted in a netmask of 255.255.0.0. Now a quick check shows:

ifconfig ethO

etho Link encap 10Mps Ethernet HWaddr 00:00:C0:90:B3:42
inet addr 191.72.1.2 Bcast 191.72.1.255 Mask 255.255.255.0
UP BROADCAST RUNNING MTU 1500 Metric 1
RX packets 0 errors O dropped O overrun O

TX packets 0 errors O dropped O overrun O

You can see that ifconfig automatically set the broadcast address (the Bcast field above)
to the usual value, which is the hosts network number with the host bits all set. Also, the
message transfer unit (the maximum size of Ethernet frames the kernel will generate for
this interface) has been set to the maximum value of 1500 bytes. All these values can be

overidden with special options that will be described later.

Quite similar to the loopback case, you now have to install a routing entry that informs
the kernel about the network that can be reached through eth. For the Virtual Brewery,

you would invoke route as
route add -net 191.72.1.0

At first, this looks a little like magic, because it’s not really clear how route detects which
interface to route through. However, the trick is rather simple: the kernel checks all inter-
faces that have been configured so far and compares the destination address (191.72.1.0
in this case) to the network part of the interface address (that is, the bitwise and of the

interface address and the netmask). The only interface that matches is eth0.

Now, what’s that -net option for? This is used because route can handle both routes to

networks and routes to single hosts (as you have seen above with localhost). When being

5.7. Interface Configuration for IP 90

given an address in dotted quad notation, it attempts to guess whether it is a network or a
hostname by looking at the host part bits. If the address’ host part is zero, route assumes
it denotes a network, otherwise it takes it as a host address. Therefore, route would think
that 191.72.1.0 is a host address rather than a network number, because it cannot know
that we use subnetting. We therefore have to tell it explicitly that it denotes a network,

giving it the -net flag.

Of course, the above route command is a little tedious to type, and it’s prone to spelling
mistakes. A more convenient approach is to use the network names we have defined in
/ete/networks above. This makes the command much more readable; even the -net flag

can now be omitted, because route now knows that 191.72.1.0 denotes a network.

route add brew-net

Now that you’ve finished the basic configuration steps, we want to make sure your
Ethernet interface is indeed running happily. Choose a host from your Ethernet, for instance

vlager, and type

ping vlager

PING vlager: 64 byte packets

64 bytes from 191.72.1.1: icmp_seq=0. time=11. ms
64 bytes from 191.72.1.1: icmp_seq=1. time=7. ms
64 bytes from 191.72.1.1: icmp_seq=2. time=12. ms
64 bytes from 191.72.1.1: icmp_seq=3. time=3. ms
~C

--—-vstout.vbrew.com PING Statistics———-
4 packets transmitted, 4 packets received, 0% packet loss

round-trip (ms) min/avg/max = 3/8/12

If you don’t see any output similar to this, then something is broken, obviously. If
you encounter unusual packet loss rates, this hints at a hardware problem, like bad or
missing terminators, etc. If you don’t receive any packets at all, you should check the
interface configuration with netstat. The packet statistics displayed by ifconfig should tell
you whether any packets have been sent out on the interface at all. If you have access to
the remote host, too, you should go over to that machine and check the interface statistics,
too. In this way, you can determine exactly where the packets got dropped. In addition,
you should display the routing information with route to see if both hosts have the correct
routing entry. route prints out the complete kernel routing table when invoked without any
arguments (the -n option only makes it print addresses as dotted quad instead of using the

hostname):

5.7. Interface Configuration for IP 91

route -n

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.1 * 255.255.255.255 UH 1 0 112 1o
191.72.1.0 * 265.255.255.0 U 1 0 10 ethO

The detailed meaning of these fields is explained below in section Checking with netstat.
The Flag column contains a list of flags set for each interface. U is always set for active
interfaces, and H says the destination address denotes a host. If the H flag is set for a route
that you meant to be a network route, then you have to specify the -net option with the
route command. To check whether a route you have entered is used at all, check if the Use

field in the second to last column increases between two invocations of ping.

5.7.3 Routing through a Gateway

In the previous section, I covered only the case of setting up a host on a single Ethernet.
Quite frequently, however, one encounters networks connected to one another by gateways.
These gateways may simply link two or more Ethernets, but may provide a link to the
outside world, the Internet, as well. In order to use the service of a gateway, you have to

provide additional routing information to the networking layer.

For instance, the Ethernets of the Virtual Brewery and the Virtual Winery are linked
through such a gateway, namely the host vlager. Assuming that vlager has already been
configured, we only have to add another entry to vstout’s routing table that tells the kernel
it can reach all hosts on the Winery’s network through vlager. The appropriate incantation

of route is shown below; the gw keyword tells it that the next argument denotes a gateway.
route add wine-net gw vlager

Of course, any host on the Winery network you wish to talk to must have a corresponding
routing entry for the Brewery’s network, otherwise you would only be able to send data
from vstout to vbardolino, but any response returned by the latter would go into the
great bit bucket.

This example describes only a gateway that switches packets between two isolated Eth-
ernets. Now assume that vlager also has a connection to the Internet (say, through an
additional SLIP link). Then we would want datagrams to any destination network other
than the Brewery to be handed to vlager. This can be accomplished by making it the

default gateway for vstout:

route add default gw vlager

5.7. Interface Configuration for IP 92

The network name default is a shorthand for 0.0.0.0, which denotes the default route.

You do not have to add this name to /etc/networks, because it is built into route.

When you see high packet loss rates when pinging a host behind one or more gateways,
this may hint at a very congested network. Packet loss is not so much due to technical
deficiencies as due to temporary excess loads on forwarding hosts, which makes them delay

or even drop incoming datagrams.

5.7.4 Configuring a Gateway

Configuring a machine to switch packets between two Ethernets is pretty straightforward.
Assume we’re back at vlager, which is equipped with two Ethernet boards, each being
connected to one of the two networks. All you have to do is configure both interfaces

separately, giving them their respective IP address, and that’s it.

It is quite useful to add information on the two interfaces to the hosts file in the way

shown below, so we have handy names for them, too:

191.72.1.1 vlager vlager.vbrew.com
191.72.1.1 vlager-ifi
191.72.2.1 vlager-if2

The sequence of commands to set up the two interfaces is then:

ifconfig ethO vlager-ifil
ifconfig ethl vlager-if2

route add brew-net

H H B

route add wine-net

5.7.5 The PLIP Interface

When using a PLIP link to connect two machines, things are a little different from what you
have to do when using an Ethernet. The former are so-called point-to-point links, because

they involve ony two hosts (“points”), as opposed to broadcast networks.

As an example, we consider the laptop computer of some employee at the Virtual Brewery
that is connected to vlager via PLIP. The laptop itself is called vlite, and has only one
parallel port. At boot time, this port will be registered as plipl. To activate the link, you

have to configure the plipl interface using the following commands:®

SNote that pointopoint is not a typo. It’s really spelt like this.

5.7. Interface Configuration for IP 93

ifconfig plipl vlite pointopoint vlager
route add default gw vlager

The first command configures the interface, telling the kernel that this is a point-to-point
link, with the remote side having the address of vlager. The second installs the default
route, using vlager as gateway. On vlager, a similar ifconfig command is necessary to

activate the link (a route invocation is not needed):
ifconfig plipl vlager pointopoint vlite

The interesting point is that the plip? interface on vlager does not have to have a

separate IP address, but may also be given the address 191.72.1.1.7

Now, we have configured routing from the laptop to the Brewery’s network; what’s
still missing is a way to route from any of the Brewery’s hosts to vlite. One particularly
cumbersome way is to add a specific route to every host’s routing table that names vlager

as a gateway to vlite:

route add vlite gw vlager

A much better option when faced with temporary routes is to use dynamic routing. One
way to do so is to use gated, a routing daemon, which you would have to install on each
host in the network in order to distribute routing information dynamically. The easiest way,
however, is to use prozy ARP. With proxy ARP, vlager will respond to any ARP query for
vlite by sending its own Ethernet address. The effect of this is that all packets for vlite
will wind up at vlager, which then forwards them to the laptop. We will come back to
proxy ARP in section Checking the ARP Tables below.

Future Net-3 releases will contain a tool called plipconfig which will allow you to set the
TRQ of the printer port to use. Later, this may even be replaced by a more general ifconfig

command.

5.7.6 The SLIP and PPP Interface

Although SLIP and PPP links are only simple point-to-point links like PLIP connections,
there is much more to be said about them. Usually, establishing a SLIP connection involves
dialing up a remote site through your modem, and setting the serial line to SLIP mode.
PPP is used in a similar fashion. The tools required for setting up a SLIP or PPP link will
be described in chapters 7 and 8.

"Just as a matter of caution, you should however configure a PLIP or SLIP link only after you have
completely set up the routing table entries for your Ethernets. With some older kernels, your network route

might otherwise end up pointing at the point-to-point link.

5.8. All About tfconfig 94

5.7.7 The Dummy Interface

The dummy interface is really a little exotic, but rather useful nevertheless. Its main benefit
is with standalone hosts, and machines whose only IP network connection is a dial-up link.

In fact, the latter are standalone hosts most of the time, too.

The dilemma with standalone hosts is that they only have a single network device active,
the loopback device, which is usually assigned the address 127.0.0.1. On some occasions,
however, you need to send data to the ‘official’ IP address of the local host. For instance,
consider the laptop vlite, that has been disconnected from any network for the duration
of this example. An application on vlite may now want to send some data to another
application on the same host. Looking up vlite in /etc/hosts yields an IP address of
191.72.1.65, so the application tries to send to this address. As the loopback interface is
currently the only active interface on the machine, the kernel has no idea that this address
actually refers to itself! As a consequence, the kernel discards the datagram, and returns

an error to the application.

This is where the dummy device steps in. It solves the dilemma by simply serving as
the alter ego of the loopback interface. In the case of vlite, you would simply give it the
address 191.72.1.65 and add a host route pointing to it. Every datagram for 191.72.1.65

would then be delivered locally. The proper invocation is:

ifconfig dummy vlite
route add vlite

5.8 All About ifconfig

There are a lot more parameters to ifconfig than we have described above. Its normal

invocation is this:
ifconfig interface [[-net|-host] address [parameters]]

interface is the interface name, and address is the [P address to be assigned to the
interface. This may either be an IP address in dotted quad notation, or a name ifconfig
will look up in /etc/hosts and /etc/networks. The -net and -host options force ifconfig to

treat the address as network number or host address, respectively.

If ifconfig is invoked with only the interface name, it displays that interface’s configu-
ration. When invoked without any parameters, it displays all interfaces you configured so
far; an option of -a forces it to show the inactive ones as well. A sample invocation for the
Ethernet interface eth may look like this:

5.8. All About zfconfig 95

ifconfig ethO
etho Link encap 10Mbps Ethernet HWaddr 00:00:C0:90:B3:42
inet addr 191.72.1.2 Bcast 191.72.1.255 Mask 255.255.255.0
UP BROADCAST RUNNING MTU 1500 Metric O
RX packets 3136 errors 217 dropped 7 overrun 26
TX packets 1752 errors 25 dropped 0 overrun O

The MTU and Metric fields show the current MTU and metric value for that interface.
The metric value is traditionally used by some operating systems to compute the cost of a

route. Linux doesn’t use this value yet, but defines it for compatibility nevertheless.

The RX and TX lines show how many packets have been received or transmitted error
free, how many errors occurred, how many packets were dropped, probably because of low
memory, and how many were lost because of an overrun. Receiver overruns usually happen
when packets come in faster than the kernel can service the last interrupt. The flag values
printed by ifconfig correspond more or less to the names of its command line options; they

will be explained below.

The following is a list of parameters recognized by ifconfig with the corresponding flag
names are given in brackets. Options that simply turn on a feature also allow it to be

turned off again by preceding the option name by a dash (-).

up This marks an interface “up”, i.e. accessible to the IP layer. This option
is implied when an address is given on the command line. It may also be
used to re-eenable an interface that has been taken down temporarily using

the down option.

(This option corresponds to the flags UP RUNNING.)

down This marks an interface “down”, i.e. inaccessible to the IP layer. This
effectively disables any IP traffic through the interface. Note that this does
not delete all routing entries that use this interface automatically. If you take
the interface down permanently, you should to delete these routing entries

and supply alternative routes if possible.

netmask mask
This assigns a subnet mask to be used by the interface. It may be given as
either a 32-bit hexadecimal number preceded by 0x, or as a dotted quad of
decimal numbers.

pointopoint address
This option is used for point-to-point IP links that involve only two hosts.

This option is needed to configure, for example, SLIP or PLIP interfaces.

5.8. All About zfconfig 96

(If a point-to-point address has been set, ifconfig displays the POINTOPOINT
flag.)

broadcast address

The broadcast address is usually made up from the network number by
setting all bits of the host part. Some IP implementations use a different

scheme; this option is there to adapt to these strange environments.

(If a broadcast address has been set, ifconfig displays the BROADCAST flag.)

metric number

mtu bytes

arp

-arp

promisc

This option may be used to assign a metric value to the routing table entry
created for the interface. This metric is used by the Routing Information
Protocol (RIP) to build routing tables for the network.® The default metric
used by ifconfig is a value of zero. If you don’t run a RIP daemon, you don’t
need this option at all; if you do, you will rarely need to change the metric

value.

This sets the Maximum Transmission Unit, which is the maximum number
of octets the interface is able to handle in one transaction. For Ethernets,
the MTU defaults to 1500; for SLIP interfaces, this is 296.

This is an option specific to broadcast networks such as FEthernets or packet
radio. It enables the use of ARP, the Address Resolution Protocol, to de-
tect the physical addresses of hosts attached to the network. For broadcast

networks, is on by default.

(If ARP is disabled, ifconfig displays the flag NOARP.)
Disables the use of ARP on this interface.

Puts the interface in promiscuous mode. On a broadcast network, this makes
the interface receive all packets, regardless of whether they were destined
for another host or not. This allows an analysis of network traffic using
packet filters and such, also called Ethernet snooping. Usually, this is a
good technique of hunting down network problems that are otherwise hard

to come by.

On the other hand, this allows attackers to skim the traffic of your network
for passwords and do other nasty things. One protection against this type
of attack is not to let anyone just plug in their computers in your Ethernet.

Another option is to use secure authentication protocols, such as Kerberos,

& RIP chooses the optimal route to a given host based on the “length” of the path. It is computed by

summing up the individual metric values of each host-to-host link. By default, a hop has length 1, but this

may be any positive integer less than 16. (A route length of 16 is equal to infinity. Such routes are considered

unusable.) The metric parameter sets this hop cost, which is then broadcast by the routing daemon.

5.9. Checking with netstat 97

or the SRA login suite.?
(This option corresponds to the flag PROMISC.)

-promisc Turns off promiscuous mode.

allmulti Multicast addresses are some sort of broadcast to a group of hosts who don’t
necessarily have to be on the same subnet. Multicast addresses are not yet

supported by the kernel.
(This option corresponds to the flag ALLMULTI.)

-allmulti Turns off multicast addresses.

5.9 Checking with netstat

Next, [will turn to a useful tool for checking your network configuration and activity. It is
called netstat and is, in fact, rather a collection of several tools lumped together. We will

discuss each of its functions in the following sections.

5.9.1 Displaying the Routing Table

When invoking netstat with the -r flag, it displays the kernel routing table in the way we’ve

been doing this with route above. On vstout, it produces:

netstat —nr

Kernel routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.1 * 255.255.255.255 UH 1 0 50 lo

191.72.1.0 * 265.255.255.0 U 1 0 478 etho
191.72.2.0 191.72.1.1 265.255.255.0 UGN 1 0 250 ethO

The -n option makes netstat print addresses as dotted quad IP numbers rather than the
symbolic host and network names. This is especially useful when you want to avoid address

lookups over the network (e.g. to a DNS or NIS server).

The second column of netstat’s output shows the gateway the routing entry points to.
If no gateway is used, an asterisk is printed instead. Column three shows the “generality”
of the route. When given an IP address to find a suitable route for, the kernel goes through
all routing table entries, taking the bitwise AND of the address and the genmask before

comparing it to the target of the route.

°SRA can be obtained from ftp.tamu.edu in /pub/sec/TAMU.

5.9. Checking with netstat 98

The fourth column displays various flags that describe the route:

G The route uses a gateway.
U The interface to be used is up.
Jil Only a single host can be reached through the route. For example, this is

the case for the loopback entry 127.0.0.1.

D This is set if the table entry has been generated by an ICMP redirect message

(see section 2.5).

M This is set if the table entry was modified by an ICMP redirect message.

The Ref column of netstat’s output shows the number of references to this route, that is,
how many other routes (e.g. through gateways) rely on the presence of this route. The last
two columns show the number of times the routing entry has been used, and the interface

that datagrams are passed to for delivery.

5.9.2 Displaying Interface Statistics

When invoked with the -i flag, netstat will display statistics for the network interfaces
currently configured. If, in addition, the -a option is given, it will print all interfaces
present in the kernel, not only those that have been configured currently. On vstaout, the

output from netstat will look like this:

$ netstat -1

Kernel Interface table

Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-0K TX-ERR TX-DRP TX-OVR Flags
lo 0 0 3185 0 0 0 3185 0 0 0 BLRU
ethO 1500 0 972633 17 20 120 628711 217 0 0 BRU

The MTU and Met fields show the current MTU and metric value for that interface.
The RX and TX columns show how many packets have been received or transmitted er-
ror free (RX-OK/TX-OK), damaged (RX-ERR/TX-ERR), how many were dropped (RX-
DRP/TX-DRP), and how many were lost because of an overrun (RX-OVR/TX-OVR).

The last column shows the flags that have been set for this interface. These are one-
character versions of the long flag names the are printed when you display the interface

configuration with ifconfig.

B A broadcast address has been set.

5.9. Checking with netstat 99

L This interface is a loopback device

M All packets are received (promiscuous mode).
N Trailers are avoided.

0] ARP is turned off for this interface.

P This is a point-to-point connection.

R Interface is running.

U Interface is up.

5.9.3 Displaying Connections

netstat supports a set of options to display active or passive sockets. The options -t, -u,
-w, and -x show active TCP, UDP, RAW, or UNIX socket connections. If you provide the
-a flag in addition, sockets that are waiting for a connection (i.e. listening) are displayed

as well. This will give you a list of all servers that are currently running on your system.

Invoking netstat -ta on vlager produces

$ netstat -ta
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (State)

tcp 0 0 *:domain * 1k LISTEN
tcp 0 0 *:time * 1k LISTEN
tecp 0 0 *:smtp * ik LISTEN
tecp 0 0 vlager:smtp vstout:1040 ESTABLISHED
tecp 0 0 *:telnet * ik LISTEN
tecp 0 0 localhost:1046 vbardolino:telnet ESTABLISHED
tcp 0 0 *:chargen * ok LISTEN
tcp 0 0 *:daytime * 1k LISTEN
tcp 0 0 *:discard * 1k LISTEN
tecp 0 0 *:echo * ik LISTEN
tecp 0 0 *:shell * ik LISTEN
tcp 0 0 *:login * ok LISTEN

This shows most servers simply waiting for an incoming connection. However, the fourth

line shows an incoming SMTP connection from vstout, and the sixth line tells you there

is an outgoing telnet connection to vbardolino.!®

You can tell whether a connection is outgoing or not from the port numbers involved. The port number
shown for the calling host will always be a simple integer, while on the host being called, a well-known

service port will be in use, for which netstat uses the symbolic name found in /etc/services.

5.10. Checking the ARP Tables 100

Using the -a flag all by itself will display all sockets from all families.

5.10 Checking the ARP Tables

On some occasions, it is useful to view or even alter the contents of the kernel’s ARP tables,
for example when you suspect a duplicate Internet address is the cause for some intermittent
network problem. The arp tool was made for things like these. Its command line options

are

arp [-v] [-t hwtype] -a [hostname]
arp [-v] [-t hwtypel -s hostname hwaddr

arp [-v] -d hostname [hostname...]
All hostname arguments may be either symbolic host names or IP addresses in dotted
quad notation.

The first invocation displays the ARP entry for the IP address or host specified, or all

hosts known if no hostname is given. For example, invoking arp on vlager may yield

arp -a

IP address HW type HW address
191.72.1.3 10Mbps Ethernet 00:00:C0:5A:42:C1
191.72.1.2 10Mbps Ethernet 00:00:C0:90:B3:42
191.72.2.4 10Mbps Ethernet 00:00:C0:04:69:4A4

which shows the Ethernet addresses of vlager, vstout and vale.

Using the -t option you can limit the display to the hardware type specified. This may
be ether, ax25, or pronet, standing for 10Mbps Ethernet, AMPR AX.25, and I[EEE 802.5

token ring equipment, respectively.

The -s option is used to permanently add hostname’s Ethernet address to the ARP
tables. The hwaddr argument specifies the hardware address, which is by default expected
to be an Ethernet address, specified as six hexadecimal bytes separated by colons. You may

also set the hardware address for other types of hardware, too, using the -t option.

One problem which may require you to manually add an IP address to the ARP table
is when for some reasons ARP queries for the remote host fail, for instance when its ARP
driver is buggy or there is another host in the network that erroneously identifies itself with
that host’s IP address. Hard-wiring IP addresses in the ARP table is also a (very drastic)

measure to protect yourself from hosts on your Ethernet that pose as someone else.

5.11. The Future 101

Invoking arp using the -d switch deletes all ARP entries relating to the given host. This
may be used to force the interface to re-attempt to obtain the Ethernet address for the
IP address in question. This is useful when a misconfigured system has broadcast wrong

ARP information (of course, you have to reconfigure the broken host before).

The -s option may also be used to implement prozy ARP. This is a special technique
where a host, say gate, acts as a gateway to another host named fnord, by pretending
that both addresses refer to the same host, namely gate. It does so by publishing an ARP
entry for fnord that points to its own Ethernet interface. Now when a host sends out
an ARP query for fnord, gate will return a reply containing its own Ethernet address.
The querying host will then send all datagrams to gate, which dutyfully forwards them to
fnord.

These contortions may be necessary, for instance, when you want to access fnord from
a DOS machine with a broken TCP implementation that doesn’t understand routing too
well. When you use proxy ARP, it will appear to the DOS machine as if fnord was on the

local subnet, so it doesn’t have to know about how to route through a gateway.

Another very useful application of proxy ARP is when one of your hosts acts as a
gateway to some other host only temporarily, for instance through a dial-up link. In a
previous example, we already encountered the laptop vlite which was connected to vlager
through a PLIP link only from time to time. Of course, this will work only if the address
of the host you want to provide proxy ARP for is on the same IP subnet as your gateway.
For instance, vstout could proxy ARP for any host on the Brewery subnet (191.72.1.0),
but never for a host on the Winery subnet (191.72.2.0).

The proper invocation to provide proxy ARP for fnord is given below; of course, the

Ethernet address given must be that of gate.

arp -s fnord 00:00:c0:a1:42:e0 pub

The proxy ARP entry may be removed again by invoking:

arp -d fnord

5.11 The Future

Linux networking is still evolving. Major changes at the kernel layer will bring a very
flexible configuration scheme that will allow you to configure the network devices at run
time. For instance, the ifconfig command will take arguments that set the IRQ line and

DMA channel.

5.11. The Future 102

Another change to come soon is the additional mtu flag to the route command which
will set the Maximum Transmission Unit for a particular route. This route-specific MTU
overrides the MTU specified for the interface. You will typically use this option for routes
through a gateway, where the link between the gateway and the destination host requires a
very low MTU. For instance, assume host wanderer is connected to vlager through a SLIP
link. When sending data from vstout to wanderer, the networking layer on wanderer
would would use packets of up to 1500 bytes, because packets are sent across the Ethernet.
The SLIP link, on the other hand, is operated with an MTU of 296, so the network layer
on vlager would have to break up the IP packets into smaller fragments that fit into 296
bytes. If instead, you would have configured the route on vstout to use a MTU of 296 right

from the start, this relatively expensive fragmentation could be avoided:

route add wanderer gw vlager mtu 296

Note that the mtu option also allows you to selectively undo the effects of the ‘Subnets
Are Local’ Policy (SNARL). This policy is a kernel configuration option and is described
in chapter 3.

Chapter 6

Name Service and Resolver

Configuraton

As discussed in chapter 2, TCP/IP networking may rely on different schemes to convert
names into addresses. The simplest way, which takes no advantage of the way the name
space has been split up into zones is a host table stored in /etc/hosts. This is useful only for
small LANs that are run by one single administrator, and otherwise have no IP traffic with

the outside world. The format of the hosts file has already been described in chapter 5.

Alternatively, you may use BIND — the Berkeley Internet Name Domain Service — for
resolving host names to IP addresses. Configuring BIND may be a real chore, but once
you’ve done it, changes in the network topology are easily made. On Linux, as on many
other UNxXish systems, name service is provided through a program called named. At
startup, it loads a set of master files into its cache, and waits for queries from remote or
local user processes. There are different ways to set up BIND, and not all require you to

run a name server on every host.

This chapter can do little more but give a rough sketch of how to operate a name server.
If you plan to use BIND in an enviroment with more than just a small LAN and probably
an Internet uplink, you should get a good book on BIND, for instance Cricket Liu’s “DNS
and BIND” (see [AlbitzLiu92]). For current information, you may also want to check the
release notes contained in the BIND sources. There’s also a newsgroup for DNS questions

called comp.protocols.tcp-ip.domains.

103

6.1. The Resolver Library 104

6.1 The Resolver Library

When talking of “the resolver”, we do not mean any special application, but rather refer to
the resolver library, a collection of functions that can be found in the standard C library.
The central routines are gethostbyname(2) and gethostbyaddr(2) which look up all IP ad-
dresses belonging to a host, and vice versa. They may be configured to simply look up the
information in hosts, query a number of name servers, or use the hosts database of NIS
(Network Information Service). Other applications, like smail, may include different drivers

for any of these, and need special care.

6.1.1 The host.conf File

The central file that controls your resolver setup is host.conf. It resides in /etc and tells the

resolver which services to use, and in what order.

Options in host.conf must occur on separate lines. Fields may be separated by white
space (spaces or tabs). A hash sign (#) introduces a comment that extends to the next

newline.

The following options are available:

order This determines the order in which the resolving services are tried. Valid op-
tions are bind for querying the name server, hosts for lookups in /etc/hosts,
and nis for NIS lookups. Any or all of them may be specified. The order in
which they appear on the line detemines the order in which the respective

services are tried.

multi Takes on or off as options. This detemines if a host in /etc/hosts is allowed
to have several IP addresses, which is usually referred to as being “multi-
homed”. This flag has no effect on DNS or NIS queries.

nospoof As explained in the previous chapter, DNS allows you to find the hostname
belonging to an IP address by using the in-addr.arpa domain. Attempts
by name servers to supply a false hostname are called “spoofing”. To guard
against this, the resolver may be configured to check if the original IP address
is in fact associated with the hostname obtained. If not, the name is rejected

and an error returned. This behavior is turned on by setting nospoof on.

alert This option takes on or off as arguments. If it is turned on, any spoof
attempts (see above) will cause the resolver to log a message to the syslog

facility.

6.1. The Resolver Library 105

trim

This option takes a domain name as an argument, which will be removed
from hostnames before lookup. This is useful for hosts entries, where you
might only want to specify hostnames without local domain. A lookup of
a host with the local domain name appended will have this removed, thus

allowing the lookup in /etc/hosts to succeed.

trim options accumulate, making it possible to consider your host as being

local to several domains.

A sample file for vlager is shown below:

/etc/host.conf
We have named running, but no NIS (yet)

order
Allow
multi
Guard

nospoof

bind hosts

multiple addrs

on

against spoof attempts

on

Trim local domain (not really necessary).

trim

vbrew.com.

6.1.2 Resolver Environment Variables

The settings from host.conf may be overridden using a number of environment variables.

These are

RESOLV_HOST_CONF

This specifies a file to be read instead of /etc/host.conf.

RESOLV_SERV_ORDER

Overrides the order option given in host.conf. Services are given as hosts,

bind, and nis, separated by a space, comma, colon, or semicolon.

RESOLV_SPOOF_CHECK

RESOLV_MULTI

Determines the measures taken against spoofing. It is completely disabled by
off. The values warn and warn off enable spoof checking, but turn logging
on and off, respectively. A value of * turns on spoof checks, but leaves the

logging facility as defined in host.conf.

A value of on or off may be used to override the multi options from tt

host.conf.

RESOLV_OVERRIDE TRIM_DOMAINS

This environment specifies a list of trim domains which override those given

in host.conf.

6.1. The Resolver Library 106

RESOLV_ADD_TRIM DOMAINS
This environment specifies a list of trim domains which are added to those

given in host.conf.

6.1.3 Configuring Name Server Lookups — resolv.conf

When configuring the resolver library to use the BIND name service for host lookups, you
also have to tell it which name servers to use. There is a separate file for this, called
resolv.conf. If this file does not exist or is empty, the resolver assumes the name server is

on your local host.

If you run a name server on your local host, you have to set it up separately, as will be
explained in the following section. If your are on a local network and have the opportunity

to use an existing nameserver, this should always be preferred.

The most important option in resolv.conf is nameserver, which gives the IP address of
a name server to use. If you specifiy several name servers by giving the nameserver option
several times, they are tried in the order given. You should therefore put the most reliable

server first. Currently, up to three name servers are supported.

If no nameserver option is given, the resolver attempts to connect to the name server

on the local host.

Two other options, domain and search deal with default domains that are tacked onto a
hostname if BIND fails to resolve it with the first query. The search option specifies a list

of domain names to be tried. The list items are separated by spaces or tabs.

If no search option is given, a default search list is constructed from the local domain
name by using the domain name itself, plus all parent domains up to the root. The local
domain name may be given using the domain statement; if none is given, the resolver

obtains it through the getdomainname(2) system call.

If this sounds confusing to you, consider this sample resolv.conf file for the Virtual Brewery:

/etc/resolv.conf

Our domain

domain vbrew.com

#

We use vlager as central nameserver:

nameserver 191.72.1.1

When resolving the name vale, the resolver would look up vale, and failing this,

vale.vbrew.com, and vale.com.

6.2. Running named 107

6.1.4 Resolver Robustness

If you are running a LAN inside a larger network, you definitely should use central name
servers if they are available. The advantage of this is that these will develop rich caches,
since all queries are forwarded to them. This scheme, however has a drawback: when a fire
recently destroyed the backbone cable at our university, no more work was possible on our
department’s LAN, because the resolver couldn’t reach any of the name servers anymore.

There was no logging in on X terminals anymore, no printing, etc.

Although it is not very common for campus backbones to go down in flames, one might

want to take precautions against cases like these.

One option is to set up a local name server that resolves hostnames from your local
domain, and forwards all queries for other hostnames to the main servers. Of course, this

is applicable only if you are running your own domain.

Alternatively, you can maintain a backup host table for your domain or LAN in
Jete/hosts. In /etc/host.conf you would then include “order bind hosts” to make the re-

solver fall back to the hosts file if the central name server is down.

6.2 Running named

The program that provides domain name service on most UNxX machines is usually called
named (pronounced name-dee). This is a server program originally developed for BSD
providing name service to clients, and possibly to other name servers. The version currently
used on most Linux installations seems to be BIND-4.8.3. The new version, BIND-4.9.3, is

being Beta-tested at the moment, and should be available on Linux soon.

This section requires some understanding of the way the Domain Name System works.
If the following discussion is all Greek to you, you may want to re-read chapter 2, which

has some more information on the basics of DNS.

named is usually started at system boot time, and runs until the machine goes down
again. It takes its information from a configuration file called /etc/named.boot, and various
files that contain data mapping domain names to addresses and the like. The latter are
called zone files. The formats and semantics of these files will be explained in the following

section.

To run named, simply enter

/usr/sbin/named

6.2. Running named 108

at the prompt. named will come up, read the named.boot file and any zone files specified
therein. It writes its process id to /var/run/named.pid in ASCII, downloads any zone files

from primary servers, if necessary, and starts listening on port 53 for DNS queries.!

6.2.1 The named.boot File

The named.boot file is generally very small and contains little else but pointers to master
files containing zone information, and pointers to other name servers. Comments in the
boot file start with a semicolon and extend to the next newline. Before we discuss the
format of named.boot in more detail, we will take a look at the sample file for vlager given

in figure 6.1.2

; /etc/named.boot file for vlager.vbrew.com

)

directory /var/named

; domain file

cache . named.ca
primary vbrew.com named.hosts
primary 0.0.127.in-addr.arpa named.local
primary 72.191.in-addr.arpa named.rev

Figure 6.1: The named.boot file for viager.

The cache and primary commands shown in this example load information into named.
This information is taken from the master files specified in the second argument. They

contain textual representations of DNS resource records, which we will look at below.

In this example, we configured named as the primary name server for three domains,
as indicated by the primary statements at the end of the file. The first of these lines, for
instance, instructs named to act as a primary server for vbrew.com, taking the zone data
from the file named.hosts. The directory keyword tells it that all zone files are located in
Jvar/named.

The cache entry is very special and should be present on virtually all machines running

a name server. Its function is two-fold: it instructs named to enable its cache, and to load

!There are various named binaries floating around Linux FTP sites, each configured a little differently.
Some have their pid file in /etc, some store it in /tmp or /var/tmp.

?Note that the domain names in this example are given without trailing dot. Earlier versions of named
seem to treat trailing dots in named.boot as an error, and silently discards the line. BIND-4.9.3 is said to

fix this.

6.2. Running named 109

the root name server hints from the cache file specified (named.ca in our example). We will

come back to the name server hints below.

Here’s a list of the most important options you can use in named.boot:

directory

primary

secondary

cache

This specifies a directory in which zone files reside. Names of files may
be given relative to this directory. Several directories may be specified by
repeatedly using directory. According to the Linux filesystem standard, this
should be /var/named.

This takes a domain name and a file name as an argument, declaring the
local server authoritative for the named domain. As a primary server, named

loads the zone information from the given master file.

Generally, there will always be at least one primary entry in every boot
file, namely for reverse mapping of network 127.0.0.0, which is the local

loopback network.

This statement takes a domain name, an address list, and a file name
as an argument. It declares the local server a secondary master server for

the domain specified.

A secondary server holds authoritative data on the domain, too, but it
doesn’t gather it from files, but tries to download it from the primary server.
The IP address of at least one primary server must thus be given to named
in the address list. The local server will contact each of them in turn until it
successfully transfers the zone database, which is then stored in the backup
file given as the third argument. If none of the primary servers responds,

the zone data is retrieved from the backup file instead.

named will then attempt to refresh the zone data at regular intervals. This

is explained below along in connection with the SOA resource record type.

This takes a domain and a file name as arguments. This file contains
the root server hints, that is a list of records pointing to the root name
servers. Only NS and A records will be recognized. The domain argument

is generally the root domain name “.”.

This information is absolutely crucial to named: if the cache statement does
not occur in the boot file, named will not develop a local cache at all. This
will severely degrade performance and increase network load if the next
server queried is not on the local net. Moreover, named will not be able to
reach any root name servers, and thus it won’t resolve any addresses except
those it is authoritative for. An exception from this rule is when using

forwarding servers (cf. the forwarders option below).

6.2. Running named 110

forwarders This statement takes an address list as an argument. The IP addresses
in this list specify a list of name servers that named may query if it fails
to resolve a query from its local cache. They are tried in order until one of

them responds to the query.

slave This statement makes the name server a slave server. That is, it will never
perform recursive queries itself, but only forwards them to servers specified

with the forwarders statement.

There are two options which we will not describe here, being sortlist and domain. Addi-
tionally, there are two directives that may be used inside the zone database files. These are
$INCLUDE and $ORIGIN. Since they are rarely needed, we will not describe them here,

either.

6.2.2 The DNS Database Files

Master files included by named, like named.hosts, always have a domain associated with
them, which is called the origin. This is the domain name specified with the cache and
primary commands. Within a master file, you are allowed to specify domain and host
names relative to this domain. A name given in a configuration file is considered absolute
if it ends in a single dot, otherwise it is considered relative to the origin. The origin all by

itself may be referred to using “@”.

All data contained in a master file is split up in resource records, or RRs for short. They
make up the smallest unit of information available through DNS. Flach resource record has
a type. A records, for instance, map a hostname to an IP address, and a CNAME record
associates an alias for a host with its official hostname. As an example, take a look at

figure 6.3 on page 115, which shows the named.hosts master file for the virtual brewery.

Resource record representations in master files share a common format, which is
[domain] [ttl] [class] type rdata

Fields are separated by spaces or tabs. An entry may be continued across several lines
if an opening brace occurs before the first newline, and the last field is followed by a closing

brace. Anything between a semicolon and a newline is ignored.

domain This is the domain name to which the entry applies. If no domain name is

given, the RR is assumed to apply to the domain of the previous RR.

ttl In order to force resolvers to discard information after a certain time, each
RR is associated a “time to live”, or ttl for short. The ttl field specifies the

6.2. Running named 111

time in seconds the information is valid after it has been retrieved from the

server. It is a decimal number with at most eight digits.

If no ttl1 value is given, it defaults to the value of the minimum field of the

preceding SOA record.

class This is an address class, like IN for I[P addresses, or HS for objects in the
Hesiod class. For TCP/IP networking, you have to make this IN.

If no class field is given, the class of the preceding RR is assumed.

type This describes the type of the RR. The most common types are A, SOA,
PTR, and NS. The following sections describe the various types of RR’s.

rdata This holds the data associated with the RR. The format of this field depends
on the type of the RR. Below, it will be described for each RR, separately.

The following is an incomplete list of RRs to be used in DNS master files. There are a
couple more of them, which we will not explain. They are experimental, and of little use

generally.

SOA This describes a zone of authority (SOA means “Start of Authority”). It
signals that the records following the SOA RR contain authoritative infor-
mation for the domain. Every master file included by a primary statement
must contain an SOA record for this zone. The resource data contains the

following fields:

origin This is the canonical hostname of the primary name server

for this domain. It is usually given as an absolute name.

contact This is the email address of the person responsible for main-
taining the domain, with the ‘@’ character replaced by a dot.
For instance, if the responsible person at the Virtual Brewery

is janet, then this field would contain janet.vbrew.com.

serial This is the version number of the zone file, expressed as a
single decimal number. Whenever data is changed in the

zone file, this number should be incremented.

The serial number is used by secondary name servers to recog-
nize when zone information has changed. To stay up to date,
secondary servers request the primary server’s SOA record

at certain intervals, and compare the serial number to that

of the cached SOA record. If the number has changed, the

6.2.

Running named

112

NS

refresh

retry

expire

minimum

secondary servers transfers the whole zone database from the

primary server.

This specifies the interval in seconds that the secondary
servers should wait between checking the SOA record of the
primary server. Again, this is a decimal number with at most

eight digits.

Generally, the network topology doesn’t change too often, so
that this number should specify an interval of roughly a day

for larger networks, and even more for smaller ones.

This number determines the intervals at which a secondary
server should retry contacting the primary server if a request
or a zone refresh fails. It must not be too low, or else a
temporary failure of the server or a network problem may
cause the secondary server to waste network resources. One

hour, or perhaps one half hour, might be a good choice.

This specifies the time in seconds after which the server
should finally discard all zone data if it hasn’t been able to
contact the primary server. It should normally be very large.
Craig Hunt ([Hunt92]) recommends 42 days.

This is the default ttl value for resource records that do not
explicitly specify one. This requires other name servers to
discard the RR after a certain amount of time. It has however
nothing to do with the time after which a secondary server

tries to update the zone information.

minimum should be a large value, especially for LANs where
the network topology almost never changes. A value of
around a week or a month is probably a good choice. In
the case that single RRs may change more frequently, you

can still assign them different ttl’s.

This associates an IP address with a hostname. The resource data field

contains the address in dotted quad notation.

For each host, there must be only one A record. The hostname used in

this A record is considered the official or canonical hostname. All other

hostnames are aliases and must be mapped onto the canonical hostname
using a CNAME record.

This points to a master name server of a subordinate zone. For an expla-

6.2. Running named 113

CNAME

PTR

MX

HINFO

nation why one has to have NS records, see section 2.6. The resource data
field contains the hostname of the name server. To resolve the hostname,
an additional A record is needed, the so-called glue record which gives the

name server’s [P address.

This associates an alias for a host with its canonical hostname. The canonical
hostname is the one the master file provides an A record for; aliases are
simply linked to that name by a CNAME record, but don’t have any other

records of their own.

This type of record is used to associate names in the in-addr.arpa do-
main with hostnames. This is used for reverse mapping of IP addresses to

hostnames. The hostname given must be the canonical hostname.

This RR announces a mail exchanger for a domain. The reasons to have
mail exchangers are discussed in section Mail Routing on the Internet in

chapter 13. The syntax of an MX record is
[domain] [ttl] [class] MX preference host

host names the mail exchanger for domain. Every mail exchanger has an
integer preference associated with it. A mail transport agent who desires
to deliver mail to domain will try all hosts who have an MX record for this
domain until it succeeds. The one with the lowest preference value is tried

first, then the others in order of increasing preference value.

This record provides information on the system’s hardware and software. Its

syntax is
[domain] [ttl] [class] HINFO hardware software

The hardware field identifies the hardware used by this host. There are
special conventions to specify this. A list of valid names is given in the
“Assigned Numbers” (RFC 1340). If the field contains any blanks, it must
be enclosed in double quotes. The software field names the operating

system software used by the system. Again, a valid name from the “Assigned

Numbers” RFC should be chosen.

6.2.3 Writing the Master Files

Figures 6.2, 6.3, 6.4, and 6.5 give sample files for a name server at the brewery, located on

vlager. Owing to the nature of the network discussed (a single LAN), the example is pretty

6.2. Running named 114

straightforward. If your requirements are more complex, and you can’t get named going,

get “DNS and BIND” by Cricket Liu and Paul Albitz ([AlbitzLiu92]).

The named.ca cache file shown in figure 6.2 shows sample hint records for a root name
server. A typical cache file usually describes about a dozen name servers, or so. You can
obtain the current list of name servers for the root domain using the nslookup tool described
toward the end of this chapter.?

; /var/named/named.ca Cache file for the brewery.
; We’re not on the Internet, so we don’t need
; any root servers. To activate these

; records, remove the semicolons.

H. 99999999 In NS ©NS.NIC.DDN.MIL
; NS.NIC.DDN.MIL 99999999 In A 26.3.0.103

H. 99999999 In NS ©NS.NASA.GOV

; NS.NASA.GOV 99999999 In A 128.102.16.10

Figure 6.2: The named.ca file.

6.2.4 Verifying the Name Server Setup

There’s a fine tool for checking the operation of your name server setup. It is called nslookup,
and may be used both interactively and from the command line. In the latter case, you

simply invoke it as
nslookup hostname
and it will query the name server specified in resolv.conf for hostname. (If this file names

more than one server, nslookup will choose one at random).

The interactive mode, however, is much more exciting. Besides looking up individual
hosts, you may query for any type of DNS record, and transfer the entire zone information

for a domain.

When invoked without argument, nslookup will display the name server it uses, and

enter interactive mode. At the ‘>’ prompt, you may type any domain name it should query

®Note that you can’t query your name server for the root servers if you don’t have any root server hints
installed: Catch 22! To escape this dilemma, you can either make nslookup use a different name server, or

you can use the sample file in figure 6.2 as a starting point, and then obtain the full list of valid servers.

6.2. Running named

115

; /var/named/named.hosts

¢l IN S04

IN NS

)

Local hosts at the brewery

Origin is vbrew.com

vlager.vbrew.com. (

janet.vbrew.com.

16
86400
3600
3600000
604800
)

vlager.vbrew.

; local mail is distributed on vlager

IN MX

; loopback address
localhost. In
; brewery Ethernet

vlager In
vlager-ifi IN
; vlager is also news server
news In
vstout In
vale In
; Wwinery Ethernet
vlager-if2 IN
vbardolino IN
vchianti IN
vbeaujolais IN

Figure 6.3: The named.hosts file.

A

10 vlager

127.0.0.1

191.72.1.1
CNAME vlager

CNAME vlager
191.72.1

A
A

= e e

191.72.

191.72.
191.72.
191.72.
191.72.

e
w

N N NN
B W N -

)
)
)
)

)

serial
refresh:
retry:
expire:

minimum:

com.

once per day
one hour

42 days

1 week

6.2. Running named

116

W N R e

B W N R e

2
.2
2

/var/named/named.local

IN S04
IN NS
IN PTR

Reverse mapping of 127.0.0
Origin is 0.0.127.in-addr.arpa.

vlager.vbrew.com. (

joe.vbrew.com.

1 ; serial

360000 ; refresh: 100 hrs
3600 ; retry: one hour
3600000 ; expire: 42 days
360000 ; minimum: 100 hrs
)

vlager.vbrew.com.

localhost.

Figure 6.4: The named.local file.

/var/named/named.rev

brewery

.1
.1
.1

winery

.2

In

In

In
In
In

In
In
In
In

SO0A

NS

PTR
PTR
PTR

PTR
PTR
PTR
PTR

Reverse mapping of our IP addresses

Origin is 72.191.in-addr.arpa.

vlager.vbrew.com. (
joe.vbrew.com.

16 ; serial

86400 ; refresh: once per day
3600 ; retry: one hour
3600000 ; expire: 42 days
604800 ; minimum: 1 week

)

vlager.vbrew.com.

vlager.vbrew.com.
vstout.vbrew.com.

vale.vbrew.com.

vlager-ifi.vbrew.com.
vbardolino.vbrew.com.
vchianti.vbrew.com.

vbeaujolais.vbrew.com.

Figure 6.5: The named.rev file.

6.2. Running named 117

for. By default, it asks for class A records, those containing the IP address relating to the

domain name.

You may change this type by issuing “set type=type”, where type is one of the resource

record names described above in section 6.2, or ANY.

For example, you might have the following dialogue with it:

$ nslookup
Default Name Server: rsl10.hrz.th-darmstadt.de
Address: 130.83.56.60

> sunsite.unc.edu
Name Server: rsl0.hrz.th-darmstadt.de
Address: 130.83.56.60

Non-authoritative answer:
Name: sunsite.unc.edu
Address: 152.2.22.81

If you try to query for a name that has no IP address associated, but other records were
found in the DNS database, nslookup will come back with an error message saying “No
type A records found”. However, you can make it query for records other than type A
by issuing the “set type” command. For example, to get the SOA record of unc.edu, you

would issue:

> unc.edu

*** No address (A) records available for unc.edu
Name Server: rs10.hrz.th-darmstadt.de

Address: 130.83.56.60

> set type=S04

> unc.edu

Name Server: rs10.hrz.th-darmstadt.de
Address: 130.83.56.60

Non-authoritative answer:
unc.edu

origin = ns.unc.edu

mail addr = shava.ns.unc.edu

serial = 930408

refresh = 28800 (8 hours)
3600 (1 hour)
expire 1209600 (14 days)
minimum ttl = 86400 (1 day)

retry

6.2. Running named

118

Authoritative answers can be found from:

UNC.EDU nameserver
SAMBA.ACS.UNC.EDU

SAMBA.ACS.UNC.EDU

internet address

= 128.109.157.30

In a similar fashion you can query for MX records, etc. Using a type of ANY returns all

resource records associated with a given name.

> set type=MX
> unc.edu

Non-authoritative answer:

unc.edu preference

lambada.oit.unc.edu

Authoritative answers can be found from:

UNC.EDU nameserver
SAMBA.ACS.UNC.EDU

10, mail exchanger

internet address

SAMBA.ACS.UNC.EDU

internet address

= lambada.oit.unc.edu
= 152.2.22.80

= 128.109.157.30

A practical application of nslookup beside debugging is to obtain the current list of root

name servers for the named.ca file. You can do this by querying for all type NS records

associated with the root domain:

> set typ=NS

>

Name Server:
Address:

130.83.2.30

Non-authoritative answer:

(root)
(root)
(root)
(root)
(root)
(root)
(root)

Authoritative answers can be found from:

(root)
(root)
(root)
(root)
(root)
(root)
(root)

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

nameserver

NS.INTERNIC.NET
AOS.ARL.ARMY.MIL
C.NYSER.NET
TERP.UMD.EDU
NS.NASA.GOV
NIC.NORDU.NET
NS.NIC.DDN.MIL

NS.INTERNIC.NET
AOS.ARL.ARMY.MIL
C.NYSER.NET
TERP.UMD.EDU
NS.NASA.GOV
NIC.NORDU.NET
NS.NIC.DDN.MIL

fb0430.mathematik.th-darmstadt.de

6.2. Running named 119

NS.INTERNIC.NET internet address = 198.41.0.4

AOS.ARL.ARMY.MIL internet address = 128.63.4.82
AOS.ARL.ARMY.MIL internet address = 192.5.25.82
AOS.ARL.ARMY.MIL internet address = 26.3.0.29
C.NYSER.NET internet address = 192.33.4.12
TERP.UMD.EDU internet address = 128.8.10.90
NS.NASA.GOV internet address = 128.102.16.10
NS.NASA.GOV internet address = 192.52.195.10
NS.NASA.GOV internet address = 45.13.10.121

NIC.NORDU.NET internet address = 192.36.148.17
NS.NIC.DDN.MIL internet address = 192.112.36.4

The complete set of commands available with nslookup may be obtained by the help

command from within nslookup.

6.2.5 Other Useful Tools

There are a few tools that can help you with your tasks as a BIND administrator. I will
briefly describe two of them here. Please refer to the documentation that comes with these

tools for information on how to use them.

hostevt is a tool that helps you with your initial BIND configuration by converting your
/etc/hosts file into master files for named. It generates both the forward (A) and reverse
mapping (PTR) entries, and takes care of aliases and the like. Of course, it won’t do the
whole job for you, as you may still want to tune the timeout values in the SOA record, for
instance, or add MX records and the like. Still, it may help you save a few aspirins. hostcvt
is part of the BIND source, but can also be found as a standalone package on a few Linux
FTP servers.

After setting up your name server, you may want to test your configuration. The ideal
(and, to my knowledge) only tool for this is dnswalk, a perl-based package that walks
your DNS database, looking for common mistakes and verifying that the information is
consistent. dnswalk has been released on comp.sources.misc recently, and should be
available on all F'TP sites that archive this group (ftp.uu.net should be a safe bet if you

don’t know of any such site near you).

Chapter 7

Serial Line IP

The serial line protocols, SLIP and PPP, provide the Internet connectivity for the poor.
Apart from a modem and a serial board equipped with a FIFO buffer, no hardware is
needed. Using it is not much more complicated than a mailbox, and an increasing number

of private organizations offer dial-up IP at an affordable cost to everyone.

There are both SLIP and PPP drivers available for Linux. SLIP has been there for quite
a while, and works fairly reliable. A PPP driver has been developed recently by Michael
Callahan and Al Longyear. It will be described in the next chapter.

7.1 General Requirements

To use SLIP or PPP, you have to configure some basic networking features as described in
the previous chapters, of course. At the least, you have to set up the looback interface, and
provide for name resolution. When connecting to the Internet, you will of course want to
use DNS. The simplest option is to put the address of some name server into your resolv.conf
file; this server will be queried as soon as the SLIP link is activated. The closer this name

server is to the point where you dial in, the better.

However, this solution is not optimal, because all name lookups will still go through your
SLIP/PPP link. If you worry about the bandwidth this consumes, you can also set up a
caching-only name server. It doesn’t really serve a domain, but only acts as a relay for all
DNS queries produced on your host. The advantage of this scheme is that it builds up a
cache, so that most queries have to be sent over the serial line only once. A named.boot file

for a caching-only server looks like this:

; named.boot file for caching-only server

directory /var/named

120

7.2. SLIP Operation 121

primary 0.0.127.in-addr.arpa db.127.0.0 ; loopback net
cache . db.cache ; root servers

In addition to this name.boot file, you also have to set up the db.cache file with a valid
list of root name servers. This is described toward the end of the Resolver Configuration

chapter.

7.2 SLIP Operation

Dial-up IP servers frequently offer SLIP service through special user accounts. After logging
into such an account, you are not dropped into the common shell; instead a program or shell
script is executed that enables the server’s SLIP driver for the serial line and configures the

appropriate network interface. Then you have to do the same at your end of the link.

On some operating systems, the SLIP driver is a user-space program; under Linux, it is
part of the kernel, which makes it a lot faster. This requires, however, that the serial line
be converted to SLIP mode explicitly. This is done by means of a special tty line discipline,
SLIPDISC. While the tty is in normal line discipline (DISCO0), it will exchange data only
with user processes, using the normal read(2) and write(2) calls, and the SLIP driver is
unable to write to or read from the tty. In SLIPDISC, the roles are reversed: now any
user-space processes are blocked from writing to or reading from the tty, while all data

coming in on the serial port will be passed directly to the SLIP driver.

The SLIP driver itself understands a number of variations on the SLIP protocol. Apart
from ordinary SLIP, it also understands CSLIP, which performs the so-called Van Jacobson

1

header compression on outgoing IP packets." This improves throughput for interactive

sessions noticeably. Additionally, there are six-bit versions for each of these protocols.

A simple way to convert a serial line to SLIP mode is by using the slattach tool. Assume
you have your modem on /dev/cua3, and have logged into the SLIP server successfully. You

will then execute:
slattach /dev/cua3 &

This will switch the line discipline of cua3 to SLIPDISC, and attach it to one of the
SLIP network interfaces. If this is your first active SLIP link, the line will be attached to
sl0; the second would be attached to sl1, and so on. The current kernels support up to eight

simultaneous SLIP links.

1Van Jacobson header compression is described in RFC 1441.

7.2. SLIP Operation 122

The default encapsulation chosen by slattach is CSLIP. You may choose any other mode

using the -p switch. To use normal SLIP (no compression), you would use

slattach -p slip /dev/cua3 &

Other modes are cslip, s1ip6, cslip6 (for the six-bit version of SLIP), and adaptive
for adaptive SLIP. The latter leaves it to the kernel to find out which type of SLIP encap-

sulation the remote end uses.

Note that you must use the same encapsulation as your peer does. For example, if
cowslip uses CSLIP, you have to do so, too. The symptoms of a mismatch will be that
a ping to the remote host will not receive any packets back. If the other host pings you,
you may also see messages like “Can’t build ICMP header” on your console. One way to

avoid these difficulties is to use adaptive SLIP.

In fact, slattach does not only allow you to enable SLIP, but other protocols that use
the serial line as well, like PPP or KISS (another protocol used by ham radio people). For
details, please refer to the slattach(8) manual page.

After turning over the line to the SLIP driver, you have to configure the network interface.
Again, we do this using the standard ifconfig and route commands. Assume that from

vlager, we have dialed up a server named cowslip. You would then execute

ifconfig s10 vlager pointopoint cowslip
route add cowslip

route add default gw cowslip

The first command configures the interface as a point-to-point link to cowslip, while
the second and third add the route to cowslip and the default route using cowslip as a

gateway.

When taking down the SLIP link, you first have to remove all routes through cowslip
using route with the del option, take the interface down, and send slattach the hangup

signal. Afterwards you have to hang up the modem using your terminal program again:

route del default
route del cowslip
ifconfig s10 down
kill -HUP 516

7.3. Using dip 123

7.3 Using dip

Now, that was rather simple. Nevertheless, you might want to automate the above steps so
that you only have to invoke a simple command that performs all steps shown above. This is
what dip is for.? The current release as of this writing is version 3.3.7. It has been patched
very heavily by a number of people, so that you can’t speak of the dip program anymore.

These different strains of development will hopefully be merged in a future release.

dip provides an interpreter for a simple scripting language that can handle the modem for
you, convert the line to SLIP mode, and configure the interfaces. This is rather primitive
and restrictive, but sufficient for most cases. A new release of dip may feature a more

versatile language one day.

To be able to configure the SLIP interface, dip requires root privilege. It would now be
tempting to make dip setuid to root, so that all users can dial up some SLIP server without
having to give them root access. This is very dangerous, because setting up bogus interfaces
and default routes with dip may disrupt routing on your network badly. Even worse, this
will give your users the power to connect to any SLIP server, and launch dangerous attacks
on your network. So if you want to allow your users to fire up a SLIP connection, write
small wrapper programs for each prospective SLIP server, and have these wrappers invoke
dip with the specific script that establishes the connection. These programs can then safely

be made setuid root.?

7.3.1 A Sample Script

A sample script is produced in figure 7.1. It can be used to connect to cowslip by

invoking dip with the script name as argument:

dip cowslip.dip
DIP: Dialup IP Protocol Driver versiom 3.3.7 (12/13/93)

Written by Fred N. van Kempen, MicroWalt Corporation.

connected to cowslip.moo.com with addr 193.174.7.129
#

After connecting to cowslip and enabling SLIP, dip will detach from the terminal and
go to the background. You can then start using the normal networking services on the
SLIP link. To terminate the connection, simply invoke dip with the -k option. This sends
a hangup signal to dip process, using the process id dip records in /etc/dip.pid:*

2dip means Dialup IP. It was written by Fred van Kempen.
®diplogin can (and must) be run setuid, too. See the section at the end of this chapter.

*See the newsgroup alt.tla for more palindromic fun with three-letter acronyms.

7.3. Using dip

124

Sample dip script for dialing up cowslip

Set local and remote name and address
get $local vlager

get $remote cowslip

port cua3 # choose a serial port
speed 38400 # set speed to max
modem HAYES # set modem type

reset # reset modem and tty
flush # flush out modem response
Prepare for dialing.

send ATQOVIE1X1i\r

wait OK 2

if $errlvl != O goto error

dial 41988

if $errlvl != O goto error

wait CONNECT 60

if $errlvl != O goto error

Okay, we’re connected now
sleep 3

send \r\n\r\n

wait ogin: 10

if $errlvl != O goto error
send Svlager\n

wait ssword: 5

if $errlvl != O goto error
send hey-jude\n

wait running 30

if $errlvl != O goto error

We have logged in, and the remote side is firing up SLIP.

print Connected to $remote with address $rmtip

default # Make this link our default route

mode SLIP # We go to SLIP mode, too

fall through in case of error

error:
print SLIP to $remote failed.

Figure 7.1: A sample dip script

7.3. Using dip 125

kill -k

In dip’s scripting language, keywords prefixed with a dollar symbol denote variable
names. dip has a predefined set of variables which will be listed below. $remote and $local,

for instance, contain the hostnames of the local and remote host involved in the SLIP link.

The first two statements in the sample script are get commands, which is dip’s way
to set a variable. Here, the local and remote hostname are set to vlager and cowslip,

respectively.

The next five statements set up the terminal line and the modem. The reset sends a
reset string to the modem; for Hayes-compatible modems, this is the ATZ command. The
next statement flushes out the modem response, so that the login chat in the next few lines
will work properly. This chat is pretty straight-forward: it simply dials 41988, the phone
number of cowslip, and logs into the account Sviager using the password hey-jude. The
wait command makes dip wait for the string given as its first argument; the number given
as second argument make the wait time out after that many seconds if no such string is
received. The if commands interspersed in the login procedure check that no error has

occurred while executing the command.

The final commands executed after logging in are default, which makes the SLIP link the
default route to all hosts, and mode, which enables SLIP mode on the line and configures

the interface and routing table for you.

7.3.2 A dip Reference

Although widely used, dip hasn’t been very well documented yet. In this section, we will
therefore give a reference for most of dip’s commands. You can get an overview of all
commands it provides by invoking dip in test mode, and entering the help command. To
find out about the syntax of a command, you may enter it without any arguments; of course

this does not work with commands that take no arguments.

$ dip -t
DIP: Dialup IP Protocol Driver versiom 3.3.7 (12/13/93)

Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help
DIP knows about the following commands:

databits default dial echo flush
get goto help if init

mode modem parity print port

7.3. Using dip 126

reset send sleep speed stopbits
term wait

DIP> echo

Usage: echo onl|off

DIP>

Throughout the following, examples that display the DIP> prompt show how to enter a
command in test mode, and what output it produces. Examples lacking this prompt should

be taken as script excerpts.

The Modem Commands

There is a number of commands dip provides to configure your serial line and modem. Some
of these are obvious, such as port, which selects a serial port, and speed, databits, stopbits,

and parity, which set the common line parameters.

The modem command selects a modem type. Currently, the only type supported is
HAYES (capitalization required). You have to provide dip with a modem type, else it will
refuse to execute the dial and reset commands. The reset command sends a reset string to
the modem; the string used depends on the modem type selected. For Hayes-compatible
modems, this is ATZ.

The flush code can be used to flush out all responses the modem has sent so far. Other-
wise a chat script following the reset might be confused, because it reads the OK responses

from earlier commands.

The init command selects an initialization string to be passed to the modem before
dialling. The default for Hayes modems is “ATF0 Q0 V1 X177, which turns on echoing of

commands and long result codes, and selects blind dialing (no checking of dial tone).

The dial command finally sends the initialization string to the modem and dials up the

remote system. The default dial command for Hayes modems is ATD.

echo and term

The echo command serves as a debugging aid, in that using echo on makes dip echo to the

console everything sends to the serial device. This can be turned off again by calling echo

off.

dip also allows you to leave script mode temporarily and enter terminal mode. In this

mode, you can use dip just like any ordinary terminal program, writing to the serial line

7.3. Using dip 127

and reading from it. To leave this mode, enter .

The get Command

The get command is dip’s way of setting a variable. The simplest form is to set a variable
to a constant, as used throughout the above example. You may, however, also prompt the

user for input by specifying the keyword ask instead of a value:

DIP> get $local ask

Enter the value for $local: _

A third method is to try to obtain the value from the remote host. Bizarre as it seems
first, this is very useful in some cases: Some SLIP servers will not allow you to use your
own IP address on the SLIP link, but will rather assign you one from a pool of addresses
whenever you dial in, printing some message that informs you about the address you have
been assigned. If the message looks something like this “Your address: 193.174.7.2027,
then the following piece of dip code would let you pick up the address:

. login chat
wait address: 10

get $locip remote

The print Command

This is the command to echo text to the console dip was started from. Any of dip’s variables

may be used in print commands, such as

DIP> print Using port $port at speed $speed
Using port cua3 at speed 38400

Variable Names

dip only understands a predefined set of variables. A variable name always begins with a

dollar symbol and must be written in lower-case letters.

The $local and $locip variables contain the local host’s name and IP address. Setting
the hostname makes dip store the canonical hostname in $local, at the same time assigning

$locip the corresponding IP address. The analogous thing happens when setting the $locip.

The $remote and $rmtip variables do the same for the remote host’s name and address.

$mtu contains the MTU value for the connection.

7.3. Using dip 128

These five variables are the only ones that may be assigned values directly using the get
command. A host of other variables can only be set through corresponding commands, but

may be used print statements; these are $modem, $port, and $speed.

$errlvl is the variable through which you can access the result of the last command

executed. An error level of 0 indicates success, while a non-zero value denotes an error.

The ¢f and goto Commands

The if command is rather a conditional branch than what one usually calls an if. Its syntax

18

if var op number goto label

where the expression must be a simple comparison between one of the variables $errivi,
$locip, and $rmtip. The second operand must be an integer number; the operator op may

be one of ==, 1=, <, >, <=, and >=.

The goto command makes the execution of the script continue at the line following that
bearing the label. A label must occur as the very first token on the line, and must be

followed immediately by a colon.

send, wait and sleep

These commands help implement simple chat scripts in dip. send outputs its arguments to
the serial line. It does not support variables, but understands all C-style backslash character
sequences such as \n and \b. The tilde character () is used as an abbreviation for carriage

return/newline.

wail takes a word as an argument, and scans all input on the serial line until it recognizes
this word. The word itself may not contain any blanks. Optionally, you may give wait a
timeout value as second argument; if the expected word is not received within that many

seconds, the command will return with an $errivl value of one.

The sleep statement may be used to wait for a certain amount of time, for instance to

patiently wait for any login sequence to complete. Again, the interval is specified in seconds.

mode and default

These commands are used to flip the serial line to SLIP mode and configure the interface.

7.4. Running in Server Mode 129

The mode command is the last command executed by dip before gong into daemon

mode. Unless an error occurs, the command does not return.

mode takes a protocol name as argument. dip currently recognizes SLIP and CSLIP as

valid names. The current version of dip does not understand adaptive SLIP, however.

After enabling SLIP mode on the serial line, dip executes ifconfig to configure the inter-

face as a point-to-point link, and invokes route to set the route to the remote host.

If, in addition, the script executes the default command before mode, dip will also make
the default route point to the SLIP link.

7.4 Running in Server Mode

Setting up your SLIP client was the hard part. Doing the opposite, namely configuring

your host to act as a SLIP server, is much easier.

One way to do this is to to use dip in server mode, which can be achieved by invoking it
as diplogin. Its main configuration file is /etc/diphosts, which associates login names with
the address this host is assigned. Alternatively, you can also use sliplogin, a BSD-derived
tool that features a more flexible configuration scheme that lets you execute shell scripts

whenever a host connects and disconnects. It is currently at Beta.

Both programs require that you set up one login account per SLIP client. For instance,
assume you provide SLIP service to Arthur Dent at dent.beta.com, you might create an

account named dent by adding the following line to your passwd file:

dent:*:501:60:Arthur Dent’s SLIP account:/tmp:/usr/sbin/diplogin

Afterwards, you would set dent’s password using the passwd utility.

Now, when dent logs in, dip will start up as a server. To find out if he is indeed
permitted to use SLIP, it will look up the user name in /etc/diphosts. This file details the
access rights and connection parameter for each SLIP user. A sample entry for dent could

look like this:
dent: :dent.beta.com:Arthur Dent:SLIP,296

The first of the colon-separated fields is the name the user must log in as. The second field
may contain an additional password (see below). The third is the hostname or IP address of

the calling host. Next comes an informational field without any special meaning (yet). The

7.4. Running in Server Mode 130

last field describes the connection parameters. This is a comma-separated list specifying
the protocol (currently one of SLIP or CSLIP), followed by the MTU.

When dent logs in, diplogin extracts the information on him from the diphosts file, and,
if the second field is not empty, prompts for an “external security password”. The string
entered by the user is compared to the (unencrypted) password from diphosts. If they do

not match, the login attempt is rejected.

Otherwise, diplogin proceeds by flipping the serial line to CSLIP or SLIP mode, and sets
up the interface and route. This connection remains established until the user disconnects
and the modem drops the line. diplogin will then return the line to normal line discipline,

and exit.

diplogin requires super-user privilege. If you don’t have dip running setuid root, you
should make diplogin a separate copy of dip instead of a simple link. diplogin can then
safely be made setuid, without affecting the status of dip itself.

Chapter 8

The Point-to-Point Protocol

8.1 Untangling the P’s

Just like SLIP, PPP is a protocol to send datagrams across a serial connection, but addresses
a couple of deficiencies of the former. It lets the communicating sides negotiate options such
as the IP address and the maximum datagram size at startup time, and provides for client
authorization. For each of these capabilities, PPP has a separate protocol. Below, we will
briefly cover these basic building blocks of PPP. This discussion is far from complete; if you
want to know more about PPP, you are urged to read its specification in RFC 1548, as well

as the dozen or so companion RFCs.!

At the very bottom of PPP is the High-Level Data Link Control Protocol, abbreviated
HDLC,? which defines the boundaries around the individual PPP frames, and provides a
16 bit checksum. As opposed to the more primitive SLIP encapsulation, a PPP frame is
capable of holding packets from other protocols than IP, such as Novell’s IPX, or Appletalk.
PPP achieves this by adding a protocol field to the basic HDLC frame that identifies the
type of packet is carried by the frame.

LCP, the Link Control Protocol, is used on top of HDLC to negotiate options pertaining
to the data link, such as the Maximum Receive Unit (MRU) that states the maximum

datagram size one side of the link agrees to receive.

An important step at the configuration stage of a PPP link is client authorization.
Although it is not mandatory, it is really a must for dial-up lines. Usually, the called

host (the server) asks the client to authorize itself by proving it knows some secret key.

!The relevant RFCs are listed in the Annoted Bibiliography at the end of this book.
?In fact, HDLC is a much more general protocol devised by the International Standards Organization

(ISO).

131

8.2. PPP on Linux 132

If the caller fails to produce the correct secret, the connection is terminated. With PPP,
authorization works both ways; that is, the caller may also ask the server to authenticate
itself. These authentication procedures are totally independent of each other. There are
two protocols for different types of authorization, which we will discuss further below.
They are named Password Authentication Protocol, or PAP, and Challenge Handshake
Authentication Protocol, or CHAP.

Each network protocol that is routed across the data link, like IP, AppleTalk, etc, is con-
figured dynamically using a corresponding Network Control Protocol (NCP). For instance,
to send IP datagrams across the link, both PPPs must first negotiate which IP address
each of them uses. The control protocol used for this is [IPCP, the Internet Protocol Con-

trol Protocol.

Beside sending standard IP datagrams across the link, PPP also supports Van Jacobson
header compression of IP datagrams. This is a technique to shrink the headers of TCP
packets to as little as three bytes. It is also used in CSLIP, and is more colloquially referred
to as VJ header compression. The use of compression may be negotiated at startup time
through IPCP as well.

8.2 PPP on Linux

On Linux, PPP functionality is split up in two parts, a low-level HDLC driver located in
the kernel, and the user space pppd daemon that handles the various control protocols. The
current release of PPP for Linux is linuz-ppp-1.0.0, and contains the kernel PPP module,

pppd, and a program named chat used to dial up the remote system.

The PPP kernel driver was written by Michael Callahan. pppd was derived from a free
PPP implementation for Sun and 386BSD machines, which was written by Drew Perkins
and others, and is maintained by Paul Mackerras. It was ported to Linux by Al Longyear.?

chat was written by Karl Fox.*

Just like SLIP, PPP is implemented by means of a special line discipline. To use some
serial line as a PPP link, you first establish the connection over your modem as usual, and
subsequently convert the line to PPP mode. In this mode, all incoming data is passed to the
PPP driver, which checks the incoming HDLC frames for validity (each HDLC frame carries
a 16 bit checksum), and unwraps and dispatches them. Currently, it is able to handle IP
datagrams, optionally using Van Jacobson header compression. As soon as Linux supports
IPX, the PPP driver will be extended to handle IPX packets, too.

®Both authors have said they will be very busy for some time to come. If you have any questions on PPP
in general, you’d best ask the people on the NET channel of the Linux activists mailing list.
*karl@morningstar.com.

8.3. Running pppd 133

The kernel driver is aided by pppd, the PPP daemon, which performs the entire ini-
tialization and authentication phase that is necessary before actual network traffic can be
sent across the link. pppd’s behavior may be fine-tuned using a number of options. As
PPP is rather complex, it is impossible to explain all of them in a single chapter. This
book therefore cannot cover all aspects of pppd, but only give you an introduction. For
more information, refer to the manual pages and READMEs in the pppd source distribu-
tion, which should help you sort out most questions this chapter fails to discuss. If your
problems persist even after reading all documentation, you should turn to the newsgroup
comp.protocols.ppp for help, which is the place where you will reach most of the people
involved in the development of pppd.

8.3 Running pppd

When you want to connect to the Internet through a PPP link, you have to set up basic
networking capabilities such as the loopback device, and the resolver. Both have been
covered in the previous chapters. There are some things to be said about using DNS over

a serial link; please refer to the SLIP chapter for a discussion of this.

As an introductory example of how to establish a PPP connection with pppd, assume you
are at vlager again. You have already dialed up the PPP server, c3po, and logged into the
ppp account. ¢3po has already fired up its PPP driver. After exiting the communications

program you used for dialing, you execute the following command:

pppd /dev/cua3 38400 crtscts defaultroute

This will flip the serial line cua3 to PPP mode and establish an IP link to ¢3po. The
transfer speed used on the serial port will be 38400bps. The critscts option turns on hardware

handshake on the port, which is an absolute must at speeds above 9600 bps.

The first thing pppd does after starting up is to negotiate several link characteristics
with the remote end, using LCP. Usually, the default set of options pppd tries to negotiate
will work, so we won’t go into this here. We will return to LCP in more detail in some later

section.

For the time being, we also assume that ¢3po doesn’t require any authentication from

us, so that the configuration phase is completed successfully.

pppd will then negotiate the IP parameters with its peer using IPCP, the IP control
protocol. Since we didn’t specify any particular IP address to pppd above, it will try to
use the address obtained by having the resolver look up the local hostname. Both will then

announce their address to each other.

8.4. Using Options Files 134

Usually, there’s nothing wrong with these defaults. Even if your machine is on an
Ethernet, you can use the same IP address for both the Ethernet and the PPP interface.
Nevertheless, pppd allows you to use a different address, or even to ask your peer to use

some specific address. These options are discussed in a later section.

After going through the IPCP setup phase, pppd will prepare your host’s networking
layer to use the PPP link. It first configures the PPP network interface as a point-to-point
link, using ppp0 for the first PPP link that is active, ppp! for the second, and so on. Next,
it will set up a routing table entry that points to the host at the other end of the link. In
the example shown above, pppd will make the default network route point to ¢3po, because

® This causes all datagrams to hosts not on your local

we gave it the defaultroute option.
network to be sent to ¢3po. There are a number of different routing schemes pppd supports,

which we will cover in detail later in this chapter.

8.4 Using Options Files

Before pppd parses its command line arguments, it scans several files for default options.
These files may contain any valid command line arguments, spread out across an arbitrary

number of lines. comments are introduced by has signs.

The first options file is /etc/ppp/options, which is always scanned when pppd starts up.
Using it to set some global defaults is a good idea, because it allows you to keep your
users from doing several things that may compromise security. For instance, to make pppd
require some kind of authentication (either PAP or CHAP) from the peer, you would add
the auth option to this file. This option cannot be overridden by the user, so that it becomes
impossible to establish a PPP connection with any system that is not in our authentication

databases.

The other option file, which is read after /etc/ppp/options, is .pppre in the user’s home

directory. It allows each user to specify her own set of default options.

A sample /ete/ppp/options file might look like this:

Global options for pppd running on vlager.vbrew.com

auth # require authentication
usehostname # use local hostname for CHAP
lock # use UUCP-style device locking
domain vbrew.com # our domain name

The first two of these options apply to authentication and will be explained below. The
lock keyword makes pppd comply to the standard UUCP method of device locking. With

®The default network route is only installed if none is present yet.

8.5. Dialing out with chat 135

this convention, each process that accesses a serial device, say /dev/cua3, creates a lock file
named LCK..cua3 in the UUCP spool directory to signal that the device is in use. This
is necessary to prevent any other programs such as minicom or uucico to open the serial
device while used by PPP.

The reason to provide these options in the global configuration file is that options such
as those shown above cannot be overridden, and so provide for a reasonable level of security.
Note however, that some options can be overridden later; one such an example is the connect

string.

8.5 Dialing out with chat

One of the things that may have struck you as inconvenient in the above example is that
you had to establish the connection manually before you could fire up pppd. Unlike dip,
pppd does not have its own scripting language for dialing the remote system and logging in,
but rather relies on some external program or shell script to do this. The command to be
executed can be given to pppd with the connect command line option. pppd will redirect
the command’s standard input and output to the serial line. One useful program for this
is expect, written by Don Libes. It has a very powerful language based on Tcl, and was

designed exactly for this sort of application.

The pppd package comes along with a similar program called chat, which lets you specify
a UUCP-style chat script. Basically, a chat script consists of an alternating sequence of
strings that we expect to receive from the remote system, and the answers we are to send.
We will call the expect and send strings, respectively. This is a typical excerpt from a chat

script;
ogin: blff ssword: s3kr3t

This tells chat to wait for the remote system to send the login prompt, and return the
login name b1ff. We only wait for ogin: so that it doesn’t matter if the login prompt
starts with an uppercase or lowercase 1, or if it arrives garbled. The following string is an
expect-string again that makes chat wait for the password prompt, and send our password

in response.

This is basically all that chat scripts are about. A complete script to dial up a PPP
server would, of course, also have to include the appropriate modem commands. Assume
your modem understands the Hayes command set, and the server’s telephone number was

318714. The complete chat invocation to establish a connection with e¢3po would then be

$ chat -v ’’ ATZ OK ATDT318714 CONNECT ’’ ogin: ppp word: GaGarill

8.5. Dialing out with chat 136

By definition, the first string must be an expect string, but as the modem won’t say
anything before we have kicked it, we make chat skip the first expect by specifying an
empty string. We go on and send ATZ, the reset command for Hayes-compatible modems,
and wait for its response (0K). The next string sends the dial command along with the
phone number to chat, and expects the CONNECT message in response. This is followed by
an empty string again, because we don’t want to send anything now, but rather wait for

the login prompt. The remainder of the chat script works exactly as described above.
The -v option makes chat log all activities to the syslog daemon’s local?2 facility.®

Specifying the chat script on the command line bears a certain risk, because users can
view a process’ command line with the ps command. You can avoid this by putting the
chat script in a file, say dial-c3po. You make chat read the script from the file instead of
the command line by giving it the -f option, followed by the file name. The complete pppd

incantation would now look like this:

pppd connect '"chat -f dial-c3po" /dev/cua3 38400 -detach \
crtscts modem defaultroute

Beside the connect option that specifies the dial-up script, we have added two more
options to the command line: -detach, which tells pppd not to detach from the console and
become a background process. The modem keyword makes it perform some modem-specific
actions on the serial device, like hanging up the line before and after the call. If you don’t
use this keyword, pppd will not monitor the port’s DCD line, and will therefore not detect

if the remote end hangs up unexpectedly.

The examples shown above were rather simple; chat allows for much more complex chat
scripts. One very useful feature is the ability to specify strings on which to abort the chat
with an error. Typical abort strings are messages like BUSY, or NO CARRIER, that your
modem usually generates when the called number is busy, or doesn’t pick up the phone.
To make chat recognize these immediately, rather than timing out, you can specify them

at the beginning of the script using the ABORT keyword:

$ chat -v ABORT BUSY ABORT ’NO CARRIER’ ’’ ATZ OK ...
In a similar fashion, you may change the timeout value for parts of the chat scripts by
inserting TIMEOUT options. For details, please check the chat(8) manual page.

Sometimes, you’d also want to have some sort of conditional execution of parts of the

chat script. For instance, when you don’t receive the remote end’s login prompt, you might

51f you edit syslog.conf to redirect these log messages to a file, make sure this file isn’t world readable,

as chat also logs the entire chat script by default — including passwords and all.

8.6. Debugging Your PPP Setup 137

want to send a BREAK, or a carriage return. You can achieve this by appending a sub-
script to an expect string. It consists of a sequence of send- and expect-strings, just like the
overall script itself, which are separated by hyphens. The sub-script is executed whenever
the expected string they are appended to is not received in time. In the example above, we

would modify the chat script as follows:
ogin:-BREAK-ogin: ppp ssword: GaGarill

Now, when chat doesn’t see the remote system send the login prompt, the sub-script
is executed by first sending a BREAK, and then waiting for the login prompt again. If
the prompt now appears, the script continues as usual, otherwise it will terminate with an

error.

8.6 Debugging Your PPP Setup

By default, pppd will log any warnings and error messages to syslog’s daemon facility.
You have to add an entry to syslog.conf that redirects this to a file, or even the console,

otherwise syslog simply discards these messages. The following entry sends all messages to

Jvar/log/ppp-log:

daemon. * /var/log/ppp-log

If your PPP setup doesn’t work at once, looking into this log file should give you a first
hint of what goes wrong. If this doesn’t help, you can also turn on extra debugging output
using the debug option. This makes pppd log the contents of all control packets sent or

received to syslog. All messages will go to the daemon facility.

Finally, the most drastic feature is to enable kernel-level debugging by invoking pppd
with the kdebug option. It is followed by a numeric argument that is the bitwise OR of the
following values: 1 for general debug messages, 2 for printing the contents of all incoming
HDLC frames, and 4 to make the driver print all outgoing HDLC frames. To capture kernel
debugging messages, you must either run a syslogd daemon that reads the /proc/kmsg file,
or the klogd daemon. FEither of them directs kernel debugging to syslog’s kernel facility.

8.7 IP Configuration Options

IPCP is used to negotiate a couple of IP parameters at link configuration time. Usually,

each peer may send an IPCP Configuration Request packet, indicating which values it wants

8.7. IP Configuration Options 138

to change from the defaults, and to what value. Upon receipt, the remote end inspects each

option in turn, and either acknowledges or rejects it.

pppd gives you a lot of control about which IPCP options it will try to negotiate. You

can tune this through various command line options we will discuss below.

8.7.1 Choosing IP Addresses

In the example above, we had pppd dial up ¢3po and establish an IP link. No provisions
were taken to choose a particular IP address on either end of the link. Instead, we picked
vlager’s address as the local IP address, and let ¢c3po provide its own. Sometimes, however,
it is useful to have control over what address is used on one or the other end of the link.

pppd supports several variations of this.

To ask for particular addresses, you generally provide pppd with the following option:
local_addr :remote_addr

where local_addr and remote_addr may be specified either in dotted quad notation, or
as hostnames.” This makes pppd attempt to use the first address as its own IP address,
and the second as the peer’s. If the peer rejects either of them during IPCP negotiation,
no IP link will be established.®

If you want to set only the local address, but accept any address the peer uses, you
simply leave out the remote_addr part. For instance, to make vlager use the IP address
130.83.4.27 instead of its own, you would give it 130.83.4.27: on the command line.
Similarly, to set the remote address only, you would leave the local_addr field blank. By
default, pppd will then use the address associated with your hostname.

Some PPP servers that handle a lot of client sites assign addresses dynamically: addresses
are assigned to systems only when calling in, and are claimed after they have logged off
again. When dialing up such a server, you must make sure that pppd doesn’t request any
particular IP address from the server, but rather accept the address the server asks you to
use. This means that you mustn’t specify a Iocal_addr argument. In addition, you have to
use the noipdefault option, which makes pppd wait for the peer to provide the IP address

instead of using the local host’s address.

"Using hostnames in this option has consequences on CHAP authentication. Please refer to the section

on CHAP below.
8You can allow the peer PPP to override your ideas of IP addresses by giving pppd the ipcp-accept-local

and ipcp-accept-remote options. Please refer to the manual page for details.

8.7. IP Configuration Options 139

8.7.2 Routing Through a PPP Link

After setting up the network interface, pppd will usually set up a host route to its peer only.
If the remote host is on a LAN, you certainly want to be able to connect to hosts “behind”

your peer as well; that is, a network route must be set up.

We have already seen above that pppd can be asked to set the default route using the
defaultroute option. This option is very useful if the PPP server you dialed up will act

as your Internet gateway.

The reverse case, where your system acts as a gateway for a single host, is also relatively
easy to accomplish. For example, take some employee at the Virtual Brewery whose home
machine is called loner. When connecting to vlager through PPP, he uses an address on
the Brewery’s subnet. At vlager, we can now give pppd the proxyarp option, which will
install a proxy ARP entry for loner. This will automatically make loner accessible from

all hosts at the Brewery and the Winery.

However, things aren’t always as easy as that, for instance when linking two local area
networks. This usually requires adding a specific network route, because these networks
may have their own default routes. Besides, having both peers use the PPP link as the
default route would generate a loop, where packets to unknown destinations would ping-

pong between the peers until their time-to-live expired.

As an example, suppose the Virtual Brewery opens a branch in some other city. The
subsidiary runs an Ethernet of their own using the IP network number 191.72.3.0, which
is subnet 3 of the Brewery’s class B network. They want to connect to the Brewery’s main
Ethernet via PPP to update customer databases, etc. Again, vlager acts as the gateway;
its peer is called sub-etha and has an IP address of 191.72.3.1..

When sub-etha connects to vlager, it will make the default route point to vlager as
usual. On vlager, however, we will have to install a network route for subnet 3 that goes
through sub-etha. For this, we use a feature of pppd not discussed so far — the ip-up
command. This is a shell script or program located in /etc/ppp that is executed after
the PPP interface has been configured. When present, it is invoked with the following

parameters:
ip-up iface device speed local_addr remote_addr

where iface names the network interface used, device is the pathname of the serial device
file used (/dev/tty if stdin/stdout are used), and speed is the device’s speed. local_addr
and remote_addr give the IP addresses used at both ends of the link in dotted quad notation.

In our case, the ip-up script may contain the following code fragment:

8.8. Link Control Options 140

#!/bin/sh
case $5 in
191.72.3.1) # this is sub-etha
route add -net 191.72.3.0 gw 191.72.3.1;;

esac
exit O

In a similar fashion, /etc/ppp/ip-down is used to undo all actions of ip-up after the PPP

link has been taken down again.

However, the routing scheme is not yet complete. We have set up routing table entries
on both PPP hosts, but so far, all other hosts on both networks don’t know anything about
the PPP link. This is not a big problem if all hosts at the subsidiary have their default
route pointing at sub-etha, and all Brewery hosts route to vlager by default. If this is
not the case, your only option will usually be to use a routing daemon like gated. After
creating the network route on vlager, the routing daemon would broadcast the new route
to all hosts on the attached subnets.

8.8 Link Control Options

Above, we already encountered LCP, the Link Control Protocol, which is used to negotiate

link characteristics, and to test the link.

The two most important options that may be negotiated by LCP are the maximum
receive unit, and the Asynchronous Control Character Map. There are a number of other
LCP configuration options, but they are far too specialized to discuss here. Please refer to
RFC 1548 for a description of those.

The Asynchronous Control Character Map, colloquially called the async map, is used
on asynchronous links such as telephone lines to identify control characters that must be
escaped (replaced by a specific two-character sequence). For instance, you may want to avoid
the XON and XOFF characters used for software handshake, because some misconfigured
modem might choke upon receipt of an XOFF. Other candidates include Ctrl-] (the telnet
escape character). PPP allows you to escape any of the characters with ASCII codes 0
through 31 by specifying them in the async map.

The async map is a bitmap 32 bits wide, with the least significant bit corresponding to
the ASCII NUL character, and the most significant bit corrsponding to ASCII 31. If a bit
is set, it signals that the corresponding character must be escaped before sending it across
the link. Initially, the async map is set to Ozffffffff, that is, all control characters will be

esaped.

8.9. General Security Considerations 141

To tell your peer that it doesn’t have to escape all control characters but only a few of
them, you can specify a new asyncmap to pppd using the asyncmap option. For instance, if
only °S and ~Q (ASCII 17 and 19, commonly used for XON and XOFF') must be escaped,

use the following option:
asyncmap 0x00040000

The Maximum Receive Unit, or MRU, signals to the peer the maximum size of HDLC
frames we want to receive. Although this may remind you of the MTU value (Maximum
Transfer Unit), these two have little in common. The MTU is a parameter of the kernel
networking device, and describes the maximum frame size the interface is able to handle.
The MRU is more of an advice to the remote end not to generate any frames larger than

the MRU; the interface must nevertheless be able to receive frames of up to 1500 bytes.

Choosing an MRU is therefore not so much a question of what the link is capable of
transferring, but of what gives you the best throughput. If you intend to run interactive
applications over the link, setting the MRU to values as low as 296 is a good idea, so that
an occasional larger packet (say, from an FTP session) doesn’t make your cursor “jump”.
To tell pppd to request an MRU of 296, you would give it the option mru 296. Small MRUs,
however, only make sense if you don’t have VJ header compression disabled (it is enabled

by default).

pppd understands also a couple of LCP options that configure the overall behavior of
the negotiation process, such as the maximum number of configuration requests that may
be exchanged before the link is terminated. Unless you kow exactly what you are doing,

you should leave these alone.

Finally, there are two options that apply to LCP echo messages. PPP defines two
messages, Ficho Request and Echo Response. pppd uses this feature to check if a link is still
operating. You can enable this by using the lcp-echo-interval option together with a
time in seconds. If no frames are received from the remote host within this interval, pppd
generates an Echo Request, and expects the peer to return an Echo Response. If the peer
does not produce a response, the link is terminated after a certain number of requests sent.
This number can be set using the lcp-echo-failure option. By default, this feature is
disabled altogether.

8.9 General Security Considerations

A misconfigured PPP daemon can be a devastating security breach. It can be as bad as
letting anyone plug in their machine into your Ethernet (and that is very bad). In this

section, we will discuss a few measures that should make your PPP configuration safe.

8.10. Awuthentication with PPP 142

One problem with pppd is that to configure the network device and the routing table,
it requires root privilege. You will usually solve this by running it setuid root. However,
pppd allows users to set various security-relevant options. To protect against any attacks a
user may launch by manipulating these options, it is suggested you set a couple of default
values in the global /etc/ppp/options file, like those shown in the sample file in section Using
Options Files. Some of them, such as the authentication options, cannot be overridden by

the user, and so provide a reasonable protection against manipulations.

Of course, you have to protect yourself from the systems you speak PPP with, too. To
fend off hosts posing as someone else, you should always some sort of authentication from
your peer. Additionally, you should not allow foreign hosts to use any IP address they

choose, but restrict them to at least a few. The following section will deal with these topics.

8.10 Anuthentication with PPP

8.10.1 CHAP versus PAP

With PPP, each system may require its peer to authenticate itself using one of two au-
thentication protocols. These are the Password Authentication Protocol (PAP), and the
Challenge Handshake Authentication Protocol (CHAP). When a connection is established,
each end can request the other to authenticate itself, regardless of whether it is the caller
or the callee. Below I will loosely talk of ‘client’ and ‘server’ when I want to distinguish
between the authenticating system and the authenticator. A PPP daemon can ask its peer
for authentication by sending yet another LCP configuration request identifying the desired

authentication protocol.

PAP works basically the same way as the normal login procedure. The client authenti-
cates itself by sending a user name and an (optionally encrypted) password to the server,
which the server compares to its secrets database. This technique is vulnerable to eaves-
droppers who may try to obtain the password by listening in on the serial line, and to

repeated trial and error attacks.

CHAP does not have these deficiencies. With CHAP, the authenticator (i.e. the server)
sends a randomly generated “challenge” string to the client, along with its hostname. The
client uses the hostname to look up the appropriate secret, combines it with the challenge,
and encrypts the string using a one-way hashing function. The result is returned to the
server along with the client’s hostname. The server now performs the same computation,

and acknowledges the client if it arrives at the same result.

Another feature of CHAP is that it doesn’t only require the client to authenticate itself

at startup time, but sends challenges at regular intervals to make sure the client hasn’t been

8.10. Awuthentication with PPP 143

replaced by an intruder, for instance by just switching phone lines.

pppd keeps the secret keys for CHAP and PAP in two separate files, called /ete/ppp/chap-
secrets and pap-secrets, respectively. By entering a remote host in one or the other file, you
have a fine control over whether CHAP or PAP is used to authenticate ourselves with our

peer, and vice versa.

By default, pppd doesn’t require authentication from the remote, but will agree to au-
thenticate itself when requested by the remote. As CHAP is so much stronger than PAP,
pppd tries to use the former whenever possible. If the peer does not support it, or if pppd
can’t find a CHAP secret for the remote system in its chap-secrets file, it reverts to PAP.
If it doesn’t have a PAP secret for its peer either, it will refuse to authenticate altogether.

As a consequence, the connection is closed down.

This behavior can be modified in several ways. For instance, when given the auth
keyword, pppd will require the peer to authenticate itself. pppd will agree to use either
CHAP or PAP for this, as long as it has a secret for the peer in its CHAP or PAP database,
respectively. There are other options to turn a particular authentication protocol on or off,

but I won’t describe them here. Please refer to the pppd(8) manual page for details.

If all systems you talk PPP with agree to authenticate themselves with you, you should
put the auth option in the global /etc/ppp/options file and define passwords for each system
in the chap-secrets file. If a system doesn’t support CHAP, add an entry for it to the pap-
secrets file. In this way, you can make sure no unauthenticated system connects to your
host.

The next two sections discuss the two PPP secrets files, pap-secrets and chap-secrets.
They are located in /ete/ppp and contain triples of clients, servers and passwords, optionally
followed by a list of IP addresses. The interpretation of the client and server fields is different
for CHAP and PAP, and also depends on whether we authenticate ourselves with the peer,

or whether we require the server to authenticate itself with us.

8.10.2 The CHAP Secrets File

When it has to authenticate itself with some server using CHAP, pppd searches the pap-
secrets file for an entry with the client field equal to the local hostname, and the server field
equal to the remote hostname sent in the CHAP Challenge. When requiring the peer to
authenticate itself, the roles are simply reversed: pppd will then look for an entry with the
client field equal to the remote hostname (sent in the client’s CHAP Response), and the

server field equal to the local hostname.

8.10. Awuthentication with PPP 144

The following is a sample chap-secrets file for vlager:®

CHAP secrets for vlager.vbrew.com

#

client server secret addrs

__
vlager.vbrew.com c¢3po.lucas.com "Use The Source Luke'" vlager.vbrew.com
c3po.lucas.com vlager.vbrew.com '"riverrun, pasteve' c3po.lucas.com

* vlager.vbrew.com "VeryStupidPassword" pub.vbrew.com

When establishing a PPP connection with c3po, ¢3po asks vlager to authenticate itself
using CHAP by sending a CHAP challenge. pppd then scans chap-secrets for an entry with
the client field equal to vlager.vbrew.com and the server field equal to c¢3po.lucas.com,'®
and finds the first line shown above. It then produces the CHAP Response from the

challenge string and the secret (Use The Source Luke), and sends it off to e3po.

At the same time, pppd composes a CHAP challenge for e¢3po, containing a unique
challenge string, and its fully qualified hostname vlager.vbrew.com. c3po constructs a
CHAP Response in the manner we just discussed, and returns it to vlager. pppd now
extracts the client hostname (c3po.vbrew.com) from the Response, and searches the
chap-secrets file for a line matching c3po as a client, and vlager as the server. The second
line does this, so pppd combines the CHAP challenge and the secret riverrun, pasteve,

encrypts them, and compares the result to c3po’s CHAP respnose.

The optional fourth field lists the IP addresses that are acceptable for the clients named
in the first field. The addresses may be given in dotted quad notation or as hostnames that
are looked up with the resolver. For instance, if e3po requests to use an [P address during
IPCP negotiation that is not in this list, the request will be rejected, and IPCP will be shut
down. In the sample file shown above, ¢3po is therefore limited to using its own IP address.
If the address field is empty, any addresses will be allowed; a value of - prevents the use of
IP with that client altogether.

The third line of the sample chap-secrets file allows any host to establish a PPP link with
vlager because a client or server field of * matches any hostname. The only requirement is
that it knows the secret, and uses the address of pub.vbrew.com. Entries with wildcard
hostnames may appear anywhere in the secrets file, since pppd will always use the most

specific entry that applies to a server/client pair.

There are some words to be said about the way pppd arrives at the hostnames it looks

up in the secrets file. As explained before, the remote hostname is always provided by the

°The double quotes are not part of the password, they merely serve to protect the white space within
the password.
10This hostname is taken from the CHAP challenge.

8.10. Authentication with PPP 145

peer in the CHAP Challenge or Response packet. The local hostname will be derived by
calling the gethostname(2) function by default. If you have set the system name to your
unqualified hostname, such you have to provide pppd with the domain name in addition

using the domain option:
pppd ...domain vbrew.com

This will append the Brewery’s domain name to vlager for all authentication-
related activities. Other options that modify progpppd’s idea of the local hostname are
usehostname and name. When you give the local IP address on the command line using
“local :varremote”, and local is a name instead of a dotted quad, pppd will use this as

the local hostname. For details, please refer to the pppd(8) manual page.

8.10.3 The PAP Secrets File

The PAP secrets file is very similar to that used by CHAP. The first two fields always
contain a user name and a server name; the third holds the PAP secret. When the remote
sends an authenticate request, pppd uses the entry that has a server field equal to the local
hostname, and a user field equal to the user name sent in the request. When authenticating
itself with the peer, pppd picks the secret to be sent from the line with the user field equal

to the local user name, and the server field equal to the remote hostname.

A sample PAP secrets file might look like this:

/etc/ppp/pap-secrets

#

user server secret addrs

vlager-pap c3po cresspahl vlager.vbrew.com
c3po vlager DonaldGNUth c3po.lucas.com

The first line is used to authenticate ourselves when talking to ¢3po. The second line

describes how a user named c3po has to authenticate itself with us.

The name vlager-pap in column one is the user name we send to ¢3po. By default,
pppd will pick the local hostname as the user name, but you can also specify a different

name by giving the user option, followed by that name.

When picking an entry from the pap-secrets file for authentication with the peer, pppd
has to know the remote host’s name. As it has no way of finding that out, you have
to specify it on the command line using the remotename keyword, followed by the peer’s
hostname. For instance, to use the above entry for authentication with ¢3po, we have to

add the following option to pppd’s command line:

8.11. Configuring a PPP Server 146

\#{} pppd ... remotename c3po user vlager-pap

In the fourth field (and all fields following), you may specify what IP addresses are
allowed for that particular host, just as in the CHAP secrets file. The peer may then
only request addresses from that list. In the sample file, we require ¢3po to use its real
IP address.

Note that PAP is a rather weak authentication method, and it is suggested you use
CHAP instead whenever possible. We will therefore not cover PAP in greater detail here;
if you are interested in using PAP, you will find some more PAP features in the pppd(8)

manual page.

8.11 Configuring a PPP Server

Running pppd as a server is just a matter of adding the appropriate options to the command
line. Ideally, you would create a special account, say ppp, and give it a script or program as
login shell that invokes pppd with these options. For instance, you would add the following
line to /ete/passwd:

pPpp:*:500:200:Public PPP Account:/tmp:/etc/ppp/ppplogin

Of course, you may want to use different uids and gids than those shown above. You

would also have to set the password for the above account using the passwd command.

The ppplogin script might then look like this:

#!/bin/sh

ppplogin - script to fire up pppd on login
mesg n

stty -echo

exec pppd —detach silent modem crtscts

The mesg command disables other users to write to the tty using, for instance, the
write command. The stty command turns off character echoing. The is necessary, because
otherwise everything the peer sends would be echoed back to it. The most important pppd
option given above is ~detach, because it prevents pppd drom detaching from the controlling
tty. If we didn’t specify this option, it would go to the background, making the shell script
exit. This would in turn would cause the serial line to be hung up and the connection to be
dropped. The silent option causes pppd to wait until it receives a packet from the calling

system before it starts sending. This prevents transmit timeouts to occur when the calling

8.11. Configuring a PPP Server 147

system is slow in firing up its PPP client. The modem makes pppd watch the DTR line to

see if the peer has dropped the connection, and crtscts turns on hardware handshake.

Beside these options, you might want to force some sort of authentication, for example
by specifying auth on pppd’s command line, or in the global options file. The manual page
also discusses more specific options for turning individual authentication protocols on and

off.

Chapter 9

Various Network Applications

After successfully setting up IP and the resolver, you have to turn to the services you want
to provide over the network. This chapter covers the configuration of a few simple network
applications, including the inetd server, and the programs from the rlogin family. The
Remote Procedure Call interface that services like the Network File System (NFS) and the
Network Information System (NIS) are based upon will be dealt with briefly, too. The
configuration of NFS and NIS, however, takes up more room, will be described in separate

chapters. This applies to electronic mail and netnews as well.

Of course, we can’t cover all network applications in this book. If you want to install
one that’s not discussed here, like talk, gopher, or Xmosaic please refer to its manual pages

for details.

9.1 The tnetd Super-Server

Frequently, services are performed by so-called daemons. A daemon is a program that opens
a certain port, and waits for incoming connections. If one occurs, it creates a child process
which accepts the connection, while the parent continues to listen for further requests. This
concept has the drawback that for every service offered, a daemon has to run that listens
on the port for a connection to occur, which generally means a waste of system resources

like swap space.

Thus, almost all UNXX installations run a “super-server” that creates sockets for a number
of services, and listens on all of them simultaneously using the select(2) system call. When
a remote host requests one of the services, the super-server notices this and spawns the

server specified for this port.

The super-server commonly used is inetd, the Internet Daemon. It is started at sys-

148

9.1. The inetd Super-Server 149

tem boot time, and takes the list of services it is to manage from a startup file named
/ete/inetd.conf. In addition to those servers invoked, there are a number of trivial services
which are performed by inetd itself called internal services. They include chargen which
simply generates a string of characters, and daytime which returns the system’s idea of the

time of day.

An entry in this file consists of a single line made up of the following fields:
service type protocol wait user server cmdline
The meaning of each field is as follows:

service gives the service name. The service name has to be translated to a port
number by looking it up in the /etec/services file. This file will be described

in section The services and protocols Files below.

type specifies a socket type, either stream (for connection-oriented protocols) or
dgram (for datagram protocols). TCP-based services should therefore always

use stream, while UDP-based services should always use dgram.

protocol names the transport protocol used by the service. This must be a valid

protocol name found in the protocols file, also explained below.

wait This option applies only to dgram sockets. It may be either wait or nowait.
If wait is specified, inetd will only execute one server for the specified port
at any time. Otherwise, it will immediately continue to listen on the port

after executing the server.

This is useful for “single-threaded” servers that read all incoming datagrams
until no more arrive, and then exit. Most RPC servers are of this type and
should therefore specify wait. The opposite type, “multi-threaded” servers,
allow an unlimited number of instances to run concurrently; this is only

rarely used. These servers should specify nowait.

stream sockets should always use nowait.

user This is the login id of the user the process is executed under. This will
frequently be the root user, but some services may use different accounts.
It is a very good idea to apply the principle of least privilege here, which
states that you shouldn’t run a command under a privileged account if the
program doesn’t require this for proper functioning. For example, the NNTP
news server will run as news, while services that may pose a security risk

(such as tftp or finger) are often run as nobody.

9.1. The inetd Super-Server 150

server gives the full path name of the server program to be executed. Internal

services are marked by the keyword internal.

cmdline This is the command line to be passed to the server. This includes argu-
ment 0, that is the command name. Usually, this will be the program name
of the server, unless the program behaves differently when invoked by a

different name.

This field is empty for internal services.

#

inetd services

ftp stream tcp nowait root /usr/sbin/ftpd in.ftpd -1

telnet stream tcp nowait root /usr/sbin/telnetd in.telnetd -b/etc/issue
#finger stream tcp nowait bin /usr/sbin/fingerd in.fingerd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd

#tftp dgram udp wait nobody /usr/sbin/tftpd in.tftpd /boot/diskless
login stream tcp nowait root /usr/sbin/rlogind in.rlogind

shell stream tcp nowait root /usr/sbin/rshd in.rshd

exec stream tcp nowait root /usr/sbin/rexecd in.rexecd

#

inetd internal services

#

daytime stream tcp nowait root intermnal

daytime dgram udp nowait root internal

time stream tcp nowait root internal
time dgram udp nowait root internal
echo stream tcp nowait root internal
echo dgram udp nowait root internal

discard stream tcp nowait root intermnal
discard dgram udp nowait root internal
chargen stream tcp nowait root internal
chargen dgram udp nowait root internal

Figure 9.1: A sample /etc/inetd.conf file.

A sample inetd.conf file is shown in figure 9.1. The finger service commented out, so
that it is not available. This is often done for security reasons, because may be used by

attackers to obtain names of users on your system.

The tftp is shown commented out as well. tftp implements the Primitive File Transfer
Protocol that allows to transfer any world-readable files from your system without password
checking etc. This is especially harmful with the /etc/passwd file, even more so when you

don’t use shadow password.

9.2. The tcpd access control facility 151

TFTP is commonly used by diskless clients and X terminals to download their code
from a boot server. If you need to run tftpd for this reason, make sure to limit its scope to
those directories clients will retrieve files from by adding those directory names to tftpd’s

command line. This is shown in the second tftp line in the example.

9.2 The tepd access control facility

Since opening a computer to network access involves many security risks, applications are
designed to guard against several types of attacks. Some of these, however, may be flawed
(most drastically demonstrated by the RT'M Internet worm), or do not distinguish between
secure hosts from which requests for a particular service will be accepted, and insecure hosts
whose requests should be rejected. We already briefly discussed the finger and tftp services
above. Thus, one would want to limit access to these services to “trusted hosts” only, which
is impossible with the usual setup, where inetd either provides this service to all clients, or

not at all.

A useful tool for this is tepd,! a so-called daemon wrapper. For TCP services you want
to monitor or protect, it is invoked instead of the server program. tepd logs the request
to the syslog daemon, ckecks if the remote host is allowed to use that service, and only if

this succeeds will it executes the real server program. Note that this does not work with
UDP-based services.

For example, to wrap the finger daemon, you have to change the corresponding line in

inetd.conf to

wrap finger daemon

finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

Without adding any access control, this will appear to the client just as a usual finger

setup, except that any requests are logged to syslog’s auth facility.

Access control is implemented by means of two files called /etc/hosts.allow and
/ete/hosts.deny. They contain entries allowing and denying access, respectively, to cer-
tain services and hosts. When tcpd handles a request for a service such as finger from
a client host named biff.foobar.com, it scans hosts.allow and hosts.deny (in this order)
for an entry matching both the service and client host. If a matching entry is found in
hosts.allow, access is granted, regardless of any entry in hosts.deny. If a match is found in
hosts.deny, the request is rejected by closing down the connection. If no match is found at

all, the request is accepted.

1 Written by Wietse Venema, wietse@wzv.win.tue.nl.

9.3. The services and protocols Files 152

Entries in the access files look like this:
servicelist: hostlist [:shellcmd]

servicelist is alist of service names from /etc/services, or the keyword ALL. To match
all services except finger and tftp, use “ALL EXCEPT finger, tftp”.

hostlist is a list of host names or IP addresses, or the keywords ALL, LOCAL, or
UNKNOWN. ALL matches any host, while LOCAL matches host names not containing
a dot.? UNKNOWN matches any hosts whose name or address lookup failed. A name
starting with a dot matches all hosts whose domain is equal to this name. For example,
.foobar.com matches biff.foobar.com. There are also provisions for IP network addresses

and subnet numbers. Please refer to the hosts_access(5) manual page for details.

To deny access to the finger and iftp services to all but the local hosts, put the following
in /etc/hosts.deny, and leave /etc/hosts.allow empty:

in.tftpd, in.fingerd: ALL EXCEPT LOCAL, .your.domain

The optional shellcmd field may contain a shell command to be invoked when the entry

is matched. This is useful to set up traps that may expose potential attackers:

in.ftpd: ALL EXCEPT LOCAL, .vbrew.com : \
echo "request from %d@%h" >> /var/log/finger.log; \
if [%h != "vlager.vbrew.com"]; then \
finger -1 Q@%h >> /var/log/finger.log \
fi

The %h and %d arguments are expanded by tepd to the client host name and service

name, respectively. Please refer to the hosts_access(5) manual page for details.

9.3 The services and protocols Files

The port numbers on which certain “standard” services are offered are defined in the “As-
signed Numbers” RFC. To enable server and client programs to convert service names to
these numbers, at least a part of the list is kept on each host; it is stored in a file called

/ete/services. An entry is made up like this:

service port/protocol [aliases]

2Usually only local host names obtained from lookups in /etc/hosts contain no dots.

9.3. The services and protocols Files 153

Here, service specifies the service name, port defines the port the service is offered on,
and protocol defines which transport protocol is used. Commonly, this is either udp or
tep. It is possible for a service to be offered for more than one protocol, as well as offering
different services on the same port, as long as the protocols are different. The aliases field

allows to specify alternative names for the same service.

Usually, you don’t have to change the services file that comes along with the network

software on your Linux system. Nevertheless, we give a small excerpt from that file below.

The services file:

#

well-known services

echo T/tcp # Echo

echo 7/udp #

discard 9/tcp sink null # Discard

discard 9/udp sink null #

daytime 13/tcp # Daytime

daytime 13/udp #

chargen 19/tcp ttytst source # Character Generator

chargen 19/udp ttytst source #

ftp-data 20/tcp # File Transfer Protocol (Data)
ftp 21/tcp # File Transfer Protocol (Control)
telnet 23/tcp # Virtual Terminal Protocol

smtp 25/tcp # Simple Mail Transfer Protocol
nntp 119/tcp readnews # Network News Transfer Protocol
#

UNIX services

exec 512/tcp # BSD rexecd

biff 512/udp comsat # mail notification

login 513/tcp # remote login

who 513/udp whod # remote who and uptime

shell 514/tcp cmd # remote command, no passwd used
syslog 514/udp # remote system logging

printer 515/tcp spooler # remote print spooling

route 520/udp router routed # routing information protocol

Note that, for example, the echo service is offered on port 7 for both TCP and UDP,
and that port 512 is used for two different services, namely the COMSAT daemon (which

notifies users of newly arrived mail, see zbiff(1z)), over UDP, and for remote execution
(rexec(1)), using TCP.

Similar to the services file, the networking library needs a way to translate protocol
names — for example, those used in the services file — to protocol numbers understood by

the TP layer on other hosts. This is done by looking up the name in the /ete/protocols file.

9.4. Remote Procedure Call 154

It contains one entry per line, each containing a protocol name, and the associated number.
Having to touch this file is even more unlikely than having to meddle with /etc/services. A

sample file is given below:

#

Internet (IP) protocols

#

ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICHMP # internet control message protocol

igmp 2 IGMP # internet group multicast protocol

tcp 6 TCP # transmission control protocol

udp 17 UDP # user datagram protocol

raw 255 RAW # RAW IP interface

9.4 Remote Procedure Call

A very general mechanism for client-server applications is provided by RPC, the Remote
Procedure Call package. RPC was developed by Sun Micrsystems, and is a collection of tools
and library functions. Important applications built on top of RPC are NFS, the Network
Filesystem, and NIS, the Network Information System, both of which will be introduced in

later chapters.

An RPC server consists of a collection of procedures that client may call by sending an
RPC request to the server, along with the procedure parameters. The server will invoke
the indicated procedure on behalf of the client, handing back the return value, if there is
any. In order to be machine-independent, all data exchanged between client and server is
converted to a so-called Ezternal Data Representation format (XDR) by the sender, and

converted back to the machine-local representation by the receiver.

Sometimes, improvements to an RPC application introduce incompatible changes in the
procedure call interface. Of course, simply changing the server would crash all application
that still expect the original behavior. Therefore, RPC programs have version numbers
assigned to them, usually starting with 1, and with each new version of the RPC interface
this counter will be bumped. Often, a server may offer several versions simultaneously;
clients then indicate by the version number in their requests which implementation of the

service they want to use.

The network communication between RPC servers and clients is somewhat peculiar. An
RPC server offers one or more collections of procedures; each set is being called a program,
and is uniquely identified by a program number. A list mapping service names to program

numbers is usually kept in /etc/rpe, an excerpt of which is reproduced below in figure 9.2.

9.4. Remote Procedure Call 155

#

/etc/rpc - miscellaenous RPC-based services
#

portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers

nfs 100003 nfsprog

ypserv 100004 ypprog

mountd 100005 mount showmount
ypbind 100007

walld 100008 rwall shutdown
yppasswdd 100009 yppasswd

bootparam 100026

ypupdated 100028 ypupdate

Figure 9.2: A sample /etc/rpe file.

In TCP/IP networks, the authors of RPC were faced with the problem of mapping
program numbers to generic network services. They chose to have each server provide both
a TCP and a UDP port for each program and each version. Generally, RPC applications
will use UDP when sending data, and only fall back to TCP when the data to be transferred
doesn’t fit into a single UDP datagram.

Of course, client programs have to have a way to find out which port a program number
maps to. Using a configuration file for this would be too unflexible; since RPC applications
don’t use reserved ports, there’s no guarantee that a port originally meant to be used by our
database application hasn’t been taken by some other process. Therefore, RPC applications
pick any port they can get, and register it with the so-called portmapper daemon. The latter
acts as a service broker for all RPC servers running on its machine: a client that wishes
to contact a service with a given program number will first query the portmapper on the

server’s host which returns the TCP and UDP port numbers the service can be reached at.

This method has the particular drawback that it introduces a single point of failure,
much like the inetd daemon does for the standard Berkeley services. However, this case is
even a little worse, because when the portmapper dies, all RPC port information is lost; this

usually means you have to restart all RPC servers manually, or reboot the entire machine.

On Linux, the portmapper is called rpe.portmap and resides in /usr/sbin. Other than
making sure it is started form rc.inet2, the portmapper doesn’t require any configuration

work.

9.5. Configuring the » Commands 156

9.5 Configuring the »r Commands

There are a number of commands for executing commands on remote hosts. These are
rlogin, rsh, rep and remd. They all spawn a shell on the remote host and allow the user
to execute commands. Of course, the client needs to have an account on the host where
the commmand is to be executed. Thus all these commands perform an authorization
procedure. Usually, the client will tell the user’s login name to the server, which in turn

requests a password that is validated in the usual way.

Sometimes, however, it is desirable to relax authorization checks for certain users. For
instance, if you frequently have to log into other machines on your LAN, you might want

to be admitted without having to type your password every time.

Disabling authorization is advisable only on a small number of hosts whose password
databases are synchronized, or for a small number of privileged users who need to access
many machines for administrative reasons. Whenever you want to allow people to log
into your host without having to specify a login id or password, make sure that you don’t

accidentally grant access to anybody else.

There are two ways to disable authorization checks for the r commands. One is for the
super user to allow certain or all users on certain or all hosts (the latter definitely being
a bad idea) to log in without being asked for a password. This access is controlled by a
file called /etc/hosts.equiv. It contains a list of host and user names that are considered
equivalent to users on the local host. An alternative option is for a user to grant other users
on certain hosts access to her account. These may be listed in the file .rhosts in the user’s
home directory. For security reasons, this file must be owned by the user or the super user,

and must not be a symbolic link, otherwise it will be ignored.?

When a client requests an r service, her host and user name are searched in the
/ete/hosts.equiv file, and then in the .rhosts file of the user she wants to log in as. As
am example, assume janet is working on gauss and tries to log into joe’s account on eu-
ler. Throughout the following, we will refer to Janet as the client user, and to Joe as the

local user. Now, when Janet types
$ rlogin -1 joe euler

on gauss, the server will first check hosts.equiv? if Janet should be granted free access, and

if this fails, it will try to look her up in .rhosts in joe’s home directory.

The hosts.equiv file on euler looks like this:

*In an NFS environment, you may need to give it a protection of 444, because the super user is often
very restricted in accessing files on disks mounted via NFS.

*Note that the hosts.equiv file is not searched when someone attempts to log in as root.

9.5. Configuring the » Commands 157

gauss
euler
-public

quark.physics.groucho.edu andres

An entry consists of a host name, optionally followed by a user name. If a host name
appears all by itself, all users from that host will be admitted to their local accounts without
any checks. In the above example, Janet would be allowed to log into her account janet
when coming from gauss, and the same applies to any other user except root. However, if

Janet wants to log in as joe, she will be prompted for a password as usual.

If & host name is followed by a user name, as in the last line of the above sample file,

this user is given password-free access to all accounts except the root account.

The host name may also be preceded by a minus sign, as in the entry “-public”. This
requires authorization for all accounts on public, regardless of what rights individual users

grant in their .rhosts file.

The format of the .rhosts file is identical to that of hosts.equiv, but its meaning is a little

different. Consider Joe’s .rhosts file on euler:

chomp.cs.groucho.edu

gauss janet

The first entry grants joe free acess when logging in from chomp.cs.groucho.edu, but
does not affect the rights of any other account on euler or chomp. The second entry is a
slight variation of this, in that it grants janet free access to Joe’s account when logging in

from gauss.

Note that the client’s host name is obtained by reverse mapping the caller’s address to
a name, so that this feature will fail with hosts unknown to the resolver. The client’s host

name is considered to match the name in the hosts files in one of the following cases:

e The client’s canonical host name (not an alias) literally matches the host name in the

file.

o If the client’s host name is a fully qualified domain name (such as returned by the
resolver when you have DNS running), and it doesn’t literally match the host name in

the hosts file, it is compared to that host name expanded with the local domain name.

Chapter 10

The Network Information System

When you are running a local area network, your overall goal is usually to provide an
environment to your users that makes the network transparent. An important stepping
stone to this end is to keep vital data such as user account information synchronized between
all hosts. We have seen before that for host name resolution, a powerful and sophisticated
service exists, being DNS. For others tasks, there is no such specialized service. Moreover,
if you manage only a small LAN with no Internet connectivity, setting up DNS may not

seem worth the trouble for many administrators.

This is why Sun developed NIS, the Network Information System. NIS provides generic
database access facilities that can be used to distribute information such as that contained
in the passwd and groups files to all hosts on your network. This makes the network appear
just as a single system, with the same accounts on all hosts. In a similar fashion, you can
use NIS to distribute the hostname information form /etc/hosts to all machines on the

network.

NIS is based on RPC, and comprises a server, a client-side library, and several admin-
istrative tools. Originally, NIS was called Yellow Pages, or YP, which is still widely used
to informally refer this service. On the other hand, Yellow Pages is a trademark of British
Telecom, which required Sun to drop that name. As things go, some names stick with
people, and so YP lives on as a prefix to the names of most NIS-related commands such as

ypserv, ypbind, etc.

Today, NIS is available for virtually all Unices, and there are even free implementations
of it. Omne is from the BSD Net-2 release, and has been derived from a public domain
reference implementation donated by Sun. The library client code from this release has
been in the GNU libc for a long time, while the administrative programs have only recently

1

been ported to Linux by Swen Thiimmler." An NIS server is missing from the reference

!To be reached at swen@uni-paderborn.de. The NIS clients are available as yp-linux.tar.gz from

158

10.1. Getting Acquainted with NIS 159

implementation. Tobias Reber has written another NIS package including all tools and a

server; it is called yps.?

Currently, a complete rewrite of the NIS code called NYS is being done by Peter
Eriksson,®> which supports both plain NIS and Sun’s much revised NIS+. NYS not only
provides a set of NIS tools and a server, but also adds a whole new set of library func-
tions which will most probably make it into the standard libc eventually. This includes a
new configuration scheme for hostname resolution that replaces the current scheme using

host.conf. The features of these functions will be discussed below.

This chapter will focus on NYS rather than the other two packages, to which I will refer
as the “traditional” NIS code. If you do want to run any of these packages, the instructions

in this chapter may or may not be enough. To obtain additional information, please get a
standard book on NIS, such as Hal Stern’s NFS and NIS (see [Stern92]).

For the time being, NYS is still under development, and therefore standard Linux util-
ities such as the network programs or the login program are not yet aware of the NYS
configuration scheme. Until NYS is merged into the mainstream libc you therefore have to
recompile all these binaries if you want to make them use NYS. In any of these applications’
Makefiles, specify -Insl as the last option before libc to the linker. This links in the relevant
functions from libnsl, the NYS library, instead of the standard C library.

10.1 Getting Acquainted with NIS

NIS keeps database information is in so-called maps containing key-value pairs. Maps
are stored on a central host running the NIS server, from which clients may retrieve the

information through various RPC calls. Quite frequently, maps are stored in DBM files.?

The maps themselves are usually generated from master text files such as /etc/hosts
or Jetc/passwd. For some files, several maps are created, one for each search key type.
For instance, you may search the hosts file for a host name as well as for an IP address.
Accordingly, two NIS maps are derived from it, called hosts.byname and hosts.byaddr,

respectively. Table 10.1 lists common maps and the files they are generated form.

sunsite.unc.edu in system/Network.

>The current version (as of this writing) is yps-0.21 and can be obtained from ftp.lysator.liu.se in the
/pub/NYS directory.

®To be reached at pen@lysator.liu.se.

*DBM is a simple database management library that nses hashing techniques to speed up search opera-
tions. There’s a free DBM implementation from the GNU project called gdbm, which is part of most Linux

distributions.

10.1. Getting Acquainted with NIS

160

Table 10.1: Some standard NIS maps and the corresponding files.

‘ Master File ‘ Map(s)

/ete/hosts hosts.byname hosts.byaddr
/ete/networks networks.byname networks.byaddr
/ete/passwd passwd.byname passwd. byuid
/ete/group group.byname group.bygid
/ete/services services.byname services.bynumber
/ete/rpe rpc.byname rpc.bynumber
/ete/protocols protocols.byname protocols.bynumber
Jusr/lib/aliases | mail.aliases

There are other files and maps you may find support for in some NIS package or other.

These may contain information for applications not discussed in this book, such as the

bootparams map that may used by some BOOTP servers, or which currently don’t have any

function in Linux (like the ethers.byname and ethers.byaddr maps).

For some maps, people commonly use nicknames, which are shorter and therefore easier

to type. To obtain a full list of nicknames understood by your NIS tools, run the following

command:

$ ypcat
NIS map

-X

nickname translation table:
"passwd'" -> "passwd.byname"
"group" -> '"group.byname"
"networks" -> 'metworks.byaddr"
"hosts" -> "hosts.byname"
"protocols'" -> "protocols.bynumber"
"services" -> '"services.byname"
"aliases'" -> "mail.aliases"
"ethers'" -> "ethers.byname"

"rpc" -> "rpc.bynumber"
"netmasks" -> '"netmasks.byaddr"
"publickey" -> '"publickey.byname"
"netid" -> "netid.byname"

"passwd.adjunct'" -> "passwd.adjunct.byname"

"group.adjunct'" -> "group.adjunct.byname"

"timezone" -> '"timezone.byname"

The NIS server is traditionally called ypserv. For an average network, a single server

usually suffices; large networks may choose to run several of these on different machines and

different segments of the network to relieve the load on the server machines and routers.

10.1. Getting Acquainted with NIS 161

These servers are synchronized by making one of them the master server, and the others
slave servers. Maps will be created only on the master server’s host. From there, they are

distributed to all slaves.

You will have noticed that we have been talking about “networks” very vaguely all the
time; of course there’s a distinctive concept in NIS that refers to such a network, that is
the collection of all hosts that share part of their system configuration data through NIS:
the NIS domain. Unfortunately, NIS domains have absolutely nothing in common with the
domains we encountered in DNS. To avoid any ambiguity throughout this chapter, T will

therefore always specify which type of domain I mean.

NIS domains have a purely administrative function only. They are mostly invisible to
users, except for the sharing of passwords between all machines in the domain. Therefore,
the name given to a NIS domain is relevant only to the administrators. Usually, any name
will do, as long as it is different from any other NIS domain name on your local network. For
instance, the administrator at the Virtual Brewery may choose to create two NIS domains,
one for the Brewery itself, and one for the Winery, which she names brewery and winery,
respectively. Another quite common scheme is to simply use the DNS domain name for NIS
as well. To set and display the NIS domain name of your host, you can use the domainname
command. When invoked without any argument, it prints the current NIS domain name;

to set the domain name, you must become super user and type:
domainname brewery

NIS domains determine which NIS server an application will query. For instance, the
login program on a host at the Winery should, of course, only query the Winery’s NIS
server (or one of them, if there were several) for a user’s password information; while an

application on a Brewery host should stick with the Brewery’s server.

One mystery now remains to be solved, namely how a client finds out which server to
connect to. The simplest approach would be to have a configuration file that names the
host on which to find the server. However, this approach is rather inflexible, because it
doesn’t allow clients to use different servers (from the same domain, of course), depending
on their availability. Therefore, traditional NIS implementations rely on a special daemon
called ypbind to detect a suitable NIS server in their NIS domain. Before being able to

perform any NIS queries, any application first finds out from ypbind which server to use.

ypbind probes for servers by broadcasting to the local 1P network; the first to respond
is assumed to be the potentially fastest one and will be used in all subsequent NIS queries.
After a certain interval has elapsed, or if the server becomes unavailable, ypbind will probe

for active servers again.

Now, the arguable point about dynamic binding is that you rarely need it, and that

10.2. NIS versus NIS+ 162

it introduces a security problem: ypbind blindly believes whoever answers, which could
be a humble NIS server as well as a malicious intruder. Needless to say this becomes
especially troublesome if you manage your password databases over NIS. To guard against
this, NYS does not use ypbind by default, but rather picks up the server host name from a

configuration file.

10.2 NIS versus NIS+

NIS and NIS+ share little more than their name and a common goal. NIS+ is structured
in an entirely different way. Instead of a flat name space with disjoint NIS domains, it uses
a hierarchical name space similar to that of DNS. Instead of maps, so called tables are used
that are made up of rows and columns, where each row represents an object in the NIS+
database, while the columns cover those properties of the objects that NIS+ knows and
cares about. Each table for a given NIS+ domain comprises those of its parent domains.
In addition, an entry in a table may contain a link to another table. These features make

it possible to structure information in many ways.
Traditional NIS has an RPC version number of 2, while NIS+ is version 3.

NIS+ does not seem to be very widely used yet, and I don’t really know that much
about it. (Well, almost nothing). For this reason, we will not deal with it here. If you

are interested in learning more about it, please refer to Sun’s NIS+ administration manual

([NISPlus]).

10.3 The Client Side of NIS

If you are familiar with writing or porting network applications, you will notice that most
NIS maps listed above correspond to library functions in the C library. For instance, to
obtain passwd information, you generally use the getpwnam(3) and getpwuid(3) functions
which return the account information associated with the given user name or numerical user
id, repsectively. Under normal circumstances, these functions will perform the requested

lookup on the standard file, such as /etc/passwd.

A NIS-aware implementation of these functions, however, will modify this behavior, and
place an RPC call to have the NIS server look up the user name or id. This happens
completely transparent to the application. The function may either “append” the NIS map
to or “replace” the original file with it. Of course, this does not refer to a real modification
of the file, it only means that it appears to the application as if the file had been replaced
or appended to.

10.4. Running a NIS Server 163

For traditional NIS implementations, there used to be certain conventions as to which
maps replaced, and which were appended to the original information. Some, like the passwd
maps, required kludgy modifications of the passwd file which, when done wrong, would open
up security holes. To avoid these pitfalls, NYS uses a general configuration scheme that
determines whether a particular set of client functions uses the original files, NIS, or NIS+,

and in which order. It will be described in a later section of this chapter.

10.4 Running a NIS Server

After so much theoretical techno-babble, it’s time to get our hands dirty with actual con-
figuration work. In this section, we will cover the configuration of a NIS server. If there’s
already a NIS server running on your network, you won’t have to set up your own server;

in this case, you may safely skip this section.

Note that if you are just going to experiment with the server, make sure you don’t
set it up for a NIS domain name that is already in use on your network. This
may disrupt the entire network service and make a lot of people very unhappy,

and very angry.

There are currently two NIS servers freely available for Linux, one contained in Tobias
Reber’s yps package, and the other in Peter Eriksson’s ypserv package. It shouldn’t matter
which one you run, regardless of whether you use NYS or the standard NIS client code
that is in libe currently. At the time of this writing, the code for the handling of NIS slave
servers seems to be more complete in yps. So if you have to deal with slave servers, yps

might be a better choice.

After installing the server program (ypserv)in /usr/sbin, you should create the directory
that is going to hold the map files your server is to distribute. When setting up a NIS domain
for the brewery domain, the maps would go to /var/yp/brewery. The server determines
if it is serving a particular NIS domain by checking if the map directory is present. If you

are disabling service for some NIS domain, make sure to remove the directory as well.

Maps are usually stored in DBM files to speed up lookups. They are created from the
master files using a program called makedbm (for Tobias’ server) or dbmload (for Peter’s
server). These may not be interchangeable. Transforming a master file into a form parseable
by dbmload usually requires some awk or sed magic, which tend to be a little tedious to
type and hard to remember. Therefore, Peter Friksson’s ypserv package contains a Makefile
(called ypMakefile) that does all these jobs for you. You should install it as Makefile in

your map directory, and edit it to reflect the maps you want to distribute. Towards the top

10.5. Setting up a NIS Client with NYS 164

of the file, you find the all target that lists the services ypserv is to offer. By default, the

line looks something like this:

all: ethers hosts networks protocols rpc services passwd group netid

If you don’t want to produce the ethers.byname and ethers.byaddr maps, for example,
simply remove the ethers prerequisite from this rule. To test your setup, it may suffice to

start with just one or two maps, like the services.* maps.

After editing the Makefile, while in the map directory, type “make”. This will automat-
ically generate and install the maps. You have to make sure to update the maps whenever

you change the master files, otherwise the changes will remain invisible to the network.

The next section explains how to configure the NIS client code. If your setup doesn’t
work, you should try to find out whether any requests arrive at your server or not. If you
specify the -D command line flag to the NYS server, it prints debugging messages to the
console about all incoming NIS queries, and the results returned. These should give you a

hint as to where the problem lies. Tobias’ server has no such option.

10.5 Setting up a NIS Client with NYS

Throughout the remainder of this chapter, we will cover the configuration of a NIS client.

Your first step should be to tell NYS which server to use for NIS service, setting it in
the /etc/yp.conf configuration file. A very simple sample file for a host on the Winery’s

network may look like this:

yp.conf - YP configuration for NYS library.
#

domainname winery

server vbardolino

The first statement tells all NIS clients that they belong to the winery NIS domain. If
you omit this line, NYS will use the domain name you assigned your system through the
domainname command. The server statement names the NIS server to use. Of course, the
IP address corresponding to vbardolino must be set in the hosts file; alternatively, you

may use the IP address itself with the server statement.

In the form shown above, the server command tells NYS to use the named server what-
ever the current NIS domain may be. If, however, you are moving your machine between

different NIS domains frequently, you may want to keep information for several domains

10.6. Choosing the Right Maps 165

in the yp.conf file. You can have information on the servers for various NIS domains in
yp.conf by adding the NIS domain name to the server statement. For instance, you might

change the above sample file for a laptop to look like this:

yp.conf - YP configuration for NYS library.
#
server vbardolino winery

server vstout brewery

This allows you to bring up the laptop in any of the two domains by simply setting the

desired NIS domain at boot time through the domainname command.

After creating this basic configuration file and making sure it is world-readable, you
should run your first test to check if you can connect to your server. Make sure to choose
any map your server distributes, like hosts.byname, and try to retrieve it by using the ypcat

utility. ypcat, like all other administrative NIS tools, should live in /usr/sbin.

ypcat hosts.byname

191.72.2.2 vbeaujolais vbeaujolais.linus.lxnet.org
191.72.2.3 vbardolino vbardolino.linus.lxnet.org
191.72.1.1 vlager vlager.linus.lxnet.org
191.72.2.1 vlager vlager.linus.lxnet.org
191.72.1.2 vstout vstout.linus.lxnet.org
191.72.1.3 vale vale.linus.lxnet.org
191.72.2.4 vchianti vchianti.linus.lxnet.org

The output you get should look somthing like that shown above. If you get an error
message instead that says “Can’t bind to server which serves domain” or something
similar, then either the NIS domain name you’ve set doesn’t have a matching server defined
in yp.conf, or the server is unreachable for some reason. In the latter case, make sure that
a ping to the host yields a positive result, and that it is indeed running a NIS server. You

can verify the latter by using rpcinfo, which should produce the following output:

rpcinfo -u serverhost ypserv

program 100004 version 2 ready and waiting

10.6 Choosing the Right Maps

Having made sure you can reach the NIS server, you have to decide which configuration
files to replace or augment with NIS maps. Commonly, you will want use NIS maps for

the host and password lookup functions. The former is especially useful if you do not run

10.6. Choosing the Right Maps 166

BIND. The latter permits all users to log into their account from any system in the NIS
domain; this usually requires sharing a central /home directory between all hosts via NFS.
It is explained detail in section 10.7 below. Other maps, like services.byname, aren’t such a
dramatic gain, but save you some editing work if you install any network applications that

use a service name that’s not in the standard services file.

Generally, you want to have some freedom of choice when a lookup function uses the
local files, and when it queries the NIS server. NYS allows you to configure the order in
which a function accesses these services. This is controlled through the /ete/nsswitch.conf
file, which stands for Name Service Switch but of course isn’t limited to the name service.
For any of the data lookup functions supported by NYS, it contains a line naming the

services to use.

The right order of services depends on the type of data. It is unlikely that the ser-
vices.byname map will contain entries differing from those in the local services file; it may
only contain more. So a good choice may be to query the local files first, and check NIS only
if the service name wasn’t found. Hostname information, on the other hand, may change
very frequently, so that DNS or the NIS server should always have the most accurate ac-
count, while the local hosts file is only kept as a backup if DNS and NIS should fail. In this

case, you would want to check the local file last.

The example below shows how to configure gethostbyname(2), gethostbyaddr(2), and
getservbyname(2) functions as described above. They will try the listed services in turn; if

a lookup succeeds, the result is returned, otherwise the next service is tried.

small sample /etc/nsswitch.conf
#
hosts: nis dns files

services: files nis

The complete list of services that may be used with an entry in the nsswitch.conf file
is shown below. The actual maps, files, servers and objects being queried depend on the

entry name.

nisplus or nis+
Use the NIS+ server for this domain. The location of the server is obtained
from the /etc/nis.conf file.

nis Use the current NIS server of this domain. The location of the server queried
is configured in the yp.conf file as shown in the previous section. For the

hosts entry, the maps hosts.byname and hosts.byaddr are queried.

dns Use the DNS name server. This service type is only useful with the hosts

10.7. Using the passwd and group Maps 167

entry. The name servers queried are still determined by the standard re-

solv.conf file.
files Use the local file, such as the /etc/hosts file for the hosts entry.

dbm Look up the information from DBM files located in /var/dbm. The name
used for the file is that of the corresponding NIS map.

Currently, NYS supports the following nsswitch.conf entries: hosts, networks, passwd,

group, shadow, gshadow, services, protocols, rpc, and ethers. More entries are likely to be

added.

Figure 10.1 shows a more complete example which introduces another feature of nss-
witch.conf: the [INOTFOUND=return] keyword in the hosts entry tells NYS to return if
the desired item couldn’t be found in the NIS or DNS database. That is, NYS will continue
and search the local files only if calls to the NIS and DNS servers failed for some other
reason. The local files will then only be used at boot time and as a backup when the NIS

server is down.

/etc/nsswitch.conf

#

hosts: nis dns [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files

services: files nis
protocols: files nis
rpc: files nis

Figure 10.1: Sample nsswitch.conf file.

10.7 Using the passwd and group Maps

One of the major applications of NIS is in synchronizing user and account information on
all hosts in a NIS domain. To this end, you usually keep only a small local /etc/passwd
file, to which the site-wide information from the NIS maps is appended. However, simply

enabling NIS lookups for this service in nsswitch.conf is not nearly enough.

When relying on the password information distributed by NIS, you first have to make
sure that the numeric user id’s of any users you have in your local passwd file match the
NIS server’s idea of user id’s. You will want this for other purposes as well, like mounting

NFS volumes from other hosts in your network.

10.7. Using the passwd and group Maps 168

If any of the numeric ids in /etc/passwd or /etc/group deviate from those in the maps,
you have to adjust file ownerships for all files that belong to that user. First you should
change all uids and gids in passwd and group to the new values; then find all files that
belong to the users just changed, and finally change their ownership. Assume news used
to have a user id of 9, and okir had a user id of 103, which were changed to some other

value; you could then issue the following commands:

find / -uid 9 -print >/tmp/uid.9
find / -uid 103 -print >/tmp/uid.103
cat /tmp/uid.9 | xargs chown news
cat /tmp/uid.103 | xargs chown okir

It is important that you execute these commands with the new passwd file installed, and
that you collect all file names before you change the ownership of any of them. To update

the group ownerships of files, you will use a similar command.

Having done this, the numerical uid’s and gid’s on your system will agree with those
on all other hosts in your NIS domain. The next step will be to add configuration lines to

nsswitch.conf that enables NIS lookups for user and group information:

/etc/nsswitch.conf - passwd and group treatment
passwd: nis files

group: nis files

This makes the login command and all its friends first query the NIS maps when a user
tries to log in, and if this lookup fails, fall back to the local files. Usually, you will remove
almost all users from your local files, and only leave entries for root and generic accounts
like mail in it. This is because some vital system tasks may require to map uids to user
names or vice versa. For example, administrative cron jobs may execute the su command
to temporarily become news, or the UUCP subsystem may mail a status report. If news
and uucp don’t have entries in the local passwd file, these jobs will fail miserably during a
NIS brownout.

There are two big caveats in order here: on one hand, the setup as described up to
here only works for login suites that don’t use shadow password, like those included in
the wtil-linuz package. The intricacies of using shadow passwords with NIS will be covered
below. On the other hand, the login commands are not the only ones that access the passwd
file — look at the ls command which most people use almost constantly. Whenever doing
a long listing, Is will display the symbolic names for user and group owners of a file; that
is, for each uid and gid it encounters, it will have to query the NIS server once. This will

slow things down rather badly if your local network is clogged, or, even worse, when the

10.8. Using NIS with Shadow Support 169

NIS server is not on the same physical network, so that datagrams have to pass through a

router.

Still, this is not the whole story yet. Imagine what happens if a user wants to change her
password. Usually, she will invoke passwd, which reads the new password and updates the
local passwd file. This is impossible with NIS, since that file isn’t available locally anymore,
but having users log into the NIS server whenever they want to change their password is not
an option either. Therefore, NIS provides a drop-in replacement for passwd called yppasswd,
which does the analoguous thing in the presence of NIS. To change the password on the
server host, it contacts the yppasswdd daemon on that host via RPC, and provides it with
the updated password information. Usually, you install yppasswd over the normal program

by doing something like this:

cd /bin
mv passwd passwd.old

1n yppasswd passwd

At the same time you have to install rpc.yppasswdd on the server and start it from

rc.inet?. This will effectively hide any of the contortions of NIS from your users.

10.8 Using NIS with Shadow Support

There is no NIS support yet for sites that use the shadow login suite. John F. Haugh,
the author of the shadow suite, recently released a version of the shadow library functions
covered by the GNU Library GPL to comp.sources.misc. It already has some support for
NIS, but it isn’t complete, and the files haven’t been added to the standard C library yet.
On the other hand, publishing the information from /etc/shadow via NIS kind of defeats

the purpose of the shadow suite.

Although the NYS password lookup functions don’t use a shadow.byname map or any-
thing likewise, NYS supports using a local /etc/shadow file transparently. When the NYS
implementation of getpwnam is called to look up information related to a given login name,
the facilities specified by the passwd entry in nsswitch.conf are queried. The nis service will
simply look up the name in the passwd.byname map on the NIS server. The files service,
however, will check if /etc/shadow is present, and if so, try to open it. If none is present,
or if the user doesn’t have root privilege, if reverts to the traditional behavior of looking
up the user information in /etc/passwd only. However, if the shadow file exists and can
be opened, NYS will extract the user password from shadow. The getpwuid function is
implemented accordingly. In this fashion, binaries compiled with NYS will deal with a local

the shadow suite installation transparently.

10.9. Using the Traditional NIS Code 170

10.9 Using the Traditional NIS Code

If you are using the client code that is in the standard libc currently, configuring a NIS client
is a little different. On one hand, it uses a ypbind daemon to broadcast for active servers
rather than gathering this information from a configuration file. You therefore have to make
sure to start ypbind at boot time. It must be invoked after the NIS domain has been set
and the RPC portmapper has been started. Invoking ypcat to test the server should then

work as shown above.

Recently, there have been numerous bug reports that NIS fails with an er-
ror message saying “clntudp._create: RPC: portmapper failure - RPC: unable to
receive”. These are due to an incompatible change in the way ypbind communicates
the binding information to the library functions. Obtaining the latest sources for the NIS

utilities and recompiling them should cure this problem.®

Also, the way traditional NIS decides if and how to merge NIS information with that
from the local files deviates from that used by NYS. For instance, to use the NIS password

maps, you have to include the following line somewhere in your /ete/passwd map:
+:%:0:0:::

This marks the place where the password lookup functions “insert” the NIS maps. In-
serting a similar line (minus the last two colons) into /etc/group does the same for the
group.* maps. To use the hosts.™ maps distributed by NIS, change the order line in the
host.conf file. For instance, if you want to use NIS, DNS, and the /etc/hosts file (in that

order), you need to change the line to
order yp bind hosts

The traditional NIS implementation does not support any other maps at the moment.

®The source for yp-linuz can be gotten from ftp.uni-paderborn.de in directory /pub/Linuz/LOCAL.

Chapter 11

The Network File System

NFS, the network filesystem, is probably the most prominent network services using RPC.
It allows to access files on remote hosts in exactly the same way as a user would access any
local files. This is made possible by a mixture of kernel functionality on the client side (that
uses the remote file system) and an NFS server on the server side (that provides the file
data). This file access is completely transparent to the client, and works across a variety of

server and host architectures.

NF'S offers a number of advantages:

e Data accessed by all users can be kept on a central host, with clients mounting this
directory at boot time. For example, you can keep all user accounts on one host, and
have all hosts on your network mount /home from that host. If installed alongside

with NIS, users can then log into any system, and still work on one set of files.

¢ Data consuming large amounts of disk space may be kept on a single host. For example,
all files and programs relating to WX and METAFONT could be kept and maintained

in one place.

¢ Administrative data may be kept on a single host. No need to use rep anymore to

install the same stupid file on 20 different machines.

Linux NFS is largely the work of Rick Sladkey,! who wrote the NFS kernel code and
large parts of the NIF'S server. The latter is derived from the unfsd user-space NFS server
originally written by Mark Shand, and the Anfs Harris NF'S server written by Donald Becker.

Let’s have a look now at how NFS works: A client may request to mount a directory

from a remote host on a local directory just the same way it can mount a physical device.

1Rick can be reached at jrs@world.std.com.

171

10.9. Using the Traditional NIS Code 172

However, the syntax used to specify the remote directory is different. For example, to mount
/home from host vlager to /users on vale, the administrator would issue the following

command on vale:?2

mount -t nfs vlager:/home /users

mount will then try to connect to the mountd mount daemon on vlager via RPC. The
server will check if vale is permitted to mount the directory in question, and if so, return it

a file handle. This file handle will be used in all subsequent requests to files below /users.

When someone accesses a file over NI'S, the kernel places an RPC call to nfsd (the NFS
daemon) on the server machine. This call takes the file handle, the name of the file to be
accessed, and the user’s user and group id as parameters. These are used in determining
access rights to the specified file. In order to prevent unauthorized users from reading or

modifying files, user and group ids must be the same on both hosts.

On most UNxX implementations, the NF'S functionality of both client and server are
implemented as kernel-level daemons that are started from user space at system boot.
These are the NFS daemon (nfsd) on the server host, and the Block 1/O Daemon (biod)
running on the client host. To improve throughput, biod performs asynchronous I/O using

read-ahead and write-behind; also, several nfsd daemons are usually run concurrently.

The NFS implementation of Linux is a little different in that the client code is tightly
integrated in the virtual file system (VFS) layer of the kernel and doesn’t require additional
control through biod. On the other hand, the server code runs entirely in user space, so
that running several copies of the server at the same time is almost impossible because of
the synchronization issues this would involve. Linux NFS currently also lacks read-ahead
and write-behind, but Rick Sladkey plans to add this someday.?

The biggest problem with the Linux NFS code is that the Linux kernel as of version 1.0
is not able to allocate memory in chunks bigger than 4K; as a consequence, the networking
code cannot handle datagrams bigger than roughly 3500 bytes after subtracting header sizes
etc. This means that transfers to and from NFS daemons running on systems that use large
UDP datagrams by default (e.g. 8K on SunOS) need to be downsized artificially. This
hurts performance badly under some circumstances.* This limit is gone in late Linux-1.1

kernels, and the client code has been modified to take advantage of this.

?Note that you can omit the -t nfs argument, because mount sees from the colon that this specifies an
NFS volume.
*The problem with write-behind is that the kernel buffer cache is indexed by device/inode pairs, and

therefore can’t be used for NFS-mounted file systems.
* As explained to me by Alan Cox: The NFS specification requires the server to flush each write to disk

before it returns an acknowledgement. As BSD kernels are only capable of page-sized writes (4K), writing
a 4 chunks of 1K each to a BSD-based NFS server results in 4 write operations of 4K each.

11.1. Preparing NFS 173

11.1 Preparing NFS

Before you can use NF'S, be it as server or client, you must make sure your kernel has NFS
support compiled in. Newer kernels have a simple interface on the proc filesystem for this,

the /proc/filesystems file, which you can display using cat:

$ cat /proc/filesystems
minix

ext2

msdos

nodev proc

nodev nfs

If nfs is missing from this list, then you have to compile your own kernel with NFS
enabled. Configuring the kernel network options is explained in section “Kernel Configura-

tion” in chapter 3.

For older kernels prior to Linux 1.1, the easiest way to find out whether your kernel has
NFS support enabled is to actually try to mount an NFS file system. For this, you could

create a directory below /tmp, and try to mount a local directory on it:

mkdir /tmp/test
mount localhost:/etc /tmp/test

If this mount attempt fails with an error message saying “fs type nfs no supported
by kernel”, you must make a new kernel with NF'S enabled. Any other error messages are

completely harmless, as you haven’t configured the NFS daemons on your host yet.

11.2 Mounting an NFS Volume

NFS volumes® are mounted very much the way usual file systems are mounted. You invoke

mount using the following syntax:
mount -t nfs nfs_volume local_ dir options

nfs_volume is given as remote_host:remote_dir. Since this notation is unique to NFS

file systems, you can leave out the -t nfs option.

®One doesn’t say file system, because these are not proper file systems.

11.2. Mounting an NFS Volume 174

There are a number of additional options that you may specify to mount upon mounting
an NFS volume. These may either be given followi